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Definition

Mathematical manipulatives are artifacts used in
mathematics education: they are handled by stu-
dents in order to explore, acquire, or investigate
mathematical concepts or processes and to per-
form problem-solving activities drawing on per-
ceptual (visual, tactile, or, more generally,
sensory) evidence.
Characteristics

Manipulatives and Mathematics Education
One can distinguish several kinds of manipula-
tives used in schools and education. Two
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classifications that emerge from the literature
may be suggested, referring to either the quality
of interaction user-manipulative or the origin of
the manipulative: concrete versus virtual manipu-
latives and historic-cultural versus “artificial”
manipulatives.

Concrete manipulatives are physical artifacts
that can be concretely handled by students and
offer a large and deep set of sensory experience.

Virtual manipulatives are digital artifacts that
resemble physical objects and can be manipu-
lated, usually with a mouse, in a similar way as
their authentic, concrete counterparts.

Historic-cultural manipulatives are concrete
artifacts that have been created in the
longstanding history of mathematics to either
explore or solve specific problems, both from
inside and from outside mathematics.

“Artificial” manipulatives are artifacts that
have been designed by educators with specific
educational aims.

The following table lists some examples
according to the combination of the two classifi-
cations above.
Concrete
 Virtual
Historic-
cultural
Different kinds of
abaci; Napier’s
bones; measuring
tools such as graded
rulers and
protractors;
polyhedrons;
Suanpan the
Chinese abacus,
virtual copies of
mathematical
machines
(continued)
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Manipulatives
Concrete
in Mathematics Educa
Virtual
mathematical
machines;
topological puzzles;
geometrical puzzles;
dices and
knucklebones;
ancient board games
“Artificial”
 Froebel’s gifts,
Montessori’s
materials,
Cuisenaire rods,
Dienes’s materials,
multibase blocks,
fraction strips and
circles, bee-bot
Library of
virtual
manipulatives
Historic-cultural manipulatives refer to mathe-
matical meanings, as they have paved the way
towards today’s mathematics (some examples
are discussed in a further section). Artificial
manipulatives are the outcomes of an opposite
path: an ingenuous educator invented, for specific
educational purposes, a new way to embody an
established mathematical concept into an object or
a game. At the beginning this choice might be
considered artificial (and this is the reason of
using this term in the classification above).
A famous example is given by Dienes who
explains the root of multibase blocks and the
teachers’ resistance to this introduction, perceived
as completely artificial. One might object that the
difference between the historic-cultural and artifi-
cial ones is fuzzy. Is one allowed to consider
tion, Fig. 1 Schoty
Froebel’s gifts artificial and the Slavonic abacus
historic-cultural? Not exactly, if one considers that
both artifacts date back to the same period and
have been designed for educational purposes. The
Slavonic abacus was carried to France around
1820 from Russia by Poncelet who transformed
the Russian abacus for educational purposes.
Froebel gifts were designed around 1840 for
activity in the kindergarten. In the proposed clas-
sification, the Slavonic abacus is considered a
historic-cultural one, because of the strict relation-
ship with other kinds of abaci, while Froebel gifts
are considered the ancestors of other artificial
manipulatives produced later by educators like
Montessori, Cuisenaire, and Dienes (Fig. 1).

Both are examples of the inclination to give
value in Europe to active involvement of mathe-
matics students during the nineteenth century (see
Bartolini Bussi et al. 2010) and represent the
background where the International Commission
on Mathematical Instruction (ICMI) started to
work with a big emphasis on active methods and
laboratory activities.

The distinction between concrete and virtual
manipulatives deserves some observation.
A whole library of virtual manipulatives is avail-
able on the web. In this library, there are digital
“objects” (mostly in the form of Java applets)
representing many artificial manipulatives and
allowing to act on them in a way similar to the
action on their concrete counterparts. There are
also websites, where digital copies of historic-
and Froebel gifts
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cultural manipulatives are available. In all cases
the user-manipulative interaction is limited to
mouse piloting and looking at effects. Systematic
research on virtual manipulatives and on compar-
ison between concrete and virtual manipulatives
is still at the very beginning. Virtual manipulatives
are easily available (wherever a computer labora-
tory is located), are time and space saving, and are
motivating, because of the appeal they exert on
students accustomed to digital devices. However,
if compared with concrete manipulatives, virtual
manipulatives seem to highlight mainly visual
experience, skipping reference to tactile and
other sensory experience. The new touch-screen
technology with the possibility of touching simul-
taneously different points on the screen seems to
open new possibilities (see, for instance, Mak-
trace, by Anna Baccaglini-Frank (Baccaglini-
Frank et al. 2012) and TouchCounts by Nathalie
Sinclair).

A few studies have been carried out about the
comparison between concrete and virtual manipu-
latives. For instance, Hunt et al. (2011) report the
findings of a 3-year study with prospective middle-
grade mathematics teachers enrolled in Clayton
State University. Perceived advantages and disad-
vantages of concrete versus virtual manipulatives
are compared after a full course where both kinds
of manipulatives for Number Concepts had been
used. Concrete manipulatives appeared to be more
effective for building preservice teachers’ and stu-
dents’ conceptual understanding. The virtual
manipulatives were used to reinforce those con-
cepts. The usefulness of using both concrete and
virtual manipulatives is emphasized by Maschietto
and Bartolini Bussi (2011). Both a concrete and a
virtual copy of the same manipulative (i.e., the van
Schooten ellipsograph by antiparallelogram –
Fig. 2) are analyzed, comparing classroom tasks
and tasks for teachers about the textual description
with “realistic” drawings.

Critical Issues
The first critical issue concerns the students’ auton-
omy in using manipulatives. In the western tradi-
tion, since the time of Montessori, the use of
manipulatives was mainly aimed at spontaneous
activity within a well-prepared environment: adults
organize the environment where students (usually
aged between 3 and 10–12) are free to select activ-
ity. This trend has to be historically contextualized
as a reaction against the lecture-based school, crit-
icized also by Dewey (1907). Yet there are studies
(e.g., Uttal et al. 1997; McNeil and Jarvin 2007)
which have a more critical approach to manipula-
tives. The effectiveness of manipulatives over
more traditional methods is analyzed, claiming
that the sharp distinction between concrete and
symbolic forms of mathematical expression is not
useful. There is no guarantee that students will
establish the necessary connections between
manipulatives and more traditional mathematical
expressions. In particular this issue calls into play
the importance of instruction (or teaching) about
manipulatives and the connection between manip-
ulatives and symbols.

The second critical issue concerns the students’
age. Most research about manipulatives has been
carried out at preschool and primary school level,
highlighting the usefulness of manipulatives at a
certain age only (e.g., Kamii et al. 2001). In most
guides for teachers, the use of manipulatives is
especially aimed at either primary school students
or students with special needs. Curtain-Phillips
complains about the scarce use of manipulatives in
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US high schools, quoting, as an exception, Marilyn
Burns who used manipulative materials at all levels
for 30 years. Moreover, she quotes the attention of
the National Council of Teachers of Mathematics
(NCTM) that has encouraged the use of manipula-
tives at all grade levels, in every decade, since 1940.
She asks an interesting question: why are high
school teachers reluctant to use this type of
resources? One reason might be the nearly unique
emphasis on artificial manipulatives that have been
created with the declared aim to embody an abstract
mathematical concept into a concrete (or virtual)
object. If this is the shared approach, the effect is
that they are used with either young children or
students with special needs, who are expected to
need more time for concrete-enactive exploration.
Nührenbörger and Steinbring (2008) contrast this
position emphasizing that manipulatives are sym-
bolic representations in which mathematical rela-
tionships, structures, and patterns are contained
and can be actively interpreted, exchanged within
the discursive context, and checked with regard to
plausibility (see also Uttal et al. 1997). The “theo-
retical ambiguity” of manipulatives is to be consid-
ered a central theme in mathematics lessons. This
very ambiguity makes manipulatives suitable to all
school levels, up to university, as a context where
fundamental processes, as defining, conjecturing,
arguing, and proving, are fostered. This requires a
very strong and deep analysis of manipulatives,
from theoretical and epistemological points of
view, and a study of the consequence of this analysis
in teachers’ design of tasks and interventions in the
mathematics classroom. To cope with this problem,
in our research team (Bartolini Bussi and Mariotti
2008), we have developed the framework of semi-
otic mediation after a Vygotskian approach. In the
following section, we outline this framework
together with some examples, mainly taken from
the historic tradition.

A Comprehensive Theoretical Approach to
Manipulatives: Semiotic Mediation After a
Vygotskian Approach
Vygotsky studied the role of artifacts (including
language) in the cognitive development and
suggested a list of possible examples: “various
systems for counting; mnemonic techniques;
algebraic symbol systems; works of art; writing;
schemes, diagrams, maps, and mechanical
drawings; all sorts of conventional signs, etc.”
(Vygotsky 1981, p. 137). Manipulatives might
be included in this list. The introduction of
an artifact in a classroom does not automatically
determine the way it is used and conceived of
by the students and may create the condition
for generating the production of different voices.
In short, the manipulatives are polysemic, and
they may create the condition for generating
the production of different voices (polyphony).
This position is consistent with Nührenbörger
and Steinbring’s theoretical ambiguity men-
tioned above (2008). The teacher mediates
mathematical meanings, using the artifact as a
tool of semiotic mediation. Without teacher’s
intervention, there might be a fracture between
concrete learners’ activity on the manipulative
and the mathematical culture, hence no learner’s
construction of mathematical meanings. In
this framework the theoretical construct of the
semiotic potential of an artifact is central: i.e.,
the double semiotic link which may occur
between an artifact and the personal meanings
emerging from its use to accomplish a task and at
the same time the mathematical meanings
evoked by its use and recognizable as mathemat-
ics by an expert (Bartolini Bussi and Mariotti
2008).

Some Examples of Manipulatives and Tasks
This section presents the semiotic potential of
some manipulatives, known as Mathematical
Machines. A geometrical machine is a tool that
forces a point to follow a trajectory or to be
transformed according to a given law. An arith-
metical machine is a tool that allows the user to
perform at least one of the following actions:
counting, reckoning, and representing numbers.
They are concretely handled and explored by stu-
dents at very different school levels, including
university. In most cases also virtual copies exist
as either available resources (see the right frame at
www.macchinematematiche.org) or outcomes of
suitable tasks for students themselves (Bartolini
Bussi and Mariotti 2008). The historic-cultural
feature of these manipulatives allows to create a

http://www.macchinematematiche.org/
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classroom context where history of mathematics
is effectively used to foster students’ construction
of mathematical meanings (Maschietto and
Bartolini Bussi 2011). Each example contains a
short description of the manipulative, an exem-
plary task and the mathematical meaning, as
intended by the teacher.

Counting Stick
Counting sticks, dating back to ancient China, are
thin bamboo or plastic sticks. The sticks are
counted, grouped, and bundled (and tied with
ribbons or rubber bands) into tens for counting
up to hundred; ten bundles are grouped and bun-
dled into hundreds and so on.

Figure 3a, b is taken from a Chinese textbook:
the oral numerals beyond ten are introduced by
grouping and tying ten sticks (left, 1st grade) and a
“difficult” subtraction is realized by untying and
ungrouping a bundle (right, 1st grade).

Tasks: To guess numerals between 10 and
20 in the first case and to calculate 36–8 in the
second case.

In this case the triangle of semiotic potential
hints at:

Mathematical knowledge: Grouping/
regrouping.

There is a perfect correspondence between the
two opposite actions: tying/untying and grouping/
ungrouping. The former refers to the concrete
action with sticks and bundles; the latter refers to
a mathematical action with units and tens. It is
likely that primary students’ descriptions refer to
Manipulatives in Mathematics Education, Fig. 3 Shuxu
the concrete action (in one class, 1st graders
invented the Italian neologism “elasticare,” i.e.,
“rubbering”). It is not difficult for the teacher to
guide the transition from the wording of the con-
crete action towards the wording of a mathemati-
cal action. In this way also the need (as perceived
by teachers) to use “borrowing” from tens to units
is overcome (see Ma 1999, p. 1ff. for a discussion
of this issue).

Pascaline
The pascaline is a mechanical calculator (see
Fig. 4) (Bartolini Bussi and Boni 2009).

The name of the instrument hints at the design
of a mechanical calculator by Blaise Pascal (for
details, see Bartolini Bussi et al. 2010). An exem-
plary task is the following: Task: Represent the
number 23 and explain how youmade it. Different
pieces of mathematical knowledge may be
involved to answer the task, for instance:

• The generation of whichever natural number
by iteration of the function “+1” (one step
ahead for the right bottom wheel)

• The decomposition of a 2-digit number
(23) into 2 tens and 3 units

The first mathematical action may be carried
out on the pascaline by iterating 23 times the
function “+1”; the second mathematical action
may be carried out by iterating the function “+1”
3 times on the right bottom wheel and 2 times on
the central bottom wheel.
e ISBN 7-107-14-632-7
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Pair of Compasses and Other Curve Drawers
The compass (pair of compasses) is the oldest
geometrical machine; it is a technical drawing
instrument that can be used for inscribing circles
or arcs. It is used also as a tool to measure dis-
tances, in particular on maps. The compass objec-
tifies, by means of its structure and its functional
use, the defining elements of the circle (center and
radius) and reflects a clear definition of the circle
as a closed curve such that all its points are equi-
distant from an inside common point (Bartolini
Bussi et al. 2007).

Tasks: How is the pair of compasses made?
What does it draw? Why does it do that?

Mathematical knowledge: From primary
school the compass can be used and analyzed in
order to learn concepts and to understand how it
embodies some mathematical laws (Chassapis
1999). The same can be done in the upper grades
(up to teacher education programs, Martignone
2011), after the exploration of the compass
Manipulatives in Mathematics Education,
Fig. 4 Pascaline “zero + 1”

Manipulatives in
Mathematics Education,
Fig. 5 (a–b) Scheiner’s
pantograph http://www.
macchinematematiche.org/
index.php?option=com_
content&view=article&
id=112&Itemid=195
structure and movements, student can become
theoretically aware about how the mathematical
law is developed by compass and then they can
use this instrument to solve problems and to pro-
duce proofs in Euclidean geometry.

Even if the compass is the most famous curve
drawer, over the centuries many different types of
curve drawers have been designed and used as
tools for studying mathematics and for solving
problems (see http://www.museo.unimo.it/
labmat/usa1.htm). The oldest linkages date back
to the Alexandrian and Arabic cultures, but it is in
seventeenth century, thanks to the work of Des-
cartes (1637), that these machines obtained a wide
theoretical importance and played a fundamental
role in creating new symbolic languages (see
http://kmoddl.library.cornell.edu/linkages/).

Pantographs
Over the century the pantographs were described
in different types of documents, such as mathe-
matical texts and technical treatises for architects
and painters. In particular, in nineteenth century,
when the theory of geometrical transformations
became fundamental in mathematics, they were
designed and studied by many scientists.
A famous linkage is the Scheiner’s pantograph: a
parallelogram linkage, one of whose joints has its
movement duplicated by an attached bar. This has
been used for centuries to copy and/or enlarge
drawings. Since the end of the sixteenth century,
this type of machines was used by painters even if
it was improved and described by Scheiner in
1631 (Fig. 5a, b).

http://www.museo.unimo.it/labmat/usa1.htm
http://www.museo.unimo.it/labmat/usa1.htm
http://kmoddl.library.cornell.edu/linkages/
http://www.macchinematematiche.org/index.php?option=com_content%26view=article%26id=112%26Itemid=195
http://www.macchinematematiche.org/index.php?option=com_content%26view=article%26id=112%26Itemid=195
http://www.macchinematematiche.org/index.php?option=com_content%26view=article%26id=112%26Itemid=195
http://www.macchinematematiche.org/index.php?option=com_content%26view=article%26id=112%26Itemid=195
http://www.macchinematematiche.org/index.php?option=com_content%26view=article%26id=112%26Itemid=195
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Tasks: Students can study how the machine is
made, how the different components move, what
are the constraints, and the variables modeling the
structure by means of Euclidean geometry.

Mathematical knowledge: The Scheiner’s
pantograph can be used for introducing the con-
cept of dilation (homothety) and/or for developing
argumentation processes about why the machine
does a dilatation.

Finally, it should be emphasized that these
ancient technologies, whose use and study date
back to past centuries, have modern developments,
for example, modeling the robot arms. Also in
mathematics, the study of linkages has been
recently revived. In the twentieth century, ideas
growing from Kempe’s work were further general-
ized by Denis Jordan, Michael Kapovich, Henry
King, JohnMillson,Warren Smith,Marcel Steiner,
and others (Demaine and O’Rourke 2007).

Open Questions
There is no best educational choice between dif-
ferent kinds of manipulatives. Rather the choice
depends on different factors (what is available,
what fits better the students’ culture and expecta-
tions, and so on) and, above all, on teachers’
system of beliefs and view on mathematics.
There is never a “natural” access to the embodied
mathematics, as no artifact is transparent in its
embodied mathematical meaning (Ball 1992;
Meira 1998): a suitable context and set of tasks
are always required. There are many reasons to
support the use of manipulatives in the mathemat-
ics classrooms, but the short review of literature
above shows that there is still a place for develop-
ing studies about:

• Manipulatives: to analyze limits and potential-
ities of different kinds of manipulatives
(concrete vs. virtual; historic-cultural
vs. artificial) from an epistemological, cogni-
tive, and didactical perspective

• Classroom practice: to design, test, and analyze
tasks about manipulatives at different school
levels and in different cultural traditions

• Teacher education and development: to design,
test, and analyze tasks for teachers about the use
of manipulatives in the mathematics classroom
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Definitions

Mathematical ability is a human construct, which
may be defined cognitively or pragmatically,
depending on the purpose of definitions. Cognitive
definitions are used when relating to this con-
struct from a theoretical perspective; mathemat-
ical ability can then be defined as the ability to
obtain, process, and retain mathematical infor-
mation (Krutetskii 1976; Vilkomir and
O’Donoghue 2009) or as the capacity to learn
and master new mathematical ideas and skills
(Koshy et al. 2009). Pragmatic definitions are
usually used when looking at this construct
from a perspective of evaluation (e.g., when the
focus is on identifying learners’ potential or
assessing learning outcomes). From this per-
spective, it can be defined as the ability to per-
form mathematical tasks and to effectively solve
given mathematical problems. Such definitions
are general in nature and are commonly
unpacked into several components, which are
not necessarily exclusive to one definition or
another. Thus, we speak of an assemblage of
mathematical abilities rather than a single abil-
ity. One of the most acknowledged and widely
accepted theories in this respect is that of
Krutetskii (1976), who suggested that mathemat-
ical ability is comprised of the following abili-
ties: use formal language and operate within
formal structures of connections, generalize,
think in a logic-sequential manner, perform
shortcuts (“curtailments”) while solving prob-
lems, switch thinking directions, move flexibly
between mental processes, and recall previously
acquired concepts and generalizations.
Characteristics

The Evolvement of Mathematical Abilities
Mathematical abilities develop in correspondence
with the development of rational and logical
thinking. According to Piaget’s theory of cogni-
tive development (Piaget and Inhelder 1958), log-
ical thinking skills are limited in the first two
developmental stages of normative childhood,
the sensorimotor stage and the preoperational
stage. This means that although young children,
who have acquired the use of language (around
the age of 2–3), are able to link numbers to objects
and may have some understanding of the concepts
of numbers and counting, they still cannot
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comprehend logical notions such as reversible
actions or transitivity until they reach the
concrete-operational stage, around the age of
7–8. At this stage, a child can comprehend, for
example, that the distance from point A to point
B is the same as the distance from point B to point
A and that if x � y and y � z, then x � z. During
the concrete-operational stage (ages 7–8 to
11–12), a considerable growth in mathematical
abilities is enabled due to the acquisition of two
additional logical operations: seriation, defined as
the ability to order objects according to increasing
or decreasing values, and classification, which is
grouping objects by a common characteristic
(Ojose 2008). Yet, the abstract thinking necessary
for grasping and constructing mathematical ideas
evolves during the formal-operational stage,
around the ages of 11–12 to 14–15. At this stage,
according to Piagetian theory, adolescents are able
to reason using symbols, make inductive and
deductive inferences, form hypotheses, and gen-
eralize and evaluate logical arguments.

Piaget’s theory was criticized, among other
things, for underestimating the abilities of young
children while overestimating the abilities of ado-
lescents (Ojose 2008). However, Piaget himself
emphasized that the stages in his theory do not
necessarily occur in the ages specified. That is,
some children will advance more quickly and
reach a certain cognitive stage at a relatively early
age; others may not arrive at this stage until much
later in their lives. The speed of development and
the degree to which the last formal-operational
stage is realized depend on various personal and
environmental attributes. This view corresponds
with Vygotsky’s theory (Vygotsky 1978) which
emphasizes the crucial role that social interactions
and adult guidance, available in children’s environ-
ment, play in their cognitive development. Thus, as
a result of variations in individuals’ circumstances
and available mathematical experiences, we find
that the spectrum of mathematical abilities in a
specific age group is of a wide magnitude.

Characterizing Different Students on the
Spectrum of Mathematical Abilities
Researchers have endeavored to characterize stu-
dents located close to both ends of the
mathematical ability spectrum: on the one hand
mathematically gifted and highly able students
and on the other hand students who are lacking
in their mathematical abilities, compared with
their peers.

The aforementioned classical work of
Krutetskii (1976) concentrated on the higher
end of mathematical abilities. Krutetskii used a
wide-ranging set of mathematical problems
and an in-depth analysis of children’s answers,
in an attempt to pinpoint the components of
mathematical ability in general and higher abil-
ity in particular. Based on his investigations,
Krutetskii referred to four groups of children:
extremely able, able, average, and low. He
inferred that extremely able children are charac-
terized by what he termed as a “mathematical
cast of mind.” This term designates the tendency
to perceive the surrounding environment
through lenses of mathematical and logical rela-
tionships, to be highly interested in solving chal-
lenging mathematical problems, and to keep
high levels of concentration during mathemati-
cal activities. Interpreting Krutetskii’s theory,
Vilkomir and O’Donoghue (2009) suggest that
a mathematical cast of mind stimulates all other
components of mathematical ability to be devel-
oped to the highest level, if the student is pro-
vided with the necessary environment and
instruction.

At the other end of the spectrum, we find
learners with low mathematical abilities.
Although these learners typically perform poorly
in school mathematics, the inverse is not neces-
sarily true. In other words, the presumption that
poor mathematical performance of students is
indicative of their low mathematical abilities is
problematic; a range of social, behavioral, and
cultural circumstances can result in low achieve-
ments in school mathematics (Secada 1992). In
addition, students may develop a negative math-
ematical self-schema that reduces their motiva-
tion to succeed in mathematics, regardless of
their overall abilities (Karsenty 2004). Neverthe-
less, characteristics of low mathematical abilities
are available in the literature. Overcoming the
abovementioned pitfall may be achieved through
careful consideration of a child performance in a
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supportive environment, under a personal guid-
ance of a trusted adult. Thus, we find that the
main features of low mathematical abilities are
difficulties in establishing connections between
mathematical elements of a problem; inability to
generalize mathematical material according to
essential attributes, even with help and after a
number of practice exercises; lack of capability
to deduce one thing from another and find the
common principle of series of numbers even
with assistance; avoidance from using symbolic
notations; and short-lived memory for mathe-
matical procedures (Karsenty et al. 2007;
Vilkomir and O’Donoghue 2009). In extreme
cases of low mathematical abilities, the term
mathematical disability (MD) is used. Research
on MD is commonly conducted on subjects with
notable deficiencies in basic arithmetic skills and
includes explorations of the disability known as
dyscalculia. MD is not an uncommon disorder
(estimations range between 3% and 8% of the
school-age population) and is mainly attributed
to cognitive, neuropsychological, and genetic
origins (Geary 1993).

Mathematical Abilities and General
Intelligence
Despite the popular view that links mathematical
ability with intelligence, the relation between
these two constructs remains elusive. The original
intelligence test developed by Binet and Simon in
the early 1900s emphasized mostly verbal reason-
ing and did not include a mathematical compo-
nent, except for simple counting. The later
version, known as the Stanford-Binet test, which
was composed by Terman in 1916 (and is still
used today, after several revisions along the
years), includes a quantitative reasoning part.
Terman assumed that mathematical abilities play
some role in determining general intelligence, yet
he did not conduct empirical studies to support
this argument. Later theories of intelligence also
suggested that there is a quantitative element in
models describing intelligence. For instance,
Thurstone (1935) stated that number facility is
one of the seven components of which human
intelligence is comprised; Wechsler (1939)
included mental arithmetic problems in his widely
used IQ tests. There is some evidence that fluid
intelligence, defined as general reasoning and
problem-solving abilities independent from
specific knowledge and culture, is positively cor-
related with the ability to solve realistic mathe-
matical word problems (Xin and Zhang 2009).
However, since mathematical ability stretches far
beyond number sense and successful encounter-
ing of arithmetic or word problems, we cannot
construe on the basis of existing data that intelli-
gence and mathematical ability are mutually
related.

Multidimensional theories of intelligence offer
a different view on this issue. Gardner, in his
seminal work first presented in his book “Frames
of Mind” in 1983, suggested that there are several
distinct intelligences, one of which is the logical-
mathematical intelligence. Gardner argued that
traditional models of intelligence, such as
Terman’s, combine together human capacities
that do not necessarily correlate with one another.
Thus, a person with high mathematical abilities,
as described, for instance, by Krutetskii, will be
defined by Gardner’s Multiple Intelligences the-
ory as having high logical-mathematical intelli-
gence; this definition does not necessarily imply
that this person’s score in a conventional IQ test
will be superior.

Measuring and Evaluating Students’
Mathematical Ability
Following the above, it became clear to
researchers that a standard IQ test is not an appro-
priate tool for evaluating the mathematical ability
of students, especially for the purpose of identify-
ing extremely able ones (Carter and Kontos
1982). Instead, one of the most prevalent means
for this purpose is known as aptitude tests. Apti-
tude tests are aimed at measuring a specific ability
or talent and are often used to predict the likeli-
hood of success in certain areas or occupations
(e.g., foreign language learning, military service,
or, in this case, mathematics). Among the many
existing aptitude tests, a widely known one is the
SAT (an acronym which originally stood for
Scholastic Aptitude Test), designed by the
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College Board in USA for predicting academic
success. The SAT includes three parts, one of
which is the SAT-M, referring to mathematics.
Julian Stanley, founder of SMPY (the Study of
Mathematically Precocious Youth) at Johns Hop-
kins University, found that SAT-M is an efficient
means for identifying mathematically gifted stu-
dents at junior high school age (Stanley et al.
1974). However, the use of aptitude tests like
SAT-M for the purpose of measuring mathemati-
cal ability was criticized by several scholars as
inadequate. For instance, Lester and Schroeder
(1983) claimed that multiple-choice, standardized
tests, such as SAT-M, provide no information
about students’ ability to solve nonroutine math-
ematical problems, and moreover, they cannot
reveal the nature and quality of students’ mathe-
matical reasoning. These tests focus on a narrow
interpretation of mathematical ability, ignoring
important problem-solving behaviors that are
indicative of this ability. Krutetskii (1976)
attacked the credibility of psychometric items for
measuring mathematical ability, claiming that
(a) a single assessment event is highly affected
by the subject’s anxiety or fatigue, (b) training and
exercise influence the rate of success, and
(c) psychometric means concentrate on quantita-
tive rather than qualitative aspects of mathemati-
cal ability, i.e., they focus on final outcomes
instead of thinking processes, thus missing the
central meaning of this construct. Despite criti-
cisms, the current predominant method for
assessing students’ mathematical ability is still
different versions of multiple-choice aptitude
tests, most likely due to considerations of time
and budget resources. Nevertheless, efforts are
being conducted to develop low-cost assessment
tools that follow the qualitative approach charac-
teristic of the work of Krutetskii and others (e.g.,
Vilkomir and O’Donoghue 2009).
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Introduction

Research in mathematics education is interdisci-
plinary. According to Higginson (1980), mathe-
matics, philosophy, psychology, and sociology
are contributing disciplines to mathematics edu-
cation (similar to what Michael Otte called
Bezugsdisziplinen; Otte et al. 1974, p. 20). Lin-
guistics and semiotics could be added. Framing of
research, by means of theories or methods from
these, amounts to different approaches, mathe-
matics itself being one obvious choice. According
to one view, mathematics education as a research
field belongs to mathematics: at the second Inter-
national Congress on Mathematical Education
(ICME) in Exeter, Zofia Krygowska suggested
that mathematics education should be classified
as “a part of mathematics with a status similar to
that of analysis or topology” (Howson 1973,
p. 48). Another view sees mathematics education
as an autonomous science (didactics of mathemat-
ics as Hans Georg Steiner in 1968 called the new
discipline he wanted to establish; see Furinghetti
et al. 2008, p. 132), strongly linked to mathemat-
ics, as expressed at ICME1 in Lyon 1969: “The
theory of mathematical education is becoming a
science in its own right, with its own problems
both of mathematical and pedagogical content.
The new science should be given a place in the
mathematical departments of Universities or
Research Institutes, with appropriate qualifica-
tions available” (quoted in Furinghetti et al.
2008, p. 132). However, in many countries, math-
ematics education research has an institutional
placement mainly in educational departments.
Definition

Mathematical approaches in mathematics educa-
tion take the characteristics and inner structures of
mathematics as a discipline (i.e., the logic of the
subject) as its main reference point in curriculum
and research studies. These characteristics, how-
ever, might be questioned. Studies include philo-
sophical, historical, and didactical analyses of
mathematical content and of how it is selected,
adapted, or transformed in the process of
recontextualization by requirements due to educa-
tional constraints, as well as the consequences
entailed by these transformations on didactic deci-
sions and processes.
Developments

The field of mathematics education research his-
torically emerged from the scientific disciplines of
mathematics and of psychology (Kilpatrick
1992). On an international level, through the
activities promoted by ICMI (International Com-
mission on Mathematical Instruction) during the
first half of the twentieth century, with their focus
on comparing issues of mathematical content in
curricula from different parts of the world, with
little consideration of research on teaching and
learning (Kilpatrick 1992), the approach to sec-
ondary and tertiary mathematics education was
predominantly mathematical. During the same
period, however, in primary mathematics educa-
tion, the approaches were commonly psychologi-
cally or philosophically oriented. Independently,
the use of concrete materials in schools is widely
developed (Furinghetti et al. 2013). While this
situation led to a decrease of ICMI’s influence
on mathematics education, through and after
the New Math movement in the 1960s, ICMI
regained its voice with support of OEEC/OECD,
UNESCO, and through the collaboration of math-
ematicians with mathematics educators, mainly



Mathematical Approaches 499

M

through CIEAEM, concerned with the full com-
plexity of teaching and learning at all school
levels (Furinghetti et al. 2008). The mathematical
approach underpinning the reform was warranted
not only by the aim to update curricula with
modern developments in mathematics but also
by Piagetian psychology pointing to “similarities”
between mental and mathematical structures
(Furinghetti et al. 2008). The aim of the New
Math to be amathematics for allwas counteracted
by its emphasis on general mathematical struc-
tures and fundamental concepts. This type of
mathematical approach was strongly criticized,
most notably by Hans Freudenthal who used the
term anti-didactic inversion for a static axiomatic
ready-made version of mathematics presented to
students (Freudenthal 1973, p. 12). An influential
similar critique was offered by René Thom (1973,
p. 202), who suggested that mathematics educa-
tion should be founded on meaning rather than
rigor.

The eventual failure of the New Math pointed
to the need of establishing mathematics education
as a discipline “in its own rights” and a wider
scope for the work of ICMI. In retrospective, the
first ICME congress in 1969 can be said to mark
the creation of an autonomous mathematics edu-
cation community (during a period when several
institutions and journals specialized in mathemat-
ics education were founded; see, e.g., Furinghetti
et al. 2013) and a loosening of the strong link to
the community of mathematicians with implica-
tions for the “status” of mathematical approaches.
With this wider scope, besides mathematical and
psychological approaches, a variety of approaches
for the study of phenomena within the field was
needed, especially with reference to social
dimensions.

This development highlights different interpre-
tations ofmathematical approach. While the New
Math was the outcome of a deliberate and
research-based program prepared in collabora-
tion, the type of “mathematical approaches” of
later movements in the USA, such as Back to
Basics in the 1970s and even more so the Math
Wars in the 1990s, is better described as ideolog-
ically based reactions to what was seen by some
individuals and interest groups as fuzzy
mathematics. The return to the skill-oriented
curriculum advocated failed to take into account
not only reported high dropout rates and
research showing how it disadvantages under-
privileged social groups but also research that
highlights the complexity in teaching and learn-
ing processes (Goldin 2003; Schoenfeld 2004).
In the more research-oriented mathematical
approaches that developed in Europe during the
same period, it was shown how both the charac-
ter and learning of mathematics at school are
institutionally conditioned.
Characteristics

The following quote gives an argument for
taking a mathematical approach to research:
“Themathematical science in its real development
is therefore the central focus of the mathematics
educators, because the separation of creative
activity and learning – taking into account the
fundamental difference between research and
learning – is unfruitful and does not allow to
adequately capture the learning nor to properly
guide the learning process” (auth. transl., Jahnke
et al. 1974, p. 5). To develop mathematical knowl-
edge, the learner must engage in creative mathe-
matical activities. Another rationale for a focus on
mathematics itself in didactical research draws on
the observation that mathematics “lives” differ-
ently in different institutions and is transformed
(recontextualized) when moved. In a mathematics
classroom, different ideologies influence what
kind of mathematical knowledge is proposed as
legitimate, requiring from both, the teacher and
the researcher, an awareness of the structure of the
knowledge produced. The often cited claim by
René Thom (1973, p. 204) that “whether one
wishes it or not, all mathematical pedagogy,
even if scarcely coherent, rests on a philosophy
of mathematics,” also applies to research in math-
ematics education. This can be seen as an argu-
ment for the necessity of keeping an awareness of
how mathematics is viewed in all approaches to
research in mathematical education.

In the following, some examples of theorizing
in the field of mathematics education that employ
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a mathematical approach will be discussed, with a
focus on the role given to mathematics as a main
point of reference.
Stoffdidaktik

The Stoffdidaktik (subject matter didactics,
content-oriented analysis) tradition in German-
speaking countries, originally with main focus
on secondary school mathematics and teacher
education, has its modern roots in the efforts by
Felix Klein, during the first decades of the twen-
tieth century, to structure elementary mathematics
from an advanced standpoint and to include lec-
tures on the didactics of mathematics in the edu-
cation of future teachers. While his classic book
(Klein 1908) served the aim to teach (future)
teachers to think mathematically, the aim of
the lectures was to teach (future) teachers to
think didactically (Vollrath 1994). A major
aim of Stoffdidaktik is “to make mathematics
accessible and understandable to the learner
based on an analysis of the subject matter with
mathematical means” (Hußmann et al. 2016,
p. 2). An historical account can be found in
Hefendehl-Hebeker (2016).

According to Tietze (1994), “Stoffdidaktik
mainly deals with the subject matter under the
aspects of mathematical analysis and of trans-
forming mathematical theories into school math-
ematics” (p. 42). This approach in mathematics
education operates through an explicit didactic
transposition of (academic) mathematics for the
purpose of making it accessible to students at
specific educational levels. Some key principles
used in this process, constituted by amathematical
analysis and selection of the content to be taught,
are elementarizing, exactifying, simplifying, and
visualizing (Tietze 1994). Students’ problems to
cope with, for example, definitions in mathemat-
ics, are in this approach seen as based in the
complex logical structure of the definitions,
which then must be analyzed by way of these
principles in order to prepare their teaching.

An example of such analyses is Padberg’s
(1995) work on fractions, a textbook for teacher
education outlining four central aspects
(Größenkonzept, Äquivalenzklassenkonzept,
Gleichungskonzept, Operatorkonzept) and two
basic ideas (Grundvorstellungen; see below),
elaborating on accessible metaphorical descrip-
tions of the concepts but also including a chapter
on the mathematical foundation of fractions, pre-
senting an axiomatic characterization of the topic
aimed to provide background knowledge for the
teacher. Such mathematical background theories
in mathematics education have commonly been
introduced and used within Stoffdidaktik. For
geometry, Vollrath (1988, pp. 121–127) identifies
five (historical) phases of background theories:
Euclid’s elements (from early times, perfected by
Hilbert), transformation geometry (from the early
1800s; e.g., Möbius, later Klein), different axiom-
atic theories as competing background theories
(from early 1900s), an axiomatic theory devel-
oped by didacticians from practice of teaching
(from 1960s, to decrease the gap from theoretical
mathematics to teaching practice; e.g., Steiner
1966), and “The totality of geometric knowledge,
including the ideas, connections, applications,
and evaluations.” As an early example of this
kind of mathematical approach, Steiner (1969)
outlines a mathematical analysis of the relation
of rational numbers to measurement and interpre-
tation as operators, with the aim to characterize
possibilities for teaching. He calls his procedure a
didactical analysis (p. 371).

A specific focus for the transposition work is
on so-called fundamental ideas (Fundamentale
Ideen; see, e.g., Schweiger 1992). According to
Schwill (1993), for an idea to be fundamental, it
must appear within different topics of mathemat-
ics (Horizontalkriterium) and at different levels of
the curriculum (Vertikalkriterium), be recovered
in the historical development of mathematics
(Zeitkriterium), and be anchored in everyday life
activities (Sinnkriterium). Using the term universal
ideas, Schreiber (1983) in a similar vein presents
the requirements of comprehensiveness, profusion,
andmeaningfulness. As an example, Riemann inte-
gration is not a fundamental idea but a specific
application of the fundamental idea of exhaustion.
Other examples are reversibility and symmetry.
Historically, already Whitehead (1913) suggested
that school mathematics should emphasize main
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universally significant general ideas rather than
drown in details that may not lead to access to big
ideas or provide necessary connections to everyday
knowledge. In line with this and with explicit ref-
erence to Jerome Bruner’s principle that teaching
should be oriented toward the structure of science,
much work in Stoffdidaktik consist of analyses of
fundamental ideas in different areas of mathemat-
ics. For the teaching of fundamental ideas, Schwill
(1993) suggests Bruner’s spiral principle to be
used, in terms of extendibility, prefiguration of
notions, and anticipated learning. It still remains
unclear; however, at what level of abstraction, fun-
damental ideas are located (see Vohns 2016, for a
critical discussion).

As basis for teaching a mathematical concept,
meta-knowledge about the concept is seen as nec-
essary and has to be addressed in teacher educa-
tion. A theory of concept teaching (e.g., Vollrath
1984) needs to build on the evaluation of mathe-
matical concepts and their hierarchical structure,
their historical development, and the principle of
complementarity (Otte and Steinbring 1977) that
concepts should offer both knowledge and use.

Research methods of early work within
Stoffdidaktik were mainly the same as those of
mathematics (Griesel 1974). In Griesel (1969),
for example, an axiomatically based mathematical
theory for a system of quantities is outlined. It has
been pointed out by Griesel, however, that without
also empirically investigating the outcomes from
such analyses in teaching and learning, the analyt-
ical work would not be justified. Stoffdidaktik later
widened to consider not only academic mathemat-
ics along with its epistemology and history but also
factors relating to the learner of mathematics. In
this context the notion of Grundvorstellungen
became widely used (e.g., vom Hofe 1995), that
is, the basic meanings and representations students
should develop about mathematical concepts and
their use within and outside mathematics. Concep-
tualized both asmental objects and as a prescriptive
didactical constructs for prototypical metaphorical
situations, the epistemological status of Grundvor-
stellungen remains debated (see, e.g., Vohns 2016).

Outside German-speaking countries,
mathematics-oriented didactical research has
dominated mathematics education, for instance,
in the Baltic countries (Lepik 2009). One example
of a non-European work employing the approach
is Carraher (1993), where a ratio and operator
model of rational numbers is developed. There
are also regional and international periodic
journals for teachers, mathematicians, and math-
ematics educators that publish mathematical and
didactical analyses of elementary topics for school
and undergraduate mathematics.
An Epistemological Program

Mathematics also serves as a basic reference point
for the “French school” in mathematics education
research referred to as an epistemological pro-
gram (Gascon 2003), including the theory of
didactical situations (TDS) developed by Guy
Brousseau and the anthropological theory of the
didactic (ATD) developed by Yves Chevallard.
What constitutes mathematical knowledge is
here seen as relative to the institution where it is
practiced and thus, in research, needs to be
questioned regarding its structure and content as
practiced. In studies of the diffusion of mathemat-
ical knowledge within an institution, it is therefore
necessary for the researcher to construct a refer-
ence epistemological model of the corresponding
body of mathematical knowledge (Bosch and
Gascon 2006), in order to avoid a bias of the
institution studied.

Brousseau (1997) proposes didactical situa-
tions as epistemological models of mathematical
knowledge, both for setting up the target knowl-
edge and for developing it in classroom activity.
For the researcher, such models are employed
mainly for the analysis of didactical phenomena
emerging in the process of instruction. They are
also used for didactical engineering (e.g., Artigue
1994), where they are analyzed in terms of possi-
ble constraints of epistemological, cognitive, or
didactical nature (Artigue 1994, p. 32). By inves-
tigating the historical development of the mathe-
matical knowledge at issue, as well as its current
use, the epistemological constraints can be ana-
lyzed. In particular, the functionality of the knowl-
edge to be taught is seen as a key component of a
fundamental didactical situation, constituting a
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milieu that promotes the student’s use of the
knowledge. An idea is here to “restore” the epis-
temological conditions that were at hand where
the knowledge originated but have disappeared in
curriculum processes such as decontextualization
and sequentialization of knowledge.

In ATD, mathematics is seen as a human activ-
ity within institutions (as social organizations),
with collective practices that form how the partic-
ipants think and define their goals. It includes a
focus on how mathematical knowledge, having a
preexistence outside the educational institution, is
transposed by institutional constraints when
moved into it. The structure of the mathematical
knowledge and work is modeled by praxeologies
(or mathematical organizations) that provide a
holistic description of the relations between dif-
ferent aspects of the institutional mathematical
practice, in terms of types of tasks and techniques
for dealing with these tasks, and those technolo-
gies and overall theoretical structures that justify
the practice. In didactical research, the character-
istics of praxeologies are analyzed in terms of
aspects, such as connectedness and levels of gen-
erality, and issues linked to the didactic transpo-
sition, in order to identify possible constraints that
are being imposed on students’ knowledge devel-
opment. According to ATD, “phenomena of
didactic transposition are at the very core of any
didactic problem” (Bosch and Gascon 2006,
p. 58). To develop a target mathematical praxeol-
ogy for classroom teaching, a didactical praxeol-
ogy needs to be set up. Here one finds a strong
emphasis on the functionality of the mathematical
knowledge studied (its raison d’être), to avoid a
monumentalistic noncritical selection of tradi-
tional school mathematics topics, often described
as alien to the reality of the students (Bosch and
Gascon 2006).
Realistic Mathematics Education

Realistic mathematics education (RME) views
mathematics as an emerging activity: “The learner
should reinvent mathematising rather than math-
ematics, abstracting rather than abstractions,
schematising rather than schemes, algorithmising
rather than algorithms, verbalising rather than
language” (Freudenthal 1991, p. X). While
keeping mathematics as a main reference point,
researchers within RME take on didactical, phe-
nomenological, epistemological, and historical-
cultural analyses as bases for curricular design (see
▶ “Didactical Phenomenology (Freudenthal)”).
Activities of horizontal mathematization aim to
link mathematical concepts and methods to real
situations, while vertical mathematization takes
place entirely within mathematics. An example of
workwithin RME employing a strongmathematical
approach is found in Freudenthal (1983), with its
elaborated analyses of mathematical concepts and
methods and efforts to root the meanings of those
mathematical structures in everyday experiences
and language.
Mathematical Knowledge for Teaching

Empirical quantitative research on the amount of
mathematical studies needed for a successful or
effective teaching of mathematics at different
school levels has not been able to settle the
issue. Rather, the character of teachers’ knowl-
edge and the overall approach to teaching seem
to matter more (Ma 1999; Boaler 2002; Hill et al.
2005). With reference to the distinction between
subject matter knowledge and pedagogical con-
tent knowledge (PCK), during the last decades,
descriptions and measurements of what has been
named mathematical knowledge for teaching
(MKT; e.g., Hill et al. 2005, p. 373) for use in
preservice and in-service teacher education have
been developed. This mathematically based
approach to mathematics education sets out to
characterize the mathematical knowledge that
teachers need to effectively teach mathematics
and to investigate relations between teaching and
learning. MKT stays close to the PCK construct
while applying and further detailing the latter in
order to grasp the specificities of school mathe-
matics. The approach has much in common with
the didactical analyses of mathematical content
developed much earlier within Stoffdidaktik,
though with more focus on primary mathematics.
However, as the approach is less systematic and
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without reference to different possible mathemat-
ical background theories, the level of analysis
remains unclear. The scope of the empirical
research includes efforts to both develop and mea-
sureMKT for groups of teachers and its relation to
student achievement (e.g., Hill et al. 2005).
M

Some Further Aspects of Mathematical
Approaches

In university mathematics, educational issues
identified in beginning courses (such as calculus
and linear algebra), especially in the context of the
transition from secondary school to university,
have commonly been addressed by a mathemati-
cal approach by ways of analyses of mathematical
structures and processes in the courses. However,
in line with the widened scope of mathematics
education research since the time of New Math,
de Guzman et al. (1998) suggest epistemological
and cognitive, sociological and cultural, as well as
didactical approaches to study the transition prob-
lem. Beside cognitivistic (still constituting the
dominating approach), sociological, and discur-
sive approaches, today more recent mathematical
approaches (such as the epistemological program)
are common for investigating university mathe-
matics education (see, e.g., Artigue et al. 2007).

The importance and relevance of the history of
mathematics for mathematics education has long
been emphasized in the mathematics education
community (e.g., the report from the ICMEworking
group on history in Athen and Kunle 1976,
pp. 303–307). In this context, both the didactical
analyses of the historical material and the ways of
using these in teaching practice often employ a
mathematical approach. The claim of a parallel
between the historical development and individual
learning of mathematical concepts (the phylogeny-
ontogeny parallel) has been one of the arguments
for this approach, while others relate the use of
history to motivational and cultural-historical issues
or introduce historical outlines as a tool for teaching
mathematics (Athen and Kunle 1976).

The examples of theoretical perspectives pre-
sented above employ different mathematical
approaches to mathematics education as an
overarching approach in the research. However,
also within other approaches (psychological,
social, etc.), mathematical aspects often come
into focus. As an example, the APOS framework
(e.g., Cottrill et al. 1996) takes a psychological
approach to model and study the development of
students’ conceptual knowledge. However, as a
basis for the construction of a genetic decomposi-
tion of the taught mathematical concept, a mathe-
matical analysis of its structure and historical
development is undertaken.

There are several influential mathematics edu-
cators whose work cannot be subsumed under the
theoretical perspectives considered above, but
who have sought to understand and improve
mathematics instruction by means of analyzing
mathematical processes and structures, often
with a focus on developing teaching aids and
didactical suggestions. Emma Castelnuovo,
Zoltan Dienes, Caleb Gattegno, and George
Polya, among others, could be mentioned here.
Unresolved Issues

The community of mathematics education tends
to become disintegrated by its diversity of theo-
retical approaches used in research with a knowl-
edge structure fragmented into what Jablonka and
Bergsten (2010) call branches. If mathematics
education research strives to enhance the under-
standing of mathematics teaching and learning,
including its social, political, and economic con-
ditions and consequences, only a productive inter-
action of research approaches is likely to move the
field forward. Unresolved issues are often due to
institutionalized separation of researchers taking
distinct approaches, as, for example, epitomized
in bemoaning a loss of the focus on mathematics,
which need to be resolved through theory (for
theory networking, see Prediger et al. 2008).
This would, for example, include integrating
approaches that focus on mathematical knowl-
edge structures with discursive and sociological
approaches. Further, for producing unbiased pol-
icy advice, it is necessary to integrate research
outcomes on students’ and teachers’ engagement
with mathematics, including cognitive,
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emotional, language-related, and social dimen-
sions of teaching and learning in classrooms.
Such work has been attempted in a range of ini-
tiatives and working groups, as, for example, at
the conferences of ERME (Prediger et al. 2008).
In discussions of goals of mathematics education,
mathematical approaches combined with socio-
logical theorizing become pertinent to analyses
of the use and exchange values of (school) math-
ematics for students.
Cross-References

▶Critical Thinking in Mathematics Education
▶Didactic Situations in Mathematics Education
▶Didactic Transposition in Mathematics
Education

▶Didactical Phenomenology (Freudenthal)
▶ Pedagogical Content Knowledge Within
“Mathematical Knowledge for Teaching”

▶ Psychological Approaches in Mathematics
Education

▶Recontextualization in Mathematics Education
▶ Stoffdidaktik in Mathematics Education
▶ Subject Matter Knowledge Within “Mathemat-
ical Knowledge for Teaching”
References

Artigue M (1994) Didactic engineering as a framework for
the conception of teaching products. In: Biehler R et al
(eds) The didactics of mathematics as a scientific dis-
cipline. Kluwer, Dordrecht, pp 27–39

Artigue M, Batanero C, Kent P (2007) Learning mathe-
matics at post-secondary level. In: Lester F (ed) Second
handbook of research on mathematics teaching and
learning. Information Age, Greenwich, pp 1011–1049

Athen H, Kunle H (eds) (1976) Proceedings of the third
international congress on mathematical education. Uni-
versity of Karlsruhe, Karlsruhe

Boaler J (2002) Experiencing school mathematics: tradi-
tional and reform approaches to teaching and their
impact on student learning, 2nd edn. Lawrence Erlbaum
Associates, Mahwah

Bosch M, Gascon J (2006) 25 years of didactic transposi-
tion. ICMI Bull 58:51–65

Brousseau G (1997) Theory of didactical situations in
mathematics. Didactique des Mathématiques
1970–1990. Kluwer, Dordrecht
Carraher DW (1993) Lines of thought: a ratio and operator
model of rational number. Educ StudMath 25:281–305

Cottrill J, Dubinsky E, Nichols D, Schwingendorf K,
Thomas K et al (1996) Understanding the limit con-
cept: beginning with a coordinated process scheme.
J Math Behav 15:167–192

De Guzmán M, Hodgson BR, Robert A, Villani V (1998)
Difficulties in the passage from secondary to tertiary
education. In: Documenta mathematica, Extra Volume
ICM III (Proceedings of the International Congress of
Mathematician, Berlin, 18–27 Aug 1998), pp 747–762

Freudenthal H (1973) Mathematics as an educational task.
Reidel, Dordrecht

Freudenthal H (1983) Didactical phenomenology of math-
ematical structures. Reidel, Dordrecht

Freudenthal H (1991) Revisiting mathematics education.
China lectures. Reidel, Dordrecht

Furinghetti F, Menghini M, Arzarello F, Giacardi L (2008)
ICMI renaissance: the emergence of new issues
in mathematics education. In: Menghini M,
Furinghetti F, Giacardi L, Arzarello F (eds) The first
century of the International Commission on Mathemat-
ical Instruction (1908–2008). Instituto della Encyclo-
pedia Italiana, Roma, pp 131–147

Furinghetti F, Matos JM, Menghini M (2013) From math-
ematics and education to mathematics education. In:
Clements MA, Bishop A, Keitel C, Kilpatrick J, Leung
F (eds) Third international handbook of mathematics
education. Springer, New York, pp 272–302

Gascon J (2003) From the cognitive to the epistemological
programme in the didactics of mathematics: two
incommensurable scientific research programmes?
Learn Math 23(2):44–55

Goldin G (2003) Developing complex understandings: on
the relation of mathematics education research to math-
ematics. Educ Stud Math 54:171–202

Griesel H (1969) Algebra und Analysis der Größensysteme
(Teil I). Mathematisch Physikalische Semesterberichte
XVI(1):56–93

Griesel H (1974) Überlegungen zur Didaktik der
Mathematik als Wissenschaft. Zent Didakt Math
6(3):115–119

Hefendehl-Hebeker L (2016) Subject-matter didactics in
German traditions: early historical developments.
J Math Didakt 37(1 Suppl):11–31

Higginson W (1980) On the foundation of mathematics
education. Learn Math 1(2):3–7

Hill HC, Rowan B, Ball DL (2005) Effects of teachers’
mathematical knowledge for teaching on student
achievement. Am Educ Res J 42:371–406

Howson AG (ed) (1973) Developments in mathematical
education. Proceedings of the second international con-
gress on mathematical education. Cambridge Univer-
sity Press, Cambridge

Hußmann S, Rezat S, Sträßer R (2016) Subject matter
didactics in mathematics education. J Math Didakt
37(1 Suppl):1–9

Jablonka E, Bergsten C (2010) Commentary on theories of
mathematics education: is plurality a problem? In:

https://doi.org/10.1007/978-3-030-15789-0_35
https://doi.org/10.1007/978-3-030-15789-0_47
https://doi.org/10.1007/978-3-030-15789-0_48
https://doi.org/10.1007/978-3-030-15789-0_48
https://doi.org/10.1007/978-3-030-15789-0_49
https://doi.org/10.1007/978-3-030-15789-0_123
https://doi.org/10.1007/978-3-030-15789-0_123
https://doi.org/10.1007/978-3-030-15789-0_167
https://doi.org/10.1007/978-3-030-15789-0_167
https://doi.org/10.1007/978-3-030-15789-0_133
https://doi.org/10.1007/978-3-030-15789-0_144
https://doi.org/10.1007/978-3-030-15789-0_98
https://doi.org/10.1007/978-3-030-15789-0_98


Mathematical Cognition: In Secondary Years [13–18] Part 1 505

M

Sriraman B, English L (eds) Theories of mathematics
education: seeking new frontiers. Springer, New York,
pp 111–120

Jahnke H, Mies T, Otte M, Schubring G (1974) Zu einigen
Hauptaspekten der Mathematikdidaktik. In:
Schriftenreihe des IDM Bielefeld 1, Institut für
Didaktik der Mathematik, Universität Bielefeld, Ger-
many, pp 4–84

Kilpatrick J (1992) A history of research in mathematics
education. In: Grouws D (ed) Handbook of research
on mathematics teaching and learning. Macmillan,
New York, pp 3–38

Klein F (1908) Elementarmathematik vom höheren
Standpunkt aus, vol 2. Springer, Berlin

Lepik M (ed) (2009) Teaching mathematics: retrospective
and perspectives. In: Proceedings of the 10th interna-
tional conference, Tallinn University, 14–16May 2009.
Institute of Mathematics and Natural Sciences, Tallinn
University

Ma L (1999) Knowing and teaching elementary mathemat-
ics: teachers’ understanding of fundamental mathemat-
ics in China and the United States. Erlbaum, Mahwah

Otte M, Steinbring H (1977) Probleme der
Begriffsentwicklung – zum Stetigkeitsbegriff. Didakt
Math 5(1):16–25

Otte M, Jahnke HN, Mies T, Schubring G (1974) Vorwort.
In: Otte M, Jahnke HN, Mies T, Schubring G (eds)
Mathematiker über die Mathematik. Springer, Berlin,
pp 1–23

Padberg F (1995) Didaktik der Bruchrechnung, Auflage
2. Spektrum, Heidelberg

Prediger S, Arzarello F, Bosch M, Lenfant A (eds)
(2008) Comparing, combining, coordinating-
networking strategies for connecting theoretical
approaches. ZDM Int J Math Educ 40(2):163

Schoenfeld A (2004) Math wars. Educ Policy
18(1):253–286

Schreiber A (1983) Bemerkungen zur Rolle universeller
Ideen immathematischenDenken.MathDidact 6:65–76

Schweiger F (1992) Fundamentale Ideen. Eine
geistesgeschichtliche Studie zur Mathematikdidaktik.
J Math Didakt 13(2):199–214

Schwill A (1993) Fundamentale Ideen der Informatik.
Zentralbl Didakt Math 25(1):20–31

Steiner H-G (1966) Vorlesungen über Grundlagen und
Aufbau der Geometrie in didaktischer Sicht.
Aschendorff, Münster

Steiner H-G (1969) Magnitudes and rational numbers – a
didactical analysis. Educ Stud Math 2:371–392

Thom R (1973) Modern mathematics: does it exist? In:
Howson AG (ed) Developments in mathematical edu-
cation. Proceedings of the second international con-
gress on mathematical education. Cambridge
University Press, London, pp 194–209

Tietze U-P (1994) Mathematical curricula and the
underlying goals. In: Biehler R, Scholz RW,
Sträßer R, Winkelmann B (eds) Didactics of mathe-
matics as a scientific discipline. Kluwer, Dordrecht,
pp 41–53
Vohns A (2016) Fundamental ideas as a guiding category
in mathematics education – Early understandings,
developments in German-speaking countries and rela-
tions to subject matter didactics. J Math Didakt
37(1 Suppl):193–223

Vollrath H-J (1984) Methodik des Begriffslehrens im
Mathematikunterricht. Klett, Stuttgart

Vollrath H-J (1988) The role of mathematical background
theories in mathematics education. In: Steiner H-G,
Vermandel A (eds) Foundations and methodology of
the discipline mathematics education (didactics of
mathematics). Proceedings of the second time-
conference. Berlin/Antwerpen, pp 120–137

Vollrath H-J (1994) Reflections on mathematical concepts
as starting points for didactical thinking. In: Biehler R,
Scholz RW, Sträßer R, Winkelmann B (eds) The didac-
tics of mathematics as a scientific discipline. Kluwer,
Dordrecht, pp 61–72

Vom Hofe R (1995) Grundvorstellungen mathematischer
Inhalte. Spektrum Akademischer, Heidelberg

Whitehead AN (1913) The mathematical curriculum. Math
Gaz 7:87–94
Mathematical Cognition: In
Secondary Years [13–18]
Part 1
Azita Manouchehri1 and Bharath Sriraman2
1The Ohio State University, Columbus, OH, USA
2Department of Mathematical Sciences, College
of Humanities and Sciences, University of
Montana, Missoula, MT, USA
Keywords
Cognition · Mathematical thinking · Algebra ·
Calculus · Generalization
Definition/Introduction

The term cognition is synonymous with “know-
ing” or “thinking” or the process of knowing or
thinking. Hence, mathematical cognition is sim-
ply defined as “mathematical thinking or know-
ing” or the “process of mathematical thinking.” In
this entry, we examine mathematical cognition as
it pertains to the knowing of algebra and calculus,
which has been widely studied in the past four
decades. This body of work falls under three
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categories: (1) students’ understanding of, and
facility with, threshold concepts (Meyer and
Land 2005) in algebra and calculus, (2) environ-
ments that enhance learners’ cognition surround-
ing those concepts, and (3) learners’ global meta-
level mathematical activities (Kieran 2007)
including problem solving, justifying, and prov-
ing as well as describing and justifying properties
and relationships of mathematical objects. In this
entry, we will focus on the first two categories of
research and describe key findings from the body
of work reported in this area.

Meyer and Land (2003, as cited in Firth and
Lloyd 2016) coined the construct of threshold
concepts and described them as concepts that
serve as the building blocks of a discipline. Elab-
orating on this characterization, Frith and Lloyd
(2016) offered:

A threshold concept can be conceived of as a gate-
way, “opening up a new and previously inaccessible
way of thinking about something” (Meyer and Land
2003, 1). These are concepts that are not only trou-
blesome to students, but that are transformative –
once fully understood, the result is a transformed
perception of the concept (and the subject matter
and perhaps even the self) and a shift in the use of
language associated with it; irreversible – in that the
new perspective is not easily undone; and
integrative – it enables a view of linkages to other
concepts in the discipline. (p.7)

A survey of existing literature on adolescents’
mathematical cognition is most intensely studied
due to their importance in success in higher math-
ematics to include ratio and proportions, slope,
rate of change, covariation, functions, and func-
tional reasoning. Research has established that
these same concepts are considered challenging
to develop, difficult to teach, and mathematically
complex. The following sections will offer a
review of current research on these topics and
their associated issues.
Slope and Proportional Reasoning

Proportionality is a multiplicative relationship
between two variables whose ratio is constant
(Kline 1972). This relationship can be represented
as a linear function whose graph passes through
the origin. Slope characterizes a line that repre-
sents a proportional relationship, also referenced
as steepness. The connection between propor-
tional reasoning and slope has certainly been the
subject of much scholarly inquiry in the literature.
Research into the development of proportional
reasoning of children and adolescents has been
in existence since Piaget’s theory established pro-
portional reasoning as a hallmark of the formal
operations stage of development of thinking (Frith
and Lloyd 2016, p. 1; Sriraman and Lee 2017).
The relationship between research on proportional
reasoning and understanding of the concept of
slope is, however, a recent development. Cheng
et al. (2013) pointed at the strong link between
slope and proportionality attributing students’ dif-
ficulty with slopes to a fragile understanding of
proportional relationships. In their study of
approximately 413 middle school students’ facil-
ity with steepness and proportional reasoning, the
researchers reported a direct relationship between
performance on tasks involving slopes and those
involving proportions.

Analysis of data from international studies on
student performance on algebra and algebraic
contexts which rely on understanding slopes and
proportional reasoning reveals global challenges
associated with students’ success (Gonzales et al.
2008). In a large study of factors leading to
mathematics achievement among students in the
US and UK, researchers found that an understand-
ing of ratios and proportions was predictive of
mathematics achievement especially in algebra
(Siegler et al. 2012).

In unpacking the source of students’ difficul-
ties with proportional reasoning, scholars have
identified the following: reliance on additive
instead of multiplicative reasoning (Cheng, Star,
Chapin, Cheng et al. 2013; Tague 2015), viewing
proportional tasks as occasions to apply rules for
computing (Stump 2011), and lack of familiarity
with contexts in which problems are situated
along with whether the context builds on discrete
vs. continuous data (Tague 2015). Cheng et al.
(2013) punctuated the absence of explicit instruc-
tion on connections between slope and propor-
tions or space for empirical investigation of
these connections.
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Stump (2011) investigated 22 high school pre-
calculus students’ conceptions of slope in physi-
cal contexts (situations involving measuring slope
as steepness) as well as functional reasoning situ-
ations (slope as ratio). The participants had previ-
ously conducted a physics experiment where they
calculated the relationship between pedal revolu-
tions of a bicycle and the distance the bicycle
traveled. Stump (2011) interviewed each of the
22 students on 6 tasks: steepness of ski ramps in
two contexts, steepness of percent grade on a
highway sign, follow-up questions about a graph
relating the revolutions of the bicycle pedal to
distance, cost of tickets to a dance show, rate of
growth of a girl over several years, and lastly a
description of slope. The results indicated that
many of the participants used angles to think of
slope instead of or in addition to ratios. Moreover,
the participants had difficulty describing what a
ratio meant in terms of a physical rate indicating
that connections among representations of rate,
slope, steepness, and ratio are particularly difficult
to cultivate. Others have reported similar results
(Weber and Moore 2017; Thompson and
Thompson 1996; Johnson 2012; 2015 a, b;
Tague 2015).

Tague (2015) in her study of 877 students
enrolled in grades 6 through 10 identified the use
of addition on proportional reasoning tasks as the
prominent approach used across grade levels. She
hypothesized that one of the reasons for why,
when given two proportions a/b and c/d, they
may add them together could be an epistemolog-
ical obstacle with linearity (Modestou and
Gagatsis 2007) emerging from poor approach to
teaching proportionality where students’ tendency
to generalize additive reasoning to proportions
remains unchallenged. Tague’s results contrast
those offered by Fernandez et al. (2012).
Fernandez et al. (2012) investigated the develop-
ment of proportional and additive methods along
primary and secondary school learners by analyz-
ing the use of additive methods in proportional
word problems and the use of proportional
methods in additive word problems. Relying on
a test consisting of additive and proportional
missing-value word problems, data was collected
from 755 primary and secondary school students
(from fourth to tenth grade). Results indicated that
the use of additive methods in proportional situa-
tions increased during primary school and
decreased during secondary school, whereas the
use of proportional methods in additive situations
increased along primary and secondary school.
The authors argued that the presence or absence
of integer ratios strongly affected students’
choices; however the nature of quantities only
has a small influence on the use of proportional
methods. Despite some differences in findings,
there exists general agreement among researchers
that additional, long-term research with a focus on
investigating epistemological and curricular fac-
tors that contribute to the students’ preference for
additive reasoning is certainly needed. In doing
so, need also exists for studies that explore the
impact of various curricular and instructional
interventions that can facilitate a shift from addi-
tive to multiplicative reasoning around propor-
tional reasoning and steepness (Frith and Lloyd
2016; Roorda et al. 2015).
Rate of Change

The concept of rate of change has been studied as
a part of calculus (Tague 2015), as covariation
(Carlson et al. 2002; Carlson and Moore 2015),
as limit (Tall 1986), as a ratio (Thompson and
Thompson 1994, 1996; Confrey and Smith
1994), through dynamic simulations (Roschelle
et al. 2000; Johnson 2010), and in modeling con-
texts (Ärlebäck et al. 2013, Ärlebäck and Doerr
2017). The extensive body of work on this topic
identifies the concept as one of the most difficult
for adolescents to learn, for teachers to teach, and
for researchers to study (Tague 2015).

The structure of K-12 curriculum dictates that
calculus is the first place where students are for-
mally introduced to the concept of rate of change.
English (2008) challenged this curricular approach
and noted that in a world where complex systems
exist, it is inappropriate to deprive the K-12 curric-
ulum of modeling and thus of rate of change con-
cept, which is the tool to capture real life, complex
systems. Rochelle et al. (2007) also expressed the
need for the rate of change to be treated as a
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unifying theme across K-12 curriculum so to pro-
vide opportunities for students to gain access to a
wider array of mathematical analysis.

Confrey and Smith (1994, 1995) provided
some of the earliest insights into school learners’
conceptions of rate of change. They argued
two approaches to introducing functions in math-
ematics: a correspondence approach and a
covariational approach. The correspondence
approach occurs when students are introduced to
functions as a one-to-one relationship with the
vertical line test. Alternatively, the covariational
approach develops as students examine and create
tables where the x-value (independent variable)
determines the y-value (the independent variable).
The authors argued that children are led to an
understanding of functions through exploring the
concept of rate and later they tend to use three
approaches: additive rate of change, multiplica-
tive rate of change, and “proportional new to old”
rate of change (Confrey and Smith 1994, p. 141).
Through these initial conceptions of rate of
change, Confrey and Smith advocated that in
order for a robust understanding of the concept
of rate to occur, a multiplicative unit should be
reinforced in curriculum and instruction (Confrey
and Smith 1994, 1995). This view was challenged
by Thompson in the context of functions that
involve exponential growth.

Saldanha and Thompson (1998) investigated
the type of conceptual operations that an 8th
grade student used to reason about continuous
covariation of quantities. The authors reported,
“that understanding graphs as representing a con-
tinuum of states of covarying quantities is non-
trivial and should not be taken for granted”
(Saldanha and Thompson 1998, p. 7). The body
of work offers that the use of dynamic environ-
ments that capitalize on multiple representations,
linking graphs with tabular and symbolic notating
system, assists in building a deeper understanding
of functional relationships that build on propor-
tional reasoning and quantification of rate of
change across contexts, including discrete and con-
tinuous variations.

Tague (2015) examined students’ conceptions
of rate of change across middle school, high
school, undergraduate calculus, and into under-
graduate differential equations. Her work, argu-
ably, unique in its scope and range, offered an
epistemological, curricular, and conceptual anal-
ysis of links across the topics across the grade
levels in order to design tasks used with the entire
population. Her goal was to provide an overtime
growth of understanding of the interconnected
concepts spanning additive and multiplicative
modes of reasoning including rate, rate of change,
proportionality, and functional reasoning. Relying
on both data from nearly 900 students in written
form and interview data from a selected sample
from each participating grade level, she proposed
that a solid understanding of rate of change
requires the piecing together of multiple mathe-
matical representations and concepts in subtle
ways that develop over the course of an individ-
ual’s mathematical experiences. If we are to
understand students’ obstacles in understanding
rate of change in algebra and upper level mathe-
matics, we need to examine how and if students
use rate of change in concepts that might be
related to their future understanding of rate of
change (Tague 2015, p. 320). She associated stu-
dents’ difficulties in forming a coherent under-
standing of the concept of rate, at its various
degrees of sophistication demanded by curricu-
lum, to the absence of an emphasis on building
learners’ representational fluency in a conceptu-
ally sound and developmentally appropriate
manner.
Covariance

Much of the literature on middle and high school
students’ conceptions of rate of change aims to
address how to steer students toward covariational
thinking (Tague 2015). Saldanha and Thompson
(1998) defined covariational thinking as the abil-
ity to imagine two different quantities changing
simultaneously. We note that scholars have iden-
tified covariational thinking in different ways
depending on the type of mathematical contexts
and representational environments they used in
their studies. These various approaches have led
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to institution of some global understanding of
school learners’ covariational thinking though lit-
tle constancy exists among the findings of
reported work, hence, limiting the ability to a
coherent theory on learners’ cognition about this
topic. Most of the existing research surrounding
school learners’ covariational reasoning covers
topics in advanced mathematics and statistics
with a majority of this body of work highlighting
the benefits of covariational reasoning on stu-
dents’ development of the concept of functions
and other related algebraic topics (Confrey and
Smith 1994, 1995; Saldanha and Thompson
1998; Warren 2005a, b). Others have considered
ways in which covariational reasoning facilitates
learning of calculus topics (Carlson et al. 2002;
Carlson et al. 2001; Oehrtman et al. 2008), trigo-
nometry (Paoletti and Moore 2017), and statistics
(Zieffler and Garfield 2009).

Johnson (2012) studied four secondary stu-
dents’ understanding of covariation prior to their
exposure to a formal mathematical definition.
Specifically she aimed “to characterize a way of
reasoning about covarying quantities involved in
rate of change that could potentially serve as a
cognitive root for calculus” (p. 314). Johnson
(2012) aimed to identify where the reasoning
was covariational (Carlson et al. 2002), transfor-
mational (Simon 1996), and proportional (Lamon
2007) and found while her subjects were able to
describe changes verbally, they were not always
successful in translating their verbal reasoning to
written symbolic structures including ratio, limit,
and function. These findings were fairly consis-
tent across the different contexts she used in her
research challenging scholars who had previously
capitalized the importance of context on learners’
approach to the use of rate of change and
covariation.

Coulombe (1997) examined students’ concep-
tions of covariation with a focus on linear func-
tions over the course of an algebra I course. The
sample consisted of 121 8th and 9th grade stu-
dents who completed an assessment of covaria-
tion of variables. Follow-up interviews were
conducted with several students on covariation
of distance, time, and speed. Four themes were
present in the analysis: (1) dependency, (2) multi-
ple patterns of covariation, (3) linear patterns of
covariation, and (4) generalizability (Coulombe
1997, p. i). Dependency indicated that the partic-
ipant understood the effect the independent vari-
able has on the dependent variable. Multiple
patterns were defined as when there are
piecewise-defined functions used in real-world
situations. The linear theme was chosen because
it was the underlying covariation that was being
studied. Lastly generalizability occurred when the
participant demonstrated the ability to generalize
rules or patterns. The data suggested that 8th and
9th graders relied on intuitive representational
schemes when describing covariation. However,
those intuitive understandings were unstable. That
is, children drew on different aspects of covaria-
tion or rate when presented with differing
contexts.

Moritz (2004) examined 3rd, 5th, 7th, and 9th
graders’ performance in three areas dealing with
covariation, using open-ended questions: translat-
ing a verbal statement into a graph, translating a
scatter plot into a verbal statement, reading values,
and interpolating. Students’ responses were coded
according to whether they had used appropriate
covariation. The researcher reported that 3rd and
5th grade students were typically successful in
translating a verbal statement into a graph; how-
ever, as the tasks became more complex, their
performance declined. Seventh and ninth grades
tended to manage covariations more effectively.
The author concluded that covariational reasoning
might be age dependent since students’ responses
became more robust according to grade level.
Such developmental growth of cognition was
supported by other researchers (Billings et al.
2007, Kaput 2008). For instance, relying on data
obtained from analysis of pictorial growth pattern
tasks, Billings et al. (2008) reported that students’
correspondence reasoning followed covariational
reasoning. Payne (2012) however raised the issues
that the complexity of the functional reasoning
tasks dictates whether students use correspon-
dence or variational reasoning. According to her,
the quality of task determines the type of reason-
ing students may offer.
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Functions

A function is a unique correspondence between
two sets such that each element in the first set
corresponds to exactly one element in the second
set (Vinner and Dreyfus 1989).1 Warren et al.
(2006) describe a function “as a relationship
between a first variable quantity and a second
variable quantity or in terms of the change from
the second to the first” (pp. 208–209).

Functions, functional reasoning, and functional
thinking constitute key topics in secondary school
mathematics, leading to higher-level mathematics
courses beginning with calculus. Algebra is the
study of structures, symbols, functions, and rela-
tions. There is consensus that key elements associ-
atedwith reasoning and sensemakingwith functions
include the following: Different representations of a
function – tables, graphs or diagrams, symbolic
expressions, and verbal descriptions – exhibit dif-
ferent properties and using a variety of representa-
tions can help make functions more understandable
to a wider range of students than with symbolic
representations alone. An understanding of func-
tions and facility with functional relationships
underlies development of concepts in calculus
including limit, continuity, derivative, and integral.
Due to its importance, a number of research studies
in the past two decades have examined high school
and undergraduate students’ facility with this con-
cepts and ways that they conceptualize it. This body
of work has documented that students at all levels
struggle with the function concept and indeed many
learners hold misconceptions about it (Carlson
1998; Eisenberg 1991; Leinhardt et al. 1990; Vinner
and Dreyfus 1989). Analysis of substantial samples
of students’ performance on large national and inter-
national assessments such as the National Assess-
ment of Educational Progress (Perez 2013) and
Third International Mathematics and Science
Study (Gonzales et al. 2008) on middle and high
school students’ facility with functions and func-
tional reasoning also indicates that learners,
1We acknowledge that this is a modern definition of func-
tion. For a detailed analysis of historical development of
definition of function, see Selden and Selden (1992).
globally, maintain a fragile understanding of func-
tions (Payne 2012).

Dreyfus and Eisenberg (1983) found in their
interviews that some students perceived a relation
to be a function only when it could be represented
by a single formula. This finding was further
supported by Vinner and Dreyfus (1989) who
reported that students rejected certain graphs of
functions because of their perceptions of continuity
and viewed algebraic data and graphical data as
separate and that graphical representation with no
formula was not perceived as meaningful. A focus
on computational aspect of relations rather than its
conceptual links dominated student thinking. Gra-
ham and Ferrini-Mundy (1989) substantiated this
data drawing from the results of their own on
research. The authors reported that when given a
function, the students assumed they were expected
to substitute a value in it. Their participants viewed
the function as a static quantity.

This body of work offers that functions are
often viewed by students as either an action, a
process, an object, or a schema. Combining
these perspectives on functions, Asiala et al.
(1996) proposed APOS (Action-Process-Object-
Schema) Theory offering that students with an
action view see functions as merely a means for
performing a particular action, such as computa-
tion. Those with a process view see a function as a
collection of actions all at once and can compre-
hend the connections between those actions and
what they can produce together. The object view
of functions and the function schema are even
more sophisticated. Several researchers (Carlson
et al. 2010; Dubinskey and Harel 1992; Oehrtman
et al. 2008) have claimed that students need at
least a process view in order to develop a strong
understanding of functions and have used APOS
Theory to help explain students’ impoverished
function sense. Consensus exists the productive
and effective approach to teaching functions
requires a balance of viewing functions as each
of the proposed models contextually and in tan-
dem (Oehrtman et al. 2008; Tague 2015).

Other scholars have attributed poor facility with
functional thinking to an overemphasis on proce-
dures and rules without understanding (Oehrtman
et al. 2008; Blanton 2008; Payne 2012) and
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curricular and instruction failure to capitalize on
children’s intuitive understanding of functions
prior to its formal introduction (Eisenmann 2009,
Kaput 2008, Blanton and Kaput 2004. Blanton and
Kaput (2004) argued that students as early as third
grade are capable of engaging in functional think-
ing and even representing functional relationships
symbolically. Stressing the overtime results of
instructional practices focused on building stu-
dents’ functional thinking using pattern generaliz-
ing tasks, the authors proposed that students in their
study were able to express mathematical relation-
ships using tables, graphs, pictures, words, and
symbols in increasingly sophisticated ways. Stu-
dent development was closely linked to the
teacher’s deliberate attempts at scaffolding
learners’ thinking while strategically introducing
representations and vocabulary.

A large body of research argue that the type of
tasks that provide opportunities for students to
engage in functional reasoning (Carlson and
Moore 2015) by looking for patterns (Kaput
2008), examining multiple representations
(Johnson 2015a, b), reasoning about the relation-
ships between quantities, and making generaliza-
tions (Blanton and Kaput 2008; Warren 2005b)
facilitates learners’ ability to deal with formal rep-
resentations of function. Evidence exists that by
refraining from stressing algorithmic fluency and
symbolic manipulations (Payne 2012) and instead
capitalizing on students’ intuitive and informal
knowledge to build their functional thinking,
teachers secure greater chance of helping adoles-
cents growth of cognition (Johnson 2015a, b).

In summary, findings offer that students:

• Perceive a function as a single formula.
• Experience difficulty reconciling the view of

functions as process and objects.
• Fail to see connection between algebraic and

graphical representations of a function.
• In order to develop functional reasoning, edu-

cators should begin the process early by engag-
ing students in tasks that allow them to reason
about the relationships between quantities and
make generalizations (Blanton and Kaput
2005; Confrey and Smith 1994; Warren
2005b).
• Scholars have argued that:
– Students are capable of engaging in func-

tional reasoning as early as elementary
school (e.g., Blanton and Kaput 2004;
Warren 2005a).

– Some children develop an intuitive under-
standing of functions before any formal
introduction (Eisenmann 2009).

– A large number of students, even in higher-
level mathematics courses, experience dif-
ficultly understanding algebraic functions
(Warren et al. 2006).
Generalizing

Panorkou et al. (2013) noted that patterns form the
foundation for student’s later understanding of
proportional relationships and slope. Fonger
(2014) proposed that in order for students to
understand linear equations and functions, they
first need to understand patterns. Patterns might
connect because in developing an understanding
of the growth or lack of growth of a pattern,
students might later connect this reasoning to
examination of growth of a function or the growth
of distance between objects.

In mathematics education literature, the study of
patterns has generally embedded in students
attempts toward generalizing mathematical relation-
ships and properties of objects. Indeed, Kaput
(2008) defined algebraic and functional reasoning
to consist of building, describing, and reasoning
with and about functions by making generalizations
about how data are related and later using symbols
to act on these generalizations.

Despite frequent references to “generalizing”
when elaborating on learners’ algebraic and
calculus-based cognition, differences exist in
how “generalization” and “generalizing” have
been defined in the literature. Polya (1957) defines
generalization as “passing from the consideration
of one object to the consideration of a set
containing that object; or passing from the con-
sideration of a restricted set to that of a more
comprehensive set containing the restricted one”
(p. 108). Krutetskiĭ (1976, p. 236) argued that the
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ability to generalize mathematical idea can be
considered from two aspects “as a person’ ability
to see something general and known to him in
what is particular and concrete” (subsume a par-
ticular case under a general concept) and “the
ability to see something general and still unknown
to him in what is isolated and particular” (deduce
general from particular cases). Dörfler (1991)
defined generalization as “a social-cognitive pro-
cess which leads to something general (or more
general) and whose product consequently refers to
an actual or potential manifold (collection, set,
variety) in a certain way” (p. 63). Kaput (1999)
described generalization as “extending the range
of reasoning or communication beyond the case or
cases considered, explicitly identifying and
exposing commonality across cases, or lifting
the reasoning or communication to a level where
the focus is no longer on the cases or situations
themselves but rather on the patterns, procedures,
structures, and the relations across and among
them (which, in turn, become new, higher level
objects of reasoning or communication).”
(p. 137). From an actor-oriented view, Ellis
(2007) described generalization as cognitive pro-
cesses revealed in one of the three activities:
(a) identifying commonality across cases,
(b) extending one’s reasoning beyond the range
in which it is oriented, or (c) deriving broader
results from particular cases (Ellis 2007, p. 197).

These various descriptions highlight several
aspects of mathematical generalization. First, they
imply multiple characteristics of generalization.
The first characteristic associated with generaliza-
tion is abstraction as generalizing always involves
extracting properties that are common or invariant
among a given class of objects. The second char-
acteristic associated with generalization is
“extending” since generalization often involves
going beyond the boundaries of a given class of
objects. The third characteristic is that generalizing
involves both seeing a generality through the par-
ticular and seeing the particular in the general.
Types of Mathematical Generalization

Existing studies have identified different catego-
ries of mathematical generalizations. Table 1 is a
summary of generalization categories identified in
mathematics education literature. As illustrated in
the table, empirical generalization and theoretical
generalization are two major categories of gener-
alization. A theoretical generalization can be pro-
duced by a focus on the invariants of the action
itself, invariants of the conditions of the action, or
the result of the action. Even though inductive
generalization often starts from empirical cases,
mathematical generalization does not always rely
on empirical cases as it can also be produced by
dropping, ignoring, relaxing, or combining the
conditions of given mathematical statement. The
basic process of empirical generalization is to
detect a common quality or property among two
or more objects or situations based on perceptions
and then to record these qualities as being com-
mon and general to these objects or situations. In
contrast, theoretical generalization is constructed
through abstraction of the essential invariants of a
system of actions. Therefore, the abstracted prop-
erties are relations among objects rather than
objects themselves. A major challenge in mathe-
matics education is to develop students’ abilities
to generalize based on mathematical structures
rather than perception or the evidence offered by
the regularities found in a few examples
(Davydov 1990; Sriraman 2004).

Ellis (2007) developed a student-centered gen-
eralization taxonomy to describe the different
types of generalizations that students create
when reasoning abstractly. The taxonomy distin-
guishes between students’ generalizing actions
and the product of generalizing (i.e., reflection
generalizations). Generalizing actions include
relating, searching, and extending. When relat-
ing, students form an association between two or
more problems, situations, ideas, and mathemati-
cal objects by recalling a prior situation, inventing
a new one, or focusing on similar properties or
forms of mathematical objects. When searching,
students engage in a repeated mathematical
action, such as calculating a ratio, to find an
invariance relationship, procedure, or result.
Extending involves expansion of pattern, relation-
ship, or rule into a more general structure. Reflec-
tion generalizations include identifications or
statements, definitions of classes objects, and
influence. When a student identifies a
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Author(s) Criteria Categories

Dörfler (1991) Object of abstracting (common properties
vs. invariants of actions)

Empirical generalization
Theoretical generalization
Generalization of the invariants of actions
Generalization of the conditions for actions
Generalization of results of actions.

Harel and Tall
(1991)

Status of the cognitive schema of the
individual

Expansive generalization
Reconstructive generalization
Disjunctive generalization

Harel (2001) Ways of student thinking in relation to tasks
that involve mathematical induction

Result pattern generalization
Process pattern generalization

Yerushalmy
(Yerushalmy 1993)

Sources of generalization (empirical examples
vs. ideas)

Generalization from examples
Generalization of ideas

Holland et al.
(Holland et al.
1986)

Specific method used to produce a
generalization

Condition-simplifying generalization
instance-based generalization

Krygowska (1979,
in Ciosek 2012)

Specific method used to produce a
generalization

Generalization through induction
Generalization through generalizing the
reasoning
Generalization through unifying specific
cases
Generalization through perceiving recurrence

Radford (Radford
2008)

Strategies used to identify and describe
patterns

Naïve induction
Arithmetic generalization
Algebraic generalization
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generalization and then articulates it, he or she
may refer to a general pattern, property, rule,
strategy, or a common element across cases or
situations. The final product of a generalization
can also be a definition of a class of object all
satisfying a given relationship, pattern, or other
phenomena. Influence refers to implementation of
a previously developed generalization into a new
context or problem. A student may implement a
prior idea or strategy or may modify a prior idea as
he or she approaches a new problem. This taxon-
omy provides a useful tool to describe students’
generalizing behaviors and the generalizations
they produced. However, it cannot tell us whether
a generalization is mathematically sound or at
which level a student is generalizing (Table 2).
Strategies in Pattern Generalizing

Stacey (1989) focused her exploration on pictorial
linear pattern tasks. Students aged between 9 and
13 were asked to determine the number of
matches needed to make a ladder with certain
number of rungs or the number of lights in a
Christmas tree of a given size. In her study, Stacey
(1989) distinguished between “near generaliza-
tion” tasks, which can be solved by step-by-step
counting or drawing, and “far generalization”
tasks, which go beyond reasonable practical limits
of such a step-by-step approach. Four main gen-
eralization strategies are identified in her study:
counting method, counting from drawing or suc-
cessive adding; difference method, multiplying
the term number by the common difference;
whole object method, using the smaller figure as
a unit and scaling this unit by a factor to find the
larger figure; and linear method, implicitly or
explicitly using the linear model f (n) = an + b.
Stacey (1989) found that the constant difference
property of consecutive term was widely recog-
nized and most students in her study can move
from f (n) to f (n + 1). And students were not
consistent in their strategy use and tended to
impose simple rule to the pattern without
checking its validity.

Bishop (2000) interviewed 23 students in 8th
and 9th grade as they solved four linear geometric
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Generalizing actions

Type I: Relating 1. Relating situations: The formation of
an association between two or more
problems or situations

Connecting back: The formation of a
connection between a current situation and a
previously encountered situation

Creating new: The invention of a new situation
viewed as similar to an existing situation

2. Relating objects: The formation of an
association of similarity between two or
more present objects

Property: The association of objects by
focusing on a property similar to both

Form: The association of objects by focusing
on their similar form

Type II: Searching

...

1. Searching for the same relationship: The performance of a repeated action in order to
detect a stable relationship between two or more objects

2. Search for the same procedure: The repeated performance of a procedure in order to test
whether it remains valid for all cases

3. Searching for the same pattern: The repeated action to check whether a detected pattern
remains stable across all cases

4. Search for the same solution or result. The performance of a repeated action in order to
determine if the outcome of the action is identical every time

Type III: Extending 1. Expanding the range of applicability: The application of a phenomenon to a larger range of
cases than that from which it originated

2. Removing particulars: The removal of some contextual details in order to develop a global
case

3. Operating: The act of operating upon an object in order to generate new cases

4. Continuing: The act of repeating an existing pattern in order to generate new cases

Reflection generalizations

Type IV:
Identification or
statement

1. Continuing phenomenon: The identification of a dynamic property extending beyond a
specific instance

2. Sameness: The statement of
commonality or similarity

Common property: The identification of the
property common to objects or situations

Objects or representations: The identification
of objects as similar or identical

Situations: The identification of situations as
similar or identical

3. General principle: a statement of a
general phenomenon

Rule: The description of a general formula or
fact

Pattern: The identification of a general pattern

Strategy or procedure: The description of a
method extending beyond a specific case

Global rule: The statement of the meaning of
an object or idea

Type V: Definition 1. Class of objects: The definition of a class of objects all satisfying a given relationship,
pattern, or other phenomena

Type VI: Influence 1. Prior idea or strategy: The implementation of a previously developed generalization

2. Modified idea or strategy: The adaptation of an existing generalization to apply to a new
problem or situation
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pattern problems. In each of the patterning prob-
lem, four tasks were presented to the students in
sequence. First, after the first four figures were
presented, students were first asked to find the
perimeter or area of certain figure numbers (the
figure numbers in each problem were chosen to
avoid obvious multiples of 2, 3, and 4); second,
students were asked to verbally express the rela-
tionship they observed in the first task; third stu-
dents were asked to assess the algebraic rule
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provided by the researchers; and lastly students
were asked to find the figure number given the
number with a given perimeter or area. Bishop
(2000) identified several strategies students used
to continue the patterns: model the required
figure with pattern blocks, multiply the figure
number by the constant difference, apply
proportional reasoning, skip counting by or
adding on the constant differences, and use a
linear expression. And strategies for assessing
the algebraic expression provided by others
include substitute values into the expression,
compare the expressionwith his/her own expres-
sion, and relate the expression to the shapes.
And strategies for solving the inverse task
include model, guess and check, divide, apply
proportional reasoning, skip count, solve equa-
tion, work backward, and analyze structure. And
Bishop (2000) noticed that students are not
consistent on their strategy use: not only did
individual students frequently use different strat-
egies for different pattern problems on each
task, but they also used nonparallel strategies
on different tasks for each pattern problem. Nev-
ertheless, after careful analysis of students’
problem-solving strategies on the four tasks of
the three pattern problems, Bishop (2000) found
that students thinking about linear geometric
pattern problem tends to fall into four categories:
concrete modeling and counting, inappropriate
use of proportion, focus on recursive relation-
ships, and analysis of the functional relation
between a perimeter or area and the shape num-
ber. What Bishop (2000) called the model, mul-
tiply, proportional, and use expression strategies
on Task 1 correspond to Stacey’s (1989)
counting, difference, whole object, and linear
methods, respectively. And what Bishop called
the skip count/add strategy and use expression
strategies correspond to the recursive and func-
tional strategies identified by Swafford and
Langrall (2000).

Lannin (2003) described six strategies stu-
dents use to develop generalizations in pattern
problem: counting, constructing a model to rep-
resent the situation and counting the desired
attribute; recursion, building on a previous
term or terms in the sequence to construct the
next term; whole object, using a portion as a unit
to construct a larger unit using multiples of the
unit; contextual, constructing a rule on the basis
of a relationship that is determined from the
problem situation; guess and check, guessing a
rule without regard to why the rule may work;
and rate-adjust, using the constant rate of change
as a multiplying factor and then an adjustment is
made by adding or subtracting a constant to
attain a particular value of the dependent vari-
able. Lannin (2003) pointed out that students
often use multiple strategies when they attempt
to generalize a situation. After describing those
strategies, Lannin (2003) also discussed the
types of justification students provided. The
first type of justification is proof by example, a
common strategy that occurs through K-12
(Hoyles 1997). And the second type of justifica-
tion is linking the rule to the problem context.
Explanations provided for the recursive and con-
textual strategies might fall into this type. And
another type of justification is using proof by
induction, which is sometimes offered by stu-
dents who use the rate-adjust strategy.

El Mouhayar and Jurdak (2015) surveyed 1232
students from grade 4 to grade 11 to investigate
the variation of strategy use (counting from a
drawing, recursive, chunking, functional, and
whole object) in pattern generalization across
different generalization types (immediate gener-
alization, near generalization, and far generali-
zation) and across grade level. Students in the
study were provided four figural pattern tasks,
two linear pattern tasks, and two quadratic pat-
tern tasks. Result from the survey showed that
the frequency of strategy use differed according
to the generalization type and that recursive
strategy was most frequently used in each of
the generalization tasks. And as the demand of
the task changed from constructing a step-by-
step solution to finding a general formula, the
use of recursive strategy increased, whereas the
use of functional strategy decreased. Findings
also revealed that the use of recursive strategy
increased across grade 4 to grade 8 and then it
decreased across grade 8 to grade 11, whereas
the functional strategy increased across grade
4 to grade 11.
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Cognitive Difficulties in Generalizing
Mathematical Ideas

Despite the fact that students can use various
strategies to generalize mathematical patterns,
they also experience difficulties in the process
of generalizing. The first difficulty concerns
grasping the expected mathematical structure
(Sriraman 2004). Many researchers have noted
that children were not reluctant to generalize,
rather they constructed generalizations too readily
with an eye on simplicity rather than accuracy.
Stacey (1989) wrote that “the greatest puzzle is
to explain why so many children are apparently
content to use generalizations which can very
easily be shown to be false, even using only the
data visible on the page” (p. 161). The frequent
use of difference of consecutive terms and recur-
sion in pattern generalization suggests that chil-
dren tend to grasp the local regularities instead of
the expected global structure. Children’s lack of
success in grasping the expected mathematical
structure is not only due to their immaturity in
mathematics but also the nature of mathematical
objects. Duval (2006) argued that mathematical
objects are not objects that can be directly per-
ceived or observed with instrument and the access
of mathematical objects is bound to the use of a
system of representations which themselves might
be open for multiple interpretations. Therefore,
pedagogical interventions are needed for students
to recognize the expected mathematical structure
(Jurow 2004).The second difficulty concerns
expressing the perceived generality, and the third
difficulty concerns formalizing the articulated
generality (Sriraman 2004). Some studies have
shown that the passage from pre-symbolic to sym-
bolic generalizations requires a specific kind of
rupture with the ostensive gestures and contextu-
ally based key linguistic terms underpinning pre-
symbolic generalizations (Radford 2008).

There is evidence that students make overgen-
eralizations in the process of generalizing. Over-
generalization occurs when individuals make a
general claim based on insufficient evidence or
apply a generalization beyond its range of applica-
bility. It is an easy thinking error as it is a simple
way to organize and make sense of things. Over-
generalizations may take in different forms, such as
applying a generalization beyond the cases in
which it is truly valid and imposing a pattern by
selectively focusing on specific cases. For
instance, some studies reported that chunking
and whole object are frequently used strategies
in pattern generalization (Stacey 1989; Bishop
2000). The inappropriate uses of proportion
in the two strategies are overgeneralizations of
proportion. Many other examples of over-
generalization have also been documented in
other domains of mathematics. For instance,
multiplication always makes a number bigger
and division always makes a number smaller
that are overgeneralizations of properties of nat-
ural number to rational number. And the idea that
the rule for the product of radicals
ffiffiffi

a
p ffiffiffi

b
p

¼
ffiffiffiffiffiffiffiffi

a ∙ b
p

is also applicable to adding or

subtracting radicals, i.e.,
ffiffiffi

a
p þ ffiffiffi

b
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

aþ b
p

is
another overgeneralization. And generalizing
based on patterns in data is an important mathe-
matical practice. However, overgeneralizing
might occur when students selectively focus on
a few cases and make general claim based on
results from these special cases. For instance,
after trying a few examples, a student might
claim that the sum of two composite numbers is
a composite number. Inadequate generalizations
come from different sources, such as intuition,
met-before, external similarity, and so on.
Justification of Mathematical
Generalization

Studies have shown that students prefer to use
empirical evidences to justify their own general-
izations. For instance, when examining students’
generalization and justification in pattern activi-
ties, Lannin (2005) characterized students’ justifi-
cation into five levels: no justification, responses
do not address justification; appear to external
authority, reference is made to the correctness
stated by others or reference material; empirical
evidence, justification is provided through the
correctness of particular cases; generic example,
deductive justification is expressed in a particular
case; and deductive justification, validity is given
though deductive argument that is independent of
particular cases. Twenty-five sixth graders were
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studied to understand how students justify their
generalization when engaging in pattern activi-
ties. Results from data analysis showed that stu-
dents in the study tended to use empirical
evidence and generic examples to justify their
generalizations. The use of empirical justification
was generally due to a lack of connections to a
geometric scheme that established a connection
between the rule and the context. Even though
some arguments students provided reflect the gen-
eral relation, Lannin admitted that it is unclear
whether students in the study understood the dif-
ference between empirical argument and generic
example.

Studies have also shown that when a general-
ization and various forms of justifying it are pre-
sented by peers, students consider empirical
arguments as more convincing. For instance,
Healy and Hoyles (2000) presented to 2459 mid-
dle students two mathematical conjectures and a
range of arguments supporting their validity. Stu-
dents were asked to select among these arguments
nearest to their own approaches. They found that
arguments presented in words were popular as
students’ choices of their own approaches to a
proof; students were reasonably successful at
evaluating these types of arguments and were
likely to see them as explanatory. In contrast, the
participants found that arguments containing sym-
bols were hard to follow and that they offered little
in terms of communicating and explaining the
mathematics involved. The results also showed
that empirical argument dominated students’
own justification of the general statements,
although most students were aware of their limi-
tations. Similarly, Liu (2013) designed four math-
ematical statements in four different mathematical
contexts, each of which is justified by arguments
with different representations (visual, narrative,
numerical, symbolic) and resources (authority,
example, imaginary, fact, assumption, opinion).
Students in the study were asked to decide which
argument type they found more convincing,
exploratory, and appealing. Results from the sur-
vey of over 500 middle school students and the
follow-up interviews revealed that the use of
examples was the most referenced type of evi-
dence to support the validity of an argument.
Most of Liu’s participants didn’t consider the
general validity of a conjecture as a requirement
for convincing argument.
Summary

• Majority of the work on middle and high
school students’ mathematical cognition
unfolds obstacles to learning of key mathemat-
ical ideas, as opposed to offering an epistemo-
logical account of their growth of
understanding pertaining to these topics.

• Studies of environmental influences on atti-
tudes and performance of students highlight
the direct impact of instructional practices and
pedagogical tools including technology and
curriculum types on students’ acquisition of
mathematical concepts.

• Although some evidence exists on the develop-
mental nature of growth of cognition regarding
covariational and correspondence reasoning,
additional research is needed providing greater
detail regarding this development.

• Tasks and contexts that encourage the general-
ization of rules support the development of
functional reasoning.

• Absence of consistent tools for measuring
learners’ development, unifying definitions
and long-term studies on cognitive develop-
ment of children has been identified as a
major barrier in creating a coherent body of
research that might advance mathematics
education.
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cognition is simply defined as “mathematical
thinking or knowing” or the “process of mathe-
matical thinking.” In this entry we examine math-
ematical cognition as it pertains to the knowing of
geometry and proofs, highlighting the major the-
oretical views that account for adolescent mathe-
matical cognition. We note that a majority of
research reports surrounding mathematical think-
ing and cognition of students in this age group
concerns conditions under which student learning
has been explored, among many include technol-
ogy, curriculum, and classroom interactions. Fur-
thermore, a large portion of studies that shed light
on mathematical cognition in areas relevant to
secondary school mathematics have relied on
data collected from undergraduate student
populations.
M

Geometry

Battista (2007) characterized geometry as “a com-
plex interconnected network of concepts, ways of
reasoning, and representation systems that is used
to conceptualize and analyze physical and imaged
spatial environments” (p. 843). Geometry entails,
among many, interconnected skills, visualization
and construction of images of geometric concepts,
realizing and appropriating relationships between
concepts, making and justifying generalizations,
and proving. It also plays a central role in
connecting various mathematical subjects includ-
ing discrete and continuous mathematics, func-
tions, limits, and trigonometry (Goldenberg et al.
1998). Despite its importance, scholars’ world-
wide have consistently documented school
learners’ difficulties with the subject (Berenger
2017). Among many influential factors most
widely cited include the language of geometry,
weak visualization skills, ineffective instruction,
and poor reasoning skills (Lew et al. 2012). Some
have attributed learners’ poor performance in
geometry to its absence from school curriculum
(Thompson et al. 2012; Berenger 2017). Transi-
tion from elementary to secondary geometry has
also been identified as rough, highlighting little
gains in geometric understanding of students as
they progress across grade levels and complete
courses in secondary schools (Usiskin 1982).
Theoretical Models Guiding Research on
Geometry Learning

While the extensive body of research on geometry
learning has relied on a variety of theoretical
models, the most influential includes Piaget’s
stages of cognitive development which describes
the process of the formation of spatial representa-
tions central to geometric reasoning.

Piaget believed that geometric thought devel-
oped in stages according to experiential order,
starting with topological relations (such as con-
nectedness and continuity), followed by projec-
tive (rectilinearity) and then Euclidean relations
(Jones 2002, p. 130). Piaget proposed that geo-
metric thinking is developed with the age of the
child (Huitt and Hummel 2003; Mason 1998) and
that mental structures developed through the
child’s own activity and interactions within the
environment (Clements and Battista 1992;
Sriraman and Lee 2017). Piaget viewed knowl-
edge as made up of logical structures resulting
from actions and contributing to a total mental
structure. Reliance on Piagetian approach to the
study of geometry cognition has been most prom-
inent at the elementary grade levels as it stresses
maturation and age-appropriate experiences in
building up of mental representation (Clements
1999; Battista 2007).

The second model, the van Hiele Model of
Geometric Thought, is the one most widely used
as a framework for tracing adolescences’ geomet-
ric cognition. Van Heile’s model (1992) while
offering a level-based development of geometry
thinking, associates growth across levels to expe-
rience rather than age. Van Hiele levels include
“visual,” “descriptive/analytical,” “informal
deductive,” “formal deductive,” and “rigor”
(Burger and Shaughnessy 1986). At the visual
level (Level 1), learners could identify, name,
and compare geometric figures, such as triangles,
rectangles, angles, parallel lines, etc., according to
how they look. At the descriptive/analytical level
(Level 2), learners can recognize components and
properties of a figure; however, they cannot rea-
son upon those properties. They are able to
describe figures in terms of their parts and rela-
tionships among these parts, to summarize the
properties of a class of figures, and to use
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properties to solve basic identification problems,
but they cannot yet conduct deduction. At the
informal deductive level (Level 3), learners are
able to connect figures with their properties.
They can justify figures by their properties as
well as articulate the properties of a given figure.
The learners can understand and use precise def-
initions. They are capable of using “if-then”
thinking, but they cannot consciously use math-
ematically correct language, nor can they realize
the deductive property of their reasoning. Their
reasoning is based on intuition instead of a math-
ematical foundation. At the deductive level
(Level 4), learners can reason about geometric
objects using their defined properties in a deduc-
tive manner. They could consciously construct
the types of proofs that one would find in a
typical high school geometry course. They are
aware of what counts as a legitimate proof in
mathematics. At the highest level, rigor (Level
5), learners can compare different axiomatic sys-
tems. Learners fully understand the structure of a
system as well as its applications and limitations.
They can analyze and compare these systems.
According to van Hiele, progress through the
levels is dependent on experience and that
instruction central to facilitating learners’ cogni-
tive development.1

Usiskin (1982) initiated a watershed effort to
examine the validity of van Hiele’s theory. He
developed and used a test of geometric reasoning
eliciting student knowledge along the five van
Hiele’s levels. Relying on a pre-post procedure,
he traced the growth of geometric reasoning of
approximately 2500 high school students over the
1The van Hiele model has been modified and extended by
scholars to meet particular research interest. For example,
Clements and Battista (1992) added a level 0, “pre-
recognition,” where children were not able to visually
identify the difference between shapes, depicting their
cognition in geometry at the very beginning stage. Pegg
and Davey (1998) integrated the van Hiele model with
another learning theory, the SOLO taxonomy (Biggs and
Collis 1982a, b), to describe how learning develops within
and through the levels.
course of 3 years. Results reported that van Hiele
levels are an adequate classification of the student’s
current foundation in geometry and adequate
predictors of later geometric achievement. His
study confirmed that the use of van Hiele theory
could explain why many students struggle with
learning geometry. Usiskin questioned the qual-
ity of mathematics instruction students received
in a year-long course in geometry since a major-
ity of the learners left their courses with little to
no improvement in their geometric knowledge.
Similar results persist globally. Jones (2002),
reporting on the state of geometry teaching and
learning in secondary schools in England, pro-
posed, “most lower secondary students perform
at levels one or two with almost 40% of students
completing secondary school below level
2 (Jones 2002, p. 130). Most recently, Berenger
(2017) examined the geometric thinking of stu-
dents in Years 7 and 8 at two schools in Australia.
Classroom-based data was collected to examine
how students and teachers communicated their
understanding of geometric concepts relating to
two-dimensional shapes. The author reported
that students operated at level two (analysis) of
van Hiele model. The students’ progress in geo-
metric reasoning was hindered not only by stu-
dents’ misconceptions but also by teacher’s own
ill-structured understanding. This finding further
substantiates the influence of instruction on
advancing geometric reasoning of children.

An impressive volume of research on condi-
tions and environments that facilitate adolescents’
geometric knowledge growth points at the utility
of dynamic geometry software (Mason 2007,
2009; Laborde 2002; de Villiers 2003; Sinclair
and Yurita 2008), instructional practices respon-
sive to the van Hiele’s developmental stages
(Kuzniak and Rauscher 2011; Swafford et al.
1997), the use of exploratory tasks (Fujita and
Jones 2003), an emphasis on conceptual under-
standing of geometric ideas (Jones and Herbst
2012; Henningsen and Stein 1997; Sinclair et al.
2016; Schoenfeld 1988; Reid 2011; Recio and
Godino 2001), and collaborative discourse
(Kramarski and Mevarech 2003; Kunimune et al.
2010; Kuchemann and Hoyles 2009; Pierce 2014;
Walmsley and Muniz 2003).
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Proofs

The study of learners’ proof schemes has a long
history and is currently amainstream in didactics of
mathematics (Liu 2013). While a majority of the
courses offered in geometry at the high school level
tend to build students’ understanding of axiomatic
structure of the discipline and deductive reasoning
toward building proofs, school learners, even in
presence of proof-based courses in geometry,
exhibit difficulty in meeting these curricular goals
(Battista 2007). Literature on secondary students’
performance on tasks and contexts that demand
deductively structured proofs indicates that stu-
dents fail to see a need for proofs and are unable
to distinguish between verifying, explaining, and
proving (Jones 2002). Senk (1982, 1985), in a
large-scale study of high school students’ proving
performance, reported that only about 30% of stu-
dents completing a full-year course in geometry
showed mastery of proof writing at a level that
indicated above average (75%) mastery.

Healy and Hoyles (2000) categorized students’
view of proof and its purposes in a large-scale
empirical study of children aged 14–15. They
found that 28% of the students didn’t show any
understanding of the purpose of proof. In addi-
tion, only 1% of them acknowledged that proof
might help discover new theories or systemize
ideas. The most recognized functions of proof
were verification and explanation.2 Furthermore,
Healy and Hoyles posited that students’ under-
standing of the purposes of proof had a significant
influence on their ability to identify and construct
a proof. Liu (2013) analyzed survey results from
476 eighth grade students who were enrolled in
5 different public schools to determine whether
the students’ preference for a particular kind of
argument was consistent across different subject
areas. In contrast to the findings of previous
research which illustrated that students excluded
algebraic arguments when they were asked to
select an argument that they found convincing
2In Healy and Hoyles’ (2000) classification of students’
view of the purposes of proof, the category named “expla-
nation” included both explanation and communication as
identified in de Villiers’ (1990, de Villiers 2003) model.
and explanatory (Healy and Hoyles 2000), Liu
reported that his study participants’ preference
for argument type was highly inconsistent across
content areas (Freudenthal 1971), and hence an
overarching preference of proof type is unlikely to
be achieved at early cognitive stages. A half of the
participants in Liu’s study seemed to realize that
testing special cases was not sufficient for
claiming proof of the statements. However, most
were unaware of the advantage of symbolic
expressions which could represent general cases.
Liu (2013) concluded: learners’ understanding of
proof develops locally and doesn’t automatically
transfer to other fields. Students may appreciate
deductive reasoning in one area but still find
visual illustration and use of examples convincing
in other contexts. Since proof ability essentially
concerns the relationships among concepts and
properties, it is crucial for students to develop a
conceptual understanding of mathematical topics.
When reasoning is addressed in different content
areas, there is greater potential for development of
a coherent perception of mathematical structure
among learners (p. 247).

Studies of school learners’ perceptions of and
facility with proofs provide consistent results: stu-
dents fail to consider proofs as important and find
them difficult and irrelevant (Senk 1982, 1985;
Usiskin 1982; Knuth et al. 2009). Most students
view a mathematical proof as a method to check
and verify a particular case and tend to judge the
validity of a proof by its appearance (Martin and
Harel 1989). There is also evidence that even
mathematically successful students fail to associ-
ate meaning to what is expected and explored in
traditional proof-based courses in geometry
(Stylianides and Stylianides 2008). Most high
school students do not have adequate exposure
to the process of proving (Dreyfus 1999; Recio
and Godino 2001; Schoenfeld 1988; Jones 2002;
Pierce 2014; Reid 2011; Panaoura and Gagatsis
2009; Sinclair et al. 2016). Dreyfus argued that
instruction must provide opportunities for stu-
dents to build on their tacit knowledge when jus-
tifying and proving students. Segal (1999) further
stressed this point by suggesting that students’
perception of validity of a proof is influenced by
the norm set by the teacher. His assertion was
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substantiated by findings of research conducted
by other researchers (McCrone et al. 2002;
Thompson et al. 2012; Berenger 2017). This
body of work suggests that advancing learners’
proving capacity demands greater emphasis on
sense making through exploratory work and
authentic inquiry (Herbst et al. 2017).
Genres of Investigation

Stylianides and Stylianides (2008) identified three
cohorts of scholarly investigations focused on
studying proofs in mathematics education
research. The first cohort seeks evidence that stu-
dents possess the ability to use deductive reason-
ing in constructing arguments and proofs, even at
the early elementary grades. The second cohort
describes students’ common difficulties and mis-
takes in producing proofs across the grade levels
and content areas. The third cohort offers an
account of pedagogical factors that could facilitate
students’ learning about proofs.

Although these three cohorts of studies, includ-
ing both empirical reports and theoretical investi-
gations, provide insights into students’ analytics
as well as challenges experienced in learning pro-
ofs do not offer a framework that captures features
of students’ thinking when performing proof-
related tasks. Studies of students’ proof schemes
tend to close this gap by classifying the different
types of proofs that students produce. Following
previous scholars’ work (Balacheff 1988, 1991),
Harel and Sowder (2007) organized the types of
proof students may use in various content areas of
mathematics and proposed a taxonomy of proof
schemes consisting of three main categories, i.e.,
“external,” “empirical,” and “analytical,” each of
which encompasses several subcategories.
Naive
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Fig. 1 Balacheff’s (1988)
classification of students’
proving schemes
Balacheff (1988) coined “pragmatic” and
“conceptual” as two prominent modes of justifi-
cation used by students. Pragmatic justifications
are based on the use of examples (or on actions),
and conceptual justifications are based on abstract
formulations of properties and of relationships
among properties. He further identified three
types of pragmatic justifications to include
“naive empiricism,” in which a statement to be
proved is checked in a few (somewhat randomly
chosen) examples; “crucial experiment,” in which
a statement is checked in a carefully selected
example; and “generic example,” in which the
justification is based on operations or transforma-
tions on an example which is selected as a char-
acteristic representative of a class. “Thought
experiment” is identified as conceptual justifica-
tion, in which actions are internalized and disso-
ciated from the specific examples and the
justification is based on the use of and the trans-
formation of formalized symbolic expressions
(see Fig. 1). Balacheff (1988) concluded that
while students experience difficulty producing
proofs, they do however show awareness of the
necessity to prove and to use logical reasoning.

Harel and Sowder (1998) proposed a taxon-
omy of proof schemes consisting of three main
categories, i.e., “external,” “empirical,” and “ana-
lytical,” each of which encompasses several sub-
categories (See Fig. 2). In particular, external
conviction proof schemes include instances
where students determine the validity of an argu-
ment by referring to external sources, such as the
appearance of the argument instead of its content
(e.g., they tend to judge upon the kind of symbols
used in the argument instead of the embedded
concepts and connection of those symbols) or
words in a textbook or told by a teacher. Empirical
proof schemes, inductive or perceptual, include
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instances when a student relies on examples or
mental images to verify the validity of an argu-
ment; the prior draws heavily on examination of
cases for convincing oneself, while the latter is
grounded in more intuitively coordinated mental
procedures without realizing the impact of spe-
cific transformations. Lastly, analytical proof
schemes rely on either transformational structures
(operations on objects) or axiomatic modes of
reasoning which include resting upon defined
and undefined terms, postulates, or previously
proven conjectures.

Harel and Sowder (1998, 2007) observed that
students could simultaneously hold different
proof schemes when working on different prob-
lems. Their model detects such a difference but
does not explain why such inconsistency might
exist. The cognitive development models can cap-
ture students’ progress in producing logical
reasoning in a certain mathematical field but fail
to describe why and how such a development may
emerge across content area differences. Despite
this, Harel and Sowder’s typology is arguably the
most widely used scheme in research surrounding
proving style of secondary school pupils. The
universal appeal of the model has allowed for
generation of a substantial body of work that
highlights adolescence’s tendencies when
constructing proofs, stressing obstacles students
experience when expected to producing analytical
proofs (Berenger 2017). Only recently, some
researchers have begun to examine the impact of
content and context on why students may persist
on producing certain types of proofs (Liu 2013;
Berenger 2017), highlighting that a focus on
typology of students’ proving scheme is limited
in accounting for what kind of mathematical argu-
ments students find appealing, convincing, or
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explanatory since even arguments that are classi-
fied as the same type can be judged quite differ-
ently among people and across the content areas.
Liu (2013) called the need for conceptualizing a
more precise proof classification framework that
responds to these environmental and epistemolog-
ical conditions.

There is also consensus that in order for the
instruction to enable students to understand and
appreciate proof as a reliable way of reasoning
(de Villiers 2003; Fawcett 1938/1995; Reid 2011),
learning about ways to help students realize proof
as a reasoning methodology is equally important
as teaching the skills of producing specific proofs.
To address this, Tall et al. (2012) proposed a two-
dimensional model to depict the development of
factors that are involved in the maturation of one’s
proof ability (see Fig. 3). This framework captures
six key components (i.e., perceptual recognition,
verbal description and pictorial or symbolic rep-
resentation, definition and deduction, equiva-
lence, crystalline concepts, and deductive
knowledge structure) and their relationships in
the broad maturation of proof structure. Different
from the van Hiele model, Tall et al. (2012) sug-
gest that the perceptual understanding doesn’t
Mathematical Cognition: In Secondary Years [13–18] Pa
et al. 2012)
develop only at earlier stages. Instead it continues
to be refined when the understanding of the con-
cept and deductive process is advanced. This idea
is consistent with the perspective of constructiv-
ism, in the sense that the mathematical system
possesses a dynamic structure so that a shift in
understanding of a factor may impact other com-
ponents (Lakatos 1976; Tall 2005).

Nevertheless, Tall et al. (2012) don’t suggest
that all the components in the structure develop
simultaneously. Instead, certain types of under-
standing serve as a prerequisite for others to
occur. This feature is denoted by the “height” of
each component. Crystalline concept introduced
in this framework plays a crucial role in the devel-
opment of proof structure. According to the
authors, it is a concept with a pack of associated
knowledge attached to it. In order to construct
deductive reasoning, involved concepts must not
be perceived as isolated objects, and only when
the roads are built can a pass be drawn. This
approach to growth of proving cognition offers a
fruitful link between instruction and development
of reasoning skills. To date, this theoretical model
remains open to elaboration, and only a handful of
studies (Liu 2013) have attempt to examine its
rt 2, Fig. 3 The broad maturation of proof structure (Tall
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utility for studying proving cognition of school
learners.
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Introduction

Mathematical cognition in the elementary years is
a vast subject of study with entire handbooks
devoted to understanding its different aspects,
viz., computational views, dyscalculia, neurosci-
entific views, psychological views, and sociocul-
tural views (Ashcraft, 1995; Campbell, 2005;
Gallistel and Gelman, 2005; Radford, 2014). In
this entry we view mathematical cognition as
relating to the epistemology of mathematics and
analyze cognition as an imprint of mathematical
structures naturally occurring and perceived in the
world. In particular, we synthesize Piagetian and
non-Piagetian views on the development of math-
ematical cognition in children (ages 5–12) across
two major areas of mathematics extensively stud-
ied by pupils in their elementary school years:
geometry and enumeration and whole-number
arithmetic.
Cognition in Elementary Years:
Geometric Thinking

Piagetian Views
Piaget’s goal was to study children to answer basic
philosophical questions about the nature and origins
of knowledge. His focus from philosophy was the
child’s understanding of space, time, and causality,
of number and quantity, and of classes and relations
of invariance and change. Piaget’s perspectives from
biology were organization, development, and adap-
tation interlacing four periods of cognitive develop-
ment, namely, sensorimotor, pre-operational,
concrete operational, and formal operational.
Piaget repeatedly defined operations as internal-
ized actions and often went so far as to say they
derive directly from the subject’s physical actions as
enacted in sensorimotor behavior. The emphasis
upon physical action created a terminology that is
perhaps more metaphorical than exact when it
comes to describing the activity of operational
thought. For example, with the operation defined
as an “action” enacted in thought, the grouping
structure of operations (where each operation is
always implicitly bound up with a whole system
or structure of interrelated operations), together with
the emphasis upon the operation as a reversible
action, leads one to imagine the mind as comprising
a system of extremely rapid and “machine-like”
executions of these actions quite literally. However,
this kind of terminology should be treated more as a
metaphor or analogy, which, as such, leads to its
own problems. Piaget’s treatment of concrete oper-
ations, as actions, also leads to the problem of defin-
ing the qualitative difference between the two types
of reversibility. On the one hand,we have operations
where the reversibility is characterized by direct
negation: for example, the action to place an object
is negated by the action to remove the object. And
on the other hand, we have operations where the
reversibility is characterized by reciprocity: the rela-
tion of “bigger than” is not put in opposition to the
relation of “not bigger than” but to the relation of
“smaller than.”However, this last statement in itself
shows us the difficulty of realizing operations of
reciprocity as deriving from physical actions
enacted by the subject: what is the action of “bigger
than?” Rather, the relation of “bigger than” is just
that – a relation – and not necessarily the direct result
of a physical action.

If Piaget’s apparent reduction of operations to
physical actions is difficult to sustain, it would be
wrong to conclude that he did indeed reduce oper-
ations to actions. In fact, one can argue that Piaget
made a number of attempts to provide different
qualitative descriptions of operational thought. In
The Origins of Intelligence in Children (Piaget
1952a), in the table in the introduction, we see
the function of assimilation, not accommodation,
as leading to the operations. For another, in Pos-
sibility and Necessity, Piaget (1987) elaborated
upon the functions of differentiation and
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integration as the mechanism for abstracting from
the concrete to the abstract. And, in the various
essays on equilibration, Piaget attempted to
describe operational structures not so much in
terms of systems of actions but rather as systems
of dynamic equilibrium. Of course, all these dif-
ferent perspectives amount to the same thing, not
to a change of view. Piaget was attempting to
describe better and better what he saw as the
(rather difficult) truth and was not simply chang-
ing his mind.

Moreover, with the difficulty of maintaining
Piaget’s apparent reduction of operations to phys-
ical actions, it would be wrong to go to the other
extreme of relying only upon notions of passive
perceptions of physical relations. Perception, when
conceived as the rather inert function of mere
assimilation, does not sufficiently allow for the
fact that cognitive structures develop. More signif-
icantly, pre-operational and operational structures
do not just change but undergo profound qualita-
tive advances in their capabilities. To get from one
level to the next, the subject has to be active within
the milieu of those relations, the internalization of
which precisely defines the next level over the
previous. The definition of an operation as an
action retains the sense of active and constructive
participation by the subject, whereas some notion
of simply “seeing” (i.e., perceiving) these relations
fails to address these necessary attributes.

So, concluding with the claim that to define
operations as internalized actions leads to diffi-
culties we could do without (and more such exam-
ples will be described below), we now have to
suggest a more useful terminology that does not
suffer the deficiencies Piaget’s own terminology
sought to overcome. Piaget believed that the
development of reasoning occurs in stages.
Three separate stages (and two substages) of rea-
soning are described and can be characterized by
the amount and structure of related propositions
children are able to use in justifying the truth of
ideas (Inhelder and Piaget 1958; Piaget 1987). For
example, the level of reasoning may be assessed
by the student’s ability to recall, organize, and
decide which information is necessary and suffi-
cient to establish a proposition. The nature of
change from one level to the next is characterized
by states of equilibrium within the organizational
structures of knowledge (e.g., possibility, revers-
ibility, conversation, transformations). In one
experiment, children were asked to uncover a
large irregular closed figure. The problem was
for a child to determine which figure among a
given set was under the rectangular cover by
uncovering the fewest number of clues as possible
to be sure of their answer. The figures used were
examples of the 12 figures the children were given
as possibilities for the covered figure. The find-
ings of this study were as follows:

Level I (ages 5–7): children were unable to use
formal reasoning. They were unable to retain, relate,
and coordinate clues or relevant information. The
students tended to focus on the last and most mean-
ingful (to them) clue and disregard the importance
of other clues or relationships between clues.

Level IIA (ages 7–9): reasoning becomes antic-
ipatory in nature. Piaget believed that this level
coincides with the onset of concrete operations.
In the hidden-figure experiment, children were
able to classify figures as possible or not possible.
However, they were unable to explicitly explain
their methods of classification. Children at this
level have a vague global intuition of concepts
but are unable tomake explicit their understanding.

Level IIB (ages 7–9): children begin to be able
to describe explicitly their intuitions in solving a
problem. In the hidden-figure experiment, chil-
dren would be able to explain that a shape is not
a possibility because it lacks certain characteris-
tics which separate it from the hidden figure.

The key difference between level II and level
I is that the second level is anticipatory and com-
prehensive. There is significant switch in the
direction of thinking from the actual situation to
the potential.

Level III (ages 9–12): children begin to make
general hypothesis to explain why things must
occur. Piaget believed that this coincides with
the onset of formal operations.

Level IIIA: children are still bound to the con-
crete situation in which problems arise. Children
can argue that enough information about a situa-
tion has been determined to guarantee an outcome
is certain. It is not necessary for these children to
uncover more clues to be sure of the identity of a
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shape, once a necessary and sufficient set has been
uncovered. However it is difficult for children at
this sublevel to explain why the set is necessary
and sufficient to solve the problem absolutely.

Level IIIB: children are after the general
(abstract) properties and the relationships that
affect how they operate. In the hidden-figure
experiment, these children would not only be
able to explain why a set of clues is necessary
and sufficient but also if other necessary and suf-
ficient sets of clues exist.

Another feature of level III reasoning is that
possibility is not bound to be an extension of
empirical situations. Children at this level can
formulate hypothetical situations and draw out
necessary consequences without ever observing
these consequences.

Piaget’s theory suggests that there is a “struc-
tural mechanism” which enables students to com-
pare various combinations of facts and decide
which facts constitute necessary and sufficient
conditions to ascertain truth. He believed that
this structural mechanism is functional in children
only after they are able to transform propositions
about reality (or to abstract reality) so that the
relevant variables can be isolated and relations
deduced. For this to occur, children must be at
the stage of formal operations (Inhelder and Piaget
1958).

To demonstrate the different levels of reason-
ing, Piaget performed a series of experimental
studies where he investigated several phenomena
such as the equality of angles of incidence and
reflection and the operations of reciprocal impli-
cation, the law of floating bodies and the elimina-
tion of contradiction, the oscillation of a
pendulum, and the operations of exclusion,
among others. All of these studies identified sig-
nificant changes in children’s ability to reason
(Inhelder and Piaget 1958).

Piaget described reasoning as a separate struc-
tural mechanism which controls the use of knowl-
edge and is capable of creating new knowledge
without additional external influence. Thus, in
theory, reasoning serves the purposes of
establishing truth of existing knowledge and
constructing new knowledge. The development
of reasoning is therefore dependent on factors
that cause changes in this structural mechanism.
Piaget believed that as the brain develops physi-
cally, this mechanism changes and has the poten-
tial to change the level of thinking and reasoning.

Non-Piagetian Views: Van Hiele Levels of
Geometric Thinking
In 1957, Dutch educators, a husband and wife,
Pierre and Dina van Hiele completed “compan-
ion” doctoral dissertations, in which Pierre
described a system of levels of thinking in geom-
etry and Dina focused on the teaching structures
and experiments that can help improve students’
learning and progressions within these levels.
Their model involved five levels of geometric
thought (for more information on the levels, see
Fuys et al. 1988; Wu and Ma 2005): visualization,
analysis, abstraction, deduction, and rigor. The
first level is characterized by students recognizing
figures in their global appearance, i.e., they see
geometric figures as visual gestalts. For example,
students may distinguish between triangles and
quadrilaterals, but not able to distinguish between
a rhombus and a parallelogram. At this level stu-
dents recognize figures visually, by appearance,
often comparing them to a known prototype. The
properties of figures are not yet understood, and
the decisions are made based on visual observa-
tions and perceptions rather than reasoning. At the
second level, students are able to analyze or list
properties of geometric figures; the properties of
geometric figures become vehicles for identifica-
tion and description. The third-level students
begin to relate and integrate properties into neces-
sary and sufficient sets for geometric shapes. Stu-
dents at this level understand that some figures can
be defined in terms of others. For example, a
square is a rectangle with consecutive sides
equal. At the fourth level, students develop
sequences of statements to deduce one statement
from another. Formal deductive proof appears for
the first time at this level. Finally, the fifth level is
where students are able to analyze and compare
different deductive systems, by establishing and
comparing mathematical systems and argumenta-
tions. Students at this level understand the utility
of widely used geometric proofs, such as indirect
proofs and proofs by contrapositive, and
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understand (or cognitively ready to understand)
non-Euclidean geometry.

There has been recent evidence that supports a
level of thinking that appears before van Hiele’s
first level (Battista and Clements 1988, 1989;
Usiskin 1982, 1987). Students at this level labeled
“precognition” by Battista and Clements focus on
only part of the visual characteristics. Other studies
attempt to describe how students reason at different
van Hiele levels depending on the given task.May-
berry (1981) found that students do not necessarily
think at the same level in each topic area.

The most notable characteristics of the van
Hiele levels of geometric thinking are that they
are hierarchical and sequential, the levels are dis-
crete rather than continuous, and the structure of
geometric knowledge is unique for each level.
Van Hiele (1986) posited that children must pass
through each level of geometric thinking in the
development process. No student can skip a level
or be thinking at a higher level and digress to a
lower level of thinking. Children first encounter
ideas implicitly, and when these ideas are under-
stood explicitly, through the understanding of lan-
guage and interconnecting new ideas with
existing ideas, children progress to the next level
of thinking.

It should be noted that the initial work of van
Hiele was influenced by the psychology known to
them, particularly Gestalt psychology. Dina van
Hiele mentioned the work of Kohler and Duncker.
Van Hiele (1959) also recognizes the contribution
of Piaget to this work. He agrees with Piaget’s
observations on concept formation and believes
that Piaget’s stages of intellectual development
provide a valuable contribution to developmental
psychology. But van Hiele argues that the senso-
rimotor, concrete operational, and formal opera-
tional stages do not develop uniformly across
school subjects, and they are not linked as much
to biological age as Piaget and his followers
imply. While Piaget interprets protocols in which
students do not solve or misunderstand a problem
to mean that students at that particular age are
incapable of solving the problem, van Hiele sees
such protocols as an indictment of contemporary
school practices. No doubt van Hiele believes that
had Piaget’s subjects been instructed according to
the van Hiele model, they would do more than
Piaget reports. Interestingly enough in later years,
Piaget (1972) admitted that interest, culture, and
experience do play a role in determining changes
in cognitive development.
Cognition in Elementary Years:
Enumeration and (Whole) Number
Operations

Piagetian Views
We draw on Piaget’s work with children related to
correspondence, quantities, and equivalence, in
which he investigated classes and relations, as
well as numbers as cognitive domains, to provide
evidence for a hypothesis that the construction of
number is closely related to child’s development
of logic; see The Child’s Conception of Number
(1952). Piaget asserted, “the construction of num-
ber goes hand-in-hand with the development of
logic, and that pre-numerical period corresponds
to the pre-logical level” (Piaget 1952b, p. viii).

Number is organized in a close connection
“with the gradual elaboration of systems of inclu-
sions (hierarchy of logical classes) and systems of
asymmetrical relations (qualitative seriations), and
sequence of numbers thus resulting from an oper-
ational synthesis of classification and seriation”
(Piaget 1952, p. viii). As a result, logical and
arithmetical operations (with numbers) are psy-
chologically natural systems, the second resulting
from generalizations and fusions of the first, under
complementary headings of inclusion of classes
and seriation of relations. When the child applies
this operational system to sets, the emergence of
“inclusion and seriation of the elements into a
single operational totality takes place, and this
totality constitutes the sequence of whole numbers,
which are indissociably cardinal and ordinal”
(Piaget 1952, p. viii). Below, we explore this notion
at greater details and provide specific examples
from Piaget’s work, based upon which he made
his assumptions and which help us make further
connections between his work and the work of
others (discussed in the next section), related to
child’s cognition within mathematical domains of
enumeration and whole-number operations.
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First, we draw attention to the series of experi-
ments conducted with children related to cardinal
and ordinal one-to-one correspondence. Specifi-
cally, Piaget (1952) asked his participants to
describe quantitative relationships between a row
of five glasses and a row of six bottles positioned
closer together (than glasses). At Stage I (age 4–5),
children indicated that a row of five glasses
contained more elements than a row of six bottles.
Furthermore, some children, when the glasses were
moved closer together, indicated that the quantities
were (now) either “less” or “equivalent” to the row
of bottles, indicating lack of one-to-one correspon-
dence and the perceptions that the notion of equiv-
alence between two sets is not lasting (i.e.,
equivalence depends on other factors). At Stage II
(age 5–6), children were able to recognize one-to-
one correspondence (assigning bottles to glasses,
one by one); however, at this stage, they continued
to reason about quantities based on their global
appearance. For example, after the glasses were
pulled into one group together, children were
asked “Where are there more?” to which they
responded, “There are more where its bigger,”
therefore suggesting that, given one-to-one corre-
spondence, the equivalence remains not lasting. At
Stage III (age 6–7), all children in the experiments
demonstrated understanding of both one-to-one
correspondence and lasting equivalence. These
stages were evident and consistent across all car-
dinal and ordinal one-to-one correspondence
experiments conducted with children (see experi-
ments with flowers and vases, eggs and egg cups,
and one-to-one exchange of pennies for objects).

Second, we draw attention to an additional
example, from a series of experiments in additive
composition of classes within the relation between
class and number domain, in which children were
asked to divide quantity (18) into two equal parts
(division of whole numbers without remainders).
At Stage I (age 5–6), children employed various
strategies, all of which indicated that, at this stage,
children have neither yet developed counting skills
and cardinality nor one-to-one correspondence.
For example, some put a hand over the pile and
made a rough division into two parts; others took
the counters one by one and separated them into
two piles. However, children were unable to
determine if the two piles were of equal quantity
and made inferences based on the density of the
piles/heaps rather than quantity. At Stage II (age
6–7), children separated quantities into two groups
and formed subsets or familiar shapes with the
counters (in each group) to help compare them.
For example, one student arranged the counters
(in each group) in a row of pairs and quickly
realized that he made a mistake (10 and 8). He
spaced out the pairs of the row of 8 so that it was
the same length as the row of 10, but seeing the
difference in density, he took 1 counter from the
10 and added it to the 8 to make the groups equal.
Piaget (1952) classified this as cardinality and one-
to-one correspondence, including the evident skills
for children to be able to compare and equalize two
unequal sets of quantities, yet, still, without lasting
equivalence or conservations of the whole (Piaget
1952, p. 196). At Stage III (age 7–8), all children
were able to take 1 or more counters at a time, put
them into two sets of 9, and were confident that the
2 sets were equal. A common response from chil-
dren, at this stage, was “they are equal, because
I put the same amount in each group” regardless of
the density of the groups.

Piaget indicated that cardinal and ordinal one-
to-one correspondence experiments conducted
with children demonstrate their progress toward
enumerations, whereas experiments related to
additive composition of classes within the relation
between class and number provide evidence
about progress toward addition. The author
argued that enumeration and addition are mutu-
ally dependent; however, they are not the same.
For example, if a child counts ninepins in a set,
one after another, each time saying “one, one, one
. . .,” it is not addition, since there is no clear
awareness of the sum. There is merely awareness
of a succession of events, and “naturally, the idea
of quantity is present in it, but this quantification is
not yet numerical, since ‘one’ and ‘another’ are
neither units of number nor elements of classes”
(Piaget 1952, p. 199). The author further argues
that the reason why primitive enumeration (e.g.,
one, another) does not give rise to addition is
because it does not lead to a stable totality. Simi-
larly, the reason why primitive addition does not
give rise to numerical sets that are categories (i.e.,



Mathematical Cognition: In the Elementary Years [6–12] 535

M

colligation) is because additive numeration is
lacking.

While it is clear that neither process is suffi-
cient by itself, the early signs of enumeration and
addition (according to Piaget) become visible
when, in comparing configurations, the child is
able to recognize the resemblance between the
details and the quantity as a whole. It is precisely
this resemblance that helps the child to develop
one-to-one correspondence. Furthermore, if a
child is able to provide an intuitive colligation,
while the enumeration of the elements takes the
form of seriations, based on their positions or
other (perceived) qualities, then this intuitive syn-
thesis (of enumeration becoming seriation and
addition becoming intuitive composition) indi-
cates a definite progress toward additive compo-
sition. However, at this level, operational
addition yet does not exist. It is at the final stage
of development (Stage III) where the synthesis
between enumeration and colligation becomes
lasting: both become operational and independent
of the perceived figures or qualities, and the child
is able to count the elements of a set and under-
stand “that the position of each term in the series is
defined in relation to the set of seriated elements,
the set constituting an invariant whole” (Piaget
1952, p. 200). Thus, the child shows evidence
for development of serial addition, addition of
classes, and of numerical addition.

Non-Piagetian Views: Cognitively Guided
Instruction
Although Piaget was neither directly concerned
with children’s learning of mathematics nor math-
ematical instruction, many studies have drawn on
his work to seek to establish relationships between
child development and mathematics teaching
practices (e.g., Carpenter et al. 1988; Peterson
et al. 1991; Putnam et al. 1990). The broader aim
was to develop a comprehensive framework for
examining and advancing child cognition, partic-
ularly because Piagetian experiments provided
guidance for mathematics achievement but did
very little to enhance children’s development of
mathematical concepts (Young-Loveridge 1987;
Aubrey 1993). This work was particularly needed
due to studies repeatedly documenting that young
children are capable of engaging in mathematical
activity and abstract thought reaching far beyond
concrete experiences (see Sarama et al. 2017). For
example, Aubrey (1993) reported that concep-
tions such as sorting, matching, classifying, join-
ing and separating of sets, counting and ordering,
recognizing and writing numbers 0–10, and dem-
onstrating mathematic relationships through the
use of concrete object, including topics of mea-
surement, geometry, and pictorial representations,
were all found to be part of early childhood (ages
4–5) development and cognition. The authors
noted, “Whilst they may not possess the formal
conventions for representing it, children clearly
enter school having acquired already much of this
mathematical content” (Aubrey 1993, p. 32). As a
result, projects like Cognitively Guided Instruction
(CGI) have been launched and sponsored, focusing
on children’s cognition across the topics of enu-
meration and whole-number operations, with a
parallel goal of supporting teachers’ instructional
practices and professional development (Carpenter
et al. 1989, 2000; Fennema et al. 1996).

In contrast to Piaget, the CGI project focused on
children’s developmental stages of cognition, com-
prehension, and language development across dif-
ferent types ofmathematical (story) problemswithin
each operation: addition, subtraction, multiplication,
and division (see Carpenter et al. 1999). In fact,
when designing addition tasks, three mathematical
structures were identified, where one of the addends
or the sum was unknown. For example, the join/
addition problems involved result unknown (e.g.,
3 + 7 =?), change unknown (e.g., 3 +? = 10), and
initial unknown (e.g.,? + 3 = 10). The initial
unknown addition task involved specific mathemat-
ical language and structure: Sally had some rocks.
John gave her three more rocks. Now she has ten
rocks. How many rocks did Sally have to start with?

For subtraction, the same three structures were
used, where the minuend, subtrahend, or difference
was unknown. The project considered other addi-
tion and subtraction problem types, including part-
part-whole problems, where a part or a whole was
unknown (e.g., Sally has ten rocks, of which three
are red and the rest are blue. How many blue rocks
does Sally have?), and compares problems, where
the difference, quantity, or referent was unknown
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(e.g., Sally has ten rocks. She has three more rocks
than John. How many rocks does John have?).
Note that children (ages 5–8) found the initial
unknown-type story problems (for both addition
and subtraction) particularly difficult, in compari-
son with the other problem types (result unknown
and change unknown), because these problems
were not easy to model and “act out.”

For multiplication and division, several prob-
lem types were also identified, including equal
groups multiplication problems (e.g., groups of
objects, total price of items, rates) and two types
of division problems based on the measurement
(number of groups unknown) and partitive (size
of the group) models of division. After the prob-
lem types were identified, the project conducted
numerous clinical interviews with children (ages
5–10), to identify their developmental stages,
problem-solving strategies, and levels of thinking
for the CGI problems.

Three levels of mathematical thinking were
found to be most prevalent among children for
solving (CGI) problems. Level I, direct modeling,
involved children representing each number in the
problem with concrete objects. Children used var-
ious strategies, including (but not limited to) cre-
ating two sets of objects and joining all of the
objects together by counting them (using manip-
ulatives or drawings); separating from the total
number of objects the minuend and then counting
the remaining objects; andmatching the objects in
two sets, one to one until one set is used up, and
then counting the number of unmatched objects
remaining in the larger set. Level I, primarily,
involves children counting and using one-to-one
correspondence and cardinality (Carpenter and
Fennema 1992).

At Level II, however, children were no longer
in need of representing all the quantities in the
problem concretely. They were able to keep track
of one quantity in the problem, by either stating it
(rather than representing it concretely) or keeping
it in mind, while performing the operation. At this
level, children were not only able to count but also
were able to make sense and make use of different
counting strategies, including (but not limited to)
doubles plus/minus one, counting on/back from
the first number, and counting on/back from the
larger number.

Similarly, at Level III, children were using
strategies; however, their strategies mirrored
arithmetic rather than counting strategies. For
example, some children decomposed the addend
to use a nine plus one strategy (to make ten) and
then added on the remaining amount from the
decomposed addend (e.g., 9 plus 4 is 13 because
9 and 1 is 10 and 3 more is 13). Children were also
able to use mental math strategies, deriving facts
and/or combining familiar quantities when the
“math fact” was not at the recall level. Level III
suggests that children understand the relation-
ships between numbers, their sets, and subsets.

One of the unique characteristics of the CGI
framework is that children’s cognitive levels of
thinking, even though hierarchical, are not age-
specific. For example, very young children (ages
6–7) can solve low-number multiplication and
division problems at Level I and, at the same
time, solve low-number addition and subtraction
problems (e.g., result unknown) at Level II or
Level III. Thus, children’s levels of thinking
vary depending on the problem type, the opera-
tion, and the numbers involved in the task
(Carpenter et al. 1989, 2017; Carpenter and
Fennema 1992; Sarama and Clements 2009;
Shumway and Pace 2017).

Research shows that engaging students in
mathematical learning through (story-based)
problem-solving not only develops their mathe-
matical concepts and skills but also improves their
reading and comprehension (e.g., Charles 2011;
Fang and Schleppegrell 2010; Shanahan and
Shanahan 2014; Sherman and Gabriel 2017). For
example, Sherman and Gabriel (2017) argued that
when students engaged in story-based mathemat-
ical problem-solving, they were required to artic-
ulate their thinking and work within a common
language, including talking and writing about
their processes (p. 474).

Furthermore, extensive research is currently
emerging on early mathematical skill develop-
ment, including enumeration and problem-
solving, being strongly associated with students’
mathematics achievement in later grades (up to
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age 15). Recent studies also found that whole-
number knowledge in the first grade is a strong
predictor of students’ both fraction conceptual
understanding and fraction arithmetic skill in sev-
enth and eighth grades (Bailey et al. 2014; also see
Byrnes and Wasik 2009; Claessens et al. 2009;
Duncan et al. 2007; Jordan et al. 2009).

For example, in their recent analyses of the
US data (between 1991 and 2002) from the
National Institute of Child Health and Human
Development Study of Early Child Care and
Youth Development, Watts et al. (2014)
concluded:

We found that preschool mathematics ability pre-
dicts mathematics achievement through age
15, even after accounting for early reading, cogni-
tive skills, and family [SES] and child characteris-
tics. Moreover, we found that growth in
mathematical ability between age 54 months and
first grade is an even stronger predictor of adoles-
cent mathematics achievement. These results dem-
onstrate the importance of prekindergarten
mathematics knowledge and early math learning
for later achievement. (p. 352).
M
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Definition

Literature examining the contribution of mathe-
matical games in the learning and teaching of
mathematics.
Characteristics

Piaget, Bruner, and Dienes suggest that games
have a very important part to play in the learning
of mathematics (Ernest 1986). In the last four
decades, games have been proposed by a number
of researchers as a potential learning tool in the
mathematics classroom, and there are quite a few
researchers who make claims about their efficacy
in the learning and teaching of mathematics
(e.g., Ernest 1986; Gee 2007; Kafai 1995). Some
authors take a step further; Papert (1980) was
among the first who suggested that students
could learn mathematics effectively not only
by playing (video) games but also by designing
their own computer games, using, for instance,
authoring programming tools like Scratch and
ToonTalk (Kafai 1995; Mousoulides and
Philippou 2005).

By synthesizing definitions by Harvey and
Bright (1985, p. ii) and Oldfield (1991, p. 41),
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a task or activity can be defined as a pedagogical
appropriate mathematical game when it meets
the following criteria:

Has specific mathematical cognitive objectives.
Students use mathematical knowledge to achieve

content-specific goals and outcomes in order to
win the game.

Is enjoyable and with potential to engage students.
Is governed by a definite set of rules and has a

clear underlying structure.
Involves a challenge against either a task or

an opponent(s) and interactivity between
opponents.

Includes elements of knowledge, skills, strategy,
and luck.

Has a specific objective and a distinct finishing
point.

While mathematical games have been the core
of discussion of researchers since the late 1960s
(e.g., Gardner 1970), the inclusion of games for
the teaching and learning of school mathematics,
among other subject areas, has been in the core
of discussion in the 1990s (Provenzo 1991). An
example of this perspective appears in Lim-Teo’s
(1991) work, who claimed that “there is certainly
a place for games in the teaching of Mathematics
. . . teacher to creatively modify and use games to
enhance the effective teaching of Mathematics”
(p. 53). At the same time, Ernest (1986) raised
a question that is still cutting: “Can mathematics
be taught effectively by using games?” (p. 3).

The answer to Ernest’s question is not easy
yet straightforward. The main pedagogical aim
of using games in mathematics classrooms is to
enhance the learning and teaching of mathematics
through developing students’ mathematical
knowledge, including spatial reasoning, mathe-
matical abstraction, higher-level thinking,
decision-making, and problem-solving (Ernest
1986; Bragg 2012). Further, mathematical games
help the teaching and learning of mathematics
through the advantage of providing meaningful
situations to students and by increasing learning
(independent and at different levels) through rich
interaction between players. There are positive
results, suggesting that the appropriate mathemat-
ics games might improve mathematics achieve-
ment. A meta-analysis conducted by Vogel et al.
(2006) concluded that mathematical games appear
to be more effective than other instructional
approaches on students’ cognitive developments.
The positive impact of mathematical games
is further enhanced by technology. Digital
mathematical games provide, for instance, a pow-
erful environment for visualization of difficult
mathematical concepts, linkage between different
representations, and direct manipulation of math-
ematical objects (Presmeg 2006). However, Vogel
et al. (2006), among others, exemplify that the
positive relation between mathematics games
and higher achievement is not the case in all
studies that have been conducted in the field.

Games for learning mathematics are also ben-
eficial for a number of other, frequently cited,
arguments, including benefits like students’ moti-
vation, active engagement and discussion (Skemp
1993), improved attitudes toward mathematics
and social skills, learning and understanding of
complex problem-solving, and collaboration and
teamwork among learners (Kaptelin and Cole
2002). Among these benefits of using mathemat-
ical games, the most cited one is active engage-
ment. Papert (1980) expressed the opinion that
learning happens best when students are engaged
in demanding and challenging activities. In line
with Papert, Ernest (1986) claimed that the nature
of games demands children’s active involvement,
“making them more receptive to learning, and
of course increasing their motivation” (p. 3).
Various studies in both digital and non-digital
mathematical games have shown that students
are highly engaged with working in a game envi-
ronment and that this milieu creates an appropriate
venue for teaching and learning mathematics
(e.g., Devlin 2011).

Research has highlighted various factors
that should be taken into consideration as to
acknowledge mathematical games as an
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appropriate and successful vehicle for the learning
and teaching of mathematics. Games should not
be faced in isolation of broader mathematical pro-
grams and approaches. Clear instructional objec-
tives and pedagogies have to accompany the
use of games, while at the same time these peda-
gogies should consider peer interaction, teacher-
facilitator role, the access to and the use of
technological tools, and the use of rich problem-
solving contexts.
Cross-References
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Introduction: What Is Mathematical
Language?

Specialized domains of activity generally have
their own specialized vocabularies and ways of
speaking and writing; consider, for example, the
language used in the practices of law or computer
science, fishing, or football. The specialized lan-
guage enables participants to communicate effi-
ciently about the objects peculiar to their practice
and to get things done, though it may simulta-
neously serve to exclude other people who are
not specialists in the domain. This is certainly
the case for the specialized activity of
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mathematics: While some aspects of mathemati-
cal language, such as its high degree of abstrac-
tion, may be an obstacle to participation for some
people, doing mathematics is highly dependent on
using its specialized forms of language, not only
to communicate with others but even to generate
new mathematics. In making this claim, we need
to be clearer about what mathematical language is.

For some, the language of mathematics is iden-
tified with its systems of formal notation. Cer-
tainly, like other languages, these systems
include a “vocabulary” of symbols and grammat-
ical rules governing the construction and manip-
ulation of well-formed statements. A significant
part of mathematical activity and communication
can be achieved by forming and transforming
sequences of such formal statements. In recent
years, however, it has been widely recognized
that not only other semiotic systems, including
what is sometimes called “natural” language, but
also specialized visual forms such as Cartesian
graphs or geometric diagrams play an equally
essential role in the doing and communicating of
mathematics. This recognition has been strongly
influenced by the work of the linguist Halliday
and his notion of specialized languages or regis-
ters (Halliday 1974), by research applying and
developing theories of semiotics in mathematics
and mathematics education, and by more recent
developments in multimodal semiotics that
address the roles of multiple modes of communi-
cation (including gestures and the dynamic visual
interactions afforded by new technologies). In this
entry, it is not possible to provide a full character-
ization of all these aspects of mathematical lan-
guage; in what follows, some of the most
significant characteristics will be discussed.
Characteristics of Mathematical
Language

The most easily recognized aspect of the “natural”
or verbal language component of mathematical
language is the special vocabulary used to name
mathematical objects and processes. This vocabu-
lary was the focus of much of the early research
conducted into language in mathematics education
(see Austin and Howson 1979 for an overview of
this research). This vocabulary includes not only
some uniquely mathematical words (such as hypot-
enuse, trigonometry, and parallelogram) but, in
addition, many words that are also used in every-
day language, often with subtly differentmeanings.
In English, words such as prime, similar, multiply,
and differentiate originated in non-mathematical
contexts and, in being adopted for mathematical
use, have acquired new, more restrictive or precise
definitions. The difficulties that learners may have
in using such words in appropriately mathematical
ways have been a focus of research; David Pimm’s
seminal book “SpeakingMathematically: Commu-
nication in Mathematics Classrooms” (Pimm
1987) provides a useful discussion of issues arising
from this aspect of mathematical vocabulary. In
national languages other than English, the specific
relationships between mathematical and everyday
vocabularies may vary, but similar issues for
learners remain.

Another characteristic of mathematical vocab-
ulary is the development of dense groups of words
such as lowest common denominator or topolog-
ical vector space or integrate with respect to x.
Such expressions need to be understood as single
units; understanding each word individually may
not be sufficient. The formation of such lengthy
locutions serves to pack large quantities of infor-
mation into manageable units that may then be
combined into statements with relatively simple
grammatical structure. To consider a relatively
simple example: if we wished to avoid using the
complex locution lowest common denominator,
the simple statement.

The lowest common denominator of these three
fractions is 12. would need to be unpacked into a
grammatically more complex statement such as.

If we find fractions with different denominators
equivalent to each of these three fractions, the
lowest number that can be a denominator for all
three of them is 12.

The condensation of information achieved by
complex locutions makes it possible to handle
complex concepts in relatively simple ways.
This is not unique to mathematics but is also a
feature of the language of other scientific domains
(Halliday and Martin 1993).
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A further characteristic with a significant func-
tion in mathematics is the transformation of pro-
cesses into objects; linguistically this is achieved
by forming a noun (such as rotation or equation)
out of a verb (rotate or equate). Like many of the
special characteristics of mathematical language,
this serves at least two functions that wemay think
of as relating to the nature of mathematical activ-
ity and to the ways in which human beings may
relate to mathematics. In this case, by forming
objects out of processes, the actors in the pro-
cesses are obscured, contributing to an apparent
absence of human agency in mathematical dis-
course. At the same time, however, changing pro-
cesses (verbs) into objects (nouns) contributes to
the construction of new mathematical objects that
encapsulate the processes; the ability to think
about ideas such as function both as a process
and as an object that can itself be subject to other
processes (e.g., addition or differentiation) is an
important aspect of thinking mathematically.
Sfard (2008) refers to these characteristics of
mathematical language as objectification and
reification, arguing that they both contribute to
alienation – the distancing of human beings from
mathematics. It is possible that alienation contrib-
utes to learners’ difficulties in seeing themselves
as potential active participants in mathematics.
However, it is important to remember that many
of the characteristics of mathematical language
that seem to cause difficulties for learners are not
arbitrary complexities but have important roles in
enabling mathematical activity. Indeed, in Sfard’s
communicative theory of mathematical thinking,
she makes no distinction between communicating
and thinking: Thinking and doing mathematics
are identified with participating in mathematical
discourse, that is, communicating mathematically
with others or with oneself.
Variations in Language and Thinking
Mathematically

Considering the relationship between language
and thinking mathematically or doing mathemat-
ics also raises questions about the possible effects
of using different national languages, especially
those that do not share the structures and assump-
tions of the European languages that have domi-
nated the development of modern academic
mathematics. Even relatively simple linguistic
differences, such as the ways in which number
words are structured, have been argued to make a
difference to children’s learning of mathematics.
Barton (2008) suggests that more substantial lin-
guistic differences such as those found in some
indigenous American or Australasian languages
are related to different ways of thinking about the
world that have the potential to lead to new forms
of mathematics.

In focusing on features of verbal language, it is
important not to forget the roles played by other
semiotic systems in the doing and development of
mathematics. A prime example to consider is the
way in which Descartes’ algebraization of geom-
etry has transformed the development of the field.
A powerful characteristic of algebraic notation is
that it can be manipulated according to formal
rules in order to form new statements that provide
new insights and knowledge. In contrast, graphi-
cal forms tend not to allow this kind of manipula-
tion, though they may instead enable a more
holistic or dynamic comprehension of the objects
represented. The different affordances for com-
munication of verbal, algebraic, and graphical
modes, analyzed in detail by O’Halloran (2005),
mean that, even when dealing with the “same”
mathematical object, different modes of commu-
nication will enable different kinds of messages.
Consider, for example, which aspects you focus
on and what actions you may perform when pre-
sented with a function expressed in verbal, alge-
braic, tabular, or graphical form.

Duval (2006) has argued that the differences
between the affordances of different modes
(which he calls registers) have an important conse-
quence for learning: Converting from one mode to
another (e.g., drawing the graph of a function given
in algebraic form or determining the algebraic
equation for a given graph) entails understanding
and coordinating the mathematical structures of
both modes and is hence an important activity for
cognitive development. The design of environ-
ments involving making connections between dif-
ferent forms of representation has been a focus of
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researchers working with new technologies in
mathematics education.

By speaking of mathematical language, as we
have so far in this entry, it might seem that there is
only one variety of mathematical language that has
identical characteristics in all circumstances. This
is clearly not the case; young children studying
mathematics in the early years of schooling
encounter and use specialized language in forms
that are obviously different from the language of
academic mathematicians. Even among academic
mathematicians writing research papers, Burton
and Morgan (2000) identified variation in the lin-
guistic characteristics of publications, possibly
relating to such variables as the status of the writers
as well as to the specific field of mathematics.
Researchers using discourse analytic approaches
have studied the language used in a number of
specific mathematical and mathematics education
contexts. One way of thinking about the variation
found across contexts is suggested byMousley and
Marks (1991): Different kinds of purpose in com-
municating mathematically demand the use of dif-
ferent forms of language or genres. Thus, for
example, recounting what has been done in order
to solve a problem will use language with different
characteristics from that required in order to present
a rigorous proof of a theorem. It may be that
mathematical language should be thought of in
terms of a cluster of forms of language with a
family resemblance, differing in the extent to
which they use the characteristics identified in
this entry but sharing enough specialized features
to enable us to recognize them all as mathematical.
An important implication of recognizing the con-
textual variation in mathematical language is that
research into the role of language in teaching and
learning mathematics needs to be sensitive to the
specificity of the practice being studied and cau-
tious in its generalizations.
Cross-References
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Terms such as “Mathematical Learning
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but also “Mathematical Learning Disorder” and
“Mathematical Learning Difficulty”1 are origi-
nated in the field of cognitive psychology in
order to investigate the development of basic
number processing (e.g., Passolunghi and Siegel
2004; Rousselle and Noël 2007; Piazza et al.
2010). These terms are introduced referring to
atypical situations, defined as a presence of vari-
ous cognitive deficits in a student’s processing
of numerical information that lead to persistent
and pervasive difficulties with mathematics
(e.g., Butterworth and Reigosa-Crespo 2007;
Shalev 2007; Geary 2010). In early studies,
these cognitive deficits were inferred by low
performance, for example, in his entry in this
Encyclopedia, Jeremy Kilpatrick – recalling that
the term dyscalculia (Rechenschwache) was intro-
duced in Budapest in 1916 by Paul Ranschburg –
underlines how the new term was coined during
Ranschburg’s study of differences in calculation
performance between normal children and low
achievers in arithmetic.

In the clinical context, where these situations
are diagnosed, “Mathematics Disorder” (MD)
was introduced as one of the “Learning Disor-
ders.” In particular, in the fourth version of the
Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV) (American Psychiatry
Association 1994), MD is identified and diag-
nosed using discrepancy criteria: “[in the case
of Mathematical Disorder] ability, as measured
by individually administered standardized tests,
is substantially below that expected given the
person’s chronological age, measured intelli-
gence, and age-appropriate education” (ibid.,
Sect. 315.1). The more recent fifth version of
the Diagnostic and Statistical Manual of Mental
Disorders (2013) takes a more holistic approach.
In particular, a “Specific Learning Disorder”
(SLD) is described as a developmental disorder
that begins by school age, but that may not be
recognized until later; it involves ongoing prob-
lems in learning key academic skills, including
reading, writing, and math, that provide the
1In the literature, the acronym MLD has several meanings:
the “D”may refer to any of at least three nouns (Disability,
Disorder, Difficulty); here it refers to “Difficulty.”
foundations for other academic subjects. The
manual also highlights the consequences of the
nontreatment of a SLD: it can potentially cause
problems throughout a person’s life, including
lower academic achievement, lower self-esteem,
higher rates of dropping out of school, higher
psychological distress, and poor overall mental
health, as well as higher rates of unemployment/
underemployment.

The issues of diagnosis of a Mathematical
Learning Disorder and instruction for the students
with a positive diagnosis are getting increasing
research attention; however research in this area
is still lagging behind compared with other aca-
demic subjects such as reading (Verschaffel
et al. 2018). In the fields of psychology and neu-
roscience, there is still lack of consensus on how
to identify the central characteristics of MLD or
even on what these are (Szücs 2016). Indeed,
some definitions refer to a biologically based
disorder, others to the discrepancy between math-
ematical achievement and general intelligence,
and others yet focus on the response to interven-
tion. Consensus is also lacking about the comor-
bidity and heterogeneity of the populations
supposedly affected with MLD (Bartelet et al.
2014; Szücs and Goswami 2013; Watson and
Gable 2013).

Generally, the clinical context lacks attention
toward the important theoretical perspectives that
should guide any form of educational support
aimed at prevention or remediation of MLD.

In the following sections, we will introduce the
main perspectives, other than the purely cognitive
ones, taken in mathematics education to study
MLD, focusing in particular on findings on pre-
vention and remediation. We will conclude with
considerations on the possibility of fostering more
constructive collaboration across the research
communities studying MLD.
The Mathematics Education
Perspectives on MLD: The Issues of
Prevention and Remediation

Recently, Lewis and Fischer (2016) carried out
and published a review of 164 studies on MLD
of a 40-year period. The review, appeared in the
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Journal for Research in Mathematics Education,
systematically analyzes the methodological
criteria used to identify MLD, highlighting three
main findings: there was great variability in the
classification methods used; studies rarely
reported demographic differences between the
MLD and typically achieving groups; studies
overwhelmingly focused on elementary-aged
students engaged in basic arithmetic calculation.
From an educational perspective, the authors
argue for the necessity of standards for methodol-
ogy and reporting. Lewis and Fischer, in agree-
ment with the view of other researchers in the
field, have argued that not only arithmetic but
also other more complex and equally important
mathematical domains (algebra, geometry, calcu-
lus, etc.) and forms of reasoning should be taken
into account when studying MLD, such as spatial
and geometrical reasoning, mathematical rela-
tions and patterns, and other forms of mathe-
matical thinking with more potential toward
abstraction and generalization (e.g., Hord and
Xin 2015; Mulligan 2011). Moreover, consis-
tently with the picture in the introduction, Lewis
and Fisher underline how too little is yet known
about the contributing factors of MLD, which, for
example, are likely to include not only cognitive
but also emotional and social factors.

The complexity of this scenario also emerged
clearly during a panel on “Special Needs in
Research and Instruction in Whole Number
Arithmetic” at ICMI Study 23 on whole numbers
in the primary grades (Verschaffel et al. 2018).
The panel explored and discussed many open
issues and challenges, with a strong emphasis on
the instructional goals and interventions for chil-
dren (in primary school) with MLD.

While acknowledging the importance of
the purely cognitive perspectives advanced in
psychology and neuroscience, in this section
we focus on more sociocultural perspectives of
Vygotskian inspiration that have been taken
on MLD.

A solid lens through which “low achievement”
and “failure” in mathematics have been observed
and analyzed is the “Commognition”
(▶ “Commognition”), according to which mathe-
matics is a form of communication and learning
mathematics is developing this special discourse
(Sfard 2008). Within this frame, “disability”
(or “learning difficulty” due to a “cognitive defi-
cit” as seen from other perspectives) is
reconceptualized in terms of persistent failure to
participate in canonic mathematical discourse and
failure to cope with meta-level learning (Sfard
2008, 2017; Heyd-Metzuyanim 2013). Within
this perspective, all students experience difficulty
whenever a transition is to be made to mathemat-
ical discourse governed by rules different from
those with which the student is familiar. The
need for such meta-level learning appears when-
ever a new type of mathematical object, e.g. a new
type of number, is introduced; in most cases,
however, neither teachers nor students are aware
of the required meta-level change. The tacitness of
this change is one reason why the necessary tran-
sition is difficult to make. Another challenge
comes from the paradoxical nature of the situa-
tion, in which in order to construct a new mathe-
matical object the student must already participate
in the discourse on this object. While the resulting
difficulty is inevitable and universal, students dif-
fer in their their readiness and ability to cope. If
the difficulty remains unresolved, it is often
because of emotional, social and educational fac-
tors rather than of cognitive ones. Indeed, mes-
sages about the students’ identities, coming from
teachers, peers and the learners themselves may
be a critical factor in these students’ approach to
the difficulty and in their readiness to grapple with
it. By translating one’s actions into properties of
the actor, identities extend a local, potentially only
temporary lack of success into a universal, per-
manent “disability”. Those labeled as ‘having
MLD’ are only too likely give up any genuine
attempt to participate in the canonic mathematical
discourse; if they ever ‘talk mathematics’, they
will feel that they are merely ‘parroting’ the
teacher (Heyd-Metzuyanim and Sfard 2012;
Heyd-Metzuyanim 2013; Heyd-Metzuyanim,
et al. 2016; Lewis 2017). This perspective is
coherent with the solid finding in mathematics
education related to the need to go beyond a
purely cognitive interpretation of students’ diffi-
culties (Schoenfeld 1983).

Moreover, Vygotsky’s work with disabled
learners has inspired a significant branch of
research on “remediation.” The underlying idea
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he advanced is that instead of associating disabil-
ity with deficit, it is preferable to adopt a qualita-
tive perspective to research how access to
different mediating resources impacts upon devel-
opment. This perspective has been successfully
used both in the context of visual impairments
(Healy and Fernandes 2014) and in that of reme-
diation of a MLD. Specifically, a study by Lewis
(2017) illustrates the potential utility of a bridging
discourse to help students who have a history of
failure gain access to the canonical mathematics
discourse and content. Lewis’ work draws on
Vygotsky’s framing of disability and uses Sfard’s
conceptualization of mathematics as a discourse
to design a fraction remediation. The methodol-
ogy used involved a fine-grained analysis of the
remediation sessions, which lead to tracing out
the ways in which the student’s discourse shifted
over time, enabling her to solve problems she had
previously been unable to solve.

Another study framed within a Vygotskian
lens was the Italian PerContare project
(Baccaglini-Frank 2017). Here, teaching strate-
gies and activities were developed for 1st and
2nd grades with the aim of preventing and
addressing early low achievement in arithmetic
using appropriately designed artifacts, grounded
upon a kinesthetic and visual-spatial approach to
part-whole relationships. Findings of a longitu-
dinal study, involving ten experimental classes
and ten control classes, were that the percentage
of students in experimental classes who scored
below the cutoff on a standard diagnostic battery
used in Italy was about half of that of the children
in the control classes (7% vs. 13%). Moreover,
on a separate test on topics in arithmetic, the
children of the experimental classes showed a
greater variety of strategies when carrying out
calculations, and many fewer omissions in their
answers, compared to the students in the control
classes (Baccaglini-Frank 2015; Verschaffel
et al. 2018). Such results suggest that a careful
design and implementation of teaching materials
can have a significant effect on the population of
students testing positive to MLD, which further
shakes the fragile grounds of defining and
diagnosing MLD.
Communicating Across Fields

We believe that research on MLD and DD – in
particular regarding the possibilities in terms of
prevention and remediation – would highly bene-
fit from a constructive dialogue between neigh-
boring fields. Indeed, attempts should be made in
neighboring disciplines to reinterpret methodolo-
gies and findings from studies stemming from
mathematics education perspectives like the ones
described; this could lead to insights both at an
applied level (design of material for prevention
and remediation of MLD) and at a theoretical
level (conceptualization of MLD or DD). Vice
versa, we highly recommend staying open to per-
spectives from cognitive psychology and neuro-
science, attempting to reinterpret and reinvest key
findings.

Within this direction, the recent study by
Karagiannakis et al. (2014) reorganized the main
hypothesis advanced in the cognitive psychology
and neuroscience fields into four domains (core
number, memory, reasoning, visual-spatial) with
the aim of developing a theoretical model for defin-
ing and studying “mathematical learning profiles.”
The developed model suggests a transition from
the one-dimensional approach to dyscalculia to the
four-dimensional construct ofMathematical Learn-
ing Difficulties. On one hand this transition is in
line with the shift of focus we highlighted in the
DSM-5; on the other hand, it brings into the picture
mathematical domains other than the ones typically
considered by the MLD literature until today.
Based on such model, an experimental computer-
based battery of mathematical tasks was designed
to elicit abilities from each domain, and it was
administered to a sample of 165 typical population
5th and 6th grade students. Results from explana-
tory and confirmatory factor analysis indicated
strong evidence for supporting the solidity of the
model. Moreover, K-means cluster analysis leads
to identification of six performance groups with
distinct characteristics, supporting the recurrent
finding that the population of students labeled as
MLD is quite heterogeneous (Karagiannakis et al.
2017). The model is expected to have direct impli-
cations for the field of mathematics education,
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because it shall allow to identify cognitive charac-
teristics (either intrinsic or culturally developed) of
mathematical profiles of students; these can be
used to design more effective and comprehensive
intervention programs, focusing on the students’
strengths to compensate weaknesses and provide
motivation.
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Definition

The neologism “mathematical literacy” belongs to
an array of related terms that have been used in
English language mathematics education research
and policy discourses in the context of sugges-
tions for the improvement of mathematics teach-
ing and learning. While diagnosis of some
apparent shortcomings seems to coexist with
formal mathematics education since its inception
in the USA, “mathematical literacy” is linked to
the reform narratives of 1980s (Craig 2018). One
of the first written occurrences of the term in the
USA was in 1944, when a Commission of the
National Council of Teachers of Mathematics
(NCTM) on Post-War Plans (NCTM 1970/2002,
p. 244) required that the school should ensure
mathematical literacy for all who can possibly
achieve it. Shortly after (in 1950), the term was
used again in the Canadian Hope Report (NCTM
1970/2002, p. 401). In more recent times, the
NCTM 1989 Standards (NCTM 1989, p. 5) in
the USA spoke about mathematical literacy and
mathematically literate students. Apparently, no
definition of the term was offered in any of these
texts. The 1989 Standards did, however, put for-
ward five general goals serving the pursuit of
mathematical literacy for all students: “(1) That
they learn to value mathematics, (2) that they
become confident with their ability to do mathe-
matics, (3) that they become mathematical prob-
lem solvers, (4) that they learn to communicate
mathematically, and (5) that they learn to reason
mathematically” (op. cit., p. 5).

In the context of international comparisons, the
IEA’s Third International Mathematics and Sci-
ence Study (TIMSS), first conducted in 1995,
administered a mathematics and science literacy
test to students in their final year of secondary
school in 21 countries that aimed “to provide
information about how prepared the overall pop-
ulation of school leavers in each country is to
apply knowledge in mathematics and science to
meet the challenges of life beyond school.” The
first attempt at an explicit definition appears to be
found in the initial OECD framework for PISA
(Programme for International Student Assess-
ment) in 1999 (OECD 1999). The definition has
been slightly altered a number of times for subse-
quent PISA cycles (for the evolution of the math-
ematics framework over the years, see Stacey and
Turner 2015). The version for PISA 2015 reads
(OECD 2016, p. 65) as follows:

Mathematical literacy is an individual’s capacity to
formulate, employ and interpret mathematics in a
variety of contexts. It includes reasoning mathemat-
ically and using mathematical concepts,

https://doi.org/10.1007/978-3-319-63555-2_16
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procedures, facts, and tools to describe, explain and
predict phenomena. It assists individuals to recog-
nise the role that mathematics plays in the world and
to make well-founded judgments and decisions
needed by constructive, engaged and reflective
citizens.

In mathematics education research and policy
texts, one finds an array of related terms, such as
“numeracy,” “quantitative literacy,” “critical
mathematical literacy,” “mathemacy,” “matheracy,”
and “statistical literacy.” While some of these
notions more clearly differ in extension and inten-
sion, some authors use “numeracy,” “quantitative
literacy,” and “mathematical literacy” synony-
mously, whereas others distinguish also between
these. While the term “mathematical literacy”
appears to be of US descent, the term “numeracy”
was coined in the UK, although the neologism
“innumeracy” spread through a popular science
publication in the USA (Paulos 1989). According
to Brown et al. (1998, p. 363), “numeracy”
appeared for the first time in the so-called
Crowther Report in 1959, meaning scientific lit-
eracy in a broad sense, and later obtained wide
dissemination through the Cockcroft Report
(DES/WO 1982), which stated that its meaning
had considerably narrowed by then. There have
been further shifts in interpretation since then.
A recent, rather wide, definition of “numeracy”
can be found in OECD’s PIAAC (Programme for
the International Assessment of Adult Competen-
cies) “numeracy” framework: “Numeracy is the
knowledge and skills required to effectively man-
age and respond to the mathematical demands of
diverse situations” (PIAAC Numeracy Expert
Group 2009, p. 20).

The term “quantitative literacy” is yet another
term of US descent, going back to the work of
Steen (e.g., Madison and Steen 2003). As to coun-
tries where English is an official language, Geiger
et al. (2015) observe that “numeracy” is still more
commonly used in the UK, Canada, South Africa,
Australia, and New Zealand, while in the USA,
“mathematical literacy” appears to be the
privileged term. In South Africa, the pursuit of
mathematical literacy has motivated the introduc-
tion of a new stand-alone school mathematics
subject area available for learners in grades
10–12, which aims at allowing “individuals to
make sense of, participate in and contribute to
the twenty-first century world – a world charac-
terized by numbers, numerically based arguments
and data represented and misrepresented in a
number of different ways. Such competencies
include the ability to reason, make decisions,
solve problems, manage resources, interpret infor-
mation, schedule events and use and apply tech-
nology” (DoBE 2011, p. 8). One motivation for
introducing this mathematical subject was to
increase student engagement with mathematics.
Characteristics and Delimitation

Even though the notions above are interpreted
differently by different authors (which suggests a
need to pay serious attention to clear terminol-
ogy), they do have in common that they stress
awareness of the usefulness of and the ability to
use mathematics in a range of different areas as an
important goal of mathematics education. Further-
more, these notions are associated with education
for the general public rather than with specialized
academic training while at the same time stressing
the connection between “mathematical literacy”
and democratic participation. As in other com-
bined phrases, such as “statistical literacy” or
“computer literacy,” the addition of “literacy”
may suggest some level of critical understanding.

While “mathematical literacy,” “quantitative
literacy,” and “numeracy” focus on mathematics
as a tool for solving nonmathematical problems,
the “mathematical competence” (and “competen-
cies”) and “mathematical proficiency” focus on
what it means to master mathematics at large,
including the capacity to solve mathematical as
well as nonmathematical problems. The notion of
“mathematical proficiency” (Kilpatrick et al.
2001) is meant to capture what successful mathe-
matics learning means for everyone and is defined
indirectly through five strands (conceptual under-
standing, procedural fluency, strategic compe-
tence, adaptive reasoning, and productive
disposition). Furthermore, by referring to individ-
uals’ mental capacities, dispositions, and atti-
tudes, the last two of these strands go beyond
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mastery of mathematics and include personal
characteristics.

The notion of “mathematical competence” has
been developed, explored, and utilized in the Dan-
ish KOM Project (KOM is an abbreviation for
“competencies andmathematics learning” in Dan-
ish) and elsewhere since the late 1990s (Niss and
Højgaard 2011). Mathematical competence is an
individual’s capability and readiness to act appro-
priately, and in a knowledge-based manner, in
situations and contexts in which mathematics
actually plays or potentially could play a role.
While mathematical competence is the overarch-
ing concept, its constituent components are, per-
haps, the most important features. There are eight
such constituents (“mathematical competencies”):
mathematical thinking, problem posing and solv-
ing, mathematical modeling, mathematical rea-
soning, handling mathematical representations,
dealing with symbolism and formalism, commu-
nicating mathematically, and handling mathemat-
ical aids and tools. The description of
mathematical competencies does not specifically
focus on learners of mathematics nor on mathe-
matics teaching. Also, no personal characteristics
such as capacities, dispositions, and attitudes are
implicated in these notions.
Motivations for Introducing
Mathematical Literacy

There have always been endeavors among math-
ematics educators to go against the idea that the
learning of basic or fundamental mathematics
could be characterized solely in terms of facts
and rules that have to be known (by rote) and
procedures that have to be mastered (by rote).
Mathematics educators have found this view
reductionist, since it overlooks the importance of
understanding when, and under what conditions,
it is feasible to activate the knowledge and skills
acquired, as well as the importance of flexibility in
putting mathematics to use in novel intra- or extra-
mathematical contexts and situations. For exam-
ple, in the first IEA study on mathematics, which
later became known as the First International
Mathematics Study (FIMS), published in 1967,
we read that in addition to testing factual and
procedural knowledge and skills related to a set
of mathematical topics, it was important to also
look into five “cognitive behaviors”: (1) knowl-
edge and information (recall of definitions, nota-
tions, concepts), (2) techniques and skills
(solutions), (3) translation of data into symbols
or schema and vice versa, (4) comprehension
(capacity to analyze problems and to follow rea-
soning), and (5) inventiveness (reasoning crea-
tively in mathematics (our italics)). Another
example is found in the NCTM document An
Agenda for Action: Recommendations for School
Mathematics of the 1980s (NCTM 1980). The
document is partly written in reaction to the
so-called back-to-basics movement in the USA
in the 1970s, which in turn was a reaction to the
“new mathematics” movement in the 1950s and
1960s. The document states:

We recognize as valid and genuine the concern
expressed by many segments of society that basic
skills be part of the education of every child. How-
ever, the full scope of what is basicmust include those
things that are essential to meaningful and productive
citizenship, both immediate and future. (p. 5)

The document lists six recommendations,
including:

2.1. The full scope of what is basic should contain at
least the ten basic skill areas [. . .]. These areas are
problem solving; applying mathematics in every-
day situations; alertness to the reasonableness of
results; estimation and approximation; appropriate
computational skills; geometry; measurement;
reading, interpreting, and constructing tables,
charts, and graphs; using mathematics to predict;
and computer literacy. (pp. 6–7)

2.6. The higher-order mental processes of logical
reasoning, information processing, and decision
making should be considered basic to the application
of mathematics. Mathematics curricula and teachers
should set as objectives the development of logical
processes, concepts, and language [. . .]. (p. 8)

These examples show that mathematics educa-
tors have been concerned with capturing “some-
thing more” (in addition to knowledge and skills
regarding mathematical concepts, terms, conven-
tions, rules, procedures, methods, theories, and
results), which resembles what is indicated by
the notion of mathematical literacy as it is, for
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example, used in the PISA. On the one hand, the
arguments for broadening the scope of school
mathematics have been utility oriented, based on
the observation of students’ lack of ability to use
their mathematical knowledge for solving prob-
lems that are contextualized in extra-mathematical
contexts, in school as well as out of school, an
observation corroborated by a huge body of
research. On the other hand, the constitution of
mathematics as a school discipline in terms of
“products” – concepts (definitions and terminol-
ogy), results (theorems, methods, and algo-
rithms), and techniques (for solving sets of
similar tasks) – became challenged. Product-
oriented curricula were complemented by, or
contrasted with, a conception of mathematics
that includes mathematical processes, such as
heuristics for mathematical problem solving,
mathematical argumentation, constructive and
critical mathematical reasoning, and communicat-
ing mathematical matters.

There are different views about the amount of
mathematical knowledge and basic skills needed
for engagement in everyday practices and non-
mathematically specialized professions, although
it has been stressed that a certain level of profi-
ciency in mathematics is necessary for developing
mathematical literacy. The role of general mathe-
matical competencies that transcend school math-
ematical subareas also has been stressed in the
newer versions of conceptualizing mathematical
literacy, most prominently in the versions pro-
moted by the OECD-PISA (see above).
Critique and Further Research

Even though the notion of “mathematical liter-
acy” has gained momentum and is now widely
invoked and used in various contexts, it has also
attracted different sorts of conceptual and
politico-educational criticism.

Some reservations against using the very term
“mathematical literacy” concern the fact that it
lacks counterparts in several languages. No suit-
able translation exists, for example, into German
and Scandinavian languages, where there are only
words for “illiteracy,” which stands for the
fundamental inability to read or write any text.
Indeed, the term “literacy” (both mathematical
and quantitative literacy) has been interpreted by
some to connote the most basic and elementary
aspects of arithmetic and mathematics, in the
same way as linguistic literacy is often taken to
mean the very ability to read and write, an ability
that is seen to transcend the social contexts and
associated values, in which reading and writing
occurs. However, the demands for reading and
writing substantially vary across a spectrum of
texts and contexts, as do the social positions of
the speakers or readers. The same is true for a
range of contexts and situations in which mathe-
matics is used. People’s private, professional,
social, occupational, political, and economic
lives represent a multitude of different mathemat-
ical demands. So, today, for most mathematics
educators, the term mathematical literacy signifies
a competency far beyond a set of basic skills.

Another critique, going against attempts at
capturing mathematical literacy in terms of trans-
ferable general competencies or process skills,
consists in the observation that such a conception
tends to ignore the interests and values involved in
posing and solving particular problems by means
of mathematics. Jablonka (2003) sees mathemat-
ical literacy as a socially and culturally embedded
practice and argues that conceptions of mathemat-
ical literacy vary with respect to the culture and
values of the stakeholders who promote it. Also,
de Lange (2003) acknowledges the need to take
into account cultural differences in conceptualiz-
ing mathematical literacy. There is no general
agreement among mathematics educators as to
the type of contexts with which a mathematically
literate citizen will or should engage and to what
ends. However, there is agreement that mathemat-
ical literate citizens include nonexperts and that
mathematical literacy is based on knowledge that
is/should be accessible to all.

In the same vein, mathematics educators have
empirically and theoretically identified a variety
of intentions for pursuing mathematical literacy.
For example, Venkat and Graven (2007) investi-
gated pedagogic practice and learners’ experi-
ences in the contexts of South African
classrooms, in which the subject mathematical
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literacy is taught. They identified four different
pedagogic agendas (related to different pedagogic
challenges) that teachers pursued in teaching the
subject. Jablonka (2003), through a review of
literature, identified five agendas on which con-
ceptions of mathematical literacy are based. These
are as follows: developing human capital
(exemplified by the conception used in the
OECD-PISA), maintaining cultural identity, pur-
suing social change, creating environmental
awareness, and evaluating mathematical applica-
tions. Some terms have been introduced as alter-
natives to “mathematical literacy” in order to
make the agenda visible. Frankenstein (e.g.,
2010) uses critical “mathematical numeracy,”
D’Ambrosio (2003) writes about “matheracy,”
and Skovsmose (2002) refers to “mathemacy.”

Relations of mathematical literacy to scientific
and technological literacy have also been
discussed (e.g., Keitel et al. 1993). Challenging
questions include the role of mathematics in dig-
ital technology and the implications for the devel-
opment of critical competence to counterbalance
the demathematizing effect of mathematics-based
technologies that operate as black boxes (e.g.,
Gellert and Jablonka 2009). This question
becomes particularly relevant if the question of
interpretability is not based on the lack of exper-
tise of the user of such a black box, but rather is a
consequence of the complexity or flexibility of the
underlying mathematical model (such as in the
context of machine learning).

As to the role of mathematical literacy in
assessment, discrepancies between actual assess-
ment modes and the intentions of mathematical
literacy have been pointed out by researchers in
different contexts (Jahnke and Meyerhöfer 2007;
North 2010; Jablonka 2015). In the assessment
literature, the contexts in which mathematically
literate individuals are meant to engage are often
referred to in vague or general terms, such as the
“real-world,” “everyday life,” “personal life,”
“society,” and attempts to categorize contexts
often lack a theoretical foundation. Identifying
the demands and knowledge bases for mathemat-
ically literate behavior in different contexts
remains a major research agenda.

As far as the teaching of mathematical literacy
is concerned, the transition between unspecialized
context-based considerations and problem solu-
tions that employ specialized mathematical
knowledge is a continuing concern. Ethnographic
studies of how use of (school-)mathematical
notions and techniques is made within other prac-
tices (e.g., workplaces) show that (school-)
mathematics becomes subordinated to the motives
or objects characteristic of these practices. Con-
versely, out-of-school experiences and knowledge
often become a mere springboard for developing
school mathematical notions and techniques. Stud-
ies of curricula associated with teachingmathemat-
ics through and for exploring everyday practices
have, for example, usefully drawn on theories of
knowledge recontextualization.

These observations suggest that the meanings
and usages associated with the notion of mathe-
matical literacy and its relatives have not yet
reached a stage of universally accepted conceptual
clarification nor of general agreement about their
place and role. Future theoretical and empirical
research and development are needed for that to
happen.
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consensus all over the world. The promotion of
modelling competencies, i.e., the competencies to
solve real-world problems using mathematics, is
accepted as central goal for mathematics educa-
tion worldwide, especially if mathematics educa-
tion aims to promote responsible citizenship. In
many national curricula, modelling competencies
play a decisive role pointing out that the impor-
tance of mathematical modelling is accepted at a
broad international level. However, beyond this
consensus on the relevance of modelling, it is still
disputed how to integrate mathematical modelling
into the teaching and learning processes; various
approaches are discussed and there is still a lack of
strong empirical evidence on the effects of the
integration of modelling examples into school
practice.
Theoretical Debate on Mathematical
Modelling: Historical Development and
Current State

Applications and modelling play an important
role in the teaching and learning of mathematics;
already in the nineteenth century, famous mathe-
matics educator made a strong plea for the inclu-
sion of contextual problems in mathematics
education, mainly in elementary schools for the
broad majority. At the turn to the twentieth cen-
tury, Felix Klein – the first president of ICMI –
laid out in the so-called syllabus from Meran the
necessity to include applications in modelling in
mathematics education for higher achieving chil-
dren in grammar schools; however, he requested a
strong balance between applications and pure
mathematics. During and after the Second World
War, applications lost significantly importance in
many parts of the world. The claim to teach math-
ematics in application-oriented way has been put
forth another time with the famous symposium
“Why to teach mathematics so as to be useful”
(Freudenthal 1968; Pollak 1968) which has been
carried out in 1968. Why and how to include
applications and modelling in mathematics edu-
cation has been the focus of many research studies
since then. This high amount of studies has not led
to a unique picture on the relevance of
applications and modelling in mathematics edu-
cation; in contrast the arguments developed since
then remained quite diverse. In addition the dis-
cussion, how to teach mathematics so as to be
useful did not lead to a consistent argumentation.
There have been several attempts to analyze the
various theoretical approaches to teach mathemat-
ical modelling and applications and to clarify pos-
sible commonalities and differences; a few are
described below.

Nearly twenty years ago, Kaiser-Meßmer
(1986, p. 83) discriminated in her analysis of the
applications and modelling discussion of that time
various perspectives, namely, the following two
main streams:

• A pragmatic perspective, focusing on utilitar-
ian or pragmatic goals, i.e., the ability of
learners to apply mathematics for the solution
of practical problems. Henry Pollak (see, e.g.,
1968) can be regarded as a prototypical
researcher of this perspective.

• A scientific-humanistic perspective, which is
oriented more towards mathematics as a sci-
ence and humanistic ideals of education focus-
ing on the ability of learners to create relations
between mathematics and reality. The “early”
Hans Freudenthal (see, e.g., 1973) might be
viewed as a prototypical researcher of this
approach.

The various perspectives of the discussion vary
strongly due to their aims concerning application
and modelling; for example, the following goals
can be discriminated (Blum 1996; Kaiser-
Meßmer 1986):

• Pedagogical goals: imparting abilities that
enable students to understand central aspects
of our world in a better way

• Psychological goals: fostering and enhance-
ment of the motivation and attitude of learners
towards mathematics and mathematics
teaching

• Subject-related goals: structuring of learning
processes, introduction of new mathematical
concepts and methods including their
illustration
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• Science-related goals: imparting a realistic
image of mathematics as science, giving
insight into the overlapping of mathematical
and extra-mathematical considerations of the
historical development of mathematics

In their extensive survey on the state of the art,
Blum and Niss (1991) focus a few years later on
the arguments and goals for the inclusion of
applications and modelling and discriminate
five layers of arguments such as the formative
argument related to the promotion of general
competencies, critical competence argument,
utility argument, picture of mathematics argu-
ment, and the promotion of mathematics learning
argument. They make a strong plea for the pro-
motion of three goals, namely, that students
should be able to perform modelling processes,
to acquire knowledge of existing models, and to
critically analyze given examples of modelling
processes.

Based on this position, they analyze the vari-
ous approaches on how to consider applications
and modelling in mathematics instruction and dis-
tinguish six different types of including applica-
tions and modelling in mathematics instruction,
e.g., the separation approach, separating mathe-
matics, and modelling in different courses or the
two-compartment approach with a pure part and
an applied part. A continuation of integrating
applications and modelling into mathematics
instruction is the islands approach, where small
applied islands can be found within the pure
course; the mixing approach is even stronger in
fostering the integration of applications and
modelling, i.e., newly developed mathematical
concepts and methods are activated towards appli-
cations and modelling; whenever possible, how-
ever, in contrast to the next approach, the
mathematics used is more or less given from the
outset. In the mathematics curriculum-integrated
approach, the problems come first and mathemat-
ics to deal with them is sought and developed
subsequently. The most advanced approach, the
interdisciplinary-integrated approach, operates
with a full integration between mathematics and
extra-mathematical activities where mathematics
is not organized as separate subject.
At the beginning of the twenty-first century,
Kaiser and Sriraman (2006) pointed out in their
classification of the historical and more recent
debate on mathematical modelling in school that
several perspectives on mathematical modelling
have been developed within the international dis-
cussion on mathematics education, partly new and
different from the historical ones. Despite several
commonalities, these strands of the discussion
framed modelling and its pedagogical potential
in different ways. In order to enhance the under-
standing of these different perspectives on model-
ling, Kaiser and Sriraman (2006) proposed a
framework for the description of the various
approaches, which classifies these conceptions
according to the aims pursued with mathematical
modelling, their epistemological background, and
their relation to the initial perspectives.

The following perspectives were described,
which continue positions already emphasized at
the beginning of the modelling debate:

• Realistic or applied modelling fostering
pragmatic-utilitarian goals and continuing tra-
ditions of the early pragmatically oriented
approaches

• Epistemological or theoretical modelling plac-
ing theory-oriented goals into the foreground
and being in the tradition of the scientific-
humanistic approach

• Educational modelling emphasizing pedagog-
ical and subject-related goals, which are inte-
grating aspects of the realistic/applied and the
epistemological/theoretical approaches taking
up aspects of a so-called integrated approach
being developed at the beginning of the
nineties of the last century mainly within the
German discussion

In addition the following new approaches have
been developed:

• Model eliciting and contextual approaches,
which emphasize problem-solving and psy-
chological goals

• Socio-critical and sociocultural modelling fos-
tering the goal of critical understanding of the
surrounding world connected with the
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recognition of the sociol-cultural dependency
of the modelling activities

As kind of a meta-perspective, the following
perspective is distinguished, which has been
developed in the last decade reflecting demands
on more detailed analysis of the students’ model-
ling process and their cognitive and affective
barriers.

• Cognitive modelling putting the analysis of
students’modelling process and the promotion
of mathematical thinking processes in the
foreground

This classification points on the one hand to a
continuity of the tradition on the teaching and
learning of mathematical modelling; there still
exist many commonalities between the historical
approach already developed amongst others by
Felix Klein and the new approaches. On the
other hand, it becomes clear that new perspectives
on modelling have been developed over the last
decades emphasizing new aspects such as meta-
cognition, the inclusion of socio-critical or socio-
cultural issues, a more process-oriented view on
modelling, and the modelling cycle.
The Modelling Process as Key Feature of
Modelling Activities

A key characteristic of these various perspectives
is the way how the mathematical modelling pro-
cess is understood, how the relation between
mathematics and the “rest of the world” (Pollak
1968) is described. Analyses show that the model-
ling processes are differently used by the various
perspectives and streams within the modelling
debate, already since the beginning of the discus-
sion. The perspectives described above developed
different notions of the modelling process either
emphasizing the solution of the original problem,
as it is done by the realistic or applied modelling
perspective, or the development of mathematical
theory as it is done by the epistemological or
theoretical approach. So, corresponding to the
different perspectives on mathematical modelling,
there exist various modelling cycles with specific
emphasis, for example, designed primarily for
mathematical purposes, research activities, or
usage in classrooms (for an overview, see
Borromeo Ferri 2006).

Although at the beginning of the modelling
debate, a description of the modelling process as
linear succession of the modelling activities was
common or the differentiation between mathemat-
ics and the real world was seen more statically
(e.g., by Burkhardt 1981), nowadays, despite
some discrepancies, one common and widespread
understanding of modelling processes has been
developed. In nearly all approaches, the idealized
process of mathematical modelling is described as
a cyclic process to solve real problems by using
mathematics, illustrated as a cycle comprising
different steps or phases.

Themodelling cycle developed by Blum (1996)
and Kaiser-Meßmer (1986) is based amongst
others on work by Pollak (1968, 1969) and serves
as exemplary visualization of many similar
approaches. This description contains the charac-
teristics, which nowadays can be found in various
modelling cycles: The given real-world problem is
simplified in order to build a real model of the
situation, amongst other many assumptions have
to be made, and central influencing factors have to
be detected. To create a mathematical model, the
real-world model has to be translated into mathe-
matics. However, the distinction between a real-
world and a mathematical model is not always well
defined, because the process of developing a real-
world model and a mathematical model is interwo-
ven, amongst others because the developed real-
world model is related to the mathematical knowl-
edge of the modeller. Inside the mathematical
model, mathematical results are worked out by
using mathematics. After interpreting the mathe-
matical results, the real results have to be validated
as well as the whole modelling process itself. There
may be single parts or the whole process to go
through again (Fig. 1).

The shown cycle idealizes the modelling pro-
cess. In reality, several mini-modelling cycles
occur that are worked out either in linear sequen-
tial steps like the cycle or in a less ordered way.
Most modelling processes include frequent
switching between the different steps of the
modelling cycles.
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Other descriptions of the modelling cycle com-
ing from applied mathematics, such as the one by
Haines et al. (2000), emphasize the necessity to
report the results of the process and include more
explicitly the refinement of the model (Fig. 2).

Perspectives putting cognitive analyses in the
foreground include an additional stage within the
modelling process, the understanding of the situ-
ation by the students. The students develop a
situation model, which is then translated into the
real model; Blum in more recent work (e.g., 2011)
and others (e.g., Leiß, Borromeo Ferri) have
described modelling activities in such a way
(Fig. 3).
Detailed Description of One Modelling
Cycle Based on the Lighthouse Example

The problem how far a ship is away from a
lighthouse, when the crew sees the fire of the
lighthouse the first time, is a well-known sea
navigation problem with high relevance in for-
mer times, before most ships were equipped
with GPS. This problem is proposed by pro-
tagonists of the educational modelling perspec-
tive for the teaching of mathematical modelling
in school – especially Blum and Leiß – due to
its mathematical richness and its easy accessi-
bility and is adapted in the following to a local
situation, namely, a lighthouse at the Northsea
in Germany.
Westerhever Lighthouse

The Westerhever lighthouse was built in 1906 at
the German coast of the Northsea and is 41 m
high. The lighthouse should in former times
inform ships, which were approaching the coast,
about their position against the coastline. How far
off the coast is a ship when the crew is able to see
the light fire for the very first time over the hori-
zon? (Round off whole kilometers) (Fig. 4).
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Development of a Real-World Model

The students have to develop a real-world model
based on different assumptions, i.e., they have to
simplify the situation and idealize and structure it,
taking into account the curvature of the earth as
key influential factor.
Development of a Mathematical Model

The first step can comprise the translation of the
real-world model into a two-dimensional mathe-
matical model describing the earth as a circle and
then using the Pythagorean Theorem to calculate
the required distance from the ship to the light-
house. Another attempt refers to the definition of
the cosine, which can be used instead of the The-
orem of Pythagoras.

An extension of this simple model takes into
account that the observer who sees the lighthouse
at first is not at the height of the waterline, but a few
meters higher, e.g., in a look-out. A possible
approach uses the Pythagorean Theorem twice,
firstly with the right-angled triangle from the
geocenter to the top of the lighthouse to the boundary
point, where the line of sight meets the sea surface.
Interpretation and Validation

Afterwards the results need to be interpreted and
validated using knowledge from other sources.
The results need to be transferred back to reality
and need to be questioned.
Further Explorations and Extensions

The example of the lighthouse allows many inter-
esting explorations, for example, the reflection on
the reverse question, how far away is the horizon?
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That well-known problem is similar to the
problem of the lighthouse, and its solution is
mathematically equivalent to the first elementary
model. However, from a cognitive point of view,
the real-world model is much more difficult to
develop, because the curvature and its central
role are psychologically difficult to grasp.

The example above is a typical modelling
example showing that there exists a rich variety
of modelling examples ranging from small text-
book examples to complex, authentic modelling
activities. Many extracurricular materials have
been developed in the last decades amongst others
by COMAP or the Istron Group; many examples
are nowadays included in textbooks for school
teaching.
M

Modelling Competencies and Their
Promotion

A central goal of mathematical modelling is the
promotion of modelling competencies, i.e., the
ability and the volition to work out real-world
problems with mathematical means (cf. Maaß
2006). The definition of modelling competencies
corresponds with the different perspectives of
mathematical modelling and is influenced by the
taken perspective. A distinction is made between
global modelling competencies and sub-
competencies of mathematical modelling. Global
modelling competencies refer to necessary abili-
ties to perform the whole modelling process and to
reflect on it. The sub-competencies of mathemat-
ical modelling refer to the modelling cycle; they
include the different competencies that are essen-
tial for performing the single steps of the model-
ling cycle (Kaiser 2007). Based on the
comprehensive studies by Maaß (2006) and Kai-
ser (2007), extensive work by Haines et al. (2000),
and further studies and by referring to the various
types of the modelling cycle as described above,
the following sub-competencies of modelling
competency can be distinguished (Kaiser 2007,
p. 111):

• Competency to solve at least partly a real world
problem through a mathematical description
(that is, a model) developed by oneself;
• Competency to reflect about the modelling
process by activating meta-knowledge about
modelling processes;

• Insight into the connections between mathe-
matics and reality;

• Insight into the perception of mathematics as
process and not merely as product;

• Insight into the subjectivity of mathematical
modelling, that is, the dependence of model-
ling processes on the aims and the available
mathematical tools and students competencies;

• Social competencies such as the ability to work
in groups and to communicate about and via
mathematics.

This list is far from being complete since more
extensive empirical studies are needed to receive
well-founded knowledge about modelling
competencies.

Obviously the sub-competencies are an essen-
tial part of the modelling competencies. In addi-
tion metacognitive competencies play a
significant role within the modelling process
(Maaß 2006; Stillman 2011). Missing meta-
cognitive competencies may lead to problems
during the modelling process, for example, at the
transitions between the single steps of the model-
ling cycle or in situations where cognitive barriers
appear (cf. Stillman 2011).

In the discussion on the teaching and learning
of mathematical modelling, two different
approaches of fostering mathematical modelling
competencies can be distinguished: the holistic
and the atomistic approach (Blomhøj and Jensen
2003). The holistic approach assumes that the
development of modelling competencies should
be fostered by performing complete processes of
mathematical modelling, whereby the complexity
and difficulty of the problems should be matched
to the competencies of the learners. The atomistic
approach, however, assumes that the implementa-
tion of complete modelling problems, especially
at the beginning, would be too time-consuming
and not sufficiently effective at fostering the indi-
vidual modelling competencies. It is nowadays
consensus that both approaches need to be inte-
grated, although no secure empirical evaluation
on the efficiency of both approaches or an inte-
grated one has been carried out so far.
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Obviously these two different approaches
necessitate different ways of organizing the inclu-
sion of modelling examples in schools: The atom-
istic approach seems to be more suitable for a
“mixing approach,” i.e., “in the teaching of math-
ematics, elements of applications and modelling
are invoked to assist the introduction of mathe-
matical concepts etc. Conversely, newly devel-
oped mathematical concepts, methods and
results are activated towards applicational and
modelling situations whenever possible” (Blum
and Niss 1991, p. 61). The holistic approach can
either be realized in a “separation approach,” i.e.,
instead “of including modelling and applications
work in the ordinary mathematics courses, such
activities are cultivated in separate courses spe-
cially devoted to them” (Blum and Niss 1991,
p. 60). Of course variations of these approaches.
Like the “two-compartment approach” or the
“islands approach” described by Blum and Niss
(1991) seem to be possible as well.
Results of Empirical Studies on the
Implementation of Mathematical
Modelling in School

Several empirical studies have shown that each
step in the modelling process is a potential cogni-
tive barrier for students (see, e.g., Blum 2011, as
overview). Stillman et al. (2010) describe in their
studies these potential “blockages” or “red flag
situations,” in which there is either no progress
made by the students, errors occur and are han-
dled, or anomalous results occur. Stillman (2011)
in her overview on the cognitively oriented debate
on modelling emphasizes the importance of
reflective metacognitive activity during mathe-
matical modelling activities especially within
transitions between phases in the modelling pro-
cess. She identifies productive metacognitive acts
promoting students’ metacognitive competences
at various levels and distinguishes routine meta-
cognition responding to blockages or red flag
situations from meta-metacognition being
brought in by teachers trying to promote students’
development of independent modelling compe-
tencies leading to reflective metacognition.
So far the role of the teacher within model-
ling activities has not been researched suffi-
ciently: Until now not enough secure
empirical evidence exists, how teachers can
support students in independent modelling
activities, how can they support them in over-
coming cognitive blockages, and how can they
foster metacognitive competencies. It is consen-
sus that modelling activities need to be carried
out in a permanent balance between minimal
teacher guidance and maximal students’ inde-
pendence, following well-known pedagogical
principles such as the principal of minimal
help. Research calls for individual, adaptive,
independence-preserving teacher interventions
within modelling activities (Blum 2011),
which relates modelling activities to the
approach of scaffolding. Scaffolding can be
according to well-known definitions described
as a metaphor for tailored and temporary sup-
port that teachers offer students to help them
solve a task that they would otherwise not be
able to perform. Although scaffolding has been
studied extensively in the last decades, it was
found to be rare in classroom practice. Espe-
cially for modelling processes, which comprise
complex cognitive activities, scaffolding seems
to be especially necessary and appropriate. But
scaffolding has to be based on a diagnosis of
students’ understanding of the learning content,
which most teachers did not ascertain; in con-
trast most teachers provided immediate support
or even favoured their own solution.

In the future, learning environments for model-
ling need to be established, which support inde-
pendent modelling activities, for example, by
sense-making using meaningful tasks, model-
eliciting activities based on challenging tasks, or
the usage of authentic tasks.
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Definition

Argumentation, reasoning, and proof are concepts
with ill-defined boundaries. More precisely, they
are words that different people use in different
ways. What one can perhaps say is that reasoning
is the concept with the widest compass. Logic is
usually taken to mean a more structured form of
reasoning, with its own subset, formal logic,
which is logic in its most rigidly structured form.
Though people most closely associate logic with
mathematics, all forms of reasoning have had, and
continue to have, valuable roles in mathematical
practice. For that reason and, perhaps even more
important, because of their usefulness in teaching,
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the many forms of reasoning have also found their
place in the mathematics curriculum.
Characteristics

This entry will explore in more detail the concepts
of argumentation, reasoning, and proof as under-
stood by mathematicians and educators and pre-
sent some of their implications for mathematics
education. It will go on to describe some more
recent thinking in mathematics education and in
the field of mathematics itself.
Mathematical Proof

Mathematics curricula worldwide aim at teaching
students to understand and produce proofs, both to
reflect proof’s central position in mathematics and
to reap its many educational benefits. Most docu-
ments addressed to teachers, such as that by the
National Council of Teachers of Mathematics
(NCTM 2000), give the following reasons for
teaching proof: (1) to establish certainty; (2) to
gain understanding; (3) to communicate ideas;
(4) to meet an intellectual challenge; (5) to create
something elegant, surprising, or insightful; and
(6) to construct a larger mathematical theory.

This list encompasses not only justification but
also considerations of understanding, insight, and
aesthetics and in so doing further reflects mathe-
matics itself. These additional considerations are
important not only in the classroom but in math-
ematical practice as well: for mathematicians, too,
a proof is much more than a sequence of logical
steps that justifies an assertion.

Proof also plays other significant roles in math-
ematical practice. Proof can serve to present new
methods and demonstrate their value, to inspire
new hypotheses, and to show connections
between different parts of mathematics. For prac-
ticing mathematicians, these too are valuable
aspects of proof; yet the mathematics curricula,
by and large, have failed to explore their educa-
tional potential.

Proof pervades all mathematical work. Unless
it is considered an axiom, a mathematical
assertion without a proof must remain a conjec-
ture. To justify an assertion is the role of a proof.
In the purest sense, a mathematical proof is a
logical derivation of a given statement from
axioms through an explicit chain of inferences
obeying accepted rules of deduction. A “formal
proof” will employ formal notation, syntax, and
rules of inference (“axiomatic method”). Thus,
strictly formal derivations will consist of unam-
biguous strings of symbols and conform to a
mechanical procedure that will permit the correct-
ness of the proof to be checked. Such proofs are
considered highly reliable.

However, proofs in mathematical journals
rarely conform to this pattern. As Rav (1999)
pointed out, mathematicians express “ordinary”
proofs in a mixture of natural and formal lan-
guage, employing passages of explicit formal
deductions only where appropriate. They bridge
between these passages of formal deduction using
passages of informal language in which they pro-
vide only the direction of the proof, by making
reference to accepted chains of deduction. Conse-
quently, most mathematicians would characterize
ordinary proofs as informal arguments or “proof
sketches.”

Nevertheless, these ordinary informal proofs
do provide a very high level of reliability, because
the bridges are “derivation indicators” that are
easily recognized by other mathematicians and
provide enough detail to allow easy detection
and repair of errors (Azzouni 2004). In this way,
the social process by which such proofs are scru-
tinized and ultimately accepted improves their
validity. In fact, most accepted mathematical pro-
ofs consist of valid arguments that may not lend
themselves to easy formalization (Hanna 2000;
Manin 1998; Thurston 1994).

To reflect mathematical practice, then, a math-
ematics curriculum has to present both formal and
informal modes of proof. If they wish to teach
students how to follow and evaluate a mathemat-
ical argument, make and test a conjecture, and
develop and justify their own mathematical argu-
ments and proofs, educators have to provide the
students with the entire gamut of mathematical
tools, including both the formal and informal
ones. Without this important double approach,
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students will lack the body of mathematical
knowledge that enables practicing mathemati-
cians to communicate effectively by using “deri-
vation indicators” and other mathematical
shorthand (cf. Hanna and de Villiers 2012).
M

Reasoning and Proof

Most mathematics curricula recognize that rea-
soning and proof are fundamental aspects of
mathematics. In fact, much of the literature on
mathematics teaching refers to them as one entity
called “reasoning and proof.”

We may take reasoning, in the broadest sense,
to mean the common human ability to make infer-
ences, deductive or otherwise. As Fischbein
(1999) noted, everyday reasoning may differ
from explicit mathematical reasoning in both pro-
cess and result. In everyday reasoning, for exam-
ple, we may even accept a statement without any
type of proof at all, because we judge it to be self-
evident or intuitively plausible, or at least more
plausible than its contradiction. However, in many
realms, including mathematics, such everyday
reasoning provides little help (e.g., it is not intui-
tively clear that the sum of the angles in any
triangle is always 180�). In all such cases we
would need defined rules of reasoning in order to
reach a valid conclusion. We would need to con-
struct a correct chain of inference – that is, to
construct a proof.

Thus, all mathematics educators aim to teach
students the rules of reasoning. In the Western
tradition, the rules of reasoning are derived from
classical mathematics and philosophy and
include, for example, the syllogism and such ele-
mentary rules as modus ponens, modus tollens,
and reductio ad absurdum. Students typically first
encounter these basic concepts of logic in the
axiomatic proofs of Euclidean geometry.

Here the teacher’s role is crucial. In addition
to concepts specific to the mathematical topic,
the teacher must make the students familiar
with rules of reasoning, patterns of argumenta-
tion, and appropriate terms (e.g., assumption,
conjecture, example, refutation, theorem, and
axiom). How students actually learn these
concepts is unfortunately a question of cogni-
tion that educators have yet to resolve, though
researchers investigating this issue have pro-
posed a number of promising models of
cognition. One such model, the “cognitive
development of proof,” combines three worlds
of mathematics: the conceptual/embodied, the
proceptual/symbolic, and the axiomatic/formal
(cf. Tall et al., chapter 2 in Hanna and de
Villiers 2012). Another, based on extensive
observations of college-level students learning
mathematics, uses a psychological framework
of “proof schemes” (Harel and Sowder 1998).
Yet another (Balacheff 2010) aims at analyzing
the learning of proof by considering how three
“dimensions” – the subject, the milieu, and the
problem – can be used to build a bridge
between knowing and proving. Duval (2007)
model stresses that the cognitive processes
needed to understand and devise a proof
depend on students’ learning “how proof really
works” (learning its syntactic and deductive
elements) and “how to be convinced by
proof.” Stylianides (2008) proposes that the
processes of reasoning and proving encompass
three “components” – mathematical, psycho-
logical, and pedagogical – while Reid and
Knipping (2010) discuss still other variations.
Argumentation and Proof

Many researchers in mathematics education have
chosen to use the term “argumentation,” which
encompasses the various approaches to logical
disputation, such as heuristics, plausible, and dia-
grammatic reasoning, and other arguments of
widely differing degrees of formality (e.g., induc-
tive, probabilistic, visual, intuitive, and empiri-
cal). Essentially, argumentation includes any
technique that aims at persuading others that
one’s reasoning is right. As used by its propo-
nents, the concept also implies exchange and
cooperation in forming and criticizing arguments
so as to arrive at the best conclusion despite
imperfect knowledge. Evidently, the broad con-
cept of argumentation encompasses mathematical
proof as a special case.
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In recent years, however, mathematics educa-
tors have been accustomed to use “argumenta-
tion” to mean “not yet proof” and “proof” to
mean “mathematical proof.” Consequently, opin-
ion remains divided on the usefulness of encour-
aging students to engage in “argumentation” as a
step in learning proof. Boero (in La lettre de la
preuve 1999) and others see a great benefit in
having students engage in conjecturing and argu-
mentation as they develop an understanding of
mathematical proof. Others take a quite different
view, claiming that argumentation, because it
aims only to establish plausibility, can never be
more than a distraction from the task of teaching
proof (e.g., Balacheff 1999; Duval – in La lettre de
la preuve 1999). Despite these differences of opin-
ion, however, the practice of teaching students the
techniques of argumentation has recently been
gaining ground in the classroom.

Durand-Guerrier et al. (Chapter 15 in Hanna
and de Villiers 2012) reported on over 100 recent
studies on argumentation in mathematics educa-
tion that discuss the complex relationships
between argumentation and proof from various
mathematical and educational perspectives. Most
of these studies reported that students can benefit
from argumentation’s openness of exploration
and flexible validation rules as a prelude to the
stricter uses of rules and symbols essential in
constructing a mathematical proof. They also
showed that appropriate learning environments
can facilitate both argumentation and proof in
mathematics classes.

Furthermore, some studies provided evidence
that students who initially embarked upon heuris-
tic argumentation in the classroom were neverthe-
less capable of going on to construct a valid
mathematical proof. By way of explanation,
Garuti et al. (1996) introduced the notion of “cog-
nitive unity,” referring to the potential continuity
between producing a conjecture through argu-
mentation and constructing its proof. Several
other researchers have provided support for this
idea and for other benefits or limitations of argu-
mentation, particularly argumentation based on
Toulmin’s (1958) model of argument.

Toulmin’s model, the one nowmost commonly
used in mathematics education, proposes that an
argument is best seen as comprising six elements:
the Claim (C), which is the statement to be proved
as a theorem or the conclusion of the argument;
the Data (D), the premises; the Warrant (W) or
justification, which is the connection between the
Claim and the Data; the Backing (B), which gives
authority to the Warrant; the Qualifier (Q), which
indicates the strength of theWarrant by terms such
as “necessarily,” “presumably,” “most,” “usu-
ally,” “always,” and so on; and the Rebuttal (R),
which specifies conditions that preclude the Claim
(e.g., if the Warrant is not convincing).

Clearly, Toulmin’s model reflects practical and
plausible reasoning. It includes several types of
inferences, admits of both inductive and deductive
reasoning, and makes explicit both the premises
and the conclusion, as well as the support that led
from premises to conclusion. It is particularly
relevant to mathematical proof in that it can
include formal derivations of theorems by logical
inference.
Practical Classroom Approaches

In addition to argumentation, a number of other
approaches have been investigated for their
value in teaching mathematical reasoning. Edu-
cators have debated, for example, whether the
study of symbolic logic, more particularly the
propositional calculus, would help students
understand and produce proofs. Durand-
Guerrier et al. (Chapter 16 in Hanna and de
Villiers 2012) have examined this question and
provide some evidence for the value of integrat-
ing techniques of symbolic logic into the teach-
ing of proof.

Visualization, and diagrammatic reasoning in
particular, is another technique whose value in
teaching mathematics, and especially proof, has
been discussed extensively in the literature and
in conferences, albeit inconclusively. After
examining numerous research findings, Dreyfus
et al. (Chapter 8 in Hanna and de Villiers 2012)
concluded that the issue required further
research; in fact, both philosophers of mathemat-
ics and mathematics educators are still debating
the contribution of visualization to the
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production of proofs. Current computing tech-
nologies have offered mathematicians an array
of powerful tools for experiments, explorations,
and visual displays that can enhance mathemat-
ical reasoning and limit mathematical error.
These techniques have classroom potential as
well. Borwein (Chapter 4 in Hanna and de
Villiers 2012) sees several roles for computer-
assisted exploration, many of them related to
proof: graphing to expose mathematical facts,
rigorously testing (and especially falsifying)
conjectures, exploring a possible result to see
whether it merits formal proof, and suggesting
approaches to formal proof. Considerable
research has demonstrated that the judicious
use of dynamic geometry software can foster an
understanding of proof at the school level
(de Villiers 2003; Jones et al. 2000).

Physical artifacts (such as abaci, rulers, and
other ancient and modern tools) provide another
technique for facilitating the teaching of proof.
Arzarello et al. (Chapter 5 in Hanna and de
Villiers 2012) demonstrate how using such
material aids can help students make the transi-
tion from exploring to proving. In particular,
they show that students who use the artifacts
improve their ability to understand mathematical
concepts, engage in productive explorations,
make conjectures, and come up with successful
proofs.
Trends in Proof

In mathematical practice, as we have seen, ordi-
nary informal proofs are considered appropriate
and suitable for publication. Still, mathematicians
would like to have access to a higher level of
certainty than those informal proofs afford. For
this reason, contemporary mathematical practice
is trending toward the production of proofs much
more rigorous and formal than those of a century
ago (Wiedijk 2008). In practice, however, one
cannot write out in full any formal proof that is
not trivial, because it encompasses far too many
logical inferences and calculations.

The last 20 years have seen the advent of
several computer programs known as “automatic
proof checkers” or “proof assistants.” Because
computers are better than humans at checking
conformance to formal rules and making massive
calculations, these new programs can check the
correctness of a proof to a level no human can
match. According to Wiedijk (2008), such pro-
grams have been successful in confirming the
validity of several well-known theorems, such as
the Fundamental Theorem of Algebra (2000) and
the Prime Number Theorem (2008).

Mathematics educators and students have
already benefitted greatly from educational soft-
ware packages in areas other than proof, such as
Dynamic Geometric Software (DGS) and Com-
puter Algebra Systems (CAS), and researchers are
working on advanced proof software specifically
for mathematics education. For example, there is
now a fully functional version of Theorem-Prover
System (TPS) appropriate for the school and
undergraduate levels, named eduTPS (Maric and
Neuper 2011). The role of Artificial Intelligence in
mathematics education, and in particular that of
automated proof assistants, has already been the
subject of several doctoral dissertations. Unfortu-
nately, mathematics educators have not yet tested
the proof software or tried it in the classroom, so
its usefulness for teaching mathematics has not
yet been firmly established.
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Definitions

As most commonly interpreted in education,
mathematical representations are visible or tangi-
ble productions – such as diagrams, number lines,
graphs, arrangements of concrete objects or
manipulatives, physical models, written words,
mathematical expressions, formulas and equa-
tions, or depictions on the screen of a computer
or calculator – that encode, stand for, or embody
mathematical ideas or relationships. Such a pro-
duction is sometimes called an inscription when
the intent is to focus on a specific instance without
referring, even tacitly, to any interpretation of
it. To call something a representation thus
includes reference to some meaning or significa-
tion it is taken to have. Such representations are
called external – i.e., they are external to the
individual who produced them and accessible to
others for observation, discussion, interpretation,
and/or manipulation. Spoken language, interjec-
tions, gestures, facial expressions, movements,
and postures may sometimes function as external
representations carrying mathematical meaning.

The term representation is also used very
importantly to refer to a person’s mental,
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cognitive, or brain constructs, concepts, or config-
urations. Then the mathematical representation is
called internal to the individual. Examples
include individuals’ visual and/or spatial cogni-
tive representation of geometrical objects or math-
ematical patterns, operations, or situations; their
kinesthetic encoding of operations, shapes, and
motions; their internal conceptual models of
mathematical ideas; the language that they use
internally to describe mathematical situations;
their heuristic plans and strategies for problem
solving; and their affective andmotivational states
in relation to mathematical problems and situa-
tions. The idea of external representation is
expressible in German as Darstellung and that of
internal representation as Vorstellung.

Representation also refers to the act or process
of inventing or producing representations – so that
“mathematical representation” is something that
students and others do. Reference may be to the
physical production of external representations as
well as to the cognitive, mental, or neurological
processes involved in constructing internal or
external representations. The term also describes
the semiotic relation between external produc-
tions and the internal mathematical ideas they
are said to represent. Finally, it may refer specif-
ically to the mathematical encoding of non-
mathematical patterns – i.e., using the ideas and
notations of mathematics as a language to repre-
sent concepts in physics, chemistry, biology, and
economics, to describe quantitatively the laws that
govern phenomena, to make predictions, and to
solve problems.
Characteristics

Representations are considered to be mathemati-
cally conventional, or standard, when they are
based on assumptions and conventions shared by
the wider mathematical community. Examples of
such conventional mathematical representations
include configurations of base ten numerals,
abaci, number lines, Cartesian graphs, and alge-
braic equations written using standard notation. In
contrast, mathematical representations created on
specific occasions by students are frequently idi-
osyncratic. Examples may include verbal utter-
ances, pictures, diagrams, illustrative gestures,
physical movements, and original or nonstandard
notations invented by the individual.

Even when they are unconventional, mathe-
matical representations can be shared and not
simply personal. That is, the forms and meanings
of representations may be negotiated during class
discussions or group problem solving. Concrete
structured manipulative materials such as
geoboards, Cuisenaire rods, base ten blocks, peg-
boards, and attribute blocks, as well as calculators,
graphing calculators, and a wide variety of com-
puter environments, facilitate students’ construc-
tion, discussion, interpretation, and sharing of
many different kinds of external representations –
both standard and idiosyncratic. Likewise, inter-
nal mathematical representations, depending on
their degree of consistency with the internal rep-
resentations of others, can be characterized as
conventional or idiosyncratic, shared or personal.

In discussion, one often refers to a mathematical
representation “in the abstract.” For instance, to
talk about “examining the graph of the equation
y = 3x � 2” is to suggest (among other things) a
kind of idealized or generic external representation
in which a straight line has been drawn intersecting
the horizontal x-axis at the point x = 2/3 and the
vertical y-axis at the point y = �2. This stands in
contrast to discussing a specific instance of the
graph as it might occur in a textbook illustration
(with particular scales, ranges of values, and so
forth), in a blackboard drawing (perhaps quite
imperfect), or on a graphing calculator. Internal
representations are also frequently considered “in
the abstract,” as one refers, for example, to ideal-
ized mathematical ideas, concept images, or visu-
alized symbol configurations.

An essential feature of most mathematical rep-
resentations is that they not only have significa-
tion, but they belong to or are situated within
structured systems of representation within
which other configurations have similar signify-
ing relationships. This is analogous to the way
words and sentences occur, not as discrete entities
in isolation from each other but within natural
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languages endowed with grammar, syntax, and
networks of semantic relationships. Furthermore,
representational systems (like languages) evolve.
And previously developed systems of mathemat-
ical representation serve (up to a point) as “scaf-
folds” or “templates” for the development of new
systems: relationships between configurations in
the new system refer to their meanings in the prior
system, but may be more general and more
abstract.

For example, algebra as a representational sys-
tem entails the interpretation of letters as variables
that can assume numerical values. But it also
involves algebraic expressions, operational sym-
bols, and equality and inequality symbols, config-
ured according to fairly precise syntactic rules, as
well as processes for manipulating and trans-
forming them. Up to a point, the prior arithmetic
system of representation serves as a kind of tem-
plate for the development of algebraic notation.
The system evolved historically, and it evolves
within learners in interaction with their external
environments. As mathematics is learned, the
structured nature of the mathematical representa-
tions creates a certain tension between a student’s
interpretation of meanings, acquisition of proce-
dures, and eventual apprehension of underlying
structures (e.g., Gravemeijer et al. 2010).

Characteristics of conventional structured
mathematical representational systems can often
be described in considerable detail. A written or
printed numeral may represent a natural number,
but it does so within our base ten Hindu-Arabic
system of notation, a representational system of
numeration involving the conventional signs {0,
1, 2, 3, 4, 5, 6, 7, 8, 9}, rules for writing multidigit
numerals, and conventions for interpreting “place
value.” A specific Cartesian graph of an equation
in two variables occurs within the wider conven-
tional system of graphical representation based on
two orthogonal coordinate axes in the plane, a
method of locating points in the plane
corresponding to ordered pairs of coordinates,
the use of certain letters to signify variables that
can take on numerical values, and conventions
involving positive and negative directions.
The precision of such characterizations is, of
course, a prized feature of mathematics. Further-
more, an important aspect of the power of
abstract mathematics is that mathematical con-
structs map to other constructs (i.e., can be
represented) in ways that respect or preserve
the mathematical structure. When the structure
thus respected is algebraic, such maps are called
homomorphisms or isomorphisms. When the
structure is topological, it is called a homeomor-
phism. For example, in mathematics a group
representation is a precisely defined notion: a
homomorphism from a given, abstract mathe-
matical group to a group of linear operators act-
ing on a vector space.

However, the mathematical representations
that occur in educational contexts, even when
conventional, are extremely varied. They are
most often incomplete and almost always highly
ambiguous. Indeed, ambiguity and context-
dependence are characteristic features of the inter-
pretation of mathematical representations and sys-
tems of representation. Resolution of ambiguity in
the process of interpreting a representation often
entails making use of contextual and/or tacit infor-
mation that is outside the representational system
within which the ambiguity has occurred.

Mathematical representations and systems of
representation are frequently characterized
according to the nature of the representing
configurations – e.g., internal or external;
enactive, iconic, or symbolic; verbal, visual, spa-
tial, auditory, or kinesthetic; concrete or abstract/
symbolic; and static or dynamic. They may also
be characterized according to the medium in
which they are encoded – e.g., pencil and paper,
chalkboard or smartboard, and tablet- or
computer-based. Mathematical metaphors are
representations that typically involve words or
phrases, visual imagery, and some enactive or
kinesthetic encoding of mathematical ideas. Dif-
ferent representational systems may be linked; and
(with today’s interactive communications tech-
nology) external, dynamic systems of representa-
tion may be multiply linked for purposes of
mathematics teaching.
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Research

Contrasting philosophical views that have greatly
influenced mathematics education sometimes
exclude or limit the study of representations as
such within their respective paradigms. Behavior-
ism was based on the idea that mental states of any
kind are inadmissible as explanations of observ-
able learning or problem solving. External pro-
ductions or configurations and their manipulation
could be discussed, but could not be regarded as
representing internal mathematical conceptualiza-
tions or as being represented by them. External
configurations might only have observable rela-
tionships with other external ones. In contrast,
radical constructivism was based on the tenet
that individuals have access only to their own
worlds of experience and none to the “real
world.” With exclusive emphasis placed on
“experiential reality,” internal configurations
could only be understood to “re-present” other
internal mathematical experiences in different
ways. Still other viewpoints are based on the
idea that the external-internal distinction itself
entails a Cartesian mind-body dualism that is not
tenable.

Nevertheless, research on representations and
systems of representation in mathematics educa-
tion has been ongoing for well over half a century
and continues apace. Jerome Bruner, whose think-
ing contributed to some of the visionary ideas
proposed by advocates of the “new mathematics”
during the 1960s, characterized and discussed
three kinds of representation by learners –
enactive, iconic, and symbolic – seen as predom-
inant during successive stages in a child’s learning
a concept (Bruner 1966). Semiotic and cognitive
science approaches to mathematics education
incorporated mathematical representation in its
various interpretations. Artificial intelligence
models for problem solving sought to simulate
human internal representations and heuristics
(e.g., Newell and Simon 1972; Palmer 1978;
Skemp 1982; Davis 1984).

During the 1980s and 1990s, continuing
research on representation by many (e.g., Janvier
1987; Goldin and Kaput 1996; Goldin and Janvier
1998) helped lay the groundwork for the inclusion
by the National Council of Teachers of Mathemat-
ics (NCTM) in the United States of “Representa-
tions” as one of the major strands in its Principles
and Standards for School Mathematics (NCTM
2000). The NCTM also devoted its 2001 Year-
book to the subject (Cuoco and Curcio 2001).

The NCTM’s standards included many of the
different meanings of mathematical representa-
tion described here:

“The term representation refers both to process and
to product – in other words, to the act of capturing a
mathematical concept or relationships in some form
and to the form itself. . . .Moreover, the term applies
to processes and products that are observable exter-
nally as well as those that occur ‘internally,’ in the
minds of people doing mathematics.” (NCTM
2000, p. 67)

The US Common Core State Standards in
Mathematics (CCSS-M), adopted with federal
incentives by a large majority of states between
2011 and the present, include “Standards for
Mathematical Practice.” The discussion refers to
the NCTM process standards, but accords repre-
sentation and other processes less explicit focus.
However, “Model withMathematics” appears as a
CCSS-M mathematical practice standard, and
specific mathematical representations such as
graphs occur in the CCSS-M content standards
at various grade levels (CCSS Initiative 2018).

Continuing research on mathematical repre-
sentation in education has included work on cog-
nition and affect, on the affordances for
mathematics learning offered by technology-
based dynamic representation and linked repre-
sentations, on mathematical representation in spe-
cial education, on sociocultural contexts and their
influences, on models for mathematical learning
and problem solving, on the role of representa-
tions in particular conceptual domains of mathe-
matics, and on the role of touch (haptic
representation) and gesture in children’s learning
of mathematics (e.g., Goldin 1998, 2008; Hitt
2002; Kaput et al. 2002; Lesh and Doerr 2003;
Duval 2006; Moreno-Armella et al. 2008;
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Anderson et al. 2009; Roth 2009; Gravemeijer
et al. 2010; Novack et al. 2014; van Garderen
et al. 2018).

The emerging field of cognitive neuroscience
research is potentially transformative for our
understanding of mathematics learning and for
mathematics education, as the brain encoding of
number, mathematical expressions, and their spa-
tial representation is explored. Current perspec-
tives bring to bear models based on parallel
distributed processing of information, as distinct
from the sequential processing (e.g., search and
subgoal decomposition algorithms) central to
Newell and Simon’s approach. Neural networks
and evolutionary models provide new ways to
simulate mathematical learning and problem solv-
ing and to describe internal representations (e.g.,
McClelland et al. 2016).

Teachers and researchers try to infer features of
students’ internal representations from the exter-
nal representations they produce or with which
they are presented. The representing relationship
is usually understood in research to be in principle
two-way, “bridging” the external and the internal.
In addition, distinct external representations can
represent each other (e.g., equations, graphs, and
tables of values) in a student’s thinking, and dis-
tinct internal representations can do likewise (e.g.,
as the student visualizes or imagines a function of
a real variable as a formula, a graph, a machine
generating outputs from inputs, or a set of ordered
pairs satisfying some conditions). However, in
any specific situation, one cannot simply assume
a close or one-to-one correspondence between
external and internal representations or between
distinct external or internal ones. Different
researchers have offered different perspectives
on what it is that representations actually represent
and the nature of the representing relationship.

Much research on mathematical representation
in education is devoted to the study of specific
conceptual domains such as number, fractions or
rational numbers, integers (positive and negative),
algebra, geometry and spatial concepts, functions
and graphs, and statistics. The goal is frequently to
study, in such a domain, how students generate
representations, interact and move within various
representations, translate between representa-
tions, or interpret one representation using
another. Researchers seek to characterize stu-
dents’ understandings in terms of multiple repre-
sentations, to infer students’ thinking from the
representations they produce and manipulate, to
identify the affordances and obstacles associated
with particular kinds of representation, and to
develop new representational teaching methods
using new media.

When representations are embodied in differ-
ent media, different features of a conceptual
domain of mathematics may become the most
salient. Thus, the mathematical meanings may be
regarded as distributed across various representa-
tional media in which they are encoded. With the
advent of increasingly diverse and sophisticated
technological environments, dynamic and linked
mathematical representations are becoming
increasingly important. These are built to respond
to learners’ actions, touches, or gestures according
to preestablished structures and may eventually
lead not only to novel teaching methods but to
quite new interpretations of what it means to
understand mathematics.

When a mathematical representation is first
introduced, it is typically assigned a definite
meaning or signification. For instance, a specific
number-word may correspond to the result of
counting fingers or objects; a positive whole num-
ber exponent may be defined as a conventional
abbreviation of repeated multiplication; or the
letter x may stand for an unknown number in a
problem. Sometimes the initial signification is
taken to be so fundamental that it poses a cogni-
tive or epistemological obstacle to reinterpretation
or later generalization. Certain misconceptions or
alternative conceptions can be understood in this
way. But as relationships develop, their meanings
evolve, transfer to new contexts, and eventually
may change profoundly. Such processes occur
across the history of mathematics, within particu-
lar cultures, and within individual learners. Char-
acterization of mathematical thinking and
learning as fundamentally representational con-
tinues to be an important theoretical and empirical
research perspective in mathematics education
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(e.g., Moreno-Armella et al. 2008; Anderson et al.
2009; Heinze et al. 2009; Moreno-Armella and
Sriraman 2010).
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Definition

Classroom assessment refers to the activities
undertaken by teachers in eliciting and
interpreting evidence of student learning and
using this evidence to inform subsequent action.

Classroom assessment can be distinguished
from external assessment, which often involves
standardized tests carried out on a large scale. The
most important difference between classroom
assessment and external assessment arises from
their different purposes. Wiliam (2007) summa-
rizes the main purposes of assessment as:

1. Certifying the achievement or level of perfor-
mance of individual students (summative)

2. Supporting students’ learning and informing
teachers’ instructional decisions (formative)

3. Evaluating the quality of educational programs
or institutions (evaluative)

Although teachers may design classroom
assessments for both summative and formative
purposes, it is more common to use this term to
refer to assessment that is intended to support
learning and teaching, in other words, formative
assessment (Van den Heuvel-Panhuizen and
Becker 2003; Wilson and Kenney 2003). On the
other hand, external assessment is most often used
for summative or evaluative purposes.
Background

Throughout the twentieth century, educational
assessment was increasingly associated with
externally administered tests that measure the per-
formance of students, as well as teachers, schools,
and whole school systems. This measurement
paradigm continues to influence classroom
assessment practices, despite the emergence of
new theories of learning and curriculum that
require new approaches to assessment. Shepard
(2000) argues that classroom assessment should
be epistemologically consistent with instruction,
and indeed this was the case for much of the
twentieth century when social efficiency models
of curriculum and associationist and behaviorist
theories of learning informed educational thinking
and practice. These psychological theories
assumed that learning is most efficient when
knowledge and skills are broken into small steps
and accumulated sequentially. Closely aligned
with such theories is the idea of scientific mea-
surement of skill mastery, which led to develop-
ment of the “objective” test as the dominant
method of assessing student achievement.

Time-restricted objective tests that require only
recall of previously learned facts and rehearsed
procedures are still a common form of mathemat-
ics classroom assessment in many countries.
However, this traditional approach to assessment
is out of alignment with the broadly social-
constructivist conceptual frameworks that shape
current understandings of learning and curricu-
lum. Learning mathematics is now viewed as a
process of constructing knowledge within a social
and cultural context, and deep understanding,
problem solving, and mathematical reasoning
have become valued curricular goals. As the
goals of mathematics education change, along
with understanding of how students learn
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mathematics, new approaches to classroom
assessment are called for that make students’
thinking visible while enhancing teachers’ assess-
ment abilities (Van den Heuvel-Panhuizen and
Becker 2003).
M

A Social-Constructivist Approach to
Classroom Assessment

Work on developing a social-constructivist
approach to mathematics classroom assessment
is less advanced than research on mathematics
learning, but key principles informing a new
approach to assessment are well established and
have been promulgated via research reports
(Shepard 2000; Wiliam 2007; Wilson and Kenney
2003), curriculum documents (National Council
of Teachers of Mathematics 1995, 2000), and
professional development resources (Clarke
1997). Three overarching principles that corre-
spond to each of the elements of the definition of
assessment provided above are shown in Table 1,
with particular reference to classroom assessment
in mathematics.
Mathematics Classroom Assessment,
Table 1 Classroom assessment principles

Definition of
classroom
assessment

Assessment
principle

Assessment
examples

Classroom
assessment
involves teachers
in . . . eliciting
evidence of
student learning

Assessment
should model
good
mathematical
practice

Tasks

Classroom
discussion
and
questioning

Classroom
assessment
involves teachers
in . . . interpreting
evidence of
student learning

Assessment
should promote
valid judgments
of the quality of
student learning

Alignment

Multiple
forms of
evidence

Explicit
criteria and
standards

Classroom
assessment
involves teachers
in . . . acting on
evidence of
student learning

Assessment
should enhance
mathematics
learning

Feedback

Self-
assessment
Eliciting Evidence of Student Learning

The principle of modeling good mathematical
practice in classroom assessment is consistent with
curriculum goals that value sophisticated mathemat-
ical thinking (abstraction, contextualization, making
connections between concepts and representa-
tions) and appropriate use of mathematical lan-
guage and tools.

Classroom assessment can provide insights
into students’ mathematical thinking through
tasks that have more than one correct answer or
more than one solution pathway, require applica-
tion of knowledge in familiar and unfamiliar
contexts, and invite multiple modes of communi-
cation and representation for demonstrating
understanding. Time-restricted tests are usually
unsuitable for revealing students’ thinking in
these ways. While investigative projects and
mathematical modeling tasks provide rich oppor-
tunities for students to demonstrate understanding
of significant mathematics, so too do more modest
tasks such as “good” questions (Sullivan and
Clarke 1991). Good questions are open-ended,
elicit a range of responses, and can reveal what a
student knows before and after studying a
topic. These questions can easily be adapted
from more conventional tasks that have only one
correct answer, as demonstrated in Table 2.

Assessment is something that teachers are
doing all the time, not only through tasks designed
for assessment purposes but also in classroom
discussion. In mathematics education, social-
constructivist research carried out by Cobb,
Mathematics Classroom Assessment,
Table 2 Converting conventional questions to “good”
questions

Conventional question
Open-ended “good”
question

Find the mean of these
three numbers: 12, 16, 26

The mean age of three
people is 18. What might
their ages be?

Find the area of a rectangle
with length 3 units and
width 4 units

Draw a triangle with an
area of 6 square units

Find the equation of the
line passing through the
points (2, 1) and (�1, 3)

Write the equations of at
least five lines passing
through the point (2, 1)
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Forman, Lampert, O’Connor, and Wood has
investigated the teacher’s role in initiating stu-
dents into mathematical discourse and practices
(Lampert and Cobb 2003; Forman 2003). From an
assessment perspective, a teacher purposefully
orchestrating classroom discussion is collecting
evidence of students’ understanding that can
inform subsequent instruction.
Interpreting Evidence of Student
Learning

Teachers do not have direct access to students’
thinking, and so assessment relies on interpreta-
tion of observable performance to enable judg-
ments to be made about the quality of students’
learning. Shepard (2000) notes that teachers are
often reluctant to trust qualitative judgments
because they believe that assessment needs to be
“objective”, requiring formula-based methods
that rely on numerical marks or scores. This is a
reductionist approach more consistent with the
scientific measurement paradigm of assessment
than the social-constructivist paradigm, where
the goal of assessment is to provide a valid por-
trayal of students’ learning (Clarke 1997).

The validity of teachers’ assessment judgments
can be strengthened by ensuring that assessment
practices are aligned with curriculum goals and
instruction. This means that the form and content
of mathematics classroom assessments should
reflect the ideas about good mathematical practice
envisioned in curriculum documents and (ideally)
enacted in classrooms. Assessment promotes
valid judgments when it draws on multiple forms
of evidence, as no single assessment tool can
reveal the full range of student learning.

Validity is also enhanced when teachers explic-
itly communicate to students the criteria and stan-
dards that will be used to judge the quality of their
performance (Wiliam 2007). Sadler’s (1989)
work on ways of specifying achievement stan-
dards has been influential in stimulating the devel-
opment of assessment rubrics that use verbal
descriptors to communicate the characteristics of
task performance that will be assessed (criteria)
and the benchmarks for describing the quality of
performance (standards). A well-constructed
rubric can make explicit the mathematical prac-
tices that teachers value, but students will not
necessarily understand the verbal descriptors in
the same way as the teacher. There is an opportu-
nity here for teachers to engage students in dis-
cussion about the meaning of the criteria and what
counts as good quality performance. Some
researchers suggest that teachers can involve stu-
dents in the development of rubrics in the process
of looking at samples of their own or other stu-
dents’ work (Clarke 1997; Wiliam 2007). In this
way, students can become familiar with notions of
quality and develop the metacognitive ability to
judge the quality of their own mathematical
performances.
Acting on Evidence of Student Learning

One of the most important ways in which assess-
ment can enhance mathematics learning is
through the provision of feedback that can be
used by students to close the gap between actual
and desired performance. The notion of feedback
had its origins in engineering and cybernetics, but
finds extensive application in education.
Ramaprasad’s (1983) definition of feedback
makes it clear that feedback is only formative if
the information provided to the student is used in
some way to improve performance. Reviews of
research on feedback have identified characteris-
tics of effective formative feedback in relation to
quantity, timeliness, and strategies for engaging
students in task-related activities that focus on
improvement (Bangert-Drowns et al. 1991).
However, Shepard (2000), arguing from a social-
constructivist perspective, points out that these
studies are mostly of little value because they are
informed by behaviorist assumptions about learn-
ing and assessment. Drawing on Vygotsky’s idea
of the zone of proximal development, she calls for
more research on dynamic assessment where the
teacher uses scaffolded feedback to guide students
through the solution process for a problem.

Involving students in self-assessment can
enhance metacognitive self-regulation and help
students become familiar with the criteria and
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standards that will be used to judge their perfor-
mance. Controlled experiments have shown that
structured self-assessment improves students’
mathematics performance, but classroom self-
assessment can also be used informally to gain
insights into how students experience mathemat-
ics lessons. The IMPACT (Interactive Monitoring
Program for Accessing Children’s Thinking) pro-
cedure described by Clarke (1997) is one such
approach. It invites students to write about impor-
tant things they have learned in mathematics in the
past month, problems they have found difficult,
what they would like more help with, and how
they feel in mathematics classes at the moment.
This is a self-assessment tool that makes assess-
ment a more open process and recognizes the
important role of student affect in mathematics
learning.
M

Issues in Classroom Assessment

A social-constructivist approach to classroom
assessment places significant demands on mathe-
matics teachers’ knowledge and expertise. This
includes knowing:

• How to design tasks and orchestrate classroom
discussions that elicit students’ mathematical
thinking

• How to formulate assessment criteria and stan-
dards that reflect valued mathematical activity

• How to make balanced judgments about the
quality of student performance across a range
of different tasks

• How to provide contingent, “real-time” feed-
back that moves students forward in their
learning

• How to encourage students to share ownership
of the assessment process

Teachers’ beliefs about what counts as “fair” or
“objective” assessment also need to be taken into
consideration, since the scientific measurement
paradigm still exerts a strong influence on
teachers’ assessment practices. Although there
are many research studies investigating social-
constructivist mathematics teaching, the
possibilities for introducing new approaches to
mathematics classroom assessment require further
research focusing in particular on supporting
teacher development and change.
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Definition

Mathematics curriculum evaluation is the process
of collecting and analyzing data with the purpose
of making decisions about whether to keep, mod-
ify, or completely change a mathematics curricu-
lum or some of its components.
Notions and Meanings

Though the definition above provides a sense of
what mathematics curriculum evaluation means,
the fact is that because of evasive meanings of the
terms involved, it is difficult to adopt one agreed-
upon definition. Defining mathematics curricu-
lum evaluation draws on the more general con-
cepts of curriculum and curriculum evaluation,
taking into consideration the specific characteris-
tics of mathematics as a discipline.
Curriculum

Historically, the term curriculum has been used in
different meanings, including one or more of the
following: goals and objectives determining the
expectations of learning that are set by policy
makers, textbooks used to guide teaching, instruc-
tional methods, plan of experiences, and/or actual
experiences that learners go through in order to
reach the specified learning goals. Larger mean-
ings of curriculum include, in addition, the peda-
gogical framework or philosophy underlying the
teaching practices and materials, training pro-
grams for supporting teachers, and/or guidelines
for assessing students’ learning. There is, how-
ever, a wide agreement that a curriculum may not
be limited to a syllabus or list of topics set for
teaching and learning.

The different processes involved at any point
in the design, development, and implementation
of a curriculum affect the ways the intentions of
the curriculum are conceptualized, actualized,
and implemented (Stein et al. 2007). As a result,
educators distinguish different manifestations of
a curriculum. Bauersfeld (1979) introduced the
distinction between three entities, the matter
meant, the matter taught, and the matter learnt,
the first referring to the expectations set for
learning mathematics, usually reflected in offi-
cial documents such as a curriculum plan, stan-
dards, and/or textbooks; the second referring to
the curriculum as taught and actualized by
teachers through their classroom practices; and
the third referring to what is actually learned by
students. This distinction has later been used
under different names and sometimes with
added curriculum manifestations. The Interna-
tional Association for the Evaluation of Educa-
tional Achievement (IEA) used the names
intended, implemented, and attained curricula,
which have subsequently been widely used in
mathematics education (e.g., Akker 2003; Cai
2010). The assessed curriculum came to be
added to the threesome, to refer to the contents
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and mathematical processes that are addressed in
assessments such as achievement tests.

Akker (2003) identifies two more specific
aspects for the intended curriculum, which are
the ideal curriculum (philosophical foundations)
and the formal/written curriculum (intentions as
specified in curriculum documents); two for the
implemented curriculum, the perceived curricu-
lum (interpretations by users, e.g., teachers) and
the operational curriculum (as enacted in the
classroom); and two for the attained curriculum,
the experiential curriculum (learning experiences
as pupils perceive them) and the learned curricu-
lum (achieved learner outcomes).
M

Curriculum Evaluation

This complexity and the manifold nature of the
notion of curriculum make it even more difficult
to capture the notion of curriculum evaluation. It
is frequently found in implicit or informal forms,
inherent to making decisions about daily teaching
practices, interpretations of students’ results on
tests, and actions of developing or supplementing
teaching materials. Such actions may be taken by
individuals (e.g., teacher, school principal) or
groups (e.g., teachers in a math department, par-
ents, employers). More explicit and formal
aspects of evaluation are adopted when decisions
need to be made about more general curriculum
components at the institutional or national level
(e.g., school board, educational committees, Min-
istry of Education). With such actions, “there is a
need to convince the community, educators,
teachers, parents, etc.” (Howson et al. 1981),
hence the need for explicit and evidence-based
curriculum evaluation.

Curriculum evaluation always has, to various
extents, dimensions of institutional, social, cul-
tural, and political nature. Designing, developing,
implementing, and evaluating a curriculum
involve different actors and are affected by social,
economical, and political forces as well as by
different cultural groups in the community. This
is, for instance, made clear in Artigue and Bednarz
(2012) where the authors compare the results of
several case studies of math curriculum design,
development, and follow-up in some French-
speaking countries or regions, namely, Belgium,
Burkina Faso, France, Québec, Romand Switzer-
land, and Tunisia, using as a filter the notion of
social contract due to Rousseau. The social con-
tract considered here is determining, explicitly but
also partly implicitly, the relationships between
school and nation (or region), by fixing the author-
ities and obligations of the different institutions
involved in the educational endeavor, the rights
and duties of the different actors, as well as the
respective expectations.

Though the terms evaluation and assessment
are sometimes used interchangeably, their mean-
ings came gradually to be more precisely defined
and distinguished. Niss (1993) refers to the Dis-
cussion Document of the 1990 ICMI study on
Assessment in mathematics education and its
effects to highlight this distinction: “Assessment
in mathematics education is taken to concern the
judging of the mathematical capacity, perfor-
mance and achievement – all three notions to be
taken in their broadest sense – of students whether
as individuals or in groups (. . .). Evaluation in
mathematics education is taken to be the judging
of educational or instructional systems, in its
entirety or in parts, as far as mathematics teaching
is concerned.” (p. 3).

Evaluation is often perceived as an integral
phase of the curriculum development process
seen as a cycle. Sowell (2005) identifies four
phases: (1) planning, that is, determining curricu-
lum aims and objectives, naming the key issues
and trends as global content areas, and consider-
ing the needs; (2) developing curriculum content
or subject matter according to specific criteria or
standards; (3) implementing, through teaching
strategies that convert the written curriculum
into instruction; and (4) evaluating, based on
criteria that help in identifying the curriculum’s
strengths and weaknesses.

When a curriculum evaluation action is to be
taken, the complexity of the curriculum, its
numerous components and actors involved, leads
to raising many questions as to the aspects to be
evaluated, for example, the quality of textbooks,
students’ learning, teaching practices, and consis-
tency between specific components. For
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evaluating these different aspects, different tech-
niques, tools, and instruments are needed. Other
questions would be about the criteria on which to
base the evaluation. Talmage (1985) identified
five types of “value questions” to be considered
for the evaluation of a curriculum: (a) the question
of intrinsic value, related to the appropriateness
and worth of the curriculum; (b) the question of
instrumental value, related to whether the curric-
ulum is achieving what it is supposed to achieve,
and concerned with the consistency of the pro-
gram components with its goals and objectives
and with its philosophical or psychological orien-
tation; (c) the question of comparative value,
asked when comparing a new program to the old
one or comparing different curricula; (d) the ques-
tion of idealization value posed throughout the
delivery of the new program and concerned with
finding ways to make the program the best possi-
ble; and (e) the question of decision value asking
about whether to retain, modify, or eliminate the
curriculum.

Particularly, the concept of curriculum align-
ment is used in many sources and evaluation stud-
ies (e.g., Romberg et al. 1991; Schmidt et al. 2005;
Osta 2007). According to Schmidt et al. (2005),
alignment is the degree to which various “policy
instruments,” such as standards, textbooks, and
assessments, accord with each other and with
school practice. Curriculum alignment may also
be defined as the consistency between the various
manifestations of a curriculum: the intended, the
implemented (also called enacted), the assessed,
and the attained curriculum. Porter (2004) defines
curriculum assessment as “measuring the aca-
demic content of the intended, enacted, and
assessed curricula as well as the content similari-
ties and differences among them. (. . .) To the
extent content is the same, they are said to be
aligned” (p. 12).

Alignment is also referred to as curriculum
coherence. The term coherence received more
attention with the studies motivated by TIMSS
results, especially in the USA. Schmidt and
Prawat (2006) claim that the term curriculum
coherence was defined as alignment in most of
the studies that were conducted before the release
of TIMSS results in 1997. In their study on
“curriculum coherence and national control of
education,” several types of alignment were mea-
sured: “Alignment between content standards and
textbooks, alignment between textbooks and
teacher coverage, and alignment between content
standards and teacher coverage” (p. 4). Globally, a
curriculum is said to be coherent if its components
are aligned with one another.

Evaluation may be formative or summative.
Formative evaluation takes place during the pro-
cess of development of the curriculum. It includes
pilot studies of teaching units, interviews with
teachers, and/or tests to assess students’ learning
from those units. Its aim is to adjust the process of
development based on the results. Procedures
used for formative evaluation are usually infor-
mal, unsystematic, and sometimes implicit. Sum-
mative evaluation is conducted to determine the
worth or quality of a curriculum that is completely
developed and implemented. Its main purpose is
to make decisions about the continuation, alter-
ation, or replacement of the curriculum or some of
its components.
Models of Mathematics Curriculum
Evaluation

Many types of activities conducted throughout the
years, in formal and/or informal ways, in different
regions of the world, have aimed at the evaluation
of mathematics curricula. Such activities contrib-
uted to shaping the meaning of math curriculum
evaluation as used today and to the development
and refinement of techniques and instruments
used. As this process evolved in different places
of the world and in different societies and com-
munities, different models emerged that may be
distinguished by their level of formality, the level
of rigidity of the tools or instruments they use, and
the scope of factors and actors they involve in the
analysis. The following examples may provide a
sense of these differences:

Since the first large-scale projects of curricular
reform and evaluation in the USA and other
Anglo-Saxon societies, the experiences in mathe-
matics curriculum evaluation tended toward more
and more systematization and control by sets of
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criteria and detailed guidelines. Guides for curric-
ulum evaluation are abundant. In their guide for
reviewing school mathematics programs, for
example, Blume and Nicely (1991) provided a
list of criteria that characterize “an exemplary
mathematics program” (p. 7), which should sys-
tematically develop mathematical concepts and
skills; be sequential, articulated, and integrated;
help students develop problem-solving skills and
higher-order thinking; encourage students to
develop their full potential in mathematics; pro-
mote a belief in the utility and value of mathemat-
ics; relate mathematics to students’ world; use
technology to enhance instruction; and be taught
by knowledgeable, proficient, and active profes-
sionals. The guide then provides rubrics that help
in determining the extent to which each one of
those criteria is met by the mathematics curricu-
lum under evaluation. Similarly, Bright et al.
(1993) insist, in their “guide to evaluation,” on
the importance of examining the quality of curric-
ula in a systematic and an ongoing way, based on
selected criteria. For specific aspects of
mathematics – problem solving, transition from
arithmetic to algebra, materials for teaching sta-
tistics, and manipulative resources for mathemat-
ics instruction – the guide provides ways to focus
the evaluation, pose evaluation questions, collect
and analyze data, and report results.

Other models of math curriculum evaluation
use more flexible approaches that take into con-
sideration the rapport that the different actors
(teachers, principals, educational authorities,
etc.) have with the curriculum. For instance, the
curricular reform in Québec, started in 1995 and
presented by Bednarz et al. (2012), is qualified by
these authors as a hybrid model, characterized by
its long-term span, the involvement of actors with
different perspectives, creating multiple interac-
tions among them, and the involvement of
teachers and school personnel. The evaluation
model presented is formative and rather informal,
regulated by the roles assigned to the actors, and
perceiving the curriculum as being in continuous
development, according to the experiences lived
by different groups of practice. Concurrently, pro-
grams for raising teachers’ awareness of the major
directions and principles are created, aiming at
teachers’ appropriation of, and adherence to, a
curriculum that is “alive” and open to debate.

The examples above show the richness and
complexity of tasks of curriculum evaluation.
They also show that these tasks cannot be sepa-
rated from the culture and the characteristics of
societies in which they emerge and develop.
Mathematics Curriculum Evaluation and
Large–Scale Reforms

The notion of mathematics curriculum evaluation
has been, since its first-known instances in the
history of mathematics education, associated
with major reforms in mathematics contents,
teaching materials, and methods. When stake-
holders, decision makers, governmental or non-
governmental agencies, educators, or
mathematicians start questioning mathematics
teaching practices and materials currently in
effect, actions are usually undertaken for evaluat-
ing their worth and developing alternative pro-
grams, which in turn call for evaluation.

Following are briefly some of the major land-
mark reforms and evaluation initiatives that had a
considerable international impact.

The 1960s witnessed the wave of New Mathe-
matics curricula, based on the Bourbakist view of
mathematics. New Math programs were world-
wide taught in schools in most countries. They
resulted in a proliferation of textbooks to support
instruction. They were also paralleled with large
projects for piloting those textbooks as they were
developed, especially in the USA (e.g., SMSG,
School Mathematics Study Group) and in the UK
(e.g., SMP, School Mathematics Project). Those
projects resulted in a considerable body of
research, widely disseminating a culture of
evidence-based evaluation of mathematics curric-
ulum materials. But serious problems of credibil-
ity and validity were raised, since many of the
evaluative studies were conducted by the same
groups which participated in the development of
the curriculum materials. SMSG, for example,
undertook a large enterprise of curriculum devel-
opment and conducted a large-scale evaluation in
the context of the National Longitudinal Study of
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Mathematical Abilities (NLSMA). The NLSMA
study adopted a model that was based on two
dimensions of analysis. The first is by categories
of mathematical content (number systems, geom-
etry, and algebra), and the second is by levels of
behavior (namely, computation, comprehension,
application, and analysis). Such two-entry model
will later, with different extents of modification,
guide many of the mathematics curriculum eval-
uation studies around the world.

According to Begle and Wilson (1970), the
major research design adopted for the pilot stud-
ies was the experimental design, by which stu-
dent achievement in experimental classes, where
the tested materials were used, was compared to
achievement in control classes that used “tradi-
tional” materials. Two types of tests were used
and administered to both groups, standardized
tests and tests to evaluate mathematical knowl-
edge according to the new math content. Major
concerns about the validity of those comparisons
were raised, especially because they use, with
both groups, tests developed to assess the learn-
ing of the new content, which privileged the
experimental group. The use of standardized
tests was also contested, as these only provide
scores which don’t uncover the real learning
problems, and which focus on recalling informa-
tion and computation skills rather than mathe-
matical thinking.

During and after their implementation, New
Math curricula motivated debates and evaluation
actions, formal as well as informal, in various
parts of the world, because of their elitism and
extreme mathematical formalism and because of
the difficulties faced by teachers who were not
prepared to cope with them. Most of those eval-
uation actions were motivated by the two oppos-
ing positions that arose in the mathematics
education community. While one position advo-
cated the New Math curricula as improving stu-
dent learning, the other maintained that they
were causing a drastic loss of students’ basic
mathematical skills.

Other landmarks that motivated many studies
for evaluating mathematics curricula worldwide
were the NCTM’s Standards (NCTM 1989,
1995). These documents were influential, not
only in the USA but in the conception of mathe-
matics curricula in many other countries. Many
research studies were conducted that tried to eval-
uate the alignment of mathematics curriculum
materials and textbooks with the Standards.

The beginnings of the twenty-first century
witnessed a new wave of calls for reform, charac-
terized by increase of state control, core require-
ments, and systematic evidence-based evaluation
of mathematics curricula, because of the interna-
tional assessments and studies. An extensive body
of worldwide research for evaluating mathematics
curricula was motivated by the Third International
Mathematics and Science Study (TIMSS), later
known as Trends in International Mathematics
and Science Study, conducted since 1995 on a
regular 4-year cycle, and the Program for Interna-
tional Student Assessment (PISA), conducted
since 2000 on a regular 3-year cycle. Many of
those studies used the rich cross-national data to
compare and evaluate participating countries’ cur-
ricula. Schmidt et al. (2005) advocated that “the
presence of content standards is not sufficient to
guarantee curricula that lead to high-quality
instruction and achievement” (p. 525). The lack
of coherence between the intended and the enacted
curricula was found to be one of the main reasons
for relatively low scores in international compara-
tive tests. Houang and Schmidt (2008) present the
1995 TIMSS ICA (International Curriculum Anal-
ysis) cross-national study which “captures” the
curriculum from the participating countries, using
the tripartite model of curriculum: the intended,
implemented, and attained curricula. The study
established methodological procedures and instru-
ments to encode curriculum documents and text-
books (Houang and Schmidt 2008).

As a reaction to the results of international
assessments in mathematics and science
(TIMSS and PISA), we see many countries
tending to more standardization and centraliza-
tion in their math curricular procedures and prac-
tices. Central governments are taking more and
more control in countries where more freedom
and authority used to be left to states, districts,
cantons, or even smaller communities. The con-
cern of accountability of educational systems
and the pressure of international assessments
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are prevalent. A compulsory common core is
imposing itself as a solution in countries where
no central curriculum was adopted before. For
example, many USA states have already started
implementing the Common Core State Standards
(CCSS 2010).

The international assessments, especially
PISA, motivated, on the other hand, an increasing
trend in many countries toward designing mathe-
matics curricula, according to a set of mathemat-
ical competencies, to be used for student learning
assessment. This influence is made clear in the
study by Artigue and Bednarz (2012) already
mentioned. In Denmark as well, the eight mathe-
matical competencies set by the KOM project
(Niss 2003) aiming at an “in-depth reform of
mathematics education” are very close, almost
identical for some, to the PISA framework’s cog-
nitive competencies.

The increase of governmental control and the
rise of calls for evidence-based judgments of edu-
cational systems’ performance, added to the
increasing pressure of the international assess-
ments, are expected to motivate new waves of
curriculummonitoring and evaluative procedures.
Crucial questions and new problems will be
awaiting investigation. Particularly the rise of the
“evaluation by competencies” trend for assessing
students’ learning will lead to changes in the ways
the evaluation of mathematics curricula is
approached. These changes will raise new types
of research questions and create a need for
rethinking the different techniques, categories,
and criteria used for mathematics curriculum
evaluation.
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Definition

A socially produced way of being, as enacted and
recognized in relation to learning mathematics. It
involves stories, discourses and actions,
decisions, and affiliations that people use to con-
struct who they are in relation to mathematics, but
also in interaction with multiple other simulta-
neously lived identities. This incorporates how
they are treated and seen by others, how the
local practice is defined and what social dis-
courses are drawn upon regarding mathematics
and the self.

The concept of identity in relation to learning
mathematics has become increasingly evident in
the mathematics education literature since before
the turn of the century. Lave and Wenger (1991)
introduced identity to mathematics education and
conceptualized it in relation to learning in com-
munities of practice. In the following decade other
theories were introduced, notably those of Hol-
land and Colleagues (1998) and Gee (2000) and
early influential work within mathematics educa-
tion included Martin (2000), Boaler and Greeno
(2000), and Sfard and Prusak (2005) (see Darragh
2016). Initially identity was often associated
together with attitudes and beliefs, however,
over these past two decades our use of the concept
has increasingly split from this domain to become
seen as very much embedded and produced in the
social and political context. It has been found to
have high explanatory value in understanding stu-
dents’ participation and experiences in mathemat-
ics and how power is enacted through the
production of the subject, be it the individual
learner of mathematics or particular social groups
within mathematics education.

Many authors have highlighted how learner
identity has been poorly defined, conceptualized,
and operationalized in the mathematics education
literature (e.g., Bishop 2012; Cobb and Hodge
2009; Darragh 2016; Radovic et al. 2018; Sfard
and Prusak 2005). Compounding this problem is
the fact that identity has been used by authors
coming from contrasting paradigms and trying to
explain diverse aspects of students’ relationship
with the subject, from individual decision making
to social influences and relations. Two recent lit-
erature reviews have mapped its use in applied
research, showing definitions which are participa-
tive, narrative, discursive, psychoanalytic, posi-
tioned, or performative, come from differing
theoretical underpinnings (Darragh 2016), and

http://www.math.chalmers.se/Math/Grundutb/CTH/mve375/1213/docs/KOMkompetenser.pdf
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how subjective/social and representational/
enacted aspects are emphasized in contrasting
definitions (Radovic et al. 2018). In an effort to
bring together the commonalities in this diversity
of approaches, we draw attention to certain fea-
tures of the concept of mathematics learner iden-
tity which appear to be agreed upon by a majority
of researchers in our domain. The definition of
mathematical learner identity as a socially pro-
duced way of being, enacted and recognized in
relation to mathematics learning is an attempt that
we hope will be recognizable broadly by
researchers who use the concept, albeit from vary-
ing theoretical perspectives; we further explain
this definition in the following paragraphs draw-
ing from literature in the field to illustrate.

Identity is socially produced. This means it is
not something that belongs to an individual in
isolation, rather it is inherently bound to social
contexts; identity depends on the physical, tempo-
ral, and interpersonal context, and correspondingly
it is a fluid and a constantly changing process.
Different approaches have conceptualized and
explored specific aspects of this process and do so
by defining the social in different ways. The social
may be seen as relationships and interactive
moments between students, their peers and their
teachers (e.g., Bishop 2012; Heyd-Metzuyanim
and Sfard 2012; Wood 2013); as social definitions
of competence that structure what is valued in a
specific local community (Boaler and Greeno
2000; Cobb and Hodge 2009; Nasir 2002); or as
social discourses that produce what is mathematics
and defines the learner (Mendick 2005). All of
these different levels of the social appear to be
connected in complex ways, with social structures
living in interactions, and local definitions of com-
petence and shared practices mirroring both micro
relationships and larger social discourses. Follow-
ing this, mathematics identities are produced and
reproduced in ways that can be explored by
zooming-in and zooming-out from individual to
social realities (Lerman 2001).

Different perspectives have engendered or use
different metaphors to explain the “substance” of
learners’ identities. The more general and compre-
hensive metaphor is understanding identities as
learners’ ways of being in the social activity of
doing mathematics. On the one hand, this involves
the learner’s private “sense” of being, including
conscious and cognitive appraisals about oneself
(i.e., self-concepts and self-efficacy beliefs) (Eccles
2009), self-understandings in relation to what is
valued in mathematics (Cobb and Hodge 2009),
and also embodied or unconscious feelings of who
one is (Bibby 2009; Walshaw 2011). This private
aspect gives the individual a sense of continuity
and of connection or belonging to a community. On
the other hand, identities are expressed and recog-
nized in the public sphere as different kinds of
people (Gee 2000) or as spaces where social dis-
courses work and are worked (Mendick 2005).
These social products are attached to contexts,
moments in time and purposes. This implies that
although there is a sense of who one is and a sense
of continuity, this is not something static or essen-
tial, but something that is fluid and in constant
negotiation with the social.

Accordingly, the literature within mathematics
education sees identity as a process rather than an
object: Identity is something you do (Gutiérrez
2013) or something that involves identity work
(Chronaki 2011; Mendick 2005) in negotiating ten-
sions in the production of the self. Identity may be
enacted in different ways and therefore research
can also operationalize it focusing on these differ-
ent enactments. Sociocultural theories of identity
tend to operationalize identity according to narra-
tives/stories (Sfard and Prusak 2005), acts of posi-
tioning (Esmonde 2009; Turner et al. 2013), or as
participation in classroom activity (Oppland-
Cordell and Martin 2015) and in post-compulsory
mathematics courses and careers (Black et al.
2009). Post-structural theories of identity look at
the discursive constructions of identity, considering
how the subject may perform themselves in relation
to wider discourses in society (Chronaki 2011;
Mendick 2005; Stentoft and Valero 2009). Psycho-
analytic approaches consider relationships, desire,
fantasy, and unconscious decisions and emotions
(Bibby 2009; Walshaw 2011). Finally, psycholog-
ical and sociocognitive theories emphasize con-
scious decisions and perceptions that guide
learners’ actions (Eccles 2009). All of these per-
spectives engender contrasting operationalizations
including decisions and affiliations made by
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individuals; acts of positioning during micro-
interactions, actions of individuals and groups dur-
ing classroom observations, stories such as in inter-
view transcripts in which self-authoring or broader
social discourses are attended to (see also for com-
parison Langer-Osuna and Esmonde 2017). Fol-
lowing these diverse operationalizations, identity
research requires multiple, sometimes complemen-
tary, methodologies, data, and approaches to anal-
ysis (Radovic et al. 2018).

Identity must also be recognized by others in
order to be legitimate. Sfard and Prusak (2005)
capture this in their diagrammatical depiction of
identity as including who identifies whom. Edu-
cational systems identify the mathematics learner
through labels such as “high ability,” “good stu-
dent,” “failure,” “learning disabled,” among
others. An individual may appropriate such a
label into their own identity performance or they
may engage in considerable identity work to enact
their identity differently. In addition, it should be
acknowledged that much research about mathe-
matical learner identity are in part the researchers’
own identifications of the subject. We apply
labels such as “positive mathematics identity”
(Stentoft and Valero 2009), “good at maths”
(Mendick 2005), “fragile identities” (Solomon
2009), “oppositional” (Cobb and Hodge 2009),
or identity as a “doer of mathematics” (Boaler
and Greeno 2000) or define micro identities such
as using the authoritarian voice or making state-
ments of superiority/inferiority (Bishop 2012).
In many cases these identifications enable us
greater understanding of students’ experiences
of learning mathematics, but we should keep
in mind the author of the label/identity.

A final aspect of identity generally agreed upon
is that identity is not singular butmultiple.We talk
of identities in the plural and any mathematics
learner identity interacts with the many other iden-
tities an individual may simultaneously perform.
Researchers have captured this idea using the
term “hybrid” identities (Chronaki 2011), multiple
identities (Nasir 2002), and increasingly using the
notion of intersectionality (Leyva 2017). This latter
term has been utilized particularly in recent years to
call attention to the variation of experiences within
social groups. Studies examining multiple identi-
ties have produced findings about students’
experiences of learning mathematics which have
important implications for issues of equity.

Research exploring the relationship between
students’mathematical identities and social mem-
bership identities such as gender, ethnicity, race
has allowed us more complete understanding
of the way that mathematics produces students
differently. For example, certain classroom and
wider practices make it more difficult for some
students to identify with mathematics, as demon-
strated in relation to gender (Radovic et al. 2017),
ethnicity (Chronaki 2011), and race (Martin 2000;
Nasir 2002). Studies on MLI have also shown
that acts of power are not only wielded from “the
powerful” (e.g., institutions) but are reproduced
in practice, including reproduction in social inter-
actions between students, their peers, and teachers
and in how mathematics is presented in different
contexts. In this sense, identity has provided
another way of looking at the practices within
the mathematics classroom, beyond a focus on
teaching and learning, to consider how the class-
room culture may enable (or discourage) students
from identifying with the subject of mathematics,
how it distributes and reproduces power and may
even propose an “alternative politics of possibil-
ity” (Chronaki 2011, p. 210).
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Rationale

Analogous to mathematics power as goal for stu-
dent learning, mathematics teachers learn to
increase their pedagogical power of identifying
challenges in a specific classroom environment
and properly applying strategies to solve those
challenges. Nurturing the power requires a com-
plex and lifelong learning process through which
teachers gradually go beyond themselves as they
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dig into the essences of mathematics learning and
have ability to structure lessons for students to
experience the learning accordingly.

Research on teacher learning can be generally
categorized into two trends. One is tied to person,
inheriting the research in psychology. Fuller
(1969) conceptualized teacher concern into three
major phases: nonconcern, concern with self, and
concern with pupils. Clarke and Hollingsworth
(2002) elaborated teacher growth as a nonlinear
and interconnected learning process involving
personal attributes, teaching experimentation, per-
ception of professional communities, and the
observation of salient outcomes.

Another trend originates from Vygotsky’s
work, focusing on interpersonal relationships
and identities in teaching and learning interac-
tions as well as the modes of thinking linked to
forms of social practices. Learning inherently is
viewed as increasing participation in socially
organized practices (Lave and Wenger 1991).
The conception, Zone of Proximal Development
(ZPD), is also adopted to describe teacher learn-
ing in relation to the social setting and the goals
and actions of tiers of participants (e.g., Goos
and Geiger 2010). Additionally, Putnam and
Borko (2000) combined both psychology and
sociocultural perspectives, stating that teacher
learning involves a process of enculturation and
construction, which can be investigated by lines
of research with roots in various disciplines (e.g.,
anthropology).

Reflection and enaction have been treated as
crucial and inseparable mechanisms for teacher
growth. Reflective thinking instead of routine
thinking can effectively help teachers to overcome
challenges (Dewey 1933). The distinction
between reflection-in-action and reflection-on-
action further presents how both mechanisms
interact and lead to the learning (Schön 1983).
Specifically, the power of institutional learning
where school teachers work together as a term
for their growth should be highlighted because
school-based environments entail the norms and
rationality for teachers to frequently implement
new ideas into teaching practices and have
ample opportunities to learn from each other in
their daily-life teaching.
Sources and Strategies

A variety of sources and strategies have been pro-
posed to facilitate teacher learning. Narrative cases
offer teachers opportunities to situate their teaching
for detecting and challenging the pedagogical
problems. Analyzing mathematics tasks allows
teachers to evaluate cognitive complexity of the
tasks, converse the tasks into lesson structures,
and properly enact them with students in class.
Research findings can be materials as well to facil-
itate teachers’ understanding of students’ cognitive
behaviors and improve the teaching quality. Strat-
egies such as peer coaching or lesson study also
make possible the learning of teachers by observ-
ing and analyzing peers’ teaching experiences.

Of importance are the design-based profes-
sional development programs in which teachers
can learn from educators, peer teachers, and stu-
dents. Design-based approach has the capacity of
encompassing all strengths for the facilitation of
teacher learning listed above. By participating in
designing tasks, teachers actively challenge the
pedagogical problems that they concern. Design-
ing tasks and enacting them with students also
develops teachers’ competence in coordinating
experiences from different learning environments
into the refinement of the tasks and the teaching.
Particularly, as any of the existing instructional
materials (e.g., test items) can be the sources to
initiate new designs for promoting students’
active thinking, this strategy is powerful to engen-
der the ongoing learning journeys of teachers.
Teacher Learning Theory

Theories of student learning have been used to
construct models and frameworks to facilitate
teacher learning. Nevertheless, fundamental theo-
ries for teacher learning have not been well
established yet. In light with the perspective
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viewing mathematics as the core for the learning
of educators, teachers, and students (Mason
2008), it is particularly important to develop
teachers’ mathematical pedagogical thinking, the
notion created by making analogy to mathemati-
cal thinking, and use the pedagogical thinking as
principles to solve teachers’ teaching problems
(e.g., the use of specializing and generalizing
thinking for probing students’ error patterns
across different mathematics topics).
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Introduction

Tatto et al. (2010) stated: “We know little about
the organization of the opportunities to learn
mathematics and mathematics pedagogy offered
to prospective and practicing teachers across the
world and their relative effectiveness” (p. 313).
The quote comes from a paper based on reports
from 20 participating countries collected as part of
the 2005 Conference of the International Commis-
sion on Mathematics Instruction (ICMI-15) (see
Tatto et al. 2009). Since then the Teacher Educa-
tion and Development Study in Mathematics or
TEDS-M (see Tatto et al. 2012) was implemented
in 2008 to begin to answer such questions.
Structure and Characteristics

In the 7 years between the ICMI-15 and the
TEDS-M studies, the education of teachers has
become an important policy issue. While we
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know more about the structure and characteristics
of teacher education, the image that emerges is
one of increased complexity. On the one hand,
there are efforts by supranational institutions
(e.g., European Union) to unify the system of
teacher education, while on the other hand, coun-
tries and regions under the influence of globaliza-
tion forces struggle to implement fast-paced
reforms that may threaten or end up reaffirming
more traditional teacher preparation systems. The
fast development of information technologies,
growth of multiculturalism, economic develop-
ment, and globalization – all these place a great
deal of pressure on education systems and also on
teacher education. Educators, politicians, sociolo-
gists, as well as the general public all over the
world ask the same questions: what skills, knowl-
edge, attitudes, and values should be passed on to
the new generation? How can children, young
people, and their teachers be prepared for what
they can expect in their future everyday life and
career? (see e.g., Sarrazy and Novotná 2014)
More specifically regarding teachers, what are
the characteristics of teacher education programs
that can prepare their graduates effectively for
what is now needed? How can the outcomes of
teacher education programs for teachers of math-
ematics be measured in ways that are reliable and
valid? What kinds of policies are effective in
recruiting qualified teachers of mathematics from
diverse backgrounds?

In contrast to the above-quoted studies, this
text is an encyclopedia entry which only outlines
the main ideas but can never be exhaustive. The
reader is advised to consult the sources we cite
here and other relevant sources to obtain more
exhaustive information on a whole range of ques-
tions concerning mathematics teacher education.
Institutions

The range of institutions preparing future teachers
is large and includes secondary as well as tertiary
schools (universities, national teacher colleges,
both public and private). In some countries, it is
also possible to read a course in mathematics and,
only after having graduated and having made the
decision to teach, to take a course in pedagogy and
pedagogical content designed for in-service
teachers who lack pedagogical education.

In many countries, teachers can also achieve
credentials in practice (such as the notable Teach
for America program in the USA and its variants
now making inroads in many other countries). In
some countries, it is possible to begin to teach
without a proper teacher credential, but the situa-
tion is changing rapidly. For example, in England
there are the “school direct” routes which allow
teachers without a teaching credential to begin to
teach. They do have to have some knowledge of
the subject, but they lack knowledge of pedagogy
including PCK. Some states in the USA, notably
Arizona, are also passing laws that allow individ-
uals to teach without a proper credential arguing
teacher shortages. Indeed and different from
England, there are teacher shortages in a number
of the most populated states in the USA. So there is
a new trend that seems to give more importance to
content knowledge over and above pedagogy
knowledge (for the English and US situation across
the different subjects, including mathematics for
future secondary school teachers, see, e.g., Tatto
et al. 2018).

In some countries, preservice and in-service
teachers can also attend distance courses
(increasingly offered on-line), usually organized
by universities. They may be attended either by
in-service unqualified teachers or by in-service
teachers who make the decision to extend their
qualification by another subject. These courses
may also be selected by people who do not work
as teachers but are planning to change their pro-
fession and become teachers later on.

In-service training is necessary also for practic-
ing teachers who have already achieved credentials
but want professional development and support. In
many countries, these development programs are
supported by the government and authorities as it is
understood that in the teachers’ professional life-
time, they cannot be expected to teach the same
contents using the samemethods (see Schwille and
Dembélé 2007; Tatto 2008). Just as doctors are
expected to follow the newest trends and technol-
ogies, teachers must be expected to keep up with
the latest developments, both in content and
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pedagogical content. That is why some countries
financially motivate their teachers to develop,
offering better salaries to those who are willing to
learn by engaging in further study. It is also true
that many in-service teachers welcome the possi-
bility for further training as it has the potential to
give them.
M

Study Programs

In general, there are two possibilities of organiza-
tion of teacher education. Programs may be con-
current which means that the preservice teacher
takes at the same time mathematics, didactics, and
general pedagogy seminars and lectures of. This
system is sometimes criticized because it may fail
to provide future teachers with in-depth content
knowledge, considered as a prerequisite to mas-
tering teaching methods, and by an overly formal
pedagogical training. The other possible model is
consecutive, which means that the preservice
teachers first study the content and only subse-
quently methodology, psychology, and pedagogy.
This may work well if it does not result in neglect
of pedagogy and pedagogical content knowledge,
which is sometimes the case especially among
preservice teachers for secondary schools. This
also depends on who teaches the future teachers,
which will be discussed later.

The advantage of some consecutive programs is
that it enables the structuring of university studies
to include a bachelor’s and master’s degree, where
the preservice teachers spend their time in the
bachelor’s studies focusing only on mathematics
and the master’s course focusing on the study of
pedagogical content knowledge. This organization
may be a way of preventing recent reform efforts
emerging in some countries to shorten the study
time of preservice preparation (e.g., to 3 years) or
eliminate it all together, claiming that a bachelor’s
degree is sufficient to become a teacher.

The preparation of primary school teachers,
on the other hand, tends to be concurrent as the
general belief is that teachers for this stage
should be real experts in pedagogical disciplines.
The scope of subjects future primary school
teachers study often results on superficial
knowledge across all the disciplines. The
TEDS-M study however uncovered that in
some countries primary teachers are prepared as
specialists and that in these cases their knowl-
edge of the subject is significantly increased as
reflected in their overall performance in the
TEDS-M assessments (Tatto et al. 2012).

Teacher education programs typically include
teaching practice or practicum, which may take
various forms. It may be one semester spent on an
affiliated school supervised by an accredited prac-
ticing teacher. It may include a couple of hours a
week for a longer period of time. Or it may be few
years following graduation, the so-called induc-
tion, when the fresh teacher is supervised and
supported until he/she gets more experience of
classroom and school practice (see Britton et al.
2003). This part of teacher education is considered
very important under the assumption that only
hands-on experience and advice of an experienced
practitioner would enable mastering the necessary
skills and that theoretical knowledge, albeit of
pedagogical content and pedagogy, will never
make a complete teacher (Grossman et al. 2011).
Who Teaches Future Teachers?

For the most part, future teachers of mathematics
are taught by mathematicians, mathematics edu-
cators (usually with a degree in mathematics and
pedagogy), and teacher educators. In practical
experience, future teachers are often supervised
by experienced practitioners. Comprehensive
teacher education requires the combination of all
these aspects.

Countries that offer in-service teacher profes-
sional development sometimes organize them out-
side university walls in various kinds of
pedagogical centers. They hire trainers (from ped-
agogical centers, experience practitioners, etc.) to
deliver different seminars and courses. One must
stress that even these trainers must be trained too.
The value of trainer training through formal pro-
grams of professional development and support
has emerged as an area of concern. It may seem
strange, even unnecessary, to suggest that the
training of trainers (“trainer education” or “formal
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professional development” for trainers) needs to be
justified. But while the value of the professional
development opportunities for teacher educators is
significant, it is rarely done or documented. If
in-service teachers report the need of growing
self-esteem, the team spirit, it would follow that
the same must apply to teacher trainers and educa-
tors. While the academic world of universities and
many international conferences and projects offer
university teacher educators the chance to grow,
develop, exchange information, and cooperate at
the international level, teacher trainers still need
other more formal avenues of professional devel-
opment, specially at times of constant and demand-
ing curricular change.
Who Enters the Profession?

The study programs offered by universities and
national teacher preparation institutions may be
selective or nonselective. This means that some
institutions require from their participants to pass
entrance exams or to have passed certain school
leaving exams at the secondary school level. We
have no knowledge that the candidates would be
asked to pass any aptitude tests to show their
predisposition for the profession in any countries
although they are asked to demonstrate academic
proficiency in the disciplines. It is a question
whether or not it would help the education sys-
tems if only candidates of certain skills and talents
were accepted to study education programs. It
would definitely not be easy to specify which
predispositions are essential for success in future
work with pupils.

In case of nonselective admittance to universi-
ties, personal choice is what matters, but even if
admittance is restrictive, only people with talent
for the subject are likely to enroll. The problem in
many countries is that teaching is not the most
glamorous career, the job is poorly paid, and the
reputation of teachers is low. The unfortunate
consequence then is that education programs are
entered only by those candidates who failed in
other entrance exams to more demanding and
desirable fields of study.
The TEDS-M study found that different coun-
tries’ policies designed to shape teachers’ career
trajectories have a very important influence on
who enters teacher education and eventually
who becomes a teacher. These policies can be
characterized as of two major types (with a num-
ber of variations in between): career-based sys-
tems where teachers are recruited at a relatively
young age and remain in the public or civil service
system throughout their working lives and
position-based systems where teachers are not
hired into the civil or teacher service but rather
are hired into specific teaching positions within an
unpredictable career-long progression of assign-
ments. In a career-based system, there is more
investment in initial teacher preparation, knowing
that the education system will likely realize the
return on this investment throughout the teacher’s
working life. While career-based systems have
been the norm in many countries, increasingly
the tendency is toward position-based systems.
In general, position-based systems, with teachers
hired on fixed, limited-term contracts, are less
expensive for governments to maintain. At the
same time, one long-term policy evident in all
TEDS-M countries is that of requiring teachers
to have university degrees, thus securing a teach-
ing force where all its members have higher edu-
cation degrees. These policy changes have
increased the individual costs of becoming a
teacher while also increasing the level of uncer-
tainty of teaching as a career.
Professional Teacher’s Competences

What skills, abilities, knowledge, and attitudes
should graduates of teacher preparation programs
master? For a long time, designers of teacher
preparation programs have struggled to balance
the theoretical with the practical knowledge and
skills (Ball and Bass 2000). However, there is no
consensus on the proportion of the different
teacher preparation “ingredients.”

It is clear that a good teacher of mathematics
must understand more than the mathematical dis-
cipline. They must master other skills in order to
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be able to plan and manage their lessons, to trans-
mit knowledge, and especially to facilitate their
pupils’ learning. They must get introduced to var-
ious types of classroom management (whole
class, group work, pair work, individual work)
and understand the advantages and disadvantages
in different activities; they must learn how to work
with pupils with specific learning needs and prob-
lems and how to work with mixed-ability classes
to answer the needs of the talented as well as
below average students. They must learn to pose
motivating and challenging questions, learn how
to facilitate pupils’ work, must be aware of the
difference in pupils’ learning styles, and must be
experts in efficient communication and appropri-
ate language use. They must be able to work with
mistakes. They must also know the demands in
the output, what the pupils will be expected to
master, and in what form they will be expected to
show their knowledge and skills. They must be
able to mediate the increasing demands for excel-
ling in examinations and developing deep and
relevant learning. They should be able to manage
the development and the administration of sum-
mative or formative assessments to inform and
plan their teaching; they should be able to under-
stand the advantages of each of these types of
assessments (Even and Ball 2009). These of
course cannot be acquired in purely mathematical
courses, and preservice teachers must undergo
more extensive preparation.

According to Shulman (1987), the knowledge
that teachers must master consists of content
knowledge (in this case mathematics), pedagogi-
cal content knowledge (didactics and methodol-
ogy of the studied subject, the ability to act
adequately directly in the course of lessons) and
pedagogy (philosophy of education, history of
education, educational psychology, sociology of
education), knowledge of pupils, and knowledge
of context. In several studies, knowledge, beliefs,
and attitudes toward mathematics and practical
skills are highlighted (see, e.g., Nieto 1996).

Whatever classification or division we choose,
the fact remains that it is at this point impossible to
give one answer to the question of how much time
and attention should be paid to each of the
components. The problem is that it is impossible
to state objectively which part of this knowledge
makes a really good teacher. In general terms, it
can be said that usually future primary school
teachers get much more training in pedagogy
and psychology, while future secondary school
teachers get more training in the mathematics
itself. The problem of the first situation is the
lack of the teacher’s knowledge of mathematics
which often results in lack of self-confidence.
Unaware of the underlying mathematical struc-
tures, the teacher may be hardly expected to iden-
tify the sources of pupils’ mistakes and
misconceptions, let alone correct them. Primary
school teachers report that this lack of self-
confidence in the discipline prevents them from
adequate reactions to their pupils’ questions and
problems. If it is true that mathematics that has
already been discovered is “dead” mathematics
and is brought to life by teachers (Sarrazy and
Novotná to be published), the teacher must know
it and be able to assist in this rediscovery.

In contrast, if teachers are not trained ade-
quately in pedagogy and pedagogical content
knowledge, they may fail to pinpoint the sources
of their pupils’ problems as they may be related to
their cognitive abilities, age, and methods used in
lessons, among others.

The problem with mathematical content
knowledge is that there is wide disagreement
regarding the extent and depth of the mathemati-
cal content pupils should be taught to make use of
in their future life. If there is disagreement regard-
ing what pupils need to know, there is also dis-
agreement on the mathematics their teachers need.
The current trend emphasizing transversal- hori-
zontal skills (learning to learn, social compe-
tences, cross-curricular topics) seems to put
more emphasis on everything but the mathemati-
cal content. However, there is no doubt that pupils
must learn also mathematics as they will be using
it in many everyday situations in their future.
Calculators and computers will never really sub-
stitute human mathematical thinking.

This problem of lack of agreement of what
mathematics to teach and how much of it to
teach is well known to those involved in
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mathematics education at all levels (Tatto and
Hordern 2017). One of the strategies recently
introduced to solve this problem is the develop-
ment of content standards currently implemented
in a considerable number of countries. They might
differ in form, in the degree of obligation, and in
the level of details included, but they certainly
share one characteristic: they define the frame-
work for the volume of mathematics that teachers
will have to teach and consequently the bases for
the mathematical content to be included in the
teacher education curriculum.

The TEDS-M study shows that there are topics
and areas that can be found in the curricula of
teacher education programs in a considerable
number of countries and may therefore be
regarded as the cornerstones of mathematics edu-
cation. These topics are numbers; measurement;
geometry; functions, relations, and equations; data
representation, probability, and statistics; calculus;
and validation, structuring, and abstracting. The
opportunity to learn these topics varies according
to the grade levels future teachers are prepared to
teach with primary teachers predominantly study-
ing topics such as numbers, measurement, and
geometry. As programs prepare teachers for higher
grades, the proportion of areas reported as having
been studied increases. Importantly TEDS-M
found that the Asian countries and other countries
whose future teachers did well on the TEDS-M
assessments did offer axiomatic geometry, ana-
lytic geometry, and to a lesser degree – and only
among those preparing to teach upper-level sec-
ondary grades – linear algebra, calculus, and prob-
ability (Tatto and Hordern 2017).
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Mathematics Teacher Educators:
Definition

Mathematics teacher educators in postsecondary
institutions are academics educating prospective
or practicing teachers; in many cases they do both.
Thus, teacher educators initiate, guide, and sup-
port teacher learning across the teacher’s profes-
sional lifespan (see also the entry▶ “Education of
Mathematics Teacher Educators” and, Even and
Ball 2009). Most teacher educators have the task
not only to teach (and to evaluate their teaching)
but also to do research (including systematic and
self-critical evaluation) and to do organizational
administrative work. The quality of teaching,
research, and organization is based on teacher
educators’ attitude towards and competence in
continuous learning. The more complex teacher
education activities are (e.g., running a challeng-
ing master’s program or leading a professional
development program for a couple of schools),
the more the components of teaching, research,
and organization are interwoven and influence
each other.

Since teachers also have the task to teach, to
critically reflect on their work (and maybe to do or
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https://doi.org/10.1007/978-3-030-15789-0_55
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be involved in research), and to do administrative
work, observing teacher educators’ actions may
serve as a learning opportunity for teachers. Thus,
teacher educators can be seen as role models for
teachers. This makes teacher education a complex
endeavour (see Krainer and Llinares 2010) since a
serious teacher educator needs to live the goals he
or she is claiming to his or her participants: it
would be inconsistent and an obstacle for the
learning process if, for example, a teacher educa-
tor stresses students’ active learning but mainly
designs his or her courses in a way where passive
learning (listening to lectures) is dominating. This
affords teacher educators to reflect the (explicit or
implicit) “learning theory” underlying their teach-
ing and – in best case – to make it transparent and
discussable in the teacher education process. One
of the challenges of teacher educators is to create
genuine learning situations for teachers, often
through carefully designed tasks, in which
teachers experience as learners the kind of learn-
ing that the mathematics teacher educator wishes
to convey (Zaslavsky 2007).
Mathematics Teacher Educators’
Learning Through Research

Research on teacher educators’ learning as practi-
tioners is sparse, however increasing (see, e.g., in
general: Russell and Korthagen 1995; Cochran-
Smith 2003; Swennen and van der Klink 2009;
directly related to mathematics teacher education:
Zaslavsky and Leikin 2004; Even 2005; Jaworski
and Wood 2008) with growing interest in the
mathematics education community evidenced
by discussion groups in recent international
mathematics education conferences (e.g., PME
35 proceedings and ICME 12 preconference pro-
ceedings). Most opportunities for teacher educa-
tors to learn are not offered as formal courses.
Such formats are discussed in the entry ▶ “Edu-
cation of Mathematics Teacher Educators.” The
emphasis here is on teacher educators’ autono-
mous efforts to learn, in particular, through reflec-
tion and research on their practice.

Teachers’ ability to critically reflect on their
work is a crucial competence (see, e.g., Llinares
and Krainer 2006). Teacher educators need to
evoke this inquiry stance (link to entry
▶ “Inquiry-Based Mathematics Education”) of
teachers as a basis of their learning. From this
perspective, teacher educators learn from their
practice through ongoing reflection on their think-
ing and actions as an inherent aspect of their work
with teacher (i.e., as reflective practitioners –
Schön 1983) and/or through systematic, inten-
tional inquiry of their teaching in order to create
something new or different in terms of their
knowledge, “practical theories” (see Altrichter
et al. 2008, pp. 64–72), and teaching. However,
this dual role of researcher and instructor when
educators inquire into their own practice puts a
special focus on the question of how teacher edu-
cation and research are interwoven.

A survey of recent research in mathematics
teacher education published in international
journals, handbooks, and mathematics education
conference proceedings (see Adler et al. 2005)
claims that most teacher education research is
conducted by teacher educators studying the
teachers with whom they are working. Such stud-
ies could involve studying characteristics of their
students or the instructional approaches in which
they engage their students. This presents a chal-
lenging situation for educator-researchers who
need to reflect on their dual role to guard against
unintentional biases that could influence the out-
come of the research and their learning. For exam-
ple, “success stories” that dominate the research
literature may suggest that teacher educators’
learning generally involves situations that
improve teachers’ learning and knowledge. How-
ever, this could be explained at least by two rea-
sons: such published research of teacher
education projects might be planned more care-
fully than others, and the readability to publish
successful projects is higher than to publish less
successful ones.

In spite of this challenge, there are good rea-
sons for teacher educators to study teachers’ learn-
ing through their own courses and programs. In
system theory it is taken for granted that we only
have a chance to understand a system (e.g.,
teachers in a mathematics teacher education
course) if we try to bring about change in this
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system. This means that trying to understand is
important to achieve improvement, and trying to
improve is important to increase understanding.
However, the researcher needs to reflect carefully
on the strengths and weaknesses of distance and
nearness to the practical field being investigated.
For example, telling a “rich story”, taking into
account systematic self-reflection on one’s own
role as a teacher educator and researcher in the
process, being based on a viable research question
and building on evidence and critical data-
analysis, is an important means to gather relevant
results in teacher education research.
M

Mathematics Teacher Educators’
Learning Through Action Research and
Intervention Research

Action research and intervention research are
two of the common methods mathematics
teacher educators might engage in when
conducting research as a basis of their learning.
These methods allow them to investigate their
own practice in order to improve it. This inves-
tigation process might be supported by other
persons, but it is the teacher educators who
decide which problem is chosen, which data are
gathered, which interpretations and decisions are
taken, etc. Action research challenges the
assumption that knowledge is separate from
and superior to practice. Thus, through it, teacher
educators’ production of “local knowledge” is
seen as equally important as general knowledge,
and “particularization” (e.g., understanding a
specific student’s mathematical thinking) is
seen as equally important as “generalization”
(e.g., working out a classification of typical
errors).

“Intervention research” (see, e.g., Krainer
2003) done by teacher educators to investigate
teachers’ learning can take place in their class-
rooms influenced by interventions of their col-
leagues or often – as research shows – by their
own interventions (e.g., see Chapman 2008) or in
the field where it does not only apply knowledge
that has been generated within the university, but
much more, it generates “local knowledge” that
could not be generated outside the practice. Thus,
this kind of research is mostly process oriented
and context bounded, generated through continu-
ous interaction and communication with practice.
Intervention research tries to overcome the insti-
tutionalized division of labor between science and
practice. It aims both at balancing the interests in
developing and understanding and at balancing
the wish to particularize and generalize. Action
research as intervention research done by practi-
tioners themselves (first-order action research)
can also provide a basis for teacher educators to
investigate their own intervention practice
(second-order action research, see, e.g., Elliott
1991).

Worldwide, there is an increasing number of
initiatives in mathematics education based on
action research or intervention research. However,
most of them are related to teachers’ action
research (see, e.g., Chapman 2011; Crawford
and Adler 1996; papers in JMTE 6(2) and 9(3);
Benke et al. 2008; Kieran et al. 2013). In some
cases, even the traditional role names (teachers
vs. researchers) are changed in order to express
that both, individual learning and knowledge pro-
duction for the field, are a two-way street. For
example, in the Norwegian Learning Communi-
ties inMathematics (LCM) project (Jaworski et al.
2007), the team decided to replace “researchers
and practitioners” with “teachers and educators”
(“both of whom are also researchers”). There are a
lot of projects in which teachers document their
(evidence-based) experiences in reflecting papers.
In Austria, for example, nearly 1000 papers –
written by teachers for teachers – have been gath-
ered since the 1980s within the context of pro-
grams like PFL (see, e.g., Krainer 1998) and
IMST (Pegg and Krainer 2008; Krainer and
Zehetmeier 2013) and can be searched by key
word in an Internet database (http://imst.ac.at).
The most extensive and nationally widespread
version of action research by teachers is practiced
in Japan within the framework of “lesson study”
(see, e.g., Hart et al. 2011). In general, teacher
educators who participate directly or indirectly
in such cases of teachers’ action research are
afforded opportunities to learn in and from these
experiences.

http://imst.ac.at/
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Definition

Mathematics teacher identity (MTI) is commonly
“defined” or conceptualized in recent publications
of the mathematics education research community
as ways of being, becoming, and belonging; as
developing trajectories, and in narrative and dis-
cursive terms.
M

A Brief History

The concept of identity can be traced to Mead
(1934) and Erikson (1968), the former seeing iden-
tity as developed in interaction with the environ-
ment, and thus multiple, though it appears more
unified to the individual (Lerman 2012). The latter
saw identity as something that develops throughout
one’s life and is seen as more unified. The study of
teacher identity is more recent. Perspectives focus
on images of self (Nias 1989) as determining how
teachers develop, or on roles (Goodson and Cole
1994). One can argue that societal expectations and
perceptions and at the same time the teacher’s own
sense of what matters to them play key roles in
teachers’ professional identity. Beijaard et al.
(2004) argue, in their review, that 1988 saw the
emergence of teacher identity as a research field.
Special issues of teacher education journals focus-
ing on teacher identity attest to this (e.g., Teaching
and Teacher Education 21, 2005; Teacher Educa-
tion Quarterly, June 2008).
Identity Research in Mathematics
Education and MTI

Darragh’s (2016) examination of literature on
identity within mathematics education journals
over the past two decades indicates “an explo-
sion” (p. 19) of papers relating to identity. She
notes that “the largest outside influences on iden-
tity appear to be Wenger (1998) and/or Lave and
Wenger (1991)” (p. 23). Indeed Lave and Wenger
(1991, p. 115) argued that “learning and a sense of
identity are inseparable: They are aspects of the
same phenomenon.” Most identity research in
mathematics education however is clustered in a
few regions or countries. Darragh (2016, p. 23)
notes that “The largest number of studies were
located in the US (36%); 15% came from the
UK, 11% from Europe and 5% from each of
Australia, South Africa and New Zealand.” See
Mathematics Learner Identity entry for other the-
orists influencing identity research focused on
mathematics learners.

Within this explosion of identity research in
mathematics education, teacher identity research
has gained prominence. Darragh’s (2016) review
indicates that just under half of all identity articles
she reviewed focused on teachers or pre-service
teachers’ professional identities as mathematics
teachers or their mathematical identities as
teachers in general.

Despite increasing engagement with mathe-
matical learning and identity, many have argued
that the notion of identity is not operationalized.
See for example, Sfard and Prusak (2005)
for a critique on identity literature and their
subsequent provision of a narrative and
operationalized definition. MTI is increasingly
accepted as a dynamic rather than a fixed con-
struct even while debates continue as to whether
an individual has one identity with multiple
aspects or multiple identities (see Grootenboer
and Ballantyne 2010). Such interpretations of
identity point to teacher agency to reconstruct
or re-author her story through participation in
various mathematics education practices, partic-
ularly in the context of mathematics teacher sup-
port (e.g., Hodgen and Askew 2007; Lerman
2012). In contexts where mathematics teacher
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morale is low, and teachers are identified as math-
ematically deficient, identity research encour-
ages teacher education programs to focus on the
re-authoring of negative and damaging narratives
(e.g., Graven 2012).
Clusters of Research in MTI

Several clusters of issues can be identified in MTI
research. These include the following:

1. Discipline specialization is considered to be
highly significant in teacher identity both
generally and in mathematics teacher research
specifically (Hodgen and Askew 2007).
Connecting teacher identity and teacher emo-
tion is argued by some to be particularly
important in relation to mathematics teacher
identity where many teachers teach the subject
without disciplinary specialization in their
teacher training and with histories of negative
and/or very procedural/traditional experi-
ences of learning mathematics within their
own schooling (Hodgen and Askew 2007;
Grootenboer and Zevenbergen 2008; Lerman
2012).

2. Research into mathematics teacher identities
often deals separately with primary non-
specialist teachers, who teach across subjects,
and with secondary teachers, who teach only or
predominantly mathematics and who may or
may not have specialized in mathematics in
their pre-service education. The nature of the
way in which the discipline specificity of math-
ematics influences teacher identities differs in
relation to whether one is identified as a gener-
alist or a mathematics teacher. While it may be
internationally accepted that many more sec-
ondary mathematics teachers have discipline-
specific training in their pre-service studies, the
extent to which this is the case differs across
countries. As Grootenboer and Zevenbergen
(2008) point out, depending on the extent of
the shortage of qualified mathematics teachers,
secondary school mathematics classes are
often taught by nonspecialist teachers. Short-
age of qualified mathematics teachers can be
particularly high for developing countries. In
this respect, research into supporting such
teachers to strengthen their mathematics
teacher identities becomes important. Graven
(2004) describes how out-of-field teachers par-
ticipating in a long-term mathematics teacher
in-service program transformed their identities
from accidental “teachers of mathematics” to
“professional mathematics teachers” with tra-
jectories of further studies in the subject.
Research also tends to deal separately with
either pre-service, pre-service and beginner
teachers, or in-service teachers, as the way in
which identities evolve for these groups of
teachers differs in relation to the different prac-
tices in which they participate. For example, in
the Australian context, Goos and Bennison
(2008) research the development of a commu-
nal identity as beginning teachers of mathemat-
ics through the emergence of an online
community of practice.

3. MTI has also been foregrounded in relation to
studies researching mathematics teacher
retention. The ICME-12 (2012) Discussion
Group (DG11) on teacher retention included
as a key theme the notion of identity and
mathematics teacher retention. Several of the
papers presented in this DG highlighted the
role of strengthened professional identities,
increased sense of belonging, and develop-
ment of leadership identities as enabling fac-
tors contributing to teacher retention.
Presenters in this discussion group were
from the USA, South Africa, Israel,
New Zealand, Norway, and India. Research
on mathematics teacher identity seems to be
of particular interest in these countries as well
as in the UK and Australia (see reference list).
Similarly research into the relationship
between teacher identity and sustaining com-
mitment to teaching (more generally than only
for mathematics teaching) has been argued
across USA and Australian contexts (e.g.,
Day et al. 2005).

4. Another cluster of research focuses on teacher
identities in relation to curriculum specificities.
In the Australian context, where numeracy is to
be taught by all teachers across the curriculum,
Bennison (2015) developed an analytic lens
for researching identity of mostly non-
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M

mathematics teachers as embedders-of-
numeracy. A growing area of research in MTI
explores the relationship between mathematics
“teacher change/learning” and radical curricu-
lum change. This research often points to dis-
juncture (contradiction) between mathematics
teacher identities and expectations of reform
mandates (Schifter 1996; Van Zoest and Bohl
2005; Lasky 2005; Westaway and Graven
2018). Research also investigates the relation-
ship between teacher identity and assessment
policy and in particular the increasing use of
national standardized assessments across vari-
ous contexts (Morgan et al. 2002; Pausigere
and Graven 2013a).

5. Connected with the cluster above that
researches mathematics teacher identities in
relation to curriculum and assessment policies
is a cluster of work that draws on Bernstein’s
macro perspective on the way policy, curricu-
lum, and assessment practices shape teacher
identity. His work has been used to comple-
ment localized analyses of identity within
teacher communities with a broader concept
of identity connected to macro structures of
power and control. Bernstein first introduced
the concept of identity in 1971 (Bernstein and
Solomon 1999). This analysis did not focus on
identity in terms of regulation and realization
in practice but rather on identity in terms of the
“construction of identity modalities and their
change within an institutional level” (p.271).
Thus Bernstein approaches identity from a
broader systemic level, which of course
impacts on enabling and constraining the emer-
gence of localized individual teacher identities.
Bernstein’s notion of “Projected Pedagogic
Identities” (Bernstein and Solomon 1999) pro-
vides a way of analyzing macro-promoted
identities within contemporary curriculum
change, which is the context within which
teacher roles are elaborated in curriculum doc-
uments. South African and British Mathemat-
ics Educators have particularly drawn on the
work of Bernstein to analyze positions avail-
able to teachers within often contradictory and
shifting “official” discourses. (See for example
Morgan et al. 2002; Naidoo and Parker 2005;
Pausigere and Graven 2013b).
Concluding Comments

Identity research in mathematics education seems
to focus on either learners or teachers. Darragh’s
(2016) review indicated only 2% of articles
focused on the mathematical identities of both
teachers and their learners, which would indicate
that research into the relationship between teacher
and learner identities is under-researched. The
works of Heyd-Metzuyanim (2013) and Heyd-
Metzuyanim and Graven (2016) are two examples
of recent attempts to examine the relationship
between mathematics learner identities and math-
ematics teacher identities.

The references suggest that as in the case of
identity research in education more broadly, math-
ematics teacher identity research is not necessarily
a global perspective. Research on international
interpretations of the relevance of the notion is
needed. At the same time the notion is ubiquitous
in the social sciences and mathematics education
researchers working with “identity” need to spec-
ify how they are using the term, what the sources
are for their perspectives, and the relevance for the
teaching and learning of mathematics.
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Definition and Historical Background

The word curriculum has had several meanings
over time and has been interpreted broadly not
only as a project about what should be learned
by students but, in the context of teachers and
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curriculum, as all the experiences which occur
within a classroom. These different meanings are
grounded in different assumptions about teaching
and the nature of interactions of the teacher with
ideas that support curriculum guidelines
(Clandinin and Connelly 1992). These different
meanings have defined several roles of teachers in
mathematics curriculum development that can be
described as the history of a shift from teachers as
curriculum users to teachers as curriculum inter-
preters and/or curriculum makers. Whereas the
former view assumes curricula to be “teacher-
proof,” the latter includes teachers’ activities like
reflecting, negotiating issues of curricula and dis-
seminating to their peers. This shift mirrors
acknowledgment of the centrality of the teacher
in curricula issues (Clarke et al. 1996;
Hershkowitz et al. 2002; Lappan et al. 2012) and
viewing teachers as key stakeholders of educa-
tional change (Kieran et al. 2013). These mean-
ings are located along a continuum from a view of
curricula as fixed, embodying discernible and
complete images of practice to a view of curricula
guidelines as influencing forces in the construc-
tion of practice.

In the 1970s, Stenhouse (1975) defined curric-
ulum as “an attempt to communicate the essential
principles and features of an educational proposal
in such a form that it is open to critical scrutiny
and capable of effective translation into practice”
(p. 4). The teacher is central to this translation into
practice. A model that is commonly used for anal-
ysis in mathematics education sees curricula as
located at three levels: the intended curriculum
(at the system level, the proposal), the
implemented curriculum (at the class level, the
teacher’s role), and the attained curriculum
(at the student level, the learning that takes
place) (Clarke et al. 1996).

Focusing on the implemented curriculum,
Stenhouse began the “teachers as researchers”
movement. He believed that the “development of
teaching strategies can never be a priori. New
strategies [principled actions] must be worked
out by groups of teachers collaborating within a
research and development framework [. . .]
grounded in the study of classroom practice”
(p. 25). The development of this idea in the math-
ematics education field illustrated the complexity
of teaching and the key roles played by teachers,
underlining the importance of teachers’ processes
of interpretation of curricula materials (Zack et al.
1997). This role of mathematics teachers in the
development of curricula has been highlighted by
the recent technological advances favoring coop-
erative work among teachers in design tasks (e.g.,
e-textbooks) that have been seen as interfaces
between policy and practice. This new position
underscores the role of teachers’ authority in the
curriculum design process (Pepin et al. 2016). As
a consequence, new perspectives are being gener-
ated to understand how the relationships between
teachers and curriculum change when teachers
gain experience through professional learning
opportunities (Remillard et al. 2009).
Different Cultures Shaping Different
Forms of Interaction Between Teachers
and Curricula

The relation between teacher and curricula
depends on internal and external influences.
Teachers frame their approach to curricula differ-
ently, dependent on their conceptions of different
components of curricula and/or through the dif-
ferent structures of professional development ini-
tiatives (Remillard et al. 2009). Locally, teachers’
knowledge and pedagogical beliefs are influences
as they engage with curricula materials. Further-
more, the content and form of curricula materials
influence the ways in which teachers interpret,
evaluate, and adapt these materials considering
their students’ responses and needs in a specific
institutional context.

Globally, countries have different curricular
traditions shaping different conditions for
teachers’ roles in curriculum development. Thus,
the diversity of cultures and features of each
country’s system generate different modes of
interaction between teachers and curricula, as
well as different needs and trends in teacher pro-
fessional development (Clarke et al. 1996). How-
ever, results from international comparison
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assessments such as TIMSS and PISA are produc-
ing moves of mathematics curricula between
countries (e.g., the translation of the Singapore
curriculum to different countries due to good
scores). This does not, then, reflect the cultural
idiosyncrasy in different global regions in the
world.

The main elements which have been proved to
affect the relation between teachers and curricula,
are, for instance, the distance that usually exists
between the intended curriculum and the
implemented curriculum; whatever the level of
detail and prescription of the curriculum descrip-
tion, the implemented curriculum remains a subtle
composition of the old and the new. In this sense,
curricula are related with teacher practice, and
curricula change is linked to how teachers contin-
uously further develop or change their current
practice, in particular with regard to teaching and
assessment and professional development initia-
tives (Krainer and Llinares 2010).
Teachers and Curricula Within a
Collaborative Perspective

From this view of interaction between teacher and
curriculum, curriculum development initiatives
are a context for teacher professional development
reconstructing wisdom through inquiry. There is a
long tradition of teachers developing curriculum
materials in collaborative groups.

In the United Kingdom in the late 1970s and
early 1980s, Philip Waterhouse’s research (2001,
updated by Chris Dickinson), supported by the
Nuffield Foundation, led to the founding of a
number of curriculum development organizations
called Resources for Learning Development
Units. In these units, the mathematics editor (one
of a cross-curricular team of editors) worked with
groups of not more than ten teachers, facilitating
their work on either developing materials related
to government initiatives or from perceived needs
of teachers themselves. The explicit focus for the
teachers was on the development and then pro-
duction of materials that had been tried out in their
classrooms. However, the implicit focus of the
editor was on the professional development of
those teachers in the groups. Also, in France,
since the 1970s, the IREM network has func-
tioned on the basis of mixed groups of academics,
mathematicians, and teachers inquiring,
experimenting in classrooms, producing innova-
tive curriculum material, and organizing teacher
professional development sessions relying on
their experience (e.g., www.univ-irem.fr/). In
recent views of how teachers interact with, draw
on, refer to, and are influenced by curriculum
resources, teachers are challenged to express
their professional knowledge keeping a balance
between the needs of their specific classrooms and
their conceptions. In many countries, as mathe-
matics education research has matured, there is
increasing development of curriculum materials
by teachers themselves working collaboratively
and the organization of teacher professional
development, for example, Sésamath, a French
online association of mathematics teachers to
design curriculum materials collaboratively.

Barbara Jaworski, working in Norway from
2003 to 2010, has led research projects in partner-
ship with teachers to investigate “Learning Com-
munities in Mathematics” and ”Teaching Better
Mathematics” (see, e.g., Kieran et al. 2013). In
Canada, led by Michael Fullan, there is a large-
scale project supporting professional develop-
ment of teachers through curriculum reform in
literacy and numeracy based on in-school collab-
orative groupings of teachers attending a central
“fair” to present their inquiry work once a year.
This project, Reach Every Student, energizing
Ontario Education, works on the attained curric-
ulum through the implemented one and has led to
Fullan’s (2008) book Six Secrets of Change. In the
Latin-American context, the “praxis perspective”
adopted in development of curricula in Costa Rica
from 2012 to 2015 underlines the role played by
different factors such as defining opportunities of
teachers’ professional development, the strategic
role played by the online interaction, and the
influence of different forms of assessment on
teacher practice.

http://www.univ-irem.fr/
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With the spread of ideas through international
conferences, meetings and research collabora-
tions, ideas such as the Japanese “lesson study”
have spread widely (Alston 2011). Lesson study is
a professional development process where
teachers engage in systematically examining
their practice. It is considered to be a means of
supporting the dissemination of documents like
standards, benchmarks, and nationally validated
curricula. These multiple views define distinc-
tive professional development pathways through
curricula reforms. These pathways influence
teachers’ professional identities and work prac-
tices. Another example is “learning study”where
teachers collaborate (with or without a
researcher) with the aim of enhancing student
learning of a particular topic (Runesson 2008).
By carefully and systematically studying their
classroom teaching and students’ learning, teachers
explore what students must learn in order to
develop a certain capability. Learning study is
based on an explicit learning theory (variation the-
ory, Lo 2012).

Social perspectives on the role of teachers in
curricula reforms are being reported by Kieran
and others (2013), where the major focus is on
the role and nature of teachers’ interactions within
a group of teachers. From this perspective,
teachers are motivated by collaborative inquiry
activities (teams, communities, and networks)
aiming at interpreting and implementing curricula
materials, as a way of “participation with”
(Remillard et al. 2009, Pegg and Krainer 2008).
These engagements must be understood in light of
their particular local and global contexts.
Teachers’ learning through collaborative inquiry
activities, contextualized in curriculum develop-
ment initiatives, has allowed the contextual con-
ditions in which curriculum is implemented in
different traditions to be made explicit. Pegg and
Krainer (2008) reported examples of large-scale
projects involving national reform initiatives in
mathematics where the focus was initiating pur-
poseful pedagogical change through involving
teachers in rich professional learning experiences.
The motivation for these initiatives was a
perceived deficiency in students’ knowledge of
mathematics (and science) understood as the
attained curriculum. In all of these programs, col-
laboration, communication, and partnerships
played a major role among teachers and university
staff members of the program. In these programs,
the teachers were not only seen as participants but
crucial change agents who were regarded as col-
laborators and experts (Pegg and Krainer 2008).
This view of teachers as change agents emerged
from the close collaboration among groups of
stakeholders and the different forms of communi-
cations that developed. From all those variables
defining the relationships between teachers and
curricula, how curricula principles move between
cultures have begun to appear as key issues (e.g.,
comparison and analysis of textbooks from differ-
ent cultures, Leung et al. 2006).
Open Questions

The relationship between teacher and curricula
defines a set of open questions in different realms.
These questions are linked to the fact that the
relationship between teachers and curricula is
moving, due to a diversity of factors: the increas-
ing autonomy and power given to teachers regard-
ing curriculum design and implementation in
some countries at least, the development of col-
laborative practices and networks in teachers’
communities, the evolution of relationships
between researchers and teachers, the explosion
of curriculum resources and their easier accessi-
bility thanks to the internet, the impact of interna-
tional comparisons favoring the moving of
curricular principles between cultures, etc. Thus,
some open questions are:

1. What are the implications of the school-based
partial transfer of power in curriculum
decision-making to teachers based on teachers’
practical, personal reflective experience and
networks?

2. What role do collegial networks play in how
ideas about curricula change are shared
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including when the design uses the affordance
of digital curriculum resources (e.g., using
electronic communications and online plat-
forms to share the curriculum resources)?

3. How do new kinds of practices and teaching
objectives emerge as a consequence of new
resources influencing the relation between
teacher and curricula?

4. How can reform initiatives cope with the bal-
ance between national frameworks for curric-
ula (e.g., educational standards as expressions
of societal demands) and local views on cur-
ricula as negotiated between the teachers of
one school?

5. How does the exchange between cultures influ-
ence the curriculum-teacher relationships and
how could sociocultural theories explain these
influences?

6. What role do students play in ideas related to
curricula (e.g., starting topics based on stu-
dents’ interests, questions, and so on)?
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Definition

Mathematization refers to the formatting of pro-
duction, decision-making, economic management,
means of communication, schemes for surveilling
and control, war power, medical techniques, etc.,
by means of mathematical insight and techniques.

Mathematization provides a particular chal-
lenge for mathematics education as it becomes
important to develop a critical position to mathe-
matical rationality as well as new approaches to
the construction of meaning.
Characteristics

The notions of mathematization and demathe-
matization, the claim that there is mathematics
everywhere, and mathematics in action are
addressed, before we get to the challenges that
mathematics education is going to face.
Mathematization and
Demathematization

It is easy to do shopping in a supermarket. One
puts a lot of things into the trolley and pushes it to
the checkout desk. Here an electronic device used
by the cashier makes a pling-pling-pling melody,
and the total to be paid is shown. One gets out the
credit card, and after a few movements by the
fingers, one has bought whatever. Nomathematics
in this operation.

However, if we look at the technologies that
are configuring the practice of shopping, one finds
an extremely large amount of advanced mathe-
matics being brought in operation: The items are
coded and the codes are read mechanically; the
codes are connected to a database containing the
prices of all items; the prices are added up; the
credit card is read; the amount is subtracted from
the bank account associated to the credit card;
security matters are observed; schemes for coding
and decoding are taking place.

We have to do with a mathematized daily prac-
tice, and we are immersed in such practices. We
live in a mathematized society (see Keitel et al.
1993, for an initial discussion of such processes).
Gellert and Jablonka (2009) characterize the
mathematization of society in the following way:
“Mathematics has penetrated many parts of our
lives. It has capitalised on its abstract consider-
ation of number, space, time, pattern, structure,
and its deductive course of argument, thus gaining
an enormous descriptive, predictive and prescrip-
tive power” (p. 19).

However, most often the mathematics that is
brought into action is operating beneath the surface
of the practice. At the supermarket, there is nomath-
ematics in sight. In this sense, as also emphasized by
Jablonka and Gellert (2007), a demathematization is
accompanying a mathematization.
There Is Mathematics Everywhere

Mathematization and the accompanying
demathematization have a tremendous impact on
all forms of practices. Mathematics-based tech-
nology is found everywhere.

One can see the modern computer as a materi-
alized mathematical construct. Certainly the com-
puter plays a defining part of a huge range of
technologies. It is defining for the formation of
databases and for the processing of information
and knowledge.

Processes of production are continuously tak-
ing new forms due to new possibilities for autom-
atization, which in turn can be considered a
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materialized mathematical algorithm. Any form
of production – being of TV sets, mobile phones,
kitchen utensils, cars, shoes, whatever – repre-
sents a certain composition of automatic processes
and manual labor. However, this composition is
always changing due to new technologies, new
needs for controlling the production process, new
conditions for outsourcing, and new salary
demands. Crucial for such changes is not only
the development of mathematics-based technolo-
gies of automatization but also of mathematics-
based procedures for decision-making.

In general mathematical techniques have a huge
impact on management and decision-making (see,
for instance, O’Niel 2016). As an indication, one
can think of the magnitude of cost-benefit analyses.
Such analyses are crucial, in order not only to iden-
tify new strategies for production and marketing but
to decision-making in general. Complex cost-
benefit analyses depend on the calculation power
that can be executed by the computer. The accom-
panying assumption is that a pro et contra argumen-
tation can be turned into a straightforward
calculation. This approach to decision-making
often embraces an ideology of certainty claiming
that mathematics represents objectivity and neutral-
ity. Thus, in decision-making we find an example
not only of a broad application of mathematical
techniques but also an impact of ideological
assumptions associated with mathematics.

Mathematics-based technologies play crucial
roles in different domains, and we can think of
medicine as an example. Here we find
mathematics-based technologies for making diag-
noses, for defining normality, for conducting a
treatment, and for completing a surgical operation.
Furthermore, the validation of medical research is
closely related to mathematics. Thus, any new type
of medical treatment needs to be carefully
documented, and statistics is crucial for doing this.

Not only medicine but also modern warfare is
mathematized. As an example one can consider the
drone, the unmanned aircraft, which has been used
by the USA, for instance, in the war in Afghani-
stan. The operation of the drone includes a range of
mathematics brought in action. The identification
of a target includes complex algorithms for pattern
recognition. The operation of a drone can only take
place through the most sophisticated channels of
communication, which in turn must be protected
by advanced cryptography. Channels of communi-
cation as well as cryptography are completely
mathematized. The decision of whether to fire or
not is based on cost-benefit analyses: Which target
has been identified? How significant is the target?
What is the probability that the target has been
identified correctly? What is the probability that
other people might be killed? What is the price of
the missile? Mathematics is operating in the mid-
dle of this military logic.
Mathematics in Action

The notion of mathematics in action – that can be
seen as a further development of “formatting
power of mathematics” (Skovsmose 1994) – can
be used for interpreting processes of mathemati-
zation (see, for instance, Christensen et al. 2009;
Skovsmose 2009, 2014, 2016; Yasukawa et al.
2016). Mathematics in action can be characterized
in terms of the following issues:

Technological imagination refers to the concep-
tualization of technological possibilities. We can
think of technology of all kinds: design and con-
struction of machines, artifacts, tools, robots, auto-
matic processes, networks, etc.; decision-making
concerningmanagement, advertising, investments,
etc.; and organization with respect to production,
surveillance, communication, money processing,
etc. In all such domains, mathematics-based tech-
nological imagination has been put into operation.
A paradigmatic example is the conceptualization
of the computer in terms of the Turing machine.
Even certain limits of computational calculations
were identified before any experimentation was
completed. One can also think of the conceptuali-
zation of the Internet, of new schemes for surveil-
ling and robotting (see, for instance, Skovsmose
2012), and of new approaches in cryptography
(see, for instance, Skovsmose and Yasukawa
2009). In all such cases, mathematics is essential
for identifying new possibilities.

Hypothetical reasoning addresses conse-
quences of not-yet-realized technological con-
structions and initiatives. Reasoning of the form



Mathematization as Social Process 607

M

“if p then q, although p is not the case” is essential
to any kind of technological enterprise. Such
hypothetical reasoning is most often model
based: one tries to grasp implications of a new
technological construct by investigating a mathe-
matical representation (model) of the construct.
Hypothetical reasoning makes part of decision-
making about where to build an atomic power
plant, what investment to make, what outsourcing
to make, etc. In all such cases one tries to provide
a forecasting and to investigate possible scenarios
using mathematical models. Naturally a mathe-
matical representation is principally different
from the construct itself, and the real-life implica-
tion might turn out to be very different from
calculated implications. Accompanied by
(mischievous) mathematics-based hypothetical
reasoning, we are entering the risk society.

Legitimation or justification refers to possible
validations of technological actions. While the
notion of justification includes an assumption
that some degree of logical honesty has been
exercised, the notion of legitimation does not
include such an assumption. In fact, mathematics
in action might blur any distinction between jus-
tification and legitimation. When brought into
effect, a mathematical model can serve any kind
of interests.

Realization refers to the phenomenon that
mathematics itself comes to be part of reality, as
was the case at the supermarket. A mathematical
model becomes part of our environment. Our life-
world is formed through techniques as well as
through discourses emerging from mathematics.
Real-life practices become formed through math-
ematics in action. It is this phenomenon that has
been referred to as the formatting power of
mathematics.

Elimination of responsibilitymight occur when
ethical issues related to implemented action are
removed from the general discourse about tech-
nological initiatives. Mathematics in action seems
to be missing an acting subject. As a consequence,
mathematics-based actions easily appear to be
conducted in an ethical vacuum. They might
appear to be determined by some “objective”
authority as they represent a logical necessity
provided by mathematics. However, the
“objectivity” of mathematics is a myth that
needs to be challenged.

Mathematics in action includes features of imag-
ination, hypothetical reasoning, legitimation, justi-
fication, realization including a demathematization
of many practices, as well as an elimination of
responsibility. Mathematics in action represents a
tremendous knowledge-power dynamics.
New Challenges

Mathematics in action brings about several chal-
lenges to mathematics education of which I want
to mention some.

Over centuries mathematics has been cele-
brated as crucial for obtaining insight into nature,
as being decisive for technological development,
and as being a pure science. Consistent or not,
these assumptions form a general celebration of
mathematics. This celebration can be seen as
almost a defining part of modernity. However,
by acknowledging the complexity of mathematics
in action, such celebration cannot be sustained.
Mathematics in action has to be addressed criti-
cally in all its different instantiations. Like any
form of action, mathematics in action may have
any kind of qualities, such as being productive,
risky, dangerous, benevolent, expensive, dubious,
promising, and brutal. It is crucial for any mathe-
matics education to provide conditions for
reflecting critically on any form of mathematics
in action.

This is a challenge to mathematics education
both as an educational practice and research. It
becomes important to investigate mathematics in
action as part of complex sociopolitical processes.
Such investigations have been developed with
reference to ethnomathematical studies, but
many more issues are waiting for being addressed
(see, for instance, D’Ambrosio’s 2012 presenta-
tion of a broad concept of social justice).

Due to processes of mathematization and not
least to the accompanying processes of
demathematization, one has to face new chal-
lenges in creating meaningful activities in the
classroom. Experiences of meaning have to do
with experiences of relationships. How can we
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construct classroom activities that, on the one
hand, acknowledge the complex mathematization
of social practices and, on the other hand,
acknowledge the profound demathematization of
such practices? This general issue has to be
interpreted with reference to particular groups of
students in particular sociopolitical contexts (see,
for instance, Gutstein 2012).

To break from any general celebration of math-
ematics, to search for new dimensions of mean-
ingful mathematics education, and to open for
critical reflections on any form of mathematics in
action are general concerns of critical mathemat-
ics education (see also ▶ “Critical Mathematics
Education” in this Encyclopedia).
Cross-References
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cognitive activity; that is, knowledge about, and
thinking about, one’s own thinking.
M

Characteristics

Although the construct, metacognition, is used
quite widely and researched in various fields of
psychology and education, its history is rela-
tively short beginning with the early work of
John Flavell on metamemory in the 1970s.
Metamemory was a global concept encom-
passing a person’s knowledge of “all possible
aspects of information storage and retrieval”
(Schneider and Artelt 2010). Flavell’s (1979)
model of metacognition and cognitive monitor-
ing has underpinned much of the research on
metacognition since he first articulated it. It was
a revised version of his taxonomy of meta-
memory that he had developed with Wellman
(Flavell and Wellman 1977). According to his
model, a person’s ability to control “a wide
variety of cognitive enterprises occurs through
the actions and interactions among four classes
of phenomena: (a) metacognitive knowledge,
(b) metacognitive experiences, (c) goals
(or tasks), and (d) actions (or strategies)”
(p. 906). Metacognitive knowledge incorporates
three interacting categories of knowledge,
namely, personal, task, and strategy knowledge.
It involves one’s (a) sensitivity to knowing how
and when to apply selected forms and depths of
cognitive processing appropriately to a given
situation (similar to subsequent definitions of
partly what is called procedural metacognitive
knowledge), (b) intuitions about intra-individual
and inter-individual differences in terms of
beliefs, feelings, and ideas, (c) knowledge
about task demands which govern the choice
of processed information, and (d) a stored rep-
ertoire of the nature and utility of cognitive
strategies for attaining cognitive goals. The
first of these is mostly implicit knowledge,
whereas the remaining three are explicit, con-
scious knowledge. Metacognitive experiences
are any conscious cognitive or affective experi-
ences which control or regulate cognitive activ-
ity. Achieving metacognitive goals are the
objectives of any metacognitive activity. Meta-
cognitive strategies are used to regulate and
monitor cognitive processes and thus achieve
metacognitive goals.

In the two decades that followed when Flavell
and his colleagues had initiated research into
metacognition (Flavell 1976, 1979, 1981), the
use of the term became a buzzword resulting in
an extensive array of constructs with subtle dif-
ferences in meaning all referred to as metacogni-
tion (Weinert and Kluwe 1987). This work was
primarily in the area of metacognitive research on
reading; however, from the early 1980s, work in
mathematics education had begun mainly related
to problem solving (Lester and Garofalo 1982)
particularly inspired by Schoenfeld (1983, 1985,
1987) and Garofalo and Lester (1985). Cognition
and metacognition were often difficult to distin-
guish in practice, so Garofalo and Lester (1985)
proposed an operational definition distinguishing
cognition and metacognition which clearly
demarcates the two, namely, cognition is
“involved in doing,” whereas metacognition is
“involved in choosing and planning what to do
and monitoring what is being done” (p. 164). This
has been used subsequently by many researchers
to be able to delineate the two.

Today, the majority of researchers in meta-
cognitive research in mathematics education
have returned to the roots of the term and share
Flavell’s early definition and elaborations
(Desoete and Veenman 2006). The field has firmly
established the foundations of the construct and
by building on these foundations, several
researchers have extended Flavell’s work usefully
and there is an expanding body of knowledge in
the area. The elements of his model have been
extended by others (e.g., elaborations of meta-
cognitive experiences, see Efklides 2001, 2002)
or are the subject of debate (e.g., motivational and
emotional knowledge as a component of meta-
cognitive knowledge, see Op ‘t Eynde et al.
2006). Subsequently, it has led to many theoretical
elaborations, interventions, and ascertaining stud-
ies in mathematics education research (Schneider
and Artelt 2010).

Flavell did not expect metacognition to be
evident in students before Piaget’s stage of formal
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operational thought, but more recent work by
others has shown that preschool children
already start to develop metacognitive aware-
ness. Work in developmental and educational
psychology as well as mathematics education
has shown that metacognitive ability, that is, the
ability to gainfully apply metacognitive knowl-
edge and strategies, develops slowly over the
years of schooling and there is room for
improvement in both adolescence and adult-
hood. Furthermore, studying the developmental
trajectory of metacognitive expertise in mathe-
matics entails examining both frequency of use
and the level of adequacy of utilization of
metacognition. Higher frequency of use does
not necessarily imply higher quality of applica-
tion, with several researchers reporting such
phenomena as metacognitive vandalism, meta-
cognitive mirage and metacognitive misdirec-
tion. Metacognitive vandalism occurs when
the response to a perceived metacognitive trig-
ger (“red flag”) involves taking drastic and
destructive actions that not only fail to address
the difficulty but also could change the nature
of the task being undertaken. Metacognitive
mirage results when unnecessary actions are
engaged in, because a difficulty has been per-
ceived, but in reality, it does not exist. Meta-
cognitive misdirection is the relatively common
situation where there is a potentially relevant
but inappropriate response to a metacognitive
trigger that is purely inadequacy on the part of
the task solver not deliberate vandalism. Recent
research shows that as metacognitive abilities in
mathematics develop, not only is there
increased usage but also the quality of that
usage increases.

The popularity of the metacognition construct
stems from the belief that it is a crucial part of
everyday reasoning, social interaction as occurs in
whole class and small group work and more com-
plex cognitive tasks such as mathematical prob-
lem solving, problem finding and posing,
mathematical modeling, investigation, and
inquiry based learning.
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Definition

Meta-Didactical Transposition is a theoretical
framework used to describe mathematics
teachers’ professional development as a process,
comprising a number of variables and their possi-
ble changes over time. It was first introduced in
Italy at the National Seminar in Didactics ofMath-
ematics (http://www.seminariodidama.unito.it/
mat12.php) and then more widely for the interna-
tional community (Arzarello et al. 2014). It is
based on Chevallard’s Anthropological Theory
of Didactics (Chevallard 1985 and Chevallard,
this Encyclopedia) and the framework takes into
account the relationships and reciprocal influ-
ences of two communities – the community of
teachers and that of researchers, involved in pro-
fessional development – with respect to their pro-
fessional practices.

Meta-Didactical Transposition involves these
intertwined features:

1. Institutional aspects
2. Meta-didactical praxeologies
3. The dynamics between internal and external

components
4. The role of the broker
5. Double dialectics

Meta-Didactical Transposition has some con-
sequences and applications in other countries,
such as France and Australia (Aldon et al. 2013;
Prodromou et al. 2017), and it has led to other
studies, such as two research fora at conferences
convened by the International Group for the Psy-
chology of Mathematics Education (Aldon et al.
2013; Clark-Wilson et al. 2014) and other papers
(e.g., Taranto et al. 2017).
Why Do We Need a Dynamic Framework
Relating to Teachers’ Practices?

Teacher education is a complex phenomenon
encompassing different variables and contexts:
recently, the theme of “teachers working and
learning in collaboration” has been studied in a
survey on international literature in the last years
(Robutti et al. 2016). This theme can be
approached from different perspectives: institu-
tional, cognitive, didactical. The Meta-
Didactical Transposition framework was devel-
oped by a team of researchers in 2012 to describe
the processes involved in teacher education. It
has been presented at the national seminar in
didactics of mathematics (Arzarello et al.
20121) and then disseminated on various occa-
sions: Psychology of Mathematics Education,
cross-countries seminars (PME), International
Congress on Mathematics Education (ICME),
The International Commission for the Study
and Improvement of Mathematics Teaching
(CIEAEM).

The framework was introduced as an attempt
to describe teachers’ practices in educational pro-
grams in a dynamic way, namely, as processes
evolving over time (Arzarello et al. 2014) as a
mean to capture the theoretical choices taken by
academics involved in national programs of
teacher education directed by the Italian Ministry
of Education. While designing these teacher edu-
cation programs, the necessity to introduce the
framework emerged, as there was a sense of some-

http://www.seminariodidama.unito.it/mat12.php
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thing missing from other frameworks found in
literature (e.g., the content knowledge for
teachers, by Ball and Bass 2003), which although
strong and valued by the international community,
did not completely fit with the Italian situation.

Our framework had to:

(a) Take into account the importance of the insti-
tutions in a way that considered not only the
educational programs for teachers, but also
the teachers’ work in the classrooms. In Italy,
as in many other European countries, the
whole educational system (from kindergarten
to university) is public and is governed by
multiple institutions at different levels
(national, regional, local). Alongside this, the
institutional dimension has importance within
the politics of the European Union. As life-
long education is considered a strategic ele-
ment for development in Europe, educational
programs are promoted for prospective or
in-service teachers. These programs assume
a clear cooperation between the research
world and the institutional-political world
(see http://ec.europa.eu/education/llp/official-
documents-on-the-llp_en.htm). This led us to
the Anthropological Theory of Didactics
(Chevallard, this Encycopedia) as a theoreti-
cal basis for the development of Meta-
Didactical Transposition, grounded by the
assumption that the teaching of mathematics
is considered to be contextualized within mul-
tiple institutions.

(b) Value the work of teachers in communities:
Many teachers’ educational programs in Italy
(e.g., m@t.abel,2 Piano Lauree Scientifiche,3

MOOC4) are organized in small/large com-
munities of teachers working together within
a professional development project. These
communities are more than communities of
practice (Wenger 1998) as teachers who are
2http://mediarepository.indire.it/iko/uploads/allegati/
M7PWITOE.pdf
3http://www.dipmatematica.unito.it/do/home.pl/View?
doc=pls.html
4http://www.difima.unito.it/mooc
involved in institutional programs have for-
mal tasks to accomplish and practices to fol-
low. In many cases, they can be considered as
communities of inquiry, in the sense of
Jaworski (2008, p. 313): “In terms of
Wenger’s (1998) theory, that belonging to a
community of practice involves engagement,
imagination and alignment, we might see the
normal desirable state as engaging students
and teachers in forms of practice and ways
of being in practice with which they align
their actions and conform to expectations . . .
in an inquiry community, we are not satisfied
with the normal (desirable) state, but we
approach our practice with a questioning atti-
tude, not to change everything overnight, but
to start to explore what else is possible; to
wonder, to ask questions, and to seek to
understand by collaborating with others in
the attempt to provide answers to them. In
this activity, if our questioning is systematic
and we set out purposefully to inquire into our
practices, we become researchers.” (see also
▶ “Communities of Inquiry in Mathematics
Teacher Education”, This Encyclopedia).

(c) Consider also the community of researchers
who are involved in the educational program
and who not only take the role of designers of
the tasks for teachers, but also as trainers of
the teachers and as academics who research
the topic of teacher education, as happened to
the Italian team in the development of Meta-
Didactical Transposition.

(d) Acknowledge the fact that teachers work
alongside researchers in such programs and
that interactions between the two communi-
ties are at the core of the teachers’ profes-
sional development, with a deep influence of
the community of researchers on the commu-
nity of teachers. Vice versa, the importance of
the influence of the teachers’ community on
the researchers’ community is also to be con-
sidered. In fact, what has characterized the
Italian academic context in mathematics edu-
cation over many years is exactly this produc-
tive interplay between teachers and
researchers at the level of teacher education,
research, and the implementation of teaching

http://ec.europa.eu/education/llp/official-documents-on-the-llp_en.htm
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experiments in the classes. In Italy, many uni-
versities welcome teachers’ participation in
research groups and researchers go to schools
to work with students, alongside the teachers.
The productive interaction between teachers
(at different school levels) and researchers is
one of the distinctive features in the develop-
ment of Italian mathematics education, in
terms of its theoretical and experimental
approaches (Arzarello and Bartolini Bussi
1998).

(e) Last but not least, we needed to capture the
professional development phenomena in a
dynamic way, as they occur in process and
not only giving snapshots at certain moments.
During an educational program, teachers
encountering a new didactical paradigm are
changed by the experience, and this change is
evident if we compare their attitude at the end
of the program to that of the starting points.
They evolve, embrace new ideas, viewpoints,
practices, or simply gain awareness of the con-
tent they have met during the program. On the
other hand, researchers may evolve too,
resulting in changes in their practices and/or
awareness. The interaction between the two
communities is not neutral as it results in
effects on both. A framework that emphasizes
this evolution is a framework that takes into
account the professional development as a pro-
cess, not only a product, and describes it in a
dynamic way (as a movie, not as a snapshot).

The previous points were the main reasons, in
the Italian institutional context, that directed aca-
demics towards the development of the Meta-
Didactical Transposition framework in 2012,
along with a sense of missing something, if
using other frameworks (e.g., Ball and Bass
2003) even strong and valued by the international
community – but not completely fitting with the
Italian situation.

The Meta-Didactical Transposition framework
is constructed to highlight the need to take the
complexity of teacher education into account
with respect to the institutions in which the
teachers operate, alongside the relationships that
teachers must have with these institutions.
The team of researchers involved in develop-
ing the framework was composed by experienced
and newcomer members, coming from two Uni-
versities: Torino and Modena. The experienced
ones were Ferdinando Arzarello, Ornella Robutti,
Nicolina Malara, and Rossella Garuti, while the
newcomers were Cristina Sabena, Annalisa Cusi,
and Francesca Martignone.
Meta-Didactical Transposition

The Meta-Didactical Transposition framework is
introduced to describe the practices of both
researchers and teachers, when they work together
in the institutions (schools, Universities), within
an educational program.We are referring typically
to a community of teachers involved in a profes-
sional development (it could be an educational
program of mathematics, or technology integrated
in mathematics teaching, or other, at national or
local level), planned and carried out by
researchers with the role of designers of the pro-
gram, and also as teacher educators.

This framework is based on the Chevallard’s
Anthropological Theory of Didactics
(Chevallard 1985, 1992, and This Encyclope-
dia), which is grounded in the teaching of math-
ematics at school. However, Meta-Didactical
Transposition extends this theory to the context
of teacher education, usually fully situated
within and constrained by the institutions, to
take account of:

• The constraints imposed by the institutions
(including schools, universities, policy
makers, teachers’ associations, mathematics
society, and Ministry of Education) that pro-
mote teacher education in relation to some
specific goals (e.g., promoting teachers’
knowledge of new curricula, new teaching
practices, or the integration of new technolo-
gies for the teaching of mathematics)

• The complexity of mathematics teachers’ pro-
fessional development situated in the institu-
tions and involving teachers’ and researchers’
communities and the dialectics between the
two communities
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• Professional development being considered in
a dynamic way, taking into account the evolu-
tionary processes involved in the practices of
members of the communities, that of
researchers and that of teachers.

The Institutional Aspects
Chevallard’s theory focuses on the institutional
dimension of mathematical knowledge: it places
mathematical learning and teaching firmly within
the human activities related to it and in the context
of social institutions. Actually, Chevallard
stresses the fact that the very nature of mathemat-
ical objects in school depends on the person or the
institution which it is related to: “An object exists
since a person, or an institution acknowledges that
it exists (for it itself)” (▶ “Didactic Transposition
in Mathematics Education”). At the core of his
theory are the notions of Didactic Transposition in
Mathematics Education (Chevallard and Bosch,
“Anthropological Theory of the Didactic (ATD) ,”
this Encyclopedia) and praxeology. According to
Chevallard, the didactical transposition consists
of the transformation of knowledge through dif-
ferent stages: the knowledge as it is produced and
used at university level, the knowledge that is
expected to be taught based on national curricula
and syllabuses, and the knowledge taught by the
teachers.

The Meta-Didactical Transposition (Arzarello
et al. 2014; Aldon et al. 2013) framework places
mathematical and professional learning – of
teachers working together – in the human activi-
ties related to it and in the context of social insti-
tutions. This framework is useful to describe a
process – analogous to the didactical
transposition – that occurs when a community of
researchers work with a community of teachers in
a professional development activity. The term
“meta-didactical” refers to the fact that important
issues related to the didactical transposition of
knowledge are faced at a meta-level. The involve-
ment of researchers and teachers consists in:

• The researchers design and coach the educa-
tional programs, as a task commissioned by
institutional authorities (e.g., school adminis-
tration, Ministry of Education, teachers’
associations), or as a course planned by other
institutional authorities (university, research
center, mathematical association, international
project, or others). The program can be
configured – for example – as a teachers’ pro-
fessional development only, or as a research
project meant to collect and analyze data, or a
dissemination of a research project.

• The teachers participate in the program, either
on a voluntary basis or because of an
official duty.

Both of these communities are in relationship
with the school: the actual schools where the
teachers teach, and the school as an institution
with its curricula, its teaching traditions, the text-
books used, etc.

The Meta-Didactical Praxeologies
The main theoretical tool of the Anthropological
Theory of Didactics (Chevallard 1992) is the
notion of praxeology, a neologism made of two
words derived by the Greek terms praxis and
logos: praxis as the “know how,” logos as the
“knowledge.” According to Chevallard, a praxe-
ology consists of four interrelated components:
task, technique, technology (used to mean justifi-
cation), and theory. The given task and the tech-
nique used to solve the task are the practical
counterpart of the praxeology (the praxis), while
the technology (in the sense of justification) and
the theory are the theoretical counterpart that val-
idates the use of that technique (the logos). In a
mathematics classroom, we can identify the math-
ematical type of task (e.g., T: determining the
equation of the tangent to the graph of a generic
function f ) that students have to solve, the
employed technique and the more or less explicit
justification for using it, all within a specific math-
ematical theory. These components constitute the
mathematical praxeology.

At the same time, there exist the teacher’s ques-
tions and actions to build such a mathematical
praxeology with her students, which gives birth to
a didactical praxeology. What may occur is:

• The teacher introduces her students to a type of
task (didactical type of task).

https://doi.org/10.1007/978-3-030-15789-0_48
https://doi.org/10.1007/978-3-030-15789-0_48


Meta-didactical Transposition 615

M

• The teacher has to manage how to organize
such an approach (didactical technique).

• The teacher has to know why she has to orga-
nize it like that (didactical technology – in the
sense of justification).

• The teacher has to explain why she knows that
she has to organize it like that (didactical
theory).

The Meta-Didactical Transposition framework
includes the meta-didactical praxeologies, which
comprise the tasks, techniques, and justifying dis-
courses of researchers and of teachers. Referring
to the four components of a praxeology for
researchers:

• The researchers – as trainers – introduce the
teachers – engaged in the professional devel-
opment activity – to the type of task (meta-
didactical type of task).

• The researchers have to manage how to orga-
nize such an approach (meta-didactical
technique).

• The researchers have to know why they have to
organize it like that (meta-didactical technology–
in the sense of justification).

• The researchers have to explain why they know
that they have to organize it like that (meta-
didactical theory).

Referring to the four components of a praxeol-
ogy for teachers:

• The teachers are introduced to a task (e.g., to
design an activity of geometry for their class
using a DGE software), within an institutional
frame (e.g., national curriculum).

• The teachers have to solve the task using some
techniques, according to the professional
development.

• The teachers have to know why they choose
such a solution.

• The teachers have to justify why they know that
they have to organize it like that (to support
their choices theoretically).

To exemplify, we can report a task for
teachers in a teacher training course described
by Sullivan (2008, p. 3) and quoted in Arzarello
et al. (2014): the question “which number is
bigger: 2/3 or 201/301?” is given to teachers as
a basis of a lesson, and they have to design the
steps to introduce the students to this task (e.g.,
the context of a baseball match, where a player’s
statistics shifts from 200/300 to 201/301).
This task is a stimulus for teachers’ reflection,
and what they activate to solve it are meta-
didactical techniques and their justifications
(in mathematical and didactical terms). For
example, based on one’s professional
experience, the teachers might discuss why the
initial question presents difficulties for many
students and why the baseball example makes
sense in a classroom and thus might help stu-
dents to overcome the associated difficulty and
why it is necessary to foster the transition from
every day to scientific and formal concepts,
using a constructivist approach, according to a
Vygotskian frame.

The praxeologies of researchers and teachers at
the beginning of a professional development pro-
gram can be far apart from each other, but then
they can evolve towards the same shared praxe-
ologies (Arzarello et al. 2014). A typical example
is when a new praxeology (or some of its compo-
nents) is developed by teachers in response to a
stimulus in the program. As a consequence, there
could be teachers’ development of both a new
awareness (at the cultural level) and new compe-
tences (at the methodological-didactical level, i.e.,
that of teaching practice), which lead them to
activate, in their classrooms, a didactical transpo-
sition in line with the meta-didactical transposi-
tion. Simultaneously, a researchers’ praxeology
(or some components) also may evolve as a con-
sequence of their interaction with the teachers and
their reflections.

Evolution in the praxeologies does not mean
that all the teachers (or researchers) involved in
the educational program evolve in the same way
with the same transformation of components: in
fact, different teachers may evolve in different
ways, with respect to their histories and experi-
ences. Therefore, further research is necessary to
investigate the factors that influence these differ-
ent trajectories in the praxeologies.
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The Dynamics Between Internal and External
Components
Not only praxeologies evolve during professional
development. Their components can transform as
well (e.g., the technique, or the technology). The
praxeological components can be considered as
internal or external to a community. They are
considered internal to a community when com-
monly shared and used by the members of the
community, and external to a community when
the members of the communities do not typically
use them. The components can also be internal or
external to one or some members of a community.
The idea of external and internal (to refer to a
praxeology component) is taken by Clark and
Hollingsworth (2002 p. 951), who distinguish an
external domain, located outside the teacher’s
personal world, from the internal domains,
which “constitute the individual teacher’s profes-
sional world of practice, encompassing the
teacher’s professional actions, the inferred conse-
quences of those actions, and the knowledge and
beliefs that prompted and responded to those
actions.”

Of course, the goal of a teacher professional
development program is to promote the change of
praxeological components that are initially external
to the teachers’ community into internal ones (e.g.,
activities using new technologies, such as new
GeoGebra tools, or new pedagogical techniques,
such as student-centered teaching approaches).
Furthermore, the researchers participating within a
teachers’ professional development program may
also benefit from transforming praxeological com-
ponents that are external to their community into
internal ones.

Figure 1 aims to explain this process. Within
teachers’ professional development, the researchers
interact with the teachers, according to their praxe-
ologies, and as a result of these interactions, the
transformation of praxeological components from
external to internal may occur. These components
may evolve differently for different teachers, due to
contextual factors, or to institutional influences, or
attitudes towards teaching and mathematics, beliefs,
and so on. If there is the same transformation of a
component (2 in Fig. 1c) from external to internal
for all the teachers, finally researchers and teachers
share the corresponding praxeology that was ini-
tially internal (Fig. 1b) only to researchers
(Prodromou et al. 2017).

To exemplify, a community of teachers starts a
professional development program in which, due
to some institutional situation (e.g., curriculum
changes), a community of researchers introduces
a specific ICT tool (e.g., a dynamic geometry
software). At the end of the program, the initial
techniques (and their theoretical counterpart) have
become a new a set of shared techniques, as a
result of the actions taken by researchers and
teachers.

The Role of the Broker
The Meta-Didactical Transposition framework
uses the notion of broker as a professional who
belongs to more than one community and makes
possible the exchanges between them: “Brokers
[. . .] are able to make new connections across
communities of practice, enable coordination,
and – if they are good brokers – open new possi-
bilities for meaning” (Rasmussen et al. 2009,
p.109). In this way, brokers can facilitate the tran-
sition of mathematical concepts from one commu-
nity to the other (boundary crossing), which is
accomplished by drawing on boundary objects:
“boundary objects are those objects that both
inhabit several communities of practice and sat-
isfy the informational requirements of each of
them” (Bowker and Star 1999, p. 297). For exam-
ple, a teacher belongs to the community of math-
ematics experts, to that of her colleagues in the
school, and to her classroom community.

In the Italian community of academics in math-
ematics education, the role of broker is often
played by a so-called teacher-researcher – who is
part of the communities of researchers and of
teachers – or it can be played also by a researcher,
a PhD student, or a master student. The role of
broker is fundamental in the exchange of infor-
mation, techniques, justifications, theories,
namely, all about praxeologies and their compo-
nents. In fact, the role of the researchers is to
organize research project in which the educational
program is inserted, then to design the program
with its activities and actions. The role of the
teacher-researchers is to collaborate in these
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phases and to participate also in the professional
development program as trainers, where the role
of the teachers involved is to be learners in com-
munities with colleagues. Participating simulta-
neously to the researchers’ community and to the
teachers’ community, the teacher-researcher acts
as a broker between the two communities.

The Double Dialectic
In the Meta-Didactical Transposition framework,
the double dialectic represents a product of the
interactions between the two communities of
researchers and teachers involved in the profes-
sional development.

The first dialectic is at the didactical level and
takes place in the classroom, involving the
personal meanings that students attach to an activ-
ity they are engaged in, and its scientific, shared
meaning (Vygotsky 1978). The second dialectic is
at themeta-didactical level and lies in the personal
interpretation that the teachers give to the first
dialectic, as a result of both their praxeologies
and the meaning of the first dialectic in the com-
munity of researchers (a result of researchers’
praxeology). The second dialectic corresponds to
the scientific shared meaning of the first dialectic.

Typically, the second dialectic arises from a con-
trast between researchers’ praxeologies (or some of
their components) and teachers’ praxeologies. It is
through this double dialectic that teachers’ praxeol-
ogies can change over time, during the professional
development or after it, and align with the



618 Meta-didactical Transposition
praxeologies of the researchers. This process may
trigger a significant evolution of the teacher profes-
sional competences.

Applications, Integration, and Evolution of
the Meta–Didactical Transposition
Framework
The Meta-Didactical Transposition framework
can be applied in a variety of situations in which
the interactions and mutual exchanges between
the communities involved in a process of profes-
sional development give rise to an evolution in
their praxeologies (or their components), which
changes their status from external to internal to a
community (or vice versa).

In the following some applications and evolu-
tions of the framework:

A) The Meta-Didactical Transposition frame-
work is helpful to analyze the mutual interac-
tions between the communities involved in
the process of design and in the process of
teaching experiments in the classrooms
(respectively the community of design and
community of experimentation), to highlight
the role of each community, the relationships
with the other community, and the possible
exchange of the praxeologies or components
between them (Robutti 2015).

B) To gain a better and deeper understanding of
the complexity of the process of teachers’
professional development, the theoretical
idea of emergence has been used in combina-
tion with the Meta-Didactical Transposition
framework, firstly to take into account the
various agents that can influence a process of
professional development at a micro level, and
secondly to consider the effects of these agents
when changes appear in the praxeologies of
teachers, at the macrolevel (Prodromou et al.
2017). As the waves on the surface of the sea
are the visible phenomenon at macrolevel,
resulting from many particles acting at micro-
level, in the same way the change in a praxe-
ology is the phenomenon at macrolevel,
resulting of many agents acting at micro level:
methodological, institutional, material and
technological, and motivational (Prodromou
et al. 2017). The integration of macro- and
microlevel points of view gives a detailed lens
to better describe the dynamics in the
praxeologies.

C) The Meta-Didactical Transposition frame in
itself is not sufficient to give details when a
community of in-service teachers is trained
within a MOOC (Massive Open On-line
Course), using virtual interaction mediated
by a web platform in a distance-learning
approach. A theoretical integration is needed
for such broader contexts (Taranto et al. 2017),
because a MOOC can be considered as an
artifact, namely a static set of materials that
becomes dynamic when it is opened to the
trainees. When open, it gives rise to a complex
ecosystem, where the teachers involved in the
community interact through the available
tools. This ecosystem usually evolves as a
network, thanks to the participants’ contribu-
tions, and also the network-knowledge of indi-
viduals evolves, transforming the MOOC
artifact into an instrument (according to
Verillon and Rabardel 1995). The Meta-
Didactical Transposition is used to study the
community of inquiry (according to Jaworski
2008) – the trainers – and the community of
practice (according to Wenger 1998) – the
teachers as trainees in the MOOC. The trainers
evolved in their praxeologies interacting in the
MOOC, and the trainees too, making connec-
tions in the platform and reporting from exper-
imentations in their classes. Both of them
enrich the ecosystem with new reports and
feedbacks. Both individuals and communities
evolve in their praxeologies, via the ecosystem.

The Meta-Didactical Transposition framework
is used in literature alone and integrated with other
frames, having shown its robust structure and also
its limits and constraints. What is invariant is the
institutional context and the fact that there are
praxeologies shared in communities of teachers
and researchers. What changes is the kind of com-
munity according to their work (design, profes-
sional development, experimentation, or others).
The frame is developing maintaining its structure
and integrating other theoretical elements
(emergence, instrumental genesis, connectivism,
. . ., as previously shown at points A, B, C) and it
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is spreading around different communities of aca-
demics over the world.
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Etymologically metaphor means “transfer,” from
the Greek meta (trans) + pherein (to carry). Met-
aphor is in fact “transfer of meaning.”
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Introduction

Metaphors are very likely as old as humankind.
Recall Indra’s net, a 2500-year-old Buddhist met-
aphor of dependent origination and interconnec-
tedness (Cook 1977; Capra 1982), consisting of
an infinite network of pearls, each one reflecting
all others, in a never-ending process of reflections
of reflections, highly appreciated by mathemati-
cians (Mumford et al. 2002).

It was Aristotle, however, with his taxonomic
genius, who first christened and characterized
metaphors c. 350 BC in his Poetics: “Metaphor
consists in giving the thing a name that belongs to
something else; the transference being either from
genus to species, or from species to genus, or from
species to species, on the grounds of analogy”
(Aristotle 1984, 21:1457b). Interestingly for edu-
cation, Aristotle added:

The greatest thing by far is to be a master of meta-
phor. It is the one thing that cannot be learned from
others; it is also a sign of genius, since a good
metaphor implies an eye for resemblance.
(loc. Cit. 21:1459a).

But time has not passed in vain since Aristotle.
Widespread agreement has been reached
(Richards 1936; Black 1962, Black 1993; Ortony
1993; Ricoeur 1977; Reddy 1993; Gibbs 2008;
Indurkhya 1992, 2006; Johnson and Lakoff 2003;
Lakoff and Núñez 2000; Wu 2001; Sfard 1994,
1997, 2009) that metaphor serves as the often
unknowing foundation for human thought
(Gibbs 2008) since our ordinary conceptual sys-
tem, in terms of which we both think and act, is
fundamentally metaphorical in nature (Johnson
and Lakoff 2003).
Characteristics

Metaphors for Metaphor
“There is no non metaphorical standpoint from
which one could look upon metaphor” remarked
Ricoeur (1977). To Bruner (1986) “Metaphors are
crutches to help us to get up the abstract moun-
tain,” but “once up we throw them away (even
hide them) . . . (p. 48). Empirical evidence sug-
gests however that metaphor is a permanent
resource rather than a temporary scaffold becom-
ing later a “dead metaphor” (Chiu 2000). We find
also theory-constitutive metaphors that do not
“worn out” like literary metaphors and provide
us with heuristics and guide our research (Boyd
1993; Lakoff and Núñez 1997). Recall the “tree of
life” metaphor in Darwin’s theory of evolution or
the “encapsulation metaphor” in Dubinsky’s
APOS theory (Dubinsky and McDonald 2001).

In the field of mathematics education proper, it
has been progressively recognized during the last
decades (e.g., Chiu 2000, 2001; van Dormolen
1991; Edwards 2005; English 1997; Ferrara
2003; Gentner 1982, 1983; Lakoff and Núñez
2000; Parzysz et al. 2007; Pimm 1987; Presmeg
1997; Sfard 1994, 1997, 2009; Soto-Andrade
2006, 2007) that metaphors are powerful cogni-
tive tools that help us in grasping or building new
mathematical concepts, as well as in solving prob-
lems in an efficient and friendly way: “metaphors
we calculate by” (Bills 2003).

According to Lakoff and Núñez (2000),
(conceptual) metaphors appear as mappings
from a source domain into a target domain, car-
rying the inferential structure of the first domain
into the one of the second, enabling us to under-
stand the latter, often more abstract and opaque, in
terms of the former, more down-to-earth and
transparent. In the classical example “A teacher
is a gardener,” the source is gardening, and the
target is education.

Figure 1 maps metaphors, analogies, and rep-
resentations and their relationships (Soto-
Andrade 2007).

We thus see metaphor as bringing the target
concept into being rather than just shedding a new
light on an already existing notion, as representa-
tion usually does, whereas analogy states a simi-
larity between two concepts already constructed
(Sfard 1997). Since new concepts arise from a
crossbreeding of several metaphors rather than
from a single one, multiple metaphors, as well as
the ability to transiting between them, may be
necessary for the learner to make sense of a new
concept (Sfard 2009). Teaching with multiple
metaphors, as an antidote to unwanted entailments
of one single metaphor, has been recommended
(e.g., Low 2008; Sfard 2009; Chiu 2000, 2001).
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Metaphor and Reification

Sfard (1994) named reification the metaphorical
creation of abstract entities, seen as the transition
from an operational to a structuralmode of think-
ing. Experientially, the sudden appearance of reifi-
cation is an “aha!” moment, the birth of a
metaphor that brings a mathematical concept
into existence. Reification is however a double-
edged sword: Its poietic (generating) edge brings
abstract ideas into being, and its constraining
edge bounds our imagination and understanding
within the confines of our former experience and
conceptions (Sfard 2009). This “metaphorical
constraint” (Sfard 1997) explains why it is not
quite true that anybody can invent anything, any-
where, anytime, and why metaphors are often
“conceptual recycling.” For instance, the con-
struction of complex numbers was hindered for a
long time by overprojection of the metaphor
“number is quantity” until the new metaphor
“imaginary numbers live in another dimension”
installed them in the “complex plane.” “To under-
stand a new concept, I must create an appropriate
metaphor. . .” says one of the mathematicians
interviewed by Sfard (1994).
Metaphor, Embodied Cognition, and
Gestures

Contemporary evidence from cognitive neurosci-
ence shows that our brains process literal and
metaphorical versions of a concept in the same
localization (Knops et al. 2009; Sapolsky 2010).
Gibbs and Mattlock (2008) show that real and
imagined body movements help people create
embodied simulations of metaphorical meanings
involving haptic-kinesthetic experiences. The
underlying mechanism of cross-domain mappings
may explain how abstract concepts can emerge in
brains that evolved to steer the body through the
physical, social, and cultural world (Coulson
2008). It has been proposed that acquiring meta-
phoric items might be facilitated by acting them
out, as in total physical response learning (Low
2008).

The didactical chasm existing between the
ubiquitous motion metaphors in the teaching of
calculus and the static and timeless character of
current formal definitions (Kaput 1979) is in fact
bridged by the often unconscious gestures (Yoon
et al. 2011) that lecturers enact in real time while
speaking and thinking in an instructional context
(Núñez 2008). So gestures inform mathematics
education better than traditional disembodied
mathematics (Núñez 2007).
Metaphors for Teaching and Learning

When confronted with the metaphor “teaching is
transmitting knowledge,”many teachers say: This
is not a metaphor, teaching is transmitting knowl-
edge! What else could it be? Unperceived here is
the “Acquisition Metaphor,” dominant in mathe-
matics education, that sees learning as acquiring
an accumulated commodity. The alternative, com-
plementary, metaphor is the Participation Meta-
phor: learning as participation (Sfard 1998).
Plutarch agreed when he said “A mind is a fire to
be kindled, not a vessel to be filled” (Sfard 2009).
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Educational Metaphors

Grounding and linking metaphors are used in
forming mathematical ideas (Lakoff and Núñez
2000). The former “ground” our understanding of
mathematics in familiar domains of experience, the
latter link one branch of mathematics to another.

Lakoff and Núñez (1997) point out that often
mathematics teachers attempt to concoct ad hoc
extensions of grounding metaphors beyond their
natural domain, like “helium balloons” or “anti-
matter objects” for negative numbers. Although
the grounding “motion metaphor” extends better
to negative numbers: �3 steps means walking
backwards 3 steps and multiplying by �1 is turn-
ing around, they consider this extension a forced
“educational metaphor.” For an explicit account
of such educational metaphors, see Chiu (1996,
2000, 2001). Negative numbers arise more natu-
rally, however, via flows in a graph: A “negative
flow” of 3 units from agent A to agent B “is” a
usual flow of 3 units from B to A.
Metaphoring (Metaphorical Thinking) in
Mathematics Education

Presmeg (2004) studied idiosyncratic metaphors
spontaneously generated by students in problem-
solving as well as their influence on their sense
making. Students generating their own metaphors
increase their critical thinking, questioning, and
problem-solving skills (Low 2008). There are
however potential pitfalls occasioned by invalid
inferences and overgeneralization.

Building on their embodied prior knowledge,
students can understand difficult concepts meta-
phorically (Lakoff and Núñez 1997). Explicit
examples have been given by Chiu (2000,
2001), e.g., students using their knowledge of
motion to make sense of static polygons through
the “polygons are paths” metaphor, and so
Metaphors in Mathematics Education, Fig. 2 Two meta
“seeing” that the sum of the exterior angles is a
whole turn and that exterior angles are more “nat-
ural” than interior angles! “Polygons are enclo-
sures between crossing sticks” elicits different
approaches. Source understanding overcomes
age to determine metaphoring capacity, since
13-month infants can already metaphorize (Chiu
2000). Also, a person’s prior (nonmetaphorical)
target understanding can curtail or block meta-
phoring (loc. Cit.).
Examples of Metaphors for
Multiplication

Chiu (2000) indicates the following:
“Multiplication A� B is replacing the original

A pieces by B replications of them.”
“Multiplication A � B is cutting each of the

current A objects into B pieces.”
“Area metaphor” and “Branching metaphor”

for multiplication (Soto-Andrade 2007) are illus-
trated in Fig. 2.

In the area metaphor, commutativity is per-
ceived as invariance of area under rotation. We
“see” that 2 � 3 = 3 � 2, without counting and
knowing that it is 6. In the branching metaphor,
commutativity is less obvious unless this meta-
phor becomes a “met-before” (McGowen and Tall
2010) because you know trees very well. Our trees
also suggest a “hydraulic metaphor,” useful to
grasp multiplication of fractions: A litre of water
drains evenly from the tree apex, through the
ducts. Then 1/6 appears as 1/3 of 1/2 in the left
tree and also as 1/2 of 1/3 in the right tree. Our
hydraulic metaphor enables us to see the “two
sides of the multiplicative coin”: 2 � 3 is bigger
but 1/2 � 1/3 is smaller than both factors. It also
opens up the way to a deeper metaphor for multi-
plication: “multiplication is concatenation”, a
generating metaphor for category theory in
mathematics.
phors for commutativity of multiplication
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On the Metaphorical Nature of
Mathematics

Lakoff and Núñez’s claim that mathematics con-
sists entirely of conceptual metaphors has stirred
controversy amongmathematicians and mathemat-
ics educators. Dubinsky (1999) suggests that for-
malism can be more effective than metaphor for
constructing meaning. Goldin (1998, 2001) warns
that the extreme view that all thought is metaphor-
ical will be nomore helpful than earlier views that it
was propositional and finds that Lakoff and
Núñez’s “ultrarelativistism” dismisses perennial
values central to mathematics education like math-
ematical truth and processes of abstraction, reason-
ing, and proof among others (Goldin 2003).

However some distinguished mathematicians
dissent. Manin (2007), referring to Metaphor and
Proof, complains about the imbalance between
various basic values which is produced by the
emphasis on proof (just one of the mathematical
genres) that works against values like “activities”,
“beauty” and “understanding”, essential in high
school teaching and later, neglecting which a
teacher or professor tragically fails. He also claims
that controverted Thom’s Catastrophe Theory “is
one of the developed mathematical metaphors and
should only be judged as such”. Thom himself
complains that “analogy, since positivism, has
been considered as a remain of magical thinking,
to be condemned absolutely, being nowadays
hardly considered as more than a rhetorical figure
(Thom 1994). He sees catastrophe theory as a
pioneering theory of analogy and points out that
narrow minded scientists objecting the theory
because it provides nothing more than analogies
and metaphors, do not realize that they are stating
its true purpose: to classify all possible types of
analogical situations (Porte 2013).

The preface to Mumford et al. (2002) reads:
“Our dream is that this book will reveal to our
readers that mathematics is not alien and remote
but just a very human exploration of the patterns
of the world, one which thrives on play and sur-
prise and beauty.”

McGowen and Tall (2010) argue that even
more important than metaphor for mathematical
thinking are the particular mental structures built
from experience that an individual has “met-
before.” Then one can analyze the met-befores
of mathematicians, mathematics educators, and
developers of theories of learning to reveal
implicit assumptions that support their thinking
in some ways and hinder it in others. They criti-
cize the top-down nature of Lakoff and Núñez
“mathematical idea analysis” and their unaware-
ness of their own embodied background and
implicit met-befores that shape their theory.
Open Ends and Questions

Further research is needed on methods and tech-
niques of teaching metaphor.

Facts on how the neural substrate of perception
and action is co-opted by higher-level processes
suggest further research on comparing visual,
auditory, and kinesthetic metaphors.

How can teachers facilitate the emergence of
idiosyncratic metaphors in the students?

May idiosyncratic metaphors be voltaic arcs
that spring when didactical tension is high enough
in the classroom?

How and where do students learn relevant met-
aphors: from teachers, textbooks, or sources out-
side of the classroom?

How can we facilitate students’ transiting
between metaphors?

How can teaching trigger change in students’
metaphors?

What roles should the teacher play in metaphor
teaching?

What happens when there is a mismatch
between teacher and student’s metaphors?

Do experts continue using the same metaphors
as novices? If yes, do they use them in the same
way?
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Definition

The term “misconception” implies incorrectness
or error due to the prefix “mis.” However its
connotation never implies errors from a child’s
perspective. From a child’s perspective, it is a
reasonable and viable conception based on their
experiences in different contexts or in their daily
life activities. When children’s conceptions are
deemed to be in conflict with the accepted mean-
ings in mathematics, the term misconceptions has
tended to be used. Therefore some researchers or
educators prefer to use the term “alternative con-
ception” instead of “misconception.” Other terms
sometimes used for misconceptions or terms
related to misconceptions include students’ men-
tal models, children’s arithmetic, preconceptions,
naïve theories, conceptual primitives, private con-
cepts, alternative frameworks, and critical
barriers.
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Some researchers avoid using the term “mis-
conceptions,” as they consider them as misappre-
hensions and partial comprehensions that develop
and change over the years of school. For example,
Watson (2011), based on an extensive program of
research, identifies developmental pathways that
can be observed as middle school students move
towards more sophisticated understandings of sta-
tistical concepts, culminating in a hierarchical
model incorporating six levels of statistical liter-
acy (p. 202).
Characteristics

Research on misconceptions in mathematics and
science commenced in the mid-1970s, with the
science education community researching the area
much more vigorously. This research carefully
rejected the tabula rasa assumption that children
enter school without preconceptions about a con-
cept or topic that a teacher tries to teach in class.
The first international seminar Misconceptions
and Educational Strategies in Science and Math-
ematics was held at Cornell University, Ithaca,
NY, in 1983, with researchers from all over the
world gathering to present research papers in this
area – although the majority of research papers
were in the field of science education.

In mathematics education, according to
Confrey (1987), research on misconceptions
began with the work of researchers such as
Erlwanger (1975), Davis (1976), and Ginsburg
(1976), who pioneered work focusing on stu-
dents’ conceptions. In the proceedings of the sec-
ond seminar: Misconceptions and Educational
Strategies in Science and Mathematics, Confrey
(1987) used constructivism as a framework for a
deep analysis of research on misconceptions.
Almost two decades later, Confrey and Kazak
(2006) identified examples of misconceptions
which have been extensively discussed by the
mathematics education community – for example,
“Multiplication makes bigger, division makes
smaller,” “The graph as a picture of the path of
an object,” “Adding equal amounts to numerators
and denominators preserves proportionality,” and
“longer decimal number are bigger, so the
1.217 > 1.3” (pp. 306–307). Concerning deci-
mals, a longitudinal study by Stacey (2005)
showed that this misconception is persistent and
pervasive across age and educational experience.
In another extensive study, Ryan and Williams
(2007) examined a variety of misconceptions
among 4–15-year-old students in number, space
and measurement, algebra, probability, and statis-
tics, as well as preservice teachers’ mathematics
subject matter knowledge of these areas.

From the teacher’s perspective, a mis-
conception is not a trivial error that is easy to fix,
but rather it is resilient or pervasive when one tries
to get rid of it. The reason whymisconceptions are
stubborn is that they are viable, useful, workable,
or functional in other domains or contexts. There-
fore, it is important for teachers not only to treat
misconceptions with equal importance to mathe-
matical concepts but also to identify what exactly
the misconception is in the learning context and to
clarify the relationship between the mis-
conception and the mathematical concept to be
taught. In other words, the teacher needs to con-
struct the task for the lesson taking the mis-
conception into consideration in order to resolve
the conflict between the misconception and the
mathematical concept. By doing this the lesson
may open up a new pathway to children’s deeper
and wider understanding of the mathematical con-
cept to be taught.

So far many misconceptions have been identi-
fied at the elementary and secondary levels, how-
ever only a few of them are considered for
inclusion in actual teaching situations. While
very few of these are incorporated in mathematics
textbooks, one exception is the misconception
that figures with the same perimeter have the
same area. For example, Takahashi (2006)
describes an activity used in a fourth-grade Japa-
nese textbook to introduce the formula for the area
of a rectangle that asks students to compare the
areas of carefully chosen figures that have the
same perimeter – for example, 3 � 5 cm and
4 � 4 cm rectangles.
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Further research is needed to develop how to
incorporate misconceptions into textbook or teach-
ing materials in order to not only resolve the mis-
conception but also to deepen and expand
children’s understanding ofmathematical concepts.
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It can be assumed that ongoing improvement in
learning is connected to the knowledge of the
teacher. This knowledge can be about the mathe-
matics they will teach, ways of communicating
that mathematics, finding out what students know
and what they find difficult to learn, and managing
the classroom to maximize the learning of
all students. It is evident from much of the litera-
ture that teacher professional development is
complex and there are numerous models used
and proposed. There are some common character-
istics of various models such as examining
teachers’ existing theories of practice, offering
multiple opportunities for them to learn, and facil-
itating learning from others in a community of
practice (e.g., Anthony et al. 2014): pedagogical
approaches, motivation, beliefs, disposition (e.g.,
Prodromou et al. 2018), and linking to the class-
room (Goos 2014; Visnovska and Cobb 2015).
Consideration can also be given to activities that
bring about the interactions of these aspects which
are subsequently enacted in participating teacher
practice (Prodromou et al. 2018). Furthermore,
Anthony et al. (2014) indicated the focus can be
on empowerment to transform one’s teaching
beyond the focus of the professional learning.
It is also suggested that researchers can identify
tools needed to support teacher learning, such
as time and space, professional knowledge, and
resources. Within each of these approaches, there
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is a focus on classroom discourse, tasks, and the
tools to support teacher learning.

Informed by the current literature, this entry
is about approaches to in-service mathematics
teacher education. The basic organizer is teacher
decision-making, since effective classroom teach-
ing is essentially about planning experiences that
engage students in activities that are mathemati-
cally rich, relevant, accessible, and the manage-
ment of the learning that results. As Zaslavsky
and Sullivan (2011) proposed, educating practic-
ing teachers involves facilitating growth from
“uncritical perspectives on teaching and learning
to more knowledgeable, adaptable, judicious,
insightful, resourceful, reflective and competent
professionals ready to address the challenges
of teaching” (p. 1). Furthermore, Furlong (2014)
indicated that the most effective forms of ongoing
teacher professional learning can draw on
specialist expertise, peer support, and effective
leadership.

This entry is structured around an
adaptation of the Clark and Peterson (1986)
framework, which includes three background
factors: teacher knowledge; attitudes, beliefs,
and values; and the opportunities and constraints
experienced. Clark and Peterson indicated
that these factors influence each other and
together inform teachers’ intentions to act and
their subsequent classroom actions. While there
have been more recent models such as the
interconnected model of teacher growth (Clarke
and Hollingsworth 2002), Schoenfeld’s (2011)
goal-oriented decision-making framework, and
McNeill et al. (2016) collaborative model of
professional development, the Clark and Peterson
framework essentially connects background
considerations with practice. This makes it ideal
for structuring the professional learning of
practicing mathematics teachers.

The first of these background factors refers
to teacher knowledge. Hill et al. (2008) proposed
a model informing the design of practicing
teacher education directed at improving knowl-
edge. There were two major categories: subject
matter knowledge and pedagogical content
knowledge. Hill et al. described subject matter
knowledge as consisting of common content
knowledge, specialized content knowledge, and
knowledge at the mathematical horizon. For
each of these, the emphasis is on developing in
teachers the capacity not only to learn any new
mathematics they need but also to view the math-
ematics they know in new ways. Generally,
connecting this learning to the further develop-
ment of their pedagogical content knowledge
facilitates both of these orientations. Hill et al.
argued that pedagogical content knowledge
includes knowledge of content and teaching,
knowledge of content and students, and knowl-
edge of curriculum. Similarly, Rowland et al.
(2009) referred to knowledge of content
and pedagogical content knowledge as founda-
tion knowledge in their Knowledge Quartet. The
other three dimensions include transformation
(representing the mathematics), connection
(e.g., coherence of planning, sequencing of
instruction), and contingency (e.g., responding
to student ideas, noticing teachable moments). In
addressing knowledge of content and teaching,
Zaslavsky and Sullivan (2011) proposed focus-
ing teacher learning on experiences such as those
involving comparing and contrasting between
and across topics to identify patterns and make
connections, designing and solving problems for
use in their classrooms, fostering awareness of
similarities and differences between tasks and
concepts, and developing the capacity of
teachers to adapt successful experiences to
match new content. Knowledge of content and
students is primarily about the effective use of
data to inform planning and teaching (Roche
et al. 2014). Essentially, the goal is to examine
what students know as distinct from what they do
not. In terms of knowledge of curriculum, Sulli-
van et al. (2012) described several processes as
the first level of knowing the curriculum. These
include where teachers evaluate resources, draw
on the experience of colleagues, analyze assess-
ment data to make judgments on what the stu-
dents know, and interpret curriculum documents
to identify important ideas (Charles 2005). The
subsequent levels involve selecting, sequencing,
and adapting experiences for the students,
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followed by planning the teaching (Chan et al.
2018; Smith and Stein 2011). All of these can
inform the design of practicing teacher
education.

The second background factor refers to the
constraints that teachers anticipate they may con-
front. Such constraints can be exacerbated by the
socioeconomic, cultural, or language background
of the students, geographic factors, and gender.
A further constraint is the diversity of readiness
that teachers experience in all classes, even those
grouped to maximize homogeneity. Sullivan
et al. (2006) described a planning framework
that addresses constraints such as accessible
tasks, explicit pedagogies, and specific enabling
prompts for students experiencing difficulty. Such
prompts involve slightly lowering an aspect of the
task demand. For example, simplify the form of
representation, the size of the number, or the num-
ber of steps, to enable a student experiencing
difficulties to proceed at that new level; and then
if successful the student can proceed with the
original task. Teacher educators can encourage
practicing teachers to examine the existence and
sources of constraints and strategies that can be
effective in overcoming those constraints.

The third background factor includes teachers’
beliefs about the nature of mathematics and the
way it is taught and learned. It is widely accepted
that teachers’ beliefs about the nature of
mathematics influence their pedagogical practices
(e.g., Beswick 2012; Cross 2009). Particularly
important is whether teachers believe that all stu-
dents can learn mathematics or whether such
learning is just for some (Hannula 2004). For
example, Voss et al. (2013) found that teachers’
beliefs impacted on their instructional practice
and consequently student learning outcomes.
Also important is whether teachers see their own
and students’ achievement as incremental and
amenable to improvement through effort (Bobis
et al. 2016; Dweck 2000). Teacher education
can include experiences that address this by, for
example, examining forms of affirmation, study-
ing tasks that foster inclusion, and developing
awareness of threats such as self-fulfilling proph-
ecy effects (Brophy 1983). Rather than
compartmentalizing the elements of the back-
ground factors described above, it is preferable
that the education of practicing teachers incorpo-
rate all elements together, a suitable context for
which is the study of practice.

The most famous example of teacher learning
from the study of practice is Japanese Lesson
Study, which is widely reported in the Japanese
context (e.g., Fernández and Yoshida 2004; Inoue
2010; Watanabe et al. 2008) and has been adapted
to Western contexts (e.g., Doig and Groves 2011;
Lewis et al. 2004). Other examples of learning
through the study of practice include realistic
simulations offered by videotaped study of exem-
plary lessons (Clarke and Hollingsworth 2000;
Clarke et al. 2009); interactive study of recorded
exemplars (e.g., Merseth and Lacey 1993); case
methods of teaching dilemmas that problematize
aspects of teaching (e.g., Stein et al. 2000); focus-
ing on task design in a Lesson Study approach
(Fujii 2013); and Learning Study which is similar
to Japanese Lesson Study but focuses on student
learning (Chan et al. 2018; Runesson et al. 2011).

In contrast to the adaptations of Japanese
Lesson Study, other school-based professional
learning involve whole-school collaborative
models in which lead teachers (mathematics
specialists) work with external partners to
design professional learning at a point of need
(e.g., Bruce et al. 2010; Downton et al. 2018).
Chan et al. (2018) suggested that understanding
the teacher learning process (in situ learning)
should lead to improvement in both teacher
knowledge and practice. Some studies have
focused on teacher noticing (e.g., Fernández
et al. 2013), while others have focused on facili-
tating classroom discourse (e.g., Staples and King
2017) or the cultural specificity of teacher instruc-
tional choices (Leong and Chick 2011; Lepik
et al. 2012).

As indicated within the research literature
(e.g., Furlong 2014; Gaffney and Faragher 2010;
Sexton and Lamb 2017), a related factor is the
need for effective school-based leadership of
the mathematics teachers. Within this role is a
critical dimension of establishing “interpersonal
trust” (Grootenboer et al. 2015). If the focus
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is on sustainable, collaborative school-based
approaches to improving teaching, this needs
active and sensitive leadership. Such leaders can
be assisted to study processes for leadership, as
well as developing their confidence to lead the
aspects of planning, teaching, and assessment
described above.
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Definition

Models of preservice teacher education are under-
stood as structures of professional learning set up
by intention for prospective mathematics
teachers.
Characteristics

Preservice teacher education is widely considered
as necessary for preparing prospective mathemat-
ics teachers for mastering the challenges of the
mathematics classroom. To this end, models of
preservice teacher education have been developed
and are subject to ongoing investigations. For the
profession of teaching mathematics, specific pro-
fessional knowledge is necessary. In particular,
designing learning opportunities and exploring
the students’ understanding or adaptive strategies
of fostering mathematical competency require not
only mathematical knowledge and pedagogical
knowledge but also pedagogical content knowl-
edge (Shulman 1986; Ball et al. 2008; Bromme
1992). This knowledge encompasses declarative
and procedural components (e.g., Baumert et al.
2010; Ball et al. 2008), as well as prescriptive
views and epistemological orientations (e.g.,
Pajares 1992; McLeod 1989; Törner 2002); it
ranges from rather global components
(cf. Törner 2002) to content-specific or even class-
room situation-specific components (Kuntze
2012; Lerman 1990).

The goal of developing such a multifaceted
professional knowledge underpins the signifi-
cance of specific and structured environments for
initial professional learning. However, it is widely
agreed that models of preservice teacher educa-
tion have to be seen as subcomponents in the
larger context of continued professional learning
throughout the whole working period of teachers
rather than being considered as an accomplished
level of qualification. Even though these models
of preservice teacher education are framed by
various institutional contexts and influenced by
different cultural environments (Leung et al.
2006; Bishop 1988), the following fundamental
aspects which are faced by many such models of
preservice teacher education may be considered:

• Theoretical pedagogical content knowledge is
essential for designing opportunities of rich
conceptual learning in the classroom. Hence,
in models of preservice teacher education, the-
oretical knowledge such as knowledge about
dealing with representations or knowledge
about frequent misconceptions of learners
(cf. Ball 1993) is being supported in particular
methodological formats which may take the
form, e.g., of lectures, seminars, or focused
interventions accompanying a learning-on-the
job phase (Lin and Cooney 2001).

• Linking theory to practice is a crucial challenge
of models of preservice teacher education. The
relevance of professional knowledge for acting
and reacting in the classroom is asserted to be
supported by an integration of theoretical
knowledge with instructional practice. In
models of preservice teacher education, this
challenge is addressed by methodological
approaches such as school internships, fre-
quently with accompanying seminars and ele-
ments of coaching (cf. Joyce and Showers
1982; Staub 2001; Kuntze et al. 2009), and
specific approaches such as lesson study
(Takahashi and Yoshida 2004), video-based
work (e.g., Sherin and Han 2003; Seago
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2004; Dreher and Kuntze 2012; Kuntze 2006),
or work with lesson transcripts. For several
decades, approaches such as “microteaching”
(e.g., Klinzing 2002) had emphasized forms of
teacher training centered in practicing routines
for specific instructional situations. Seen under
today’s perspective, the latter approach tends
to underemphasize the goal of supporting
reflective competencies of prospective teachers
which tend to be transferable across contents
and across specific classroom situations
(Tillema 2000).

• Developing competencies of instruction- and
content-related reflection is a major goal in
preservice teacher education. Accordingly,
learning opportunities such as the analysis
and the design of mathematical tasks (e.g.,
Sullivan et al. 2009, cf. Biza et al. 2007), the
exploration of overarching ideas linked to
mathematical contents or content domains
(Kuntze et al. 2011), or the analysis of video-
taped classroom situations (Sherin and Han
2003; Reusser 2005; Kuntze et al. 2008) are
integrated in models of preservice mathematics
education, supporting preservice teachers to
build up reflective competencies or to become
“reflective practitioners” (e.g., Smith 2003;
Atkinson 2012).

The scenarios mentioned above indicate that
there are a wide variety of possible models of
preservice teacher education, as it has also been
observed in comparative studies of institutional
frameworks (König et al. 2011; Tatto et al.
2008). In contrast, research on the effectiveness
of different models of preservice teacher educa-
tion is still relatively scarce. Studies like TEDS-M
(Tatto et al. 2008) constitute a step into this direc-
tion and set the stage for follow-up research not
only in processes of professional learning in the
settings of specific models of preservice teacher
education but also into effects of specific profes-
sional learning environments, as they can be
explored in quasi-experimental studies. In addi-
tion to a variety of existing qualitative case stud-
ies, especially quantitative evidence about models
of preservice teacher education is still needed
(cf. Adler et al. 2005). Such evidence from future
research should systematically identify character-
istics of effective preservice teacher education.
Moreover empirical research about models of pre-
service teacher education should give insight
how characteristics of effective professional
development for in-service mathematics teachers
(Lipowsky 2004) may translate into the context of
the work with preservice teachers, which differs
from professional development of in-service
teachers (da Ponte 2001).
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Definition

The impetus for and maintenance of mathematical
activity. Mathematics learning, as goal-directed
behavior, involves the development of expecta-
tions, values, and habits that constitute the reasons
why people choose to engage and persevere on the
one hand or disengage and avoid on the other, in
mathematics and mathematically related pursuits.
Characteristics and Findings from
Various Theoretical Perspectives

The history of motivation research applied to
mathematics learning began with the study of
biological drives and incentive in the first decades
of the twentieth century (see Brownell 1939 for a
good review of this perspective as applied to
education). Following the tenets of classical and
operant (instrumental) conditioning, it was found
that if a reinforcer was provided for successfully
completing a behavior, the probability of that
behavior occurring in the future under similar
circumstances would increase. Additionally,
Thorndike found that the intensity of the behavior
would increase as a function of the reinforcement
value (1927). These general theories of the use of
incentives to motivate student learning dominated
educational theory roughly until the middle of the
1960s.

They are still valuable to educators today, par-
ticularly in the use of behavior modification tech-
niques, which regulate the use of rewards and
other reinforcers contingent upon the learner’s
successive approximation of the desired behav-
ioral outcomes, which could be successful skill
attainment or increase in positive self-statements
to reduce math anxiety and so on (Bettinger
2008).

Since the mid-1960s, research on motivation in
the psychology of learning has focused on six
different, but not distinct, theoretical constructs:
Attributions, Goal Theory, Intrinsic Motivation,
Self-Regulated Learning, Social Motivation, and
Affect. These factors grew out of a general cogni-
tive tradition in psychology but recently have
begun to explain the impact of social forces, par-
ticularly classroom communities and teacher-
student relationships on student enjoyment and
engagement in mathematical subject matter (see
Middleton and Spanias 1999 for a review com-
paring these perspectives).
Attribution Theory

Learners’ beliefs about the causes of their suc-
cesses and failures in mathematics determine
motivation based on the locus of the cause
(internal or external to the learner) and its stability
(stable or unstable). Productive motivational attri-
butions tend to focus on internal, stable causes
(like ability and effort) for success as these lead
to increased persistence, self-efficacy, satisfac-
tion, and positive learning outcomes. Lower
performing demographic populations tend to
showmore external and unstable attributional pat-
terns. These appear to be caused by systematic
educational biases (Kloosterman 1988; Pedro
et al. 1981; Weiner 1980).
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Goal Theory

Goal theories focus on the stated and unstated
reasons people have for engaging in mathematical
tasks. Goals can focus on Learning (also called
Mastery), Ego (also called Performance), orWork
Avoidance. People with learning goals tend to
define success as improvement of their perfor-
mance or knowledge. Working towards these
kinds of goals shows results in the valuation of
challenge, better metacognitive awareness, and
improved learning than people with ego goals.
Work avoidance goals are debilitating, psycholog-
ically, as they result from learned helplessness and
other negative attributional patterns (Wolters
2004; Covington 2000; Gentile and Monaco
1986).
Intrinsic Motivation and Interest

The level of interest a student has in mathematics,
the more effort he or she is willing to put out, the
more he or she thinks the activity is enjoyable, and
the more they are willing to persist in the face of
difficulties (Middleton 1995; Middleton and
Spanias 1999; Middleton and Toluk 1999). Intrin-
sic Motivation and Interest theories have shown
that mathematical tasks can be designed to
improve the probability that a person will exhibit
task-specific interest and that this task-specific
interest, over time, can be nurtured into long-
term valuation of mathematics and its applications
(Hidi and Renninger 2006; Köller et al. 2001;
Cordova and Lepper 1996).
Self-Regulated Learning

Taken together, these primary theoretical per-
spectives can be organized under a larger
umbrella concept: Self-Regulated Learning
(SRL). Internal, stable attributions are a natural
outcome of Learning Goals, and Interest is a
natural outcome of internal, stable, attributions.
Each of these perspectives contributes to the
research on the others such that the field of moti-
vation in general, and in mathematics education
specifically, is now able to use these principles to
design classroom environments, tasks, and inter-
ventions to improve mathematics motivation and
performance (Zimmerman and Schunk 2011;
Eccles and Wigfield 2002; Wolters and Pintrich
1998).
Social Motivation

In addition to the aforementioned psychological
theories, study of students in classrooms has
recently yielded principles for understanding
how social groups motivate themselves. In gen-
eral these theories show that needs for affiliation
and relatedness with peers, fear of disapproval,
and the need to demonstrate competence interact
in complex ways in the classroom (Urdan and
Schoenfelder 2006). Intellectual goals and social
needs therefore are integrally related. Addition-
ally, the need for social concern is a critical moti-
vator for student prosocial learning (Jansen 2006).
Students who feel a concern for the struggles of
others are able to provide support for the learning
of others. This is a key component of effective
group work and social discourse in mathematics
classrooms.
Affect

The outcomes of learning environments consist of
cognitive as well as affective responses. People
tend to enjoy mathematics more when they find it
interesting and useful, and they tend to dislike or
even fear engagement in mathematics when they
believe they will not be successful (Hoffman
2010). Goldin et al. (2011) have shown that peo-
ple build affective structures which allow them to
predict the emotional content and probable out-
comes of mathematical activity. Activity forms a
physiological feedback loop between behavior
and goals and therefore has both an informational
role as well as a reinforcement role (Hannula
2012). These cognitive structures are integral to
self-regulation and decision-making regarding
when and how deeply to engage in mathematics
tasks.
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