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Definition: What Teaching and Learning
Calculus Is About

The differential and integral calculus is considered
as one of the greatest inventions in mathematics.
Calculus is taught in secondary school and in uni-
versity. Learning calculus includes the analysis of
problems of changes and motion. Previous related
concepts, like the concept of a variable and the
concept of function, are necessary for the
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understanding of calculus concepts. However, the
learning of calculus includes new notions like the
notion of limit and limiting processes, which intrin-
sically contain changing quantities. The differential
and integral calculus is based upon the fundamen-
tal concept of limit. The mathematical concept of
limit is a particularly difficult notion, typical of the
kind of thought required in advanced mathematics.
Calculus Curriculum

There have been efforts in many parts of the world
to reform the teaching of calculus. In France, for
example, the syllabus changed in the 1960s and
1970s, due to the influence of the Bourbaki group.
The limit concept, on a rigorous basis, has pene-
trated even into the secondary school curriculum: in
1972, the classical definition of the derivative as the
limit of a quotient of differences was introduced.
Another change occurred in the French calculus
curriculum in 1982, this time influenced by the
findings of mathematics education research, and
the curriculum focused on more intuitive
approaches. As a result, the formalization of the
limit has been omitted at the secondary school
level. This is the situation in most countries today:
at the high school level, there is an effort to develop
an initial approach to calculus’ concepts without
relying on formal definitions and proofs. An intui-
tive and pragmatic approach to calculus at the senior
level in high school (age 16–18) precedes the formal
approach introduced at university.
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On the university level, calculus is among the
more challenging topics faced by new undergrad-
uates. In the United States, the calculus reform
movement took place during the late 1980s. The
recommendation was that calculus courses should
address fewer topics but in more depth, and stu-
dents should learn through active engagement
with the material. The standard course syllabus
was revised, and new projects arose which incor-
porated technology into instruction. More
recently, Bressoud et al. (2016) analyzed calculus
curricula in France, Germany, the United States,
Uruguay, Singapore, South Korea, and Hong
Kong. They note the constant revision of the
calculus curriculum and the way calculus is taught
in secondary school and university in the different
countries. They relate to the following questions:
When does the teaching of calculus start in sec-
ondary school? Is it separated into different parts:
a compulsory mathematics part for all students
and an extended part for students who intend to
pursue further studies, which require more math-
ematics? They also relate to the assessment pro-
cess and to the following question: Is there an
evaluation of theoretical aspects of the course on
the exam and not only an evaluation of routine
practical procedures? The integration of graphic
technology was investigated as well. The authors
differentiate between the form of work at the
secondary school level, in which the activities
are often devoted almost exclusively to calcula-
tion based on algebraic expressions, and the
required form of work at university level, which
includes more formal thinking.

The book by Bressoud et al. (2015) presents a
report of selected findings from the Mathematical
Association of America’s (MAA’s) study of Char-
acteristics of Successful Programs in College Cal-
culus. The report combines both large-scale
survey data and in-depth case study analysis.
The report concerns college and university stu-
dents and highlights the very challenging environ-
ment students encounter, as they make the
transition to postsecondary education, in their
learning of calculus.

In most countries, the transition toward more
formal approach that takes place at university is
accompanied by conceptual difficulties.
Early Research in Learning Calculus: The
Cognitive Difficulties

The cognitive difficulties that accompany the
learning of central notions like functions, limit,
tangent, derivative, and integral at the different
stages of mathematics education are well reported
in the research literature on learning calculus.
These concepts are key concepts that appear and
reappear in different contexts in calculus. The
students meet some of these central topics in
high school, and then the same topics appear
again, with a different degree of depth, at univer-
sity. We might attribute the high school students’
cognitive difficulties to the fact that the notions
are presented to them in an informal way. In other
words, we might expect that the difficulties will
disappear when the students learn the formal def-
inition of the concepts. However, undergraduate
mathematics education research suggests other-
wise. The cognitive difficulties that accompany
the key concepts in calculus are well described
in Sierpinska (1985), Davis and Vinner (1986),
Cornu (1991), Williams (1991), and Tall (1992),
as well as in the book Advanced Mathematical
Thinking edited by Tall (1991). The main source
of difficulty resides in the fact that many students’
intuitive ideas are in conflict with the formal def-
inition of the calculus concepts, such as the notion
of limit.

In these early studies of learning calculus, the
theoretical dimensions are essentially cognitive
and epistemological. The cognitive difficulties
that accompany the learning of the key concepts
in calculus, such as the limit concept, are inherent
to the epistemological nature of the mathematics
domain. In the following, we consider some facets
of the dynamic interaction between the formal and
intuitive representations, as they were discussed
in these early studies. We encounter the first
expression of the dynamic interaction between
intuition and formal reasoning in the terms con-
cept definition and concept image. For example,
the intuitive thinking, the visual intuitions, and the
verbal descriptions of the limit concept that pre-
cede its formal definition are necessary for under-
standing the concept. However, research on
learning calculus demonstrates that there exists a
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gap between the mathematical definition of the
limit concept and the way one perceives it. In
this case, we may say that there is a gap between
the concept definition and the concept image (Tall
and Vinner 1981; Vinner 1983). Vinner also found
that students’ intuitive ideas of the tangent to a
curve are in conflict with the formal definition.
This observation might explain students’ concep-
tual difficulties in visualizing a tangent as the
limiting case of a secant.

Conceptual problems in learning calculus are
also related to infinite processes. Research dem-
onstrates that some of the cognitive difficulties
that accompany the understanding of the concept
of limit might be a consequence of the learners’
intuition of infinity. Fischbein et al. (1979)
observed that the natural concept of infinity is
the concept of potential infinity, for example, the
non-limited possibility to increase an interval or to
divide it. The actual infinity, for example, the
infinity of the number of points in a segment and
the infinity of real numbers as existing, as given,
is, according to Fischbein, more difficult to grasp
and leads to contradictions. For example, “If one
looks at 1/3, it is easy to accept the equality 1/3 =
0.33. . . The number 0.333. . .represents a poten-
tial (or dynamic) infinity. On the other hand, stu-
dents questioned whether 0.333. . . is equal to 1/3
or tends to 1/3 usually answer that 0.333. . .tends
to 1/3.”

Among the theoretical constructs that accom-
pany the early strands in research on learning
calculus, we mention the process-object duality.
The lenses offered by this framework highlight
the students’ dynamic process view in relation to
concepts such as limit and infinite sums and help
researchers to understand the cognitive difficul-
ties that accompany the learning of the limit
concept. Gray and Tall (1994) introduced the
notion of procept, referring to the manner in
which learners cope with symbols representing
both mathematical processes and mathematical
concepts. Function, derivative, integral, and the
fundamental limit notion are all examples of
procepts. The limit concept is a procept because
the same notation represents both the process of
tending to the limit and also the value of the
limit.
Research and Alternative Approaches to
Teaching and Learning Calculus

Different directions of research were investigated
in the last decades. The use of technology offered
a new resource in the effort to overcome some of
the conceptual difficulties: the power of technol-
ogy is particularly important in facilitating stu-
dents’ work with epistemological double strands
like discrete/continuous and finite/infinite. Visu-
alization and especially dynamic graphics were
also used. Some researchers based their research
on the historical development of the calculus.
Other researchers used additional theoretical
lenses that include the sociocultural approach,
the institutional approach, or the semiotic
approach. In the following sections, we relate to
these different directions of research.
The Role of Technology

A key aspect of nearly all the reform projects has
been the use of graphics calculators, or computers
with graphical software, to help students develop a
better intuitive understanding of calculus. Since
learning calculus includes the analysis of changing
quantities, technology has a crucial role in enabling
dynamic graphical representations and animations.
Technology was first incorporated as a support for
visualization and coordination between semiotic
registers. The possibility of computer magnification
of graphs allows the limiting process to be implicit
in the computer magnification, rather than explicit in
the limit concept. In his plenary paper, Dreyfus
(1991) analyzed the powerful role of visual reason-
ing in learning several mathematical concepts and
processes. With introduction of the new technolo-
gies, there was a rapid succession of new ideas for
use in teaching calculus. Calculus uses numerical
calculations, symbolic manipulations, and graphical
representations, and the introduction of technology
in calculus allows these different registers. Research
on the role of technology in teaching and learning
calculus is described, for example, in Artigue
(2006), Robert and Speer (2001), and Ferrera et al.
in the 2006 handbook of research on the psychology
of mathematics education (pp. 256–266). In the
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study by Ferrera et al., research that relates to using
CAS toward the conceptualization of limit is
described. For example, Kidron and Zehavi use
symbolic computation and dynamic graphics to
enhance students’ ability to pass from visual inter-
pretation of the limit concept to formal reasoning. In
this research, a balance between the conception of
an infinite sum as a process and as an object was
supported by the software. The research by Kidron,
as reported in the study by Ferrera et al. (2006),
describes situations in which the combination of
dynamic graphics, algorithms, and historical per-
spective enabled students to improve their under-
standing of concepts such as limit, convergence, and
the quality of approximation. Most studies offer an
analysis of teaching experiments that promote the
conceptual understanding of key notions such as
limits, derivatives, and integral. For example, in a
research project by Artigue (2006), the calculator
was used toward conceptualization of the notion of
derivative. One of the aims of the project was to
enable 11th grade students to enter the interplay
between local and global points of view on func-
tional objects.

Thompson (1994) investigated the concept of
rate of change and infinitesimal change, which are
central to understanding the fundamental theorem of
calculus. Thompson’s study suggests that students’
difficulties with the theorem stem from
impoverished concepts of rate of change. In the
last two decades, Thompson published several stud-
ies which demonstrate that a reconstruction of the
ideas of calculus is made possible by using comput-
ing technology. The concept of accumulation is
central to the idea of integration and therefore is at
the core of understanding many ideas and applica-
tions in calculus. Thompson et al. (2013) describe a
course that approaches introductory calculus with
the aim that students build a reflexive relationship
between concepts of accumulation and rate of
change, symbolize that relationship, and then extend
it. In a first phase, students develop accumulation
functions from rate of change functions. In the first
phase, students “restore” the integral to the funda-
mental theorem of calculus. In the second phase,
students develop rate of change functions from
accumulation functions. The main idea is that accu-
mulation and rate of change are never treated
separately: the fundamental theorem of calculus is
present all the time. Rate is an important, but diffi-
cult, mathematical concept. Despite more than
20 years of research, especially with calculus stu-
dents, difficulties are still reported with this concept.

Tall (2010) reflects on the ongoing develop-
ment of the teaching and learning calculus since
his first thinking about the calculus 35 years ago.
Tall’s research described how the computer can be
used to show dynamic visual graphics and to
provide remarkably powerful numeric and sym-
bolic computation. As a consequence of the cog-
nitive difficulties that accompany the conceptual
understanding of the key notions in calculus,
Tall’s quest is for a “sensible approach” to the
calculus which builds on the evidence of our
human senses and uses these insights as a mean-
ingful basis for later development from calculus to
analysis and even to a logical approach in using
infinitesimals. Reflecting on the many years in
which reform of calculus teaching has been con-
sidered around the world and the different
approaches and reform projects using technology,
Tall points out that what has occurred is largely a
retention of traditional calculus ideas, now
supported by dynamic graphics for illustration
and symbolic manipulation for computation.

The research on the role of technology in teach-
ing and learning calculus is still developing, and, as
pointed by Bressoud et al. (2016), the role of tech-
nology is generally themain theme discussed in the
topic study group of learning and teaching calculus
in the last three International Congresses on Math-
ematical Education (ICME).
The Role of Historical Perspective and
Other Approaches

The idea of using a historical perspective in
approaching calculus was also demonstrated in
other studies, not necessarily in a technological
environment. Taking into account the long way in
which the calculus concepts were developed and
then defined, appropriate historically inspired
teaching sequences were elaborated.

Recent approaches in learning and teaching cal-
culus refer to the social dimension, such as the



Calculus Teaching and Learning 91

C

approach to teaching calculus called “scientific
debate,” which is based on a specific form of
discussion among students regarding the validity
of theorems. The increasing influence of sociocul-
tural and anthropological approaches toward learn-
ing processes is well expressed in research on
learning and teaching calculus. Even the construct
concept image and concept definition, which was
born in an era where the theories of learning were
essentially cognitive, was revisited (Bingolbali and
Monaghan 2008) and used in interpreting data in a
sociocultural study. This was done in a studywhich
investigated students’ conceptual development of
the derivative, with particular reference to rate of
change and tangent aspects.

In more recent studies, the role of different
theoretical approaches in research on learning cal-
culus was analyzed. Kidron (2008) describes a
research process on the conceptualization of the
notion of limit by means of the discrete continu-
ous interplay. This paper reflects many years of
research on the conceptualization of the notion of
limit, and the focus on the complementary role of
different theories reflects the evolution of this
research.
The Role of the Teacher

In the previous section, different educational envi-
ronments were described. Educational environ-
ments depend on several factors, including
teaching practices. As mentioned by Artigue
(2001), reconstructions have been proved to play
a crucial role in calculus, especially at the second-
ary/tertiary transition. Some of these reconstruc-
tions deal with mathematical objects already
familiar to students before the teaching of calculus
at university. In some cases, reconstructions result
from the fact that only some facets of a mathemat-
ical concept can be introduced at the first contact
with it. The reconstruction cannot result from a
mere presentation of the theory and formal defini-
tions. Research shows that teaching practices
underestimate the conceptual difficulties associ-
ated with this reconstruction and that teaching
cannot leave the responsibility for most of the
corresponding reorganization to students.
Research shows that alternative strategies can
be developed fruitfully, especially with the help of
technology; however, successful integration of
technology at a large-scale level is still a major
problem (Artigue 2010). Technology cannot be
considered only as a kind of educational assistant;
it was demonstrated how it deeply shapes what we
learn and the way we learn it.

Artigue points out the importance of the
teacher’s dimension. Kendal and Stacey (2001)
describe teachers’ practices in technology-based
mathematics lessons. The integration of technol-
ogy into mathematics teachers’ classroom prac-
tices is a complex undertaking (Monaghan 2004;
Lagrange 2013). Monaghan wrote and co-wrote a
number of papers in which teachers’ activities in
using technology in their calculus classrooms
were analyzed, but there were still difficulties
that the teachers had experienced in their practices
that were difficult to explain in a satisfactory
manner. Investigating the reasons for the discrep-
ancy between the potentialities of technology in
learning calculus and the actual uses in the class-
room, Lagrange (2013) searched for theoretical
frameworks that could help to focus on the teacher
using technology; the research on the role of the
teacher strengthened the idea of a difficult inte-
gration, in contrast with research which centered
on epistemological and cognitive aspects. An
activity theory framework seems helpful to pro-
vide insight on how teachers’ activity and profes-
sional knowledge evolve during the use of
technology in teaching calculus.
The Transition Between Secondary and
Tertiary Education

Adetailed analysis of the transition from secondary
calculus to university analysis is offered by
Thomas et al. (2014). A number of researchers
have studied the problems of the learning of calcu-
lus in the transition between secondary school and
university. Some of these studies focus on the
specific topics of real numbers, functions, limits,
continuity, and sequences and series. They were
carried out in several different countries (Brazil,
Canada, Denmark, France, Israel, Tunisia) and use
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different frameworks. Some have shown that cal-
culus conflicts that emerged from experiments with
1st-year students could have their roots in a limited
understanding of the concept of function, as well as
suggesting the need for a more intensive explora-
tion of the dynamic nature of the differential cal-
culus. Results of the survey suggest that there is
some room for improvement in secondary school
preparation for university study of calculus.

The transition to advanced calculus as taught at
the university level has been extensively investi-
gated within the Francophone community, with
the research developed displaying a diversity of
approaches and themes, but a shared vision of the
importance to be attached to epistemological and
mathematical analyses.

Analyzing the transition between the second-
ary school and the university, French researchers
reflect on approaches to teaching and learning
calculus in which the consideration of sociocul-
tural and institutional practices plays an essential
role. These approaches offer complementary
insights into the understanding of teaching and
learning calculus. The theoretical influence of
the theory of didactic situations, which led to a
long-term Francophone tradition of didactical
engineering research, has been designed in the
last decade to support the transition from second-
ary school calculus to university analysis.
New Directions of Research

New directions of research in teaching and learn-
ing calculus were investigated in the last decades.
We observe the need for additional theoretical
lenses, as well as a need to link different theoret-
ical frameworks in the research on learning and
teaching calculus. In particular, we observe the
need to add additional theoretical dimensions,
such as the social and cultural dimensions, to the
epistemological analyses that were done in the
early research. It is important to note that the
“new” theoretical dimensions do not replace the
cognitive and epistemological theoretical
approaches that dominated the early research.
These early theoretical constructs are necessary
and coexist with additional theoretical lenses
offered by different theories. In some cases, we
notice the evolution of research in the course of
many years, with the same researchers facing the
challenging questions concerning the cognitive
difficulties in learning calculus. The questions
are still challenging, and the researchers use dif-
ferent theoretical frameworks in their research.
For example, González-Martín et al. (2014) use
the theory of didactic situations to analyze
research cases from the study of calculus. The
authors discuss the roles of the students and the
teacher and the use of epistemological analyses. In
one of these research cases, González-Martín et al.
(2014, p. 125) analyze an activity that “fosters an
epistemological change in students’ conception,
allowing them to consider real numbers as con-
ceptual objects in relation to other objects- i.e.,
limits- within a mathematical theory.” In the last
decade, we also note discursive approaches into
research, including studies using the
commognitive framework for the analysis of
teachers’ and students’ discursive practices in cal-
culus courses. The commognitive framework,
with its hybrid term “commognition,” emphasizes
the interrelatedness of “cognition” and “commu-
nication.” Nardi et al. (2014) used the
commognitive approach in three studies which
explore fundamental discursive shifts often occur-
ring in the early stages of studying calculus. They
illustrate, for example, the variation of discursive
patterns in practices that can be perceived initially
as quite similar – as in the case of introductory
calculus lectures during which they observed the
construction of the object of function. More exam-
ples of theoretical frameworks used in research in
teaching and learning calculus are described in
Bressoud et al. (2016).

The theoretical dimension is essential for
research on calculus teaching and learning, but
we should not neglect practice. As pointed out
by Robert and Speer (2001), there are some efforts
being made toward a convergence of theory-
driven and practice-driven researches. More
recent studies describe research on how to con-
sider meaningfully theoretical and pragmatic
issues. Biza et al. (2016) describe the increasing
interest in teaching practices at university level.
The authors explore the influence of teachers’
perspectives, background, and research practices
on their teaching, as well as the role of resources
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and mathematics professional development in
teaching. In the study by Bressoud et al. (2015)
of characteristics of successful programs in calcu-
lus, we read how some universities coordinate
calculus instruction and foster a community of
practice around the teaching of calculus.

As mentioned earlier, reconstructions have
been proved to play a crucial role in calculus,
essentially these reconstructions that deal with
mathematical objects already familiar to students
before the teaching of calculus. Further research
should underline the important role of teaching
practices in successful reorganization of previous
related concepts toward the learning of calculus.
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Collaborative learning (CL) involves a team of
students who learn through working together to
share ideas, solve a problem, or accomplish a
common goal. In mathematics education, CL’s
popularity surged in the 1980s, but it has since
continued to evolve (Artzt and Newman 1997;
Davidson 1990). The terms collaborative/cooper-
ative learning are often used interchangeably,
although some claim the former requires giving
students considerable autonomy (more appropri-
ate for older students), while the latter is more
clearly orchestrated by the teacher (appropriate
for all ages) (Panitz 1999).

Three dimensions seem to define collaborative
learning (CL) and help distinguish among its
many different models: the structure of the CL
environment (including assessments and
rewards), the teacher and student roles, and the
types of tasks.

The CL structure defines how student groups are
formed (usually by teacher assignment) and how
group members are expected to interact. Research
generally recommends mixed ability grouping.
Carefully designed assessment and reward struc-
tures document student learning and provide incen-
tives for students to work productively together. All
models of CL involve group accountability, but
some models also include some individual rewards,
while others may pit groups against each other in a
competitive reward structure.

The teacher’s role is to determine the CL struc-
ture and task, then serve as facilitator. In some CL
models, students are assigned specific group roles
(e.g., recorder, calculator); other models require
students to tackle portions of the task indepen-
dently, then pool their efforts toward a common
solution. Individual accountability requires that
each student be responsible not only for his/her
own learning but also for sharing the burden for
all group members’ learning.

CL tasks must be carefully chosen: amenable
to group work and designed so that success
depends on contributions from all group mem-
bers. Particular attention to task difficulty ensures
all students can engage at an appropriate level.

CL is grounded in a social constructivist model
of learning (Yackel et al. 2011). Some CL models
involve peer tutoring (e.g., Student Team Learn-
ing: Slavin 1994). In the more common investiga-
tive CL models (e.g., Learning Together: Johnson
and Johnson 1998), the emphasis is on learning
through problem solving, but higher-order skills
such as interpretation, synthesis, or investigation
are also required.
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Project-based learning (PBL) – a twenty-first-
century group-investigation CL model – involves
cross-disciplinary, multifaceted, open-ended
tasks, usually set in a real-world context, with
results presented via oral or written presentation.
PBL tasks often take several weeks because stu-
dents must grapple with defining, delimiting, and
planning the project; conducting research; and
determining both the solution and how best to
present it (Buck Institute 2012). A stated PBL
goal is to help students develop “twenty-first-
century skills” relating to collaboration, time
management, self-assessment, leadership, and
presentation concurrently with engaging in criti-
cal thinking and mastering traditional academic
concepts and skills (e.g., mathematics).

Research has found student learning is acceler-
ated when students work collaboratively on tasks
that are well structured, carefully implemented,
and have individual accountability. There is also
evidence that affective outcomes, such as interest
in school, respect for others, and self-esteem, are
also positively impacted (Slavin 1992).
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Definition

Commognition, the portmanteau of communica-
tion and cognition, is the focal notion of the
approach to learning grounded in the assumption
that thinking can be usefully conceptualized as
one’s communication with oneself. This founda-
tional tenet goes against the famous Cartesian
split between the bodily and the mental.
According to the resulting non-dualist vision of
human cognition, mathematics is a historically
established discourse, and learning mathematics
means becoming a participant in this special form
of communication. The basic assumption about
thinking as communicating has multiple entail-
ments that combine into a comprehensive non-
dualist theory of learning.
Origins

The idea of commognition was born within the
context of mathematics education in response to
certain weaknesses of traditional visions of
human development. Whereas learning has
always been seen as a process of change, propo-
nents of the various conceptualizations that
emerged in the twentieth century differed in their
answers to the question of what it was that
changed when learning took place. According to
behaviorists, learning was a change in the
learner’s behavior, whereas cognitivist thinkers
proposed to conceptualize learning as a process
of acquiring – receiving or constructing – mental
entities called concepts, knowledge, or mental

http://www.bie.org/
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schemes. One common weakness of such
“acquisitionist” approaches was that being
focused exclusively on the individual, they fell
short of fathoming the mechanisms of the histor-
ical change in human ways of acting.

In the second half of the twentieth century, the
acquisitionist stance was countered by the claim
that in those processes of learning that are unique
to humans, the learner becomes a participant of
well-defined historically established forms of
activity (Vygotsky 1987; Cole 1996). This
“participationist” thinking on learning was taken
one step further when different domains of human
knowing, with mathematics among them, have
been recognized as discursive activities. This lat-
ter idea, which constitutes the foundation of
commognitive vision of learning, arrived almost
simultaneously from two directions. On the one
hand, it was an inevitable conclusion from the
work of psychologists and philosophers who
claimed the untenability of any attempt to separate
thought from its expression (Vygotsky 1987;
Wittgenstein 1953). On the other hand, the state-
ment about the discursive nature of human know-
ing has been made explicitly by postmodern
philosophers interested in societal-historical
rather than individual-ontogenetic change of the
activity known as science, research, or knowledge
building (Lyotard 1979; Foucault 1972; Rorty
1979). With its double focus on individual and
collective discursive processes, which are now
seen as different aspects of the same phenomenon,
the commognitive approach made it possible to
account for historical transformation of human
activities (Sfard 2008).

Although discursive activities constitute the
main source of data in almost all types of learning
sciences, the commognitive approach may be the
only one that rests on the explicit claim on the
unity of thinking and communication. Tacitly, this
tenet seems also to be present in the branch of
psychology known as discursive (Lerman 2001).
Foundations

According to the basic commognitive assump-
tion, thinking mathematically means participating
in a historically developed discourse known as
mathematical. Here, the term discourse applies
to a form of communication made distinct by a
number of interrelated characteristics: its special
keywords (for instance, “three,” “triangle,” “set,”
or “function” in mathematics); its unique visual
mediators (e.g., numerals, algebraic symbols, and
graphs); its distinctive routines, that is, patterned
ways in which its characteristic tasks (e.g., defin-
ing or proving) are being performed; and its gen-
erally endorsed narratives (in mathematics,
theorems, definitions, and computational rules,
among others). The descriptor “generally
endorsed,” used in this last sentence, is to be
understood as referring to endorsement by the
community of the discourse, with this latter term
signifying all those who are recognized as able to
participate in that discourse.

In tune with this conceptualization, learning of
mathematics becomes the process of individualiz-
ing mathematical discourse. Here, the term indi-
vidualizing refers to the process as a result of
which learners gradually become capable of
employing the discourse agentively, in response
to their own needs.

People develop specialized discourses, such as
mathematical or scientific, so as to be able to
generate potentially useful stories on chosen
aspects of the world around them and of their
own experiences. Just as biologists narrate the
worlds of living things and physicists tell stories
about unanimated objects, so do participants of
mathematical discourse tell stories about the uni-
verse of mathematical objects. Unlike the major-
ity of other discourses, however, mathematics is a
genuinely autopoietic system: it creates all those
entities its participants talk about. In this special
discourse, introduction of new nouns or symbols,
rather than being an act of signifying existing
mathematical entities, is the initiation of the pro-
cess of objectification, in which new objects are
constructed. At least one of the following discur-
sive devices is used in this latter process:

• Saming, that is, giving a common name to
things that, although seemingly unrelated, can
be seen in certain contexts as equivalent (this is
what happens, for instance, when the term the
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basic quadratic function is introduced to refer
simultaneously to things as different as the
expression x2, a certain curve called parabola,
the set of numbers paired with their squares,
etc.)

• Encapsulating, that is, replacing the talk about
separate objects with the talk about a single
entity (this takes place, when several objects
are referred to collectively as a single set; for
instance, when numerous ordered pairs of ele-
ments are claimed to constitute a function)

• Reifying, that is, turning talk about a mathe-
matical process with talk about an object (this
is the case, e.g., when we replace “When I add
5 to 7, I get 12”with “the sum of 5 and 7 is 12”)

Once a new noun is introduced in one or more
of these ways, the alienation of the new object
gradually occurs: the noun will eventually be used
in impersonal narratives, implying that its referent
exists independently of the discourse. The discur-
sive construct thus created becomes an object of
mathematical explorations, as a result of which
new mathematical narratives will eventually
emerge.

Our actions with mathematical objects at large,
and our mathematical storytelling in particular,
are governed by discourse-specific routines.
These relatively stable patterns of action reflect
our human tendency for repetition: while in a
situation in which we feel a need to act (task-
situation, for short), we usually recapitulate what
was usefully done in those past situations that we
deem similar enough to the present one to justify
such repetition. Thus, the routine performed by a
person P in task-situation TSmay thus be seen as a
pair of elements: (1) the task, which is P’s vision
of all those elements of the precedent events that
must be repeated in TS, and (2) procedure, which
is the prescription for action that aptly describes
both the present and precedent performances. The
same procedure may become a basis for different
types of routines, depending on the performer’s
vision of the task.

Expert participants of mathematical discourse
interpret most task-situations as requiring a (re)
formulation and endorsement of a particular type
of mathematical narrative. Such outcome-oriented
routines can be called explorations. In contrast, if
these are the actions of the previous performers,
not just their outcome, that the person considers as
requiring exact recapitulation, it is justified to
describe her process-oriented routine as ritual.
Since the ritual performance does not count in
the eyes of the performer as an act of production,
it can only be motivated by this person’s expecta-
tion of social rewards. Of course, most routines
people actually perform are neither pure rituals
nor perfect explorations, and between these two
extremes, there is a wide spectrum of possibilities.
Method

Mathematical discourses are the principal object
of commognitive research, and the development
of these discourses is its main theme. In contrast to
psychological studies that tend to analyze learning
as the process of change in the learner,
commognitive investigations seek transforma-
tions in mathematical discourse. As a form of
communicational activity, learning is now con-
ceived as inherently collective, or social, rather
than individual phenomenon (and it is so even if it
is practiced in solitude).

Detailed records of multimodal interactions
and their meticulously prepared transcriptions
constitute the main type of data in commognitive
research on learning. Among the rules that govern
data analysis, there is the principle of wholeness,
according to which the discourse as a whole,
rather than its particular objects (or concepts),
constitutes the unit of analysis; the principle of
operationality, which requires defining the key-
words with the help of perceptually accessible
properties of the discourse; and the principle of
alternating perspectives, which states that ana-
lysts have to constantly alternate between the per-
spectives of insiders and of outsiders to their own
discourse. Although each study requires its own
analytic scheme, effective heuristics are available
for constructing such scheme. Finally, when
reporting their findings, commognitive writers
favor direct quotations from data over reported
speech, and they are always wary of “ontological
collapse,” which is the case whenever the
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participant’s vision of reality is offered as the
researcher’s own narrative on that reality.
Commognitive Theory of the
Development of Mathematical
Discourses

One of the main strands in commognitive research
is the study of the development of mathematical
discourses, with the word development pertaining
to both ontogenetic and historical growth of this
special form of communication. Although these
two types of development are quite distinct – the
former is mainly productive (creative) and the
other mainly reproductive – there are reasons to
believe that they share some basic mechanisms
and are subject to a number of comparable
constraints.

Objectification, the first common feature to
mention, is widely practiced across mathematics
as a means of compressing the discourse and thus
of making it possible to say more with less. The
periodic compression allows for practically
unbounded growth of mathematical discourse.
This growth happens in cycles of objectifying
and formalizing of the current meta-discourse
and then annexing it as a new layer of the full-
fledged mathematical discourse. Elementary alge-
bra, which constitutes a formalized meta-
discourse of arithmetic (Caspi and Sfard 2012),
may be seen as a prototypical product of this
process.

Another common feature of historical and
ontogenetic developments of mathematical dis-
course is that they involve changes on both object
level and meta-level. Object-level developments
result in extending the existing sets of endorsed
narratives about already constructed mathematical
objects. This type of growth is mainly accumula-
tive. Meta-level developments are those that
involve changes in meta-rules of the discourse.
This type of transformation is not a matter of a
simple accretion: it usually results in a discourse
incommensurable with its predecessor. This means
that within the new discourse, some of the endorsed
narratives of the old one will be considered as
“misconceptions.” Incommensurable discourses,
therefore, rather than being mutually exclusive,
complement each other in their applicability. In
encounters between incommensurable discourses,
such as those occasioned, for instance, by succes-
sive extensions of the number system, the old
discourse (e.g., that of integers) may become sub-
sumed within the new one (that of rational num-
bers). This, of course, will happen at the price of
losing some of the old endorsed narratives (for
instance, it will no longer count as true that “mul-
tiplications makes bigger”) and of modified
word uses.

Historical Development To get a sense of their
historical development, it is necessary to con-
sider discursive activities within the context of
other ones, especially of those that result in
changes, reorganization, or repositioning of
objects, and can thus be called practical. One of
the main commognitive assumptions is that prac-
tical and discursive activities have always been
spurring each other’s development. Thus, for
instance, it is reasonable to hypothesize that the
emergence of numerical discourse was prompted
by our ancestors’ wish to extend the practical
activity of making quantitative choices. This
task was initially performed by putting small
finite sets in one-to-one correspondence. Once
numbers were introduced, it became possible to
compare also sets that were too large or too
distant in space or time to be physically mapped
one into another. The invention of counting
opened opportunities for new types of practical
activities, which, in turn, gave rise to further
discursive extensions. More generally, practical
and discursive activities coevoved in cycles,
functioning like two legs, each of which was
making a constant attempt to get ahead of the
other one, thus moving the whole system for-
ward, toward ever greater complexity.

This vison of the coevolution of practical and
discursive activities has been recently corrobo-
rated by findings of a cross-cultural research on
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the learning of mathematics in the Polynesian
state of Tonga (Morris 2017). The study has
shown that discourses developed in one culture
to support practical activities specific to this cul-
ture may not be easily transferrable to a culture, in
which these special activities are absent.
Commognitive approach has also been found use-
ful in mapping shorter-term historical changes,
such as those that happened over the period of a
few decades in the discourse of school mathemat-
ics in England (Morgan and Sfard 2016).

Ontogenetic Development Although it is reason-
able to expect some parallels between the histor-
ical and ontogenetic developments, it is just as
justified to expect differences. Rather than being
brought into being by some practical, genuinely
felt need, new discourses may appear in the life
of a learner as ready-made patterns of communi-
cating, widely practiced in the community. For
instance, in today’s societies, children are taught
to count prior to being properly exposed to the
quantitative discourse, recognizable by descrip-
tive keywords such as more, less, greater, large,
etc., and long before they are aware of how the
resulting numerical discourse may be applied in
any activity (Lavie and Sfard 2016). Similarly,
the development of the discourse on rational
numbers begins with an introduction of the cal-
culus of fractions. In both these cases, the new
discourse, if successfully developed, will be
incommensurable with its predecessor, and this
means that there will be a need for a meta-level
learning.

In contrast to object-level learning that, theo-
retically, can happen without the teacher’s delib-
erate intervention, meta-level learning requires
interacting with a person who is already adept in
the new discourse. This type of learning cannot be
motivated or guided by the learner’s own genuine
interest in the outcome. For the student, the only
way to enter the discourse is to imitate teacher’s
expert performances. At this point, the routines
she performs cannot yet constitute true mathemat-
ical explorations, because the learner, not being
acquainted with the focal objects, cannot judge
the success of her performance by the endo-
rsability of the mathematical narrative produced
in the process. Meta-level learning is thus bound
to begin with rituals.

The rituals, which are arguably inevitable at
the earliest stages of meta-level learning, may
later morph into explorations. For this to happen,
the learner must keep participating in the new
discourse while also making persistent efforts to
figure out its usefulness. In the progress of
de-ritualization, the performer’s attention gradu-
ally shifts from the performance as such to its
outcome. This shift may manifest itself, among
others, in the strengthening of such characteristics
of routines as flexibility or applicability. With
time, the routine will become vertically bonded:
every step in its procedure will build on the out-
come of the previous ones. It will also be horizon-
tally bonded with other routines: its procedure
will branch into a number of alternative paths as
a result of realization that other routines perform
the same task. As found in research, the process of
de-ritualization may be gradual and slow (Sfard
and Lavie 2005; Lavie and Sfard 2016) and only
too often is not being completed in school. The
question of what it is that fuels or obstructs pro-
cesses of de-ritualization is being addressed in
numerous commognitive studies.
Commognitive Theory of Factors that
Shape the Learning of Mathematics
Conditions for Learning Commognitive
approach offers its own vision of circumstances
under which learning of mathematics becomes
possible. Object-level learning requires no
more than the ability to deduce new narratives
from those already endorsed and thus can, in
principle, be attained by learners on their own,
without the help from a more experienced par-
ticipant. For meta-level mathematics learning to
occur, however, some special conditions are nec-
essary. The opportunity for meta-level learning
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offers itself when the learners encounter a dis-
course incommensurable with their own. Three
conditions must be fulfilled to turn such
commognitive conflict into a genuine opportu-
nity for learning: (1) all the participants have to
agree on the question of which discourse should
be the leading one, that is, common to all the
participants; (2) the experienced participants of
the leading discourse must accept their role as
leaders (teachers), whereas other ones must be
willing to act as followers (learners); and (3) the
participants need to have shared expectations
with regard to the possible form and pace of the
learning process. Together, these three condi-
tions constitute a learning-teaching agreement.
Commognitive theory offers a vision of factors
likely to support or counter this kind of agree-
ment, thereby shaping the learning of
mathematics.

Culture Any mathematical discourse, when
taught in different institutional or cultural set-
tings, may give rise to different learning
processes. That this is the case has been corrob-
orated in a study that compared mathematics
learning of native Israelis to that of immigrants
from the former Soviet Union (Sfard and Prusak
2005), in the commognitive research on the
learning about infinity and limits by Korean-
speaking students and by English speakers
from the United States (Kim et al. 2012), and in
a study on the learning of fractions and probabil-
ity in Tonga (Morris 2017).

Identity While mathematizing, that is, participat-
ing in a discourse on mathematical objects, we
tend to be simultaneously involved in the dis-
course of subjectifying, that is, in an overt or
covert talk about participants. Clearly, the activity
of subjectifying, unless tightly related to the per-
formance of mathematical tasks, may reduce the
participants’ engagement in mathematical dis-
course, thereby undermining the effectiveness of
their mathematics learning. Particularly strong
may be effects of subjectifying that takes the
form of identification, that is, of telling stories
on the properties of the learner rather than of her
actions. Identity-constituting narratives, offered
directly or indirectly by their protagonists, the
learners, and by the people around them, tend to
function as self-fulfilling prophecies and may thus
have a long-term effect on learning: the student
identified as “weak” will now be more likely to
fail, and the one labeled as “strong” will be more
determined to achieve success. The result will
reinforce the previously constructed identities,
reducing the chances for a change in a reverse
direction (Ben-Yehuda et al. 2005; Sfard and
Prusak 2005; Heyd-Metzuyanim 2015).

Teaching In our society, young people enter the
world of formalized mathematics mainly through
opportunities for learning created for them by
mathematics teachers. The teacher models the
discourse for the learners and issues invitations
for their active co-participation. One of the main
questions to ask while trying to figure out possible
outcomes of the teacher’s efforts is whether the
students are offered an access to explorative math-
ematics or are rather encouraged to satisfy them-
selves with ritualized discourse (Adler and Sfard
2017).
Contributions of Commognitive
Research: Past and Future

The commognitive approach may be claimed to
have a number of strengths. First, research
methods grounded in its underlying non-dualist
onto-epistemology make it possible to investi-
gate learning on both individual and collective
levels and lead to a high-resolution picture of the
relevant processes. Commognitive analyses
reveal the highly consequential nature of even
the tiniest of the teachers’ moves. Second, the
constantly expanding commognitive theory
brings its own insights about mathematics learn-
ing and informs the teaching of mathematics in
ways that often go against widely endorsed
pedagogical principles. Last but not least, the
disappearance of the thought-communication
dichotomy dissolves some of the time-honored
dilemmas that proved untreatable within the
confines of the traditional dualist approaches.
The non-duality implies that both types of
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phenomena can be researched, at least in princi-
ple, with the same set of conceptual tools, even if
not in the same ways and not with an equal ease.
One time-honored quandary that becomes treat-
able with these unified tools is the question of
our uniquely human capacity for changing our
ways of doing things from one generation to
another (for societal learning). Unaccounted
for by the traditional theorizations of learning,
this special capacity for accumulating the
complexity of our actions can now be explained
by taking a close look at processes of develop-
ment, in which discourses remain in a
co-constitutive interaction with physical tools.
With the tools together, they function as practi-
cally unbounded compressors, repositories, and
disseminators of complexity. Since societal
learning is the signature feature of the human
species, commognition may be said to have
made a tentative contribution to solving the puz-
zle of human uniqueness.

Whereas some of the old quandaries may now
be regarded as dissolved, some other ones invite
further commognitive study. In spite of the pro-
gress already made, figuring out the mechanisms
of discourse development, whether ontogenetic
or historical, is nowhere close to disappearing
from the researcher’s to-do list. The same
may be said about the task of mapping the
co-constitutive relations between our discursive
and practical activities or about the project of
fathoming mutual influences of mathematics
and other discourses practiced in different soci-
eties. If successful in tackling these and similar
issues, commognitive researchers may produce
insights, the relevance and impact of which are
likely to go beyond the practice of learning and
teaching mathematics.
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Definition

Mathematics teacher education (MTE) consists of
processes and practices through which teachers or
student teachers learn to teach mathematics. It
involves as participants, primarily, student teachers,
teachers, and teacher educators; other stakeholders
such as school principals or policy officials with
regulatory responsibilities can be involved to differ-
ing degrees. Thus a community in MTE consists of
people who engage in these processes and practices
and who have perspectives and knowledge in what
it means to learn and to educate in mathematics and
an interest in the outcomes of engagement. An
inquiry community, or community of inquiry, in
MTE is a community which brings inquiry into
practices of teacher education in mathematics –
where inquiry implies questioning and seeking
answers to questions, problem solving, exploring,
and investigating – and in which inquiry is the basis
of an epistemological stance on practice, leading to
“metaknowing” (Wells 1999; Jaworski 2006). The
very nature of a “community” of inquiry rooted in
communities of practice (Wenger 1998) implies a
sociohistorical frame in which knowledge grows
and learning takes place through participation and
dialogue in social settings (Wells 1999).
Characteristics

Rather than seeing knowledge as objective, pre-
given and immutable (an absolutist stance: Ernest
1991) with learning as a gaining of such knowledge
and teaching as a conveyance of knowledge from
one who knows to one who learns, an inquiry
stance sees knowledge as fluid, flexible and fallible
(Ernest 1991). These positions apply to mathemat-
ical knowledge and to knowledge in teaching:
teachers of mathematics need both kinds of knowl-
edge. Knowledge is seen variously as formal and
external, consisting of general theories and
research-based findings to be gained and put into
practice; or as craft knowledge, intrinsic to the
knower, often tacit, and growing through action,
engagement, and experience in practice; or yet
again as growing through inquiry in practice so
that the knower and the knowledge are inseparable.
Cochran Smith and Lytle (1999) call these three
ways of conceptualizing knowledge as knowledge
for teaching, in teaching, and of teaching. With
regard to knowledge-of-teaching, they use the
term “inquiry as stance” to describe the positions
teachers take towards knowledge and its relation-
ships towards practice. This parallels the notion of
“inquiry as a way of being” in which teachers take
on the mantle of inquiry as central to how they
think, act, and develop in practice and encourage
their students to do so as well (Jaworski 2006).

An inquiry community in mathematics teacher
education therefore involves teachers (including
student teachers who are considered as less expe-
rienced teachers) engaging together in inquiry into
teaching processes to promote students’ learning of
mathematics and, moreover, involving students in
inquiry in mathematics. The main purpose of
inquiry is to call into question aspects of a source
(such as mathematics) which encourages a deeper
engagement as critical questioning takes place and
knowledge grows within the community.When the
source is mathematics, inquiry in mathematics
allows students to address mathematical questions
in ways that seek out answers and lead to new
knowledge. Thus mathematics itself becomes
accessible, no longer perceived as only right or
wrong, and its revealed fallibility is an encourage-
ment to the learner to explore further and under-
stand more deeply. Similarly as teachers explore
into aspects of mathematics teaching – for exam-
ple, the design of inquiry-based mathematical tasks
for students – their critical attitude to their practice
generates new knowledge in practice and new
practice-based understandings (Jaworski 2006).
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In a community of practice, Wenger (1998)
suggests that “belonging” to the community
involves “engagement,” “imagination,” and
“alignment.” Participants engage with the prac-
tice, use imagination in weaving a personal trajec-
tory in the practice and align with norms and
expectations within the practice. The transforma-
tion of a community of practice to a community of
inquiry requires participant to look critically at
their practices as they engage with them, to ques-
tion what they do as they do it, and to explore new
elements of practice. Such inquiry-based forms of
engagement have been called “critical alignment”
(Jaworski 2006). Critical alignment is a necessity
for developing an inquiry way of being within a
community of inquiry.

Like teachers, teacher educators in mathemat-
ics (sometimes called didacticians, due to their
practices in relation to the didactics of mathemat-
ics) are participants in communities of inquiry in
which they too need to develop knowledge in
practice through inquiry. Their practices are dif-
ferent from those of teachers, but there are com-
mon layers of engagement in which teachers and
teacher educators side by side explore practices in
learning and teaching of mathematics in order to
develop practice and generate new knowledge.
Teacher educators also have responsibilities in
linking theoretical perspectives to development
of practice and to engaging in research formally
for generation of academic knowledge. Thus it is
possible to see three (nested) layers of inquiry
community in generating new understandings of
teaching to develop the learning of mathematics:
inquiry by students into mathematics in the class-
room, inquiry by teachers into the processes and
practices of creating mathematical learning in
classrooms, and inquiry by teacher educators
into the processes by which teachers learn through
inquiry and promote the mathematical learning of
their students (Jaworski and Wood 2008) (Fig. 1).
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Definition and Originators

Communities of practice (CoP) are an important
component of an emerging social theory of
learning. Lave and Wenger (1991) originally
envisioned this social learning theory as a way
to deepen and extend the notion of situated
learning that occurs in traditional craft apprentice-
ships, contexts in which education occurs out-
side of formal schools (“Anthropological
Approaches”). Drawing upon evidence from eth-
nographic investigations of apprenticeships in a
range of settings (e.g., tailoring), they have fre-
quently argued that it is important to separate
learning from formal school contexts to under-
stand that most human activities involve some
form of teaching and learning. Wenger (1998)
argued that three dimensions inherently connect
CoP’s two components (community and practice):
“1) mutual engagement; 2) a joint enterprise;
3) a shared repertoire” (p. 73). One important
aim of a CoP is the negotiation of meaning
among participants. Groups of people who live
or work in the same location do not create a CoP
unless they are actively involved in communi-
cating with each other about important issues
and working together toward common goals.
Another important aspect of CoP is that learning
may be demonstrated by changes in the personal
identities of the community members. Changes
in identity are accompanied by increasing partic-
ipation in the valued practices of this particular
CoP as newcomers become old-timers in the
community.
How CoP Connects to Developments in
Theories of Learning Mathematics

Social theories of learning have a long history
in psychology (Cole 1996). Nevertheless, more
experimental and reductionist theories were the
predominant form of psychology until the late
twentieth century. The reemergence of social theo-
ries of learning has occurred in numerous places,
such as discursive psychology (Harré and Gillett
1994), as well as in mathematics education
(Lerman 2001; van Oers 2001). Sfard (1998)
has outlined the reasons why we need a social
learning theory in mathematics education. She
contrasted two key metaphors: learning as
acquisition versus learning as participation. Most
research conducted during the last century in math-
ematics education used the acquisition metaphor.
In contrast, the participation metaphor shifts the
focus from individual ownership of skills or ideas
to the notion that learners are fundamentally social
beings who live and work as members of commu-
nities. Teaching and learning within CoP depend
upon social processes (collaboration or expert
guidance) as well as social products (e.g., tools)
in order to help newcomers master the important
practices of their community (▶ “Theories of
Learning Mathematics”). In addition, we need
social theories of learning to address some of the
fundamental quandaries of educational research
and practice (Sfard 2008). These enduring
dilemmas include the puzzling discrepancy in per-
formance on in-school and out-of-school mathe-
matical problems.

https://doi.org/10.1007/978-3-030-15789-0_157
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History of Use

Lave’s (1988, 2011) own empirical research
began with a focus on mathematical proficiency
in out-of-school settings (e.g., tailoring garments).
She initially chose situated cognition tasks
that required mathematical computations so that
she could more easily compare them with
school-like tasks (▶ “Informal Learning in Math-
ematics Education”). Other investigators in
ethnomathematics conducted similar studies
for a range of cultural activities (e.g., selling
candy on the street) (Nunes et al. 1993)
(▶ “Ethnomathematics”). One recurrent finding
of this research has been that children, adoles-
cents, and adults can demonstrate higher levels
of mathematical proficiency in their out-of-school
activities than in school, even when the actual
mathematical computations are the same
(Forman 2003). Another finding was that social
processes (e.g., guided participation) and cultural
tools (e.g., currency) were important resources
for people as they solved mathematical problems
outside of school (Saxe 1991, 2012). This
research forces one to question the validity of
formal assessments of mathematical proficiency
and to wonder how mathematical concepts and
procedures are developed in everyday contexts
of work and play (▶ “Situated Cognition in
Mathematics Education”). Many of these investi-
gators began to question the basic assumptions of
our individual learning theories and turn their
attention to developing new social theories of
learning.

Social theories of learning have had a greater
impact on school-based research in the last
10 years. Research in teacher education, for
example, has embraced the idea of CoP because
it allows us to go beyond a bifurcated focus: either
on individual teachers or on the organizational
structure of schools (Cobb and McClain 2006;
Cobb et al. 2003) (▶ “Communities of Practice
in Mathematics Teacher Education”). Cobb and
his colleagues used an expanded version of
Wenger’s (1998) CoP framework to view
teachers’ practices as part of the “lived organiza-
tions” (2003, p. 13) of schools and districts
(▶ “Mathematics Teacher as Learner”). This
expanded framework has allowed them to under-
stand the multiple communities in which teachers
and administrators participate (e.g., as mathemat-
ics leaders, as school leaders, or as members of
a professional teaching group) (▶ “Education
of Mathematics Teacher Educators”). Each com-
munity may have its tacit norms and practices,
requiring individuals to serve as brokers during
boundary encounters and to create boundary
objects that allow them to mediate between
groups. Wenger (1998) argued that people create
boundary objects through a process of reification.
For example, boundary objects in teacher educa-
tion can be common planning tools or agreed-
upon student characteristics. Although boundary
objects may not embody identical meanings for all
groups of participants, they can allow for coordi-
nation of activity between communities.

As applications by Cobb and his colleagues
of CoP to teacher education were widely dissem-
inated in the mathematics education community,
other investigators worked on expanding the
theoretical and empirical knowledge base
(▶ “Professional Learning Communities in Math-
ematics Education”). For example, Bannister
(2015) combined Goffman’s notion of frame anal-
ysis with Wenger’s CoP to conduct a microanaly-
sis of changes in the pedagogical reasoning of
one team of high school mathematics teachers
over several months. Her analysis of ethnographic
data focused on both participation patterns
(e.g., turn taking) and reification (e.g., boundary
objects such as “struggling students”)
(▶ “Discourse Analytic Approaches in Mathe-
matics Education”). She was able to document
distinct changes in the ways that this group of
teachers characterized struggling students: from
attending to static attributes to focusing on class-
room interventions to support those students
(▶ “Frameworks for Conceptualizing Mathemat-
ics Teacher Knowledge”).
Perspectives on Issues in Different
Cultures/Places

The earliest research about CoP was conducted
in diverse cultural settings: Brazil, Liberia, and

https://doi.org/10.1007/978-3-030-15789-0_164
https://doi.org/10.1007/978-3-030-15789-0_164
https://doi.org/10.1007/978-3-030-15789-0_60
https://doi.org/10.1007/978-3-030-15789-0_140
https://doi.org/10.1007/978-3-030-15789-0_140
https://doi.org/10.1007/978-3-030-15789-0_26
https://doi.org/10.1007/978-3-030-15789-0_26
https://doi.org/10.1007/978-3-030-15789-0_106
https://doi.org/10.1007/978-3-030-15789-0_55
https://doi.org/10.1007/978-3-030-15789-0_55
https://doi.org/10.1007/978-3-030-15789-0_130
https://doi.org/10.1007/978-3-030-15789-0_130
https://doi.org/10.1007/978-3-030-15789-0_50
https://doi.org/10.1007/978-3-030-15789-0_50
https://doi.org/10.1007/978-3-030-15789-0_63
https://doi.org/10.1007/978-3-030-15789-0_63


106 Communities of Practice in Mathematics Education
Papua New Guinea (▶ “Cultural Diversity in
Mathematics Education”). In addition to a broad
range of national settings, this ethnographic work
focused on the mathematical reasoning that
occurred in the daily lives of people outside of
schools. More recently, research sites were
located in schools in Europe or North America
(e.g., Cobb and McClain 2006; Corbin et al.
2003). Thus, unlike many educational innova-
tions, the study of CoP began in impoverished
locations and later spread to wealthy settings.
Gaps That Need to Be Filled

Forms of mutual engagement change over time
within any community (Wenger 1998). Collective
goals evolve as different interpretations clash and
new understandings are negotiated. New boundary
objects are created and modified, new vocabulary
developed, and new routines and narratives invented
when this happens. As investigators such as Cobb
and others follow teacher communities of practice
over periods of months or years, we are able to
understand the tensions and struggles that occur in
different school districts as they attempt to change
teachers’ practices to be more standards-based.
Their application of Wenger’s CoP has allowed
them to keep a dual focus on the learning of indi-
vidual teachers and the institutional constraints and
affordances presented by their schools, districts, and
government entities. This dual focus can be seen in
the Railside School project, originally documented
by Boaler and Staples (2008) (▶ “Equity and
Access in Mathematics Education”). After several
years of successful implementation, Railside was
derailed due to national policy changes that
increased standardization and accountability
requirements (Nasir et al. 2014). Thus, CoP pro-
vides a framework for confronting the realities of
maintaining a successful teacher learning commu-
nity over long periods.

Finally, several investigators in mathematics
education are now asking us to transcend the
limitations of the CoP perspective in order to
understand race, power, and identity in mathemat-
ical practices. They refer to this expansion of
CoP as the sociopolitical turn (Gutierrez 2013;
Nasir and McKinney de Royston 2013). These
authors draw on critical race theory to character-
ize the dynamics that occur during interactions
among members of dominant (white, middle-
class adults) and nondominant communities
(working class parents and students of color)
(▶ “Urban Mathematics Education”). These
investigators and others question the narratives
in which the underachievement of students of
color is an individual failure and not a systemic
devaluing of their cultural capital. This new
direction allows us to situate communities in
economic and political hierarchies that serve to
maintain the status quo of systemic inequality at
individual and collective levels. And it may per-
mit us to construct counter-narratives of positive
identity development by recognizing the cultural
funds of knowledge of these students and offer-
ing different ways to access the power of math-
ematics (Quintos et al. 2011) (▶ “Language
Background in Mathematics Education”). In
their own way, these investigators are returning
to the roots of CoP in situated practice in order to
re-examine the enduring dilemmas of mathemat-
ics education.
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Definition

Communities of practice in mathematics
teacher education are informed by a theory of
learning as social participation, in which teacher
learning and development are conceptualized as
increasing participation in social practices that
develop an identity as a teacher.
Background

The idea of learning in a community of practice
grew from Jean Lave’s and Etienne Wenger’s
research on learning in apprenticeship contexts
(Lave 1988; Lave and Wenger 1991). Drawing
on their ethnographic observations of apprentices
learning different trades, Lave and Wenger devel-
oped a theory of learning as social practice to
describe how novices come to participate in the
practices of a community. These researchers
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introduced the term “legitimate peripheral partic-
ipation” to explain how apprentices, as new-
comers, are gradually included in the community
through modified forms of participation that are
accessible to potential members working along-
side master practitioners. Although social practice
theory aimed to offer a perspective on learning in
out-of-school settings, Lave (1996) afterwards
argued that apprenticeship research also has
implications for both learning and teaching in
schools and for students and teachers as partici-
pants in social practices that shape identities.

To further analyze the concepts of identity and
community of practice,Wenger (1998) proposed a
more elaborated social theory of learning that
integrates four components – meaning (learning
as experience), practice (learning as doing), com-
munity (learning as belonging), and identity
(learning as becoming). Wenger explained that
communities of practice are everywhere – in peo-
ple’s workplaces, families, and leisure pursuits, as
well as in educational institutions. Most people
belong to multiple communities of practice at any
one time and will be members of different com-
munities throughout their lives. His theory has
been applied to organizational learning as well
as learning in schools and other formal educa-
tional settings.
Communities of Practice as a Framework
for Understanding Mathematics Teacher
Learning and Development

Social theories of learning are now well
established in research on mathematics education.
Lerman (2000) discussed the development of “the
social turn” in mathematics education research
and proposed that social theories drawing on com-
munity of practice models provide insights into
the complexities of teacher learning and develop-
ment. From this perspective, learning to teach
involves developing an identity as a teacher
through increasing participation in the practices
of a professional community (Lerman 2001). At
the time of publication of Lerman’s (2001) review
chapter on research perspectives on mathematics
teacher education, there were few studies drawing
on Lave’s and Wenger’s ideas. Reviewing the
same field 5 years later, Llinares and Krainer
(2006) noted increasing interest in using the idea
of a community of practice to conceptualize learn-
ing to teach mathematics. Such studies can be
classified along several dimensions, according to
their focus on:

1. Preservice teacher education or the profes-
sional learning and development of practicing
teachers

2. Face-to-face or online interaction (or a combi-
nation of both)

3. Questions about how a community of practice
is formed and sustained compared with ques-
tions about the effectiveness of communities of
practice in promoting teacher learning

Research has been informed by the two key
conceptual strands of Wenger’s (1998) social
practice theory. One of these strands is related to
the idea of learning as increasing participation in
socially situated practices and the other to learn-
ing as developing an identity in the context of a
community of practice.

Learning as Participation in Practices
With regard to participation in practices, Wenger
describes three dimensions that give coherence to
communities of practice: mutual engagement of
participants, negotiation of a joint enterprise, and
development of a shared repertoire of resources
for creating meaning. Mutuality of engagement
need not require homogeneity, since productive
relationships arise from diversity and these may
involve tensions, disagreements, and conflicts.
Participants negotiate a joint enterprise, finding
ways to do things together that coordinate their
complementary expertise. This negotiation gives
rise to regimes of mutual accountability that reg-
ulate participation, whereby members work out
who is responsible for what and to whom, what
is important and what can safely be ignored, and
how to act and speak appropriately. The joint
enterprise is linked to the larger social system in
which the community is nested. Such
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communities have a common cultural and histor-
ical heritage, and it is through the sharing and
reconstruction of this repertoire of resources that
individuals come to define their relationships with
each other in the context of the community.

This aspect of Wenger’s theory has been used
to investigate discontinuities that may be experi-
enced in learning to teach mathematics in the
different contexts in which prospective and begin-
ning teachers’ learning occurs – the university
teacher education program, the practicum, and
the early years of professional experience
(Llinares and Krainer 2006). One of the more
common discontinuities is evident in the difficulty
many beginning teachers experience in sustaining
the innovative practices they learn about in their
university courses. This observation can be
explained by acknowledging that prospective
and beginning teachers participate in separate
communities – one based in the university and
the other in school – which often have different
regimes of accountability that regulate what
counts as “good teaching.”

Researchers have also investigated how partic-
ipation in online communities of practice supports
the learning of prospective and practicing teachers
of mathematics, and insights into principles
informing the design of such communities are
beginning to emerge (Goos and Geiger 2012).
Some caution is needed in interpreting the find-
ings of these studies, since few present evidence
that a community of practice has actually been
formed: for example, by analyzing the extent of
mutual engagement, how a joint enterprise is
negotiated, and whether a shared repertoire of
meaning-making resources is developed by par-
ticipants (Goos and Bennison 2008). Neverthe-
less, studies of online communities of practice
demonstrate that technology-mediated collabora-
tion does more than simply increase the amount of
knowledge produced by teachers; it also leads to
qualitatively different forms of knowledge and
different relationships between participants.

Learning as Developing an Identity
With regard to identity development, Wenger
wrote of different modes of belonging to a
community of practice through engagement,
imagination, and alignment. Beyond actually
engaging in practice, people can extrapolate
from their experience to imagine new possibilities
for the self and the social world. Alignment, the
third mode of belonging, refers to coordinating
one’s practices to contribute to the larger enter-
prise or social system. Alignment can amplify the
effects of a practice and increase the scale of
belonging experienced by community members,
but it can also reinforce normative expectations of
practice that leave people powerless to negotiate
identities.

Research into teacher identity development in
communities of practice is perhaps less advanced
than studies that analyze evidence of changing
participation in the practices of a community.
This may be due to a lack of well-developed
theories of identity that can inform research
designs and provide convincing evidence that
identities have changed. Jaworski’s (2006) work
on identity formation in mathematics teacher edu-
cation proposes a conceptual shift from learning
within a community of practice to forming a com-
munity of inquiry. The distinguishing characteris-
tic of a community of inquiry is reflexivity, in that
participants critically reflect on the activities of
the community in developing and reconstructing
their practice. This requires a mode of belonging
that Jaworski calls “critical alignment” – adopting
a critically questioning stance in order to avoid
perpetuating undesirable normative states of
activity.
Issues for Future Research

Elements of Wenger’s social practice theory reso-
nate with current ways of understanding teachers’
learning, and this may explain why his ideas have
been taken up so readily by researchers in mathe-
matics teacher education. Nevertheless, the notion
of situated learning in a community of practice
composed of experts and novices was not origi-
nally focused on school classrooms, nor on peda-
gogy, and so caution is needed in applying this
perspective on learning as an informal and tacit
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process to learning in formal education settings,
including preservice and in-service teacher edu-
cation (Graven and Lerman 2003). Wenger’s
model was developed from studying learning in
apprenticeship contexts, where teaching is inci-
dental rather than deliberate and planned, as in
university-based teacher education. It remains to
be seen whether community of practice appro-
aches can be applied to understand the role of
teacher educators in shaping teachers’ learning.
Cross-References
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Definition

A structural plan for organizing the cognitive
skills and abilities used in learning and doing
mathematics.
Characteristics

The concept of competence is one of the most
elusive in the educational literature. Writers
often use the term competence or competency
and assume they and their readers know what it
means. But arriving at a simple definition is a
challenging matter. Dictionaries give such defini-
tions as “the state or quality of being adequately or
well qualified”; “the ability to do something suc-
cessfully or efficiently”; “possession of required
skill, knowledge, qualification, or capacity”; “a
specific range of skill, knowledge, or ability”;
and “the scope of a person’s or group’s knowledge
or ability.” Competence seems to possess a host of
near synonyms: ability, capability, cognizance,
effectuality, efficacy, efficiency, knowledge, mas-
tery, proficiency, skill, and talent – the list goes on.
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Arriving at a common denotation across differ-
ent usages in social science is even more difficult.
“There are many different theoretical approaches,
but no single conceptual framework” (Weinert
2001, p. 46). Weinert identifies seven different
ways that “competence has been defined,
described, or interpreted theoretically” (p. 46).
They are as follows: general cognitive competen-
cies, specialized cognitive competencies, the
competence-performance model, modifications
of the competence-performance model, cognitive
competencies and motivational action tendencies,
objective and subjective competence concepts,
and action competence. Competency frameworks
in mathematics education fall primarily into
Weinert’s specialized-cognitive-competencies
category, but they also overlap some of the other
categories.

The progenitor of competency frameworks in
mathematics education is Bloom’s (1956) Taxon-
omy of Educational Objectives, which attempted
to lay out, in a neutral way, the cognitive goals of
any school subject. The main categories were
knowledge, comprehension, application, analy-
sis, synthesis, and evaluation. These categories
were criticized by mathematics educators such as
Hans Freudenthal and Chris Ormell as being
especially ill suited to the subject of mathematics
(see Kilpatrick 1993 on the critiques as well as
some antecedents of Bloom’s work). Various
alternative taxonomies have subsequently been
proposed for school mathematics (see Tristán and
Molgado 2006, pp. 163–169, for examples). Fur-
ther, Bloom’s taxonomy has been revised
(Anderson and Krathwohl 2001) to separate the
knowledge dimension (factual, conceptual, pro-
cedural, and metacognitive) from the cognitive
process dimension (remember, understand,
apply, analyze, evaluate, and create), which
does address one of the complaints of mathemat-
ics educators that the original taxonomy
neglected content in favor of process. But the
revision nonetheless fails to address such criti-
cisms as the isolation of objectives from any
context, the low placement of understanding in
the hierarchy of processes, and the failure to
address important mathematical processes such
as representing, conjecturing, and proving.
Whether organized as a taxonomy, with an
explicit ordering of categories, or simply as an
arbitrary listing of topics, a competency framework
for mathematics may include a breakdown of the
subject along with the mental processes used to
address the subject, or it may simply treat those
processes alone, leaving the mathematical content
unanalyzed. An example of the former is the model
of outcomes for secondary school mathematics
proposed by James Wilson (cited by Tristán and
Molgado 2006, p. 165). In that model, mathemat-
ical content is divided into number systems, alge-
bra, and geometry; cognitive behaviors are divided
into computation, comprehension, application,
and analysis; and affective behaviors are either
interests and attitudes or appreciation. Another
example is provided by the framework proposed
for the Third International Mathematics and Sci-
ence Study (TIMSS; Robitaille et al. 1993, Appen-
dix A). The main content categories are numbers;
measurement; geometry (position, visualization,
and shape; symmetry, congruence, and similarity);
proportionality; functions, relations, and equa-
tions; data representation, probability, and statis-
tics; elementary analysis; validation and structure;
and other content (informatics). The performance
expectations are knowing, using routine proce-
dures, investigating and problem solving, mathe-
matical reasoning, and communicating.

Other competency frameworks, like that of
Bloom’s (1956) taxonomy, do not treat different
aspects of mathematical content separately but
instead attend primarily to the mental processes
used to do mathematics, whether the results of
those processes are termed abilities, achieve-
ments, activities, behaviors, performances, prac-
tices, proficiencies, or skills. Examples include the
five strands of mathematical proficiency identified
by the Mathematics Learning Study of the US
National Research Council – conceptual under-
standing, procedural fluency, strategic compe-
tence, adaptive reasoning, and productive
disposition – and the five components of mathe-
matical problem-solving ability identified in the
Singapore mathematics framework: concepts,
skills, processes, attitudes, and metacognition
(see Kilpatrick 2009, for details of these
frameworks).
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A final example of a competency framework in
mathematics is provided by the KOM project
(Niss 2003), which was charged with
spearheading the reform of mathematics in the
Danish education system. The KOM project com-
mittee addressed the following question: What
does it mean to master mathematics? They iden-
tified eight competencies, which fell into two
groups. The first four address the ability to ask
and answer questions in and with mathematics:

1. Thinking mathematically
2. Posing and solving mathematical problems
3. Modeling mathematically
4. Reasoning mathematically

The second four address the ability to deal with
and manage mathematical language and tools:

5. Representing mathematical entities
6. Handling mathematical symbols and

formalisms
7. Communicating in, with, and about mathematics
8. Making use of aids and tools

Niss (2003) observes that each of these com-
petencies has both an analytic and a productive
side. The analytic side involves understanding
and examining the mathematics, whereas the pro-
ductive side involves carrying it out. Each com-
petency can be developed and used only by
dealing with specific subject matter, but the choice
of curriculum topics is not thereby determined.
The competencies, though specific to mathemat-
ics, cut across the subject and can be addressed in
multiple ways.

The KOM project also found it necessary to
focus on mathematics as a discipline. The project
committee identified three kinds of “overview and
judgment” that students should develop through
their study of mathematics: its actual application,
its historical development, and its special nature.
Like the competencies, these qualities are both
specific to mathematics and general in scope.

Niss (2003) observes that the competencies
and the three kinds of overview and judgment
can be used: (a) normatively, to set outcomes for
school mathematics; (b) descriptively, to
characterize mathematics teaching and learning;
and (c) metacognitively, to help teachers and stu-
dents monitor and control what they are teaching
or learning. These three usages apply as well to
the other competency frameworks developed for
mathematics.

Regardless of whether a competency frame-
work is hierarchical and regardless of whether it
addresses topic areas in mathematics, its primary
use will be normative. Competency frameworks
are designed to demonstrate to the user that learn-
ing mathematics is more than acquiring an array
of facts and that doing mathematics is more than
carrying out well-rehearsed procedures. School
mathematics is sometimes portrayed as a simple
contest between knowledge and skill. Compe-
tency frameworks attempt to shift that portrayal
to a more nuanced portrait of a field in which a
variety of competences need to be developed.
Cross-References
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Definition/Introduction

Over the past half-century, “complex systems”
perspectives have risen to prominence across
many academic domains in the sciences, engi-
neering, and the humanities. Mathematics was
among the originating domains of complexity
research. Education has been a relative latecomer,
and so perhaps not surprisingly, mathematics edu-
cation researchers have been leading the way in
the field.

There is no unified definition of complexity,
principally because formulations emerge from the
study of specific phenomena. One thus finds quite
focused definitions in such fields as mathematics
and software engineering, more indistinct mean-
ings in chemistry and biology, and quite flexible
interpretations in the social sciences (cf. Mitchell
2009). Because mathematics education reaches
across several domains, conceptions of complex-
ity within the field vary from the precise to the
vague, depending on how and where the notion is
taken up. Diverse interpretations do collect
around a few key qualities, however. In particular,
complex systems adapt and are thus distinguish-
able from complicated systems. A complicated
system is one that comprises many interacting
components and whose global character can be
adequately described and predicted by specifying
the rules of operation of the individual parts.
A complex system comprises many interacting
agents, and emergence of global behaviors that
cannot be adequately predicted by simply speci-
fying the rules of the individual agents is a central
characteristic of such systems. Some popularly
cited examples of complex, emergent phenomena
include anthills, economies, and brains, which are
more than the linear sum of behaviors of individ-
ual ants, consumers, and neurons. In brief,
whereas the opposite of complicated is simple,
opposites of complex include reducible and
decomposable. Hence, prominent efforts toward
a coherent, unified description of complexity
revolve around such terms as emergent, non-
compressible, multilevel, self-organizing, context-
sensitive, and adaptive.

This entry is organized around four categories
of usage within mathematics education – namely,
complexity as: an epistemological discourse, a
historical discourse, a disciplinary discourse, and
a pragmatic discourse.
Complexity as an Epistemological
Discourse

Among educationists interested in complexity,
there is frequent resonance with the notions that
a complex system is one that knows (i.e., per-
ceives, acts, engages, develops, etc.) and/or learns
(adapts, evolves, maintains self-coherence, etc.).
This interpretation reaches across many systems
that are of interest among educators, including
physiological, personal, social, institutional, epis-
temological, cultural, and ecological systems.
Unfolding from and enfolding in one another, it
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is impossible to study one of these phenomena
without studying all the others.

This is a sensibility that has been well
represented in the mathematics education
research literature for decades in the form of
varied theories of learning. Among others, radi-
cal constructivism, socio-cultural theories of
learning, embodied, and critical theories share
essential characteristics of complexity. That is,
they all invoke bodily metaphors, systemic con-
cerns, evolutionary dynamics, emergent possi-
bilities, and self-maintaining properties. Of
particular relevance is the recent emphasis on
intersectionality as a key element of critical
race and gender theories, which explicitly situ-
ates our experiences of knowing and learning in
mathematics classrooms as emergent from our
simultaneous positions of marginalization and
privilege, as well as the interplay between his-
torical, institutional, and social forces and indi-
vidual desires (Leyva 2017).

As illustrated in Fig. 1, when learning phe-
nomena of interest to mathematics educators are
understood as nested systems, a range of theories
become necessary to grapple with the many
issues the field must address. A pedagogy for
Complexity in Mathematics Education, Fig. 1 Some o
educators
knowing and doing mathematics that is episte-
mologically committed to complexity necessi-
tates insights in the form of multilevel and
diverse models of the complex dynamics of
knowing and learning (Mowat and Davis
2010). More significantly, perhaps, by introduc-
ing the systemic transformation into discussions
of individual knowing and collective knowl-
edge, complexity not only enables but compels
a consideration of the manners in which knowers
and systems of knowledge are co-implicated
(Davis and Simmt 2006).
Complexity as a Historical Discourse

School mathematics curricula are commonly pre-
sented as a-historical and a-cultural. Contra this
perception, complexity research offers an instance
of emergent mathematics that has arisen and that
is evolving in a readily perceptible time frame. As
an example of what it describes – a self-
organizing, emergent coherence – complexity
offers a site to study and interrogate the nature of
mathematics, interrupting assumptions of fixed
and received knowledge.
f the nested complex systems of interest to mathematics
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To elaborate, the study of complexity in math-
ematics reaches back the late nineteenth century
when Poincaré conjectured about the three-body
problem inmechanics.Working qualitatively, from
intuition Poincaré recognized the problem of think-
ing about complex systems with the assumptions
andmathematics of linearity (Bell 1937). The com-
putational power of mathematics was limited the
calculus of the time; however, enabled by digital
technologies of the second half of the twentieth
century, such problems became tractable and the
investigation of dynamical systems began to flour-
ish. With computers, experimental mathematics
was born and the study of dynamical systems led
to new areas in mathematics. Computational
modeling made it possible to model and simulate
the behavior of a function over time by computing
thousands and hundreds of thousands of iterations
of the function. Numerical results were readily
converted into graphical representations (the
Lorenz attractor, Julia sets, bifurcation diagrams)
which in turn inspired a new generation of mathe-
maticians, scientists, and human scientists to think
differently about complex dynamical systems. Fur-
ther advances in computing in the form of parallel
and distributed computing and multiagent model-
ing enabled scientists and mathematicians to
simulate emergent phenomena by modeling simul-
taneous interactions between thousands of
interacting agents (Mitchell 2009). Through such
efforts, since the mid-twentieth century, as mathe-
maticians, physical and computer scientists were
exploring dynamical systems (e.g., Smale,
Prigogine, Lorenz, Holland), their work and the
work of biologists, engineers, and social scientists
became progressively more intertwined and inter-
disciplinary (Gilbert and Troitzsch 2005; MacLeod
and Nersessian 2016).

In brief, the emergence of complexity as a
field of study foregrounds that mathematics
might be productively viewed as a humanity.
More provocatively, the emergence of a mathe-
matics of implicatedness and entanglement
alongside the rise of a more sophisticated under-
standing of humanity’s relationship to the more-
than-human world might be taken as an indica-
tion of the ecological character of mathematics
knowledge.
Complexity as a Disciplinary Discourse

A common criticism of contemporary grade
school mathematics curriculum is that little of its
content is reflective of mathematics developed
after the sixteenth or seventeenth centuries,
when publicly funded and mandatory education
spread across Europe. A deeper criticism is that
the mathematics included in most pre-university
curricula is fitted to a particular worldview of
cause–effect and linear relationships. Both these
concerns might be addressed by incorporating
complexity-based content into programs of study.

Linear mathematics held sway at the time of
the emergence of the modern school – that is,
during the Scientific and Industrial Revolutions –
because it lent itself to calculations that could be
done by hand. Put differently, linear mathematics
was first championed and taught for pragmatic
reasons, not because it was seen to offer accurate
depictions of reality. Descartes, Newton and their
contemporaries were well aware of nonlinear phe-
nomena. However, because of the intractability of
many nonlinear calculations, when they arose
they were routinely replaced by linear approxima-
tions. As textbooks omitted nonlinear accounts,
generations of students were exposed to over-
simplified, linearized versions of natural phenom-
ena. Ultimately that exposure contributed to a
resilient worldview of a clockwork reality.

However, recent advances in computational
modeling have made it possible for complex phe-
nomena that are traditionally taught in post-
secondary levels, to be easily accessible to much
younger learners. With the ready access to similar
technologies in most school classrooms within a
culture of ubiquitous computation, there is now a
growing call for deep, curricular integration of
computer-based modeling and simulation in
K–12 mathematics and science classrooms
(Wilkerson-Jerde and Wilensky 2015; Sengupta
et al. 2015). Efforts for such integration funda-
mentally rely on learners iteratively designing,
evaluating and re-designing mathematical models
as the pedagogical approach, using agent-based
modeling languages and platforms (e.g., Scratch,
Agentsheets, NetLogo, ViMAP). In agent-based
modeling, learners can simulate the relevant
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mathematical behaviors by programming the
on-screen behavior of computational agents
(e.g., the Logo turtle) using body-syntonic com-
mands (e.g., move forward, turn). Emergence, in
such computational models, is simulated as the
aggregate-level outcome that arises from the inter-
actions between many individual-level computa-
tional agents. The creator of the first such
modeling language (Logo), Papert (1980) argued
that agent-based modeling can create space in
secondary and tertiary education for new themes
such as recursive functions, fractal geometry, and
modeling of complex phenomena with mathemat-
ical tools such as difference equations, iterations.
Others (e.g., English 2006; Lesh and Doerr 2003)
have advocated for similarly themed content, but
in a less calculation-dependent format, arguing
that the shift in sensibility from linearity to com-
plexity is more important than the development of
the computational competencies necessary for
sophisticated modeling (Davis and Renert 2013).
In either case, the imperative is to provide learners
with access to the tools of complexity, along with
its affiliated domains of fractal geometry, chaos
theory, and dynamic modeling.

New curriculum in mathematics is emerging.
More profoundly, when, how, who, and where we
teach are also being impacted by the presence of
complexity sensibilities in education because they
are a means to nurture emergent possibility.
Complexity as a Pragmatic Discourse

To recap, complexity has emerged in education as
a set of mathematical tools for analyzing phenom-
ena; as a theoretical frame for interpreting activity
of adaptive and emergent systems; as a new sen-
sibility for orienting oneself to the world; and for
considering the conditions for emergent possibil-
ities leading to more productive, “intelligent”
classrooms. In the last of these roles, complexity
might be regarded as the pragmatic discourse –
and of the applications of complexity discussed
here, this one may have the most potential for
affecting school mathematics by offering guid-
ance for structuring learning contexts and
re-shaping disciplinary pedagogies. Three key
insights have emerged in the literature that can
guide pragmatic action in the K–12 classroom.
First, complexity offers direct advice for organiz-
ing classrooms to support the individual-and-
collective generation of insight – by, for example,
nurturing the common experiences and other
redundancies of learners while making space for
specialist roles, varied interpretations, and other
diversities. For example, participatory simulations,
in which each learner can themselves play the role
of an agent in complex system using embodied,
physical, and computational forms of modeling,
have been shown to be effective pedagogical
approaches for modeling emergent mathematical
behaviors by highlighting and integrating both indi-
vidual and collective insight (e.g., Colella 2000).
Second, the emphasis on such participatory forms
of mathematical modeling, in the context of model-
ing complex phenomena, can act as a bridge across
disciplines (e.g., biology and mathematics educa-
tion, see Dickes et al. 2016). A third key insight is
the notion of reflexivity across disciplines – that is,
conceptual development within each scientific,
engineering, and mathematical discipline can be
deepened further when relevant phenomena are
represented as complex systems using mathemati-
cal modeling in ways that also highlight key prac-
tices of engineering design such as design thinking
(Sengupta et al. 2013).

As complexity becomes more prominent in
educational discourses and entrenches in the infra-
structure of “classrooms” mathematics education
can move from an individualistic culture to one of
cooperation and collaboration and from mono-
disciplinarity towards inter- and trans-
disciplinarity. These, in turn, have entailments
for the outcomes of schooling as evident in move-
ments from disciplinary ideas to crosscutting
practices, from independent workers to team-
based workplaces, and from individual knowing
to social action.
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Introduction

In many countries, the curricular relationship with
digital technologies is moving very rapidly
(Stephens 2018). These technologies are not only
seen as learning and teaching tools for existing
disciplines such as mathematics but are also asso-
ciated with new forms of literacy to be developed
for scientific, societal, and economic reasons
(Bocconi et al. 2016). Computational thinking, a
term coined by Papert (1980), a key element of the
new digital literacy, has been described by Wing
(2011) as a fundamental personal ability like read-
ing, writing, and arithmetic which enables a person
to recognize aspects of computations in various
problem situations and to deal appropriately with
those aspects by applying tools and techniques
from computer science (The Royal Society 2011).

To support an appropriate integration of digital
technology in mathematics education, research
must focus on the way in which the use of this
technology can mediate the learning of mathemat-
ics (Drijvers 2018), including relating procedural
and conceptual mathematical knowledge (e.g.,
Artigue 2010). In this entry, we present some
prevailing definitions of computational thinking
and connect them to the closely related construct
of algorithmic thinking. We comment on the cur-
rent limited but growing research relating compu-
tational thinking to mathematics education and
argue for research in mathematics education and
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computer sciences education to explore common
ground and disclose opportunities for a more
explicit and dynamic relationship.

In the current context, there ought to be a two-
way relationship whereby mathematics contrib-
utes to digital literacy and computational/algorith-
mic thinking (CT/AT) can contribute to the
development of deeper mathematical understand-
ing at all stages of school education. In consider-
ing some emerging implications for mathematics
education, we outline different models and prac-
tices currently used in different countries to inte-
grate CT/AT into the curriculum more generally.
Most importantly, we identify a rich interface
between algorithms and mathematics, for exam-
ple, in the areas of proof and conjecture, where
this mutual dynamism might be cultivated more
effectively in the mathematics curriculum.
Defining CT and AT and Relating Them

Despite its widespread use, a widely accepted
definition of CT is lacking (Mouza et al. 2017).
CT has been defined in terms of its main facets,
practices, concepts, components, and dimensions,
with a focus that ranged from specific subject area
(s), such as programming or STEM education, to a
general educational setting such as K-12 subjects.

In a context of programming, Brennan and
Resnick (2012) used a three-component frame-
work, comprising CT concepts (e.g., loops that
specify a repetition of the same instruction(s)),
CT practices (e.g., testing and debugging that
are practiced to identify and remove program
errors and malfunctions), and CT perspectives
(e.g., connecting that promotes a view of compu-
tation as a means to interact and work with
others). In a high school STEM (Science, Tech-
nology, Engineering, and Mathematics) context,
Weintrop et al. (2016) proposed a four-category
taxonomy, comprising the following categories of
practices: data practices (e.g., preparing, visual-
izing), modeling and simulation practices (e.g.,
building and using computational models), com-
putational problem-solving practices (e.g., pro-
gramming, troubleshooting), and system-thinking
practices (e.g., defining systems, managing com-
plexity). For K-12 subjects, Shute et al. (2017)
assume that main CT facets are decomposition,
abstraction (data collection and analysis, pattern
recognition, modeling), algorithms (algorithm
design, parallelism, efficiency, automation), itera-
tion, debugging, and generalization.

Despite an evident diversity in defining CT in
the literature, there are common CT components,
such as decomposition, abstraction, and algo-
rithms (Shute et al. 2017). These common com-
ponents are present in a model proposed by
Hoyles and Noss (2015) who, in an attempt to
enhance mathematics learning through revisiting
programming, assumed that CT is based upon
decomposition, abstraction, pattern recognition,
and algorithmic thinking.

Algorithmic thinking (AT), on the other hand,
is one form of mathematical reasoning, which
may take many forms, such as algebraic, spatial
and geometric, and statistical. AT is required
whenever one has to comprehend, test, improve,
or design an algorithm, which may, in brief, be
defined as “a precisely described routine proce-
dure that can be applied and systematically
followed through to a conclusion” (The Concise
Oxford Dictionary of Mathematics, fourth ed.,
p. 11). In somewhat more detail, algorithms may
be defined as solutions to a mathematical problem
expressed in a sequence of clearly defined instruc-
tions that process some numeric, symbolic, or
geometric data. To deal with algorithms success-
fully, AT calls for distinct cognitive abilities,
including decomposition (breaking a problem
down into subproblems) and abstraction (making
general statements summarizing particular exam-
ples regarding underlying concepts, procedures,
relationships, and models).

AT also calls for pattern recognition, but
because this recognition may be viewed as an
instance of abstraction and generalization
(Scantamburlo 2013), we assume in this entry
that there are three AT cornerstones, namely,
decomposition, abstraction, and algorithmization.
Bearing in mind that CT deals with solutions in
representations that could be efficiently processed
by information-processing agents (Wing 2011)
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and that these agents are nowadays computers
mostly, we assume that four CT cornerstones are
decomposition, abstraction, algorithmization, and
automation (Kadijevich 2018). In other words, it
is precisely the application of automation that
separates AT from CT in our view, having the
former not being equal to the latter but rather
included in it.
State of Research on CT/AT

CT originated from learning mathematics with
technology. The term was introduced by Seymour
Papert in his well-known bookMindstorms: Chil-
dren, Computers, and Powerful Ideas published
40 years ago. It was used to denote specific think-
ing children applied in learning mathematics (i.e.,
Turtle Geometry) through LOGO programming.

The term has then been mostly taken over by
computer science specialists, who carried out
many studies that link CT and computer science
topics, mostly programming (e.g., Hickmott et al.
2018). Consequently, CT has become a critical
curricular component in computer science
(informatics) education (e.g., Webb et al. 2017).

CT has not had a similar status in mathematics
education. The reason may be that studies explic-
itly linking CTand learning mathematics are rather
rare, mostly dealing with areas that are traditionally
connected to programming, for example, numbers
and operations, algebra, and geometry (Hickmott
et al. 2018). There are other areas of mathematics
suitable for technology-supported problem-solving
that should be explored, the above researchers
underlined, such as functions, probability, and sta-
tistics explored through modeling, simulations,
and data analysis, respectively.

Although suitable learning paths for these
explorations have not been proposed by
researchers in mathematics education (e.g., in a
programming context, apply an understand-
debug-extend learning trajectory (Brennan and
Resnick 2012); in a STEM context, follow a use-
modify-create learning path (Lee et al. 2011)), a
CT pedagogy for the work with various concep-
tual or digital objects in mathematical classes has
been proposed by Kotsopoulos et al. (2017). This
pedagogy makes use of four overlapping activi-
ties: unplugging, not using computers; tinkering,
taking objects apart and changing/modifying
their components; making, constructing new
objects; and remixing, appropriating of objects
or their components to produce new objects. As
examples of these activities, consider, respec-
tively, sorting mathematical expressions, modify-
ing the content of a spreadsheet, developing an
interactive geometry presentation, and combin-
ing and modifying existing interactive reports to
visualize data with a dashboard – a set of interac-
tive reports.

Research is also limited with respect to AT in
mathematics education. However, valuable find-
ings are reported by Abramovich (2015) and
Lockwood et al. (2016), for example. Lockwood
et al. (2016) found that procedural knowledge
may be developed through implementing proce-
dures, especially through designing procedures
and algorithms, which would result in knowledge
that is rich in connections. Their study also
suggested that mathematicians may prefer to use
term AT even when computer tools are used to
support their thinking. According to Abramovich
(2015), AT may be used to develop conceptual
knowledge (i.e., a deeper conceptual understand-
ing) if a special case of a formula, or an algorithm
in general, is used as a means for asking advanced
questions about the result obtained by applying it.

Despite a limited research on CT/AT in math-
ematics education at present, the application of the
CT/AT lens in mathematics education may be
beneficial to mathematics learning because it
may result in a more focused instruction on AT
and its core components (decomposition, abstrac-
tion, and algorithmization), possibly supported by
a concrete automation (the use of particular com-
puter tools). The relevance of these three core
components to mathematics learning can, for
example, be found in a model of mathematical
thinking comprising the triad abstraction-
modeling-problem-solving (Drijvers et al. 2019).
We give closer attention to exploring these poten-
tialities for the mathematics curriculum in the
following section.
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Curricular Aspects and Emerging
Implications for Mathematics Education

Given the historical and epistemological proxim-
ity between mathematics and computer sciences,
mathematics education at all stages is expected to
contribute to this new area of literacy (Stephens
2018). Moreover, the increased use of digital tech-
nologies throughout the school years will likely
influence the teaching and learning of mathemat-
ics in new ways. Several examples relevant at
different stages of school mathematics illustrate
the richness of this two-way relationship:

• Using the language of algorithms to exemplify
and unpack mathematical concepts and proce-
dures (e.g., in the primary school where the
language of algorithms can be used to highlight
the relationship between very closely related
procedures such as multiplication and division
or addition and subtraction).

• Identifying and refining the mathematical vari-
ables and parameters to use a given algorithm
(e.g., in data analysis)

• Using an algorithmic thinking to solve a math-
ematical problem in order to identify its math-
ematical structure and to generalize the
solutions (e.g., in computational problem-
solving)

• Using algorithms to provide accessible intro-
ductions to modeling, optimization, operations
research, and experimental mathematics

• Generating examples of problems for which
the algorithm works, and similarly generating
counterexamples (i.e., problems for which the
algorithm does not work)

• Using the iterative process of algorithmic
design to highlight the iterative process of
conjecturing and proving

• Using algorithmic thinking to highlight the
distinction between branches of mathematics
which seek to explore whether a solution exists
and other branches of mathematics which seek
to determine how a solution (if it exists) can be
found

These examples illustrate and endorse the two-
way relationship between algorithmic thinking
and mathematics, moving to a richer conception
of algorithms as entities or objects that can be
investigated from a mathematical point of view,
rather than merely tools or sets of procedures that
need to be expressed in syntactically correct form.
For example, algorithmic thinking is of critical
importance to the processes of conjecturing and
proving. Modeste (2016) argues that areas such as
discrete mathematics (graph theory, combinator-
ics) can provide rich opportunities for students to
explore relations between proof, language, algo-
rithm, programming, and logic in mathematics
and informatics, requiring the exploration of spe-
cific concepts at the informatics-mathematics
interface (our emphasis). There is a need for fur-
ther research to explore these possibilities in spe-
cific areas of the mathematics curriculum.

However, the affordances that digital technol-
ogies offer for the teaching and learning of math-
ematics depend in large measure on how these
technologies are integrated into the school curric-
ulum and by the degree of involvement of teachers
of mathematics in that enterprise. Embedding
CT/AT in the mathematics curriculum is complex
due to the long “lead time” needed to change
national curricula and the difficulties teachers
face in dislodging or reorienting current content.
Different models and instances of curriculum
implementation are being tried, each with advan-
tages and disadvantages to fostering creative inter-
faces between mathematics and informatics.
Examples of these models are provided below:

1. A cross-curriculum model produces least dis-
ruption to the existing school subjects. It is
especially attractive to the elementary school,
because it allows possibilities for integration
across subject areas. On the negative side as the
Finnish experience shows (Prime Minister’s
Office 2016), take-up of implementation can
be slow and uneven across schools, and real
integration may be shallow.

2. Taught within the Information/Digital Tech-
nologies Curriculum where teachers are
likely to be well disposed toward taking on
algorithmic thinking – a prevalent model in
England (Department of Education 2013) and
Australia (ACARA 2016). On the downside,
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mathematical connections may be passed over
in favor of a focus on mastering and using
technology.

3. Gradualist model. This is evident in Japan
where “programming thinking” will be intro-
duced in several subject areas, including math-
ematics, starting in 2020 in Grade 5 and
moving into other grades in subsequent years
(see Kanemune et al. 2017). This model takes
account of teacher anxiety and allows time to
prepare guidance for teachers and teaching
resources. The challenge will be to create
dynamic interfaces between typically
entrenched subject boundaries.

4. A separate subject in the middle years taught
by mathematics and information technology
teachers. This is the French model of
Algorithmique et Programmation (Ministere
de l’Education 2016). Having a formal school
subject allows for the development of teaching
resources and curriculum materials as well as
assessments. This model can provide opportu-
nities for exploring interfaces with mathemat-
ics of the kind discussed above.

5. A senior secondary subject specifically
devoted to the study of Algorithmics. This
model is being followed in the Victorian Cer-
tificate of Education (Victorian Curriculum
and Assessment Authority 2017) in Australia
and in France. A separate senior school sub-
ject can articulate easily with university
courses and generally assumes that students
have had rich prior experiences with coding
and algorithmic thinking.
Conclusion

The focus on Algorithmics as a formal area of study
directs attention away from equating algorithmic
thinking with using tools and procedures necessary
to correctly construct algorithms. For example,
Algorithmics (Victorian Curriculum and Assess-
ment Authority 2017) not only requires students to
construct and use algorithms in solving problems,
for example, in graph theory, but it also examines
theoretical issues such as computational complexity
and models for computation. These issues require
the exploration of specific concepts at the
informatics-mathematics interface and support a
stronger and richer sense of algorithmic thinking.

One of these concepts is computational think-
ing, which is, in brief, algorithmic thinking
supported by some automation, whereby, among
other things, theoretical issues mentioned above
can be made alive as well. Research studies exam-
ined in sections “Defining CTand ATand Relating
Them” and “State of Research on CT/AT” support
the position that to cultivate computational think-
ing, educators need to support students in practic-
ing its main steps (e.g., abstraction, automation)
and their sub-steps (e.g., identification of entities
in abstraction; debugging and iteration in automa-
tion) and relating them. To this end, educators need
to create interfaces between informatics and math-
ematics, for example, by modeling using approx-
imate solutions (Kenderov 2018), assist students
in using rich computational environments as a
means of automation, and encourage them to pro-
gress in their learning by following suitable learn-
ing paths.

For this practice to emerge in the school math-
ematics curriculum, appropriately rich problems
and resources are needed, along with specifically
focused research. These potentialities are more
likely to be realized if algorithmic thinking is
situated within both the mathematics and the
information technology curricula and thus taught
by the teachers of these two disciplines.
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Concept formation and development in general is
an extremely complicated topic in cognitive psy-
chology. There exists a huge literature about it,
classical and current. Among the classical works
on it, one can mention for instance, Piaget and
Inhelder (1958) and Vygotsky (1986). However,
this issue is restricted to concept formation and
development in mathematics. Nevertheless, it is
suggested not to isolate mathematical concept
formation and development from concept forma-
tion and development in general.

One terminological clarification should be
made before the main discussion. When dealing
with concepts, very often, also the term “notion”
is involved. A notion is a lingual entity – a word, a
word combination (written or pronounced); it can
also be a symbol. A concept is the meaning asso-
ciated in our mind with a notion. It is an idea in our
mind. Thus, a notion is a concept name. There
might be concepts without names and for sure
there are meaningless notions, but discussing
them requires subtleties which are absolutely
irrelevant to this context. In many discussions
people do not bother to distinguish between
notions and concepts, and thus the word “notion”
becomes ambiguous. The ambiguity is easily
resolved by the context.

As recommended above, it will be more useful
not to disconnect mathematical concept formation
from concept formation in general, and therefore,
let us start our discussion with an example of
concept formation in babies. How do we teach
them, for instance, the concept of chair? The com-
mon practice is to point at various chairs in vari-
ous contexts and to say “chair.” Amazingly
enough, after some repetitions, the babies under-
stand that the word “chair” is supposed to be
related to chairs, which occur to them in their
daily experience, and when being asked “what is
this?” they understand that they are supposed to
say “chair.” Later on, they will imitate the entire
ritual on their own initiative. They will point at
chairs and say “chair.” I would like to make a
theoretical claim here by saying that, seemingly,
they have constructed in their mind the class of all
possible chairs. Namely, a concept is formed in
their mind, and whenever a concrete object is
presented to them, they will be able to decide
whether it is a chair or not. Of course, some mis-
takes can occur in that concept formation process.
It is because in this process, two cognitive mech-
anisms are involved. The first mechanism is the
one that identifies similarities. The mind distin-
guishes that one particular chair presented to the

https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
https://royalsociety.org/~/media/education/computing-in-schools/2012-01-12-computing-in-schools.pdf
https://www.vcaa.vic.edu.au/Documents/vce/algorithmics/AlgorithmicsSD-2017.pdf
https://www.vcaa.vic.edu.au/Documents/vce/algorithmics/AlgorithmicsSD-2017.pdf
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10639-016-9493-x
https://doi.org/10.1007/s10639-016-9493-x
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf


124 Concept Development in Mathematics Education
baby is similar to some particular chairs presented
to her or him in the past. The second mechanism is
the one which distinguishes differences. The mind
distinguishes that a certain object is not similar to
the chairs which were presented to the baby in the
past, and therefore, the baby is not supposed to say
“chair” when an object that is not a chair is pre-
sented to him or her by the adult. Mistakes about
the acquired concept might occur because of two
reasons. An object, which is not a chair (say a
small table), appears to the baby (or even to an
adult) like a chair. In this case, the object will be
considered as an element of the class of all chairs
while, in fact, it is not an element of this class. The
second reason for mistakes is that an object that is
really a chair will not be identified as a chair
because of its weird shape. Thus, an object
which was supposed to be an element of the
class is excluded from it. More examples of this
type are the following: sometimes, babies con-
sider dogs as cats and vice versa. These are intel-
ligent mistakes because there are some similarities
between dogs and cats. They are both animals;
sometimes they even have similar size (in the case
of small dogs) and so on.

The above process which leads, in our mind, to
the construction of the set of all possible objects to
which the concept name can be applied is a kind of
generalization. Thus, generalizations are involved
in the formation of any given concept. Therefore,
concepts can be considered as generalizations.

The actions by means of which we try to teach
children concepts of chair are called ostensive
definitions. Of course, only narrow class of con-
cepts can be acquired by means of ostensive def-
initions. Other concepts are acquired by means of
explanationswhich can be considered at this stage
as definitions. Among these concepts I can point,
for instance, at a forest, a school, work, hunger
and so on.When I say definitions at this stage, I do
not mean definitions which are similar, or even
seemingly similar to rigorous mathematical defi-
nitions. The only restriction on these definitions is
that familiar concepts will be used in order to
explain a non-familiar concept. Otherwise, the
explanation is useless. (This restriction, by the
way, holds also for mathematical definitions,
where new concepts are defined by means of
previously defined concepts or by primary con-
cepts.) In definitions which we use in non-
technical context in order to teach concepts, we
can use examples. For instance, in order to define
furniture, we can say: A chair is furniture, a bed is
furniture, and tables, desks, and couches are
furniture.

The description which was just given deals
with the primary stage of concept formation.
However, concept formation in ordinary language
is by far more complicated and very often, con-
trary to the mathematical language, ends up in a
vague notion. Take, for instance, again, the notion
of furniture. The child, when facing an object
which was not previously introduced to him or
to her as furniture, should decide whether this
object is furniture or not. He or she may face
difficulties doing it. Also adults might have simi-
lar difficulties. This is only one example out of
many which demonstrates the complexity of con-
cept formation in the child’s mind as well as in the
adult’s mind. There are even greater complexities
when concept formation of abstract nouns, adjec-
tives, verbs, and adverbs is involved. Neverthe-
less, despite that complexity, the majority of
children acquire language at an impressive level
by the age of six (an elementary level is acquired
already at the age of three). The cognitive pro-
cesses associated with the child’s acquisition of
language are discussed in details in cognitive psy-
chology, linguistics, and philosophy of language.
One illuminating source which is relevant to this
issue is Quine’s (1964) “Word and object.” How-
ever, a detailed discussion of these processes is
not within the scope of this issue.

In addition to the language acquisition, the
child acquires also broad knowledge about the
world. He or she knows that when it rains, it is
cloudy, they know that dogs bark and so on and so
forth. In short, they know infinitely many other
facts about their environment. And again, it is
obtained in a miraculous way, smoothly without
any apparent difficulties. Things, however,
become awkward when it gets to mathematics.
One possible reason for things becoming awk-
ward in mathematics is that, in many cases, math-
ematical thinking is essentially different from the
natural intuitive mode of thinking according to
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which the child’s intellectual development takes
place. The major problem is that mathematical
thinking is shaped by rigorous rules, and in order
to think mathematically, children, as well as
adults, should be aware of these rules while think-
ing in mathematical contexts. One crucial diffi-
culty in mathematical thinking is that
mathematical concepts are strictly determined by
their definitions. In the course of their mathemat-
ical studies, children, quite often, are presented to
mathematical notions with which they were famil-
iar from their past experience. For instance, in
Kindergarten they are shown some geometrical
figures such as squares and rectangles. The adja-
cent sides of the rectangle which are shown to the
children in Kindergarten have always different
length. Thus, the set of all possible rectangles
which is constructed in the child’s mind includes
only rectangles, the adjacent sides of which have
different length. In the third grade, in many coun-
tries, a definition of a rectangle is presented to the
child. It is a quadrangle which has four right
angles. According to this definition, a square is
also a rectangle. Thus, a conflict may be formed
in the child’s mind between the suggested defini-
tion and the concept he or she already has about
rectangles. The concept the child has in mind was
formed by the set of examples and the properties
of these examples which were presented to the
child. It was suggested (Vinner 1983) to call it
the concept image of that notion. Thus, in the
above case of the rectangle, there is a conflict
between the concept image and the concept defi-
nition. On the other hand, quite often some con-
cepts are introduced to the learner by means of
formal definitions. For instance, an altitude in a
triangle. However, a formal definition, generally,
remains meaningless unless it is associated with
some examples. The examples can be given by a
teacher or by a textbook, or they can be formed by
the learners themselves. The first examples which
are associated with the concept have a crucial
impact on the concept image. Unfortunately,
quite often, in mathematical thinking, when a
task is given to students, in order to carry it out,
they consult their concept image and forget to
consult the concept definition. It turns out that,
in many cases, there are critical examples which
shape the concept image. In some cases, these are
the first examples which are introduced to the
learner. For instance, in the case of the altitude
(a segment which is drawn from one vertex or the
triangle and it is perpendicular to the opposite side
of this vertex or to its continuation), it is peda-
gogically reasonable to give examples of altitudes
in acute angle triangles. Later on, in order to form
the appropriate concept image of an altitude, the
teacher, as well as the textbook, should give
examples of altitudes from vertices of acute angles
in an obtuse angle triangle. However, before this
stage of the teaching takes place, the concept
image of the altitude was shaped by the stereotyp-
ical examples of altitudes in an acute angle trian-
gle (sometimes, even by the stereotypical
examples of altitudes which are perpendicular to
a horizontal side of a triangle). Thus, when the
learners face a geometrical problem about alti-
tudes which do not meet the stereotypes in their
concept image, they are stuck. It does not occur to
them to consult the concept definition of the alti-
tude, and if it does occur, they usually recall the
first part of the definition (“a segment which is
drawn from one vertex or the triangle and it is
perpendicular to the opposite side of this vertex”)
and forget the additional phrase in the definition
(“or to its continuation”). Two additional exam-
ples of this kind are the following: (1) At the
junior high level, in geometry, when a quadrangle
is defined as a particular case of a polygon
(a quadrangle is a polygon which has four sides),
the learners have difficulties to accept a concave
quadrangle or a quadrangle that intersects itself as
quadrangles. (2) At the high school level, when a
formal definition of a function is given to the
students, eventually, the stereotypical concept
image of a function is that of an algebraic formula.
A common formal definition of a function can be
the following one: a correspondence between two
non-empty sets which assigns to every element in
the first set (the domain) exactly one element in
the second set (the range). Even if some non-
mathematical examples are given to the students
(for instance, the correspondence which assigns to
every living creature its mother), even then, the
stereotypical concept image of a function is that of
an algebraic formula, as claimed above.
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A plausible explanation to these phenomena
can be given in terms of the psychological theory
about system 1 and system 2. Psychologists, now-
adays, speak about two cognitive systems which
they call system 1 and system 2. It sounds as if
there are different parts in our brain which pro-
duce different kinds of thinking. However, this
interpretation is wrong. The correct way to look
at system 1 and system 2 is to consider them as
thinking modes. This is summarized very clearly
in Stanovich (1999, p. 145). System 1 is charac-
terized there by the following adjectives: associa-
tive, tacit, implicit, inflexible, relatively fast,
holistic, and automatic. System 2 is characterized
by: analytical, explicit, rational, controlled, and
relatively slow. Thus, notions that were used by
mathematics educators in the past can be related
now to system 1 or system 2, and therefore this
terminology is richer than the previously
suggested notions. Fischbein (1987) spoke about
intuition and this can be considered as system
1. Skemp (1979) spoke about two systems which
he called delta one and delta two. They can be
considered as intuitive and reflective or using the
new terminology, system 1 and system 2, respec-
tively. Vinner (1997) used the notions pseudo-
analytical and pseudo-conceptual which can be
considered as system 1.

In mathematical contexts the required thinking
mode is that of system 2. This requirement pre-
sents some serious difficulties to many people
(children and adults) since, most of the time,
thought processes are carried out within system
1. Also, in many people, because of various rea-
sons, system 2 has not been developed to the
extent which is required for mathematical think-
ing in particular and for rational thinking in gen-
eral. Nevertheless, in many contexts, learners
succeed in carrying out mathematical tasks
which are presented to them by using system
1. This fact does not encourage them to become
aware of the need to use system 2 while carrying
out mathematical tasks.

When discussing concept development in
mathematical thinking, it is worthwhile to men-
tion also some concepts which can be classified as
metacognitive concepts. Such concepts are algo-
rithm, heuristics, and proof. While studying
mathematics, the learners face many situations in
which they or their teachers use algorithms, heuris-
tics, and proof. However, usually, the notions
“algorithm” and “heuristics” are not introduced to
the learners in their school mathematics. Some of
them will be exposed to them in college, in case
they choose to take certain advanced mathematics
courses. As to the notion of proof, in spite of the
fact that this notion is mentioned a lot in school
mathematics (especially in geometry), the majority
of students do not fully understand it. Many of
them try to identify mathematical proof by its
superficial characteristics. They do it without
understanding the logical reasoning associated
with these characteristics. A meaningless use of
symbols and verbal expressions as “therefore,” “it
follows,” and “if. . . then” is considered by many
students as a mathematical proof (See for instance
Healy and Hoyles 1998). It turns out that it takes a
lot of mathematical experience until meaningless
verbal rituals (as in the case of the baby acquiring
the concept of chair) become meaningful thought
processes. And how do we know that the learners
use the above verbal expressions meaningfully?
We assume so because their use of these expres-
sions is in absolute agreement with the way we,
mathematicians and mathematics educators,
use them.

Another important aspect of mathematical con-
cept development is the understanding that certain
mathematical concepts are related to each other.
Here comes the idea of structure. For instance,
from triangles, quadrangles, pentagons, and hexa-
gons, we reach the concept of a polygon. From the
general concept of quadrangles, we approach to
trapezoids, parallelograms, rhombus, rectangles,
and squares, and we realize there all kinds of class
inclusions. Thus, we distinguish partial order in
the set of mathematical concepts. Finally, and this
is perhaps the ultimate stage of mathematical con-
cept development, we conceive mathematics as a
collection of various deductive structures
(Peano’s Arithmetic, Euclidean Geometry, Set
Theory, Group Theory, etc.). Also, in more
advanced mathematical thinking, we conceive
mathematical objects (numbers, functions, geo-
metrical figures in Euclidean geometry, etc.) as
abstract objects. All these require thought
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processes within system 2. However, it should be
emphasized that all the above concept develop-
ments do not occur simultaneously. They also do
not occur in all students who study mathematics.
One should take many mathematics courses and
solve a lot of mathematical problems in order to
achieve that level. Those who do it should have
special interest in mathematics or what can be
called mathematical curiosity. It requires, what
some people call, a mathematical mind. Is it
genetic (Devlin 2000) or acquired? At this point
we have reached a huge domain of psychological
research which is far beyond the scope of this
particular encyclopedic issue.
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Background

Constructivism is an epistemological stance
regarding the nature of human knowledge, having
roots in the writings of Epicurus, Lucretius, Vico,
Berkeley, Hume, and Kant. Modern constructiv-
ism also contains traces of pragmatism (Peirce,
Baldwin, and Dewey). In mathematics education
the greatest influences are due to Piaget,
Vygotsky, and von Glasersfeld. See Confrey and
Kazak (2006) and Steffe and Kieren (1994) for
related historical accounts of constructivism in
mathematics education.

There are two principle schools of thought
within constructivism: radical constructivism
(some people say individual or psychological)
and social constructivism. Within each there is
also a range of positions. While radical and
social constructivism will be discussed in a
later section, it should be noted that both schools
are grounded in a strong skeptical stance regard-
ing reality and truth: Knowledge cannot be
thought of as a copy of an external reality, and
claims of truth cannot be grounded in claims
about reality.
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The justification of this stance toward knowl-
edge, truth, and reality, first voiced by the skeptics
of ancient Greece, is that to verify that one’s
knowledge is correct, or that what one knows is
true, one would need access to reality by means
other than one’s knowledge of it. The importance
of this skeptical stance for mathematics educators
is to remind them that students have their own
mathematical realities that teachers and
researchers can understand only via models of
them (Steffe et al. 1983, 1988).

Constructivism did not begin within mathe-
matics education. Its allure to mathematics educa-
tors is rooted in their long evolving rejection of
Thorndike’s associationism (Thorndike 1922;
Thorndike et al. 1923) and Skinner’s behaviorism
(Skinner 1972). Thorndike’s stance was that
learning happens by forming associations
between stimuli and appropriate responses. To
design instruction from Thorndike’s perspective
meant to arrange proper stimuli in a proper order
and have students respond appropriately to those
stimuli repeatedly. The behaviorist stance that
mathematics educators found most objectionable
evolved from Skinner’s claim that all human
behavior is due to environmental forces. From a
behaviorist perspective, to say that children par-
ticipate in their own learning, aside from being the
recipient of instructional actions, is nonsense.
Skinner stated his position clearly:

Science . . . has simply discovered and used subtle
forces which, acting upon a mechanism, give it the
direction and apparent spontaneity which make it
seem alive. (Skinner 1972, p. 3)

Behaviorism’s influence on psychology, and
thereby its indirect influence on mathematics edu-
cation, was also reflected in two stances that were
counter to mathematics educators’ growing
awareness of learning in classrooms. The first
stance was that children’s learning could be stud-
ied in laboratory settings that have no resem-
blance to environments in which learning
actually happens. The second stance was that
researchers could adopt the perspective of a uni-
versal knower. This second stance was evident in
Simon and Newell’s highly influential informa-
tion processing psychology, in which they
separated a problem’s “task environment” from
the problem solver’s “problem space.”

We must distinguish, therefore, between the
task environment – the omniscient observer’s
way of describing the actual problem “out
there” – and the problem space – the way a par-
ticular subject represents the task in order to work
on it. (Simon and Newell 1971, p. 151)

Objections to this distinction were twofold:
Psychologists considered themselves to be
Simon and Newell’s omniscient observers
(having access to problems “out there”), and stu-
dents’ understandings of the problem were
reduced to a subset of an observer’s understand-
ing. This stance among psychologists had the
effect, in the eyes of mathematics educators, of
blinding them to students’ ways of thinking that
did not conform to psychologists’ preconceptions
(Thompson 1982; Cobb 1987). Erlwanger (1973)
revealed vividly the negative consequences of
behaviorist approaches to mathematics education
in his case study of a successful student in a
behaviorist individualized program who
succeeded by inventing mathematically invalid
rules to overcome inconsistencies between his
answers and an answer key.

The gradual release of mathematics education
from the clutches of behaviorism, and infusions of
insights from Polya’s writings on problem solving
(Polya 1945, 1954, 1962), opened mathematics
education to new ways of thinking about student
learning and the importance of student thinking.
Confrey and Kazak (2006) described the influence
of research on problem solving, misconceptions,
and conceptual development of mathematical
ideas as precursors to the emergence of construc-
tivism in mathematics education.

Piaget’s writings had a growing influence in
mathematics education once English translations
became available. In England, Skemp (1961,
1962) championed Piaget’s notions of schema,
assimilation, accommodation, equilibration, and
reflection as ways to conceptualize students’
mathematical thinking as having an internal
coherence. Piaget’s method of clinical interviews
also was attractive to researchers of students’
learning. However, until 1974 mathematics edu-
cators were interested in Piaget’s writings largely
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because they thought of his work as “develop-
mental psychology” or “child psychology,” with
implications for children’s learning. It was in
1974, at a conference at the University of Georgia,
that Piaget’s work was recognized in mathematics
education as a new field, one that leveraged chil-
dren’s cognitive development to study the growth
of knowledge. Smock (1974) wrote of construc-
tivism’s implications for instruction, not
psychology’s implications for instruction.
Glasersfeld (1974) wrote of Piaget’s genetic epis-
temology as a theory of knowledge, not as a
theory of cognitive development. The 1974 Geor-
gia conference is the first occasion this writer
could find where “constructivism” was used to
describe the epistemological stance toward math-
ematical knowing that characterizes constructiv-
ism in mathematics education today.

Acceptance of constructivism in mathematics
education was not without controversy. Disputes
sometimes emerged from competing visions of
desired student learning, such as students’ perfor-
mance on accepted measures of competency
(Gagné 1977, 1983) versus attendance to the qual-
ity of students’ mathematics (Steffe and Blake
1983), and others emerged from different concep-
tions of teaching effectiveness (Brophy 1986;
Confrey 1986). Additional objections to construc-
tivismwere in reaction to its fundamental aversion
to the idea of truth as a correspondence between
knowledge and reality (Kilpatrick 1987).
Radical and Social Constructivism in
Mathematics Education

Radical constructivism is based on two tenets:
“(1) Knowledge is not passively received but
actively built up by the cognizing subject;
(2) the function of cognition is adaptive and
serves the organization of the experiential
world, not the discovery of ontological reality”
(Glasersfeld 1989, p. 114). Glasersfeld’s use of
“radical” is in the sense of fundamental – that
cognition is “a constitutive activity which, alone,
is responsible for every type or kind of structure
an organism comes to know” (Glasersfeld 1974,
p. 10).
Social constructivism is the stance that history
and culture precede and preform individual
knowledge. As Vygotsky famously stated,
“Every function in the child’s cultural develop-
ment appears twice: first, on the social level, and
later, on the individual level; first between people
. . ., then inside the child” (Vygotsky 1978, p. 57).

The difference between radical and social con-
structivism can be seen through contrasting inter-
pretations of the following event. Vygotsky
(1978) illustrated his meaning of internalization
– “the internal reconstruction of an external
operation” – by describing the development of
pointing:

The child attempts to grasp an object placed
beyond his reach; his hands, stretched toward that
object, remain poised in the air. His fingers make
grasping movements. At this initial state pointing
is represented by the child’s movement, which
seems to be pointing to an object – that and noth-
ing more. When the mother comes to the child’s
aid and realizes his movement indicates some-
thing, the situation changes fundamentally.
Pointing becomes a gesture for others. The child’s
unsuccessful attempt engenders a reaction not
from the object he seeks but from another person
[sic]. Consequently, the primary meaning of that
unsuccessful grasping movement is established by
others [italics added]. (Vygotsky 1978, p. 56)

Vygotsky clearly meant that meanings origi-
nate in society and are transmitted via social inter-
action to children. Glasersfeld and Piaget would
have listened agreeably to Vygotsky’s tale – until
the last sentence. They instead would have
described the child as making a connection
between his attempted grasping action and some-
one fetching what he wanted. Had it been the pet
dog bringing the desired item, it would have made
little difference to the child in regard to the prac-
tical consequences of his action. Rather, the child
realized, in a sense, “Look at what I can make
others do with this action.” This interpretation
would fit nicely with the finding that adults
mimic infants’ speech abundantly (Fernald 1992;
Schachner and Hannon 2011). Glasersfeld and
Piaget might have thought that adults’ imitative
speech acts, once children recognize them as imi-
tations, provide occasions for children to have a
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sense that they can influence actions of others
through verbal behavior. This interpretation also
would fit well with Bauersfeld’s (1980, 1988,
1995) understanding of communication as a
reflexive interchange among mutually oriented
individuals: “The [conversation] is constituted at
every moment through the interaction of reflective
subjects” (Bauersfeld 1980, p. 30 italics in
original).

Paul Ernest (1991, 1994, 1998) introduced the
term social constructivism to mathematics educa-
tion, distinguishing between two forms of it. One
form begins with a radical constructivist perspec-
tive and then accounts for human interaction in
terms of mutual interpretation and adaptation
(Bauersfeld 1980, 1988, 1992). Glasersfeld
(1995) considered this as just radical constructiv-
ism. The other, building from Vygotsky’s notion
of cultural regeneration, introduced the idea of
mathematical objectivity as a social construct.

Social constructivism links subjective and
objective knowledge in a cycle in which each
contributes to the renewal of the other. In this
cycle, the path followed by new mathematical
knowledge is from subjective knowledge (the per-
sonal creation of an individual), via publication to
objective knowledge (by intersubjective scrutiny,
reformulation, and acceptance). Objective knowl-
edge is internalized and reconstructed by individ-
uals, during the learning of mathematics, to
become the individuals’ subjective knowledge.
Using this knowledge, individuals create and pub-
lish new mathematical knowledge, thereby com-
pleting the cycle. (Ernest 1991, p. 43).

Ernest focused on objectivity of adult mathe-
matics. He did not address the matter of how
children’s mathematics comes into being or how
it might grow into something like an adult’s
mathematics.

Radical and social constructivists differ some-
what in the theoretical work they ask of construc-
tivism. Radical constructivists concentrate on
understanding learners’ mathematical realities
and the internal mechanisms by which they
change. They conceive, to varying degrees, of
learners in social settings, concentrating on the
sense that learners make of them. They try to put
themselves in the learner’s place when analyzing
an interaction. Social constructivists focus on
social and cultural mathematical and pedagogical
practices and attend to individuals’ internalization
of them. They conceive of learners in social set-
tings, concentrating, to various degrees, on
learners’ participation in them. They take the
stances, however, of an observer of social interac-
tions and that social practices predate individuals’
participation.

Conflicts between radical and social construc-
tivism tend to come from two sources: (1) differ-
ences in meanings of truth and objectivity and
their sources and (2) misunderstandings and mis-
communications between people holding
contrasting positions. The matter of (1) will be
addressed below. Regarding (2), Lerman (1996)
claimed that radical constructivism was internally
incoherent: How could radical constructivism
explain agreement when persons evidently agree-
ing create their own realities? Steffe and Thomp-
son (2000a) replied that interaction was at the core
of Piaget’s genetic epistemology and thus the idea
of intersubjectivity was entirely coherent with
radical constructivism. The core of the misunder-
standing was that Lerman on the one hand and
Steffe and Thompson on the other had different
meanings for “intersubjectivity.” Lerman meant
“agreement of meanings” – same or similar mean-
ings. Steffe and Thompson meant “nonconflicting
mutual interpretations,” which might actually
entail nonagreement of meanings of which the
interacting individuals are unaware. Thus,
Lerman’s objection was valid relative to the mean-
ing of intersubjectivity he presumed. Lerman on
one side and Steffe and Thompson on the other
were in a state of intersubjectivity (in the radical
constructivist sense) even though they publicly
disagreed. They each presumed they understood
what the other meant when in fact each under-
standing of the other’s position was faulty.

Other tensions arose because of interlocutors’
different objectives. Some mathematics educators
focused on understanding individual’s mathemat-
ical realities. Others focused on the social context
of learning. Cobb et al. (1992) diffused these
tensions by refocusing discussions on the work
that theories in mathematics education must do –
they must contribute to our ability to improve the



Constructivism in Mathematics Education 131

C

learning and teaching of mathematics. Cobb et al.
first reminded the field that, from any perspective,
what happens in mathematics classrooms is
important for students’ mathematical learning.
Thus, a theoretical perspective that can capture
more, and more salient, aspects for mathematics
learning (including participating in practices) is
the more powerful theory. With a focus on the
need to understand, explain, and design events
within classrooms, they recognized that there are
indeed social dimensions to mathematics learning
and there are psychological aspects to participat-
ing in practices and that researchers must be able
to view classrooms from either perspective while
holding the other as an active background: “[W]e
have proposed the metaphor of mathematics as an
evolving social practice that is constituted by, and
does not exist apart from, the constructive activi-
ties of individuals” (Cobb et al. 1992, p. 28, italics
added).

Cobb et al.’s perspective is entirely consistent
with theories of emergence in complex systems
(Schelling 1978; Eppstein and Axtell 1996;
Resnick 1997; Davis and Simmt 2003) when
taken with Maturana’s statement that “anything
said is said by an observer” (Maturana 1987).
Practices, as stable patterns of social interaction,
exist in the eyes of an observer who sees them.
The theoretician who understands the behavior of
a complex system as entailing simultaneously
both microprocesses and macrobehavior is better
positioned to affect macrobehavior (by influenc-
ing microprocesses) than one who sees just one or
the other. It is important to note that this notion of
emergence is not the same as Ernest’s notion of
objectivity as described above.
Truth and Objectivity

Radical constructivists take the strong position
that children have mathematical realities that do
not overlap an adult’s mathematics (Steffe et al.
1983; Steffe and Thompson 2000b). Social con-
structivists (of Ernest’s second type) take this as
pedagogical solipsism.

The implications of [radical constructivism]
are that individual knowers can construct truth
that needs no corroboration from outside of the
knower, making possible any number of “truths.”
Consider the pedagogical puzzles this creates.
What is the teacher trying to teach students if
they are all busy constructing their own private
worlds? What are the grounds for getting the
world right? Why even care whether these worlds
agree? (Howe and Berv 2000, pp. 32–33).

Howe and Berv made explicit the social con-
structivist stance that there is a “right” world to be
got – the world of socially constructed meanings.
They also revealed their unawareness that, from
its very beginning, radical constructivism
addressed what “negotiation” could mean in its
framework and how stable patterns of meaning
could emerge socially (Glasersfeld 1972, 1975,
1977). Howe and Berv were also unaware of the
notion of epistemic subject in radical
constructivism – the mental construction of a non-
specific person who has particular ways of think-
ing (Beth and Piaget 1966; Glasersfeld 1995).
A teacher need not attend to 30 mathematical
realities with regard to teaching the meaning of
fractions in a class of 30 children. Rather, she need
only attend to perhaps 5 or 6 epistemic children
and listen for which fits the ways particular chil-
dren express themselves (Thompson 2000).
A Short List: Impact of Constructivism in
Mathematics Education

• Mathematics education has a new stance
toward learners at all ages. One must attend
to learner’s mathematical realities, not just
their performance.

• Current research on students’ and teachers’
thinking and learning is largely consistent
with constructivism – to the point that articles
rarely declare their basis in constructivism.
Constructivism is now taken for granted.

• Teaching experiments (Cobb and Steffe 1983;
Cobb 2000; Steffe and Thompson 2000b) and
design experiments (Cobb et al. 2003) are vital
and vibrant methodologies in mathematics
education theory development.

• Conceptual analysis of mathematical thinking
and mathematical ideas is a prominent and
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widely used analytic tool (Smith et al. 1993;
Glasersfeld 1995; Behr et al. 1997; Thompson
2000; Lobato et al. 2012).

• What used to be thought of as practice is now
conceived as repeated experience. Practice
focuses on repeated behavior. Repeated expe-
rience focuses on repeated reasoning, which
can vary in principled ways from setting to
setting (Cooper 1991; Harel 2008a, b).

• Constructivism has clear and operationalized
implications for the design of instruction
(Confrey 1990; Simon 1995; Steffe and
D’Ambrosio 1995; Forman 1996; Thompson
2002) and assessment (Carlson et al. 2010;
Kersting et al. 2012).
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Introduction

The constructivist is fully aware of the fact that an
organism’s conceptual constructions are not
fancy-free. On the contrary, the process of
constructing is constantly curbed and held in
check by the constraints it runs into. (Ernst von
Glasersfeld 1990, p. 33).

The constructivist teaching experiment
emerged in the United States circa 1975 (Steffe
et al. 1976) in an attempt to understand children’s
numerical thinking and how that thinking might
change rather than to rely on models that were
developed outside of mathematics education for
purposes other than educating children (e.g., Pia-
get and Szeminska 1952; McLellan and Dewey
1895; Brownell 1928). The use of the construc-
tivist teaching experiment in the United State was
buttressed by versions of the teaching experiment
methodology that were being used already by
researchers in the Academy of Pedagogical Sci-
ences in the then Union of Soviet Socialist Repub-
lics (Wirszup and Kilpatrick 1975–1978). The
work at the Academy of Pedagogical Sciences
provided academic respectability for what was
then a major departure in the practice of research
in mathematics education in the United States, not
only in terms of research methods but more cru-
cially in terms of the research orientation of the
methodology. In El’konin’s (1967) assessment of
Vygotsky’s (1978) research, the essential function
of a teaching experiment is the production of
models of student thinking and changes in it:

Unfortunately, it is still rare to meet with the
interpretation of Vygotsky’s research as modeling,
rather than empirically studying, developmental
processes. (El’konin 1967, p. 36).

Similarly, the primary purpose of constructivist
teaching experiments is to construct explanations
of students’ mathematical concepts and opera-
tions and changes in them. Without experiences
of students’ mathematics afforded by teaching,
there would be no basis for coming to understand
the mathematical concepts and operations stu-
dents construct or even for suspecting that these
concepts and operations may be distinctly differ-
ent from those of teacher/researchers. The neces-
sity to attribute mathematical concepts and
operations to students that are independent of
those of teacher/researchers has been captured
by Ackermann (1995) in speaking of human
relations:

In human relations, it is vital to attribute auton-
omy to others and to things—to celebrate their
existence independently from our current interac-
tion with them. This is true even if an attribution
(of existence) is a mental construct. We can liter-
ally rob others of their identity if we deny them an
existence beyond our current interests (p. 343).

Students’ mathematical concepts and opera-
tions constitute first-order models, which are
models that students construct to organize, com-
prehend, and control their own experience (Steffe
et al. 1983, p. xvi). Through a process of concep-
tual analysis (von Glasersfeld 1995), teacher/
researchers construct models of students’
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mathematical concepts and operations to explain
what students say and do. These second-order
models (Steffe et al. 1983, p. xvi) are called math-
ematics of students and students’ first-order
models are called simply students’ mathematics.
While teacher/researchers may write about the
schemes and operations that constitute these
second-order models as if they are identical to
students’ mathematics, these constructs, in fact,
are a construction of the researcher that only ref-
erences students’ mathematics. Conceptual anal-
ysis is based on the belief that mathematics is a
product of the functioning of human intelligence
(Piaget 1980), so the mathematics of students is a
legitimate mathematics to the extent that teacher/
researchers can find rational grounds to explain
what students say and do.

The overarching goal of the teacher/
researchers who use the methodology is to estab-
lish the mathematics of students as a conceptual
foundation of students’ mathematics education
(Steffe and Wiegel 1992; Steffe 2012). The math-
ematics of students opens the way to ground
school mathematics in the history of how it is
generated by students in the context of teaching.
This way of regarding school mathematics casts it
as a living subject rather than as a subject of being
(Steffe 2007).
Characteristics: The Elements of
Constructivist Teaching Experiments

Teaching Episodes
A constructivist teaching experiment involves a
sequence of teaching episodes (Hunting 1983;
Steffe 1983). A teaching episode includes a
teacher/researcher, one or more students, a wit-
ness of the teaching episodes, and a method of
recording what transpires during the episodes.
These records can be used in preparing subse-
quent episodes as well as in conducting concep-
tual analyses of teaching episodes either during or
after the experiment.

Exploratory Teaching
Any teacher/researcher who hasn’t conducted a
teaching experiment but who wishes to do so
should first engage in exploratory teaching
(Steffe and Thompson 2000). It is important that
the teacher/researcher becomes acquainted, at an
experiential level, with students’ ways and means
of operating in whatever domain of mathematical
concepts and operations are of interest. In explor-
atory teaching, the teacher/researcher attempts to
put aside his or her own concepts and operations
and not insist that the students learn what he or she
knows (Norton and D’Ambrosio 2008). Other-
wise, the teacher/researcher might become caught
in what Stolzenberg (1984) called a “trap” –
focusing on the mathematics the teacher/
researcher takes as given instead of focusing on
exploring students’ ways and means of operating.
The teacher/researcher’s mathematical concepts
and operations can be orienting, but they should
not be regarded, initially at least, as constituting
what students should learn until they are modified
to include at least aspects of a mathematics of
students (Steffe 1991a).

Meanings of “Experiment”
Testing Initial Research Hypotheses. One goal of
exploratory teaching is to identify essential differ-
ences in students’ ways and means of operating
within the chosen context in order to establish
initial research hypotheses for the teaching exper-
iment (Steffe et al. 1983). These differences are
essential in establishing the constructivist teach-
ing experiment as involving an “experiment” in a
scientific sense. The established differences can
be used to place students in experimental groups
and the research hypothesis is that the differences
between the students in the different experimental
groups would become quite large over the period
of time the students participate in the experiment
and that the students within the groups would
remain essentially alike (Steffe and Cobb 1988).
Considerable hypothesis building and testing
must happen during the course of a teaching
experiment as well. However, one does not
embark on the intensive work of a constructivist
teaching experiment without having initial
research hypotheses to test.

The research hypotheses one formulates prior
to a teaching experiment guide the initial selection
of the students and the teacher/researcher’s overall
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general intentions. The teacher/researcher does
his or her best to set these initial hypotheses
aside during the course of the teaching episodes
and focus on promoting the greatest progress pos-
sible in all participating students. The intention of
teacher/researcher is for the students to test the
research hypotheses by means of how they differ-
entiate themselves in the trajectory of teaching
interactions (Steffe 1992; Steffe and Tzur 1994).
A teacher/researcher returns to the initial research
hypotheses retrospectively after completing the
teaching episodes. This method – setting research
hypotheses aside and focusing on what actually
happens in teaching episodes – is basic in the
ontogenetic justification of school mathematics.

Generating and Testing Working Hypotheses.
In addition to formulating and testing initial
research hypotheses, another modus operandi in
a teaching experiment is for a teacher/researcher
to generate and test hypotheses during the teach-
ing episodes. Often, these hypotheses are con-
ceived “on the fly,” a phrase Ackermann (1995)
used to describe how hypotheses are formulated in
clinical interviews. Frequently, they are formu-
lated between teaching episodes as well.
A teacher/researcher, through reviewing the
records of one or more earlier teaching episodes,
may formulate hypotheses to be tested in the next
episode (Hackenberg 2010). In a teaching epi-
sode, the students’ language and actions are a
source of perturbation for the teacher/researcher.
It is the job of the teacher/researcher to continually
postulate possible meanings that lie behind stu-
dents’ language and actions. It is in this way that
students guide the teacher/researcher. The teacher/
researcher may have a set of hypotheses to test
before a teaching episode and a sequence of situ-
ations planned to test the hypotheses. But because
of students’ unanticipated ways and means of
operating as well as their unexpected mistakes, a
teacher/researcher may be forced to abandon these
hypotheses while interacting with the students and
to create new hypotheses and situations on the
spot (Norton 2008). The teacher/researchers also
might interpret the anticipated language and
actions of the students in ways that were unex-
pected prior to teaching. These impromptu inter-
pretations are insights that would be unlikely to
happen in the absence of direct, longitudinal
interaction with the students in the context of
teaching interactions. Here, again, the teacher/
researcher is obliged to formulate new hypotheses
and to formulate situations of learning to test them
(Tzur 1999).
Living, Experiential Models of Students’
Mathematics

Through generating and testing hypotheses, bound-
aries of the students’ways andmeans of operating–
where the students make what to a teacher/
researcher are essential mistakes – can be formu-
lated (Steffe and Thompson 2000). These essential
mistakes are of the same nature as those Piaget
found in his studies of children, and a teacher/
researcher uses them for essentially the same pur-
pose he did. They are observable when students fail
to make viable adaptations when interacting in a
medium. Operations and meanings a teacher/
researcher imputes to students constitute what are
called living, experiential models of students’
mathematics. Essential mistakes can be thought of
as illuminating the boundaries of what kinds of
adaptations a living, experiential model can cur-
rently make in these operations and meanings.
These boundaries are usually fuzzy, and what
might be placed just inside or just outside them is
always a source of tension and often leads to crea-
tive efforts on the part of a teacher/researcher. What
students can do is understood better if what they
cannot do is also understood. It also helps to under-
stand what a student can do if it is understand what
other students, whose knowledge is judged to be at
a higher or lower level, can do (Steffe and Olive
2010). In this, we are in accordance with
Ackermann (1995) that:

The focus of the clinician [teacher] is to under-
stand the originality of [the child’s] reasoning, to
describe its coherence, and to probe its robustness
or fragility in a variety of contexts. (p. 346).
Meanings of Teaching in a Teaching
Experiment

Learning how to interact with students through
effective teaching actions is a central issue in
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any teaching experiment (Steffe and Tzur 1994).
If teacher/researchers knew ahead of time how to
interact with the selected students and what the
outcomes of those interactions might be, there
would be little reason for conducting a teaching
experiment (Steffe and Cobb 1983). There are
essentially two types of interaction engaged in
by teacher/researchers in a teaching experiment:
responsive and intuitive interactions and analyti-
cal interactions.

Responsive and Intuitive Interaction
In responsive and intuitive interactions, teacher/
researchers are usually not explicitly aware of
how or why they interact as they do. In this role,
teacher/researchers are agents of interaction and
they strive to harmonize themselves with the stu-
dents with whom they are working to the extent
that they “lose” themselves in their interactions.
They make no intentional distinctions between
their knowledge and the students’ knowledge,
and, experientially, everything is the students’
knowledge as they strive to feel at one with
them. In essence, they become the students and
attempt to think as they do (Thompson 1982,
1991; van Manen 1991). Teacher/researchers do
not adopt this stance at the beginning of a teaching
experiment only. Rather, they maintain it through-
out the experiment whenever appropriate. By
interacting with students in a responsive and an
intuitive way, the goal of teacher/researchers is to
engage the students in supportive, nonevaluative
mathematical interactivity.

Analytical Interaction
When teacher/researchers turn to analytical interac-
tion, they “step out” of their role in responsive/
intuitive interaction and become observers as well.
As first-order observers, teacher/researchers focus
on analyzing students’ thinking in ongoing interac-
tion (Steffe and Wiegel 1996). All of the teacher/
researchers’ attention and energy is absorbed in
trying to think like the students and produce and
then experience mathematical realities that are inter-
subjective with theirs. The teacher/researchers pro-
bes and teaching actions are not to foment
adaptation in the students but in themselves. When
investigating student learning, teacher/researchers
become second-order observers, which Maturana
(1978) explained as “the observer’s ability . . . to
operate as external to the situation in which he or
she is, and thus be an observer of his or her circum-
stance as an observer” (p. 61). As second-order
observers, teacher/researchers focus on the accom-
modations they might engender in the students’
ways and means of operating (Steffe 1991b). They
become aware of how they interact and of the con-
sequences of interacting in a particular way. Assum-
ing the role of a second-order observer is essential in
investigating student learning in a way that explic-
itly as well as implicitly takes into account the
mathematical knowledge of the teacher/researchers
as well as the knowledge of the students (Steffe and
Wiegel 1996).

The Role of a Witness of the Teaching
Episodes
A teacher/researcher should expect to encounter
students operating in unanticipated and appar-
ently novel ways as well as their making unex-
pected mistakes and becoming unable to operate.
In these cases, it is often helpful to be able to
appeal to an observer of a teaching episode for
an alternative interpretation of events. Being
immersed in interaction, a teacher/researcher
may not be able to act as a second-order observer
and step out of the interaction, reflect on it, and
take further action on that basis. In order to do so,
a teacher/researcher would have to “be” in the
interaction and outside of it, which can be diffi-
cult. It is quite impossible to achieve this if there
are no conceptual elements available to the
teacher/researcher from past teaching experi-
ments that can be used in interpreting the current
situation. The result is that teacher/researchers
usually react to surprising behavior by switching
to a more intuitive mode of interaction. When
this happens, the observer may help a teacher/
researcher both to understand the student and to
posit further interaction. There are also occasions
when the observer might make an interpretation
of a student’s actions that is different from that of
a teacher/researcher for any one of several rea-
sons. For example, the observer might catch
important elements of a student’s actions that
apparently are missed by a teacher/researcher.
In any case, the witness should suggest but not
demand specific teaching interventions.
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Retrospective Conceptual Analysis

Conceptual analysis is intensified during the
period of retrospective analysis of the public
records of the teaching episodes, which is a criti-
cal part of the methodology. Through analyzing
the corpus of video records, the teacher/
researchers conduct a historical analysis of the
living, experiential models of students’ mathe-
matics throughout the period of time the teaching
episodes were conducted. The activity of model
building that was present throughout the teaching
episodes is foregrounded, and concepts in the core
of a constructivist research program like assimila-
tion, accommodation, scheme (von Glasersfeld
1981), cognitive and mathematical play, commu-
nication, spontaneous development (Piaget 1964),
interaction (von Foerster 1984), mental operation
(von Glasersfeld 1987), and self-regulation
emerge in the form of specific and concrete expla-
nations of students’ mathematical activity. In this
regard, the modeling process in which we engage
is compatible with how Maturana (1978) regards
scientific explanation:

As scientists, we want to provide explanations
for the phenomena we observe. That is, we want to
propose conceptual or concrete systems that can be
deemed intentionally isomorphic to the systems
that generate the observed phenomena. (p. 29).

However, in the case of a teaching experiment,
we seek models that fit within our living, experi-
ential models of students’ mathematics without
claiming isomorphism because we have no access
to students’ mathematical realities outside of our
own ways and means of operating when bringing
the students’mathematics forth. So, we cannot get
outside our observations to check if our concep-
tual constructs are isomorphic to students’ math-
ematics. But we can and do establish viable ways
and means of thinking that fit within the experi-
ential constraints that we established when
interacting with the students in teaching episodes
(Steffe 1988, 1994; Norton and Wilkins 2010).

Since the time of its emergence, the construc-
tivist teaching experiment has been widely used in
investigations of students’mathematics as well as
in investigations of mathematics teaching
(cf. Appendix for sample studies). It has also
been adapted to fit within related research pro-
grams (e.g., Cobb 2000; Confrey and Lachance
2000; Simon et al. 2010).
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Definition

The Joint Action Theory in Didactics (Sensevy
2019) aims at theorizing a specific process of
design-based research (Cobb et al. 2003) and
design-based implementation research (Fishman
et al. 2013), called cooperative engineering
(Sensevy et al. 2013; Joffredo-Le Brun et al.
2018), in order to contribute to the elaboration of
new forms of schooling. Cooperative engineering
(CE) refers to a methodological process in which a
collective of teachers and researchers engage in a
joint action to codesign, implement, and
re-implement a teaching sequence on a particular
topic. Each stage of the process is based on an
analysis and evaluation of the previous stage, and
thus a crucial aspect in the building of a coopera-
tive engineering is its iterative structure. In this
respect, it is similar to the lesson studies approach
(e.g., Elliott 2012). Another fundamental aspect
of this methodological process, similar to a char-
acteristic of educational action research (e.g.,
Kemmis 2009), is the participation of teachers in
the conception of the cooperative engineering
process. CE also shares some of the traits of col-
laborative research (e.g., Bednarz 2009), in par-
ticular its focus on the way teachers and
researchers can work together. The characteristic
features of CE broadly situate it within the learn-
ing science paradigm (e.g., Koschmann 2011).
Origin

Cooperative engineering includes “the controlled
design and experimentation of teaching sequences
and adopting an internal mode of validation based
on the comparison between the a priori and a
posteriori analyses of these” (Artigue 2018). The
origin of this aspect of CE can be traced back to
didactical engineering (Brousseau 1997; Artigue
2015, 2018; Barquero and Bosch 2015).

In keeping with other recent developments in
educational research, CE takes into account the
shift of interest toward teachers’ “representations
and practices” and “the current evolution of vision
of relationships between researchers and
teachers” (Artigue 2018); this has led to a redefi-
nition of its modes of validation as we shall see.
CE’s Background Assumptions

First and foremost, CE is based on a challenge to
fundamental Western dualisms, including those
between theory and practice and ends and means
(Dewey 1920). As Dewey argued, such dualisms
are social and inherited from political structures of
domination. One of the main ends of CE, therefore,
is to dilute such dualisms in a practical manner.

Another background assumption of CE is the
conviction that practice is dense with problems
that science has not yet even begun to tackle.
Scientific knowledge of practice is lacunary, and
contrary to the view that science holds answers to
most problems of practice, CE adopts a stance in
which practice situations have to be carefully
described and studied before any attempt is
made to solve them. Collectively describing and
studying practice situations is the first step in the
problematization process. In CE, this conception
entails priority being given to a bottom-up
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collective inquiry, aimed at building specific the-
ories of action (Cobb and Jackson 2011) and
elements of a principled practical knowledge
(Bereiter 2014).
Principles

CE unfolds through a system of ideas that can be
seen as Deweyan principles: “Principles are
methods of inquiry and forecast which require
verification by events” (Dewey 1922, p. 239).

A principle of targeted symmetry. Teachers and
researchers are both practitioners but practitioners
of a different kind. The idea is that in order to
improve an educational process, teachers and
researchers are viewed a priori as equally able to
propose adequate manners of acting or relevant
ways of conceptualizing practice in the elaborated
design. Teachers and researcher participate in
what is called an epistemic cooperative relation-
ship, which postulates striving for an epistemic
symmetry in the engineering dialogue.

The necessity of acknowledging differences.
Cooperative Engineering requires that every
agent be responsible for proposing to the collec-
tive her first-hand point of view so as to contribute
what she “sees” and what she “knows” from her
position. There is a fundamental link between
research based on this postulate of symmetry and
this acknowledging of differences. The first-hand
point of view, which every participant is able to
make explicit, concretizes differences stemming
from each person’s experience. Such differences
are not founded on the status of someone who
knows something versus someone who does not.
Rather, they are the result of different experiences
in/of the social world relating to the common
engineering practice.

The necessity of building a common reasoning
about ends and means, and thus the potentiality to
play both as a collective and as an individual in the
game of giving and asking for reasons (Brandom
2001). In such a game, each participant becomes
able to give the rationale of the elaborated struc-
tures and is therefore able to understand and build
a first-hand relationship with this design rationale,
whether it be “practical” or “theoretical,” thereby
going beyond any epistemic division of labor. By
building a common repertoire of described and
analyzed practices, participants make themselves
capable of designing ends-in-views (Dewey
1922), which emerge from practical accomplish-
ments in the designing process.

The Engineer Stance. Cooperative engineering
may foster a kind of local, practical indistinguish-
ability between teachers and researchers. At
some moments of practice, both of them share an
engineer stance, which includes theoretical and
concrete ways of responding to a problem of
teaching practice. This principle has to be under-
stood as being in relation to the “The necessity of
acknowledging differences principle.” Speaking
of a “local, practical indistinguishability” between
the teacher and the researcher does not mean that
they fuse together within an unlikely fuzzy stance.
It does not erase the differences between the two
professions but rather temporally and locally
reunites them together under an engineer stance.
This stance brings all the members of the CE
together in a shared epistemic responsibility.

Cooperate to produce a work. In many forms of
“collaborative research,” teachers and researchers
do not work together on a common concrete object,
i.e., the designing of a teaching sequence. In CE,
teachers and researchers have to cooperate in order
to produce a common work – an opera to use the
Latin word for “work” or “labor.” This common
work lies both in the representational structure of
the teaching sequence and in the concrete
unfolding of the teaching–learning process itself.

This means that in a CE research project, it is
the “concrete object,” the teaching sequence itself,
which is the touchstone of the research process.
This “concrete object” is enacted in a practical
accomplishment, which is depicted in a hyperme-
dia system, as we will see. Such a hypermedia
system is a fundamental means of regulation in
that it provides evidence through a warranted
assertibility process (Dewey 1938).

Cooperate to produce knowledge. Participating
in a CE means participating in a knowledge work
in a twofold way. Firstly, as in Didactic Engineer-
ing, emphasis is put on the piece of knowledge to
be taught, which is jointly studied by the members
of the CE. Studying a piece of knowledge means
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building a connoisseur’s relationship with this
knowledge. It is a long, collective process which
precedes teaching. Secondly, the whole coopera-
tive process of designing a teaching sequence can
be seen as a production of knowledge in the form
of the teaching sequence; this includes the various
descriptions, depictions, comments, and analyses
that enable it to be understood and mastered.
CE as a Form of Both Anthropological
and Engineering Research

The goals of designing teaching sequences and
developing theories of teaching and learning are
intertwined in CE. Thus, CE is first and foremost
fundamental research within an anthropological
approach (Chevallard and Sensevy 2014), whose
object is the “Didactic Human Fact” (Cloud
2015), i.e., human being learning and human
being teaching. But this human fact is always
becoming, always virtually other than it is, and
as it is constantly in a state of development, never
final; it necessitates being transformed to be
understood, as in natural science, and the whole
process requires transformation for understanding
and understanding for transformation.

In this respect, cooperative engineering may
contribute to the building of a new research para-
digm that is both anthropological and design-
based: anthropological in that it aims to elaborate
a theory of practice and design-based in that it
aims to build better educational designs.
CE: An Epistemology of Paradigmatic
Analogy, Toward the Ascent from the
Abstract to the Concrete

Sciences of culture are sciences of contexts
(Passeron 2013). This means that assertions pro-
duced within the sciences of culture have to
systematically be referred to the contexts they
denote. A good manner in which to build such a
frame of reference consists of instituting some
contexts as exemplars (Kuhn 1974). We may
hypothesize that a given example of practice
has to be considered first as an “emblematic
example” within a particular research endeavor;
this then needs to further pertain to the common
knowledge of a research community to become
an exemplar in this research community. Such a
conception radically inverses standard interpre-
tations of the relationship between the concrete
and the abstract in which the abstract is con-
ceived of as the common area shared by some
concrete elements. It is based on a Marxian dia-
lectical vision of these relationships, in the sense
that scientific activity is seen to render possible
the ascent from the abstract to the concrete
(Engeström et al. 2012; Ilyenkov 1982; Marx
2012; Davydov 1990). According to this episte-
mology, CE can be seen as a deliberate attempt to
fundamentally give priority to the concrete of
practice over the abstract ideas that may
describe it.

Thus, when in the process of building designs,
cooperative engineers institute certain aspects of
practice as emblematic examples; this enables
them to both illustrate and to understand some
crucial dimensions of the teaching–learning pro-
cess. CE thus puts at the forefront a documenting
process, in which emblematic examples are given
to be seen and understood. This is the role of
PTHAS.
A Method of Documenting Practice and
Research on Practice: The PTHAS

In this way, emblematic examples can be struc-
tured and designed in hypermedia systems,
picture–text–audio hybrid systems (PTAHS),
cf. Sensevy et al. 2018. In such systems, films of
practice, as well as various comments on and
analysis of this practice, play an essential role
(Sensevy 2011; Tiberghien and Sensevy 2012) in
documenting its main features. Thus, the episte-
mology of paradigmatic analogy that we sketched
above is also “an epistemology of methodology,”
in which the progress of knowledge relies on the
building, studying, and refining of emblematic
examples of practice that serve as frames of refer-
ence in the scientific inquiry.

While using PTAHS, a CE team focuses this
inquiry on how practice works, in order to answer
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questions about how a given teaching sequence can
bemanaged and achieved successfully. It is possible
to consult an example of a PTHAS1 elaborated
within the ACE (Arithmetics and Comprehension
at Elementary School) program (Sensevy et al.
2013; Joffredo-le Brun et al. 2018; Fischer et al.
2018). This program, which aimed at providing a
curriculum for the first and second grades in math-
ematics, is currently based on the development of
PTAHS with the twofold goal of enhancing the
relevance of the research work as well as reinforcing
the concreteness of the dissemination process.
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Definition

Even though mathematics education, unlike gen-
eral psychology, has not yet fully embraced crea-
tivity as a systematic research domain (Sriraman
and Leikin 2017), there have been several papers,
books, and special issues of journals devoted to
mathematical creativity published in recent years.
In this entry, we will attempt to present an up-to-
date status on and understanding of creativity in
mathematics. We will also try to clear up some of
the confusion regarding related concepts such as
creativity, giftedness and ability, and the relation-
ship between them. First, the concepts of gifted-
ness, ability, and creativity will be discussed and
differentiated. Second, common themes from the
relevant literature will be synthesized that capture
the main ideas in the studies. Lastly, the synthesis
will be situated into the more generally framed
research in psychology.
Creativity

One of the main challenges in investigating math-
ematical creativity is the lack of a clear and
accepted definition of the term mathematical cre-
ativity and creativity itself. Previous examinations
of the literature have concluded that there is no
universally accepted definition of either creativity
or mathematical creativity (Sriraman 2005; Mann
2005). Treffinger et al. (2002) write, for instance,
that there are more than 100 contemporary defini-
tions of mathematical creativity. So how can the
scientific communities produce so much research
on creativity, when there is no clear-cut definition
of creativity (Sriraman 2017)? There are certain
parameters agreed upon in the literature that helps
narrow down the concept of creativity. Most
investigations of creativity take one of two direc-
tions: extraordinary creativity, known as big C, or
everyday creativity, known as little c (Kaufman
and Beghetto 2009). Extraordinary creativity
refers to exceptional knowledge or products that
change our perception of the world. Feldman et al.
(1994) writes: “the achievement of something
remarkable and new, something which transforms
and changes a field of endeavor in a significant
way . . . the kinds of things that people do that
change the world.” Ordinary, or everyday, crea-
tivity is more relevant in a regular school setting.
Feldhusen (1995) describes little c as: “Wherever
there is a need to make, create, imagine, produce,
or design anew what did not exist before – to
innovate – there is adaptive or creative behavior,
sometimes called ‘small c’.” Investigation into the
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concept of creativity also distinguishes between
creativity as either domain specific or domain
general (Kaufman and Beghetto 2009).

Whether or not creativity is domain specific or
domain general, or if you look at ordinary or
extraordinary creativity, most definitions of crea-
tivity include some aspect of usefulness and nov-
elty (Sternberg 1999; Plucker and Beghetto 2004;
Mayer 1999) – otherwise known as the standard
definition of creativity (Runco and Jaeger 2012).
What is useful and novel, however, depends on
the context of the creative process of an individ-
ual. The criteria for useful and novel in profes-
sional arts would differ significantly from what is
considered useful and novel in a mathematics
class in lower secondary school. There is therefore
a factor of relativeness to creativity. For a profes-
sional artist, some new, groundbreaking tech-
nique, product, or process that changes his or her
field in some significant way would be creative,
but for a mathematics student in lower secondary
school, an unusual solution to a problem could be
creative. Csikszentmihalyi (2014) shed further
light on this by explaining how creativity is a
phenomenon that results from an interaction
between three parties: “a set of social institutions,
or field, that selects from the variations produced
by individuals those that are worth preserving; a
stable cultural domain that will preserve and trans-
mit the selected new ideas or forms to the follow-
ing generations; and finally the individual, who
brings about some change in the domain, a change
that the field, will consider to be creative.” Math-
ematical creativity in a K-12 setting can as such be
defined as the process that results in a novel solu-
tion or idea to a mathematical problem or the
formulation of new questions, produced by an
individual or several individuals, and considered
worth preserving within the context of school
mathematics (Sriraman 2005).
Giftedness and Ability

For decades giftedness was equated with concept
of intelligence or IQ (Renzulli 2005; Brown et al.
2005; Coleman and Cross 2001). Terman (1925)
claimed that gifted individuals are those who
score at the top 1% of the population on the
Stanford-Binet test. This understanding of gifted-
ness is still wide spread today. Researchers work-
ing in cognitive and metacognitive areas still use
high IQ as a marker of giftedness. However, many
researchers now include other factors as well and
view giftedness as a more multifaceted concept
where intelligence is one of several aspects
(Renzulli 2005). One example is Renzulli’s
(2005) three-ring model of giftedness. In an
attempt to capture the many facets of giftedness,
Renzulli presented giftedness as an interaction
between above-average ability, creativity, and
task commitment. He went on to separate gifted-
ness into two categories: schoolhouse giftedness
and creative productive giftedness. The former
refers to the ease of acquiring knowledge and
taking standardized tests. The latter involves cre-
ating new products and processes, which Renzulli
thought was often overlooked in school settings.
Other researchers have also proposed multi-
dimensional models of giftedness, which integrate
factors such as environmental factors, creativity,
and even luck (Miller 2012).

In this entry, we will focus on giftedness in
mathematics, as giftedness as a concept is depen-
dent on the context and field (Csikszentmihalyi
2000). However, first we have to clarify a certain
linguistic confusion. Mathematical ability is
another term that has often been used interchange-
ably with mathematical giftedness. High mathe-
matical ability has also been usually seen as
equivalent to mathematical attainment (Piirto
1999), and to some degree there is some truth to
that notion. There is a statistical relationship
between academic attainment in mathematics and
early identified high mathematical ability (Benbow
and Arjmand 1990). However, Ching (1997) dis-
covered that hidden talent go largely unnoticed in
typical classrooms, and Kim et al. (2004) state that
traditional tests rarely identify mathematical crea-
tivity. Hong and Aqui (2004) compared cognitive
and motivational characteristics of high school stu-
dents who were academically gifted in math, crea-
tively talented in math, and nongifted. The authors
found that the creatively talented students used
more cognitive strategies than the academically
gifted students. Similar findings have been
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reported elsewhere, with high ability in mathemat-
ics related to solving complex mathematical prob-
lems (Davis and Rimm 1989; Geary and Brown
1991; Lev and Leikin 2017). These findings indi-
cate that mathematical ability and mathematical
attainment in a traditional K-12 setting are not
synonymous – which is also clear from the defini-
tions themselves. Ability is defined as “the quality
of being able to do something, especially the phys-
ical, mental, financial, or legal power to accom-
plish something.” Attainment is defined as
“Something, such as an accomplishment or
achievement, that is attained.” The key difference
is that ability points to a potential to do something,
while attainment refers to something that has been
accomplished. In the field of mathematics, mathe-
matical ability then refers to the ability to do math-
ematics. Mathematical attainment, on the other
hand, is usually seen as doing well on tests and
other formal assessments in school settings. The
conflation between the two concepts is therefore to
a large extent caused by the assumption that formal
assessment in school mathematics is a valid repre-
sentation of mathematical ability. As we can see
from the literature, this is not necessarily the case;
in particular we sometimes see a distinction
between academic attainment in mathematics and
creative talent in mathematics throughout the liter-
ature (see for instance Selden et al. 1994; Kim et al.
2004; Livne and Milgram 2006; Haavold 2011).

Sowhat aremathematical ability andmathemat-
ical giftedness then?Although neither construct are
precisely defined in the literature, we can say that
an individual is mathematically gifted if his or her
ability in mathematics is well above the norm for
their age. Due to the lack of a conceptual clarity
regarding giftedness and the heterogeneity of the
gifted population, both in general and in mathe-
matics, identification of gifted students has varied
(Kontoyianni et al. 2011). Instead, we can see some
common characteristics of giftedness in mathemat-
ics in the research literature. Krutetskii (1976)
noted in his investigation of gifted students in
mathematics a number of characteristic features:
ability for logical thought with respect to quantita-
tive and spatial relationships, number and letter
symbols, the ability for rapid and broad generali-
zation of mathematical relations and operations,
flexibility of mental processes and mathematical
memory. Similar features of mathematical gifted-
ness have been proposed by other researchers (see
for instance Sriraman 2005).
Giftedness and Creativity

In the field of professional mathematics, the cre-
ative mathematician is a rarity. At this level,
mathematical creativity implies mathematical
giftedness, but the reverse is not necessarily
true (Sriraman 2005). Usiskin’s (2000) eight
tiered hierarchy of creativity and giftedness in
mathematics further shed some light of this
view of the relationship between creativity and
giftedness in professional mathematics. In this
model, we find the productive mathematician at
level five. These are your typical mathematicians
who have successfully completed a Ph.D. in
mathematics and are capable of publishing in
the field. At level six and seven, on the other
hand, we find the exceptional mathematicians
who have moved their fields forward and who
has made their mark on history. It is here, at level
six and seven, Usiskin claims that we find the
creative mathematicians. Therefore, we can say
that in Usiskin’s (2000) model, mathematical
creativity implies mathematical giftedness, but
not vice versa.

However, while Usiskin’s model is interesting, it
is limited to big-C type creativity and mathematical
giftedness among professional mathematicians. It
does not necessarily tell us much about the relation-
ship between creativity and giftedness in school
mathematics. Here, the relationship between gifted-
ness and creativity has been the subject of much
discussion (Leikin 2008; Sternberg 1999). Several
studies have, for instance, found a significant corre-
lation between mathematical creativity and mathe-
matical attainment in various forms (see, for
instance, Ganihar and Wajiha 2009; Haavold 2016;
Kattou et al. 2013; Mann 2005; Prouse 1967; Sak
and Maker 2006; Tabach and Friedlander 2013). In
a review on the relationship between creativity and
giftedness in mathematics, Sriraman and Haavold
(2017) concluded that although there is a significant
statistical relationship between mathematical
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creativity and mathematical attainment, mathemati-
cal attainment does not necessarily entail mathemat-
ical creativity. An explanation for this is found in
Sriraman’s (2005) argument that mathematical cre-
ativity in the K–12 setting is seen on the fringes of
giftedness. This idea is intuitively appealing as tra-
ditional mathematics teaching emphasizes proce-
dures, computation, and algorithms. There is little
attention to developing conceptual ideas, mathemat-
ical reasoning, and problem-solving activities
(Cox 1994).

According to Haylock (1997) and Sheffield
(2009), low attaining students do not possess the
sufficient mathematical knowledge for creativity
to manifest. Solid content knowledge is required
for individuals to make connections between dif-
ferent concepts and types of information.
Feldhausen and Westby (2003) assert that an indi-
vidual’s knowledge base is the fundamental
source of their creative thought. Mathematical
ability therefore seems to be a necessary, but not
sufficient, condition for mathematical creativity to
manifest. Theoretical support for this conclusion
is found in general creativity research within psy-
chology. The foundation view of creativity sug-
gests a positive relationship between knowledge
and creativity. Since a knowledgeable individual
knows what has been done within a field, he or she
can move forward and come up with new and
useful ideas (Weisberg 1999). Deep knowledge
within a field is essential to the creative process.

In a series of studies investigating creativity and
giftedness, researchers developed a model that shed
further light on these relationships. Their findings
suggest that mathematical creativity and mathemat-
ical abilities are the fundamental components of
mathematical giftedness (Kontoyianni et al. 2011,
2013; Pitta-Pantazi et al. 2011, 2012). In these stud-
ies, mathematical ability was defined as (a) spatial
abilities, (b) quantitative abilities, (c) qualitative
abilities, (d) verbal abilities, and (e) causal abilities,
while mathematical creativity was defined in terms
of fluency, flexibility, and originality. Unlike
Usiskin (2000), thismodel (Pitta-Pantazi 2017) indi-
cates that mathematical creativity does not imply
mathematical giftedness. In fact, the results show
that mathematical ability contributes more to math-
ematical giftedness than mathematical creativity –
supporting the foundation view of creativity. The
researchers also found that more general and natural
cognitive factors were also necessary, but not suffi-
cient, conditions for predicting mathematical gifted-
ness. All students who were identified as
mathematically gifted had a high fluid intelligence,
but not all students who had a high fluid intelligence
were identified as mathematically gifted.
Empirical Research

The lack of a clear definition of mathematical
creativity has led to functional and pragmatic
empirical approaches. Haylock (1987) summa-
rized research on mathematical creativity into
two investigative models: (1) the ability to over-
come fixations in mathematical problem solving
and (2) the ability for divergent production. Cre-
ativity as divergent production was first proposed
by Guilford and Torrance and is based on both
associative theory and Guilford’s theory of the
structure of intellect. Guilford (1959) considered
creative thinking as involving divergent thinking,
in which fluency, flexibility, originality, and elab-
oration were central features. Fluency is the num-
ber of solutions to a problem or situation,
flexibility the number of different categories of
solutions, originality the relative unusualness of
the solution, and elaboration the amount of detail
in the responses. Building on Guilford’s work,
Torrance et al. (1966) developed the Torrance
Test of Creative Thinking to assess individuals’
capacity for creative thinking. This, in turn, led to
the use of different divergent production tests in
numerous contexts, including mathematics per-
spectives education (e.g., Aiken 1973; Haylock
1987; Haavold 2016; Kattou et al. 2013;
Krutetskii 1976; Leikin and Lev 2013). The com-
mon feature of all these tests is problems and
situations with many possible responses. Unlike
convergent thinking, where the subject must seek
one solution, divergent thinking tasks allow for
many possible solutions (Haylock 1987).

Recently, Mann et al. (2017) proposed a fifth
subconstruct of the modern day construct of math-
ematical creativity. An iconoclast is a person who
attacks settled beliefs or institutions. In
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mathematics, iconoclasm refers to mathematically
creative individuals’ tendency to oppose com-
monly accepted principles and solutions. Icono-
clasts are often nonconformist and open to new
and uncommon solution paths. However, icono-
clasm is still a theoretical proposal. Mann et al.
(2017) state that empirical proof of existence is
still needed, and they encouraged the develop-
ment of an instrument that investigates whether
problem solvers will challenge commonly
accepted algorithms when they are faced with a
relatively inefficient solution.

Although most research into creativity is based
on divergent production tests, it is also worth
mentioning that the practice of accepting diver-
gent thinking as a proxy for creativity has been
subject to much criticism. The most obvious crit-
icism is that creativity can just as well be the result
of a convergent process. Tan and Sriraman (2017),
for instance, propose convergent thinking as
equally important in the context of mathematics.
The authors argue that people can also develop
their capacity for creativity in convergence (e.g.,
collaboration), through mathematical learning
(e.g., with coherence, congruence), and for crea-
tivity (e.g., imagination). Furthermore, divergent
thinking is a compound construct, consisting of
various separate mental processes that cannot be
isolated into the cognitive elements that turn ordi-
nary thinking into creative thinking. This compos-
ite nature makes the construct nearly impossible
to trace with today’s neuroimaging tools, and
there is therefore no theory that fully explains
the brain activity of the creative process. In fact,
one of the strongest findings in the literature is that
creativity is not particularly associated with any
single brain region, excluding the prefrontal cor-
tex (Dietrich and Kanso 2010). Nevertheless,
divergent thinking is still considered one of the
more fruitful ways to study ideation and, thus,
potential for creativity and problem solving.

The second investigative model posited by
Haylock (1987) emphasizes the process of math-
ematical creativity and the importance of over-
coming mental fixations. Creative thinking is
related to flexibility of thought (Haylock 1997).
This capacity to break from established mental
sets is an important aspect of the creative process.
Overcoming fixations as an aspect of mathemati-
cal creativity can be traced back to the writings of
Hadamard and Poincaré and Gestalt psychology
(Sriraman et al. 2013). The Gestaltists described
the process of creative problem solving through
four stages: (1) preparation, (2) incubation,
(3) illumination, and (4) verification. Here, illu-
mination occurs once the problem solver, either
through conscious or unconscious work, is able to
break from established mindsets and overcome
certain fixations. A recent example of this
approach can be found in Lithner’s (2008) frame-
work for creative and imitative reasoning, in
which the author separates mathematical reason-
ing into two categories: (1) creative mathemati-
cally founded reasoning and (2) imitative
reasoning. Creative mathematically founded rea-
soning is a sequence of arguments that are origi-
nal, plausible, and based on mathematical
properties. Imitative reasoning, on the other
hand, is built on copying task solutions or through
remembering an algorithm or answer. The key
difference is seen in the reasoner’s ability to
break from established mindsets and come up
with novel and plausible reasoning sequences.
Conceptual Relationships

Although we are still learning about the relation-
ship between mathematical creativity and mathe-
matical giftedness, certain features of mathematical
creativity are found throughout the literature. The
characteristics of mathematical creativity and its
relationship to other theoretical constructs have
been investigated further in recent research. Several
issues of ZDM, The International Journal of Math-
ematics Education, and books (e.g., Leikin and
Sriraman 2017) have, for instance, been exclu-
sively devoted to the concepts of mathematical
creativity and mathematical giftedness. In this sec-
tion, we mention some of these findings.

In one study, a team of researchers examined
how different conceptualizations of giftedness
were related to mathematical creativity (Lev and
Leikin 2017). Hundred and eighty-four students
(aged 16–18) were assigned to four different
groups, determined by a combination of general
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intelligence (high IQ) and high performance in
mathematics. A total of 665 students (aged
16–18) were given a multiple solution test in
mathematics; 184 belonged to the research sample
and 481 students served as a comparison group.
Both general intelligence and high performance in
mathematics were found to have a significant
effect on mathematical creativity. However, the
study also demonstrates a distinction between
general intelligence and mathematical perfor-
mance. High performance in mathematics
appeared to be a prerequisite for mathematical
creativity, but general intelligence offered an
added effect in particular on originality of solu-
tions to mathematical problems (Lev and Leikin
2017). Although the exact relationship between
general intelligence and general creativity is still
being investigated, the findings of Lev and Leikin
(2017) resonate with findings in general psychol-
ogy. Decades ago, creativity and intelligence were
seen as distinct concepts. However, in recent
years, most researchers have begun to see creativ-
ity and intelligence as related concepts. The con-
temporary view is that creativity and intelligence
are closely linked. People who do better on typical
intellectual tasks also do well on creativity tasks.
Instead of talking about creativity and intelligence
as separate things, they should be seen as “fami-
lies of processes and functions that the mind can
do” (Silvia 2015).

Several other findings in the literature are
related to these processes and functions. Pitta
et al. (2013) investigated the relationship between
mathematical creativity and cognitive styles.
A mathematical creativity test consisting of five
tasks was given to 96 prospective primary school
teachers and was assessed on the basis of fluency,
flexibility, and originality. Cognitive style was
measured with the Object-Spatial Imagery and
Verbal Questionnaire (OSIVQ) with respect to
three styles: spatial, object, and verbal. Using
multiple regression, the authors conclude that spa-
tial and object styles were significant predictors of
mathematical creativity, while verbal style was
not significant. Spatial cognitive style was posi-
tively related to mathematical creativity, while
object cognitive style was negatively related to
mathematical creativity. Furthermore, spatial
cognitive style was positively related to fluency,
flexibility, and originality, while object cognitive
style was negatively related to originality and
verbal cognitive style was negatively related to
flexibility.

In another study, Pitta-Pantazi and Christou
(2009) investigated the relationship of students’
spatial and object visualization to their analytical,
creative, and practical abilities in three dimen-
sional geometry. The analysis conducted showed
that object visualization was related to the stu-
dents’ creative abilities. Other researchers, work-
ing on general creativity research, agree that
cognitive styles are related to creativity (see for
instance Sternberg 2012). However, some
researchers deny this relationship (Kirton 1989).
The disagreement seems to stem from a difference
in how cognitive styles and creative behavior have
been defined and investigated. In a study of a
theoretical model that attempts to explain mathe-
matical creativity, Haavold (2016) demonstrated
that intrinsic motivation in mathematics was a
significant predictor of mathematical creativity.
In other studies, positive affect in general
(feelings, emotions, dispositions, and beliefs) has
been associated with the creative process.
A common theme in these studies is that affective
states play a significant role in stimulating creative
thinking and is a factor that can be influenced
(Mann et al. 2017).

No clear picture of creativity and its relation-
ship to other constructs emerges from these, and
other, studies. However, it is clear that creativity
as a concept is closely related to other cognitive
and affective features of the mind, such as ability,
intelligence, cognitive style, motivation. As Silvia
(2015) argues, we should look at creativity and its
related concepts as part of family of processes and
functions of the mind, instead of deterministic
predictors or requirements of creativity.
Giftedness and Creativity in Psychology
and Neuroscience

Within mathematics education, mathematical cre-
ativity is often claimed to be an ill-defined con-
cept. However, within a bigger context of
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creativity research, there has been a steady pro-
gress on numerous fronts. Sriraman (2017) sum-
marizes some of this progress into three
postulates. The first postulate states that incuba-
tion facilitates creativity. A century ago, the
school of Gestalt psychology put forward model
of preparation-incubation-illumination and verifi-
cation. Since then there have been numerous stud-
ies that have verified the importance of the “rest
hypothesis” for facilitating creativity, a fresh brain
in a new state of mind triggers illumination and
the incubation phase gets rid of false leads. The
second postulate states that intrinsic motivation is
positively related to creativity. Creative results are
often the product of a period of prolonged and
sustained activity, which in turn is driven by the
intrinsic motivation of the individual. The third
postulate tells us that divergent thinking is not the
sole marker of mathematical creativity. Most
research into creativity has used divergent produc-
tion as a marker of creativity. While divergent
thinking is an important factor of creativity, too
much divergent thinking could lead to an excess
of novelty at the expense of usefulness. Conver-
gent thinking has to work in tandem with diver-
gent thinking, in order to align ideas with the
rules, norms, and knowledge of the field in
question.

In general, cognitive psychology studies have
shown that creativity involves many cognitive
processes, including defocused attention, cogni-
tive control, flexibility, fluency, and working
memory (Dietrich 2004). Recently, neuroscience
has become an increasingly popular approach for
studying creativity, and EEG and fMRI research
lends neuroscientific support to the behavioral
evidence from cognitive psychology. Although
there are both benefits and drawbacks to using
these techniques, neuroscience has already proven
its worth in the study of creativity. For instance,
neuroscience has helped debunk the myth that the
right hemisphere of the brain is responsible for
creative thought. Numerous studies have shown
that a diffuse network of neurons across both
hemispheres is involved in creative processes
(Sawyer 2011). EEG-based studies have
established that both creativity and tasks that
require higher cognitive abilities are connected
to variations in alpha power. In addition, fMRI-
based studies have demonstrated that executive
functions and creativity active the prefrontal and
parietal regions of the neocortex (Cropley
et al. 2017).
Teaching for Creativity

Although creativity, like most cognitive processes
have a genetic component, it can be developed
and nurtured (see for instance Beghetto 2013).
What can we do to stimulate creativity in school
mathematics? In this section, we look at some
techniques and methods for fostering creativity
in the classroom. In general, a state of doubt is
important for triggering the creative learning pro-
cess (Beghetto and Schreiber 2017). Sternberg
(2017) writes that creativity is a habit, and if we
want to promote it, we need to treat it as a desir-
able practice. To develop the creativity habit, one
needs opportunities to exercise creativity. This
means that students must be willing to take sensi-
ble risks, to see conventional problems in new
ways, and persist when others question one’s cre-
ative approach to problems. According to Stern-
berg (2017), teaching for creative thinking means
that students should be encouraged to create,
invent, discover, predict, and imagine. However,
this requires teachers to not only support and
encourage creativity, but also role-model it and
reward it. Closely related to doubt and the devel-
opment of creativity as a habit is inquiry-oriented
mathematics instruction that includes problem-
solving and problem-posing tasks (Silver 1997;
Leikin 2009). These types of activities can assist
students to develop more creative approaches to
mathematics. With problem solving and problem
posing, teachers can increase their students’
capacity with respect to the core dimensions of
creativity, namely, fluency, flexibility, and
novelty.

In recent years, several studies have looked at
methods for stimulating mathematical creativity
in the classroom. Beghetto and Schreiber (2017)
propose abductive reasoning as an approach to
stimulate creativity. Abductive reasoning starts
with an observation and then seeks to find the
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most likely explanation. It represents a special
form of creative reasoning that is triggered by
states of genuine doubt, as it typically arises
when we cannot explain an observed phenome-
non. Through abductive reasoning, we resolve our
doubt and this in turn is a key motivator in the
creative learning process. An example of creating
doubt, closely related to abductive reasoning, is
found in a recent article in ZDM by Sriraman and
Dickman (2017). Here, the authors advocate the
use of mathematical pathologies as a means of
fostering creativity in the classroom. Pathologies
refers here to mathematical objects “cooked up” to
“provide interesting examples of counterintuitive
behavior.” One example of “mathematical pathol-
ogy” is provided in the context of cancellation as a
means to simply fractions. By cancelling the 9 s in
19
95
, we get 1

5
. A correct result by erroneous methods.

The natural follow-up question is whether there
are other two-digit fractions with this property.
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Definition

Critical mathematics education can be character-
ized in terms of concerns: to address social exclu-
sion and suppression, to work for social justice, to
open new possibilities for students, and to address
critically mathematics in all its forms and
application.
Characteristics

Critical Education
Inspired by the students’ movement, a New Left,
peace movements, feminism, and antiracism, crit-
ical education proliferated. A huge amount of
literature became published, not least in Germany,
and certainly the work of Paulo Freire was recog-
nized as crucial for formulating radical educa-
tional approaches.

However, critical education was far from
expressing any interest in mathematics. In fact,
with reference to the Frankfurt School, mathemat-
ics was considered almost an obstruction to criti-
cal education. Thus, Habermas, Marcuse, and
many others associated instrumental reason with,
on the one hand, domination and, on the other
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hand, the rationality cultivated by natural science
and mathematics. Mathematics appeared as the
grammar of instrumental reason. How could one
imagine any form of emancipatory interests being
associated to this subject?

Steps into Critical Mathematics Education
Although there were no well-defined theoretical
frameworks to draw on, there were from the
beginning of the 1970s many attempts in formu-
lating a critical mathematics education. Let me
mention some publications.

The book Elementarmathematik: Lernen für die
Praxis (Elementary mathematics: Learning for the
praxis) by Peter Damerow, Ulla Elwitz, Christine
Keitel, and Jürgen Zimmer from 1974 was crucial
for the development of critical mathematics educa-
tion in a German context. In the article “Plädoyer
für einen problemorientiertenMathematikunterrich
in emanzipatorisher Absicht” (“Plea for a problem-
oriented mathematics education with an emancipa-
tory aim”) from 1975, Dieter Volk emphasized that
it is possible to establish mathematics education as
a critical education. The book Indlæring som social
proces (Learning as a social process) by Stieg
Mellin-Olsen was published in 1977. It provided
an opening of the political dimension of mathemat-
ics education, a dimension that was further
explored in Mellin-Olsen (1987). Indlæring som
social proces was crucial for the development of
critical mathematics education in the Scandinavian
context. An important overview of Mellin-Olsen’s
work is found in Kirfel and Lindén (2010). Dieter
Volk’s Kritische Stichwörter zum Mathematikun-
terricht (Critical notions for mathematics educa-
tion) from 1979 provided a broad overview of what
could be called the first wave in critical mathemat-
ics education, soon after followed, in Danish,
Skovsmose (1980, 1981a, b).

Marilyn Frankenstein (1983) provided an
important connection between critical approaches
in mathematics education and the outlook of
Freire, and in doing so, she was the first in English
to formulate a critical mathematics education (see
also Frankenstein 1989). Around 1990, together
with Arthur Powell and several others, she formed
the critical mathematics education group, empha-
sizing the importance of establishing a united
concept of critique and mathematics (see
Frankenstein 2012; Powell 2012). Skovsmose
(1994) provided an interpretation of critical math-
ematics education and Skovsmose (2012) a his-
torical perspective.

Critical mathematics education developed rap-
idly in different directions. As a consequence, the
very notion of critical mathematics education
came to refer to a broad range of approaches,
such as mathematics education for social justice
(see, e.g., Sriraman 2008; Penteado and
Skovsmose 2009; Gutstein 2012), pedagogy of
dialogue and conflict (Vithal 2003), responsive
mathematics education (Greer et al. 2009), and,
naturally, critical mathematics education
(Skovsmose 2011). Many ethnomathematical
studies also link closely with critical mathematics
education (see, e.g., D’Ambrosio 2006; Knijnik
1996; Powell and Frankenstein 1997).

Some Issues in Critical Mathematics Education
Critical mathematics education can be character-
ized in terms of concerns, and let me mention
some related to mathematics, students, teachers,
and society:

Mathematics can be brought in action in technol-
ogy, production, automatization, decision-
making, management, economic transaction,
daily routines, information procession, com-
munication, security procedures, etc. In fact,
mathematics in action plays a part in all spheres
of life. It is a concern of a critical mathematics
education to address mathematics in its very
many different forms of applications and prac-
tices. There are no qualities, like objectivity
and neutrality, that automatically can be asso-
ciated to mathematics. Mathematics-based
actions can have all kind of qualities, being
risky, reliable, dangerous, suspicious, mislead-
ing, expensive, brutal, profit generating,
etc. Mathematics-based action can serve any
kind of interest. As with any form of action,
also mathematics in action is in need of being
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carefully criticized. This applies to any form of
mathematics: everydaymathematics, engineer-
ing mathematics, academic mathematics, and
ethnomathematics.

Students. To a critical mathematics education, it is
important to consider students’ interests,
expectations, hopes, aspirations, and motives.
Thus, Frankenstein (2012) emphasizes the
importance of respecting student knowledge.
The notion of students’ foregrounds has been
suggested in order to conceptualize students’
perspectives and interests (see Skovsmose
2014a). A foreground is defined through very
many parameters having to do with economic
conditions, social-economic processes of
inclusion and exclusion, cultural values and
traditions, public discourses, and racism. How-
ever, a foreground is, as well, defined through
the person’s experiences of possibilities and
obstructions. It is a preoccupation of critical
mathematics education to acknowledge the
variety of students’ foregrounds and to develop
a mathematics education that might provide
new possibilities for the students. The impor-
tance of recognizing students’ interest has
always been a concern of critical mathematics
education.

Teachers. As it is important to consider the stu-
dents’ interests, it is important to consider the
teachers’ interests and working conditions as
well. Taken more generally, educational sys-
tems are structured by the most complex sets of
regulations, traditions, and restrictions, which
one can refer to as the “logic of schooling.”
This “logic” reflects (if not represents) the eco-
nomic order of today, and to a certain degree, it
determines what can take place in the class-
room. It forms the teachers’ working condi-
tions. It becomes important to consider the
space of possibilities that might be left open
by this logic. These considerations have to do
with the micro–macro (classroom-society)
analyses as in particular addressed by Paola
Valero (see, e.g., Valero 2009). Naturally,
these comments apply not only to the teachers’
working conditions but also to the students’
conditions for learning. While the concern
about the students’ interests has been part of
critical mathematics education right from the
beginning, a direct influence from the students’
movements, the explicit concern about teach-
ing conditions is a more recent development of
critical mathematics education.

Society can be changed. This is the most general
claimmade in politics. It is the explicit claim of
any activism. And it is as well a concern of
critical mathematics education. Following
Freire’s formulations, Gutstein (2006) empha-
sizes that one can develop a mathematics edu-
cation which makes it possible for students to
come to read and write the world: “read it,” in
the sense that it becomes possible to interpret
the world filled with numbers, diagrams, fig-
ures, and mathematics, and “write it,” in the
sense that it becomes possible to make
changes. However, a warning has been formu-
lated: one cannot talk about making sociopo-
litical changes without acknowledging the
conditions for making changes (see, e.g., Pais
2012). Thus, the logic of schooling could
obstruct many aspirations of critical mathemat-
ics education. Anyway, I find that it makes
good sense to articulate a mathematics educa-
tion for social justice, not least in a most unjust
society.

Some Notions in Critical Mathematics
Education
Notions such as social justice, mathemacy, dia-
logue, and uncertainty together with many others
are important for formulating concerns of critical
mathematics education. In fact we have to con-
sider ourselves with clusters of notions of which
I highlight only a few:

Social justice. Critical mathematics education
includes a concern for addressing any form of
suppression and exploitation. As already indi-
cated, there is no guarantee that an educational
approach might in fact be successful in bringing
about any justice. Still, working for social justice
is a principal concern of critical mathematics
education. Naturally, it needs to be recognized
that “social justice” is an open concept, themean-
ing of which can be explored in many different
directions. Addressing equity also represents
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concerns of critical mathematics education, and
the discussion of social justice and equity brings
us to address processes of inclusion and exclu-
sion. Social exclusion can take the most brutal
forms being based on violent discourses integrat-
ing racism, sexism, and hostility toward “for-
eigners” or “immigrants.” Such discourses
might label groups of people as being “dispos-
able,” “a burden,” or “nonproductive,” given the
economic order of today. It is a concern of critical
mathematics education to address any form of
social exclusion. As an example, I can refer to
Martin (2009). However, social inclusion might
also represent a questionable process: it could
mean an inclusion into the capitalist mode of
production and consumption. So critical mathe-
matics education needs to address
inclusion–exclusion as contested processes.
However, many forms of inclusion–exclusion
have until now not been discussed profoundly
inmathematics education: the conditions of blind
students, deaf students, and students with differ-
ent handicaps – in other words, students with
particular rights. However, such issues are now
being addressed in the research environment cre-
ated by the Lulu Healy and Miriam Goody
Penteado in Brazil. Such initiatives bring new
dimensions to critical mathematics education.

Mathemacy is closely related to literacy, as for-
mulated by Freire, being a competence in read-
ing and writing the world. Thus, D’Ambrosio
(1998) has presented a “New Trivium for the
Era of Technology” in terms of literacy,
matheracy, and technoracy. Anna Chronaki
(2010) provided a multifaceted interpretation
of mathemacy, and in this way, it is emphasized
that this concept needs to be reworked,
reinterpreted, and redeveloped in a never-
ending process. Different other notions have,
however, been used as well for these complex
competences, including mathematical literacy
and mathematical agency. Eva Jablonka
(2003) provides a clarifying presentation of
mathematical literacy, showing how this very
notion plays a part in different discourses,
including some which hardly represent critical
mathematics education. The notion of mathe-
matical agency helps to emphasize the
importance of developing a capacity not only
with respect to understanding and reflection
but also with respect to acting.

Dialogue. Not least due to the inspiration from
Freire, the notion of dialogue has played an
important role in the formulation of critical
mathematics education. Dialogic teaching and
learning has been presented as one way of
developing broader critical competences
related to mathematics. Dialogic teaching and
learning concerns forms of interaction in the
classroom. It can be seen as an attempt to break
at least some features of the logic of schooling.
Dialogic teaching and learning can be seen as a
way of establishing conditions for establishing
mathemacy (or mathematical literacy, or math-
ematical agency). Problem-based learning and
project work can also be seen as way of fram-
ing a dialogic teaching and learning.

Uncertainty. Critique cannot be any dogmatic
exercise, in the sense that it can be based on
any well-defined foundation. One cannot take
as given any particular theoretical basis for
critical mathematics education; it is always in
need of critique (see, e.g., Ernest 2010, and
Skovsmose 2014b). In particular one cannot
assume any specific interpretation of social
justice, mathemacy, inclusion–exclusion, dia-
logue, critique, etc. They are all contested con-
cepts. We have to do with concepts under
construction.

Critical Mathematics Education for the Future
The open nature of critical mathematics education
is further emphasized by the fact that forms of
exploitations, suppressions, environmental prob-
lems, and critical situations in general are contin-
uously changing. Critique cannot develop
according to any preset program.

For recent developments of critical mathemat-
ics education, see, for instance, Alrø, Ravn, and
Valero (Eds.) (2010), Wager, A. A. and Stinson,
D. W. (Eds.) (2012), Skovsmose and Greer (Eds.)
(2012), and Ernest, Sriraman, and Ernest (Eds.)
(2015). In Portuguese, one also finds important
new contributions to critical mathematics educa-
tion. Denival Biotto Filho (2015) addresses stu-
dents in precarious situations and in particular
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their foregrounds. Raquel Milani (2015) and Ana
Carolina Faustino (in progress) explore further the
notion of dialogue, while Renato Marcone (2015)
addresses the notion of inclusion–exclusion,
emphasizing that we do not have to do with a
straightforward good-bad duality. Inclusion
could also mean an inclusion into the most ques-
tionable social practices.

Critical mathematics education is an ongoing
endeavor. And naturally we have to remember
that as well the very notion of critical mathematics
education is contested. There are very many dif-
ferent educational endeavors that address critical
issues in mathematics education that do not
explicitly refer to critical mathematics education.
And this is exactly as it should be as the concerns
of critical mathematics cannot be limited by
choice of terminology.
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Definition

Mainstream educational psychologists view critical
thinking (CT) as the strategic use of a set of reason-
ing skills for developing a form of reflective think-
ing that ultimately optimizes itself, including a
commitment to using its outcomes as a basis for
decision-making and problem solving. In such
descriptions, CT is established as a general meth-
odological standard for making judgments and
decisions. Accordingly, some authors also include
a sense for fairness and the assessment of practical
consequences of decisions as characteristics (e.g.,
Paul and Elder 2001). This conception assumes
rational, autonomous subjects who share a common
frame of reference for representation of facts and
ideas, for their communication, as well as for appro-
priate (morally “good”) action. Important is the
difference as to what extent a critical examination
of the criteria for CT is included in the definition: If
education for CT is conceptualized as instilling a
belief in a more or less fixed and shared system of
skills and criteria for judgment and associated
values, then it seems to contradict its very goal. If,
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on the other hand, education for CT aims at over-
coming potentially limiting frames of reference,
then it needs to allow for transcending the very
criteria assumed for legitimate “critical” judgment.
The dimension of not following rules and develop-
ing a fantasy for alternatives connects CT with
creativity and change. In Asian traditions derived
from theMãdhyamika Buddhist philosophy, critical
deconstruction is a method of examining possible
alternative standpoints on an issue, which might
amount to finding self-contradictions in all of
them (Fenner 1994). When combined with medita-
tion, the deconstruction provides for the student a
path toward spiritual insight as it amounts to a
freeing from any form of dogmatism. This position
coincides with some postmodern critiques of purely
intellectual perspectives that lack contactwith expe-
rience and is echoed in some European traditions of
skepticism (Garfield 1990). Hence, paradoxical
deconstruction appears more radical than CT as it
includes overcoming the methods and frames of
reference of previous thinking and of purely intel-
lectual plausibility.
Introduction

The role assigned to CT in mathematics education
includes CT as a by-product of mathematics learn-
ing, as an explicit goal of mathematics education,
as a condition for mathematical problem solving,
as well as critical engagement with issues of social,
political, and environmental relevance by means
of mathematical modeling and statistics. Such
engagement can include a critique of the very role
mathematics plays in these contexts. In the mathe-
matics education literature, explicit reference to CT
as defined in educational psychology or philosophy
is not very widespread, but general mathematical
problem-solving and mathematical reasoning are
commonly associated with critical thinking, even
though such association remains under-theorized.
On the other hand, the notion of critique, rather
than CT, is employed in the mathematics education
literature in various programs related to critical
mathematics education. In these programs, the
adjective “critical” is used to modify “mathematics
(education)” rather than “thinking.”

Critical Thinking and Mathematical Reasoning
Mathematical argumentation features prominently
as an example of disciplined reasoning based on
clear and concise language, questioning of assump-
tions, and appreciation of logical inference for
deriving conclusions. These features of mathemat-
ical reasoning have been contrasted with intuition,
associative reasoning, justification by example, or
induction from observation. While the latter are
also important aspects of mathematical inquiry, a
focus on logic is directed toward extinguishing
subjective elements from judgments, and it is the
essence of deductive reasoning. Underpinned by
the values of rationalism and objectivity, reasoning
with an emphasis on logical inference is opposed to
intuition and epiphany as a source of knowledge
and viewed as the counterinsurance against blind
habit, dogmatism, and opportunism.

The enhancement of students’ general reason-
ing capacity has for quite some time been seen as a
by-product of engagement with mathematics.
Francis Bacon (1605), for example, wrote that it
would “remedy and cure many defects in the wit
and faculties intellectual. For if the wit be too dull,
they [the mathematics] sharpen it; if too wander-
ing, they fix it; if too inherent in the sense, they
abstract it” (VIII (2)). Even though this promotion
of mathematics education is based on its alleged
value for developing generic thinking or reason-
ing skills, these skills are in fact not called “critical
thinking.” Historically, the notion of critique was
tied to the tradition of historic, esthetic, and rhe-
toric interpretation and evaluation of texts. Only
through the expansion of the function of critique
toward general enlightenment, critique became a
generic figure of thinking, arguing, and reasoning.
This more general notion, however, transcends
what is usually associated with accuracy and
rigor in mathematical reasoning. Accordingly,
CT in mathematics education not only is concep-
tualized as evaluating rigor in definitions and log-
ical consistency of arguments but also includes
attention to informal logic and heuristics, to the
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point of identifying problem-solving skills with
CT (e.g., O’Daffer and Thomquist 1993).
Applebaum and Leikin (2007), for example, see
the faculty of recognizing contradictory informa-
tion and inconsistent data in mathematics tasks as a
demonstration of CT. However, as most notions of
CT include an awareness of the subject doing it,
neither a mere application of logical inference nor
successful application of mathematical problem-
solving skills would reasonably be labeled as
CT. But as a consequence of often identifying CT
with general mathematical reasoning processes
embedded in mathematical problem solving, there
is a large overlap of literature on mathematical
reasoning, problem solving, and CT.

There is agreement that CT does not automati-
cally emerge as a by-product of any mathematics
curriculum but only with a pedagogy that draws on
students’ contributions and affords processes of
reasoning and questioning when students collec-
tively engage in intellectually challenging tasks.
Fawcett (1938), for example, suggested that
teachers (in geometry instruction) should make
use of students’ disposition for critical thinking
and that this capacity can be harnessed and culti-
vated by an appropriate choice of pedagogy. Reflec-
tive thinking practices could be enacted when
drawing the students’ attention to the need for
clear definition of key terms in statements, for
examination of alleged evidence, for exposition of
assumptions behind their beliefs, and for evaluation
of arguments and conclusions. Fawcett’s teaching
experiments included the critical examination of
everyday notions. A more recent example of a
pedagogical approach with a focus on argumenta-
tion is the organization of a “scientific debate” in the
mathematics classroom (Legrand 2001), where stu-
dents in an open discussion defend their own ideas
about a conjecture, which may be prepared by the
teacher or emerge spontaneously during class work.
Notably, in these examples CT in mathematics edu-
cation is developed as a social activity.

While cultivating some form of discipline-
transcending CT has long been promoted by
mathematics educators, explicit reference to CT
is not very common in official mathematics
curriculum documents internationally. For exam-
ple, “critical thinking” is not mentioned in the US
Common Core Standards for Mathematics
(Common Core State Standards Initiative 2010).
However, in older recommendations from the US
National Council of Teachers of Mathematics,
mention of “critical thinking” is made in relation
to creating a classroom atmosphere that fosters it
(NCTM 1989). A comparative analysis of associ-
ations made between mathematics education and
CT in international curriculum documents
remains a research desideratum.

Notions of CT in mathematics education with a
focus on argumentation and reasoning skills have
in common that the critical competence they pro-
mote is directed toward claims, statements,
hypotheses, or theories (“texts”) but do include
neither a critique of the social realities, in which
these texts are produced, nor a critique of the
categories, in which these texts describe realities.
As it is about learning how to think, but not what
to think about, this notion of CT can be taken to
implicate a form of thinking without emotional or
moral commitment. However, the perspective
includes the idea that the same principles that
guide critical scientific inquiry could also guide
successful problem solving in social and moral
matters and this would lead to improvement of
society, an idea that was, for example, shared by
Dewey (Stallman 2003). Education for CT is then
by its nature emancipatory.

Critical Thinking and Applications of
Mathematics
For those who see dogmatic adherence to the
standards of hypothetical-deductive reasoning as
limiting, the enculturation of students into a form
of CT derived from these standards alone cannot
be emancipatory. Such a view is based on a cri-
tique of Enlightenment’s scientific image of the
world. The critique provided by the philosophers
of the Frankfurt School is taken up in various
projects of critical mathematics education and
critical mathematical literacy. This critique is
based on the argument that useful things are con-
flated with calculable things and thus formal
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reasoning based on quantification, which is made
possible through the use of mathematics, is purely
instrumental reasoning. Mathematics educators
have pointed out that reliance on mathematical
models implicates a particular worldview and
mathematics education should widen its perspec-
tive and take critically into account ethical and
social dimensions (e.g., Steiner 1988). In order to
cultivate CT in the mathematics classroom, reflec-
tion not only of methodological standards of
mathematical models but also of the nature of
these standards themselves, as well as of the larger
social contexts within which mathematical
models are used, has been suggested (e.g.,
Skovsmose 1989; Keitel et al. 1993; Jablonka
1997; Appelbaum and Davila 2009; Fish and
Persaud 2012). Such a view is based on acknowl-
edging the interested nature of any application of
mathematics. This is not to dismiss rational
inquiry; it rather aims at expanding rationality
beyond instrumentality through inclusion of
moral and political thought. Such an expansion
is seen as necessary by those who see purely
formally defined CT as ultimately self-destructive
and hence not emancipatory.

Limitations of Developing CT Through
Mathematics Education
The take-up of poststructuralist and psychoana-
lytic theories by mathematics educators has
afforded contributions that hold CT up for scru-
tiny. Based on the postmodern acknowledgment
that all forms of reasoning are only legitimized
through the power of some groups in society and
in line with critics who see applied mathematics as
the essence of instrumental reason, an encultura-
tion of students into a form of CT embedded in
mathematical reasoning must be seen as
disempowering. As it excludes imagination, fan-
tasy, emotion, and the particular and metaphoric
content of problems, this form of CT is seen as
antithetical to political thinking or social commit-
ment (Walkerdine 1988; Pimm 1990; Walshaw
2003; Ernest 2010; see also Straehler-Pohl et al.
2017). Hence, the point has been made that math-
ematics education, if conceptualized as encultur-
ation into dispassionate reason and analysis, limits
critique rather than affording it and might lead to
political apathy.

Further Unresolved Issues
Engaging students in collaborative CT and rea-
soning in mathematics classrooms assumes some
kind of an ideal democratic classroom environ-
ment, in which students are communicating
freely. However, classrooms can hardly be seen
as ideal speech communities. Depending on their
backgrounds and educational biographies, stu-
dents will not be equally able to express their
thoughts and not all will be guaranteed an audi-
ence. Further, the teacher usually has the authority
to phrase the questions for discussion and, as a
representative of the institution, has the obligation
to assess students’ contributions. Thus, even if a
will to cultivate some form of critical reasoning in
the mathematics classroom might be shared
among mathematics educators, more attention to
the social, cultural, and institutional conditions
under which this is supposed to take place needs
to be provided by those who frame CT as an
offshoot of mathematical reasoning. Further, tax-
onomies of CT skills, phrased as metacognitive
activities, run the risk of suggesting to treat these
explicitly as learning objectives, including the
assessment of the extent to which individual stu-
dents use them. Such a didactical reification of CT
into measurable learning outcomes implicates a
form of dogmatism and contradicts the very
notion of CT.

The antithetical character of the views of what
it means to be critical held by those who see CTas
a mere habit of thought that can be cultivated
through mathematical problem solving, on the
one hand, and mathematics educators inspired by
critical theory and critical pedagogy, on the other
hand, needs further exploration.

Attempts to describe universal elements of
critical reasoning, which are neither domain nor
context specific, reflect the idea of rationality
itself, the standards of which are viewed by
many as best modeled by mathematical and sci-
entific inquiry. The extent to which this concep-
tion of rationality is culturally biased and
implicitly devalues other “rationalities” has been
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discussed by mathematics educators, but the
implications for mathematics education remain
under-theorized.
C
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Introduction

Cultural diversity in mathematics education is a
widely used expression to discuss questions
around why students from different cultural, eth-
nic, social, economic, and linguistic groups per-
form differently in their school mathematics.
These questions are not new in cultural perspec-
tives to mathematics education developed since
the late 1980s (Bishop 1988) and in cultural
approaches to mathematical cognition (Cole
1996). However, until recently issues of cultural
diversity were considered to be out there in other
non-Western cultures or to be issues of marginal-
ized and poor groups in society. Globalization
changed this perspective. With changes in com-
munication, technologies, and unprecedented
levels of migration, cultures have become increas-
ingly complex, connected, and heterogeneous.
One of the major impacts on education has been
a substantial change in the cultural and ethnic
composition of the school population.

Schools and classrooms become places where
teachers, students, and parents are exposed to and
have to respond to many types of cultural differ-
ences. For many these differences are resources
enriching the learning opportunities and environ-
ments. For many others, diversity is experienced
as a problem, which is reflected in school achieve-
ment (Secada 1995). The issues cultural diversity
poses to education have many facets and have
been approached from different perspectives in
social sciences (De Haan and Elbers 2008). Con-
ceptions of culture and the role of culture in
psychological development inform these perspec-
tives. Examining culture as a way of life of spe-
cific cultural groups has contributed to the
understanding of cultural discontinuities between
schools and the home background of the students.
In this perspective, the emphasis has been on the
shared cultural practices of the group. A more
recent perspective focuses on more dynamic
aspects of culture, i.e., on the way a person expe-
riences participation in multiple practices, and the
production of new cultural knowledge, meaning,
and identities. Mathematics education research
draws on these perspectives but also considers
issues that are specific to mathematics learning
(Cobb and Hodge 2002; Nasir and Cobb 2007;
de Abreu 2008; Gorgorió and de Abreu 2009).

Here the focus is on the development of ideas
that examine mathematics as a form of cultural
knowledge (Bishop 1988; Asher 2008) and learn-
ing as a socioculturally mediated process
(Vygotsky 1978). These ideas offer a critique to
approaches that locate the sources of diversity in
the autonomous individual mind. More impor-
tantly, sociocultural approaches have contributed
to rethinking cultural diversity as “relational” and
“multilayered” phenomena, which can be studied
from different angles (Cobb and Hodge 2002; De
Haan and Elbers 2008). Empirical research fol-
lowing these approaches has evolved from an
examination of diversity between cultural groups,
i.e., the nature of mathematical knowledge spe-
cific to cultural practices, to an examination of the
person as a participant in specific sociocultural
practices.
Diversity and Uses of Cultural
Mathematical Tools

A driving force for researching the impact of cul-
tural diversity in mathematics education has been to
understand why certain cultural groups experience
difficulties in school mathematics. In the culture-
free view of mathematics, poor performance in
school mathematics was explained in terms of def-
icits, namely, cognitive deficits that could be the



Cultural Diversity in Mathematics Education 165

C

result of cultural deficits. However, since the 1980s,
this view has become untenable. Researchers
exploring the difficulties non-Western children,
such as the Kpelle children in Liberia, experienced
with Western-like mathematics introduced with
schooling (Cole 1996) realized that their difficulties
could not be explained by cognitive deficits or cul-
tural deficits. They discovered that differences in
mathematical thinking could be linked to the tools
used as mediators. Thus, for instance, the perfor-
mance in a mathematical task, such as estimating
length, was linked to the use of a specific cultural
measuring system. With the advance of cultural
research and the view of mathematics and cognition
as cultural phenomena, alternative explanations of
poor performance in school mathematics have been
put forward in terms of cultural differences.

Drawing on the insights from examining the
mathematics of particular cultural groups research
moved to explore cultural differences within soci-
eties, which is still the major focus of current
research on cultural diversity in mathematics edu-
cation. A classic example of this research is the
“street mathematics” investigations in Brazil by
Nunes et al. (1993). In a series of studies that
started with street children, Nunes and her col-
leagues examined differences between school
mathematics and out-of-school mathematics.
Their findings added support to the notion that
mathematical thinking was mediated by cultural
tools, such as oral and written arithmetic. The
within society studies also highlighted the situated
nature of mathematical cognition. Depending on
the context of the practice, the same person may
draw on different cultural tools; they can call on
an oral method to solve a shopping problem and a
written method to solve a school problem.

How cultural tools mediate mathematical
thinking and learning continues to be a key aspect
in investigations in culturally diverse classrooms.
Research with minority and immigrant students in
different countries shows that the students learned
often to use different forms of mathematics at
home and at school (Bishop 2002; Gorgorió
et al. 2002; de Abreu 2008). Similarly, research
with parents shows that they refer often to differ-
ences in their methods and the ones their children
are being taught in school. To sum up, research
shows that students from culturally diverse back-
grounds are exposed often to different cultural
tools in different contexts of mathematical prac-
tices. It also suggests that many students experi-
ence cultural discontinuities in their transitions
between contexts of mathematical practices.
A cultural discontinuity perspective offers only a
partial account of the impact of diversity, how-
ever. The fact that students from similar home
cultural groups perform differently at school
requires research to consider other aspects of
diversity. A fruitful way of continuing to explore
the different impacts of diversity in school math-
ematical learning focuses on how the person as a
participant in mathematical practices makes sense
of their experiences. The person here can be, for
example, an immigrant student in a mathematics
classroom, a parent that supports their children
with their school homework, and a teacher that is
confronted with students from cultural back-
grounds they are not familiar with. Here the
focus turns to culture as being reconstructed in
contexts of practices, and issues of identity and
social representations are foregrounded.
Diversity and Cultural and Mathematical
Identities

Many studies with immigrant and minority stu-
dents have now illustrated that they become aware
of the differences between their home culture and
their school practices (Bishop 2002; see also
▶ “Immigrant Students in Mathematics Educa-
tion”). Accounts from parents of their experiences
of supporting their children’s school mathematics
at home (e.g., homework) also illustrate the
salience of differences between home and school
mathematics. These could be experienced in terms
of (a) the content of school mathematics and in the
strategies used for calculations, (b) the methods of
teaching and the tools used in teaching (e.g.,
methods for learning times tables, use of calcula-
tors), (c) the language in which they learned and
felt confident doing mathematics, and (d) the par-
ents’ and the children’s school mathematical iden-
tities. Though all the dimensions are important,
this research shows that identities take a priority in

https://doi.org/10.1007/978-3-030-15789-0_73
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the way the parents organize their practices to
support their children. The societal and institu-
tional valorization of mathematical practices
plays a role on this process (de Abreu 2008).

Recent studies also show that students talk
about differences in relation to how they perceive
their home cultural identities as intersecting with
their school mathematical learning. Studies with
students from minority ethnic backgrounds in
England whose parents had been schooled in
other countries show that differences between
school mathematical practices at home and at
school have implications on their mathematical
identities. For example, some students report try-
ing to separate home and school, i.e., to use the
“home way” at home and the “school way” at
school. The reason provided for the separation is
that they do not feel that the home ways are valued
at school. Other students simply claim that their
parents do not know or that their knowledge is old
fashioned. In both cases, the construction of a
positive school mathematical identity involves
suppressing the home mathematical identity
(Crafter and de Abreu 2010). Identities, as
socially constructed, can then be conceptualized
as powerful mediators in the way diversities are
being constructed in the context of school prac-
tices. Indeed, studies examining other types of
diversity, such as gender, have also implied simi-
lar processes (Boaler 2007).

Studies with immigrant students with a history
of success in their school mathematical learning in
their home country are also particularly interesting
to illustrate the intersection of identities. Firstly, the
difficulties of these students cannot be easily attrib-
uted to the individual mathematical ability as they
have a personal history of being “good mathemat-
ics students.” Secondly, in this case the cultural
diversity is already internalized as part of the stu-
dent’s previous schooling. These students’ positive
school mathematical identities get disrupted when
they receive low grades in the host country school
mathematics. Suddenly, the students’ common rep-
resentation that mathematics is just about numbers
and formulae and that these are the same every-
where is challenged. It is revealing that young
people from different immigrant backgrounds and
going to school in different countries report similar
experiences (e.g., Portuguese students in England;
Ecuadorian students in Catalonia, Spain). This can
be interpreted as evidence that when a student joins
a mathematical classroom in a new cultural con-
text, their participation is mediated by representa-
tions of what counts as mathematical knowledge.
These examples illustrate a culture-free view of
mathematics that is still predominant in many edu-
cational systems but that could be detrimental to
immigrant students’ academic mathematical
careers. Having shown that issues of diversity are
very salient in the experiences of students and their
parents, the next section briefly examines teachers’
representations.
Diversity and Teachers’ Social
Representations of Cultural Differences

Inmany schools, teachers, who have trained to teach
monolingual and monocultural students from their
own culture, teach students who may speak a differ-
ent language and come from cultures they are not
familiar with. However, in communities with a
stronger tradition of receiving immigrants, some
teachers themselves have already had to negotiate
the practices of the home and school culture. This
complex situationmay add insight into theways that
cultural differences and identities come to be
constructed as significant for the school mathemat-
ical learning. An examination of studies carried out
in culturally diverse schools in Europe reveals two
views in the way teachers make sense of the cultural
and ethnic background on their students’mathemat-
ical learning (de Abreu and Cline 2007; Gorgorió
and de Abreu 2009). One view stresses “playing
down differences” and the other “accepting differ-
ences.” The view of playing down cultural differ-
ences draws upon representations of mathematics as
a culture-free subject (that it is the same around the
world). This view can also draw on a representation
of the child’s ability as the key determinant factor in
their mathematical learning. The universal construc-
tion of children takes priority over their ethnic and
cultural backgrounds. Treating everyone as equal
based on their merits is also used as a justification
for not taking into account cultural differences. The
lack of recognition of the cultural nature of



Cultural Diversity in Mathematics Education 167

C

mathematical practices may restrict opportunities
for students to openly negotiate the differences at
school. This way, diversity may become a problem
instead of a resource. The alternative positioning of
accepting cultural differences represents a minority
voice outside the consensus that mathematics is a
culture-free subject and that ability is themain factor
in the mathematical learning.
Conclusion

Diversity in mathematics education includes com-
plex and multilayered phenomena that can be
explored from different perspectives. Drawing on
sociocultural psychology, empirical research on
uses and learning of mathematics in different
cultural practices offered key insights on un-
derstandings of cultural diversity considering
(i) mathematical tools (the specific forms of mathe-
matical knowledge associated with cultural groups
and sociocultural practices), (ii) identities (the ways
differences are experienced by the students and the
impact on how they construct themselves as partic-
ipants in these practices), and (iii) social representa-
tions (the images and understandings that enable
people to make sense of mathematical practices,
such as images of learners and the learning process
and views of mathematical knowledge). These
understandings emerged from looking at diversity
from complementary perspectives. One perspective
focuses on the discontinuities between the cultural
practices, and the other on how discontinuity is
experienced by the person as a participant in school
mathematical practices. This second perspective is
more recent and is key for the development of
approaches where diversity becomes a resource.
The extent to which approaches that stress the
importance of cultural identities can be used as
resources for change from culture-free to culturally
sensitive practices in mathematics education is a
question for further research. The fact that the
views of cultural identities as mediators of school
mathematical learning are still marginalized can be
seen as a consequence of the dominant cultural
practices and representations. For example, this
can include practices in teacher training, where little
attention is given to preparing teachers to
understand the cultural nature of (mathematical)
learning and human development (see also,
▶ “Immigrant Students in Mathematics Educa-
tion”). Secondly, implicit conceptions of the social
and emotional development of the child at school
draw on representations of childhood which often
do not take into account the cultural diversity of
current societies.
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Definition

Extensive educational scholarship investigates
why different demographic groups of students
are less successful than others; much of that schol-
arship has focused on characteristics of the stu-
dents themselves, for example, their motivation,
affect, attitudes, preparation, and ability. In this
chapter, we turn from characteristics of students to
identify some ways that cultural and societal con-
texts surrounding schooling and mathematics
affect opportunities and performance for groups
of people who have traditionally been underrep-
resented in mathematics. Understanding these
contexts and the constraints they impose on
some students is crucial for the development of
strategies to create more accessible and equitable
learning environments.

Miners used to take a canary into the mines to
signal whether or not the air was safe to breath. If
the canary thrived, the atmosphere was safe. If the
canary became sick or died, the atmosphere was
toxic. Members of oppressed groups – people of
color, poor and working classes, women, gays,
bisexuals, and lesbians – are like the canary:
They signal when the atmosphere is not
healthy. . .. Trying to “fix” the canary or blaming
the toxic atmosphere on the canary makes the
atmosphere no less toxic to everyone in it. (Weber
2001, p. 22)
Introduction

School mathematics can serve as a barrier or a
catalyst for further educational and career oppor-
tunities. A substantial body of research has
explored the reasons for the differences in the
achievement, attitudes, learning styles, strategy
use, and persistence between girls and boys and
among students of different races, ethnicities,
social classes, and language proficiencies (e.g.,
Leder 1992; OECD 2015; Tate 1997). Although
gaps have gotten narrower, differences among
groups remain, as do important differences
among countries (Else-Quest et al. 2010;
Lubienski and Ganley 2017). Ironically, the
work of many researchers has had the paradoxical
effect of creating a discourse that females and
students of color cannot do math (Boaler and
Sengupta-Irving 2006; Fennema 2000; O’Connor
and Joffe 2014). This deficit model stereotypes
some groups of students as defective and in need
of repair, and the goal becomes developing inter-
ventions to fix the students who are less success-
ful. As a result, when students do not succeed or
persist in mathematics, the reason is framed as a
problem with the students themselves, rather than



Cultural Influences in Mathematics Education 169

C

as the result of broader social or cultural issues
(e.g., Sheldon et al. 2016).

While research in mathematics education iden-
tifies some features and behaviors of students – for
example, ability, persistence, and affect – that can
affect success, it has also become clear that suc-
cess in school mathematics is influenced by far
more than characteristics of the students them-
selves (Herzig 2004a, b; Lubienski and Ganley
2017). Some scholars have looked beyond char-
acteristics of students to describe political, eco-
nomic, social, and cultural contexts in which
education is situated and how those contexts
affect who succeeds (Apple 1992; Else-Quest
et al. 2010; Gutiérrez 2013; Martin et al. 2017;
Tate 1997).

In this essay, we examine social and cultural
barriers, both within and surrounding mathemat-
ics, that affect who succeeds in mathematics,
including (1) features of mathematics as it is
represented in classrooms and (2) the way the
broader society perceives mathematics, mathe-
matical ability, and the students who succeed
in math.
Features of Mathematics

Mathematics is often perceived, by both teachers
and students, as a set of manipulations that lead to
predetermined results or, at a more advanced
level, as sequence of deductive proofs of clearly
stated theorems. This abstraction of mathematics
has little or no explicit connection to other math-
ematical ideas, ideas outside of mathematics, or
the mathematical “big picture” (Herzig 2002,
2004b; Stage and Maple 1996). Some feminist
scholars have challenged the predominance of
abstraction in mathematics, arguing that abstrac-
tion in mathematics is a consequence of modern
industrial society, which is based on the idea
of separating things into manageable pieces, dis-
tinct from their context (Johnston 1995).
This abstraction of mathematics denies the social
nature of mathematics. In an abstract context like
the one that is common in Western school mathe-
matics, a quest for certain types of understanding
can actually interfere with success, as when
students look to understand, for example, What
does this have to do with the world? With my
world? With my life? (Johnston 1995). Of course,
intuition, creativity, insight, and even trial-and-
error give rise to important mathematics as well,
and give meaning to the results (Burton 1999;
Herzig 2002). Applications of mathematics are
often included merely as demonstrations rather
than as the meaning of mathematics itself. Also
omitted are the political, economic, social, and
personal contexts and applications, and the
esthetics of mathematics that have inspired math-
ematicians, musicians, and visual artists
(Montano 2014).
Perceptions of Mathematical Success

Building students’ sense of belongingness and
engagement with mathematics has been proposed
as a critical feature of an equitable education
(Allexsaht-Snider and Hart 2001; Darragh 2013;
Herzig 2002; Ladson-Billings 1997; Tate 1995).
Allexsaht-Snider and Hart (2001) define belong-
ing as “the extent to which each student senses
that she or he belongs as an important and active
participant” in mathematics (p. 97). A similar con-
struct has been proposed at the post-secondary
level, with several authors arguing belonging in
the communities of practice of mathematics is
important for student success and persistence
(Herzig 2002, 2004a; Solomon 2007).

The way that mathematics students are per-
ceived outside the classroom also affects students’
involvement and sense of belonging in mathemat-
ics (Campbell 1995; Damarin 2000). Noddings
(1996) argued that

There seems to be something about [mathematics]
or the way it is taught that attracts a significant
number of young people with underdeveloped
social skills. . .. If this impression of students who
excel at math is inaccurate, researchers ought to
produce evidence to dispel the notion, and teachers
should help students to reject it. If it is true, math
researchers and teachers should work even harder to
make the “math crowd” more socially adept.
Because that group so often tends to be exclusive,
girls and minority youngsters may wonder whether
they could ever be a part of it. But when the group is
examined from a social perspective, many talented
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young people may question whether theywant to be
a part of it. (p. 611; italics in original)

As Noddings (1996) argued, mathematics educa-
tors need to find ways to make the social world of
mathematics – its culture – more accessible to a
broader range of people, and the world outside of
mathematics needs to change its perception of
those who succeed within it. Only then can more
students, including females and people of color,
find a way come to feel that they truly belong in
some part of the mathematics world.

Damarin (2000) compared people with mathe-
matical ability to “marked categories” such as
women, people of color, criminals, people of dis-
ability, and people who identify as LGBTQ, and
identified these characteristics:

1. Members of marked categories are ridiculed
and maligned, and descriptions of marked cat-
egories are used to harass, tease, and discipline
members of the larger society.

2. Members of marked categories are portrayed
as incompetent in dealing with daily life.

3. In institutions designed to meet the needs of
all, the needs of members of marked categories
are deferred to the needs of the members of
unmarked categories.

4. Members of marked categories are feared as
powerful even as they are marked as powerless.

5. Explicit or social marking serves to define
communities of the marked.

6. Membership in multiple marked categories
places individuals in the margins of each
marked community.

7. The study of a marked category leads to the
construction and study of the complementary
class of people.

8. The unmarked category is generally larger than
the marked category; even when this is not the
case, the marked category is not recognized as
the majority (Damarin 2000, pp. 72–74).

Damarin then presents an analysis of dis-
courses surrounding mathematical ability and
concludes:

From leading journals of pubic intellectual discus-
sion, from the analyses of sociologists of science,
from the work of (genetic) scientists themselves,
from the pages of daily papers, and from practices
of students and adults within the wall[s] of our
schools, there emerges and coalesces a discourse
of mathematics ability as marking a form of devi-
ance and the mathematically able as a category
marked by the signs of this deviance. (p. 78)

Given the common perceptions of mathematics
students as being white, male, childless, and
socially inept, having few interests outside of
mathematics, students who explicitly do not fit
this description might conclude that they do not
wish to fit in. Thus belonging in mathematics
might not be an entirely good thing, as it
“marks” a student as deviant and as socially
inept. Herzig (2004b) found that some female
graduate students described ways that they
worked to distance themselves from some of
these common constructions of ineptness and
social deviance, which, paradoxically, led them
to resist belonging in mathematics.

Damarin (2000) argued that membership in the
deviant category provides the “deviant” with a
community with which to affiliate: Being identi-
fied and marked as mathematically able encour-
ages mathematics students to form a community
among themselves – if there are enough of
them and if they have the social facility needed.
Unfortunately, females are members of (at least)
two marked categories, and the double marking
is not merely additive: That is, females are
constructed as deviant as females separately
within each marked category in which they are
placed. Within mathematics, they are marked as
females, but among females, their mathematical
ability defines them as deviant. In particular, given
common stereotypes of mathematics as a male
domain, mathematical women are marked
among mathematicians as not actually being
mathematicians. For women of color, the marking
is three-fold and even more complex, making
women of color “deviant” within each of the
communities to which they belong.

Researchers have described the phenomenon
of stereotype threat (Steele and Aronson 1995), in
which student achievement tends to mimic stereo-
types (Hill et al. 2010; Nguyen and Ryan 2008).
For example, female students who are reminded
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before a test of the stereotype that females perform
more poorly than males, perform worse than those
who did not receive a reminder (Spencer et al.
1999). In their review of research on gender in
mathematics, Lubienski and Ganley (2017) cite
conflicting evidence of the effect of stereotype
threat on gender differences in mathematics, but
theorize that more nuanced research may reveal
ways in which stereotype threat affect specific
populations or in specific contexts.
Summary

Educational scholarship has made great strides in
understanding why mathematics has generally
attracted certain types of students. Rather than
studying what is different about women and
minorities – groups that have typically been
viewed as unsuccessful in mathematics – some
scholarship now acknowledges and investigates
cultural and societal contexts affecting the oppor-
tunities and performance for groups of people
who have traditionally been underrepresented in
mathematics. In addition, the literature has shown
that students are most engaged in an educational
environment that fosters belonging, which can be
difficult for some students. The stereotypical
views of mathematics students can make it partic-
ularly challenging for women and minorities to
succeed. The mathematically capable may not
wish to be socially or culturally marked as such
due to common preconceived notions of mathe-
matics students. However, by understanding the
cultural and societal issues in mathematics learn-
ing, researchers and educators can begin to imple-
ment policies and strategies to create more
accessible and equitable learning environments
and atmospheres.
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Typically, curriculum resources including text-
books are seen to reside at the interface between
policy and practice (e.g., Valverde et al. 2002), as
they translate policy (the intended curriculum)
into practice (the enacted curriculum). More
recently mathematics teachers increasingly rely
on digital resources to prepare their lessons and
to design their mathematics curriculum, and stu-
dents use such resources in class and to comple-
ment their courses. These materials are said to
become key tools for teachers; as in many coun-
tries (e.g., France, the Netherlands, the United
Kingdom, the United States), teachers are increas-
ingly encouraged to (re) design the curriculum in
planning their instruction.

In the next section we define curriculum
resources; in particular we distinguish digital cur-
riculum resources from educational technology.
In the subsequent section, we discuss the design
and “use” of mathematics curriculum resources by
teachers (and students). In the last section, we
develop further perspectives.
Definition of Curriculum Resources

We define mathematics curriculum resources as
all the material resources that are developed and
used by teachers and students in their interaction

https://doi.org/10.1371/journal.pone.0110830
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with mathematics in/for teaching and learning,
inside and outside the classroom. Hence, curricu-
lum resources would include the following:

Text resources (e.g., textbooks, teacher curricular
guidelines, websites, worksheets, syllabi, tests)

Other material resources (e.g., manipulatives,
calculators)

Digital-/ICT-based curriculum resources (e.g.,
interactive e-textbooks)

Leaning on work by Pepin et al. (2017a), we
distinguish digital curriculum resources including
e-textbooks, from instructional technology (e.g.,
digital geometry software), in the sense that:

It is the attention to sequencing—of grade-, or age-
level learning topics, or of content associated with a
particular course of study (e.g., algebra)—so as to
cover (all or part of) a curriculum specification,
which differentiates Digital Curriculum Resources
from other types of digital instructional tools or
educational software programmes. . . . Of course,
Digital Curriculum Resources make use of these
other types of tool and software: indeed, what dif-
ferentiates them from pre-digital curriculum pro-
grammes is that they are made accessible on
electronic devices and that they often incorporate
the dynamic features of digital technologies.
(p. 647)

Seen this way, it makes the study of curriculum
resources, whether digital or non-digital, and stu-
dent and teacher interaction with such resources, a
crucial ingredient of teacher education and pro-
fessional development.

There are other “nonmaterial” resources used
by teachers to design their curriculum, for example,
social resources (e.g., direct and/or web-based con-
versations with colleagues) and cognitive
resources (e.g., conceptual frames that are used,
for example, in professional development sessions
to develop particular competencies). These two
further categories are not addressed in this text.
Design and “Use” of Mathematics
Curriculum Resources

In this section we provide a condensed overview
of the relevant issues and literature organized
under two headings: (1) research about the design
and the quality of curriculum resources and
(2) research about the use of and interaction with
resources, including their adaptation and transfor-
mation by users, in particular teachers.

Design and Quality of Curriculum Resources
In terms of “text/paper” curriculum resources and
textbooks, Fan et al. (2013) have developed a
framework for classifying the literature in text-
book research. They identified four categories,
among them “textbook analysis and comparison”
(p. 635). This category makes up 34% of empiri-
cal studies on mathematics textbooks in their sur-
vey (n= 100). According to this survey, textbook
analyses (and comparisons) can be subdivided
into five categories, i.e., studies focusing on
(1) how different mathematics content or topic
areas have been treated in textbooks; (2) cognition
and pedagogy; (3) gender, equity, and values;
(4) comparison of different textbooks internation-
ally; and (5) methodological matters and frame-
works for textbook analysis.

Leaning on the literature, we can distinguish
three primary frameworks to inform the analysis
of digital curriculum resources. The first is the
Digital Typology created by Choppin et al.
(2014), in which they outlined three categories
for the analyses of digital curriculum resources:
students’ learning experiences, curriculum use
and adaptation, and assessment systems. In the
second framework, Choppin and Borys (2017)
analyze digital curriculum resources in terms of
four perspectives (private sector perspective,
designer perspective, policy perspective, and
user perspective) that inform the design, develop-
ment, and dissemination of curriculum resources.
In the third framework, Pepin et al. (2016) distin-
guish between three types of e-textbooks
(according to their model of development and
their functionality): integrative e-textbook, evolv-
ing or “living” e-textbook, and the interactive
e-textbook.

All these studies, more or less explicitly, raise
the issue of the quality of curriculum resources
and in turn can be reinterpreted as contributions to
quality studies (e.g., Gueudet et al. 2013). The
issue of quality and evaluation is particularly
developed in studies concerning digital resources,
as the profusion of online resources has created a
need for quality criteria. Moreover, it has become
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evident that quality and design issues are interre-
lated. Digital means lead to the development of
new design modes and to new possibilities of
teacher collaborative work around the design of
curriculum resources. Research on curriculum
resources needs to address questions, such as
who are the designers and in which ways does
the designer/group of designers impact on the
quality of resources?

The “Use” of Curriculum Resources
In this section, we address issues related to the
“use” of resources, which include the interactions
of teachers and students with resources.

We consider here the interactions between
teachers or students and resources from the per-
spective of mediated activity. This leads to the
consideration of a two-way process: (1) the
resource’s features influence the subject’s activity
and learning (for teachers, this can lead to policy
choices, drawing on resources as a means for
teacher education); at the same time, (2) the sub-
ject shapes his/her resources, according to his/her
knowledge and beliefs. In short, the “use” of
curriculum resources is recognized as a two-way
interactive process (as acknowledged, e.g., in the
Documentational Approach of Didactics).

Davis and Krajcik (2005) have coined the term
“educational curriculum materials,” emphasizing
the importance of educative curriculum materials
for teacher learning (in their case in science edu-
cation). This is also acknowledged inmathematics
education, although there is scarce research on
this topic (e.g., Pepin 2018).

Considering the shaping of resources by
teachers (or students), the ways teachers
(or students) use, adapt, or transform the resources
depend to a large extent on their knowledge and
beliefs (see, e.g., Gueudet et al. 2012, or Pepin
et al. 2013, or Remillard et al. 2009). The ways
students “use,” for example, a calculator is said to
depend on their knowledge about the calculator
and its affordances but also on their knowledge of
the mathematics. The same holds true for text-
books: in order to find support for solving an
exercise, some students will read the course mate-
rials, whereas others will search for worked
examples. Similarly, two teachers will use the
same textbook differently. A teacher can focus
on the worksheets, or the provision of exercises,
while another will consider the same book as
curriculum guide. The notion of “implementation
fidelity” is often used to denote that teachers align
their lesson design with the textbook. At the same
time, studying how the same teacher enacts the
same (e.g., algebra) content of one textbook in
two same grade classrooms, notable differences
can be found. Thus, it can be said that curriculum
resources offer personal possibilities for adapta-
tions, and teachers have always adapted and trans-
formed resources: selecting, changing, cutting,
and rephrasing.

However, the main difference with digital
resources, such as e-textbooks, is that these adap-
tations are technically anticipated and supported
with specific technical means (Pepin et al. 2016).
Considering teacher interaction with digital cur-
riculum resources, Pepin et al. (2017b) defined
mathematics teacher design capacity as
consisting of three main aspects: (1) a clear goal
orientation of the design (e.g., in terms of aims
and content of learning), (2) a set of design prin-
ciples/heuristics (e.g., a set of robust but flexible
guidelines about how to address the design task),
and (3) reflection-in-action type of understandings
(e.g., the ability to collect information and adapt
the initial design to circumstances during instruc-
tion). They developed this model for mathematics
teacher design capacity when interacting with
digital (and non-digital) curriculum resources.

In terms of interaction with digital curriculum
resources, most teachers have now access to a
profusion of freely available educational
resources. However, teachers often find it difficult
to analyze and choose from the profusion of mate-
rials available to fit their educational goals and
classroom contexts. Pepin et al. (2017a) identify a
number of practices/uses of digital curriculum
resources, both by students and by teachers.
There are at least three features that make it ben-
eficial for teachers to work with digital curriculum
resources: (1) their flexibility in terms of adapta-
tion and redesign, for personal lesson preparation
as well as collective design work with colleagues,
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at a distance or working together in professional
development sessions; (2) the possibilities for
personalization and differentiation, so as to attend
to students’ individual needs, for example, in pro-
viding particular tasks/activities or individual
feedback on tasks; and (3) the many assessment
features that allow “easy” access to different
aspects of student learning.

In terms of student interaction with digital cur-
riculum resources, we note that the interactive
features of digital curriculum resources seem to
be most useful with formative assessment prac-
tices, which help students (as well as teachers) to
“feed forward” that is to drive the next learning
(instructional) steps (e.g., Pepin et al. 2017a). At
the same time, Ruthven (2018) points out that the
general adaptivity of such digital resources is one
of the biggest advantages, in particular with
respect to personalized (diagnostic) assessment.
Indeed, the adaptivity feature appears crucial for
finding new pathways and sequencing of prob-
lems by students and in terms of assessment for
leaving room for misunderstandings and
amendments.
Future Research Perspectives

Viewing curriculum resources as essential tools
for teachers to accomplish their goals has been
accepted for a long time. However, the vision of
the teacher-tool relationship has changed and
needs to be explored in more depth. Moreover,
considering the evolution of resources available
for teachers and students, this opens up new direc-
tions for research. It leads in particular (1) to view
the teacher as a designer of his/her resources.
Based on the interpretation of teaching as design,
and teachers as designers, existing research
emphasizes the vital interaction between the indi-
viduals/teachers and the tools/resources to accom-
plish their goals, an accomplishment inextricably
linked to the use of cultural, social, and physical
tools. This not only questions our conceptualiza-
tion of “curriculum resources,” but it also opens
the door for many new avenues of researching
mathematics curriculum resources and their
interaction with the “learner,” may it be the
teacher or the student.

Linked to this, (2) it questions the nature of
curriculum resources that are to be “teacher-
educative.” What kind(s) of curriculum resources
does a group of teachers need for learning to take
place? What is their nature, what are the criteria
for educative curriculum resources? National pol-
icies for the design and use of curriculum
resources are starting to take these evolutions
into account, in particular by collecting users’
comments on websites (e.g., dedicated websites
for particular textbooks).

Furthermore, analyzing the quality of available
resources, contributing to the design of resources
(to be used by students and teachers), and propos-
ing teacher development programs drawing on
collaborative resource design and educative
resources are important issues, which need to be
addressed by research in mathematics education.
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