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Abstract We consider a piecewise linear approximation of the diffusive Morris-
Lecar model of neuronal activity, the Tonnelier-Gerstner model. Exact analytical
solutions for one-dimensional excitation waves are derived. The dynamics of
traveling waves is related to two basic regimes of wave propagation: excitable and
oscillatory cases. In the first case we describe mathematically the structure of a
solitary pulse and in the second case—the form of a periodic sequence of pulses (a
periodic wave train).
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waves

PACS 82.40.Bj, 05.45.−a, 82.40.Ck, 87.10.Ed

1 Introduction

Mathematical modeling of the neuronal activity is a common problem in the
theoretical biophysics and neuroscience. The neurosystems show the complex
spatiotemporal behavior of extended objects from diverse interacting elements. To
describe such a behavior, the formalism of reaction-diffusion wave processes is
usually applied. The reaction-diffusion wave processes present self-sustaining wave
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processes when there appear excitation traveling waves with constant shape and
speed of propagation in an excitable (active) nonlinear medium.

In the active medium may occur three fundamental types of the reaction-diffusion
wave behavior: bistable, excitable, and oscillatory regimes. The bistable regime
is characterized by the appearance of a switching wave (a front). The excitable
regime exhibits a single pulse wave. In the oscillatory regime there exists a periodic
pulse sequence (a wave train). All these types of nonlinear traveling waves (fronts,
pulses, and wave trains) have been intensely studied. Such nonlinear waves arise,
propagate, and interact each other and with boundary in active media and are
described mathematically with related nonlinear equations in partial derivatives of
the reaction-diffusion type. Diverse wave patterns may appear due to spontaneous
formation of wave sources as well as dissipative structures under conditions when
traveling waves do not collide but move away from each other. The developing
pattern depends on conditions and may exist in different states characterized by the
presence of one as well as several reaction-diffusion wave processes.

One of the well-known models of the reaction-diffusion systems includes two
equations, with a cubic nonlinearity in the first one and a linear reaction term in
the second one. The equations of this system were proposed by FitzHugh [1] and
Nagumo et al. [2]. This FitzHugh-Nagumo (FHN) model is also referred to as the
Bonhoeffer-van der Pol model. It was originally presented as a simplification of the
Hodgkin-Huxley equations describing the propagation of an action potential along
nerve fibers. The FHN model is described by the reaction-diffusion equations

∂u

∂t
= u(1 − u)(u − a) − v + Du

∂2u

∂x2 , (1)

∂v

∂t
= ε(u − v) + Dv

∂2v

∂x2 . (2)

The positive parameters a and ε are the excitation threshold and the ratio of time
scales. The constants Du,v are diffusion coefficients. The variable u represents
the “activator” or potential variable. It corresponds to the potential across the
membrane of the nerve fiber in the original application to the Hodgkin-Huxley
model. The variable v represents the “inhibitor” or recovery variable. Depending
on the parameter values, all three regimes are realized in such a system.

Rinzel and Keller [3] applied a piecewise linear approximation of the McKean-
type [4] for the nonlinear reaction term in the first equation and deduced an example
of an analytically solvable model qualitatively well reproducing the FitzHugh-
Nagumo dynamics. They wrote

∂u

∂t
= −u − v + H(u − a) + Du

∂2u

∂x2 , (3)

∂v

∂t
= ε(u − v) + Dv

∂2v

∂x2 , (4)
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where H(u − a) is the Heaviside step function. Such approach allows to solve the
equations analytically and obtain the wave solutions for u and v. Tonnelier and
Gerstner [5] considered the piecewise linear version of the FHN model with the
nonlinear inhibitor function of a sigmoidal type as a simplification of the Morris-
Lecar [6] equations related to neuron models and proposed the corresponding
modification of the Rinzel-Keller model with the Heaviside step function in both
equations. This model will be used in the present research. We wish to solve the
reaction-diffusion equations analytically and find the exact solutions in the form of
the traveling pulses and wave trains. To the best of our knowledge, before the present
study, no fully analytical solutions for the traveling pulses and wave trains in the
two-component reaction-diffusion systems with piecewise linear reaction functions
in both equations were available.

The method of the piecewise linear approximation has general applicability and
is often the only way to study a variety of nonlinear problems analytically in an
approximate fashion [7]. Piecewise linear models have been employed to use the
translational invariance of equations as a speed selection mechanism [8, 9], to study
the effect of transport memory [10–13] and the wave propagation in discrete [14–
16] and inhomogeneous [17–19] media and to consider a forcing [20, 21]. Rinzel
and Keller [3] described the pulses and the wave trains, they calculated the wave
speeds and performed the stability analysis in a reaction-diffusion model with
non-diffusing inhibitor. Koga [22] described wave solutions of the bistable double-
diffusive piecewise linear model. He considered only the case where the activator
(the first variable) diffuses faster than the inhibitor (the second variable). The
linear stability analysis was performed both by Rinzel and Keller and by Koga.
Ito and Ohta [23] derived a motionless localized solution and a propagating-
pulse solution. The research was focused on the effect of the inhibitor diffusion.
In most papers related to the piecewise linear reaction-diffusion equations, one-
component [8, 10, 12, 20, 24, 25] and two-component [22, 23, 26–29] systems are
investigated, i.e., such an analytical approach is important despite the existence of
many numerical or seminumerical results.

2 Tonnelier-Gerstner Model

There are three wave phenomena related to traveling waves: wave formation,
propagation, and interaction. Wave formation and propagation are simple processes,
whereas wave interaction shows complex dynamics. In many reaction-diffusion
systems, it leads to wave annihilation or wave reflection [30, 31]. These phenomena
occur usually after a collision of a pair of counter-propagating waves or after a
collision of a wave with no-flux boundaries of the medium. Recently [32] we have
found more complex behavior at such collisions: wave reflection at a growing
distance (remote reflection). The present research continues our preceding work
and extend the investigations of traveling front dynamics [33] to the solitary pulses
and the periodic wave trains. Here we develop the analytical description for the
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Fig. 1 Null-clines of the sigmoidal reaction-diffusion system with piecewise linear functions in
(a) bistable, (b) excitable, and (c) oscillatory regimes. Null-cline related to the activator (the first
variable) reaction function is shown by thin line, whereas to the inhibitor (the second variable)
function by thick line

traveling waves in the piecewise linear reaction-diffusion system, the Tonnelier-
Gerstner [5] model, which is referred also as the sigmoidal model. Wave solutions
in this reaction-diffusion model depend on the intersection of null-clines, i.e.,
the curves plotting the equations of zero-valued reaction functions f (u, v) = 0
and g(u, v) = 0. The first regime (Fig. 1a) is bistable and the corresponding
solution is a front wave (heteroclinic). The second one (Fig. 1b) is excitable and
the corresponding solution is a pulse (homoclinic). In the last case (Fig. 1c), the
system is in oscillatory regime and demonstrates the sequences of pulses or periodic
wave trains.

Reaction-diffusion system considered here incorporates the Tonnelier-Gerstner
kinetics [5] and a spatial coupling via diffusion that allows traveling wave propaga-
tion. The model is described by equations

∂u

∂t
= −u − v + H(u − a) + Du

∂2u

∂x2
, (5)

∂v

∂t
= −εv + αH(u − a) + Dv

∂2v

∂x2 , (6)

where ε, α, a, and Du,v are positive constants.
General traveling wave (ξ = x − ct is the traveling-frame coordinate and c is the

wave speed) solution reads

u(ξ) = A1e
λ1ξ + A2e

λ2ξ + B3

μ3
eλ3ξ + B4

μ4
eλ4ξ + u∗, (7)

v(ξ) = B3e
λ3ξ + B4e

λ4ξ + v∗, (8)
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where

λ1,2 = 1

2Du

(
−c ±

√
c2 + 4Du

)
, (9)

λ3,4 = 1

2Dv

(
−c ±

√
c2 + 4Dvε

)
(10)

are the eigenvalues of the characteristic equation,

μ3,4 = c

(
1 − Du

Dv

)
λ3,4 −

(
1 − ε

Du

Dv

)
(11)

and u∗, v∗ are constants.
We consider here two types of solutions: solitary pulses and sequences of pulses

(periodic wave trains) [34].

2.1 Solitary Pulses

Solitary pulses occur in the excitable regime of the active media. Calculations show
that there are two pulse waves at the fixed parameter values, the fast and slow
waves, as obtained elsewhere [3], where it was found that the fast pulse is a stable
solution, whereas the slow wave is unstable. The case of the pulse with oscillatory
tails reproduces such a situation with non-oscillatory waves.

The pulse solution in this piecewise linear model consists of three segments, first
of which vanishes as ξ → −∞ and the third too as ξ → +∞, i.e., the boundary
conditions for the pulse solutions are as follows:

u1(ξ → −∞) = 0, u3(ξ → +∞) = 0, (12)

v1(ξ → −∞) = 0, v3(ξ → +∞) = 0. (13)

Since Du,v and ε are positive, λ1,3 > 0 and λ2,4 < 0, and the pulse solution has the
form

u(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11e
λ1ξ + B31

μ3
eλ3ξ , ξ ≤ ξ0,

A12e
λ1ξ + A22e

λ2ξ+
B32

μ3
eλ3ξ + B42

μ4
eλ4ξ + 1 − α/ε, ξ0 ≤ ξ ≤ ξ∗

0 ,

A23e
λ2ξ + B43

μ4
eλ4ξ , ξ ≥ ξ∗

0

(14)
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and

v(ξ) =

⎧
⎪⎪⎨
⎪⎪⎩

B31e
λ3ξ , ξ ≤ ξ0,

B32e
λ3ξ + B42e

λ4ξ + α/ε, ξ0 ≤ ξ ≤ ξ∗
0 ,

B43e
λ4ξ , ξ ≥ ξ∗

0 .

(15)

From the continuity of the solutions and its derivative at the matching points ξ0 = 0
and ξ∗

0 we find matching conditions

u1(ξ0) = u2(ξ0), u2(ξ
∗
0 ) = u3(ξ

∗
0 ),

du1(ξ)

dξ

∣∣∣∣
ξ0

= du2(ξ)

dξ

∣∣∣∣
ξ0

,
du2(ξ)

dξ

∣∣∣∣
ξ∗

0

= du3(ξ)

dξ

∣∣∣∣
ξ∗

0

,

v1(ξ0) = v2(ξ0), v2(ξ
∗
0 ) = v3(ξ

∗
0 ),

dv1(ξ)

dξ

∣∣∣∣
ξ0

= dv2(ξ)

dξ

∣∣∣∣
ξ0

,
dv2(ξ)

dξ

∣∣∣∣
ξ∗

0

= dv3(ξ)

dξ

∣∣∣∣
ξ∗

0

,

u1(ξ0) = a, u3(ξ
∗
0 ) = a.

(16)

There are 10 equations for 10 unknowns: 4 constants A, 4 constants B, the
coordinate ξ∗

0 of the second matching point and the speed c; the first matching point
ξ0 may be chosen arbitrarily, usually as zero, due to the translational invariance of
the model equations.

An example of traveling solitary pulses at different values of the excitation
threshold a is shown in Fig. 2. We see that the pulse wave profile consists of two
parts: front and back. The activator u and the inhibitor v waves have different front
and back parts. The front part of activator is always monotonic, whereas the back
part has a well. For the inhibitor, the front and back parts are both monotonic. When
the speed of the pulse wave takes positive value, the pulse propagates from left to
right, when the speed is negative, the wave travels from right to left.

2.2 Periodic Wave Trains

Periodic sequences of pulses can be found in the same active media where the
solitary pulses occur. Contrary to the pulse case, the number of wave trains may
change depending on parameter values. When the period of the wave train is varied,
there appear one or several wave trains with different speeds. The diagrams for the
wave speed vs. period are called dispersion relations. For wave trains with a standard
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Fig. 2 An example of traveling pulses at Du = 0.5,Dv = 0.1, ε = 0.1 and α = 0.1: (a, c)
u = u(ξ) (thick line) and v = v(ξ) (thin line) profiles and (b, d) u − v diagrams. Pulse propagates
with (a, b) positive (c ≈ 0.311 at a = 0.25) and with (c, d) negative (c ≈ −0.201 at a = 0.1)
speeds. The second (intermediate) piece of each wave is marked by gray color

shape, the dispersion relation curves are monotonic, whereas for wave trains with
oscillations in profile the dispersion relations are anomalous.

The periodic wave train is a two-piece solution of the form

u(ξ) =
{

u1(ξ), ξ0
0 ≤ ξ ≤ ξ0,

u2(ξ), ξ0 ≤ ξ ≤ ξ∗
0

(17)

for u variable and

v(ξ) =
{

v1(ξ), ξ0
0 ≤ ξ ≤ ξ0,

v2(ξ), ξ0 ≤ ξ ≤ ξ∗
0

(18)
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for v variable, where

u1(ξ) = A11e
λ1ξ + A21e

λ2ξ + B31

μ3
eλ3ξ + B41

μ4
eλ4ξ , (19)

u2(ξ) = A12e
λ1ξ + A22e

λ2ξ + B32

μ3
eλ3ξ + B42

μ4
eλ4ξ + u∗, (20)

v1(ξ) = B31e
λ3ξ + B41e

λ4ξ , (21)

v2(ξ) = B32e
λ3ξ + B42e

λ4ξ + v∗ (22)

with u∗ = 1 − α/ε and v∗ = α/ε.
The trajectory of the periodic wave train on the u − v plane is a closed curve, so

that there are two matching points. The curve starts from point u = a at ξ = ξ0
0 ,

passes this point at ξ = ξ0, and ends in this point at ξ = ξ∗
0 . At the matching

point we have the conditions of continuity for functions, their derivatives, and an
equation u(ξ0

0 ) = u(ξ0) = u(ξ∗
0 ) = a of the fixed (matching) boundary. The value

L = ξ∗
0 − ξ0

0 corresponds to the period of wave and is the new external parameter
for the solutions. Thus, the matching conditions read

u1(ξ0) = u2(ξ0), u2(ξ
∗
0 ) = u1(ξ

0
0 ),

du1(ξ)

dξ

∣∣∣∣
ξ0

= du2(ξ)

dξ

∣∣∣∣
ξ0

,
du2(ξ)

dξ

∣∣∣∣
ξ∗

0

= du1(ξ)

dξ

∣∣∣∣
ξ0

0

,

v1(ξ0) = v2(ξ0), v2(ξ
∗
0 ) = v1(ξ

0
0 ),

dv1(ξ)

dξ

∣∣∣∣
ξ0

= dv2(ξ)

dξ

∣∣∣∣
ξ0

,
dv2(ξ)

dξ

∣∣∣∣
ξ∗

0

= dv1(ξ)

dξ

∣∣∣∣
ξ0

0

,

u1(ξ0) = a, u1(ξ
0
0 ) = a.

(23)

Here is again 10 matching equations, but there is a new varied parameter: the period
L of wave train.

An example of periodic wave trains at different values of the period is shown in
Fig. 3. We see that the difference between wave trains with positive and negative
speeds reflects in both u and v profiles [Fig. 3a, c]: the wave train is steeper in
the direction of wave propagation. There is no difference between wave trains with
positive and negative speeds in the u − v diagrams [Fig. 3b, d]. The only difference
in the size of the closed trajectory in the u − v diagrams reflects the difference
in the absolute value of the wave speed. The situation with the direction of wave
propagation remains the same as for the solitary pulses: when the speed of the wave
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Fig. 3 An example of periodic wave trains at Du = 1,Dv = 1, a = −0.05, ε = 0.9 and α = 1:
(a, c) u = u(ξ) (thick line) and v = v(ξ) (thin line) profiles and (b, d) u − v diagrams. Wave
train propagates with (a, b) negative (c ≈ −1.41 at L = 10) and with (c, d) positive (c ≈ 2.109 at
L = 15) speeds. The second piece is marked by gray color

train has positive value, the wave train propagates from left to right, when the speed
is negative, the direction of the wave propagation is opposite.

3 Morris-Lecar Model

Most models of excitation wave dynamics in mathematical neuroscience correspond
to the Hodgkin-Huxley mechanism. The FHN model is a two-variable simplification
of the Hodgkin-Huxley system, where the membrane potential and the recovery
variable reflect the dynamics of transmembrane currents. The modification of the
FHN model to more realistic systems with nonlinear inhibitor functions is the
Tonnelier-Gerstner [5] caricature of the Morris-Lecar [6] model. Caricatures of
nonlinear reaction functions by the Heaviside functions have much in their favor.
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The piecewise linear approximation used in this paper provides insights into the
most basic properties of traveling waves and can in many contexts be considered as
an adequate approximation for the more complicated nonlinear reaction functions
in most real models of the neural activity.

The analytical description for traveling waves may be developed for more
general piecewise linear reaction-diffusion models of the activator-inhibitor type
with nonlinear inhibitor [35] or in the piecewise linear approximation for the Morris-
Lecar [6] model. Such a system is constructed from three pieces and is described by
equations

∂u

∂t
= f (u, v) + ∂2u

∂x2
, (24)

∂v

∂t
= εg(u, v) + ∂2v

∂x2 , (25)

where the reaction functions are

f (u, v) =

⎧⎪⎪⎨
⎪⎪⎩

−α1u − v, u ≤ a,

α2u − v − ρ2 a < u < b,

−α3u − v + ρ3, u ≥ b

(26)

and

g(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

β1u − v − σ1, u ≤ a,

β2u − v − σ2 a < u < b,

β3u − v + σ3, u ≥ b.

(27)

The constants are

ρ2 = a(α1 + α2) > 0, (28)

ρ3 = b(α2 + α3) − ρ2 (29)

and

σ1 = 0, (30)

σ2 = a(β2 − β1) > 0 (31)

in the excitable regime,

σ1 > a(α1 + β1), (32)

σ2 = a(β2 − β1) + σ1 (33)
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in the oscillatory regime and

σ1 = 0, (34)

σ2 = b∗(β2 − β1) > 0 (35)

in the bistable regime;

σ3 = b(β2 − β3) − σ2 (36)

is the same in all three cases.
General traveling wave solution reads

u(ξ) =
∑
n

Ane
λnξ + u∗, (37)

v(ξ) =
∑
m

Bmeλmξ + v∗, (38)

where the eigenvalues are

λn = − c

2
±

√√√√c2

4
+ ε + αn

2
±

√
(ε + αn)2

4
− ε(αn + βn). (39)

The specific feature is the case when the eigenvalues are complex, i.e., when

(ε + αn)
2

4
− ε(αn + βn) < 0. (40)

In this case the traveling waves have cosine and sine terms and demonstrate the
oscillations in the wave profile.

The analytical solutions for the specific types of the waves (fronts, pulses, and
wave trains) in the piecewise linear Morris-Lecar model will be presented in detail
elsewhere.

4 Discussion

The analytical approach to the solution of the reaction-diffusion equations that we
consider here is much simpler than the standard solutions of the related nonlinear
systems using numerical simulations. Moreover, such method allows to perform a
linear stability analysis of the traveling waves. Exact results can be derived for the
growth rates of disturbances. The advantage of the presented approach is that it can
also be extended to the reaction-diffusion systems with inclusion of the perturbative
effects. The perturbative factors, such as external fields (described by advection
terms in equations), can produce a formation of the complex spatiotemporal waves
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and patterns in the reaction-diffusion systems. Such perturbations lead to a wave
transition when the traveling wave changes the propagation direction, i.e., wave
propagation can be effectively controlled by application of these external fields.

Another effect that can be treated perturbatively is an external forcing. The
forcing can be prescribed a priori, i.e., as a modulation of excitability. There exist
different types of the forcing: controlling by initial conditions, global feedback,
periodic forcing, and traveling-wave modulation. The last type of forcing presents
a perturbation on excitable medium through a moving mask (external potential) so
that the type of induced pattern or wave depends on the width and velocity of the
mask. The simplest situation occurs when the mask speed is equal to the velocity
of propagating excitation waves. The source of such forcing is connected with the
current position of the waves so that the origin of that modulation of an excitable
medium may be found in that medium inside, i.e., this is a type of “automodulation"
like the autocatalysis in chemical reactions.

The generalization of the problem using the above-described perturbative factors
has not been explored in detail here, but we expect qualitatively similar behavior.

5 Conclusion

At the moment there exist two basic approaches to mathematical modelling of
spatiotemporal phenomena in neuroscience: axiomatic and dynamic. The aim of
the axiomatic approach involved the qualitative characterization of the reaction-
diffusion wave evolution in neuronal systems, such as solitary pulse waves in
nerve tissues. Moreover, the axiomatic approach does not require any additional
information on the kinetics of operating processes, which allows solving a problem
in its general formulation. However, there is an essential disadvantage of this
approach that it is difficult to observe complex phenomena and to attain quantitative
fit to experimental data.

The dynamic approach postulates that an excitable medium may be adequately
described using the evolution equations in partial derivatives, the nonlinear reaction-
diffusion equations. Such nonlinear equations are very complicated for analytical
calculations. At present no exact solutions for traveling waves in general form
have been found. Alternatively, approximate calculation methods are used, such as
a kinematic approach. In the framework of this approach one can mathematically
describe many processes and structures in active media.

In conclusion, we would like to emphasize that our presented results are expected
from corresponding previous works [33, 34], of course. It is appropriate at this point
to recall that a complete analytical derivation of solitary pulses and periodic wave
trains in a two-variable reaction-diffusion system with piecewise linear activator
and inhibitor functions has not been performed before. Another important point is
that we now have the machinery at our disposal to generalize to the case with an
added external field and forcing without the need to enter into the numerical details
immediately.
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