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Abstract Cellular automata and agent-based models have become the cornerstone
of the simulation of many complex biological phenomena. More specifically, they
are making major breakthroughs in the understanding of cancer development.
Besides, these discrete spatio-temporal models can be hybridized with more
traditional models based on differential equations, allowing to faithfully represent
multiscale open systems. These systems typically consist of many entities that
can perform a vast repertoire of actions, which depend on the concentration of
substances diffused in their environments, as well as their mutual interaction through
different coupling mechanisms. In the present chapter, we use a hybrid cellular
automaton model to explore the dynamics of tumor growth in the presence of an
immunological response. A mathematical expression is derived, which describes
the speed at which a tumor is erased by a population of immune cytotoxic cells,
depending on the morphology of the tumors and the intrinsic capacity of the immune
cells to detect and destroy their adversaries. Finally, the coevolution of tumor–
immune aggregates is simulated and the likelihood of a prolonged tumor mass
dormancy mediated by the immune system is discussed.
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1 Introduction

The oversimplification of cancer as the growth of an independent subset of
rebel mutated cells within a tissue presents great difficulties explaining tumor
development [1, 2]. The relative importance of the dynamics at the tissue level
during carcinogenesis, represented by the interactions of the tumor cells with their
environment, compared to the role played by mutations, or in connection with them,
is still a subject of intense debate [3, 4]. Perhaps, in order to unveil the origin
of cancer, a fundamental question that needs to be addressed first is why healthy
somatic cells, as part of a tissue, do not grow unlimitedly. It is hard to believe
that eukaryotic cells have lost their ability to reproduce in the absence of growth
factors, since autopoiesis pervades life at all scales. Assuming this fact, we would
then have to understand how a tissue as a whole self-organizes contributing to
this suppression and control of cell growth. Undoubtedly, chemical and physical
interactions between both similar and different types of cells within the tissue should
play a key role in differentiation and tumorigenesis. The tumor microenvironment
includes stromal cells (e.g., immune cells, fibroblasts, or endothelial cells), the
extracellular matrix, and signalling molecules such as cytokines or growth factors.
The particular cellular and molecular mechanisms, as well as their role in tumor
development, are complex and not sufficiently well understood [5]. Even though all
of them might prove to be important in the fight against cancer, immunotherapy is
lately focusing great attention. Probably, this is because the immune system is better
known and has evolved for centuries to neatly destroy threatening foreign organisms
in our body. As it occurs with any other evolutionary entity, when a tumor forms, it
should develop its own biochemical imprints (antigens), which would allow for its
recognition by the immune system. Therefore, there is evidence and hope that it can
be trained to effectively destroy tumor cells, which originate in the body, as well.

The history of immunotherapy for cancer dates back to the beginning of the
twentieth century, when the physician Paul Ehrlich suggested that the immune
system might protect an organism from the development of cancer [6]. Around
50 years later, this proposition was more formally reintroduced by Macfarlane
Burnet [7, 8] and, later on, by Lewis Thomas [9]. After suffering major setbacks
[10, 11], the immunosurveillance theory gained renewed consistence close to 20
years ago, thanks to several experimental works with genetically altered mice
[12, 13]. Currently, the immunosurveillance of tumors is more properly referred
as cancer immunoediting. Given the genetic heterogeneity of tumors, this control
system coevolves with them and seems to act as a natural selective force, editing its
phenotype by selecting those cells that are unresponsive to immune detection.

Adoptive cell transfer using chimeric antigen receptors [14, 15], the modulation
of CTLA-4 activity by means of monoclonal antibodies [16], or the blocking of the
PD-1 receptor [17] are a few outstanding examples of the increasing importance that
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immunotherapy is gaining. Nevertheless, and despite some dramatic cases of cure,
the advantages of immunotherapy are still modest in general, and only some cancers
(less than 10%) might benefit from immunotherapy nowadays [18]. Therefore, there
is still a long way to go in the investigation of immunotherapy for cancer, as the
many ongoing clinical trials indicate [19]. The progress of tumor immunotherapy
with T lymphocytes mainly relies on our capacity to uncover and understand the
molecular and cellular basis of the T-cell-mediated antitumor response. However,
due to the highly complex regulatory mechanisms that control both cell growth
and the immune system, this task can be hardly achieved without the use of
mathematical models. From a theoretical point of view, these models provide an
analytical framework in which fundamental questions concerning cancer dynamics
can be addressed in a rigorous fashion. The practical reason for their development is
to make quantitative predictions that permit the refinement of the existing therapies
or even the design of new ones.

Because cancer is a biological phenomenon occurring at multiple scales, math-
ematical models of tumor growth are becoming increasingly sophisticated. In
particular, agent-based modelling and cellular automata are the groundbreaking
instruments of contemporary research in the study of cancer dynamics [20–25].
These models allow to accurately represent the cell heterogeneity within a tissue,
and can be hybridized with more traditional models based on differential equations,
which allow to represent the substances that diffuse through the tissue and the
intracellular dynamics as well. More particularly, mathematical models describing
a growing tumor that interacts with the cellular arm of the immune system
have demonstrated their potential to explain different properties of tumor–immune
interactions [26].

In the present work, we adopt the view of enzyme kinetics to describe tumor–
immune interactions at the cellular scale [27, 28]. Enzymatic reactions can be
viewed in an abstract manner as an asymmetric interaction between two entities,
one being rather passive (the substrate) and the other being rather active (the
enzyme). When these two entities make contact, the latter affects the former
transforming it into some other entity (the product). Thus, an enzymatic reaction
can be casted in three steps: the formation of a complex from the two parts, a
subsequent transformation of the passive part by its active counterpart and their
final dissociation. As long as these conditions are fulfilled, there is no general reason
preventing us to use this conceptual framework not only at the chemical scale, but
also at the cellular scale and, perhaps, even at higher scales. For example, the growth
of microorganisms in the presence of a limited substrate obeys the Michaelis–
Menten kinetics [29]. In ecology, the intake rate of a consumer as a function of the
density of preys is also a kinetics of this type [30]. In all these cases, whenever there
is a considerable imbalance between the number of active and passive elements,
saturation occurs. This is due to the limited capacity of the active part to interact
with a sufficiently high number of elements of the passive counterpart. Note that,
in part, this is also true in the reverse direction, since the passive elements cannot
interact with an enormous number of active elements for short times. Nevertheless,
the situation is not completely symmetrical, since an active element can interact
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with many passive elements, while a passive element usually interacts with one or a
few active elements, before it is transformed. In summary, interactions occur locally
and require some time.

Inspired by this reasoning, a mathematical model describing tumor–immune
interactions was designed by Kuznetsov et al. [31] to explore a possible dynamical
origin of the dormancy and the sneaking through of tumors. In their original model,
the rate at which a tumor is lysed increases linearly with the number of immune
cells, just as in an ordinary Lotka–Volterra model [32, 33]. Simply put, the velocity
at which a tumor is destroyed can be increased without bounds by simply adding
more immune cells. Nevertheless, their work served as a foundation for other works
concerning the interactions between immune and tumor cells [34, 35]. Among these
works, a mathematical model was validated using experiments from mice [36]
and men [37]. To reproduce the experimental data, these authors proposed a new
fractional cell kill for the lysis of tumor cells by CD8+ lymphocytes. The fractional
cell kill is a key concept in the study of tumor lysis, which has sometimes been
confused with the rate of tumor cell lysis, because the notion of rate is used in a
loose sense [35, 38]. However, strictly speaking, these concepts are different. The
rate represents the speed at which the tumor is lysed, while the fractional cell kill
is defined as the speed at which the logarithm of the tumor size is reduced. Well,
these authors noticed that the lysis curves seen in experimental settings exhibited
saturation. Briefly, the fraction of lysed tumor cells after a certain time (usually a
few hours in chromium release assays) versus different values of the initial effector-
to-target ratio saturates for increasing values of the latter. Therefore, they proposed
a Hill function [38, 39] depending on the effector-to-target ratio as the mathematical
function describing the rate at which a tumor is lysed. Their brilliant achievement
notwithstanding, little theoretical explanation was given to this function and the
original proposal [31] was partly forgotten.

In this chapter, we use several cellular automata models to characterize more
rigorously the nature of the mathematical expression that governs the lysis of tumor
cells by cytotoxic cells. Our study indicates that this mathematical function emerges
from spatial and geometrical restraints. Interestingly, simulations are provided
in the limit of immunodeficient environments, where saturation becomes less
evident. We demonstrate that the current mathematical function works bad for such
environments, and retake the conceptual framework of enzyme kinetics to propose
another fractional cell kill. We show that this new function behaves better in the limit
in which the immune cell population is small compared to the tumor size, and that
the parameters appearing in it have a clear physical and biological interpretation.
Then, we investigate the kinetics of tumor lysis in different limiting situations. This
second analysis allows us to further explore the mathematical expression. As we
will see, to reproduce also the time series as well as the lysis curves, one last
rearrangement must be introduced, which we believe makes it theoretically more
conspicuous. To conclude, we explore the transient and asymptotic dynamics that
results from the coevolution of a growing tumor and the cell-mediated immune
response. A cellular automaton is used to analyze the correspondence between
this dynamics and the three phases of the theory of immunoedition: elimination,
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equilibrium, and escape. The exploration of different immunological scenarios
enables the discussion of a possible dynamical origin of tumor dormancy and the
sneaking through of tumors, as originally proposed by Kuznetsov et al. [31]. Our
results demonstrate that the immune system can keep a tumor dormant for long
periods of time, but that this dormancy is based on a frail equilibrium between the
mechanisms that spur the immune response and the growth of the tumor. Thus, we
question the capacity of the cell-mediated immune response to sustain long periods
of dormancy, as those appearing in recurrent disease. We suggest that its role might
be rather to synergize with other types of tumor dormancy.

2 Model Description

2.1 A Hybrid Cellular Automaton Model

The simulations are accomplished by means of a cellular automaton (CA) model
developed in [40] to study the interactions between tumor and immune effector
cells. This model was built on a previously CA model designed to study the effects
of competition for nutrients and growth factors in avascular tumors [41]. It is hybrid
because the cells are treated discretely, allowing them to occupy several grid points
in a particular spatial domain, and evolve according to probabilistic and direct
rules. On the other hand, the diffusion of nutrients (such as glucose and oxygen)
or growth factors from the vessels into such spatial region is represented through
linear reaction–diffusion equations, which are continuous and deterministic. We
expose separately the equations governing the diffusion of substances and the rules
describing the behavior of cells.

2.1.1 Diffusion of Nutrients

Two types of nutrients are utilized in this model, making a distinction between
those which are specific for cell division N(x, y, t), and others M(x, y, t) that are
related to the remaining cellular activities. The partial differential equations for the
diffusion of nutrients are

∂N

∂t
= DN∇2N − k1T N − k2HN − k3EN (1)

∂M

∂t
= DM∇2M − k4T M − k5HM − k6EM, (2)

where T (x, y, t), H(x, y, t), and E(x, y, t) are functions representing the number
of tumor, healthy, and immune cells at time t and position (x, y). For simplicity, we
assume that both types of nutrients have the same diffusion coefficient DN = DM =
D. Following [40], we consider that the competition parameters are equal k2 = k3 =
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k5 = k6 = k, except for the tumor cells, which compete more aggressively. We set
k1 = λNk and k4 = λMk, with λM and λN greater than one. An adiabatic limit
is considered, assuming that the solutions are stationary. This approximation holds
because the time it takes a tumor cell to complete its cell cycle, which is of the order
of days [42], is much longer than that of the diffusion of nutrients. A quadrilateral
domain � = [0, L] × [0, L] is considered and Dirichlet boundary conditions are
imposed on the vertical sides of the domain, where the vessels are placed, assigning
N(0, y) = N(L, y) = N0 and = M(0, y) = M(L, y) = M0. For simplicity, the
horizontal upper and lower bounds of the domain obey periodic boundary conditions
N(x, 0) = N(x,L) and M(x, 0) = M(x,L), wrapping them together to form a
cylinder. Finally, the diffusion equations are nondimensionalized as explained in
[41], and the equations are numerically solved by using finite-difference methods
with successive overrelaxation. The resolution of the grid n equals 300 pixels in all
our simulations. We describe these two steps before enumerating the CA rules.

2.1.2 Cellular Automata Rules

Since the CA used in the last part of the present work is just a variation of the one
used in the first analysis, here we simply present the CA rules and the algorithm
for this first study. The modifications latter required are introduced along the way.
The study of the lysis of tumors with different morphologies is carried out in two
successive steps. The first is devoted to the growth of the tumors, while the second
focuses on their lysis by the CTLs.

1. We generate distinct solid tumors as monoclonal growths, arising after many
iterations of the cellular automaton. At each CA iteration the tumor cells can
divide, move, or die attending to certain probabilistic rules that depend on the
nutrient concentration per tumor cell and some specific parameters. Each of
these parameters θa represent the intrinsic capacity of the tumor cells to carry
out a particular action a. The precise probabilistic laws and the corresponding
actions are described ahead in detail. Attending to morphology, diverse types
of tumors can be generated, depending on the nutrient competition parameters
among tumor cells α, λN . We simulate four types of geometries (spherical,
papillary, filamentary, and disconnected), and inspect four tumors of different
sizes for each shape.

2. The lysis of tumor cells is a hand-to-hand struggle comprising several processes.
After recognition of these cells through antigen presentation via MHC class I
molecules, the CD8+ T cells proceed to induce apoptosis. The principal mech-
anism involves the injection of proteases through pores on the cell membrane
that have been previously opened by polymerization of perforins. Even though
death may take about an hour to become evident, it takes minutes for a T cell to
program antigen-specific target cells to die [43]. We assign a time of 10 min for
each iteration of the CA, and other choices can be made. Therefore, twenty-four
iterations of the CA equal the 4 h after which the lysis of tumor cells is measured
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in the experiments [36]. Since the cell cycle time of a tumor cell is generally a
few times longer, we assume a second adiabatic approximation and suspend the
tumor cell dynamics during T cell lysis.

The rules governing the effector cells evolution are as follows. At each
iteration, those immune cells that are in contact with at least one tumor cell might
lyse them with certain probability. The intrinsic cytotoxic capability, which in
the model also accounts for the capacity of T cells to recognize tumor cells [44],
is related to the parameter θlys . If a T cell destroys a tumor cell, recruitment
might be induced in its neighboring CA elements. When immune cells are not
in direct contact with a tumor cell, they can either move or become inactivated.
Thus, the present CA model does not represent T cell infiltration into the tumor
mass, which is discussed somewhere else [45]. We consider that a single T cell
cannot lyse more than three times, leaving the region of interest when this occurs
[40]. The precise probabilistic laws and the corresponding actions are again
thoroughly described ahead. Each of the sixteen solid tumors is co-cultivated
with different effector-to-target ratios as initial conditions (see Fig. 1) and the
lysis is computed 4 h later.

Because our study mainly focuses on how fast lymphocytes lyse a tumor, an
important simplification between our cellular automaton and the one presented in
[40] deserves notification. We have excluded a constant source of NK cells from

Fig. 1 (a) Schematic representation of the cellular automaton grid in a square domain, with some
tumor cells (pink) growing from its center, and some necrotic cells (gray) at its core. Two vertical
vessels on the boundary supply the nutrients required for cell division and other cellular activities.
The upper and lower bounds are identified, forming a cylinder. (b) To study the lysis of the tumors,
the initial conditions are always prepared by randomly placing the effector cells in a rectangular
region outside the tumor. The size of this domain is selected so that for the maximum values of the
effector-to-target ratio the region is almost filled with effector cells
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the model. The CA rules are now described for the two steps, one corresponding
to the development of the tumors, and the other related to the lysis of the tumor
cells by the cytotoxic T cells. They are almost the same as those used in [40], and
any difference will be explicitly remarked. In what follows, T (�x) and E(�x) are the
tumor and immune cells at position �x, while N(�x) and M(�x) are the concentration of
nutrients in nondimensional variables at position �x. N(�x) represents those nutrients
required for cell division, and M(�x) those required for other cellular activities. The
role of the healthy cells is simplified to passive competitors for nutrients that allow
the tumor cells to freely divide or migrate.

For the first step, corresponding to the growth of the tumors, the following rules
apply. At each CA iteration the tumor cells are randomly selected one by one, and
a dice is rolled to choose whether each of these cell divides (1), migrates (2), or
dies (3).

1. A tumor cell divides with probability

Pdiv = 1 − exp

(
− (N/T )2

θ2
div

)
. (3)

This probability is compared to the probability that results from applying this
same formula to a randomly generated number using a normal distribution
and the same standard deviation θdiv/

√
2. If the former is greater than the

last, division takes place. The higher the value of θdiv , the more metabolic
requirements for a cell to proliferate. When a cell at position �x = (x, y) divides,
if there are neighboring CA elements that are not currently occupied by tumor
cells, we randomly select one �x′ = (x′, y′) and place there the newborn cell, thus
making T ( �x′) = 1 and H( �x′) = 0 or D( �x′) = 0, where D(�x) is the function
representing the necrotic cells at position �x. However, if all the neighboring
elements are occupied, we let the cells pile up, making T (�x) → T (�x) + 1.
Concerning the computation of probabilities, some discussion is here deserved.
Firstly, we recall that a much more reasonable and simple way that gives very
similar results is to generate a random number with uniform distribution between
0 and 1, and to compare Pdiv to the value of that number. This is the standard
procedure. The reason why we proceed otherwise in [45–47] is because in
[41] it was suggested that the distribution was Gaussian, making us think that
N/T had to be considered the random variable. However, the random variable
corresponding to every action in a cellular automaton obeys in fact a Bernoulli
distribution, since the action takes place or it does not. Then, the particular
probability that decides whether this occurs or not depends on the concentration
of diffused substances through some function. In particular, here a sigmoid
function is used, defined by means of a Gaussian profile. As far as we have
investigated, using more simple profiles, as long as they are monotonic, gives
very similar results.
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2. A tumor cell migrates with probability

Pmig = 1 − exp

(
− (

√
T M)2

θ2
mig

)
. (4)

If Pmig is greater than the probability of a randomly generated number, migration
proceeds, otherwise it does not. The higher the value of θmig , the more metabolic
requirements for a cell to migrate, unless there are too many tumor cells. When
a cell at position �x moves, if there are neighboring CA elements that are not
currently occupied by tumor cells, we randomly select one at �x′ and place the
cell there. If there is more than one cell in the original position, the moving cell
simply replaces the healthy or the necrotic cell, thus making the transformation
T (�x) → T (�x) − 1, T ( �x′) = 1 and H( �x′) = 0 or D( �x′) = 0.

3. On the other hand, if there is only one tumor cell at �x, then it interchanges its
position with the healthy or necrotic cell at �x′. If all the neighboring elements are
occupied, we displace the cell to a randomly selected neighboring element.

4. A tumor cell dies with probability

Pnec = exp

(
− (M/T )2

θ2
nec

)
. (5)

If Pnec is higher than the probability of a randomly generated number, necrosis
proceeds, otherwise it does not. The higher the value of θnec, the greater the
probability for a cell to die. When a cell at position �x dies, we make T (�x) →
T (�x) − 1. If this is the only cell at �x, then D(�x) = 1.

We now describe the CA rules for the second step, corresponding to the lysis of
the tumors. At each CA iteration the immune cells that have one or more tumor cells
as first neighbors carry out an attempt to lyse a randomly chosen surrounding tumor
cell. This process occurs with probability

Plys = 1 − exp

⎛
⎜⎝− 1

θ2
lys

⎛
⎝∑

i∈η1

Ei

⎞
⎠

2
⎞
⎟⎠ , (6)

where ηn indicates summation up to the n-th nearest neighbors. If Plys is higher
than the probability of a randomly generated number, then the selected tumor cell
dies. Therefore, T ( �x′) = 0, D( �x′) = 1, and the immune cell counter decreases by a
unit. If the counter reaches a value of zero, it dies and it is replaced by a healthy cell.
The smaller the value of θlys , the greater the probability for an effector cell to lyse a
tumor cell. This parameter was not present in [40] and is introduced here to model
the intrinsic cytotoxicity of T cells. When a tumor cell is destroyed by an immune
cell, the first neighboring cells are flagged for recruitment. For each CA element
without tumor cells a new immune cell is born with probability
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Prec = exp

⎛
⎜⎝− 1

θ2
rec

⎛
⎝∑

i∈η1

Ti

⎞
⎠

−2
⎞
⎟⎠ . (7)

If Prec is higher than the probability of a randomly generated number, recruit-
ment proceeds. The higher the value of θrec, the less surrounding tumor cells that
are required for T cell recruitment to success. When a cell is recruited at position �x′,
we make D( �x′) = 0 or H( �x′) = 0, and E( �x′) = 1.

Those effector cells whose immediate neighborhood is not occupied by tumor
cells either migrate or become inactivated. To decide which of these two processes
is carried out, a coin is flipped. If the output is migration, it occurs for sure. In the
opposite case, inactivation occurs with probability

Pinc = 1 − exp

⎛
⎜⎝− 1

θ2
inc

⎛
⎝∑

i∈η3

Ti

⎞
⎠

−2
⎞
⎟⎠ . (8)

If Pinc is higher than the probability of a randomly generated number, inactivation
proceeds. The smaller the value of θinc, the less surrounding tumor cells that are
required for a T cell to become inactivated. When a cell disappears from position �x,
we simply make H(�x) = 1 and E(�x) = 0.

2.1.3 The Algorithm

The algorithm starts with a domain full of healthy cells, except for a single tumor
cell placed at the center of the domain. Firstly, during this period of growth, each CA
step corresponds to 1 day. Every iteration begins with the integration of the reaction–
diffusion equations, using a finite-difference scheme and a successive overrelaxation
method. Then all the tumor cells are randomly selected with equal probability, and
the CA rules are applied. As in previous works [41], every time an action takes place,
the reaction–diffusion equations are locally solved in a neighborhood with size 20×
20 grid points. Once the tumors have been grown, their dynamics is halted. The
immune cells are randomly placed in the vicinity of the tumor and start to evolve.
Now the CA step corresponds to 10 min. Firstly, the reaction–diffusion equations
are solved and all the immune cells are randomly selected. Then every immune
cell is randomly selected and the CA rules are applied. For each immune cell, after
applying the CA rules, the nutrients are computed in a local region, in exactly the
same manner as before. The algorithm stops when a maximum number of twenty-
four steps have been reached, or when the tumor has disappeared.
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2.2 An Ordinary Differential Equation Model

In the present investigation the results of the in silico experiments performed with
the cellular automaton model are fitted by means of a least-squares fitting method
to a Lotka–Volterra type model. The continuous model of cell-mediated immune
response to tumor growth consists of three interacting cell populations: the tumor
cells T (t), the host healthy cells H(t), and the immune effector cells E(t). Our study
focuses mainly on CD8+ T lymphocytes, but the model can be easily modified to
reproduce NK cell dynamics. The system of differential equations [35] reads

dT

dt
= r1T

(
1 − T

K1

)
− a12HT − K(E, T )T (9)

dH

dt
= r2H

(
1 − H

K2

)
− a21T H (10)

dE

dt
= σ − d3E + g

K2(E, T )T 2

h + K2(E, T )T 2
E − a31T E, (11)

with

K(E, T ) = d
(E/T )λ

s + (E/T )λ
. (12)

The tumor cells and the host healthy cells grow logistically with growth rates and
carrying capacities r1,K1 and r2,K2, respectively. The terms a12 and a21 model
the competition for nutrients and space among tumor and healthy cells. A term
representing the fractional cell kill of tumor cells by CTLs is given by the nonlinear
function K(E, T ), which constitutes the main topic of the present work. Here the
parameter σ incorporates a constant input of lymphocytes into the tissue where the
tumor develops, but it can be related to a background of NK cells as well [38]. The
inactivation of the effector cells and their migration from the tumor area is given
by the term d3E, whereas the parameters g, h stand for the recruitment of immune
cells to the tumor domain mediated by cytokines, such as IFN-γ or TNF-α, after
the tumor and the immune cells interact. Finally, the competition between the tumor
and the T cells for resources is given by a31. These differential equations are solved
using a fourth order Runge–Kutta integrator.

This continuous model has been validated [35] using experiments from [36] and
the parameter values are listed in Table 1. In the present work only those parameters
appearing in the fractional cell kill (d, λ, and s) are inspected. Accordingly to the
CA model, we have set σ = 0 in the ODE model since the CA does not include a
constant input of effector cells. We have also selected a value g = 0.15, which is
very close to one of the values appearing in Table 1. Importantly the CA model and
the ODE model include the same type of processes. The logistic growth of tumor
cells in the CA model arises as a consequence of competition for nutrients [41].
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Table 1 The values of the parameters in the ordinary differential equation model used to fit
experiments from [36]

Parameter Units Value Description

r1 day−1 5.14 × 10−1 Tumor cells growth rate

K1 cell 9.8 × 108 Tumor carrying capacity

a12 cell −1 day −1 1.1 × 10−10 Competition of host cells with tumor cells

d(nn) day−1 2.20 Saturation level of fractional tumor cell kill

d(nl) 3.47

d(ln) 2.60

d(ll) 7.86

s(nn) None 1.6 Steepness coefficient of fractional tumor cell kill

s(nl) 2.5

s(ln) 1.4 × 10−1

s(ll) 4.0 × 10−1

λ(nn) None 1.2 × 10−1 Exponent of fractional tumor cell kill

λ(nl) 2.1 × 10−1

λ(ln) 7.0 × 10−1

λ(ll) 7.0 × 10−1

r2 day−1 1.80 × 10−1 Host cells growth rate

K2 cell 1.0 × 109 Host cells carrying capacity

a21 cell −1 day −1 4.8 × 10−10 Competition of tumor cells with host cells

σ cells day−1 7.5 × 104 Constant source of effector cells

d3 day−1 6.12 × 10−2 Inactivation rate of effector cells

g(nn) day−1 3.75 × 10−2 Maximum recruitment rate

g(nl) 3.75 × 10−2

g(ln) 1.13 × 10−1

g(ll) 3.00 × 10−1

h cell2 2.02 × 107 Steepness coefficient for the recruitment

a31 cell −1 day −1 2.8 × 10−9 Immune–tumor competition

The parenthesis represents four different cases: a primary challenge with control-transduced cells
followed by a secondary one with ligand (nl) or control (nn) cells, and a primary interaction with
ligand-transduced cells followed again by ligand (ll) or ligand-negative (ln) rechallenges

There is also competition among healthy cells and tumor cells for nutrients, which
in the ODE model is represented by the competing Lotka–Volterra terms between
healthy and tumor cells. T cell lysis, inactivation, and recruitment are also present
in both models. Only the competition term between tumor and immune cells a31 is
different. Although we keep this parameter as shown in Table 1, if desired, it can
be made equal to zero. As far as we have investigated, reducing the value of this
parameter produces no appreciable consequences in our study. Notwithstanding this
correspondence, we recall that during the second step of our CA simulations, the
tumor dynamics is suspended. Accordingly, the parameter r1 should be made equal
to zero. Again, we keep this parameter as shown in Table 1. Reducing the value of
this parameter produces no significant consequences in our study when the T cells
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are effective, because the time scale of T cell lysis (less than 1 h) is considerably
smaller that the time scale of cell division (around 1 day). For immunodeficient
scenarios the effects are more sensitive, but still small. In other words, T cell
dynamics dominates during the first 4 h.

3 The Lysis of Tumors in the Absence of Growth

3.1 Tumors

In Fig. 2 we depict the simulated solid tumors with four distinct morphologies,
depending on the nutrient competition among tumor cells. The apparent three-
dimensionality is an artifact resulting from the fact that we let cells pile up at
the CA grid points. This piling mechanism was assumed in [41] for computational
simplicity, and does not have any consequence in our study, since once the tumors

Fig. 2 Tumors generated
using the cellular automaton
model. Tumors become
increasingly branchy as the
competition for nutrients
increases. Colors go from
dark purple (one cell) to light
pink (highest number of cells
in a grid point for each
tumor). We set the parameters
λM = 10 and θnec = 0 in all
the cases, disregarding
necrosis. (a)–(d) Spherical
tumors with increasing size
and parameters α = 2/n,
λN = 25, θdiv = 0.3, and
θmig = ∞. (e)–(h) Papillary
tumors with increasing size
and parameters α = 4/n,
λN = 200, θdiv = 0.3, and
θmig = ∞. (i)–(l)
Filamentary tumors with
increasing size and
parameters α = 8/n,
λN = 270, θdiv = 0.3, and
θmig = ∞. (m)–(p)
Disconnected tumors with
increasing size and
parameters α = 3/n,
λN = 200, θdiv = 0.75, and
θmig = 0.02
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are grown, we project them to study their lysis. High values of α and λN lead
to more branchy tumors, gradually changing from spherical to filamentary. This
break of the spherical symmetry of the tumors is explained if we consider that when
some nearby neoplastic cells on the boundary of a tumor compete aggressively for
nutrients, those cells that divide and take ahead at some step preserve this advantage
at the next step, stealing the nutrients to those cells left behind. The four geometries
are comparable to a variety of histologies [41], such as a basal cell carcinoma, a
squamous papilloma, a trichoblastoma, and a plasmacytoma. Note that the necrosis
of tumor cells due to the scarcity of nutrients in the core of the masses has been
neglected, since it has no relevance in our study. In the CA this is achieved by setting
θnec = 0.01 for all our simulations. Except for the disconnected patterns appearing
in the last row in Fig. 2, motility has been also disregarded, considering sufficiently
high values of θmig .

3.2 Effective Immune Response

In the model given by Eqs. (9)–(11), the fractional cell kill of tumor cells by CTLs
is given by the function K(E, T ). In [35] we opted for expressing this function in
the form

K(E, T ) = d
Eλ

h(T ) + Eλ
, (13)

with h(T ) = sT λ. Written this way, the fractional cell kill clearly states that the
more the effector cells, the greater the fractional cell kill, but bearing in mind
the saturation of antigen-mediated immune response, which depends on the tumor
burden. We propose that the saturation is due to the crowding of immune effector
cells, which is evident if we recall that these cells need to be in contact with
tumor cells to exterminate them. In a solid tumor, once all the tumor cells on its
surface are in contact with a first line of immune cells, the remaining effector cells
are not lysing, although the adjacent lines behind probably contribute to immune
stimulation through several feedback mechanisms. Therefore, at a certain point, no
matter how many more immune cells are present in the region of interest, the rate at
which the tumor is lysed remains practically unaltered. Before saturation appears,
if two tumors of the same nature and different size at a certain time instant are
lysed at the same rate by the immune system, the bigger tumor will require more
effector cells. Put more simply, if two tumors of different size are reduced to a
particular fraction of its size after a certain period of time, the bigger tumor will
require more effector cells. The number of effector cells E for which the fractional
tumor cell kill is half of its maximum d increases monotonically with the tumor
size h(T ).



Modelling Cancer Dynamics Using Cellular Automata 173

We use simulations to demonstrate that these assertions are sufficient to explain
the fractional cell kill law, even though there might be others. With this purpose, for
every tumor pictured in the previous section, we prepare co-cultures with different
effector-to-target ratios. Then, we let the CA evolve and measure the lysis 4 h later
(see Fig. 3). As previously explained, the tumors have been projected before the
lysis starts, to better correlate the geometry and the parameters in the fractional cell
kill. Otherwise, we would have two-dimensionally distributed lymphocytes fighting
three-dimensional-like tumors, since in our CA we do not let the immune cells pile
up. We do it this way to avoid the unfair situation in which just a few immune cells

Fig. 3 Lysed tumors after 4 h for different effector-to-target ratios. The effector cells (green) form
satellites that advance destroying their neoplastic enemies (violet) and leave apoptotic bodies (light
gray) behind them. The parameter values of the CA are θlys = 0.3, θrec = 1.0, θinc = 0.5,
λM = 10, λN = 25, and α = 2/L. (a)–(d) Spherical tumor in Fig. 2b with E0/T0 taking values
on the set {0.0025, 0.005, 0.05, 0.75}, respectively. (e)–(h) Papillary tumor in Fig. 2f with E0/T0
taking values on the set {0.005, 0.0075, 0.025, 0.25}, respectively. (i)–(l) Filamentary tumor in
Fig. 2l with E0/T0 taking values on the set {0.0025, 0.0075, 0.017, 0.025}, respectively. (m)–(p)
Disconnected tumor in Fig. 2n with E0/T0 taking values on the set {0.005, 0.0075, 0.015, 0.025},
respectively
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are facing a big pile of tumor cells, and vice versa. Finally, the results are fitted
to the ODE model using a least-squares fitting method. We recall that such model
was validated using as initial conditions typical cell populations of 106 cells, while
the CA automaton grid used can harbor at most 9 × 104 cells. However, this is
not a hurdle at all, since if desired, the cell populations in the ODE model can be
renormalized and its parameters redefined so as the cell numbers coincide.

The resulting lysis curves are depicted in Fig. 4 and the values of the parameters
d, λ, and s in Eq. (13) are listed in Table 2, together with the fractal dimension
DF of the boundary of the initial tumors. Satellitosis is clearly appreciated as a
consequence of T cell recruitment, and the resulting clusters of cells act like wave
fronts that advance lysing the tumor. Note that the immune cells that are far enough
from the tumor become inactivated after several iterations of the CA. Consequently,
only the T cells that are able to make contact with the tumor, gain traction in killing
and subsequent recruitment, appear in the figures. There is a correlation between
the box-counting dimension and the parameters d and λ for the connected tumors
examined, but this is not case for the disconnected one. The disconnected tumors
shown in Fig. 2 display the highest box-counting dimension, because they are very
drilled, so that most of the tumor cells are on its boundary. However, they are rather
spherical, and for this reason the part of the boundary that is in the center of the mass
is not initially accessible to the immune cells. These facts explain the low values of
d and λ for such tumors, which are comparable to the spherical ones. Therefore, in
our model, those tumors with a bigger surface of contact are lysed faster. Indeed,
what matters to the cytotoxic cells is how accessible their enemies are. The more
the tumor cells there are between an immune cell and some other tumor cell, the

Fig. 4 The lysis of tumor
cells after 4 h versus the
effector-to-target ratio E0/T0
in immunocompetent
environments. The parameter
values of the CA related to
the lysis, recruitment, and
inactivation are θlys = 0.3,
θrec = 1.0, and θinc = 0.5,
respectively. The solid curve
corresponds to the ODE
model, while the points
correspond to the cellular
automaton results. (a) The
spherical tumor in Fig. 2b. (b)
The papillary tumor in
Fig. 2f. (c) The filamentary
tumor in Fig. 2l. (d) The
disconnected tumor in Fig. 2n
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Table 2 The parameter values modified in the model shown in Eqs. (9)–(11) corresponding to an
effective immune response

Parameter Units Value Description

d(s) day−1 9 ± 4 Saturation level of fractional tumor cell kill

d(p) 20 ± 1

d(f) 32 ± 2

d(d) 13 ± 3

λ(s) None 0.61 ± 0.07 Exponent of fractional tumor cell kill

λ(p) 0.87 ± 0.04

λ(f) 0.89 ± 0.03

λ(d) 0.63 ± 0.03

s None 0.15 Steepness coefficient of fractional tumor cell kill

DF (s) None 1.09 ± 0.02 Box-counting dimension of the boundary before the lysis
starts

DF (p) 1.21 ± 0.04

DF (f) 1.36 ± 0.02

DF (d) 1.72 ± 0.04

The parameters λ and d are obtained through a least-square fitting of the lysis of tumor cells
between the CA simulations and the ODE model. The mean value and standard deviations are
computed for each morphology using four different tumors sizes: spherical (s), papillary (p),
filamentary (f), and disconnected (d)

lower the rate at which the effector cells kill their victims. This is starkly evident for
the spherical tumors, which correspond to the smallest values of d and λ.

Thus, according to our model, Eq. (13) is a robust emergent property of the
tumor–immune interaction depending on the spatial distribution of the tumor cells.
It reflects the saturation of an effective immune system, which depends on the
tumor size. This saturation is fruit of the crowding of the effector cells and the
arduousness to establish contact with their adversaries. Nevertheless, it takes hours
for the effector cells to fully lyse the tumors so far investigated, which denotes
that this extrinsic limitation to the lytic capacity of the immune system is barely
important compared to the immunoevasive maneuvers that tumor cells commonly
orchestrate [1].

3.3 Ineffective Immune Response

Tumor cells find ways to evade the immune surveillance through a broad range
of mechanisms [48]. They can acquire the ability to repress tumor antigens, MHC
class I proteins, or NKG2D ligands. They may also learn to destroy receptors or to
saturate them, induce suppressor T cells formation, launch counterattacks against
immunocytes by releasing cytokines, avoid apoptosis, etc. It is therefore pertinent



176 Á. G. López et al.

to ask ourselves if the fractional cell kill can cover situations in which the tumor
microenvironment is immunodeficient.

In [38] the authors show that the lysis curves corresponding to NK cells in the
experiments borrowed from [36] do not show saturation, and that a fractional cell
kill given by a simple power law cEν works to fit such data. Because much higher
values of the effector-to-target ratio are required to obtain similar values for the lysis
compared to the CTLs curves, it was suggested that when the effector cells are less
effective, saturation is not observed.

Mathematical arguments have been given [35] to explain this lack of saturation.
Briefly, when the cytotoxic cells are less effective, only a fraction f of the effector
cells are interacting with the tumor. Thus we can replace E by f E in the fractional
cell kill. Now, defining s̃ = s/f λ, the fractional cell kill law remains unchanged.
This suggests that the parameter s is related to the effectiveness of the cytotoxic
cells, being this parameter inversely proportional to the effectiveness of such cells.
On the other hand, if the effectiveness is small enough (f 	 1), then h(T )

dominates over Eλ in Eq. (13), as long as E is not too high. The resulting lysis
term becomes df λEλT 1−λ/s. This facts legitimize the estimation cEνT that has
been used in other works [35, 38] to reproduce the fractional cell kill of tumor cells.
Nevertheless, here we do not want to introduce phenomenological functions of this
type, but rather concentrate our efforts on the significance of s. To this end, we
diminish the intrinsic cytotoxic capacity of the immune cells, which is encoded
in the parameter θlys in our cellular automaton. Higher values of this parameter
represent more ineffective T cells. The results can be seen in Fig. 5 and the values
of the parameters are listed in Table 3. As we increase the parameter θlys , the
saturation appearing in the lysis curves becomes less evident, and at a certain point
it disappears.

When θlys = 10, the ODE model can be adjusted to the CA results. However,
increasing s is not sufficient to reproduce this data, and considerable variations of

Fig. 5 The lysis of tumor cells after 4 h versus the effector-to-target ratio E0/T0 in immunosup-
pressed environments. The spherical tumor represented in Fig. 2b is studied, with recruitment and
inactivation CA parameters θrec = 1.0 and θinc = 0.5. The solid curve corresponds to the ODE
model, while the points correspond to the cellular automaton results. (a) A more ineffective, but
still effective, adaptive response is here represented, with θlys = 10. (b) A value of the intrinsic
cytotoxic capacity θlys = 100 is set for the most ineffective immune system
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Table 3 The parameter values of the fractional cell kill given by Eq. (13)

Parameter Units Value Description

d(s) day−1 3.80 Saturation level of the fractional tumor cell kill

d(i) 1.56

λ(s) None 0.62 Exponent of the fractional tumor cell kill

λ(i) 0.17

s(s) None 0.50 Steepness coefficient of the fractional tumor cell kill

s(i) 1.10

These parameters are obtained through a least-square fitting of the lysis of tumor cells between the
CA simulations and the ODE model (see Fig. 5). Two cases are represented: a very ineffective (i)
and a semi-effective (s) immune responses

the remaining parameters d and λ are required. A much more dramatic case arises
when θlys = 100. In this case we have not been able to find any values of the
parameters that represent faithfully the CA results. The best fitting provided by the
ODE model exhibits considerable saturation. The conclusion is that the fractional
cell kill represented by Eq. (13) works bad for immunodeficient environments and
also confuses the geometrical effects and the intrinsic cytotoxic capacity of the
immune cells. In the next section, we propose a new fractional cell kill that allows
to fit the results more accurately by simply reducing the value of s.

3.4 Modification of the Fractional Cell Kill

In [35], the particular nature of the function h(T ) appearing in Eq. (13) was also
discussed, proving that if instead of h(T ) = sT λ, h(T ) = sT λ+�λ is used, the
empirical results can also be validated by simply decreasing the value of s, even for
values �λ/λ greater that one. This means that the original proposal of a saturating
fractional cell kill depending on the quotient E/T cannot be guaranteed.

Furthermore, from a theoretical point of view, the function h(T ) = sT λ makes
the model ill-defined in the limit of very big tumors (T → ∞) facing a comparably
small fixed number of immune cells. The reason is that in this limit we get
unbounded velocity for the lysis (K(E, T )T → ∞). We demonstrate that h(T ) =
sT is a much better choice. It has been shown [44, 49] that for a fixed number of
effector cells E0, the Michaelis–Menten kinetics govern the lysis of tumor cells.
The value of the lytic velocity at tumor saturation, i.e., when T → ∞, is reported in
such works as a measure of the intrinsic cytotoxic capability of a particular number
of effector cells. A Michaelis–Menten decay in Eq. (13) is obtained for a constant
value of effector cells as long as h(T ) = sT is used. The value at saturation for
a fixed number of effector cells is then dEλ

0 /s. An argument supporting saturation
comes from the following fact. If the number of tumor cells is much higher than
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a fixed number of effector cells, the velocity at which the tumor cells are lysed
cannot be enhanced by increasing the number of the neoplastic cells. This occurs
because T cells kill tumor cells one by one, and for such ratios all the effector
cells are already busy fighting other cells. In a similar fashion, for an enzymatic
reaction, one cannot increase arbitrarily the velocity at which the products are
formed by simply adding more substrate. Precisely, this reasoning is reminiscent of
the original formulation proposed by [31], in which the cell populations are regarded
as chemical species obeying enzymatic kinetics in the quasi-steady state regime. In
such work, the tumor cells are the substrate, the effector cells are the enzyme, and the
products are the dead cells. Indeed, in the following section we use enzyme kinetics
as a metalanguage to provide an analytical derivation of the fractional cell kill. A
fractional cell kill function that yields bounded velocity for the lysis of tumor cells
when any of these two cell populations is sufficiently high compared to the other is
represented by

K(E, T ) = d
Eλ

sT + Eλ
. (14)

If we focus only on the lysis of tumor cells, the velocity at which the tumor is
reduced can be represented by the following nonlinear differential equation:

Ṫ = −d
Eλ

sT + Eλ
T . (15)

Following the point of view of [31], this mathematical expression can be regarded
as a Michaelis–Menten kinetics where the rate constants of the formation of the
“enzyme–substrate" conjugates, their dissociation and their conversion to product
depend nonlinearly (as power laws) on the enzyme concentration. It establishes the
saturation of the velocity of the lysis of tumor cells for both the tumor and the
immune cell populations. In Fig. 6a we first reproduce the experiments of the spher-
ical tumor shown in Fig. 2b for θlys = 0.3. This allows us to obtain the parameter
values of the modified fractional cell kill shown in Eq. (14). Then we carry out
the simulations of the preceding section for immunodeficient environments and see
how, mainly by increasing the value of s, the CA results are reproduced (see Fig. 6b,
c). The parameter values are listed in Table 4. This sheds light into the significance
of this parameter, which is now manifestly related to the intrinsic cytotoxic potential
of the T cells. Moreover, this implies that the limit T → ∞, for which the quantity
dEλ/s is obtained, is not a good measure of lymphocyte cytotoxicity, as suggested
in [44, 49]. This limit, which for a constant value of the T cells implies a linear decay
of the tumor, involves geometry as well. Ideally, if we consider that there is just one
immune cell, and it takes this cell 1 h to lyse one tumor cell, then a spherical tumor
would be reduced at approximately one cell per hour (assuming that this immune
cell does not become inactivated at some step). However, the geometry of the tumor,
which is coded in the parameters d and λ, clearly affects how fast this single cell can
erase it.
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Fig. 6 The lysis of tumor cells after 4 h versus the effector-to-target ratio E0/T0 for increasing
ineffectiveness of the lymphocytes. The spherical tumor represented in Fig. 2b is studied, with
recruitment and inactivation CA parameters θrec = 1.0 and θinc = 0.5. The solid curve corresponds
to the ODE model, while the points correspond to the cellular automaton results. (a) An effective
immune response for θlys = 0.3. (b) A more ineffective, but still effective, adaptive response is
here represented, with θlys = 10. (c) A value of the intrinsic cytotoxic capacity θlys = 100 is set
for the most ineffective immune system. As shown in Table 4, the intrinsic cytotoxic potential of
the T cells is chiefly represented by parameter s in Eq. (14)

Even though the reduction of saturation for ordinary values of the effector-to-
target ratio can be justified mathematically and numerically, the change in curvature
for the CA results appearing in Fig. 6c requires a positive feedback mechanism.
Certainly, the mechanism responsible for this phenomenon is the recruitment of
immune cells, which becomes increasingly important as the effectiveness of the T
cells decreases.



180 Á. G. López et al.

Table 4 The parameter values of the fractional cell kill appearing in Eq. (14)

Parameter Units Value Description

d(e) day−1 9.22 Saturation level of the fractional tumor cell kill

d(s) 9.62

d(i) 9.52

λ(e) None 0.50 Exponent of the fractional tumor cell kill

λ(s) 0.51

λ(i) 0.55

s(e) cellsλ−1 1.0 × 10−5 Steepness coefficient of the fractional tumor cell kill

s(s) 1.4 × 10−4

s(i) 9.5 × 10−4

These parameters are obtained through a least-square fitting of the lysis of tumor cells between the
CA simulations and the ODE model (see Fig. 6). Three cases are represented: an effective (e), a
semi-effective (s), and ineffective immune responses (i). Note that it is only the parameter s, which
is related to the intrinsic cytotoxic capacity, that varies substantially. It increases as the immune
cells become less effective

4 The Fractional Cell Kill as a Michaelis–Menten Kinetics

The fractional cell kill represented by Eq. (14) can be derived from the Michaelis–
Menten kinetics [27, 28] assuming that the rate constants of the reaction depend on
the enzyme concentration. During the process of lysis, the effector cells E bound to
the tumor cells T forming complexes C, and dead tumor cells T ∗ result from this
interaction. Therefore, the tumor cells play the role of the substrate and the effector
cells act as the enzyme. This cellular reaction can be written in the form

E + T
k1�
k−1

C
k2�
k−2

T ∗ + E. (16)

Once a tumor cell is induced to apoptosis it cannot resurrect, so we must set
k−2 = 0. Generally, also the backward reaction represented by k−1 should be
disregarded, since after tumor cell recognition and complex formation, destruction
proceeds. However, we keep this term for reasons explained below.

Assuming that the law of mass action holds, the system of differential equations
governing the reactions is

dE

dt
= −k1ET + (k−1 + k2)C (17)

dT

dt
= −k1ET + k−1C (18)

dC

dt
= k1ET − (k−1 + k2)C (19)

dT ∗

dt
= k2C. (20)
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The Briggs–Haldane [50] quasi-steady state approximation Ċ = 0 was assumed
in [31] because in their model the time scale of the process of lysis is considerably
smaller than that of cell growth. However, if we focus on the process of lysis only,
the quasi-steady state approximation requires

E0

T0 + KM

	 1, (21)

where KM = (k−1 + k2)/k1 is the Michaelis constant, and E0 and T0 are the initial
concentrations of the effector and the tumor cells, respectively.

Because we are dealing with situations in which the substrate concentration can
be smaller than the enzyme, the quasi-steady state approximation implies KM �
E0. Since this condition cannot be generally guaranteed, instead, we consider
Michaelis and Menten original formulation, and suppose that the substrate is in
instantaneous equilibrium with the complex. We believe this is more reasonable,
because it takes about 1 h for a cytotoxic T cell to fully lyse one tumor cell and,
if the cells are effective, the recognition and complex formation should occur quite
fast when brought together. In this manner, we have k1ET = k−1C. From Eqs. (17)
and (19) we get the conservation law E+C = E0. These two equations put together
and substituted in Eq. (20) yield

dT ∗

dt
= k2k1E0

T

k1T + k−1
. (22)

So far, this is nothing else but the Michaelis–Menten kinetics. It is at this
point that we have to consider a dependence of the rate constants of the reaction
on the concentration of the effector cells. The mathematical relations are derived
heuristically, based on the idea that for higher concentrations of the immune cells
the rate constants vary in such a manner that the whole process is pushed backwards.
Since saturation is due to the crowding of T cells, and this depends on the geometry
of the tumor, it seems a natural choice to use power laws.

Once the first lines of effector cells cover the surface of a solid tumor, the
remaining immune cells are not in contact with it. Alternatively, an equivalent
argument is attained if we suppose that the non-interacting effector cells do interact
with some tumor cells unsuccessfully (say ghost tumor cells), so that the complexes
are dissociated without lysis. The more the effector cells, the higher the rate of
dissociation, and when the number of effector cells is small compared to the number
of tumor cells, the dissociation should vanish. Therefore, we consider a power
law dependence k−1(E0) = κ−1E

α
0 , with 0 < α < 1, as suggested from the

experiments. Substitution in Eq. (22) yields

dT ∗

dt
= k2k1

E0

k1T + κ−1E
α
0

T . (23)
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The fractional cell production of dead cells in this equation already resembles
very much to Eq. (14). To obtain the exact result we have to consider dependence of
k1 and k2 on the effector concentration as well. Note that for the inverse reaction
to take place complexes have to be formed first, and this requires some time.
Therefore, saying that complexes dissociate without lysis is not exactly equivalent
to stating that the complexes are not formed. These rates should decay for increasing
concentrations of the effector cells, diminishing the rate of formation of complexes
and products. Once again, we postulate power law relations in the form k1(E0) =
κ1E

−β
0 and k2(E0) = κ2E

−γ

0 , where again 0 < β < 1 and 0 < γ < 1. It
might result surprising that in the limit E0 → ∞ these functional relations tend to
zero, suggesting that the reaction stops. However, this is not the case, because when
substituted in Eqs. (17)–(20), k1(E)E and k2(E)C both increase with the number
of effector cells. Replacing the rate functions in Eq. (23) we obtain

dT ∗

dt
= κ1κ2

κ−1

E
1−γ

0
κ1

κ−1
T + E

α+β
0

T . (24)

We now rename the constants λ = α + β, s = κ1/κ−1, d = κ1κ2/κ−1, and
remember that the velocity for the lysis must remain bounded for E0 → ∞, which
imposes the constraint α + β + γ = 1. Thus, the velocity at which dead tumor cells
accumulate is given by the nonlinear function

dT ∗

dt
= d

Eλ
0

sT + Eλ
0

T . (25)

5 Decay Laws in Tumor Cell Lysis

Using the Michaelis–Menten kinetics as the modelling framework describing
tumor–immune interactions at the cellular scale [31], a mathematical expression
describing the velocity at which a population of cytotoxic cells lyse a tumor
has been derived in the previous sections. A schematic representation of such a
cellular reaction is seen in Fig. 7. When a T cell identifies a tumor cell through
the recognition of antigens, these two cells form complexes. As a result, apoptosis
is induced and a dead tumor cell is produced. However, some of the assumptions
that lead to the Michaelis–Menten kinetics, such as a high substrate concentration
compared to the enzyme concentration, or high values of the Michaelis constant
compared to the enzyme concentration, are not met in the present case. To reproduce
experiments, the constant rates of the reaction require dependence on the number of
effector cells, in such a manner that saturation of the velocity is also found for
increasing numbers of the effector cells. As previously stated, saturation occurs
in both directions. Disregarding other processes, the differential equation [46]
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Fig. 7 The cell-mediated immune response as an enzymatic reaction. An interaction between an
activated lymphocyte E, colored in green, and a tumor cell T , painted in red. When the lymphocyte
identifies the tumor cell these two cells form a complex. The result of the interaction is the initial
T cell and an apoptotic tumor cell T ∗. This cellular interaction is similar to an enzymatic chemical
reaction, where the tumor cell plays the role of the substrate and the T cell acts as an enzyme
(figure obtained from Ref. [45])

describing the velocity at which the tumor cells are destroyed is Ṫ = −K(E, T )T ,
with K(E, T ) the fractional cell kill, which can be written as

K(E, T ) = d
Eλ

sT + Eλ
, (26)

where T and E represent the number of tumor cells and immune cells, respectively.
The parameters d and λ depend on the tumor geometry. Less spherical tumors lead
to higher values of these parameters. On the other hand, the parameter s is related to
the intrinsic ability of the cytotoxic cells to recognize and destroy their adversaries.
Smaller values of this parameter are related to more effective immune cells. Thus,
the velocity at which a tumor is lysed is given by

Ṫ = −d
Eλ

sT + Eλ
T . (27)

In the present section we delve deeper into the significance of this mathematical
expression by examining the different limits that it provides. To reproduce also the
time series as well as the lysis curves, we introduce one last rearrangement.

5.1 The Limits of the Fractional Cell Kill

We begin by carefully examining the different limits that this equation possesses
(see Fig. 8). For a fixed number of immune cells E0, when the immune cell
population is small compared to the tumor size (Eλ

0 	 sT ), the tumor cell
population is reduced at a constant velocity

Ṫ = −dEλ
0 /s. (28)
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Fig. 8 The limits of the fractional cell kill in the absence of T-cell infiltration. (a) A small immune
cell population facing a big tumor. In this limiting situation the decay of the tumor is rather linear, as
shown in Eq. (28). (b) The intermediate case in which a considerable part of the tumor is covered
with immune cells. (c) A tumor, in which surface is totally covered with immune cells. In this
extreme case the velocity of the decay can be approximated by a parabolic decay, as shown in
Eq. (31) (figure obtained from Ref. [45])

Fig. 9 A single cell lysing a tumor. (a) The linear decay of a tumor in the limit in which there
is only one immune cell. (b) The path (green) of a lymphocyte after a certain time, modelled by
an unbiased random walk in a square domain, which is occupied by tumor cells (red). The initial
condition is set on the left bottom corner (figure obtained from Ref. [45])

This linear decay makes perfect sense if we bear in mind the extreme situation
in which there is only one lymphocyte fighting a tumor of a certain size. Ideally, if
it takes the immune cell approximately 1 h to lyse a tumor cell, then the velocity
of the decay is simply one tumor cell per hour. Even though this is fairly obvious,
in Fig. 9 we show the random walk of a lymphocyte lysing a tumor that occupies
a square domain, at one cell per hour. In practice, the velocity clearly depends on
the intrinsic ability of the cytotoxic cell s to lyse the tumor cells and also on the
tumor morphology λ and d. On the other hand, when the immune cell population is
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high enough compared to the tumor cell population (Eλ
0 � sT ), Eq. (27) yields an

exponential decay

Ṫ = −dT . (29)

Now, the scenario corresponds to the case in which the tumor is totally covered
with effector cells. For the sake of simplicity, we consider a tumor spheroid [51].
At each step the immune cells lyse a layer of tumor cells, and the radius of the
spheroid decreases. In the next round another layer is eliminated but, since the
tumor has smaller radius, so it does the length of this second layer. Therefore, the
velocity decreases as the tumor is gradually erased. Nevertheless, note that for a
three-dimensional solid tumor the reduction occurs in surface, while the tumor is
distributed in volume, suggesting that the decay should be slower than exponential.

It has been demonstrated [46] that Eq. (27) reproduces accurately the values of
the lysis after some fixed time versus different values of the effector-to-target ratio
as initial conditions. However, here we show that it is unable to reproduce the time
series of the tumor decay faithfully. A more general mathematical function which
is better at reproducing the time series of the tumor decay can be derived in the
following manner. Assume that a two-dimensional tumor with the shape of a disk
is plainly covered with immune cells. As shown in Fig. 10a, a layer of tumor cells
is erased by the immune cells at each step, like peeling an onion. If we write the
radius of the disk at the n-th step as Rn, and the diameter of a cell as �R, the
dynamics of the tumor can be represented by a very simple map in the form Rn+1 =
Rn −�R. Since the area of a disk is related to the radius through A = πR2, a direct
substitution yields the map An+1 = An + π�R2 − 2π1/2�RA

1/2
n , where An is

the area of the disk at the n-th step. If we consider that the immune cells lyse at a
constant rate, then �R = c�t , and we obtain

�An

�t
= πc2�t − 2π1/2cA

1/2
n . (30)

Fig. 10 Two tumors with a destroyed layer. (a) A tumor with the shape of a disk and initial radius
R0. At each step the immune system erases a layer (light red), reducing its radius by an amount
�R. (b) Again a tumor with a destroyed layer, but exhibiting a more complex geometry (figure
obtained from Ref. [45])
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We assume that the superficial cell density σ of the tumor is approximately
constant, which was missing in previous works. Finally, if the tumor is big enough so
that the time intervals can be considered infinitesimal and defining a decay constant
as d = 2π1/2σ 1/2c, we obtain the differential equation

Ṫ = −dT 1/2. (31)

More simply, if we consider a disk of area A = πR2 and assume that the velocity
at which the radius decreases is constant Ṙ = −c, with c > 0, we can write

dA

dt
= 2πR

dR

dt
= −2π1/2cA1/2. (32)

If the tumor has a more sophisticated geometry, we can still apply Eq. (31) under
appropriate assumptions. Things get even more complicated if we take an initial
tumor which is not a convex set, as the one depicted in Fig. 10b. Even in the case in
which all the immune cells act synchronously and are equally effective, the topology
of the tumor might change during the process of lysis, becoming disconnected.
Assuming equal decay rates d and using Eq. (31), it is straightforward to verify that
the total area of two tumors with the shape of a disk does not decay as a whole with
the same velocity than that of a single tumor with such shape and equal total area.
The two small tumors decay faster, because the ratio between the perimeter and the
enclosed area is larger. Analytically, this is simply a consequence of the nonlinear
nature of Eq. (31). Therefore, we designate the mean value of the variations of
the radius of such sequence of disks as �R. Then, we write the variation of the
radius as δn�R, where δn accounts for the deviations with respect to the mean value
that must be bounded. The map is now Rn+1 = Rn − δn�R and the area goes as
An+1 = An + πδ2

n�R2 − 2π1/2δn�RA
1/2
n . Making the same assumptions as in the

previous case, the final result is

Ṫ = −d(t)T 1/2, (33)

where d(t) = 2π1/2σ 1/2cδ(t), and δ(t) a function which takes into account the
deviations from Eq. (31) due to the change in morphology and connectedness at
each step. In the results we show that these deviations due to a complex morphology
are small for the connected tumors here examined. Therefore, the parabolic decay
represented in Eq. (31) works well at reproducing the decay of the tumors in the
limit in which they are completely surrounded by immune cells, as long as they are
not formed by disconnected pieces and their shape does not differ too much from a
spherical shape. An explicit relation between δ(t) and the geometrical properties of
the tumor can be derived. It is given by the expression

δ(t) =
√

L2(t)

4πA(t)
, (34)

where L(t) is the length of the boundary of the tumor, while A(t) is the total area
occupied. If the value of δ(t) does not change substantially along the process of
lysis, we can approximate the parameter as d = 2π1/2σ 1/2cδ0.
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5.2 The Effects of Morphology on the Maximum Fractional
Cell Kill

We use the same cellular automaton model to inspect three different morphologies
of two-dimensional tumors: a spherical tumor, a papillary tumor, and a filamentary
tumor. The tumors generated with the cellular automaton are shown in Fig. 11. We
place these three tumors inside a circumference and, for each of them, we repeat
the experiments for several initial conditions. To this end, we fill with immune

Fig. 11 Three tumors grown by iteration of the cellular automaton. A grid of n × n cells, with
n = 300 has been used. We disregard necrosis and motility of tumor cells by setting the parameters,
θnec = 0 and θmig = ∞. In all the three cases λM = 10. (a) A spherical tumor obtained for
parameter values α = 2/n, λN = 25, and θdiv = 0.3. (b) A papillary tumor obtained for parameter
values α = 4/n, λN = 200, and θdiv = 0.3. (c) A filamentary tumor obtained for parameter values
α = 8/n, λN = 270, and θdiv = 0.3. These three tumors have grown up to approximately 9100
cells (figure obtained from Ref. [45])
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Fig. 12 How the initial conditions are set to investigate the lysis of the different tumors. The
tumors are inscribed in a circumference and immune cells are placed in the surroundings for
different angles γ . Since those cells that are not close to the tumor outer layer become inactivated
during the first steps of the CA, small values of the angle correspond to the case shown in Fig. 8a,
while the case γ = 2π is related to Fig. 8c (figure obtained from Ref. [45])

cells the remaining space of the circumference for increasing angles, as depicted in
Fig. 12. The time series representing the decay of the tumors are shown in Fig. 13.
As explained in previous sections, we see a tendency towards linearity as the tumor
is initially less covered with immune cells. Even the curvature is inverted for such
small values of the initial angle, but this is surely a consequence of recruitment in the
cellular automaton. Note also that the stochastic effects are more noticeable when
the number of initial effector cells is low.

The cases in which the tumors are totally covered with immune cells as initial
conditions (γ = 2π ) are fitted to the equation Ṫ = −dT ν and also to Ṫ = −dT , to
elucidate which type of decay represents better the tumor cell lysis. The parameters
are obtained through a least-square fitting method, and are listed in Table 5. As it
can be seen in Fig. 14, the exponential decay is much worse at describing the time
evolution of this dynamical system. Moreover, the value of ν that gives the best fit
to the power-law function is equal to one half for the papillary and the filamentary
tumors, and practically one half for the spherical case. The agreement is striking
and, as previously predicted, the fluctuations are higher when the tumors exhibit a
more complex geometry. Concerning the parameter d, we see that more branchy
tumors display higher values. The explanation for this behavior is evident, since the
higher it is the contact surface of a tumor, the more cells that can interact with it and
the faster the speed at which it is lysed. This is in conformity with results obtained in
the previous sections, where it was claimed that tumors with a spherical symmetry
are harder to lyse. The crucial concept here is the accessibility that the immune cells
have to the tumor cells.

Thus, we have demonstrated that in the limit in which a solid tumor is
totally covered with immune cells, the velocity at which it decays is slower than
exponential. This fact requires modifying Eq. (27) so that such limit is attained. The
mathematical arguments previously employed can be perfectly extended to tumors
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Fig. 13 The decay of the three tumors for different initial conditions. The immune cells are placed
in the neighborhood of the tumors for values of the angles γ = {π/6, π/2, π, 3π/2, 2π} and we
iterate the CA. The CA actions corresponding to the lymphocytes have parameter values θlys = 0.3,
θrec = 0.5, and θinc = 0.5. The tumor cells dynamics has been frozen, and the parameters related
to the diffusion of nutrients are the same as those appearing in previous figures. (a) The decay
of the spherical tumor for the different initial conditions. (b) The decay of the papillary tumor
for the different initial conditions. (c) The decay of the filamentary tumor for the different initial
conditions. As less immune cells are placed in the vicinity of the tumors as initial conditions (from
γ = 2π to γ = π/6), the parabolic decay transforms into a more or less linear type of decay
(figure obtained from Ref. [45])

that live in a three-dimensional space. If we recall that saturation of the velocity
must be attained in the limit of infinitely big tumors, we propose that the kinetics of
tumor lysis in the cell-mediated immune response to tumor growth is given by

Ṫ = −d
Eλ

sT ν + Eλ
T ν, (35)
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Table 5 The parameter values of the power-law decay Ṫ = −dT ν and the exponential decay
Ṫ = −dT , to which the data of the cellular automaton are fitted by means of a least-squares fitting
method

Power-law decay Exponential decay

Parameter Units Value Units Value Description

d(s) cell1/2 h−1 1.34 h−1 0.04 Rate of decay

d(p) cell1/2 h−1 3.36 h−1 0.10 Rate of decay

d(f) cell1/2 h−1 7.31 h−1 0.21 Rate of decay

ν(s) 0.49 Exponent

ν(p) 0.50 Exponent

ν(f) 0.50 Exponent

We see that as the geometry of the tumor changes from spherical (s) through papillary (p) to
filamentary (f), the parameter d increases. However, the value of ν is almost the same for the three
geometries (table obtained from Ref. [45])

where the exponent ν depends on the dimension of the space, the morphology of
the tumor and its connectedness. For realistic, connected, and rather spherical solid
tumors we have ν = 2/3, with the 2 standing for surface, and the 3 for volume.
However, in those cases in which the tumor is very disconnected and the immune
cells are well mixed with the tumor cells, as, for instance, in hematological cancers
or solid tumors profusely infiltrated with lymphocytes, ν = 1 should be used. The
exponential decay arising in the limit Eλ

0 � sT would be then interpreted from
a stochastic point of view, regarding the process as a Poisson process. Indeed, not
all the immune cells have the same capacity to recognize a tumor cell, neither they
act synchronously. In this case, the decay of a tumor does not differ substantially
from other types of decay phenomena, as, for example, one-decay processes in
radioactivity. For intermediate situations, the exponent ν will take a value between
2/3 and 1.

6 Dynamics of Tumor–Immune Aggregates

To conclude this study we use a hybrid cellular automaton to investigate the
dormancy of a tumor mass, mediated by the cellular immune response. Even though
an interesting work has been previously carried out in this context [40], the present
study includes new features, which we believe makes it more realistic, permitting
a correlation between the results and the theory of immunoedition. Mainly, the
time scale of the cytotoxic cell action (about 1 h) differs from the time scale of
tumor cell proliferation (about 1 day). Secondly, our cellular automaton includes
a new parameter that allows us to represent immunosuppressed environments.
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Fig. 14 The decay of the three tumors for γ = 2π . We have iterated the cellular automaton in
the limit in which the tumors are totally covered with immune cells. The results are fitted to a
power-law function Ṫ = −dT ν , shown in red, and an exponential decay Ṫ = −dT , shown in
blue, to elucidate which type of decay represents better the velocity with which the tumors shrink.
(a) The decay of the spherical tumor. (b) The decay of the papillary tumor. (c) The decay of the
filamentary tumor. In all the cases a power-law function with an approximate value of ν = 1/2 fits
much better the results of the CA. Therefore, the decay is parabolic. The exact values are listed in
Table 5 (figure obtained from Ref. [45])

The exploration of different immunological scenarios enables the discussion of a
possible dynamical origin of tumor dormancy and the sneaking through of tumors,
as originally proposed by Kuznetsov et al. [31]. Before embarking on this study,
some information on the immunoediting of tumors is deserved.
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6.1 Cancer Immunoedition

Cancer immunoediting can be described by three phases: elimination, equilibrium,
and escape. The first of these three Es [52] corresponds to what has traditionally
been termed immunosurveillance [53], and involves the innate and the adaptive
immune responses. During this phase, the immune system keeps in check a tumor
cell population, successfully recognizing and destroying the majority of its cells.
However, some residual tumor cells might remain unnoticed and asymptomatic
for a long period of time, which can range from 5 years to more than 20 years.
This period of time defines a second stage, in which a small cell population is
kept at equilibrium. Finally, the phase of escape is led by some tumor cells that
might present a priori or have acquired along their evolutionary process, a non-
immunogenic phenotype.

The mechanisms through which a tumor can be maintained at low cell numbers
(i.e., dormant) are diverse. In a first approach, cancer dormancy can be generally
classified into two categories: tumor mass dormancy and cellular dormancy [54]. In
the former case, the equilibrium of a tumor is the result of a balance between cell
growth and cell death. In the latter, the cells arrest and survive in a quiescent state
until more benevolent conditions are provided by their environment. The occurrence
of tumor mass dormancy is commonly associated with two different mechanisms
[55]. The first is angiogenic dormancy, which occurs when the cells are unable to
induce angiogenesis, and therefore to recruit oxygen and other nutrients to their
location. In this manner, the proliferation rate is counterweighted by elevated rates
of apoptosis. The second mechanism is the immune system response. This response
is very complex and involves many types of cells and molecules [43]. There is
evidence that the cell-mediated immune response collaborates with the humoral
immune response to promote the dormancy of tumors, and that CD8+ lymphocytes
and IFN-γ play a transcendental function in its maintenance [56].

6.2 Cellular Automata Rules Revisited

Most of the CA rules for the tumor and the cytotoxic cells are the same as
before. However, one more action concerning the immune cells is included and
the algorithm is modified to allow for the coevolution of both cell populations.
Such an action corresponds to a constant input of cytotoxic cells into the domain
(Fig. 15). Even though we do not make a distinction between the innate and the
adaptive immune responses, this constant source of immune cells allows to model
the presence of NK cells in a tacit manner. These cells are placed at random in
the domain, at points that are not occupied by tumor cells. Every such grid point
is examined and, if a probabilistic condition holds, the healthy or dead cells that
might occupy it are replaced with an immune cell. An immune cell is placed in the
background with probability
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Fig. 15 The cellular
automaton. A grid
representing the cellular
automaton during the growth
of a tumor in the presence of
immune effector cells. The
tumor cells are shown in red
and the immune cells appear
in blue. The remaining spots
are occupied by healthy or
dead cells. The vertical black
stripes in the boundary of the
square domain represent the
vessels from which nutrients
diffuse. Periodic boundary
conditions are considered in
the remaining part of the
boundary. Some immune
cells are scattered in the
region, and some other form
clusters that advance reducing
the tumor (figure obtained
from Ref. [47])

Pbkg = f − 1

n2

∑
i∈CA

Ei, (36)

where f is a number between 0 and 1 that represents the intensity of the input of
immune cells into the tissue. If Pbkg is greater than a randomly generated number
between zero and one, then an immune cell appears in the corresponding grid point.

Again, the algorithm starts with a domain full of healthy cells, except for a single
tumor cell placed at the center of the domain. Firstly, we let the tumor grow until it is
detected by the immune system, when it has reached some specific size Tdet . During
this period of growth, each CA step corresponds to 1 day. Each iteration begins with
the integration of the reaction–diffusion equations, using a finite-difference scheme
and a successive overrelaxation method. Then all the tumor cells are randomly
selected with equal probability, and the CA rules are applied. As in previous works
[41], every time an action takes place, the reaction–diffusion equations are locally
solved in a neighborhood with size 20 × 20 grid points. When the time of detection
is reached, the immune cells start to evolve. Now the CA step corresponds to 1 h,
and during the next twenty-three steps, only the immune cells are computed. First,
the background source of immune cells is executed. Then, the reaction–diffusion
equations are solved and all the immune cells are randomly selected. For each
immune cell, after applying the CA rules, the nutrients are computed in a local
region, in exactly the same manner as before. Every twenty-three iterations, the
tumor cells are checked and the tumor cell rules are applied as previously described,
before immune detection. The algorithm stops when a maximum number of steps
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after the elapse of the immune response have been reached or when a tumor cell is
at a distance of two grid points from its boundary.

6.3 Simulations and Results

We study the evolution of the tumor and the immune system for three different
scenarios. The first scenario is used as a reference, and it is characterized by high
levels of immune cell recruitment and negligible necrosis due to the scarcity of
nutrients in the core of the tumor masses. In the second scenario, the recruitment
levels are reduced, while the necrosis of tumor cells is enhanced in the third.
Unless specified, the remaining parameters are all the same in every case. Beginning
with one tumor cell, the tumors grow up to Tdet = 5 × 103 cells, and at this
moment the immune response triggers. In order to elucidate the effects of tumor
immunogenicity, we devise what shall be called a transient bifurcation diagram.
Given a dynamical system, a bifurcation diagram is a plot of the asymptotic values
of a particular variable against a set of values of some relevant parameter. However,
in many situations there might exist very long transients before the asymptotic
state is established. These transients are of great importance in our context, since
tumors may exhibit long periods of latency before the development of recurrence.
Therefore, we compute the number of tumor cells for the last 100 iterations of a
trajectory comprising 24,000 iterations of the CA from immune detection. Then,
these 100 points are represented on the vertical axis for different values of the
parameter θlys , which lies on the horizontal axis. If we assign to each of these
iterations a time of 1 h, we are registering the size of the tumor for approximately
the last 4 days of a period of 33 months from immune detection. We recall that
the parameter θlys codes the intrinsic ability of the immune cells to recognize
and lyse their adversaries. Higher values of this parameter correspond to more
immunodeficient environments.

6.3.1 Reference Scenario

The set of parameters for this scenario is chosen similar to previous works, in which
it has been demonstrated that they generate reasonable tumor dynamics [41, 46].
The specific values are θdiv = 0.3, θnec = 0.05, θmig = ∞, θrec = 1.0, θinc = 0.1,
λM = 10, λN = 25, and α = 2/n. Regarding the natural flow of immune cells into
the tissue, two situations are inspected for each scenario. The first corresponds to
a high input of immune cells into the tumor area. In this case a value f = 0.10 is
set, which means that approximately 10% of the background is occupied by immune
cells, if there are not too many immune cells piled up. The other has a lower input of
5%, thus f = 0.05. In the absence of immune response, the tumors display a rather
spherical shape. As we can see from the transition bifurcation diagrams shown in
Fig. 16, three different regions are clearly distinguished. In the first region, when
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Fig. 16 Transient bifurcation diagrams. Two transient bifurcation diagrams for the reference
scenario. The size of the tumor T for the last 100 h of a trajectory comprising 1000 days is plotted
against the parameter that models the immunogenicity of the tumor θlys . The size of the tumor has
been “normalized,” dividing it by the number of total grid points n2. Tumors having escaped the
region are assigned a value of T = 2.2, which is over the maximum obtained in all our simulations.
(a) A transient bifurcation diagram for a constant input of tumor cells into the domain given by
f = 0.1. (b) A transient bifurcation diagram for a constant input of tumor cells into the domain
given by f = 0.05. Three different regimes are clearly discerned. The first (1) corresponds to
the elimination of the tumors, the second (2) to abiding small tumors kept in equilibrium by the
immune cells, and the third (3) to fast growing tumors that escape the domain (figure obtained
from Ref. [47])

the immune system is effective, the tumors are completely eliminated. The second
is related to an equilibrium phase, for which tumors spend very long transients
oscillating at low cell numbers. Finally, tumors with increasing size, eventually
leaving the domain through the vessels, appear in the third region. Thus, here we
see how immunogenicity affects the fate of tumors, in accordance with the theory
of immunoedition.

To give insight into the second and the third regions, time series have been
computed (see Figs. 17 and 18), until the tumor escapes. Initially, the tumors grow
in the absence of immune response, and then the immune cells start to reduce them
or, in the worst case, delay their growth. Depending on how effective the immune
cells are, longer or shorter transients follow this reduction phase. The asymptotic
dynamics is always the same: if the tumors are not totally eliminated by an efficient
immune system, they eventually escape from the region. These two attractors are
reminiscent of those appearing in reference [31]. As shown in Fig. 17a, the length
of the transients in the second region, which are of around 12 years, clearly indicate
a phase of prolonged tumor mass dormancy. During the period of dormancy the
immune system keeps the tumor at low cell numbers and randomly displaces its
disconnected pieces until one of them reaches the vessels. In the third region,
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Fig. 17 Asymptotic dynamics and tumor escape. Three time series of the tumor size for the
reference scenario are plotted. The constant input of immune cells to the domain is f = 0.1. The
size of the tumors is registered until they escape the domain through the vessels. The corresponding
tumors at escape are shown below. The color bar represents the number of tumor cells at a grid
point. For clearness, the immune cells at a grid point are simply colored in dark blue. The dead
cells are represented in light blue. (a) A long-lived tumor is kept at equilibrium for θlys = 90. This
is an example of immune-mediated tumor mass dormancy. (b) The corresponding small tumor at
escape. (c) A less immunogenic tumor θlys = 106 is kept at equilibrium, but for a considerably
shorter time. (d) The corresponding tumor at escape, which is noticeably bigger compared to the
previous case. (e) A tumor that is barely immunogenic for θlys = 140. Now the tumor escapes
very rapidly and exhibits the largest size, although the immune system delays its growth. (f) The
corresponding tumor at escape (figure obtained from Ref. [47])

transients are found again, but they are shorter (less than 4 years) and the tumors at
escape have bigger sizes. As predicted by Kuznetsov et al. [31], the duration of the
transients is stochastic. This randomness is evident from the transient bifurcation
diagrams, since after 33 months of tumor–immune struggle, some tumors have
escaped and some others have not, disregarding how immunogenic they are. When
the immune system barely responds to the tumor, we see very big tumors occupying
the domain and escaping rapidly, as depicted in Fig. 17e.

Interestingly, the equilibrium region shrinks as the normal input of cells into
the tissue reduces from f = 0.1 to f = 0.05. As it is shown in Fig. 18, the
oscillations during the equilibrium phase are more pronounced. This makes the
equilibrium more unstable and suggests that having cells scattered all over the
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Fig. 18 Asymptotic dynamics and tumor escape. Two time series of the tumor size and the
corresponding tumors at escape are plotted for the reference scenario. The constant input of
immune cells to the domain is now smaller f = 0.05. (a) A long-lived tumor is kept at equilibrium
for θlys = 67. Now the oscillations of the tumor size during the equilibrium are higher. (b) The
corresponding tumor at escape, which again is small. (c) Another tumor θlys = 89 that is slightly
reduced and kept at a constant size for a year, but that soon after escapes. (d) The corresponding
tumor at escape (figure obtained from Ref. [47])

domain is important for the maintenance of dormancy. Probably, the reason is
that these spread immune cells keep the tumor at a small size, not allowing its
overgrowth in any specific direction.

We have also explored the importance of the tumor size at detection by reducing
this size to 5 × 102 cells. The results are depicted in Fig. 19 and resemble very
much those shown in Fig. 16. There is no hint of a sneaking through mechanism
in our model. According to the definition given by Gatenby et al. [57], sneaking
through is the preferential take of tumors after small size inocula to a similar degree
with that seen with large size inocula, compared to the rejection of medium sized
inocula. More clearly put, small and big tumors escape immune surveillance, while
intermediate do not. Such phenomenon has not been observed in the present case
for other values of the tumor size at detection. However, we do not discard it, since
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Fig. 19 Transient bifurcation diagrams. Two transient bifurcation diagrams for the reference
scenario. Now a smaller tumor size at detection Tdet = 500 has been considered. (a) A transient
bifurcation diagram for a constant input of tumor cells into the domain given by f = 0.1. (b) A
transient bifurcation diagram for a constant input of tumor cells into the domain given by f = 0.05.
The effects of tumor size at detection does not introduce significant changes in the dynamics (figure
obtained from Ref. [47])

motility of tumor cells has not been included in this first investigation, and might be
crucial for these cells to escape.

Finally, even though the tumors here inspected are genetically homogeneous and
no evolutionary process is really taking place in our model, the transient bifurcation
diagrams insinuate how the sculpting of the phenotype occurs, moving from the first
region to the second, and then to the third. In fact, a similar cellular automaton can be
used to explore the impact of heterogeneity and how the process of immunoedition
takes place. It suffices to consider that the immune cells intrinsic cytotoxicity,
represented by the parameter θlys , depends on the tumor cell.

6.3.2 Low Recruitment Scenario

We now evaluate the impact of the recruitment of immune cells to the domain of the
tumor. For this purpose, we reduce the value of θrec from 1 to 0.35. Our interest in
this parameter is due to the fact that, in many occasions, the recruitment of cells to
the site of the tumor might be very complicated. The recruitment of immune cells is
a very complex process, at least from a physical point of view. The extravasation of
leukocytes requires an initial contact between these cells and the endothelial cells,
which depends on adhesion molecules. After adhesion to the walls of the vessels,
the immune cells traverse them through diapedesis, which again relies on several
cytokines. Finally, chemokines bias their random walks to the tumor location [58].
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Fig. 20 Transient bifurcation diagrams. Two transient bifurcation diagrams for the low recruit-
ment scenario θrec = 0.35. (a) A transient bifurcation diagram for a constant input of tumor cells
into the domain given by f = 0.1. (b) A transient bifurcation diagram for a constant input of tumor
cells into the domain given by f = 0.05. A decrease of the immune cell recruitment value reduces
the window of equilibrium. Thus large periods of dormancy require significant levels of immune
cell recruitment (figure obtained from Ref. [47])

Thus we expect this parameter to exhibit great fluctuations, depending on the tissue
location and other factors, as, for instance, the degree of inflammation.

The effects of decreasing the recruitment parameter are shown in Fig. 20. As
expected, the elimination region shrinks, while the escape region widens. A dramatic
reduction of the dormancy window is observed in both plots. When f = 0.1, the
window still exists, but for f = 0.05 it has even disappeared. These results suggest
that a relatively tight balance between lysis and growth is required to maintain the
dynamical equilibrium of the tumor.

Note that, as previously proposed, the equilibrium of the tumor implies that
reduction must occur in an isotropic manner. If a region of the tumor grows over the
immune system capacity, then a soon overgrowth and a consequent escape would
be expected. In the present model, this relies on a positive feedback mechanism
between the natural input of immune cells and their recruitment. The more cells
there are spread in the domain, the more chances for an immune cell to lethally hit a
tumor cell. When this occurs, recruitment proceeds, favoring the local aggregation
of immune cells at this site of the tumor and giving rise to satellites [40]. This
isotropy can be appreciated in the equilibrium represented in Figs. 17b and 18b, as
opposed to those situations that lie in the third region, represented in Figs. 17d, f
and 18d.
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Fig. 21 Transient bifurcation diagrams. Two transient bifurcation diagrams for the high necrosis
scenario θnec = 1.0. (a) A transient bifurcation diagram for a constant input of tumor cells into the
domain given by f = 0.1. (b) A transient bifurcation diagram for a constant input of tumor cells
into the domain given by f = 0.05. The window of equilibrium has been reduced again, which
suggests that long-lived periods of dormancy are based on a delicate equilibrium between the
proliferation rate of the tumor and its lysis by the immune system (figure obtained from Ref. [47])

6.3.3 High Necrosis Scenario

Solid tumors exhibit sometimes necrotic cores due to the scarcity of nutrients.
Other chemical species can be represented with the present model (e.g., growth
factors) and, if desired, necrosis can be regarded as apoptosis, at least to some
extent. Therefore, we now inspect the effects of cell death in the model. To this
end, we increase the value of θnec from almost zero to 0.5. Obviously, the increase
of necrosis facilitates the labor of the immune system. As shown in Fig. 21, the
elimination region enlarges substantially, compared to the reference case. Also in
the equilibrium region, lower tumor cell numbers are seen before the escape of
the tumor. More importantly, the equilibrium window, which has been associated
with large periods of tumor mass latency, is practically imperceptible for f = 1.0
and has completely vanished for f = 0.05. We have again computed time series,
showing that transients occur in the equilibrium region, sometimes as long as those
appearing before in the equilibrium, but generally shorter (see Fig. 22). In fact, the
equilibrium window and the escape zone drawn in Fig. 21a overlap. It seems that
the equilibrium region appearing in the reference scenario has been swept under
the elimination region. Once more, the results confirm the requisite of a relatively
delicate balance between the mechanisms that maintain the cytotoxic destruction
of the immune system and the growth of the tumor, in order to keep it at low cell
numbers for long periods of time.
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Fig. 22 Asymptotic dynamics and tumor escape. Two time series of the tumor size for the
reference scenario are plotted. The constant input of immune cells to the domain is now smaller
f = 0.05. The size of the tumors is registered until they escape the domain. The tumors at escape
are shown beside. Again, the immune cells appear in dark blue, while the tumor cells range from
red to white. The dead cells, which also appear inside the tumor, are now represented in green.
(a) A quite long-lived tumor is kept at equilibrium for θlys = 92. (b) The corresponding tumor at
escape. (c) Another tumor θlys = 118 that is barely reduced and kept at a constant size for less
than half a year, and then escapes rapidly. (d) The corresponding tumor at escape (figure obtained
from Ref. [47])

7 Conclusions

In the present chapter we have explored the dynamics of tumor growth in the
presence of an immunological response. This formidable task would have been
much more difficult without the aid of cellular automata, which are discrete spatio-
temporal models that allow to represent complex biological systems. The main idea
is to use this sophisticated modelling framework to perform in silico experiments,
which allow to reproduce the tissue environment as an open system. Of course, and
just as it occurs with in vitro experiments, the design of these models relies upon
several hypotheses, which must be thoroughly debated.
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Using a hybrid cellular automaton, we have shown that cell crowding is a
plausible candidate that can explain the saturation of the fractional cell kill of
tumor cells by their cytotoxic opponents observed in immunological assays on the
lysis of tumors. This limitation depends on the morphology of the tumor, insofar
as geometry restricts the access of effector cells to tumor cells. In theory, those
tumors growing with “spherical symmetry" will be the harder to lyse, because more
layers of tumor cells have to be erased to reach the cells at the center. Nevertheless,
we recall that the process of T cell recruitment from circulation to the tumor site
is complex, involving several steps [59]. This implies that the crowding might
happen before contact with the tumor occurs, as, for example, during adhesion to the
endothelium. In such a case, a relation between the parameters in the fractional cell
kill and the shape of the tumor cannot be established. Furthermore, we have explored
the decay laws that govern the destruction of the tumor for the extreme situations
in which the immune response is too weak or very strong. We have observed that,
when there is no infiltration, the decay ranges from a linear decay to a parabolic
decay. The linear decay corresponds to small values of the effector-to-target ratio
as initial conditions, while the parabolic decay represents a tumor that is widely
surrounded by immune cells. Intermediate situations are governed by Eq. (35).

The significance of this new mathematical function can be described as follows.
The rate at which a tumor as a whole is destroyed by a population of immune cells
increases as the both cell populations increase. However, at some point, saturation
is attained. The particular functional response is given by a Hill function depending
on both cell populations, in a quite symmetrical way. In the case of the effector
cells, this extrinsic barrier to the lytic capacity is reflected in the parameters d and
λ. These parameters depend on the geometry of the tumor. Less spherical tumors
correspond to higher values of both parameters. Interestingly, the values of λ are
expected to be between zero and one, as suggested by the experiments and the
simulations. From the enzymatic kinetics point of view, this can be interpreted as
non-cooperative binding. Certainly, if we pay attention to the process of lysis only,
the best that an immune cell can do to another is not to interpose between itself
and their adversaries. Of course, cooperative effects exist, as the recruitment term
exemplifies. Quite the opposite, as the intrinsic lytic capacity of cytotoxic cells is
decreased, saturation gradually vanishes. This capability is inversely proportional
to the parameter s. On the other hand, the saturation of the lytic velocity due to
a tumor of increasing size is reflected in the parameters ν, which depends on the
degree of infiltration or, if desired, on its topology. More connected tumors have
smaller values of this parameter, ranging from one to two-thirds (in the case of
three-dimensional tumors).

Finally, we have studied the transient and asymptotic dynamics of a cellular
automaton model for tumor–immune interactions. We have shown that, depending
on the immunogenicity of the tumor, the model furnishes three main types of
dynamics, which are in close relationship with the three phases of the theory of
immunoedition. Importantly, we have shown that a dynamical equilibrium between
the tumor can occur for long periods of time, as proposed by Kuznetsov et al.
[31]. However, after inspection of the parameter space, our model suggests that
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this equilibrium is quite fragile, since it is based on an adjusted balance between
the mechanisms that stimulate the immune response and tumor cell proliferation.
This also occurs in the model presented by these authors [31], since considerable
levels of recruitment are required to sustain dormancy. Furthermore, the infiltration
of the immune cells into the tumor mass has been neglected in the present work. We
also recall that the piling of immune cells in this study has been restricted, to speed
the extensive computations. Presumably, these effects would make the equilibrium
much more delicate. Nevertheless, both models clearly demonstrate that a state of
tumor mass dormancy mediated by the immune system is possible. It is the length
of this dormant period that can be safely questioned. Thus, we conclude that, even
though tumor mass dormancy can result from the cell-mediated immune response to
tumor growth, long periods of dormancy, as commonly found in recurrent metastatic
tumors [54, 55], are not likely to arise by this single mechanism. It is therefore
pertinent to ask ourselves if the role of the cell-mediated immune response in the
promotion of the dormancy of a tumor mass is rather to synergize with other types
of more efficient mechanisms, as, for example, cellular dormancy.
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