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Abstract Classical approaches to analyzing dynamical systems, such as bifurcation
analysis, can provide invaluable insights into underlying structure of a mathematical
model and the spectrum of all possible dynamical behaviors. However, these models
frequently fail to take into account population heterogeneity, which, while critically
important to understanding and predicting the behavior of any evolving system,
is a common simplification that is made in the analysis of many mathematical
models of ecological systems. Attempts to include population heterogeneity fre-
quently result in expanding system dimensionality, effectively preventing qualitative
analysis. Reduction theorem, or hidden keystone variable (HKV) method, allows
incorporating population heterogeneity while still permitting the use of classical
bifurcation analysis. A combination of these methods allows visualizing evolu-
tionary trajectories and making meaningful predictions about system dynamics of
evolving populations. Here, we discuss three examples of combination of these
methods to augment understanding of evolving ecological systems. We demonstrate
what new meaningful questions can be asked through this approach, and propose
that application of the HKV method to the large existing literature of fully analyzed
models can reveal new and meaningful dynamical behaviors, if the right questions
are asked.

1 Introduction

Heterogeneity is a major driving force behind the dynamics of evolving systems.
When it is heritable and when it affects fitness, heterogeneity is what makes
evolution possible [1–4]. This comes from the fact that the environment in which
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the individuals interact is composed not only of the outside world (such as
resources necessary for survival or members of other species) but also of individuals
themselves. Therefore, selective pressures that are imposed on them come both
from the environment and from each other. Furthermore, selective pressures that
individuals experience from other members of the same population will be perceived
differently depending on population composition, which in turn may be changing as
a result of these selective pressures.

In a vast majority of conceptual, and often even in descriptive mathematical
models of population dynamics, whether it be models of predator–prey interactions,
spread of infectious diseases or tumor growth, population homogeneity is the first
simplification that is made. It is not treated as homogeneity per se; rather, one
assumes that an average rate of growth or death or infectiousness is a reasonable
enough approximation if the system has already reached some kind of stabilized
state of evolutionary development. However, by ignoring population heterogeneity
in such a way, one ends up either ignoring natural selection or assuming that it has
already “done its work.” This assumption is often incorrect within the context of
such models, since natural selection may be in fact a key driver behind dynamics of
most systems that are of interest and importance.

Equation-based models are usually avoided in questions that require modeling
high levels of heterogeneity. This is a result of the inevitable increase of system
dimensionality that often accompanies attempts to account for population hetero-
geneity, to the point at which obtaining any kind of qualitative understanding of
the system becomes nearly impossible. Assuming population homogeneity, while
making systems of equations computationally and sometimes even analytically
manageable, causes the loss of many aspects of system dynamics that come from
intra-species interactions and natural selection.

Parametrically homogeneous systems can nevertheless still provide exceptionally
valuable information about the structure of the system, which can be obtained
through extensively developed analytical techniques, such as bifurcation analysis
[5]. A skillfully constructed bifurcation diagram can both reveal various possible
dynamical regimes that a system can exhibit as a result of variations in parameter
values and initial conditions, and provide analytical boundaries as functions of
system parameters. This information can then be used to construct a theoretical
framework for understanding a biological system that could never have been
obtained experimentally.

Reduction theorem, also known as parameter distribution technique, or hidden
keystone variable (HKV) method, is a method that allows building on insights
obtained from bifurcation analysis while incorporating population heterogeneity [6–
9]. It allows investigating more fully the dynamics of an evolving system while
overcoming this problem of immense system dimensionality in a wide class of
mathematical models.

This approach of course makes sense only when there exists a meaningful
research question that a parametrically heterogeneous model can help answer
(otherwise this becomes little more than a mathematical exercise).
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In what follows, we will first briefly describe this approach and the assumptions
and limitations that are associated with implementation of the HKV method. We will
then describe several examples that reveal how a combination of the classical bifur-
cation analysis techniques with the HKV method can reveal previously inaccessible
dynamical behaviors. We will conclude with a brief discussion on the possibilities
for rich dynamical behaviors that still remain to be revealed in the already existing
body of literature of fully analyzed mathematical models.

1.1 General Strategy

Assume the population of individuals is composed of clones xa, and that each
individual clone xa is characterized by parameter value a, which corresponds to
a measure of some intrinsic heritable trait, such as birth rate, death rate, resource
consumption rate, etc. The total population size is given by N(t) = ∑

a

xa(t) if

the system is discrete, and N(t) = ∫
axa(t)da if the system is continuous. Then,

since different clones can grow and die at different rates, the distribution of clones
within the population Pa(t) = xa(t)

N(t)
can change over time due to system dynamics.

Consequently, the mean value of the parameter Et[a], which now becomes a function
of time, changes over time as well.

Analysis of a parametrically heterogeneous system involves the following
steps:

1. Analyze autonomous parametrically homogeneous system to the extent possible
using well-developed analytical tools, such as bifurcation analysis.

2. Replace parameter a with its mean value Et[a], which is a function of time.
3. Introduce an auxiliary system of differential equations, which define keystone

variables that actually determine the dynamics of the system. (Note: the term
“keystone” is chosen here in parallel to the notion of keystone species in
ecology. Just like keystone species have disproportionately large effect on
their environment relative to their abundance, keystone variables determine the
direction in which the system will evolve without being explicitly present in the
original system).

4. Express the mean and variance of the distributed through keystone variables. The
mean of the parameter, which now changes over time due to system dynamics,
can now “travel” through the different domains of the phase-parameter portrait
of the original parametrically homogeneous system.

5. Calculate numerical solutions.

Exact formulation of the Reduction theorem and the theory underlying the
method can be found in [7–9]. A summary of definitions and associated notation
is provided in Table 1.
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Table 1 Definitions and notation used in the application of the HKV method

Definition Notation and explanation

Selection system A mathematical model of an inhomogeneous
population, where every individual is
characterized by a vector-parameter
a = (a1, . . . , an) that takes on values from set
A

Clone xa Set of all individuals that are characterized by
a fixed value of parameter a

Total population size N(t) N(t) = ∑

A

xa if the number of possible values

of a is finite and N(t) = ∫
Axa(t)da if it is

infinite

Growth rate of a clone xa
dxa(t)

dt

Fitness of an individual within the population dxa(t)
dt

/xa(t)

Distribution of clones within the population Pa(t) = xa(t)
N(t)

Expected value of a distributed parameter For all expressions of the type
∫
A f (a)xada

N(t)
,

standard notation Et[f ] of the expected value
is used

1.2 Advantages and Drawbacks of the Reduction Theorem

One of the most important properties of this method is that it allows reducing an
otherwise infinitely dimensional system to low dimensionality.

However, as with any method, there are limitations to the application of the
Reduction theorem. Most importantly, the transformation can be done (with some
generalizations) only to Lotka–Volterra type equations of the form x(t)

′ = x(t)
F(t, f (Et[a]), where x(t) is a vector, a is a parameter or a vector of parameters
that characterize individual heterogeneity within the population, and where the
form of f (Et[a]) is system-specific. It can also increase the dimensionality of the
original parametrically homogeneous system at a possible cost of auxiliary keystone
equations (although these would typically still be on the order of only one or two
extra equations, depending on the original system). Finally, the resulting system is
typically non-autonomous, so one cannot perform standard bifurcation analysis and
has to resort to calculating numerical solutions.

When studying numerical solutions of such parametrically heterogeneous sys-
tems, one can observe trajectories that could not have been observed in a paramet-
rically homogeneous systems. This phenomenon occurs because the expected value
of the parameter “travels” through the phase-parameter portrait, causing the system
to undergo qualitative phase transitions as the now dynamic parameter crosses
bifurcation boundaries. Now, if there exists a complete bifurcation diagram for the
specific parametrically homogeneous model, one can identify what boundaries have
been crossed during system evolution.
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One can now not only track the distribution of different clones within the
population as the system evolves but also observe how different initial distributions
of clones in the population can lead to different trajectories. One can therefore
capture effect of sensitivity to initial population composition both to changes in
intrinsic properties of individuals (such as birth or death rates) or to changes in the
external factors (environment). This results from the fact that different clones have
different fitness depending on initial population composition, since the selective
pressures that are imposed on them result not only from the external environment
but from surrounding clones as well.

Therefore, the HKV method allows for equation-based models to generate novel
behaviors by incorporating all the properties of a complex system [2] without
significantly increasing system dimensionality. Notably, unlike agent-based models,
which are the standard computational tool for studying complex systems, the HKV
method does not allow incorporating spatial heterogeneity.

Next, we will describe several examples of when application of the two methods
coupled with a meaningful research question allowed answering questions and
visualizing previously unobserved evolutionary trajectories.

Example 1
Sustainability: Using a parametrically heterogeneous model to study resource
depletion, transitional regimes, and intervention strategies.

In this first example, we focus on a model of consumer interaction with shared
resources that are critical for population survival. In this model, each consumer is
characterized by their own value of parameter c, which determines the degree, to
which the consumer depletes or restores shared resources. The model was initially
proposed in [10] in the context of niche construction, and was later expanded in
[11]. It contains two coupled differential equations, written as follows:

xc(t)︸︷︷︸
consumers

′ = rxc(t)︸ ︷︷ ︸

population
growth rate

⎛

⎜
⎝

c︸︷︷︸
consumption

− N(t)

kz(t)
︸ ︷︷ ︸

dynamic carrying capacity

⎞

⎟
⎠

z(t)′
︸︷︷︸

shared resource

= γ − δz(t)
︸ ︷︷ ︸

natural
resource turnover

+ e
N(t) (1 − c)

z(t) + N(t)
︸ ︷︷ ︸

change in resource caused by consumers
(depletion if c > 1, restoration if c < 1)

,

(1.1)

where N(t) = ∑
Axc(t) is the total population size over all possible values of

parameter c. As one can see, it is assumed that the population grows according
to the logistic growth function with a dynamic carrying capacity, determined by
the shared resource z(t). The consumers can either deplete the shared resource, or
contribute to it, depending on the value of parameter c: c > 1 results in resource
depletion, while c < 1 results in its restoration. The resource z(t) also has a natural
turnover rate, which can allow for sustainable coexistence of consumers with the
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resource. However, since increase in growth rate with respect to parameter c creates
an incentive for consumers to maximize resource consumption in the short term,
this is likely to lead to destruction of shared resources, a notion that has been known
as “the tragedy of the commons” [12–14]. Situation when survival of the population
depends on the over-depleted resource is known as “evolutionary suicide.” It occurs
when short-term increases in fitness due to resource overconsumption lead to
eventual destruction of the shared resource and the population’s extinction [15, 16].

Several questions can be asked of this model, such as:

1. How will such a system behave depending on the number of over-consumers in
it? What are the possible dynamical regimes that such a system can realize as it
is heading for resource exhaustion and eventual population collapse?

2. Can we identify transitional regimes that can serve as warning signals of
approaching collapse?

3. What, if any, intervention measures could be implemented to prevent the tragedy
of the commons and possibly even evolutionary suicide?

Answering these questions requires a combination of both classical bifurcation
analysis and the HKV method that allows visualizing evolutionary trajectories as
the system evolves over time.

Question 1
How will such a system behave depending on the number of over-consumers in it?

Answering this question can be achieved through conducting stability and bifur-
cation analysis, as has been done in [11]. In this work, we progressively increased
the value of parameter c and observed a series of dynamical regimes, ranging from
sustainable coexistence with the common resource with ever decreasing domain of
attraction, to sustained oscillatory regimes, to population collapse due to complete
depletion of the common resource.

The results are summarized in Fig. 1. In domain 1, when the parameter of
resource (over)consumption is small, the shared carrying capacity remains large,
successfully supporting the entire population, since no individual is taking more
resource than they replenish. In domain 2, a parabolic sector appears near the
origin, decreasing the domain of attraction of the nontrivial equilibrium point A.
The population can still sustainably coexist with the resource even with moderate
levels of overconsumption but the range of initial conditions, where it is possible,
decreases. As the value of c is further increased, the range of possible initial
conditions that allow sustainable coexistence with the common resource decreases
and is now bounded by an unstable limit cycle, which appears around point
A through a catastrophic Hopf bifurcation in domain 3, and via “generalized”
Hopf bifurcation in domain 6. Finally, in domains 4 and 5, population extinction
is inevitable due to extremely high overconsumption rates unsupportable by the
resource.
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Fig. 1 Bifurcation diagram of System (1.1) in the (γ , c) and (N, z) phase-parameter spaces for
fixed positive parameters e and δ. The nontrivial equilibrium point A is globally stable in domain
1; it shares basins of attraction with equilibrium O in domains 2 and 3. The separatrix of O and the
unstable limit cycle that contains point A serve, correspondingly, as the boundaries of the basins
of attraction. Only equilibrium O is globally stable in domains 4, which also contains unstable
nontrivial A, and 5, which contains the elliptic sector. Domain 6 exists only for δ > 5 + √

24,
where the stable limit cycle that is in turn contained inside an unstable limit cycle shares basins
of attraction with equilibrium O. Boundaries between domains K, S, H, Nul, C correspond,
respectively, to appearance of an attracting sector in a neighborhood of O, appearance of unstable
limit cycle containing A, change of stability of equilibrium A via Hopf bifurcations, disappearance
of positive A, and saddle-node bifurcation of limit cycles. The figure is adapted from Fig. 4 in [11]

Question 2
Can we identify transitional regimes that can serve as warning signals of approach-
ing collapse?

Answering this question will require introducing population heterogeneity into
the model to allow us to visualize evolutionary trajectories. As it stands, in the
parametrically homogeneous case, analyzed in [11], the parameter value c is always
a constant, and therefore, the population will always remain in the corresponding
domain of Fig. 1.

However, let us introduce a keystone variable q(t), such that

q(t)′ = N(t)

kz(t)
.

Then,

xc(t)
′ = rxc(t)(c − q(t)′).
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Consequently,

xc(t) = xc(0) = xc(0)ect−q(t),

and thus

N(t) =
∫

A
xc(t)dc = N0e

−q(t)

∫

A
ectPc(0)dc = N0e

−q(t)M0(t),

where Pc(0) = xc(0)
N(0)

and M0(t) = ∫ ∞
0 ectPc(0) is the moment generating function

(mgf) of the initial distribution of clones within the population. The expected value
of parameter c can then be calculated as

Et [c] =
∫

A
cPc(t)dc =

∫

A
cPc(0)

etc

M0(t)
dc = M0(t)

′

M0(t)
.

The final system of equations thus becomes

N(t)′ = N(t)

(

Et [c] − N(t)

kz(t)

)

z(t)′ = γ − δz(t) + e
N(t)

(
1 − Et [c]

)

z(t) + N(t)
,

(1.2)

where Et[c] is determined by the moment generating function of the initial distri-
bution of clones in the population, as are consequently the dynamics of the entire
system. Note that in comparison to the parametrically homogeneous System (1.1),
in the parametrically heterogeneous System (1.2) the fixed value of the parameter
c has been replaced by its expected value at each time instant t. It is easy to verify
that the rate of change of Et[c] is equal to the variance of c at each time moment
t in accordance to Fisher’s fundamental theorem. Therefore, as the system evolves
with time, the expected value of c will also change with each time step, causing it to
“travel” through the phase-parametric portrait. A full analysis of this system, with
all the derivations and proofs, was done in [11].

As an example, consider Fig. 2, where the initial distribution for this model
was taken to be truncated exponential, allowing for different maximal values of
parameter c. The panels on the left depict the dynamics predicted by a parametrically
homogeneous system, while the panels on the right depict the dynamics of a
heterogeneous system.

Firstly, one can clearly observe the qualitative differences in predictions for
population size and resource dynamics over time depending on the degree of
population heterogeneity: a heterogeneous system survives longer, since it contains
both over-consumers and under-consumers, with the latter delaying the collapse of
the shared resource by “subsidizing” the former.

Secondly, as one can see for the case, when the initial distribution of parameter
c ∈ [0 2.33] (red dashed line), the system does in fact exhibit several transitional
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Fig. 2 Comparison of trajectories of Systems (1.1) and (1.2) for different values of parameter c or
range of possible values of c, respectively. As one can see, while both parametrically homogeneous
and heterogeneous populations can go extinct due to the exhaustion of common resource by
over-consumers, time to extinction of a parametrically heterogeneous population is expected to
be much larger. Moreover, in a parametrically heterogeneous system one can sometimes observe
a transitional oscillatory regime preceding collapse, which is not observed in a parametrically
homogeneous system. This figure is adapted from Fig. 5 in [11]

regimes as it goes through a period of growth through a period of seeming stability,
to an oscillatory regime, which precedes population collapse. A closer look at this
system in Fig. 3 reveals that during this period of apparent stability, the expected
value of parameter c increases (Fig. 3c), revealing the changes in population
composition that will lead to its eventual collapse.

It is not always clear that system collapse is approaching, and so one has to
learn to recognize early warning signals, such as increased flickering and data
auto-correlation [17–19] in order to try and prevent the tragedy of the commons.
Application of the HKV method to relevant systems of ODEs allows to visualize
exactly how the system passes through these dynamical regimes as it evolves. One
can see that while changes in population size and resource over time may seem to
give no cause for alarm, the mean value of the parameter of overconsumption may
signal trouble: the system will be evolving towards maximizing c, and as soon as
the buffer capacity of the resource (in this case it is proportional to natural resource
restoration and decay rates) is exhausted, both the population and the resource
collapse.

Notably, in [19] Dakos et al. analyzed eight ancient abrupt climate shifts and
showed that in each case they were preceded by a characteristic slowing down
of fluctuations before the actual shift, similarly to behaviors predicted in Fig. 2,
suggesting that even a relatively simple parametrically heterogeneous model can
provide meaningful results and even qualitative, if not quantitative, predictions.
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Fig. 3 System [9] with initial truncated exponential distribution on the interval c ∈ [0 2.5]. An
example of what transitional regimes the system can go through before the population crashes,
depicting (a) trajectories for the total population size N(t), (b) total amount of renewable resource
z(t), (c) expected value of the parameter c, and (d) the change over time in distribution of various
clone types within the population. Initial conditions fall within the parameter range of domain 6
of the phase-parameter portrait of the non-distributed system (Fig. 1). Since the rate of natural
resource decay is high, it takes more time even for the most efficient consumer to “get to it,” and so
the population survives longer, and the transitional regimes are more evident. This figure is adapted
from Fig. 7 in [11]

Question 3
What, if any, intervention measures could be implemented to prevent the tragedy of
the commons and possibly even evolutionary suicide?

In order to address this question, we can introduce a punishment/reward function
that can affect individuals in the population based on the value of parameter of
overconsumption c. The updated system of equations would look as follows:

xc(t)︸︷︷︸
consumers

′ = rxc(t)︸ ︷︷ ︸

population
growth rate

⎛

⎜
⎜
⎜
⎝

c︸︷︷︸
consumption

− N(t)

kz(t)
︸ ︷︷ ︸

dynamic carrying
capacity

⎞

⎟
⎟
⎟
⎠

+ xc(t)f (c)
︸ ︷︷ ︸

punishment/reward

z(t)′
︸︷︷︸

shared resource

= γ − δz(t)
︸ ︷︷ ︸

natural resource turnover

+ e
N(t) (1 − c)

z(t) + N(t)
︸ ︷︷ ︸

change in resource caused by consumers
(depletion if c > 1, restoration if c < 1)

.

(1.3)
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This way, depending on the form of the punishment function f (c), one can try to
impose punishment on over-consumers, reward under-consumers, and hopefully be
able to maintain population composition in a range where it can sustainably coexist
with its dynamic resource.

In [20], we investigated three types of punishment/reward functions:

1. Moderate punishment f (c) = a 1−c
1+c .

2. Severe punishment/generous reward f (c) = a(1 − c)3, where the parameter a
denotes the severity of implementation of punishment on individuals with the
corresponding value of parameter c.

3. Separating punishment and reward: f (c) = ρ(1 − cη). This functional form allows
to separate the influence of reward for underconsumption, primarily accounted
for with parameter ρ, and punishment for overconsumption, accounted for with
parameter η.

We evaluated the effectiveness of these three types of punishment/reward
functions on system evolution and calculated predicted outcomes for different initial
distributions of clones within the population, which were taken to be truncated
exponential and Beta distributions. The initial distributions were chosen in such
a way as to give significantly different shapes of the initial probability density
function; in applications, they should be matched to real data, when it is available.
We observed that the intensity of implementation of punishment/reward has to differ
for different initial distributions if one is to successfully crub overconsumption, and
so in order to be able to make any reasonable predictions one needs to know the
initial composition of the affected population (see Fig. 4).

Fig. 4 The importance of evaluating the range of possible values of $c_{f}$, illustrated for
different initial distribution. Punishment function is of the type f (c) = ρ(1 − cη), where ρ = 0.6,
η = 1.2. Initial distributions are taken to be truncated exponential with parameter μ = 10, and beta
with parameters α = 2, β = 2 and α = 2, β = 5; ρ = 0.6, η = 1.2. The top row corresponds
to c ∈ [0, 3]; the bottom row corresponds to c ∈ [0, 4]. Figure adapted from Fig. 12 in [20]. The
simulations were conducted by Benjamin Morin
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We also observed that severe punishment/generous reward approach was much
more effective in preventing the tragedy of the commons than the moderate
punishment/reward function, particularly for the cases, when over-consumers were
present at higher frequencies (such as for Beta initial distributions). This comes not
only from the severity of punishment but also from the fact that moderate punish-
ment allows more time for over-consumers to replicate, and thus by the time the
punishment has an appreciable effect, the population composition had changed, and
moderate punishment will no longer be effective. So, in punishment implementation
one needs to take into account not only the severity of punishment but also the
time window that moderate punishment may provide, to over-consumers to “develop
resistance” by dominating the population. Within the frameworks of the proposed
model, moderate implementation of more severe punishment/reward system is more
effective than severe implementation of moderate punishment/reward. Complete
analysis of System (1.3) and further simulations are reported in detail in [20].

In [20], we proposed just one way to try and modify individuals’ payoffs in order
to prevent resource overconsumption—through inflicting punishment and reward
that affects the growth rates of clones directly. This approach can be modified
depending on different situations, inflicting punishment or reward based not just
on the intrinsic value of c but on total resource currently available.

To summarize, a system of two equations describing the dynamics of consumers
depleting and replenishing shared resources was simple enough to allow complete
analysis and generation of a comprehensive bifurcation diagram. However, appli-
cation of the HKV method allowed to qualitatively expand the realm of questions
that the model could answer, which could have significant practical applications,
particularly in the area of sustainability.

Example 2
Mixed strategies and natural selection.

In this example, we will explore a reformulation of the model of consumer–
resource interactions within the context of strategy selection. Specifically, we will
look at a model that deals with the question of strategies of resource allocation.

Broadly speaking, the two main strategies that can be adopted by different species
in response to different selective pressures that come from their environment are
either to invest the resources into rapid proliferation, which has been suggested to be
the preferable strategy in unstable environments, or into physiological maintenance
and increasing environmental carrying capacity at the expense of rapid proliferation,
which would allow maximizing fitness in more stable conditions [21–23]. The main
criticism of this theory came from empirical studies: however intuitive the heuristic
may seem, the adaptations that were predicted by either selective strategy were
rarely if ever observed in nature [24]. Nevertheless, there may be merit to this theory
if one focuses not on looking for pure strategies but rather explores a continuum. In
[25], we described such a situation by introducing parameter α to denote the strategy
of investing available resource solely in reproduction, and (1 − α) to denote the
strategy of investing the available resource primarily into increasing and maintaining
the physiological carrying capacity. We considered the dynamics over time of a
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population of individuals xα characterized by their particular value of “strategy”
α, which can fall anywhere within the continuum α ∈ [0, 1]. When α = 0, each

individual was assumed to grow according to the functional form r
(
c2

z
N+z

− φ
)

,

where N(t) = ∫
Axαdα is the total population size of all individuals, and z(t) is

the shared resource. As one can see, in this case shared resources z(t) are used to
increase the rate of proliferation of individuals xα . When α = 1, each individual
grows according to the logistic growth function with dynamic carrying capacity,

given by r
(
c1 − bN

kz

)
. If the individual uses both strategies with probabilities α and

(1 − α), respectively, i.e., uses some of the resource towards rapid proliferation and
some towards physiological maintenance, then the per capita growth rate of each

α-clone is given by αr
(
c1 − bN

kz

)
+ (1 − α)

(
c2

z
N+z

− φ
)

.

Shared resource z(t) is assumed to have a natural turnover rate, replenishing
naturally at some constant rate γ and decaying at a rate δz(t); it can also be
consumed or restored by all the individuals. The consumption–restoration process
is accounted for by the term e

N(t)(1−c)
z(t)+N(t)

; as the number of consumers increases, the
amount of resource will increase or decrease depending on the value of parameter
c1 for α-strategy or c2 for (1 − α)-strategy. Full derivation of the system is given in
[25].

The final model then becomes

dN(t)

dt︸ ︷︷ ︸

population

size

= rN(t)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

αr

(

c1 − bN

kz

)

︸ ︷︷ ︸

proportion of individuals

investing resource directly

in proliferation

+ (1 − α)

(

c2
z

N + z
− φ

)

︸ ︷︷ ︸

proportion of individuals investing

resource in physiological maintenance

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

dz(t)

dt︸ ︷︷ ︸

shared

resource

= γ − δz(t)
︸ ︷︷ ︸

natural resource

turnover

+ eN(t)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α (1 − c1)

N(t) + z(t)
︸ ︷︷ ︸

resource consumed/restored

by individuals investing it in

proliferation

+ (1 − α) (1 − c2)

N(t) + z(t)
︸ ︷︷ ︸

resource consumed/restored

by individuals investing it in

physiological maintenance

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(1.4)

Several questions can now be asked of such a model, such as:
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1. If one allows for the possibility of resource overconsumption, which strategy is
preferable for avoiding population collapse and consequently the tragedy of the
commons?

2. Which strategy (allocating shared resources towards rapid proliferation, or
towards slower proliferation but increased physiological and environmental
maintenance) is more likely to become dominant as a result of natural selection?

Similarly to the previous example, answering these questions will require the use
both of classical analytical methods and the HKV method.

Question 1
If one allows for the possibility of resource overconsumption, which strategy is
preferable for avoiding population collapse as a result of the tragedy of the
commons?

Answering this question, as in the previous case, can be achieved through
conducting stability analysis and in particular by evaluating how system behavior
changes with regard to changes in strategy parameter α and concurrent changes in
parameters of resource consumption c1 and c2. The obtained bifurcation diagram
(see Fig. 5) describes the possible dynamical regimes of a population that is
homogeneous with respect to α.

An important conclusion from the bifurcation analysis is that the main qualitative
regimes of behaviors and also the sequence in which they appear as the parameters
of (over-) consumption change are very similar for both extreme cases. However,
wider domains of sustainable coexistence with shared resource were identified for
the second strategy of allocating the resources towards physiological maintenance
even under increasing values of parameters of resource (over)consumption. This
suggests that at least in the case of a parametrically homogeneous system, investing
in physiological maintenance might be a more sustainable strategy.

Question 2
Which strategy (allocating shared resources towards rapid proliferation, or towards
slower proliferation but increased physiological and environmental maintenance) is
more likely to become dominant as a result of natural selection?

The answer to this question required application of the HKV method to distribute
parameter α (the details of this relatively complex transformation are given in [25]).
The resulting parametrically heterogeneous system allowed exploring the changes
in predicted evolutionary trajectories depending on the initial composition of the
population with respect to different strategies.

The results of these simulations revealed that in this system, the direction of
population evolution is extremely sensitive to initial population composition (see
Fig. 6). This suggests that even though one strategy might be preferable for a
parametrically homogeneous population, in a parametrically heterogeneous case the
direction of the evolutionary trajectory is determined primarily by initial distribution
of clones with the population. This can be interpreted as “founder effect,” when the
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Fig. 5 Bifurcation diagram of the System (1.4). (a–c) present schematically (c1, c2, α) parameter
portraits for fixed values of γ , δ, e = 1 and (d) represents the corresponding typical phase portraits.
In domain 1 there exists a nontrivial globally attracting equilibrium point Aα . Domains 2 and 6 are
the regions of bistability; in domain 2, there is a nontrivial stable node, while in domain 6 there
exists a stable oscillatory regime. In these regions population survival is conditional on the initial
population size and the initial amount of resource. In domain 3, an unstable limit cycle is formed
around the point Aα , shrinking the range of possible initial conditions that will lead to sustainable
population survival. In domain 4, point Aα is unstable, so any perturbation will lead to population
collapse. In domain 5, an elliptic sector appears, which implies that a population is bound for
extinction regardless of initial conditions. Finally, domain 0 corresponds to the case, when only
trivial equilibrium B

(
0,

γ
δ

)
is globally attractive, which is of no biological interest

initial composition of the small population determines the subsequent evolutionary
trajectory of the population over time [26].

Example 3
Oncolytic viruses

In this final example, we look at a model proposed in [27], which describes the
dynamics of cancer cells that can be infected by an oncolytic virus, i.e., a virus
that can specifically infect and kill cancer cells but leave normal cells unharmed
[28–30]. The proposed model considers two types of cancer cells, infected and
uninfected, growing in a logistic fashion. The system is described by the following
two equations:
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Fig. 6 The effects of difference in the initial composition of the population with respect to
different strategies. Different initial distributions were chosen to be (a) uniform initial distribution,
(b) truncated exponential initial distribution, with parameter μ = 1.1 (note: population crashes
after time t = 32), and (c) truncated exponential initial distribution, with parameter μ = 10.1.
Initial conditions are such as to fall within domain 1. All parameters held constant at r = 1, e = 1,
b = 1, k = 1, N0 = 0.1, c2 = 0.2, c1 = 0.6, d = 1, p = 1, φ = 0.14. One can see that the initial
composition of the population can have dramatic effects on the direction in which the population
will evolve over time. (Note: the values of µ were chosen arbitrarily for illustrative purposes). This
figure is adapted from Fig. 6 in [25]

dX

dt︸︷︷︸

uninfected

cancer cells

= r1X

(

1 − X + Y

K

)

︸ ︷︷ ︸

logistic growth to shared

carrying capacity K

− βXY

X + Y︸ ︷︷ ︸

rate of virus

transmission

dY

dt︸︷︷︸

infected

cancer cells

= r2Y

(

1 − X + Y

K

)

︸ ︷︷ ︸

logistic growth to shared

carrying capacity K

+ βXY

X + Y︸ ︷︷ ︸

rate of virus

transmission

− δY︸︷︷︸

death of

infected

cancer cells

,
(1.5)
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where X is the size of the uninfected cancer cell population; Y is the size of the
infected cancer cell population; r1 and r2 are the maximum per capita growth rates
of uninfected and infected cells, respectively; K is the carrying capacity; β is the
transmission coefficient, which may also include the replication rate of the virus;
and δ is the rate of additional infected cell death rate as caused by the virus.

The following questions can be asked and answered by this model:

1. What transitional regimes occur as the cancer cell population gains resistance to
the virus? Can we use the model to infer dynamics of evolution of resistance?

2. Why are cytotoxic therapies effective in some patients and not others?

Similarly to the previous cases, both approaches—classic bifurcation analysis
and modeling of heterogeneity—will be necessary to answer these questions.

Question 1
What are the transitional regimes that occur as the cancer cell population gains
resistance to the virus? Can we use the model to infer dynamics of evolution of
resistance?

In order to answer this question, bifurcation analysis needs to be performed. A
full bifurcation diagram can give a sense of what transitional regimes a population
goes through as it moves from the area of phase-parameter space of tumor
elimination to that of tumor growth, similarly to the previous examples.

The complete phase-parameter portrait of System (1.5) is shown in Fig. 7. The
model exhibits all possible outcomes of life cycle of infected and uninfected cells. In

Fig. 7 Bifurcation diagram of the parametrically homogeneous system reported in [27] and
reproduced here in System (1.5). All possible outcomes of oncolytic virus infection are as follows:
no effect on the tumor (domains I and II), stabilization or reduction of the tumor load (domains
IV and V), and complete elimination of the tumor (domain VIII). Moreover there are two domains
(domains III and VII) where the final outcome crucially depends on the initial conditions and can
result either in failure of virus therapy or in stabilization (domain III) and elimination (domain VII)
of the tumor. The figure is adapted from Fig. 1 in [27]
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domains 1 and 2, there is no effect of the viral infection on the tumor; in domains IV
and V, tumor load is stabilized and even reduced. Complete elimination of the tumor
can be observed in domain VIII. Furthermore, there are two domains (domains
III and VII) where the final outcome crucially depends on the initial conditions
and can result either in failure of virus therapy or in stabilization (domain III) and
elimination (domain VII) of the tumor.

Introduction of population heterogeneity with respect to parameter of viral
transmission β allowed more complete visualization of possible evolutionary
trajectories of the tumor. For example, in simulations in Fig. 8, parameter values
were chosen in such a way as to start in domain VIII, where complete tumor
elimination occurs. However, as the system evolved, the dynamics crossed from
the domain of complete tumor elimination (VIII) to that of bistability (domain VII)
to end up in the domain of tumor escape (domain I). Furthermore, differences in
variances of initial distributions resulted in changes in predicted tumor dynamics,
with lower variances corresponding to longer periods of near-negligible tumor sizes,

Fig. 8 Solutions of parametrically heterogeneous system reported in [27] with Gamma-distributed
parameter of transmission of the oncolytic virus. Exact parameter values used in panels (a),
(b), (c) and (d) can be found in Fig. 2 in [27]. The solutions here reflect the fact that the
degree of heterogeneity plays an important role in the model dynamics. The parameter values
and initial conditions are the same for all four simulations; the difference comes from different
initial variances of the initial distribution; the greater the initial variance, the faster we reach the
unfavorable domain I. The figure is reproduced with permission from Fig. 2 of [27]
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a dynamical regime that can be interpreted as tumor dormancy, or “cancer without
disease,” when a tumor is present in the tissue but it is not growing [31–33].

More broadly, we can infer from the bifurcation analysis and subsequent
simulations that as the tumor population becomes resistant, it travels through the
various domains described in Fig. 7, allowing us to better understand the transitional
regimes of evolution of resistance.

Question 2
Why are cytotoxic therapies effective in some patients and not others?

The answer to this question came from further simulations conducted by the
authors, where they showed that initial composition of the population may be
one of the culprits underlying emergence of resistance in some tumors but not
others. Specifically, in Fig. 9 they showed that differences in variance of the initial

Fig. 9 Solutions of parametrically heterogeneous system presented in [27] with both uninfected
cell specific and infected cell specific distributions of transmission coefficient. The initial condi-
tions and parameter values are the same for both cases; the two cases differ only in the initial
variance of the initial distribution of the transmission coefficient; exact parameter values used in
panels (A), (b), (c) and (d) can be found in Fig. 7 in [27]. As one can see, even a small difference
in the variance of the initial distribution of the cell clones may yield dramatically different results:
in the first case, the tumor is cured, whereas in the second case, virus therapy fails. The figure is
adapted from Fig. 7 in [27]
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distribution of cell clones within the population can lead to qualitatively different
final outcomes of oncolytic therapy. These results may shed some light on the
question of variability in therapeutic successes for other interventions, a topic that
is of vital importance.

2 Conclusions

Classic techniques for analysis of dynamical systems can provide critical insights
into the possible dynamical regimes that a system can realize. Unfortunately,
doing full bifurcation analysis is labor intensive and is not always possible due
to increasing complexities of many models. However, there already exists a very
rich body of literature of fully analyzed parametrically homogeneous models in
many fields, including ecology [34, 35], epidemiology [36–38], among others. As
the examples presented here demonstrate, even relatively simple two-dimensional
systems can reveal rich, unexpected, and meaningful behaviors. Application of
the HKV method to introduce population heterogeneity in a meaningful way and
utilizing previously performed analysis can reveal a new layer of understanding of
many existing models that was not accessible before. This of course is possible only
if we ask the right questions.
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