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Abstract. Given limited time and space, IR studies often report few
evaluation metrics which must be carefully selected. To inform such
selection, we first quantify correlation between 23 popular IR metrics on
8 TREC test collections. Next, we investigate prediction of unreported
metrics: given 1–3 metrics, we assess the best predictors for 10 others. We
show that accurate prediction of MAP, P@10, and RBP can be achieved
using 2–3 other metrics. We further explore whether high-cost evaluation
measures can be predicted using low-cost measures. We show RBP(p =
0.95) at cutoff depth 1000 can be accurately predicted given measures
computed at depth 30. Lastly, we present a novel model for ranking eval-
uation metrics based on covariance, enabling selection of a set of metrics
that are most informative and distinctive. A greedy-forward approach
is guaranteed to yield sub-modular results, while an iterative-backward
method is empirically found to achieve the best results.
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1 Introduction

Given the importance of assessing IR system accuracy across a range of differ-
ent search scenarios and user needs, a wide variety of evaluation metrics have
been proposed, each providing a different view of system effectiveness [6]. For
example, while precision@10 (P@10) and reciprocal rank (RR) are often used to
evaluate the quality of the top search results, mean average precision (MAP) and
rank-biased precision (RBP) [32] are often used to measure the quality of search
results at greater depth, when recall is more important. Evaluation tools such as
trec eval compute many more evaluation metrics than IR researchers typically
have time or space to analyze and report. Even for knowledgeable researchers
with ample time, it can be challenging to decide which small subset of IR metrics
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should be reported to best characterize a system’s performance. Since a few met-
rics cannot fully characterize a system’s performance, information is effectively
lost in publication, complicating comparisons to prior art.

To compute an unreported metric of interest, one strategy is to reproduce
prior work. However, this is often difficult (and at times impossible), as the
description of a method is often incomplete and even shared source code can
be lost over time or difficult or impossible for others to run as libraries change.
Sharing system outputs would also enable others to compute any metric of inter-
est, but this is rarely done. While Armstrong et al. [2] proposed and deployed a
central repository for hosting system runs, their proposal did not achieve broad
participation from the IR community and was ultimately abandoned.

Our work is inspired in part by work on biomedical literature mining [8,23],
where acceptance of publications as the most reliable and enduring record of
findings has led to a large research community investigating automated extrac-
tion of additional insights from the published literature. Similarly, we investigate
the viability of predicting unreported evaluation metrics from reported ones.
We show accurate prediction of several important metrics is achievable, and
we present a novel ranking method to select metrics that are informative and
distinctive.

Contributions of our work include:

– We analyze correlation between 23 IR metrics, using more recent collections
to complement prior studies. This includes expected reciprocal rank (ERR)
and RBP using graded relevance; key prior work used only binary relevance.

– We show that accurate prediction of a metric can be achieved using only 2−3
other metrics, using a simple linear regression model.

– We show accurate prediction of some high-cost metrics given only low-cost
metrics (e.g. predicting RBP@1000 given only metrics at depth 30).

– We introduce a novel model for ranking top metrics based on their covariance.
This enables us to select the best metrics from clusters with lower time and
space complexity than required by prior work. We also provide a theoretical
justification for metric ranking which was absent from prior work.

– We share1 our source code, data, and figures to support further studies.

2 Related Work

Correlation between Evaluation Metrics. Tague-Sutcliffe and Blustein [45]
study 7 measures on TREC-3 and find R-Prec and AP to be highly correlated.
Buckley and Voorhees [10] also find strong correlation using Kendall’s τ on
TREC-7. Aslam et al. [5] investigate why RPrec and AP are strongly corre-
lated. Webber et al. [51] show that reporting simple metrics such as P@10 with
complex metrics such as MAP and DCG is redundant. Baccini et al. [7] measure
correlations between 130 measures using data from the TREC-(2-8) ad hoc task,

1 https://github.com/smjtgupta/IR-corr-pred-rank.
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grouping them into 7 clusters based on correlation. They use several machine
learning tools including Principal Component Analysis (PCA) and Hierarchical
Clustering Analysis (HCA) and report the metrics in particular clusters.

Sakai [41] compares 14 graded-level and 10 binary level metrics using three
different data sets from NTCIR. Correlation between P(+)-measure, O-measure,
and normalized weighted RR shows that they are highly correlated [40]. Corre-
lation between precision, recall, fallout and miss has also been studied [19]. In
addition, the relationship between F-measure, break-even point, and 11-point
averaged precision has been explored [26]. Another study [46] considers corre-
lation between 5 evaluation measures using TREC Terabyte Track 2006. Jones
et al. [28] examine disagreement between 14 evaluation metrics including ERR
and RBP using TREC-(4-8) ad hoc tasks, and TREC Robust 2005–2006 tracks.
However, they use only binary relevance judgments, which makes ERR identi-
cal to RR, whereas we consider graded relevance judgments. While their study
considered TREC 2006 Robust and Terabyte tracks, we complement this work
by considering more recent TREC test collections (i.e. Web Tracks 2010–2014),
with some additional evaluation measures as well.

Predicting Evaluation Metrics. While Aslam et al. [5] propose predicting
evaluation measures, they require a corresponding retrieved ranked list as well
as another evaluation metric. They conclude that they can accurately infer user-
oriented measures (e.g. P@10) from system-oriented measures (e.g. AP, R-Prec).
In contrast, we predict each evaluation measure given only other evaluation
measures, without requiring the corresponding ranked lists.

Reducing Evaluation Cost. Lu et al. [29] consider risks arising with fixed-
depth evaluation of recall/utility-based metrics in terms of providing a fair judg-
ment of the system. They explore the impact of evaluation depth on truncated
evaluation metrics and show that for recall-based metrics, depth plays a major
role in system comparison. In general, researchers have proposed many meth-
ods to reduce the cost of creating test collections: new evaluation measures and
statistical methods for incomplete judgments [3,9,39,52,53], finding the best
sample of documents to be judged for each topic [11,18,27,31,37], topic selec-
tion [21,24,25,30], inferring some relevance judgments [4], evaluation without
any human judgments [34,44], crowdsourcing [1,20], and others. We refer read-
ers to [33] and [42] for detailed review of prior work for low-cost IR evaluation.

Ranking Evaluation Metrics. Selection of IR evaluation metrics from clusters
has been studied previously [7,41,51]. Our methods incur lower cost than these.
We further provide a theoretical basis to rank the metrics using the proposed
determinant of covariance criteria, which prior work omitted as an experimen-
tal procedure, or by inferring results using existing statistical tools. Our rank-
ing work is most closely related to Sheffield [43], which introduced the idea of
unsupervised ranking of features in high-dimensional data using the covariance
information of the feature space. This enables selection and ranking of features
that are highly informative yet less correlated with one another.



Correlation, Prediction and Ranking of Evaluation Metrics in IR 639

3 Experimental Data

To investigate correlation and prediction of evaluation measures, we use runs and
relevance judgments from TREC 2000–2001 & 2010–2014 Web Tracks (WT) and
the TREC-2004 Robust Track (RT) [48]. We consider only ad hoc retrieval. We
calculate 9 evaluation metrics: AP, bpref [9], ERR [12], nDCG, P@K, RBP [32],
recall (R), RR [50], and R-Prec. We use various cut-off thresholds for the met-
rics (e.g. P@10, R@100). Unless stated, we set the cut-off threshold to 1000.
The cut-off threshold for ERR is set to 20 since this was an official measure in
WT2014 [17]. RBP uses a parameter p representing the probability of a user
proceeding to the next retrieved page. We test p = {0.5, 0.8, 0.95}, the values
explored by Moffat and Zobel [32]. Using these metrics, we generate two datasets.

Topic-Wise (TW) Dataset: We calculate each metric above for each system
for each separate topic. We use 10, 20, 100, 1000 cut-off thresholds for AP, nDCG,
P@K and R@K. In total, we calculate 23 evaluation metrics.

System-Wise (SW) Dataset: We calculate the metrics above (and GMAP as
well as MAP) for each system, averaging over all topics in each collection.

4 Correlation of Measures

We begin by computing Pearson correlation between 23 popular IR metrics using
8 TREC test collections. We report correlation of measures for the more difficult
TW dataset in order to model score distributions without the damping effect of
averaging scores across topics. More specifically, we calculate Pearson correlation
between measures across different topics. We make the following observations
from the results shown in Fig. 1.

– R-Prec has high correlation with bpref, MAP and nDCG@100 [5,10,45].
– RR is strongly correlated with RBP(p = 0.5), decreasing as its p parame-

ter increases (while RR always stops with the first relevant document, RBP
becomes more of a deep-rank metric as p increases). That said, later Fig. 2
shows accurate prediction of RBP(p = 0.95) even with low-cost metrics.

– nDCG@20, one of the official metrics of WT2014, is highly correlated with
RBP(p = 0.8), connecting with Park and Zhang’s [36] noting p = 0.78 is
appropriate for modeling web user behavior.

– nDCG is highly correlated with MAP and R-Prec, and its correlation with
R@K consistently increases as K increases.

– P@10 (ρ = 0.97) and P@20 (ρ = 0.98) are most correlated with RBP
(p = 0.8) and RBP(p = 0.95), respectively.

– Sakai and Kando [38] report that RBP(0.5) essentially ignores relevant docu-
ments below rank 10. Our results are consistent: we see maximum correlation
between RBP(0.5) and nDCG@K at K = 10, decreasing as K increases.

– P@1000 is the least correlated with other metrics, suggesting that it captures
a different effectiveness measure of IR systems than other metrics.
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While a varying degree of correlation exists between many measures, this
should not be interpreted to mean that measures are redundant and trivially
exchangeable. Correlated metrics can still correspond to different search sce-
narios and user needs, and the desire to report effectiveness across a range of
potential use cases is challenged by limited time and space for reporting results.
In addition, showing two metrics are uncorrelated shows only that each captures
a different aspect of system performance, and not whether each aspect is equally
important or even relevant to a given evaluation scenario on interest.

Test Set Document Set #Sys Topics

WT2000 [22] WT10g 105 451-500
WT2001 [49] WT10g 97 501-550
RT2004 [48] TREC 4&5* 110 301-450,

601-700
WT2010 [14] ClueWeb’09 55 51-99
WT2011 [13] ClueWeb’09 62 101-150
WT2012 [15] ClueWeb’09 48 151-200
WT2013 [16] ClueWeb’12 59 201-250
WT2014 [17] ClueWeb’12 30 251-300

Fig. 1. Left: TREC collections used. ∗RT2004 excludes the congressional record.
Right: Pearson correlation coefficients between 23 Metrics. Deep green entries indicate
strong correlation, while red entries indicate low correlation. (Color figure online)

5 Prediction of Metrics

In this section, we describe our prediction model and experimental setup, and
we report results of our experiments to investigate prediction of evaluation mea-
sures. Given the correlation matrix, we can identify the correlated groups of
metrics. The task of predicting an independent metric mi using some other

dependent metrics md under a linear regression model is mi =
K∑

k=1

αkmk
d.

Because a non-linear relationship could also exist between two correlated met-
rics, we also tried using a radial basis function (RBF) Support Vector Machine
(SVM) for the same prediction. However, the results were very similar, hence
not reported. We further discuss this at the end of the section.

Model & Experimental Setup. To predict a system’s missing evaluation
measures using reported ones, we build our model using only the evaluation
measures of systems as features. We use the SW dataset in our experiments for
prediction because studies generally report their average performance over a set
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of topics, instead of reporting their performance for each topic. Training data
combines WT2000-01, RT2004, WT2010-11. Testing is performed separately on
WT2012, WT2013, and WT2014, as described below. To evaluate prediction
accuracy, we report coefficient of determination R2 and Kendall’s τ correlation.

Table 1. System-wise prediction of a metric using varying number of metrics K=[1−3].
Kendall’s τ scores higher than 0.9 are bolded.

Predicted
metric

Independent variables WT2012 WT2013 WT2014

τ R2 τ R2 τ R2

bpref nDCG - - 0.805 −0.693 0.885 0.079 0.915 −1.174

nDCG R-Prec - 0.872 −0.202 0.850 0.094 0.824 −0.989

nDCG R-Prec R@100 0.906 0.284 0.844 0.645 0.866 0.390

ERR RR - - 0.764 −1.874 0.734 0.293 0.704 −1.004

RR RBP(0.8) - 0.790 −1.809 0.777 0.392 0.714 −0.686

RR RBP(0.8) R@100 0.796 −1.728 0.741 0.478 0.704 −0.473

GMAP bpref - - 0.729 −1.216 0.704 −2.982 0.739 −1.034

nDCG RBP(0.5) - 0.817 0.877 0.777 0.600 0.767 0.818

nDCG RBP(0.95) RR 0.817 0.882 0.748 0.514 0.794 0.854

MAP R-Prec - - 0.885 0.754 0.824 0.667 0.952 0.819

R-Prec nDCG - 0.904 0.894 0.905 0.760 0.958 0.897

R-Prec nDCG RR 0.924 0.916 0.901 0.779 0.947 0.922

nDCG bpref - - 0.805 −2.101 0.885 −0.217 0.915 −2.008

bpref GMAP - 0.803 −0.079 0.809 0.574 0.872 0.024

bpref GMAP RBP(0.95) 0.794 −0.113 0.801 0.556 0.850 −0.032

P@10 RBP(0.8) - - 0.884 0.942 0.832 0.895 0.866 0.893

RBP(0.8) RBP(0.5) - 0.941 0.994 0.882 0.966 0.914 0.988

RBP(0.8) RBP(0.5) RR 0.946 0.994 0.885 0.968 0.914 0.987

RBP(0.95) R-Prec - - 0.824 0.346 0.651 −0.786 0.607 −2.401

bpref P@10 - 0.911 0.952 0.718 0.873 0.728 0.591

bpref P@10 RBP(0.8) 0.911 0.967 0.720 0.868 0.744 0.639

R-Prec R@100 - - 0.899 0.708 0.871 0.624 0.935 0.019

R@100 RBP(0.95) - 0.909 0.952 0.820 0.882 0.820 0.759

R@100 RBP(0.95) GMAP 0.924 0.970 0.833 0.914 0.841 0.825

RR RBP(0.5) - - 0.782 0.904 0.806 0.927 0.810 0.878

RBP(0.5) RBP(0.8) - 0.869 0.918 0.809 0.919 0.820 0.942

RBP(0.5) RBP(0.8) ERR 0.876 0.437 0.818 0.924 0.915 0.824

R@100 R-Prec - - 0.899 0.423 0.871 0.232 0.935 −1.075

R-Prec GMAP - 0.899 0.433 0.871 0.238 0.940 −1.077

R-Prec RR ERR 0.881 −0.104 0.823 0.355 0.935 −1.187
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Results (Table 1). We investigate the best predictors for 10 metrics: R-Prec,
bpref, RR, ERR@20, MAP, GMAP, nDCG, P@10, R@100, RBP(0.5), RBP(0.8)
and RBP(0.95). We investigate which K evaluation metric(s) are the best pre-
dictors for a particular metric, varying K from 1−3. Specifically, in prediction
of a particular metric, we try all combinations of size K using the remaining 11
evaluation measures on WT2012 and pick the one that yields the best Kendall’s
τ correlation. Then, this combination of metrics is used to predict the respective
metric separately for WT2013 and WT2014. Kendall’s τ scores higher than 0.9
are bolded (a traditionally-accepted threshold for correlation [47]).

bpref: We achieve the highest τ correlation and interestingly the worst R2 using
only nDCG on WT2014. This shows that while predicted measures are not accu-
rate, rankings of systems based on predicted scores can be highly correlated with
the actual ranking. We observe the same pattern of results in prediction of RR
on WT2012 and WT2014, R-prec on WT2013 and WT2014, R@100 on WT2013,
and nDCG in all three test collections.

GMAP & ERR: Both seem to be the most challenging measures to predict
because we could never reach τ = 0.9 correlation in any of the prediction cases of
these two measures. Initially, R2 scores for ERR consistently increase in all three
test collections as we use more evaluation measures for prediction, suggesting
that we can achieve higher prediction accuracy using more independent variables.

MAP: We can predict MAP with very high prediction accuracy and achieve
higher than τ = 0.9 correlation in all three test collections using R-Prec and
nDCG as predictors. When we use RR as the third predictor, R2 increases in all
cases and τ correlation slightly increases on average (0.924 vs. 0.922).

nDCG: Interestingly, we achieve the highest τ correlations using only bpref; τ
decreases as more evaluation measures are used as independent variables. Even
though we reach high τ correlations for some cases (e.g. 0.915 τ on WT2014
using only bpref), nDCG seems to be one of the hardest measures to predict.

P@10: Using RBP(0.5) and RBP(0.8), which are both highly correlated mea-
sures with P@10, we are able to achieve very high τ correlation and R2 in all
three test collections (τ = 0.912 and R2 = 0.983 on average). We reach nearly
perfect prediction accuracy (R2 = 0.994) on WT2012.

RBP(0.95): Compared to RBP(0.5) and RBP(0.8), we achieve noticeably lower
prediction performance, especially on WT2013 and WT2014. On WT2012, which
is used as the development set in our experimental setup, we reach high predic-
tion accuracy when we use 2–3 independent variables.

R-Prec, RR and R@100: In predicting these three measures, while we reach
high prediction accuracy in many cases, there is no independent variable group
yielding high prediction performance on all three test collections.
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Overall, we achieve high prediction accuracy for MAP, P@10, RBP(0.5) and
RBP(0.8) on all test collections. RR and RBP(0.8) are the most frequently
selected independent variables (10 and 9 times, respectively). Generally, using
a single measure is not sufficient to reach τ = 0.9 correlation. We achieve very
high prediction accuracy using only 2 measures for many scenarios.

Note R2 is sometimes negative, whereas theoretically the value of the coef-
ficient of determination should lie in [0, 1]. R2 compares the fit of the chosen
model with a horizontal straight line (the null hypothesis); if the chosen model
fits worse than a horizontal line, then R2 will be negative2.

Although the empirical results might suggest that the relationship between
metrics are linear because non-linear SVMs did not improve results much, the
negative values of R2 contradict this observation, as the linear model clearly did
not fit well. Specifically, we tried out RBF SVM’s using different kernel sizes of
{0.5, 1, 2, 5}, without significant result changes as compared to linear regression.
Additional non-linear models could be further explored in future work.

5.1 Predicting High-Cost Metrics Using Low-Cost Metrics

In some cases, one may wish to predict a “high-cost” evaluation metric (i.e.,
requiring relevance judging to some significant evaluation depth D) when only
“low-cost” evaluation metrics have been reported. Here, we consider prediction
of Precision, MAP, nDCG, and RBP [32] for high-cost D = 100 or D = 1000
given a set of low-cost metric scores (D ∈ {10, 20, ..., 50}): precision, bpref, ERR,
infAP [52], MAP, nDCG and RBP. We include bpref and infAP given their
support for evaluating systems with incomplete relevance judgments. For RBP
we use p = 0.95. For each depth D, we calculate the powerset of the 7 measures
mentioned above (excluding the empty set ∅). We then find which elements of
the powerset are the best predictors of the high-cost measures on WT2012. The
set of low-cost measures that yields the maximum τ score for a particular high-
cost measure for WT2012 is then used for predicting the respective measure
on WT2013 and WT2014. We repeat this process for each evaluation depth
D ∈ {10, 20, ..., 50} to assess prediction accuracy as a function of D.

Figure 2 presents results. For depth 1000 (Fig. 2a), we achieve τ > 0.9 cor-
relation and R2 > 0.98 for RBP in all cases when D ≥ 30. While we are able
to reach τ = 0.9 correlation for MAP on WT2012, prediction of P@1000 and
nDCG@1000 measures performs poorly and never reaches a high τ correlation.
As expected, the performance of prediction increases when evaluation depth of
high-cost measures are decreased to 100 (Fig. 2a vs. Fig. 2b).

Overall, RBP seems the most predictable from low-cost metrics while preci-
sion is the least. Intuitively, MAP, nDCG and RBP give more weight to docu-
ments at higher ranks, which are also evaluated by the low-cost measures, while
precision@D does not consider document ranks within the evaluation depth D.

2 https://stats.stackexchange.com/questions/12900/when-is-r-squared-negative.

https://stats.stackexchange.com/questions/12900/when-is-r-squared-negative
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(a) Predicting High-Cost Measures using Evaluation Depth D = 1000

(b) Predicting High-Cost Measures using Evaluation Depth D = 100

Fig. 2. Linear regression prediction of high-cost metrics using low-cost metrics

6 Ranking Evaluation Metrics

Given a particular search scenario or user need envisioned, one typically selects
appropriate evaluation metrics for that scenario. However, this does not neces-
sarily consider correlation between metrics, or which metrics may interest other
researchers engaged in reproducibility studies, benchmarking, or extensions. In
this section, we consider how one might select the most informative and distinc-
tive set of metrics to report in general, without consideration of specific user
needs or other constraints driving selection of certain metrics.

We thus motivate a proper metric ranking criteria to efficiently compute the
top L metrics to report amongst the S metrics available, i.e., a set that best
captures diverse aspects of system performance with minimal correlation across
metrics. Our approach is motivated by Sheffield [43], who introduced the idea of
unsupervised ranking of features in high-dimensional data using the covariance
information in the feature space. This method enables selection and ranking of
features that are highly informative and less correlated with each other.

Ω∗ = arg max
Ω:|Ω|≤L

det(Σ(Ω)) (1)

Here we are trying to find the subset Ω∗ of cardinality L such that the covariance
matrix Σ sampled from the rows of and columns of the entries of Ω∗ will have
the maximum determinant value, among all possible sub-determinant of size
L×L. The general problem is NP-Complete [35]. Sheffield provided a backward
rejection scheme that throws out elements of the active subset Ω until it is left
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with L elements. However, this approach suffers from large cost in both time and
space (Table 2), due to computing multiple determinant values over iterations.

We propose two novel methods for ranking metrics: an iterative-backward
method (Sect. 6.1), which we find to yield the best empirical results, and a greedy-
forward approach (Sect. 6.2) guaranteed to yield sub-modular results. Both offer
lower time and space complexity vs. prior clustering work [7,41,51].

Table 2. Complexity of ranking algorithms.

Algorithm Time complexity Space complexity

Sheffield [43] O(LS4) O(S3)

Iterative-Backward O(LS3) O(S2)

Greedy-Forward O(LS2) O(S2)

6.1 Iterative-Backward (IB) Method

IB (Algorithm 1) starts with a full set of metrics and iteratively prunes away the
less informative ones. Instead of computing all the sub-determinants of one less
size at each iteration, we use the adjugate of the matrix to compute them in a
single pass. This reduces the run-time by a factor of S and completely eliminates
the need for additional memory. Also, since we are not interested in the actual
values of the sub-determinants, but just the maximum, we can approximate
Σadj = Σ−1 det(Σ) ≈ Σ−1 since det(Σ) is a scalar multiple.

Once the adjugate Σadj is computed, we look at its diagonal entries for values
of the sub-determinants of size one less. The index of the maximum entry is
found in Step 7 and it is subsequently removed from the active set. Step 9
ensures that adjustments made to rest of the matrix prevents the selection of
correlated features by scaling down their values appropriately. We do not have
any theoretical guarantees for optimality of this IB feature elimination strategy,
but our empirical experiments found that it always returns the optimal set.

Algorithm 1. Iterative-Backward Method
1: Input : Σ ∈ R

S×S , L : number of channels to be retained
2: Set counter k = S and Ω = {1 : S} as the active set
3: while k > L do
4: Σadj ≈ Σ−1 � Approximate adjugate
5: i∗ ← arg max

i∈Ω
diag(Σadj(i)) � Index to be removed

6: Ωk+1 ← Ωk − {i∗} � Augment the active set
7: σij ← σij − σii∗σi∗j/σi∗i∗ , ∀i, j ∈ Ω � Update covariance
8: k ← k − 1 � Decrement counter

9: Output : Retained features Ω
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6.2 Greedy-Forward (GF) Method

GF (Algorithm 2) iteratively selects the most informative features to add one-by-
one. Instead of starting with the full set, we initialize the active set as empty, then
grow the active set by greedily choosing the best feature at each iteration, with
lower run-time cost than its backward counterpart. The index of the maximum
entry is found in Step 6 and is subsequently added to the active set. Step 8
ensures that the adjustments made to the other entries of the matrix prevents
the selection of correlated features by scaling down their values appropriately.

Algorithm 2. Greedy-Forward Method
1: Input : Σ ∈ R

S×S , L : number of channels to be selected
2: Set counter k = 0 and Ω = ∅ as the active set
3: while k < L do
4: i∗ ← arg max

i/∈Ω

∑

j /∈Ω

σ2
ij/σii � Index to be added

5: Ωk+1 ← Ωk ∪ {i∗} � Augment the active set
6: σij ← σij − σii∗σi∗j/σi∗i∗ , ∀i, j /∈ Ω � Update covariance
7: k ← k + 1 � Increment counter

8: Output : Selected features Ω

A feature of this greedy strategy is that it is guaranteed to provide sub-
modular results. The solution has a constant factor approximation bound of
(1 − 1/e), i.e. even under worst case scenario, the approximated solution is no
worse than 63% of the optimal solution.

Proof. For any positive definite matrix Σ and for any i /∈ Ω:

fΣ(Ω ∪ {i}) = fΣ(Ω) +

∑

j /∈Ω

σ2
ij

σii

where σij are the elements of Σ(/∈ Ω) i.e. the elements of Σ not indexed by
the entries of the active set Ω, and fΣ is the determinant function det(Σ).
Hence, we have fΣ(Ω) ≥ fΣ(Ω′) for any Ω′ ⊆ Ω. This shows that fΣ(Ω) is
a monotonically non-increasing and sub-modular function, so that the simple
greedy selection algorithm yields an (1 − 1/e)-approximation. �	

6.3 Results

Running the Iterative-Backward (IB) and Greedy-Forward (GF) methods on the
23 metrics shown in Fig. 1 yields the results shown in Table 3. The top six metrics
are the same (in order) for both IB and GF: MAP@1000, P@1000, NDCG@1000,
RBP(p − 0.95), ERR, and R-Prec. They then diverge on whether R@1000 (IB)
or bpref (GF) should be at rank 7. GF makes some constrained choices that
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Table 3. Metrics are ranked by each algorithm as numbered below.

IB 1. MAP@1000 2. P@1000 3. NDCG@1000 4. RBP-0.95 5. ERR

6. R-Prec 7. R@1000 8. bpref 9. MAP@100 10. P@100

11. NDCG@100 12. RBP-0.8 13. R@100 14. MAP@20 15. P@20

16. NDCG@20 17. RBP-0.5 18. R@20 19. MAP@10 20. P@10

21. NDCG@10 22. R@10 23. RR - -

GF 1. MAP@1000 2. P@1000 3. NDCG@1000 4. RBP-0.95 5. ERR

6. R-Prec 7. bpref 8. R@1000 9. MAP@100 10. P@100

11. RBP-0.8 12. NDCG@100 13. R@100 14. MAP@20 15. P@20

16. RBP-0.5 17. NDCG@20 18. R@20 19. P@10 20. MAP@10

21. NDCG@10 22. R@10 23. RR - -

(a) Iterative Backward.
Left-to-Right: metrics discarded

(b) Greedy Forward.
Left-to-Right: metrics included

Fig. 3. Metrics ranked by the strategies. Positive values on the GF plot shows values
computed by the greedy criteria were positive for the first three selections.

lead to swapping of ranks among some metrics (bpref and R@1000, RBP-0.8
and NDCG@100, RBP-0.5 and NDCG@20, P@10 and MAP@10). However, due
to the sub-modular nature of the greedy method, the approximated solution is
guaranteed to incur no more than 27% error compared to the true solution. Both
methods assigned lowest rankings to NDCG@10, R@10, and RR.

Figure 3a shows the metric deleted from the active set at each iteration of
the IB strategy. As irrelevant metrics are removed by the maximum determi-
nant criteria, the value of the sub-determinant increases at each iteration and is
empirically maximum among all sub-determinants of that size. Figure 3b shows
the metric added to the active set at each iteration by the GF strategy. Here we
add a metric that maximizes the greedy selection criteria. We can see that over
iterations the criteria value steadily decreases due to proper updates made.
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The ranking pattern shows that the relevant, highly informative and less
correlated metrics (MAP@1000, P@1000, nDCG@1000, RBP-0.95) are clearly
ranked at the top. While ERR, R-Prec, bpref, and R@1000 may not be as
informative as the higher ranked metrics, they still rank highly because the
average information provided by other measures (e.g. MAP@100, nDCG@100
etc.) decreases even more in presence of already selected features MAP@1000,
nDCG@1000 etc. Intuitively, even if two metrics are informative, both should
not be ranked highly if there exists strong correlation between them.

Relation to Prior Work. Our findings are consistent with prior work in show-
ing that we can select best metrics from clusters, although we report lower
algorithmic (time and space) cost procedures than prior work [7,41,51]. Webber
et al. [51] consider only the diagonal entries of the covariance; we consider the
entire matrix since off-diagonal entries indicate cross-correlation. Baccini et al. [7]
use both Hierarchical Clustering (HCA) of metrics which lacks ranking, does not
scale well, and is slow, having runtime O(S3) and memory O(S2) with large con-
stants. Their results are also somewhat subjective and subject to outliers, while
our ranking is computationally effective and theoretically justified.

7 Conclusion

In this work, we explored strategies for selecting IR metrics to report. We first
quantified correlation between 23 popular IR metrics on 8 TREC test collec-
tions. Next, we described metric prediction and showed that accurate prediction
of MAP, P@10, and RBP can be achieved using 2–3 other metrics. We further
investigated accurate prediction of some high-cost evaluation measures using
low-cost measures, showing RBP(p = 0.95) at cutoff depth 1000 could be accu-
rately predicted given other metrics computed at only depth 30. Finally, we
presented a novel model for ranking evaluation metrics based on covariance,
enabling selection of a set of metrics that are most informative and distinctive.

We proposed two methods for ranking metrics, both providing lower time
and space complexity than prior work. Among the 23 metrics considered, we
predicted MAP@1000, P@1000, nDCG@1000 and RBP(p = 0.95) as the top four
metrics, consistent with prior research. Although the timing difference is negligi-
ble for 23 metrics, there is a speed-accuracy trade-off, once the problem dimen-
sion increases. Our method provides a theoretically-justified, practical approach
which can be generally applied to identify informative and distinctive evaluation
metrics to measure and report, and applicable to a variety of IR ranking tasks.
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