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Abstract. Document reordering is an important but often overlooked
preprocessing stage in index construction. Reordering document identi-
fiers in graphs and inverted indexes has been shown to reduce storage
costs and improve processing efficiency in the resulting indexes. However,
surprisingly few document reordering algorithms are publicly available
despite their importance. A new reordering algorithm derived from recur-
sive graph bisection was recently proposed by Dhulipala et al., and shown
to be highly effective and efficient when compared against other state-of-
the-art reordering strategies. In this work, we present a reproducibility
study of this new algorithm. We describe the implementation challenges
encountered, and explore the performance characteristics of our clean-
room reimplementation. We show that we are able to successfully repro-
duce the core results of the original paper, and show that the algorithm
generalizes to other collections and indexing frameworks. Furthermore,
we make our implementation publicly available to help promote further
research in this space.
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1 Introduction

Scalable processing and storage of large data collections has been a longstanding
problem in Information Retrieval (IR). The volume of data being indexed and
retrieved continues to grow, and a wealth of academic research has focused on
managing this new data. A key area of focus is how to better compress the
data structures used in these storage applications; better compression results
in lower storage costs, and improves the efficiency of accessing data. Document
reordering is a widely used technique that improves the compression rate of
many coding schemes at the cost of additional computation at indexing time.
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However, finding a favorable reordering is a challenging problem for IR-scale
data collections. The problem has been extensively studied in academia, and
making significant improvements that are both effective and practical is quite
difficult.

Documents identifiers can be assigned in many ways, such as random order-
ing, based on document similarity or page relevance [21], or by just following
a sorted URL ordering [23]. Further, it has been noted that document reorder-
ing can also result in improved query processing efficiency [11,15,16], although
a thorough understanding of this effect is still missing. Considering the advan-
tages that reordering can yield, it is critical that tools for reordering are made
publicly available, and that researchers describe the order of their index when
conducting large scale efficiency studies (such as [8,11,16,18,20]).

Recently, Dhulipala et al. [10] proposed a new algorithm which aims to mini-
mize an objective function directly related to the number of bits needed to store
a graph or an index using a delta-encoding scheme. The authors experimented
on both graphs and inverted indexes, obtaining notable improvements when com-
pared to previous approaches. Their algorithm, based on recursive graph bisec-
tion, is currently the state-of-the-art algorithm for minimizing the compressed
space used by an inverted index (or graph) through document/vertex reordering.
An unfortunate aspect of this work is that the implementation was unable to be
released “due to corporate restrictions,” most likely because the work was done
primarily at Facebook. In this paper, we perform a “clean-room” reimplementa-
tion of this algorithm, reproduce the results obtained by the original authors, and
extend their original experiments to additional collections in order to confirm the
effectiveness of the approach.

Our Contributions. The key contributions of this paper are:

1. We implement and validate the algorithm originally presented by Dhulipala
et al. [10]. We confirm both effectiveness in compression due to reordering
and efficiency in terms of execution time and memory usage.

2. We extend the experimental analysis to other large collections. The original
work focused primarily on reordering graphs, with experiments shown for
just two standard text collections: Gov2 and ClueWeb09. With an extensive
experimental analysis over four additional text collections, we strengthen the
evidence of the generalizability of the approach.

3. We evaluate an additional compression technique with the reordered index,
to further examine how well the approach generalizes.

4. We make our implementation publicly available in order to motivate future
analysis and experimentation on the topic.

2 Overview of Document Reordering

Several previous studies have looked at the document reordering problem. In
this section, we outline the problem of document identifier assignment, review
the key techniques that have been proposed in the literature, and describe the
recursive bisection algorithm that is the focus of this work.
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2.1 Document Identifier Assignment

The document identifier assignment problem can be described informally as find-
ing a function that maps document identifiers to new values with the aim of mini-
mizing the cost of coding the document gaps. More formally, different approaches
exist to reduce this problem to several classical NP-Hard problems such as
TSP [22], and versions of the optimal linear arrangement problem [2,7,10].

The most intuitive formalization is the bipartite minimum logarithmic
arrangement (BiMLogA) problem [10] which models an inverted index as a
bipartite graph G = (V,E) with |E| = m and the vertex set V consisting of
a disjoint set of terms, T , and documents, D, V = (T ∪ D). Each edge e ∈ E
corresponds to an arc (t, d) with t ∈ T and d ∈ D that implies that document
d contains term t. The BiMLogA problem seeks to find an ordering π of the
vertices in D which minimizes the LogGap cost of storing the edges for each
t ∈ T :

LogGap =
1
m

∑

t∈T

dt∑

i=0

log2(π(ui+1) − π(ui))

where dt is the degree of vertex t ∈ T , and t has neighbors {u1, . . . , udq
} with

π(u1) < · · · < π(udt
) and u0 = 0. Intuitively, LogGap corresponds to minimizing

the average logarithmic difference between adjacent entries in postings lists of
an inverted index and can generally be considered a lower bound on the storage
cost (in bits per integer) of a posting in an inverted index.

2.2 Document Ordering Techniques

Although there are a wide range of document ordering techniques that have been
proposed [2–5,12,22,24], we focus on a few that can be efficiently run on web-
scale data sets while also offering significant compression benefits. In particular,
we focus on a subset of techniques that were examined in the work that we are
reproducing [7,10,23].

Random Ordering. A Random document ordering corresponds to the case where
identifiers are assigned randomly to documents with no notion of clustering or
temporality. We reorder the document identifiers based on an arbitrary ordering
specified by a pseudorandom number generator. This ordering represents the
worst-case scenario (short of an adversarial case), and is used as a point-of-
reference when comparing approaches.

Natural Ordering. Text collections usually have some notion of a Natural order-
ing. Two common orderings that can be considered as natural are either the crawl
order of the documents, which assigns identifiers in a monotonically increasing
order as they are found by the crawler, or the URL ordering, which is based on
lexicographically sorting the URLs of the indexed documents [23].
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Minhash Ordering. The Minhash (or shingle) ordering is a heuristic ordering
that approximates the Jaccard Similarity of documents in order to cluster sim-
ilar documents together [6,7]. The main idea is to obtain a fingerprint of each
document (or neighbors of a graph vertex) through hashing, and to position
similar documents (or vertices) close to each other. The key observation is that
this improves clustering , which aids compression.

2.3 Recursive Graph Bisection

The BP ordering is the primary focus for this reproducibility study [10]. BP was
proven to run in O(m log n + n log2 n) time, and shown experimentally to yield
excellent arrangements in practice. Unlike the aforementioned approaches, which
implicitly try to cluster similar documents together (thus reducing the overall
size of the delta encoding), the BP algorithm explicitly optimizes for an order-
ing by approximating the solution to the BiMLogA problem. The algorithm
is described in Algorithm 1. On a high level, the algorithm recursively splits
(bisects) the ordered set of document identifiers D into smaller ordered subsets
D1 and D2. At each level of the recursion documents are swapped between the
two subsets if a swap improves the LogGap objective.

At each level an initial document ordering (such as Random or Minhash) of
all document identifiers in the current subset D is used to create two equally
sized partitions D1 and D2 (line 2). Next, for a fixed set of iterations (MaxIter)
the algorithm computes the MoveGain (described below) which results from
moving documents in D between partitions (lines 4 − 6). In each iteration, the
documents with the highest MoveGain, i.e., the documents for which swapping
partitions reduces the LogGap the most, are exchanged as long as the overall
gain of the swap is beneficial (lines 8 − 10). The current level of the recursion
finishes once MaxIter iterations have been performed, or no document identifier
swaps have occurred in the current iteration (lines 11 − 12). Next, the same
procedure is recursively applied to D1 and D2 until the maximum recursion
depth (MaxDepth) is reached (lines 13 − 15). As the recursion unwinds, the
ordered partitions are ‘glued’ back together to form the final ordering.

Computing the MoveGain for a specific document/node v is shown in lines
17−24. The function computes the average logarithmic gap length for all t ∈ T ,
for the parts of the adjacency lists (or postings lists) corresponding to documents
in Da and Db. Specifically, the MoveGain of a document in Da is defined as the
difference in average logarithmic gap length between v remaining in Da and v
moving to Db (and vice versa for a v in Db). This gain can be positive (i.e., it is
beneficial to move v to the other partition) or negative.

3 Reproducibility

Following other recent reproducibility studies in the field of IR [14], we adapt
the following definition of reproducibility from the 2015 SIGIR Workshop on
Reproducibility, Inexplicability, and Generalizability of Results [1]: “Repeating
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Algorithm 1. Graph Reordering via Recursive Graph Bisection
1 Function RecursiveBisection(T,D, d)

In : Bipartite graph (T,D) with |D| = n vertices and recursion depth d
2 D1, D2 = SortAndSplitGraph(D)

3 for iter = 0 to MaxIter do
4 forall v in D1 and u in D2 do
5 gainsD1

[v] = ComputeMoveGain(T, v,D1, D2)

6 gainsD2
[u] = ComputeMoveGain(T, u,D2, D1)

7 SortDecreasing(gainsD1
,gainsD2

)

8 forall v in gainsD1 and u in gainsD2 do
9 if gainsD1

[v] + gainsD2
[u] > 0 then

10 SwapNodes(v, u)

11 if No Swaps Occurred then
12 iter = MaxIter

13 if d < MaxDepth then
14 D1 = RecursiveBisection(T,D1, �n/2�, d + 1)
15 D2 = RecursiveBisection(T,D2, �n/2�, d + 1)

16 return Concat(D1, D2)

17 Function ComputeMoveGain(T, v,Da, Db)
In : Bipartite Graphs (T,Da), (T,Db) with |Da| = na, |Db| = nb and v ∈ Da

18 gain = 0
19 forall t in T do
20 if t connected to v then
21 da, db = number of edges in from t to Da and Db

22 gain = gain + da log2(
na

da+1
) + db log2(

nb
db+1

)

23 gain = gain − (da − 1) log2(
na
da

) + (db + 1) log2(
nb

db+2
)

24 return gain

a previous result under different but comparable conditions.” To this end, we are
interested in reproducing improvements in the compression of textual indexes to
the same degree as the improvements reported by Dhulipala et al. [10], using a
full reimplementation of the methods as described in the paper.

3.1 Implementation Details

In this section we are going to present the choices we made in our implemen-
tation. Even though the basic algorithm is conceptually simple to understand
and implement, important details on implementing the algorithm so that it is
scalable and efficient were omitted in the original work.

The first step is to build a forward index, which, in our case, is compressed
using VarintGB [9] to optimize memory consumption. This forward index can be
considered a bipartite graph, and is the input used by the BP algorithm.

To minimize the number of memory moves required by the algorithm, we
create a list of references to the documents in the collection so that only pointer
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swaps are required when exchanging two documents between partitions. Where
possible, references are used to avoid expensive memory copy or move operations.

As described by Dhulipala et al. [10], the two different recursive calls of
Algorithm 1 are independent and can be executed in parallel (Algorithm 1, line
14/15). For this reason, we also employ a fork-join computation model using
the Intel TBB library1. A pool of threads is started and every recursion call is
added into a pool of tasks, so that threads can assign jobs according to the TBB
scheduling policy.

After splitting the document vector into two partitions, the algorithm com-
putes the term degree for every partition. In order to do so, we precompute the
degree for all the terms in each partition. Since every document contains dis-
tinct terms, we can again exploit parallelism though parallel for loops. Given the
size of the collections used and the fact that the degree computations can run
simultaneously on different partitions, we use a custom array implementation,
which requires a one-off initialization. In contrast to constant-time initialization
arrays [13], our implementation uses a global counter, C, and two arrays of the
same size, V and G. The former of the two is used to store the actual values of
the degrees and the latter to keep track of the validity of the data present in V
at the corresponding position. The following invariant is maintained:

V [i] is valid ⇐⇒ G[i] = C.

Once the vector is allocated, which happens only once since it is marked as
thread local in our implementation, the vector G is initialized to 0. The counter
C is set to 1, which indicates that none of the variables in the array are valid.
Thus, an increment of the counter corresponds to a clear operation of the values
in the array. If a position of the array contains a non-valid value, a default value
is returned. The intuition behind this arrangement is to allow easy parallelism,
and to avoid reinitialization of large vectors.

Next, for a fixed number of iterations, MaxIter , the gain computation, sort-
ing, and swapping of documents is repeated (Algorithm 1, line 3–12). Gain
computation is particularly interesting because it can be very expensive, so we
address this operation as follows. Since terms are typically shared among mul-
tiple documents, we adopt a cache to compute every term gain at most once.
However, checking if a term cost has already been cached introduces a branch
that is hard to predict by the CPU; intuitively, fewer documents are processed
deeper in the recursion, which implies fewer terms shared and a lower probabil-
ity for each of them to be in the cache. To avoid this misprediction, we develop
two functions which only differ for the check performed in the cache, where both
provide branch prediction information for whether the value is likely to be in the
cache or not. Furthermore, to compute a single term cost, we use SIMD instruc-
tions, allowing four values to be processed in a single CPU instruction. Sorting
is, again, done in parallel and, as for the parallel for, we use the Intel Parallel

1 https://www.threadingbuildingblocks.org/.

https://www.threadingbuildingblocks.org/
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STL2 implementation. The swap function also updates the degrees of the two
partitions, so recomputation is not needed for every iteration.

Finally, when the recursion reaches a segment of the document vectors which
is considered small enough to terminate, a final sorting is applied to sort the
otherwise unsorted leaves by their document identifiers.

4 Experiments

Testing details. All of the algorithms are implemented in C++17 and compiled
with GCC 7.2.0 using the highest optimization settings. Experiments are per-
formed on a machine with two Intel Xeon Gold 6144 CPUs (3.50 GHz), 512 GiB
of RAM, running Linux 4.13.0. The CPU is based on the Skylake microarchitec-
ture, which supports the AVX-512 instruction set, though we did not optimize for
such instructions. Each CPU has L1, L2, and L3 cache sizes of 32KiB, 1024KiB,
and 24.75MiB, respectively. We make use of SIMD processor intrinsics in order to
speed up computation. When multithreading is used, we allow our programs to
utilize all 32 threads, and our experiments assume an otherwise idle system. The
source code is available3,4 for the reader interested in further implementation
details or in replicating the experiments.

Datasets. We performed our experiments using mostly standard datasets as
summarized in Table 1. While most of these collections are readily available, we
do note that the Wikipedia and CC-News collections are exceptions: both of these
collections are temporal (and thus subject to change). To this end, we will make
the raw collections available by request to any groups interested in repeating our
experiments, following the best practices from Hasibi et al. [14].

– NYT corresponds to the New York Times news collection, which contains
news articles between 1987 and 2007,

– Wikipedia is a crawl of English Wikipedia articles from the 22nd of May, 2018,
using the Wikimedia dumps and the Wikiextractor tool5,

– Gov2 is a crawl of .gov domains from 2004,
– ClueWeb09 and ClueWeb12 both correspond to the ‘B’ portion of the 2009

and 2012 ClueWeb crawls of the world wide web, respectively, and
– CC-News contains English news documents from the Common Crawl News6

collection, from August 2016 to April 2018.

Postings lists were generated using Indri 5.11, with no stopword removal
applied, and with Krovetz stemming. Furthermore, our results were tested for
correctness by ensuring that the output of the reordered indexes matched the
output of the original index for a set of test queries.
2 https://software.intel.com/en-us/get-started-with-pstl.
3 https://github.com/pisa-engine/pisa.
4 https://github.com/pisa-engine/ecir19-bisection.
5 https://github.com/attardi/wikiextractor.
6 https://github.com/commoncrawl/news-crawl.

https://software.intel.com/en-us/get-started-with-pstl
https://github.com/pisa-engine/pisa
https://github.com/pisa-engine/ecir19-bisection
https://github.com/attardi/wikiextractor
https://github.com/commoncrawl/news-crawl
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Table 1. Properties of our datasets. We consider only postings lists with ≥4,096
elements when conducting the reordering, but apply compression on the entire index.
For completeness, we show both groups of statistics here.

≥ 4,096 Full index

Graph |D| |T | |E| |T | |E|
NYT 1,855,658 10,191 457,883,999 2,970,013 501,568,918

Wikipedia 5,652,893 14,038 749,069,767 5,604,981 837,439,129

Gov2 25,205,179 42,842 5,406,607,172 39,180,840 5,880,709,591

ClueWeb09 50,220,423 101,676 15,237,650,447 90,471,982 16,253,057,031

ClueWeb12 52,343,021 88,741 14,130,264,013 165,309,501 15,319,871,265

CC-News 43,530,315 76,488 19,691,656,440 43,844,574 20,150,335,440

Reordering parameters. For most of our collections, we apply the URL ordering
on the index and consider this the Natural ordering. Two exceptions are the
NYT and Wikipedia collections. For NYT, we apply crawl ordering, as all indexed
sites have the same URL prefix. For Wikipedia, we use the ordering of the crawl
as specified by the Wikipedia curid, which is a proxy for URL ordering (as these
identifiers are monotonically increasing on the page titles, which are usually the
same or similar to the long URLs). For the Minhash scheme, we follow Dhulipala
et al. [10], and sort documents lexicographically based on 10 minwise hashes of
the documents (or, adjacency sets). When running BP, we only consider posting
lists of lengths ≥ 4,096 for computing the reordering, we run 20 iterations per
recursion, and we run our algorithm to MaxDepth = log(n) − 5 unless otherwise
specified [10]. The file orderings are available for each collection for repeatability.

4.1 Compression Ratio

Our first experiment investigates whether we are able to reproduce the relative
compression improvements that were reported in the work of Dhulipala et al.
[10] for the BP algorithm, while also reproducing the baselines [7,23]. Table 2
shows the effectiveness (in average bits per posting) of the various reordering
techniques across each collection for a variety of state-of-the-art compression
methods, including ε-optimal Partitioned Elias-Fano (PEF) [20], Binary Inter-
polative Coding (BIC) [19], and Stream Variable Byte (SVByte) [17]. We also
report the LogGap as described in Sect. 2.1. We find that the BP algorithm out-
performs the baselines for every collection, with improvements over the closest
competitor between 2 and 15% and up to around 50% against the Random permu-
tation for PEF encoding. Similar improvements are observed for the other tested
compression schemes. Our findings confirm that these reordering strategies gen-
eralize to collections outside of those tested experimentally in the original work,
including Newswire data such as NYT and CC-News.
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Table 2. Reordered compression results for all six collections. We report the bits per
edge for representing the DocIDs and the frequencies (DocID/Freq). Note that we omit
the frequency data for SVByte as reordering does not impact the compression rate for
this codec.

Index Algorithm LogGap PEF BIC SVByte

NYT Random 3.79 6.36/2.22 6.48/2.16 11.67

Natural 3.50 6.31/2.20 6.23/2.13 11.62

Minhash 3.18 5.91/2.19 5.79/2.11 11.51

BP 2.61 5.24/2.13 5.06/2.04 11.33

Wikipedia Random 5.12 8.03/2.20 8.01/1.98 12.45

Natural 4.76 7.83/2.17 7.65/1.93 12.31

Minhash 3.94 7.08/2.11 6.71/1.85 12.02

BP 3.13 6.17/2.03 5.74/1.77 11.69

Gov2 Random 5.05 7.96/2.97 7.93/2.53 12.47

Natural 1.91 4.37/2.31 4.01/2.07 11.44

Minhash 1.99 4.57/2.34 4.17/2.10 11.51

BP 1.54 3.67/2.20 3.41/2.01 11.30

ClueWeb09 Random 4.88 7.69/2.39 7.68/2.08 12.47

Natural 2.71 6.12/2.20 5.36/1.84 11.71

Minhash 3.00 6.46/2.23 5.77/1.87 11.79

BP 2.38 5.49/2.12 4.84/1.79 11.52

ClueWeb12 Random 5.08 7.99/2.39 7.95/2.09 12.91

Natural 2.51 6.07/2.20 5.11/1.81 12.07

Minhash 2.89 6.08/2.17 5.49/1.86 12.06

BP 2.32 5.20/2.07 4.64/1.77 11.90

CC-News Random 3.56 6.06/2.19 6.16/2.06 11.48

Natural 1.49 3.38/1.91 3.26/1.73 10.92

Minhash 1.95 4.49/2.02 4.12/1.82 11.08

BP 1.39 3.31/1.90 3.11/1.72 10.92

4.2 Efficiency

Next, we focus on the efficiency of our implementation. In the original work, the
authors experimented with two implementations. One approach utilized a dis-
tributed implementation written in Java, which conducted the reordering across
a cluster of “a few tens of machines.” The other approach was a single-machine
implementation, which used parallel processing across many cores. We opted
to follow the single-machine approach as discussed in Sect. 3.1. We report the
running time of BP for each dataset in Table 3.

Note that for these experiments, we used the Natural ordered index as input
to BP (discussed further in Sect. 4.3). Clearly, our implementation of BP is very
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Table 3. Time taken to process each dataset with recursive graph bisection, in minutes.

NYT Wikipedia Gov2 ClueWeb09 ClueWeb12 CC-News

2 5 28 90 86 97

efficient, completing Gov2 in 28 min, and ClueWeb09 in 90 min. This is com-
parable to the timings reported in the original work, which reported Gov2 and
ClueWeb09 taking 29 and 129 min, respectively. We must remark that our tim-
ings are not directly comparable to those from Dhulipala et al. for a few reasons.
Firstly, our indexes were built using Indri, whereas they opted to use Apache
Tika for their indexing, resulting in a different number of postings to process.
Furthermore, subtle differences in servers such as clock speed and cache size
can impact timings. In any case, we are confident that the BP algorithm can
run efficiently over large collections, and can use whatever processing pipeline
adopters have available. Another aspect of efficiency is memory consumption.
Dhulipala et al. report that their implementation “utilizes less than twice the
space required to store the graph edges.” While this is hard to interpret (how
was the graph edge space consumption calculated?), we provide some intuition
on our memory consumption as follows. On our largest collection, CC-News, the
BP algorithm has a peak space consumption of 110 GiB, which includes the graph
representation of the dataset. Given that the compressed forward index for CC-
News consumes 25 GiB, it seems that we have a higher memory footprint than
the original implementation (which would use up to 75 GiB). It is important to
note that this is due to our caching approach, which incurs a higher memory
footprint for faster execution time. Of course, alternative caching strategies may
allow for lower memory consumption at the cost of a slower run time.

NYT Gov2 ClueWeb09

1 2 10 20 30 40 50 50 100 150

2.40
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L
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Fig. 1. LogGap cost of the three different input orderings after running BP as the
number of iterations increases.
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4.3 Parameters and Initialization

First, we investigate the impact that the number of iterations has on the algo-
rithm. Dhulipala et al. showed that while on the higher levels of the recursion
we approach convergence after just a few iterations, around MaxIter = 20 iter-
ations are required at deeper levels. We are interested in understanding how
effective the BP algorithm is at producing a good ordering when we do less
iterations, as less iterations results in improved run-time efficiency. To measure
this, we ran the algorithm across the collections setting the maximum number
of iterations MaxIter = {5, 10, 15, 20}. Figure 1 shows the resulting trade-off in
terms of LogGap and execution time. We can make a few observations from this
figure. Firstly, the more optimal the input graph, the less iterations required to
reach a reasonable ordering. This is intuitive, as a better input ordering implies
that document clustering is already somewhat reasonable, meaning less work is
required to further improve the clustering. Secondly, the quality of the input
graph also seems to impact the run time of the algorithm. For example, examine
Fig. 1 (right), which shows the ClueWeb09 collection. Using either the Natural
or Minhash inputs achieves competitive compression levels using only 10 itera-
tions, which takes around 50 min. On the other hand, the Random input takes
longer to process in each iteration, and results in a less effective final ordering.
Similar results were found on all tested collections. Random orderings are slower
to compute for two main reasons. Firstly, on each iteration, more vertices are
moved, which takes longer to process. Secondly, it is less likely that the con-
vergence property will be met using a Random ordering, which results in more
iterations in total (Algorithm 1, Line 11 and 12). Therefore, we recommend
using a Natural or Minhash ordered index as input to the BP algorithm where
possible, and setting MaxIter = 20 for to ensure a good level of compression. If
the run time is critical, using smaller values of MaxIter allows trading off some
compression effectiveness for a faster total processing time.

Our next experiment investigates the effect of initialization on the perfor-
mance of the BP algorithm. Recall that in Algorithm 1, D must be partitioned
into sets D1 and D2. As discussed by Dhulipala et al., the initialization of these
sets may impact the quality of the final ordering of the vertices. Our imple-
mentation uses a generic sort-by-identifier approach to do this partitioning, so
the partition is made by first sorting the documents in D by their identifiers,
and then splitting it into two equal sized subgraphs. Therefore, the initialization
approach used is the same as the ordering of the input collection. Based on the
original work, we expect the initialization to have little impact on the final com-
pression ratio, with no clear best practice (and negligible differences between the
resultant compression levels). To test this, we ran BP using three different initial-
ization orderings: Random, Natural, and Minhash. Our results confirm that the
initialization order used to initialize D1 and D2 only has a very moderate impact
on the efficacy of the bisection procedure. In particular, the largest differences
in the LogGap for the resulting orderings was always within ±5%. We found
that there was no consistently better approach, with each initialization yielding
the best compression on at least one of the tested collections. This effect can be
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ClueWeb09 ClueWeb12 CC-News

NYT Wikipedia Gov2
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Fig. 2. LogGap cost of the three different input orderings as MaxDepth is increased.
LogGap cost is reported up to a depth of 26 for all collections.

observed in Fig. 2, by comparing each line at depth log(n)−5. For example, run-
ning BP with Random initialization results in the best ordering on the Wikipedia
dataset, whereas Minhash initialization is the best on ClueWeb09.

Our final experiment examines both the depth of the recursion and the poten-
tial impact of the initialization of D1 and D2 on the convergence of the algorithm.
For each collection, we run the BP algorithm for each recursion depth between 1
and 26 since the collection with the largest number of documents, ClueWeb12, has
�log(n)� = 26. Again, we use three varying approaches of initializing the sets D1

and D2, as the initialization may impact the depth at which the algorithm con-
verges. Figure 2 shows the results for this experiment. We reiterate that the input
ordering is the same as the initialization approach applied, hence the different
starting points of each line. Interestingly, the ordering of the input/initialization
approach does not impact the convergence level of the BP algorithm. We confirm
that the recommended heuristic of using MaxDepth = log(n) − 5 does indeed fit
with our implementation and the additional collections we tested, with marginal
(if any) gains following at further depths. Another interesting observation is that
even in cases where the input ordering is very close to the compression level of the
output ordering from BP (primarily in the case of the CC-News collection where
the input is the Natural index), the BP algorithm still takes around 14 levels of
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recursion to begin improving upon the input ordering, reaching convergence at
around level 19 or 20 as expected.

5 Conclusion and Discussion

During this reproducibility study, a lot of effort was spent on optimizing the
implementation. In order to achieve the efficiency that is described in our exper-
iments, considerable thought was put into various prototype algorithms and vary-
ing approaches before a final version was produced. While the original paper pri-
marily focuses on the theoretical reasoning behind the BP algorithm, this leaves
less room for explaining specific implementation details which are important in
practice. Since the source code was not released in the original paper, this con-
tributed to the difficulty of reproducibility. However, we are confident that the
algorithm presented in the original work and the findings based on this algorithm
are valid, as shown in this reproducibility study. By making our implementation
available, we hope to stimulate further research in this interesting area of effi-
ciency. Finally, we believe that future research should make the applied index
ordering known, as is already done for other experimental factors such as stem-
ming or stopping. This is of course important for the reproducibility of efficiency
experiments conducted across inverted indexes, for both query processing speeds
and compression numbers.
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