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Abstract. The increasing prevalence of neurodegenerative diseases (NDDs)
impose substantial medical and public health burdens on populations throughout
the world. NDDs are chronic diseases that affect the human central nervous
system causing loss of neurons within the brain and/or spinal cord. This causes
deterioration in movement and mental functioning of the patients. The current
medications for this group of disorders are limited and aim to treat the symptoms
only. A better understanding of the mechanisms underlying neurodegeneration
should lead to more effective, disease-modifying treatments in the future.
Continuous assessment of NDD patients is a key element of future care and
treatment. This contribution proposes a wearable NDD detection system based
on patient’s gait dynamics using an unobtrusive force resistive sensor embedded
in patient’s shoe. The NDD classification is based on 3 fundamental gait fea-
tures: stride time, stride time’s fluctuation and the autocorrelation decay factor. It
is designed to discriminate between healthy subjects and NDD patients and
moreover identify the NDD type: (Huntington’s disease (HD), Parkinson Dis-
ease (PD), and Amyotrophic Lateral Sclerosis (ALS)). The proposed NDD
classification algorithm is implemented on FPGA and verified experimentally
using Gait Dynamics dataset from Physionet. It offers a classification accuracy
of 93.8%, 89.1%, 94% and 93.3%, for ALS, HD, PD, and healthy person,
respectively, from a total set of 64 subjects.

Keywords: Amyotrophic Lateral Sclerosis (ALS) � Huntington’s disease �
Parkinson Disease � Neurodegenerative disorders � Classifier � Wearable sensor

1 Introduction

Patients with Neurodegenerative diseases (NDDs) suffer from medical conditions that
directly affect the neurons within the brain [1]. NDDs cause changes in neuromuscular
control causing degradation in muscle movements control, muscle tone, involuntary
movements and smoothness of movement. One of the key diagnostic approaches for
defining the NDD is the study of patient’s gait [2–4]. Parkinson’s disease (PD),
Huntington’s disease (HD) and Amyotrophic Lateral Sclerosis (ALS) are the main
types of NDDs deteriorating the patient’s gait [1].
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1.1 Parkinson’s Disease

PD is a chronic and progressive movement disorder causing trembling in the hands,
arms, legs, jaw, and face, stiffness the limbs and trunk, slowed movement, and impaired
balance and coordination [5]. After Alzheimer, PD is the second most common neu-
rodegenerative disease affecting approximately 1 million Americans (estimates range
between 4 and 6.5 million people worldwide) and about 1% of older adults. It usually
affects people over the age of 50 [5]. In the US alone, 60,000 new cases are diagnosed
with PD each year. There is currently no accurate test for the diagnosis of PD and it is
highly uncertain in the early stages of the disease. These symptoms usually begin
gradually and worsen with time. The gait of PD patients is characterized by small
shuffling steps and a general slowness of movement [3]. The stride length and walking
speed during free ambulation are also reduced.

1.2 Huntington’s Disease

HD is a genetic NDD that affects muscle coordination and leads to cognitive decline
and physical, mental and emotional changes [6]. It is estimated that around 30,000
people in the US only are affected by HD, and more than 150,000 people have *50%
potential risk of developing HD. Patients with HD are not able to think, talk and move
properly [6, 7]. This disease is responsible for destroying the cells in the basal ganglia,
the part of the brain that controls these capacities. HD usually develops at mid-age and
can cause a very wide range of symptoms. The general symptoms in early stages can
include a poor memory; difficulty in making decisions; mood changes such as
depression, anger or irritability; a growing lack of coordination, twitching or other
uncontrolled movements; difficulty in walking, speaking or swallowing [8, 9].

1.3 Amyotrophic Lateral Sclerosis (ALS)

ALS is known as motor neuron disease characterized by progressive weakness, diffi-
culty in speaking, swallowing, breathing, muscle twitching (involuntary muscle con-
traction and relaxation), and muscle stiffness. The patients suffering from ALS have
difficulty in maintaining regular normal locomotion [10]. The earliest signs of ALS
include muscles weakness of arms and legs that eventually, prevent the patients from
walking and talking and be bedridden. The spreading rate of ALS disease is 1 to 2 per
100,000 each year, most cases of which are sporadic while 5%–10% are inherited. The
treatment of ALS is very limited. It becomes necessary to understand the pathological
mechanism of this disease.

1.4 The Fall Risk

An important risk factor for NDDs at old age is the increasing fall chances. PD-old
patients suffer falls more frequently compared to healthy old people which increase the
chances of injuries and may lead to death [9, 11, 12]. Currently, the most common
practice to analyze and evaluate the progress of the treatment in NDD patients is mainly
based on interviewing the patients. However, depending only on the information
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provided by patients can produce misleading data. A more practical and successful
approach is to assess the physical functional performance of patients’, which helps the
physicians to create a more effective treatment plan and more technical assessment of
the results of the treatment [1]. Therefore, it is desirable to have a non-invasive
wearable continuous gait monitoring system that provides quantitative analysis to
detect and classify any movement disorders through monitoring the gait dynamics of
the NDD patient. For such system, it is more applicable to utilize wearable sensors with
a detection algorithm since it can be used anywhere and not limited to certain location
and it does not cause discomfort for the patient.

1.5 Goal of This Work

The primary goal of this work is to study and distinguish the gait dynamics of the NDD
patients and compare it with healthy individuals. Specifically, we compare how the
three different types of NDDs (PD, HD, and ALS) degrade the patient’s ability to
control the movement of two feet. This contribution proposes a wearable gait dynamics
detection system that will be utilized with foot sensors implanted on the shoe of the
patient to analyze the gait dynamics and identify the corresponding NDD disease.

The contribution is structured as follows. First, we give an overview of related work
that covers approaches for classifying the gait dynamics in each NDD in Sect. 2.
Following this, we explain the proposed Wearable NDD Detection System in Sect. 3.
In Sect. 4, we describe the NDD classification algorithm and define a number of
comparison criteria in order to show the strengths of our approach. Finally, the results
of the discussion are presented in Sect. 5 in which we point out the achieved benefits.

2 Previous Work

The analysis of the gait dynamics of NDD patients has been widely applied for
studying movement patterns in NDD patients. Multiple recent studies record the gait
dynamics in different NDD patients and extract various features to distinguish each
NDD [12–20]. Reference [1] utilized a deterministic learning method that divides the
classification process into two phases: a training phase followed by a classification
phase using neural networks to categorize the gait dynamics. The gait data of the
patients suffering from NDDs were recorded using foot switches with Support Vector
Machine (SVM) classifier. The classification results that ALS can be more easily
distinguished from PD with an accuracy of 85.47%, HD with an accuracy of 86.52%
and the healthy subjects with an accuracy of 93.96% [15]. The swing time series from a
patient with PD and a control subject under usual walking conditions were studied in
[12] and classified based on Coefficient of variability (CV). Detrended Fluctuation
Analysis (DFA) was also used to analyze the fluctuation of the gait cycle based on
200 m walk of 17 PD patients and 12 healthy young people tests as reported in [16].
The least-squares support vector machine (LS-SVM) was used to distinguish the stride
patterns between the ALS patients and healthy controls with an accuracy of 82.8%
using data recordings from Physionet.org [17]. An Associated Discrete Index
(ADI) was defined in [18] in order to measure the discrete degree at the same
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frequency. 93 patients with PD and 72 healthy controls were selected. Foot pressure
was analyzed including vertical ground reaction force. Power spectra were obtained to
compare gait signals of PD and control subjects. Compared with PD patient, the
frequency features of gait in control subject are more random, since the spectral lines
are loose as well as different with others. On the other hand, those lines in PD patient
are comparatively close to each other. This feature can be indicated by ADI, which
shows that PD patients always possess larger ADI than that of control subjects [18].
Reference [19] presented an algorithm to analyze a gait pattern in PD patients using
deep brain stimulation (DBS). Features were extracted to classify the PD subjects from
healthy control subjects with deep brain stimulation (DBS). A mobile sensor based gait
analysis system to measure gait patterns in PD and to distinguish mild and severe
impairment of gait was proposed in [20–24]. Gait test was performed using sports
shoes equipped with inertial sensors. The signals were recorded for both left and right
foot, and the features were extracted and classified using different classification algo-
rithm. The sensitivity and specificity were obtained 88% and 86% respectively.

3 Proposed Wearable NDD Detection System

The proposed wearable NDD detection system is composed of a sensing part simulated
using CMOS 180 nm technology and a detection algorithm implemented on Field
Programmable Gate Array (FPGA) as shown in Fig. 1 [25]. The sensing part is based
on Flexi-force resistor (FSR) that measure the force between two surfaces. FSR is
robust against most environmental variations [26]. The FSR single element force sensor
acts as a force sensing resistor in an electrical circuit. The resistance can be read by
connecting a multimeter to the outer two pins, then applying a force to the sensing area.
The FSR force sensor is an ultra-thin, flexible printed circuit where the force sensor is
constructed of two layers of substrate (polyester/polyamide) film, which does not
hinder the normal routine of the person or cause any discomfort. On each layer, a
conductive material (silver) is applied, followed by a layer of pressure-sensitive ink.
The active sensing area is defined by the silver circle on top of the pressure-sensitive
ink. It is renowned for its versatility, ease of integration, and cost-effectiveness. It can
be attached to many surfaces and can be combined with plastic or metal films for
increased stiffness or for added protection from abrasion. The sensing area is 9.53 mm
(0.375 in.) diameter located at the end of the sensor and placed in the shoe sole. It can
measure a force ranging up to (1000 lb.) using the readout circuit shown in Fig. 2. In
order to measure forces above 100 lb (up to 1000 lb), a lower drive voltage (−0.5 V,
−0.25 V, etc.) should be applied with a feedback resistor (1 kΩ min). The FSR data is
acquired and processed using Analog Front End (AFE) and then forwarded to NDD
classifier to classify the subject’s condition as ALS, HD, PD patient or healthy person.
The NDD classifier is implemented on FPGA. The processed information will be then
transferred to the doctor’s/care-giver mobile through Bluetooth/Cloud network asso-
ciated with the proposed system.
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Figure 3 shows the power comparison of FSR based NDD detection system for two
different approaches. Transmitting the FSR raw data for off-sensor processing via a low
power Bluetooth interface consumes 1.09 mW [27]. However, if the NDD detection is
performed on-sensor, the power consumption is reduced by 72% (0.31 mW), which
proofs the advantage of on-sensor processing for the wearable systems [27–29].

The block diagram of the proposed on-sensor wearable NDD classifier and AFE is
shown in Fig. 4. The proposed processing system is comprised of Instrumentation
Amplifier (AMP) to ensure operating of FSR in the desired weight range, followed by a
buffer (BUF), an Analog-to-Digital Converter (ADC), a classifier (detection of disor-
der), and Bluetooth module/interface for communication with the external world. Since
the target is a wearable environment, a 12 bits Successive Approximation (SAR) ADC
is utilized as an optimum choice with a sampling rate of 300 Samples/s. The digitized
data is then collected and filtered with a median filter to eliminate the noise; followed
by an NDD classifier. Based on the captured gait features, the NDD classifier cate-
gorize the person into (1) ALS, (2) PD, (3) HD or (4) Normal Person (NP). In addition,
the proposed classifier also identifies the severity of the disease.

Fig. 1. System level diagram of the proposed wearable system for the NDD detection.

Fig. 2. FSR Readout circuit to measure more than 100 lb. force.
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A successive approximation register (SAR) ADC architecture is the natural choice for
the wearable/portable biomedical systems [30]. SAR ADC is suited for low speed, mod-
erate resolution, and ultra-low power applications. The designed ADC has a fixed reso-
lution of 12 bits and has a sampling rate of 2.4 kHz. To enhance the common-mode
rejection ratio (CMRR) and to eliminate the second order harmonics, a full differential
architecture is adopted with the minimal overhead of doubling the digital to analog con-
verter (DAC) power [31]. Figure 5 depicts the architecture of the fully differential ADC
which includes differential capacitive DAC, digital comparator, SAR Logic, and switches.
The 12b SAR ADC is implemented and simulated using CMOS 180 nm process.

Fig. 3. Power breakdown for two possible on-sensor processing scenarios.

Fig. 4. Block diagram of NDD AFE and the detection processor.

A Wearable NDDs Classification System Using Human Gait Dynamics 77



The designed 12b SAR ADC utilizes a binary weighted fully differential capacitive
DAC. To minimize the power and area consumption sub-DAC and split-capacitor for
the most significant bit (MSB) is utilized [32].

The DAC is composed of 7-bit main DAC and 5 bit sub-DAC. The proposed 7/5
division minimize the power consumption while utilizing the same area as 6/6 division.
Moreover, 6/6 division suffers from the high differential non-linearity (DNL)/ integral
non-linearity (INL) due to the parasitic capacitance on the top plate of the sub-DAC.
The MSB capacitor is split into the capacitor array identical to the least significant bit
(LSB) capacitor as shown in the Fig. 6.

The SAR ADC area is mainly dominated by the area of the capacitive DAC. In a
binary weighted DAC of N bit resolution, the ratio of MSB to LSB is equal to 2N−1,
which is equal to 2048 for 12 bit SAR ADC. To reduce the area of the capacitor array,
the capacitive DAC is divided into an M-bit main-DAC and an L-bit sub-DAC that is
connected to the main-DAC through a coupling capacitor [33], where the SAR ADC
resolution N is equal to M+L. Figure 6 shows the single-sided capacitive DAC split in

Fig. 5. The architecture diagram of the designed 12b SAR ADC.

Fig. 6. Binary weighted DAC with 7-bit main-DAC and 5-bit sub-DAC.
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M bit main-DAC and L bit sub-DAC where M and L are equal to 7 and 5, respectively,
in the implemented design. The coupling capacitor has a value of 2LCo/2L−1 which is
the 32Co/31. Therefore, the overall effective capacitance of the sub-DAC and coupling
capacitor is equal to Co. Figure 7 shows the utilization of superposition principle to
depict the effect of voltage VTOP based on each capacitor in the main-DAC and sub-
DAC. The effective capacitive divider individually connects the bottom plate of each
capacitor in the main-DAC VREF. First, if the bottom plate of the MSB capacitor (64
Co) is connected to VREF and the bottom plate plates of the rest of the capacitors are
connected to the GND. A capacitive divider with two capacitors each is equal to 64-Co
occurs and voltage VTOP is equal to half the VREF value. If the capacitor 32Co is the
one connected to VREF instead the voltage is equal to quarter VREF and so on.

Thevenin equivalent is utilized to apply same procedure for the sub-DAC evalu-
ation. Figure 8 shows the effective capacitive divider while connecting the bottom plate
of the MSB capacitor of the sub-DAC to VREF and the rest of capacitors to the GND.
The voltage VTOP is equal to VREF/2 divided by 2M which is the half the value yielded
by the LSB of main-DAC. The same analysis can be applied to the rest of the
capacitors of the sub-DAC. It should be noted the Thevenin equivalent capacitance
shown in Fig. 8 is the same while switching any of sub-DAC capacitors.

Fig. 7. Explanation of the DAC effective capacitive divider while individually connecting the
bottom plate of each capacitor in the main-DAC to VREF and the rest of capacitors to GND.

Fig. 8. Thevenin equivalent circuit for analyzing passive sub-DAC.
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The only problem with sub-DAC interpolation is its sensitivity to the parasitic
capacitance at the top plate of sub-DAC capacitors. This leads to INL/DNL errors due
to the compression of transition steps by the sub-DAC. However, this problem can be
compensated by an increase in the size of the coupling capacitor by RTP [33] as given
in the following equation where CP is the extracted parasitic capacitance from the top
plate of subDAC to GND and Csub DAC is the total capacitance of the sub-DAC which
is equal to 2LCo (32 Co in this case).

RRP ¼ 1þ CP

CsubDAC
ð1Þ

To reduce the power consumption, dynamic comparators are utilized which are
highly power efficient and thus cut down one of the main sources of power dissipation
in the SAR ADC. The two main problems of this type of comparators are the input-
referred offset and kick-back noise. The transistors are sized to keep the 3r offset close
to 50 mV. Kickback noise has little effect on the operation of the ADC as it roughly
common mode when the outputs begin to rise [33]. The SAR Logic is responsible for
generating the switch control signals during the different phases of operations.
The SAR logic consists of three main blocks, first the sequencer for providing timing
control. It sets the period of purging, sampling and bit-cycling and timing for latching
the output of the comparator. The second part is the data register which is used to store
the output of digital comparator during the bit-cycling phase to form the digital output
vector. The third part utilizes outputs of the sequencer and data register to generate the
switches control signals of the main-DAC and sub-DAC.

The performance summary of implemented SAR ADC is shown in Table 1.
The SAR ADC achieves an effective number of bits (ENOB) of 11.4, signal-to-noise-
distortion ratio (SNDR) of 60 dB, spurious free dynamic range (SFDR) of 72 dBFS
which provides information about the difference between maximum amplitude tone in
frequency spectrum and the fundamental input tone, DNL and INL of 0.275 LSB and
0.3 LSB, respectively, which gives deviation of actual conversion from the ideal one.

4 NDD Classification Algorithm

The main goal is to extract the discriminating features to classify the different NDDs.
The gait cycle duration (known as stride-time), is considered as one of the main
features to identify person’s gait dynamics [1]. The heel strike is defined as the heel

Table 1. 12b SAR ADC performance summary.

Power consumption 57 nW

ENOB 11.4
SNDR 60 dB
SFDR 72 dB
DNL 0.275 LSB
INL 0.3 LSB
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first touches the ground and ends until the whole foot touches the ground. As shown in
the Fig. 9, the early flatfoot strike occurs, when the whole foot is on the ground. The
late flatfoot stages end when the heel lifts off the ground. The rise begins when the heel
starts to leave the ground. The toe-off phase occurs when the toe leaves the ground.
60% of the walking consists of stance phase. The Stance phase occurs when the whole
foot is on the ground. Swing phase is basically defined as the one foot is on the ground
and the other is in the air. Figure 10 shows the digitized FSR output from the ADC for
an ALS patient for a duration of 100 s along with right and left stride intervals in red
and blue, respectively. Close analysis of the graph shows that stride interval of both left
and right foot gives same information about the human behavior. Moreover, the left
stride time seems to be more sensitive and gives more details in comparison to the
right. These results are consistent among all the patients (ALS, HD, PD) and therefore
in this work only left stride is utilized in the processing to save power and area
utilization.

Figure 11 shows the average left stride time interval for different NDD i.e. ALS,
PD, HD and NP. Subjects with ALS, have longer average stride time interval compared
with that of the HD, PD and the healthy subjects. Therefore, the average stride time
interval is an effective feature for the NDD detection that is used in our proposed NDD
classifier. It is also observed that the stride-time interval is a key feature to distinguish
between ALS and other NDDs based on Fig. 11. Another important feature for NDD
detection is the stride-time fluctuation w.r.t corresponding mean which is more dom-
inant in the HD relative to other NDDs [23] except ALS as shown in the Fig. 12.

Fig. 9. Gait abnormality in neurodegenerative diseases and stride time.

A Wearable NDDs Classification System Using Human Gait Dynamics 81



But the ALS can be detected based on stride time, therefore stride time fluctuations can
be treated as a feature for the HD detection. Stride time fluctuation is calculated by
taking the derivative of the stride time and the Fig. 12 shows the relative maximum and
continuous fluctuation in the stride time compared to the NP, ALS, and PD.

The selection of stride time fluctuation as feature reduces the overall feature set
compared to [1] and [12] by more than 60%. Furthermore, to discriminate the PD and
NP, a detailed analysis is performed to carefully select feature which significantly
distinguishes the PD from NP. For this purpose, the autocorrelation of the decay time
for the NDD is done with the healthy subject, and the value came out to be greatest for
the PD patients. Therefore, the autocorrelation is also considered as a discriminatory
feature for the PD patients.

Fig. 10. Digitized FSR output with extraction into left and right stride time. (Color figure
online)

Fig. 11. Average stride time comparison of different NDD (ALS, PD, HD) and NP.
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Figure 13 shows the computed auto-correlation factor value of different NDD’s
used in this work. The values show ALS achieves maximum value but since stride time
alone is enough to determine the ALS, therefore, stride time along with auto-correlation
factor discriminate PD from all other NDD’s and NP with good classification accuracy,
since PD has the second maximum value of auto-correlation factor among NP and HD.

Fig. 12. Average stride time fluctuation comparison of different NDD (ALS, PD, HD) and NP.

Fig. 13. Average auto-correlation factor comparison of different NDD (ALS, PD, HD) and NP.
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Figures 14 and 15 shows the state flow diagram and the algorithm for the proposed
NDD classification method based on 3 features: (1) stride-time, (2) fluctuation in the
stride time and (3) autocorrelation decay factor. The stride time value is the duration of
gait cycle which is the time interval between two consecutive heel strikes of the same
foot in milliseconds. Fluctuation in the stride time is an indication of the inconsistent
limb movements. Therefore, the mean and standard deviation of stride time are utilized
to estimate the fluctuation variation value (FVV). The FVV can be considered as a
measure of the variability of temporal stride dynamics caused by the imbalanced
rhythmic walking mechanism. Low FVV indicates automated rhythmic characteristics
of gait dynamics and is utilized by physicians as a clinical index for stable gait
dynamics. FVV among healthy individuals is low and usually below 3% [34].
Explicitly can be determining a factor for ALS and HD patients. The autocorrelation
function indicates how the stride time series of each patient is correlated with itself over
different time delays and gives a measure of the memory in the system. The auto-
correlation decay-time value (ADV) is defined as the number of strides required for the
autocorrelation of the stride time series to fall to 63% (1 − 1/e) of its initial value [35].

Fig. 14. State flow diagram of the proposed NDD classifier.
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The OA, OH, OP, and ON are outputs of corresponding NDD and their values are
calculated based on the STV (Stride time value), FVV, and ADV (Autocorrelation
decay-time value) in relation to the STT (Stride time threshold), FVT (Fluctuation
variation threshold), and ADT (Autocorrelation decay-time threshold). The detection
time for one cycle of evaluation is 5 min (300 s) and will continue repeating if NDD
goes undetected.

Fig. 15. Proposed NDD classification algorithm.
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Additionally, based on threshold level and the proposed NDD algorithm, the two
bits output of the classifier also describe the severity of the corresponding disorder. If
none of the diseases is detected, the patient will be claimed as a normal scenario. Since
it’s also important to detail severity level of ND and action item, therefore the relation
of NDD output, the severity of the disorder and corresponding action are detailed in
Table 2. This information will be presented to the concerned person himself, caregiver
and physician via cloud/Bluetooth link. The NDD classifier output is 2 (two)-bit with
binary encoding utilized for each corresponding NDD, for example, the 2’b11 means a
high score of specific NDD, meaning the person has the severe symptom of that NDD
and needs to take precautionary measures on urgent basis.

To form a mathematical model for the detection based on the above discrimination,
the fall detection algorithm is as follows. The decision weights are carefully selected
based on the rigorous simulation for the Neuro-Degenerative Disease Data Base [35].

5 Results and Discussion

The system is verified with the Gait Dynamics in Neuro-Degenerative Disease Data
Base 35, which contains 64 subjects having ALS, HD, PD and Healthy Subjects of 13,
20, 15 and 16, respectively. To measure the real-time performance and working, the
complete implementation is also done on FPGA. The average overall classification
accuracy was computed using the Xilinx Virtex 5 LX-110T FPGA board and Logic
analyzers were used to display and verify the NDD classification. The sensitivity and
specificity are defined by (2) and (3), respectively, along with the definition of True
Positive, True Negative, False Positive, and False Negative in (4)–(7).

Table 2. NDD output with score description and action item.
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Sensitivity ¼ True Positive
True Positiveþ False Negative

ð2Þ

Specificity ¼ True Negative
False PositiveþTrue Negative

ð3Þ

True Positive ¼ # of pattern classified Normal
Total # of Normal Patterns

ð4Þ

True Negative ¼ # of pattern classified Abnormal
Total # of Abnormal Pattern

ð5Þ

False Negative ¼ # of pattern classified Abnormal
Total # of Normal Pattern

ð6Þ

False Positive ¼ # of pattern classified Normal
Total # of Abnormal Pattern

ð7Þ

The evaluation shows the proposed system achieves an averaged sensitivity and
specificity of 90.8% and 94.5%, respectively for total 64 subjects. The verification
results of the proposed system are shown in Fig. 16. It also achieves a classification
accuracy of 93.8%, 89.1%, 94% and 93.3%, for ALS, HD, PD, and normal person,
respectively.

Figure 17 shows the performance of the proposed system, the digitized FSR data is
processed to evaluate the stride time and based on the stride time, fluctuation in the
stride and autocorrelation decay time; the specific NDD is determined and the final
information is transferred to the doctor/caretaker mobile via Bluetooth. Different
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scenarios are shown in the Fig. 17 for the working of the proposed NDD classification
system along with the computed values (STV, ADV, and FVV) and their corre-
sponding threshold values (STT, ADT, and FVT). The message showing the severity
level of the disease along with proposed action item is displayed on caregiver or
physician smartphone through a low-energy Bluetooth link. Table 3 compares the
performance of the proposed NDD processor with the state-of-the-art works. All other
works focus on software implementation only whereas this work target a wearable
device with on-sensor processing. It also utilizes only 3 features to distinguish between
the different NDDs and healthy persons. The system achieves an overall sensitivity,
specificity and classification accuracy of 90.8%, 94.5%, and 92.9%, respectively. Since
the proposed system is targeting a wearable environment, therefore an area and power
efficient 12b-SAR ADC are implemented using 65 nm CMOS technology consuming
<60 nW.
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6 Conclusion

This contribution proposes a wearable novel NDD detection system for the detection
and classification of ALS, HD, and PD. The proposed system is based on the minimum
feature set of 3 features which will ensure lower power and area implementation
without affecting the overall detection performance. The proposed system aims to
provide a solution for the next generation of miniaturized wearable devices to detect the
NDD at an early stage and may help in reducing the severity of NDD. The proposed
system is tested on patient’s recordings from Physionet Gait Dynamics dataset and
achieves a classification accuracy of 93.8%, 89.1%, 94% and 93.3%, for ALS, HD, PD,
and healthy person, respectively, from a total set of 64 subjects.
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