Chapter 2 )
Topic-Specific Design Research: ki
An Introduction

Koeno Gravemeijer and Susanne Prediger

Abstract Design research has become a powerful research methodology of
increasing relevance in mathematics education research. This chapter provides an
overview and selected insights for novice researchers who want to find out if this
research methodology is suitable for their own projects, and what possible research
outcomes can look like. As topic-specificity is the feature that distinguishes
didactical design research from generic educational design research, different
models for topic-specific design research are presented.

Keywords Design research - Design experiment - Learning processes - Realistic
mathematics education - Structuring the learning content

2.1 Introduction

Design research is a research methodology that has grown during the last 30 years,
starting with early work in the 1980 and 1990s (Cobb and Steffe 1983; Gravemeijer
and Koster 1988; Wittmann 1995; Artigue 1992; see Prediger et al. 2015, for a
historical overview). In this chapter, we present its main ideas and common fea-
tures, but also different versions of design research. We focus on topic-specific
design research aiming at local instruction theories for different mathematical
topics.

In this chapter, we present design research with its aims, common characteristics
and usual procedures (Sect. 2.2) and offer insights into two example projects
(Sect. 2.3). Section 2.4 provides categories for reflection on design research.
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2.2 What Is Design Research?

2.2.1 Dual Aims and Common Characteristics

Design research combines instructional design (aiming at developing
teaching-learning arrangements for classrooms) and educational research (aiming
at investigating and understanding the initiated teaching learning processes, and
what brings this process about). Instead of executing those activities in sequence,
design-researchers perform both simultaneously and intertwine them in several
cycles in order to reach the dual aims (Cobb et al. 2003; Kelly et al. 2008; Van den
Akker et al. 20006).

Even if design research approaches can differ in their concrete realization, they
usually share five common characteristics (Cobb et al. 2003; Prediger et al. 2015).
They are

(1) interventionist, i.e., the intent of design research is to create and study new
forms of instruction, in this sense, it must be intended to intervene in the
classroom practices (interventionist) rather than just to involve observation of
regular classroom practices (naturalistic);

(2) theory generative, i.e., the goal of design research is to generate theories about
the process of learning and the means of supporting that learning (see above);
generating theories here means both developing and refining theories in terms
of inventing categories and generating hypotheses (but rarely ‘testing
hypotheses’ in the narrow sense of experimental psychology);

(3) prospective and reflective, i.e., design experiments create conditions for
developing theory (prospective), however, these theories are in turn the subject
of critical examination (reflective);

(4) iterative, i.e., theory is developed in an iteration of cycles of conjecturing,
testing, and revising;

(5) pragmatic roots and humble theories, i.e., design experiments accept the
complexity of the classroom as a research setting, and theories are domain- or
even topic-specific and are meant to have practical implications.

2.2.2 General Structure of a Design Experiment

These characteristics are realized by design experiments (Cobb et al. 2003). Very
roughly speaking, what design researchers do in design experiments is not very
different from what teachers do as reflective practitioners, but researchers combine
this practice with theory development.

We may observe that what teachers do when teaching a lesson involves three
kinds of activity:
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e preparing, the teacher designs or selects instructional activities with an eye on
the learning goals;

e enacting, the instructional activities are enacted and the teacher observes the
students’ actions and utterances with an eye on the intended learning process;

o reflecting, the teacher analyzes what has transpired in the classroom, contrasts
this with what was anticipated, and revises or adapts the instructional activities.

Typically, reflective practitioners search for the best solution to a concrete
practical problem (possibly in an action research mode, e.g., Breen 2003). In ret-
rospect, they might ask themselves, what have I learned? However, teachers rarely
start out with the aim of learning from a specific lesson. Moreover, if that would be
a teacher’s goal, he or she would have to consider how to facilitate reaching that
goal, for instance, by explicating the goals and expectations about the learning
process in advance, and considering how to keep track of the learning of the
students and the factors that might influence that learning.

Likewise, these are important considerations for design researchers. In design
research the overriding goal is to contribute to theory development that transcends
an individual classroom or lesson. Design researchers may also aim at solving
concrete problems, but the aims always include gaining insights into the learning
processes, the means of support and typical obstacles and conditions of success
(Cobb et al. 2003; Bakker and van Eerde 2015). As design researchers want to
make a contribution to the scientific community, an additional feature comes to the
fore, that of ensuring a sound empirical and theoretical basis as support for theo-
retical claims, which may emerge from the design experiment.

Summarizing, we may argue that at its core, design research resembles what
reflective practitioners do when designing, enacting and reflecting on individual
lessons. However, the goal of generating empirically grounded theory brings a host
of demands that are not part of everyday teaching. We elaborate this point in the
following, by showing how the three phases, preparing, enacting and reflecting, are
worked out in design research.

Preparing for the Design Experiment

In preparation for the design experiment, the researchers need to clarify the learning
goals and the instructional starting points, and to develop a conjectured, or provi-
sional, local instruction theory. Such a local instruction theory includes theories
about a possible learning process, and theories about possible means of supporting
that learning process. Further decisions will have to be made about the theoretical
intent of the design experiment and about data gathering and data analysis.

As a rule, the research team cannot simply adopt the educational goals that are
current in a given domain—as in general these goals may be determined largely by
history and tradition. The researchers will have to problematize the topic under
consideration from a disciplinary perspective, search for the core ideas in the given
domain, and establish what the most relevant or useful goals are (Gravemeijer and
Cobb 2006).
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In order to be able to develop a conjectured local instruction theory, one also has
to consider the instructional starting points. The focus here is to understand the
consequences of earlier instruction, upon which one can build in the further design
experiment cycles.

Once the potential end points and the instructional starting points are established,
the design research team can start to formulate the conjectured local instruction
theory. The term conjectured is used as the expectation is that this theory will be
revised under the influence of how the students’ thinking and understanding
evolves when the planned (and later revised) instructional activities are enacted in
the classroom. Simon’s (1995) conception of a hypothetical learning trajectory may
serve as a paradigm here. The enactment of the instructional activities is always
tightly interwoven with the envisioned classroom culture and the proactive role of
the teacher, so this must be part of the planning as well.

We may further note, that even though one of the primary aims of a design
experiment is to support the constitution of an empirically grounded local
instruction theory, another aim might be to study classroom events as instances of
more encompassing issues. Such issues are, for instance, the role of symbolizing
and modeling or the proactive role of the teacher. In practice, this type of aim may
be identified prior to the design experiment, during the experiment, or even
afterwards.

As part of the preparation, decisions have to be made about the types of data that
need to be generated in the course of the experiment. A general guideline here is
that the data have to make it possible to address the issues that were identified as
research goals at the start of the design experiment.

Next to data gathering one also has to consider how the data are to be inter-
preted. Here the theoretical frameworks may play a dual role. We may take the
emergent perspective on the classroom culture (Yackel and Cobb 1996) as an
example. On the one hand, the concepts of social norms and socio-mathematical
norms reveal what norms to aim for in order to make the design experiment suc-
cessful. On the other hand, the same framework offers an interpretative framework
for analyzing classroom discourse and communication.

Enacting the Design Experiment

The second phase consists of actually conducting the design experiment. At the
heart of the design experiment lies a cyclic process of (re)designing, and testing
instructional activities and other aspects of the design. The scope of such a cycle
may vary over research projects, from individual activities or lessons, to a complete
course. In each cycle, the research team conducts an anticipatory thought experi-
ment by envisioning how the proposed instructional activities might be realized in
interaction in the classroom, and what students might learn as they participate in
them. During the enactment of the instructional activities in the classroom, and
afterwards, the research team tries to analyze the actual process of the students’
participation and learning. On the basis of this analysis, the research team later
makes decisions about the validity of the conjectures that underlay the instructional
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activities, and about the consequences for the next activity. This often also implies
an adaptation of the local instruction theory.

Reflecting on the Design Experiment, the Retrospective Analysis

One of the primary aims of a design experiment is typically to contribute to the
development of a local instruction theory. Other goals may concern more encom-
passing issues. The manner in which the retrospective analysis is conducted will
vary, as differences in theoretical frameworks and objectives will result in differ-
ences in the retrospective analyses. Instead of trying to offer a general description,
we return to this issue in the discussion of the cases presented as examples.

2.2.3 Differences Between Various Design Research
Approaches

Most design research approaches can be subsumed under the three main steps of
preparing, enacting, and reflecting, as sketched in Sect. 2.3, and exhibiting the five
characteristics presented in Sect. 2.2. However, design research approaches take a
large variability of forms, depending on their origin, their actual context, and the
specific needs they are supposed to fulfill. Hence, literature of the last decades pays
tribute to this variety (e.g., Kelly et al. 2008; Plomp and Nieveen 2013; Van den
Akker et al. 2006, for educational design research in different domains). Surveying
the field in mathematics education, Prediger et al. (2015) have classified the dif-
ferences with respect to the following:

age groups: These may vary from Kindergarten to university mathematics.
the reasons for doing design research: Design research approaches vary in their
prioritization of the dual aims, focusing more towards solving practical prob-
lems or more towards generating theory and understanding the teaching learning
processes.

e the type of results: Depending on the prioritization of aims, the former purpose
may aim at producing artifacts that can be used directly in classrooms. In
contrast, the latter may aim at local instruction theories or more general insights,
and is often embedded in a larger research program.

e the scale of the design project: This may vary from the nano level (of individuals
and single tasks), through the micro level (classrooms and teaching units), the
meso level (e.g. school-specific curriculum), the macro level (e.g. national syllabi
or core objectives) up to the supra level (international or internationally com-
parative aspects), as specified by Van den Akker (2013, p. 55).

e the background theory: Finally, implicit or explicit background theories on
teaching and learning will strongly influence both the conception and the results
of research, e.g., socio-constructivism will lead to other decisions in design and
analytic focus than a purely individualistic background theory.
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Here, we add an additional source of variation, the degree to which the design
research takes into account the topic-specificity of the instructional design and the
research.

2.2.4 Striving for Topic-Specific Design Research Rather
Than Only Generic Educational Design Research

Design research approaches are successfully applied in generic educational research
as well as in different subject matter didactics, such as mathematics education
research. The collection of 51 case studies involving design research (Plomp and
Nieveen 2013) shows that both versions are insightful. Whereas generic design
research projects mostly focus on specific design principles or design elements
(e.g., How can the use of tutorial computer systems enhance students’ motivation
for independent work?), many subject matter education research projects pose more
didactical questions, concerning the specific mathematical topics to be learned.

In topic-specific design research, which is the theme of this chapter, didactical
issues are put at the center. These concern both the question of how to teach a given
topic and the question of what should be taught and in which structure (i.e.
sequencing order and sense making relations). These questions are treated in all
three phases, starting with the preparation phase. It is important to emphasize that
the choice of the topic itself is not an empirical question. But the empirical part of
topic-specific design research can provide new insights into the structure of the
topic to be learned (Hufmann and Prediger 2016). In the following sections, we
explain what we mean by this kind of topic-specificity, because we consider it an
important quality within the areas of subject matter research.

Apart from promoting topic-specific design research, we take the position that, in
general, topic-independent principles must be enriched by very concrete,
topic-specific design research striving for local instruction theory on the concrete
topic. The design research aims at finding concrete ways of realization as well as
specialized knowledge regarding typical, topic-specific learning and teaching pro-
cesses, organized in hypothetical learning trajectories, as explained in Sect. 2.2.

Although some elements of the local theories are of course transferable to the
next topic (e.g., from algebraic expressions to fractions), this transfer is usually
investigated in a subsequent topic-specific design research project.

2.3 Learning from Examples of Topic-Specific
Design Research

In this section, two projects are presented briefly, in order to provide insights
into the processes and typical outcomes. Although sharing the topic-specificity
(see Sect. 1.4) and the strong focus on learning processes (Prediger et al. 2015),
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these projects are different in terms of interesting aspects: Firstly, both examples
offer guidelines for instructional design as a significant part of design research,
although in different forms. Secondly, both examples have an open eye for what is
happening in the design experiment, however, in significantly different ways. The
second example on fruitful starting points and obstacles for students’ learning
pathways, focuses on what the underlying difficulties are and how those can be
addressed, following a highly structured approach. The first example aims at
developing a local instruction theory from scratch; there is no history of teaching
this topic to the given age group. In this sense the research project is exploratory. It
aims at finding out which opportunities arise and what possibilities emerge, what
ingenuity the students bring to the table and how this can be utilized in the design of
highly innovative instruction.

2.3.1 Exploratory Design Research—An Example Project
Jor Instantaneous Speed in Grade 5

In this section, a design research project on instantaneous speed in 5th Grade,
carried out as a Ph.D. study by de Beer (2016), is presented as an example of
exploratory design research. The section starts with a brief introduction to the
design research tradition in which this research project was embedded, namely,
Realistic Mathematics Education (RME).

Realistic Mathematics Education as a Research Tradition

Design research in the RME tradition has its roots in Freudenthal’s (1973) proposal
to organize mathematics education as a process of guided reinvention. Analyzing
instructional sequences that tried to do justice to this principle, Treffers (1987)
formulated the domain-specific theory for realistic mathematics education implicit
in those sequences. This theory was later cast in terms of three instructional design
heuristics (Gravemeijer 2004), guided reinvention, didactical phenomenology, and
emergent modeling—which are discussed later in this chapter.

The aim of RME is that students be enabled to construct their own mathematics
under their own steam. However, the goal is not for the students to construct
idiosyncratic mathematics; the mathematics the students construct has to be com-
patible with the conventional mathematics of the wider society. Thus the teacher
has to support students in building on their own knowledge and ideas, while at the
same time keeping an eye on the endpoints for which he or she is aiming. This goal
points to an interactive process in which the teacher adapts to the students’ thinking.
To support such a process, RME design research aims at developing local
instruction theories, which can function as frameworks of reference for teachers. On
the basis of these frameworks, teachers may develop hypothetical learning trajec-
tories (Simon 1995), tailored to their preferences, their goals and their classrooms.
In line with this conception, RME design research aims at developing theory about
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student learning, together with theories about the means of support—such as
instructional activities, tasks and tools, and a fitting classroom culture. Thus the
goal in RME design research is not just the development of instruction that fits the
idea of guided reinvention, for a given topic. Key is also to come to understand how
that instruction works. In relation to this point we may observe that there are often a
number of key insights that emerge during one or more research projects. Such
insights may emerge in all three phases of a research project.

Being open to new insights is critical here. In relation to this openness, we may
refer to Smaling’s (1992) methodological conception of objectivity. Smaling (1992)
argues that there are two components of objectivity, (1) avoiding distortion, and (2),
“letting the object speak”. Design research aiming at new insights, relies heavily on
the latter—of course without neglecting the need to avoid distortion.

As indicated above, a design research project on instantaneous speed in Grade 5
is presented here as an example of exploratory design research within this research
tradition. This research project consisted of a series of design experiments, which
were extensively reported on by de Beer (2016). Here, we do not describe the
individual design experiments, but try to give a more general overview. We use the
three phases of a design experiment to structure our elucidation, even though there
were actually three design experiments, and thus for each experiment, three of
cycles of preparation, enactment, and retrospective analysis, were completed.

Preparing for the Design Experiment on Instantaneous Speed

In the preparation phase, we established the starting points, the potential end points
and the preliminary local instruction theory. In conventional education, instanta-
neous speed is approached by taking the limit of average speed for a time interval
approaching zero. This is of course beyond the reach of primary school students.
We therefore aimed at an informal conception of instantaneous speed. Following
Kaput and Schorr (2007), we further inferred that interactive dynamic computer
representations might offer support.

While preparing for the experiment, we drew on the RME instructional design
heuristics concerning guided reinvention, didactical phenomenology and emergent
modeling (Gravemeijer 1999).

Guided reinvention. Though there is a tradition in RME of describing goals as
procedures in relation to the reinvention of algorithms, our interest has shifted
towards mathematical relations and conceptual understanding (Gravemeijer in
preparation). In case of the local instruction theory on speed, we may characterize
the goal for the students as developing a framework of mathematical relations,
which involve co-variance, tangent lines, rise-over-run, and eventually, speed as a
variable. But at the start of the design experiment on instantaneous speed, it was not
clear what would be within the reach of 5th grade students. The belief that
understanding speed is closely linked to graphing, however, provided a clear
direction for the design. When following the guided reinvention design recom-
mendation to look at the history, we also found strong links between trying to come
to grips with speed and the use of graphs. We further made a connection with a
historical definition of speed, which preceded the notion of average speed.



2 Topic-Specific Design Research: An Introduction 41

Around 1335, William Heytesbury reasoned that one could define instantaneous
speed on the basis of the distance that would be traveled if the speed would stay
constant for a given period of time (Clagett 1959).

Didactical phenomenology. The didactical-phenomenology design heuristic
advises the researcher-designer to look for the phenomena that are organized by the
tool, concept, or procedure one wants the students to reinvent (Freudenthal 1991).
In our case, the phenomenon of moving objects presents itself as an obvious
candidate. As researchers, however, we were concerned that the students’ use of the
language learned at school in connection with motion might make it very difficult to
establish the students’ actual understanding of speed. Looking for an alternative we
found various descriptions in the literature, of students reasoning about the speed
with which the water level in glassware rises (e.g., Swan 1985). On the basis of this
characterization, we inferred that they have a basic understanding of the relation
between the width of the glass and the rising speed, and of the relation of the latter
with the shape of the corresponding graph. In terms of the didactical phe-
nomenology design heuristic, the changing water height became the phenomenon
that could be organized by the tool (a graph), and the concept (speed) we wanted
the students to reinvent.

Emergent modeling. The emergent modeling design heuristic was not elaborated
at the start of the design experiment. Nevertheless, the idea that the visual repre-
sentations of changing water heights had to play a central role, was already indicted
by the other design heuristics. Modeling was given a more prominent place in
the 2nd design experiment cycle, when we decided to integrate the idea of
modeling-based learning. Consequently modeling changing water heights received
a more prominent place. Gradually we started to realize that the initial model and
the final model could respectively be described as model of changing water heights,
and, model for reasoning about the rising speed (Gravemeijer 1999), while ‘the’
model could be loosely defined as ‘visual representations of the filling process’.

Enacting the Design Experiment on Instantaneous Speed

As we felt we did not know enough of the students’ starting points, we started with
a number of one-on-one teaching experiments to get a sense of potential starting
points. Those one-on-one teaching experiments showed us that the students were
quite able to reason about cylindrical glasses. They realized that the water would
rise with a constant speed, and they effortlessly drew linear graphs to illustrate this.
With cocktail glasses of conic shape, however, they ran into problems. They ini-
tially believed that the water height in the cocktail glass would develop similarly to
the cylindrical glass. When they were shown a computer simulation of how the
glass filled up, they quickly realized that the rising speed slowed down when the
water level went up. They also realized the logic behind it; as the glass got wider
the rising speed would go down. As a rule, however, the students in the sample
were unable to draw a seemingly correct graph. Our explanation for this was that
the students had virtually no experience with drawing graphs. All they had was
some experience with interpreting segmented line graphs.
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Reflecting on these findings, we connected Heytesbury’s idea of “speed staying
the same” to the notion of constant speed. In other words, the (instantaneous) rising
speed at a given point (at given width) in an arbitrary glass could be equated with
the constant speed in a cylindrical glass of precisely that width. In line with this
idea, we decided to ask the students, when the rising speeds in a cylindrical and a
cocktail glass would be the same. Once this link was established, we would elab-
orate on it. The linear graph of the fitting cylindrical glass would not only show the
speed at a point, but might also be developed as the tangent line at that point, with
help of dynamic computer software (Fig. 2.1).

The end point we would be aiming for, therefore concerned the idea of the
tangent line at a point of a height versus time graph, signifying the constant speed
that would correspond with the instantaneous speed at that point.

Conceptually, the conjectured learning process starts from the students’ informal
understanding of instantaneous speed, builds on their insight that the rising speed at
a given height is defined by the width of the glass at that height, deepens that insight
by equating the instantaneous speed with a constant speed that corresponds with
that width, and expressing this speed with a linear graph corresponding with a
tangent line to the graph of water height versus time.

In deviation from the ideal of short micro-design cycles in which adaptations
occur during each design experiment, adaptations were mainly made in between
subsequent design experiments. The research conditions did not allow for changes
on the spot. Moreover the design experiments had to be carried out in a limited
series of lessons, as the topic of instantaneous speed was not part of the regular
curriculum.

Because we were not clear about how the students were thinking in the first
teaching experiment, we borrowed the idea of modeling-based learning (MbL) from
science education (Louca and Zacharia 2012), which aims at engaging students in
the socially mediated development and use of an explanatory model. In doing so,
we tried to foster that the students would express their thinking with their models.
This attention to modeling resulted in the second teaching experiment being better
aligned with the RME design heuristic of emergent modeling.

The students were asked to make drawings that would show how the rising
speed in a cocktail glass would develop, and next to improve on them. As expected,
the students initially came up with realistic drawings that had the character of
snapshots (Fig. 2.2).

Fig. 2.1 Computer software
linking constant speed in an
imaginary cylindrical glass
with a tangent line
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Fig. 2.2 One student’s
snapshots showing how the
water level changed over
time: “It goes up increasing
more and more slowly”
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In subsequent lessons the representations were discussed and the students were
asked to make minimalist models with only the necessary elements to describe the
situation. This resulted in a pivotal episode—on which we reported earlier (de Beer
et al. 2015).

In a whole class discussion in one of the two classrooms in the 3rd design
experiment, some students drew a segmented line graph on the white board to
model how the water level changed over time (see Fig. 2.3).

When the teacher asked the class if they could find the speed in this graph, a
student remarked that a straight line did not fit his understanding of how the
cocktail glass fills up. He argued, that “it should go a bit bent”, and he drew a curve
(Fig. 2.4).

The student explained that at a certain moment, the graph would almost not rise
any more. Reactions by other students in the classroom suggested that they agreed
with this line of reasoning. The students in the parallel classroom did not come up
with the idea of a curved graph by themselves. Here the teacher introduced the idea
of shrinking the intervals in discrete graphs. On the basis of this suggestion, these
students too came to see the curved continuous graph as an adequate model for

Fig. 2.3 Segmented line 9@6_
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Fig. 2.4 Curve as [ é
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describing changing speed. In retrospect, we believe that the discrepancy between
the segmented line graphs and the constantly diminishing speed may be exploited to
support other students in reinventing the curved graph.

Retrospective Analysis

As explained above, abduction played an important role in the retrospective anal-
ysis (de Beer et al. 2015). The retrospective analysis was based on the comparative
method of Glaser and Strauss (1967), and more specifically on the elaboration of
this method by Cobb and Whitenack (1996). The analysis consisted of two steps:
First formulating conjectures of what happened and testing those conjectures
against the available data, and second, formulating conjectures of why this hap-
pened, which were also tested against the data. Although all data were taken into
account, especially the transcriptions of whole-class discussions and the students’
products proved valuable in formulating and testing conjectures.

This two-step analysis was carried out after each design experiment, each time
the findings of the earlier experiment informed the following one, building on the
conjectures that were corroborated, and revising conjectures that were rejected. The
latter were used to improve the design, and to generate new explanatory conjec-
tures. We do not have enough room to work out the potential local instruction
theory that emerged for this design experiment. We do believe, however, that the
gist of it can be deducted from the above account. A more detailed description can
be found in the thesis of de Beer (2016). Instead, here we highlight the key insights
that emerged from this project:

o fifth graders understand the relation between the rising speed and the width of
the glass;

o fifth graders need only a little reflection time to realize that the rising speed in a
cylindrical glass and a cocktail glass would be the same, when the widths would
be the same;

e fifth graders have an intuitive conception of instantaneous speed, which can be
deepened;

e the constant speed in a cylindrical glass may be used to specify the instanta-
neous speed in a cocktail glass;
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o the tangent line signifying the instantaneous speed at a point of a water-height
versus time graph, may be developed from the graph of the constant speed of a
cylindrical glass with the appropriate width.

In light of the above findings we may speak of a fruitful series of design
experiments. Even though the research was exploratory, the findings appear to have
significant implications for the way speed is addressed in primary school. Currently
the curriculum focuses on average speed, which results in a merely shaky under-
standing. The research, however, indicates that fifth grade students have an intuitive
notion of instantaneous speed, which can be expanded. This result suggests that it
might be advisable to shift the focus from average speed to instantaneous speed in
primary school. Deepening the students’ understanding of instantaneous speed
should then be complemented with a more thorough treatment of constant speed
than is now common. This challenge to the current school curriculum underscores
the power of exploratory design research that adheres to the methodological pre-
scription of “letting the object speak” (Smaling 1992). In concluding this section,
we may further point to the central role of the RME instructional design heuristics
in supporting the design work of the researchers.

2.3.2 Structuring Learning Trajectories—An Example
Project on Exponential Growth for Grade 10

Exponential growth is one of the most complex topics in Grade 10, as students must
connect all their knowledge about various models and representations for functional
relationships (Confrey and Smith 1995). In this section, a design research project is
sketched, which focused on a fine-grained analysis of which aspects are to be
learned on exponential growth and how they can be structured into a learning
trajectory (foundations of the project are given by HuBmann and Prediger 2016;
further elaborated by Thiel-Schneider 2018).

The design followed the general design heuristic of emergent modelling
(Sect. 2.1), starting from everyday experiences in meaningful contexts and devel-
oping the formal connections and their characteristics by horizontal and vertical
mathematization (Gravemeijer 1999). However, little was known on how to
structure the various aspects in the teaching-learning arrangement.

In the following, the general research framework and selected results from the
project are presented. This example shows that although they refer to similar back-
grounds, different concrete versions of topic-specific process-focused design research
are possible and develop slightly different terminologies. We decided to keep the
terminology that was used in the context of the research example under consideration.

Research Framework

The project was conducted within the FUNKEN-model of topic-specific Didactical
Design Research that was developed within the FUNKEN-graduate-school for
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Fig. 2.5 Four working areas for topic-specific Didactical Design Research in the
FUNKEN-model (Prediger et al. 2012; translated by Prediger and Zwetzschler 2013)

more than twenty design research projects in nine subject matter didactic disciplines
(Prediger et al. 2012; Prediger and Zwetzschler 2013; following main ideas of
Gravemeijer and Cobb 2006).

Like other design research approaches, the model relies on the iterative interplay
between designing teaching-learning arrangements, conducting design experi-
ments, and empirically analyzing the teaching-learning processes. Specific to the
FUNKEN-model are the four working areas shown in Fig. 2.5, in which the three
typical working areas (developing the design, conducting and analyzing the design
experiments, and developing local theories) are enhanced by a forth one, specifying
and structuring the learning content, which is often too implicit and which is a
core focus of endeavour for each topic-specific project (see Sect. 2.4). As the
framework is content-focused on topic-specific aspects, the specification and
structuring of learning goals and content are treated as one of four intertwined
working areas.’

Expected research outcomes consist of empirical insights and contributions to
local theories on learning and teaching processes of the treated topic (here mainly
for identifying fruitful starting points and explaining typical misconceptions on
students’ learning pathways concerning the topic of exponential growth) and
hypotheses on necessary connections to be drawn in the learning trajectories.
Expected design outcomes comprise the specified and structured mathematical

'The FUNKEN-model chooses the term working area instead of phases in order to highlight the
iterative interplay and highly intertwined character of these areas, which cannot always be sepa-
rated chronologically.
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content (here exponential growth), the topic-specifically refined design principles
(here for emergent modeling) and the prototypic teaching-learning arrangement.

Leading Questions for the Specifying and Structuring the Learning Content

The working area of specifying and structuring the learning content has proven to
be crucial also for many other Design Research projects within the FUNKEN
graduate school (Prediger et al. 2012; HuBBmann and Prediger 2016). The working
area developed into a specific way to establish contributions to theory: although
there is no schematic recipe for conducting it, the recurring questions listed in
Table 2.1 can provide some guidance.

The prospective elaboration can start on the formal level: the concepts and
theorems relevant for a topic are specified and the logical connections between
them are explored for determining logically possible trajectories through the net-
work of definitions and theorems. However, the didactical decision about a suitable
instructional sequence of concepts and theorems cannot be determined purely on
the formal level. Instead, the priority is on the semantic level on which the big ideas
and basic mental models are identified and structured into a hypothetical learning
trajectory. This work on the semantic level is informed by design principles such as
horizontal and vertical mathematization. The semantic level is elaborated iteratively
together with the concrete level (in which the sequence is realized in a teaching
learning arrangement based on suitable contexts and instructional activities) and the
empirical level which draws upon the design experiments and their retrospective
analysis. Hence, the prospective elaboration encompasses the formal, semantic and
concrete levels, the retrospective analysis encompasses the empirical, concrete and
semantic levels, each tightly interwoven and oriented to the questions in Table 2.1.

Specifying and Structuring on the Formal, Semantic, and Concrete Levels for the
Topic of Exponential Growth

For the design research study on exponential growth explored by HuBmann and
Prediger (2016), Thiel-Schneider (2018) for Grade 10, characterizing the topic as
exponential growth rather than as exponential functions is already a decision on the
semantic level: Exponential functions should be treated in modelling contexts,
following the big idea of functions as describing and predicting processes and
changes (cf. Schweiger 2006). Hence, the basic mental models contain those of
functional relationships, the correspondence model (each x corresponds to a y, e.g.,
for each year, the stock of a measure can be determined) and the covariation model
(asking for the variation in y when x varies, e.g., the change of the measure per
month) (Confrey and Smith 1995).

’In the FUNKEN-model, the terminology was slightly adapted: as the structured learning content
is not always a unidimensional hypothetical trajectory, this term is chosen to distinguish the pure
structure of the content from its realization by tasks and support means in the teaching-learning
arrangement. The local theory is not called local instruction theory but local theory on teaching and
learning processes in order to avoid the misunderstanding that instruction is restricted to teaching.
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Table 2.1 Typical questions on four levels for specifying and structuring the content (without
assuming completeness) (HuBmann and Prediger 2016)

Specifying the content Structuring the content

(selecting aspects and their back- (relating and sequencing aspects, including

grounds) connecting points for long-term processes)

Formal ¢ Which concepts and theorems e How can the concepts, theorems, justifications
level have to be acquired? and procedures be structured in logical trajec-

e Which procedures have to be tories?
acquired, and how are they justi- e Which connections are crucial, which are
fied formally? contingent?

e How can the network between concepts, theo-
rems, justifications and procedures be elabo-
rated?

Seman- ® What are the underlying big ideas e How do the underlying ideas and meanings
ticlevel  behind the concepts, theorems and relate to each other and to earlier and later
procedures? learning content?

e Which basic mental models and e How can the meanings be successively con-
(graphical, verbal, numerical and structed by horizontal mathematization in the
algebraic) representations are cru- intended learning trajectories?
cial for constructing meaning? o Which trajectories of vertical mathematization

have to be elicited in order to initiate the in-
vention / discovery of core ideas, concepts,
theorems and procedures?

e How can the intended learning trajectories be
sequenced with respect to the logical struc-
ture?

Con- e Which core questions and core e How can the meanings be successively con-
crete ideas can guide the development structed in situations in the intended learning
level of the concepts, theorems, and trajectories?

procedures? e How can the intended learning trajectories be

o In which context situations and by sequenced with respect to the problem struc-
which problems can the core ques-  ture?
tions and ideas be treated exem- o Which trajectories of horizontal
plarily for re-inventing the con- mathematization have to be elicited in order to
tent? initiate the invention / discovery of core ideas,

concepts, theorems and procedures?
Empiri- ® Which typical individual perspec- e Which critical points in students’ learning
cal tives of students (conceptions, pathways are most crucial (obstacles, turning
level ideas, knowledge, ...) can be ex- points,...)?
pected? e Which typical preconceptions or previous

e How do they relate to the intended knowledge can serve as fruitful starting
perspectives (resources vs. obsta- points?
cles)? e How can the intended learning trajectory be

e What are origins of typical obsta- re-sequenced with respect to students’ starting
cles or idiosyncratic conceptions? points and obstacles?

For the realization on the concrete level, the bank context of assets and com-
pound interests was chosen, as this context carries main features of exponential
growth, is realizable for students and relevant for their later lives.
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The complexity of the topic of exponential growth consists in coordinating the
different characterizations (here restricted to discrete functions). The function f :
N — R is exponential, if it can be expressed in the form

Chf(x+1)=4-f(x) (constantly multiplicative growth)
(C2,) f(x+1) =f(x)+p-f(x) (constantly proportionally additive growth)
(C3) f(x)=a-b* (direct determination)

Although on the formal level, these characterizations are equivalent and can be
easily transformed into each other, they bear huge differences on the semantic level
(Confrey and Smith 1995; Thompson 2011): students connect (C1) and (C2) mainly
to the covariance model as they characterize the pattern of growth, and they connect
(C3) mainly to the correspondence model as the formula can be used for deter-
mining f(x) for a value of x. The bank context of interests resonates with (C2), the
growth by constantly adding the same proportion (percentage) each year. Deriving
(C3) from (C2) requires attention to the correspondence model via (C1) as it builds
upon repeated multiplication.

Based on this roughly sketched prospective elaboration, a hypothetical learning
trajectory was composed in which students can discover the characterizing features
while exploring the growth of assets. The horizontal mathematization was sup-
ported by tables as major representation, the vertical mathematization was triggered
by prompts to schematize the identified recursive pattern into an explicit formula in
order to determine assets after 30 years.

Specifying and Structuring Exponential Growth lIteratively on the Empirical,
Concrete, and Semantic Levels

The iterative design experiment cycles with tenth graders were conducted along the
developed hypothetical learning trajectory and retrospective analysis on the
empirical, concrete, and semantic levels.

Students’ knowledge of percentages proved to be a suitable starting point for
their learning pathways. In each cycle, the activities were optimized so that more
students could discover the main aspects and connect them to each other.

For the empirical contribution to structuring the learning content, one empirical
finding was most influential (HuBmann and Prediger 2016; other aspects presented
by Thiel-Schneider 2018). Although characterization C1 and C2 are easily trans-
formable to each other on the formal level, many students showed a compart-
mentalized understanding of different characterizations, hence an obstacle on the
semantic level: For many students, C1 was activated only for integral exponents,
completely separate from C2 which was used only for decimal exponents. This
compartmentalization produced mistakes such as confusing the growth factor 1.02
(corresponding to 2%) with the constantly doubling growth (corresponding to
200%) (HuBmann and Prediger 2016).

Thus, the restructuring of the learning trajectory had to take more intensively
into account the transition between the two characterizations. The iterative refine-
ment of the learning trajectory focused on this transition and how it could be
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Fig. 2.6 Transition between additive and multiplicative perspective on constant growth in tables
and in the graphical representation: In the percent bar, adding 20% is scaling up by 1.2

enhanced by relating different representations (Fig. 2.6). For this purpose, the
percent bar had to be included in order to support the transition from constantly
proportionally additive growth to constantly multiplicative growth, not only on the
formal, but also on the semantic level: In the percent bars, adding 20% can be made
visible to be semantically equivalent to scaling by 1.2 (Fig. 2.7), as adding 20%
corresponds to scaling to 120%, i.e., scaling by 1.2. For several years, this leads to
repeated multiplication with a cumulative factor (1 + p)” for n years.

Once the graphical representation was introduced, the learning trajectory could
be reorganized so that multiplicative and additive perspectives were first adopted
separately and then deliberately connected. In a further cycle, it was decided to treat
integer growth factors only after the connection of both perspectives.

Although this limited insight into the project cannot account for all findings on
students’ learning pathways (see Thiel-Schneider 2018 for more details), Fig. 2.7
shows how typical outcomes may appear: By the iterative interplay of all four
working areas and levels, the hypothetical learning trajectory (with all the corre-
sponding activities) was enriched and consolidated.

As often appears, the learning trajectory is not a unidimensional one, but takes
the character of a multi-facetted landscape, showing the characterizations, repre-
sentations, core ideas and models to work on in each step. Although there is not the
space to explain the details of the compressed, non-self-explanatory Fig. 2.7, it can
give an impression of the kinds of results. This landscape is a major design out-
come, but also a substantially refined analytical tool as it allows the researcher to
map students’ learning pathways as navigations within and around the structure.

One way of realizing the learning trajectory in a teaching-learning arrangement
with all activities, tasks and representations was elaborated into a textbook chapter
(Thiel-Schneider and HuBBmann 2017), but of course, other realizations are also
possible. On the theoretical level, the investigation of learning pathways contributed
to the problems of compartmentalization of thinking and the necessity of building
bridges.
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Fig. 2.7 Revised intended learning trajectory for exponential growth (HuBmann and Prediger
2016; more elaborated by Thiel-Schneider 2018)

2.4 Looking Back

The sketched examples of design research Ph.D.-projects in Sect. 2.2 portray what
design research may look like, and what is involved in topic-specific design
research. In connection with this we may also mention the highly interesting book
by Bakker (2018) which offers further insightful advice, especially for young
researchers.

2.4.1 When Is Topic-Specific Design Research a Suitable
Methodology?

Design research is not a panacea for all sorts of research questions. For many
educational challenges, other research approaches are better suited. In the following
we briefly sketch a series of considerations, using the features of design experi-
ments as described by Cobb et al. (2003) as a framework of reference.

If the aim, for instance, is not to change classroom practices (which is the core
of the interventionist characteristic), naturalistic research approaches such as



52 K. Gravemeijer and S. Prediger

observation studies of assessment studies might be more suitable for simply ana-
lyzing the status quo and background issues.

If the aim is to solve concrete problems of practitioners, but not necessarily to
contribute to generating theory (which is the core of the characteristic theory
generative), research approaches with less methodological rigor such as action
research might be more suitable. Then the research can be better tailored to the
concerns of the practitioners. In contrast, we may note that the practicality of design
research that aims at inquiry oriented mathematics may be limited as the goals, the
classroom culture, and conceptions of learning that characterize such design
experiments, often differ substantially from everyday practice in many mathematics
classrooms (Cobb and Jackson 2015).

If the aim is just to explore an existing design and there is no intention of
creating conditions for generating and testing theories (prospective and reflective),
the exploration runs the risk of being atheoretical (but can still be personally
interesting for learning about specific designs).

If there is no time for a series of trials and adaptations (iterative), it might still
make sense to frame the teaching experiment as a first step in a more encompassing
design research project, which implies that the teaching experiment should be
analyzed as such. Mark, however, that sound design research requires further
cycles.

If the aim is to validate a narrow and very clear hypothesis, a randomized
controlled trial with valid measures for the intended learning gains might be more
suitable. Mark, however, that the applicability of the findings in arbitrary class-
rooms may be limited (Gravemeijer 2016).

If the aim is to validate or refute ‘grand theories’, a randomized controlled trial
might again be more fitting. However, the feasibility of judging grand theories in
experimental designs might be overrated. Instead, design research aims for more
humble, topic-specific, theories that have practical implications (pragmatic roots
and humble theories).

2.4.2 Meeting Major Methodological Concerns

Critique on the lack of methodological sophistication of design research focuses on
issues of generalizability, applicability in everyday practice, and a lack of stan-
dardization of methodological procedures. Even though we may argue that
methodological approaches must vary because the design researchers’ aims vary,
there are of course various considerations that have to be taken into account in
many variations of design research (see also Bakker 2018).

Background Theories and Assumptions

One of the critiques of design research is that the research question often takes the
form of a how-to question, e.g., ‘How to shape instruction on topic X?’ For many
scholars, such a research question is inadequate, because almost any answer would
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suffice. However, there is always an educational philosophy and a theoretical
background against which such a question is posed. In mathematics education, part
of the educational philosophy is often that the students should learn with under-
standing. Additionally, RME requires that the students experience mathematics as
an activity, and learn by reinventing mathematics. Such starting points offer the
boundary conditions within which the ‘how-question’ is to be answered.
Background theories, such as socio-constructivism or cognitive theory, also sig-
nificantly influence both the design and the way data are interpreted. The former
implies that design researchers should explicate their educational philosophy and
their background theories. In a more general sense, it may be argued that
researchers have to be clear about their goals, their theoretical stance, and their
analysis. The presented example projects show how a concrete project can be
embedded in a broader framework, which helps to make the basic assumptions
explicit.

Interpretive Framework

An important aspect of the methodological control of the empirical working area
concerns the translation of observations of classroom events into scientific data. To
make this translation, an interpretive framework is needed. An example of such an
interpretative framework is the so-called emergent perspective of Yackel and Cobb
(1996), which encompasses norms, practices and beliefs, or Vergnaud’s (1996)
theory of conceptual fields, which encompasses individuals’ concepts-in-action and
their relation to the concepts in view (applied, e.g., by Prediger and Zwetzschler
2013). The need for such a framework may be elucidated by observing that it makes
a huge difference whether student utterance are to be viewed as a result of the
students’ own thinking, or as a result of the students efforts to imitate what the
teacher has shown. Similarly, RME theory can function as an interpretative
framework for interpreting student activity in light of the intended reinvention
process.

Argumentative Grammar

Another critique is that design research lacks an argumentative grammar, which
offers schemes of argumentation that link data to analysis, and to final claims and
assertions (Kelly 2004). In response to Kelly’s (2004) call for an argumentative
grammar, Cobb et al. (2015) proposed the employment of the following
requirements:

e demonstrate that the participants would not have developed particular forms of
reasoning but for their participation in the design experiment;

e document how each successive form of reasoning emerged as a reorganization
of prior forms of reasoning;

e specify the aspects of the learning ecology that were necessary, rather than
contingent, in supporting the emergence of these successive forms of reasoning.
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These three components closely relate to our conception of a local instruction
theory (and are further explored by Bakker 2018). As the nature of design research
is to explore innovative local instruction theories, the first requirement of the
argumentative grammar is usually catered for. The second requirement may be
linked to the fact that the local instruction theory is meant to function as a
framework of reference for teachers, which requires that teachers have to be able to
adapt the theory to their situation. We may argue that this is possible only if
teachers who want to use the local instruction theory understand how successive
forms of students’ reasoning emerge as a reorganization of prior forms of reasoning
along their learning pathways. The third requirement touches upon the conception
of a local instruction theory as encompassing theories about a possible learning
process, and theories about possible means of supporting that learning process.
However, it asks for a broader description, which also incorporates the specificities
of the classroom and what occurred in the classroom during the teaching experi-
ment, and how these aspects influenced the emergence of the successive forms of
reasoning.

A Holistic Approach

Most important for us seems to be those considerations that refer to the interplay of
experiment and the process of theorizing. Ecological validity requires that the
applied theories and the resulting theoretical contributions have to take into account
the complexity of classrooms. This aspect requires a different approach than the
reductionist approach of the sciences in which phenomena are disassembled in
individual variables whose interdependencies can be researched systematically—
especially by testing hypotheses.

In this respect, we may refer to Gould (2004) who depicts a complementary way
of knowing; the more holistic approach of the humanities, in which, in his view,
concilience plays a large part: “the validation of a theory by the ‘jumping together’
of otherwise disparate facts into a unitary explanation” (p. 192). The underlying
idea of grasping how things work resonates with Maxwell’s (2004) process-ori-
ented conception of causal explanation, “that sees causality as fundamentally
referring to the actual causal mechanisms and processes that are involved in par-
ticular events and situations” (p. 4). We may translate this conception into the
recommendation to researchers to search for the underlying mechanisms, and a
holistic view that unites seemingly disparate facts.

Summing up, design research provides a research methodology for all who want
to combine aims of improving teaching with generating theories which can
underpin the teaching. Although the research process can never be easily
schematized, procedures and structures have been developed that support the
challenging and creative parts of topic-specific design research, also for novices.
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