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Abstract Theorizing about task design is a fairly recent area of attention within the
educational research community, emerging in the late 1960s and continuing with
growing interest to the present day. To reflect the evolution in task design theo-
rization, this chapter focuses first on historical aspects and highlights the main
theorizing initiatives of the past half-century. The second part offers a conceptu-
alization of current theoretical frameworks and principles for task design within
mathematics education research—a conceptualization that distinguishes among the
three levels of grand, intermediate, and domain-specific frames. The third part of
the chapter elaborates on the notion of domain-specific frames by presenting an
example of the design features underpinning a study on the CAS-supported
co-emergence of technique and theory within the activity of algebraic factorization
and describes how the classroom implementation of the proving phase of the
designed task-sequence was supported by the instructional practice of the teacher
and by the role played by the technology as a tool to spark thinking.
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12.1 Introduction

The field of mathematics education could be said to have been involved in design
ever since its beginnings. However, as Erich Wittmann (1995) remarked, in a paper
titled Mathematics Education as a Design Science, the design of teaching units was
never a focus of the mathematics education research community until the
mid-1970s. Michéle Artigue (2009) too has argued that “didactical design has
always played an important role in the field of mathematics education, but it has not
always been a major theme of theoretical interest in the community” (p. 7). The
movement toward theoretically-based design research from the 1960s onward has
benefitted largely from the emergence of an international research community in
mathematics education, as well as from contributions from the disciplines of
mathematics and psychology (Kilpatrick 1992).

To illustrate these influences and their evolution within the community, this
chapter is divided as follows. The first section (Sect. 12.2) provides a brief historical
overview of theorizing initiatives with respect to task design in our field over the past
half-century. The second section (Sect. 12.3) presents a conceptualization of current
frameworks for task design in mathematics education and describes the character-
istics of the design principles offered by these frames—a conceptualization that
distinguishes among the three levels of grand, intermediate, and domain-specific
frames. The third section (Sect. 12.4) offers an example of a domain-specific frame
developed to guide our research team’s investigations into the learning of algebraic
techniques and theory in an environment involving computing technology.

12.2 Brief History of the Emergence of Design-Related
Theoretical Work from the 1960s Onward

In 1969, the first International Congress on Mathematical Education ICME) took
place in Lyon. A round table at that congress set the stage for the formation in 1976
of what was to quickly become the largest association of mathematics education
researchers in the world, the International Group for the Psychology of Mathematics
Education (PME). The emergence of this community was accompanied by the
creation of several research journals, as well as research institutes in many countries.
The late 1960 and 1970s thus signalled a huge surge and interest in research in
mathematics education, leading to theorizing initiatives related to design.

12.2.1 Influences from Psychology

This surge in research in mathematics education had to rely almost exclusively in its
early days on psychology as a source of theory (Johnson 1980). Piaget’s (1971)
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cognitively-oriented, genetic epistemology was one of the main examples of
psychological frames adopted by the emerging mathematics education research
community in its studies on the learning of mathematics. However, it was psy-
chologists who had an interest in education who would initiate some of the early
theorizing efforts related specifically to design. For example, in 1965 Robert Gagné
published The Conditions of Learning. Based on models from behaviourist psy-
chology, Gagné’s (1965) nine conditions of learning were viewed as principles for
instructional design. In parallel with the instructional design approach being
developed by Gagné and others, advances in design considerations were stimulated
by the theorizing of the cognitive scientist and Nobel laureate, Herbert Simon
(1969), in his book, The Sciences of the Artificial. Robert Glaser (1976) in his
Components of a Psychology of Instruction: Toward a Science of Design distin-
guished between the descriptive nature of theories of learning and the prescriptive
nature of theories of instruction. In integrating design considerations into instruc-
tional research, he argued that the structure of the subject-matter discipline may not
be the most useful for facilitating the learning of less expert individuals—a point of
view that was questioned somewhat by researchers in mathematics education. Thus,
mathematics education researchers would need to develop during the years to come
their own scientific approaches to designing environments for the learning of
mathematics and to generating frameworks for task design in particular.

12.2.2 Early Design Initiatives of the Mathematics
Education Research Community

During the 1970s, the focus within the emerging mathematics education research
community was on the learning of mathematics and the development of models of
that learning. For example, the paper that the mathematician Hans Freudenthal
presented at PME3 in 1979 (one of the 24 research reports presented in 1979 at the
recently formed PME) dealt with the growth of reflective thinking in learners
(Freudenthal 1979). That paper sowed the seeds for a mathematical-psychological
approach to task design—an approach that was to develop during the late 1980s and
1990s into the instructional theory specific to mathematics education known as
Realistic Mathematics Education.

In contrast to the majority of the 1979 PME3 papers oriented toward learning,
the paper by Alan Bell (1979) touched more directly upon issues related to design.
While he too focused on learning, it was done through the lens of different teaching
approaches with various curriculum units that had been designed for the South
Nottinghamshire project. In Bell’s paper, which was a forerunner of the early ways
of thinking about design within the mathematics education research community,
design considerations were seen more from the perspective of particular teaching
methods than as approaches to the design of tasks per se.
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The 1980s brought some evolution in this regard with, for example, the work of
Wittmann. In his 1984 Educational Studies in Mathematics paper (a modified
version of his opening address at the 14th annual meeting of German mathematics
educators in 1981), titled Teaching units as the integrating core of mathematics
education, Wittmann (1984) argued for tasks displaying the following character-
istics: the objectives, the materials, the mathematical problems arising from the
context of the unit, and the mostly mathematical, sometimes psychological, back-
ground of the unit. He suggested that a teaching unit is not an elaborated plan for a
series of lessons; rather it is an idea for a teaching approach that leaves open various
ways of realizing the unit.

During the years 1985-1988, one of the PME working groups focused on
establishing principles for the design of teaching. In 1988, a collection of papers
from this working group was put together by the Shell Centre under the title The
Design of Teaching—Papers from a PME Working Group, and subsequently
published in a special issue of Educational Studies in Mathematics in 1993. In his
editorial for the special issue, Bell (1993) emphasized that the principles of teaching
practice should be in harmonious integration with the principles that are incorpo-
rated into the design of teaching materials—a characteristic that would continue to
be important in task design within the community over the decades to come.

The 1980s in France ushered in the development of didactical engineering
(Artigue 1992)—a theory-based approach to conducting research that had didactical
design at its heart. However, as noted by Artigue (2009), the original designs tended
to go through a certain mutation in practice, leading her to remark that “the rela-
tionships between theory and practice as regards didactical design are not under
theoretical control” (p. 12). This awareness pointed to one of the inherent limita-
tions in theorizing about task design in isolation from considerations regarding
instructional practice.

12.2.3 The 1990s and Early 2000s: Development of Design
Experiments

The term design experiment came into prominence in the 1990s with the psy-
chologist Ann Brown’s (1992) publication on educational design. Several factors
had fallen into place, including the maturing of the mathematics education research
community over a 20-year period and an evolving desire to be able to study within
one’s research not just learning or not just teaching (Lesh 2002). Design experi-
ments aimed at taking into account the entire learning picture. As Cobb et al. (2003)
pointed out: “Design experiments ideally result in greater understanding of a
learning ecology. ... Elements of a learning ecology typically include the tasks or
problems that students are asked to solve, the kinds of discourse that are encour-
aged, the norms of participation that are established, the tools and related material
means provided, and the practical means by which classroom teachers can
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orchestrate relations among these elements” (p. 9). Within this conception of design
experiments, the task or task-sequence is but one of a larger set of design
considerations involving the entire learning ecology.’

12.2.4 From Early 2000 Onward

Theorizing related to design in mathematics education research developed con-
siderably during the 2000s (Kelly et al. 2008). Contributing to this development
was the recommendation put forward by Cobb et al. (2003):

General philosophical orientations to educational matters—such as constructivism—are
important to educational practice, but they often fail to provide detailed guidance in
organizing instruction. The critical question that must be asked is whether the theory
informs prospective design and, if so, in precisely what way? Rather than grand theories of
learning that may be difficult to project into particular circumstances, design experiments
tend to emphasize an intermediate theoretical scope. (pp. 10-11)

Cobb et al. also argued that design experiments are conducted to develop the-
ories, not merely to tune empirically ‘what works’: “a design theory explains why
designs work and suggests how they may be adapted to new circumstances” (p. 9).

In addition to the evolution in theoretical perspectives on design during these
years, the term fask design came to be more clearly present in discussions of
research related to design. For example, at the 2005 PME conference, a research
forum was dedicated to task design for the first time and had as its stated theme,
“The significance of task design in mathematics education” (Ainley and Pratt 2005).
At ICME-11 in 2008 the scientific program committee initiated the idea of having a
Topic Study Group (TSG) on task design: “Research and development in task
design and analysis”. The excitement generated regarding this research area was
such that a similar TSG was put on the program for ICME-12 in 2012, as well as for
ICME-13 in 2016 and for ICME-14 in 2020. This interest was further illustrated by
the holding of the 2013 ICMI Study-22 Conference on the same theme.

12.2.5 A Key Issue

In closing this section on the historical overview of the emergence of theorizing
research related to design activity, I want to draw attention to an issue that is central
to the complex role of theory as both a resource for and a product of design

The term task (or task-sequence, which could take an entire lesson, or more) is characterized in
the ICMI Study-22 Discussion Document as “anything that a teacher uses to demonstrate math-
ematics, to pursue interactively with students, or to ask students to do something ... also anything
that students decide to do for themselves in a particular situation” (Watson et al. 2013, p. 10).
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research. It involves the terms design as intention and design as implementation.
In a paper on design tools in didactical research, Ruthven et al. (2009) expanded
upon the distinction between design as intention and design as implementation
(Collins et al. 2004). Design as implementation focuses attention on the process by
which a designed sequence is integrated into the classroom environment and sub-
sequently is progressively refined, whereas design as intention addresses specifi-
cally the initial formulation of the design. While many studies address both, the
distinction can be useful for understanding certain nuanced differences between one
study and another. Ruthven et al. (2009) state that design as intention emphasizes
the “original design and the clarity and coherence of the intentions it expresses”
(p- 329). The provision for this clarity and coherence is generally achieved by the
use of theoretical frames that are already well developed.

In contrast to the front-end importance given to theory-based design tools by
Ruthven et al. (2009), Gravemeijer and Cobb (2006) put the focus more toward the
development of theory and its role as a product of the design research. In their
design-experiment studies, the initial theoretical base for the study, and its
accompanying instructional plan, undergo successive refinements by means of the
implementation process. The description of the entire process constitutes the
development of the theory. Because of the centrality of the implementation process
in the development of the resulting theory, such studies are characterized as design
as implementation studies, even though they also have a strong initial theoretical
base. The complexity of the dialectical role played by theory in such research
warns, however, against equating, on the one hand, design as intention and theory
as a resource or, on the other hand, design as implementation and theory as a
product.

Put another way, theories are both a resource and a product. As a resource, they
provide theoretical tools and principles to support the design of a teaching sequence
(e.g., Ruthven et al. 2009) and, as a product of design research, theories inform us
about both the processes of learning and the means that have been shown to support
that learning (Cobb et al. 2003). In practice, most design experiments combine both
orientations: the design is based on a conceptual framework and upon theoretical
propositions, while the successive iterations of implementation and retrospective
analysis contribute to further theory building that is central to the research.

12.3 A Conceptualization of Current Theoretical
Frameworks and Principles for Task Design
in Mathematics Education Research

12.3.1 Introduction

The historical look at the early research efforts related to theorizing about task
design hinted at a mix of task and instructional considerations. However, the extent
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to which instructional aspects are factored into task design is but one of the ways in
which design frameworks can vary. Frameworks can also differ according to the
manner in which they draw upon cognitive, sociological, sociocultural, discursive,
or other theories. In addition, frameworks are distinguishable according to their
relation to various task genres, that is, whether the tasks are geared toward (i) the
development of mathematical knowledge (such as concepts, procedures, repre-
sentations), (ii) the development of the processes of mathematical reasoning
(such as conjecturing, generalizing, proving, as well as fostering creativity, argu-
mentation, and critical thinking), (iii) the development of modelling and
problem-solving activity, (iv) the assessment of mathematical knowledge, pro-
cesses, and problem solving, and so on.

As well, some frameworks may be more suited to the design of specific tasks;
others to the design of lesson flow; still others to the design of sequences involving
the integration of particular artefacts. Because several considerations enter into an
overall design—considerations that include the specific genre of the task, its
instructional support, the classroom milieu, the tools being used, and so on—each
part of the design might call for different theoretical underpinnings. Thus, the
resulting design can involve a networking of various theoretical frames and prin-
ciples (Prediger et al. 2008).

A more holistic way of thinking about frames is elaborated immediately below.
It involves conceptualizing them in terms of three different levels, that is, grand
frames, intermediate level frames, and domain-specific frames—all of these levels
of frames together constituting the theoretical base for the design of a given study.

12.3.2 Grand Theoretical Frames

Mathematics education research has tended in large measure to adopt such grand
theoretical perspectives as the cognitive-psychological, the constructivist, the
socio-constructivist, and the sociocultural. However, as pointed out by Lerman
et al. (2002), these are but four from the vast array of theoretical fields, in addition
to those from educational psychology and/or mathematics, that have back-grounded
mathematics education research. In line with Cobb (2007), who argued that such
grand theories need to be adapted and interpreted in order to serve the needs of
design research, and the fact that these grand theories have already been well
described in the literature, I now address the less well-documented levels of
intermediate and domain-specific design frames.

12.3.3 Intermediate Level Frames

Intermediate level frames have a more specialized focus than the grand theories
and, as such, have the property that they can contribute in a more refined way to the
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design of particular curricular areas. In brief, intermediate level frames are located
between the grand theories and the more local, domain-specific frames, the latter of
which will be seen to deal with distinct mathematical concepts, procedures, or
processes of mathematical reasoning. The multitude of intermediate level frames
that are being applied to design research in mathematics education include, for
example, Realistic Mathematics Education theory (Treffers 1987), the Theory of
Didactical Situations (Brousseau 1997), the Anthropological Theory of the Didactic
(Chevallard 1999), Lesson Study (Lewis 2002), Variation Theory (Runesson 2005),
Conceptual Change Theory (van Dooren et al. 2013), and so on.

In general, intermediate level frames can be characterized by explicit principles/
heuristics/tools that can be applied to the design of tasks and task-sequences.
Because these frames tend to be highly developed, they are often used in design as
intention approaches. In addition, intermediate level frames can also be charac-
terized according to whether their roots are primarily theoretical or whether they are
based to a large extent on deep craft knowledge. An example of the former is the
Theory of Didactical Situations and the latter, Lesson Study.

The Theory of Didactical Situations (TDS) (Brousseau 1997, 1998), an inter-
mediate level theory that draws upon the grand theory of Piagetian cognitive
development, can be characterized by its framing within a deep a priori analysis of
the underlying mathematics of the topic to be learned, integrating the epistemology
of the discipline, and supported by cognitive hypotheses related to the learning of
the given topic. According to Ruthven et al. (2009), one of the central design tools
provided by TDS is the adidactical situation, which mediates the development of
students’ mathematical knowledge through independent problem solving. The term
adidactical within TDS refers specifically to that part of the activity “between the
moment the student accepts the problem as if it were her own and the moment when
she produces her answer, [a time when] the teacher refrains from interfering and
suggesting the knowledge that she wants to see appear” (Brousseau 1997, p. 30).
A situation includes both the task and the environment that is designed to provide
for the adidactical activity of the student. According to the TDS frame, the adi-
dactical situation tool furnishes guidelines as to: “the problem to be posed, the
conditions under which it is to be solved, and the expected progression toward a
strategy that is both valid and efficient” (Ruthven et al. 2009, p. 331). In addition to
the adidactical situation tool, TDS-based design is also informed by a second design
heuristic, that of the didactical variables tool. This supplementary design tool
allows for choices regarding particular aspects of the main task and how it is to be
carried out. Although certain modifications are made to those aspects of the task
that are found to improve the learning potential of the situation (i.e., that students
are more likely to learn what is intended), the initial design of the task is absolutely
central to the TDS-framed design as intention process.

Lesson Study, an intermediate level frame typically associated with Japanese
education (see, e.g., Fernandez and Yoshida 2004; Fujii 2015; Jacobs and Morita
2002), is a culturally-situated, collaborative, approach to design situated within the
grand theory of socioculturalism and one where teachers with their deep,
craft-based knowledge are pivotal to the process. It is a frame devoted as much to
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design as intention as it is to design as implementation. Lesson Study consists of
the following phases: (1) collaboratively planning a research lesson; (2) seeing the
research lesson in action; (3) discussing the research lesson; and optionally
(4) revising the lesson; (5) teaching the new version of the lesson; and (6) sharing
reflections on the new version of the lesson. Three design principles constitute the
Lesson Study frame: (i) kyozaikenkyu, (ii) structured problem solving, and (iii) task
evaluation. Kyozaikenkyu means literally “instructional materials research” and
focuses on the detailed planning of the research lesson. The second principle, that of
structured problem solving, involves, according to Stigler and Hiebert (1999),
a single task and the following four specific phases: (i) teacher presenting the
problem (donyu, 5-10 min), (ii) students working at solving the problem without
the teacher’s help (jiriki-kaiketsu, 10-20 min), (iii) comparing and discussing
solution approaches (neriage, 10-20 min), and (iv) summing up by the teacher
(matome, 5 min). After the research lesson has been observed by other teachers,
school administrators, and sometimes an outside expert, it is then discussed and
evaluated in relation to its overall goals. This process of lesson evaluation, and in
particular task evaluation, is considered a third design principle. The post-lesson
discussion focuses to a large extent on the effects of the initial task design with
respect to student thinking and learning. The teacher’s thought-out key questioning
receives much attention. Another of the main aspects discussed is whether the
anticipated student solutions were in fact evoked by the task and its accompanying
manipulative materials, or whether improvements in specific parts of the task design
are warranted.

12.3.4 Domain-Specific Frames

In contrast to intermediate level frames whose characterizations do not specify any
particular mathematical reasoning process or any particular mathematical content
area, domain-specific frames for the design of tasks or task-sequences do specify
particular reasoning processes (e.g., conjecturing, arguing, proving) or particular
content (e.g., geometry, integer numbers, numerical concepts, algebraic techniques)
or particular tools (e.g., computers, calculators, tablets; for further exposition of
various task-design frames related directly to the integration of tools, see Leung and
Bolite-Frant 2015). Task-design-research studies involving domain-specific frames
typically draw upon past research findings in a given area, in addition to being
situated within certain intermediate level, and more general grand-level, frame-
works. As such, domain-specific frames for task design research tend to be more
eclectic than their intermediate level counterparts.

Note that some researchers use the term “local theories” or “local frames™ for
what I am referring to here as domain-specific frames. In general, research designed
with domain-specific frames can have the characteristics of both design as intention
and design as implementation studies with their attention to, on the one hand, the
theoretical underpinnings of the design of the tasks and the proposed instructional
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supports, and, on the other hand, the aim of further developing the theoretical
domain-specific frame by means of the implementation process. Examples of studies
on the use and development of domain-specific frames include, for instance, Prusak
et al.’s (2013) research involving a domain-specific frame for fostering mathematical
argumentation within geometric problem solving, Komatsu and Tsujiyama’s (2013)
frame for proof problems with diagrams, and Stephan and Akyuz’s (2012, 2013)
frame for the learning of integer concepts and operations. With the aim of elabo-
rating further on the nature of domain-specific frames, I offer an example drawn from
our team’s research on algebra learning with technological tools.

12.4 A Domain-Specific Frame for the CAS-Supported
Co-emergence of Technique and Theory
within the Activity of Algebraic Factorization

In our past research on the use of CAS? technology in algebra learning, we® have
carried out several studies with classes of Grade 10 students (16-year-olds), with
each study involving multiple sets of CAS-supported task-sequences. In the paper
by Kieran and Drijvers (2006), we reported on the classroom implementation of
two of these task-sequences (see also Hitt and Kieran 2009), one of which is the
focus of this section and which is herein presented with a detailed description of the
domain-specific frame that underpinned its design.

12.4.1 The Theoretical Underpinnings of the Design Study

One of the two specific task-sequences described in the Kieran and Drijvers (2006)
paper involved an elaboration of the factoring task of x" — 1, a task inspired by the
earlier work of Mounier and Aldon (1996).

The design of the x”" — 1 task-sequence, as was the case with the design of all of
our algebra task-sequences, was situated within and drew upon aspects of the
following intermediate level and domain-specific level frameworks, the entire
combination of these specific frameworks constituting the domain-specific frame
for our design study:

2A Computer Algebra System (CAS) is a software program that facilitates symbolic mathematics.
The core functionality of a CAS is manipulation of mathematical expressions in symbolic form.
3Team members: C. Kieran, A. Boileau, D. Tanguay, and J. Guzmant; also including at various
times: F. Hitt, P. Drijvers, L. Saldanha, M. Artigue, A. Solares, and A. I. Sacristain. Website:
profmath.uqam.ca/ ~ APTE/TachesA.html
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o The intermediate level frameworks of:

— The Anthropological Theory of the Didactic (ATD) (Chevallard 1999) with
its Task-Technique-Theory (TTT) tool,

— The Instrumental Approach to Tool Use with its dual Vygotskian and
Piagetian roots (Artigue 2002; Vérillon and Rabardel 1995),

— Polya’s (1945/1957) mathematical problem-solving frame (especially the
phase of “looking back”, i.e., reflecting), and

— Didactical Engineering (Artigue 1992), the design-based frame with an
emphasis on a priori mathematical and epistemological analyses for shaping
not only the design of individual tasks but also their ordering;

e The domain-specific frames resulting from prior research involving:

— Algebraic activity (Kieran 1992, 2007)—in particular, Kieran’s (2004)
domain-specific model for conceptualizing such activity in terms of its
generational, transformational, and global/meta-level aspects,

— Mathematical reasoning processes developed by means of teacher-student
and student-student social interaction within collective classroom discussion
(e.g., Herbel-Eisenmann and Cirillo 2009), and

— Tool-based activity with CAS technology for symbol manipulation in
algebra (e.g., Artigue 1997; Lagrange 2002).

While all of these frameworks were included in various ways and to various
extents within the design of the task-sequence and how it was projected to unfold,
space constraints do not allow for specifying exactly where and how each frame
was instantiated. But it can be noted, more generally, that in line with the ATD
framework, which is an integral part of the Instrumental Approach to Tool Use
frame and where the TTT tool is well characterized (see Artigue 2002), our focus
was on the interplay between the technical and the conceptual, that is, on the
techniques and theories that students develop while using technological tools and in
social interaction. Crucial to the notion that conceptual understanding can
co-emerge with technique, and in line with the Kieran (2004) model of algebraic
activity, the transformational aspects of algebra (involving factoring, expanding,
etc.) need to be linked—especially during their early phases of learning—to the
global/meta-level activity of algebra (involving, e.g., noticing structure, generaliz-
ing, analyzing relationships, predicting, justifying, proving). As Lagrange (2003)
has argued: “Technique plays an epistemic role by contributing to an understanding
of the objects that it handles, particularly during its elaboration. It also serves as an
object for conceptual reflection when compared with other techniques and when
discussed with regard to consistency” (p. 271).

Emanating from the above frameworks that underpinned our research, the
crafting of the multiple task-sequences involved the following five design principles:

e Integrate a dialectic between technical and theoretical activity within a pre-
dominantly exploratory, inquiry-based approach;

e Integrate the CAS as an epistemic motor for developing students’ theoretical
thinking and as a tool for generating and testing conjectures;
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e Interweave paper-and-pencil work with CAS activity with the aim of coordi-
nating the technical and theoretical aspects of the mathematics;

e Include questions of a reflective nature where students write about how they are
interpreting the content they are working on and eventually talk about and
explain their ways of thinking;

e Integrate questions that call upon processes such as pattern seeking, looking for
different ways of structuring a given expression, conjecturing, predicting, testing
conjectures, and justifying.

The design of the particular task-sequence related to the factoring of x" — 1,
because of its strong focus on generalization, also drew upon additional
domain-specific frames related to the process of generalizing (e.g., Cafiadas et al.
2007; Mason 1996)—frames that shaped the following three-phase sequence for
the individual tasks we designed:

1. Seeing patterns in factors and moving toward a generalization;
2. Refining a generalization—with conjecturing and reconciling; and
3. Proving a generalization.

The first phase, which involved CAS as well as paper and pencil, linked stu-
dents’ past experience with factoring to the generalization that they would be
working towards regarding the factoring of x" — 1. The beginning group of tasks
was oriented towards noticing a particular regularity in the factored examples of the
x" — 1 family of polynomials for positive integral values of n and then justifying the
form of these products. As is illustrated by the sample questions provided in
Fig. 12.1, the tasks aimed at promoting an awareness of the presence of the factor
(x — 1) in the given factored forms of the expressions x> — 1, x> — 1, and x* — 1. To
promote generalization of the form x" = 1 = (x = D" '+ x" "2+ -+ x + 1),
students were then to be asked to judge the validity of the equality presented in
Question 6 of Fig. 12.1. After students began to conjecture a general rule for the
factorization of the x" — 1 family, they were to be requested to reflect on how they

1. Perform the indicated operations: (x - 1)(x + 1); (x - 1)(x2 + x + 1).
2. Without doing any algebraic manipulation, anticipate the result of the following product

(x—l) x3+x2+x+1>:

3. Verify the above result using paper and pencil, and then using the calculator.

4.  What do the following three expressions have in common? And, also, how do they differ?
(- D@+ 1), - D02+ x+ 1), and (x-1) (x° +x" +x+1).

5. How do you explain the fact that when you multiply: i) the two binomials above, ii) the binomial
with the trinomial above, and iii) the binomial with the quadrinomial above, you always obtain a
binomial as the product?

6. Isyour explanation valid for the following equality:

(x = 1)(x13% + x133 + x132 + ., + x2 + x + 1) = x135 - 17 Explain.

Fi

—

g. 12.1 Some of the initial tasks from the first phase of the x” — 1 task-sequence
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might express this conjecture by means of symbolic notation, using the symbol
n for the exponent, rather than specific integers.

The next phase of the task-sequence involved students’ confronting the
paper-and-pencil factorizations that they produced for x"—1, for integer values of
n from 2 to 6 (and then from 7 to 13), with the completely factored forms produced
by the CAS, and in reconciling these two factorizations (see Fig. 12.2).

An important aspect of this phase of the task-sequence involved reflecting on
and forming conjectures (see Fig. 12.3) on the relations between particular
expressions of the x"—1 family and their completely factored forms.

The third phase of the task-sequence (see Fig. 12.4) focused on students’
proving one of the conjectures that they had generated during the previous phase of
the task-sequence.

In this activity each line of the table below must be filled in completely (all three cells), one
row at a time. Start from the top row (the cells of the three columns) and work your way
down. If, for a given row, the results in the left and middle columns differ, reconcile the two
by using algebraic manipulations in the right hand column.

Factorization using Result produced by the Calculation to reconcile the two,
paper and pencil FACTOR command if necessary

X —1=

X =l=

xt-1=

X ==

INE

Fig. 12.2 One of the factorization tasks from the second phase of the x" — 1 task-sequence

Conjecture, in general, for what numbers n will the factorization of x” — 1:
(i) contain exactly two factors?

(ii) contain more than two factors?
(iii) include (x + 1) as a factor?

Please explain.

Fig. 12.3 A conjecturing task from the second phase of the x" — 1 task-sequence where students
examine more closely the nature of the factors produced by the CAS

Prove that ( x +1) is always a factor of x" —1 for even values of n.

Fig. 12.4 The proving task from the third phase of the x" — 1 task-sequence
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The nature of the students’ reflections related to the proving task was to be
revealed by having some of them present and explain their proofs at the board, and
by encouraging classroom discussion, query, and reaction to the presented proofs.
This and other instructional practice principles, which were fully described in the
accompanying teacher guide that we designed, included the following:

e Allow enough time for students to grapple with and think through the given
tasks (both individually and group-wise) before initiating collective discussion
of this work;

Have students present and explain their work at the board;
Support students in presenting their work and in having them justify their
thinking;

e Encourage classroom discussion, query, and reaction to work presented at the
board; and

e Elicit students’ thinking during collective discussions and encourage them to
share their ideas, questions, and conjectures, rather than accepting quick and
easy answers or rapidly giving them the answers.

Up to this point, the study could be characterized as primarily one of design as
intention, with its rigorous attention to the initial formulation of the design by
means of existing theoretical bases and their design principles, as well as the setting
of instructional practice principles. However, we were also interested in the further
development of theory by means of the implementation of the design study—the
development of theory being a principal characteristic of design as implementation
studies. We wanted to document the process by which the designed sequence was
integrated into the classroom environment and focus on aspects that appeared to be
especially crucial to the growth of learning. While the entire description of the
design study constitutes its theoretical role, it is important that a design theory
explain why designs work. In our case, the designed task-sequence—and the design
study as a whole—was found to work especially well, not only because of the
nature of the tasks in the sequence itself, but also because of two additional factors:
the instructional practice of the participating teacher and the role played by the
computing technology as a tool for thinking. An extract drawn from the process of
classroom implementation, which encapsulates this dual aspect, now follows. It
centers on the proving task presented above in Fig. 12.4.

12.4.2 The Implementation of the Design Study

The intermediate and domain-specific theoretical frames underpinning the study, in
particular, the Task-Technique-Theory tool of the ATD framework, guided the
analysis of the implementation process and allowed for the identification of stu-
dents’ going back-and-forth between theoretical thinking and technical growth
(see Kieran and Drijvers 2006). However, the students’ progress could not be
completely accounted for without developing complementary theoretical
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explanations while analyzing the implementation process—theoretical explanations
involving both the teacher and the technology.

After students had completed the first two phases of the x" — 1 task-sequence, they
were faced with the proving segment: “Prove that (x + 1) is always a factor of x"" — 1 for
even values of n.” It is noted that none of the students had had any prior experience
with proving in algebra. They worked on this part of the task-sequence, mostly within
small groups, for about 15 min. Several of the students were using their CAS cal-
culators; others were just talking about how they might approach the task and
occasionally jotting down notes on paper. During that time, the teacher (T) circulated
and was heard to offer the following remark to a group of students—a remark that was
in fact addressed to the whole class (see Kieran and Guzman 2010, pp. 131-132):

T: See if you can prove this and not just state it, as some people have done so far
(picking up one student’s worksheet and reading it to the class): “When n is
greater than or equal to 2, (x + 1) is a factor because.’ Let’s see if we can go a
little bit beyond that. Can you write down what you come up with.... Yeah, but
you need more than just examples. ... You need to get something written
down. ... Look, you need to think in order to answer this. This is the only hint
I’'m giving you, you need to think about where the (x + 1) comes from.

With the teacher’s encouragement, the students began to move forward in the
proving task. When he sensed that the majority of them had arrived at some form of
a proof, he opened up a whole-class discussion, oriented around various students’
sharing their work:

T: Ok, guys. Quite a lot of you got quite close in doing this. What I want you to
do, and I've asked a couple of people who’ve done it in completely different
ways, to see if they can put forward their explanation. I want you to be quiet,
listen to their explanation, then we’ll discuss it once they’ve got it done, once
they’ve completed their little spiel, ok.

He invited selected students to come to the board, one at a time. The first “proof™
by Paul revolved around the idea of ‘difference of squares’:

Paul: Ok. So, my theory is that whenever x" — 1 has an even value for n, if it’s
greater or equal to 2, that, one of the factors of that would be P 1, and
since x> — 1 is always a factor of one of those, a factor of 2 - 1is
(x + 1), so then (x + 1) is always a factor.

Student2: Could you say it again? [other students react all at once, making many

comments]
Student3: Why don’t you write it on the board?
T: Guys! Give him a chance.
Paul: You want me to write? [addressing the teacher]
T: Write down what you want to write down.

Student4: Can you talk at the same time?
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Paul proceeded to write down at the board what he had just stated orally. The
teacher then asked: “Is everyone willing to accept his explanation?” While many
seemed to agree with what Paul had proposed, a few voiced disagreement. One
student, Dan, argued that, for example, x'? = 1 did not have to be approached as a
difference of squares; it could be factored in another way so as to end up with a
factor that was a sum of cubes, x° + 1, which would in turn yield (x + DOE—x+1).
However, Paul insisted that, just because x'2 — 1 could be factored in a different
way, this did not contradict his original claim. After further class discussion, the
teacher pointed out that, for Paul’s proof to be complete, there needed to be a
theoretical link connecting the two main lines of the proof (i.e., the x” — 1 line and
the x> — 1 line): “Yes, we know we will get there eventually, but how do we know
that we will eventually get there without doing all the actual factoring?” Paul’s
proof had a ‘gap’ in it.

The second approach to the proving problem was put forward by Janet. Janet’s
proof, which she and her partner Alexandra had together generated, was based on
their earlier work on reconciling CAS factors with their paper-and-pencil factoring
(for the tasks shown in Fig. 12.2). They had noticed that for even ns, the number of
terms in the second factor was always even. Janet argued, as she presented the proof
at the board using x* — 1 as an example, that it would work for any even n:

Janet: When 7 is an even number

T: Write it on the board, show it on the board.
Janet:  [she writes “x® — 17 and below it: (x— 1)(x7 +O0+ X+ v+ o+ D]
T: Ok, listen ‘cause this is interesting [addressed to the rest of the class], it’s a

completely different way of looking at it, to what most of you guys did. Ok,
so explain it, Janet.

Janet:  When 7 is an even number [she points to the 8 in the x* — 1 that she has
written], the number of terms in this bracket is even, which means they can
be grouped and a factor is always (x + 1).

T: Can you show that?

Janet:  [she groups the second factor as follows,
Lo+ D+xa+ D+ 2@+ D+ 1+ 1)

T: Thanks Janet. Do we understand what she put out there?

Shortly after Janet had finished explaining her proof, the issue of Paul’s proof
came up once more. When Paul had presented his proof to the class, the implicit
underlying argument was that when one begins with x" — 1 where n is an even
integer, and if one continually takes the even exponent and treats the binomial as a
difference of squares, then one eventually arrives at x> — 1. To provoke the students,
the teacher offered the following counter-example: “Just out of interest, what would
happen if this was x'* — 1? [he wrote (x'* — 1) under the (x" — 1)], to which a
student easily responded: “()c7 — 1) times (x7 + 1).” The teacher wrote at the board
(M- 1)= (" = 1)’ + 1) and then wondered aloud: “Where does that leave your
proof, Paul?” However, rather than leaving the class stymied, this question
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provided an opening for another student who had been conjecturing something
new, based on his trial explorations with the CAS calculator:

Andrew: See, when it’s a prime number, then the first part here is x + 1 as a factor.
... From, like o+l you get, o+ —x+ 1, like when you factor it
on the calculator, that’s what you get.

T: Ok.

Andrew: x + I times x* — x* + x> — x + 1.

T: Say it again Andrew [he is ready to write down Andrew’s verbalizings at
the board]

Andrew: When you factor x'° — 1 on the calculator, you get (x — 1) times (x + 1)
times (x* + x> + x> + x + 1) times (& — x> + x> —x + 1).

T: Yeah [while completing the writing of Andrew’s factorization at the
board]. So, just go back a bit. That was these two together [tracing an arc
joining (x — 1) and (x* + x* + x* + x + 1)] to give you the x° — 1.

Andrew:  Yeah, and the next two would be (x + 1) and (x* — x> + ¥* — x + 1).

T: So you’re going into something that we haven’t looked at in this class.
You’re setting up another hypothesis. What is your hypothesis?

Andrew: Well, that’s what I was trying to get at. ... If the division by 2 gives an
odd number, then it goes (x + 1).

T: So you’re saying that, for the second hypothesis, something like this [he
writes down (> + 1) = (x + DG&* = x> + x> —x + 1)]. And you’re saying
that’s true for all odd numbers?

Andrew: That’s what I think.

T: So if we could prove this, then we’ve got it.

When Andrew had been working earlier on the second phase of the x" — 1
task-sequence, which had involved the reconciling of his paper-and-pencil factorings
with the CAS factorings, the x' — 1 example had presented a surprise. He had
first factored it with pencil and paper as (x5 + 1)(x5 — 1), and then refactored the
(x> = 1) according to the newly-learned general rule for ¥ — 1, but had left
the (x> + 1) factor as is. But the CAS produced as its factored form for
KO- =D+ DO+ + 22 +x+ DO —x° + 32 —x + 1). Andrew noticed this
additional factoring by the CAS, that is, that x> + 1 = (x + I)(x* —=x* + x> —x+ 1). He
then remembered something similar from the previous task-sequence on the sum of
cubes (done the week prior) and involving the factoring of x> + 1. At the same
moment that he noticed the x* + 1 phenomenon, he mentioned to his desk-mate:
“Isn’t that how it works for the sum of cubes?” So, he then began to conjecture and
test the more general rule: X" + 1 = (x + (X"~ ' =x" ~ 2+ ... = x +1), when n is odd.
Andrew, in presenting this emerging conjecture to the class, insisted that, even
though “it does not seem to work for even ns, it is true for all odd numbers »n, and
x + 1 would always be a factor of it.” While Andrew never did come up with a
generic proof for x” + 1 for odd ns, as had Janet for x" — 1 for even ns, his new
conjecture provided a basis for handling the counter-example of x'* — 1. In sum,
Andrew’s activity with the CAS was quite remarkable in that not only did he notice
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the pattern in the factoring of x° + 1, but also that he spontaneously connected it with
what he remembered about the factoring of 2+ 1, and that all of this led to
generating a novel conjecture that he was able to test with his CAS calculator.

12.4.3 Theorizing Resulting from the Implementation
of the Proving Phase of the Design Study

The proving phase of the design study—and so too the previous phases of the study
in the same classroom—is noteworthy for at least two aspects. As has been illus-
trated, the roles played by the teacher and by the computing technology in the
emergence and evolution of students’ learning were striking. The teacher was one
who worked very hard at encouraging his students to reflect, at giving them time to
do so, at listening closely to their reflections, and at having them share their
reflections with the rest of the class. His predisposition to such practice was related
to the importance he ascribed to students’ learning to think for themselves. One of
the signs of this didactical stance on mathematical learning was the way in which he
presented counter-examples to challenge students’ thinking rather than immediately
correcting them or giving the right answer. He aimed at having students develop
their mathematical reasoning and critical thinking.

As the case of this teacher suggests, not only can listening to students support the
development of students’ thinking, it can also lead to new awarenesses and pro-
fessional growth in the teacher. He mentioned on several occasions during the
post-lesson interview how struck he was by the quality of the mathematical con-
tributions of his students, contributions such as those by Janet and Andrew, which
had evoked new mathematical insights within him, as well as within the students of
his class. He was clearly a teacher who could learn from his students.

His disposition toward student reflection and student learning of mathematics, as
well as his attitude with respect to his own learning, supported each other in a
mutually intertwining manner. This is of interest from a theoretical perspective. It
suggests firstly that the integration of novel materials and resources that have been
designed to spur mathematical learning is more likely to be successful when the
teachers who are doing the integrating are able to see that these resources are having
a positive effect on their students’ learning. Secondly, the novel materials and
resources have a greater likelihood of producing this positive effect on student
learning when the teacher doing the integrating engages in teaching practices that
encourage student reflection and mathematical reasoning.

The second noteworthy aspect concerns the role of the CAS technology in the
students’ learning. To clarify, while the CAS technology was not initially created
by its programming designers for pedagogical purposes but rather as a tool for
doing mathematics, its integration into learning environments has been shown to
lead students to explore their own novel conjectures and to allow for generating,
testing, and improving conjectures. Ample evidence of this facet of CAS tech-
nology use was observed in Andrew’s activity within our own design study.
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It would be hard to envisage him even noticing the phenomenon regarding the
factorization of x> + 1, much less being able to formulate and test effectively his
newly formed conjecture about the factors of x"+ 1 for odd ns in a
pencil-and-paper environment. The role of the CAS calculator was crucial at this
moment, and reminds us of a point made by Mason (2010): “Learning has taken
place when people discern details, recognize relationships, and perceive properties
not previously discerned through attending in fresh or distinct ways, and when they
have fresh possibilities for action from which to choose” (p. 24). The CAS offered
Andrew and the other students the “fresh possibilities for action” and allowed for
the “discernment of details and the recognition of relationships.”

But the CAS technology also played an important role for the teacher and for his
practice. The teacher remarked at the completion of the X" — 1 task-sequence that the
presence of the technology changes the nature of the questions that can be asked of
students, and thus the kind of mathematical reflection they engage in. While the
tasks themselves were, according to the teacher, a crucial component of the stu-
dents’ learning and pushed them beyond what is normally asked of them in their
mathematics program, it must be added that the actual design of the tasks was set up
in such a way as to work hand-in-hand with the affordances of the technology. In
fact, the first two phases of the x" — 1 task-sequence, which were foundational to the
proving part of the activity, could not have been managed without the CAS. The
teacher added that the interaction with the CAS calculators actually “made the
students think more about the algebraic processes that they knew how to do, in
particular, to think about the way in which they understood this material—basically
the meta-cognition kind of idea of thinking about the process you’re going through
yourself. That’s something we don’t do enough of in mathematics.” Before the
unfolding of the design study in his own classroom, he never imagined the impact
of this technology on his students’ mathematical learning, and thus on his own
learning of what his students could accomplish. In his reflecting on his students’
reflections, his vision of what his students could learn mathematically had changed,
as well as his awareness of the role within the learning process that CAS technology
can play when situated within the context of suitably demanding task-sequences.

12.5 Concluding Remarks

In this chapter, I have examined the design process and task design from the
standpoint of the frameworks and principles that are reflective of the historical
development of design-oriented theorizing research in mathematics education. The
particular perspective that was used was that of grand, intermediate, and
domain-specific levels of frames—a perspective illustrating the ways in which
frames and task design are related. An example was provided of a domain-specific
frame for a design study focusing on the processes of conjecturing, generalizing,
and proving within the algebraic content area of factoring technique and involving
the CAS calculator tool. This example embodied the two dimensions of (i) design
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as intention, with its description of the initial formulation of the design that was
underpinned by specific frameworks and principles, and (ii) design as implemen-
tation with its description of the process by which the designed sequence was
integrated into the classroom environment—a process that specified the tasks, the
kinds of classroom discussion that were encouraged, the tools that were provided,
and the practical means by which the teacher orchestrated relations among these
elements. While the entire description of the initial formulation and implementation
of the design study constitutes the development of the theoretical role played by
such studies, specific theoretical products resulting from this design study included
the following:

e the emergence of students’ theoretical notions within the further growth of their
technical knowledge in algebra,

e the nature of the teacher’s classroom practice, which fostered the co-emergence
of algebraic theory and technique,

e the students’ capacity to notice theory-inducing phenomena in the outputs
provided by the CAS technology tool, and

e the quality of the teacher’s reflections on his students’ learning that were pro-
voked by the designed task-with-technology environment and which in turn
constituted a form of professional development for him.

In sum, the domain-specific frame that was used for the design study, and its
further elaboration that was the result of the study, is one that theorized the
co-emergence of algebraic conceptual and technical knowledge in a
technology-supported, task-based classroom environment that constituted learning
for both students and teacher. Its success depended to a great extent upon the
specific instructional practice of the participating teacher, as well as the affordances
of the CAS technology as a tool to spur thinking. To conclude, the frame is one that
can serve as a basis for further design research in the recursive process of
domain-specific-frame-development in the particular content area of algebra.

References

Ainley, J., & Pratt, D. (2005). The significance of task design in mathematics education: Examples
from proportional reasoning. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th
conference of the international group for the psychology of mathematics education (Vol. 1,
pp. 103-108). Melbourne: PME.

Artigue, M. (1992). Didactical engineering. In R. Douady & A. Mercier (Eds.), Recherches en
Didactique des Mathématiques, Selected papers (pp. 41-70). Grenoble: La Pensée Sauvage.

Artigue, M. (1997). Le Logiciel ‘Derive’ comme révélateur de phénomenes didactiques liés a
’utilisation d’environnements informatiques pour I’apprentissage [Derive software, a revealer
of didactical phenomena related to the use of computer learning environments]. Educational
Studies in Mathematics, 33, 133-169.

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection
about instrumentation and the dialectics between technical and conceptual work. International
Journal of Computers for Mathematical Learning, 7, 245-274.



12 Task Design Frameworks in Mathematics Education Research ... 285

Artigue, M. (2009). Didactical design in mathematics education. In C. Winslow (Ed.), Nordic
research in mathematics education: Proceedings from NORMAOS in Copenhagen (pp. 7-16).
Rotterdam: Sense Publishers.

Bell, A. W. (1979). Research on teaching methods in secondary mathematics. In D. Tall (Ed.),
Proceedings of the third conference of the international group for the psychology of
mathematics education (pp. 4-12). Warwick: PME.

Bell, A. (1993). Guest editorial. Educational Studies in Mathematics, 24, 1-4.

Brousseau, G. (1997). Theory of didactical situations in mathematics (N. Balacheff, M. Cooper,
R. Sutherland, & V. Warfield, Eds. & Trans.). Dordrecht: Kluwer Academic.

Brousseau, G. (1998). Théorie des situations didactiques [Theory of didactical situations]
(N. Balacheft, M. Cooper, R. Sutherland, & V. Warfield, Eds.). Grenoble: La Pensée Sauvage.

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating
complex interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141-178.

Canadas, M. C., Deulofeu, J., Figueiras, L., Reid, D. A., & Yevdokimov, O. (2007). The
conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching
and Learning, 5(1), 55-72.

Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique du
didactique [The analysis of teaching practice in the anthropological theory of the didactic].
Recherches en Didactique des Mathématiques, 19, 221-266.

Cobb, P. (2007). Putting philosophy to work: Coping with multiple theoretical perspectives.
In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning
(pp. 3-67). Charlotte: Information Age.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in
educational research. Educational Researcher, 32(1), 9-13.

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological
issues. Journal of the Learning Sciences, 13, 15-42.

Fernandez, C., & Yoshida, M. (2004). Lesson study: A Japanese approach to improving
mathematics teaching and learning. Mahwah: Lawrence Erlbaum Associates.

Freudenthal, H. (1979). How does reflective thinking develop? In D. Tall (Ed.), Proceedings of the
third conference of the international group for the psychology of mathematics education
(pp. 92-107). Warwick: PME.

Fujii, T. (2015). The critical role of task design in Lesson Study. In A. Watson & M. Ohtani (Eds.),
Task design in mathematics education: An ICMI Study 22 (pp. 273-286). New York: Springer.

Gagné, R. M. (1965). The conditions of learning. New York: Holt, Rinehart & Winston.

Glaser, R. (1976). Components of a psychology of instruction: Toward a science of design. Review
of Educational Research, 46(1), 1-24.

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. van
den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research
(pp. 45-85). http://www.fisme.science.uu.nl/publicaties/literatuur/EducationalDesignResearch.
pdf.

Herbel-Eisenmann, B., & Cirillo, M. (Eds.). (2009). Promoting purposeful discourse. Teacher
research in mathematics classrooms. Reston: National Council of Teachers of Mathematics.

Hitt, F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a CAS environment
with tasks designed from a Task-Technique-Theory perspective. International Journal of
Computers for Mathematical Learning, 14, 121-152.

Jacobs, J. K., & Morita, E. (2002). Japanese and American teachers’ evaluations of videotaped
mathematics lessons. Journal for Research in Mathematics Education, 33, 154-175.

Johnson, D. C. (1980). The research process. In R. J. Shumway (Ed.), Research in mathematics
education (pp. 29—46). Reston: National Council of Teachers of Mathematics.

Kelly, A. E., Lesh, R. A., & Baek, J. Y. (Eds.). (2008). Handbook of design research methods in
education. London: Routledge.

Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook
of research on mathematics teaching and learning (pp. 390-419). New York: Macmillan.


http://www.fisme.science.uu.nl/publicaties/literatuur/EducationalDesignResearch.pdf
http://www.fisme.science.uu.nl/publicaties/literatuur/EducationalDesignResearch.pdf

286 C. Kieran

Kieran, C. (2004). The core of algebra: Reflection on its main activities. In K. Stacey, H. Chick, &
M. Kendal (Eds.), The future of the teaching and learning of algebra: The 12th ICMI Study
(pp- 21-33). Dordrecht: Kluwer Academic Publishers.

Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels:
Building meaning for symbols and their manipulation. In F. K. Lester Jr. (Ed.), Second
handbook of research on mathematics teaching and learning (pp. 707-762). Greenwich:
Information Age.

Kieran, C. (2017). Task design in mathematics education: Frameworks and exemplars.
In S. Oesterle, D. Allan, & J. Holm (Eds.), Proceedings of the 2016 annual meeting of the
Canadian mathematics education study group (pp. 45-66). Kingston: CMESG.

Kieran, C., & Drijvers, P. (2006). The co-emergence of machine techniques, paper-and-pencil
techniques, and theoretical reflection: A study of CAS use in secondary school algebra.
International Journal of Computers for Mathematical Learning, 11, 205-263.

Kieran, C., & Guzman, J. (2010). Role of task and technology in provoking teacher change: A case
of proofs and proving in high school algebra. In R. Leikin & R. Zazkis (Eds.), Learning
through teaching mathematics: Development of teachers’ knowledge and expertise in practice
(pp- 127-152). New York: Springer.

Kieran, C., Doorman, M., & Ohtani, M. (2015). Frameworks and principles for task design.
In A. Watson & M. Ohtani (Eds.), Task design in mathematics education: An ICMI Study 22
(pp. 19-81). New York: Springer.

Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.),
Handbook of research on mathematics teaching and learning (pp. 3-38). New York:
Macmillan.

Komatsu, K., & Tsujiyama, Y. (2013). Principles of task design to foster proofs and refutations in
mathematical learning: Proof problem with diagram. In C. Margolinas (Ed.), Task design in
mathematics education: Proceedings of ICMI Study 22 (pp. 471-480). https://hal.archives-
ouvertes.fr/hal-00834054.

Lagrange, J.-B. (2002). Etudier les mathématiques avec les calculatrices symboliques. Quelle place
pour les techniques? [Studying mathematics with symbolic calculators. What place is there for
techniques?] In D. Guin & L. Trouche (Eds), Calculatrices symboliques. Transformer un outil
en un instrument du travail mathématique: un probleme didactique (pp. 151-185). Grenoble:
La Pensée Sauvage.

Lagrange, J.-B. (2003). Learning techniques and concepts using CAS: A practical and theoretical
reflection. In J. T. Fey (Ed.), Computer algebra systems in secondary school mathematics
education (pp. 269-283). Reston: National Council of Teachers of Mathematics.

Lerman, S., Xu, G., & Tsatsaroni, A. (2002). Developing theories of mathematics education
research: The ESM story. Educational Studies in Mathematics, 51, 23—40.

Lesh, R. A. (2002). Research design in mathematics education: Focusing on design experiments.
In L. English (Ed.), Handbook of international research in mathematics education (pp. 27-50).
Hillsdale: Lawrence Erlbaum Associates.

Leung, A., & Bolite-Frant, J. (2015). Designing mathematics tasks: The role of tools. In A. Watson
& M. Ohtani (Eds.), Task design in mathematics education: An ICMI Study 22 (pp. 191-225).
New York: Springer.

Lewis, C. (2002). Lesson study: A handbook of teacher-led instructional change. Philadelphia:
Research for Better Schools.

Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, &
L. F. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 85-86).
Dordrecht: Kluwer Academic.

Mason, J. (2010). Attention and intention in learning about teaching through teaching. In R. Leikin
& R. Zazkis (Eds.), Learning through teaching mathematics: Development of teachers’
knowledge and expertise in practice (pp. 23—47). New York: Springer.

Mounier, G., & Aldon, G. (1996). A problem story: factorisations of x"-1. International DERIVE
Journal, 3, 51-61.

Piaget, J. (1971). Genetic epistemology. New York: W. W. Norton.


https://hal.archives-ouvertes.fr/hal-00834054
https://hal.archives-ouvertes.fr/hal-00834054

12 Task Design Frameworks in Mathematics Education Research ... 287

Polya, G. (1945/1957). How to solve it: A new aspect of mathematical method. Princeton:
Princeton University Press.

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for
connecting theoretical approaches: First steps towards a conceptual framework. ZDM: The
International Journal on Mathematics Education, 40, 165-178.

Prusak, N., Hershkowitz, R., & Schwarz, B. B. (2013). Conceptual learning in a principled design
problem solving environment. Research in Mathematics Education, 15(3), 266-285. https://
doi.org/10.1080/14794802.2013.836379.

Runesson, U. (2005). Beyond discourse and interaction. Variation: A critical aspect for teaching
and learning mathematics. The Cambridge Journal of Education, 35(1), 69-87.

Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research:
Instrumenting the epistemological and the cognitive aspects of the design of teaching
sequences. Educational Researcher, 38, 329-342.

Simon, H. A. (1969). The sciences of the artificial. Cambridge: MIT Press.

Stephan, M., & Akyuz, D. (2012). A proposed instructional theory for integer addition and
subtraction. Journal for Research in Mathematics Education, 43, 428-464.

Stephan, M., & Akyuz, D. (2013). An instructional design collaborative in one middle school.
In C. Margolinas (Ed.), Task design in mathematics education: Proceedings of ICMI Study 22
(pp- 509-518). https://hal.archives-ouvertes.fr/hal-00834054.

Stigler, J. W., & Hiebert, J. (1999). The teaching gap. New York: Free Press.

Treffers, A. (1987). Three dimensions: A model of goal and theory description in mathematics
instruction - The Wiskobas Project. Dordrecht: D. Reidel.

Van Dooren, W., Vamvakoussi, X., & Verschaffel, L. (2013). Mind the gap—Task design
principles to achieve conceptual change in rational number understanding. In C. Margolinas
(Ed.), Task design in mathematics education: Proceedings of ICMI Study 22 (pp. 519-527).
https://hal.archives-ouvertes.fr/hal-00834054.

Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought
in relation to instrumented activity. European Journal of Psychology of Education, 10, 77-103.

Watson, A., et al. (2013). Introduction. In C. Margolinas (Ed.), Task design in mathematics
education: Proceedings of ICMI Study 22 (pp. 7-13). https://hal.archives-ouvertes.fr/hal-
00834054.

Watson, A., & Ohtani, M. (Eds.). (2015). Task design in mathematics education: An ICMI Study
22. New York: Springer.

Wittmann, E. (1984). Teaching units as the integrating core of mathematics education. Educational
Studies in Mathematics, 15, 25-36.

Wittmann, E. Ch. (1995). Mathematics education as a ‘design science’. Educational Studies in
Mathematics, 29, 355-374.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://dx.doi.org/10.1080/14794802.2013.836379
http://dx.doi.org/10.1080/14794802.2013.836379
https://hal.archives-ouvertes.fr/hal-00834054
https://hal.archives-ouvertes.fr/hal-00834054
https://hal.archives-ouvertes.fr/hal-00834054
https://hal.archives-ouvertes.fr/hal-00834054
http://creativecommons.org/licenses/by/4.0/

	12 Task Design Frameworks in Mathematics Education Research: An Example of a Domain-Specific Frame for Algebra Learning with Technological Tools
	Abstract
	12.1 Introduction
	12.2 Brief History of the Emergence of Design-Related Theoretical Work from the 1960s Onward
	12.2.1 Influences from Psychology
	12.2.2 Early Design Initiatives of the Mathematics Education Research Community
	12.2.3 The 1990s and Early 2000s: Development of Design Experiments
	12.2.4 From Early 2000 Onward
	12.2.5 A Key Issue

	12.3 A Conceptualization of Current Theoretical Frameworks and Principles for Task Design in Mathematics Education Research
	12.3.1 Introduction
	12.3.2 Grand Theoretical Frames
	12.3.3 Intermediate Level Frames
	12.3.4 Domain-Specific Frames

	12.4 A Domain-Specific Frame for the CAS-Supported Co-emergence of Technique and Theory within the Activity of Algebraic Factorization
	12.4.1 The Theoretical Underpinnings of the Design Study
	12.4.2 The Implementation of the Design Study
	12.4.3 Theorizing Resulting from the Implementation of the Proving Phase of the Design Study

	12.5 Concluding Remarks
	References




