
Chapter 6

Approach with Rectangular Arrays

All what we have done so far with linear arrays is, obviously, not limited to
this type of arrays. In this chapter, we show how to extend some of these
results to two-dimensional arrays such as the rectangular ones. The focus is
on fixed beamforming. Of course, very interesting adaptive beamformers can
be derived as well by following the same steps as in previous chapters.

6.1 Signal Model and Problem Formulation

The two-dimensional (2-D) array evaluated in this chapter is a rectangular
array (RA) depicted in Fig. 6.1. Considering the Cartesian coordinate system
with microphone (1, 1) as its origin, the studied RA is composed of Mx om-
nidirectional sensors along the x (negative) axis with a uniform interelement
spacing equal to δx and My omnidirectional sensors along the y (negative)
axis with a uniform interelement spacing equal to δy. Thus, the total number
of microphones is equal to MxMy, whose positions are denoted (mx,my) with
mx = 1, 2, . . . ,Mx, my = 1, 2, . . . ,My. Notice that in the direction of the x
axis, we have My parallel ULAs composed of Mx microphones each with a
spacing δx, while in the direction of the y axis, we have Mx parallel ULAs
composed of My microphones each with a spacing δy.

We assume that a farfield desired source signal (plane wave) propagates
from the azimuth angle, θ, in an anechoic acoustic environment at the speed
of sound, i.e., c = 340 m/s, and impinges on the above described 2-D array.
Then, it is not hard to see that the corresponding steering matrix (of size
Mx ×My) is [1]
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Fig. 6.1 Illustration of the studied 2-D microphone array.

Dθ =
[
Dy,θ,1dx,θ Dy,θ,2dx,θ · · · Dy,θ,Mydx,θ

]
(6.1)

=

⎡⎢⎢⎢⎣
Dx,θ,1d

T
y,θ

Dx,θ,2d
T
y,θ

...
Dx,θ,Mx

dT
y,θ

⎤⎥⎥⎥⎦
= dx,θd

T
y,θ,

where

dx,θ =
[
Dx,θ,1 Dx,θ,2 · · · Dx,θ,Mx

]T
(6.2)

=
[
1 e−jωδx

c cos θ · · · e−j
(Mx−1)ωδx

c cos θ
]T

is the steering vector associated with the x axis,

dy,θ =
[
Dy,θ,1 Dy,θ,2 · · · Dy,θ,My

]T
(6.3)

=
[
1 e−j

ωδy
c sin θ · · · e−j

(My−1)ωδy
c sin θ

]T
is the steering vector associated with the y axis.

Thanks to the above steering matrix, the observation signal matrix of size
Mx ×My of the RA can be expressed in the frequency domain as
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Y = X+V (6.4)

= DθX +V,

where X is the zero-mean desired source signal and V is the zero-mean ad-
ditive noise signal matrix. Without loss of generality, it is assumed in the
rest that the desired source signal propagates from the angle θ = 0 (endfire
direction). Therefore, (6.4) becomes

Y = D0X +V, (6.5)

where D0 is the steering matrix at θ = 0.
Using the convenient vectorization operation, which consists of converting

a matrix into a vector, (6.5) can be expressed, equivalently, as

vec (Y) =
[
yT
:1 yT

:2 · · · yT
:My

]T
= vec

(
dx,0d

T
y,0

)
X + vec (V)

= dy,0 ⊗ dx,0X + vec (V) , (6.6)

where y:my
is the myth column of Y and vec (V) is defined similarly to

vec (Y). To further simplify the notation, we write ỹ = vec (Y), d̃θ =
vec (Dθ) = dy,θ ⊗ dx,θ, and ṽ = vec (V). With this notation, (6.6) is

ỹ = d̃0X + ṽ. (6.7)

We deduce that the MxMy ×MxMy covariance matrix of ỹ is

Φỹ = E
(
ỹỹH

)
(6.8)

= d̃0d̃
H
0 φX +Φṽ,

where φX = E
(
|X|2

)
is the variance of X and Φṽ = E

(
ṽṽH

)
is the covari-

ance matrix of ṽ.

6.2 2-D Beamforming

The conventional way to perform 2-D beamforming is to apply a complex-
valued linear filter, h, of length MxMy to the observation signal vector, ỹ.
We get [2]

ZC = hH ỹ (6.9)

= hH d̃0X + hH ṽ,
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where ZC is the estimate of the desired signal, X. However, there are two
main problems with this approach. The first one is the large number of co-
efficients (equal to MxMy) that need to be estimated, so complexity can be
an issue. More importantly, the second problem has to do with the inversion
of very ill-conditioned large matrices in most derived optimal beamformers,
which will necessarily lead to serious estimation problems in the presence of
uncertainties.

Due to some potential problems with the conventional approach, we pro-
pose in this investigation to use two complex-valued linear filters hx and hy

of respective lengths Mx and My as follows1:

Z = hH
x Yh∗

y (6.10)

=
(
hH
x dx,0

) (
dT
y,0h

∗
y

)
X + hH

x Vh∗
y

=
(
hH
x dx,0

) (
hH
y dy,0

)
X + hH

x Vh∗
y,

where Z is the estimate of X. We observe that Z is bilinear in h∗
x and h∗

y

since, for every fixed h∗
x, it is a linear function of h∗

y and for every fixed h∗
y, it

is a linear function of h∗
x. This bilinear form takes advantage of the structure

of the 2-D array and the corresponding steering vectors. We can also express
(6.10) as

Z = tr
(
h∗
yh

H
x Y

)
(6.11)

= tr
[(
hxh

T
y

)H
Y
]

= vecH
(
hxh

T
y

)
vec (Y)

= (hy ⊗ hx)
H
ỹ,

where tr(·) denotes the trace of a square matrix and hy ⊗ hx is the global
beamformer, which is simply the Kronecker product between the two indi-
vidual beamformers hy and hx along the y and x axes, respectively. As a
consequence, by taking h = hy ⊗ hx in (6.9), we observe that Kronecker
product beamforming is an interesting particular case of the conventional
approach, where h is assumed to have a particular structure. From (6.11),
we find that the variance of Z is

φZ = (hy ⊗ hx)
H
Φỹ (hy ⊗ hx) (6.12)

=
∣∣∣(hy ⊗ hx)

H
d̃0

∣∣∣2 φX + (hy ⊗ hx)
H
Φṽ (hy ⊗ hx)

=
∣∣hH

x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2 φX + (hy ⊗ hx)
H
Φṽ (hy ⊗ hx) .

1 Now, the number of coefficients to be estimated is equal to Mx +My instead of MxMy

for the conventional method. If Mx = My = M , we only need to handle a linear number
(2M) of coefficients instead of a square number (M2) of coefficients. So when M is large,
the length of the filter in the conventional approach becomes quickly prohibitive.
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In the rest, the distortionless constraint is desired, i.e.,(
hH
x dx,0

) (
hH
y dy,0

)
= 1. (6.13)

This also means that the value of the Kronecker product beamformer pattern
should be equal to 1 at θ = 0 and smaller than 1 at θ �= 0. In particular,
when hH

x dx,0 = hH
y dy,0 = 1, then (6.13) is also verified; so we will always

consider this case.

6.3 Performance Measures

The first important measure discussed in this section is the beampattern,
which describes the sensitivity of the Kronecker product beamformer to a
plane wave impinging on the 2-D array from the direction θ. Mathematically,
it is defined as

Bθ (hy ⊗ hx) = (hy ⊗ hx)
H
d̃θ (6.14)

= (hy ⊗ hx)
H
(dy,θ ⊗ dx,θ)

=
(
hH
x dx,θ

) (
hH
y dy,θ

)
= Bx,θ (hx)× By,θ (hy) .

It is interesting to observe that the beampattern of the global beamformer is
equal to the product of the beampatterns of the individual beamformers. As
a result, the nulls of Bθ (hy ⊗ hx) correspond exactly to the nulls of Bx,θ (hx)
and By,θ (hy). In particular, if Bx,θ (hx) has a null at θ0 of multiplicity 1 and
By,θ (hy) has also a null at θ0 of multiplicity 1, then Bθ (hy ⊗ hx) has a null
in the same direction but of multiplicity 2.

Considering the origin of the Cartesian coordinates as the reference, we
define the input SNR with respect to this reference as

iSNR =
φX

φV11

, (6.15)

where φV11
is the variance at the noise reference.

The output SNR is defined as

oSNR (hy ⊗ hx) = φX

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
Φṽ (hy ⊗ hx)

(6.16)

=
φX

φV11

×
∣∣hH

x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
Γṽ (hy ⊗ hx)

,

where
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Γṽ =
Φṽ

φV11

(6.17)

is the pseudo-coherence matrix of ṽ.
The definition of the SNR gain is easily derived from the two previous

definitions of the input and output SNRs, i.e.,

G (hy ⊗ hx) =
oSNR (hy ⊗ hx)

iSNR
(6.18)

=

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
Γṽ (hy ⊗ hx)

.

The best known way to evaluate the sensitivity of an array to some of its
imperfections and other uncertainties is via the WNG, which is defined by
taking Γṽ = IMxMy

in (6.18), where IMxMy
is the MxMy ×MxMy identity

matrix, i.e.,

W (hy ⊗ hx) =

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
(hy ⊗ hx)

(6.19)

=

∣∣hH
x dx,0

∣∣2
hH
x hx

×
∣∣hH

y dy,0

∣∣2
hH
y hy

= Wx (hx)×Wy (hy) .

Since Wx (hx) ≤ Mx and Wy (hy) ≤ My, we deduce that W (hy ⊗ hx) ≤
MxMy.

Another important measure, which quantifies how the 2-D microphone
array performs in the presence of reverberation is the DF. For the spherically
isotropic noise field, the definition of the DF is

D (hy ⊗ hx) =

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
Γ̃ (hy ⊗ hx)

, (6.20)

where

Γ̃ =

⎡⎢⎢⎢⎢⎢⎣
Γ1 Γ2 · · · ΓMy−1 ΓMy

Γ2 Γ1 · · · ΓMy−2 ΓMy−1

...
...

. . .
...

...
ΓMy−1 ΓMy−2 · · · Γ1 Γ2

ΓMy ΓMy−1 · · · Γ2 Γ1

⎤⎥⎥⎥⎥⎥⎦ (6.21)

is a symmetric block Toeplitz matrix and the elements of the My symmetric
Toeplitz matrices Γmy , my = 1, 2, . . . ,My (of size Mx ×Mx) are given by



6.3 Performance Measures 153

(
Γmy

)
ij
= sinc

⎡⎣ω
√

(i− j)2δ2x + (my − 1)
2
δ2y

c

⎤⎦ , (6.22)

with i, j = 1, 2, . . . ,Mx and sinc x = sinx/x. It is clear that D (hy ⊗ hx) ≤
d̃H
0 Γ̃−1d̃0. Using the fact that

hy ⊗ hx = (hy ⊗ IMx
)hx

=
(
IMy

⊗ hx

)
hy, (6.23)

where IMx and IMy are the identity matrices of sizes Mx×Mx and My×My,
respectively, we can rewrite the DF as

D (hy ⊗ hx) =

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
hH
x Γyhx

(6.24)

and

D (hy ⊗ hx) =

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
hH
y Γxhy

, (6.25)

where

Γy = (hy ⊗ IMx
)
H
Γ̃ (hy ⊗ IMx

) (6.26)

and

Γx =
(
IMy

⊗ hx

)H
Γ̃
(
IMy

⊗ hx

)
. (6.27)

If the filter hy is fixed and distortionless, i.e., hH
y dy,0 = 1, we write (6.24) as

D (hx|hy) =

∣∣hH
x dx,0

∣∣2
hH
x Γyhx

, (6.28)

and if the filter hx is fixed and distortionless, i.e., hH
x dx,0 = 1, we write (6.25)

as

D (hy|hx) =

∣∣hH
y dy,0

∣∣2
hH
y Γxhy

. (6.29)
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6.4 Fixed Beamformers

There is a myriad of fixed Kronecker product beamformers that we can derive
from the proposed approach. Here, we give some relevant examples, which
are mostly deduced from the above performance measures.

6.4.1 Delay and Sum

The definition of the WNG with the conventional approach is

W (h) =

∣∣∣hH d̃0

∣∣∣2
hHh

, (6.30)

whose maximization gives the very well-known DS beamformer:

hDS =
d̃0

d̃H
0 d̃0

(6.31)

=
dy,0 ⊗ dx,0

MxMy

and the corresponding WNG is, obviously,

W (hDS) = MxMy. (6.32)

Now, from the maximization of the WNG in (6.19) with respect to hx and
hy, we obtain

hx,DS =
dx,0

Mx
, (6.33)

hy,DS =
dy,0

My
. (6.34)

As a result, the global beamformer is

hy,DS ⊗ hx,DS = hDS, (6.35)

showing that the DS beamformers with the conventional and Kronecker
product approaches coincide and the number of nulls in the correspond-
ing beampattern is smaller than Mx + My − 2. For Mx = My = M ,
W (hy,DS ⊗ hx,DS) = M2 with only 2M coefficients. This shows how the
redundancy in an RA is taken advantage of.

Figure 6.2 displays the directivity patterns of the DS beamformer, hDS,
for f = 2 kHz, δx = δy = 2 cm and different numbers of sensors Mx = My.
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Fig. 6.2 Beampatterns of the DS beamformer, hDS, for f = 2 kHz, δx = δy = 2 cm,
and different numbers of sensors Mx = My : (a) Mx = My = 3, (b) Mx = My = 6,
(c) Mx = My = 9, and (d) Mx = My = 12.

Figure 6.3 shows plots of the DFs and WNGs of the DS beamformer as a
function of frequency for δx = δy = 2 cm and different numbers of sensors
Mx = My. We observe that as the number of sensors increases, the width
of the main beam decreases, and both the DF and the WNG of the DS
beamformer increase.

6.4.2 Combined Superdirective/Delay and Sum

In this subsection, we show how to combine the superdirective and DS beam-
formers in a 2-D array in order to take advantage of the best of them. Indeed,
for a ULA with the desired source at the endfire, it is well known that the
superdirective maximizes the DF but amplifies the white noise while the DS
maximizes the WNG but gives poor levels of the DF [3], [4], [5]. Therefore,
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Fig. 6.3 Performance of the DS beamformer, hDS, as a function of frequency for δx =
δy = 2 cm and different numbers of sensors Mx = My : Mx = My = 3 (solid line with
circles), Mx = My = 6 (dashed line with asterisks), Mx = My = 9 (dotted line with
squares), and Mx = My = 12 (dash-dot line with triangles). (a) DF and (b) WNG.

in the x axis direction, we propose to use the superdirective beamformer [3],
[4]:

hx,SD =
Γ−1
1 dx,0

dH
x,0Γ

−1
1 dx,0

, (6.36)

where Γ1 is the first block matrix of Γ̃, while in the y axis direction, we take
the DS beamformer given in (6.34), i.e., hy,DS; so that the global beamformer
is hy,DS ⊗ hx,SD. We deduce that the WNG is

W (hy,DS ⊗ hx,SD) = MyWx (hx,SD) , (6.37)

showing that the WNG of the global filter with an RA is improved by a factor
of My compared to the WNG of the superdirective beamformer with a ULA.
The power beampattern is

|Bθ (hy,DS ⊗ hx,SD)|2 = |Bx,θ (hx,SD)|2 |By,θ (hy,DS)|2 (6.38)

≤ |Bx,θ (hx,SD, θ)|2 ,

implying that the global beamformer is more directive than the superdirective
beamformer. As a consequence,

D (hy,DS ⊗ hx,SD) ≥ D (hx,SD) . (6.39)

Figure 6.4 displays the directivity patterns of the combined superdirec-
tive/DS beamformer, hy,DS ⊗ hx,SD, for f = 2 kHz, δx = 1 cm, δy = 2 cm,
My = 10, and different numbers of sensors Mx. Figure 6.5 shows plots of the
DFs and WNGs of the combined superdirective/DS beamformer as a function
of frequency for δx = 1 cm, δy = 2 cm, My = 10, and different numbers of
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Fig. 6.4 Beampatterns of the combined superdirective/DS beamformer, hy,DS ⊗ hx,SD,
for f = 2 kHz, δx = 1 cm, δy = 2 cm, My = 10, and different numbers of sensors Mx:
(a) Mx = 3, (b) Mx = 4, (c) Mx = 5, and (d) Mx = 6.

sensors Mx. We observe that as the number of sensors increases, the width of
the main beam and the level of side lobes decrease, the DF increases, but the
WNG decreases. Compared to the DS beamformer, the combined superdi-
rective/DS beamformer yields higher DF, but lower WNG (compare Figs 6.3
and 6.5).

6.4.3 Maximum DF

In the conventional method, the DF is defined as

D (h) =

∣∣∣hH d̃0

∣∣∣2
hH Γ̃h

. (6.40)
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Fig. 6.5 Performance of the combined superdirective/DS beamformer, hy,DS⊗hx,SD, as a
function of frequency for δx = 1 cm, δy = 2 cm, My = 10, and different numbers of sensors
Mx: Mx = 3 (solid line with circles), Mx = 4 (dashed line with asterisks), Mx = 5 (dotted
line with squares), and Mx = 6 (dash-dot line with triangles). (a) DF and (b) WNG.

We can easily maximize the previous expression to obtain the maximum DF
(mDF) beamformer:

hmDF =
Γ̃−1d̃0

d̃H
0 Γ̃−1d̃0

. (6.41)

While this approach maximizes the DF, which is equal to D (hmDF) =

d̃H
0 Γ̃−1d̃0, it may have a disastrous effect on the WNG. Therefore, hmDF

may be unpractical.
With the Kronecker product technique, it does not seem obvious to max-

imize the DF [see eq. (6.20)] but we can maximize the DFs in the directions
of the two axes x and y. The maximization of the DF of hx gives the su-
perdirective beamformer, hx,SD, shown in (6.36), while the maximization of
the DF of hy leads to the mDF beamformer:

hy,mDF =
Γ−1
1,ydy,0

dH
y,0Γ

−1
1,ydy,0

, (6.42)

where the elements of the My×My symmetric Toeplitz matrix Γ1,y are given
by

(Γ1,y)ij = sinc

(
ω|i− j|δy

c

)
, (6.43)

with i, j = 1, 2, . . . ,My. Therefore, the global beamformer is hy,mDF⊗hx,SD,
which, obviously, does not maximize (6.20).

We can improve the previous result, as far the DF is concerned, with a
simple iterative algorithm thanks to (6.28) and (6.29). At iteration 0, we take
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h(0)
x = hx,SD, (6.44)

where hx,SD is given in (6.36). Substituting h
(0)
x into (6.27), we obtain

Γ(0)
x =

(
IMy

⊗ h(0)
x

)H

Γ̃
(
IMy

⊗ h(0)
x

)
. (6.45)

Now, substituting this expression into the DF in (6.29), we obtain at itera-
tion 1:

D
(
h(1)
y |h(0)

x

)
=

∣∣∣∣(h(1)
y

)H

dy,0

∣∣∣∣2(
h
(1)
y

)H

Γ
(0)
x h

(1)
y

. (6.46)

The maximization of D
(
h
(1)
y |h(0)

x

)
with respect to h

(1)
y gives

h(1)
y =

(
Γ
(0)
x

)−1

dy,0

dH
y,0

(
Γ
(0)
x

)−1

dy,0

. (6.47)

Using h
(1)
y in (6.26), we get

Γ(1)
y =

(
h(1)
y ⊗ IMx

)H

Γ̃
(
h(1)
y ⊗ IMx

)
. (6.48)

As a result, the DF in (6.28) is

D
(
h(1)
x |h(1)

y

)
=

∣∣∣∣(h(1)
x

)H

dx,0

∣∣∣∣2(
h
(1)
x

)H

Γ
(1)
y h

(1)
x

, (6.49)

whose maximization with respect to h
(1)
x gives

h(1)
x =

(
Γ
(1)
y

)−1

dx,0

dH
x,0

(
Γ
(1)
y

)−1

dx,0

. (6.50)

Continuing the iterations up to the iteration n, we easily get for the second
filter:

h(n)
y =

(
Γ
(n−1)
x

)−1

dy,0

dH
y,0

(
Γ
(n−1)
x

)−1

dy,0

, (6.51)
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with

Γ(n−1)
x =

(
IMy ⊗ h(n−1)

x

)H

Γ̃
(
IMy ⊗ h(n−1)

x

)
, (6.52)

and for the first filter:

h(n)
x =

(
Γ
(n)
y

)−1

dx,0

dH
x,0

(
Γ
(n)
y

)−1

dx,0

, (6.53)

with

Γ(n)
y =

(
h(n)
y ⊗ IMx

)H

Γ̃
(
h(n)
y ⊗ IMx

)
. (6.54)

As a result, the global beamformer at iteration n is h
(n)
y ⊗ h

(n)
x . Since the

DFs of the individual beamformers increase at each iteration, so is the DF of
the global beamformer and we should expect (6.20) to be maximized for n
large enough. While this iterative algorithm may lead to a high value of the
DF, white noise amplification may be a serious issue.

Figure 6.6 displays the directivity patterns of the global mDF beamformer

at the iteration n = 5, h
(5)
y ⊗ h

(5)
x , for f = 2 kHz, δx = δy = 1 cm, My = 3,

and different numbers of sensors Mx. Figure 6.7 shows plots of the DFs
and WNGs of the global mDF beamformer for δx = δy = 1 cm, My =
3, and different numbers of sensors Mx. We observe that as the number
of sensors increases, the DF of the global mDF beamformer increases, but
the WNG decreases. Compared to the DS beamformer and the combined
superdirective/DS beamformer, the global mDF beamformer yields higher
DF, but lower WNG (compare Figs 6.3, 6.5, and 6.7).

One obvious way to better compromise between the DF and the WNG is
to change the initialization to

h(0)
x = hx,DS, (6.55)

where hx,DS is the individual DS beamformer defined in (6.33). We can iterate
as above using (6.28) and (6.29) and stop when we achieve a desired DF or
when we do not desire to go below a certain level of the WNG.

6.4.4 Null Steering

In this subsection, we assume that we have one interference source impinging
on the array from the direction θ0 �= 0 that we would like to completely cancel,
i.e., to steer a null in that direction, and, meanwhile, recover the desired
source coming from the endfire direction. With the conventional approach,
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Fig. 6.6 Beampatterns of the global mDF beamformer at the iteration n = 5, h
(5)
y ⊗h

(5)
x ,

for f = 2 kHz, δx = δy = 1 cm, My = 3, and different numbers of sensors Mx: (a) Mx = 3,
(b) Mx = 4, (c) Mx = 5, and (d) Mx = 6.
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Fig. 6.7 Performance of the global mDF beamformer at the iteration n = 5, h
(5)
y ⊗ h

(5)
x ,

as a function of frequency for δx = δy = 1 cm, My = 3, and different numbers of sensors
Mx: Mx = 3 (solid line with circles), Mx = 4 (dashed line with asterisks), Mx = 5 (dotted
line with squares), and Mx = 6 (dash-dot line with triangles). (a) DF and (b) WNG.
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the constraint equation for a distortionless response and a null at θ0 is

C̃Hh = ic, (6.56)

where

C̃ =
[
d̃0 d̃θ0

]
(6.57)

is the constraint matrix of size MxMy × 2 whose two columns are linearly
independent and

ic =
[
1 0

]T
(6.58)

is a vector of length 2. There are two interesting ways to find h. The first
obvious beamformer is obtained by maximizing the WNG and by taking
(6.56) into account, i.e.,

min
h

hHh subject to C̃Hh = ic. (6.59)

From this criterion, we find the minimum-norm (MN) beamformer:

hMN = C̃
(
C̃HC̃

)−1

ic, (6.60)

which is also the minimum-norm solution of (6.56). The other beamformer is
obtained by maximizing the DF and by taking (6.56) into account, i.e.,

min
h

hH Γ̃h subject to C̃Hh = ic. (6.61)

We easily find the null-steering (NS) beamformer:

hNS = Γ̃−1C̃
(
C̃H Γ̃−1C̃

)−1

ic. (6.62)

Obviously, we always have

W (hNS) ≤ W (hMN) , (6.63)

D (hNS) ≥ D (hMN) . (6.64)

For the Kronecker product approach, there are many possibilities. Now,
for our above formulated problem, the corresponding constraint equations on
the two filters hx and hy are

CH
x hx = ic, (6.65)

CH
y hy = ic, (6.66)

where
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Fig. 6.8 Beampatterns of the global MN beamformer, hy,DS ⊗ hx,MN, for f = 2 kHz,
δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦,
(c) θ0 = 150◦, and (d) θ0 = 180◦.

Cx =
[
dx,0 dx,θ0

]
, (6.67)

Cy =
[
dy,0 dy,θ0

]
(6.68)

are the constraint matrices of size Mx × 2 and My × 2, respectively. From
(6.65) and (6.66), we easily find the individual MN beamformers:

hx,MN = Cx

(
CH

x Cx

)−1
ic, (6.69)

hy,MN = Cy

(
CH

y Cy

)−1
ic. (6.70)

As a consequence, for the global MN beamformer, we have three interesting
possibilities: hy,DS⊗hx,MN, hy,MN⊗hx,DS, and hy,MN⊗hx,MN. The three of
them, obviously, put a null in the direction θ0, but for the last one, the null
is of multiplicity 2, and its corresponding WNG (resp. DF) should be smaller
(resp. greater) than the two others.
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Fig. 6.9 Performance of the global MN beamformer, hy,DS ⊗ hx,MN, as a function of
frequency for δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: θ0 = 90◦ (solid
line with circles), θ0 = 120◦ (dashed line with asterisks), θ0 = 150◦ (dotted line with
squares), and θ0 = 180◦ (dash-dot line with triangles). (a) DF and (b) WNG.

Figure 6.8 displays the directivity patterns of the global MN beamformer,
hy,DS ⊗hx,MN, for f = 2 kHz, δx = δy = 1 cm, Mx = 3, My = 5, and several
values of θ0. Figure 6.9 shows plots of the DFs and WNGs of the global MN
beamformer as a function of frequency for δx = δy = 1 cm, Mx = 3, My = 5,
and several values of θ0. We observe a null in the direction θ0, and the WNG
of the global MN beamformer increases as θ0 increases from 90◦ to 180◦.

Following the steps of the conventional approach, we easily find the indi-
vidual NS beamformers:

hx,NS = Γ−1
1 Cx

(
CH

x Γ−1
1 Cx

)−1
ic, (6.71)

hy,NS = Γ−1
1,yCy

(
CH

y Γ−1
1,yCy

)−1
ic, (6.72)

and for the global beamformer, we have many more possibilities depending
on what we want. Here are some examples: hy,NS ⊗ hx,SD, hy,NS ⊗ hx,MN,
hy,mDF ⊗ hx,NS, hy,MN ⊗ hx,NS, hy,DS ⊗ hx,NS, and hy,NS ⊗ hx,NS. The last
one will give the best DF.

Figure 6.10 displays the global NS beamformer, hy,DS ⊗ hx,NS, for f =
2 kHz, δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0. Figure 6.11
shows plots of the DFs and WNGs of the global NS beamformer, hy,DS ⊗
hx,NS, as a function of frequency for δx = δy = 1 cm, Mx = 3, My = 5,
and several values of θ0. Figure 6.12 displays the global NS beamformer,
hy,NS ⊗ hx,NS, for f = 2 kHz, δx = δy = 1 cm, Mx = 3, My = 5, and several
values of θ0. Figure 6.13 shows plots of the DFs and WNGs of the global NS
beamformer, hy,NS ⊗ hx,NS, as a function of frequency for δx = δy = 1 cm,
Mx = 3, My = 5, and several values of θ0. We observe a null in the direction
θ0. Compared to the global MN beamformers, the global NS beamformers
yield higher DF, but lower WNG. The beamformer hy,NS ⊗ hx,NS yields the
highest DF, but lowest WNG (compare Figs 6.9, 6.11, and 6.13).
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Fig. 6.10 Beampatterns of the global NS beamformer, hy,DS ⊗ hx,NS, for f = 2 kHz,
δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦,
(c) θ0 = 150◦, and (d) θ0 = 180◦.
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Fig. 6.11 Performance of the global NS beamformer, hy,DS ⊗ hx,NS, as a function of
frequency for δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: θ0 = 90◦ (solid
line with circles), θ0 = 120◦ (dashed line with asterisks), θ0 = 150◦ (dotted line with
squares), and θ0 = 180◦ (dash-dot line with triangles). (a) DF and (b) WNG.



166 6 Approach with Rectangular Arrays

0◦

30◦

60◦120◦

150◦

180◦

210◦

240◦ 300◦

330◦

0◦

30◦

60◦120◦

150◦

180◦

210◦

240◦ 300◦

330◦

0◦

30◦

60◦120◦

150◦

180◦

210◦

240◦ 300◦

330◦

0◦

30◦

60◦120◦

150◦

180◦

210◦

240◦ 300◦

330◦

(a) (b)

(c) (d)

0 dB

−10 dB

−20 dB

−30 dB

−40 dB

0 dB

−10 dB

−20 dB

−30 dB

−40 dB

0 dB

−10 dB

−20 dB

−30 dB

−40 dB

0 dB

−10 dB

−20 dB

−30 dB

−40 dB

90◦ 90◦

90◦ 90◦

270◦ 270◦

270◦ 270◦

Fig. 6.12 Beampatterns of the global NS beamformer, hy,NS ⊗ hx,NS, for f = 2 kHz,
δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦,
(c) θ0 = 150◦, and (d) θ0 = 180◦.
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Fig. 6.13 Performance of the global NS beamformer, hy,NS ⊗ hx,NS, as a function of
frequency for δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: θ0 = 90◦ (solid
line with circles), θ0 = 120◦ (dashed line with asterisks), θ0 = 150◦ (dotted line with
squares), and θ0 = 180◦ (dash-dot line with triangles). (a) DF and (b) WNG.
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