
Chapter 3

Beamforming with Uniform Linear
Arrays

Any good microphone array system requires a reliable beamforming algo-
rithm at the outputs of the sensors to enhance a desired signal coming from
a known direction. There are many ways to optimize the coefficients of this
beamformer depending on what we want and the application at hand. Funda-
mentally, there are three large classes of conventional beamformers; they are
the fixed, adaptive, and differential beamformers. In this chapter, we show
how to derive most of their counterparts as well as new approaches with
Kronecker product filters. We also show how to combine fixed and adaptive
beamforming. While most of these beamformers are rather easy to derive, for
some it is necessary to use iterative algorithms. The focus is on ULAs and
with the decomposition of the steering vector of Chapter 2.

3.1 Fixed Beamformers

In this first section, we derive many examples of fixed beamformers thanks to
the Kronecker product decomposition. We start with the most obvious one.

3.1.1 Delay and Sum

The most well-known and popular fixed beamformer is the so-called delay and
sum (DS), which is derived by maximizing the WNG. Given the structure
of the WNG of h, it is clear that the maximization of this gain is equiv-
alent to maximizing W1 (h1) and W2 (h2) separately. Taking into account
the distortionless constraints, we easily get the DS beamformers at the two
subarrays:
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h1,DS =
d1,θd

M0
, (3.1)

h2,DS =
d2,θd

M0
. (3.2)

As a consequence, the DS beamformer corresponding to the global ULA is

hDS = h1,DS ⊗ h2,DS

=
d1,θd ⊗ d2,θd

M2
0

=
dθd

M2
0

, (3.3)

which is, of course, the classical DS beamformer [1], [2]. Here, however, it is
shown how the structure of the global steering vector is exploited. In other
words, the DS beamformer is determined by 2M0 different coefficients only
when M = M2

0 .
It is obvious that

W (hDS) = M2
0 = M (3.4)

and the beampattern of the DS beamformer is

Bθ (hDS) = B1,θ (h1,DS)× B2,θ (h2,DS)

=
1

M2
0

(
dH
1,θd1,θd

) (
dH
2,θd2,θd

)
. (3.5)

Finally, the DF of hDS is

D (hDS) =
M4

0

dH
θd
Γdθd

. (3.6)

3.1.2 Partial Maximum DF

There are different fixed beamformers for which the DF is only maximized
in part. We review some possibilities.

In the first approach, we assume that h2 is fixed. We may take h2 = h2,DS

for the second ULA. Substituting this filter into (2.42), we get

D (h1|h2,DS) =

∣∣hH
1 d1,θd

∣∣2
hH
1 Γh2,DSh1

, (3.7)

where
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Γh2,DS
= (IM0

⊗ h2,DS)
H
Γ (IM0

⊗ h2,DS) . (3.8)

The maximization of D (h1|h2,DS) gives the maximum DF beamformer at the
first ULA:

h1,mDF1 =
Γ−1
h2,DS

d1,θd

dH
1,θd

Γ−1
h2,DS

d1,θd

. (3.9)

Therefore, our first (global) partial maximum DF (PmDF) beamformer is

hPmDF1 = h1,mDF1 ⊗ h2,DS. (3.10)

We deduce that the WNG and the beampattern are, respectively,

W (hPmDF1) = M0W (h1,mDF1) (3.11)

and

Bθ (hPmDF1) = B1,θ (h1,mDF1)× B2,θ (h2,DS) . (3.12)

Figure 3.1 displays the directivity patterns of the first partial maximum
DF beamformer, hPmDF1, for θd = 0, f = 1 kHz, δ = 1 cm, and different
numbers of sensors M = M2

0 . Figure 3.2 shows plots of the DFs and WNGs
of the first partial maximum DF beamformer as a function of frequency for
θd = 0, δ = 1 cm, and different numbers of sensors. We observe that as the
number of sensors increases, the width of the main beam and the level of side
lobes decrease, while the DF of the first partial maximum DF beamformer
increases. However, using a larger number of sensors increases the WNG of
the first partial maximum DF beamformer only for high frequencies, but
decreases its WNG for low frequencies.

In the second approach, we assume that h1 is fixed, i.e., h1 = h1,DS for
the first ULA. Substituting this filter into (2.44), we get

D (h2|h1,DS) =

∣∣hH
2 d2,θd

∣∣2
hH
2 Γh1,DSh2

, (3.13)

where

Γh1,DS
= (h1,DS ⊗ IM0

)
H
Γ (h1,DS ⊗ IM0

) . (3.14)

The maximization of D (h2|h1,DS) gives the maximum DF beamformer at the
second ULA:

h2,mDF2 =
Γ−1
h1,DS

d2,θd

dH
2,θd

Γ−1
h1,DS

d2,θd

. (3.15)

As a result, our second partial maximum DF beamformer is
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Fig. 3.1 Beampatterns of the first partial maximum DF beamformer, hPmDF1, for θd = 0,
f = 1 kHz, δ = 1 cm, and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3,
(c) M0 = 4, and (d) M0 = 5.
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Fig. 3.2 Performance of the first partial maximum DF beamformer, hPmDF1, as a function
of frequency for θd = 0, δ = 1 cm, and different numbers of sensors M = M2

0 : M0 = 2
(solid line with circles), M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with
squares), and M0 = 5 (dash-dot line with triangles). (a) DF and (b) WNG.
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hPmDF2 = h1,DS ⊗ h2,mDF2. (3.16)

We deduce that the WNG and the beampattern are, respectively,

W (hPmDF2) = M0W (h2,mDF2) (3.17)

and

Bθ (hPmDF2) = B1,θ (h1,DS)× B2,θ (h2,mDF2) . (3.18)

From the two maximum DF beamformers derived above for the two sub-
arrays, we find the third approach:

hPmDF3 = h1,mDF1 ⊗ h2,mDF2. (3.19)

Now, we can maximize separately the two DFs, D1 (h1) and D2 (h2), of
the subarrays. We get

h1,mDF =
Γ−1
1 d1,θd

dH
1,θd

Γ−1
1 d1,θd

, (3.20)

h2,mDF =
Γ−1
2 d2,θd

dH
2,θd

Γ−1
2 d2,θd

. (3.21)

As a result, the partial maximum DF beamformer of the fourth approach is
simply the Kronecker product of the two above filters, i.e.,

hPmDF4 = h1,mDF ⊗ h2,mDF. (3.22)

Figure 3.3 displays the directivity patterns of the fourth partial maximum
DF beamformer, hPmDF4, for θd = 0, f = 1 kHz, δ = 1 cm, and different
numbers of sensors M = M2

0 . Figure 3.4 shows plots of the DFs and WNGs
of the fourth partial maximum DF beamformer as a function of frequency for
θd = 0, δ = 1 cm, and different numbers of sensors. We observe that as the
number of sensors increases, the width of the main beam and the level of side
lobes decrease, while the DF of the fourth partial maximum DF beamformer
increases. However, using a larger number of sensors decreases the WNG of
the fourth partial maximum DF beamformer, especially at low frequencies.
For a given number of sensors, the DF of the fourth partial maximum DF
beamformer is higher than that of the first partial maximum DF beamformer,
but the WNG of the fourth partial maximum DF beamformer is lower than
that of the first partial maximum DF beamformer (compare Figs 3.2 and
3.4).

Two other possibilities are

hPmDF5 = h1,mDF ⊗ h2,DS (3.23)
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Fig. 3.3 Beampatterns of the fourth partial maximum DF beamformer, hPmDF4, for
θd = 0, f = 1 kHz, δ = 1 cm, and different numbers of sensors M = M2
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Fig. 3.4 Performance of the fourth partial maximum DF beamformer, hPmDF4, as a
function of frequency for θd = 0, δ = 1 cm, and different numbers of sensors M = M2

0 :
M0 = 2 (solid line with circles), M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line
with squares), and M0 = 5 (dash-dot line with triangles). (a) DF and (b) WNG.
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and

hPmDF6 = h1,DS ⊗ h2,mDF. (3.24)

3.1.3 Maximum DF

From a theoretical point of view, the maximum DF beamformer is obtained
by maximizing D (h) in (2.31) but this DF cannot be maximized directly.
Therefore, an iterative algorithm is required for this task.

We start by taking

h
(0)
2 = h2,mDF

=
Γ−1
2 d2,θd

dH
2,θd

Γ−1
2 d2,θd

. (3.25)

Substituting h
(0)
2 into (2.43), we get

Γ
h

(0)
2

=
(
IM0

⊗ h
(0)
2

)H

Γ
(
IM0

⊗ h
(0)
2

)
. (3.26)

Now, plugging this expression into the DF in (2.42), we obtain at iteration 1:

D
(
h
(1)
1 |h(0)

2

)
=

∣∣∣∣(h(1)
1

)H

d1,θd

∣∣∣∣2(
h
(1)
1

)H

Γ
h

(0)
2
h
(1)
1

. (3.27)

The maximization of D
(
h
(1)
1 |h(0)

2

)
with respect to h

(1)
1 gives

h
(1)
1 =

Γ−1

h
(0)
2

d1,θd

dH
1,θd

Γ−1

h
(0)
2

d1,θd

. (3.28)

Using h
(1)
1 in (2.45), we get

Γ
h

(1)
1

=
(
h
(1)
1 ⊗ IM0

)H

Γ
(
h
(1)
1 ⊗ IM0

)
. (3.29)

As a result, the DF in (2.44) is
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D
(
h
(1)
2 |h(1)

1

)
=

∣∣∣∣(h(1)
2

)H

d2,θd

∣∣∣∣2(
h
(1)
2

)H

Γ
h

(1)
1
h
(1)
2

, (3.30)

whose maximization with respect to h
(1)
2 gives

h
(1)
2 =

Γ−1

h
(1)
1

d2,θd

dH
2,θd

Γ−1

h
(1)
1

d2,θd

. (3.31)

Continuing the iterations up to the iteration n, we easily get for the first
filter:

h
(n)
1 =

Γ−1

h
(n−1)
2

d1,θd

dH
1,θd

Γ−1

h
(n−1)
2

d1,θd

, (3.32)

with

Γ
h

(n−1)
2

=
(
IM0

⊗ h
(n−1)
2

)H

Γ
(
IM0

⊗ h
(n−1)
2

)
, (3.33)

and for the second filter:

h
(n)
2 =

Γ−1

h
(n)
1

d2,θd

dH
2,θd

Γ−1

h
(n)
1

d2,θd

, (3.34)

with

Γ
h

(n)
1

=
(
h
(n)
1 ⊗ IM0

)H

Γ
(
h
(n)
1 ⊗ IM0

)
. (3.35)

Finally, we deduce that the maximum DF beamformer is at iteration n:

h
(n)
mDF = h

(n)
1 ⊗ h

(n)
2 . (3.36)

Figure 3.5 displays the directivity patterns of the maximum DF beam-

former, h
(n)
mDF, for f = 1 kHz, δ = 1 cm, andM0 = 3, obtained at the iteration

n for several values of n. Figure 3.6 shows plots of the DFs and WNGs of the
maximum DF beamformer as a function of frequency for δ = 1 cm, M0 = 3,
and several values of n. We observe that the DF of the maximum DF beam-
former increases at each iteration, and roughly converges after five iterations,
while the WNG decreases at each iteration. Compared with the partial maxi-
mum DF beamformers, the maximum DF beamformer yields higher DF, but
lower WNG (compare Figs 3.4 and 3.6).
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Fig. 3.5 Beampatterns of the maximum DF beamformer, h
(n)
mDF, for f = 1 kHz, δ = 1 cm,

and M0 = 3, obtained at the iteration n: (a) n = 0, (b) n = 1, (c) n = 2, and (d) n = 5.
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Fig. 3.6 Performance of the maximum DF beamformer, h
(n)
mDF, as a function of frequency

for δ = 1 cm, M0 = 3, and several values of n: n = 0 (solid line with circles), n = 1
(dashed line with asterisks), n = 5 (dotted line with squares), and n = 10 (dash-dot line
with triangles). (a) DF and (b) WNG.

If we want to compromise between the WNG and the DF, we should
optimize the following criteria:



28 3 Beamforming with ULAs

min
h

(n)
1

(
h
(n)
1

)H (
Γ
h

(n−1)
2

+ ε1IM0

)
h
(n)
1 subject to

(
h
(n)
1

)H

d1,θd = 1,

(3.37)

min
h

(n)
2

(
h
(n)
2

)H (
Γ
h

(n)
1

+ ε2IM0

)
h
(n)
2 subject to

(
h
(n)
2

)H

d2,θd = 1,

(3.38)

where ε1, ε2 ≥ 0 are the regularization parameters, and Γ
h

(n−1)
2

and Γ
h

(n)
1

are

defined in (3.33) and (3.35), respectively. We find that the optimal filters are

h
(n)
1,ε1

=

(
Γ
h

(n−1)
2

+ ε1IM0

)−1

d1,θd

dH
1,θd

(
Γ
h

(n−1)
2

+ ε1IM0

)−1

d1,θd

(3.39)

and

h
(n)
2,ε2

=

(
Γ
h

(n)
1

+ ε2IM0

)−1

d2,θd

dH
2,θd

(
Γ
h

(n)
1

+ ε2IM0

)−1

d2,θd

, (3.40)

with the initialization:

h
(0)
2,ε2

=
(Γ2 + ε2IM0

)
−1

d2,θd

dH
2,θd

(Γ2 + ε2IM0
)
−1

d2,θd

. (3.41)

As a result, the robust maximum DF beamformer is at iteration n:

h
(n)
R,ε1,ε2

= h
(n)
1,ε1

⊗ h
(n)
2,ε2

. (3.42)

Figure 3.7 displays the directivity patterns of the robust maximum DF

beamformer at the iteration n = 5, h
(5)
R,ε1,ε2

, for M0 = 3, f = 1 kHz, δ = 1 cm,
and several values of ε1 and ε2. Figure 3.8 shows plots of the DFs and WNGs
of the robust maximum DF beamformer at the iteration n = 5 as a function
of frequency for M0 = 3, δ = 1 cm, and several values of ε1 and ε2. We
observe that for larger values of ε1 and ε2, the WNG increases, but the DF
decreases and the main lobe becomes wider.
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Fig. 3.7 Beampatterns of the robust maximum DF beamformer at the iteration n = 5,

h
(5)
R,ε1,ε2

, for M0 = 3, f = 1 kHz, δ = 1 cm, and several values of ε1 and ε2: (a) ε1 = ε2 =
0.001, (b) ε1 = ε2 = 0.01, (c) ε1 = ε2 = 0.1, and (d) ε1 = ε2 = 1.
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3.1.4 Null Steering

In this subsection, we assume that we have one interference source impinging
on the global array from the direction θ0 �= θd that we would like to com-
pletely cancel, i.e., to steer a null in that direction, and, meanwhile, recover
the desired source coming from the direction θd. There are many ways to do
this. First, remember that a null in the beampattern B1,θ (h1) implies a null
in the global beampattern Bθ (h). In the same way, a null in the beampat-
tern B2,θ (h2) implies a null in the global beampattern Bθ (h). As a result,
the same null in B1,θ (h1) and in B2,θ (h2) implies a null in Bθ (h) of multi-
plicity 2. Then, by including the distortionless constraints, we can write the
constraint equations as

CH
1 h1 = ic, (3.43)

CH
2 h2 = ic, (3.44)

where

C1 =
[
d1,θd d1,θ0

]
, (3.45)

C2 =
[
d2,θd d2,θ0

]
(3.46)

are the constraint matrices of size M0 × 2 whose two columns are linearly
independent and

ic =
[
1 0

]T
(3.47)

is a vector of length 2.
In the first approach, we take the DS beamformer for the second filter, i.e.,

h2 = h2,DS. To find the first filter, we maximize the WNG by taking (3.43)
into account, i.e.,

min
h1

hH
1 h1 subject to CH

1 h1 = ic. (3.48)

From this criterion, we get the minimum-norm (MN) beamformer:

h1,MN = C1

(
CH

1 C1

)−1
ic, (3.49)

which is also the minimum-norm solution of (3.43). Therefore, the first
(global) proposed null-steering (NS) beamformer is

hNS1 = h1,MN ⊗ h2,DS. (3.50)

We deduce that the WNG and the beampattern are, respectively,

W (hNS1) = M0W (h1,MN) (3.51)
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and

Bθ (hNS1) = B1,θ (h1,MN)× B2,θ (h2,DS) . (3.52)

In the second approach, we take the DS beamformer for the first filter,
i.e., h1 = h1,DS. To find the second filter, we maximize the WNG by taking
(3.44) into account. We get

h2,MN = C2

(
CH

2 C2

)−1
ic, (3.53)

which is also the minimum-norm solution of (3.44). Therefore, the second
proposed null-steering beamformer is

hNS2 = h1,DS ⊗ h2,MN. (3.54)

We deduce that the WNG and the beampattern are, respectively,

W (hNS2) = M0W (h2,MN) (3.55)

and

Bθ (hNS2) = B1,θ (h1,DS)× B2,θ (h2,MN) . (3.56)

Finally, in the third and last approach as far as the maximization of the
WNG is concerned, we propose to use the two derived minimum-norm filters,
i.e.,

hNS3 = h1,MN ⊗ h2,MN. (3.57)

The global beampattern is

Bθ (hNS3) = B1,θ (h1,MN)× B2,θ (h2,MN) , (3.58)

which has a null of multiplicity 2 in the direction θ0.
Figure 3.9 displays the directivity patterns of the third null-steering beam-

former, hNS3, for θd = 0, f = 1 kHz, δ = 5 mm, M0 = 3, and several values of
θ0. Figure 3.10 shows plots of the DFs and WNGs of the third null-steering
beamformer as a function of frequency for θd = 0, δ = 5 mm, M0 = 3,
and several values of θ0. We observe that for θd = 0, the WNG of the third
null-steering beamformer increases as θ0 increases from 90◦ to 180◦.

A second class of beamformers is obtained by maximizing the DF instead
of the WNG. Let h2 = h2,DS. To find the first filter, we maximize the DF by
taking (3.43) into account, i.e.,

min
h1

hH
1 Γ1h1 subject to CH

1 h1 = ic. (3.59)

The solution to this problem is
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Fig. 3.9 Beampatterns of the third null-steering beamformer, hNS3, for θd = 0, f = 1 kHz,
δ = 5 mm, M0 = 3, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦, (c) θ0 = 150◦,
and (d) θ0 = 180◦.
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Fig. 3.10 Performance of the third null-steering beamformer, hNS3, as a function of fre-
quency for θd = 0, δ = 5 mm, M0 = 3, and several values of θ0: θ0 = 90◦ (solid line with
circles), θ0 = 120◦ (dashed line with asterisks), θ0 = 150◦ (dotted line with squares), and
θ0 = 180◦ (dash-dot line with triangles). (a) DF and (b) WNG.



3.1 Fixed Beamformers 33

h1,NS4 = Γ−1
1 C1

(
CH

1 Γ−1
1 C1

)−1
ic. (3.60)

Therefore, the fourth approach is

hNS4 = h1,NS4 ⊗ h2,DS. (3.61)

In the fifth approach, we choose h1 = h1,DS and to find the second filter,
we maximize the DF by taking (3.44) into account. We get

h2,NS5 = Γ−1
2 C2

(
CH

2 Γ−1
2 C2

)−1
ic. (3.62)

Therefore, the global null-steering beamformer is

hNS5 = h1,DS ⊗ h2,NS5. (3.63)

In the sixth approach, we combine the two previous ones:

hNS6 = h1,NS4 ⊗ h2,NS5. (3.64)

The DF of hNS6 will be greater than that of hNS4 and hNS5.
Figure 3.11 displays the directivity patterns of the sixth null-steering

beamformer, hNS6, for θd = 0, f = 1 kHz, δ = 5 mm, M0 = 3, and sev-
eral values of θ0. Figure 3.12 shows plots of the DFs and WNGs of the sixth
null-steering beamformer as a function of frequency for θd = 0, δ = 5 mm,
M0 = 3, and several values of θ0. Compared with the third null-steering
beamformer, the sixth null-steering beamformer yields higher DF, but lower
WNG (compare Figs 3.10 and 3.12).

To fully maximize the DF while having a null of multiplicity 2 in the
direction θ0, we need to optimize the following criteria:

min
h

(n)
1

(
h
(n)
1

)H

Γ
h

(n−1)
2

h
(n)
1 subject to CH

1 h
(n)
1 = ic, (3.65)

min
h

(n)
2

(
h
(n)
2

)H

Γ
h

(n)
1

h
(n)
2 subject to CH

2 h
(n)
2 = ic, (3.66)

where Γ
h

(n−1)
2

and Γ
h

(n)
1

are defined in (3.33) and (3.35), respectively. We

easily get

h
(n)
1 = Γ−1

h
(n−1)
2

C1

(
CH

1 Γ−1

h
(n−1)
2

C1

)−1

ic (3.67)

and

h
(n)
2 = Γ−1

h
(n)
1

C2

(
CH

2 Γ−1

h
(n)
1

C2

)−1

ic, (3.68)
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Fig. 3.11 Beampatterns of the sixth null-steering beamformer, hNS6, for θd = 0, f =
1 kHz, δ = 5 mm, M0 = 3, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦,
(c) θ0 = 150◦, and (d) θ0 = 180◦.
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Fig. 3.12 Performance of the sixth null-steering beamformer, hNS6, as a function of fre-
quency for θd = 0, δ = 5 mm, M0 = 3, and several values of θ0: θ0 = 90◦ (solid line with
circles), θ0 = 120◦ (dashed line with asterisks), θ0 = 150◦ (dotted line with squares), and
θ0 = 180◦ (dash-dot line with triangles). (a) DF and (b) WNG.
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with the initialization:

h
(0)
2 = Γ−1

2 C2

(
CH

2 Γ−1
2 C2

)−1
ic. (3.69)

Therefore, the seventh and last proposed null-steering beamformer is at iter-
ation n:

h
(n)
NS7 = h

(n)
1 ⊗ h

(n)
2 . (3.70)

Figure 3.13 displays the directivity patterns of the seventh null-steering

beamformer, h
(n)
NS7, for f = 1 kHz, δ = 5 mm, θd = 0, θ0 = 180◦, and

M0 = 3, obtained at the iteration n for several values of n. Figure 3.14 shows
plots of the DFs and WNGs of the seventh null-steering beamformer as a
function of frequency for δ = 5 mm, θd = 0, θ0 = 180◦, M0 = 3, and several
values of n. We observe that the DF of the seventh null-steering beamformer
increases at each iteration, and roughly converges after two iterations, while
the WNG decreases at each iteration. Compared with the above null-steering
beamformers, the seventh null-steering beamformer yields the highest DF,
but the lowest WNG (compare Figs 3.12 and 3.14).

3.2 Adaptive Beamformers

Before developing some useful adaptive beamformers in our context, we first
present other important performance measures that depend on the second-
order statistics of the signals.

3.2.1 Other Measures

The (narrowband) noise reduction factor quantifies the amount of noise being
rejected by the beamformer. It is defined as

ξn (h) =
φV1

hHΦvh
. (3.71)

The noise reduction factor is expected to be lower bounded by 1; otherwise,
the beamformer amplifies the noise. The higher the value of the noise reduc-
tion factor, the more the noise is rejected. While the output SNR is upper
bounded, the noise reduction factor is not. In the distortionless case, i.e.,
hHdθd = 1, the noise reduction factor coincides with the array gain [defined
in (2.26)].

Since the noise is reduced by the beamforming operation, so is, in general,
the desired signal. This desired signal reduction (or cancellation) implies, in
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Fig. 3.13 Beampatterns of the seventh null-steering beamformer, h
(n)
NS7, for f = 1 kHz,

δ = 5 mm, θd = 0, θ0 = 180◦, and M0 = 3, obtained at the iteration n: (a) n = 0,
(b) n = 1, (c) n = 2, and (d) n = 10.
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Fig. 3.14 Performance of the seventh null-steering beamformer, h
(n)
NS7, as a function of

frequency for δ = 5 mm, θd = 0, θ0 = 180◦, M0 = 3, and several values of n: n = 0 (solid
line with circles), n = 1 (dashed line with asterisks), n = 2 (dotted line with squares), and
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general, distortion. The (narrowband) desired signal reduction factor is

ξd (h) =
φX

hHΦxh
(3.72)

=
1

|hHdθd |2

=
1∣∣hH

1 d1,θd

∣∣2 × 1∣∣hH
2 d2,θd

∣∣2
= ξ1,d (h1)× ξ2,d (h2) .

The closer the value of ξd (h) is to 1, the less distorted is the desired signal.
It is easy to verify that we have the following fundamental relation:

oSNR (h)

iSNR
=

ξn (h)

ξd (h)
, (3.73)

where the output and input SNRs are defined in (2.25) and (2.24), respec-
tively. This expression indicates the equivalence between gain/loss in SNR
and distortion (of both the desired and noise signals).

Another way to measure the distortion of the desired signal due to the
beamforming operation is via the (narrowband) desired signal distortion in-
dex:

υd (h) =
E
(
|Xfd −X|2

)
φX

=
∣∣hHdθd − 1

∣∣2 . (3.74)

The desired signal distortion index is close to 0 if there is no distortion and
expected to be greater than 0 when distortion occurs.

Error criteria play a critical role in deriving optimal beamformers. The
mean-squared error (MSE) [3] is, by far, the most practical one. We define
the error signal between the estimated and desired signals as

E = Z −X (3.75)

= Xfd + Vrn −X

= Ed + En,

where

Ed =
(
hHdθd − 1

)
X (3.76)

is the desired signal distortion due to the beamformer and

En = hHv (3.77)
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represents the residual noise. Since Ed and En are incoherent, the (narrow-
band) MSE can be expressed as

J (h) = E
(
|E|2

)
(3.78)

= E
(
|Ed|2

)
+ E

(
|En|2

)
= Jd (h) + Jn (h)

= φX + hHΦyh− φXhHdθd − φXdH
θd
h,

where

Jd (h) = φX

∣∣hHdθd − 1
∣∣2 (3.79)

= φXυd (h)

and

Jn (h) = hHΦvh (3.80)

=
φV1

ξn (h)
.

We have the following classical relationships:

Jd (h)

Jn (h)
= iSNR× ξn (h)× υd (h) (3.81)

= oSNR (h)× ξd (h)× υd (h) .

3.2.2 Wiener

Because of the structure of h, a closed-form Wiener beamformer cannot ap-
parently be found but an iterative one can be derived. Using (2.40) and (2.41),
we can express the MSE in (3.78) as

J (h1 ⊗ h2) = φX + hH
1 Φy,2h1 − φX,2h

H
1 d1,θd − φ∗

X,2d
H
1,θd

h1 (3.82)

= φX + hH
2 Φy,1h2 − φX,1h

H
2 d2,θd − φ∗

X,1d
H
2,θd

h2, (3.83)

where

Φy,2 = (IM0 ⊗ h2)
H
Φy (IM0 ⊗ h2) , (3.84)

φX,2 = φXhH
2 d2,θd , (3.85)

and
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Φy,1 = (h1 ⊗ IM0
)
H
Φy (h1 ⊗ IM0

) , (3.86)

φX,1 = φXhH
1 d1,θd . (3.87)

It is interesting to notice that the size of the matrices Φy,1 and Φy,2, which is
M0×M0, is much smaller than the size of Φy, which is M2

0 ×M2
0 . As a result,

in practice, much less observations are needed to accurately estimate Φy,1

and Φy,2 than Φy, which is the matrix that is inverted in the conventional
Wiener beamformer.

When h2 is fixed, we write (3.82) as

J (h1|h2) = φX + hH
1 Φy,2h1 − φX,2h

H
1 d1,θd − φ∗

X,2d
H
1,θd

h1, (3.88)

and when h1 is fixed, we write (3.83) as

J (h2|h1) = φX + hH
2 Φy,1h2 − φX,1h

H
2 d2,θd − φ∗

X,1d
H
2,θd

h2. (3.89)

Now, we have everything to derive an iterative algorithm similar to the
one proposed in [4]. At iteration 0, we may take

h
(0)
2 = φXΦ−1

y2
d2,θd , (3.90)

where Φy2 is the covariance matrix of

y2 =
[
Y1 Y2 · · · YM0

]T
, (3.91)

whose elements are the M0 first ones of y. In fact, h
(0)
2 is just the traditional

Wiener beamformer applied to the second ULA. Substituting h
(0)
2 into (3.84)–

(3.85), we get

Φ
(0)
y,2 =

(
IM0

⊗ h
(0)
2

)H

Φy

(
IM0

⊗ h
(0)
2

)
, (3.92)

φ
(0)
X,2 = φX

(
h
(0)
2

)H

d2,θd . (3.93)

Then, substituting these quantities into the MSE in (3.88), we obtain at
iteration 1:

J
(
h
(1)
1 |h(0)

2

)
= φX +

(
h
(1)
1

)H

Φ
(0)
y,2h

(1)
1 − φ

(0)
X,2

(
h
(1)
1

)H

d1,θd

−
(
φ
(0)
X,2

)∗
dH
1,θd

h
(1)
1 . (3.94)

The minimization of J
(
h
(1)
1 |h(0)

2

)
with respect to h

(1)
1 gives

h
(1)
1 = φ

(0)
X,2

(
Φ

(0)
y,2

)−1

d1,θd . (3.95)
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Using h
(1)
1 into (3.86)–(3.87), we obtain

Φ
(1)
y,1 =

(
h
(1)
1 ⊗ IM0

)H

Φy

(
h
(1)
1 ⊗ IM0

)
, (3.96)

φ
(1)
X,1 = φX

(
h
(1)
1

)H

d1,θd . (3.97)

With Φ
(1)
y,1 and φ

(1)
X,1, we can compute the MSE in (3.89) as

J
(
h
(1)
2 |h(1)

1

)
= φX +

(
h
(1)
2

)H

Φ
(1)
y,1h

(1)
2 − φ

(1)
X,1

(
h
(1)
2

)H

d2,θd

−
(
φ
(1)
X,1

)∗
dH
2,θd

h
(1)
2 , (3.98)

whose minimization with respect to h
(1)
2 gives

h
(1)
2 = φ

(1)
X,1

(
Φ

(1)
y,1

)−1

d2,θd . (3.99)

Continuing the iterations up to the iteration n, we easily get the estimate
of the first beamformer:

h
(n)
1 = φ

(n−1)
X,2

(
Φ

(n−1)
y,2

)−1

d1,θd , (3.100)

where

φ
(n−1)
X,2 = φX

(
h
(n−1)
2

)H

d2,θd , (3.101)

Φ
(n−1)
y,2 =

(
IM0

⊗ h
(n−1)
2

)H

Φy

(
IM0

⊗ h
(n−1)
2

)
, (3.102)

and the estimate of the second beamformer:

h
(n)
2 = φ

(n)
X,1

(
Φ

(n)
y,1

)−1

d2,θd , (3.103)

where

φ
(n)
X,1 = φX

(
h
(n)
1

)H

d1,θd , (3.104)

Φ
(n)
y,1 =

(
h
(n)
1 ⊗ IM0

)H

Φy

(
h
(n)
1 ⊗ IM0

)
. (3.105)

Finally, we deduce that the Wiener beamformer is at iteration n:

h
(n)
W = h

(n)
1 ⊗ h

(n)
2 , (3.106)

where h
(n)
1 and h

(n)
2 are defined in (3.100) and (3.103), respectively.
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Example 3.1. Suppose that a desired signal impinges on the ULA from the
direction θd, and that a statistically independent interference impinges on
the ULA from the direction θ0. Assume that the desired signal is a harmonic
pulse of T samples:

x(t) =

{
A sin (ω0t+ φ) , 0 ≤ t ≤ T − 1
0, t < 0, t ≥ T

,

with fixed amplitude A and angular frequency ω0, and random phase φ,
uniformly distributed on the interval from 0 to 2π. Assume that the in-
terference u(t) is white Gaussian noise, i.e., u(t) ∼ N (

0, σ2
u

)
, uncorre-

lated with x(t). In addition, the sensors contain thermal white Gaussian
noise, wm(t) ∼ N (

0, σ2
w

)
, that are mutually uncorrelated. The noisy re-

ceived signals are given by ym(t) = xm(t) + vm(t), m = 1, 2, . . . ,M , where
vm(t) = um(t) + wm(t), m = 1, 2, . . . ,M are the interference-plus-noise sig-
nals. The variance of X(ω) is given by

φX =
A2

4
D2

T [π (ω + ω0)] +
A2

4
D2

T [π (ω − ω0)] ,

where

DT (x) =
sin (Tx)

sin (x)
.

The covariance matrices of x(ω) and v(ω) are given by

Φx = φXdθdd
H
θd
,

Φv = Tσ2
udθ0d

H
θ0 + Tσ2

wIM .

To demonstrate the performance of the Wiener beamformer, we choose
A = 0.5, ω0 = 2πf0, f0 = 3 kH, T = 500, θd = 70◦, θ0 = 30◦, and
σ2
w = 0.01σ2

u. Figure 3.15 displays the directivity patterns of the Wiener

beamformer, h
(n)
W , for iSNR = 0 dB, f = 3 kHz, δ = 1 cm, and M0 = 5,

obtained at the iteration n for several values of n. The directivity patterns
converge after three iterations. The main beam is in the direction of the de-
sired signal, i.e., θd, and there is a null in the direction of the interference,

i.e., θ0. Figure 3.16 shows plots of the gain in SNR, G
(
h
(n)
W

)
, the noise re-

duction factor, ξn

(
h
(n)
W

)
, the desired signal distortion index, υd

(
h
(n)
W

)
, and

the MSE, J
(
h
(n)
W

)
, as a function of the input SNR for f = 3 kHz, δ = 1 cm,

M0 = 5, and several values of n. We observe that the MSE and the desired
signal distortion index obtained by the Wiener beamformer decrease at each
iteration, and roughly converge after three iterations, while the gain in SNR
and the noise reduction factor increase at each iteration. Figure 3.17 displays
the directivity patterns of the Wiener beamformer at the iteration n = 10, for
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Fig. 3.15 Beampatterns of the Wiener beamformer, h
(n)
W , for iSNR = 0 dB, f = 3 kHz,

δ = 1 cm, θd = 70◦, θ0 = 30◦, and M0 = 5, obtained at the iteration n: (a) n = 1,
(b) n = 2, (c) n = 3, and (d) n = 4.

iSNR = 0 dB, f = 3 kHz, δ = 1 cm, and different numbers of sensors, M . As
the number of sensors increases, the width of the main beam decreases, and
the null in the direction of the interference becomes deeper. Figure 3.18 shows

plots of the gain in SNR, G
(
h
(10)
W

)
, the noise reduction factor, ξn

(
h
(10)
W

)
,

the desired signal distortion index, υd

(
h
(10)
W

)
, and the MSE, J

(
h
(10)
W

)
, as a

function of the input SNR for f = 3 kHz, δ = 1 cm, and different numbers
of sensors, M . We observe that as the number of sensors increases, the MSE
and the desired signal distortion index obtained by the Wiener beamformer
decrease while the gain in SNR and the noise reduction factor increase.

3.2.3 Tradeoff

In order to better compromise between noise reduction and desired signal
distortion, we can minimize the desired signal distortion indices with the
constraints that the noise reduction factors are equal to positive values that
are greater than 1, i.e.,
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Fig. 3.16 Performance of the Wiener beamformer, h
(n)
W , as a function of the input SNR

for f = 3 kHz, δ = 1 cm, θd = 70◦, θ0 = 30◦, M0 = 5, and several values of n: n = 1 (solid
line with circles), n = 2 (dashed line with asterisks), n = 3 (dotted line with squares),
and n = 10 (dash-dot line with triangles). (a) Gain in SNR, (b) noise reduction factor,
(c) desired signal distortion index, and (d) MSE.

min
h

(n)
1

Jd

(
h
(n)
1 |h(n−1)

2

)
subject to Jn

(
h
(n)
1 |h(n−1)

2

)
= ℵ1φV1 , (3.107)

min
h

(n)
2

Jd

(
h
(n)
2 |h(n)

1

)
subject to Jn

(
h
(n)
2 |h(n)

1

)
= ℵ2φV1

, (3.108)

where 0 < ℵ1,ℵ2 < 1 to insure that we get some noise reduction,

Jd

(
h
(n)
1 |h(n−1)

2

)
= φX +

(
h
(n)
1

)H

Φ
(n−1)
x,2 h

(n)
1 − φ

(n−1)
X,2

(
h
(n)
1

)H

d1,θd

−
(
φ
(n−1)
X,2

)∗
dH
1,θd

h
(n)
1 , (3.109)

Jn

(
h
(n)
1 |h(n−1)

2

)
=

(
h
(n)
1

)H

Φ
(n−1)
v,2 h

(n)
1 , (3.110)

and
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Fig. 3.17 Beampatterns of the Wiener beamformer at the iteration n = 10, h
(10)
W , for

iSNR = 0 dB, f = 3 kHz, δ = 1 cm, θd = 70◦, θ0 = 30◦, and different numbers of sensors
M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and (d) M0 = 5.

Jd

(
h
(n)
2 |h(n)

1

)
= φX +

(
h
(n)
2

)H

Φ
(n)
x,1h

(n)
2 − φ

(n)
X,1

(
h
(n)
2

)H

d2,θd

−
(
φ
(n)
X,1

)∗
dH
2,θd

h
(n)
2 , (3.111)

Jn

(
h
(n)
2 |h(n)

1

)
=

(
h
(n)
2

)H

Φ
(n)
v,1h

(n)
2 , (3.112)

with
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Fig. 3.18 Performance of the Wiener beamformer at the iteration n = 10, h
(10)
W , as a

function of the input SNR for f = 3 kHz, δ = 1 cm, θd = 70◦, θ0 = 30◦, and different
numbers of sensors M = M2

0 : M0 = 2 (solid line with circles), M0 = 3 (dashed line
with asterisks), M0 = 4 (dotted line with squares), and M0 = 5 (dash-dot line with
triangles). (a) Gain in SNR, (b) noise reduction factor, (c) desired signal distortion index,
and (d) MSE.

Φ
(n−1)
x,2 =

(
IM0

⊗ h
(n−1)
2

)H

Φx

(
IM0

⊗ h
(n−1)
2

)
=

∣∣∣φ(n−1)
X,2

∣∣∣2
φX

d1,θdd
H
1,θd

, (3.113)

Φ
(n−1)
v,2 =

(
IM0

⊗ h
(n−1)
2

)H

Φv

(
IM0

⊗ h
(n−1)
2

)
, (3.114)

Φ
(n)
x,1 =

(
h
(n)
1 ⊗ IM0

)H

Φx

(
h
(n)
1 ⊗ IM0

)
=

∣∣∣φ(n)
X,1

∣∣∣2
φX

d2,θdd
H
2,θd

, (3.115)

Φ
(n)
v,1 =

(
h
(n)
1 ⊗ IM0

)H

Φv

(
h
(n)
1 ⊗ IM0

)
. (3.116)

By using Lagrange multipliers, μ1, μ2 > 0, to adjoin the constraints to the
cost functions, we get
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h
(n)
1,μ1

= φ
(n−1)
X,2

(
Φ

(n−1)
x,2 + μ1Φ

(n−1)
v,2

)−1

d1,θd

=
φ
(n−1)
X,2 φX

(
Φ

(n−1)
v,2

)−1

d1,θd

μ1φX +
∣∣∣φ(n−1)

X,2

∣∣∣2 dH
1,θd

(
Φ

(n−1)
v,2

)−1

d1,θd

(3.117)

and

h
(n)
2,μ2

= φ
(n)
X,1

(
Φ

(n)
x,1 + μ2Φ

(n)
v,1

)−1

d2,θd

=
φ
(n)
X,1φX

(
Φ

(n)
v,1

)−1

d2,θd

μ2φX +
∣∣∣φ(n)

X,1

∣∣∣2 dH
2,θd

(
Φ

(n)
v,1

)−1

d2,θd

, (3.118)

with the initialization:

h
(0)
2,μ2

= φX

(
φXd2,θdd

H
2,θd

+ μ2Φv2

)−1
d2,θd

=
φXΦ−1

v2
d2,θd

μ2 + φXdH
2,θd

Φ−1
v2 d2,θd

, (3.119)

where Φv2 is the covariance matrix of

v2 =
[
V1 V2 · · · VM0

]T
, (3.120)

whose elements are the M0 first ones of v. As a matter of fact, h
(0)
2,μ2

is just
the traditional tradeoff beamformer applied to the second ULA. Therefore,
we find that the tradeoff beamformer is at iteration n:

h
(n)
T,μ1,μ2

= h
(n)
1,μ1

⊗ h
(n)
2,μ2

, (3.121)

where h
(n)
1,μ1

and h
(n)
2,μ2

are defined in (3.117) and (3.118), respectively. We can
see that for

• μ1 = μ2 = 1, we get the Wiener beamformer;
• μ1, μ2 > 1, results in a beamformer with low residual noise at the expense

of high desired signal distortion (as compared to Wiener); and
• μ1, μ2 < 1, results in a beamformer with high residual noise and low desired

signal distortion (as compared to Wiener).

3.2.4 MVDR

The minimum variance distortionless response (MVDR) beamformer pro-
posed by Capon [5], [6] is obtained by minimizing the MSEs of the residual



3.2 Adaptive Beamformers 47

noise subject to the distortionless constraints, i.e.,

min
h

(n)
1

(
h
(n)
1

)H

Φ
(n−1)
v,2 h

(n)
1 subject to

(
h
(n)
1

)H

d1,θd = 1, (3.122)

min
h

(n)
2

(
h
(n)
2

)H

Φ
(n)
v,1h

(n)
2 subject to

(
h
(n)
2

)H

d2,θd = 1, (3.123)

where Φ
(n−1)
v,2 and Φ

(n)
v,1 are defined in (3.114) and (3.116), respectively. From

the optimization of (3.122) and (3.123), we get

h
(n)
1 =

(
Φ

(n−1)
v,2

)−1

d1,θd

dH
1,θd

(
Φ

(n−1)
v,2

)−1

d1,θd

(3.124)

and

h
(n)
2 =

(
Φ

(n)
v,1

)−1

d2,θd

dH
2,θd

(
Φ

(n)
v,1

)−1

d2,θd

, (3.125)

with the initialization:

h
(0)
2 =

Φ−1
v2

d2,θd

dH
2,θd

Φ−1
v2 d2,θd

. (3.126)

As a result, the MVDR beamformer is at iteration n:

h
(n)
MVDR1 = h

(n)
1 ⊗ h

(n)
2 . (3.127)

This beamformer can be directly obtained from h
(n)
T,μ1,μ2

by taking μ1 = μ2 =
0.

Another form of the MVDR beamformer is obtained from

min
h

(n)
1

(
h
(n)
1

)H

Φ
(n−1)
y,2 h

(n)
1 subject to

(
h
(n)
1

)H

d1,θd = 1, (3.128)

min
h

(n)
2

(
h
(n)
2

)H

Φ
(n)
y,1h

(n)
2 subject to

(
h
(n)
2

)H

d2,θd = 1, (3.129)

where Φ
(n−1)
y,2 and Φ

(n)
y,1 are defined in (3.102) and (3.105), respectively. We

get

h
(n)
MVDR2 = h

(n)
1 ⊗ h

(n)
2 , (3.130)

where
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h
(n)
1 =

(
Φ

(n−1)
y,2

)−1

d1,θd

dH
1,θd

(
Φ

(n−1)
y,2

)−1

d1,θd

(3.131)

and

h
(n)
2 =

(
Φ

(n)
y,1

)−1

d2,θd

dH
2,θd

(
Φ

(n)
y,1

)−1

d2,θd

, (3.132)

with the initialization:

h
(0)
2 =

Φ−1
y2

d2,θd

dH
2,θd

Φ−1
y2 d2,θd

. (3.133)

In principle, h
(n)
MVDR1 and h

(n)
MVDR2 are equivalent, but in practice, they may

behave very differently.

3.2.5 LCMV

We assume that we have one interference source impinging on the array from
the direction θ0 �= θd that we would like to cancel without distorting the de-
sired signal. Then, our constraint equations are identical to the ones presented
in (3.43) and (3.44). Depending on what we wish; one null of multiplicity 1 or
one null of multiplicity 2 in the direction θ0, we can derive different linearly
constrained minimum variance (LCMV) beamformers [7], [8].

If one null of multiplicity 2 is desired, we should optimize

min
h

(n)
1

(
h
(n)
1

)H

Φ
(n−1)
v,2 h

(n)
1 subject to CH

1 h
(n)
1 = ic, (3.134)

min
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2
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h
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2

)H

Φ
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v,1h

(n)
2 subject to CH

2 h
(n)
2 = ic. (3.135)
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h
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Φ
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[
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1

(
Φ
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]−1
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(n)
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(
Φ

(n)
v,1
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C2

[
CH

2

(
Φ

(n)
v,1
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]−1

ic, (3.137)
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with the initialization:

h
(0)
2 = Φ−1

v2
C2

(
CH

2 Φ−1
v2

C2

)−1
ic. (3.138)

As a consequence, the first LCMV beamformer is at iteration n:

h
(n)
LCMV1 = h

(n)
1 ⊗ h

(n)
2 . (3.139)

A second LCMV beamformer (with one null of multiplicity 2) is at itera-
tion n:

h
(n)
LCMV2 = h

(n)
1 ⊗ h

(n)
2 , (3.140)

where
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and
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with the initialization:
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2 Φ−1
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)−1
ic. (3.143)

If one null of multiplicity 1 is desired, we can optimize

min
h

(n)
1

(
h
(n)
1

)H

Φ
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v,2 h

(n)
1 subject to dH

1,θd
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1 = 1, (3.144)
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We find that
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and
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ic, (3.147)

with the initialization:
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h
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2 = Φ−1

v2
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2 Φ−1
v2

C2

)−1
ic. (3.148)

Therefore, the third LCMV beamformer, but with one null of multiplicity 1,
is at iteration n:

h
(n)
LCMV3 = h

(n)
1 ⊗ h

(n)
2 . (3.149)

The fourth LCMV beamformer with one null of multiplicity 1 is at itera-
tion n:

h
(n)
LCMV4 = h

(n)
1 ⊗ h

(n)
2 , (3.150)

where
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with the initialization:
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)−1
ic. (3.153)

Another possibility is to optimize

min
h

(n)
1

(
h
(n)
1

)H
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v,2 h
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1 h
(n)
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In this case, we get

h
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, (3.157)

with the initialization:
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h
(0)
2 =

Φ−1
v2

d2,θd

dH
2,θd

Φ−1
v2 d2,θd

. (3.158)

Therefore, the fifth LCMV beamformer, but with one null of multiplicity 1,
is at iteration n:

h
(n)
LCMV5 = h

(n)
1 ⊗ h

(n)
2 . (3.159)

Finally, the last and sixth LCMV beamformer (with one null of multiplicity
1) is at iteration n:

h
(n)
LCMV6 = h

(n)
1 ⊗ h
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2 , (3.160)

where
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and

h
(n)
2 =

(
Φ

(n)
y,1

)−1

d2,θd

dH
2,θd

(
Φ

(n)
y,1

)−1

d2,θd

, (3.162)

with the initialization:
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dH
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Φ−1
y2 d2,θd

. (3.163)

3.2.6 Maximum SNR

In order to maximize the output SNR, it is required to express it differently.
Indeed, from its definition, it is clear that it can be rewritten as

oSNR (h1 ⊗ h2) =
φX

∣∣hH
1 d1,θd

∣∣2 ∣∣hH
2 d2,θd

∣∣2
(h1 ⊗ h2)

H
Φv (h1 ⊗ h2)

=
|φX,2|2

∣∣hH
1 d1,θd

∣∣2
φXhH

1 Φv,2h1
(3.164)

=
|φX,1|2

∣∣hH
2 d2,θd

∣∣2
φXhH

2 Φv,1h2
, (3.165)

where
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|φX,2|2 = φ2
X

∣∣hH
2 d2,θd

∣∣2 , (3.166)

Φv,2 = (IM0 ⊗ h2)
H
Φv (IM0 ⊗ h2) , (3.167)

and

|φX,1|2 = φ2
X

∣∣hH
1 d1,θd

∣∣2 , (3.168)

Φv,1 = (h1 ⊗ IM0)
H
Φv (h1 ⊗ IM0) . (3.169)

When h2 is fixed, we write (3.164) as

oSNR (h1|h2) =
|φX,2|2

∣∣hH
1 d1,θd

∣∣2
φXhH

1 Φv,2h1
, (3.170)

and when h1 is fixed, we write (3.165) as

oSNR (h2|h1) =
|φX,1|2

∣∣hH
2 d2,θd

∣∣2
φXhH

2 Φv,1h2
. (3.171)

As before, we have everything to iteratively maximize the output SNR. At
iteration 0, we may take

h
(0)
2 = α

(0)
2 Φ−1

v2
d2,θd , (3.172)

where α
(0)
2 �= 0 is an arbitrary complex-valued number. Substituting h

(0)
2 into

(3.166)–(3.167), we obtain∣∣∣φ(0)
X,2

∣∣∣2 = φ2
X

∣∣∣dH
2,θd

h
(0)
2

∣∣∣2 , (3.173)

Φ
(0)
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IM0 ⊗ h

(0)
2

)H
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(
IM0 ⊗ h

(0)
2

)
. (3.174)

Using the previous expressions in the output SNR in (3.170), we get at iter-
ation 1:

oSNR
(
h
(1)
1 |h(0)

2

)
=

∣∣∣φ(0)
X,2

∣∣∣2 ∣∣∣dH
1,θd

h
(1)
1
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φX

(
h
(1)
1

)H

Φ
(0)
v,2h

(1)
1

, (3.175)

whose maximization with respect to h
(1)
1 gives

h
(1)
1 = α

(0)
1

(
Φ

(0)
v,2

)−1

d1,θd , (3.176)

where α
(0)
1 �= 0 is an arbitrary complex number. Then, using h

(1)
1 in (3.168)–

(3.169), we obtain
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X,1

∣∣∣2 = φ2
X

∣∣∣dH
1,θd

h
(1)
1

∣∣∣2 , (3.177)

Φ
(1)
v,1 =

(
h
(1)
1 ⊗ IM0

)H

Φv

(
h
(1)
1 ⊗ IM0

)
, (3.178)

which we plug into the output SNR in (3.171). We get

oSNR
(
h
(1)
2 |h(1)

1

)
=

∣∣∣φ(1)
X,1

∣∣∣2 ∣∣∣dH
2,θd

h
(1)
2

∣∣∣2
φX

(
h
(1)
2

)H

Φ
(1)
v,1h

(1)
2

. (3.179)

The maximization of the previous expression with respect to h
(1)
2 leads to

h
(1)
2 = α

(1)
2

(
Φ

(1)
v,1

)−1

d2,θd , (3.180)

where α
(1)
2 �= 0 is an arbitrary complex number.

Continuing the iterations up to the iteration n, we easily get for the first
filter:

h
(n)
1 = α

(n−1)
1

(
Φ

(n−1)
v,2

)−1

d1,θd , (3.181)

where α
(n−1)
1 �= 0 is an arbitrary complex number, with

Φ
(n−1)
v,2 =

(
IM0

⊗ h
(n−1)
2

)H

Φv

(
IM0

⊗ h
(n−1)
2

)
, (3.182)

and for the second filter:

h
(n)
2 = α

(n)
2

(
Φ

(n)
v,1

)−1

d2,θd , (3.183)

where α
(n)
2 �= 0 is an arbitrary complex number, with

Φ
(n)
v,1 =

(
h
(n)
1 ⊗ IM0

)H

Φv

(
h
(n)
1 ⊗ IM0

)
. (3.184)

Finally, we deduce that the maximum SNR beamformer is at iteration n:

h(n)
max = h

(n)
1 ⊗ h

(n)
2 , (3.185)

where h
(n)
1 and h

(n)
2 are defined in (3.181) and (3.183), respectively. There

are different ways to derive the parameters α
(n−1)
1 and α

(n)
2 . For example, if

they are found in such a way that the filters h
(n)
1 and h

(n)
2 are distortionless,

we obtain the MVDR beamformer derived in Subsection 3.2.4.
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3.3 Combined Fixed/Adaptive Beamformers

Perhaps, one of the most interesting aspects of the Kronecker product formu-
lation in beamforming (i.e., h = h1⊗h2) is that, due to its decomposition and
remarkable flexibility, it seems possible to combine very intelligently fixed and
adaptive beamformers, so that the best of each one of these two approaches
is emphasized for performance enhancement. Therefore, we hope that the
global beamformer will fix the shortcomings of each one of these two classes
of beamformers.

For the second ULA with the steering vector d2,θd , the interelement spac-
ing, δ, can be chosen as small as desired, which is obviously good for di-
rectivity (especially at the endfires) and also good for limiting the effect of
spatial aliasing. Therefore, the corresponding beamformer, h2, will be the
fixed beamformer here and, in all this part, it will be taken as

h2 = h2,mDF

=
Γ−1
2 d2,θd

dH
2,θd

Γ−1
2 d2,θd

, (3.186)

which is the maximum DF beamformer at the second ULA. Now, that h2

is fixed, we need to derive, accordingly, the optimal (depending on what
is desired) adaptive beamformer, h1, which corresponds to the first ULA.
Clearly, the global beamformer, h, will inherit the features of the adaptive
and fixed beamformers (h1 and h2, respectively).

Since h2 is fixed and distortionless, we can express the MSE as

J (h1|h2) = φX + hH
1 Φy,2h1 − φXhH

1 d1,θd − φXdH
1,θd

h1, (3.187)

where

Φy,2 = (IM0 ⊗ h2,mDF)
H
Φy (IM0 ⊗ h2,mDF) . (3.188)

The minimization of J (h1|h2) with respect to h1 leads to the Wiener (adap-
tive) beamformer:

h1,W = φXΦ−1
y,2d1,θd (3.189)

=
φXΦ−1

v,2d1,θd

1 + φXdH
1,θd

Φ−1
v,2d1,θd

,

where

Φv,2 = (IM0 ⊗ h2,mDF)
H
Φv (IM0 ⊗ h2,mDF) . (3.190)

As a result, the first proposed global combined fixed/adaptive (cFA) beam-
former is
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hcFA1 = h1,W ⊗ h2,mDF. (3.191)

It is always possible to improve the beamforming performance by adding
one more step to the previous processing, i.e, by maximizing

D (h2|h1,W) =

∣∣hH
2 d2,θd

∣∣2
hH
2 Γh1,W

h2
, (3.192)

where

Γh1,W = (h1,W ⊗ IM0)
H
Γ (h1,W ⊗ IM0) .

We obtain

h
(1)
2,mDF =

Γ−1
h1,W

d2,θd

dH
2,θd

Γ−1
h1,W

d2,θd

. (3.193)

Then, instead of using h2,mDF in (3.191), we can use h
(1)
2,mDF. This leads to

the second global beamformer:

hcFA2 = h1,W ⊗ h
(1)
2,mDF. (3.194)

If we want h1 to be a distortionless adaptive beamformer, we can optimize
the criterion:

min
h1

hH
1 Φv,2h1 subject to hH

1 d1,θd = 1, (3.195)

from which we find the well-known MVDR beamformer:

h1,MVDR =
Φ−1

v,2d1,θd

dH
1,θd

Φ−1
v,2d1,θd

. (3.196)

As a consequence, the third proposed global fixed/adaptive beamformer is

hcFA3 = h1,MVDR ⊗ h2,mDF. (3.197)

In the particular case where the noise is white, h1,MVDR simplifies to the DS
beamformer, i.e., h1,DS. Therefore, hcFA3 = h1,DS ⊗ h2,mDF = hPmDF6 (see
Subsection 3.1.2).

If we want to better compromise between noise reduction and speech dis-
tortion, we should optimize the criterion:

min
h1

Jd (h1|h2) subject to Jn (h1|h2) = ℵ1φV1
, (3.198)

where 0 < ℵ1 < 1 and
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Jd (h1|h2) = φX + φX

∣∣hH
1 d1,θd

∣∣2 − φXhH
1 d1,θd − φXdH

1,θd
h1, (3.199)

Jn (h1|h2) = hH
1 Φv,2h1. (3.200)

We get the tradeoff beamformer:

h1,T,μ1 = φX

(
φXd1,θdd

H
1,θd

+ μ1Φv,2

)−1
d1,θd (3.201)

=
φXΦ−1

v,2d1,θd

μ1 + φXdH
1,θd

Φ−1
v,2d1,θd

,

where μ1 > 0 is a Lagrange multiplier. Therefore, the fourth and last global
fixed/adaptive beamformer that we propose is

hcFA4 = h1,T,μ1 ⊗ h2,mDF. (3.202)

3.4 Differential Beamformers

The family of differential beamformers is an important particular class of fixed
beamformers. Arguably, beamformers belonging to this particular family are
the most practical ones since the corresponding beampatterns are almost
frequency invariant, which is critical when we deal with broadband signals
such as speech, and they lead to the highest gains in diffuse noise. However,
the main drawback of differential beamforming is white noise amplification.
We will see that the flexibility of the new approach allows us to better deal
with this fundamental problem. The most well-known and studied differen-
tial array beampatterns are the cardioid, the dipole, the hypercardioid, and
the supercardioid. In the following, we show how they are designed in this
particular context.

3.4.1 Preliminaries and Other Measures

In order that differential beamforming takes place, the following two assump-
tions are usually made [9], [10], [11], [12].

(i) The sensor spacing, δ, is much smaller than the acoustic wavelength,
implying that δ � 2πc/ω. This assumption is required so that the true
acoustic pressure differentials can be approximated by finite differences of
the sensors’ outputs.

(ii) The desired source signal propagates from the angle θd = 0 (endfire
direction). Therefore, (2.6) becomes

y = d0X + v, (3.203)
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and, at the endfire, the value of the beamformer beampattern should al-
ways be equal to 1.

Thanks to Assumption (i) frequency-invariant beamforming may be possible
and thanks to Assumption (ii) any desired beampattern can be designed; in
other directions (than the endfires 0 and π), the beampattern design is very
limited because of the symmetry of the steering vector.

Since the interelement spacing of the second ULA is much smaller than
the interelement spacing of the first ULA, the filter h2 will be used to design
and shape the directivity pattern while h1 will be used to mostly maximize
the WNG. Consequently, with h2, we will design an (M0 − 1)th-order differ-
ential beamformer. Then, the global ULA will be a differential array of order
certainly higher than M0 − 1.

We recall that the definitions of the WNG and the DF are, respectively,

W (h) =

∣∣hHd0

∣∣2
hHh

(3.204)

=

∣∣hH
1 d1,0

∣∣2
hH
1 h1

×
∣∣hH

2 d2,0

∣∣2
hH
2 h2

and

D (h) =
|B0 (h)|2

1

2

∫ π

0

|Bθ (h)|2 sin θdθ
(3.205)

=
|B1,0 (h1)|2 |B2,0 (h2)|2

1

2

∫ π

0

|B1,θ (h1)|2 |B2,θ (h2)|2 sin θdθ

=

∣∣hHd0

∣∣2
hHΓh

.

Another measure of interest in this study is the front-to-back ratio (FBR),
which is defined as the ratio of the power of the output of the array to signals
propagating from the front-half plane to the output power for signals arriving
from the rear-half plane [13]. This ratio, for the spherically isotropic (diffuse)
noise field, is mathematically defined as [13]
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F (h) =

∫ π/2

0

|Bθ (h)|2 sin θdθ∫ π

π/2

|Bθ (h)|2 sin θdθ
(3.206)

=

∫ π/2

0

|B1,θ (h1)|2 |B2,θ (h2)|2 sin θdθ∫ π

π/2

|B1,θ (h1)|2 |B2,θ (h2)|2 sin θdθ

=
hHΓfh

hHΓbh
,

where

Γf =

∫ π/2

0

dθd
H
θ sin θdθ, (3.207)

Γb =

∫ π

π/2

dθd
H
θ sin θdθ. (3.208)

It can be verified that the elements of the M ×M matrices Γf (ω) and Γb (ω)
are given, respectively, by

[Γf (ω)]ij =
ejω(j−i)δ/c − 1

jω(j − i)δ/c
(3.209)

and

[Γb (ω)]ij =
1− e−jω(j−i)δ/c

jω(j − i)δ/c
, (3.210)

with [Γf (ω)]mm = [Γb (ω)]mm = 1, m = 1, 2, . . . ,M . Same as the DF, the
FBR cannot be factorized, i.e.,

F (h) �= F1 (h1)×F2 (h2) , (3.211)

where
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F1 (h1) =

∫ π/2

0

|B1,θ (h1)|2 sin θdθ∫ π

π/2

|B1,θ (h1)|2 sin θdθ
(3.212)

=
hH
1 Γf,1h1

hH
1 Γb,1h1

,

F2 (h2) =

∫ π/2

0

|B2,θ (h2)|2 sin θdθ∫ π

π/2

|B2,θ (h2)|2 sin θdθ
(3.213)

=
hH
2 Γf,2h2

hH
2 Γb,2h2

,

with

Γf,1 =

∫ π/2

0

d1,θd
H
1,θ sin θdθ, (3.214)

Γb,1 =

∫ π

π/2

d1,θd
H
1,θ sin θdθ, (3.215)

Γf,2 =

∫ π/2

0

d2,θd
H
2,θ sin θdθ, (3.216)

Γb,2 =

∫ π

π/2

d2,θd
H
2,θ sin θdθ. (3.217)

The elements of theM0×M0 matrices Γf,1 (ω), Γb,1 (ω), Γf,2 (ω), and Γb,2 (ω)
are given, respectively, by

[Γf,1 (ω)]ij =
ejω(j−i)M0δ/c − 1

jω(j − i)M0δ/c
, (3.218)

[Γb,1 (ω)]ij =
1− e−jω(j−i)M0δ/c

jω(j − i)M0δ/c
, (3.219)

[Γf,2 (ω)]ij =
ejω(j−i)δ/c − 1

jω(j − i)δ/c
, (3.220)

and

[Γb,2 (ω)]ij =
1− e−jω(j−i)δ/c

jω(j − i)δ/c
, (3.221)
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with [Γf,1 (ω)]mm = [Γb,1 (ω)]mm = [Γf,2 (ω)]mm = [Γb,2 (ω)]mm = 1, m =
1, 2, . . . ,M0.

When h2 is fixed and given, and thanks to (2.41), we can write the FBR
as

F (h1|h2) =
hH
1 Γf,h2

h1

hH
1 Γb,h2

h1
, (3.222)

where

Γf,h2 =

∫ π/2

0

d1,θd
H
1,θ |B2,θ (h2)|2 sin θdθ (3.223)

= (IM0
⊗ h2)

H
Γf (IM0

⊗ h2) ,

Γb,h2
=

∫ π

π/2

d1,θd
H
1,θ |B2,θ (h2)|2 sin θdθ (3.224)

= (IM0
⊗ h2)

H
Γb (IM0

⊗ h2) .

In the same way, when h1 is fixed and given, and thanks to (2.40), we can
write the FBR as

F (h2|h1) =
hH
2 Γf,h1

h2

hH
2 Γb,h1h2

, (3.225)

where

Γf,h1
=

∫ π/2

0

d2,θd
H
2,θ |B1,θ (h1)|2 sin θdθ (3.226)

= (h1 ⊗ IM0
)
H
Γf (h1 ⊗ IM0

) ,

Γb,h1 =

∫ π

π/2

d2,θd
H
2,θ |B1,θ (h1)|2 sin θdθ (3.227)

= (h1 ⊗ IM0
)
H
Γb (h1 ⊗ IM0

) .

3.4.2 Cardioid

The (M0−1)th-order cardioid has a unique null of multiplicity M0−1 in the
direction π. Therefore, the ith derivative, with i = 0, 1, . . . ,M0 − 2, of the
beampattern of h2 with respect to cos θ is equal to 0 at cosπ = −1, i.e.,

diB2,θ (h2)

d cosi θ

∣∣∣∣
cos θ=−1

= B[i]
2,π (h2) = 0, (3.228)

with
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B[0]
2,π (h2) = B2,π (h2) .

We easily find that

B[i]
2,π (h2) = (jωδ/c)

i (
Σid2,π

)H
h2, (3.229)

where

Σ = diag (0, 1, . . . ,M0 − 1) (3.230)

is a diagonal matrix of size M0×M0. Combining the distortionless constraint,
i.e.,

B2,0 (h2) = dH
2,0h2 = 1, (3.231)

with the M0 − 1 equations from (3.228), we obtain a linear system of M0

equations with M0 unknowns:

DH
2,πh2 = i, (3.232)

where

DH
2,π =

⎡⎢⎢⎢⎢⎢⎢⎣

dH
2,0(

Σ0d2,π

)H(
Σ1d2,π

)H
...(

ΣM0−2d2,π

)H

⎤⎥⎥⎥⎥⎥⎥⎦ (3.233)

and i is the first column of IM0
. Therefore, the cardioid of order M0 − 1 at

the second ULA is

h2,C = D−H
2,π i. (3.234)

For the first filter, we take the DS beamformer, i.e.,

h1,DS =
d1,0

M0
, (3.235)

which maximizes the WNG. As a result, the robust global cardioid of order,
at least, M0 − 1 is

hC = h1,DS ⊗ h2,C. (3.236)

Figure 3.19 displays the directivity patterns of the robust global cardioid,
hC, for f = 1 kHz, δ = 1 cm, and different numbers of sensors M . Figure 3.20
shows plots of the DFs and WNGs of the robust global cardioid, hC, as a
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Fig. 3.19 Beampatterns of the robust global cardioid, hC, for f = 1 kHz, δ = 1 cm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.
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Fig. 3.20 Performance of the robust global cardioid, hC, as a function of frequency for
δ = 1 cm, and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF and (b) WNG.
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function of frequency. We observe that the DF increases as we increase the
numbers of sensors, but the WNG decreases at low frequencies.

To get an even more robust beamformer, we may optimize

min
h2

hH
2

(
D′

2,πD
′H
2,π + ε2IM0

)
h2 subject to CH

2,πh2 = ic, (3.237)

where

D′
2,π =

[
Σ1d2,π Σ2d2,π · · · ΣM0−2d2,π

]
(3.238)

is a matrix of size M0× (M0−2), ε2 > 0 is the regularization parameter, and

CH
2,π =

[
dH
2,0

dH
2,π

]
(3.239)

is the constraint matrix of size 2×M0. We see that with C2,π, the two main
constraints are fulfilled, i.e., the distortionless one and a null in the direction
π. We find that the optimal filter is

h2,C,ε2 =
(
D′

2,πD
′H
2,π + ε2IM0

)−1
C2,π

×
[
CH

2,π

(
D′

2,πD
′H
2,π + ε2IM0

)−1
C2,π

]−1

ic. (3.240)

Therefore, the more robust global cardioid is

hC,ε2 = h1,DS ⊗ h2,C,ε2 . (3.241)

Figure 3.21 displays the directivity patterns of the robust global cardioid,
hC,ε2 , for f = 1 kHz, δ = 1 cm, M0 = 4, and several values of ε2. Figure 3.22
shows plots of the DFs and WNGs of the robust global cardioid, hC,ε2 , as a
function of frequency. We observe that the WNG increases as we increase ε2,
but the DF decreases.

3.4.3 Dipole

The design of the global dipole is a bit different from the design of the global
cardioid as explained below.

The dipole of order M0 − 1 has also a unique null of multiplicity M0 − 1
but in the direction π/2. Since we have a null with maximum multiplicity, the
ith (i = 0, 1, . . . ,M0− 2) derivative of the beampattern of h2 with respect to
cos θ is equal to 0 at cos(π/2) = 0, i.e.,

diB2,θ (h2)

d cosi θ

∣∣∣∣
cos θ=0

= B[i]
2,π/2 (h2) = 0, (3.242)
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Fig. 3.21 Beampatterns of the robust global cardioid, hC,ε2 , for f = 1 kHz, δ = 1 cm,
M0 = 4, and several values of ε2: (a) ε2 = 0.001, (b) ε2 = 0.01, (c) ε2 = 0.1, and (d) ε2 = 1.
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with

B[0]
2,π/2 (h2) = B2,π/2 (h2) .

We get

B[i]
2,π/2 (h2) = (jωδ/c)

i (
Σid2,π/2

)H
h2, (3.243)

where Σ is defined in (3.230). Combining the distortionless constraint with
the M0 − 1 constraints from (3.242), we have

DH
2,π/2h2 = i, (3.244)

where

DH
2,π/2 =

⎡⎢⎢⎢⎢⎢⎢⎣

dH
2,0(

Σ0d2,π/2

)H(
Σ1d2,π/2

)H
...(

ΣM0−2d2,π/2

)H

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.245)

As a result, the dipole of order M0 − 1 at the second ULA is

h2,D = D−H
2,π/2i. (3.246)

Another feature of the dipole is that it has a 1 in the direction π. To ensure
that the global beampattern has also a 1 at π, we must add this constraint
in the design of the first filter. We deduce that the constraint equation for
h1 is

CH
1,πh1 =

[
1
1

]
, (3.247)

where

CH
1,π =

[
dH
1,0

dH
1,π

]
(3.248)

is the constraint matrix of size 2×M0. Since we want to maximize the WNG
of h1 subject to (3.247), we find the minimum-norm beamformer:

h1,MN = C1,π

(
CH

1,πC1,π

)−1
[
1
1

]
. (3.249)

Now, that the two filters are derived, we deduce that the robust global
dipole of order, at least, M0 − 1 is
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Fig. 3.23 Beampatterns of the robust global dipole, hD, for f = 1 kHz, δ = 1 cm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.

hD = h1,MN ⊗ h2,D. (3.250)

Figure 3.23 displays the directivity patterns of the robust global dipole, hD,
for f = 1 kHz, δ = 1 cm, and different numbers of sensors M . Figure 3.24
shows plots of the DFs and WNGs of the robust global dipole, hD, as a
function of frequency. We observe that the DF generally increases as we
increase the numbers of sensors, but the WNG decreases.

As we did for the cardioid, we can derive a more robust global dipole:

hD,ε2 = h1,MN ⊗ h2,D,ε2 , (3.251)

where
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Fig. 3.24 Performance of the robust global dipole, hD, as a function of frequency for
δ = 1 cm and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF and (b) WNG.

h2,D,ε2 =
(
D′

2,π/2D
′H
2,π/2 + ε2IM0

)−1

C2,π/2

×
[
CH

2,π/2

(
D′

2,π/2D
′H
2,π/2 + ε2IM0

)−1

C2,π/2

]−1

ic, (3.252)

with

D′
2,π/2 =

[
Σ1d2,π/2 Σ2d2,π/2 · · · ΣM0−2d2,π/2

]
(3.253)

and

CH
2,π/2 =

[
dH
2,0

dH
2,π/2

]
. (3.254)

Figure 3.25 displays the directivity patterns of the robust global dipole,
hD,ε2 , for f = 1 kHz, δ = 1 cm, M0 = 4, and several values of ε2. Figure 3.26
shows plots of the DFs and WNGs of the robust global dipole, hD,ε2 , as a
function of frequency. We observe that the WNG increases as we increase ε2.

3.4.4 Hypercardioid

The hypercardioid is usually obtained from the maximization of the DF.
For the first filter, h1, we take the DS beamformer, i.e., h1 = h1,DS, so

that its WNG is maximized. By definition, the DF of h2 is

D (h2) =

∣∣hH
2 d2,0

∣∣2
hH
2 Γ2h2

. (3.255)
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Fig. 3.25 Beampatterns of the robust global dipole, hD,ε2 , for f = 1 kHz, δ = 1 cm,
M0 = 4, and several values of ε2: (a) ε2 = 0.001, (b) ε2 = 0.01, (c) ε2 = 0.1, and
(d) ε2 = 1.
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Fig. 3.26 Performance of the robust global dipole, hD,ε2 , as a function of frequency for
δ = 1 cm, M0 = 4, and several values of ε2: ε2 = 0.001 (solid line with circles), ε2 = 0.01
(dashed line with asterisks), ε2 = 0.1 (dotted line with squares), and ε2 = 1 (dash-dot line
with triangles). (a) DF and (b) WNG.
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Fig. 3.27 Beampatterns of the robust global hypercardioid, hH, for f = 1 kHz, δ = 5 mm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.

The maximization of D (h2) gives the hypercardioid of order M0 − 1 at the
second ULA:

h2,H =
Γ−1
2 d2,0

dH
2,0Γ

−1
2 d2,0

. (3.256)

As a result, the robust global hypercardioid of order, at least, M0 − 1 is

hH = h1,DS ⊗ h2,H. (3.257)

Figure 3.27 displays the directivity patterns of the robust global hyper-
cardioid, hH, for f = 1 kHz, δ = 5 mm, and different numbers of sensors M .
Figure 3.28 shows plots of the DFs and WNGs of the robust global hyper-
cardioid, hH, as a function of frequency. We observe that the DF generally
increases as we increase the numbers of sensors, but the WNG decreases.
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Fig. 3.28 Performance of the robust global hypercardioid, hH, as a function of frequency
for δ = 5 mm and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF and (b) WNG.

To make this beamformer even more robust, we can use the following
instead

hH,ε2 = h1,DS ⊗ h2,H,ε2 , (3.258)

where

h2,H,ε2 =
(Γ2 + ε2IM0)

−1
d2,0

dH
2,0 (Γ2 + ε2IM0)

−1
d2,0

, (3.259)

with ε2 ≥ 0 being the regularization parameter.
Other possibilities can be borrowed from Subsection 3.1.2 by taking θd = 0.
Figure 3.29 displays the directivity patterns of the robust global dipole,

hD,ε2 , for f = 1 kHz, δ = 1 cm, M0 = 4, and several values of ε2. Figure 3.30
shows plots of the DFs and WNGs of the robust global dipole, hD,ε2 , as a
function of frequency. We observe that the WNG increases as we increase ε2,
but the DF decreases.

3.4.5 Supercardioid

As we should expect, different versions of the supercardioid can be derived.
In the first version, we choose the DS beamformer for the first filter, i.e.,

h1 = h1,DS. By definition, the FBR of h2 is given in (3.213) and we want to
maximize this quantity. Let t2 be the eigenvector corresponding to the max-
imum eigenvalue of the matrix Γ−1

b,2Γf,2. It is clear that the filter h2 = αt2,
where α �= 0 is an arbitrary complex number, maximizes this FBR. Taking
the distortionless constraint into account, we deduce that the supercardioid
of order M0 − 1 at the second ULA is
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Fig. 3.29 Beampatterns of the robust global hypercardioid, hH,ε2 , for f = 1 kHz, δ =
5 mm, M0 = 4, and several values of ε2: (a) ε2 = 10−5, (b) ε2 = 10−4, (c) ε2 = 10−3, and
(d) ε2 = 10−2.
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Fig. 3.30 Performance of the robust global hypercardioid, hH,ε2 , as a function of fre-
quency for δ = 5 mm, M0 = 4, and several values of ε2: ε2 = 10−5 (solid line with
circles), ε2 = 10−4 (dashed line with asterisks), ε2 = 10−3 (dotted line with squares), and
ε2 = 10−2 (dash-dot line with triangles). (a) DF and (b) WNG.
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Fig. 3.31 Beampatterns of the robust global supercardioid, hS1, for f = 1 kHz, δ = 5 mm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.

h2,S =
t2

dH
2,0t2

. (3.260)

Therefore, the robust global supercardioid of order, at least, M0 − 1 is

hS1 = h1,DS ⊗ h2,S. (3.261)

Figure 3.31 displays the directivity patterns of the robust global supercar-
dioid, hS1, for f = 1 kHz, δ = 5 mm, and different numbers of sensors M .
Figure 3.32 shows plots of the DFs, WNGs, and FBRs of the robust global
supercardioid, hS1, as a function of frequency. We observe that the DF and
FBR increase as we increase the number of sensors, but the WNG decreases.

To have a robust version of the supercardioid, h2,S, we need now to consider

the matrix (Γb,2 + ε2IM0)
−1

Γf,2. By taking the eigenvector corresponding to
the maximum eigenvalue of this matrix that we denote t2,ε2 , we find that the
robust supercardioid at the second ULA is
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Fig. 3.32 Performance of the robust global supercardioid, hS1, as a function of frequency
for δ = 5 mm and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF, (b) WNG, and (c) FBR.

h2,S,ε2 =
t2,ε2

dH
2,0t2,ε2

. (3.262)

Then, the more robust global supercardioid is

hS1,ε2 = h1,DS ⊗ h2,S,ε2 . (3.263)

Figure 3.33 displays the directivity patterns of the robust global supercar-
dioid, hS1,ε2 , for f = 1 kHz, δ = 5 mm, M0 = 4, and several values of ε2.
Figure 3.34 shows plots of the DFs, WNGs, and FBRs of the robust global
supercardioid, hS1,ε2 , as a function of frequency. We observe that the WNG
increases as we increase ε2, but the DF and FBR decrease.

Assume that h1 = h1,DS. Substituting this filter into (3.225), we get

F (h2|h1,DS) =
hH
2 Γf,h1,DS

h2

hH
2 Γb,h1,DS

h2
, (3.264)

where
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Fig. 3.33 Beampatterns of the robust global supercardioid, hS1,ε2 , for f = 1 kHz, δ =
5 mm, M0 = 4, and several values of ε2: (a) ε2 = 10−5, (b) ε2 = 10−4, (c) ε2 = 10−3, and
(d) ε2 = 10−2.

Γf,h1,DS
= (h1,DS ⊗ IM0

)
H
Γf (h1,DS ⊗ IM0

) , (3.265)

Γb,h1,DS
= (h1,DS ⊗ IM0

)
H
Γb (h1,DS ⊗ IM0

) . (3.266)

Let t2,h1,DS
be the eigenvector associated with the maximum eigenvalue of

Γ−1
b,h1,DS

Γf,h1,DS . Then, it is clear that another supercardioid at the second
ULA is

h2,S2 =
t2,h1,DS

dH
2,0t2,h1,DS

. (3.267)

Therefore, another version of the robust global supercardioid is

hS2 = h1,DS ⊗ h2,S2. (3.268)

If we don’t care much about white noise amplification, we can derive other
supercardioid beamformers that give higher values of the FBR than the one



3.4 Differential Beamformers 75

0 2 4 6 8
4

5

6

7

8

9

10

11

12

0 2 4 6 8
−25

−20

−15

−10

−5

0

5

10

0 2 4 6 8
0

10

20

30

40

50

f (kHz) f (kHz)

f (kHz)

(a) (b)

(c)

D
( h

S
1
,ε

2

) (d
B

)

W
( h

S
1
,ε

2

) (d
B

)

F
( h

S
1
,ε

2

) (d
B

)

Fig. 3.34 Performance of the robust global supercardioid, hS1,ε2 , as a function of fre-
quency for δ = 5 mm, M0 = 4, and several values of ε2: ε2 = 10−5 (solid line with
circles), ε2 = 10−4 (dashed line with asterisks), ε2 = 10−3 (dotted line with squares), and
ε2 = 10−2 (dash-dot line with triangles). (a) DF, (b) WNG, and (c) FBR.

with hS1 or hS2. For example, we can maximize separately the two FBRs,
F1 (h1) and F2 (h2), of the subarrays. We get

h1,S =
t1

dH
1,0t1

, (3.269)

h2,S =
t2

dH
2,0t2

, (3.270)

where t1 and t2 are the eigenvectors corresponding to the maximum eigen-
values of the matrices Γ−1

b,1Γf,1 and Γ−1
b,2Γf,2, respectively. As a consequence,

another global supercardioid is

hS3 = h1,S ⊗ h2,S. (3.271)

Figure 3.35 displays the directivity patterns of the robust global supercar-
dioid, hS3, for f = 1 kHz, δ = 5 mm, and different numbers of sensors M .
Figure 3.36 shows plots of the DFs, WNGs, and FBRs of the robust global
supercardioid, hS3, as a function of frequency. We observe that the FBR and
DF of hS3 are larger than those of hS1, but the WNG of hS3 is lower than
that of hS1 (compare Figs 3.32 and 3.36). As we increase the number of sen-
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Fig. 3.35 Beampatterns of the robust global supercardioid, hS3, for f = 1 kHz, δ = 5 mm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.

sors, the DF and FBR of the robust global supercardioid increase for the
mid-range frequencies, but the WNG decreases.

Now, if we want to fully maximize the FBR in (3.206), we need to derive
an iterative algorithm.

At iteration 0, we may take

h
(0)
2 = h2,S

=
t2

dH
2,0t2

. (3.272)

Substituting h
(0)
2 into (3.223) and (3.224), we get
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Fig. 3.36 Performance of the robust global supercardioid, hS3, as a function of frequency
for δ = 5 mm and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF, (b) WNG, and (c) FBR.

Γ
f,h

(0)
2

=
(
IM0

⊗ h
(0)
2

)H

Γf

(
IM0

⊗ h
(0)
2

)
, (3.273)

Γ
b,h

(0)
2

=
(
IM0 ⊗ h

(0)
2

)H

Γb

(
IM0 ⊗ h

(0)
2

)
. (3.274)

Now, plugging these expressions into the FBR in (3.222), we obtain at iter-
ation 1:

F
(
h
(1)
1 |h(0)

2

)
=

(
h
(1)
1

)H

Γ
f,h

(0)
2
h
(1)
1(

h
(1)
1

)H

Γ
b,h

(0)
2
h
(1)
1

. (3.275)

The maximization of F
(
h
(1)
1 |h(0)

2

)
with respect of h

(1)
1 leads to

h
(1)
1 =

t
(0)
1

dH
1,0t

(0)
1

, (3.276)
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where t
(0)
1 is the eigenvector corresponding to the maximum eigenvalue of the

matrix Γ−1

b,h
(0)
2

Γ
f,h

(0)
2
. Using h

(1)
1 in (3.226) and (3.227), we get

Γ
f,h

(1)
1

=
(
h
(1)
1 ⊗ IM0

)H

Γf

(
h
(1)
1 ⊗ IM0

)
, (3.277)

Γ
b,h

(1)
1

=
(
h
(1)
1 ⊗ IM0

)H

Γb

(
h
(1)
1 ⊗ IM0

)
. (3.278)

As a result, the FBR in (3.225) is

F
(
h
(1)
2 |h(1)

1

)
=

(
h
(1)
2

)H

Γ
f,h

(1)
1
h
(1)
2(

h
(1)
2

)H

Γ
b,h

(1)
1
h
(1)
2

, (3.279)

whose maximization with respect to h
(1)
2 gives

h
(1)
2 =

t
(1)
2

dH
2,0t

(1)
2

, (3.280)

where t
(1)
2 is the eigenvector corresponding to the maximum eigenvalue of the

matrix Γ−1

b,h
(1)
1

Γ
f,h

(1)
1
.

Continuing to iterate up to iteration n, we easily get for the first filter:

h
(n)
1 =

t
(n−1)
1

dH
1,0t

(n−1)
1

, (3.281)

where t
(n−1)
1 is the eigenvector corresponding to the maximum eigenvalue of

the matrix Γ−1

b,h
(n−1)
2

Γ
f,h

(n−1)
2

, with

Γ
f,h

(n−1)
2

=
(
IM0

⊗ h
(n−1)
2

)H

Γf

(
IM0

⊗ h
(n−1)
2

)
, (3.282)

Γ
b,h

(n−1)
2

=
(
IM0

⊗ h
(n−1)
2

)H

Γb

(
IM0

⊗ h
(n−1)
2

)
, (3.283)

and for the second filter:

h
(n)
2 =

t
(n)
2

dH
2,0t

(n)
2

, (3.284)

where t
(n)
2 is the eigenvector corresponding to the maximum eigenvalue of

the matrix Γ−1

b,h
(n)
1

Γ
f,h

(n)
1

, with
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Fig. 3.37 Beampatterns of the supercardioid beamformer, h
(n)
S , for M0 = 2, f = 1 kHz,

and δ = 5 mm, obtained at the iteration n: (a) n = 0, (b) n = 1, (c) n = 2, and (d) n = 5.

Γ
f,h

(n)
1

=
(
h
(n)
1 ⊗ IM0

)H

Γf

(
h
(n)
1 ⊗ IM0

)
, (3.285)

Γ
b,h

(n)
1

=
(
h
(n)
1 ⊗ IM0

)H

Γb

(
h
(n)
1 ⊗ IM0

)
. (3.286)

Finally, we deduce that the supercardioid beamformer is at iteration n:

h
(n)
S = h

(n)
1 ⊗ h

(n)
2 . (3.287)

Figure 3.37 displays the directivity patterns of the supercardioid beam-

former, h
(n)
S , for M0 = 2, f = 1 kHz, and δ = 5 mm, obtained at the iter-

ation n for several values of n. Figure 3.38 shows plots of the DFs, WNGs,

and FBRs of the supercardioid beamformer, h
(n)
S , as a function of frequency.

The iteration n = 0 corresponds to the robust global supercardioid, hS3. We

observe that the FBR and DF of the supercardioid beamformer, h
(n)
S , are

larger than those of hS3 and hS1, but the WNGs of h
(n)
S and hS3 are lower
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Fig. 3.38 Performance of the supercardioid beamformer, h
(n)
S , as a function of frequency

for M0 = 2, δ = 5 mm, and several values of n: n = 0 (solid line with circles), n = 1
(dashed line with asterisks), n = 3 (dotted line with squares), and n = 10 (dash-dot line
with triangles). (a) DF, (b) WNG, and (c) FBR.

than that of hS1 (compare Figs 3.38, 3.36 and 3.32). Furthermore, the DF

and FBR of the supercardioid beamformer, h
(n)
S , increase at each iteration,

and roughly converge after three iterations, while the WNG remains almost
the same at each iteration.
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