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Abstract

The focus of this book is on array processing and beamforming with Kro-
necker products. We consider a large family of sensor arrays that enable the
decomposition of the steering vector as a Kronecker product of two steering
vectors of smaller virtual arrays. Instead of directly designing a global beam-
former for the original array, we break it down following the decomposition
of the steering vector, and design smaller virtual beamformers separately op-
timized for each virtual array. This implies smaller matrices to invert, which
increases the robustness of the beamformers, and less observations to esti-
mate the statistics when necessary. We explain how to perform beamforming
with Kronecker product filters differently from the well-known and studied
conventional approach. We show how to derive fixed, adaptive, and differen-
tial beamformers with remarkable flexibility thanks to the Kronecker product
formulation. Furthermore, fixed and adaptive beamformers can be combined
very intelligently, so that the best of each one of these two approaches is
emphasized for performance enhancement. We also address the problem of
spatiotemporal signal enhancement, and explain how to perform Kronecker
product filtering in this context.
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Chapter 1

Introduction

In this chapter, we explain what is beamforming, how it works, and introduce
beamforming with Kronecker products. Then, we present the organization of
this work.

1.1 Beamforming

Beamforming or spatial filtering is an active and central research area of array
signal processing [1, 2, 3, 4, 5]. Beamforming algorithms fall into two major
categories depending on whether the noise or signal statistics are considered
in forming the beamforming filters, i.e., fixed and adaptive beamforming. A
fixed beamformer is a spatial filter that has the ability to form a main beam
in the direction of the desired signal and, possibly, place nulls in the directions
of interferences without the knowledge of the data picked up by the array or
the statistics of the desired and noise signals. Accordingly, the coefficients of
this filter are fixed and do not depend on the changes of the wave propagation
environment in which the array performs. Adaptive beamforming algorithms
consider using either the noise statistics or the statistics of the array observa-
tion data to optimize the beamforming filters. The performance of adaptive
beamforming can be “more” optimal than its fixed counterpart as long as the
signal statistics are correctly estimated.

Consider an array of M sensors and assume that a desired signal impinges
on this array from the angle θd, as illustrated in Fig. 1.1. Then, the observa-
tion signal vector (of length M) is

y (ω) =
[
Y1 (ω) Y2 (ω) · · · YM (ω)

]T
= dθd (ω)X (ω) + v (ω) , (1.1)

1© Springer Nature Switzerland AG 2019
J. Benesty et al., Array Processing, Springer Topics in Signal
Processing 18, https://doi.org/10.1007/978-3-030-15600-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15600-8_1&domain=pdf
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1

2

M

Y1(ω)Y2(ω)YM (ω)

θd

X(ω)

Z(ω)
Beamformer

h(ω)

Noise
field

Fig. 1.1 Illustration of an array of M sensors and a beamformer applied to the observation
signals.

where ω is the angular frequency, Ym (ω) is the mth sensor signal, X (ω) is
the desired source signal, dθd (ω) is the steering vector at θ = θd, and v (ω)
is the additive noise signal vector defined similarly to y (ω).

The conventional way of doing beamforming is by applying a complex-
valued linear filter, h (ω), of length M to the observation signal vector, y (ω)
[6, 7]. This gives the output:

Z (ω) = hH (ω)y (ω) , (1.2)

where Z (ω) is the estimate of the desired signal,X (ω). The process of finding
the appropriate filter, h (ω), based on some given performance criteria is
called beamforming.

One of the most useful performance criteria is the beampattern, which
describes the sensitivity of the beamformer to a plane wave impinging on the
array from the direction θ. Mathematically, it is defined as

Bθ [h (ω)] = dH
θ (ω)h (ω) . (1.3)

A convenient way to evaluate the sensitivity of the array to some of its im-
perfections, such as sensor noise, is via the so-called white noise gain (WNG),
which is given by

W [h (ω)] =

∣∣hH (ω)dθd (ω)
∣∣2

hH (ω)h (ω)
. (1.4)
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Another important measure, which quantifies how the sensor array performs
in the presence of reverberation is the directivity factor (DF), defined as (for
linear arrays) [4]

D [h (ω)] =
|Bθd [h (ω)]|2

1

2

∫ π

0

|Bθ [h (ω)]|2 sin θdθ
(1.5)

=

∣∣hH (ω)dθd (ω)
∣∣2

hH (ω)Γ (ω)h (ω)
,

where

Γ (ω) =
1

2

∫ π

0

dθ (ω)d
H
θ (ω) sin θdθ. (1.6)

With the conventional beamforming approach,M coefficients of h (ω) need
to be estimated. Here, we are interested in arrays of M = M1M2 sensors
that enable to decompose the steering vector as a Kronecker product of two
steering vectors of smaller virtual arrays [8, 9, 10]. That is, the steering vector
(of length M) is decomposed as

dθ (ω) = d1,θ (ω)⊗ d2,θ (ω) , (1.7)

where ⊗ is the Kronecker product, d1,θ (ω) is the steering vector (of length
M1) corresponding to a virtual array of M1 sensors, and d2,θ (ω) is the steer-
ing vector (of length M2) corresponding to another virtual array of M2 sen-
sors.

Figure 1.2 shows examples of Kronecker product decompositions of a uni-
form linear array (ULA) of 12 sensors with an interelement spacing equal to δ
into two smaller virtual ULAs with different numbers of sensors and different
interelement spacings. Note that (1.7) is satisfied whenever the global array
can be obtained from replications of one virtual array to the sensor positions
of the other virtual array. Figure 1.3 shows examples of Kronecker product
decompositions of a nonuniform linear array (NULA) of 12 sensors into two
smaller virtual ULAs. Figure 1.4 shows examples of Kronecker product de-
compositions of a two-dimensional rectangular array (RA) of 24 sensors into
ULAs and RAs with different numbers of sensors and different interelement
spacings.

In the proposed approach, instead of directly designing the filter h (ω) of
lengthM , we break it down following the decomposition of the global steering
vector as

h (ω) = h1 (ω)⊗ h2 (ω) , (1.8)

where h1 (ω) and h2 (ω) are two complex-valued linear filters of length M1

and M2, respectively. With this method, we only need to estimate M1 +M2
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1 2 3 4 5 6 7 8 9 10 11 12

1 2 3

1 2 3 4

1 2 3 4

1 2 3

1 2

1 2 3 4 5 6

δ

4δ

δ

3δ

δ

6δ

δ

(a)

(b)

(c)

(d)

Fig. 1.2 Examples of Kronecker product decompositions of a ULA into two smaller virtual
ULAs: (a) a ULA of 12 sensors with an interelement spacing equal to δ; (b) one virtual
ULA of 3 sensors with an interelement spacing equal to 4δ, and another virtual ULA of 4
sensors with an interelement spacing equal to δ; (c) one virtual ULA of 4 sensors with an
interelement spacing equal to 3δ, and another virtual ULA of 3 sensors with an interelement
spacing equal to δ; and (d) one virtual ULA of 2 sensors with an interelement spacing equal
to 6δ, and another virtual ULA of 6 sensors with an interelement spacing equal to δ.

coefficients [M1 for h1 (ω) and M2 for h2 (ω)] instead of M = M1M2 for the
conventional technique. This implies smaller matrices to invert (increasing
robustness) and less observations to estimate the statistics when necessary.

There are many ways to optimize the coefficients of h1 (ω) and h2 (ω) de-
pending on what we want and the application at hand. We introduce fixed
and adaptive Kronecker product beamformers, and show how to derive such
beamformers, as well as new approaches through the design of h1 (ω) and
h2 (ω). We also show how to combine very intelligently fixed and adaptive
beamformers, so that the best of each one of these two approaches is empha-
sized for performance enhancement.

The decomposition (1.8) enables to perform beamforming differently from
the well-known and studied conventional approach. In our context, the global
beampattern can be expressed as the product of two beamformer beampat-
terns:

Bθ [h (ω)] = B1,θ [h1 (ω)]× B2,θ [h2 (ω)] , (1.9)

where

B1,θ [h1 (ω)] = dH
1,θ (ω)h1 (ω) (1.10)
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1 2 3 4 5 6 7 8 9 10 11 12

1 2 3

1 2 3 4

1 2 3 4 5 6

1 2 3

1 2

4δ

3δ

2δ

3δ

(a)

(b)

Fig. 1.3 Examples of Kronecker product decompositions of a NULA into two smaller
virtual ULAs: (a) a nonuniform linear array of 12 sensors, one virtual ULA of 3 sensors
with an interelement spacing equal to 4δ, and another virtual ULA of 4 sensors with an
interelement spacing equal to 3δ; and (b) a nonuniform linear array of 6 sensors, one virtual
ULA of 3 sensors with an interelement spacing equal to 2δ, and another virtual ULA of 2
sensors with an interelement spacing equal to 3δ.

is the beampattern of the first virtual array, and

B2,θ [h2 (ω)] = dH
2,θ (ω)h2 (ω) (1.11)

is the beampattern of the second virtual array. Also, the WNG of the global
array can be expressed as the product of the WNGs of the first and second
virtual arrays, while the DF of the global array cannot be factorized as the
product of the DFs of the two virtual ULAs, i.e.,

W [h (ω)] = W1 [h1 (ω)]×W2 [h2 (ω)] , (1.12)

D [h (ω)] �= D1 [h1 (ω)]×D2 [h2 (ω)] . (1.13)

These interesting properties can be exploited in the design of very flexible
global beamformers.

1.2 Organization of the Work

The material in this book is organized into seven chapters, including this one.
In Chapter 2, we formulate the problem of Kronecker product beamform-

ing with ULAs. We define some important performance measures in this
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δx δx

2δx 2δx

δx δx

δ y δ y

2
δ y

δ y δ y
3
δ y

(a) (b)

(c) (d)

Fig. 1.4 Examples of Kronecker product decompositions of an RA into two smaller virtual
arrays: (a) an RA of 24 sensors with an interelement spacing equal to δx along the x axis
and an interelement spacing equal to δy along the y axis; (b) one virtual ULA of 6 sensors
with an interelement spacing equal to δy and another virtual ULA of 4 sensors with an
interelement spacing equal to δx; (c) one virtual RA of 2× 3 sensors with an interelement
spacing equal to 2δx along the x axis and an interelement spacing equal to 2δy along the
y axis, and another virtual RA of 2 × 2 sensors with an interelement spacing equal to δx
along the x axis and an interelement spacing equal to δy along the y axis; and (d) one
virtual RA of 2× 2 sensors with an interelement spacing equal to 2δx along the x axis and
an interelement spacing equal to 3δy along the y axis, and another virtual RA of 2 × 3
sensors with an interelement spacing equal to δx along the x axis and an interelement
spacing equal to δy along the y axis.

context, and explain how to perform beamforming with Kronecker product
filters differently from the well-known and studied conventional approach.

In Chapter 3, we show how to derive fixed, adaptive, and differential beam-
formers with remarkable flexibility thanks to the Kronecker product formula-
tion. We also introduce new beamforming approaches that combine fixed and
adaptive beamformers, so that the best of each one of these two approaches
is emphasized for performance enhancement.
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In Chapter 4, we generalize the Kronecker product beamforming with other
decompositions of the steering vector associated with ULAs. We show how to
design important differential beamformers, in a very elegant way, thanks to
the Kronecker product decompositions of the steering vector and the proposed
filtering approach.

The focus of Chapter 5 is on NULAs. We show how from two virtual
ULAs we can construct a physical NULA whose associated steering vector
is the Kronecker product of the steering vectors associated with the virtual
arrays. Then, we explain how Kronecker product beamforming is performed
and derive some interesting optimal beamformers.

Chapter 6 continues the investigation of Kronecker product beamforming,
but with two-dimensional arrays. Conventional two-dimensional beamform-
ing methods suffer from the need to invert very ill-conditioned large matri-
ces, which necessarily lead to serious estimation problems in the presence of
uncertainties. We show how to avoid this problem with Kronecker product
beamforming, and how to extend some of the results obtained in previous
chapters to two-dimensional arrays such as the rectangular ones.

Finally, in Chapter 7, we address the problem of spatiotemporal signal
enhancement with any array geometry. We show how the Kronecker product
appears naturally in the definition of the signal vector by taking into account
the interframe correlation. We derive spatiotemporal Kronecker product fil-
ters, and explain how to perform noise reduction with the most well-known
performance measures.
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Chapter 2

Problem Formulation with Uniform
Linear Arrays

In this chapter, we describe ULAs and define the associated steering vector.
In one very particular case, we explain how this vector can be decomposed
as a Kronecker product of two steering vectors of smaller ULAs with the
same number of elements. Thanks to this decomposition, we explain how to
perform beamforming with Kronecker product filters. Then, we derive some
very important and useful performance measures in this context that will be
of great help to design and evaluate all kind of beamformers.

2.1 Signal Model

We consider a ULA consisting of M = M2
0 omnidirectional microphones,

where M0 ≥ 2, with an interelement spacing equal to δ. Typical and practical
values of M are 4, 9, 16, and even 25. We will refer to this array as the global
or whole ULA. Now, assume that a farfield desired source signal (plane wave)
propagates from the azimuth angle, θ, in an anechoic acoustic environment
at the speed of sound, i.e., c = 340 m/s, and impinges on the above described
microphone array (see Fig. 2.1). Then, the corresponding steering vector (of
length M) is [1], [2]

dθ (ω) =
[
1 e−j�(θ) e−j2�(θ) · · · e−j(M−1)�(θ)

]T
, (2.1)

where the superscript T is the transpose operator, j is the imaginary unit,

�(θ) =
ωδ cos θ

c
, (2.2)

ω = 2πf is the angular frequency, and f > 0 is the temporal frequency. Since
cos θ is an even function so is dθ (ω). Therefore, the study with linear arrays
is limited to angles θ ∈ [0, π].

9© Springer Nature Switzerland AG 2019
J. Benesty et al., Array Processing, Springer Topics in Signal
Processing 18, https://doi.org/10.1007/978-3-030-15600-8_2
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Fig. 2.1 A uniform linear array with M sensors.

The very interesting Vandermonde structure of the vector dθ (ω) can be
exploited. Indeed, it is easy to see that this steering vector can be decomposed
as

dθ (ω) = d1,θ (ω)⊗ d2,θ (ω) , (2.3)

where ⊗ is the Kronecker product,

d1,θ (ω) =
[
1 e−jM0�(θ) e−j2M0�(θ) · · · e−jM0(M0−1)�(θ)

]T
(2.4)

is the steering vector (of length M0) corresponding to a ULA of M0 sensors
with an interelement spacing equal to M0δ, and

d2,θ (ω) =
[
1 e−j�(θ) e−j2�(θ) · · · e−j(M0−1)�(θ)

]T
(2.5)

is the steering vector (of length M0) corresponding also to a ULA of M0

sensors but with an interelement spacing equal to δ. In fact, the components
of d2,θ (ω) are identical to the first M0 elements of dθ (ω). We will refer
to these two arrays as the first and second ULAs or the subarrays. In the
design of beamformers or beampatterns, it is important to keep in mind that
the second ULA is much less sensitive to spatial aliasing than the first one
since δ � M0δ. To summarize, we can state that, whenM = M2

0 , the steering
vector (of lengthM2

0 ) associated with the global ULA is simply the Kronecker
product of the steering vectors (of length M0) associated with the first and
second ULAs.

Assume that the desired signal propagates from the angle θd. Then, the
observation signal vector (of length M) is [3], [4]
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y (ω) =
[
Y1 (ω) Y2 (ω) · · · YM (ω)

]T
= x (ω) + v (ω)

= dθd (ω)X (ω) + v (ω) , (2.6)

where Ym (ω) is the mth microphone signal, x (ω) = dθd (ω)X (ω), X (ω)
is the zero-mean desired source signal, dθd (ω) = d1,θd (ω) ⊗ d2,θd (ω) is the
steering vector at θ = θd (direction of the desired source), v (ω) is the zero-
mean additive noise signal vector defined similarly to y (ω), and X (ω) and
v (ω) are uncorrelated. In the rest, in order to simplify the notation, we drop
the dependence on the angular frequency, ω. So, for example, (2.6) is written
as y = dθdX + v. We deduce that the covariance matrix of y is

Φy = E
(
yyH

)
(2.7)

= Φx +Φv,

where E(·) denotes mathematical expectation, the superscript H is the
conjugate-transpose operator,

Φx = φXdθdd
H
θd

(2.8)

= φX (d1,θd ⊗ d2,θd) (d1,θd ⊗ d2,θd)
H

= φX

(
d1,θdd

H
1,θd

)⊗ (d2,θdd
H
2,θd

)
is the covariance matrix of x, with φX = E

(
|X|2

)
being the variance of X,

and Φv = E
(
vvH

)
is the covariance matrix of v. Assuming that the first

sensor is the reference, we can express (2.7) as

Φy = φXdθdd
H
θd

+ φV1
Γv, (2.9)

where φV1 = E
(
|V1|2

)
is the variance of the noise at the reference sensor

and Γv = Φv/φV1 is the pseudo-coherence matrix of the noise. In the case of
the spherically isotropic (diffuse) noise field, which will be assumed in fixed
beamforming, (2.9) becomes

Φy = φXdθdd
H
θd

+ φΓ, (2.10)

where φ is the variance of the diffuse noise and

Γ =
1

2

∫ π

0

dθd
H
θ sin θdθ. (2.11)

It can be verified that the elements of the M ×M matrix Γ (ω) are



12 2 Problem Formulation with ULAs

[Γ (ω)]ij =
sin [ω(j − i)δ/c]

ω(j − i)δ/c
(2.12)

= sinc [ω(j − i)δ/c] ,

with [Γ (ω)]mm = 1, m = 1, 2, . . . ,M .
One of our main objectives in this study is to take advantage of the global

ULA steering vector structure in the particular case of M = M2
0 to perform

beamforming differently from the well-known and studied conventional ap-
proach. It will be demonstrated that the new technique is extremely flexible.

2.2 Beamforming with Kronecker Product Filters

The conventional way of doing beamforming is by applying a complex-valued
linear filter, hC, of length M to the observation signal vector, y. This pro-
cessing is [4]

ZC = hH
C y, (2.13)

where ZC is the estimate of the desired signal, X. While this approach is
optimal as far as linear filtering is concerned, it lacks flexibility and M2

0

coefficients of hC need to be estimated.
In order to fully exploit the structure of the global steering vector, let us

consider the M × 1 complex-valued filters having the form:

h = h1 ⊗ h2, (2.14)

where h1 and h2 are two complex-valued linear filters of length M0. In other
words, the global beamformer, h, follows the decomposition of the global
steering vector, dθ. In the proposed approach, beamforming is performed by
applying h [as defined in (2.14)] to y [from (2.6)]. We get

Z = hHy (2.15)

= hHdθdX + hHv

= Xfd + Vrn,

where Z is the estimate of the desired signal, X,

Xfd = (h1 ⊗ h2)
H
(d1,θd ⊗ d2,θd)X

=
(
hH
1 d1,θd

) (
hH
2 d2,θd

)
X (2.16)

is the filtered desired signal, and

Vrn = (h1 ⊗ h2)
H
v (2.17)
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is the residual noise. We deduce that the variance of Z is

φZ = φX

∣∣hH
1 d1,θd

∣∣2 ∣∣hH
2 d2,θd

∣∣2 + φV1 (h1 ⊗ h2)
H
Γv (h1 ⊗ h2) . (2.18)

We see that with this method, we only need to estimate 2M0 coefficients (M0

for h1 and M0 for h2) instead of M2
0 for the conventional technique. This

implies smaller matrices to invert (increasing robustness) and less observa-
tions to estimate the statistics when necessary. Notice that this way of doing
beamforming may not be completely new. A similar approach was proposed
in [5] but in the context of MIMO radar applications and in a rather very
limited way.

In our context, the distortionless constraint in the direction of the desired
source, i.e., θ = θd, is often required, i.e.,

hHdθd =
(
hH
1 d1,θd

) (
hH
2 d2,θd

)
= 1. (2.19)

Therefore, we will often (if not always) choose hH
1 d1,θd = hH

2 d2,θd = 1, so
that (2.19) is satisfied.

2.3 Performance Measures

We are going to define some important performance measures by using Kro-
necker product filters. It will be shown how flexibility appears thanks to this
decomposition.

The first useful measure discussed in this section is the beampattern or
directivity pattern, which describes the sensitivity of the beamformer to a
plane wave (source signal) impinging on the global ULA from the direction θ.
Mathematically, it is defined as

Bθ (h) = dH
θ h (2.20)

=
(
dH
1,θh1

) (
dH
2,θh2

)
= B1,θ (h1)× B2,θ (h2) ,

where

B1,θ (h1) = dH
1,θh1

=

M0∑
m=1

H1,mej(m−1)M0�(θ) (2.21)

is the beampattern of the first ULA, with H1,m, m = 1, 2, . . . ,M0 being the
coefficients of h1, and
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B2,θ (h2) = dH
2,θh2

=

M0∑
m=1

H2,mej(m−1)�(θ) (2.22)

is the beampattern of the second ULA, with H2,m, m = 1, 2, . . . ,M0 being
the coefficients of h2. Let Z1 = ejM0�(θ) and Z2 = ej�(θ), we can express the
global beampattern as a polynomial in two variables, which is the product of
two polynomials (of degree M0 − 1) in one variable each, i.e.,

B (Z1,Z2) = B1 (Z1)× B2 (Z2) (2.23)

=

(
M0∑

m1=1

H1,m1
Zm1−1

1

)(
M0∑

m2=1

H2,m2
Zm2−1

2

)
.

From this perspective, we can see that this beampattern has at most 2(M0−1)
distinct nulls (between 0 and π), while the beampattern with the conventional
approach has at most M2

0 − 1 distinct nulls (between 0 and π). The fact
that the global beampattern, Bθ (h), can be expressed as the product of two
beamformer beampatterns is an interesting property that can be exploited in
the design of very flexible global beamformers.

Given that the first sensor is the reference, we can define the input signal-
to-noise ratio (SNR) with respect to this reference as

iSNR =
φX

φV1

. (2.24)

The output SNR is defined [from the variance of Z, see (2.18)] as

oSNR (h) = φX

∣∣hHdθd

∣∣2
hHΦvh

(2.25)

=
φX

φV1

×
∣∣hHdθd

∣∣2
hHΓvh

.

The definition of the gain in SNR is obtained from the previous definitions,
i.e.,

G (h) =
oSNR (h)

iSNR
(2.26)

=

∣∣hHdθd

∣∣2
hHΓvh

.

One convenient way to evaluate the sensitivity of the global ULA to some
of its imperfections is via the so-called white noise gain (WNG), which is
defined by taking Γv = IM in (2.26), where IM is the M × M identity
matrix, i.e.,
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W (h) =

∣∣hHdθd

∣∣2
hHh

(2.27)

=

∣∣hH
1 d1,θd

∣∣2
hH
1 h1

×
∣∣hH

2 d2,θd

∣∣2
hH
2 h2

= W1 (h1)×W2 (h2) ,

where

W1 (h1) =

∣∣hH
1 d1,θd

∣∣2
hH
1 h1

(2.28)

and

W2 (h2) =

∣∣hH
2 d2,θd

∣∣2
hH
2 h2

. (2.29)

Obviously, the WNG of the global ULA is simply the product of the WNGs
of the first and second ULAs described in Section 2.1. It is easy to check that

W (h) ≤ M, ∀h. (2.30)

Another important measure, which quantifies how the microphone array
performs in the presence of spatial acoustic noise and reverberation is the
directivity factor (DF). Considering the spherically isotropic (diffuse) noise
field, the DF is defined as [6]

D (h) =
|Bθd (h)|2

1

2

∫ π

0

|Bθ (h)|2 sin θdθ
(2.31)

=
|B1,θd (h1)|2 |B2,θd (h2)|2

1

2

∫ π

0

|B1,θ (h1)|2 |B2,θ (h2)|2 sin θdθ

=

∣∣hHdθd

∣∣2
hHΓh

,

where Γ is defined in (2.11). It is clear that

D (h) ≤ dH
θd
Γ−1dθd , ∀h. (2.32)

We observe that contrary to the beampattern and the WNG, the DF of the
global ULA cannot be factorized, i.e.,

D (h) �= D1 (h1)×D2 (h2) , (2.33)

where
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D1 (h1) =
|B1,θd (h1)|2

1

2

∫ π

0

|B1,θ (h1)|2 sin θdθ
(2.34)

=

∣∣hH
1 d1,θd

∣∣2
hH
1 Γ1h1

,

D2 (h2) =
|B2,θd (h2)|2

1

2

∫ π

0

|B2,θ (h2)|2 sin θdθ
(2.35)

=

∣∣hH
2 d2,θd

∣∣2
hH
2 Γ2h2

,

with

Γ1 =
1

2

∫ π

0

d1,θd
H
1,θ sin θdθ, (2.36)

Γ2 =
1

2

∫ π

0

d2,θd
H
2,θ sin θdθ. (2.37)

The elements of the M0 ×M0 matrices Γ1 (ω) and Γ2 (ω) are given, respec-
tively, by

[Γ1 (ω)]ij = sinc [ω(j − i)M0δ/c] (2.38)

and

[Γ2 (ω)]ij = sinc [ω(j − i)δ/c] , (2.39)

with [Γ1 (ω)]mm = [Γ2 (ω)]mm = 1, m = 1, 2, . . . ,M0. In fact, one can verify
that Γ �= Γ1 ⊗ Γ2, that is why (2.33) is true in general.

One can check that

h1 ⊗ h2 = (h1 ⊗ IM0)h2 (2.40)

= (IM0 ⊗ h2)h1, (2.41)

where IM0 is theM0×M0 identity matrix. Basically, the previous expressions,
which separate h2 and h1 into matrix-vector products, will often be very
helpful and convenient to use in the derivation of beamformers.

When h2 is fixed, given, and satisfies the distortionless constraint, i.e.,
hH
2 d2,θd = 1; then, thanks to (2.41), we can write the DF as
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D (h1|h2) =
|B1,θd (h1)|2
hH
1 Γh2

h1
(2.42)

=

∣∣hH
1 d1,θd

∣∣2
hH
1 Γh2

h1
,

where

Γh2
=

1

2

∫ π

0

d1,θd
H
1,θ |B2,θ (h2)|2 sin θdθ (2.43)

= (IM0
⊗ h2)

H
Γ (IM0

⊗ h2) .

In the same way, when h1 is fixed, given, and satisfies the distortionless
constraint, i.e., hH

1 d1,θd = 1; then, thanks to (2.40), we can express the DF
as

D (h2|h1) =
|B2,θd (h2)|2
hH
2 Γh1

h2
(2.44)

=

∣∣hH
2 d2,θd

∣∣2
hH
2 Γh1h2

,

where

Γh1 =
1

2

∫ π

0

d2,θd
H
2,θ |B1,θ (h1)|2 sin θdθ (2.45)

= (h1 ⊗ IM0)
H
Γ (h1 ⊗ IM0) .
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Chapter 3

Beamforming with Uniform Linear
Arrays

Any good microphone array system requires a reliable beamforming algo-
rithm at the outputs of the sensors to enhance a desired signal coming from
a known direction. There are many ways to optimize the coefficients of this
beamformer depending on what we want and the application at hand. Funda-
mentally, there are three large classes of conventional beamformers; they are
the fixed, adaptive, and differential beamformers. In this chapter, we show
how to derive most of their counterparts as well as new approaches with
Kronecker product filters. We also show how to combine fixed and adaptive
beamforming. While most of these beamformers are rather easy to derive, for
some it is necessary to use iterative algorithms. The focus is on ULAs and
with the decomposition of the steering vector of Chapter 2.

3.1 Fixed Beamformers

In this first section, we derive many examples of fixed beamformers thanks to
the Kronecker product decomposition. We start with the most obvious one.

3.1.1 Delay and Sum

The most well-known and popular fixed beamformer is the so-called delay and
sum (DS), which is derived by maximizing the WNG. Given the structure
of the WNG of h, it is clear that the maximization of this gain is equiv-
alent to maximizing W1 (h1) and W2 (h2) separately. Taking into account
the distortionless constraints, we easily get the DS beamformers at the two
subarrays:

19© Springer Nature Switzerland AG 2019
J. Benesty et al., Array Processing, Springer Topics in Signal
Processing 18, https://doi.org/10.1007/978-3-030-15600-8_3
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h1,DS =
d1,θd

M0
, (3.1)

h2,DS =
d2,θd

M0
. (3.2)

As a consequence, the DS beamformer corresponding to the global ULA is

hDS = h1,DS ⊗ h2,DS

=
d1,θd ⊗ d2,θd

M2
0

=
dθd

M2
0

, (3.3)

which is, of course, the classical DS beamformer [1], [2]. Here, however, it is
shown how the structure of the global steering vector is exploited. In other
words, the DS beamformer is determined by 2M0 different coefficients only
when M = M2

0 .
It is obvious that

W (hDS) = M2
0 = M (3.4)

and the beampattern of the DS beamformer is

Bθ (hDS) = B1,θ (h1,DS)× B2,θ (h2,DS)

=
1

M2
0

(
dH
1,θd1,θd

) (
dH
2,θd2,θd

)
. (3.5)

Finally, the DF of hDS is

D (hDS) =
M4

0

dH
θd
Γdθd

. (3.6)

3.1.2 Partial Maximum DF

There are different fixed beamformers for which the DF is only maximized
in part. We review some possibilities.

In the first approach, we assume that h2 is fixed. We may take h2 = h2,DS

for the second ULA. Substituting this filter into (2.42), we get

D (h1|h2,DS) =

∣∣hH
1 d1,θd

∣∣2
hH
1 Γh2,DSh1

, (3.7)

where
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Γh2,DS
= (IM0

⊗ h2,DS)
H
Γ (IM0

⊗ h2,DS) . (3.8)

The maximization of D (h1|h2,DS) gives the maximum DF beamformer at the
first ULA:

h1,mDF1 =
Γ−1
h2,DS

d1,θd

dH
1,θd

Γ−1
h2,DS

d1,θd

. (3.9)

Therefore, our first (global) partial maximum DF (PmDF) beamformer is

hPmDF1 = h1,mDF1 ⊗ h2,DS. (3.10)

We deduce that the WNG and the beampattern are, respectively,

W (hPmDF1) = M0W (h1,mDF1) (3.11)

and

Bθ (hPmDF1) = B1,θ (h1,mDF1)× B2,θ (h2,DS) . (3.12)

Figure 3.1 displays the directivity patterns of the first partial maximum
DF beamformer, hPmDF1, for θd = 0, f = 1 kHz, δ = 1 cm, and different
numbers of sensors M = M2

0 . Figure 3.2 shows plots of the DFs and WNGs
of the first partial maximum DF beamformer as a function of frequency for
θd = 0, δ = 1 cm, and different numbers of sensors. We observe that as the
number of sensors increases, the width of the main beam and the level of side
lobes decrease, while the DF of the first partial maximum DF beamformer
increases. However, using a larger number of sensors increases the WNG of
the first partial maximum DF beamformer only for high frequencies, but
decreases its WNG for low frequencies.

In the second approach, we assume that h1 is fixed, i.e., h1 = h1,DS for
the first ULA. Substituting this filter into (2.44), we get

D (h2|h1,DS) =

∣∣hH
2 d2,θd

∣∣2
hH
2 Γh1,DSh2

, (3.13)

where

Γh1,DS
= (h1,DS ⊗ IM0

)
H
Γ (h1,DS ⊗ IM0

) . (3.14)

The maximization of D (h2|h1,DS) gives the maximum DF beamformer at the
second ULA:

h2,mDF2 =
Γ−1
h1,DS

d2,θd

dH
2,θd

Γ−1
h1,DS

d2,θd

. (3.15)

As a result, our second partial maximum DF beamformer is
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Fig. 3.1 Beampatterns of the first partial maximum DF beamformer, hPmDF1, for θd = 0,
f = 1 kHz, δ = 1 cm, and different numbers of sensors M = M2
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Fig. 3.2 Performance of the first partial maximum DF beamformer, hPmDF1, as a function
of frequency for θd = 0, δ = 1 cm, and different numbers of sensors M = M2
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squares), and M0 = 5 (dash-dot line with triangles). (a) DF and (b) WNG.



3.1 Fixed Beamformers 23

hPmDF2 = h1,DS ⊗ h2,mDF2. (3.16)

We deduce that the WNG and the beampattern are, respectively,

W (hPmDF2) = M0W (h2,mDF2) (3.17)

and

Bθ (hPmDF2) = B1,θ (h1,DS)× B2,θ (h2,mDF2) . (3.18)

From the two maximum DF beamformers derived above for the two sub-
arrays, we find the third approach:

hPmDF3 = h1,mDF1 ⊗ h2,mDF2. (3.19)

Now, we can maximize separately the two DFs, D1 (h1) and D2 (h2), of
the subarrays. We get

h1,mDF =
Γ−1
1 d1,θd

dH
1,θd

Γ−1
1 d1,θd

, (3.20)

h2,mDF =
Γ−1
2 d2,θd

dH
2,θd

Γ−1
2 d2,θd

. (3.21)

As a result, the partial maximum DF beamformer of the fourth approach is
simply the Kronecker product of the two above filters, i.e.,

hPmDF4 = h1,mDF ⊗ h2,mDF. (3.22)

Figure 3.3 displays the directivity patterns of the fourth partial maximum
DF beamformer, hPmDF4, for θd = 0, f = 1 kHz, δ = 1 cm, and different
numbers of sensors M = M2

0 . Figure 3.4 shows plots of the DFs and WNGs
of the fourth partial maximum DF beamformer as a function of frequency for
θd = 0, δ = 1 cm, and different numbers of sensors. We observe that as the
number of sensors increases, the width of the main beam and the level of side
lobes decrease, while the DF of the fourth partial maximum DF beamformer
increases. However, using a larger number of sensors decreases the WNG of
the fourth partial maximum DF beamformer, especially at low frequencies.
For a given number of sensors, the DF of the fourth partial maximum DF
beamformer is higher than that of the first partial maximum DF beamformer,
but the WNG of the fourth partial maximum DF beamformer is lower than
that of the first partial maximum DF beamformer (compare Figs 3.2 and
3.4).

Two other possibilities are

hPmDF5 = h1,mDF ⊗ h2,DS (3.23)
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Fig. 3.3 Beampatterns of the fourth partial maximum DF beamformer, hPmDF4, for
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Fig. 3.4 Performance of the fourth partial maximum DF beamformer, hPmDF4, as a
function of frequency for θd = 0, δ = 1 cm, and different numbers of sensors M = M2
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M0 = 2 (solid line with circles), M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line
with squares), and M0 = 5 (dash-dot line with triangles). (a) DF and (b) WNG.
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and

hPmDF6 = h1,DS ⊗ h2,mDF. (3.24)

3.1.3 Maximum DF

From a theoretical point of view, the maximum DF beamformer is obtained
by maximizing D (h) in (2.31) but this DF cannot be maximized directly.
Therefore, an iterative algorithm is required for this task.

We start by taking

h
(0)
2 = h2,mDF

=
Γ−1
2 d2,θd

dH
2,θd

Γ−1
2 d2,θd

. (3.25)

Substituting h
(0)
2 into (2.43), we get

Γ
h

(0)
2

=
(
IM0

⊗ h
(0)
2

)H
Γ
(
IM0

⊗ h
(0)
2

)
. (3.26)

Now, plugging this expression into the DF in (2.42), we obtain at iteration 1:

D
(
h
(1)
1 |h(0)

2

)
=

∣∣∣∣(h(1)
1

)H
d1,θd

∣∣∣∣2(
h
(1)
1

)H
Γ
h

(0)
2
h
(1)
1

. (3.27)

The maximization of D
(
h
(1)
1 |h(0)

2

)
with respect to h

(1)
1 gives

h
(1)
1 =

Γ−1

h
(0)
2

d1,θd

dH
1,θd

Γ−1

h
(0)
2

d1,θd

. (3.28)

Using h
(1)
1 in (2.45), we get

Γ
h

(1)
1

=
(
h
(1)
1 ⊗ IM0

)H
Γ
(
h
(1)
1 ⊗ IM0

)
. (3.29)

As a result, the DF in (2.44) is
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D
(
h
(1)
2 |h(1)

1

)
=

∣∣∣∣(h(1)
2

)H
d2,θd

∣∣∣∣2(
h
(1)
2

)H
Γ
h

(1)
1
h
(1)
2

, (3.30)

whose maximization with respect to h
(1)
2 gives

h
(1)
2 =

Γ−1

h
(1)
1

d2,θd

dH
2,θd

Γ−1

h
(1)
1

d2,θd

. (3.31)

Continuing the iterations up to the iteration n, we easily get for the first
filter:

h
(n)
1 =

Γ−1

h
(n−1)
2

d1,θd

dH
1,θd

Γ−1

h
(n−1)
2

d1,θd

, (3.32)

with

Γ
h

(n−1)
2

=
(
IM0

⊗ h
(n−1)
2

)H
Γ
(
IM0

⊗ h
(n−1)
2

)
, (3.33)

and for the second filter:

h
(n)
2 =

Γ−1

h
(n)
1

d2,θd

dH
2,θd

Γ−1

h
(n)
1

d2,θd

, (3.34)

with

Γ
h

(n)
1

=
(
h
(n)
1 ⊗ IM0

)H
Γ
(
h
(n)
1 ⊗ IM0

)
. (3.35)

Finally, we deduce that the maximum DF beamformer is at iteration n:

h
(n)
mDF = h

(n)
1 ⊗ h

(n)
2 . (3.36)

Figure 3.5 displays the directivity patterns of the maximum DF beam-

former, h
(n)
mDF, for f = 1 kHz, δ = 1 cm, andM0 = 3, obtained at the iteration

n for several values of n. Figure 3.6 shows plots of the DFs and WNGs of the
maximum DF beamformer as a function of frequency for δ = 1 cm, M0 = 3,
and several values of n. We observe that the DF of the maximum DF beam-
former increases at each iteration, and roughly converges after five iterations,
while the WNG decreases at each iteration. Compared with the partial maxi-
mum DF beamformers, the maximum DF beamformer yields higher DF, but
lower WNG (compare Figs 3.4 and 3.6).
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Fig. 3.5 Beampatterns of the maximum DF beamformer, h
(n)
mDF, for f = 1 kHz, δ = 1 cm,

and M0 = 3, obtained at the iteration n: (a) n = 0, (b) n = 1, (c) n = 2, and (d) n = 5.
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Fig. 3.6 Performance of the maximum DF beamformer, h
(n)
mDF, as a function of frequency

for δ = 1 cm, M0 = 3, and several values of n: n = 0 (solid line with circles), n = 1
(dashed line with asterisks), n = 5 (dotted line with squares), and n = 10 (dash-dot line
with triangles). (a) DF and (b) WNG.

If we want to compromise between the WNG and the DF, we should
optimize the following criteria:
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min
h

(n)
1

(
h
(n)
1

)H (
Γ
h

(n−1)
2

+ ε1IM0

)
h
(n)
1 subject to

(
h
(n)
1

)H
d1,θd = 1,

(3.37)

min
h

(n)
2

(
h
(n)
2

)H (
Γ
h

(n)
1

+ ε2IM0

)
h
(n)
2 subject to

(
h
(n)
2

)H
d2,θd = 1,

(3.38)

where ε1, ε2 ≥ 0 are the regularization parameters, and Γ
h

(n−1)
2

and Γ
h

(n)
1

are

defined in (3.33) and (3.35), respectively. We find that the optimal filters are

h
(n)
1,ε1

=

(
Γ
h

(n−1)
2

+ ε1IM0

)−1

d1,θd

dH
1,θd

(
Γ
h

(n−1)
2

+ ε1IM0

)−1

d1,θd

(3.39)

and

h
(n)
2,ε2

=

(
Γ
h

(n)
1

+ ε2IM0

)−1

d2,θd

dH
2,θd

(
Γ
h

(n)
1

+ ε2IM0

)−1

d2,θd

, (3.40)

with the initialization:

h
(0)
2,ε2

=
(Γ2 + ε2IM0

)
−1

d2,θd

dH
2,θd

(Γ2 + ε2IM0
)
−1

d2,θd

. (3.41)

As a result, the robust maximum DF beamformer is at iteration n:

h
(n)
R,ε1,ε2

= h
(n)
1,ε1

⊗ h
(n)
2,ε2

. (3.42)

Figure 3.7 displays the directivity patterns of the robust maximum DF

beamformer at the iteration n = 5, h
(5)
R,ε1,ε2

, for M0 = 3, f = 1 kHz, δ = 1 cm,
and several values of ε1 and ε2. Figure 3.8 shows plots of the DFs and WNGs
of the robust maximum DF beamformer at the iteration n = 5 as a function
of frequency for M0 = 3, δ = 1 cm, and several values of ε1 and ε2. We
observe that for larger values of ε1 and ε2, the WNG increases, but the DF
decreases and the main lobe becomes wider.
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Fig. 3.7 Beampatterns of the robust maximum DF beamformer at the iteration n = 5,

h
(5)
R,ε1,ε2

, for M0 = 3, f = 1 kHz, δ = 1 cm, and several values of ε1 and ε2: (a) ε1 = ε2 =
0.001, (b) ε1 = ε2 = 0.01, (c) ε1 = ε2 = 0.1, and (d) ε1 = ε2 = 1.
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3.1.4 Null Steering

In this subsection, we assume that we have one interference source impinging
on the global array from the direction θ0 �= θd that we would like to com-
pletely cancel, i.e., to steer a null in that direction, and, meanwhile, recover
the desired source coming from the direction θd. There are many ways to do
this. First, remember that a null in the beampattern B1,θ (h1) implies a null
in the global beampattern Bθ (h). In the same way, a null in the beampat-
tern B2,θ (h2) implies a null in the global beampattern Bθ (h). As a result,
the same null in B1,θ (h1) and in B2,θ (h2) implies a null in Bθ (h) of multi-
plicity 2. Then, by including the distortionless constraints, we can write the
constraint equations as

CH
1 h1 = ic, (3.43)

CH
2 h2 = ic, (3.44)

where

C1 =
[
d1,θd d1,θ0

]
, (3.45)

C2 =
[
d2,θd d2,θ0

]
(3.46)

are the constraint matrices of size M0 × 2 whose two columns are linearly
independent and

ic =
[
1 0
]T

(3.47)

is a vector of length 2.
In the first approach, we take the DS beamformer for the second filter, i.e.,

h2 = h2,DS. To find the first filter, we maximize the WNG by taking (3.43)
into account, i.e.,

min
h1

hH
1 h1 subject to CH

1 h1 = ic. (3.48)

From this criterion, we get the minimum-norm (MN) beamformer:

h1,MN = C1

(
CH

1 C1

)−1
ic, (3.49)

which is also the minimum-norm solution of (3.43). Therefore, the first
(global) proposed null-steering (NS) beamformer is

hNS1 = h1,MN ⊗ h2,DS. (3.50)

We deduce that the WNG and the beampattern are, respectively,

W (hNS1) = M0W (h1,MN) (3.51)
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and

Bθ (hNS1) = B1,θ (h1,MN)× B2,θ (h2,DS) . (3.52)

In the second approach, we take the DS beamformer for the first filter,
i.e., h1 = h1,DS. To find the second filter, we maximize the WNG by taking
(3.44) into account. We get

h2,MN = C2

(
CH

2 C2

)−1
ic, (3.53)

which is also the minimum-norm solution of (3.44). Therefore, the second
proposed null-steering beamformer is

hNS2 = h1,DS ⊗ h2,MN. (3.54)

We deduce that the WNG and the beampattern are, respectively,

W (hNS2) = M0W (h2,MN) (3.55)

and

Bθ (hNS2) = B1,θ (h1,DS)× B2,θ (h2,MN) . (3.56)

Finally, in the third and last approach as far as the maximization of the
WNG is concerned, we propose to use the two derived minimum-norm filters,
i.e.,

hNS3 = h1,MN ⊗ h2,MN. (3.57)

The global beampattern is

Bθ (hNS3) = B1,θ (h1,MN)× B2,θ (h2,MN) , (3.58)

which has a null of multiplicity 2 in the direction θ0.
Figure 3.9 displays the directivity patterns of the third null-steering beam-

former, hNS3, for θd = 0, f = 1 kHz, δ = 5 mm, M0 = 3, and several values of
θ0. Figure 3.10 shows plots of the DFs and WNGs of the third null-steering
beamformer as a function of frequency for θd = 0, δ = 5 mm, M0 = 3,
and several values of θ0. We observe that for θd = 0, the WNG of the third
null-steering beamformer increases as θ0 increases from 90◦ to 180◦.

A second class of beamformers is obtained by maximizing the DF instead
of the WNG. Let h2 = h2,DS. To find the first filter, we maximize the DF by
taking (3.43) into account, i.e.,

min
h1

hH
1 Γ1h1 subject to CH

1 h1 = ic. (3.59)

The solution to this problem is



32 3 Beamforming with ULAs

0◦

30◦

60◦120◦

150◦

180◦

210◦

240◦ 300◦

330◦

0◦

30◦

60◦120◦

150◦

180◦

210◦

240◦ 300◦

330◦

0◦

30◦

60◦120◦

150◦

180◦

210◦

240◦ 300◦

330◦

0◦

30◦

60◦120◦

150◦

180◦

210◦

240◦ 300◦

330◦

(a) (b)

(c) (d)

0 dB

−10 dB

−20 dB

−30 dB

−40 dB

0 dB

−10 dB

−20 dB

−30 dB

−40 dB

0 dB

−10 dB

−20 dB

−30 dB

−40 dB

0 dB

−10 dB

−20 dB

−30 dB

−40 dB

90◦ 90◦

90◦ 90◦

270◦ 270◦

270◦ 270◦

Fig. 3.9 Beampatterns of the third null-steering beamformer, hNS3, for θd = 0, f = 1 kHz,
δ = 5 mm, M0 = 3, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦, (c) θ0 = 150◦,
and (d) θ0 = 180◦.
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Fig. 3.10 Performance of the third null-steering beamformer, hNS3, as a function of fre-
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h1,NS4 = Γ−1
1 C1

(
CH

1 Γ−1
1 C1

)−1
ic. (3.60)

Therefore, the fourth approach is

hNS4 = h1,NS4 ⊗ h2,DS. (3.61)

In the fifth approach, we choose h1 = h1,DS and to find the second filter,
we maximize the DF by taking (3.44) into account. We get

h2,NS5 = Γ−1
2 C2

(
CH

2 Γ−1
2 C2

)−1
ic. (3.62)

Therefore, the global null-steering beamformer is

hNS5 = h1,DS ⊗ h2,NS5. (3.63)

In the sixth approach, we combine the two previous ones:

hNS6 = h1,NS4 ⊗ h2,NS5. (3.64)

The DF of hNS6 will be greater than that of hNS4 and hNS5.
Figure 3.11 displays the directivity patterns of the sixth null-steering

beamformer, hNS6, for θd = 0, f = 1 kHz, δ = 5 mm, M0 = 3, and sev-
eral values of θ0. Figure 3.12 shows plots of the DFs and WNGs of the sixth
null-steering beamformer as a function of frequency for θd = 0, δ = 5 mm,
M0 = 3, and several values of θ0. Compared with the third null-steering
beamformer, the sixth null-steering beamformer yields higher DF, but lower
WNG (compare Figs 3.10 and 3.12).

To fully maximize the DF while having a null of multiplicity 2 in the
direction θ0, we need to optimize the following criteria:

min
h

(n)
1

(
h
(n)
1

)H
Γ
h

(n−1)
2

h
(n)
1 subject to CH

1 h
(n)
1 = ic, (3.65)

min
h

(n)
2

(
h
(n)
2

)H
Γ
h

(n)
1

h
(n)
2 subject to CH

2 h
(n)
2 = ic, (3.66)

where Γ
h

(n−1)
2

and Γ
h

(n)
1

are defined in (3.33) and (3.35), respectively. We

easily get

h
(n)
1 = Γ−1

h
(n−1)
2

C1

(
CH

1 Γ−1

h
(n−1)
2

C1

)−1

ic (3.67)

and

h
(n)
2 = Γ−1

h
(n)
1

C2

(
CH

2 Γ−1

h
(n)
1

C2

)−1

ic, (3.68)
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Fig. 3.11 Beampatterns of the sixth null-steering beamformer, hNS6, for θd = 0, f =
1 kHz, δ = 5 mm, M0 = 3, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦,
(c) θ0 = 150◦, and (d) θ0 = 180◦.
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Fig. 3.12 Performance of the sixth null-steering beamformer, hNS6, as a function of fre-
quency for θd = 0, δ = 5 mm, M0 = 3, and several values of θ0: θ0 = 90◦ (solid line with
circles), θ0 = 120◦ (dashed line with asterisks), θ0 = 150◦ (dotted line with squares), and
θ0 = 180◦ (dash-dot line with triangles). (a) DF and (b) WNG.
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with the initialization:

h
(0)
2 = Γ−1

2 C2

(
CH

2 Γ−1
2 C2

)−1
ic. (3.69)

Therefore, the seventh and last proposed null-steering beamformer is at iter-
ation n:

h
(n)
NS7 = h

(n)
1 ⊗ h

(n)
2 . (3.70)

Figure 3.13 displays the directivity patterns of the seventh null-steering

beamformer, h
(n)
NS7, for f = 1 kHz, δ = 5 mm, θd = 0, θ0 = 180◦, and

M0 = 3, obtained at the iteration n for several values of n. Figure 3.14 shows
plots of the DFs and WNGs of the seventh null-steering beamformer as a
function of frequency for δ = 5 mm, θd = 0, θ0 = 180◦, M0 = 3, and several
values of n. We observe that the DF of the seventh null-steering beamformer
increases at each iteration, and roughly converges after two iterations, while
the WNG decreases at each iteration. Compared with the above null-steering
beamformers, the seventh null-steering beamformer yields the highest DF,
but the lowest WNG (compare Figs 3.12 and 3.14).

3.2 Adaptive Beamformers

Before developing some useful adaptive beamformers in our context, we first
present other important performance measures that depend on the second-
order statistics of the signals.

3.2.1 Other Measures

The (narrowband) noise reduction factor quantifies the amount of noise being
rejected by the beamformer. It is defined as

ξn (h) =
φV1

hHΦvh
. (3.71)

The noise reduction factor is expected to be lower bounded by 1; otherwise,
the beamformer amplifies the noise. The higher the value of the noise reduc-
tion factor, the more the noise is rejected. While the output SNR is upper
bounded, the noise reduction factor is not. In the distortionless case, i.e.,
hHdθd = 1, the noise reduction factor coincides with the array gain [defined
in (2.26)].

Since the noise is reduced by the beamforming operation, so is, in general,
the desired signal. This desired signal reduction (or cancellation) implies, in
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Fig. 3.13 Beampatterns of the seventh null-steering beamformer, h
(n)
NS7, for f = 1 kHz,

δ = 5 mm, θd = 0, θ0 = 180◦, and M0 = 3, obtained at the iteration n: (a) n = 0,
(b) n = 1, (c) n = 2, and (d) n = 10.
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Fig. 3.14 Performance of the seventh null-steering beamformer, h
(n)
NS7, as a function of

frequency for δ = 5 mm, θd = 0, θ0 = 180◦, M0 = 3, and several values of n: n = 0 (solid
line with circles), n = 1 (dashed line with asterisks), n = 2 (dotted line with squares), and
n = 10 (dash-dot line with triangles). (a) DF and (b) WNG.
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general, distortion. The (narrowband) desired signal reduction factor is

ξd (h) =
φX

hHΦxh
(3.72)

=
1

|hHdθd |2

=
1∣∣hH

1 d1,θd

∣∣2 × 1∣∣hH
2 d2,θd

∣∣2
= ξ1,d (h1)× ξ2,d (h2) .

The closer the value of ξd (h) is to 1, the less distorted is the desired signal.
It is easy to verify that we have the following fundamental relation:

oSNR (h)

iSNR
=

ξn (h)

ξd (h)
, (3.73)

where the output and input SNRs are defined in (2.25) and (2.24), respec-
tively. This expression indicates the equivalence between gain/loss in SNR
and distortion (of both the desired and noise signals).

Another way to measure the distortion of the desired signal due to the
beamforming operation is via the (narrowband) desired signal distortion in-
dex:

υd (h) =
E
(
|Xfd −X|2

)
φX

=
∣∣hHdθd − 1

∣∣2 . (3.74)

The desired signal distortion index is close to 0 if there is no distortion and
expected to be greater than 0 when distortion occurs.

Error criteria play a critical role in deriving optimal beamformers. The
mean-squared error (MSE) [3] is, by far, the most practical one. We define
the error signal between the estimated and desired signals as

E = Z −X (3.75)

= Xfd + Vrn −X

= Ed + En,

where

Ed =
(
hHdθd − 1

)
X (3.76)

is the desired signal distortion due to the beamformer and

En = hHv (3.77)
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represents the residual noise. Since Ed and En are incoherent, the (narrow-
band) MSE can be expressed as

J (h) = E
(
|E|2

)
(3.78)

= E
(
|Ed|2

)
+ E

(
|En|2

)
= Jd (h) + Jn (h)

= φX + hHΦyh− φXhHdθd − φXdH
θd
h,

where

Jd (h) = φX

∣∣hHdθd − 1
∣∣2 (3.79)

= φXυd (h)

and

Jn (h) = hHΦvh (3.80)

=
φV1

ξn (h)
.

We have the following classical relationships:

Jd (h)

Jn (h)
= iSNR× ξn (h)× υd (h) (3.81)

= oSNR (h)× ξd (h)× υd (h) .

3.2.2 Wiener

Because of the structure of h, a closed-form Wiener beamformer cannot ap-
parently be found but an iterative one can be derived. Using (2.40) and (2.41),
we can express the MSE in (3.78) as

J (h1 ⊗ h2) = φX + hH
1 Φy,2h1 − φX,2h

H
1 d1,θd − φ∗

X,2d
H
1,θd

h1 (3.82)

= φX + hH
2 Φy,1h2 − φX,1h

H
2 d2,θd − φ∗

X,1d
H
2,θd

h2, (3.83)

where

Φy,2 = (IM0 ⊗ h2)
H
Φy (IM0 ⊗ h2) , (3.84)

φX,2 = φXhH
2 d2,θd , (3.85)

and
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Φy,1 = (h1 ⊗ IM0
)
H
Φy (h1 ⊗ IM0

) , (3.86)

φX,1 = φXhH
1 d1,θd . (3.87)

It is interesting to notice that the size of the matrices Φy,1 and Φy,2, which is
M0×M0, is much smaller than the size of Φy, which is M2

0 ×M2
0 . As a result,

in practice, much less observations are needed to accurately estimate Φy,1

and Φy,2 than Φy, which is the matrix that is inverted in the conventional
Wiener beamformer.

When h2 is fixed, we write (3.82) as

J (h1|h2) = φX + hH
1 Φy,2h1 − φX,2h

H
1 d1,θd − φ∗

X,2d
H
1,θd

h1, (3.88)

and when h1 is fixed, we write (3.83) as

J (h2|h1) = φX + hH
2 Φy,1h2 − φX,1h

H
2 d2,θd − φ∗

X,1d
H
2,θd

h2. (3.89)

Now, we have everything to derive an iterative algorithm similar to the
one proposed in [4]. At iteration 0, we may take

h
(0)
2 = φXΦ−1

y2
d2,θd , (3.90)

where Φy2 is the covariance matrix of

y2 =
[
Y1 Y2 · · · YM0

]T
, (3.91)

whose elements are the M0 first ones of y. In fact, h
(0)
2 is just the traditional

Wiener beamformer applied to the second ULA. Substituting h
(0)
2 into (3.84)–

(3.85), we get

Φ
(0)
y,2 =

(
IM0

⊗ h
(0)
2

)H
Φy

(
IM0

⊗ h
(0)
2

)
, (3.92)

φ
(0)
X,2 = φX

(
h
(0)
2

)H
d2,θd . (3.93)

Then, substituting these quantities into the MSE in (3.88), we obtain at
iteration 1:

J
(
h
(1)
1 |h(0)

2

)
= φX +

(
h
(1)
1

)H
Φ

(0)
y,2h

(1)
1 − φ

(0)
X,2

(
h
(1)
1

)H
d1,θd

−
(
φ
(0)
X,2

)∗
dH
1,θd

h
(1)
1 . (3.94)

The minimization of J
(
h
(1)
1 |h(0)

2

)
with respect to h

(1)
1 gives

h
(1)
1 = φ

(0)
X,2

(
Φ

(0)
y,2

)−1

d1,θd . (3.95)
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Using h
(1)
1 into (3.86)–(3.87), we obtain

Φ
(1)
y,1 =

(
h
(1)
1 ⊗ IM0

)H
Φy

(
h
(1)
1 ⊗ IM0

)
, (3.96)

φ
(1)
X,1 = φX

(
h
(1)
1

)H
d1,θd . (3.97)

With Φ
(1)
y,1 and φ

(1)
X,1, we can compute the MSE in (3.89) as

J
(
h
(1)
2 |h(1)

1

)
= φX +

(
h
(1)
2

)H
Φ

(1)
y,1h

(1)
2 − φ

(1)
X,1

(
h
(1)
2

)H
d2,θd

−
(
φ
(1)
X,1

)∗
dH
2,θd

h
(1)
2 , (3.98)

whose minimization with respect to h
(1)
2 gives

h
(1)
2 = φ

(1)
X,1

(
Φ

(1)
y,1

)−1

d2,θd . (3.99)

Continuing the iterations up to the iteration n, we easily get the estimate
of the first beamformer:

h
(n)
1 = φ

(n−1)
X,2

(
Φ

(n−1)
y,2

)−1

d1,θd , (3.100)

where

φ
(n−1)
X,2 = φX

(
h
(n−1)
2

)H
d2,θd , (3.101)

Φ
(n−1)
y,2 =

(
IM0

⊗ h
(n−1)
2

)H
Φy

(
IM0

⊗ h
(n−1)
2

)
, (3.102)

and the estimate of the second beamformer:

h
(n)
2 = φ

(n)
X,1

(
Φ

(n)
y,1

)−1

d2,θd , (3.103)

where

φ
(n)
X,1 = φX

(
h
(n)
1

)H
d1,θd , (3.104)

Φ
(n)
y,1 =

(
h
(n)
1 ⊗ IM0

)H
Φy

(
h
(n)
1 ⊗ IM0

)
. (3.105)

Finally, we deduce that the Wiener beamformer is at iteration n:

h
(n)
W = h

(n)
1 ⊗ h

(n)
2 , (3.106)

where h
(n)
1 and h

(n)
2 are defined in (3.100) and (3.103), respectively.
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Example 3.1. Suppose that a desired signal impinges on the ULA from the
direction θd, and that a statistically independent interference impinges on
the ULA from the direction θ0. Assume that the desired signal is a harmonic
pulse of T samples:

x(t) =

{
A sin (ω0t+ φ) , 0 ≤ t ≤ T − 1
0, t < 0, t ≥ T

,

with fixed amplitude A and angular frequency ω0, and random phase φ,
uniformly distributed on the interval from 0 to 2π. Assume that the in-
terference u(t) is white Gaussian noise, i.e., u(t) ∼ N (

0, σ2
u

)
, uncorre-

lated with x(t). In addition, the sensors contain thermal white Gaussian
noise, wm(t) ∼ N (

0, σ2
w

)
, that are mutually uncorrelated. The noisy re-

ceived signals are given by ym(t) = xm(t) + vm(t), m = 1, 2, . . . ,M , where
vm(t) = um(t) + wm(t), m = 1, 2, . . . ,M are the interference-plus-noise sig-
nals. The variance of X(ω) is given by

φX =
A2

4
D2

T [π (ω + ω0)] +
A2

4
D2

T [π (ω − ω0)] ,

where

DT (x) =
sin (Tx)

sin (x)
.

The covariance matrices of x(ω) and v(ω) are given by

Φx = φXdθdd
H
θd
,

Φv = Tσ2
udθ0d

H
θ0 + Tσ2

wIM .

To demonstrate the performance of the Wiener beamformer, we choose
A = 0.5, ω0 = 2πf0, f0 = 3 kH, T = 500, θd = 70◦, θ0 = 30◦, and
σ2
w = 0.01σ2

u. Figure 3.15 displays the directivity patterns of the Wiener

beamformer, h
(n)
W , for iSNR = 0 dB, f = 3 kHz, δ = 1 cm, and M0 = 5,

obtained at the iteration n for several values of n. The directivity patterns
converge after three iterations. The main beam is in the direction of the de-
sired signal, i.e., θd, and there is a null in the direction of the interference,

i.e., θ0. Figure 3.16 shows plots of the gain in SNR, G
(
h
(n)
W

)
, the noise re-

duction factor, ξn

(
h
(n)
W

)
, the desired signal distortion index, υd

(
h
(n)
W

)
, and

the MSE, J
(
h
(n)
W

)
, as a function of the input SNR for f = 3 kHz, δ = 1 cm,

M0 = 5, and several values of n. We observe that the MSE and the desired
signal distortion index obtained by the Wiener beamformer decrease at each
iteration, and roughly converge after three iterations, while the gain in SNR
and the noise reduction factor increase at each iteration. Figure 3.17 displays
the directivity patterns of the Wiener beamformer at the iteration n = 10, for
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Fig. 3.15 Beampatterns of the Wiener beamformer, h
(n)
W , for iSNR = 0 dB, f = 3 kHz,

δ = 1 cm, θd = 70◦, θ0 = 30◦, and M0 = 5, obtained at the iteration n: (a) n = 1,
(b) n = 2, (c) n = 3, and (d) n = 4.

iSNR = 0 dB, f = 3 kHz, δ = 1 cm, and different numbers of sensors, M . As
the number of sensors increases, the width of the main beam decreases, and
the null in the direction of the interference becomes deeper. Figure 3.18 shows

plots of the gain in SNR, G
(
h
(10)
W

)
, the noise reduction factor, ξn

(
h
(10)
W

)
,

the desired signal distortion index, υd

(
h
(10)
W

)
, and the MSE, J

(
h
(10)
W

)
, as a

function of the input SNR for f = 3 kHz, δ = 1 cm, and different numbers
of sensors, M . We observe that as the number of sensors increases, the MSE
and the desired signal distortion index obtained by the Wiener beamformer
decrease while the gain in SNR and the noise reduction factor increase.

3.2.3 Tradeoff

In order to better compromise between noise reduction and desired signal
distortion, we can minimize the desired signal distortion indices with the
constraints that the noise reduction factors are equal to positive values that
are greater than 1, i.e.,
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Fig. 3.16 Performance of the Wiener beamformer, h
(n)
W , as a function of the input SNR

for f = 3 kHz, δ = 1 cm, θd = 70◦, θ0 = 30◦, M0 = 5, and several values of n: n = 1 (solid
line with circles), n = 2 (dashed line with asterisks), n = 3 (dotted line with squares),
and n = 10 (dash-dot line with triangles). (a) Gain in SNR, (b) noise reduction factor,
(c) desired signal distortion index, and (d) MSE.

min
h

(n)
1

Jd

(
h
(n)
1 |h(n−1)

2

)
subject to Jn

(
h
(n)
1 |h(n−1)

2

)
= ℵ1φV1 , (3.107)

min
h

(n)
2

Jd

(
h
(n)
2 |h(n)

1

)
subject to Jn

(
h
(n)
2 |h(n)

1

)
= ℵ2φV1

, (3.108)

where 0 < ℵ1,ℵ2 < 1 to insure that we get some noise reduction,

Jd

(
h
(n)
1 |h(n−1)

2

)
= φX +

(
h
(n)
1

)H
Φ

(n−1)
x,2 h

(n)
1 − φ

(n−1)
X,2

(
h
(n)
1

)H
d1,θd

−
(
φ
(n−1)
X,2

)∗
dH
1,θd

h
(n)
1 , (3.109)

Jn

(
h
(n)
1 |h(n−1)

2

)
=
(
h
(n)
1

)H
Φ

(n−1)
v,2 h

(n)
1 , (3.110)

and
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Fig. 3.17 Beampatterns of the Wiener beamformer at the iteration n = 10, h
(10)
W , for

iSNR = 0 dB, f = 3 kHz, δ = 1 cm, θd = 70◦, θ0 = 30◦, and different numbers of sensors
M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and (d) M0 = 5.

Jd

(
h
(n)
2 |h(n)

1

)
= φX +

(
h
(n)
2

)H
Φ

(n)
x,1h

(n)
2 − φ

(n)
X,1

(
h
(n)
2

)H
d2,θd

−
(
φ
(n)
X,1

)∗
dH
2,θd

h
(n)
2 , (3.111)

Jn

(
h
(n)
2 |h(n)

1

)
=
(
h
(n)
2

)H
Φ

(n)
v,1h

(n)
2 , (3.112)

with
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Fig. 3.18 Performance of the Wiener beamformer at the iteration n = 10, h
(10)
W , as a

function of the input SNR for f = 3 kHz, δ = 1 cm, θd = 70◦, θ0 = 30◦, and different
numbers of sensors M = M2

0 : M0 = 2 (solid line with circles), M0 = 3 (dashed line
with asterisks), M0 = 4 (dotted line with squares), and M0 = 5 (dash-dot line with
triangles). (a) Gain in SNR, (b) noise reduction factor, (c) desired signal distortion index,
and (d) MSE.

Φ
(n−1)
x,2 =

(
IM0

⊗ h
(n−1)
2

)H
Φx

(
IM0

⊗ h
(n−1)
2

)
=

∣∣∣φ(n−1)
X,2

∣∣∣2
φX

d1,θdd
H
1,θd

, (3.113)

Φ
(n−1)
v,2 =

(
IM0

⊗ h
(n−1)
2

)H
Φv

(
IM0

⊗ h
(n−1)
2

)
, (3.114)

Φ
(n)
x,1 =

(
h
(n)
1 ⊗ IM0

)H
Φx

(
h
(n)
1 ⊗ IM0

)
=

∣∣∣φ(n)
X,1

∣∣∣2
φX

d2,θdd
H
2,θd

, (3.115)

Φ
(n)
v,1 =

(
h
(n)
1 ⊗ IM0

)H
Φv

(
h
(n)
1 ⊗ IM0

)
. (3.116)

By using Lagrange multipliers, μ1, μ2 > 0, to adjoin the constraints to the
cost functions, we get
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h
(n)
1,μ1

= φ
(n−1)
X,2

(
Φ

(n−1)
x,2 + μ1Φ

(n−1)
v,2

)−1

d1,θd

=
φ
(n−1)
X,2 φX

(
Φ

(n−1)
v,2

)−1

d1,θd

μ1φX +
∣∣∣φ(n−1)

X,2

∣∣∣2 dH
1,θd

(
Φ

(n−1)
v,2

)−1

d1,θd

(3.117)

and

h
(n)
2,μ2

= φ
(n)
X,1

(
Φ

(n)
x,1 + μ2Φ

(n)
v,1

)−1

d2,θd

=
φ
(n)
X,1φX

(
Φ

(n)
v,1

)−1

d2,θd

μ2φX +
∣∣∣φ(n)

X,1

∣∣∣2 dH
2,θd

(
Φ

(n)
v,1

)−1

d2,θd

, (3.118)

with the initialization:

h
(0)
2,μ2

= φX

(
φXd2,θdd

H
2,θd

+ μ2Φv2

)−1
d2,θd

=
φXΦ−1

v2
d2,θd

μ2 + φXdH
2,θd

Φ−1
v2 d2,θd

, (3.119)

where Φv2 is the covariance matrix of

v2 =
[
V1 V2 · · · VM0

]T
, (3.120)

whose elements are the M0 first ones of v. As a matter of fact, h
(0)
2,μ2

is just
the traditional tradeoff beamformer applied to the second ULA. Therefore,
we find that the tradeoff beamformer is at iteration n:

h
(n)
T,μ1,μ2

= h
(n)
1,μ1

⊗ h
(n)
2,μ2

, (3.121)

where h
(n)
1,μ1

and h
(n)
2,μ2

are defined in (3.117) and (3.118), respectively. We can
see that for

• μ1 = μ2 = 1, we get the Wiener beamformer;
• μ1, μ2 > 1, results in a beamformer with low residual noise at the expense

of high desired signal distortion (as compared to Wiener); and
• μ1, μ2 < 1, results in a beamformer with high residual noise and low desired

signal distortion (as compared to Wiener).

3.2.4 MVDR

The minimum variance distortionless response (MVDR) beamformer pro-
posed by Capon [5], [6] is obtained by minimizing the MSEs of the residual
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noise subject to the distortionless constraints, i.e.,

min
h

(n)
1

(
h
(n)
1

)H
Φ

(n−1)
v,2 h

(n)
1 subject to

(
h
(n)
1

)H
d1,θd = 1, (3.122)

min
h

(n)
2

(
h
(n)
2

)H
Φ

(n)
v,1h

(n)
2 subject to

(
h
(n)
2

)H
d2,θd = 1, (3.123)

where Φ
(n−1)
v,2 and Φ

(n)
v,1 are defined in (3.114) and (3.116), respectively. From

the optimization of (3.122) and (3.123), we get

h
(n)
1 =

(
Φ

(n−1)
v,2

)−1

d1,θd

dH
1,θd

(
Φ

(n−1)
v,2

)−1

d1,θd

(3.124)

and

h
(n)
2 =

(
Φ

(n)
v,1

)−1

d2,θd

dH
2,θd

(
Φ

(n)
v,1

)−1

d2,θd

, (3.125)

with the initialization:

h
(0)
2 =

Φ−1
v2

d2,θd

dH
2,θd

Φ−1
v2 d2,θd

. (3.126)

As a result, the MVDR beamformer is at iteration n:

h
(n)
MVDR1 = h

(n)
1 ⊗ h

(n)
2 . (3.127)

This beamformer can be directly obtained from h
(n)
T,μ1,μ2

by taking μ1 = μ2 =
0.

Another form of the MVDR beamformer is obtained from

min
h

(n)
1

(
h
(n)
1

)H
Φ

(n−1)
y,2 h

(n)
1 subject to

(
h
(n)
1

)H
d1,θd = 1, (3.128)

min
h

(n)
2

(
h
(n)
2

)H
Φ

(n)
y,1h

(n)
2 subject to

(
h
(n)
2

)H
d2,θd = 1, (3.129)

where Φ
(n−1)
y,2 and Φ

(n)
y,1 are defined in (3.102) and (3.105), respectively. We

get

h
(n)
MVDR2 = h

(n)
1 ⊗ h

(n)
2 , (3.130)

where
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h
(n)
1 =

(
Φ

(n−1)
y,2

)−1

d1,θd

dH
1,θd

(
Φ

(n−1)
y,2

)−1

d1,θd

(3.131)

and

h
(n)
2 =

(
Φ

(n)
y,1

)−1

d2,θd

dH
2,θd

(
Φ

(n)
y,1

)−1

d2,θd

, (3.132)

with the initialization:

h
(0)
2 =

Φ−1
y2

d2,θd

dH
2,θd

Φ−1
y2 d2,θd

. (3.133)

In principle, h
(n)
MVDR1 and h

(n)
MVDR2 are equivalent, but in practice, they may

behave very differently.

3.2.5 LCMV

We assume that we have one interference source impinging on the array from
the direction θ0 �= θd that we would like to cancel without distorting the de-
sired signal. Then, our constraint equations are identical to the ones presented
in (3.43) and (3.44). Depending on what we wish; one null of multiplicity 1 or
one null of multiplicity 2 in the direction θ0, we can derive different linearly
constrained minimum variance (LCMV) beamformers [7], [8].

If one null of multiplicity 2 is desired, we should optimize

min
h

(n)
1

(
h
(n)
1

)H
Φ

(n−1)
v,2 h

(n)
1 subject to CH

1 h
(n)
1 = ic, (3.134)

min
h

(n)
2

(
h
(n)
2

)H
Φ

(n)
v,1h

(n)
2 subject to CH

2 h
(n)
2 = ic. (3.135)

We find that

h
(n)
1 =

(
Φ

(n−1)
v,2

)−1

C1

[
CH

1

(
Φ

(n−1)
v,2

)−1

C1

]−1

ic (3.136)

and

h
(n)
2 =

(
Φ

(n)
v,1

)−1

C2

[
CH

2

(
Φ

(n)
v,1

)−1

C2

]−1

ic, (3.137)
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with the initialization:

h
(0)
2 = Φ−1

v2
C2

(
CH

2 Φ−1
v2

C2

)−1
ic. (3.138)

As a consequence, the first LCMV beamformer is at iteration n:

h
(n)
LCMV1 = h

(n)
1 ⊗ h

(n)
2 . (3.139)

A second LCMV beamformer (with one null of multiplicity 2) is at itera-
tion n:

h
(n)
LCMV2 = h

(n)
1 ⊗ h

(n)
2 , (3.140)

where

h
(n)
1 =

(
Φ

(n−1)
y,2

)−1

C1

[
CH

1

(
Φ

(n−1)
y,2

)−1

C1

]−1

ic (3.141)

and

h
(n)
2 =

(
Φ

(n)
y,1

)−1

C2

[
CH

2

(
Φ

(n)
y,1

)−1

C2

]−1

ic, (3.142)

with the initialization:

h
(0)
2 = Φ−1

y2
C2

(
CH

2 Φ−1
y2

C2

)−1
ic. (3.143)

If one null of multiplicity 1 is desired, we can optimize

min
h

(n)
1

(
h
(n)
1

)H
Φ

(n−1)
v,2 h

(n)
1 subject to dH

1,θd
h
(n)
1 = 1, (3.144)

min
h

(n)
2

(
h
(n)
2

)H
Φ

(n)
v,1h

(n)
2 subject to CH

2 h
(n)
2 = ic. (3.145)

We find that

h
(n)
1 =

(
Φ

(n−1)
v,2

)−1

d1,θd

dH
1,θd

(
Φ

(n−1)
v,2

)−1

d1,θd

(3.146)

and

h
(n)
2 =

(
Φ

(n)
v,1

)−1

C2

[
CH

2

(
Φ

(n)
v,1

)−1

C2

]−1

ic, (3.147)

with the initialization:
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h
(0)
2 = Φ−1

v2
C2

(
CH

2 Φ−1
v2

C2

)−1
ic. (3.148)

Therefore, the third LCMV beamformer, but with one null of multiplicity 1,
is at iteration n:

h
(n)
LCMV3 = h

(n)
1 ⊗ h

(n)
2 . (3.149)

The fourth LCMV beamformer with one null of multiplicity 1 is at itera-
tion n:

h
(n)
LCMV4 = h

(n)
1 ⊗ h

(n)
2 , (3.150)

where

h
(n)
1 =

(
Φ

(n−1)
y,2

)−1

d1,θd

dH
1,θd

(
Φ

(n−1)
y,2

)−1

d1,θd

(3.151)

and

h
(n)
2 =

(
Φ

(n)
y,1

)−1

C2

[
CH

2

(
Φ

(n)
y,1

)−1

C2

]−1

ic, (3.152)

with the initialization:

h
(0)
2 = Φ−1

y2
C2

(
CH

2 Φ−1
y2

C2

)−1
ic. (3.153)

Another possibility is to optimize

min
h

(n)
1

(
h
(n)
1

)H
Φ

(n−1)
v,2 h

(n)
1 subject to CH

1 h
(n)
1 = ic, (3.154)

min
h

(n)
2

(
h
(n)
2

)H
Φ

(n)
v,1h

(n)
2 subject to dH

2,θd
h
(n)
2 = 1. (3.155)

In this case, we get

h
(n)
1 =

(
Φ

(n−1)
v,2

)−1

C1

[
CH

1

(
Φ

(n−1)
v,2

)−1
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]−1

ic (3.156)

and

h
(n)
2 =

(
Φ

(n)
v,1

)−1

d2,θd

dH
2,θd

(
Φ

(n)
v,1

)−1

d2,θd

, (3.157)

with the initialization:
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h
(0)
2 =

Φ−1
v2

d2,θd

dH
2,θd

Φ−1
v2 d2,θd

. (3.158)

Therefore, the fifth LCMV beamformer, but with one null of multiplicity 1,
is at iteration n:

h
(n)
LCMV5 = h

(n)
1 ⊗ h

(n)
2 . (3.159)

Finally, the last and sixth LCMV beamformer (with one null of multiplicity
1) is at iteration n:

h
(n)
LCMV6 = h

(n)
1 ⊗ h

(n)
2 , (3.160)

where

h
(n)
1 =

(
Φ

(n−1)
y,2

)−1

C1

[
CH

1

(
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(n−1)
y,2

)−1

C1

]−1

ic (3.161)

and

h
(n)
2 =

(
Φ

(n)
y,1

)−1

d2,θd

dH
2,θd

(
Φ

(n)
y,1

)−1

d2,θd

, (3.162)

with the initialization:

h
(0)
2 =

Φ−1
y2

d2,θd

dH
2,θd

Φ−1
y2 d2,θd

. (3.163)

3.2.6 Maximum SNR

In order to maximize the output SNR, it is required to express it differently.
Indeed, from its definition, it is clear that it can be rewritten as

oSNR (h1 ⊗ h2) =
φX

∣∣hH
1 d1,θd

∣∣2 ∣∣hH
2 d2,θd

∣∣2
(h1 ⊗ h2)

H
Φv (h1 ⊗ h2)

=
|φX,2|2

∣∣hH
1 d1,θd

∣∣2
φXhH

1 Φv,2h1
(3.164)

=
|φX,1|2

∣∣hH
2 d2,θd

∣∣2
φXhH

2 Φv,1h2
, (3.165)

where
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|φX,2|2 = φ2
X

∣∣hH
2 d2,θd

∣∣2 , (3.166)

Φv,2 = (IM0 ⊗ h2)
H
Φv (IM0 ⊗ h2) , (3.167)

and

|φX,1|2 = φ2
X

∣∣hH
1 d1,θd

∣∣2 , (3.168)

Φv,1 = (h1 ⊗ IM0)
H
Φv (h1 ⊗ IM0) . (3.169)

When h2 is fixed, we write (3.164) as

oSNR (h1|h2) =
|φX,2|2

∣∣hH
1 d1,θd

∣∣2
φXhH

1 Φv,2h1
, (3.170)

and when h1 is fixed, we write (3.165) as

oSNR (h2|h1) =
|φX,1|2

∣∣hH
2 d2,θd

∣∣2
φXhH

2 Φv,1h2
. (3.171)

As before, we have everything to iteratively maximize the output SNR. At
iteration 0, we may take

h
(0)
2 = α

(0)
2 Φ−1

v2
d2,θd , (3.172)

where α
(0)
2 �= 0 is an arbitrary complex-valued number. Substituting h

(0)
2 into

(3.166)–(3.167), we obtain∣∣∣φ(0)
X,2

∣∣∣2 = φ2
X

∣∣∣dH
2,θd

h
(0)
2

∣∣∣2 , (3.173)

Φ
(0)
v,2 =

(
IM0 ⊗ h

(0)
2

)H
Φv

(
IM0 ⊗ h

(0)
2

)
. (3.174)

Using the previous expressions in the output SNR in (3.170), we get at iter-
ation 1:

oSNR
(
h
(1)
1 |h(0)

2

)
=

∣∣∣φ(0)
X,2

∣∣∣2 ∣∣∣dH
1,θd

h
(1)
1

∣∣∣2
φX

(
h
(1)
1

)H
Φ

(0)
v,2h

(1)
1

, (3.175)

whose maximization with respect to h
(1)
1 gives

h
(1)
1 = α

(0)
1

(
Φ

(0)
v,2

)−1

d1,θd , (3.176)

where α
(0)
1 �= 0 is an arbitrary complex number. Then, using h

(1)
1 in (3.168)–

(3.169), we obtain
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X,1

∣∣∣2 = φ2
X

∣∣∣dH
1,θd

h
(1)
1

∣∣∣2 , (3.177)

Φ
(1)
v,1 =

(
h
(1)
1 ⊗ IM0

)H
Φv

(
h
(1)
1 ⊗ IM0

)
, (3.178)

which we plug into the output SNR in (3.171). We get

oSNR
(
h
(1)
2 |h(1)

1

)
=

∣∣∣φ(1)
X,1

∣∣∣2 ∣∣∣dH
2,θd

h
(1)
2

∣∣∣2
φX

(
h
(1)
2

)H
Φ

(1)
v,1h

(1)
2

. (3.179)

The maximization of the previous expression with respect to h
(1)
2 leads to

h
(1)
2 = α

(1)
2

(
Φ

(1)
v,1

)−1

d2,θd , (3.180)

where α
(1)
2 �= 0 is an arbitrary complex number.

Continuing the iterations up to the iteration n, we easily get for the first
filter:

h
(n)
1 = α

(n−1)
1

(
Φ

(n−1)
v,2

)−1

d1,θd , (3.181)

where α
(n−1)
1 �= 0 is an arbitrary complex number, with

Φ
(n−1)
v,2 =

(
IM0

⊗ h
(n−1)
2

)H
Φv

(
IM0

⊗ h
(n−1)
2

)
, (3.182)

and for the second filter:

h
(n)
2 = α

(n)
2

(
Φ

(n)
v,1

)−1

d2,θd , (3.183)

where α
(n)
2 �= 0 is an arbitrary complex number, with

Φ
(n)
v,1 =

(
h
(n)
1 ⊗ IM0

)H
Φv

(
h
(n)
1 ⊗ IM0

)
. (3.184)

Finally, we deduce that the maximum SNR beamformer is at iteration n:

h(n)
max = h

(n)
1 ⊗ h

(n)
2 , (3.185)

where h
(n)
1 and h

(n)
2 are defined in (3.181) and (3.183), respectively. There

are different ways to derive the parameters α
(n−1)
1 and α

(n)
2 . For example, if

they are found in such a way that the filters h
(n)
1 and h

(n)
2 are distortionless,

we obtain the MVDR beamformer derived in Subsection 3.2.4.
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3.3 Combined Fixed/Adaptive Beamformers

Perhaps, one of the most interesting aspects of the Kronecker product formu-
lation in beamforming (i.e., h = h1⊗h2) is that, due to its decomposition and
remarkable flexibility, it seems possible to combine very intelligently fixed and
adaptive beamformers, so that the best of each one of these two approaches
is emphasized for performance enhancement. Therefore, we hope that the
global beamformer will fix the shortcomings of each one of these two classes
of beamformers.

For the second ULA with the steering vector d2,θd , the interelement spac-
ing, δ, can be chosen as small as desired, which is obviously good for di-
rectivity (especially at the endfires) and also good for limiting the effect of
spatial aliasing. Therefore, the corresponding beamformer, h2, will be the
fixed beamformer here and, in all this part, it will be taken as

h2 = h2,mDF

=
Γ−1
2 d2,θd

dH
2,θd

Γ−1
2 d2,θd

, (3.186)

which is the maximum DF beamformer at the second ULA. Now, that h2

is fixed, we need to derive, accordingly, the optimal (depending on what
is desired) adaptive beamformer, h1, which corresponds to the first ULA.
Clearly, the global beamformer, h, will inherit the features of the adaptive
and fixed beamformers (h1 and h2, respectively).

Since h2 is fixed and distortionless, we can express the MSE as

J (h1|h2) = φX + hH
1 Φy,2h1 − φXhH

1 d1,θd − φXdH
1,θd

h1, (3.187)

where

Φy,2 = (IM0 ⊗ h2,mDF)
H
Φy (IM0 ⊗ h2,mDF) . (3.188)

The minimization of J (h1|h2) with respect to h1 leads to the Wiener (adap-
tive) beamformer:

h1,W = φXΦ−1
y,2d1,θd (3.189)

=
φXΦ−1

v,2d1,θd

1 + φXdH
1,θd

Φ−1
v,2d1,θd

,

where

Φv,2 = (IM0 ⊗ h2,mDF)
H
Φv (IM0 ⊗ h2,mDF) . (3.190)

As a result, the first proposed global combined fixed/adaptive (cFA) beam-
former is
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hcFA1 = h1,W ⊗ h2,mDF. (3.191)

It is always possible to improve the beamforming performance by adding
one more step to the previous processing, i.e, by maximizing

D (h2|h1,W) =

∣∣hH
2 d2,θd

∣∣2
hH
2 Γh1,W

h2
, (3.192)

where

Γh1,W = (h1,W ⊗ IM0)
H
Γ (h1,W ⊗ IM0) .

We obtain

h
(1)
2,mDF =

Γ−1
h1,W

d2,θd

dH
2,θd

Γ−1
h1,W

d2,θd

. (3.193)

Then, instead of using h2,mDF in (3.191), we can use h
(1)
2,mDF. This leads to

the second global beamformer:

hcFA2 = h1,W ⊗ h
(1)
2,mDF. (3.194)

If we want h1 to be a distortionless adaptive beamformer, we can optimize
the criterion:

min
h1

hH
1 Φv,2h1 subject to hH

1 d1,θd = 1, (3.195)

from which we find the well-known MVDR beamformer:

h1,MVDR =
Φ−1

v,2d1,θd

dH
1,θd

Φ−1
v,2d1,θd

. (3.196)

As a consequence, the third proposed global fixed/adaptive beamformer is

hcFA3 = h1,MVDR ⊗ h2,mDF. (3.197)

In the particular case where the noise is white, h1,MVDR simplifies to the DS
beamformer, i.e., h1,DS. Therefore, hcFA3 = h1,DS ⊗ h2,mDF = hPmDF6 (see
Subsection 3.1.2).

If we want to better compromise between noise reduction and speech dis-
tortion, we should optimize the criterion:

min
h1

Jd (h1|h2) subject to Jn (h1|h2) = ℵ1φV1
, (3.198)

where 0 < ℵ1 < 1 and
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Jd (h1|h2) = φX + φX

∣∣hH
1 d1,θd

∣∣2 − φXhH
1 d1,θd − φXdH

1,θd
h1, (3.199)

Jn (h1|h2) = hH
1 Φv,2h1. (3.200)

We get the tradeoff beamformer:

h1,T,μ1 = φX

(
φXd1,θdd

H
1,θd

+ μ1Φv,2

)−1
d1,θd (3.201)

=
φXΦ−1

v,2d1,θd

μ1 + φXdH
1,θd

Φ−1
v,2d1,θd

,

where μ1 > 0 is a Lagrange multiplier. Therefore, the fourth and last global
fixed/adaptive beamformer that we propose is

hcFA4 = h1,T,μ1 ⊗ h2,mDF. (3.202)

3.4 Differential Beamformers

The family of differential beamformers is an important particular class of fixed
beamformers. Arguably, beamformers belonging to this particular family are
the most practical ones since the corresponding beampatterns are almost
frequency invariant, which is critical when we deal with broadband signals
such as speech, and they lead to the highest gains in diffuse noise. However,
the main drawback of differential beamforming is white noise amplification.
We will see that the flexibility of the new approach allows us to better deal
with this fundamental problem. The most well-known and studied differen-
tial array beampatterns are the cardioid, the dipole, the hypercardioid, and
the supercardioid. In the following, we show how they are designed in this
particular context.

3.4.1 Preliminaries and Other Measures

In order that differential beamforming takes place, the following two assump-
tions are usually made [9], [10], [11], [12].

(i) The sensor spacing, δ, is much smaller than the acoustic wavelength,
implying that δ � 2πc/ω. This assumption is required so that the true
acoustic pressure differentials can be approximated by finite differences of
the sensors’ outputs.

(ii) The desired source signal propagates from the angle θd = 0 (endfire
direction). Therefore, (2.6) becomes

y = d0X + v, (3.203)
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and, at the endfire, the value of the beamformer beampattern should al-
ways be equal to 1.

Thanks to Assumption (i) frequency-invariant beamforming may be possible
and thanks to Assumption (ii) any desired beampattern can be designed; in
other directions (than the endfires 0 and π), the beampattern design is very
limited because of the symmetry of the steering vector.

Since the interelement spacing of the second ULA is much smaller than
the interelement spacing of the first ULA, the filter h2 will be used to design
and shape the directivity pattern while h1 will be used to mostly maximize
the WNG. Consequently, with h2, we will design an (M0 − 1)th-order differ-
ential beamformer. Then, the global ULA will be a differential array of order
certainly higher than M0 − 1.

We recall that the definitions of the WNG and the DF are, respectively,

W (h) =

∣∣hHd0

∣∣2
hHh

(3.204)

=

∣∣hH
1 d1,0

∣∣2
hH
1 h1

×
∣∣hH

2 d2,0

∣∣2
hH
2 h2

and

D (h) =
|B0 (h)|2

1

2

∫ π

0

|Bθ (h)|2 sin θdθ
(3.205)

=
|B1,0 (h1)|2 |B2,0 (h2)|2

1

2

∫ π

0

|B1,θ (h1)|2 |B2,θ (h2)|2 sin θdθ

=

∣∣hHd0

∣∣2
hHΓh

.

Another measure of interest in this study is the front-to-back ratio (FBR),
which is defined as the ratio of the power of the output of the array to signals
propagating from the front-half plane to the output power for signals arriving
from the rear-half plane [13]. This ratio, for the spherically isotropic (diffuse)
noise field, is mathematically defined as [13]
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F (h) =

∫ π/2

0

|Bθ (h)|2 sin θdθ∫ π

π/2

|Bθ (h)|2 sin θdθ
(3.206)

=

∫ π/2

0

|B1,θ (h1)|2 |B2,θ (h2)|2 sin θdθ∫ π

π/2

|B1,θ (h1)|2 |B2,θ (h2)|2 sin θdθ

=
hHΓfh

hHΓbh
,

where

Γf =

∫ π/2

0

dθd
H
θ sin θdθ, (3.207)

Γb =

∫ π

π/2

dθd
H
θ sin θdθ. (3.208)

It can be verified that the elements of the M ×M matrices Γf (ω) and Γb (ω)
are given, respectively, by

[Γf (ω)]ij =
ejω(j−i)δ/c − 1

jω(j − i)δ/c
(3.209)

and

[Γb (ω)]ij =
1− e−jω(j−i)δ/c

jω(j − i)δ/c
, (3.210)

with [Γf (ω)]mm = [Γb (ω)]mm = 1, m = 1, 2, . . . ,M . Same as the DF, the
FBR cannot be factorized, i.e.,

F (h) �= F1 (h1)×F2 (h2) , (3.211)

where
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F1 (h1) =

∫ π/2

0

|B1,θ (h1)|2 sin θdθ∫ π

π/2

|B1,θ (h1)|2 sin θdθ
(3.212)

=
hH
1 Γf,1h1

hH
1 Γb,1h1

,

F2 (h2) =

∫ π/2

0

|B2,θ (h2)|2 sin θdθ∫ π

π/2

|B2,θ (h2)|2 sin θdθ
(3.213)

=
hH
2 Γf,2h2

hH
2 Γb,2h2

,

with

Γf,1 =

∫ π/2

0

d1,θd
H
1,θ sin θdθ, (3.214)

Γb,1 =

∫ π

π/2

d1,θd
H
1,θ sin θdθ, (3.215)

Γf,2 =

∫ π/2

0

d2,θd
H
2,θ sin θdθ, (3.216)

Γb,2 =

∫ π

π/2

d2,θd
H
2,θ sin θdθ. (3.217)

The elements of theM0×M0 matrices Γf,1 (ω), Γb,1 (ω), Γf,2 (ω), and Γb,2 (ω)
are given, respectively, by

[Γf,1 (ω)]ij =
ejω(j−i)M0δ/c − 1

jω(j − i)M0δ/c
, (3.218)

[Γb,1 (ω)]ij =
1− e−jω(j−i)M0δ/c

jω(j − i)M0δ/c
, (3.219)

[Γf,2 (ω)]ij =
ejω(j−i)δ/c − 1

jω(j − i)δ/c
, (3.220)

and

[Γb,2 (ω)]ij =
1− e−jω(j−i)δ/c

jω(j − i)δ/c
, (3.221)
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with [Γf,1 (ω)]mm = [Γb,1 (ω)]mm = [Γf,2 (ω)]mm = [Γb,2 (ω)]mm = 1, m =
1, 2, . . . ,M0.

When h2 is fixed and given, and thanks to (2.41), we can write the FBR
as

F (h1|h2) =
hH
1 Γf,h2

h1

hH
1 Γb,h2

h1
, (3.222)

where

Γf,h2 =

∫ π/2

0

d1,θd
H
1,θ |B2,θ (h2)|2 sin θdθ (3.223)

= (IM0
⊗ h2)

H
Γf (IM0

⊗ h2) ,

Γb,h2
=

∫ π

π/2

d1,θd
H
1,θ |B2,θ (h2)|2 sin θdθ (3.224)

= (IM0
⊗ h2)

H
Γb (IM0

⊗ h2) .

In the same way, when h1 is fixed and given, and thanks to (2.40), we can
write the FBR as

F (h2|h1) =
hH
2 Γf,h1

h2

hH
2 Γb,h1h2

, (3.225)

where

Γf,h1
=

∫ π/2

0

d2,θd
H
2,θ |B1,θ (h1)|2 sin θdθ (3.226)

= (h1 ⊗ IM0
)
H
Γf (h1 ⊗ IM0

) ,

Γb,h1 =

∫ π

π/2

d2,θd
H
2,θ |B1,θ (h1)|2 sin θdθ (3.227)

= (h1 ⊗ IM0
)
H
Γb (h1 ⊗ IM0

) .

3.4.2 Cardioid

The (M0−1)th-order cardioid has a unique null of multiplicity M0−1 in the
direction π. Therefore, the ith derivative, with i = 0, 1, . . . ,M0 − 2, of the
beampattern of h2 with respect to cos θ is equal to 0 at cosπ = −1, i.e.,

diB2,θ (h2)

d cosi θ

∣∣∣∣
cos θ=−1

= B[i]
2,π (h2) = 0, (3.228)

with
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B[0]
2,π (h2) = B2,π (h2) .

We easily find that

B[i]
2,π (h2) = (jωδ/c)

i (
Σid2,π

)H
h2, (3.229)

where

Σ = diag (0, 1, . . . ,M0 − 1) (3.230)

is a diagonal matrix of size M0×M0. Combining the distortionless constraint,
i.e.,

B2,0 (h2) = dH
2,0h2 = 1, (3.231)

with the M0 − 1 equations from (3.228), we obtain a linear system of M0

equations with M0 unknowns:

DH
2,πh2 = i, (3.232)

where

DH
2,π =

⎡⎢⎢⎢⎢⎢⎢⎣

dH
2,0(

Σ0d2,π

)H(
Σ1d2,π

)H
...(

ΣM0−2d2,π

)H

⎤⎥⎥⎥⎥⎥⎥⎦ (3.233)

and i is the first column of IM0
. Therefore, the cardioid of order M0 − 1 at

the second ULA is

h2,C = D−H
2,π i. (3.234)

For the first filter, we take the DS beamformer, i.e.,

h1,DS =
d1,0

M0
, (3.235)

which maximizes the WNG. As a result, the robust global cardioid of order,
at least, M0 − 1 is

hC = h1,DS ⊗ h2,C. (3.236)

Figure 3.19 displays the directivity patterns of the robust global cardioid,
hC, for f = 1 kHz, δ = 1 cm, and different numbers of sensors M . Figure 3.20
shows plots of the DFs and WNGs of the robust global cardioid, hC, as a
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Fig. 3.19 Beampatterns of the robust global cardioid, hC, for f = 1 kHz, δ = 1 cm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.
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Fig. 3.20 Performance of the robust global cardioid, hC, as a function of frequency for
δ = 1 cm, and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF and (b) WNG.
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function of frequency. We observe that the DF increases as we increase the
numbers of sensors, but the WNG decreases at low frequencies.

To get an even more robust beamformer, we may optimize

min
h2

hH
2

(
D′

2,πD
′H
2,π + ε2IM0

)
h2 subject to CH

2,πh2 = ic, (3.237)

where

D′
2,π =

[
Σ1d2,π Σ2d2,π · · · ΣM0−2d2,π

]
(3.238)

is a matrix of size M0× (M0−2), ε2 > 0 is the regularization parameter, and

CH
2,π =

[
dH
2,0

dH
2,π

]
(3.239)

is the constraint matrix of size 2×M0. We see that with C2,π, the two main
constraints are fulfilled, i.e., the distortionless one and a null in the direction
π. We find that the optimal filter is

h2,C,ε2 =
(
D′

2,πD
′H
2,π + ε2IM0

)−1
C2,π

×
[
CH

2,π

(
D′

2,πD
′H
2,π + ε2IM0

)−1
C2,π

]−1

ic. (3.240)

Therefore, the more robust global cardioid is

hC,ε2 = h1,DS ⊗ h2,C,ε2 . (3.241)

Figure 3.21 displays the directivity patterns of the robust global cardioid,
hC,ε2 , for f = 1 kHz, δ = 1 cm, M0 = 4, and several values of ε2. Figure 3.22
shows plots of the DFs and WNGs of the robust global cardioid, hC,ε2 , as a
function of frequency. We observe that the WNG increases as we increase ε2,
but the DF decreases.

3.4.3 Dipole

The design of the global dipole is a bit different from the design of the global
cardioid as explained below.

The dipole of order M0 − 1 has also a unique null of multiplicity M0 − 1
but in the direction π/2. Since we have a null with maximum multiplicity, the
ith (i = 0, 1, . . . ,M0− 2) derivative of the beampattern of h2 with respect to
cos θ is equal to 0 at cos(π/2) = 0, i.e.,

diB2,θ (h2)

d cosi θ

∣∣∣∣
cos θ=0

= B[i]
2,π/2 (h2) = 0, (3.242)
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Fig. 3.21 Beampatterns of the robust global cardioid, hC,ε2 , for f = 1 kHz, δ = 1 cm,
M0 = 4, and several values of ε2: (a) ε2 = 0.001, (b) ε2 = 0.01, (c) ε2 = 0.1, and (d) ε2 = 1.
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Fig. 3.22 Performance of the robust global cardioid, hC,ε2 , as a function of frequency for
δ = 1 cm, M0 = 4, and several values of ε2: ε2 = 0.001 (solid line with circles), ε2 = 0.01
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with triangles). (a) DF and (b) WNG.
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with

B[0]
2,π/2 (h2) = B2,π/2 (h2) .

We get

B[i]
2,π/2 (h2) = (jωδ/c)

i (
Σid2,π/2

)H
h2, (3.243)

where Σ is defined in (3.230). Combining the distortionless constraint with
the M0 − 1 constraints from (3.242), we have

DH
2,π/2h2 = i, (3.244)

where

DH
2,π/2 =

⎡⎢⎢⎢⎢⎢⎢⎣

dH
2,0(

Σ0d2,π/2

)H(
Σ1d2,π/2

)H
...(

ΣM0−2d2,π/2

)H

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.245)

As a result, the dipole of order M0 − 1 at the second ULA is

h2,D = D−H
2,π/2i. (3.246)

Another feature of the dipole is that it has a 1 in the direction π. To ensure
that the global beampattern has also a 1 at π, we must add this constraint
in the design of the first filter. We deduce that the constraint equation for
h1 is

CH
1,πh1 =

[
1
1

]
, (3.247)

where

CH
1,π =

[
dH
1,0

dH
1,π

]
(3.248)

is the constraint matrix of size 2×M0. Since we want to maximize the WNG
of h1 subject to (3.247), we find the minimum-norm beamformer:

h1,MN = C1,π

(
CH

1,πC1,π

)−1
[
1
1

]
. (3.249)

Now, that the two filters are derived, we deduce that the robust global
dipole of order, at least, M0 − 1 is
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Fig. 3.23 Beampatterns of the robust global dipole, hD, for f = 1 kHz, δ = 1 cm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.

hD = h1,MN ⊗ h2,D. (3.250)

Figure 3.23 displays the directivity patterns of the robust global dipole, hD,
for f = 1 kHz, δ = 1 cm, and different numbers of sensors M . Figure 3.24
shows plots of the DFs and WNGs of the robust global dipole, hD, as a
function of frequency. We observe that the DF generally increases as we
increase the numbers of sensors, but the WNG decreases.

As we did for the cardioid, we can derive a more robust global dipole:

hD,ε2 = h1,MN ⊗ h2,D,ε2 , (3.251)

where
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Fig. 3.24 Performance of the robust global dipole, hD, as a function of frequency for
δ = 1 cm and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF and (b) WNG.

h2,D,ε2 =
(
D′

2,π/2D
′H
2,π/2 + ε2IM0

)−1

C2,π/2

×
[
CH

2,π/2

(
D′

2,π/2D
′H
2,π/2 + ε2IM0

)−1

C2,π/2

]−1

ic, (3.252)

with

D′
2,π/2 =

[
Σ1d2,π/2 Σ2d2,π/2 · · · ΣM0−2d2,π/2

]
(3.253)

and

CH
2,π/2 =

[
dH
2,0

dH
2,π/2

]
. (3.254)

Figure 3.25 displays the directivity patterns of the robust global dipole,
hD,ε2 , for f = 1 kHz, δ = 1 cm, M0 = 4, and several values of ε2. Figure 3.26
shows plots of the DFs and WNGs of the robust global dipole, hD,ε2 , as a
function of frequency. We observe that the WNG increases as we increase ε2.

3.4.4 Hypercardioid

The hypercardioid is usually obtained from the maximization of the DF.
For the first filter, h1, we take the DS beamformer, i.e., h1 = h1,DS, so

that its WNG is maximized. By definition, the DF of h2 is

D (h2) =

∣∣hH
2 d2,0

∣∣2
hH
2 Γ2h2

. (3.255)
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Fig. 3.25 Beampatterns of the robust global dipole, hD,ε2 , for f = 1 kHz, δ = 1 cm,
M0 = 4, and several values of ε2: (a) ε2 = 0.001, (b) ε2 = 0.01, (c) ε2 = 0.1, and
(d) ε2 = 1.
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Fig. 3.26 Performance of the robust global dipole, hD,ε2 , as a function of frequency for
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with triangles). (a) DF and (b) WNG.
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Fig. 3.27 Beampatterns of the robust global hypercardioid, hH, for f = 1 kHz, δ = 5 mm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.

The maximization of D (h2) gives the hypercardioid of order M0 − 1 at the
second ULA:

h2,H =
Γ−1
2 d2,0

dH
2,0Γ

−1
2 d2,0

. (3.256)

As a result, the robust global hypercardioid of order, at least, M0 − 1 is

hH = h1,DS ⊗ h2,H. (3.257)

Figure 3.27 displays the directivity patterns of the robust global hyper-
cardioid, hH, for f = 1 kHz, δ = 5 mm, and different numbers of sensors M .
Figure 3.28 shows plots of the DFs and WNGs of the robust global hyper-
cardioid, hH, as a function of frequency. We observe that the DF generally
increases as we increase the numbers of sensors, but the WNG decreases.
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Fig. 3.28 Performance of the robust global hypercardioid, hH, as a function of frequency
for δ = 5 mm and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF and (b) WNG.

To make this beamformer even more robust, we can use the following
instead

hH,ε2 = h1,DS ⊗ h2,H,ε2 , (3.258)

where

h2,H,ε2 =
(Γ2 + ε2IM0)

−1
d2,0

dH
2,0 (Γ2 + ε2IM0)

−1
d2,0

, (3.259)

with ε2 ≥ 0 being the regularization parameter.
Other possibilities can be borrowed from Subsection 3.1.2 by taking θd = 0.
Figure 3.29 displays the directivity patterns of the robust global dipole,

hD,ε2 , for f = 1 kHz, δ = 1 cm, M0 = 4, and several values of ε2. Figure 3.30
shows plots of the DFs and WNGs of the robust global dipole, hD,ε2 , as a
function of frequency. We observe that the WNG increases as we increase ε2,
but the DF decreases.

3.4.5 Supercardioid

As we should expect, different versions of the supercardioid can be derived.
In the first version, we choose the DS beamformer for the first filter, i.e.,

h1 = h1,DS. By definition, the FBR of h2 is given in (3.213) and we want to
maximize this quantity. Let t2 be the eigenvector corresponding to the max-
imum eigenvalue of the matrix Γ−1

b,2Γf,2. It is clear that the filter h2 = αt2,
where α �= 0 is an arbitrary complex number, maximizes this FBR. Taking
the distortionless constraint into account, we deduce that the supercardioid
of order M0 − 1 at the second ULA is
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Fig. 3.29 Beampatterns of the robust global hypercardioid, hH,ε2 , for f = 1 kHz, δ =
5 mm, M0 = 4, and several values of ε2: (a) ε2 = 10−5, (b) ε2 = 10−4, (c) ε2 = 10−3, and
(d) ε2 = 10−2.
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Fig. 3.30 Performance of the robust global hypercardioid, hH,ε2 , as a function of fre-
quency for δ = 5 mm, M0 = 4, and several values of ε2: ε2 = 10−5 (solid line with
circles), ε2 = 10−4 (dashed line with asterisks), ε2 = 10−3 (dotted line with squares), and
ε2 = 10−2 (dash-dot line with triangles). (a) DF and (b) WNG.
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Fig. 3.31 Beampatterns of the robust global supercardioid, hS1, for f = 1 kHz, δ = 5 mm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.

h2,S =
t2

dH
2,0t2

. (3.260)

Therefore, the robust global supercardioid of order, at least, M0 − 1 is

hS1 = h1,DS ⊗ h2,S. (3.261)

Figure 3.31 displays the directivity patterns of the robust global supercar-
dioid, hS1, for f = 1 kHz, δ = 5 mm, and different numbers of sensors M .
Figure 3.32 shows plots of the DFs, WNGs, and FBRs of the robust global
supercardioid, hS1, as a function of frequency. We observe that the DF and
FBR increase as we increase the number of sensors, but the WNG decreases.

To have a robust version of the supercardioid, h2,S, we need now to consider

the matrix (Γb,2 + ε2IM0)
−1

Γf,2. By taking the eigenvector corresponding to
the maximum eigenvalue of this matrix that we denote t2,ε2 , we find that the
robust supercardioid at the second ULA is
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Fig. 3.32 Performance of the robust global supercardioid, hS1, as a function of frequency
for δ = 5 mm and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF, (b) WNG, and (c) FBR.

h2,S,ε2 =
t2,ε2

dH
2,0t2,ε2

. (3.262)

Then, the more robust global supercardioid is

hS1,ε2 = h1,DS ⊗ h2,S,ε2 . (3.263)

Figure 3.33 displays the directivity patterns of the robust global supercar-
dioid, hS1,ε2 , for f = 1 kHz, δ = 5 mm, M0 = 4, and several values of ε2.
Figure 3.34 shows plots of the DFs, WNGs, and FBRs of the robust global
supercardioid, hS1,ε2 , as a function of frequency. We observe that the WNG
increases as we increase ε2, but the DF and FBR decrease.

Assume that h1 = h1,DS. Substituting this filter into (3.225), we get

F (h2|h1,DS) =
hH
2 Γf,h1,DS

h2

hH
2 Γb,h1,DS

h2
, (3.264)

where
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Fig. 3.33 Beampatterns of the robust global supercardioid, hS1,ε2 , for f = 1 kHz, δ =
5 mm, M0 = 4, and several values of ε2: (a) ε2 = 10−5, (b) ε2 = 10−4, (c) ε2 = 10−3, and
(d) ε2 = 10−2.

Γf,h1,DS
= (h1,DS ⊗ IM0

)
H
Γf (h1,DS ⊗ IM0

) , (3.265)

Γb,h1,DS
= (h1,DS ⊗ IM0

)
H
Γb (h1,DS ⊗ IM0

) . (3.266)

Let t2,h1,DS
be the eigenvector associated with the maximum eigenvalue of

Γ−1
b,h1,DS

Γf,h1,DS . Then, it is clear that another supercardioid at the second
ULA is

h2,S2 =
t2,h1,DS

dH
2,0t2,h1,DS

. (3.267)

Therefore, another version of the robust global supercardioid is

hS2 = h1,DS ⊗ h2,S2. (3.268)

If we don’t care much about white noise amplification, we can derive other
supercardioid beamformers that give higher values of the FBR than the one
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Fig. 3.34 Performance of the robust global supercardioid, hS1,ε2 , as a function of fre-
quency for δ = 5 mm, M0 = 4, and several values of ε2: ε2 = 10−5 (solid line with
circles), ε2 = 10−4 (dashed line with asterisks), ε2 = 10−3 (dotted line with squares), and
ε2 = 10−2 (dash-dot line with triangles). (a) DF, (b) WNG, and (c) FBR.

with hS1 or hS2. For example, we can maximize separately the two FBRs,
F1 (h1) and F2 (h2), of the subarrays. We get

h1,S =
t1

dH
1,0t1

, (3.269)

h2,S =
t2

dH
2,0t2

, (3.270)

where t1 and t2 are the eigenvectors corresponding to the maximum eigen-
values of the matrices Γ−1

b,1Γf,1 and Γ−1
b,2Γf,2, respectively. As a consequence,

another global supercardioid is

hS3 = h1,S ⊗ h2,S. (3.271)

Figure 3.35 displays the directivity patterns of the robust global supercar-
dioid, hS3, for f = 1 kHz, δ = 5 mm, and different numbers of sensors M .
Figure 3.36 shows plots of the DFs, WNGs, and FBRs of the robust global
supercardioid, hS3, as a function of frequency. We observe that the FBR and
DF of hS3 are larger than those of hS1, but the WNG of hS3 is lower than
that of hS1 (compare Figs 3.32 and 3.36). As we increase the number of sen-
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Fig. 3.35 Beampatterns of the robust global supercardioid, hS3, for f = 1 kHz, δ = 5 mm,
and different numbers of sensors M = M2

0 : (a) M0 = 2, (b) M0 = 3, (c) M0 = 4, and
(d) M0 = 5.

sors, the DF and FBR of the robust global supercardioid increase for the
mid-range frequencies, but the WNG decreases.

Now, if we want to fully maximize the FBR in (3.206), we need to derive
an iterative algorithm.

At iteration 0, we may take

h
(0)
2 = h2,S

=
t2

dH
2,0t2

. (3.272)

Substituting h
(0)
2 into (3.223) and (3.224), we get
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Fig. 3.36 Performance of the robust global supercardioid, hS3, as a function of frequency
for δ = 5 mm and different numbers of sensors M = M2

0 : M0 = 2 (solid line with circles),
M0 = 3 (dashed line with asterisks), M0 = 4 (dotted line with squares), and M0 = 5
(dash-dot line with triangles). (a) DF, (b) WNG, and (c) FBR.

Γ
f,h

(0)
2

=
(
IM0

⊗ h
(0)
2

)H
Γf

(
IM0

⊗ h
(0)
2

)
, (3.273)

Γ
b,h

(0)
2

=
(
IM0 ⊗ h

(0)
2

)H
Γb

(
IM0 ⊗ h

(0)
2

)
. (3.274)

Now, plugging these expressions into the FBR in (3.222), we obtain at iter-
ation 1:

F
(
h
(1)
1 |h(0)

2

)
=

(
h
(1)
1

)H
Γ
f,h

(0)
2
h
(1)
1(

h
(1)
1

)H
Γ
b,h

(0)
2
h
(1)
1

. (3.275)

The maximization of F
(
h
(1)
1 |h(0)

2

)
with respect of h

(1)
1 leads to

h
(1)
1 =

t
(0)
1

dH
1,0t

(0)
1

, (3.276)
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where t
(0)
1 is the eigenvector corresponding to the maximum eigenvalue of the

matrix Γ−1

b,h
(0)
2

Γ
f,h

(0)
2
. Using h

(1)
1 in (3.226) and (3.227), we get

Γ
f,h

(1)
1

=
(
h
(1)
1 ⊗ IM0

)H
Γf

(
h
(1)
1 ⊗ IM0

)
, (3.277)

Γ
b,h

(1)
1

=
(
h
(1)
1 ⊗ IM0

)H
Γb

(
h
(1)
1 ⊗ IM0

)
. (3.278)

As a result, the FBR in (3.225) is

F
(
h
(1)
2 |h(1)

1

)
=

(
h
(1)
2

)H
Γ
f,h

(1)
1
h
(1)
2(

h
(1)
2

)H
Γ
b,h

(1)
1
h
(1)
2

, (3.279)

whose maximization with respect to h
(1)
2 gives

h
(1)
2 =

t
(1)
2

dH
2,0t

(1)
2

, (3.280)

where t
(1)
2 is the eigenvector corresponding to the maximum eigenvalue of the

matrix Γ−1

b,h
(1)
1

Γ
f,h

(1)
1
.

Continuing to iterate up to iteration n, we easily get for the first filter:

h
(n)
1 =

t
(n−1)
1

dH
1,0t

(n−1)
1

, (3.281)

where t
(n−1)
1 is the eigenvector corresponding to the maximum eigenvalue of

the matrix Γ−1

b,h
(n−1)
2

Γ
f,h

(n−1)
2

, with

Γ
f,h

(n−1)
2

=
(
IM0

⊗ h
(n−1)
2

)H
Γf

(
IM0

⊗ h
(n−1)
2

)
, (3.282)

Γ
b,h

(n−1)
2

=
(
IM0

⊗ h
(n−1)
2

)H
Γb

(
IM0

⊗ h
(n−1)
2

)
, (3.283)

and for the second filter:

h
(n)
2 =

t
(n)
2

dH
2,0t

(n)
2

, (3.284)

where t
(n)
2 is the eigenvector corresponding to the maximum eigenvalue of

the matrix Γ−1

b,h
(n)
1

Γ
f,h

(n)
1

, with
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Fig. 3.37 Beampatterns of the supercardioid beamformer, h
(n)
S , for M0 = 2, f = 1 kHz,

and δ = 5 mm, obtained at the iteration n: (a) n = 0, (b) n = 1, (c) n = 2, and (d) n = 5.

Γ
f,h

(n)
1

=
(
h
(n)
1 ⊗ IM0

)H
Γf

(
h
(n)
1 ⊗ IM0

)
, (3.285)

Γ
b,h

(n)
1

=
(
h
(n)
1 ⊗ IM0

)H
Γb

(
h
(n)
1 ⊗ IM0

)
. (3.286)

Finally, we deduce that the supercardioid beamformer is at iteration n:

h
(n)
S = h

(n)
1 ⊗ h

(n)
2 . (3.287)

Figure 3.37 displays the directivity patterns of the supercardioid beam-

former, h
(n)
S , for M0 = 2, f = 1 kHz, and δ = 5 mm, obtained at the iter-

ation n for several values of n. Figure 3.38 shows plots of the DFs, WNGs,

and FBRs of the supercardioid beamformer, h
(n)
S , as a function of frequency.

The iteration n = 0 corresponds to the robust global supercardioid, hS3. We

observe that the FBR and DF of the supercardioid beamformer, h
(n)
S , are

larger than those of hS3 and hS1, but the WNGs of h
(n)
S and hS3 are lower
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Fig. 3.38 Performance of the supercardioid beamformer, h
(n)
S , as a function of frequency

for M0 = 2, δ = 5 mm, and several values of n: n = 0 (solid line with circles), n = 1
(dashed line with asterisks), n = 3 (dotted line with squares), and n = 10 (dash-dot line
with triangles). (a) DF, (b) WNG, and (c) FBR.

than that of hS1 (compare Figs 3.38, 3.36 and 3.32). Furthermore, the DF

and FBR of the supercardioid beamformer, h
(n)
S , increase at each iteration,

and roughly converge after three iterations, while the WNG remains almost
the same at each iteration.
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Chapter 4

Generalization with Uniform Linear
Arrays

In this chapter, we show that other decompositions of the steering vector
associated with ULAs are possible. Then, we define beamformers accordingly
and derive all performance measures useful for fixed beamforming. A partic-
ular decomposition has caught our attention, for which we explain in details
how it may fit well in differential beamforming. Obviously, we can follow all
these steps to deduce beamformers for other decompositions.

4.1 Signal Model and Problem Formulation

As in Chapter 2, we are still considering a ULA of size (M − 1)δ. We recall
that the steering vector is [1], [2]

dθ =
[
1 e−j�(θ) e−j2�(θ) · · · e−j(M−1)�(θ)

]T
, (4.1)

where

�(θ) =
ωδ cos θ

c
. (4.2)

In the two previous chapters, we focused on the very particular case where
the number of omnidirectional microphones forming the array is a square
number, i.e., M = M2

0 with M0 ≥ 2. Then, we found that the steering vector
can be decomposed as

dθ = d1,θ ⊗ d2,θ, (4.3)

where
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d1,θ =
[
1 e−jM0�(θ) e−j2M0�(θ) · · · e−jM0(M0−1)�(θ)

]T
, (4.4)

d2,θ =
[
1 e−j�(θ) e−j2�(θ) · · · e−j(M0−1)�(θ)

]T
. (4.5)

Clearly, other decompositions or generalizations are possible. An obvious
one that comes immediately in mind is when M = M1M2. In this case, we
have

dθ = d1,θ ⊗ d2,θ, (4.6)

where

d1,θ =
[
1 e−jM2�(θ) e−j2M2�(θ) · · · e−jM2(M1−1)�(θ)

]T
(4.7)

is the steering vector (of length M1) corresponding to a ULA of M1 sensors
with an interelement spacing equal to M2δ and

d2,θ =
[
1 e−j�(θ) e−j2�(θ) · · · e−j(M2−1)�(θ)

]T
(4.8)

is the steering vector (of length M2) corresponding to a ULA of M2 sensors
with an interelement spacing equal to δ (some examples are shown in Fig. 1.2).

A much more general decomposition is possible when the number of sensors
can be factorized as

M = M1 ×M2 × · · · ×MP . (4.9)

Then, it is not hard to see that we have

dθ = d1,θ ⊗ d2,θ ⊗ · · · ⊗ dP,θ, (4.10)

where

dp,θ =
[
1 e−jνp�(θ) e−j2νp�(θ) · · · e−jνp(Mp−1)�(θ)

]T
, (4.11)

for p = 1, 2, . . . , P , is the steering vector (of length Mp) corresponding to the
pth ULA of Mp sensors with an interelement spacing equal to νpδ, and

νp = Mp+1 ×Mp+2 × · · · ×MP , (4.12)

with MP+1 = 1, so that νP = 1. The decomposition in (4.10) is not new;
similar ones were proposed in the literature and in different contexts. See for
example [3].

In this chapter, we will study beamforming in the particular scenario where
M1 = M2 = · · · = MP = 2, so that M = 2P . As a result, the steering vector
can be decomposed as in (4.10), where
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Fig. 4.1 Kronecker product decomposition of a ULA of 8 sensors into three virtual ULAs
of 2 sensors each: (a) global array with an interelement spacing equal to δ; (b) 1st ULA
of 2 sensors with an interelement spacing equal to 4δ; (c) 2nd ULA of 2 sensors with
an interelement spacing equal to 2δ; and (d) 3rd ULA of 2 sensors with an interelement
spacing equal to δ.

dp,θ =

[
1

e−j2P−p�(θ)

]
, (4.13)

for p = 1, 2, . . . , P , is the steering vector corresponding to the pth ULA of
two sensors with an interelement spacing equal to 2P−pδ. Figure 4.1 shows
an example of Kronecker product decomposition of a ULA of 8 sensors into
three virtual ULAs of 2 sensors each.

We assume that δ is small and the angle of the desired signal is θd = 0, so
that the focus is on differential beamforming only. The signal model is then
[4], [5]

y = d0X + v, (4.14)

where d0 = d1,0 ⊗ d2,0 ⊗ · · · ⊗ dP,0. We deduce that the covariance matrix
of y is

Φy = φXd0d
H
0 + φV1Γv. (4.15)

Our objective in this chapter is to design, when M = 2P , the most impor-
tant differential beamforming beampatterns (of, roughly, order P ) thanks to
the Kronecker product filtering approach.
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4.2 Beamforming with Kronecker Product Filters

As we have already explained in Chapter 2, we consider complex-valued filters
that follow the decomposition of the global steering vector, dθ. Here, they
are of length M = 2P and can be factorized as

h = h1 ⊗ h2 ⊗ · · · ⊗ hP , (4.16)

where hp, p = 1, 2, . . . , P are P complex-valued linear filters of length 2.
Then, beamforming is performed by applying h to y, i.e.,

Z = hHy (4.17)

= hHd0X + hHv

= Xfd + Vrn,

where Z is the estimate of the desired signal, X,

Xfd = X

P∏
p=1

hH
p dp,0 (4.18)

is the filtered desired signal, and

Vrn = hHv (4.19)

is the residual noise. We deduce that the variance of Z is

φZ = φX

P∏
p=1

∣∣hH
p dp,0

∣∣2 + φV1
hHΓvh. (4.20)

With Kronecker product beamforming, we only need to estimate 2P param-
eters instead of 2P with conventional beamforming.

Since in the design or optimization process of beampatterns, it is much
more convenient to work with the individual filters hp, p = 1, 2, . . . , P instead
of the global beamformer h, we only consider the individual distortionless
constraints in the direction of the desired signal, θ = 0. They are

hH
p dp,0 = 1, p = 1, 2, . . . , P. (4.21)

Obviously, when the previous constraints are fulfilled, then hHd0 = 1.
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4.3 Performance Measures

In this section, we recall the most useful performance measures in this context
for fixed beamforming.

The beampattern of h is defined as

Bθ (h) = dH
θ h (4.22)

=
P∏

p=1

dH
p,θhp

=

P∏
p=1

Bp,θ (hp) ,

where

Bp,θ (hp) = dH
p,θhp

=

2∑
m=1

Hp,mej(m− 1)2P−p�(θ) (4.23)

is the beampattern of the pth ULA, withHp,m, m = 1, 2 being the coefficients

of hp. Let Zp = ej2
P−p�(θ), we can express the global beampattern as a

polynomial in P variables, which is the product of P polynomials (of degree
1) in one variable each, i.e.,

B (Z1,Z2, . . . , ZP ) =
P∏

p=1

Bp (Zp) (4.24)

=
P∏

p=1

(Hp,1 +Hp,2Zp) .

From this perspective, we can see that this beampattern has at most P dis-
tinct nulls (between 0 and π).

It is easy to see that the gain in SNR is

G (h) =

∣∣hHd0

∣∣2
hHΓvh

. (4.25)

If the nature of the noise is such that its pseudo-coherence matrix can be
factorized as Γv = Γv,1⊗Γv,2⊗· · ·⊗Γv,P , where Γv,p is the pseudo-coherence
matrix of the noise at the pth ULA, then the gain in SNR simplifies to
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G (h) =

∏P
p=1

∣∣hH
p dp,0

∣∣2∏P
p=1 h

H
p Γv,php

=

P∏
p=1

Gp (hp) , (4.26)

where

Gp (hp) =

∣∣hH
p dp,0

∣∣2
hH
p Γv,php

. (4.27)

One important particular case of the gain in SNR is the WNG, i.e.,

W (h) =

∣∣hHd0

∣∣2
hHh

(4.28)

=

∏P
p=1

∣∣hH
p dp,0

∣∣2∏P
p=1 h

H
p hp

=

P∏
p=1

Wp (hp) ,

where

Wp (hp) =

∣∣hH
p dp,0

∣∣2
hH
p hp

. (4.29)

Obviously, the WNG of the global ULA is simply the product of the WNGs
of the P ULAs. It is clear that

W (h) ≤ 2P , ∀h. (4.30)

Another important particular case of the gain in SNR is the DF, i.e.,

D (h) =
|B0 (h)|2

1

2

∫ π

0

|Bθ (h)|2 sin θdθ
(4.31)

=

∏P
p=1 |Bp,0 (hp)|2

1

2

∫ π

0

P∏
p=1

|Bp,θ (hp)|2 sin θdθ

=

∣∣hHd0

∣∣2
hHΓh

,

where
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Γ =
1

2

∫ π

0

dθd
H
θ sin θdθ, (4.32)

whose elements are given by

[Γ (ω)]ij = sinc [ω(j − i)δ/c] . (4.33)

It is clear that

D (h) ≤ dH
0 Γ−1d0, ∀h. (4.34)

As we already know, the DF of the global beamformer cannot be factorized,
i.e.,

D (h) �=
P∏

p=1

Dp (hp) , (4.35)

where

Dp (hp) =
|Bp,0 (hp)|2

1

2

∫ π

0

|Bp,θ (hp)|2 sin θdθ
(4.36)

=

∣∣hH
p dp,0

∣∣2
hH
p Γphp

,

with

Γp =
1

2

∫ π

0

dp,θd
H
p,θ sin θdθ, (4.37)

whose elements are given by

[Γp (ω)]ij = sinc
[
ω(j − i)2P−pδ/c

]
. (4.38)

The last measure of interest in this section is the FBR defined as
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F (h) =

∫ π/2

0

|Bθ (h)|2 sin θdθ∫ π

π/2

|Bθ (h)|2 sin θdθ
(4.39)

=

∫ π/2

0

P∏
p=1

|Bp,θ (hp)|2 sin θdθ
∫ π

π/2

P∏
p=1

|Bp,θ (hp)|2 sin θdθ

=
hHΓfh

hHΓbh
,

where

Γf =

∫ π/2

0

dθd
H
θ sin θdθ, (4.40)

Γb =

∫ π

π/2

dθd
H
θ sin θdθ, (4.41)

whose elements are given by

[Γf (ω)]ij =
ejω(j−i)δ/c − 1

jω(j − i)δ/c
, (4.42)

[Γb (ω)]ij =
1− e−jω(j−i)δ/c

jω(j − i)δ/c
. (4.43)

Same as the DF, the FBR cannot be factorized, i.e.,

F (h) �=
P∏

p=1

Fp (hp) , (4.44)

where

Fp (hp) =

∫ π/2

0

|Bp,θ (hp)|2 sin θdθ∫ π

π/2

|Bp,θ (hp)|2 sin θdθ
(4.45)

=
hH
p Γf,php

hH
p Γb,php

,

with
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Γf,p =

∫ π/2

0

dp,θd
H
p,θ sin θdθ, (4.46)

Γb,p =

∫ π

π/2

dp,θd
H
p,θ sin θdθ, (4.47)

whose elements are given by

[Γf,p (ω)]ij =
ejω(j−i)2P−pδ/c − 1

jω(j − i)2P−pδ/c
, (4.48)

[Γb,p (ω)]ij =
1− e−jω(j−i)2P−pδ/c

jω(j − i)2P−pδ/c
. (4.49)

4.4 Differential Beamformers

In this section, we show how to design important differential beamformers,
in a very elegant way, thanks to the above described decompositions of the
steering vector and global filter.

4.4.1 Principle

We know from our past work that we can design, in a very simple and general
fashion, all kinds of differential beamformers with null constraints [6], [7]. The
direction of the null determines the shape of the beampattern. Here, since
we have P filters, hp, p = 1, 2, . . . , P , of length 2, each one of them can only
handle one null. To simplify, in one of the proposed designs, we assume that
all these filters will generate the same null in the direction θ0 (0 < θ0 ≤ π); as
a result, the global filter, h, will generate a unique null of multiplicity P (in
the direction θ0) and the resulting differential beamformer will be of, roughly,
order P . We see that for each filter, we have exactly two constraints to fulfill.
The first constraint is the distortionless response (a one at the angle θ = 0)
and the second constraint is a null in the interval 0 < θ ≤ π. Thus, these two
constraints can be written as

dH
p,0hp = 1, (4.50)

dH
p,θ0hp = 0. (4.51)

We can express the previous equations as[
dH
p,0

dH
p,θ0

]
hp =

[
1 ej2

P−p�(0)

1 ej2
P−p�(θ0)

]
hp =

[
1
0

]
, (4.52)
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which is a very simple linear system of equations to solve.

4.4.2 Dipole

The dipole has a one at the angle 0 and a null at the angle π/2. Hence, the
linear system of two equations (4.52) becomes[

1 ej2
P−p�(0)

1 1

]
hp =

[
1
0

]
, (4.53)

for which the solution is

hp =
1

1− ej2
P−p�(0)

[
1
−1

]
. (4.54)

We deduce that the dipole of, roughly, order P is

hD =
1∏P

p=1

[
1− ej2

P−p�(0)
] [ 1

−1

]
⊗
[

1
−1

]
⊗ · · · ⊗

[
1
−1

]
. (4.55)

Thanks to (4.54), it is easy to see that the WNG and the power beampat-
tern of hD are, respectively,

W (hD) =
1

2P

P∏
p=1

∣∣∣∣1− ej2
P−p�(0)

∣∣∣∣2

=

P∏
p=1

{
1− cos

[
2P−p�(0)

]}
(4.56)

and

|B (hD)|2 =

∏P
p=1

∣∣∣∣1− ej2
P−p�(θ)

∣∣∣∣2∏P
p=1

∣∣∣1− ej2
P−p�(0)

∣∣∣2
=

∏P
p=1

{
1− cos

[
2P−p�(θ)

]}∏P
p=1 {1− cos [2P−p�(0)]}

. (4.57)

Finally, the DF is

D (hD) =
1

hH
DΓhD

. (4.58)
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Fig. 4.2 Beampatterns of the dipole of order P for f = 0.5 kHz and δ = 1 cm: (a) P = 1,
(b) P = 2, and (c) P = 3.

Figure 4.2 displays the directivity patterns of the first-, second-, and third-
order dipoles for f = 0.5 kHz and δ = 1 cm. Figure 4.3 shows plots of the
DFs and WNGs of the dipoles as a function of frequency. We observe that at
low frequencies the DF increases as we increase the order of the dipole, but
the WNG decreases. Of course, to get better compromises and performance,
it is recommended to use different orders at different frequencies.

4.4.3 Cardioid

In the cardioid, there is a one at the angle 0 and a null at the angle π.
Therefore, our linear system of two equations is
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Fig. 4.3 Performance of the dipole of order P as a function of frequency for δ = 1 cm
and several values of P : P = 1 (solid line with circles), P = 2 (dashed line with asterisks),
and P = 3 (dotted line with squares). (a) DF and (b) WNG.

[
1 ej2

P−p�(0)

1 ej2
P−p�(π)

]
hp =

[
1 ej2

P−p�(0)

1 e−j2P−p�(0)

]
hp =

[
1
0

]
. (4.59)

We easily find that the solution is

hp =
1

e−j2P−p�(0) − ej2
P−p�(0)

[
e−j2P−p�(0)

−1

]

=
1

1− ej2
P−p+1�(0)

[
1

−ej2
P−p�(0)

]
. (4.60)

As a consequence, the cardioid of, roughly, order P is

hC =
1∏P

p=1

[
1− ej2

P−p+1�(0)
]×

[
1

−ej2
P−p�(0)

]
⊗
[

1

−ej2
P−p�(0)

]
⊗ · · · ⊗

[
1

−ej2
P−p�(0)

]
.

(4.61)

Thanks to (4.60), we can express the WNG and the power beampattern
of hC as, respectively,

W (hC) =
1

2P

P∏
p=1

∣∣∣∣1− ej2
P−p+1�(0)

∣∣∣∣2

=

P∏
p=1

{
1− cos

[
2× 2P−p�(0)

]}
(4.62)
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Fig. 4.4 Beampatterns of the cardioid of order P for f = 0.5 kHz and δ = 5 mm:
(a) P = 1, (b) P = 2, and (c) P = 3.

and

|B (hC)|2 =

∏P
p=1

∣∣∣∣1− ej2
P−p+1�(θ)

∣∣∣∣2∏P
p=1

∣∣∣1− ej2
P−p+1�(0)

∣∣∣2
=

∏P
p=1

{
1− cos

[
2× 2P−p�(θ)

]}∏P
p=1 {1− cos [2× 2P−p�(0)]}

. (4.63)

Finally, the DF is

D (hC) =
1

hH
CΓhC

. (4.64)

Figure 4.4 displays the directivity patterns of the first-, second-, and third-
order cardioid for f = 0.5 kHz and δ = 5 mm. Figure 4.5 shows plots of the
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Fig. 4.5 Performance of the cardioid of order P as a function of frequency for δ = 5 mm
and several values of P : P = 1 (solid line with circles), P = 2 (dashed line with asterisks),
and P = 3 (dotted line with squares). (a) DF, (b) WNG, and (c) FBR.

DFs, WNGs, and FBRs of the cardioids as a function of frequency. We observe
that at low frequencies the DF and FBR increase as we increase the order
of the cardioid, but the WNG decreases. If, for example, we want a good
behavior of the DF, we can combine the second- and third-order cardioid,
where the third order is used up to 4 kHz and the second order is used for
above 4 kHz.

4.4.4 Hypercardioid

The first-order hypercardioid has a one at the angle 0 and a null at the angle
2π/3. By simple extension, we can derive a kind of hypercardioid of, roughly,
order P , as we did for the dipole or cardioid. Therefore, our linear system of
two equations is[

1 ej2
P−p�(0)

1 ej2
P−p�(2π/3)

]
hp =

[
1 ej2

P−p�(0)

1 e−j2P−p−1�(0)

]
hp =

[
1
0

]
, (4.65)

for which the solution is
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hp =
1

e−j2P−p−1�(0) − ej2
P−p�(0)

[
e−j2P−p−1�(0)

−1

]

=
1

1− ej3× 2P−p−1�(0)

[
1

−ej2
P−p−1�(0)

]
. (4.66)

Therefore, the first kind of hypercardioid of, roughly, order P that we propose
here is

hH1 =
1∏P

p=1

[
1− ej3× 2P−p−1�(0)

]×
[

1

−ej2
P−p−1�(0)

]
⊗
[

1

−ej2
P−p−1�(0)

]
⊗ · · · ⊗

[
1

−ej2
P−p−1�(0)

]
.

(4.67)

Thanks to (4.66), we can express the WNG and the power beampattern
of hH1 as, respectively,

W (hH1) =
1

2P

P∏
p=1

∣∣∣∣1− ej3× 2P−p−1�(0)
∣∣∣∣2

=

P∏
p=1

{
1− cos

[
3

2
× 2P−p�(0)

]}
(4.68)

and

|B (hH1)|2 =

∏P
p=1

∣∣∣∣1− e3× j2P−p−1�(θ)
∣∣∣∣2∏P

p=1

∣∣∣1− e3× j2P−p−1�(0)
∣∣∣2

=

∏P
p=1

{
1− cos

[
3
2 × 2P−p�(θ)

]}∏P
p=1

{
1− cos

[
3
2 × 2P−p�(0)

]} . (4.69)

Finally, the DF is

D (hH1) =
1

hH
H1ΓhH1

. (4.70)

Figure 4.6 displays the directivity patterns of the first-, second-, and third-
order hypercardioid of the first kind for f = 0.5 kHz and δ = 5 mm. Figure 4.7
shows plots of the DFs, WNGs, and FBRs of the hypercardioids as a function
of frequency. We observe that for low frequencies the DF and FBR increase
as we increase the order of the hypercardioid, but the WNG decreases.
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Fig. 4.6 Beampatterns of the first hypercardioid, hH1, of order P for f = 0.5 kHz and
δ = 5 mm: (a) P = 1, (b) P = 2, and (c) P = 3.

A more reasonable way to derive the hypercardioid is by maximizing all
the DFs, Dp (hp) , p = 1, 2, . . . , P . We get

hp =
Γ−1
p dp,0

dH
p,0Γ

−1
p dp,0

. (4.71)

As a result, the second hypercardioid of, roughly, order P that we propose is

hH2 = h1 ⊗ h2 ⊗ · · · ⊗ hP . (4.72)

To fully maximize the DF in (4.31), we need to derive an iterative algo-
rithm. To simplify the presentation, let us take P = 3. From the expressions:

hi ⊗ hj = (hi ⊗ I2)hj (4.73)

= (I2 ⊗ hj)hi, (4.74)
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Fig. 4.7 Performance of the first hypercardioid, hH1, of order P as a function of frequency
for δ = 5 mm and several values of P : P = 1 (solid line with circles), P = 2 (dashed line
with asterisks), and P = 3 (dotted line with squares). (a) DF, (b) WNG, and (c) FBR.

where I2 is the 2× 2 identity matrix, we deduce the following relationships:

h1 ⊗ h2 ⊗ h3 = (I4 ⊗ h3) (I2 ⊗ h2)h1 (4.75)

= (h1 ⊗ I4) (I2 ⊗ h3)h2 (4.76)

= (h1 ⊗ I4) (h2 ⊗ I2)h3, (4.77)

where I4 is the 4 × 4 identity matrix. Therefore, when h2 and h3 are fixed
and distortionless, we write the DF as

D (h1|h2,h3) =

∣∣hH
1 d1,0

∣∣2
hH
1 Γh2,3

h1
, (4.78)

where

Γh2,3
= [(I4 ⊗ h3) (I2 ⊗ h2)]

H
Γ (I4 ⊗ h3) (I2 ⊗ h2) . (4.79)

When h1 and h3 are fixed and distortionless, we write the DF as

D (h2|h1,h3) =

∣∣hH
2 d2,0

∣∣2
hH
2 Γh1,3

h2
, (4.80)
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where

Γh1,3 = [(h1 ⊗ I4) (I2 ⊗ h3)]
H
Γ (h1 ⊗ I4) (I2 ⊗ h3) . (4.81)

In the same way, when h1 and h2 are fixed and distortionless, we write the
DF as

D (h3|h1,h2) =

∣∣hH
3 d3,0

∣∣2
hH
3 Γh1,2h3

, (4.82)

where

Γh1,2
= [(h1 ⊗ I4) (h2 ⊗ I2)]

H
Γ (h1 ⊗ I4) (h2 ⊗ I2) . (4.83)

At iteration 0, we may take

h
(0)
2 =

Γ−1
2 d2,0

dH
2,0Γ

−1
2 d2,0

(4.84)

and

h
(0)
3 =

Γ−1
3 d3,0

dH
3,0Γ

−1
3 d3,0

. (4.85)

Substituting h
(0)
2 and h

(0)
3 into (4.79), we get

Γ
h

(0)
2,3

=
[(

I4 ⊗ h
(0)
3

)(
I2 ⊗ h

(0)
2

)]H
Γ
(
I4 ⊗ h

(0)
3

)(
I2 ⊗ h

(0)
2

)
. (4.86)

Now, plugging this expression into the DF in (4.78), we obtain at iteration 1:

D
(
h
(1)
1 |h(0)

2 ,h
(0)
3

)
=

∣∣∣∣(h(1)
1

)H
d1,0

∣∣∣∣2(
h
(1)
1

)H
Γ
h

(0)
2,3

h
(1)
1

. (4.87)

The maximization of D
(
h
(1)
1 |h(0)

2 ,h
(0)
3

)
with respect to h

(1)
1 gives

h
(1)
1 =

Γ−1

h
(0)
2,3

d1,0

dH
1,0Γ

−1

h
(0)
2,3

d1,0

. (4.88)

Using h
(1)
1 and h

(0)
3 in (4.81), we get

Γ
h

(1)
1,3

=
[(

h
(1)
1 ⊗ I4

)(
I2 ⊗ h

(0)
3

)]H
Γ
(
h
(1)
1 ⊗ I4

)(
I2 ⊗ h

(0)
3

)
. (4.89)
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As a consequence, the DF in (4.80) is

D
(
h
(1)
2 |h(1)

1 ,h
(0)
3

)
=

∣∣∣∣(h(1)
2

)H
d2,0

∣∣∣∣2(
h
(1)
2

)H
Γ
h

(1)
1,3

h
(1)
2

, (4.90)

whose maximization with respect to h
(1)
2 gives

h
(1)
2 =

Γ−1

h
(1)
1,3

d2,0

dH
2,0Γ

−1

h
(1)
1,3

d2,0

. (4.91)

Finally, the substitution of h
(1)
1 and h

(1)
2 into (4.83) leads to

Γ
h

(1)
1,2

=
[(

h
(1)
1 ⊗ I4

)(
h
(1)
2 ⊗ I2

)]H
Γ
(
h
(1)
1 ⊗ I4

)(
h
(1)
2 ⊗ I2

)
, (4.92)

then to the DF in (4.82):

D
(
h
(1)
3 |h(1)

1 ,h
(1)
2

)
=

∣∣∣∣(h(1)
3

)H
d3,0

∣∣∣∣2(
h
(1)
3

)H
Γ
h

(1)
1,2

h
(1)
3

, (4.93)

and whose maximization gives

h
(1)
3 =

Γ−1

h
(1)
1,2

d3,0

dH
3,0Γ

−1

h
(1)
1,2

d3,0

. (4.94)

Continuing the iterations up to the iteration n, we easily get for the first
filter:

h
(n)
1 =

Γ−1

h
(n−1)
2,3

d1,0

dH
1,0Γ

−1

h
(n−1)
2,3

d1,0

, (4.95)

with

Γ
h

(n−1)
2,3

=
[(

I4 ⊗ h
(n−1)
3

)(
I2 ⊗ h

(n−1)
2

)]H
Γ
(
I4 ⊗ h

(n−1)
3

)(
I2 ⊗ h

(n−1)
2

)
,

(4.96)

for the second filter:
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Fig. 4.8 Beampatterns of the third hypercardioid, h
(n)
H3 , of order P = 3 for f = 0.5 kHz

and δ = 5 mm, obtained at the iteration n: (a) n = 0 (the second hypercardioid), (b) n = 1,
(c) n = 2, and (d) n = 3.

h
(n)
2 =

Γ−1

h
(n)
1,3

d2,0

dH
2,0Γ

−1

h
(n)
1,3

d2,0

, (4.97)

with

Γ
h

(n)
1,3

=
[(

h
(n)
1 ⊗ I4

)(
I2 ⊗ h

(n−1)
3

)]H
Γ
(
h
(n)
1 ⊗ I4

)(
I2 ⊗ h

(n−1)
3

)
, (4.98)

and for the third filter:

h
(n)
3 =

Γ−1

h
(n)
1,2

d3,0

dH
3,0Γ

−1

h
(n)
1,2

d3,0

, (4.99)

with
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Fig. 4.9 Performance of the third hypercardioid, h
(n)
H3 , of order P = 3 as a function of

frequency for δ = 5 mm and several values of n: n = 0 (solid line with circles), n = 1
(dashed line with asterisks), n = 3 (dotted line with squares), and n = 10 (dash-dot line
with triangles). (a) DF, (b) WNG, and (c) FBR.

Γ
h

(n)
1,2

=
[(

h
(n)
1 ⊗ I4

)(
h
(n)
2 ⊗ I2

)]H
Γ
(
h
(n)
1 ⊗ I4

)(
h
(n)
2 ⊗ I2

)
. (4.100)

Therefore, the third and last proposed hypercardioid is at iteration n:

h
(n)
H3 = h

(n)
1 ⊗ h

(n)
2 ⊗ h

(n)
3 . (4.101)

Figure 4.8 displays the directivity patterns of the third-order hypercardioid
of the third kind for f = 0.5 kHz and δ = 5 mm, obtained at the iteration
n for several values of n. Figure 4.9 shows plots of the DFs, WNGs, and
FBRs of the hypercardioids as a function of frequency. The iteration n = 0
corresponds to the third-order hypercardioid of the second kind. We observe
that the DF of the hypercardioid of the third kind is larger than that of the
second kind, and the DF of the hypercardioid of the second kind is larger
than that of the first kind (compare Figs 4.7 and 4.9). Furthermore, the DF
of the hypercardioid of the third kind increases at each iteration, and roughly
converges after three iterations, while the WNG and FBR decrease at each
iteration.



104 4 Generalization with ULAs

4.4.5 Supercardioid

The first-order supercardioid has a one at the angle 0 and a null at the angle
3π/4. By simple extension, we can derive a kind of supercardioid of, roughly,
order P , as we did for the dipole or cardioid. Therefore, our linear system of
two equations is[

1 ej2
P−p�(0)

1 ej2
P−p�(3π/4)

]
hp =

[
1 ej2

P−p�(0)

1 e−j
√
2× 2P−p−1�(0)

]
hp =

[
1
0

]
. (4.102)

The solution of the above system is

hp =
1

e−j
√
2× 2P−p−1�(0) − ej2

P−p�(0)

[
e−j

√
2× 2P−p−1�(0)

−1

]

=
1

1− ejϕ2
P−p−1�(0)

[
1

−ej
√
2× 2P−p−1�(0)

]
, (4.103)

where ϕ = 2+
√
2. Therefore, the first kind of supercardioid of, roughly, order

P that we propose in this subsection is

hS1 =
1∏P

p=1

[
1− ejϕ2

P−p−1�(0)
]×

[
1

−ej
√
2× 2P−p−1�(0)

]
⊗ · · · ⊗

[
1

−ej
√
2× 2P−p−1�(0)

]
. (4.104)

Thanks to (4.103), we can express the WNG and the power beampattern
of hS1 as, respectively,

W (hS1) =
1

2P

P∏
p=1

∣∣∣∣1− ejϕ2
P−p−1�(0)

∣∣∣∣2

=

P∏
p=1

{
1− cos

[ϕ
2
× 2P−p�(0)

]}
(4.105)

and
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Fig. 4.10 Beampatterns of the first supercardioid, hS1, of order P for f = 0.5 kHz and
δ = 5 mm: (a) P = 1, (b) P = 2, and (c) P = 3.

|B (hS1)|2 =

∏P
p=1

∣∣∣∣1− eϕj2
P−p−1�(θ)

∣∣∣∣2∏P
p=1

∣∣∣1− eϕj2
P−p−1�(0)

∣∣∣2
=

∏P
p=1

{
1− cos

[
ϕ
2 × 2P−p�(θ)

]}∏P
p=1

{
1− cos

[
ϕ
2 × 2P−p�(0)

]} . (4.106)

Finally, the DF is

D (hS1) =
1

hH
S1ΓhS1

. (4.107)

Figure 4.10 displays the directivity patterns of the first-, second- and third-
order supercardioid of the first kind for f = 0.5 kHz and δ = 5 mm. Fig-
ure 4.11 shows plots of the DFs, WNGs, and FBRs of the supercardioids
as a function of frequency. We observe that at low frequencies the DF and
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Fig. 4.11 Performance of the first supercardioid, hS1, of order P as a function of frequency
for δ = 5 mm and several values of P : P = 1 (solid line with circles), P = 2 (dashed line
with asterisks), and P = 3 (dotted line with squares). (a) DF, (b) WNG, and (c) FBR.

FBR increase as we increase the order of the supercardioid, but the WNG
decreases.

A more reasonable way to derive the supercardioid is by maximizing all
the FBRs, Fp (hp) , p = 1, 2, . . . , P . Let tp be the eigenvector corresponding
to the maximum eigenvalue of Γ−1

b,pΓf,p. Then, it is straightforward to see
that

hp =
tp

dH
p,0tp

(4.108)

maximizes Fp (hp). As a consequence, the second supercardioid of, roughly,
order P that we propose is

hS2 = h1 ⊗ h2 ⊗ · · · ⊗ hP . (4.109)

To fully maximize the FBR in (4.39), we need to derive an iterative algo-
rithm as we proposed to do for the maximization of the DF. To simplify the
presentation, let us take P = 3. When h2 and h3 are fixed, we write the FBR
as
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F (h1|h2,h3) =
hH
1 Γf,h2,3

h1

hH
1 Γb,h2,3h1

, (4.110)

where

Γf,h2,3
= [(I4 ⊗ h3) (I2 ⊗ h2)]

H
Γf (I4 ⊗ h3) (I2 ⊗ h2) , (4.111)

Γb,h2,3
= [(I4 ⊗ h3) (I2 ⊗ h2)]

H
Γb (I4 ⊗ h3) (I2 ⊗ h2) . (4.112)

When h1 and h3 are fixed, we write the FBR as

F (h2|h1,h3) =
hH
2 Γf,h1,3

h2

hH
2 Γb,h1,3h2

, (4.113)

where

Γf,h1,3
= [(h1 ⊗ I4) (I2 ⊗ h3)]

H
Γf (h1 ⊗ I4) (I2 ⊗ h3) , (4.114)

Γb,h1,3
= [(h1 ⊗ I4) (I2 ⊗ h3)]

H
Γb (h1 ⊗ I4) (I2 ⊗ h3) . (4.115)

In the same way, when h1 and h2 are fixed, we write the FBR as

F (h3|h1,h2) =
hH
3 Γf,h1,2

h3

hH
3 Γb,h1,2h3

, (4.116)

where

Γf,h1,2
= [(h1 ⊗ I4) (h2 ⊗ I2)]

H
Γf (h1 ⊗ I4) (h2 ⊗ I2) , (4.117)

Γb,h1,2
= [(h1 ⊗ I4) (h2 ⊗ I2)]

H
Γb (h1 ⊗ I4) (h2 ⊗ I2) . (4.118)

At iteration 0, we may take

h
(0)
2 =

t2
dH
2,0t2

(4.119)

and

h
(0)
3 =

t3
dH
3,0t3

, (4.120)

where t2 and t3 are the eigenvectors corresponding to the maximum eigen-

values of Γ−1
b,2Γf,2 and Γ−1

b,3Γf,3, respectively. Substituting h
(0)
2 and h

(0)
3 into

(4.111) and (4.112), we get

Γ
f,h

(0)
2,3

=
[(

I4 ⊗ h
(0)
3

)(
I2 ⊗ h

(0)
2

)]H
Γf

(
I4 ⊗ h

(0)
3

)(
I2 ⊗ h

(0)
2

)
, (4.121)

Γ
b,h

(0)
2,3

=
[(

I4 ⊗ h
(0)
3

)(
I2 ⊗ h

(0)
2

)]H
Γb

(
I4 ⊗ h

(0)
3

)(
I2 ⊗ h

(0)
2

)
. (4.122)
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Now, plugging these expressions into the FBR in (4.110), we obtain at iter-
ation 1:

F
(
h
(1)
1 |h(0)

2 ,h
(0)
3

)
=

(
h
(1)
1

)H
Γ
f,h

(0)
2,3

h
(1)
1(

h
(1)
1

)H
Γ
b,h

(0)
2,3

h
(1)
1

. (4.123)

The maximization of F
(
h
(1)
1 |h(0)

2 ,h
(0)
3

)
with respect to h

(1)
1 gives

h
(1)
1 =

t
(0)
1

dH
1,0t

(0)
1

, (4.124)

where t
(0)
1 is the eigenvector corresponding to the maximum eigenvalue of

Γ−1

b,h
(0)
2,3

Γ
f,h

(0)
2,3

. Using h
(1)
1 and h

(0)
3 in (4.114) and (4.115), we get

Γ
f,h

(1)
1,3

=
[(

h
(1)
1 ⊗ I4

)(
I2 ⊗ h

(0)
3

)]H
Γf

(
h
(1)
1 ⊗ I4

)(
I2 ⊗ h

(0)
3

)
, (4.125)

Γ
b,h

(1)
1,3

=
[(

h
(1)
1 ⊗ I4

)(
I2 ⊗ h

(0)
3

)]H
Γb

(
h
(1)
1 ⊗ I4

)(
I2 ⊗ h

(0)
3

)
. (4.126)

As a consequence, the FBR in (4.113) is

F
(
h
(1)
2 |h(1)

1 ,h
(0)
3

)
=

(
h
(1)
2

)H
Γ
f,h

(1)
1,3

h
(1)
2(

h
(1)
2

)H
Γ
b,h

(1)
1,3

h
(1)
2

, (4.127)

whose maximization with respect to h
(1)
2 gives

h
(1)
2 =

t
(1)
2

dH
2,0t

(1)
2

, (4.128)

where t
(1)
2 is the eigenvector corresponding to the maximum eigenvalue of

Γ−1

b,h
(1)
1,3

Γ
f,h

(1)
1,3

. Finally, the substitution of h
(1)
1 and h

(1)
2 into (4.117) and

(4.118) leads to

Γ
f,h

(1)
1,2

=
[(

h
(1)
1 ⊗ I4

)(
h
(1)
2 ⊗ I2

)]H
Γf

(
h
(1)
1 ⊗ I4

)(
h
(1)
2 ⊗ I2

)
, (4.129)

Γ
b,h

(1)
1,2

=
[(

h
(1)
1 ⊗ I4

)(
h
(1)
2 ⊗ I2

)]H
Γb

(
h
(1)
1 ⊗ I4

)(
h
(1)
2 ⊗ I2

)
, (4.130)

then to the FBR in (4.116):
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Fig. 4.12 Beampatterns of the third supercardioid, h
(n)
S3 , of order P = 3 for f = 0.5 kHz

and δ = 5 mm, obtained at the iteration n: (a) n = 0 (the second supercardioid), (b) n = 1,
(c) n = 2, and (d) n = 5.

F
(
h
(1)
3 |h(1)

1 ,h
(1)
2

)
=

(
h
(1)
3

)H
Γ
f,h

(1)
1,2

h
(1)
3(

h
(1)
3

)H
Γ
b,h

(1)
1,2

h
(1)
3

, (4.131)

and whose maximization gives

h
(1)
3 =

t
(1)
3

dH
3,0t

(1)
3

, (4.132)

where t
(1)
3 is the eigenvector corresponding to the maximum eigenvalue of

Γ−1

b,h
(1)
1,2

Γ
f,h

(1)
1,2

.

Continuing the iterations up to the iteration n, we easily get for the first
filter:
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h
(n)
1 =

t
(n−1)
1

dH
1,0t

(n−1)
1

, (4.133)

where t
(n−1)
1 is the eigenvector corresponding to the maximum eigenvalue of

Γ−1

b,h
(n−1)
2,3

Γ
f,h

(n−1)
2,3

, with

Γ
f,h

(n−1)
2,3

=
[(

I4 ⊗ h
(n−1)
3

)(
I2 ⊗ h

(n−1)
2

)]H
Γf

(
I4 ⊗ h

(n−1)
3

)(
I2 ⊗ h

(n−1)
2

)
,

(4.134)

Γ
b,h

(n−1)
2,3

=
[(

I4 ⊗ h
(n−1)
3

)(
I2 ⊗ h

(n−1)
2

)]H
Γb

(
I4 ⊗ h

(n−1)
3

)(
I2 ⊗ h

(n−1)
2

)
,

(4.135)

for the second filter:

h
(n)
2 =

t
(n)
2

dH
2,0t

(n)
2

, (4.136)

where t
(n)
2 is the eigenvector corresponding to the maximum eigenvalue of

Γ−1

b,h
(n)
1,3

Γ
f,h

(n)
1,3

, with

Γ
f,h

(n)
1,3

=
[(

h
(n)
1 ⊗ I4

)(
I2 ⊗ h

(n−1)
3

)]H
Γf

(
h
(n)
1 ⊗ I4

)(
I2 ⊗ h

(n−1)
3

)
,

(4.137)

Γ
b,h

(n)
1,3

=
[(

h
(n)
1 ⊗ I4

)(
I2 ⊗ h

(n−1)
3

)]H
Γb

(
h
(n)
1 ⊗ I4

)(
I2 ⊗ h

(n−1)
3

)
,

(4.138)

and for the third filter:

h
(n)
3 =

t
(n)
3

dH
3,0t

(n)
3

, (4.139)

where t
(n)
3 is the eigenvector corresponding to the maximum eigenvalue of

Γ−1

b,h
(n)
1,2

Γ
f,h

(n)
1,2

, with

Γ
f,h

(n)
1,2

=
[(

h
(n)
1 ⊗ I4

)(
h
(n)
2 ⊗ I2

)]H
Γf

(
h
(n)
1 ⊗ I4

)(
h
(n)
2 ⊗ I2

)
, (4.140)

Γ
b,h

(n)
1,2

=
[(

h
(n)
1 ⊗ I4

)(
h
(n)
2 ⊗ I2

)]H
Γb

(
h
(n)
1 ⊗ I4

)(
h
(n)
2 ⊗ I2

)
. (4.141)

Therefore, the third and last proposed supercardioid is at iteration n:
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Fig. 4.13 Performance of the third supercardioid, h
(n)
S3 , of order P = 3 as a function of

frequency for δ = 5 mm and several values of n: n = 0 (solid line with circles), n = 1
(dashed line with asterisks), n = 5 (dotted line with squares), and n = 10 (dash-dot line
with triangles). (a) DF, (b) WNG, and (c) FBR.

h
(n)
S3 = h

(n)
1 ⊗ h

(n)
2 ⊗ h

(n)
3 . (4.142)

Figure 4.12 displays the directivity patterns of the third-order supercar-
dioid of the third kind for f = 0.5 kHz and δ = 5 mm, obtained at the itera-
tion n for several values of n. Figure 4.13 shows plots of the DFs, WNGs, and
FBRs of the supercardioids as a function of frequency. The iteration n = 0
corresponds to the third-order supercardioid of the second kind. We observe
that the FBR of the supercardioid of the third kind is larger than that of the
second kind, and the FBR of the supercardioid of the second kind is larger
than that of the first kind (compare Figs 4.11 and 4.13). Furthermore, the
FBR of the supercardioid of the third kind increases at each iteration, and
roughly converges after five iterations, while the DF also increases at each
iteration.
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Chapter 5

Approach with Nonuniform Linear
Arrays

Until now, we have dealt with ULAs but another straightforward geometry
extension is the nonuniform linear array (NULA), which is the focus of this
chapter. First, we show how from two virtual ULAs we can construct a phys-
ical NULA whose associated steering vector is the Kronecker product of the
steering vectors associated with the virtual arrays. Then, we explain how
Kronecker product beamforming is performed. We give the most important
performance measures in this context. Finally, we show how to derive some
interesting optimal beamformers.

5.1 Signal Model and Problem Formulation

To describe our model, let us start by considering two different virtual ULAs
on the same line denoted 1 and 2. ULA 1 has M1 microphones and an in-
terelement spacing equal to M2δ, where δ is some unit spacing, and ULA 2
has M2 microphones and an interelement spacing equal to M1δ (some exam-
ples are shown in Fig. 1.3). Now, let us assume that a desired source signal
(plane wave), in the farfield, propagates from the azimuth angle, θ, in an
anechoic acoustic environment at the speed of sound and impinges on the
above described virtual arrays. In this scenario, the corresponding steering
vectors (of lengths M1 and M2 respectively) are [1]

d1,θ =
[
1 e−jM2�(θ) e−j2M2�(θ) · · · e−j(M1−1)M2�(θ)

]T
, (5.1)

d2,θ =
[
1 e−jM1�(θ) e−j2M1�(θ) · · · e−j(M2−1)M1�(θ)

]T
, (5.2)

where

�(θ) =
ωδ cos θ

c
. (5.3)
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Without loss of generality, we may assume that M2 > M1 (with M1 ≥ 2 and
M2 ≥ 3), so that (M2− 1)M1 > (M1− 1)M2. In this study, we are interested
in physical linear arrays whose associated steering vectors are of the form:

d̃θ = d1,θ ⊗ d2,θ (5.4)

=
[
dT
2,θ e−jM2�(θ)dT

2,θ e−j2M2�(θ)dT
2,θ · · · e−j(M1−1)M2�(θ)dT

2,θ

]T
.

Clearly, d̃θ is of length M1M2. Furthermore, it will be assumed that M1 and
M2 are coprime integers, so that all the sensors (whose number is equal to
M1M2) of the formed linear array are in different positions; however, the

mth (m = 1, 2, . . . ,M1M2) element of d̃θ does not necessarily correspond to
the mth array sensor (except for the first and last entries, i.e., m = 1 and
m = M1M2) and this steering vector needs to be reordered appropriately,
which is easy to do when M1 and M2 are given. As a consequence, we have
built a physical NULA with M1M2 sensors (in different positions on the same
line) whose associated (unordered) steering vector is given in (5.4) and whose
aperture is (2M1M2 −M1 −M2)δ. Notice that what we propose here is not
a coprime array [2] since we have M1M2 physical sensors while a coprime
array has only M1 +M2 − 1 elements. Furthermore, the proposed processing
is very much different. We only borrow the fact that M1 and M2 are coprime
integers so that the resulting NULA has non-overlapping elements.

In this chapter, we consider doing beamforming with small values of δ,
like in differential [3], [4], [5] or superdirective [6], [7] beamforming, where
the main lobe is at the angle θ = 0 (endfire direction) and the desired signal
propagates from the same angle. Beamforming under these conditions has the
potential to lead to large array gains. Then, our objective is to study beam-
forming with the proposed NULAs. Different avenues will be investigated.

Since the source propagates from the angle θ = 0, the observation signal
vector of length M1M2 can be expressed in the frequency domain as [8], [9]

ỹ =
[
Ỹ1 Ỹ2 · · · ỸM1M2

]T
= x̃+ ṽ

= d̃0X + ṽ, (5.5)

where d̃0 = d1,0 ⊗ d2,0 is the steering vector at θ = 0, X is the zero-mean
desired source signal, and ṽ is the zero-mean additive noise signal vector
defined similarly to ỹ. The covariance matrix of ỹ is then

Φỹ = E
(
ỹỹH

)
= φX d̃0d̃

H
0 +Φṽ, (5.6)
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where φX = E
(
|X|2

)
is the variance of X and Φṽ = E

(
ṽṽH

)
is the co-

variance matrix of ṽ. Assuming that the first sensor is the reference, we can
express (5.6) as

Φỹ = φX d̃0d̃
H
0 + φ

˜V1
Γṽ, (5.7)

where φ
˜V1

= E

(∣∣∣Ṽ1

∣∣∣2) is the variance of the noise at the reference sensor

and Γṽ = Φṽ/φ˜V1
is the pseudo-coherence matrix of the noise. In the case

of the spherically isotropic (diffuse) noise field, which will often be assumed
here, (5.7) becomes

Φỹ = φX d̃0d̃
H
0 + φΓ̃, (5.8)

where φ is the variance of the diffuse noise and

Γ̃ =
1

2

∫ π

0

d̃θd̃
H
θ sin θdθ (5.9)

=
1

2

∫ π

0

(
d1,θd

H
1,θ

)⊗ (d2,θd
H
2,θ

)
sin θdθ.

From the signal model described in this section, we will show next how to
perform beamforming with Kronecker product filters.

5.2 Kronecker Product Beamforming

We propose to perform beamforming with the Kronecker product filter of
length M1M2:

h̃ = h1 ⊗ h2, (5.10)

where h1 and h2 are two complex-valued linear filters of lengths M1 and M2,
respectively. Then, beamforming is performed by applying h̃ [as defined in
(5.10)] to ỹ [from (5.5)]. We get

Z = h̃H ỹ (5.11)

= h̃H d̃0X + h̃H ṽ

= Xfd + Vrn,

where Z is the estimate of the desired signal, X,
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Xfd = (h1 ⊗ h2)
H
(d1,0 ⊗ d2,0)X

=
(
hH
1 d1,0

) (
hH
2 d2,0

)
X (5.12)

is the filtered desired signal, and

Vrn = (h1 ⊗ h2)
H
ṽ (5.13)

is the residual noise. We deduce that the variance of Z is

φZ = φX

∣∣hH
1 d1,0

∣∣2 ∣∣hH
2 d2,0

∣∣2 + φ
˜V1
(h1 ⊗ h2)

H
Γṽ (h1 ⊗ h2) . (5.14)

In our context, the distortionless constraint in the direction of the desired
source, i.e., θ = 0, is often required, i.e.,

h̃H d̃0 =
(
hH
1 d1,0

) (
hH
2 d2,0

)
= 1. (5.15)

Therefore, we will always choose hH
1 d1,0 = hH

2 d2,0 = 1.
It is of course possible to use a complex-valued linear filter, hC, of length

M1M2 and apply it to ỹ resulting in

ZC = hH
C ỹ, (5.16)

which corresponds to the conventional linear beamforming technique com-
bined with an NULA. This processing, obviously, does not exploit the partic-
ular structure of the steering vector d̃θ. The fundamental difference between
hC and h̃ is that in the former one, M1M2 coefficients need to be estimated
while in the latter one, only M1+M2 coefficients have to be estimated. Also,
there is much more flexibility with h̃ than with hC.

5.3 Illustrative Example

Let us take the simplest example of M1 = 2 and M2 = 3. In this case, the
steering vectors of the two virtual ULAs are

d1,θ =
[
1 e−j3�(θ)

]T
, (5.17)

d2,θ =
[
1 e−j2�(θ) e−j4�(θ)

]T
, (5.18)

and, as a result, the steering vector of the physical NULA (composed of 6
sensors) is

d̃θ = d1,θ ⊗ d2,θ (5.19)

=
[
1 e−j2�(θ) e−j4�(θ) e−j3�(θ) e−j5�(θ) e−j7�(θ)

]T
.
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We can reorder d̃θ as

dθ =
[
1 e−j2�(θ) e−j3�(θ) e−j4�(θ) e−j5�(θ) e−j7�(θ)

]T
, (5.20)

so that now the elements of dθ correspond to the sensors of the physical
NULA, with minimum and maximum interelement spacings of δ and 2δ,
respectively.

The signal model is then

ỹ =
[
Ỹ1 Ỹ2 Ỹ3 Ỹ4 Ỹ5 Ỹ6

]T
= x̃+ ṽ

= d̃0X + ṽ, (5.21)

or, equivalently,

y =
[
Y 1 Y 2 Y 3 Y 4 Y 5 Y 6

]T
= x+ v

= d0X + v, (5.22)

where y and v are ordered with respect to d0.
The Kronecker product filter is

h̃ = h1 ⊗ h2 (5.23)

=
[
H1,1H2,1 H1,1H2,2 H1,1H2,3 H1,2H2,1 H1,2H2,2 H1,2H2,3

]T
,

where H1,m1
, m1 = 1, 2 and H2,m2

, m2 = 1, 2, 3 are the coefficients of the
linear filters h1 and h2, respectively. We deduce that the ordered filter is

h =
[
H1,1H2,1 H1,1H2,2 H1,2H2,1 H1,1H2,3 H1,2H2,2 H1,2H2,3

]T
.

(5.24)

As a consequence, beamforming with Kronecker product filters is

Z = h̃H ỹ (5.25)

= h
H
y

= h̃H d̃0X + h̃H ṽ

= h
H
d0X + h

H
v

= Xfd + Vrn.
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5.4 Performance Measures

The first important measure is the beampattern or directivity pattern, which
describes the sensitivity of the beamformer to a plane wave impinging on the
NULA from the direction θ. It can be expressed as

Bθ

(
h̃
)
= d̃H

θ h̃ (5.26)

=
(
dH
1,θh1

) (
dH
2,θh2

)
= B1,θ (h1)× B2,θ (h2) ,

where

B1,θ (h1) = dH
1,θh1

=

M1∑
m1=1

H1,m1e
j(m1−1)M2�(θ) (5.27)

and

B2,θ (h2) = dH
2,θh2

=

M2∑
m2=1

H2,m2e
j(m2−1)M1�(θ), (5.28)

with H1,m1 , m1 = 1, 2, . . . ,M1 and H2,m2 , m2 = 1, 2, . . . ,M2 being the
coefficients of the filters h1 and h2, respectively. Let Z1 = ejM2�(θ) and
Z2 = ejM1�(θ), we can express the global beampattern as a polynomial in
two variables, which is the product of two polynomials (of degrees M1 − 1
and M2 − 1) in one variable each, i.e.,

B (Z1,Z2) = B1 (Z1)× B2 (Z2) (5.29)

=

(
M1∑

m1=1

H1,m1Zm1−1
1

)(
M2∑

m2=1

H2,m2Zm2−1
2

)
.

From this perspective, we can see that this beampattern has at most
M1 + M2 − 2 distinct nulls (between 0 and π), while the beampattern of
a conventional linear array with M1M2 sensors has at most M1M2 − 1 dis-

tinct nulls (between 0 and π). The fact that Bθ

(
h̃
)
can be expressed as the

product of two beampatterns is an interesting property that can be exploited
in the design of flexible beamformers.

Given that the first sensor is the reference, we can define the input SNR
with respect to this reference as
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iSNR =
φX

φ
˜V1

. (5.30)

The output SNR is defined [from the variance of Z, see (5.14)] as

oSNR
(
h̃
)
= φX

∣∣∣h̃H d̃0

∣∣∣2
h̃HΦṽh̃

(5.31)

=
φX

φ
˜V1

×

∣∣∣h̃H d̃0

∣∣∣2
h̃HΓṽh̃

.

The definition of the gain in SNR is easily derived from the previous defini-
tions, i.e.,

G
(
h̃
)
=

oSNR
(
h̃
)

iSNR
(5.32)

=

∣∣∣h̃H d̃0

∣∣∣2
h̃HΓṽh̃

.

The most convenient way to evaluate the sensitivity of the NULA to some
of its imperfections is via the WNG, which is defined by taking Γṽ = IM1M2

in (5.32), where IM1M2
is the M1M2 ×M1M2 identity matrix, i.e.,

W
(
h̃
)
=

∣∣∣h̃H d̃0

∣∣∣2
h̃H h̃

(5.33)

=

∣∣hH
1 d1,0

∣∣2
hH
1 h1

×
∣∣hH

2 d2,0

∣∣2
hH
2 h2

= W1 (h1)×W2 (h2) ,

where

W1 (h1) =

∣∣hH
1 d1,0

∣∣2
hH
1 h1

(5.34)

and

W2 (h2) =

∣∣hH
2 d2,0

∣∣2
hH
2 h2

. (5.35)

Obviously, the WNG of the NULA is simply the product of the WNGs of the
two virtual ULAs described in Section 5.1. It is easy to check that
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W
(
h̃
)
≤ M1M2, ∀h̃. (5.36)

Another important measure, which quantifies how the microphone array
performs in the presence of presence of spatial noise and reverberation is the
DF:

D
(
h̃
)
=

∣∣∣B0

(
h̃
)∣∣∣2

1

2

∫ π

0

∣∣∣Bθ

(
h̃
)∣∣∣2 sin θdθ (5.37)

=
|B1,0 (h1)|2 |B2,0 (h2)|2

1

2

∫ π

0

|B1,θ (h1)|2 |B2,θ (h2)|2 sin θdθ

=

∣∣∣h̃H d̃0

∣∣∣2
h̃H Γ̃h̃

,

where Γ̃ is defined in (5.9). One can verify that

D
(
h̃
)
≤ d̃H

0 Γ̃−1d̃0, ∀h̃. (5.38)

We observe that contrary to the beampattern and the WNG, the DF of the
NULA cannot be factorized, i.e.,

D
(
h̃
)
�= D1 (h1)×D2 (h2) , (5.39)

where

D1 (h1) =
|B1,0 (h1)|2

1

2

∫ π

0

|B1,θ (h1)|2 sin θdθ
(5.40)

=

∣∣hH
1 d1,0

∣∣2
hH
1 Γ1h1

,

D2 (h2) =
|B2,0 (h2)|2

1

2

∫ π

0

|B2,θ (h2)|2 sin θdθ
(5.41)

=

∣∣hH
2 d2,0

∣∣2
hH
2 Γ2h2

,

with
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Γ1 =
1

2

∫ π

0

d1,θd
H
1,θ sin θdθ, (5.42)

Γ2 =
1

2

∫ π

0

d2,θd
H
2,θ sin θdθ. (5.43)

From the mean value theorem, we have∫ π

0

|B1,θ (h1)|2 |B2,θ (h2)|2 sin θdθ (5.44)

= |B1,θ1 (h1)|2
∫ π

0

|B2,θ (h2)|2 sin θdθ

= |B2,θ2 (h2)|2
∫ π

0

|B1,θ (h1)|2 sin θdθ,

where θ1, θ2 ∈ [0, π]. As a result, we can write the DF in (5.37) as

D
(
h̃
)
=

|B1,0 (h1)|2
|B1,θ1 (h1)|2

×D2 (h2)

=
|B2,0 (h2)|2
|B2,θ2 (h2)|2

×D1 (h1)

=
|B1,0 (h1)|
|B1,θ1 (h1)| ×

|B2,0 (h2)|
|B2,θ2 (h2)| ×

√
D1 (h1)×D2 (h2). (5.45)

Since the filters h1 and h2 are always designed in such a way that |B1,0 (h1)| ≥
|B1,θ1 (h1)| and |B2,0 (h2)| ≥ |B2,θ2 (h2)|, we deduce that

D
(
h̃
)
≥
√
D1 (h1)×D2 (h2). (5.46)

It can be verified that

h1 ⊗ h2 = (h1 ⊗ IM2)h2 (5.47)

= (IM1 ⊗ h2)h1, (5.48)

where IM1 and IM2 are the identity matrices of sizes M1×M1 and M2×M2,
respectively. When h2 is fixed and given, using the distortionless constraint,
i.e., hH

2 d2,0 = 1, and thanks to (5.48), we can write the DF as

D (h1|h2) =
|B1,0 (h1)|2
hH
1 Γh2

h1
(5.49)

=

∣∣hH
1 d1,0

∣∣2
hH
1 Γh2

h1
,

where
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Γh2
=

1

2

∫ π

0

d1,θd
H
1,θ |B2,θ (h2)|2 sin θdθ (5.50)

= (IM1
⊗ h2)

H
Γ̃ (IM1

⊗ h2) .

In the same way, when h1 is fixed and given, using the distortionless con-
straint, i.e., hH

1 d1,0 = 1, and thanks to (5.47), we can express the DF as

D (h2|h1) =
|B2,0 (h2)|2
hH
2 Γh1h2

(5.51)

=

∣∣hH
2 d2,0

∣∣2
hH
2 Γh1

h2
,

where

Γh1
=

1

2

∫ π

0

d2,θd
H
2,θ |B1,θ (h1)|2 sin θdθ (5.52)

= (h1 ⊗ IM2
)
H
Γ̃ (h1 ⊗ IM2

) .

Finally, the last measure of interest in this chapter is the FBR, which is
mathematically defined as [10]

F
(
h̃
)
=

∫ π/2

0

∣∣∣Bθ

(
h̃
)∣∣∣2 sin θdθ∫ π

π/2

∣∣∣Bθ

(
h̃
)∣∣∣2 sin θdθ (5.53)

=
h̃H Γ̃f h̃

h̃H Γ̃bh̃
,

where

Γ̃f =

∫ π/2

0

d̃θd̃
H
θ sin θdθ, (5.54)

Γ̃b =

∫ π

π/2

d̃θd̃
H
θ sin θdθ. (5.55)

The FBR of the NULA cannot be factorized, i.e.,

F
(
h̃
)
�= F1 (h1)×F2 (h2) , (5.56)

where
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F1 (h1) =

∫ π/2

0

|B1,θ (h1)|2 sin θdθ∫ π

π/2

|B1,θ (h1)|2 sin θdθ
(5.57)

=
hH
1 Γf,1h1

hH
1 Γb,1h1

,

F2 (h2) =

∫ π/2

0

|B2,θ (h2)|2 sin θdθ∫ π

π/2

|B2,θ (h2)|2 sin θdθ
(5.58)

=
hH
2 Γf,2h2

hH
2 Γb,2h2

,

with

Γf,1 =

∫ π/2

0

d1,θd
H
1,θ sin θdθ, (5.59)

Γb,1 =

∫ π

π/2

d1,θd
H
1,θ sin θdθ, (5.60)

Γf,2 =

∫ π/2

0

d2,θd
H
2,θ sin θdθ, (5.61)

Γb,2 =

∫ π

π/2

d2,θd
H
2,θ sin θdθ. (5.62)

When h2 is fixed and given, and thanks to (5.48), we can write the FBR
as

F (h1|h2) =
hH
1 Γf,h2

h1

hH
1 Γb,h2

h1
, (5.63)

where

Γf,h2 =

∫ π/2

0

d1,θd
H
1,θ |B2,θ (h2)|2 sin θdθ (5.64)

= (IM1 ⊗ h2)
H
Γ̃f (IM1 ⊗ h2) ,

Γb,h2
=

∫ π

π/2

d1,θd
H
1,θ |B2,θ (h2)|2 sin θdθ (5.65)

= (IM1
⊗ h2)

H
Γ̃b (IM1

⊗ h2) .

In the same way, when h1 is fixed and given, and thanks to (5.47), we can
write the FBR as
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F (h2|h1) =
hH
2 Γf,h1

h2

hH
2 Γb,h1

h2
, (5.66)

where

Γf,h1 =

∫ π/2

0

d2,θd
H
2,θ |B1,θ (h1)|2 sin θdθ (5.67)

= (h1 ⊗ IM2
)
H
Γ̃f (h1 ⊗ IM2

) ,

Γb,h1
=

∫ π

π/2

d2,θd
H
2,θ |B1,θ (h1)|2 sin θdθ (5.68)

= (h1 ⊗ IM2
)
H
Γ̃b (h1 ⊗ IM2

) .

5.5 Examples of Beamformers

In this section, we derive some useful and optimal examples of Kronecker
product beamformers. Of course, many more can be deduced depending on
the applications at hand.

5.5.1 Delay and Sum

Given the structure of the WNG of h̃, it is clear that the maximization of
this gain is equivalent to maximizing W1 (h1) and W2 (h2) separately. Taking
into account the distortionless constraints, we easily get the DS beamformers
at the two virtual ULAs:

h1,DS =
d1,0

M1
, (5.69)

h2,DS =
d2,0

M2
. (5.70)

As a consequence, the DS beamformer corresponding to the physical NULA
is

h̃DS = h1,DS ⊗ h2,DS

=
d1,0 ⊗ d2,0

M1M2

=
d̃0

M1M2
. (5.71)

It is clear that
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W
(
h̃DS

)
= M1M2, (5.72)

which is the same with the one obtained with a ULA composed of M1M2

sensors. However, the beampattern of the DS beamformer is

Bθ

(
h̃DS

)
= B1,θ (h1,DS)× B2,θ (h2,DS)

=
1

M1M2

(
dH
1,θd1,0

) (
dH
2,θd2,0

)
=

{
1− ejM1M2[�(θ)−�(0)]

}2

M1M2

{
1− ejM1[�(θ)−�(0)]

}{
1− ejM2[�(θ)−�(0)]

} , (5.73)

which is very much different from the one obtained with a ULA composed of
M1M2 sensors.

Figure 5.1 displays the directivity patterns of the DS beamformer, h̃DS,
for f = 2 kHz, δ = 1 cm, M1 = 2, and different numbers of sensors M2.
Figure 5.2 shows plots of the DFs and WNGs of the DS beamformer as a
function of frequency for δ = 1 cm, M1 = 2, and different numbers of sensors
M2. We observe that as the number of sensors increases, the width of the
main beam and the level of side lobes decrease. As the number of sensors
increases, both the DF and the WNG of the DS beamformer increase.

5.5.2 Partial Superdirective

Obviously, there are different ways to derive some partial superdirective (or

partial hypercardioid) beamformers thanks to the definition of the DF of h̃.
In the first approach, we assume that h2 is fixed. We may take h2 = h2,DS

for the second virtual ULA. Substituting this filter into (5.49), we get

D (h1|h2,DS) =

∣∣hH
1 d1,0

∣∣2
hH
1 Γh2,DSh1

, (5.74)

where

Γh2,DS
=

1

2

∫ π

0

d1,θd
H
1,θ |B2,θ (h2,DS)|2 sin θdθ

= (IM1
⊗ h2,DS)

H
Γ̃ (IM1

⊗ h2,DS) . (5.75)

The maximization of D (h1|h2,DS) gives the superdirective beamformer at the
first virtual ULA:
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Fig. 5.1 Beampatterns of the DS beamformer, h̃DS, for f = 2 kHz, δ = 1 cm, M1 = 2,
and different numbers of sensors M2: (a) M2 = 3, (b) M2 = 5, (c) M2 = 7, and (d) M2 = 9.

0 2 4 6 8
0

2

4

6

8

10

12

14

0 2 4 6 8
7

8

9

10

11

12

13

f (kHz) f (kHz)
(a) (b)

D
( h̃

D
S

) (d
B

)

W
( h̃

D
S

) (d
B

)

Fig. 5.2 Performance of the DS beamformer, h̃DS, as a function of frequency for δ = 1 cm,
M1 = 2, and different numbers of sensors M2: M2 = 3 (solid line with circles), M2 = 5
(dashed line with asterisks), M2 = 7 (dotted line with squares), and M2 = 9 (dash-dot
line with triangles). (a) DF and (b) WNG.
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h1,S1 =
Γ−1
h2,DS

d1,0

dH
1,0Γ

−1
h2,DS

d1,0

. (5.76)

Therefore, our first partial superdirective (PS) beamformer is

h̃PS1 = h1,S1 ⊗ h2,DS. (5.77)

We deduce that the WNG and the beampattern are, respectively,

W
(
h̃PS1

)
= M2W (h1,S1) (5.78)

and

Bθ

(
h̃PS1

)
= B1,θ (h1,S1)× B2,θ (h2,DS) . (5.79)

Figure 5.3 displays the directivity patterns of the first partial superdirec-
tive beamformer, h̃PS1, for f = 2 kHz, δ = 1 cm, M1 = 2, and different
numbers of sensors M2. Figure 5.4 shows plots of the DFs and WNGs of
the first partial superdirective beamformer as a function of frequency for
δ = 1 cm, M1 = 2, and different numbers of sensors M2. We observe that as
the number of sensors increases, the width of the main beam decreases, and
both the DF and the WNG of the first partial superdirective beamformer
increase. Compared to the DS beamformer, the first partial superdirective
beamformer yields higher DF, but lower WNG (compare Figs 5.2 and 5.4).

In the second approach, we assume that h1 is fixed, i.e., h1 = h1,DS for
the first virtual ULA. Substituting this filter into (5.51), we get

D (h2|h1,DS) =

∣∣hH
2 d2,0

∣∣2
hH
2 Γh1,DS

h2
, (5.80)

where

Γh1,DS
=

1

2

∫ π

0

d2,θd
H
2,θ |B1,θ (h1,DS)|2 sin θdθ

= (h1,DS ⊗ IM2)
H
Γ̃ (h1,DS ⊗ IM2) . (5.81)

The maximization of D (h2|h1,DS) gives the superdirective beamformer at the
second virtual ULA:

h2,S2 =
Γ−1
h1,DS

d2,0

dH
2,0Γ

−1
h1,DS

d2,0

. (5.82)

As a result, our second partial superdirective beamformer is

h̃PS2 = h1,DS ⊗ h2,S2. (5.83)
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Fig. 5.3 Beampatterns of the first partial superdirective beamformer, h̃PS1, for f = 2 kHz,
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Fig. 5.4 Performance of the first partial superdirective beamformer, h̃PS1, as a function
of frequency for δ = 1 cm, M1 = 2, and different numbers of sensors M2: M2 = 3 (solid
line with circles), M2 = 5 (dashed line with asterisks), M2 = 7 (dotted line with squares),
and M2 = 9 (dash-dot line with triangles). (a) DF and (b) WNG.
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We deduce that the WNG and the beampattern are, respectively,

W
(
h̃PS2

)
= M1W (h2,S2) (5.84)

and

Bθ

(
h̃PS2

)
= B1,θ (h1,DS)× B2,θ (h2,S2) . (5.85)

From the two superdirective beamformers derived above for the virtual
ULAs, we find the third approach:

h̃PS3 = h1,S1 ⊗ h2,S2. (5.86)

Finally, the last approach is obtained by maximizing separately the two
DFs, D1 (h1) and D2 (h2), of the virtual ULAs. We get

h1,S =
Γ−1
1 d1,0

dH
1,0Γ

−1
1 d1,0

, (5.87)

h2,S =
Γ−1
2 d2,0

dH
2,0Γ

−1
2 d2,0

. (5.88)

As a result, the partial superdirective beamformer of the fourth approach is
simply the Kronecker product of the two above filters, i.e.,

h̃PS4 = h1,S ⊗ h2,S. (5.89)

Figure 5.5 displays the directivity patterns of the fourth partial superdi-
rective beamformer, h̃PS4, for f = 2 kHz, δ = 1 cm, M1 = 2, and different
numbers of sensors M2. Figure 5.6 shows plots of the DFs and WNGs of
the fourth partial superdirective beamformer as a function of frequency for
δ = 1 cm, M1 = 2, and different numbers of sensors M2. We observe that
as the number of sensors increases, the width of the main beam decreases,
the DF increases, but the WNG decreases. Compared to the first partial su-
perdirective beamformer, the fourth partial superdirective beamformer yields
higher DF, but much lower WNG, especially at low frequencies (compare
Figs 5.4 and 5.6).

5.5.3 Superdirective

The superdirective beamformer is obtained by maximizing D
(
h̃
)
in (5.37).

But this DF cannot be maximized directly and an iterative algorithm is
needed.

We start by taking
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Fig. 5.5 Beampatterns of the fourth partial superdirective beamformer, h̃PS4, for f =
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h
(0)
2 = h2,S

=
Γ−1
2 d2,0

dH
2,0Γ

−1
2 d2,0

. (5.90)

Substituting h
(0)
2 into (5.50), we get

Γ
h

(0)
2

=
(
IM1

⊗ h
(0)
2

)H
Γ̃
(
IM1

⊗ h
(0)
2

)
. (5.91)

Now, substituting this expression into the DF in (5.49), we obtain at itera-
tion 1:

D
(
h
(1)
1 |h(0)

2

)
=

∣∣∣∣(h(1)
1

)H
d1,0

∣∣∣∣2(
h
(1)
1

)H
Γ
h

(0)
2
h
(1)
1

. (5.92)

The maximization of D
(
h
(1)
1 |h(0)

2

)
with respect to h

(1)
1 gives

h
(1)
1 =

Γ−1

h
(0)
2

d1,0

dH
1,0Γ

−1

h
(0)
2

d1,0

. (5.93)

Using h
(1)
1 in (5.52), we get

Γ
h

(1)
1

=
(
h
(1)
1 ⊗ IM2

)H
Γ̃
(
h
(1)
1 ⊗ IM2

)
. (5.94)

As a result, the DF in (5.51) is

D
(
h
(1)
2 |h(1)

1

)
=

∣∣∣∣(h(1)
2

)H
d2,0

∣∣∣∣2(
h
(1)
2

)H
Γ
h

(1)
1
h
(1)
2

, (5.95)

whose maximization with respect to h
(1)
2 gives

h
(1)
2 =

Γ−1

h
(1)
1

d2,0

dH
2,0Γ

−1

h
(1)
1

d2,0

. (5.96)

Continuing the iterations up to the iteration n, we easily get for the first
filter:
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h
(n)
1 =

Γ−1

h
(n−1)
2

d1,0

dH
1,0Γ

−1

h
(n−1)
2

d1,0

, (5.97)

with

Γ
h

(n−1)
2

=
(
IM1

⊗ h
(n−1)
2

)H
Γ̃
(
IM1

⊗ h
(n−1)
2

)
, (5.98)

and for the second filter:

h
(n)
2 =

Γ−1

h
(n)
1

d2,0

dH
2,0Γ

−1

h
(n)
1

d2,0

, (5.99)

with

Γ
h

(n)
1

=
(
h
(n)
1 ⊗ IM2

)H
Γ̃
(
h
(n)
1 ⊗ IM2

)
. (5.100)

Finally, we deduce that the superdirective beamformer is at iteration n:

h̃
(n)
SD = h

(n)
1 ⊗ h

(n)
2 . (5.101)

Figure 5.7 displays the directivity patterns of the superdirective beam-

former, h̃
(n)
SD , for f = 2 kHz, δ = 5 mm, M1 = 3, and M2 = 4, obtained

at the iteration n for several values of n. Figure 5.8 shows plots of the DFs
and WNGs of the superdirective beamformer as a function of frequency for
δ = 5 mm, M1 = 3, M2 = 4, and several values of n. We observe that the
DF of the superdirective beamformer increases at each iteration, and roughly
converges after three iterations, while the WNG decreases at each iteration.
Compared with the partial superdirective beamformers, the superdirective
beamformer yields higher DF, but lower WNG.

5.5.4 Dipole

Let us show how to design the first-order dipole with the NULA. Fundamen-
tally, the first virtual ULA will shape the desired pattern while the second
virtual ULA will help reduce white noise amplification. Therefore, we take
M1 = 2 and M2 ≥ 3.

The first-order dipole has a null at the angle π/2. Taking into account the
distortionless constraint, we get the linear system of equations:

D1,π/2h1 =

[
1
0

]
, (5.102)
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Fig. 5.7 Beampatterns of the superdirective beamformer, h̃
(n)
SD , for f = 2 kHz, δ = 5 mm,

M1 = 3, and M2 = 4, obtained at the iteration n: (a) n = 1, (b) n = 2, (c) n = 3, and
(d) n = 10.
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Fig. 5.8 Performance of the superdirective beamformer, h̃
(n)
SD , as a function of frequency

for δ = 5 mm, M1 = 3, M2 = 4, and several values of n: n = 1 (solid line with circles),
n = 2 (dashed line with asterisks), n = 3 (dotted line with squares), and n = 10 (dash-dot
line with triangles). (a) DF and (b) WNG.
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where

D1,π/2 =

[
dH
1,0

dH
1,π/2

]
(5.103)

is a 2× 2 matrix. As a result,

h1 = D−1
1,π/2

[
1
0

]
. (5.104)

With h1, the beampattern of the NULA will always have a null at π/2, no
matter how h2 is designed. Another characteristic of the dipole is that it has
a one at the angle π. Therefore, this constraint should be included in the
design of h2. Given that we want to maximize the WNG with the second
virtual ULA, our criterion to optimize is

min
h2

hH
2 h2 subject to C2,πh2 =

[
1
1

]
, (5.105)

where

C2,π =

[
dH
2,0

dH
2,π

]
(5.106)

is a 2×M2 matrix. We find that

h2,D1 = CH
2,π

(
C2,πC

H
2,π

)−1
[
1
1

]
. (5.107)

From (5.104) and (5.107), we deduce that the designed filter for the first-order
dipole with the NULA is

h̃D1 = h1 ⊗ h2,D1. (5.108)

Figure 5.9 displays the directivity patterns of the first-order dipole with
the NULA, h̃D1, for f = 2 kHz, δ = 5 mm, M1 = 2, and different numbers of
sensors M2. Figure 5.10 shows plots of the DFs and WNGs of the first-order
dipole with the NULA as a function of frequency for δ = 5 mm, M1 = 2, and
different numbers of sensors M2. We observe that as the number of sensors
increases, the WNG of the first-order dipole at low frequencies increases.

If we want to increase the order of the dipole, we can still take h1 as it is
in (5.104) but add a null constraint at π/2 to h2. In this case, the criterion
to optimize is

min
h2

hH
2 h2 subject to C2,π/2,πh2 =

⎡⎣ 1
0
1

⎤⎦ , (5.109)
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Fig. 5.9 Beampatterns of the first-order dipole with the NULA, h̃D1, for f = 2 kHz,
δ = 5 mm, M1 = 2, and different numbers of sensors M2: (a) M2 = 3, (b) M2 = 5,
(c) M2 = 7, and (d) M2 = 9.
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Fig. 5.10 Performance of the first-order dipole with the NULA, h̃D1, as a function of
frequency for δ = 5 mm, M1 = 2, and different numbers of sensors M2: M2 = 3 (solid line
with circles), M2 = 5 (dashed line with asterisks), M2 = 7 (dotted line with squares), and
M2 = 9 (dash-dot line with triangles). (a) DF and (b) WNG.
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where

C2,π/2,π =

⎡⎣ dH
2,0

dH
2,π/2

dH
2,π

⎤⎦ (5.110)

is a 3×M2 matrix. We find that

h2,D2 = CH
2,π/2,π

(
C2,π/2,πC

H
2,π/2π

)−1

⎡⎣ 1
0
1

⎤⎦ . (5.111)

Therefore, a higher-order dipole with the NULA is

h̃D2 = h1 ⊗ h2,D2. (5.112)

Figure 5.11 displays the directivity patterns of the higher-order dipole with
the NULA, h̃D2, for f = 2 kHz, δ = 5 mm, M1 = 2, and different numbers
of sensors M2. Figure 5.12 shows plots of the DFs and WNGs of h̃D2 as a
function of frequency for δ = 5 mm, M1 = 2, and different numbers of sensors
M2. We observe that as the number of sensors increases, at low frequencies the
WNG of the higher-order dipole increases, but the DF decreases. Compared
to the first-order dipole with the NULA, the higher-order dipole yields higher
DF, but lower WNG at low frequencies (compare Figs 5.10 and 5.12).

5.5.5 Supercardioid

The supercardioid is obtained by maximizing the FBR. To fully maximize
the FBR in (5.53), we need to derive an iterative algorithm.

At iteration 0, we may take

h
(0)
2 =

t2
dH
2,0t2

, (5.113)

where t2 is the eigenvector corresponding to the maximum eigenvalue of the

matrix Γ−1
b,2Γf,2 (see Section 5.4). Substituting h

(0)
2 into (5.64) and (5.65), we

get

Γ
f,h

(0)
2

=
(
IM1 ⊗ h

(0)
2

)H
Γ̃f

(
IM1 ⊗ h

(0)
2

)
, (5.114)

Γ
b,h

(0)
2

=
(
IM1

⊗ h
(0)
2

)H
Γ̃b

(
IM1

⊗ h
(0)
2

)
. (5.115)

Now, plugging these expressions into the FBR in (5.63), we obtain at itera-
tion 1:
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Fig. 5.11 Beampatterns of a higher-order dipole with the NULA, h̃D2, for f = 2 kHz,
δ = 5 mm, M1 = 2, and different numbers of sensors M2: (a) M2 = 3, (b) M2 = 5,
(c) M2 = 7, and (d) M2 = 9.
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Fig. 5.12 Performance of a higher-order dipole with the NULA, h̃D2, as a function of
frequency for δ = 5 mm, M1 = 2, and different numbers of sensors M2: M2 = 3 (solid line
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F
(
h
(1)
1 |h(0)

2

)
=

(
h
(1)
1

)H
Γ
f,h

(0)
2
h
(1)
1(

h
(1)
1

)H
Γ
b,h

(0)
2
h
(1)
1

. (5.116)

The maximization of F
(
h
(1)
1 |h(0)

2

)
with respect of h

(1)
1 leads to

h
(1)
1 =

t
(0)
1

dH
1,0t

(0)
1

, (5.117)

where t
(0)
1 is the eigenvector corresponding to the maximum eigenvalue of the

matrix Γ−1

b,h
(0)
2

Γ
f,h

(0)
2
. Using h

(1)
1 in (5.67) and (5.68), we get

Γ
f,h

(1)
1

=
(
h
(1)
1 ⊗ IM2

)H
Γ̃f

(
h
(1)
1 ⊗ IM2

)
, (5.118)

Γ
b,h

(1)
1

=
(
h
(1)
1 ⊗ IM2

)H
Γ̃b

(
h
(1)
1 ⊗ IM2

)
. (5.119)

As a result, the FBR in (5.66) is

F
(
h
(1)
2 |h(1)

1

)
=

(
h
(1)
2

)H
Γ
f,h

(1)
1
h
(1)
2(

h
(1)
2

)H
Γ
b,h

(1)
1
h
(1)
2

, (5.120)

whose maximization with respect to h
(1)
2 gives

h
(1)
2 =

t
(1)
2

dH
2,0t

(1)
2

, (5.121)

where t
(1)
2 is the eigenvector corresponding to the maximum eigenvalue of the

matrix Γ−1

b,h
(1)
1

Γ
f,h

(1)
1
.

Continuing to iterate up to iteration n, we easily get for the first filter:

h
(n)
1 =

t
(n−1)
1

dH
1,0t

(n−1)
1

, (5.122)

where t
(n−1)
1 is the eigenvector corresponding to the maximum eigenvalue of

the matrix Γ−1

b,h
(n−1)
2

Γ
f,h

(n−1)
2

, with
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Γ
f,h

(n−1)
2

=
(
IM1

⊗ h
(n−1)
2

)H
Γ̃f

(
IM1

⊗ h
(n−1)
2

)
, (5.123)

Γ
b,h

(n−1)
2

=
(
IM1

⊗ h
(n−1)
2

)H
Γ̃b

(
IM1

⊗ h
(n−1)
2

)
, (5.124)

and for the second filter:

h
(n)
2 =

t
(n)
2

dH
2,0t

(n)
2

, (5.125)

where t
(n)
2 is the eigenvector corresponding to the maximum eigenvalue of

the matrix Γ−1

b,h
(n)
1

Γ
f,h

(n)
1

, with

Γ
f,h

(n)
1

=
(
h
(n)
1 ⊗ IM2

)H
Γ̃f

(
h
(n)
1 ⊗ IM2

)
, (5.126)

Γ
b,h

(n)
1

=
(
h
(n)
1 ⊗ IM2

)H
Γ̃b

(
h
(n)
1 ⊗ IM2

)
. (5.127)

Finally, we deduce that the supercardioid beamformer is at iteration n:

h̃
(n)
S = h

(n)
1 ⊗ h

(n)
2 . (5.128)

Figure 5.13 displays the directivity patterns of the supercardioid beam-

former, h̃
(n)
S , for f = 2 kHz, δ = 5 mm, M1 = 3, and M2 = 4, obtained at

the iteration n for several values of n. Figure 5.14 shows plots of the DFs,
the WNGs, and the FBRs of the supercardioid beamformer as a function of
frequency for δ = 5 mm, M1 = 3, M2 = 4, and several values of n. We observe
that the FBR of the supercardioid beamformer increases at each iteration,
and roughly converges after four iterations, while the DF and WNG remain
almost the same at each iteration.

5.5.6 Wiener

The MSE between the estimated and desired signals is given by

J
(
h̃
)
= E

(∣∣∣h̃H ỹ −X
∣∣∣2) (5.129)

= φX + h̃HΦỹh̃− φX h̃H d̃0 − φX d̃H
0 h̃,

which, thanks to (5.47) and (5.48), can be expressed as

J (h1 ⊗ h2) = φX + hH
1 Φy,2h1 − φX,2h

H
1 d1,0 − φ∗

X,2d
H
1,0h1 (5.130)

= φX + hH
2 Φy,1h2 − φX,1h

H
2 d2,0 − φ∗

X,1d
H
2,0h2, (5.131)
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Fig. 5.13 Beampatterns of the supercardioid beamformer, h̃
(n)
S , for f = 2 kHz, δ = 5 mm,

M1 = 3, and M2 = 4, obtained at the iteration n: (a) n = 1, (b) n = 2, (c) n = 3, and
(d) n = 4.

where

Φy,2 = (IM1
⊗ h2)

H
Φỹ (IM1

⊗ h2) , (5.132)

φX,2 = φXhH
2 d2,0, (5.133)

and

Φy,1 = (h1 ⊗ IM2
)
H
Φỹ (h1 ⊗ IM2

) , (5.134)

φX,1 = φXhH
1 d1,0. (5.135)

It is important to notice that the sizes of the matrices Φy,1 and Φy,2, which
are M2×M2 and M1×M1, respectively, are much smaller than the size of Φỹ,
which is M1M2 ×M1M2. As a result, in practice, much less observations are
needed to accurately estimate Φy,1 and Φy,2 than Φỹ, which is the matrix
that is inverted in the conventional Wiener beamformer.
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Fig. 5.14 Performance of the supercardioid beamformer, h̃
(n)
S , as a function of frequency

for δ = 5 mm, M1 = 3, M2 = 4, and several values of n: n = 1 (solid line with circles),
n = 2 (dashed line with asterisks), n = 4 (dotted line with squares), and n = 10 (dash-dot
line with triangles). (a) DF, (b) WNG, and (c) FBR.

When h2 is fixed, we write (5.130) as

J (h1|h2) = φX + hH
1 Φy,2h1 − φX,2h

H
1 d1,0 − φ∗

X,2d
H
1,0h1, (5.136)

and when h1 is fixed, we write (5.131) as

J (h2|h1) = φX + hH
2 Φy,1h2 − φX,1h

H
2 d2,0 − φ∗

X,1d
H
2,0h2. (5.137)

Now, we have everything to derive an iterative algorithm similar to the
one proposed in [11]. At iteration 0, we may take

h
(0)
2 = φXΦ−1

y2
d2,0, (5.138)

where Φy2
is the covariance matrix of y2, which is the observation vector

corresponding to the second virtual array. In fact, h
(0)
2 is just the traditional

Wiener beamformer applied to the second virtual ULA. Substituting h
(0)
2

into (5.132)–(5.133), we get



142 5 Approach with NULAs

Φ
(0)
y,2 =

(
IM1

⊗ h
(0)
2

)H
Φỹ

(
IM1

⊗ h
(0)
2

)
, (5.139)

φ
(0)
X,2 = φX

(
h
(0)
2

)H
d2,0. (5.140)

Then, substituting these quantities into the MSE in (5.136), we obtain at
iteration 1:

J
(
h
(1)
1 |h(0)

2

)
= φX +

(
h
(1)
1

)H
Φ

(0)
y,2h

(1)
1 − φ

(0)
X,2

(
h
(1)
1

)H
d1,0

−
(
φ
(0)
X,2

)∗
dH
1,0h

(1)
1 . (5.141)

The minimization of J
(
h
(1)
1 |h(0)

2

)
with respect to h

(1)
1 gives

h
(1)
1 = φ

(0)
X,2

(
Φ

(0)
y,2

)−1

d1,0. (5.142)

Using h
(1)
1 into (5.134)–(5.135), we obtain

Φ
(1)
y,1 =

(
h
(1)
1 ⊗ IM2

)H
Φỹ

(
h
(1)
1 ⊗ IM2

)
, (5.143)

φ
(1)
X,1 = φX

(
h
(1)
1

)H
d1,0. (5.144)

With Φ
(1)
y,1 and φ

(1)
X,1, we can compute the MSE in (5.137) as

J
(
h
(1)
2 |h(1)

1

)
= φX +

(
h
(1)
2

)H
Φ

(1)
y,1h

(1)
2 − φ

(1)
X,1

(
h
(1)
2

)H
d2,0

−
(
φ
(1)
X,1

)∗
dH
2,0h

(1)
2 , (5.145)

whose minimization with respect to h
(1)
2 gives

h
(1)
2 = φ

(1)
X,1

(
Φ

(1)
y,1

)−1

d2,0. (5.146)

Continuing the iterations up to the iteration n, we easily get the estimate
of the first beamformer:

h
(n)
1 = φ

(n−1)
X,2

(
Φ

(n−1)
y,2

)−1

d1,0, (5.147)

where

φ
(n−1)
X,2 = φX

(
h
(n−1)
2

)H
d2,0, (5.148)

Φ
(n−1)
y,2 =

(
IM1

⊗ h
(n−1)
2

)H
Φỹ

(
IM1

⊗ h
(n−1)
2

)
, (5.149)
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Fig. 5.15 Beampatterns of the Wiener beamformer at the iteration n = 5, h̃
(5)
W , for

iSNR = 0 dB, f = 3 kHz, δ = 1 cm, θd = 0◦, θ1 = 60◦, M1 = 4, and different numbers of
sensors M2: (a) M2 = 5, (b) M2 = 7, (c) M2 = 9, and (d) M2 = 11.

and the estimate of the second beamformer:

h
(n)
2 = φ

(n)
X,1

(
Φ

(n)
y,1

)−1

d2,0, (5.150)

where

φ
(n)
X,1 = φX

(
h
(n)
1

)H
d1,0, (5.151)

Φ
(n)
y,1 =

(
h
(n)
1 ⊗ IM2

)H
Φỹ

(
h
(n)
1 ⊗ IM2

)
. (5.152)

Finally, we deduce that the Wiener beamformer is at iteration n:

h̃
(n)
W = h

(n)
1 ⊗ h

(n)
2 , (5.153)

where h
(n)
1 and h

(n)
2 are defined in (5.147) and (5.150), respectively.

Example 5.1. Suppose that a desired signal impinges on the ULA from the
direction θd = 0, and that a statistically independent interference impinges on
the ULA from the direction θ1. Assume that the desired signal is a harmonic
pulse of T samples:
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Fig. 5.16 Performance of the Wiener beamformer at the iteration n = 5, h̃
(5)
W , as a

function of the input SNR for f = 3 kHz, δ = 1 cm, θd = 0◦, θ1 = 60◦, M1 = 4, and
different numbers of sensors M2: M2 = 5 (solid line with circles), M2 = 7 (dashed line
with asterisks), M2 = 9 (dotted line with squares), and M2 = 11 (dash-dot line with
triangles). (a) Gain in SNR, (b) noise reduction factor, (c) desired signal distortion index,
and (d) MSE.

x(t) =

{
A sin (ω0t+ φ) , 0 ≤ t ≤ T − 1
0, t < 0, t ≥ T

,

with fixed amplitude A and angular frequency ω0, and random phase φ,
uniformly distributed on the interval from 0 to 2π. Assume that the in-
terference u(t) is white Gaussian noise, i.e., u(t) ∼ N (

0, σ2
u

)
, uncorrelated

with x(t). In addition, the sensors contain thermal white Gaussian noise,
w̃m(t) ∼ N (

0, σ2
w

)
, that are mutually uncorrelated. The noisy received

signals are given by ỹm(t) = x̃m(t) + ṽm(t), m = 1, 2, . . . ,M1M2, where
ṽm(t) = ũm(t) + w̃m(t), m = 1, 2, . . . ,M1M2 are the interference-plus-noise
signals. The variance of X(ω) is given by

φX =
A2

4
D2

T [π (ω + ω0)] +
A2

4
D2

T [π (ω − ω0)] ,

where

DT (x) =
sin (Tx)

sin (x)
.
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The covariance matrices of x̃(ω) and ṽ(ω) are given by

Φx̃ = φX d̃0d̃
H
0 ,

Φṽ = Tσ2
ud̃θ1 d̃

H
θ1 + Tσ2

wIM .

To demonstrate the performance of the Wiener beamformer, we choose
A = 0.5, ω0 = 2πf0, f0 = 3 kH, T = 500, θ1 = 60◦, and σ2

w = 0.01σ2
u.

Figure 5.15 displays the directivity patterns of the Wiener beamformer at
the iteration n = 5, for iSNR = 0 dB, f = 3 kHz, δ = 1 cm, M1 = 4,
and different numbers of sensors M2. As the number of sensors increases,
the width of the main beam decreases, and the null in the direction of the
interference becomes deeper. Figure 5.16 shows plots of the gain in SNR,

G
(
h̃
(5)
W

)
, the noise reduction factor, ξn

(
h̃
(5)
W

)
, the desired signal distortion

index, υd

(
h̃
(5)
W

)
, and the MSE, J

(
h̃
(5)
W

)
, as a function of the input SNR for

f = 3 kHz, δ = 1 cm, M1 = 4, and different numbers of sensors M2. We
observe that as the number of sensors increases, the MSE and the desired
signal distortion index obtained by the Wiener beamformer decrease while
the gain in SNR and the noise reduction factor increase.
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Chapter 6

Approach with Rectangular Arrays

All what we have done so far with linear arrays is, obviously, not limited to
this type of arrays. In this chapter, we show how to extend some of these
results to two-dimensional arrays such as the rectangular ones. The focus is
on fixed beamforming. Of course, very interesting adaptive beamformers can
be derived as well by following the same steps as in previous chapters.

6.1 Signal Model and Problem Formulation

The two-dimensional (2-D) array evaluated in this chapter is a rectangular
array (RA) depicted in Fig. 6.1. Considering the Cartesian coordinate system
with microphone (1, 1) as its origin, the studied RA is composed of Mx om-
nidirectional sensors along the x (negative) axis with a uniform interelement
spacing equal to δx and My omnidirectional sensors along the y (negative)
axis with a uniform interelement spacing equal to δy. Thus, the total number
of microphones is equal to MxMy, whose positions are denoted (mx,my) with
mx = 1, 2, . . . ,Mx, my = 1, 2, . . . ,My. Notice that in the direction of the x
axis, we have My parallel ULAs composed of Mx microphones each with a
spacing δx, while in the direction of the y axis, we have Mx parallel ULAs
composed of My microphones each with a spacing δy.

We assume that a farfield desired source signal (plane wave) propagates
from the azimuth angle, θ, in an anechoic acoustic environment at the speed
of sound, i.e., c = 340 m/s, and impinges on the above described 2-D array.
Then, it is not hard to see that the corresponding steering matrix (of size
Mx ×My) is [1]
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x

y
δy

δx

Source

θ

Fig. 6.1 Illustration of the studied 2-D microphone array.

Dθ =
[
Dy,θ,1dx,θ Dy,θ,2dx,θ · · · Dy,θ,Mydx,θ

]
(6.1)

=

⎡⎢⎢⎢⎣
Dx,θ,1d

T
y,θ

Dx,θ,2d
T
y,θ

...
Dx,θ,Mx

dT
y,θ

⎤⎥⎥⎥⎦
= dx,θd

T
y,θ,

where

dx,θ =
[
Dx,θ,1 Dx,θ,2 · · · Dx,θ,Mx

]T
(6.2)

=
[
1 e−jωδx

c cos θ · · · e−j
(Mx−1)ωδx

c cos θ
]T

is the steering vector associated with the x axis,

dy,θ =
[
Dy,θ,1 Dy,θ,2 · · · Dy,θ,My

]T
(6.3)

=
[
1 e−j

ωδy
c sin θ · · · e−j

(My−1)ωδy
c sin θ

]T
is the steering vector associated with the y axis.

Thanks to the above steering matrix, the observation signal matrix of size
Mx ×My of the RA can be expressed in the frequency domain as
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Y = X+V (6.4)

= DθX +V,

where X is the zero-mean desired source signal and V is the zero-mean ad-
ditive noise signal matrix. Without loss of generality, it is assumed in the
rest that the desired source signal propagates from the angle θ = 0 (endfire
direction). Therefore, (6.4) becomes

Y = D0X +V, (6.5)

where D0 is the steering matrix at θ = 0.
Using the convenient vectorization operation, which consists of converting

a matrix into a vector, (6.5) can be expressed, equivalently, as

vec (Y) =
[
yT
:1 yT

:2 · · · yT
:My

]T
= vec

(
dx,0d

T
y,0

)
X + vec (V)

= dy,0 ⊗ dx,0X + vec (V) , (6.6)

where y:my
is the myth column of Y and vec (V) is defined similarly to

vec (Y). To further simplify the notation, we write ỹ = vec (Y), d̃θ =
vec (Dθ) = dy,θ ⊗ dx,θ, and ṽ = vec (V). With this notation, (6.6) is

ỹ = d̃0X + ṽ. (6.7)

We deduce that the MxMy ×MxMy covariance matrix of ỹ is

Φỹ = E
(
ỹỹH

)
(6.8)

= d̃0d̃
H
0 φX +Φṽ,

where φX = E
(
|X|2

)
is the variance of X and Φṽ = E

(
ṽṽH

)
is the covari-

ance matrix of ṽ.

6.2 2-D Beamforming

The conventional way to perform 2-D beamforming is to apply a complex-
valued linear filter, h, of length MxMy to the observation signal vector, ỹ.
We get [2]

ZC = hH ỹ (6.9)

= hH d̃0X + hH ṽ,
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where ZC is the estimate of the desired signal, X. However, there are two
main problems with this approach. The first one is the large number of co-
efficients (equal to MxMy) that need to be estimated, so complexity can be
an issue. More importantly, the second problem has to do with the inversion
of very ill-conditioned large matrices in most derived optimal beamformers,
which will necessarily lead to serious estimation problems in the presence of
uncertainties.

Due to some potential problems with the conventional approach, we pro-
pose in this investigation to use two complex-valued linear filters hx and hy

of respective lengths Mx and My as follows1:

Z = hH
x Yh∗

y (6.10)

=
(
hH
x dx,0

) (
dT
y,0h

∗
y

)
X + hH

x Vh∗
y

=
(
hH
x dx,0

) (
hH
y dy,0

)
X + hH

x Vh∗
y,

where Z is the estimate of X. We observe that Z is bilinear in h∗
x and h∗

y

since, for every fixed h∗
x, it is a linear function of h∗

y and for every fixed h∗
y, it

is a linear function of h∗
x. This bilinear form takes advantage of the structure

of the 2-D array and the corresponding steering vectors. We can also express
(6.10) as

Z = tr
(
h∗
yh

H
x Y

)
(6.11)

= tr
[(
hxh

T
y

)H
Y
]

= vecH
(
hxh

T
y

)
vec (Y)

= (hy ⊗ hx)
H
ỹ,

where tr(·) denotes the trace of a square matrix and hy ⊗ hx is the global
beamformer, which is simply the Kronecker product between the two indi-
vidual beamformers hy and hx along the y and x axes, respectively. As a
consequence, by taking h = hy ⊗ hx in (6.9), we observe that Kronecker
product beamforming is an interesting particular case of the conventional
approach, where h is assumed to have a particular structure. From (6.11),
we find that the variance of Z is

φZ = (hy ⊗ hx)
H
Φỹ (hy ⊗ hx) (6.12)

=
∣∣∣(hy ⊗ hx)

H
d̃0

∣∣∣2 φX + (hy ⊗ hx)
H
Φṽ (hy ⊗ hx)

=
∣∣hH

x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2 φX + (hy ⊗ hx)
H
Φṽ (hy ⊗ hx) .

1 Now, the number of coefficients to be estimated is equal to Mx +My instead of MxMy

for the conventional method. If Mx = My = M , we only need to handle a linear number
(2M) of coefficients instead of a square number (M2) of coefficients. So when M is large,
the length of the filter in the conventional approach becomes quickly prohibitive.
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In the rest, the distortionless constraint is desired, i.e.,(
hH
x dx,0

) (
hH
y dy,0

)
= 1. (6.13)

This also means that the value of the Kronecker product beamformer pattern
should be equal to 1 at θ = 0 and smaller than 1 at θ �= 0. In particular,
when hH

x dx,0 = hH
y dy,0 = 1, then (6.13) is also verified; so we will always

consider this case.

6.3 Performance Measures

The first important measure discussed in this section is the beampattern,
which describes the sensitivity of the Kronecker product beamformer to a
plane wave impinging on the 2-D array from the direction θ. Mathematically,
it is defined as

Bθ (hy ⊗ hx) = (hy ⊗ hx)
H
d̃θ (6.14)

= (hy ⊗ hx)
H
(dy,θ ⊗ dx,θ)

=
(
hH
x dx,θ

) (
hH
y dy,θ

)
= Bx,θ (hx)× By,θ (hy) .

It is interesting to observe that the beampattern of the global beamformer is
equal to the product of the beampatterns of the individual beamformers. As
a result, the nulls of Bθ (hy ⊗ hx) correspond exactly to the nulls of Bx,θ (hx)
and By,θ (hy). In particular, if Bx,θ (hx) has a null at θ0 of multiplicity 1 and
By,θ (hy) has also a null at θ0 of multiplicity 1, then Bθ (hy ⊗ hx) has a null
in the same direction but of multiplicity 2.

Considering the origin of the Cartesian coordinates as the reference, we
define the input SNR with respect to this reference as

iSNR =
φX

φV11

, (6.15)

where φV11
is the variance at the noise reference.

The output SNR is defined as

oSNR (hy ⊗ hx) = φX

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
Φṽ (hy ⊗ hx)

(6.16)

=
φX

φV11

×
∣∣hH

x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
Γṽ (hy ⊗ hx)

,

where
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Γṽ =
Φṽ

φV11

(6.17)

is the pseudo-coherence matrix of ṽ.
The definition of the SNR gain is easily derived from the two previous

definitions of the input and output SNRs, i.e.,

G (hy ⊗ hx) =
oSNR (hy ⊗ hx)

iSNR
(6.18)

=

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
Γṽ (hy ⊗ hx)

.

The best known way to evaluate the sensitivity of an array to some of its
imperfections and other uncertainties is via the WNG, which is defined by
taking Γṽ = IMxMy

in (6.18), where IMxMy
is the MxMy ×MxMy identity

matrix, i.e.,

W (hy ⊗ hx) =

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
(hy ⊗ hx)

(6.19)

=

∣∣hH
x dx,0

∣∣2
hH
x hx

×
∣∣hH

y dy,0

∣∣2
hH
y hy

= Wx (hx)×Wy (hy) .

Since Wx (hx) ≤ Mx and Wy (hy) ≤ My, we deduce that W (hy ⊗ hx) ≤
MxMy.

Another important measure, which quantifies how the 2-D microphone
array performs in the presence of reverberation is the DF. For the spherically
isotropic noise field, the definition of the DF is

D (hy ⊗ hx) =

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
(hy ⊗ hx)

H
Γ̃ (hy ⊗ hx)

, (6.20)

where

Γ̃ =

⎡⎢⎢⎢⎢⎢⎣
Γ1 Γ2 · · · ΓMy−1 ΓMy

Γ2 Γ1 · · · ΓMy−2 ΓMy−1

...
...

. . .
...

...
ΓMy−1 ΓMy−2 · · · Γ1 Γ2

ΓMy ΓMy−1 · · · Γ2 Γ1

⎤⎥⎥⎥⎥⎥⎦ (6.21)

is a symmetric block Toeplitz matrix and the elements of the My symmetric
Toeplitz matrices Γmy , my = 1, 2, . . . ,My (of size Mx ×Mx) are given by
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(
Γmy

)
ij
= sinc

⎡⎣ω
√

(i− j)2δ2x + (my − 1)
2
δ2y

c

⎤⎦ , (6.22)

with i, j = 1, 2, . . . ,Mx and sinc x = sinx/x. It is clear that D (hy ⊗ hx) ≤
d̃H
0 Γ̃−1d̃0. Using the fact that

hy ⊗ hx = (hy ⊗ IMx
)hx

=
(
IMy

⊗ hx

)
hy, (6.23)

where IMx and IMy are the identity matrices of sizes Mx×Mx and My×My,
respectively, we can rewrite the DF as

D (hy ⊗ hx) =

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
hH
x Γyhx

(6.24)

and

D (hy ⊗ hx) =

∣∣hH
x dx,0

∣∣2 ∣∣hH
y dy,0

∣∣2
hH
y Γxhy

, (6.25)

where

Γy = (hy ⊗ IMx
)
H
Γ̃ (hy ⊗ IMx

) (6.26)

and

Γx =
(
IMy

⊗ hx

)H
Γ̃
(
IMy

⊗ hx

)
. (6.27)

If the filter hy is fixed and distortionless, i.e., hH
y dy,0 = 1, we write (6.24) as

D (hx|hy) =

∣∣hH
x dx,0

∣∣2
hH
x Γyhx

, (6.28)

and if the filter hx is fixed and distortionless, i.e., hH
x dx,0 = 1, we write (6.25)

as

D (hy|hx) =

∣∣hH
y dy,0

∣∣2
hH
y Γxhy

. (6.29)
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6.4 Fixed Beamformers

There is a myriad of fixed Kronecker product beamformers that we can derive
from the proposed approach. Here, we give some relevant examples, which
are mostly deduced from the above performance measures.

6.4.1 Delay and Sum

The definition of the WNG with the conventional approach is

W (h) =

∣∣∣hH d̃0

∣∣∣2
hHh

, (6.30)

whose maximization gives the very well-known DS beamformer:

hDS =
d̃0

d̃H
0 d̃0

(6.31)

=
dy,0 ⊗ dx,0

MxMy

and the corresponding WNG is, obviously,

W (hDS) = MxMy. (6.32)

Now, from the maximization of the WNG in (6.19) with respect to hx and
hy, we obtain

hx,DS =
dx,0

Mx
, (6.33)

hy,DS =
dy,0

My
. (6.34)

As a result, the global beamformer is

hy,DS ⊗ hx,DS = hDS, (6.35)

showing that the DS beamformers with the conventional and Kronecker
product approaches coincide and the number of nulls in the correspond-
ing beampattern is smaller than Mx + My − 2. For Mx = My = M ,
W (hy,DS ⊗ hx,DS) = M2 with only 2M coefficients. This shows how the
redundancy in an RA is taken advantage of.

Figure 6.2 displays the directivity patterns of the DS beamformer, hDS,
for f = 2 kHz, δx = δy = 2 cm and different numbers of sensors Mx = My.
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Fig. 6.2 Beampatterns of the DS beamformer, hDS, for f = 2 kHz, δx = δy = 2 cm,
and different numbers of sensors Mx = My : (a) Mx = My = 3, (b) Mx = My = 6,
(c) Mx = My = 9, and (d) Mx = My = 12.

Figure 6.3 shows plots of the DFs and WNGs of the DS beamformer as a
function of frequency for δx = δy = 2 cm and different numbers of sensors
Mx = My. We observe that as the number of sensors increases, the width
of the main beam decreases, and both the DF and the WNG of the DS
beamformer increase.

6.4.2 Combined Superdirective/Delay and Sum

In this subsection, we show how to combine the superdirective and DS beam-
formers in a 2-D array in order to take advantage of the best of them. Indeed,
for a ULA with the desired source at the endfire, it is well known that the
superdirective maximizes the DF but amplifies the white noise while the DS
maximizes the WNG but gives poor levels of the DF [3], [4], [5]. Therefore,
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Fig. 6.3 Performance of the DS beamformer, hDS, as a function of frequency for δx =
δy = 2 cm and different numbers of sensors Mx = My : Mx = My = 3 (solid line with
circles), Mx = My = 6 (dashed line with asterisks), Mx = My = 9 (dotted line with
squares), and Mx = My = 12 (dash-dot line with triangles). (a) DF and (b) WNG.

in the x axis direction, we propose to use the superdirective beamformer [3],
[4]:

hx,SD =
Γ−1
1 dx,0

dH
x,0Γ

−1
1 dx,0

, (6.36)

where Γ1 is the first block matrix of Γ̃, while in the y axis direction, we take
the DS beamformer given in (6.34), i.e., hy,DS; so that the global beamformer
is hy,DS ⊗ hx,SD. We deduce that the WNG is

W (hy,DS ⊗ hx,SD) = MyWx (hx,SD) , (6.37)

showing that the WNG of the global filter with an RA is improved by a factor
of My compared to the WNG of the superdirective beamformer with a ULA.
The power beampattern is

|Bθ (hy,DS ⊗ hx,SD)|2 = |Bx,θ (hx,SD)|2 |By,θ (hy,DS)|2 (6.38)

≤ |Bx,θ (hx,SD, θ)|2 ,

implying that the global beamformer is more directive than the superdirective
beamformer. As a consequence,

D (hy,DS ⊗ hx,SD) ≥ D (hx,SD) . (6.39)

Figure 6.4 displays the directivity patterns of the combined superdirec-
tive/DS beamformer, hy,DS ⊗ hx,SD, for f = 2 kHz, δx = 1 cm, δy = 2 cm,
My = 10, and different numbers of sensors Mx. Figure 6.5 shows plots of the
DFs and WNGs of the combined superdirective/DS beamformer as a function
of frequency for δx = 1 cm, δy = 2 cm, My = 10, and different numbers of
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Fig. 6.4 Beampatterns of the combined superdirective/DS beamformer, hy,DS ⊗ hx,SD,
for f = 2 kHz, δx = 1 cm, δy = 2 cm, My = 10, and different numbers of sensors Mx:
(a) Mx = 3, (b) Mx = 4, (c) Mx = 5, and (d) Mx = 6.

sensors Mx. We observe that as the number of sensors increases, the width of
the main beam and the level of side lobes decrease, the DF increases, but the
WNG decreases. Compared to the DS beamformer, the combined superdi-
rective/DS beamformer yields higher DF, but lower WNG (compare Figs 6.3
and 6.5).

6.4.3 Maximum DF

In the conventional method, the DF is defined as

D (h) =

∣∣∣hH d̃0

∣∣∣2
hH Γ̃h

. (6.40)
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Fig. 6.5 Performance of the combined superdirective/DS beamformer, hy,DS⊗hx,SD, as a
function of frequency for δx = 1 cm, δy = 2 cm, My = 10, and different numbers of sensors
Mx: Mx = 3 (solid line with circles), Mx = 4 (dashed line with asterisks), Mx = 5 (dotted
line with squares), and Mx = 6 (dash-dot line with triangles). (a) DF and (b) WNG.

We can easily maximize the previous expression to obtain the maximum DF
(mDF) beamformer:

hmDF =
Γ̃−1d̃0

d̃H
0 Γ̃−1d̃0

. (6.41)

While this approach maximizes the DF, which is equal to D (hmDF) =

d̃H
0 Γ̃−1d̃0, it may have a disastrous effect on the WNG. Therefore, hmDF

may be unpractical.
With the Kronecker product technique, it does not seem obvious to max-

imize the DF [see eq. (6.20)] but we can maximize the DFs in the directions
of the two axes x and y. The maximization of the DF of hx gives the su-
perdirective beamformer, hx,SD, shown in (6.36), while the maximization of
the DF of hy leads to the mDF beamformer:

hy,mDF =
Γ−1
1,ydy,0

dH
y,0Γ

−1
1,ydy,0

, (6.42)

where the elements of the My×My symmetric Toeplitz matrix Γ1,y are given
by

(Γ1,y)ij = sinc

(
ω|i− j|δy

c

)
, (6.43)

with i, j = 1, 2, . . . ,My. Therefore, the global beamformer is hy,mDF⊗hx,SD,
which, obviously, does not maximize (6.20).

We can improve the previous result, as far the DF is concerned, with a
simple iterative algorithm thanks to (6.28) and (6.29). At iteration 0, we take



6.4 Fixed Beamformers 159

h(0)
x = hx,SD, (6.44)

where hx,SD is given in (6.36). Substituting h
(0)
x into (6.27), we obtain

Γ(0)
x =

(
IMy

⊗ h(0)
x

)H
Γ̃
(
IMy

⊗ h(0)
x

)
. (6.45)

Now, substituting this expression into the DF in (6.29), we obtain at itera-
tion 1:

D
(
h(1)
y |h(0)

x

)
=

∣∣∣∣(h(1)
y

)H
dy,0

∣∣∣∣2(
h
(1)
y

)H
Γ
(0)
x h

(1)
y

. (6.46)

The maximization of D
(
h
(1)
y |h(0)

x

)
with respect to h

(1)
y gives

h(1)
y =

(
Γ
(0)
x

)−1

dy,0

dH
y,0

(
Γ
(0)
x

)−1

dy,0

. (6.47)

Using h
(1)
y in (6.26), we get

Γ(1)
y =

(
h(1)
y ⊗ IMx

)H
Γ̃
(
h(1)
y ⊗ IMx

)
. (6.48)

As a result, the DF in (6.28) is

D
(
h(1)
x |h(1)

y

)
=

∣∣∣∣(h(1)
x

)H
dx,0

∣∣∣∣2(
h
(1)
x

)H
Γ
(1)
y h

(1)
x

, (6.49)

whose maximization with respect to h
(1)
x gives

h(1)
x =

(
Γ
(1)
y

)−1

dx,0

dH
x,0

(
Γ
(1)
y

)−1

dx,0

. (6.50)

Continuing the iterations up to the iteration n, we easily get for the second
filter:

h(n)
y =

(
Γ
(n−1)
x

)−1

dy,0

dH
y,0

(
Γ
(n−1)
x

)−1

dy,0

, (6.51)
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with

Γ(n−1)
x =

(
IMy ⊗ h(n−1)

x

)H
Γ̃
(
IMy ⊗ h(n−1)

x

)
, (6.52)

and for the first filter:

h(n)
x =

(
Γ
(n)
y

)−1

dx,0

dH
x,0

(
Γ
(n)
y

)−1

dx,0

, (6.53)

with

Γ(n)
y =

(
h(n)
y ⊗ IMx

)H
Γ̃
(
h(n)
y ⊗ IMx

)
. (6.54)

As a result, the global beamformer at iteration n is h
(n)
y ⊗ h

(n)
x . Since the

DFs of the individual beamformers increase at each iteration, so is the DF of
the global beamformer and we should expect (6.20) to be maximized for n
large enough. While this iterative algorithm may lead to a high value of the
DF, white noise amplification may be a serious issue.

Figure 6.6 displays the directivity patterns of the global mDF beamformer

at the iteration n = 5, h
(5)
y ⊗ h

(5)
x , for f = 2 kHz, δx = δy = 1 cm, My = 3,

and different numbers of sensors Mx. Figure 6.7 shows plots of the DFs
and WNGs of the global mDF beamformer for δx = δy = 1 cm, My =
3, and different numbers of sensors Mx. We observe that as the number
of sensors increases, the DF of the global mDF beamformer increases, but
the WNG decreases. Compared to the DS beamformer and the combined
superdirective/DS beamformer, the global mDF beamformer yields higher
DF, but lower WNG (compare Figs 6.3, 6.5, and 6.7).

One obvious way to better compromise between the DF and the WNG is
to change the initialization to

h(0)
x = hx,DS, (6.55)

where hx,DS is the individual DS beamformer defined in (6.33). We can iterate
as above using (6.28) and (6.29) and stop when we achieve a desired DF or
when we do not desire to go below a certain level of the WNG.

6.4.4 Null Steering

In this subsection, we assume that we have one interference source impinging
on the array from the direction θ0 �= 0 that we would like to completely cancel,
i.e., to steer a null in that direction, and, meanwhile, recover the desired
source coming from the endfire direction. With the conventional approach,
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Fig. 6.6 Beampatterns of the global mDF beamformer at the iteration n = 5, h
(5)
y ⊗h

(5)
x ,

for f = 2 kHz, δx = δy = 1 cm, My = 3, and different numbers of sensors Mx: (a) Mx = 3,
(b) Mx = 4, (c) Mx = 5, and (d) Mx = 6.
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Fig. 6.7 Performance of the global mDF beamformer at the iteration n = 5, h
(5)
y ⊗ h

(5)
x ,

as a function of frequency for δx = δy = 1 cm, My = 3, and different numbers of sensors
Mx: Mx = 3 (solid line with circles), Mx = 4 (dashed line with asterisks), Mx = 5 (dotted
line with squares), and Mx = 6 (dash-dot line with triangles). (a) DF and (b) WNG.
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the constraint equation for a distortionless response and a null at θ0 is

C̃Hh = ic, (6.56)

where

C̃ =
[
d̃0 d̃θ0

]
(6.57)

is the constraint matrix of size MxMy × 2 whose two columns are linearly
independent and

ic =
[
1 0
]T

(6.58)

is a vector of length 2. There are two interesting ways to find h. The first
obvious beamformer is obtained by maximizing the WNG and by taking
(6.56) into account, i.e.,

min
h

hHh subject to C̃Hh = ic. (6.59)

From this criterion, we find the minimum-norm (MN) beamformer:

hMN = C̃
(
C̃HC̃

)−1

ic, (6.60)

which is also the minimum-norm solution of (6.56). The other beamformer is
obtained by maximizing the DF and by taking (6.56) into account, i.e.,

min
h

hH Γ̃h subject to C̃Hh = ic. (6.61)

We easily find the null-steering (NS) beamformer:

hNS = Γ̃−1C̃
(
C̃H Γ̃−1C̃

)−1

ic. (6.62)

Obviously, we always have

W (hNS) ≤ W (hMN) , (6.63)

D (hNS) ≥ D (hMN) . (6.64)

For the Kronecker product approach, there are many possibilities. Now,
for our above formulated problem, the corresponding constraint equations on
the two filters hx and hy are

CH
x hx = ic, (6.65)

CH
y hy = ic, (6.66)

where
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Fig. 6.8 Beampatterns of the global MN beamformer, hy,DS ⊗ hx,MN, for f = 2 kHz,
δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦,
(c) θ0 = 150◦, and (d) θ0 = 180◦.

Cx =
[
dx,0 dx,θ0

]
, (6.67)

Cy =
[
dy,0 dy,θ0

]
(6.68)

are the constraint matrices of size Mx × 2 and My × 2, respectively. From
(6.65) and (6.66), we easily find the individual MN beamformers:

hx,MN = Cx

(
CH

x Cx

)−1
ic, (6.69)

hy,MN = Cy

(
CH

y Cy

)−1
ic. (6.70)

As a consequence, for the global MN beamformer, we have three interesting
possibilities: hy,DS⊗hx,MN, hy,MN⊗hx,DS, and hy,MN⊗hx,MN. The three of
them, obviously, put a null in the direction θ0, but for the last one, the null
is of multiplicity 2, and its corresponding WNG (resp. DF) should be smaller
(resp. greater) than the two others.
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Fig. 6.9 Performance of the global MN beamformer, hy,DS ⊗ hx,MN, as a function of
frequency for δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: θ0 = 90◦ (solid
line with circles), θ0 = 120◦ (dashed line with asterisks), θ0 = 150◦ (dotted line with
squares), and θ0 = 180◦ (dash-dot line with triangles). (a) DF and (b) WNG.

Figure 6.8 displays the directivity patterns of the global MN beamformer,
hy,DS ⊗hx,MN, for f = 2 kHz, δx = δy = 1 cm, Mx = 3, My = 5, and several
values of θ0. Figure 6.9 shows plots of the DFs and WNGs of the global MN
beamformer as a function of frequency for δx = δy = 1 cm, Mx = 3, My = 5,
and several values of θ0. We observe a null in the direction θ0, and the WNG
of the global MN beamformer increases as θ0 increases from 90◦ to 180◦.

Following the steps of the conventional approach, we easily find the indi-
vidual NS beamformers:

hx,NS = Γ−1
1 Cx

(
CH

x Γ−1
1 Cx

)−1
ic, (6.71)

hy,NS = Γ−1
1,yCy

(
CH

y Γ−1
1,yCy

)−1
ic, (6.72)

and for the global beamformer, we have many more possibilities depending
on what we want. Here are some examples: hy,NS ⊗ hx,SD, hy,NS ⊗ hx,MN,
hy,mDF ⊗ hx,NS, hy,MN ⊗ hx,NS, hy,DS ⊗ hx,NS, and hy,NS ⊗ hx,NS. The last
one will give the best DF.

Figure 6.10 displays the global NS beamformer, hy,DS ⊗ hx,NS, for f =
2 kHz, δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0. Figure 6.11
shows plots of the DFs and WNGs of the global NS beamformer, hy,DS ⊗
hx,NS, as a function of frequency for δx = δy = 1 cm, Mx = 3, My = 5,
and several values of θ0. Figure 6.12 displays the global NS beamformer,
hy,NS ⊗ hx,NS, for f = 2 kHz, δx = δy = 1 cm, Mx = 3, My = 5, and several
values of θ0. Figure 6.13 shows plots of the DFs and WNGs of the global NS
beamformer, hy,NS ⊗ hx,NS, as a function of frequency for δx = δy = 1 cm,
Mx = 3, My = 5, and several values of θ0. We observe a null in the direction
θ0. Compared to the global MN beamformers, the global NS beamformers
yield higher DF, but lower WNG. The beamformer hy,NS ⊗ hx,NS yields the
highest DF, but lowest WNG (compare Figs 6.9, 6.11, and 6.13).
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Fig. 6.10 Beampatterns of the global NS beamformer, hy,DS ⊗ hx,NS, for f = 2 kHz,
δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦,
(c) θ0 = 150◦, and (d) θ0 = 180◦.
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Fig. 6.11 Performance of the global NS beamformer, hy,DS ⊗ hx,NS, as a function of
frequency for δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: θ0 = 90◦ (solid
line with circles), θ0 = 120◦ (dashed line with asterisks), θ0 = 150◦ (dotted line with
squares), and θ0 = 180◦ (dash-dot line with triangles). (a) DF and (b) WNG.
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Fig. 6.12 Beampatterns of the global NS beamformer, hy,NS ⊗ hx,NS, for f = 2 kHz,
δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: (a) θ0 = 90◦, (b) θ0 = 120◦,
(c) θ0 = 150◦, and (d) θ0 = 180◦.
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Fig. 6.13 Performance of the global NS beamformer, hy,NS ⊗ hx,NS, as a function of
frequency for δx = δy = 1 cm, Mx = 3, My = 5, and several values of θ0: θ0 = 90◦ (solid
line with circles), θ0 = 120◦ (dashed line with asterisks), θ0 = 150◦ (dotted line with
squares), and θ0 = 180◦ (dash-dot line with triangles). (a) DF and (b) WNG.
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Chapter 7

Spatiotemporal Signal Enhancement

While previous chapters were mostly about (fixed, adaptive, and differen-
tial) beamforming with some specific array geometries, the discussion in this
chapter is on the spatiotemporal signal enhancement problem with any array
geometry. By taking into account the interframe correlation, we show how
the Kronecker product appears naturally in the definition of the signal vec-
tor. Thanks to this, we explain how to perform noise reduction (i.e., signal
enhancement) with Kronecker product filters and derive the most well-known
algorithms.

7.1 Signal Model and Problem Formulation

We consider the conventional signal model in which an array of M sensors,
with no specific geometry, captures a convolved source signal in some noise
field. The received signals, at the time index t, are expressed as [1], [2], [3]

ym(t) = gm(t) ∗ s(t) + vm(t) (7.1)

= xm(t) + vm(t), m = 1, 2, . . . ,M,

where gm(t) is the impulse response from the unknown desired signal source,
s(t), location to the mth sensor, ∗ stands for linear convolution, and vm(t) is
the additive noise at sensorm. We assume that the signals xm(t) = gm(t)∗s(t)
and vm(t) are uncorrelated, zero mean, stationary, real, and broadband. By
definition, the convolved desired signals, xm(t), m = 1, 2, . . . ,M , are coherent
across the array while the noise signals, vm(t), m = 1, 2, . . . ,M , are typically
only partially coherent across the array.

Using the short-time Fourier transform (STFT), (7.1) can be rewritten in
the time-frequency domain as [4, 5]

169© Springer Nature Switzerland AG 2019
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Processing 18, https://doi.org/10.1007/978-3-030-15600-8_7
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Ym(k, t′) = Gm(k)S(k, t′) + Vm(k, t′) (7.2)

= Xm(k, t′) + Vm(k, t′), m = 1, 2, . . . ,M,

where Ym(k, t′), Gm(k), S(k, t′), Vm(k, t′), and Xm(k, t′) are the STFTs of
ym(t), gm(t), s(t), vm(t), and xm(t), respectively, at the frequency bin k ∈
{0, 1, . . . ,K − 1} and the time frame t′. Assuming that the first sensor is the
reference, we can write the M STFT-domain signals in a vector notation as

y(k, t′) =
[
Y1(k, t

′) Y2(k, t
′) · · · YM (k, t′)

]T
= d(k)X1(k, t

′) + v(k, t′)
= x(k, t′) + v(k, t′), (7.3)

where

d(k) =

[
1
G2(k)

G1(k)
· · · GM (k)

G1(k)

]T
, (7.4)

and x(k, t′) and v(k, t′) are defined similarly to y(k, t′).
We assume that in the STFT domain, consecutive data frames are corre-

lated and this information should be taken into account in order to improve
the estimation of the desired signal. Considering the most recent L time
frames, we can extend (7.3) to

y(k, t′) =
[
yT (k, t′) yT (k, t′ − 1) · · · yT (k, t′ − L+ 1)

]T
= x1(k, t

′)⊗ d(k) + v(k, t′)
= x(k, t′) + v(k, t′), (7.5)

where

x1(k, t
′) =

[
X1(k, t

′) X1(k, t
′ − 1) · · · X1(k, t

′ − L+ 1)
]T

(7.6)

is a vector of length L, and x(k, t′) and v(k, t′) are vectors of length ML,
defined similarly to y(k, t′). Then, the objective of spatiotemporal signal en-
hancement in the STFT domain (where the interframe correlation is taken
into account) is to estimate X1(k, t

′) from y(k, t′) in the best possible way.
As one can observe, at the time frame t′, our desired signal is X1(k, t

′) [and
not the whole vector x1(k, t

′)]. However, x1(k, t
′) contains both the desired

signal, X1(k, t
′), and the components X1(k, t

′ − l), l �= 0, which are not
the desired signals at the time frame t′ but signals that are correlated with
X1(k, t

′). Therefore, the elements X1(k, t
′ − l), l �= 0, contain both a part

of the desired signal and a component that we consider as an interference.
This suggests that we should decompose X1(k, t

′ − l) into two orthogonal
components corresponding to the part of the desired signal and interference,
i.e.,
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X1(k, t
′ − l) = ρ(k, t′, l)X1(k, t

′) +X1,i(k, t
′ − l), (7.7)

where

X1,i(k, t
′ − l) = X1(k, t

′ − l)− ρ(k, t′, l)X1(k, t
′), (7.8)

E [X∗
1 (k, t

′)X1,i(k, t
′ − l)] = 0, (7.9)

and

ρ(k, t′, l) =
E [X∗

1 (k, t
′)X1(k, t

′ − l)]

E
[
|X1(k, t′)|2

] (7.10)

is the interframe correlation coefficient of the signal X1(k, t
′). Hence, we can

write the vector x(k, t′) as

x(k, t′) = X1(k, t
′) [ρ(k, t′)⊗ d(k)] + xi(k, t

′)
= X1(k, t

′)d(k, t′) + xi(k, t
′)

= xd(k, t
′) + xi(k, t

′), (7.11)

where

ρ(k, t′) =
[
1 ρ(k, t′, 1) · · · ρ(k, t′, L− 1)

]T
(7.12)

is the (normalized) interframe correlation vector between X1(k, t
′) and

x1(k, t
′),

xi(k, t
′) =

[
X1,i(k, t

′) X1,i(k, t
′ − 1) · · · X1,i(k, t

′ − L+ 1)
]T ⊗ d(k) (7.13)

is the interference signal vector of length ML,

d(k, t′) = ρ(k, t′)⊗ d(k) (7.14)

is a vector of length ML, and

xd(k, t
′) = X1(k, t

′)d(k, t′) (7.15)

is the desired signal vector. As a consequence, we can express (7.5) as

y(k, t′) = X1(k, t
′) [ρ(k, t′)⊗ d(k)] + xi(k, t

′) + v(k, t′). (7.16)

In the rest, in order to simplify the notation, we often drop the dependence
on k and t′, so that (7.16), for example, is written as y = X1 (ρ⊗ d)+xi+v.

Since the desired, interference, and noise signals are mutually uncorrelated,
the covariance matrix of y is
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Φy = E
(
y yH

)
(7.17)

= Φxd
+Φxi

+Φv

= Φxd
+Φin,

where

Φxd
= φX1

d dH (7.18)

= φX1 (ρ⊗ d) (ρ⊗ d)
H

= φX1

(
ρρH

)⊗ (ddH
)

is the covariance matrix of xd, with φX1 = E
(
|X1|2

)
being the variance of

X1, Φv = E
(
v vH

)
is the covariance matrix of v, and Φin = Φxi

+ Φv is
the covariance matrix of the interference-plus-noise (xi + v).

7.2 Signal Enhancement with Kronecker Product Filters

Given the structure of the desired signal vector, xd, we propose, as we did in
previous chapters, to use complex-valued filters of length ML of the form:

h = h1 ⊗ h2, (7.19)

where h1 and h2 are two complex-valued linear filters of lengths L and M ,
respectively. Then, spatiotemporal signal enhancement is performed by ap-
plying h to y, i.e.,

Z = hHy (7.20)

= hHxd + hHxi + hHv

= Xfd +Xri + Vrn,

where Z is the estimate of the desired signal, X1,

Xfd = (h1 ⊗ h2)
H
(ρ⊗ d)X1

=
(
hH
1 ρ
) (

hH
2 d
)
X1 (7.21)

is the filtered desired signal,

Xri = (h1 ⊗ h2)
H
xi (7.22)

is the residual interference, and

Vrn = (h1 ⊗ h2)
H
v (7.23)
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is the residual noise. We deduce that the variance of Z is

φZ = φXfd
+ φXri + φVrn , (7.24)

where

φXfd
= φX1

∣∣hH
1 ρ
∣∣2 ∣∣hH

2 d
∣∣2 , (7.25)

φXri = (h1 ⊗ h2)
H
Φxi

(h1 ⊗ h2) , (7.26)

φVrn
= (h1 ⊗ h2)

H
Φv (h1 ⊗ h2) . (7.27)

To end this section, we see that the distortionless constraints in our context
are

hH
1 ρ = hH

2 d = 1. (7.28)

7.3 Performance Measures

In the time-frequency domain, we must differentiate between the subband
(i.e., single frequency) measures and the broadband (i.e., across the entire
frequency range) measures. In this part, we define the most useful ones from
the signal enhancement perspective.

We define the subband input SNR as

iSNR(k, t′) =
φX1

(k, t′)
φV1

(k, t′)
, (7.29)

where φV1(k, t
′) = E

[
|V1(k, t

′)|2
]
is the variance of the noise at the first

microphone. The broadband input SNR is obtained by summing over all
time-frequency indices the numerator and denominator of iSNR(k, t′). We
get

iSNR =

∑
k,t′ φX1(k, t

′)∑
k,t′ φV1(k, t

′)
. (7.30)

To quantify the level of the noise remaining at the output of the filter, we
introduce the subband output SNR:

oSNR [h(k, t′)] =
φXfd

(k, t′)
φXri(k, t

′) + φVrn(k, t
′)

(7.31)

=
φX1(k, t

′)
∣∣∣hH(k, t′)d(k, t′)

∣∣∣2
hH(k, t′)Φin(k, t′)h(k, t′)
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and the broadband output SNR:

oSNR (h) =

∑
k,t′ φX1

(k, t′)
∣∣∣hH(k, t′)d(k, t′)

∣∣∣2∑
k,t′ h

H(k, t′)Φin(k, t′)h(k, t′)
. (7.32)

We define the subband and broadband array gains as

G [h(k, t′)] =
oSNR [h(k, t′)]
iSNR(k, t′)

(7.33)

and

G (h) =
oSNR (h)

iSNR
. (7.34)

It is easy to see that the maximum subband array gain is

Gmax = φV1
dHΦ−1

in d ≥ 1. (7.35)

The noise reduction factor quantifies the amount of the noise that is re-
jected by the filter. The subband noise reduction factor is then

ξn [h(k, t
′)] =

φV1
(k, t′)

φXri(k, t
′) + φVrn(k, t

′)
(7.36)

=
φV1

(k, t′)
hH(k, t′)Φin(k, t′)h(k, t′)

and the broadband noise reduction factor is

ξn (h) =

∑
k,t′ φV1(k, t

′)∑
k,t′ h

H(k, t′)Φin(k, t′)h(k, t′)
. (7.37)

The noise reduction factor is expected to be lower bounded by 1 for optimal
filters; so the more the noise is reduced, the higher its value.

The desired signal can be distorted by the filter. Therefore, we define the
subband desired signal reduction factor as

ξd [h(k, t
′)] =

φX1(k, t
′)

φXfd
(k, t′)

(7.38)

=
1∣∣∣hH(k, t′)d(k, t′)

∣∣∣2
and the broadband desired signal reduction factor as
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ξd (h) =

∑
k,t′ φX1

(k, t′)∑
k,t′ φX1(k, t

′)
∣∣∣hH(k, t′)d(k, t′)

∣∣∣2 . (7.39)

An important observation is that the design of a filter that does not distort
the desired signal requires the constraint:

hHd = 1. (7.40)

Thus, the desired signal reduction factor is equal to 1 if there is no distortion
and expected to be greater than 1 when distortion occurs.

It is easy to verify the fundamental relation:

oSNR (h)

iSNR
=

ξn (h)

ξd (h)
. (7.41)

Another useful performance measure is the subband desired signal distor-
tion index given by

υd [h(k, t
′)] =

E
[
|Xfd(k, t

′)−X1(k, t
′)|2
]

φX1
(k, t′)

(7.42)

=
∣∣∣hH(k, t′)d(k, t′)− 1

∣∣∣2 .
The broadband desired signal distortion index is given by

υd (h) =

∑
k,t′ φX1

(k, t′)
∣∣∣hH(k, t′)d(k, t′)− 1

∣∣∣2∑
k,t′ φX1

(k, t′)
. (7.43)

The desired signal distortion index is always greater than or equal to 0 and
should be upper bounded by 1 for optimal filters; so the higher is its value,
the more distortion to the desired signal.

Now, let us write the error signal between the estimated and desired sig-
nals:

E(k, t′) = Z(k, t′)−X1(k, t
′) (7.44)

= Xfd(k, t
′) +Xri(k, t

′) + Vrn(k, t
′)−X1(k, t

′)
= Ed(k, t′) + Er(k, t′),

where

Ed(k, t′) = Xfd(k, t
′)−X1(k, t

′)

=
[
hH(k, t′)d(k, t′)− 1

]
X1(k, t

′) (7.45)

is the desired signal distortion due to the complex filter and
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Er(k, t′) = Xri(k, t
′) + Vrn(k, t

′)

= hH(k, t′)xi(k, t
′) + hH(k, t′)v(k, t′) (7.46)

represents the residual interference-plus-noise.
Having defined the error signal, we can write the subband MSE criterion:

J [h(k, t′)] = E
[
|E(k, t′)|2

]
= Jd [h(k, t

′)] + Jn [h(k, t
′)] , (7.47)

where

Jd [h(k, t
′)] = E

[
|Ed(k, t′)|2

]
= E

[
|Xfd(k, t

′)−X1(k, t
′)|2
]

= φX1
(k, t′)

∣∣∣hH(k, t′)d(k, t′)− 1
∣∣∣2

= φX1(k, t
′)× υd [h(k, t

′)] (7.48)

and

Jn [h(k, t
′)] = E

[
|Er(k, t′)|2

]
= E

[
|Xri(k, t

′)|2
]
+ E

[
|Vrn(k, t

′)|2
]

= φXri(k, t
′) + φVrn(k, t

′)

=
φV1

(k, t′)
ξn [h(k, t′)]

. (7.49)

The broadband MSE is given by

J (h) =
∑
k,t′

J [h(k, t′)] (7.50)

=
∑
k,t′

Jd [h(k, t
′)] +

∑
k,t′

Jn [h(k, t
′)]

= Jd (h) + Jn (h) .

7.4 Optimal Signal Enhancement Kronecker Product
Filters

In this section, we present three signal enhancement algorithms based on
Kronecker product filters. Of course, many more can be derived but we prefer
to focus on the most obvious ones only.
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7.4.1 Wiener

Because of the structure of h, it does not seem possible to derive a closed-form
Wiener filter but we can write the subband MSE in (7.47) as

J (h1 ⊗ h2) = φX1
+ hH

1 Φy,2h1 − φX1,2h
H
1 ρ− φ∗

X1,2ρ
Hh1 (7.51)

= φX1
+ hH

2 Φy,1h2 − φX1,1h
H
2 d− φ∗

X1,1d
Hh2, (7.52)

where

Φy,2 = (IL ⊗ h2)
H
Φy (IL ⊗ h2) , (7.53)

φX1,2 = φX1
hH
2 d, (7.54)

and

Φy,1 = (h1 ⊗ IM )
H
Φy (h1 ⊗ IM ) , (7.55)

φX1,1 = φX1h
H
1 ρ. (7.56)

It is important to observe that the sizes of the matrices Φy,1 and Φy,2, which
are M × M and L × L, respectively, are much smaller than the size of Φy,
which isML×ML. As a result, in practice, much less observations are needed
to accurately estimate Φy,1 and Φy,2 than Φy, which is the matrix that is
inverted in the multichannel Wiener filter taking into account the interframe
correlation.

When h2 is fixed, we write (7.51) as

J (h1|h2) = φX1
+ hH

1 Φy,2h1 − φX1,2h
H
1 ρ− φ∗

X1,2ρ
Hh1, (7.57)

and when h1 is fixed, we write (7.52) as

J (h2|h1) = φX1 + hH
2 Φy,1h2 − φX1,1h

H
2 d− φ∗

X1,1d
Hh2. (7.58)

Now, we have everything to derive an iterative algorithm similar to the
one proposed in [6]. At iteration 0, we may take

h
(0)
2 = φX1Φ

−1
y d, (7.59)

where Φy = E
(
yyH

)
is the covariance matrix of y [see (7.3)]. In fact, h

(0)
2 is

the conventional multichannel Wiener filter, which does not take into account

the interframe correlation. Substituting h
(0)
2 into (7.53)–(7.54), we get

Φ
(0)
y,2 =

(
IL ⊗ h

(0)
2

)H
Φy

(
IL ⊗ h

(0)
2

)
, (7.60)

φ
(0)
X1,2

= φX1

(
h
(0)
2

)H
d. (7.61)
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Then, substituting these quantities into the MSE in (7.57), we obtain at
iteration 1:

J
(
h
(1)
1 |h(0)

2

)
= φX1 +

(
h
(1)
1

)H
Φ

(0)
y,2h

(1)
1 − φ

(0)
X1,2

(
h
(1)
1

)H
ρ

−
(
φ
(0)
X1,2

)∗
ρHh

(1)
1 . (7.62)

The minimization of J
(
h
(1)
1 |h(0)

2

)
with respect to h

(1)
1 gives

h
(1)
1 = φ

(0)
X1,2

(
Φ

(0)
y,2

)−1

ρ. (7.63)

Using h
(1)
1 into (7.55)–(7.56), we obtain

Φ
(1)
y,1 =

(
h
(1)
1 ⊗ IM

)H
Φy

(
h
(1)
1 ⊗ IM

)
, (7.64)

φ
(1)
X1,1

= φX1

(
h
(1)
1

)H
ρ. (7.65)

With Φ
(1)
y,1 and φ

(1)
X1,1

, we can compute the MSE in (7.58) as

J
(
h
(1)
2 |h(1)

1

)
= φX1

+
(
h
(1)
2

)H
Φ

(1)
y,1h

(1)
2 − φ

(1)
X1,1

(
h
(1)
2

)H
d

−
(
φ
(1)
X1,1

)∗
dHh

(1)
2 , (7.66)

whose minimization with respect to h
(1)
2 gives

h
(1)
2 = φ

(1)
X1,1

(
Φ

(1)
y,1

)−1

d. (7.67)

Continuing the iterations up to the iteration n, we easily get the estimate
of the first filter:

h
(n)
1 = φ

(n−1)
X1,2

(
Φ

(n−1)
y,2

)−1

ρ, (7.68)

where

φ
(n−1)
X1,2

= φX1

(
h
(n−1)
2

)H
d, (7.69)

Φ
(n−1)
y,2 =

(
IL ⊗ h

(n−1)
2

)H
Φy

(
IL ⊗ h

(n−1)
2

)
, (7.70)

and the estimate of the second filter:

h
(n)
2 = φ

(n)
X1,1

(
Φ

(n)
y,1

)−1

d, (7.71)
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where

φ
(n)
X1,1

= φX1

(
h
(n)
1

)H
ρ, (7.72)

Φ
(n)
y,1 =

(
h
(n)
1 ⊗ IM

)H
Φy

(
h
(n)
1 ⊗ IM

)
. (7.73)

Finally, we deduce that the Wiener filter is at iteration n:

h
(n)
W = h

(n)
1 ⊗ h

(n)
2 , (7.74)

where h
(n)
1 and h

(n)
2 are defined in (7.68) and (7.71), respectively.

Example 7.1. Consider a ULA of M sensors with an interelement spacing
equal to δ. Suppose that a desired speech signal, s(t), impinges on the ULA
from the direction θs, and that an interference u(t) impinges on the ULA
from the direction θu. Assume that the interference u(t) is white Gaussian
noise, i.e., u(t) ∼ N (

0, σ2
u

)
, uncorrelated with s(t). In addition, the sensors

contain thermal white Gaussian noise, wm(t) ∼ N (
0, σ2

w

)
, that are mutually

uncorrelated. The desired speech signal, X1(k, t
′), needs to be recovered from

the noisy received signals, ym(t) = xm(t) + vm(t), m = 1, 2, . . . ,M , where
vm(t) = um(t) + wm(t), m = 1, 2, . . . ,M are the additive noise signals.

To demonstrate spatiotemporal speech enhancement in the STFT domain,
we choose a sampling frequency of 16 kHz, δ = 2 cm, θs = 0, θu = 50◦,
σ2
w = 0.1σ2

u, a Hamming window of length L = 512 as the analysis window,
overlap of 75% between consecutive windows (384 samples), and the Wiener

filter at the iteration n = 5, h
(5)
W , in the STFT domain.

Figure 7.1 shows the spectrogram and waveform of the clean speech signal
received at the first sensor, x1(t). Figure 7.2 shows plots of the broadband

gain in SNR, G
(
h
(5)
W

)
, the broadband MSE, J

(
h
(5)
W

)
, the broadband noise

reduction factor, ξn

(
h
(5)
W

)
, and the broadband desired signal reduction fac-

tor, ξd

(
h
(5)
W

)
, as a function of the broadband input SNR, for L = 2 and

different numbers of sensors, M . Figure 7.3 shows a realization of the ob-
servation signal at the first sensor, y1(t), and the estimated signals, z(t), for
different numbers of time frames, L, and different numbers of sensors, M .
Clearly, as the number of time frames or the number of sensors increases,
the Wiener filter better enhances the desired speech signal in terms of higher
SNR and noise reduction, and lower MSE and desired signal reduction.

7.4.2 Tradeoff

In order to better compromise between noise reduction and signal distortion,
we propose to minimize the desired signal distortion indices with the con-
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Fig. 7.1 Speech spectrogram and waveform of a clean speech signal received at the first
sensor, x1(t): “Don’t ask me to carry an oily rag like that.”
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Fig. 7.2 (a) The broadband gain in SNR, (b) the broadband MSE, (c) the broadband
noise reduction factor, and (d) the broadband desired signal reduction factor of the Wiener

filter, h
(5)
W , as a function of the broadband input SNR, for L = 2 and different numbers

of sensors, M : M = 1 (solid line with circles), M = 2 (dashed line with asterisks), M = 4
(dotted line with squares), and M = 8 (dash-dot line with triangles).

straints that the noise reduction factors are equal to positive values that are
greater than 1, i.e.,
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Fig. 7.3 Speech spectrograms and waveforms of (a) the noisy speech signal received at
the first sensor, Y1(k, t′) (iSNR = 0 dB), and the estimated signal, Z(k, t′), for (b) M =

L = 2 [oSNR
(
h
(5)
W

)
= 18.91 dB], (c) M = 2, L = 4 [oSNR

(
h
(5)
W

)
= 22.36 dB], and (d)

M = L = 4 [oSNR
(
h
(5)
W

)
= 24.01 dB].
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where 0 < ℵ1,ℵ2 < 1 to insure that we get some noise reduction,
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and



182 7 Spatiotemporal Signal Enhancement

Jd

(
h
(n)
2 |h(n)

1

)
= φX1

+
(
h
(n)
2

)H
Φ

(n)
xd,1

h
(n)
2 − φ

(n)
X1,1

(
h
(n)
2

)H
d

−
(
φ
(n)
X1,1

)∗
dHh

(n)
2 , (7.79)

Jn

(
h
(n)
2 |h(n)

1

)
=
(
h
(n)
2

)H
Φ

(n)
in,1h

(n)
2 , (7.80)

with

Φ
(n−1)
xd,2

=
(
IL ⊗ h

(n−1)
2

)H
Φxd

(
IL ⊗ h

(n−1)
2

)
=

∣∣∣φ(n−1)
X1,2

∣∣∣2
φX1

ρρH , (7.81)

Φ
(n−1)
in,2 =

(
IL ⊗ h

(n−1)
2

)H
Φin

(
IL ⊗ h

(n−1)
2

)
, (7.82)

Φ
(n)
xd,1

=
(
h
(n)
1 ⊗ IM

)H
Φxd

(
h
(n)
1 ⊗ IM

)
=

∣∣∣φ(n)
X1,1

∣∣∣2
φX1

ddH , (7.83)

Φ
(n)
in,1 =

(
h
(n)
1 ⊗ IM

)H
Φin

(
h
(n)
1 ⊗ IM

)
. (7.84)

By using Lagrange multipliers, μ1, μ2 > 0, to adjoin the constraints to the
cost functions, we get
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where Φv = E
(
vvH

)
is the covariance matrix of v [see (7.3)]. As a matter

of fact, h
(0)
2,μ2

is just the traditional multichannel tradeoff filter. Therefore, we
find that the tradeoff filter is at iteration n:

h
(n)
T,μ1,μ2

= h
(n)
1,μ1

⊗ h
(n)
2,μ2

, (7.88)

where h
(n)
1,μ1

and h
(n)
2,μ2

are defined in (7.85) and (7.86), respectively. We can
see that for

• μ1 = μ2 = 1, we get the Wiener filter;
• μ1, μ2 > 1, results in a filter with low residual noise at the expense of high

signal distortion (as compared to Wiener); and
• μ1, μ2 < 1, results in a filter with high residual noise and low signal dis-

tortion (as compared to Wiener).

Example 7.2. Returning to Example 7.1, we now employ the tradeoff filter

at the iteration n = 5, h
(5)
T,μ1,μ2

. We assume L = 2 time frames and M = 4

sensors. Figure 7.4 shows plots of the broadband gain in SNR, G
(
h
(5)
T,μ1,μ2

)
,

the broadband desired signal distortion index, υd

(
h
(5)
T,μ1,μ2

)
, the broadband

noise reduction factor, ξn

(
h
(5)
T,μ1,μ2

)
, and the broadband desired signal re-

duction factor, ξd

(
h
(5)
T,μ1,μ2

)
, as a function of the broadband input SNR, for

several values of μ1 = μ2. For a given broadband input SNR, the higher are
the values of μ1 and μ2, the higher are the broadband gain in SNR and the
broadband noise reduction factor, but at the expense of higher broadband
desired signal distortion index and higher broadband desired signal reduction
factor.

7.4.3 MVDR

The MVDR filter proposed by Capon [7], [8] is obtained by minimizing the
MSEs of the residual interference-plus-noise subject to the distortionless con-
straints, i.e.,

min
h

(n)
1

(
h
(n)
1

)H
Φ
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in,2 h
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(
h
(n)
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(n)
2 subject to

(
h
(n)
2

)H
d = 1, (7.90)

where Φ
(n−1)
in,2 and Φ

(n)
in,1 are defined in (7.82) and (7.84), respectively. From

the optimization of (7.89) and (7.90), we get
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Fig. 7.4 (a) The broadband gain in SNR, (b) the broadband desired signal distortion
index, (c) the broadband noise reduction factor, and (d) the broadband desired signal

reduction factor of the tradeoff filter, h
(5)
T,μ1,μ2

, as a function of the broadband input SNR,
for L = 2, M = 4, and several values of μ1 = μ2: μ = 0.5 (solid line with circles), μ = 1
(dashed line with asterisks), μ = 2 (dotted line with squares), and μ = 5 (dash-dot line
with triangles).
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, (7.92)

with the initialization:

h
(0)
2 =

Φ−1
v d

dHΦ−1
v d

. (7.93)

As a result, the MVDR filter is at iteration n:

h
(n)
MVDR = h

(n)
1 ⊗ h

(n)
2 . (7.94)
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Fig. 7.5 (a) The broadband gain in SNR, (b) the broadband MSE, (c) the broadband
noise reduction factor, and (d) the broadband desired signal reduction factor of the MVDR

filter, h
(5)
MVDR, as a function of the broadband input SNR, for L = 2 and different numbers

of sensors, M : M = 1 (solid line with circles), M = 2 (dashed line with asterisks), M = 4
(dotted line with squares), and M = 8 (dash-dot line with triangles).

This filter can be directly obtained from h
(n)
T,μ1,μ2

by taking μ1 = μ2 = 0.

Example 7.3. Returning to Example 7.1, we now employ the MVDR filter at

the iteration n = 5, h
(5)
MVDR. Figure 7.5 shows plots of the broadband gain in

SNR, G
(
h
(5)
MVDR

)
, the broadband MSE, J

(
h
(5)
MVDR

)
, the broadband noise

reduction factor, ξn

(
h
(5)
MVDR

)
, and the broadband desired signal reduction

factor, ξd

(
h
(5)
MVDR

)
, as a function of the broadband input SNR, for L = 2

and different numbers of sensors, M . For a given broadband input SNR, as
the number of sensors increases, the broadband gain in SNR and the broad-
band noise reduction factor increase, while the broadband MSE decreases.
Compared with the Wiener filter, the MVDR filter yields no desired signal
reduction, but at the expense of lower gain in SNR, lower noise reduction,
and higher MSE (compare Figs. 7.2 and 7.5).
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