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Abstract. [Context and motivation] Automatic extraction and
analysis of app features from user reviews is helpful for software devel-
opers to better understand users perceptions of delivered app features.
Recently, a rule-based approach called safe was proposed to automati-
cally extract app features from user reviews. safe was reported to obtain
superior performance in terms of precision and recall over previously
proposed techniques. However, the procedure used to evaluate safe was
in part subjective and not repeatable and thus the whole evaluation
might not be reliable. [Question/problem] The goal of our study is to
perform an external replication of the safe evaluation using an objec-
tive and repeatable approach. [Principal ideas/results] To this end,
we first implemented safe and checked the correctness of our imple-
mentation on the set of app descriptions that were used and published
by the authors of the original study. We applied our safe implementa-
tion to eight review datasets (six app review datasets, one laptop review
dataset, one restaurant review dataset) and evaluated its performance
against manually annotated feature terms. Our results suggest that the
precision of the safe approach is strongly influenced by the density of
the annotated app features in a review dataset. Overall, we obtained
an average precision and recall of 0.120 and 0.539, respectively which is
lower than the performance reported in the original safe study. [Con-
tribution] We performed an unbiased and reproducible evaluation of
the safe approach for user reviews. We make our implementation and
all datasets used for the evaluation available for replication by others.

Keywords: App feature extraction · SAFE approach ·
App review mining · Review summarization

1 Introduction

User feedback is an important source of information for software developers to
enhance software quality [1]. In the context of mobile applications, i.e., apps,
app marketplaces such as AppStore and PlayStore have become useful channels
distributing millions of apps to their users. These marketplaces allow users to
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submit feedback in the form of reviews. User reviews contain valuable informa-
tion such as feature evaluation, feature requests or bug reports that is helpful
for developers for improving their apps [9]. However, the enormous volume of
reviews received every day for a popular app make the manual analysis of these
reviews impractical. Earlier studies have performed automatic analysis of user
reviews to find out new app features requested by users [7] or to discover the
sentiment of app features extracted from user reviews [2,3,13]. One major chal-
lenge in these studies has been the automatic extraction of app features from
user reviews which is difficult for several reasons. First, there is great variability
in how users express identical features and secondly, review texts often contain
non-standard language such as slang, typos, and incorrect grammar.

Several approaches have been proposed to extract app features automati-
cally from app user reviews. These approaches include topic models [3], set of
patterns/rules [2,5], and supervised sequence tagging models [12]. The recently
proposed rule-based approach SAFE [5] uses 18 Part-of-Speech (POS) patterns
and five sentence patterns for automatically extracting app features from app
descriptions and user reviews. Johann et al. reported the precision and recall of
safe to be 0.559 and 0.434, respectively, for app feature extraction from app
descriptions which is superior over the technique of Harman et al. [4]—an earlier
rule-based approach developed for the same purpose. Moreover, safe was also
reported to outperform the topic-modeling approach of Guzman et al. [3] for the
extraction of app features from user reviews with a reported precision and recall
of 0.239 and 0.709, respectively [5].

To evaluate the safe performance for app descriptions in their original study,
Johann et al. created a labeled dataset, in which app features have been man-
ually annotated. However, they did not create such a dataset to evaluate the
performance of extracting app features from user reviews. Instead, the authors
of the original safe study used a coding tool that showed a review text along
with a list of safe-extracted app feature terms to coders who then had to decide
whether the extracted app features were true or false. In case any true app fea-
tures had not been extracted by safe (i.e., false negatives) from a user review,
coders had to add them manually by writing them in a corresponding text box.
This procedure to spot false negatives (FNs) is subjective and could introduce
researcher bias because coders might have accidentally skipped entering some
true app features not extracted by safe, thus lowering the number of false neg-
atives and thus boosting performance. In summary, the evaluation of the safe
approach for user reviews as conducted in the original study has the following
two issues: (a) the evaluation is not repeatable because the true app features in
the user reviews were not reported and (b) the evaluation procedure is poten-
tially biased as it bases the identification of true and false positives on subjective
decisions of coders after the list of safe-extracted app features has been shown
to them. In order to validate the performance of the safe, we conducted an
external replication [6] of the safe evaluation on user reviews, using an unbi-
ased and repeatable procedure. Our goal is to answer the following research
question:
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RQ: What is the expected performance of safe on user reviews?

This research question had to be answered in two steps. Since exact implementa-
tion of the safe approach has not been published, we first implemented the safe
method and validated our implementation using the annotated app description
dataset made publicly available by the authors of the original safe study. This
lead us to the first sub-question of RQ.

RQ-A: Does our implementation of the safe approach have the same perfor-
mance as the original implementation of the safe approach when applied to app
descriptions?

After confirming that our safe implementation on the app description
dataset achieves a performance close to the one reported in the original safe
study, we applied safe to the following eight annotated review datasets: guzman
dataset1, guzman+ dataset (an extension of the guzman dataset), and four
dataset variants derived from the shah dataset [14], and laptop and restau-
rant review datasets2. In the rest of this paper, we use the word “features” to
collectively refer the features of a software app, laptop product, or restaurant
services. Features contained in these review datasets have been manually anno-
tated by humans. The application of our safe implementation to these datasets
answered the second sub-question of RQ.

RQ-B: Does our implementation of the safe approach have the same perfor-
mance as the original implementation of the safe approach when applied to
review datasets?
The evaluation results show that the safe performance in terms of f1-score for
all review datasets is lower than the performance reported in the original safe
study. Our analyses further reveal that the precision of the safe approach is
influenced by the density of true features in a review dataset.

The rest of the paper is structured as follows. In Sect. 2, we provide a
brief introduction of safe approach. Section 3 describes our methodology that
include details of our safe implementation and its validation, followed by the
description of the evaluation method and characteristics of four annotated review
datasets. Section 4 discusses the results. In Sect. 5, threats to validity are exam-
ined. Section 6 summarizes the previous work related to our study. Conclusions
are presented in Sect. 7.

2 SAFE Approach

The safe approach is a rule-based method recently proposed by Johann et al. [5]
for the extraction of app features from both app descriptions and user reviews.
The authors of the safe approach performed a manual analysis of descriptions
of 100 apps in Google Play Store and identified frequent textual patterns which
are used to denote app features of these apps. The 18 Part-of-Speech (POS)

1 The dataset was obtained from the authors of study [3].
2 http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools.

http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
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patterns found in the app descriptions are shown in Table 1 together with their
frequencies. In addition, the authors also identified five sentence patterns where
the app features are mentioned as enumeration, conjunctions and feature identi-
fiers [5]. The exact specification of the five sentence patterns was not presented
in the original study. We will describe our interpretation of these patterns in
Subsect. 3.1 where we describe our implementation of the safe approach.

safe first applies a number of pre-processing steps that remove sentences
containing URLs, quotations, email addresses, and explanations (text between
brackets). Then some parts of the remaining sentences are removed, including
subordinate clauses, stop words, bullet points, and symbols such as “*” or“#”.
Then safe patterns are applied to sentences for the extraction of 2-to-4-word
candidate app features. In the final step, the list of candidate app features is
cleaned by removing duplicates and noise such as identical words pairs, e.g.,
“document document”, which may be extracted using a POS pattern 〈Noun-
Noun〉.

Table 1. List of safe POS patterns with frequency of occurrence [5]

# POS pattern Freq # POS pattern Freq

1 〈Noun-Noun〉 183 10 〈Adjective-Adjective-Noun〉 20

2 〈Verb-Noun〉 122 11 〈Noun-Preposition-Noun〉 18

3 〈Adjective-Noun〉 119 12 〈Verb-Determiner-Noun〉 14

4 〈Noun-Conjunction-Noun〉 98 13 〈Verb-Noun-Preposition-Noun〉 14

5 〈Adjective-Noun-Noun〉 70 14 〈Adjective-Noun-Noun-Noun〉 12

6 〈Noun-Noun-Noun〉 35 15 〈Adjective-Conjunction-Adjective〉 12

7 〈Verb-Pronoun-Noun〉 29 16 〈Verb-Preposition-Adjective-Noun〉 11

8 〈Verb-Pronoun-Noun〉 29 17 〈Verb-Pronoun-Adjective-Noun〉 11

9 〈Verb-Adjective-Noun〉 26 18 〈Noun-Conjunction-Noun-Noun〉 10

3 Research Method

In this section, we present the main elements of the research method of our
replication study. In Subsect. 3.1, we describe the details of our safe implemen-
tation. In Subsect. 3.2, we describe how we match safe-extracted features with
true features. In Subsect. 3.3, we present the characteristics of the annotated
review datasets that we used for our unbiased and repeatable evaluation of the
safe approach. Finally, in Subsect. 3.4, we present the experimental setup of our
study.

3.1 SAFE Implementation

Since the safe implementation used by the authors of the original study is not
publicly available, we created our own implementation of the safe approach3

3 https://github.com/faizalishah/SAFE REPLICATION.

https://github.com/faizalishah/SAFE_REPLICATION
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based on the information detailed in [5]. Like the original study, we used the
Python programming language and the Natural Language ToolKit (NLTK)4

for safe implementation. However, since not all details of the implementation
of the safe approach have been published in the original study, we had to make
some decisions on our own. The details of those decisions are discussed in the
following paragraphs.

Table 2. List of safe sentence patterns [5]

# Sentence pattern

1 〈Noun-Conj-Noun: Noun〉
2 〈Verb|Noun: (Noun-Comma)+-Conj-Noun〉
3 〈Verb|Noun-Conj-Noun|Verb: Noun-Conj-Noun〉
4 〈Verb-Noun-Noun-to-Adv-Verb-Conj-Verb-on-Noun-of-Noun-including

: (Noun-Noun-Comma)+-Noun-Conj-Noun〉
5 〈Verb-(Comma-Verb)+-Conj-Verb-Noun: IN (Noun-Comma)+-Conj-Noun-Noun〉

After performing the pre-processing steps as described in the original study,
the safe implementation applies linguistic patterns to extract the candidate app
features. Following the original study, we first apply the sentence patterns and
then the POS patterns. Since the original study does not state in which order
the individual POS patterns shall be applied, we decided to apply them in the
order in which they are presented in Table 1 (see Sect. 2). Also, the original safe
study does not explicitly state the format of the sentence patterns. In Table 2,
we present the list of sentence patterns used in our safe implementation for
extracting app features.

The syntax of the patterns is following that of regular expressions. Once a
sentence pattern finds a match in the analyzed text, it extracts the app features
and represents them using one of the POS patterns. This might require deletion
of words found in the matching pattern. For example, conjunctions and commas
are always dropped. We indicate in Table 2 the words that are deleted with an
underscore.

All patterns have the format 〈LeftTerm1-Conj1-RightTerm1 : LeftTerm2-
Conj2-RightTerm2〉. The colon symbol “:” denotes where the right-hand side
of the first conjunction ends and the left-hand side of the subsequent conjunc-
tion begins. Based on the sentence pattern, the following POS patterns are then
generated by taking the cross-product of the left-hand and right-hand terms
of each conjunction, i.e., the following set of POS patterns will be generated:
〈LeftTerm1, LeftTerm2〉, 〈LeftTerm1, RightTerm2〉, 〈RightTerm1, LeftTerm2〉,
and 〈RightTerm1, LeftTerm2〉. In the first two sentence patterns Conj1 and
Conj2 are empty, respectively. In those cases, the left-hand and right-hand

4 https://www.nltk.org/.

https://www.nltk.org/
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terms of the missing conjunction fall together and the cross-product is simplified
accordingly.

An additional complication is introduced by the fact that several of the 18
POS patterns are overlapping. For instance, the shorter POS pattern 〈Verb-
Noun〉 may overlap with some of the longer POS patterns such as 〈Verb-Noun-
Noun〉 or 〈Verb-Noun-Preposition-Noun〉. Thus, applying these patterns in a
sequential order would extract overlapping candidate app features. Since we do
not know how this is handled in the original safe study, in our implementa-
tion, when the overlapping features are extracted from a review sentence, only
the longest feature term is preserved. Since we only preserve the longest fea-
ture terms, the results of feature extraction would not depend on the order in
which POS patterns were applied. Moreover, the original version of the safe
implementation uses a custom list of stop words which is not publicly available.
Therefore, we use our own list of custom stop words for our implementation5.

3.2 Strategy for Matching SAFE-Extracted and True Features

To compute the performance (precision and recall) of our safe implementation
on an evaluation set, the number of true positives (TPs), false positives (FPs),
and false negatives (FNs) must be counted by matching the safe-extracted fea-
tures against the true features (i.e., those features that were labeled by humans).
However, the original safe study does not give information about how exactly
the extracted and true features were matched to count TPs, FPs, and FNs.

In our study we adopted the token-based subset matching strategy for eval-
uating our safe implementation. In token-based subset matching strategy, an
extracted feature is counted as true positive (TP) either when the extracted fea-
ture words are a subset of the true feature words or the words of a true feature are
a subset of the extracted feature words. In addition, the extracted feature must
appear in the same review sentence in which the true feature was annotated. For
instance, when the extracted app feature is “create document” and the true app
feature annotated in a review text is “create new document” then the extracted
app feature “create document” would be counted as a TP because the extracted
app feature word-set {create, document} is a subset of the true app feature
word-set {create, new, document}. In contrast to this, when the extracted app
feature is “create document” from a review sentence but the app feature “cre-
ate document” has not been annotated in the same review sentence then the
extracted app feature “create document” would be counted as a false positive
(FP). Finally, the true features, which were not matched with any extracted
features will be counted as false negatives (FNs).

We consider this matching strategy justified, because the annotation of true
app features in a review text is to a certain degree subjective and it would
be too demanding to expect from an extraction method to identify the exact
same words as app features as were annotated in the evaluation dataset. The

5 https://github.com/faizalishah/SAFE REPLICATION/blob/master/SAFE/List
StopWords.

https://github.com/faizalishah/SAFE_REPLICATION/blob/master/SAFE/List_StopWords
https://github.com/faizalishah/SAFE_REPLICATION/blob/master/SAFE/List_StopWords
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difficulty to annotate identical app features in one and the same user review by
two or more annotators has been observed, for example by Guzman et al. [3] who
reported an agreement of 53% between two coders. We had a similar experience
when annotating our shah user review dataset [14]. We should not assume that
automatic app feature extraction works better than human annotators do.

3.3 User Review Datasets

In the original safe study, no evaluation set was created for the evaluation
of safe on user reviews. This makes the evaluation of safe on user reviews
not reproducible even if the original safe implementation would be available.
Thus, to be able to perform a reproducible evaluation of the safe approach,
we had to find user reviews in which app features have been annotated. We use
four English review datasets that are publicly available and have been used in
previous studies, i.e., guzman, shah, laptop, and restaurant. The review
datasets vary with regards to several characteristics, i.e., domain, annotation
guidelines used, the number of annotators, the number of review sentences, and
the number of annotated features. This diversity of datasets enables us to analyse
the performance of the safe approach under different viewpoints and, hence, to
obtain a more reliable evaluation for user reviews. We should point out that two
of the review datasets, laptop and restaurant, do not contain reviews from
app users. We included those review datasets because the safe patterns are
purely syntactic and thus should not be sensitive to the choice of domain – be
it software apps (guzman and shah datasets), products (laptop), or services
(restaurant).

In Table 3, we characterize each review dataset based on the following infor-
mation:

(a) the total number of reviews;
(b) the total number of sentences in all reviews;
(c) the total number of 2-to-4-word annotated features;
(d) the density of 2-to-4-word annotated features over review sentences;
(e) the total number of annotated features;
(f) the density of all annotated features over review sentences.

GUZMAN REVIEW DATASETS. The original guzman dataset (See foot-
note 1) was used as an evaluation set in the study conducted by Guzman et al.
[3]. It contains annotated app reviews of seven apps belonging to six different cat-
egories: Angry Birds (Games category), DropBox and EverNote (Productivity
category), TripAdvisor (Travel category), PicsArt (Photography category), Pin-
terest (Social category) and WhatsApp (Communication category).6 In Table 3,
we do not show the data of individual app categories but the aggregated sum-
mary of the guzman dataset.

According to Guzman et al., the dataset initially consisted of 2800 user
reviews (i.e., 400 user reviews per app). After annotation by human coders it
6 Review titles with their annotated app features were removed for our study.
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Table 3. Characteristics of the annotated review datasets

Dataset #Reviews #Sentences #2-4-
word
features

2-4-word
features
density

#All
features

All
features
density

guzman 1479 4367 1421 .325 2350 .538

guzman+ 2800 8267 1421 .172 2350 .284

shah-I 3500 5970 352 .059 644 .108

shah-II 3500 5970 441 .074 756 .127

shah-I ∪ shah-II 3500 5970 575 .096 1017 .170

shah-I ∩ shah-II 3500 5970 242 .041 419 .070

laptop - 3845 1134 .295 3012 .783

restaurant - 3841 1157 .301 4827 1.25

turned out that there were 1321 user reviews left without annotation of a single
app feature. Only those 1479 user reviews containing at least one annotated app
feature were included in the published guzman dataset and used for evaluation.
The removed 1321 user reviews were not made publicly available.

In the context of Guzman et al.’s original study, it might have made sense
to only use reviews containing annotated app features for evaluation pur-
poses but in a real-world setting, taking a random sample of user reviews
from App Store would normally be a mix of reviews mentioning app features
(related to specific app features) and reviews that are praising or criticizing the
app/versions/updates as a whole but not mentioning any specific app features.
In order to also capture the real-world situation in our analysis, we artificially
created a new version of the guzman dataset which we named guzman+. The
guzman+ dataset contains both types of reviews, i.e., with and without app
features, and is thus comparable to other review datasets used in our analysis.
Since we did not know which reviews were removed from the original guzman
dataset, we simply randomly sampled 1321 reviews without app features from
the annotated shah dataset and added them to the annotated guzman reviews.
As expected, the ratio between number of app features and number of sentences
in guzman+ (see Table 3) goes down by almost 50% as compared to the original
guzman dataset.

SHAH REVIEW DATASETS. In the context of a previous study we created
the shah dataset [14]. All reviews in the shah dataset were independently anno-
tated by two coders.7 The Dice coefficient score between the two annotation sets
was low (i.e., 0.28), indicating a low agreement between the two coders. Because
of that, we decided to use four different versions of the shah dataset in this
study, i.e., (1) shah-I, (2) shah-II, (3) shah-I ∪ shah-II, and (4) shah-I ∩
shah-II. Among the four versions of the shah dataset, shah-I and shah-II con-
tain the annotations of only the first and only the second coder, respectively. The

7 Both coders were software engineering bachelors students at the University of Tartu.
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shah-I ∪ shah-II dataset contains the annotations of both coder 1 and coder 2.
In the case of overlapping annotations, only the longer annotation was retained.
Finally, the shah-I ∩ shah-II dataset only contains the annotations annotated
by both coders. As we did for the shah-I ∪ shah-II dataset, when annotations
were overlapping we only retained the longer annotation. From all shah datasets
we removed all app features that were referring to the app itself [14].

The summary statistics of all four versions of the shah dataset are shown
in Table 3. Overall, in comparison to the guzman, laptop, and restaurant
datasets, the shah dataset contains a smaller number of app features. Among
the four versions of the shah dataset, as expected, the shah-I ∪ shah-II dataset
contains the highest number of app features. However, even in this dataset the
ratio between the number of app features and the number of sentences (i.e., the
features density) is clearly lower than in the other review datasets.

LAPTOP AND RESTAURANT REVIEW DATASETS. The laptop
and restaurant review datasets (See footnote 2) are standard benchmark
datasets contributed by the semeval research community.8 Both datasets have
been used in studies that aimed at performing the task of feature extraction
(called “aspect terms”) from user reviews and its evaluation [8,11]. Both datasets
are distributed in predefined training and test splits, which is relevant in the con-
text of machine learning based methods. For our purpose, we merged the training
and test sets into single laptop and restaurant datasets, respectively.

The characteristics of the laptop and restaurant datasets in Table 3 show
that the ratio between the number of all annotated features and the number of
sentences is clearly higher than for the app review datasets. The ratio between
the number of 2-to-4-word features and the number of sentences, however, follows
the same pattern as most app review datasets with an exception of the guzman
dataset which has a comparable ratio.

3.4 Experimental Setup

This section explains the settings used for the safe approach evaluation. To
answer sub-question RQ-A of our research question RQ, we analyse the perfor-
mance of our safe implementation (as described in Sect. 3.1) when applied to
the ten annotated app descriptions made available in the original safe study. If
the performance of our safe implementation in terms of precision, recall, and f1-
score is comparable to that reported in the original study, we consider our safe
implementation to be suitable for tackling sub-question RQ-B of our research
question RQ. To answer RQ-B, we apply our safe implementation to eight anno-
tated review datasets (see Table 3). The performance measures (precision, recall
and F1-score) of safe are computed on each review dataset for the annotated
2-to-4-word features and for all annotated features using the token-based subset
matching strategy (see Sect. 3.2).

8 http://alt.qcri.org/semeval2018/.

http://alt.qcri.org/semeval2018/
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4 Results and Discussion

In this section, we present the results to our research question RQ in two steps.
First we present and discuss the results related to sub-question RQ-A, then we
present and discuss the results to sub-question RQ-B.

4.1 Validation of SAFE Implementation (RQ-A)

The correctness of our safe implementation can be validated by applying it
on the same evaluation set used in the original safe study. We contacted the
main author of the original study and learned that in the original study, only
the dataset containing the app descriptions had annotated app features but not
the dataset containing the app reviews. Since the authors of the original study
shared their annotated dataset of app descriptions, we were at least able to apply
our safe implementation to the same app description dataset and thus validate
our implementation.

Table 4 shows the evaluation results on the annotated app description dataset
of our safe implementation (on the right) as well as the evaluation results
reported by Johann et al. (on the left). Our safe implementation achieves
exactly the same precision and recall as the original safe implementation only
for one app description (Google Docs). On two app descriptions (Forest and
Dropbox), we achieve higher precision and recall than the original safe imple-
mentation. For Google Drive app description, we achieve identical recall but
higher precision compared to the original safe implementation. On the rest of
the six app descriptions, we obtain lower precision and recall than the orig-
inal implementation of safe. These differences in performance between the
two implementations might be related to the unspecified details brought out in
Sect. 3.1. Additionally, there could be differences in matching the extracted app
features with true app features that can lead to different results (see Sect. 3.2).

Based on the results of individual app descriptions we cannot claim that
our safe implementation is the same as the original safe method. However, on
average over all app descriptions, our safe implementation achieves only slightly
lower precision and recall than the original safe implementation. Since based on
the average f1-score the difference between the two implementations is only 0.011,
we believe that we can still perform useful analyses with our implementation.

4.2 Evaluation of SAFE Approach (RQ-B)

In this section, we answer the sub-question RQ-B of our research question RQ
by comparing the performance reported in the original safe study with the
performance achieved with our implementation of the safe approach on the
eight annotated datasets described in Sect. 3.3.

The performance of our implementation of the safe approach is presented
in Table 5. We evaluated the safe approach separately against 2-to-4-word fea-
tures and against all features. The left-hand side of the table shows the safe
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Table 4. Comparison of results obtained with the original safe implementation and
our safe implementation on app description dataset.

App name Original safe implementation Our safe implementation

Precision Recall F1 score Precision Recall F1 score

Forest: Stay focused,
be present

.462 .400 .429 .636 .467 .538

Yahoo Mail .737 .389 .509 .680 .436 .531

Printer Pro .214 .250 .231 .190 .333 .242

Gmail .714 .400 .513 .611 .524 .564

Google Drive .875 .389 .538 1.0 .389 .560

CloudApp Mobile .722 .481 .578 .478 .423 .449

Google Docs .667 .462 .545 .667 .462 .545

Dropbox .300 .300 .300 .400 .333 .364

Fantastical 2 for
iPhone

.500 .697 .582 .302 .500 .377

iTranslate Voice .500 .278 .357 .316 .286 .300

Average .559 .434 .458 .528 .415 .447

performance evaluated for 2-to-4 word features. The right-hand side of the table
presents the safe performance evaluated for all features.

The original safe study used only 2-to-4-word app features for evaluation
since the POS and sentence patterns defined in the safe approach can only
extract app features composed of two to four words. The original study reported
precision and recall of 0.239 and 0.709, respectively, for the safe approach [5].
As shown in Table 5, the performance of our safe implementation on each of
our evaluation datasets when evaluating on 2-to-4-word features varies but is
consistently lower than the performance reported in the original study (average
precision is 0.120, average recall is 0.539, and average f1-score is 0.184).

When comparing the precision of our safe implementation with that
reported in the original study, one observes that the evaluation on three of
our datasets, i.e., Guzman, laptop, and restaurant, is relatively close to
the reported precision of 0.239 in the original study. The reason for this phe-
nomenon could be that the density score of the annotated 2-to-4-word features
is clearly higher for these three review datasets as compared to the other five
review datasets. The sensitivity of safe precision to features density is also
clearly visible when we look at the evaluation results using all annotated fea-
tures (right-hand side of Table 5). Also, the fact that the evaluation results when
using all features has consistently higher precision values supports the hypoth-
esis that higher features density yields higher precision when using the safe
approach.

When looking at the recall values, the interpretation is less straightforward
than for precision. The highest recall of 0.624 when evaluating on 2-to-4-word
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Table 5. Evaluation of safe extracted features on annotated review datasets

Dataset 2-4 word features All features

Precision Recall F1-score Precision Recall F1-score

guzman .201 .462 .280 .317 .426 .363

guzman+ .096 .462 .159 .151 .426 .223

shah-I .056 .624 .103 .080 .463 .136

shah-II .064 .544 .115 .090 .443 .149

shah-I ∪ shah-II .084 .550 .146 .118 .433 .185

shah-I ∩ shah-II .040 .612 .074 .055 .522 .099

laptop .208 .490 .292 .359 .319 .337

restaurant .211 .569 .308 .492 .318 .386

Average .120 .539 .184 .207 .419 .235

app features is obtained for the shah-II dataset but it is still considerably lower
than the recall of 0.709 reported in the original study. Also, when comparing
the recall values across the app review datasets it seems that whenever precision
is low (correlating with low app features density) recall is respectively higher.
However, this observation can neither be made for the laptop and restaurant
datasets nor for the guzman+ dataset. While the obvious explanation for the
capped guzman+ recall of 0.462 is that due to the construction of guzman+
it has exactly the same set of annotated app features as guzman, it is less
clear why the recall values for the laptop and restaurant datasets are still
relatively high. We speculate that other factors than features density have an
impact on recall, e.g., the nature of the annotation guidelines used and the
subjective interpretation of the annotation guidelines by the coders.

When comparing the precision of 2-to-4-word features with the precision of
all features, Table 5 shows that the precision values consistently improve while
the recall values go down. This happens because in each dataset the set of 2-
to-4-word features is a strict subset of all features. As a consequence, some of
the extracted features counted as false positives (FPs) when evaluated against
2-to-4-word features might be counted as true positives (TPs) due to the subset
matching strategy that we use to match the extracted features with the true fea-
tures. The impact is stronger on review datasets where the number of annotated
features is higher, such as restaurant, laptop, and guzman.

Based on our analysis of the performance of the safe approach we can make
several observations about its usefulness to developers who might wish to analyze
reviews in order to better understand user needs. The first observation is that due
to the purely syntactic-based extraction patterns defined in the safe approach,
its applicability is not restricted to a specific domain. We have demonstrated
this by including review datasets from other domains such as those represented
by the laptop and restaurant datasets. Interestingly, the performance of the
safe approach in terms of f1-score is better on the laptop and restaurant
datasets when compared to five realistic app review datasets (i.e., guzman+



SAFE Approach: A Replication Study 33

and all shah datasets). As mentioned before, this seems to be due to the higher
density of features in the laptop and restaurant datasets.

Johann et al. [5] comment their evaluation by writing:

As for the accuracy and benchmark values, we refrain from claiming that
these are exact values and we think that they are rather indicative. We
think that the order of magnitude of precisions and recalls calculated, as
well as the differences between the approaches is significant.

Although we were not able to demonstrate that our implementation exactly
matches the one used in the original study, our evaluation results give a reason
to suspect that the true estimates of precision and recall of the safe approach
are in fact lower than suggested by Johann et al. This fact again raises the
question of how useful can safe approach be for the developers just as it is.
The problem with low precision even when the recall is relatively high is that
the extracted features contain a lot of noise and if the system does not provide
any ranking of “usefulness” over the extracted features, it will be very difficult
to spot the useful info from the noise. As Johann et al. [5] themselves say when
discussing their results:

Nevertheless, we think that the achieved accuracy of SAFE—even if it out-
performs other research approaches—is not good enough to be applied in
practice. We think that a hybrid approach (a simple, pattern and similarity
based as SAFE together with a machine learning approach) is probably the
most appropriate. For instance, machine learning can be used to pre-filter
and classify reviews before applying SAFE on them.

In addition to the idea of first classifying reviews or sentences before applying
safe we would also propose another way that could potentially improve the
usefulness of the safe method via machine learning. Assuming that the safe
approach obtains reasonably high recall when extracting app features from app
reviews, one could imagine training a classifier to learn to discriminate between
correctly (TPs) and incorrectly (FPs) extracted app features. In such a way it
might be possible to retain the high recall while improving the precision.

5 Threats to Validity

The main threat to the validity of our study is that we were not able to exactly
replicate the evaluation results of our safe implementation on the app descrip-
tion dataset provided by the authors of [5]. This means that although we have
carefully checked our implementation but our implementation of the safe app-
roach is not exactly the same as used in the original study.

One likely reason for the differences in the performance measures is that we
might have decided certain implementation details, which were not specified in
the safe paper (described in Sect. 3.1), differently than the original authors.
For instance, we might have interpreted the sentence patterns differently than
intended by the original authors and thus implemented them differently. Simi-
larly, the proposers of the safe approach use a custom list of stop words in their
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safe implementation. This list has not been published. Thus, we had to define
our own list of custom stop words and the impact of our choice on the achieved
performance values is not known. We intend to make our implementation as well
as the custom list of stop words publicly available so that others could replicate
and validate our results.

The differences in performance measures might also stem from a different
way of counting TPs, FPs and FNs. The authors of the original safe study do
not explain the matching strategy (exact match or partial match) used to match
the safe extracted app features against the true app features. In our study, we
adopted token-based subset matching strategy for the evaluation of safe on user
reviews. It is possible that in the original study, the matching was performed
differently.

The validity of our results depends partly on the reliability of the annotations
of the review datasets. Since we not only used our own annotations (i.e., datasets
Shah-I and Shah-II) but applied safe implementation to other review datasets
published in the literature; so we believe that the existing limitations of reliability
for the mentioned tasks is not a major threat to validity of our results.

6 Related Work

Recently, Johann et al. proposed a rule-based approach called SAFE that uses
POS and sentence patterns for extracting app features from app descriptions and
user reviews [5]. The SAFE approach has achieved better performance over the
technique of Guzman et al. [3]. However, some aspects of the implementation of
the SAFE approach as well as some aspects of its evaluation on user reviews are
nor precisely described in the original study. Therefore, we decided to conduct
an external replication with a fully published replication package allowing others
to reproduce our results.

Several other approaches to extract app features from app reviews have been
proposed. We list some of them in the following.

The study of Guzman et al. [3] used an unsupervised LDA topic modeling
approach for automatic extraction of app features from user reviews of seven
apps (three from App Store and four from Play Store). The performance of
the approach is evaluated by matching the extracted app features against the
human labeled app features in their labeled dataset. In our study, we used the
same labeled dataset (i.e., guzman dataset) for evaluation purpose.

The study of Gu et al. [2] classifies review sentences into categories, such as
feature evaluation, praise, feature requests, bug reports and others, and then app
features are extracted using 26 manually designed rules only from those sentences
that belong to the feature evaluation category. In comparison to the approach of
Gu et al., the safe approach for app feature extraction is not limited to feature
evaluation sentences and it can extract app features from sentences mentioning
feature requests, opinions related to features, and bug reports related to features
alike.

Keertipati et al. extracted nouns as candidate app features from app review
sentences but they did not perform an evaluation to check whether the extracted
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app features actually represent true app features [7]. On the other hand, Vu et
al.’s study [15] instead of directly extracting app features, extracted all potential
keywords from user reviews and rank them based on the review rating and
occurrence frequency.

In one of our own previous studies, we developed the prototype of a web-
based tool to identify competing apps and to compare them based on the users’
sentiments mentioned on the common set of app features [13]. This tool extracts
two-word collocations as candidate app features without evaluating the extracted
app features against true app features. Similar to the original study on the SAFE
approach, the evaluation of the performance of the tool prototype with regards
to app feature extraction performance was partly biased and subjective and thus
not reproducible.

A recent study of Malik et al. [10] used syntactic relations between the fea-
tures and opinion words for identification of “hot” app features from user review
but the dataset used for the evaluation is not publicly available.

7 Conclusion

The safe approach is a recently proposed simple rule-based method for auto-
matic extraction of app features from app descriptions and app reviews. For
the evaluation of safe on app descriptions, the authors of the original safe
study created and publicly shared an evaluation dataset. However, for evalua-
tion on user reviews no evaluation dataset exists and the evaluation was instead
performed using a coding tool. The procedure adopted for the evaluation of
the safe approach on user reviews is subjective and might have suffered from
researcher bias. Due to its subjective nature it is also not reproducible. There-
fore, in this study, we performed an unbiased and reproducible evaluation of the
safe approach with the goal to investigate the true performance of the safe
approach when applied to user reviews.

We implemented the safe approach and once we had confirmed that our
implementation achieves comparable average performance when applied to app
descriptions as reported in the original study, we applied safe to eight different
review datasets. The results show that the performance of the safe approach
when evaluated against 2-to-4-word app features is clearly lower than the per-
formance reported in the original safe study. Inspecting the characteristics of
the used review datasets it became clear that the precision of the safe approach
is strongly sensitive to the density of app features in the review datasets.

We conclude that due to very low precision and only moderate recall, safe is
too simple to be useful in practice for extracting app features from app reviews.
In order to make it usable in practice, methods, potentially involving machine
learning, for improving the precision while retaining the recall should be studied.
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