
Identifying Requirements in Requests
for Proposal: A Research Preview

Andreas Falkner1, Cristina Palomares2, Xavier Franch2(&),
Gottfried Schenner1, Pablo Aznar2, and Alexander Schoerghuber1

1 Siemens AG Österreich, Vienna, Austria
{andreas.a.falkner,gottfried.schenner,

alexander.schoerghuber}@siemens.com
2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

{cpalomares,franch,paznar}@essi.upc.edu

Abstract. [Context & motivation] Bidding processes are a usual requirement
elicitation instrument for large IT or infrastructure projects. An organization or
agency issues a Request for Proposal (RFP) and interested companies may
submit compliant offers. [Problem] Such RFPs comprise natural language
documents of several hundreds of pages with requirements of various kinds
mixed with other information. The analysis of that huge amount of information
is very time consuming and cumbersome because bidding companies should not
disregard any requirement stated in the RFP. [Principal ideas/results] This
research preview paper presents a first version of a classification component,
OpenReq Classification Service (ORCS), which extracts requirements from RFP
documents while discarding irrelevant text. ORCS is based on the use of Naïve
Bayes classifiers. We have trained ORCS with 6 RFPs and then tested the
component with 4 other RFPs, all of them from the railway safety domain.
[Contribution] ORCS paves the way to improved productivity by reducing the
manual effort needed to identify requirements from natural language RFPs.

Keywords: Requirements elicitation � Requirements identification �
Request for Proposal � Bidding process � Classification

1 Introduction

In a bidding process, an organization or public agency aims at procuring a techno-
logical solution by specifying the requirements in a document called Request for
Proposal (RFP), which is written in natural language and can be several hundred pages
long. Based on this, companies present their bids that need to be compliant to the
RFP. Last, the requesting organization agency will select one of these bids (or a
combination of them) for developing the solution.

In spite of their technical nature, RFPs tend to mix text describing the requirements
with other text that is merely informative (“prose”) and thus is not relevant to the
bidding company for compliance evaluation. This characteristic forces the bidder to
invest resources to identify the real requirements, with the subsequent impact over
productivity.

© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 176–182, 2019.
https://doi.org/10.1007/978-3-030-15538-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_13

The goal of this paper is to present the first results on the use of a software
component, ORCS (OpenReq Classification Service), aimed at extracting requirements
from an RFP in an efficient and effective way. In this context, by “effective” we mean a
technique that does not miss any requirement (100% recall) and as a second priority,
filters as much prose as possible. As stated by Berry [1], there are different notions of
effectiveness, and the one above is justified because missing a requirement could
damage the organization bid.

The paper is organized as follows. A typical bidding process for large infrastructure
projects is introduced in Sect. 2. Section 3 presents the functionalities and internal
structure of ORCS, and Sect. 4 shows the results of the preliminary evaluation of
ORCS with real data (from Siemens). Finally, the paper is concluded in Sect. 5.

2 Bidding Processes for Large Infrastructure Projects

When an infrastructure provider such as Siemens decides to participate in a bid for a
large infrastructure project, several of its departments and stakeholders (project man-
agement, finances, system development, etc.) must work together to find a good
solution to cover all requirements. Requirements are usually organized and edited using
a commercial RE tool such as IBM DOORS or POLARION REQUIREMENTS.

In a typical scenario, a bid project for the RFP is created within the company at the
start of the process. A project team is set up with the bid project manager, the
requirements manager, and the relevant stakeholders necessary for assessing the
RFP. In the initial phase, the main workload is carried by the requirements manager. In
the requirements capturing phase, the requirements manager is responsible for
screening the RFP and for identifying all relevant and referenced external documents
(e.g. international standards). The documents are then imported into the requirements
management (RM) tool. The next step for the requirements manager is to analyse the
imported documents and distinguish between merely informative text sections and text
which specifies relevant requirements. This task is done for every entry in the RM tool.
As there can be thousands of entries to be processed by the requirements manager, this
is an important issue for improving the requirements management process. Consecu-
tively, the identified requirements are assigned to the relevant stakeholder(s) which are
responsible to evaluate them according to different criteria such as risk, compliance,
etc. At the end of the bid project, a list of compliance is compiled, which contains a
statement about the compliance of the bid, i.e. if and under what restrictions an offer
can be submitted.

One of the potential bottlenecks of the process described above is the classification
of the requirements as it is currently manually done by the requirements manager. In
the following we describe how to speed up this process.

Identifying Requirements in Requests for Proposal: A Research Preview 177

3 Identifying Requirements with ORCS

ORCS is part of a larger recommendation system, OpenReq [2]. ORCS’ goal is to re-
commend a value to a requirement property that is binary (i.e., there are no more than
two values available for that property). ORCS tackles that task by providing an API for
a binary classifier. In the context of this paper, the property is isReq, and it represents
whether a piece of text is a real requirement or prose (not relevant for the RE process).
In other contexts, property could be requirement fields such as component (part of a
system to which the requirement is talking about) or priority.

Among all the different possibilities, we decided that ORCS would be implemented
as a supervised machine learning classifier [3]. Considering that we want to discover
the “correct” label of a text and that we have a labelled dataset from previous projects,
unsupervised learning techniques, which are useful for discovering how the data in the
model is structured, do not suit properly [3].

From all the available supervised machine learning algorithms for classification, we
are using Naïve Bayes (NB) [4]. NB is a probabilistic classifier based on applying the
Bayes’ theorem with strong (naive) independence assumptions between the features.
NB is a good algorithm for working with text classification since, when dealing with
text, it is very common to treat each unique word as a feature, and since the vocabulary
in RFP comprises many thousands of words, this makes for a large number of features.
The relative simplicity of the algorithm and the independent features assumption makes
NB a strong performer for classifying texts [4]. Consequently, NB needs less training
time (and therefore it is more scalable). In addition, NB needs less data for training than
other supervised algorithms (such as Random Forest), which makes it good for clas-
sifying requirements in companies that do not have available hundred-thousands of
requirements.

We built ORCS upon a component that already provides a NB classifier imple-
mentation, Mahout1. It offers the basics for different machine learning tasks (e.g.,
classification and clustering). Mahout currently has two NB implementations. The first
is standard Multinomial NB. The second is an implementation of Transformed Weight-
normalized Complement NB as introduced in [5], which extends the Multinomial NB
that performs particularly well on datasets with skewed classes (which is the case in
RFP, where most of the texts are real requirements; just a few pieces of text are non-
relevant).

However, as most of the available implementations of classification algorithms,
installing, configuring and using it is not an easy process, since deep knowledge of
Mahout and how it works is needed (e.g., set up of environment paths, synchronization
of the calls made, etc.). Therefore, we added specific code on top of Mahout to ease its
integration and use by a final user.

Figure 1 shows the microservice-based internal architecture of ORCS. ORCS
allows to Train (MS1) a machine learning model with specific data (this data is basi-
cally a list of pairs <text, property value>) and stores - using the Data Manager (MS5) -
the training in a database (using as key the name of the requirement property and the

1 https://mahout.apache.org/.

178 A. Falkner et al.

https://mahout.apache.org/

name of the organization). Thus, when the recommendation for the value of a
requirement property is necessary, the user just calls the Classify (MS3) microservice
passing the piece of text that needs the recommendation, the name of the requirement
property and the name of the organization. Then, the data manager takes care of setting
up the corresponding machine learning model in the core of Mahout and returning the
recommendation. In addition, there are microservices to Update (MS2) a machine
learning model when new data (again tuples of the kind <text, property value>) is
available and also to Test (MS4) the classifier with a k-fold cross-validation passing the
same kind of tuples as in the last microservice and the number of tests to k. As ORCS is
part of OpenReq, all the data exchanged by the microservices is based on the ontology
presented in [6].

4 Preliminary Evaluation

For the evaluation of the requirements classifier, ten completed bid projects (RFPs)
were made available by the Viennese Siemens Mobility department. In total, they
comprised 28,200 requirement candidates, all of which had been classified by business
experts as either a real requirement (DEF) or a merely informative comment (Prose).
An example of a requirement is “A balise group shall consist of between one and eight
balises”, while an example of Prose is “The purpose of this document is to specify the
unified European Train Control System (ETCS) from a technical point of view”. The
requirements’ ID, text, and classification were extracted from the RM tool used at the
department and stored in 10 JSON files, one for each project. Six of these projects were
randomly chosen as training data set, including cross-validation, and disclosed to the
UPC team. These six projects were used by UPC to run a first evaluation of ORCS
using a 10-fold cross-validation test (Subsect. 4.1). The remaining four projects were
kept secret and only used once for the final evaluation run by Siemens (reported in
Sect. 4.2).

In both evaluations we use standard metrics for binary classification considering
DEF (i.e., classification of a candidate as a real requirement) as the positive case: recall
(true positive rate, number of correct positive results divided by the number of all

Fig. 1. ORCS’ internal architecture

Identifying Requirements in Requests for Proposal: A Research Preview 179

relevant sample) and specificity (true negative rate, i.e., number of correct negative
results divided by the number of all relevant sample). Recall is most important for the
business experts because they want to avoid that some requirement is not detected as
such, thus not being checked for compliance during the bid process which may lead to
(potentially high) non-compliance costs (a business risk that must be avoided).
Specificity is also important because unnecessary efforts arise if many comments are
wrongly classified as DEF: experts are invited to check compliance for them although
this is not necessary. We refrained from combining those two into a single metric (such
as accuracy or F2-metric) in order to give the stakeholders (business experts) the
chance to weight the two against each other.

4.1 Evaluation Results During Training and Validation

For first testing the results of ORCS, we used a stratified 10-fold cross-validation,
which is a well-known technique to evaluate machine learning models. In this case, we
used as sample 6 projects which contained 17,556 requirement candidates. From these
candidates, 15,870 (90.4%) requirements were classified as DEF by experts. This
means that only 1686 (9.6%) were of type Prose. In the case of ORCS, having
unbalanced class labels is not a problem (as explained in Sect. 3).

Table 1 shows the results of calling the ORCS’ Test microservice with k = 10 and
this specific sample. As can be seen in Table 1, average recall is 85.06% and average
specificity is 72.04%, showing a good start point for the classifier.

4.2 Evaluation Results on Non-disclosed Test Data

The 4 projects used as test data set comprise 10,700 requirement candidates, 7,300 of
which were classified as real requirements by experts. As the resulting prevalence (i.e.,
occurrence of DEF in the whole set of requirement candidates) of 69% is considerably
lower than the prevalence of 84% in the training data set, we investigated and found out
that the prevalence in a subset of three projects is 83% (based on micro-averaging [7])
whereas the fourth project shows a prevalence of only 16%. We consider this an outlier
which was caused by the fact that the experts rated whole sections of the RFP as Prose
because they contained information out of the scope of the bid project (e.g., because
their contents were covered by another company in a bidding consortium). Such

Table 1. 10-fold cross-validation results

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Total/
Avge

reqs 1734 1742 1689 1801 1788 1697 1792 1788 1719 1806 17556

TP 1335 1346 1280 1391 1372 1284 1389 1394 1327 1382 13500

FP 33 43 47 41 50 64 48 45 46 55 472

TN 133 110 127 131 119 124 129 118 101 122 1214

FN 233 243 235 238 247 225 226 231 245 247 2370

Recall 85.14% 84.71% 84.49% 85.39% 84.74% 85.09% 86.01% 85.78% 84.41% 84.84% 85.06%

Specificity 80.12% 71.90% 72.99% 76.16% 70.41% 65.96% 72.88% 72.39% 68.71% 68.93% 72.04%

180 A. Falkner et al.

constellations cannot be covered easily by text-only classification and we still need to
find a way how to deal with them properly.

First results are shown in Table 2. The classifier performs badly on the outlier (Eval
4), with only 21% specificity. However, the micro-average of the rest of the test data
has a quite similar performance as the micro-average of the training data (nearly the
same recall, specificity smaller by several percentage points). This indicates that the
classifier is not overfitted to the training data as long as the prevalence of the test data is
similar to the training data.

5 Conclusions

In this paper, we present an approach of how identifying requirements in RFP in the
setup of Siemens by using ORCS, a component that provides an API for machine
learning classification based on NB. In addition, we present preliminary results of
testing this component in Siemens. Although the results are good, they need to be
improved, especially the recall of component (and therefore the number of false neg-
atives), since we want to avoid that a real requirement is not detected as such, because
in that case it would not be evaluated during the bid process, which may lead to non-
compliance costs if the bid is won. To achieve this, we aim to improve ORCS in
different aspects: NLP preprocessing (mainly stop words removal and lemmatization)
and the incorporation of context in the classification process (e.g., the location of the
text in the RFP so that we can more precisely differentiate between relevant and
irrelevant information).

References

1. Berry, D.M.: Evaluation of tools for hairy requirements and software engineering tasks. In:
REW 2017 (2017)

2. Palomares, C., Franch, X., Fucci, D.: Personal recommendations in requirements engineering:
the OpenReq approach. In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.) REFSQ 2018. LNCS,
vol. 10753, pp. 297–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77243-
1_19

3. Shalev, S., Ben, S.: Understanding Machine Learning. Cambridge University Press,
Cambridge (2014)

4. Brink, H., et al.: Real-World Machine Learning. Manning Publications, New York (2016)

Table 2. Evaluation results

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train avg Eval 1 Eval 2 Eval 3 Eval 4 Eval avg

reqs 1525 8123 1854 1382 853 3819 17556 1000 6510 841 2300 8351

TP 1112 6234 1390 1056 663 2832 13287 785 4645 675 343 6105

FP 59 170 29 51 8 115 432 11 375 13 1520 399

TN 257 1073 290 191 99 500 2410 110 784 93 401 860

FN 97 646 145 84 83 372 896 94 706 60 36 987

Recall 91.98% 90.61% 90.55% 92.63% 88.87% 88.39% 90.30% 89.31% 86.81% 91.84% 90.50% 87.65%

Specificity 81.33% 86.32% 90.91% 78.93% 92.52% 81.30% 84.80% 90.91% 67.40% 87.74% 20.87% 71.21%

Identifying Requirements in Requests for Proposal: A Research Preview 181

http://dx.doi.org/10.1007/978-3-319-77243-1_19
http://dx.doi.org/10.1007/978-3-319-77243-1_19

5. Rennie, J., et al.: Tackling the poor assumptions of Naive Bayes text classifiers. In: ICML
2003 (2003)

6. Quer, C., et al.: Reconciling practice and rigour in ontology-based heterogeneous information
systems construction. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018.
LNBIP, vol. 335, pp. 205–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02302-7_13

7. Yang, Y.: An evaluation of statistical approaches to text categorization. J. Inf. Retrieval 1, 69–
90 (1999)

182 A. Falkner et al.

http://dx.doi.org/10.1007/978-3-030-02302-7_13
http://dx.doi.org/10.1007/978-3-030-02302-7_13

	Identifying Requirements in Requests for Proposal: A Research Preview
	Abstract
	1 Introduction
	2 Bidding Processes for Large Infrastructure Projects
	3 Identifying Requirements with ORCS
	4 Preliminary Evaluation
	4.1 Evaluation Results During Training and Validation
	4.2 Evaluation Results on Non-disclosed Test Data

	5 Conclusions
	References

