
Supporting Feature Model Evolution
by Lifting Code-Level Dependencies:

A Research Preview

Daniel Hinterreiter1(B), Kevin Feichtinger1, Lukas Linsbauer1,
Herbert Prähofer2, and Paul Grünbacher1

1 Institute Software Systems Engineering,
Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz, Austria

{daniel.hinterreiter,kevin.feichtinger,lukas.linsbauer,
paul.grunbacher}@jku.at

2 Institute System Software,
Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz, Austria

herbert.prahofer@jku.at

Abstract. [Context and Motivation] Organizations pursuing soft-
ware product line engineering often use feature models to define the
commonalities and variability of software-intensive systems. Frequently,
requirements-level features are mapped to development artifacts to
ensure traceability and to facilitate the automated generation of down-
stream artifacts. [Question/Problem] Due to the continuous evolu-
tion of product lines and the complexity of the artifact dependencies,
it is challenging to keep feature models consistent with their underlying
implementation. [Principal Ideas/Results] In this paper, we outline
an approach combining feature-to-artifact mappings and artifact depen-
dency analysis to inform domain engineers about possible inconsistencies.
In particular, our approach uses static code analysis and a variation con-
trol system to lift complex code-level dependencies to feature models.
[Contributions] We demonstrate the feasibility of our approach using
a Pick-and-Place Unit system and outline our further research plans.

Keywords: Product lines · Variation control system · Static analysis

1 Introduction

Feature models are widely used in software product lines and feature-oriented
development approaches to define the commonalities and variability of software-
intensive systems [1]. Frequently, features are defined for different spaces and at
different levels [2,13]: problem space features generally refer to systems’ speci-
fications and are defined during domain analysis and requirements engineering;
solution space features refer to the concrete implementation of systems created
during development. Many techniques exist in software product lines and require-
ments engineering for mapping features to their implementation [1,2,5,7,16].
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 169–175, 2019.
https://doi.org/10.1007/978-3-030-15538-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_12


170 D. Hinterreiter et al.

Such mappings are also the basis for deriving products in a feature-based con-
figuration process to compose valid product variants automatically.

Real-world product lines evolve continuously and engineers thus need to
extend and adapt feature models to reflect the changes. However, engineers
require deep knowledge about the domain and the implementation to avoid
inconsistencies between a feature model and its implementation [4,16]. Ensur-
ing consistency is challenging due to the complexity of both feature-to-artifact
mappings and implementation-level artifact dependencies. Checking and resolv-
ing inconsistencies is particularly important when adding or changing features
during product line evolution [3].

We report our ongoing research towards an approach for lifting code-level
dependencies to the level of features, thus facilitating the detection and resolu-
tion of inconsistencies. Our research is part of a project on developing a platform
for distributed and feature-based clone-and-own engineering [8]. Specifically, our
approach integrates feature modelling, feature-to-artifact mappings [10], and
static analysis [6] (Sects. 2 and 3). It uses a revision-aware feature model [14]
to track the evolution of feature models and their feature-to-artifact mappings.
It further relies on static analysis for determining code dependencies. We present
the results of a preliminary evaluation we conducted using the Pick-and-Place-
Unit case study (Sect. 4) and provide an outlook on future research (Sect. 5).

2 Approach

Figure 1 provides an overview of our approach:
(1) The bottom layer represents the different solution space artifacts such as

source code, models, or documents. The artifacts are managed in a tree struc-
ture. The nodes of the tree represent elements of artifacts, e.g., individual code
statements or paragraphs in a document.

(2a) The approach relies on feature-to-artifact mappings, i.e., each artifact
element needs to know to which feature it belongs. We assume that these map-
pings are automatically created using a variation control system (VCS) [10,15].
A VCS creates and manages mappings between artifacts and their corresponding
features during development and enables the composition of different product
variants using feature-based configuration. For instance, Linsbauer et al. describe
how feature-to-artifact mappings are determined and kept up-to-date in the VCS
ECCO [11,12]: as soon as a developer commits a new product revision or variant
ECCO analyzes the changes in the features and artifacts, which then allows to
incrementally add and refine the mappings.

(2b) Our approach further allows computing the complex dependencies
between implementation artifacts in the artifact dependency graph (ADG). We
realize the ADG as a system dependence graph (SDG) [9] globally representing
the control-flow and data-flow dependencies in a system.

(3) As explained, our aim is to lift implementation-level dependencies to the
level of features, which can then be proposed to a modeller in the feature model
as suggestions to evolve the model. Thus, our approach combines the information



Supporting Feature Model Evolution by Lifting Code-Level Dependencies 171

Fig. 1. The artifact dependency graph and feature-to-artifact mappings allow propos-
ing feature dependencies in the feature model.

from the feature-to-artifact mappings and the dependency graph. In particular,
we use the artifact mappings to collect the corresponding subset of ADG nodes,
which are then the starting point for traversing the dependency graph to find
potential dependencies to other features. During this step, we check if we can
find an artifact mapped to another feature. If so, we suggest a relation between
two features to the modeller.

We distinguish between two levels of feature relations (cf. Table 1): Dependen-
cies are relations required to correctly compose products. For instance, in case
of a def-use dependency, i.e., one feature uses a variable or procedure declared
in the implementation of another feature, a requires constraint must exist at the
level of features to ensure that the automatically composed product compiles
successfully. Interactions indicate weaker relations between features. This is the
case, for instance, if two features write to the same variable or if one feature
writes and the other reads that variable. If such interactions are not considered
in the feature model, the product may still be composed, but harmful interac-
tions may occur during execution, e.g., if two optional features write to the same
output variable. This could be avoided by modeling the two optional features as
alternative features.



172 D. Hinterreiter et al.

3 Implementation

We implemented the approach by integrating a feature modeling environment
with a VCS and tools for analyzing artifact dependencies. We demonstrate the
feasibility of our approach by using static code analysis techniques to lift complex
code dependencies.

Specifically, we adopt the VCS ECCO [11] as part of developing our feature-
oriented platform. While existing VCS are mostly bound to specific artifact
types [10], ECCO can be extended with plug-ins to support different domain-
specific implementation languages and artifact types, as long as they can be
represented in a tree structure. For example, our prototype supports source
code of textual and visual languages of the IEC 61131-3 standard, Java source
code, as well as configuration files for describing mappings of software variables
to hardware endpoints. ECCO then creates and maintains feature-to-artifact
mappings by computing differences in features and artifacts of products [12]. We
do not assume initial feature-to-artifact mappings, as they can be re-created by
replaying the evolution history of a system, which we showed in our preliminary
evaluation. We use a system dependency graph (SDG) [6] to analyze different

Table 1. Dependencies and interactions derived from a system dependency graph.

Type Description

Deps call A feature calls a function or method of a second feature

def-use A feature defines a variable or constant used by a
second feature

Interactions call-call Two features call the same function or method of a
third feature

write-write Two features write to a data object defined by a third
feature

write-read A feature uses data written by a second feature, while a
third feature defines the data object

read-read Two features read a data object defined by a third
feature

Table 2. Dependencies and interactions discovered for different versions of the PPU.

PPU v3 PPU v4 PPU v5

def-use 3 4 5

call 0 0 0

call-call 2 4 4

read-read 0 6 6

write-read 1 19 22

write-write 4 34 58



Supporting Feature Model Evolution by Lifting Code-Level Dependencies 173

types of code-level dependencies (cf. Table 1) and then lift them to the level of
feature models by utilizing the feature-to-artifact mappings of the VCS.

4 Preliminary Evaluation

For the evaluation of our approach we re-played the evolution history of the
Pick-and-Place Unit (PPU) product line [17], thereby automatically computing
the feature-to-artifact mappings using ECCO. We then analyzed feature depen-
dencies and interactions for different PPU versions to demonstrate the feasibility
of our approach. The PPU is a well-known example of a manufacturing system
for transporting and sorting different work pieces. A developer of our lab (not an
author of this paper) implemented different revisions and variants of the PPU
using an IEC-61131-3 compliant programming language for the control part and
Java for the visualization part of the system [8].

For instance, the basic version of the PPU comprises the features Stack,
Crane, and Ramp, while the additional features Stamp and Sorter were later
added to the system. As explained above, a feature model would typically become
inconsistent with its implementation after such code-level changes. To show the
usefulness of our support for lifting dependencies we computed the number of
different types of code-level dependencies and interactions for different versions
of the PPU (cf. Table 2).

We manually inspected the code with the developer of the PPU system to
confirm the validity of the computed dependencies and interactions. For instance,
the newly found dependencies between versions of the PPU are directly related
to the addition of new features. In PPU v3 the feature StackCylinder uses the
variable di machineStarted to check if the machine is currently running. In
PPU v4 feature a Crane is introduced, which also uses this variable to check the
state of the machine, thus leading to a new def-use dependency. Thus, a requires
constraint between the features StackCylinder and Crane could be suggested to
the developer. PPU v5 introduced the feature Ramp, leading to interactions with
the feature Crane. Both features read and write the variable state crane cur
resulting in write-read and write-write interactions showing the close relationship
between these features. Although no direct constraints can be derived from such
interactions, they provide highly valuable hints to developers during evolution.

Overall, the preliminary evaluation with the PPU developer confirmed most
of the found dependencies and interactions.

5 Conclusion and Research Outlook

We proposed an approach that uses feature-to-artifact mappings and an arti-
fact dependency graph to lift artifact-level dependencies to feature models. To
demonstrate usefulness and feasibility of our approach we presented the number
of dependencies and interactions computed for different versions and variants of
the PPU case study system.



174 D. Hinterreiter et al.

In the short term we will use the information about artifact dependencies
and interactions to analyze the coupling and cohesion of features, thus sup-
porting engineers deciding about merging or splitting features during product
line evolution. This will be particularly challenging in our context of distributed
feature-oriented platform evolution [8]. We will extend our dependency analysis
to other types of artifacts. Our long-term plan is to evaluate our approach using
large-scale product lines from our industry partner based on our earlier case
studies on program analysis of industrial automation systems [6].

Acknowledgements. The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Research, Technology and
Development, and KEBA AG, Austria is gratefully acknowledged.

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

2. Berger, T., et al.: What is a feature? A qualitative study of features in industrial
software product lines. In: Proceedings of the 19th SPLC, pp. 16–25 (2015)

3. Bürdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U., Schürr, A.: Reason-
ing about product-line evolution using complex feature model differences. Autom.
Softw. Eng. 23(4), 687–733 (2016)

4. Dintzner, N., van Deursen, A., Pinzger, M.: FEVER: an approach to analyze
feature-oriented changes and artefact co-evolution in highly configurable systems.
Empir. Softw. Eng. 23(2), 905–952 (2018)

5. Egyed, A., Graf, F., Grünbacher, P.: Effort and quality of recovering requirements-
to-code traces: two exploratory experiments. In: Proceedings of the 18th IEEE
International Requirements Engineering Conference, Sydney, Australia, pp. 221–
230 (2010)

6. Grimmer, A., Angerer, F., Prähofer, H., Grünbacher, P.: Supporting program anal-
ysis for non-mainstream languages: experiences and lessons learned. In: Proceed-
ings of the 23rd SANER Conference, pp. 460–469 (2016)

7. Hajri, I., Goknil, A., Briand, L.C., Stephany, T.: Change impact analysis for evolv-
ing configuration decisions in product line use case models. J. Syst. Softw. 139,
211–237 (2018)

8. Hinterreiter, D.: Feature-oriented evolution of automation software systems in
industrial software ecosystems. In: 23rd IEEE International Conference on Emerg-
ing Technologies and Factory Automation, Torino, Italy, September 2018

9. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
SIGPLAN Not. 23(7), 35–46 (1988)

10. Linsbauer, L., Berger, T., Grünbacher, P.: A classification of variation control
systems. In: Proceedings of the 16th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences, GPCE 2017, pp. 49–62.
ACM (2017)

11. Linsbauer, L., Egyed, A., Lopez-Herrejon, R.E.: A variability-aware configuration
management and revision control platform. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering (Companion), pp. 803–806 (2016)

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7


Supporting Feature Model Evolution by Lifting Code-Level Dependencies 175

12. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Variability extraction and model-
ing for product variants. Softw. Syst. Model. 16(4), 1179–1199 (2017)

13. Rabiser, D., et al.: Multi-purpose, multi-level feature modeling of large-scale indus-
trial software systems. Softw. Syst. Model. 17, 913–938 (2018)

14. Seidl, C., Schaefer, I., Aßmann, U.: Capturing variability in space and time with
hyper feature models. In: Proceedings of the 8th International Workshop on Vari-
ability Modelling of Software-Intensive Systems, VaMoS 2014, pp. 6:1–6:8 (2013)

15. Stǎnciulescu, S., Berger, T., Walkingshaw, E., Wa̧sowski, A.: Concepts, operations,
and feasibility of a projection-based variation control system. In: Proceedings of
IEEE ICSME, pp. 323–333 (2016)

16. Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider, W.: Flexible and
scalable consistency checking on product line variability models. In: Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering,
pp. 63–72 (2010)

17. Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching evolution in
industrial plant automation: scenarios and documentation of the pick and place
unit. Technische Universität München, Technical report (2014)


	Supporting Feature Model Evolution by Lifting Code-Level Dependencies: A Research Preview
	1 Introduction
	2 Approach
	3 Implementation
	4 Preliminary Evaluation
	5 Conclusion and Research Outlook
	References




