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Abstract. [Context & Motivation] In many domains such as health-
care and banking, IT systems need to fulfill various requirements related
to security. The elaboration of security requirements for a given system
is in part guided by the controls envisaged by the applicable security
standards and best practices. [Problem] An important difficulty that
analysts have to contend with during security requirements elaboration
is sifting through a large number of security controls and determining
which ones have a bearing on the security requirements for a given sys-
tem. This challenge is often exacerbated by the scarce security exper-
tise available in most organizations. [Principal ideas/results] In this
paper, we develop automated decision support for the identification of
security controls that are relevant to a specific system in a particular
context. Our approach, which is based on machine learning, leverages
historical data from security assessments performed over past systems in
order to recommend security controls for a new system. We operational-
ize and empirically evaluate our approach using real historical data from
the banking domain. Our results show that, when one excludes security
controls that are rare in the historical data, our approach has an aver-
age recall of ≈95% and average precision of ≈67%. [Contribution] The
high recall – indicating only a few relevant security controls are missed
– combined with the reasonable level of precision – indicating that the
effort required to confirm recommendations is not excessive – suggests
that our approach is a useful aid to analysts for more efficiently identify-
ing the relevant security controls, and also for decreasing the likelihood
that important controls would be overlooked.

Keywords: Security requirements engineering · Security assessment ·
Machine learning

1 Introduction

Many IT systems, e.g., those used in the healthcare and finance sectors, need to
meet a variety of security requirements in order to protect against attacks. The
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elaboration of these requirements is heavily influenced by the security controls
prescribed by standards and best practices such as the ISO 27000 family of stan-
dards [14], NIST SP 800 guidelines [24], and OSA security patterns [25]. These
controls define a wide range of technical and administrative measures for the
avoidance, detection and mitigation of security risks [10]. An example security
control from ISO 27002 is: “The integrity of information being made available on
a publicly available system should be protected to prevent unauthorized modifi-
cation.” If an application has information assets with public access points, this
control may be elaborated into detailed security requirements aimed at avoiding
information tampering.

For a specific IT system in a particular context, only a subset of the con-
trols in the security standards and best practices have a bearing on the security
requirements. An important task that analysts need to do is therefore to decide
which controls are relevant and need to be considered during requirements elab-
oration. Since the controls are numerous, performing this task entirely manually
is not only cumbersome but also error-prone, noting that deciding whether a
certain control is relevant often correlates with several contextual factors, e.g.,
the assets that are associated with a given system, the threats that the system
is exposed to, and the vulnerabilities that the system leads to. Overlooking any
of these factors can lead to wrong decisions about the security controls, and
potentially serious consequences. This problem is made even more acute by the
scarcity of expertise in security risk analysis in most organizations.

Our work in this paper is motivated by the need to provide automated
decision support for identifying the security controls that are pertinent to a
specific system. To this end, we observe that, in security-critical sectors, e.g.,
finance, security assessment is an increasingly systematic activity, where secu-
rity assessment data is collected and recorded in a structured way [7]. Many
system providers and security consulting firms now have detailed data models
in place to keep track of the security-related properties of the systems that they
analyze and the decisions they make regarding security. This raises the prospect
that existing (historical) data about security assessments can be put to pro-
ductive use for decision support. What we do in this paper is to examine the
feasibility and effectiveness of this prospect in a real setting.

The starting point for our work was a year-long field study at a major inter-
national bank. Our study aimed at developing insights into industry practices for
assessing IT security risks. The study focused specifically on early-stage security
assessments during the system inception and requirements elaboration phases.
This study led to a precise characterization of the historical data that we had
at our disposal for building automated decision support. While the data model
resulting from our field study inevitably has bespoke concepts that are specific
to our study context, the majority of the concepts are general and aligned with
widely used standards, particularly ISO 27001 and 27002. This helps provide
confidence that our data model is representative of a wider set of security prac-
tices than our immediate study context.
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With a data model for security assessments at hand, we explore the use of
several Machine Learning (ML) algorithms for identifying the security controls
that are most relevant to a given system and context. To this end, we define a set
of features for learning from historical security assessment data. We empirically
evaluate the accuracy of our approach using real data. Our results show that,
when one excludes security controls that are rare, i.e., apply to too few systems
in the historical data, our approach on average has a recall of ≈95% and precision
of ≈67%. Since recall is high and the number of false positives is not excessive, as
suggested by precision, we conclude that ML is a promising avenue for increasing
the efficiency of identifying relevant security controls, and also reducing the
likelihood that important controls would be missed. In situations where one
has to deal with rarely used security controls, ML alone is not sufficient; this
necessitates future investigations into how ML can be complemented with other
techniques, e.g., guided manual reviews, expert rules and case-based reasoning,
in order to provide comprehensive coverage of the security controls.

The rest of the paper is organized as follows: Sect. 2 provides background
and compares with related work. Section 3 summarizes the outcomes of our field
study on security assessment. Section 4 presents our ML-based approach for rec-
ommending relevant security controls. Sections 5 and 6 report on our evaluation.
Section 7 discusses threats to validity. Section 8 concludes the paper.

2 Background and Related Work

This section discusses the industry standards and the existing research strands
related to our work.

2.1 Information Security Standards

Our collaborating partner has its IT security practices grounded in the ISO
27000 family of information security standards [14]. This commonly used series
of standards provides a systematic approach for handling information security.
Among these standards, ISO 27001 and 27002 relate most closely to our work in
this paper. ISO 27001 specifies a set of requirements for developing and maintain-
ing an information security management system. The standard further envisages
requirements for the assessment and control of the security risks posed by secu-
rity breaches in IT systems. ISO 27002 complements ISO 27001 by providing
guidelines for selecting, implementing, and managing controls for security risks.
The standard has a total of 128 security controls. These controls span 11 secu-
rity categories, e.g., security policy, asset management, and access control. When
elaborating the security requirements for a system, one has to identify the con-
trols that are relevant to the system at hand. As noted earlier, performing this
task without automated assistance is both tedious and prone to errors. Our work
in this paper takes aim at providing suitable automated support for the above
task.
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2.2 Security Requirements Engineering

Security requirements have been widely studied for IT systems, e.g., [6,12,16,
19,22,30,32]. The most closely related research threads to our work are those
concerned with early-stage security risk analysis. Two notable techniques to this
end are STRIDE and DREAD, both originating from Microsoft [20]. These tech-
niques have been used and improved by many corporations over the years [22].
STRIDE is a method for classifying security threats, whereas DREAD is a
method to rate, compare and prioritize the severity of the risks presented by
each of the threats classified using STRIDE. Our work is complementary to
STRIDE and DREAD, first in that we focus on risk mitigation as opposed to
risk classification and triage, and second in that we take an automation angle
rather than dealing exclusively with manual security analysis.

Some prior research attempts to assist security engineers through capturing
domain expertise in a reusable form. For example, Schmitt and Liggesmeyer [29]
propose a model for structuring security knowledge as a way to improve the effi-
ciency of specifying and analyzing security requirements. Sindre and Opdahl [31]
develop a systematic approach for security requirements elicitation based on use
cases, with a focus on reusable methodological guidelines. In contrast to the
above work, we explore how historical data from past security assessments can
be mined and reused within a corporate context for building automated deci-
sion support. We further demonstrate the effectiveness of our approach through
systematic empirical means by applying the approach to an industrial case study.

2.3 Applications of Machine Learning in Requirements Engineering

ML has generated a lot of traction in Requirements Engineering for supporting
a variety of tasks, e.g., extracting user-story information [28], identifying non-
functional requirements [3], and requirements classification [17]. To the best of
our knowledge, we are the first to attempt applying ML for generating automated
recommendations for security controls using historical data.

3 Field Study on Security Assessment

This section describes the results of a field study conducted with the goal of
building insights into how IT security assessments are done in practice. We
started our study with meetings with IT security specialists at our collaborating
partner (a bank). Subsequently, the first author spent approximately a year
onsite at the partner’s headquarters, learning about the details of the security
assessment process followed there and the data model that underlies this process.

The security assessment process at our partner is a customized procedure
shaped around the guidelines of the ISO 27000 standards [14]. A central goal of
this process is to derive, for a given system, a set of ISO-specified controls that
need to be elaborated further into security requirements.

In Fig. 1(a), we show an overview of the security assessment process gleaned
from our field study, and in Fig. 1(b) – a (simplified) version of the underlying
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Fig. 1. Main outcomes of our field study; note that the outcomes have been scoped to
the analytical task pursued in this paper (i.e., decision support for security controls).

data model. While we present the security assessment process in a sequential
manner, in practice, the process is iterative. This means that before they are
finalized, the choices and the decisions made during assessment may undergo
multiple rounds of improvement based on the findings at the different steps of the
process. The data model of Fig. 1(b) is populated incrementally as the assessment
workflow unfolds, with each step of the workflow adding new information. As we
describe in Sect. 4, we use this data model as the basis for defining features for
learning from past security assessment records.

As shown in Fig. 1(a), security assessment starts with the “create project”
step. A new project represents a system-to-be that is at the inception and
requirements gathering stage. In this step, the basic information about a project
is specified, e.g., project description and business domain. Next and in the
“choose assets” step, the analysts define and link the assets relevant to a given
project. In general, an asset can be defined as a resource with economic value
that is held or controlled by an individual, corporation, or country [13]. The
step is followed by the “determine criticality” step where the analysts, in col-
laboration with the business stakeholders, decide about project criticality. The
more critical a project is, the more is the need to evaluate potential threats
and vulnerabilities systematically. To evaluate the criticality of a project, the
analysts fill out a security questionnaire comprised of 12 multiple-choice ques-
tions. Each question covers a possible aspect of exposure, e.g., the level of
exposure to external attacks. Once the questionnaire has been completed, the
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analysts exercise expert judgment to decide the project criticality level and
update the project information accordingly.

The “create assessment” step captures various contextual information about
the assets that have been linked to a project. The (data) type of an asset is deter-
mined by the content that the asset stores, processes, or transfers. The classifi-
cation of asset types at our partner is based on their in-house domain expertise
and the guidelines of the national data protection authority. The confidentiality
of an asset is determined by how sensitive its content is. This attribute is a value
on an (ordinal) scale ranging from public to secret. The criticality of an asset is
a quantitative score indicating risk exposure. This score determines whether the
potential risk posed by an asset is significant enough to warrant additional secu-
rity analysis. The score is derived from the following asset attributes through a
combination of expert judgment and rules: (1) the capability attribute, captur-
ing the output channels to which the content of an asset can be sent, (2) the
volume attribute, capturing the volume of data that an individual transaction
can read, write, or delete from an asset, and (3) the user attribute, estimating in
a logarithmic scale the number of users that can access an asset. We note that
for an individual project, our partner may conduct multiple assessments from
different perspectives and involving different groups of analysts. In this paper,
when we refer to an assessment, we mean the collection of all assessment activ-
ities performed over a given project. Consequently, the assessment information
collected per project is the union of the outcomes of all the assessment activities
performed.

Once the contextual information for the assets in a project has been specified,
the analysts move on to the identification of threats and vulnerabilities, and
subsequently, the security controls. A threat refers to anything that has the
potential to cause serious harm to a system, e.g., unauthorized disclosure of
confidential information [13]. Threats are identified in the “choose threats” step
of the process of Fig. 1(a). In this step, the analysts carefully examine a threat
catalog consisting of 22 threat items and decide which ones are applicable. If a
threat is deemed applicable to a project, the analysts qualify the threat more
precisely within the context of that project. Specifically, for each applicable
threat, the analysts provide a description, choose an appropriate risk level, and
determine whether the threat impacts confidentiality, integrity, availability, or
traceability. Next, in the “choose vulnerabilities” step, the analysts decide about
the applicable vulnerabilities. A vulnerability represents a weakness that can be
exploited by a threat, leading to the risk of asset damage or exposure [13]. An
example vulnerability would be “oversight in defining access control rules to
shared information”. At our partner, vulnerabilities are identified using a pre-
defined catalog with 156 entries. This catalog encompasses all the vulnerabilities
known to the partner in its application domain.

Finally, in the “choose controls” step, the analysts select the appropriate secu-
rity controls for the project being assessed. The source for the security controls
at our partner is the ISO 27002 standard [13]. We thus refer to these controls
as ISO controls. The catalog of ISO controls used by our partner constitutes
134 entries. In the remainder of this paper, we develop and evaluate automated
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decision support for choosing ISO controls. In particular, assuming that the
assessment process steps prior to choosing the controls have been already per-
formed for a project, we propose an approach based on ML for recommending
the ISO controls relevant to the project.

Before we move on to presenting our approach, it is important to note that,
for simplicity and succinctness, we have scoped the security assessment process
and data model in Fig. 1 to what is needed for recommending ISO controls. In
particular, we have left out of this figure and our explanation thereof a number
of activities, e.g., risk mitigation and residual risk analysis, which take place
after ISO-control selection.

4 Approach

Our approach for recommending ISO controls is based on ML. In this section,
we present the main principles and considerations behind the approach.

4.1 Source Data for Building a Classification Model

To build a classification model, we utilize the database of historical assess-
ment records at our collaborating partner. This database covers all the sys-
tems assessed by the partner in the past nine years. From this database, we
extract various attributes. Our attributes, which are based on the data model of
Fig. 1(b), are discussed next.

4.2 Machine Learning Features

We engineered our features for learning through a joint endeavor with the IT
security specialists at our partner. Table 1 presents our feature set alongside our
intuition as to why each feature may be a useful indicator for the relevance of
ISO controls. Essentially, we chose a feature for inclusion in the set if we deemed
the feature to be characterizing an important aspect of security assessment. For
instance and as shown in Table 1, the criticality attribute of a project is used as
a feature. In contrast, the name attribute of a project is not, since the name has
no impact on the identification of ISO controls. The ISO controls (not shown in
the table) are treated as class attributes. We build one classifier per ISO control.
The class attribute for each ISO control is thus a binary value indicating whether
or not the control is relevant to a given project.

4.3 Dealing with Imbalance

An important issue we have to take account of in our approach is imbalance
in our security assessment data. In particular, we observe that the absence of
ISO controls is much more prevalent than their presence across the projects.
This imbalance is caused by the relatively infrequent use of several ISO controls.
When a class – in our context, a particular ISO control being applicable – is
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Table 1. Our features for machine learning.

Feature (D) Definition and (I) Intuition

Project type (D) The type of a project (total of 3 types: usual business, large scale and integration

project). (I) Each project type implies a different scale and a specific process for handling

risks

Project

criticality

(D) The criticality of a project (total of 3 levels: very critical, critical, and non-critical).

(I) The more critical a project, the more stringent are the security controls

Business

domain

(D) The area of business under which a project falls (total of 48 domains, e.g., web

banking, wealth management). (I) The feature relates to how severe the consequences of a

breach are. For example, a breach may have more severe implications in wealth

management than in certain other domains due to the involvement of vital client

information

Business

domain

category

(D) The category for a group of business domains (total of 4 categories, e.g., the HR

category, which encompasses all the human-resource-related business domains). (I) The

feature provides an extra layer of abstraction for distinguishing different business domains

Security

answers

(A1..A12)

(D) The answers provided by the analysts to the questions on a static security

questionnaire (total of 12 questions). An example question is: “What is the project’s level

of exposure to external attacks?” All answers are on a three-point scale: low, significant,

very high. (I) The answers serve as an indicator for the seriousness of potential security

breaches

Number of

assets

(D) The number of assets linked to a project. (I) Increasing the number of assets may

lead to an increased attack surface, thus warranting more rigorous controls

Number of

critical assets

(D) The number of critical assets in a project. (I) Critical assets are specific entities with

major importance. If these assets are compromised, the effects are more serious than

those for regular assets. Critical assets may necessitate more security controls

Number of

assets per

category

(C1..C9)

(D) The number of assets in an asset category (total of 9 categories, e.g., mobile

application or database). (I) Each asset category has a different impact on the security

controls in a project. For example, a client database being compromised would typically

have more serious consequences than, say, a mobile application being inaccessible

Number of

users

(D) The maximum number of users who can access the data of a project. (I) The

potential risk of data exposure is correlated to the number of users accessing the data

Data type (D) The most sensitive type of data in an asset (total of 4 types, e.g., personal data).

(I) The more sensitive the data, the more impact a breach would have

Capability (D) The capability of extracting data (total of 3 modes: screen, print, and electronic).

Screen means that a user can view the data on a screen. Print means that a user can

print the data on paper. Electronic means that a user can store the data onto an

electronic device. (I) Data exposure risks increase as one goes from screen to print to

electronic data extraction. The security controls required may thus be impacted by the

extraction capability

Volume (D) The volume of data that can be read, written, or deleted by one data transaction

(total of 3 types: record-by-record, percentage-per-day, and unlimited). Record-by-record

means that a user can access only one record at a time. Percentage-per-day means that a

user can access a certain percentage of the dataset in one day. Unlimited means that a

user has unlimited access. (I) The risk of data exposure correlates with volume. Volume

may thus have an influence on the security controls

Confidentiality (D) The maximum confidentiality level of the assets in a project (total of 4 levels: public,

restricted, confidential, secret). (I) The higher the confidentiality level, the more severe

are the consequences of a breach. The security controls may thus be influenced by the

level of confidentiality

Threats

(T1..T22)

(D) The presence or absence of a threat (total of 22 threats). (I) Threats exploits

vulnerabilities. The presence of a threat has a direct influence on the security assessment

decisions, including those related to the security controls

Threat impact

(S1..S4)

(D) Impact scores based on all the threats in a project. Separate scores are computed for

confidentiality (S1), integrity (S2), availability (S3), and traceability (S4). (I) The scores

relate to the impact of security breaches and thus may influence the controls

Risk (R1..R22) (D) Estimated risk of each threat on a scale of 1–8 (negligible to extremely high). (I) The

risk posed by a threat influences security decisions, including those about the security

controls

Vulnerability

(V1..V154)

(D) The presence or absence of a vulnerability (total of 154 vulnerabilities). (I) Security

controls counter vulnerabilities, and are naturally affected by which vulnerabilities apply
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rare, ML classification models have a tendency to predict the more prevalent
classes [1]. In our context, this means that, unless steps are taken to counter
imbalance for rarely used ISO controls, any classification model that we build
may invariably find the rare ISO controls inapplicable. To tackle imbalance, we
examine two commonly used methods, namely synthetic minority over-sampling
technique (SMOTE) [4] and cost-sensitive learning (CSL) [8].

4.4 Choice of Classification Algorithm

We elect to use interpretable ML techniques to provide analysts not only with
security control recommendations, but also the rationale behind how the security
controls were selected. An interpretable model would explain how and why a spe-
cific decision was made concerning a particular security control. For instance, the
model would indicate that a particular ISO control is selected mostly because
a certain combination of threats and vulnerabilities is present. We note that,
in this paper, we do not attempt to validate the resulting ML models with
domain experts. Nevertheless, scoping our work to interpretable ML is impor-
tant, because experts are unlikely to accept decisions for which they are not
provided an explanation.

5 Case Study

We evaluate our approach through an industrial case study from the banking
domain. The case study is a follow-on to our field study of Sect. 3 and was
conducted with the same industry partner.

5.1 Research Questions

Our case study aims to answer the following research questions (RQs):

RQ1 (classification): Which classification algorithm is the most accurate at
recommending security controls? The accuracy of our approach is partly driven
by the selected ML algorithm. In RQ1, we examine standard classification algo-
rithms based on the existing best practices in the literature [23], and compare
the accuracy of the resulting classifiers.

RQ2 (features): Which features are the most influential for recommending
security controls? Features used in constructing an ML-based classifier typically
have different degrees of importance toward the classifier’s decision making. In
RQ2, we evaluate the importance of the features in Table 1.

RQ3 (usefulness): What is the overall utility of our approach? For our app-
roach to be useful in practice, the decision support must propose sufficiently
accurate security controls in practical time. RQ3 measures the accuracy of our
security recommendation system at the level of projects alongside the execution
time of the main steps of our approach.
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5.2 Implementation

Our recommendation system is built using the Weka framework [11]. Weka sup-
ports a broad spectrum of ML techniques. We ran our experiments on a computer
equipped with an Intel i7 CPU with 16 GB of memory.

5.3 Case Study Data

Our raw data is a database of 274 assessment projects conducted over a span of
nine years, from 2009 until present. Of these assessment projects, we excluded
47 because they either were not carried through to completion, or were built for
testing and training purposes. This leaves us with 227 assessment projects for
evaluating our approach.

Among the controls introduced by ISO 27002, some never or too rarely appear
in our data. Based on our ML expertise and feedback from security engineers,
we excluded the ISO controls that had been used less than 5 times within the
selected 227 assessment projects. The applicability of such ISO controls cannot
be predicted meaningfully using ML. In summary, our experimental dataset
provides values for all the features in Table 1 and 77 ISO controls across 227
assessment projects.

5.4 Experimental Setup

To answer the RQs in Sect. 5.1, we performed three experiments, EXPI, EXPII
and EXPIII, as described below.

EXPI. This experiment answers RQ1. We select the following interpretable
ML algorithms as candidates for building our recommendation system: Naive
Bayes [15], Logistic Regression [18], J48 [27], CART [2], JRip [5], and PART [9].
EXPI compares the accuracy of these six alternatives using the features of
Table 1.

We start EXPI with hyper-parameter optimization (HPO) for the six alter-
natives considered. In doing so, we also account for the data imbalance problem
described in Sect. 4.3. As noted in this earlier section, we consider two tech-
niques for handling imbalance: SMOTE and CSL. SMOTE resolves imbalance
by adding new artificial (synthetic) minority samples to the dataset. CSL mit-
igates the bias of the classifier toward the majority class by assigning a larger
penalty to either false positives or false negatives. In our context, we levy a larger
penalty on false negatives, i.e., ISO controls that apply to a project but are erro-
neously classified as not relevant. The proportional prevalence of the majority
versus the minority (rare) class in our experimental dataset rounds up to 12 to
1. Specifically, our dataset contains 17952 instances of the majority and 1548
instances of the minority class. We use the same ratio for CSL by setting the
cost values of false negatives and false positives to 12 and 1, respectively. Note
that the cost values of true positives and true negatives are zero.
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dataset

buildsplit
10 folds

test

1 fold for test

select one
ISO control

repeat 10 times

compute
metrics

repeat for all ISO controls

Fig. 2. 10-fold validation for all ISO-control classifiers.

For HPO, we use a step-wise grid search algorithm [21] that starts with a first
coarse grid search and then refines the areas of good accuracy with additional
finer-grained grid searches. For example, to find an optimal value of a real-type
hyper-parameter, at the first search iteration, i = 1, we vary the parameter value
within the valid range of the parameter by si = 0.1 step width. After finding
the best parameter value, bi, at the first search iteration, we adjust the step
width, si+1, by si × 0.1 (e.g., 0.01 at the second iteration) and adjust the search
range for the parameter to [bi − si, bi + si] for the next iteration. We continue
the iterations until the difference between the best accuracy values found at the
ith and i − 1th iterations are less than 0.01. Note that our HPO searches all
the possible values in the valid ranges of the integer- and enum-type parameters
at the first iteration, and then uses the best-found values at the subsequent
iterations for tuning real-type parameters.

Following HPO, we measure through cross validation the accuracy of the
alternative ML algorithms for predicting ISO controls. The cross validation pro-
cess is illustrated in Fig. 2. The “repeat 10 times” block in the figure applies
standard 10-fold cross validation [23] to the classifier built for an individual ISO
control. This is repeated for all the ISO controls through the “repeat for all ISO
controls” block. At the end, the “compute metrics” step calculates the EXPI
accuracy metrics described in Sect. 5.5.

EXPII. This experiment answers RQ2. We evaluate the importance of the
features in Table 1 based on the best-found configuration in RQ1. For each of
the ISO-control classifiers, we rank the features using a standard metric for
feature evaluation, as we discuss in Sect. 5.5. We then identify and aggregate the
most influential features across all the ISO controls.

EXPIII. This experiment answers RQ3 by examining how much useful assis-
tance one can expect from ML for identifying the ISO controls relevant to a
given assessment project. Specifically, EXPIII performs the leave-one-out val-
idation process shown in Fig. 3. The “leave one project out” step takes one
project out from the dataset. The remaining dataset is then utilized for training
the classifiers of all the ISO controls. Subsequently, the withheld project is used
for testing the trained classifiers, as shown in “repeat for all ISO controls” block
of the figure. This is repeated for all the projects in the dataset, as indicated
by the “repeat for all projects” block. At the end of the process, we compute
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dataset

build testselect one
ISO control

compute
metrics

repeat for all ISO controls

leave one
project out

repeat for all projects

one project for test

Fig. 3. Leave-one-out validation for all projects.

the EXPIII accuracy metrics described in Sect. 5.5. We note that these accuracy
metrics are only indicative of in-vivo usefulness; the metrics have to be con-
sidered in their application context for a more definitive evaluation. Doing so
requires user studies and is beyond the scope of this current paper.

5.5 Metrics

In EXPI, for a given ISO control c, we define the precision and recall metrics as
follows: (1) precision P c = TP/(TP +FP) and (2) recall Rc = TP/(TP +FN ),
where TP , FP , and FN are the sum of the true positives, false positives, and
false negatives, respectively, across the 10 folds of cross validation for ISO control
c. A true positive is a project to which c is relevant and is correctly predicted
as such; a false positive is a project to which c is not relevant but is incorrectly
predicted to have c as a control; a false negative is a project to which c is relevant
but is incorrectly predicted to not have c as a control. These metrics are used
for comparing the accuracy of different ML algorithms.

In practice, the decision as to whether an ISO control is applicable should be
made as simple as possible to minimize the effort needed from the analysts. The
most critical factor here is recall, since the presence of false negatives implies
that important ISO controls may be missed. A recall that is too low would thus
undermine the usefulness of the approach, meaning that the analysts would be
better off doing the selection of the relevant controls entirely manually. To allow
the analysts to focus only on the recommended controls, we prioritize recall over
precision.

In EXPII, we use the gain ratio metric [26]. This metric, which is commonly
used for ranking ML features, is a modification of the information gain metric,
aimed at reducing bias on multi-valued features.

In EXPIII, we define precision and recall around a project. This is in contrast
to EXPI, where these notions were defined around an ISO control. Let p be the
project withheld from the set of all projects in a given round of leave-one-out
validation. We define (1) precision P p as TP/(TP + FP) and (2) recall Rp as
TP/(TP + FN ), where TP is the number of relevant ISO controls correctly
predicted as such for project p, FP is the number of ISO controls that are not
relevant to project p but are incorrectly predicted as being relevant, and FN is
the number of relevant ISO controls incorrectly predicted as not being relevant
to project p. These precision and recall metrics are used for measuring overall
accuracy at a project level.
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6 Results

In this section, we answer the RQs of Sect. 5.1 based on the results of our case
study.

6.1 RQ1

Table 2 shows the results of EXPI, described in Sect. 5.4. Specifically, the table
reports the average precision and recall – average P c and Rc, defined in Sect. 5.5,
across all ISO controls – of the six alternative ML classification algorithms con-
sidered.

As we argued previously, in our application context, recall has priority over
precision. The results of Table 2 thus clearly suggest that J48, which yields an
average recall of 94.95% and average precision of 65.90%, is the best choice
among the ML classification algorithm considered. For all classification algo-
rithms, including J48, handling imbalance via CSL leads to substantially more
accurate classification, when compared to doing so via SMOTE. When J48 is
applied alongside CSL with a cost ratio of 12 to 1 for false negatives versus false
positives (see Sect. 5.4), the optimal hyper-parameters are as follows: pruning
confidence= 0.001 and minimal number of instances per leaf= 7.

Table 2. Comparison of the average precision and recall of different ML classification
algorithms with optimized hyper-parameters.

Algorithm CSL SMOTE

P c (avg.) Rc (avg.) P c (avg.) Rc (avg.)

J48 65.90 94.95 77.11 78.15

CART 55.11 92.42 76.03 64.20

JRip 64.32 91.35 74.68 79.49

PART 69.19 92.89 73.63 76.74

Logistic regression 64.32 51.54 68.77 58.91

Naive Bayes 33.35 61.59 17.02 50.93

The answer to RQ1 is that J48 combined with CSL leads to the most accurate
classification. Using this combination, we obtained an average recall of 94.95%
and average precision of 65.90% in our case study.

We answer RQ2 and RQ3 using J48, CSL, and the best hyper-parameter
values mentioned above.

6.2 RQ2

As explained in EXPII of Sect. 5.4, we use gain ratio for estimating the impor-
tance of our features (Table 1). Based on the gain-ratio scores of the features
across all the ISO-control classifiers, we make the following observations:
1. There are 12 vulnerabilities that have a zero gain ratio in all the classifiers. A

subsequent investigation revealed that the vulnerabilities in question are not
present in any of the past projects. We excluded these vulnerabilities from
the dataset. The impact of this exclusion on precision and recall is negligible.
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2. With the above 12 vulnerabilities removed, we observed that different ISO-
control classifiers use different but overlapping subsets of features. This indi-
cates that the decision about the relevance of different ISO controls is influ-
enced by different factors. The feature subsets were picked automatically
by J48’s internal feature selection mechanism as implemented in Weka (this
mechanism is also based on gain ratio).

In light of the second observation above, we answer RQ2 by measuring the
overall importance of the features across all the classifiers. To do so, we first
aggregated the top five most important features based on the rankings obtained
from the different classifiers. We then computed the importance of a set F of
features of the same type (e.g., vulnerability features: V1 to V154 in Table 1)
as the percentage of the number of classifiers having some feature of F in their
top five most important features. Table 3 shows the results. For example, all
(100%) of the classifiers have some vulnerability in their top five most important
features. The domain experts in our study stated that the results of Table 3 were
consistent with their intuition about the most important factors in determining
the relevance of ISO controls.

Table 3. Most important features for ISO-control classification.

Vulnerability Risk # of assets
per category

Threat
impact

Threat Security
answer

# of critical
assets

100% 62.80% 16.00% 15.38% 12.80% 2.50% 1.20%

The answer to RQ2 is that overall and in descending order of magnitude, vul-
nerabilities, risks, the number of assets per category, threat impacts, threats,
security answers, and the number of critical assets are the most influential
feature groups. This finding is consistent with the intuition of the security
specialists in our case study.

6.3 RQ3
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Fig. 4. Precision and recall distributions
resulting from leave-one-out validation.

Figure 4 summarizes through a box-
plot the results of EXPIII, described
in Sect. 5.4. Specifically, the boxplot
shows the distributions of precision,
P p, and recall, Rp, as defined in
Sect. 5.5. On average, our approach
has a recall of 94.85% and precision
of 67.38% when tasked with identi-
fying the ISO controls relevant to a
given project. The high recall suggests
that the analysts can focus most of
their attention on the recommended
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ISO controls, since the recommendations most likely contain all the relevant
controls. The precision is reasonable too: On average, our approach recom-
mends 9.4 ISO controls – both true and false positives – for a project. Of
these, one can expect an average of 6.3 recommendations to be correct and
3.1 to be incorrect. The domain experts in our study confirmed that, given
the small number of recommended ISO controls, they can vet the validity
of the recommendations efficiently.
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Fig. 5. Recall values of the ISO classifiers.

From Fig. 4, we further observe that the recall (Rp) for eight out of the total
of 227 projects in our dataset is below 75%. Upon a follow-up investigation,
we determined that the root cause for low recall in these projects is that the
majority (and in two cases, all) of the ISO controls relevant to these projects
have low prevalence in the dataset. In Fig. 5, we plot the recall of each ISO-
control classifier (Rc) against the prevalence of the respective ISO control in the
dataset. The ten datapoints encircled by � represent the ISO controls that bring
about low recall in the above-mentioned eight projects. A complementary insight
from Fig. 4 is that recall is highly stable for those ISO controls that occur ≥ 15
in our dataset. As noted previously, handling less frequent ISO controls requires
complementary techniques and is the subject of future work.

With regard to execution time, we make the following remarks: Generating
J48 classification models for all the ISO controls subject to our experiments took
215 s in total; this gives an average training time of 2.8 s per ISO control. With
the classifiers built, issuing recommendations for a given project takes an average
of 1.7 s. These results suggest that our approach is scalable.

The answer to RQ3 is that, based on our case study results, our approach
shows promise in terms of usefulness. In particular, our approach has a high
recall (94.85%) and acceptable precision (67.38%) in identifying the ISO con-
trols relevant to a security assessment project. Further, the execution times
for training and classification are small. This suggests that our approach will
scale to larger datasets.
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7 Threats to Validity

The validity considerations most relevant to our work are construct and external
validity, as we discuss below.

Construct Validity: Our evaluation metrics are scoped to the security controls
for which there are at least five occurrences in the historical data. Below this
threshold, applying ML is unlikely to be meaningful. Our evaluation examines
whether ML is a suitable technique for our analytical purpose only when ML
is applicable. Other techniques – not explored in this paper – are required for
dealing with the security controls to which ML cannot be meaningfully applied.

External Validity: Generalizability is an important concern for any single
case study, including the one in this paper. While the historical information
we draw on for learning is aligned with commonly used ISO standards and is
thus representative of a broader set of security assessment practices in industry,
additional case studies are essential for examining whether our approach remains
effective in other application contexts. In particular, the nature and source of
security controls in other contexts and how accurately the pertinence of these
controls can be determined through automation requires further investigation.

8 Conclusion

In this paper, we proposed an approach based on machine learning for assisting
analysts with the task of deciding what security controls are relevant to a given
system and context. This task is an important prerequisite for the proper elabo-
ration of security requirements in the early stages of development. We evaluated
our approach using real security assessment data from the banking domain. The
results suggest that our approach provides effective decision support for security
controls whose application is not too rare in the existing data. For these controls,
our approach yielded an average recall of ≈95% and average precision of ≈67%.
As far as we are aware, we are the first to have applied machine learning for
supporting the selection of security controls.

In the future, we would like to study whether complementary techniques
such as case-based reasoning can be utilized for handling security controls with
too few occurrences in the existing data. Another important future direction is
to provide decision support for the identification of threats and vulnerabilities.
Broadening our approach to cover these aspects requires going beyond the struc-
tured assessment information that is stored according to a pre-defined schema.
In particular, we will need to additionally consider and extract security-related
information from textual development artifacts, e.g., system and asset descrip-
tions. Finally, we would like to conduct a qualitative evaluation of the inter-
pretable machine-learning models in our current case study, and further perform
new case studies to investigate the usefulness of our approach in domains other
than banking.
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