
Eric Knauss
Michael Goedicke (Eds.)

 123

LN
CS

 1
14

12

25th International Working Conference, REFSQ 2019
Essen, Germany, March 1821, 2019
Proceedings

Requirements Engineering:
Foundation
for Software Quality

Lecture Notes in Computer Science 11412

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Eric Knauss • Michael Goedicke (Eds.)

Requirements Engineering:
Foundation
for Software Quality
25th International Working Conference, REFSQ 2019
Essen, Germany, March 18–21, 2019
Proceedings

123

Editors
Eric Knauss
Department of Computer Science
and Engineering
Chalmers University of Technology
Gothenburg, Sweden

Michael Goedicke
paluno – The Ruhr Institute for Software
Technology
University of Duisburg-Essen
Essen, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-15537-7 ISBN 978-3-030-15538-4 (eBook)
https://doi.org/10.1007/978-3-030-15538-4

Library of Congress Control Number: 2019934740

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6631-872X
https://doi.org/10.1007/978-3-030-15538-4

Preface

With great pleasure we welcome the participants and readers to the proceedings of the
25th REFSQ event. REFSQ is the International Working Conference on Requirements
Engineering: Foundation for Software Quality. And yes, this was an anniversary: 25th
conference in the series! Congratulations, REFSQ!

Good software quality is a goal everybody would easily subscribe to. But as we all
know, this is hard to achieve. Thus, requirements engineering is a well-established
discipline within the software engineering community. Experts from academic and
industrial backgrounds gathered to report the state of the art in the area as well as to
discuss proposals to advance the current knowledge about all aspects of requirements
engineering. This strong relationship between industry and academia is fundamental for
an applied research field such as represented by REFSQ and facilitates results of the
highest impact, both through research on practically relevant problems and fast tech-
nology transfer to industry.

Requirements engineering is a critical factor in developing high-quality and suc-
cessful software, systems, and services, especially today, where the speed of devel-
opment has increased dramatically. Information systems as produced and provided by
the big players in search engines, e-commerce, and social networks have development
processes that use a fast deployment cycle. Today, it is not unusual that the time from
inception to deployment of a change or a new feature takes as little as one week to ten
days and that new versions of software are deployed at rates of several deployments per
hour. Such pace is at odds with traditional processes that aim to understand, refine,
design, and implement a change to a software system and make sure that all works as
planned. Through our special theme “Laying the Foundation for Speed and Flexibility
in Development” we brought this discussion to the center of attention in the REFSQ
community. Which new approaches to understand requirements and guarantee quality
can be offered to match this space? Where must we overcome overly tight schedules?

REFSQ has a strong history of being a working conference, that is, an event where
excellent contributions from research and practice are extensively discussed and
elaborated in various presentation and discussion formats. Normal presentations of
established research as well as research previews that report on new developments and
emerging results are challenged by a dedicated discussion leader and a critical audi-
ence. One important feature is a distinct day for focusing on results and challenges
from industrial practice, facilitating a rich exchange between practitioners and aca-
demic researchers. This main program is complemented by a set of tutorials, work-
shops, a doctoral consortium as well as a session with life studies and posters and tools.

The REFSQ 2019 conference was organized as a three-day symposium. The ses-
sions contribute to the topic of the conference in various ways. Thus, we are proud to
conclude that REFSQ is a genuine event series in supporting vital scientific and
practical results in promoting the field of requirements engineering in a substantial way.

This would have not been possible without numerous teams of authors performing
the research, experiments, and putting a lot of thought into the respective subjects. It
means a lot to formulate research hypotheses, find the right – in many cases empirical –
experiments and finally convince the representatives of the community that the pre-
sentation of the results is a worthwhile piece of knowledge for extending the field!

Thus we are pleased to present this volume comprising the REFSQ 2019 pro-
ceedings. It features 22 papers from the various fields of requirements engineering
research and practice. The Program Committee (PC) carefully reviewed 66 submissions
and selected eight technical design papers, five scientific evaluation papers, and nine
research previews. Also, the conference was truly international since we had authors,
PC members, and reviewers from all continents. We would like to express our gratitude
to all these individuals who put so much effort in creating, reviewing, and finally
preparing outstanding contributions to the requirements engineering field.

REFSQ 2019 would not have been possible without the engagement and support
of these many individuals. The various committees are listed herein. But as editors of
this volume, we would like to thank the REFSQ Steering Committee members, in
particular Kurt Schneider, for his availability and for the excellent guidance provided.
Special thanks go to Klaus Pohl for his long-term engagement for REFSQ. We are
indebted to Jennifer Horkoff and Erik Kamsties, the REFSQ 2018 co-chairs, for their
extremely helpful advice to all questions popping up at inconvenient times. We are
grateful to all the members of the PC for their timely and thorough reviews of the
submissions and for the time dedicated to their discussion, both online and face-to-face
during the PC meeting. In particular, we thank those PC members who volunteered to
serve in the role of shepherd or gatekeeper to authors of conditionally accepted papers.
We would like to thank the members of the local organization at the University of
Duisburg-Essen for their ongoing smooth support, determination, and being available
at all times. We are grateful to the chairs, who organized the various events included in
REFSQ 2019.

Finally, we would especially like to thank Vanessa Stricker for her excellent work in
coordinating the background organization processes, and Grischa Liebel for his support
in preparing this volume.

The volume here consists of presentations of research results or new ideas that we
hope the reader will find interesting to follow and help to pursue his/her own work in
requirements engineering – especially in order to support the fast pace we observe in
our industry.

February 2019 Eric Knauss
Michael Goedicke

vi Preface

Organization

Program Committee Chairs

Eric Knauss Chalmers | University of Gothenburg, Sweden
Michael Goedicke University of Duisburg-Essen, Germany

Steering Committee

Kurt Schneider (Chair) Leibniz Universität Hannover, Germany
Barbara Paech (Vice Chair) Universität Heidelberg, Germany
Michael Goedicke University of Duisburg-Essen, Germany
Eric Knauss Chalmers | University of Gothenburg, Sweden
Erik Kamsties University of Applied Sciences and Arts Dortmund,

Germany
Jennifer Horkoff Chalmers | University of Gothenburg, Sweden
Klaus Pohl Universität Heidelberg, Germany
Anna Perini Fondazione Bruno Kessler Trento, Italy
Paul Grünbacher Johannes Kepler University Linz, Austria
Fabiano Dalpiaz Utrecht University, The Netherlands
Maya Daneva University of Twente, The Netherlands
Oscar Pastor Universitat Politècnica de València, Spain
Samuel Fricker University of Applied Sciences and Arts Northwestern

Switzerland, Switzerland

Program Committee

Raian Ali Bournemouth University, UK
Joao Araujo Universidade NOVA de Lisboa, Portugal
Fatma Başak Aydemir Utrecht University, The Netherlands
Richard Berntsson Svensson Chalmers | University of Gothenburg, Sweden
Dan Berry University of Waterloo, Canada
Nelly Condori-Fernández Universidade da Coruña, Spain
Fabiano Dalpiaz Utrecht University, The Netherlands
Maya Daneva University of Twente, The Netherlands
Oscar Dieste Universidad Politécnica de Madrid, Spain
Joerg Doerr Fraunhofer, Germany
Alessio Ferrari ISTI-CNR, Italy
Xavier Franch Universitat Politécnica de Catalunya, Spain
Samuel A. Fricker FHNW, Switzerland
Vincenzo Gervasi University of Pisa, Italy
Martin Glinz University of Zurich, Switzerland
Paul Grünbacher Johannes Kepler University Linz, Austria

Renata Guizzardi Universidade Federal do Espirito Santo, Brazil
Irit Hadar University of Haifa, Israel
Andrea Herrmann Free Software Engineering Trainer, Germany
Jennifer Horkoff Chalmers | University of Gothenburg, Sweden
Hermann Kaindl Vienna University of Technology, Austria
Erik Kamsties University of Applied Sciences and Arts Dortmund,

Germany
Alessia Knauss Veoneer AB, Sweden
Anne Koziolek Karlsruhe Institute of Technology, Germany
Kim Lauenroth adesso AG, Germany
Emmanuel Letier University College London, UK
Grischa Liebel Reykjavik University, Iceland
Nazim Madhavji University of Western Ontario, Canada
Fabio Massacci University of Trento, Italy
Raimundas Matulevicius University of Tartu, Estonia
John Mylopoulos University of Toronto, Canada
Joyce Nakatumba-Nabende Makerere University, Uganda
Andreas L. Opdahl University of Bergen, Norway
Barbara Paech Universität Heidelberg, Germany
Elda Paja University of Trento, Italy
Liliana Pasquale University College Dublin, Ireland
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Anna Perini Fondazione Bruno Kessler Trento, Italy
Klaus Pohl Paluno, University of Duisburg-Essen, Germany
Jolita Ralyté University of Geneva, Switzerland
Bjorn Regnell Lund University, Sweden
Mehrdad Sabetzadeh University of Luxembourg, Luxembourg
Camille Salinesi CRI, Université de Paris 1 Panthéon-Sorbonne, France
Nicolas Sannier University of Luxembourg, Luxembourg
Klaus Schmid University of Hildesheim, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Norbert Seyff FHNW, Switzerland
Paola Spoletini Kennesaw State University, USA
Angelo Susi Fondazione Bruno Kessler - Irst, Italy
Michael Unterkalmsteiner Blekinge Institute of Technology, Sweden
Michael Vierhauser University of Notre Dame, USA
Yves Wautelet Katholieke Universiteit Leuven, Belgium
Roel Wieringa University of Twente, The Netherlands
Krzysztof Wnuk Department of Software Engineering, Blekinge

Institute of Technology, Sweden
Tao Yue Simula Research Laboratory and Nanjing University

of Aeronautics and Astronautics, Norway
Didar Zowghi University of Technology, Sydney, Australia

viii Organization

Additional Reviewers

Yuliyan Maksimov
Melanie Stade
Sofija Hotomski
Sebastian Adam
Ibtehal Noorwali

Fabian Kneer
Matthias Koch
Karina Villela
Anne Hess
Astrid Rohmann

Jan Ole Johanssen
Anja Kleebaum
Anne Hess
Yuliyan Maksimov

Organizers

Sponsors

Platin

Gold

Silver

Organization ix

Contents

Automated Analysis

Decision Support for Security-Control Identification Using
Machine Learning . 3

Seifeddine Bettaieb, Seung Yeob Shin, Mehrdad Sabetzadeh,
Lionel Briand, Grégory Nou, and Michael Garceau

Is the SAFE Approach Too Simple for App Feature Extraction?
A Replication Study . 21

Faiz Ali Shah, Kairit Sirts, and Dietmar Pfahl

Making Sense of Requirements

Enabling Users to Specify Correct Privacy Requirements 39
Manuel Rudolph, Svenja Polst, and Joerg Doerr

RE-SWOT: From User Feedback to Requirements via Competitor Analysis . . . 55
Fabiano Dalpiaz and Micaela Parente

Tracelink Quality

Increasing Precision of Automatically Generated Trace Links 73
Paul Hübner and Barbara Paech

Impact of Gamification on Trace Link Vetting: A Controlled Experiment. . . . 90
Salome Maro, Emil Sundklev, Carl-Oscar Persson, Grischa Liebel,
and Jan-Philipp Steghöfer

Requirements Management (Research Previews)

Refinement of User Stories into Backlog Items: Linguistic Structure
and Action Verbs: Research Preview . 109

Laurens Müter, Tejaswini Deoskar, Max Mathijssen, Sjaak Brinkkemper,
and Fabiano Dalpiaz

Requirements Engineering for Innovative Software Ecosystems:
A Research Preview . 117

Karina Villela, Shashank Kedlaya, and Joerg Doerr

Assessment of the Quality of Safety Cases: A Research Preview. 124
Jose Luis de la Vara, Gabriel Jiménez, Roy Mendieta,
and Eugenio Parra

From Vision to Specification

Refining Vision Videos . 135
Kurt Schneider, Melanie Busch, Oliver Karras, Maximilian Schrapel,
and Michael Rohs

A Lightweight Multilevel Markup Language for Connecting Software
Requirements and Simulations . 151

Florian Pudlitz, Andreas Vogelsang, and Florian Brokhausen

Automated Analysis (Research Previews)

Supporting Feature Model Evolution by Lifting Code-Level Dependencies:
A Research Preview . 169

Daniel Hinterreiter, Kevin Feichtinger, Lukas Linsbauer,
Herbert Prähofer, and Paul Grünbacher

Identifying Requirements in Requests for Proposal: A Research Preview 176
Andreas Falkner, Cristina Palomares, Xavier Franch,
Gottfried Schenner, Pablo Aznar, and Alexander Schoerghuber

Finding and Analyzing App Reviews Related to Specific Features:
A Research Preview . 183

Jacek Dąbrowski, Emmanuel Letier, Anna Perini, and Angelo Susi

Requirements Monitoring

Supporting the Selection of Constraints for Requirements Monitoring
from Automatically Mined Constraint Candidates . 193

Thomas Krismayer, Peter Kronberger, Rick Rabiser,
and Paul Grünbacher

Combining Monitoring and Autonomous Feedback Requests to Elicit
Actionable Knowledge of System Use . 209

Dustin Wüest, Farnaz Fotrousi, and Samuel Fricker

Open Source

Selecting Open Source Projects for Traceability Case Studies 229
Michael Rath, Mihaela Todorova Tomova, and Patrick Mäder

Managing Requirements Knowledge at a Large Scale

Crowd Intelligence in Requirements Engineering: Current Status
and Future Directions . 245

Javed Ali Khan, Lin Liu, Lijie Wen, and Raian Ali

xii Contents

Towards a Meta-model for Requirements-Driven Information
for Internal Stakeholders . 262

Ibtehal Noorwali, Nazim H. Madhavji, Darlan Arruda,
and Remo Ferrari

In Situ/Walkthroughs (Research Previews)

Towards a Catalogue of Mobile Elicitation Techniques: Research Preview . . . 281
Nitish Patkar, Pascal Gadient, Mohammad Ghafari,
and Oscar Nierstrasz

Towards the Next Generation of Scenario Walkthrough
Tools – A Research Preview . 289

Norbert Seyff, Michael Vierhauser, Michael Schneider,
and Jane Cleland-Huang

A Research Preview on TAICOS – Tailoring Stakeholder Interests
to Task-Oriented Functional Requirements . 297

Philipp Haindl, Reinhold Plösch, and Christian Körner

Author Index . 305

Contents xiii

Automated Analysis

Decision Support for Security-Control
Identification Using Machine Learning

Seifeddine Bettaieb1, Seung Yeob Shin1(B), Mehrdad Sabetzadeh1,
Lionel Briand1, Grégory Nou2, and Michael Garceau2

1 SnT Centre, University of Luxembourg, Luxembourg City, Luxembourg
{seifeddine,shin,sabetzadeh,briand}@svv.lu

2 BGL BNP Paribas, Luxembourg City, Luxembourg
gregory.nou@bgl.lu, mgarceau@cipherquest.com

Abstract. [Context & Motivation] In many domains such as health-
care and banking, IT systems need to fulfill various requirements related
to security. The elaboration of security requirements for a given system
is in part guided by the controls envisaged by the applicable security
standards and best practices. [Problem] An important difficulty that
analysts have to contend with during security requirements elaboration
is sifting through a large number of security controls and determining
which ones have a bearing on the security requirements for a given sys-
tem. This challenge is often exacerbated by the scarce security exper-
tise available in most organizations. [Principal ideas/results] In this
paper, we develop automated decision support for the identification of
security controls that are relevant to a specific system in a particular
context. Our approach, which is based on machine learning, leverages
historical data from security assessments performed over past systems in
order to recommend security controls for a new system. We operational-
ize and empirically evaluate our approach using real historical data from
the banking domain. Our results show that, when one excludes security
controls that are rare in the historical data, our approach has an aver-
age recall of ≈95% and average precision of ≈67%. [Contribution] The
high recall – indicating only a few relevant security controls are missed
– combined with the reasonable level of precision – indicating that the
effort required to confirm recommendations is not excessive – suggests
that our approach is a useful aid to analysts for more efficiently identify-
ing the relevant security controls, and also for decreasing the likelihood
that important controls would be overlooked.

Keywords: Security requirements engineering · Security assessment ·
Machine learning

1 Introduction

Many IT systems, e.g., those used in the healthcare and finance sectors, need to
meet a variety of security requirements in order to protect against attacks. The
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-15538-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_1

4 S. Bettaieb et al.

elaboration of these requirements is heavily influenced by the security controls
prescribed by standards and best practices such as the ISO 27000 family of stan-
dards [14], NIST SP 800 guidelines [24], and OSA security patterns [25]. These
controls define a wide range of technical and administrative measures for the
avoidance, detection and mitigation of security risks [10]. An example security
control from ISO 27002 is: “The integrity of information being made available on
a publicly available system should be protected to prevent unauthorized modifi-
cation.” If an application has information assets with public access points, this
control may be elaborated into detailed security requirements aimed at avoiding
information tampering.

For a specific IT system in a particular context, only a subset of the con-
trols in the security standards and best practices have a bearing on the security
requirements. An important task that analysts need to do is therefore to decide
which controls are relevant and need to be considered during requirements elab-
oration. Since the controls are numerous, performing this task entirely manually
is not only cumbersome but also error-prone, noting that deciding whether a
certain control is relevant often correlates with several contextual factors, e.g.,
the assets that are associated with a given system, the threats that the system
is exposed to, and the vulnerabilities that the system leads to. Overlooking any
of these factors can lead to wrong decisions about the security controls, and
potentially serious consequences. This problem is made even more acute by the
scarcity of expertise in security risk analysis in most organizations.

Our work in this paper is motivated by the need to provide automated
decision support for identifying the security controls that are pertinent to a
specific system. To this end, we observe that, in security-critical sectors, e.g.,
finance, security assessment is an increasingly systematic activity, where secu-
rity assessment data is collected and recorded in a structured way [7]. Many
system providers and security consulting firms now have detailed data models
in place to keep track of the security-related properties of the systems that they
analyze and the decisions they make regarding security. This raises the prospect
that existing (historical) data about security assessments can be put to pro-
ductive use for decision support. What we do in this paper is to examine the
feasibility and effectiveness of this prospect in a real setting.

The starting point for our work was a year-long field study at a major inter-
national bank. Our study aimed at developing insights into industry practices for
assessing IT security risks. The study focused specifically on early-stage security
assessments during the system inception and requirements elaboration phases.
This study led to a precise characterization of the historical data that we had
at our disposal for building automated decision support. While the data model
resulting from our field study inevitably has bespoke concepts that are specific
to our study context, the majority of the concepts are general and aligned with
widely used standards, particularly ISO 27001 and 27002. This helps provide
confidence that our data model is representative of a wider set of security prac-
tices than our immediate study context.

Decision Support for Security-Control Identification Using Machine Learning 5

With a data model for security assessments at hand, we explore the use of
several Machine Learning (ML) algorithms for identifying the security controls
that are most relevant to a given system and context. To this end, we define a set
of features for learning from historical security assessment data. We empirically
evaluate the accuracy of our approach using real data. Our results show that,
when one excludes security controls that are rare, i.e., apply to too few systems
in the historical data, our approach on average has a recall of ≈95% and precision
of ≈67%. Since recall is high and the number of false positives is not excessive, as
suggested by precision, we conclude that ML is a promising avenue for increasing
the efficiency of identifying relevant security controls, and also reducing the
likelihood that important controls would be missed. In situations where one
has to deal with rarely used security controls, ML alone is not sufficient; this
necessitates future investigations into how ML can be complemented with other
techniques, e.g., guided manual reviews, expert rules and case-based reasoning,
in order to provide comprehensive coverage of the security controls.

The rest of the paper is organized as follows: Sect. 2 provides background
and compares with related work. Section 3 summarizes the outcomes of our field
study on security assessment. Section 4 presents our ML-based approach for rec-
ommending relevant security controls. Sections 5 and 6 report on our evaluation.
Section 7 discusses threats to validity. Section 8 concludes the paper.

2 Background and Related Work

This section discusses the industry standards and the existing research strands
related to our work.

2.1 Information Security Standards

Our collaborating partner has its IT security practices grounded in the ISO
27000 family of information security standards [14]. This commonly used series
of standards provides a systematic approach for handling information security.
Among these standards, ISO 27001 and 27002 relate most closely to our work in
this paper. ISO 27001 specifies a set of requirements for developing and maintain-
ing an information security management system. The standard further envisages
requirements for the assessment and control of the security risks posed by secu-
rity breaches in IT systems. ISO 27002 complements ISO 27001 by providing
guidelines for selecting, implementing, and managing controls for security risks.
The standard has a total of 128 security controls. These controls span 11 secu-
rity categories, e.g., security policy, asset management, and access control. When
elaborating the security requirements for a system, one has to identify the con-
trols that are relevant to the system at hand. As noted earlier, performing this
task without automated assistance is both tedious and prone to errors. Our work
in this paper takes aim at providing suitable automated support for the above
task.

6 S. Bettaieb et al.

2.2 Security Requirements Engineering

Security requirements have been widely studied for IT systems, e.g., [6,12,16,
19,22,30,32]. The most closely related research threads to our work are those
concerned with early-stage security risk analysis. Two notable techniques to this
end are STRIDE and DREAD, both originating from Microsoft [20]. These tech-
niques have been used and improved by many corporations over the years [22].
STRIDE is a method for classifying security threats, whereas DREAD is a
method to rate, compare and prioritize the severity of the risks presented by
each of the threats classified using STRIDE. Our work is complementary to
STRIDE and DREAD, first in that we focus on risk mitigation as opposed to
risk classification and triage, and second in that we take an automation angle
rather than dealing exclusively with manual security analysis.

Some prior research attempts to assist security engineers through capturing
domain expertise in a reusable form. For example, Schmitt and Liggesmeyer [29]
propose a model for structuring security knowledge as a way to improve the effi-
ciency of specifying and analyzing security requirements. Sindre and Opdahl [31]
develop a systematic approach for security requirements elicitation based on use
cases, with a focus on reusable methodological guidelines. In contrast to the
above work, we explore how historical data from past security assessments can
be mined and reused within a corporate context for building automated deci-
sion support. We further demonstrate the effectiveness of our approach through
systematic empirical means by applying the approach to an industrial case study.

2.3 Applications of Machine Learning in Requirements Engineering

ML has generated a lot of traction in Requirements Engineering for supporting
a variety of tasks, e.g., extracting user-story information [28], identifying non-
functional requirements [3], and requirements classification [17]. To the best of
our knowledge, we are the first to attempt applying ML for generating automated
recommendations for security controls using historical data.

3 Field Study on Security Assessment

This section describes the results of a field study conducted with the goal of
building insights into how IT security assessments are done in practice. We
started our study with meetings with IT security specialists at our collaborating
partner (a bank). Subsequently, the first author spent approximately a year
onsite at the partner’s headquarters, learning about the details of the security
assessment process followed there and the data model that underlies this process.

The security assessment process at our partner is a customized procedure
shaped around the guidelines of the ISO 27000 standards [14]. A central goal of
this process is to derive, for a given system, a set of ISO-specified controls that
need to be elaborated further into security requirements.

In Fig. 1(a), we show an overview of the security assessment process gleaned
from our field study, and in Fig. 1(b) – a (simplified) version of the underlying

Decision Support for Security-Control Identification Using Machine Learning 7

Fig. 1. Main outcomes of our field study; note that the outcomes have been scoped to
the analytical task pursued in this paper (i.e., decision support for security controls).

data model. While we present the security assessment process in a sequential
manner, in practice, the process is iterative. This means that before they are
finalized, the choices and the decisions made during assessment may undergo
multiple rounds of improvement based on the findings at the different steps of the
process. The data model of Fig. 1(b) is populated incrementally as the assessment
workflow unfolds, with each step of the workflow adding new information. As we
describe in Sect. 4, we use this data model as the basis for defining features for
learning from past security assessment records.

As shown in Fig. 1(a), security assessment starts with the “create project”
step. A new project represents a system-to-be that is at the inception and
requirements gathering stage. In this step, the basic information about a project
is specified, e.g., project description and business domain. Next and in the
“choose assets” step, the analysts define and link the assets relevant to a given
project. In general, an asset can be defined as a resource with economic value
that is held or controlled by an individual, corporation, or country [13]. The
step is followed by the “determine criticality” step where the analysts, in col-
laboration with the business stakeholders, decide about project criticality. The
more critical a project is, the more is the need to evaluate potential threats
and vulnerabilities systematically. To evaluate the criticality of a project, the
analysts fill out a security questionnaire comprised of 12 multiple-choice ques-
tions. Each question covers a possible aspect of exposure, e.g., the level of
exposure to external attacks. Once the questionnaire has been completed, the

8 S. Bettaieb et al.

analysts exercise expert judgment to decide the project criticality level and
update the project information accordingly.

The “create assessment” step captures various contextual information about
the assets that have been linked to a project. The (data) type of an asset is deter-
mined by the content that the asset stores, processes, or transfers. The classifi-
cation of asset types at our partner is based on their in-house domain expertise
and the guidelines of the national data protection authority. The confidentiality
of an asset is determined by how sensitive its content is. This attribute is a value
on an (ordinal) scale ranging from public to secret. The criticality of an asset is
a quantitative score indicating risk exposure. This score determines whether the
potential risk posed by an asset is significant enough to warrant additional secu-
rity analysis. The score is derived from the following asset attributes through a
combination of expert judgment and rules: (1) the capability attribute, captur-
ing the output channels to which the content of an asset can be sent, (2) the
volume attribute, capturing the volume of data that an individual transaction
can read, write, or delete from an asset, and (3) the user attribute, estimating in
a logarithmic scale the number of users that can access an asset. We note that
for an individual project, our partner may conduct multiple assessments from
different perspectives and involving different groups of analysts. In this paper,
when we refer to an assessment, we mean the collection of all assessment activ-
ities performed over a given project. Consequently, the assessment information
collected per project is the union of the outcomes of all the assessment activities
performed.

Once the contextual information for the assets in a project has been specified,
the analysts move on to the identification of threats and vulnerabilities, and
subsequently, the security controls. A threat refers to anything that has the
potential to cause serious harm to a system, e.g., unauthorized disclosure of
confidential information [13]. Threats are identified in the “choose threats” step
of the process of Fig. 1(a). In this step, the analysts carefully examine a threat
catalog consisting of 22 threat items and decide which ones are applicable. If a
threat is deemed applicable to a project, the analysts qualify the threat more
precisely within the context of that project. Specifically, for each applicable
threat, the analysts provide a description, choose an appropriate risk level, and
determine whether the threat impacts confidentiality, integrity, availability, or
traceability. Next, in the “choose vulnerabilities” step, the analysts decide about
the applicable vulnerabilities. A vulnerability represents a weakness that can be
exploited by a threat, leading to the risk of asset damage or exposure [13]. An
example vulnerability would be “oversight in defining access control rules to
shared information”. At our partner, vulnerabilities are identified using a pre-
defined catalog with 156 entries. This catalog encompasses all the vulnerabilities
known to the partner in its application domain.

Finally, in the “choose controls” step, the analysts select the appropriate secu-
rity controls for the project being assessed. The source for the security controls
at our partner is the ISO 27002 standard [13]. We thus refer to these controls
as ISO controls. The catalog of ISO controls used by our partner constitutes
134 entries. In the remainder of this paper, we develop and evaluate automated

Decision Support for Security-Control Identification Using Machine Learning 9

decision support for choosing ISO controls. In particular, assuming that the
assessment process steps prior to choosing the controls have been already per-
formed for a project, we propose an approach based on ML for recommending
the ISO controls relevant to the project.

Before we move on to presenting our approach, it is important to note that,
for simplicity and succinctness, we have scoped the security assessment process
and data model in Fig. 1 to what is needed for recommending ISO controls. In
particular, we have left out of this figure and our explanation thereof a number
of activities, e.g., risk mitigation and residual risk analysis, which take place
after ISO-control selection.

4 Approach

Our approach for recommending ISO controls is based on ML. In this section,
we present the main principles and considerations behind the approach.

4.1 Source Data for Building a Classification Model

To build a classification model, we utilize the database of historical assess-
ment records at our collaborating partner. This database covers all the sys-
tems assessed by the partner in the past nine years. From this database, we
extract various attributes. Our attributes, which are based on the data model of
Fig. 1(b), are discussed next.

4.2 Machine Learning Features

We engineered our features for learning through a joint endeavor with the IT
security specialists at our partner. Table 1 presents our feature set alongside our
intuition as to why each feature may be a useful indicator for the relevance of
ISO controls. Essentially, we chose a feature for inclusion in the set if we deemed
the feature to be characterizing an important aspect of security assessment. For
instance and as shown in Table 1, the criticality attribute of a project is used as
a feature. In contrast, the name attribute of a project is not, since the name has
no impact on the identification of ISO controls. The ISO controls (not shown in
the table) are treated as class attributes. We build one classifier per ISO control.
The class attribute for each ISO control is thus a binary value indicating whether
or not the control is relevant to a given project.

4.3 Dealing with Imbalance

An important issue we have to take account of in our approach is imbalance
in our security assessment data. In particular, we observe that the absence of
ISO controls is much more prevalent than their presence across the projects.
This imbalance is caused by the relatively infrequent use of several ISO controls.
When a class – in our context, a particular ISO control being applicable – is

10 S. Bettaieb et al.

Table 1. Our features for machine learning.

Feature (D) Definition and (I) Intuition

Project type (D) The type of a project (total of 3 types: usual business, large scale and integration

project). (I) Each project type implies a different scale and a specific process for handling

risks

Project

criticality

(D) The criticality of a project (total of 3 levels: very critical, critical, and non-critical).

(I) The more critical a project, the more stringent are the security controls

Business

domain

(D) The area of business under which a project falls (total of 48 domains, e.g., web

banking, wealth management). (I) The feature relates to how severe the consequences of a

breach are. For example, a breach may have more severe implications in wealth

management than in certain other domains due to the involvement of vital client

information

Business

domain

category

(D) The category for a group of business domains (total of 4 categories, e.g., the HR

category, which encompasses all the human-resource-related business domains). (I) The

feature provides an extra layer of abstraction for distinguishing different business domains

Security

answers

(A1..A12)

(D) The answers provided by the analysts to the questions on a static security

questionnaire (total of 12 questions). An example question is: “What is the project’s level

of exposure to external attacks?” All answers are on a three-point scale: low, significant,

very high. (I) The answers serve as an indicator for the seriousness of potential security

breaches

Number of

assets

(D) The number of assets linked to a project. (I) Increasing the number of assets may

lead to an increased attack surface, thus warranting more rigorous controls

Number of

critical assets

(D) The number of critical assets in a project. (I) Critical assets are specific entities with

major importance. If these assets are compromised, the effects are more serious than

those for regular assets. Critical assets may necessitate more security controls

Number of

assets per

category

(C1..C9)

(D) The number of assets in an asset category (total of 9 categories, e.g., mobile

application or database). (I) Each asset category has a different impact on the security

controls in a project. For example, a client database being compromised would typically

have more serious consequences than, say, a mobile application being inaccessible

Number of

users

(D) The maximum number of users who can access the data of a project. (I) The

potential risk of data exposure is correlated to the number of users accessing the data

Data type (D) The most sensitive type of data in an asset (total of 4 types, e.g., personal data).

(I) The more sensitive the data, the more impact a breach would have

Capability (D) The capability of extracting data (total of 3 modes: screen, print, and electronic).

Screen means that a user can view the data on a screen. Print means that a user can

print the data on paper. Electronic means that a user can store the data onto an

electronic device. (I) Data exposure risks increase as one goes from screen to print to

electronic data extraction. The security controls required may thus be impacted by the

extraction capability

Volume (D) The volume of data that can be read, written, or deleted by one data transaction

(total of 3 types: record-by-record, percentage-per-day, and unlimited). Record-by-record

means that a user can access only one record at a time. Percentage-per-day means that a

user can access a certain percentage of the dataset in one day. Unlimited means that a

user has unlimited access. (I) The risk of data exposure correlates with volume. Volume

may thus have an influence on the security controls

Confidentiality (D) The maximum confidentiality level of the assets in a project (total of 4 levels: public,

restricted, confidential, secret). (I) The higher the confidentiality level, the more severe

are the consequences of a breach. The security controls may thus be influenced by the

level of confidentiality

Threats

(T1..T22)

(D) The presence or absence of a threat (total of 22 threats). (I) Threats exploits

vulnerabilities. The presence of a threat has a direct influence on the security assessment

decisions, including those related to the security controls

Threat impact

(S1..S4)

(D) Impact scores based on all the threats in a project. Separate scores are computed for

confidentiality (S1), integrity (S2), availability (S3), and traceability (S4). (I) The scores

relate to the impact of security breaches and thus may influence the controls

Risk (R1..R22) (D) Estimated risk of each threat on a scale of 1–8 (negligible to extremely high). (I) The

risk posed by a threat influences security decisions, including those about the security

controls

Vulnerability

(V1..V154)

(D) The presence or absence of a vulnerability (total of 154 vulnerabilities). (I) Security

controls counter vulnerabilities, and are naturally affected by which vulnerabilities apply

Decision Support for Security-Control Identification Using Machine Learning 11

rare, ML classification models have a tendency to predict the more prevalent
classes [1]. In our context, this means that, unless steps are taken to counter
imbalance for rarely used ISO controls, any classification model that we build
may invariably find the rare ISO controls inapplicable. To tackle imbalance, we
examine two commonly used methods, namely synthetic minority over-sampling
technique (SMOTE) [4] and cost-sensitive learning (CSL) [8].

4.4 Choice of Classification Algorithm

We elect to use interpretable ML techniques to provide analysts not only with
security control recommendations, but also the rationale behind how the security
controls were selected. An interpretable model would explain how and why a spe-
cific decision was made concerning a particular security control. For instance, the
model would indicate that a particular ISO control is selected mostly because
a certain combination of threats and vulnerabilities is present. We note that,
in this paper, we do not attempt to validate the resulting ML models with
domain experts. Nevertheless, scoping our work to interpretable ML is impor-
tant, because experts are unlikely to accept decisions for which they are not
provided an explanation.

5 Case Study

We evaluate our approach through an industrial case study from the banking
domain. The case study is a follow-on to our field study of Sect. 3 and was
conducted with the same industry partner.

5.1 Research Questions

Our case study aims to answer the following research questions (RQs):

RQ1 (classification): Which classification algorithm is the most accurate at
recommending security controls? The accuracy of our approach is partly driven
by the selected ML algorithm. In RQ1, we examine standard classification algo-
rithms based on the existing best practices in the literature [23], and compare
the accuracy of the resulting classifiers.

RQ2 (features): Which features are the most influential for recommending
security controls? Features used in constructing an ML-based classifier typically
have different degrees of importance toward the classifier’s decision making. In
RQ2, we evaluate the importance of the features in Table 1.

RQ3 (usefulness): What is the overall utility of our approach? For our app-
roach to be useful in practice, the decision support must propose sufficiently
accurate security controls in practical time. RQ3 measures the accuracy of our
security recommendation system at the level of projects alongside the execution
time of the main steps of our approach.

12 S. Bettaieb et al.

5.2 Implementation

Our recommendation system is built using the Weka framework [11]. Weka sup-
ports a broad spectrum of ML techniques. We ran our experiments on a computer
equipped with an Intel i7 CPU with 16 GB of memory.

5.3 Case Study Data

Our raw data is a database of 274 assessment projects conducted over a span of
nine years, from 2009 until present. Of these assessment projects, we excluded
47 because they either were not carried through to completion, or were built for
testing and training purposes. This leaves us with 227 assessment projects for
evaluating our approach.

Among the controls introduced by ISO 27002, some never or too rarely appear
in our data. Based on our ML expertise and feedback from security engineers,
we excluded the ISO controls that had been used less than 5 times within the
selected 227 assessment projects. The applicability of such ISO controls cannot
be predicted meaningfully using ML. In summary, our experimental dataset
provides values for all the features in Table 1 and 77 ISO controls across 227
assessment projects.

5.4 Experimental Setup

To answer the RQs in Sect. 5.1, we performed three experiments, EXPI, EXPII
and EXPIII, as described below.

EXPI. This experiment answers RQ1. We select the following interpretable
ML algorithms as candidates for building our recommendation system: Naive
Bayes [15], Logistic Regression [18], J48 [27], CART [2], JRip [5], and PART [9].
EXPI compares the accuracy of these six alternatives using the features of
Table 1.

We start EXPI with hyper-parameter optimization (HPO) for the six alter-
natives considered. In doing so, we also account for the data imbalance problem
described in Sect. 4.3. As noted in this earlier section, we consider two tech-
niques for handling imbalance: SMOTE and CSL. SMOTE resolves imbalance
by adding new artificial (synthetic) minority samples to the dataset. CSL mit-
igates the bias of the classifier toward the majority class by assigning a larger
penalty to either false positives or false negatives. In our context, we levy a larger
penalty on false negatives, i.e., ISO controls that apply to a project but are erro-
neously classified as not relevant. The proportional prevalence of the majority
versus the minority (rare) class in our experimental dataset rounds up to 12 to
1. Specifically, our dataset contains 17952 instances of the majority and 1548
instances of the minority class. We use the same ratio for CSL by setting the
cost values of false negatives and false positives to 12 and 1, respectively. Note
that the cost values of true positives and true negatives are zero.

Decision Support for Security-Control Identification Using Machine Learning 13

dataset

buildsplit
10 folds

test

1 fold for test

select one
ISO control

repeat 10 times

compute
metrics

repeat for all ISO controls

Fig. 2. 10-fold validation for all ISO-control classifiers.

For HPO, we use a step-wise grid search algorithm [21] that starts with a first
coarse grid search and then refines the areas of good accuracy with additional
finer-grained grid searches. For example, to find an optimal value of a real-type
hyper-parameter, at the first search iteration, i = 1, we vary the parameter value
within the valid range of the parameter by si = 0.1 step width. After finding
the best parameter value, bi, at the first search iteration, we adjust the step
width, si+1, by si × 0.1 (e.g., 0.01 at the second iteration) and adjust the search
range for the parameter to [bi − si, bi + si] for the next iteration. We continue
the iterations until the difference between the best accuracy values found at the
ith and i − 1th iterations are less than 0.01. Note that our HPO searches all
the possible values in the valid ranges of the integer- and enum-type parameters
at the first iteration, and then uses the best-found values at the subsequent
iterations for tuning real-type parameters.

Following HPO, we measure through cross validation the accuracy of the
alternative ML algorithms for predicting ISO controls. The cross validation pro-
cess is illustrated in Fig. 2. The “repeat 10 times” block in the figure applies
standard 10-fold cross validation [23] to the classifier built for an individual ISO
control. This is repeated for all the ISO controls through the “repeat for all ISO
controls” block. At the end, the “compute metrics” step calculates the EXPI
accuracy metrics described in Sect. 5.5.

EXPII. This experiment answers RQ2. We evaluate the importance of the
features in Table 1 based on the best-found configuration in RQ1. For each of
the ISO-control classifiers, we rank the features using a standard metric for
feature evaluation, as we discuss in Sect. 5.5. We then identify and aggregate the
most influential features across all the ISO controls.

EXPIII. This experiment answers RQ3 by examining how much useful assis-
tance one can expect from ML for identifying the ISO controls relevant to a
given assessment project. Specifically, EXPIII performs the leave-one-out val-
idation process shown in Fig. 3. The “leave one project out” step takes one
project out from the dataset. The remaining dataset is then utilized for training
the classifiers of all the ISO controls. Subsequently, the withheld project is used
for testing the trained classifiers, as shown in “repeat for all ISO controls” block
of the figure. This is repeated for all the projects in the dataset, as indicated
by the “repeat for all projects” block. At the end of the process, we compute

14 S. Bettaieb et al.

dataset

build testselect one
ISO control

compute
metrics

repeat for all ISO controls

leave one
project out

repeat for all projects

one project for test

Fig. 3. Leave-one-out validation for all projects.

the EXPIII accuracy metrics described in Sect. 5.5. We note that these accuracy
metrics are only indicative of in-vivo usefulness; the metrics have to be con-
sidered in their application context for a more definitive evaluation. Doing so
requires user studies and is beyond the scope of this current paper.

5.5 Metrics

In EXPI, for a given ISO control c, we define the precision and recall metrics as
follows: (1) precision P c = TP/(TP +FP) and (2) recall Rc = TP/(TP +FN),
where TP , FP , and FN are the sum of the true positives, false positives, and
false negatives, respectively, across the 10 folds of cross validation for ISO control
c. A true positive is a project to which c is relevant and is correctly predicted
as such; a false positive is a project to which c is not relevant but is incorrectly
predicted to have c as a control; a false negative is a project to which c is relevant
but is incorrectly predicted to not have c as a control. These metrics are used
for comparing the accuracy of different ML algorithms.

In practice, the decision as to whether an ISO control is applicable should be
made as simple as possible to minimize the effort needed from the analysts. The
most critical factor here is recall, since the presence of false negatives implies
that important ISO controls may be missed. A recall that is too low would thus
undermine the usefulness of the approach, meaning that the analysts would be
better off doing the selection of the relevant controls entirely manually. To allow
the analysts to focus only on the recommended controls, we prioritize recall over
precision.

In EXPII, we use the gain ratio metric [26]. This metric, which is commonly
used for ranking ML features, is a modification of the information gain metric,
aimed at reducing bias on multi-valued features.

In EXPIII, we define precision and recall around a project. This is in contrast
to EXPI, where these notions were defined around an ISO control. Let p be the
project withheld from the set of all projects in a given round of leave-one-out
validation. We define (1) precision P p as TP/(TP + FP) and (2) recall Rp as
TP/(TP + FN), where TP is the number of relevant ISO controls correctly
predicted as such for project p, FP is the number of ISO controls that are not
relevant to project p but are incorrectly predicted as being relevant, and FN is
the number of relevant ISO controls incorrectly predicted as not being relevant
to project p. These precision and recall metrics are used for measuring overall
accuracy at a project level.

Decision Support for Security-Control Identification Using Machine Learning 15

6 Results

In this section, we answer the RQs of Sect. 5.1 based on the results of our case
study.

6.1 RQ1

Table 2 shows the results of EXPI, described in Sect. 5.4. Specifically, the table
reports the average precision and recall – average P c and Rc, defined in Sect. 5.5,
across all ISO controls – of the six alternative ML classification algorithms con-
sidered.

As we argued previously, in our application context, recall has priority over
precision. The results of Table 2 thus clearly suggest that J48, which yields an
average recall of 94.95% and average precision of 65.90%, is the best choice
among the ML classification algorithm considered. For all classification algo-
rithms, including J48, handling imbalance via CSL leads to substantially more
accurate classification, when compared to doing so via SMOTE. When J48 is
applied alongside CSL with a cost ratio of 12 to 1 for false negatives versus false
positives (see Sect. 5.4), the optimal hyper-parameters are as follows: pruning
confidence= 0.001 and minimal number of instances per leaf= 7.

Table 2. Comparison of the average precision and recall of different ML classification
algorithms with optimized hyper-parameters.

Algorithm CSL SMOTE

P c (avg.) Rc (avg.) P c (avg.) Rc (avg.)

J48 65.90 94.95 77.11 78.15

CART 55.11 92.42 76.03 64.20

JRip 64.32 91.35 74.68 79.49

PART 69.19 92.89 73.63 76.74

Logistic regression 64.32 51.54 68.77 58.91

Naive Bayes 33.35 61.59 17.02 50.93

The answer to RQ1 is that J48 combined with CSL leads to the most accurate
classification. Using this combination, we obtained an average recall of 94.95%
and average precision of 65.90% in our case study.

We answer RQ2 and RQ3 using J48, CSL, and the best hyper-parameter
values mentioned above.

6.2 RQ2

As explained in EXPII of Sect. 5.4, we use gain ratio for estimating the impor-
tance of our features (Table 1). Based on the gain-ratio scores of the features
across all the ISO-control classifiers, we make the following observations:
1. There are 12 vulnerabilities that have a zero gain ratio in all the classifiers. A

subsequent investigation revealed that the vulnerabilities in question are not
present in any of the past projects. We excluded these vulnerabilities from
the dataset. The impact of this exclusion on precision and recall is negligible.

16 S. Bettaieb et al.

2. With the above 12 vulnerabilities removed, we observed that different ISO-
control classifiers use different but overlapping subsets of features. This indi-
cates that the decision about the relevance of different ISO controls is influ-
enced by different factors. The feature subsets were picked automatically
by J48’s internal feature selection mechanism as implemented in Weka (this
mechanism is also based on gain ratio).

In light of the second observation above, we answer RQ2 by measuring the
overall importance of the features across all the classifiers. To do so, we first
aggregated the top five most important features based on the rankings obtained
from the different classifiers. We then computed the importance of a set F of
features of the same type (e.g., vulnerability features: V1 to V154 in Table 1)
as the percentage of the number of classifiers having some feature of F in their
top five most important features. Table 3 shows the results. For example, all
(100%) of the classifiers have some vulnerability in their top five most important
features. The domain experts in our study stated that the results of Table 3 were
consistent with their intuition about the most important factors in determining
the relevance of ISO controls.

Table 3. Most important features for ISO-control classification.

Vulnerability Risk # of assets
per category

Threat
impact

Threat Security
answer

of critical
assets

100% 62.80% 16.00% 15.38% 12.80% 2.50% 1.20%

The answer to RQ2 is that overall and in descending order of magnitude, vul-
nerabilities, risks, the number of assets per category, threat impacts, threats,
security answers, and the number of critical assets are the most influential
feature groups. This finding is consistent with the intuition of the security
specialists in our case study.

6.3 RQ3

0

25

50

75

100

Precision (%) Recall (%)

Fig. 4. Precision and recall distributions
resulting from leave-one-out validation.

Figure 4 summarizes through a box-
plot the results of EXPIII, described
in Sect. 5.4. Specifically, the boxplot
shows the distributions of precision,
P p, and recall, Rp, as defined in
Sect. 5.5. On average, our approach
has a recall of 94.85% and precision
of 67.38% when tasked with identi-
fying the ISO controls relevant to a
given project. The high recall suggests
that the analysts can focus most of
their attention on the recommended

Decision Support for Security-Control Identification Using Machine Learning 17

ISO controls, since the recommendations most likely contain all the relevant
controls. The precision is reasonable too: On average, our approach recom-
mends 9.4 ISO controls – both true and false positives – for a project. Of
these, one can expect an average of 6.3 recommendations to be correct and
3.1 to be incorrect. The domain experts in our study confirmed that, given
the small number of recommended ISO controls, they can vet the validity
of the recommendations efficiently.

0

25

50

75

100

0 10 20 30 40 50 60 70
of ISO-control occurrences in dataset

R
ec

al
l
(%

)

Fig. 5. Recall values of the ISO classifiers.

From Fig. 4, we further observe that the recall (Rp) for eight out of the total
of 227 projects in our dataset is below 75%. Upon a follow-up investigation,
we determined that the root cause for low recall in these projects is that the
majority (and in two cases, all) of the ISO controls relevant to these projects
have low prevalence in the dataset. In Fig. 5, we plot the recall of each ISO-
control classifier (Rc) against the prevalence of the respective ISO control in the
dataset. The ten datapoints encircled by � represent the ISO controls that bring
about low recall in the above-mentioned eight projects. A complementary insight
from Fig. 4 is that recall is highly stable for those ISO controls that occur ≥ 15
in our dataset. As noted previously, handling less frequent ISO controls requires
complementary techniques and is the subject of future work.

With regard to execution time, we make the following remarks: Generating
J48 classification models for all the ISO controls subject to our experiments took
215 s in total; this gives an average training time of 2.8 s per ISO control. With
the classifiers built, issuing recommendations for a given project takes an average
of 1.7 s. These results suggest that our approach is scalable.

The answer to RQ3 is that, based on our case study results, our approach
shows promise in terms of usefulness. In particular, our approach has a high
recall (94.85%) and acceptable precision (67.38%) in identifying the ISO con-
trols relevant to a security assessment project. Further, the execution times
for training and classification are small. This suggests that our approach will
scale to larger datasets.

18 S. Bettaieb et al.

7 Threats to Validity

The validity considerations most relevant to our work are construct and external
validity, as we discuss below.

Construct Validity: Our evaluation metrics are scoped to the security controls
for which there are at least five occurrences in the historical data. Below this
threshold, applying ML is unlikely to be meaningful. Our evaluation examines
whether ML is a suitable technique for our analytical purpose only when ML
is applicable. Other techniques – not explored in this paper – are required for
dealing with the security controls to which ML cannot be meaningfully applied.

External Validity: Generalizability is an important concern for any single
case study, including the one in this paper. While the historical information
we draw on for learning is aligned with commonly used ISO standards and is
thus representative of a broader set of security assessment practices in industry,
additional case studies are essential for examining whether our approach remains
effective in other application contexts. In particular, the nature and source of
security controls in other contexts and how accurately the pertinence of these
controls can be determined through automation requires further investigation.

8 Conclusion

In this paper, we proposed an approach based on machine learning for assisting
analysts with the task of deciding what security controls are relevant to a given
system and context. This task is an important prerequisite for the proper elabo-
ration of security requirements in the early stages of development. We evaluated
our approach using real security assessment data from the banking domain. The
results suggest that our approach provides effective decision support for security
controls whose application is not too rare in the existing data. For these controls,
our approach yielded an average recall of ≈95% and average precision of ≈67%.
As far as we are aware, we are the first to have applied machine learning for
supporting the selection of security controls.

In the future, we would like to study whether complementary techniques
such as case-based reasoning can be utilized for handling security controls with
too few occurrences in the existing data. Another important future direction is
to provide decision support for the identification of threats and vulnerabilities.
Broadening our approach to cover these aspects requires going beyond the struc-
tured assessment information that is stored according to a pre-defined schema.
In particular, we will need to additionally consider and extract security-related
information from textual development artifacts, e.g., system and asset descrip-
tions. Finally, we would like to conduct a qualitative evaluation of the inter-
pretable machine-learning models in our current case study, and further perform
new case studies to investigate the usefulness of our approach in domains other
than banking.

Decision Support for Security-Control Identification Using Machine Learning 19

Acknowledgments. Financial support for this work was provided by the Alphonse
Weicker Foundation.

References

1. Batista, G.E., et al.: A study of the behavior of several methods for balancingma-
chine learning training data. ACM SIGKDD Explor. Newslett. 6, 20–29 (2004)

2. Breiman, L., et al.: Classification and Regression Trees. Wadsworth International
Group, Belmont (1984)

3. Casamayor, A., et al.: Identification of non-functional requirements in textual spec-
ifications: a semi-supervised learning approach. IST 52(4), 436–445 (2010)

4. Chawla, N.V., et al.: SMOTE: synthetic minority over-sampling technique. JAIR
16, 321–357 (2002)

5. Cohen, W.W.: Fast effective rule induction. In: ICML 1995 (1995)
6. Dalpiaz, F., Paja, E., Giorgini, P.: Security Requirements Engineering: Designing

Secure Socio-Technical Systems. MIT Press, Cambridge (2016)
7. Dowd, M., et al.: The Art of Software Security Assessment: Identifying and Pre-

venting Software Vulnerabilities. Pearson Education, London (2006)
8. Elkan, C.: The foundations of cost-sensitive learning. In: IJCAI 2001 (2001)
9. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.

In: ICML 1998 (1998)
10. Furnell, S.: End-user security culture: a lesson that will never be learnt? Comput.

Fraud Secur. 2008, 6–9 (2008)
11. Hall, M., et al.: The WEKA data mining software: an update. ACM SIGKDD

Explor. Newslett. 11, 10–18 (2009)
12. Ionita, D., Wieringa, R.: Web-based collaborative security requirements elicitation.

In: REFSQ Workshops (2016)
13. ISO/IEC 27002:2005 Code of Practice for Information Security Controls. ISO Stan-

dard (2005)
14. ISO/IEC 27000:2018 Information Security Management Systems. ISO Standard

(2018)
15. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers.

In: UAI 1995 (1995)
16. Jufri, M.T., et al.: Risk-assessment based academic information system security

policy using octave allegro and ISO 27002. In: ICIC 2017 (2017)
17. Kurtanović, Z., Maalej, W.: Mining user rationale from software reviews. In: RE

2017 (2017)
18. le Cessie, S., van Houwelingen, J.C.: Ridge estimators in logistic regression. Appl.

Stat. 41(1), 191–201 (1992)
19. Li, T.: Identifying security requirements based on linguistic analysis and machine

learning. In: APSEC 2017 (2017)
20. Meier, J.D., et al.: Improving web application security: threats and countermea-

sures. Technical report, Microsoft (2012)
21. Mitchell, T.M.: Machine learning and data mining. Commun. ACM 42(11), 30

(1999)
22. Myagmar, S., et al.: Threat modeling as a basis for security requirements. In:

SREIS 2005 (2005)
23. Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging

16(4), 049901 (2007)

20 S. Bettaieb et al.

24. NIST Special Publication 800–30: Guide for Conducting Risk Assessments. NIST
Standard (2012)

25. OSA: Open Security Architecture. http://www.opensecurityarchitecture.org.
Accessed Sep 2018

26. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
27. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, Burlington

(1993)
28. Rodeghero, P., et al.: Detecting user story information in developer-client conver-

sations to generate extractive summaries. In: ICSE 2017 (2017)
29. Schmitt, C., Liggesmeyer, P.: A model for structuring and reusing security require-

ments sources and security requirements. In: REFSQ Workshops (2015)
30. Sihwi, S.W., et al.: An expert system for risk assessment of information system

security based on ISO 27002. In: ICKEA 2016 (2016)
31. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. REJ

10, 34–44 (2005)
32. Türpe, S.: The trouble with security requirements. In: RE 2017 (2017)

http://www.opensecurityarchitecture.org

Is the SAFE Approach Too Simple
for App Feature Extraction?

A Replication Study

Faiz Ali Shah(B), Kairit Sirts, and Dietmar Pfahl

Institute of Computer Science, University of Tartu, Tartu, Estonia
{faiz.ali.shah,kairit.sirts,dietmar.pfahl}@ut.ee

Abstract. [Context and motivation] Automatic extraction and
analysis of app features from user reviews is helpful for software devel-
opers to better understand users perceptions of delivered app features.
Recently, a rule-based approach called safe was proposed to automati-
cally extract app features from user reviews. safe was reported to obtain
superior performance in terms of precision and recall over previously
proposed techniques. However, the procedure used to evaluate safe was
in part subjective and not repeatable and thus the whole evaluation
might not be reliable. [Question/problem] The goal of our study is to
perform an external replication of the safe evaluation using an objec-
tive and repeatable approach. [Principal ideas/results] To this end,
we first implemented safe and checked the correctness of our imple-
mentation on the set of app descriptions that were used and published
by the authors of the original study. We applied our safe implementa-
tion to eight review datasets (six app review datasets, one laptop review
dataset, one restaurant review dataset) and evaluated its performance
against manually annotated feature terms. Our results suggest that the
precision of the safe approach is strongly influenced by the density of
the annotated app features in a review dataset. Overall, we obtained
an average precision and recall of 0.120 and 0.539, respectively which is
lower than the performance reported in the original safe study. [Con-
tribution] We performed an unbiased and reproducible evaluation of
the safe approach for user reviews. We make our implementation and
all datasets used for the evaluation available for replication by others.

Keywords: App feature extraction · SAFE approach ·
App review mining · Review summarization

1 Introduction

User feedback is an important source of information for software developers to
enhance software quality [1]. In the context of mobile applications, i.e., apps,
app marketplaces such as AppStore and PlayStore have become useful channels
distributing millions of apps to their users. These marketplaces allow users to
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 21–36, 2019.
https://doi.org/10.1007/978-3-030-15538-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_2

22 F. A. Shah et al.

submit feedback in the form of reviews. User reviews contain valuable informa-
tion such as feature evaluation, feature requests or bug reports that is helpful
for developers for improving their apps [9]. However, the enormous volume of
reviews received every day for a popular app make the manual analysis of these
reviews impractical. Earlier studies have performed automatic analysis of user
reviews to find out new app features requested by users [7] or to discover the
sentiment of app features extracted from user reviews [2,3,13]. One major chal-
lenge in these studies has been the automatic extraction of app features from
user reviews which is difficult for several reasons. First, there is great variability
in how users express identical features and secondly, review texts often contain
non-standard language such as slang, typos, and incorrect grammar.

Several approaches have been proposed to extract app features automati-
cally from app user reviews. These approaches include topic models [3], set of
patterns/rules [2,5], and supervised sequence tagging models [12]. The recently
proposed rule-based approach SAFE [5] uses 18 Part-of-Speech (POS) patterns
and five sentence patterns for automatically extracting app features from app
descriptions and user reviews. Johann et al. reported the precision and recall of
safe to be 0.559 and 0.434, respectively, for app feature extraction from app
descriptions which is superior over the technique of Harman et al. [4]—an earlier
rule-based approach developed for the same purpose. Moreover, safe was also
reported to outperform the topic-modeling approach of Guzman et al. [3] for the
extraction of app features from user reviews with a reported precision and recall
of 0.239 and 0.709, respectively [5].

To evaluate the safe performance for app descriptions in their original study,
Johann et al. created a labeled dataset, in which app features have been man-
ually annotated. However, they did not create such a dataset to evaluate the
performance of extracting app features from user reviews. Instead, the authors
of the original safe study used a coding tool that showed a review text along
with a list of safe-extracted app feature terms to coders who then had to decide
whether the extracted app features were true or false. In case any true app fea-
tures had not been extracted by safe (i.e., false negatives) from a user review,
coders had to add them manually by writing them in a corresponding text box.
This procedure to spot false negatives (FNs) is subjective and could introduce
researcher bias because coders might have accidentally skipped entering some
true app features not extracted by safe, thus lowering the number of false neg-
atives and thus boosting performance. In summary, the evaluation of the safe
approach for user reviews as conducted in the original study has the following
two issues: (a) the evaluation is not repeatable because the true app features in
the user reviews were not reported and (b) the evaluation procedure is poten-
tially biased as it bases the identification of true and false positives on subjective
decisions of coders after the list of safe-extracted app features has been shown
to them. In order to validate the performance of the safe, we conducted an
external replication [6] of the safe evaluation on user reviews, using an unbi-
ased and repeatable procedure. Our goal is to answer the following research
question:

SAFE Approach: A Replication Study 23

RQ: What is the expected performance of safe on user reviews?

This research question had to be answered in two steps. Since exact implementa-
tion of the safe approach has not been published, we first implemented the safe
method and validated our implementation using the annotated app description
dataset made publicly available by the authors of the original safe study. This
lead us to the first sub-question of RQ.

RQ-A: Does our implementation of the safe approach have the same perfor-
mance as the original implementation of the safe approach when applied to app
descriptions?

After confirming that our safe implementation on the app description
dataset achieves a performance close to the one reported in the original safe
study, we applied safe to the following eight annotated review datasets: guzman
dataset1, guzman+ dataset (an extension of the guzman dataset), and four
dataset variants derived from the shah dataset [14], and laptop and restau-
rant review datasets2. In the rest of this paper, we use the word “features” to
collectively refer the features of a software app, laptop product, or restaurant
services. Features contained in these review datasets have been manually anno-
tated by humans. The application of our safe implementation to these datasets
answered the second sub-question of RQ.

RQ-B: Does our implementation of the safe approach have the same perfor-
mance as the original implementation of the safe approach when applied to
review datasets?
The evaluation results show that the safe performance in terms of f1-score for
all review datasets is lower than the performance reported in the original safe
study. Our analyses further reveal that the precision of the safe approach is
influenced by the density of true features in a review dataset.

The rest of the paper is structured as follows. In Sect. 2, we provide a
brief introduction of safe approach. Section 3 describes our methodology that
include details of our safe implementation and its validation, followed by the
description of the evaluation method and characteristics of four annotated review
datasets. Section 4 discusses the results. In Sect. 5, threats to validity are exam-
ined. Section 6 summarizes the previous work related to our study. Conclusions
are presented in Sect. 7.

2 SAFE Approach

The safe approach is a rule-based method recently proposed by Johann et al. [5]
for the extraction of app features from both app descriptions and user reviews.
The authors of the safe approach performed a manual analysis of descriptions
of 100 apps in Google Play Store and identified frequent textual patterns which
are used to denote app features of these apps. The 18 Part-of-Speech (POS)

1 The dataset was obtained from the authors of study [3].
2 http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools.

http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools

24 F. A. Shah et al.

patterns found in the app descriptions are shown in Table 1 together with their
frequencies. In addition, the authors also identified five sentence patterns where
the app features are mentioned as enumeration, conjunctions and feature identi-
fiers [5]. The exact specification of the five sentence patterns was not presented
in the original study. We will describe our interpretation of these patterns in
Subsect. 3.1 where we describe our implementation of the safe approach.

safe first applies a number of pre-processing steps that remove sentences
containing URLs, quotations, email addresses, and explanations (text between
brackets). Then some parts of the remaining sentences are removed, including
subordinate clauses, stop words, bullet points, and symbols such as “*” or“#”.
Then safe patterns are applied to sentences for the extraction of 2-to-4-word
candidate app features. In the final step, the list of candidate app features is
cleaned by removing duplicates and noise such as identical words pairs, e.g.,
“document document”, which may be extracted using a POS pattern 〈Noun-
Noun〉.

Table 1. List of safe POS patterns with frequency of occurrence [5]

POS pattern Freq # POS pattern Freq

1 〈Noun-Noun〉 183 10 〈Adjective-Adjective-Noun〉 20

2 〈Verb-Noun〉 122 11 〈Noun-Preposition-Noun〉 18

3 〈Adjective-Noun〉 119 12 〈Verb-Determiner-Noun〉 14

4 〈Noun-Conjunction-Noun〉 98 13 〈Verb-Noun-Preposition-Noun〉 14

5 〈Adjective-Noun-Noun〉 70 14 〈Adjective-Noun-Noun-Noun〉 12

6 〈Noun-Noun-Noun〉 35 15 〈Adjective-Conjunction-Adjective〉 12

7 〈Verb-Pronoun-Noun〉 29 16 〈Verb-Preposition-Adjective-Noun〉 11

8 〈Verb-Pronoun-Noun〉 29 17 〈Verb-Pronoun-Adjective-Noun〉 11

9 〈Verb-Adjective-Noun〉 26 18 〈Noun-Conjunction-Noun-Noun〉 10

3 Research Method

In this section, we present the main elements of the research method of our
replication study. In Subsect. 3.1, we describe the details of our safe implemen-
tation. In Subsect. 3.2, we describe how we match safe-extracted features with
true features. In Subsect. 3.3, we present the characteristics of the annotated
review datasets that we used for our unbiased and repeatable evaluation of the
safe approach. Finally, in Subsect. 3.4, we present the experimental setup of our
study.

3.1 SAFE Implementation

Since the safe implementation used by the authors of the original study is not
publicly available, we created our own implementation of the safe approach3

3 https://github.com/faizalishah/SAFE REPLICATION.

https://github.com/faizalishah/SAFE_REPLICATION

SAFE Approach: A Replication Study 25

based on the information detailed in [5]. Like the original study, we used the
Python programming language and the Natural Language ToolKit (NLTK)4

for safe implementation. However, since not all details of the implementation
of the safe approach have been published in the original study, we had to make
some decisions on our own. The details of those decisions are discussed in the
following paragraphs.

Table 2. List of safe sentence patterns [5]

Sentence pattern

1 〈Noun-Conj-Noun: Noun〉
2 〈Verb|Noun: (Noun-Comma)+-Conj-Noun〉
3 〈Verb|Noun-Conj-Noun|Verb: Noun-Conj-Noun〉
4 〈Verb-Noun-Noun-to-Adv-Verb-Conj-Verb-on-Noun-of-Noun-including

: (Noun-Noun-Comma)+-Noun-Conj-Noun〉
5 〈Verb-(Comma-Verb)+-Conj-Verb-Noun: IN (Noun-Comma)+-Conj-Noun-Noun〉

After performing the pre-processing steps as described in the original study,
the safe implementation applies linguistic patterns to extract the candidate app
features. Following the original study, we first apply the sentence patterns and
then the POS patterns. Since the original study does not state in which order
the individual POS patterns shall be applied, we decided to apply them in the
order in which they are presented in Table 1 (see Sect. 2). Also, the original safe
study does not explicitly state the format of the sentence patterns. In Table 2,
we present the list of sentence patterns used in our safe implementation for
extracting app features.

The syntax of the patterns is following that of regular expressions. Once a
sentence pattern finds a match in the analyzed text, it extracts the app features
and represents them using one of the POS patterns. This might require deletion
of words found in the matching pattern. For example, conjunctions and commas
are always dropped. We indicate in Table 2 the words that are deleted with an
underscore.

All patterns have the format 〈LeftTerm1-Conj1-RightTerm1 : LeftTerm2-
Conj2-RightTerm2〉. The colon symbol “:” denotes where the right-hand side
of the first conjunction ends and the left-hand side of the subsequent conjunc-
tion begins. Based on the sentence pattern, the following POS patterns are then
generated by taking the cross-product of the left-hand and right-hand terms
of each conjunction, i.e., the following set of POS patterns will be generated:
〈LeftTerm1, LeftTerm2〉, 〈LeftTerm1, RightTerm2〉, 〈RightTerm1, LeftTerm2〉,
and 〈RightTerm1, LeftTerm2〉. In the first two sentence patterns Conj1 and
Conj2 are empty, respectively. In those cases, the left-hand and right-hand

4 https://www.nltk.org/.

https://www.nltk.org/

26 F. A. Shah et al.

terms of the missing conjunction fall together and the cross-product is simplified
accordingly.

An additional complication is introduced by the fact that several of the 18
POS patterns are overlapping. For instance, the shorter POS pattern 〈Verb-
Noun〉 may overlap with some of the longer POS patterns such as 〈Verb-Noun-
Noun〉 or 〈Verb-Noun-Preposition-Noun〉. Thus, applying these patterns in a
sequential order would extract overlapping candidate app features. Since we do
not know how this is handled in the original safe study, in our implementa-
tion, when the overlapping features are extracted from a review sentence, only
the longest feature term is preserved. Since we only preserve the longest fea-
ture terms, the results of feature extraction would not depend on the order in
which POS patterns were applied. Moreover, the original version of the safe
implementation uses a custom list of stop words which is not publicly available.
Therefore, we use our own list of custom stop words for our implementation5.

3.2 Strategy for Matching SAFE-Extracted and True Features

To compute the performance (precision and recall) of our safe implementation
on an evaluation set, the number of true positives (TPs), false positives (FPs),
and false negatives (FNs) must be counted by matching the safe-extracted fea-
tures against the true features (i.e., those features that were labeled by humans).
However, the original safe study does not give information about how exactly
the extracted and true features were matched to count TPs, FPs, and FNs.

In our study we adopted the token-based subset matching strategy for eval-
uating our safe implementation. In token-based subset matching strategy, an
extracted feature is counted as true positive (TP) either when the extracted fea-
ture words are a subset of the true feature words or the words of a true feature are
a subset of the extracted feature words. In addition, the extracted feature must
appear in the same review sentence in which the true feature was annotated. For
instance, when the extracted app feature is “create document” and the true app
feature annotated in a review text is “create new document” then the extracted
app feature “create document” would be counted as a TP because the extracted
app feature word-set {create, document} is a subset of the true app feature
word-set {create, new, document}. In contrast to this, when the extracted app
feature is “create document” from a review sentence but the app feature “cre-
ate document” has not been annotated in the same review sentence then the
extracted app feature “create document” would be counted as a false positive
(FP). Finally, the true features, which were not matched with any extracted
features will be counted as false negatives (FNs).

We consider this matching strategy justified, because the annotation of true
app features in a review text is to a certain degree subjective and it would
be too demanding to expect from an extraction method to identify the exact
same words as app features as were annotated in the evaluation dataset. The

5 https://github.com/faizalishah/SAFE REPLICATION/blob/master/SAFE/List
StopWords.

https://github.com/faizalishah/SAFE_REPLICATION/blob/master/SAFE/List_StopWords
https://github.com/faizalishah/SAFE_REPLICATION/blob/master/SAFE/List_StopWords

SAFE Approach: A Replication Study 27

difficulty to annotate identical app features in one and the same user review by
two or more annotators has been observed, for example by Guzman et al. [3] who
reported an agreement of 53% between two coders. We had a similar experience
when annotating our shah user review dataset [14]. We should not assume that
automatic app feature extraction works better than human annotators do.

3.3 User Review Datasets

In the original safe study, no evaluation set was created for the evaluation
of safe on user reviews. This makes the evaluation of safe on user reviews
not reproducible even if the original safe implementation would be available.
Thus, to be able to perform a reproducible evaluation of the safe approach,
we had to find user reviews in which app features have been annotated. We use
four English review datasets that are publicly available and have been used in
previous studies, i.e., guzman, shah, laptop, and restaurant. The review
datasets vary with regards to several characteristics, i.e., domain, annotation
guidelines used, the number of annotators, the number of review sentences, and
the number of annotated features. This diversity of datasets enables us to analyse
the performance of the safe approach under different viewpoints and, hence, to
obtain a more reliable evaluation for user reviews. We should point out that two
of the review datasets, laptop and restaurant, do not contain reviews from
app users. We included those review datasets because the safe patterns are
purely syntactic and thus should not be sensitive to the choice of domain – be
it software apps (guzman and shah datasets), products (laptop), or services
(restaurant).

In Table 3, we characterize each review dataset based on the following infor-
mation:

(a) the total number of reviews;
(b) the total number of sentences in all reviews;
(c) the total number of 2-to-4-word annotated features;
(d) the density of 2-to-4-word annotated features over review sentences;
(e) the total number of annotated features;
(f) the density of all annotated features over review sentences.

GUZMAN REVIEW DATASETS. The original guzman dataset (See foot-
note 1) was used as an evaluation set in the study conducted by Guzman et al.
[3]. It contains annotated app reviews of seven apps belonging to six different cat-
egories: Angry Birds (Games category), DropBox and EverNote (Productivity
category), TripAdvisor (Travel category), PicsArt (Photography category), Pin-
terest (Social category) and WhatsApp (Communication category).6 In Table 3,
we do not show the data of individual app categories but the aggregated sum-
mary of the guzman dataset.

According to Guzman et al., the dataset initially consisted of 2800 user
reviews (i.e., 400 user reviews per app). After annotation by human coders it
6 Review titles with their annotated app features were removed for our study.

28 F. A. Shah et al.

Table 3. Characteristics of the annotated review datasets

Dataset #Reviews #Sentences #2-4-
word
features

2-4-word
features
density

#All
features

All
features
density

guzman 1479 4367 1421 .325 2350 .538

guzman+ 2800 8267 1421 .172 2350 .284

shah-I 3500 5970 352 .059 644 .108

shah-II 3500 5970 441 .074 756 .127

shah-I ∪ shah-II 3500 5970 575 .096 1017 .170

shah-I ∩ shah-II 3500 5970 242 .041 419 .070

laptop - 3845 1134 .295 3012 .783

restaurant - 3841 1157 .301 4827 1.25

turned out that there were 1321 user reviews left without annotation of a single
app feature. Only those 1479 user reviews containing at least one annotated app
feature were included in the published guzman dataset and used for evaluation.
The removed 1321 user reviews were not made publicly available.

In the context of Guzman et al.’s original study, it might have made sense
to only use reviews containing annotated app features for evaluation pur-
poses but in a real-world setting, taking a random sample of user reviews
from App Store would normally be a mix of reviews mentioning app features
(related to specific app features) and reviews that are praising or criticizing the
app/versions/updates as a whole but not mentioning any specific app features.
In order to also capture the real-world situation in our analysis, we artificially
created a new version of the guzman dataset which we named guzman+. The
guzman+ dataset contains both types of reviews, i.e., with and without app
features, and is thus comparable to other review datasets used in our analysis.
Since we did not know which reviews were removed from the original guzman
dataset, we simply randomly sampled 1321 reviews without app features from
the annotated shah dataset and added them to the annotated guzman reviews.
As expected, the ratio between number of app features and number of sentences
in guzman+ (see Table 3) goes down by almost 50% as compared to the original
guzman dataset.

SHAH REVIEW DATASETS. In the context of a previous study we created
the shah dataset [14]. All reviews in the shah dataset were independently anno-
tated by two coders.7 The Dice coefficient score between the two annotation sets
was low (i.e., 0.28), indicating a low agreement between the two coders. Because
of that, we decided to use four different versions of the shah dataset in this
study, i.e., (1) shah-I, (2) shah-II, (3) shah-I ∪ shah-II, and (4) shah-I ∩
shah-II. Among the four versions of the shah dataset, shah-I and shah-II con-
tain the annotations of only the first and only the second coder, respectively. The

7 Both coders were software engineering bachelors students at the University of Tartu.

SAFE Approach: A Replication Study 29

shah-I ∪ shah-II dataset contains the annotations of both coder 1 and coder 2.
In the case of overlapping annotations, only the longer annotation was retained.
Finally, the shah-I ∩ shah-II dataset only contains the annotations annotated
by both coders. As we did for the shah-I ∪ shah-II dataset, when annotations
were overlapping we only retained the longer annotation. From all shah datasets
we removed all app features that were referring to the app itself [14].

The summary statistics of all four versions of the shah dataset are shown
in Table 3. Overall, in comparison to the guzman, laptop, and restaurant
datasets, the shah dataset contains a smaller number of app features. Among
the four versions of the shah dataset, as expected, the shah-I ∪ shah-II dataset
contains the highest number of app features. However, even in this dataset the
ratio between the number of app features and the number of sentences (i.e., the
features density) is clearly lower than in the other review datasets.

LAPTOP AND RESTAURANT REVIEW DATASETS. The laptop
and restaurant review datasets (See footnote 2) are standard benchmark
datasets contributed by the semeval research community.8 Both datasets have
been used in studies that aimed at performing the task of feature extraction
(called “aspect terms”) from user reviews and its evaluation [8,11]. Both datasets
are distributed in predefined training and test splits, which is relevant in the con-
text of machine learning based methods. For our purpose, we merged the training
and test sets into single laptop and restaurant datasets, respectively.

The characteristics of the laptop and restaurant datasets in Table 3 show
that the ratio between the number of all annotated features and the number of
sentences is clearly higher than for the app review datasets. The ratio between
the number of 2-to-4-word features and the number of sentences, however, follows
the same pattern as most app review datasets with an exception of the guzman
dataset which has a comparable ratio.

3.4 Experimental Setup

This section explains the settings used for the safe approach evaluation. To
answer sub-question RQ-A of our research question RQ, we analyse the perfor-
mance of our safe implementation (as described in Sect. 3.1) when applied to
the ten annotated app descriptions made available in the original safe study. If
the performance of our safe implementation in terms of precision, recall, and f1-
score is comparable to that reported in the original study, we consider our safe
implementation to be suitable for tackling sub-question RQ-B of our research
question RQ. To answer RQ-B, we apply our safe implementation to eight anno-
tated review datasets (see Table 3). The performance measures (precision, recall
and F1-score) of safe are computed on each review dataset for the annotated
2-to-4-word features and for all annotated features using the token-based subset
matching strategy (see Sect. 3.2).

8 http://alt.qcri.org/semeval2018/.

http://alt.qcri.org/semeval2018/

30 F. A. Shah et al.

4 Results and Discussion

In this section, we present the results to our research question RQ in two steps.
First we present and discuss the results related to sub-question RQ-A, then we
present and discuss the results to sub-question RQ-B.

4.1 Validation of SAFE Implementation (RQ-A)

The correctness of our safe implementation can be validated by applying it
on the same evaluation set used in the original safe study. We contacted the
main author of the original study and learned that in the original study, only
the dataset containing the app descriptions had annotated app features but not
the dataset containing the app reviews. Since the authors of the original study
shared their annotated dataset of app descriptions, we were at least able to apply
our safe implementation to the same app description dataset and thus validate
our implementation.

Table 4 shows the evaluation results on the annotated app description dataset
of our safe implementation (on the right) as well as the evaluation results
reported by Johann et al. (on the left). Our safe implementation achieves
exactly the same precision and recall as the original safe implementation only
for one app description (Google Docs). On two app descriptions (Forest and
Dropbox), we achieve higher precision and recall than the original safe imple-
mentation. For Google Drive app description, we achieve identical recall but
higher precision compared to the original safe implementation. On the rest of
the six app descriptions, we obtain lower precision and recall than the orig-
inal implementation of safe. These differences in performance between the
two implementations might be related to the unspecified details brought out in
Sect. 3.1. Additionally, there could be differences in matching the extracted app
features with true app features that can lead to different results (see Sect. 3.2).

Based on the results of individual app descriptions we cannot claim that
our safe implementation is the same as the original safe method. However, on
average over all app descriptions, our safe implementation achieves only slightly
lower precision and recall than the original safe implementation. Since based on
the average f1-score the difference between the two implementations is only 0.011,
we believe that we can still perform useful analyses with our implementation.

4.2 Evaluation of SAFE Approach (RQ-B)

In this section, we answer the sub-question RQ-B of our research question RQ
by comparing the performance reported in the original safe study with the
performance achieved with our implementation of the safe approach on the
eight annotated datasets described in Sect. 3.3.

The performance of our implementation of the safe approach is presented
in Table 5. We evaluated the safe approach separately against 2-to-4-word fea-
tures and against all features. The left-hand side of the table shows the safe

SAFE Approach: A Replication Study 31

Table 4. Comparison of results obtained with the original safe implementation and
our safe implementation on app description dataset.

App name Original safe implementation Our safe implementation

Precision Recall F1 score Precision Recall F1 score

Forest: Stay focused,
be present

.462 .400 .429 .636 .467 .538

Yahoo Mail .737 .389 .509 .680 .436 .531

Printer Pro .214 .250 .231 .190 .333 .242

Gmail .714 .400 .513 .611 .524 .564

Google Drive .875 .389 .538 1.0 .389 .560

CloudApp Mobile .722 .481 .578 .478 .423 .449

Google Docs .667 .462 .545 .667 .462 .545

Dropbox .300 .300 .300 .400 .333 .364

Fantastical 2 for
iPhone

.500 .697 .582 .302 .500 .377

iTranslate Voice .500 .278 .357 .316 .286 .300

Average .559 .434 .458 .528 .415 .447

performance evaluated for 2-to-4 word features. The right-hand side of the table
presents the safe performance evaluated for all features.

The original safe study used only 2-to-4-word app features for evaluation
since the POS and sentence patterns defined in the safe approach can only
extract app features composed of two to four words. The original study reported
precision and recall of 0.239 and 0.709, respectively, for the safe approach [5].
As shown in Table 5, the performance of our safe implementation on each of
our evaluation datasets when evaluating on 2-to-4-word features varies but is
consistently lower than the performance reported in the original study (average
precision is 0.120, average recall is 0.539, and average f1-score is 0.184).

When comparing the precision of our safe implementation with that
reported in the original study, one observes that the evaluation on three of
our datasets, i.e., Guzman, laptop, and restaurant, is relatively close to
the reported precision of 0.239 in the original study. The reason for this phe-
nomenon could be that the density score of the annotated 2-to-4-word features
is clearly higher for these three review datasets as compared to the other five
review datasets. The sensitivity of safe precision to features density is also
clearly visible when we look at the evaluation results using all annotated fea-
tures (right-hand side of Table 5). Also, the fact that the evaluation results when
using all features has consistently higher precision values supports the hypoth-
esis that higher features density yields higher precision when using the safe
approach.

When looking at the recall values, the interpretation is less straightforward
than for precision. The highest recall of 0.624 when evaluating on 2-to-4-word

32 F. A. Shah et al.

Table 5. Evaluation of safe extracted features on annotated review datasets

Dataset 2-4 word features All features

Precision Recall F1-score Precision Recall F1-score

guzman .201 .462 .280 .317 .426 .363

guzman+ .096 .462 .159 .151 .426 .223

shah-I .056 .624 .103 .080 .463 .136

shah-II .064 .544 .115 .090 .443 .149

shah-I ∪ shah-II .084 .550 .146 .118 .433 .185

shah-I ∩ shah-II .040 .612 .074 .055 .522 .099

laptop .208 .490 .292 .359 .319 .337

restaurant .211 .569 .308 .492 .318 .386

Average .120 .539 .184 .207 .419 .235

app features is obtained for the shah-II dataset but it is still considerably lower
than the recall of 0.709 reported in the original study. Also, when comparing
the recall values across the app review datasets it seems that whenever precision
is low (correlating with low app features density) recall is respectively higher.
However, this observation can neither be made for the laptop and restaurant
datasets nor for the guzman+ dataset. While the obvious explanation for the
capped guzman+ recall of 0.462 is that due to the construction of guzman+
it has exactly the same set of annotated app features as guzman, it is less
clear why the recall values for the laptop and restaurant datasets are still
relatively high. We speculate that other factors than features density have an
impact on recall, e.g., the nature of the annotation guidelines used and the
subjective interpretation of the annotation guidelines by the coders.

When comparing the precision of 2-to-4-word features with the precision of
all features, Table 5 shows that the precision values consistently improve while
the recall values go down. This happens because in each dataset the set of 2-
to-4-word features is a strict subset of all features. As a consequence, some of
the extracted features counted as false positives (FPs) when evaluated against
2-to-4-word features might be counted as true positives (TPs) due to the subset
matching strategy that we use to match the extracted features with the true fea-
tures. The impact is stronger on review datasets where the number of annotated
features is higher, such as restaurant, laptop, and guzman.

Based on our analysis of the performance of the safe approach we can make
several observations about its usefulness to developers who might wish to analyze
reviews in order to better understand user needs. The first observation is that due
to the purely syntactic-based extraction patterns defined in the safe approach,
its applicability is not restricted to a specific domain. We have demonstrated
this by including review datasets from other domains such as those represented
by the laptop and restaurant datasets. Interestingly, the performance of the
safe approach in terms of f1-score is better on the laptop and restaurant
datasets when compared to five realistic app review datasets (i.e., guzman+

SAFE Approach: A Replication Study 33

and all shah datasets). As mentioned before, this seems to be due to the higher
density of features in the laptop and restaurant datasets.

Johann et al. [5] comment their evaluation by writing:

As for the accuracy and benchmark values, we refrain from claiming that
these are exact values and we think that they are rather indicative. We
think that the order of magnitude of precisions and recalls calculated, as
well as the differences between the approaches is significant.

Although we were not able to demonstrate that our implementation exactly
matches the one used in the original study, our evaluation results give a reason
to suspect that the true estimates of precision and recall of the safe approach
are in fact lower than suggested by Johann et al. This fact again raises the
question of how useful can safe approach be for the developers just as it is.
The problem with low precision even when the recall is relatively high is that
the extracted features contain a lot of noise and if the system does not provide
any ranking of “usefulness” over the extracted features, it will be very difficult
to spot the useful info from the noise. As Johann et al. [5] themselves say when
discussing their results:

Nevertheless, we think that the achieved accuracy of SAFE—even if it out-
performs other research approaches—is not good enough to be applied in
practice. We think that a hybrid approach (a simple, pattern and similarity
based as SAFE together with a machine learning approach) is probably the
most appropriate. For instance, machine learning can be used to pre-filter
and classify reviews before applying SAFE on them.

In addition to the idea of first classifying reviews or sentences before applying
safe we would also propose another way that could potentially improve the
usefulness of the safe method via machine learning. Assuming that the safe
approach obtains reasonably high recall when extracting app features from app
reviews, one could imagine training a classifier to learn to discriminate between
correctly (TPs) and incorrectly (FPs) extracted app features. In such a way it
might be possible to retain the high recall while improving the precision.

5 Threats to Validity

The main threat to the validity of our study is that we were not able to exactly
replicate the evaluation results of our safe implementation on the app descrip-
tion dataset provided by the authors of [5]. This means that although we have
carefully checked our implementation but our implementation of the safe app-
roach is not exactly the same as used in the original study.

One likely reason for the differences in the performance measures is that we
might have decided certain implementation details, which were not specified in
the safe paper (described in Sect. 3.1), differently than the original authors.
For instance, we might have interpreted the sentence patterns differently than
intended by the original authors and thus implemented them differently. Simi-
larly, the proposers of the safe approach use a custom list of stop words in their

34 F. A. Shah et al.

safe implementation. This list has not been published. Thus, we had to define
our own list of custom stop words and the impact of our choice on the achieved
performance values is not known. We intend to make our implementation as well
as the custom list of stop words publicly available so that others could replicate
and validate our results.

The differences in performance measures might also stem from a different
way of counting TPs, FPs and FNs. The authors of the original safe study do
not explain the matching strategy (exact match or partial match) used to match
the safe extracted app features against the true app features. In our study, we
adopted token-based subset matching strategy for the evaluation of safe on user
reviews. It is possible that in the original study, the matching was performed
differently.

The validity of our results depends partly on the reliability of the annotations
of the review datasets. Since we not only used our own annotations (i.e., datasets
Shah-I and Shah-II) but applied safe implementation to other review datasets
published in the literature; so we believe that the existing limitations of reliability
for the mentioned tasks is not a major threat to validity of our results.

6 Related Work

Recently, Johann et al. proposed a rule-based approach called SAFE that uses
POS and sentence patterns for extracting app features from app descriptions and
user reviews [5]. The SAFE approach has achieved better performance over the
technique of Guzman et al. [3]. However, some aspects of the implementation of
the SAFE approach as well as some aspects of its evaluation on user reviews are
nor precisely described in the original study. Therefore, we decided to conduct
an external replication with a fully published replication package allowing others
to reproduce our results.

Several other approaches to extract app features from app reviews have been
proposed. We list some of them in the following.

The study of Guzman et al. [3] used an unsupervised LDA topic modeling
approach for automatic extraction of app features from user reviews of seven
apps (three from App Store and four from Play Store). The performance of
the approach is evaluated by matching the extracted app features against the
human labeled app features in their labeled dataset. In our study, we used the
same labeled dataset (i.e., guzman dataset) for evaluation purpose.

The study of Gu et al. [2] classifies review sentences into categories, such as
feature evaluation, praise, feature requests, bug reports and others, and then app
features are extracted using 26 manually designed rules only from those sentences
that belong to the feature evaluation category. In comparison to the approach of
Gu et al., the safe approach for app feature extraction is not limited to feature
evaluation sentences and it can extract app features from sentences mentioning
feature requests, opinions related to features, and bug reports related to features
alike.

Keertipati et al. extracted nouns as candidate app features from app review
sentences but they did not perform an evaluation to check whether the extracted

SAFE Approach: A Replication Study 35

app features actually represent true app features [7]. On the other hand, Vu et
al.’s study [15] instead of directly extracting app features, extracted all potential
keywords from user reviews and rank them based on the review rating and
occurrence frequency.

In one of our own previous studies, we developed the prototype of a web-
based tool to identify competing apps and to compare them based on the users’
sentiments mentioned on the common set of app features [13]. This tool extracts
two-word collocations as candidate app features without evaluating the extracted
app features against true app features. Similar to the original study on the SAFE
approach, the evaluation of the performance of the tool prototype with regards
to app feature extraction performance was partly biased and subjective and thus
not reproducible.

A recent study of Malik et al. [10] used syntactic relations between the fea-
tures and opinion words for identification of “hot” app features from user review
but the dataset used for the evaluation is not publicly available.

7 Conclusion

The safe approach is a recently proposed simple rule-based method for auto-
matic extraction of app features from app descriptions and app reviews. For
the evaluation of safe on app descriptions, the authors of the original safe
study created and publicly shared an evaluation dataset. However, for evalua-
tion on user reviews no evaluation dataset exists and the evaluation was instead
performed using a coding tool. The procedure adopted for the evaluation of
the safe approach on user reviews is subjective and might have suffered from
researcher bias. Due to its subjective nature it is also not reproducible. There-
fore, in this study, we performed an unbiased and reproducible evaluation of the
safe approach with the goal to investigate the true performance of the safe
approach when applied to user reviews.

We implemented the safe approach and once we had confirmed that our
implementation achieves comparable average performance when applied to app
descriptions as reported in the original study, we applied safe to eight different
review datasets. The results show that the performance of the safe approach
when evaluated against 2-to-4-word app features is clearly lower than the per-
formance reported in the original safe study. Inspecting the characteristics of
the used review datasets it became clear that the precision of the safe approach
is strongly sensitive to the density of app features in the review datasets.

We conclude that due to very low precision and only moderate recall, safe is
too simple to be useful in practice for extracting app features from app reviews.
In order to make it usable in practice, methods, potentially involving machine
learning, for improving the precision while retaining the recall should be studied.

Acknowledgment. We are grateful to Emitza Guzman and Christoph Stanik for
sharing the datasets. This research was supported by the institutional research grant
IUT20-55 of the Estonian Research Council and the Estonian Center of Excellence in
ICT research (EXCITE).

36 F. A. Shah et al.

References

1. Groen, E.C., et al.: The crowd in requirements engineering: the landscape and
challenges. IEEE Softw. 34(2), 44–52 (2017). https://doi.org/10.1109/MS.2017.33

2. Gu, X., Kim, S.: What parts of your apps are loved by users? In: 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 760–770, November 2015. https://doi.org/10.1109/ASE.2015.57

3. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment
analysis of app reviews. In: 2014 IEEE 22nd International Requirements Engineer-
ing Conference (RE), pp. 153–162. IEEE (2014)

4. Harman, M., Jia, Y., Zhang, Y.: App store mining and analysis: MSR for app
stores. In: Proceedings of the 9th IEEE Working Conference on Mining Software
Repositories, MSR 2012, pp. 108–111. IEEE Press, Piscataway (2012). http://dl.
acm.org/citation.cfm?id=2664446.2664461

5. Johann, T., Stanik, C., Maalej, W.: SAFE: a simple approach for feature extraction
from app descriptions and app reviews. In: 2017 IEEE 25th International Require-
ments Engineering Conference (RE), pp. 21–30. IEEE, September 2017. https://
doi.org/10.1109/RE.2017.71

6. Juristo, N., Gómez, O.S.: Replication of software engineering experiments. In:
Meyer, B., Nordio, M. (eds.) LASER 2008-2010. LNCS, vol. 7007, pp. 60–88.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25231-0 2

7. Keertipati, S., Savarimuthu, B.T.R., Licorish, S.A.: Approaches for prioritizing
feature improvements extracted from app reviews. In: Proceedings of the 20th
International Conference on Evaluation and Assessment in Software Engineering,
p. 33. ACM (2016)

8. Liu, P., Joty, S., Meng, H.: Fine-grained opinion mining with recurrent neural net-
works and word embeddings. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1433–1443 (2015)

9. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On auto-
matically classifying app reviews. In: Proceedings of RE 2015, pp. 116–125. IEEE,
August 2015

10. Malik, H., Shakshuki, E.M., Yoo, W.S.: Comparing mobile apps by identifying
‘Hot’ features. Futur. Gener. Comput. Syst. (2018)

11. Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a
deep convolutional neural network. Knowl.-Based Syst. 108, 42–49 (2016)

12. Sänger, M., et al.: Scare–the sentiment corpus of app reviews with fine-grained
annotations in German. In: LREC (2016)

13. Shah, F.A., Sabanin, Y., Pfahl, D.: Feature-based evaluation of competing apps.
In: Proceedings of the International Workshop on App Market Analytics - WAMA
2016. pp. 15–21. ACM Press, New York (2016). https://doi.org/10.1145/2993259.
2993267

14. Shah, F.A., Sirts, K., Pfahl, D.: The impact of annotation guidelines and annotated
data on extracting app features from app reviews. arXiv preprint arXiv:1810.05187
(2018)

15. Vu, P.M., Nguyen, T.T., Pham, H.V., Nguyen, T.T.: Mining user opinions in mobile
app reviews: a keyword-based approach. In: Proceedings of ASE 2015, pp. 749–759.
IEEE (2015)

https://doi.org/10.1109/MS.2017.33
https://doi.org/10.1109/ASE.2015.57
http://dl.acm.org/citation.cfm?id=2664446.2664461
http://dl.acm.org/citation.cfm?id=2664446.2664461
https://doi.org/10.1109/RE.2017.71
https://doi.org/10.1109/RE.2017.71
https://doi.org/10.1007/978-3-642-25231-0_2
https://doi.org/10.1145/2993259.2993267
https://doi.org/10.1145/2993259.2993267
http://arxiv.org/abs/1810.05187

Making Sense of Requirements

Enabling Users to Specify Correct Privacy
Requirements

Manuel Rudolph(&), Svenja Polst, and Joerg Doerr

Fraunhofer IESE, Kaiserslautern, Germany
{manuel.rudolph,svenja.polst,

joerg.doerr}@iese.fraunhofer.de

Abstract. Privacy becomes more and more important for users of digital ser-
vices. Recent studies show that users are concerned about having too little
control over their personal data. However, if users get more possibilities for self-
determining the privacy effecting their personal data, it must be guaranteed that
the resulting privacy requirements are correct. This means, they reflect the user’s
actual privacy demands. There exist multiple approaches for specifying privacy
requirements as an end user, which we call specification paradigms. We assume
that a matching of specification paradigms to users based on empirical data can
positively influence the objective and perceived correctness. We use the user
type model by Dupree, which categorizes users by their motivation and
knowledge. We experimentally determined the best match of user types and
paradigms. We show that participants with less knowledge and motivation make
more mistakes and that a strong limitation of selection options increases
objective and perceived correctness of the specified privacy requirements.

Keywords: Privacy requirements specification � User types �
Specification interfaces � Objective correctness � Perceived correctness

1 Introduction

Since the dawn of the Internet age, users have been increasingly sending (personal)
data to services that process and analyze data. At the same time, users become
increasingly aware and partially afraid of data misuse and their need for a better privacy
protection raises [1, 2]. Even if the need arises, many users do not configure their
privacy settings for Internet services. One major cause is that users have problems in
adequately specifying their own privacy requirements, which we showed in a previous
study [3]. Users rate the specification as too complicated and time consuming. In
practice, services provide different specification interfaces, which offer the user a
variety of options, specification processes and guidance during the specification of
privacy requirements. We refer to those different types of interfaces as specification
paradigms. In order to achieve ideal results, we need to provide users a specification
paradigm that matches their needs and capabilities best. We assume that the appropriate
selection of the specification paradigm for a user can have a positive effect on the
acceptance of the tool itself, and can increase its effectiveness. Thus, we investigated
the effectiveness of the privacy requirement specification (objective and perceived

© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 39–54, 2019.
https://doi.org/10.1007/978-3-030-15538-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_3

correctness of the specified requirements), efficiency (necessary time span for speci-
fication) and user satisfaction (how much users like the paradigm). Our results
regarding user satisfaction and efficiency were published in [20]. In this article, we
focus on the effectiveness. The susceptibility to mistakes should always be of particular
interest. Users are very different with respect to their capabilities (e.g., knowledge,
available time and cognitive capacity) and preferences (interaction processes they like).
Thus, there will probably not be a specification paradigm that delivers the best results
for all user types. We use the model of Dupree for clustering users into user types [5].
Whether a paradigm fits a user depends on his specific characteristics. The lack of work
on matching specification paradigms to user types motivated this work. Our main
contributions in this article are observations and recommendations for best suitable
specification paradigms for specific user types regarding effectiveness. They are
derived from an experiment in which we asked users representing different personas to
solve tasks with four specification paradigms. We measured mistakes produced by the
users and the users’ perception of correctness.

In this paper, we present the used specification paradigms and their derivation from
literature and practice in Sect. 2. In Sect. 3, we discuss available user type model in
literature and discuss the selection of the Dupree model. Next, we explain the design
and execution of our experiment in Sect. 4. We present and discuss the results in
Sect. 5. Finally, we conclude and discuss future work in Sect. 6.

2 The Variety of Privacy Specification Interfaces

Users specify their privacy requirements as policies in different systems using speci-
fication interfaces. Depending on the system, different types of specification interfaces
are offered, which we call specification paradigms. These differ in following aspects:

• Specification process: With which interactions do users set their privacy require-
ments in the interface?

• Number of decisions: How many decisions do users have to take in the
specification?

• Degree of guidance: How much support is given to users during specification?

In the following, we identified relevant privacy specification approaches and
interfaces in the state of the art and practice and derived appropriate specification
paradigms.

2.1 Related Work Regarding End-User Privacy Specification Interfaces

In the state of the art, a lot of work was performed in the area of specifying privacy
requirements in form of machine-understandable policies by experts. Even if the focus
of our work is to enable non-experts to specify privacy requirements in natural lan-
guage, the interface concepts for machine-understandable policies can be transferred to
natural language interfaces for privacy policy specification.

PERMIS [13] is a generic RBAC-based (Role-Based Access Control) authorization
infrastructure. PERMIS policies are created, for example, via a “Policy Wizard”. This

40 M. Rudolph et al.

tool uses a step-by-step specification wizard as the policy specification paradigm. It
asks supportive questions to guide the user through the specification process. KAoS
[15] is a policy and domain service framework. It contains the KAoS Policy Admin-
istration Tool (KPAT) that is based on natural English sentences using hypertext
templates. Policy templates are specified in an ontology and specified policies are
automatically transformed into machine-readable equivalents. Johnson et al. [14]
describe a method and a tool named SPARCLE for eliciting concrete security
requirements of users with varying background knowledge. The tool allows the user to
enter his security requirement in natural language or in a structured natural language-
based format. SPARCLE can transform the structured format into machine-
understandable policies. P3P (Platform for Privacy Preference Project) is a protocol
that allows websites to declare their intended use of information they collect from users
[18]. In addition, APPEL (A P3P Preference Exchange Language) was developed for
users to describe collections of privacy preferences [19]. Fang and LeFevre [17] pro-
pose an active learning wizard that enables users to set their own privacy and security
policies by making regular, brief decisions on whether or not to share a particular data
item with an entity.

Besides the academic approaches, many domain specific policy authoring tools
exist in practice. The Local Group Policy Editor of Windows systems (e.g., Windows
7) mainly targets system administrators and offers a variety of settings (e.g., firewall
settings, password policies, startup/shutdown scripts) for Windows environments.
Facebook allows its users to specify their privacy requirements in a very fine-grained
manner. Even if studies revealed that users expected in some cases a different behavior
from the specified privacy policies [16], they are in general empowered to specify them
at all. Both tools, the Windows editor as well as the Facebook privacy settings, provide
a lot of specification support, such as explanations or examples. They use template
based specification and small wizards for specific security and privacy settings. All
modern browsers contain privacy and security settings. Google Chrome (Version 64),
Microsoft Edge (Version 41) and Mozilla Firefox (Version 52) allow their users to
enable and disable pre-defined default privacy and security policies. The Microsoft
Internet Explorer (Version 11) uses a security level approach for setting the coarse-
grained security settings. If required, users can customize these security levels by
selecting from pre-defined default options. For the privacy requirements in online
accounts, Google has introduced a privacy check wizard that guides the user through
multiple pages to configure the use of personal information by Google services and
third parties.

2.2 Selected Specification Paradigms

We found that all specification paradigms from literature and practice differ in their
configurability (how many decisions they request) and their guidance (how much help
does the user receive during the specification). We rated all specification paradigms
accordingly and selected paradigms (All Screens displayed to the subjects and further
supplementary material such as sample solution and access to primary data can be
found in [22]) with all four combinations of high and low configurability (C) and
guidance (G):

Enabling Users to Specify Correct Privacy Requirements 41

1. Template instantiation (high-C, low-G): The user can instantiate desired privacy
requirements by adjusting selection options in a template-based interface. The
templates offer multiple decisions and thus allow a fine-grained specification of own
privacy requirements. The user can choose the order of specification.

2. Default Policies (low-C, low-G): The user can chose from multiple predefined
privacy policies per topic. The number of decisions in the specification is limited.

3. Wizard (high-C, high-G): The user can instantiate privacy requirements based on a
template-based interface, which is split in several small steps. The user cannot decide
on the specification order. The specification process is well guided in each step.

4. Security levels (low-C, high-G): The user can select a level of privacy that contains
a predefined set of default privacy requirements without having customization
possibilities per requirement.

3 The Different Types of Users

Each user has different characteristics, capabilities and resources. This leads us to the
assumption that different paradigms are likely to fit differently well to a certain user. To
explore the relationship between suitable specification paradigms and users, we first
explored related work regarding user type models and then selected a model for
clustering users according to relevant characteristics.

3.1 Related Work Regarding User Type Models

There are several ways to cluster users into categories that explain their character traits
and behavior. Some clustering methods describe human traits and behavior in general,
i.e., they are not bound to a particular situation or domain. Examples are the Big Five
personality traits [6], Keirsey’s Temperaments [7] and the Myers-Briggs Type Indi-
cators [8]. Besides the generic clustering approaches, other work relates to the use of
computers and the character traits relevant for security and privacy decisions. For
example, Westin’s [4] classification is based on users’ privacy concerns. In most of his
30 privacy surveys, he clusters the users into three categories: Fundamentalist (high
concern), Pragmatist (medium concern), and Unconcerned (low concern). Westin’s
approach is controversially discussed in the literature. For example, Urban and
Hoofnagel [9] argue that Westin’s work is neglecting the importance of knowledge or
available information about privacy practices, domain specific business processes.
Smith’s approach “Concern for Information Privacy (CFIP)” [10] measures the privacy
concern of a person as a numerical value based on a calculation on fifteen statements
about privacy. The scenarios of CFIP are kept quite abstract and do not directly relate
to online services that collect and process user data. Malhotra et al. improved and
extended previous work (e.g., CFIP) in their approach called Internet Users’ Infor-
mation Privacy Concerns (IUIPC) [12]. They reflect the concerns of internet users
about information privacy with a special focus on the individuals’ perception of fair-
ness in the context of data privacy. Morton’s Information Seeking Preferences [11] are
an approach to cluster users into five groups based on the ranking of 40 privacy related
statements. The groups are: Information controllers, security concerned, benefit

42 M. Rudolph et al.

seekers, crowd followers and organizational assurance seekers. Considering the criti-
cism on Westin’s privacy indexes, Dupree proposed her privacy personas [5]. Those
five personas can be differentiated on two attributes of the user: the user’s knowledge
about security and privacy as well as the user’s motivation to spend effort to protect
privacy and security. The personas also describe the handling of personal data in the
internet age and the general need for security in the IT sector.

3.2 Selection of the User Type Model

When searching for the appropriate model, we found that all available models can be
characterized by two properties: focus on IT security and privacy and focus on tech-
nical systems (see Fig. 1 left). In both cases, there are very special models developed
for a specific subdomain or system as well as generic approaches. We chose the Dupree
model [5] as a suitable middle way. This model mainly distinguishes users by their
motivation and their knowledge to specify privacy requirements (see Fig. 1 right).
Dupree has derived the five personas from personal interviews with 32 university
related digital natives, who had an average age of 26.3 (SD = 5.9). The personas are:

• Marginally Concerned: Low knowledge and low motivation
• Amateur: Medium knowledge and medium motivation
• Technician: Medium knowledge and high motivation
• Lazy Expert: High knowledge and low motivation
• Fundamentalist: High knowledge and high motivation.

4 Experiment Design and Execution

4.1 Research Questions

The experiment objective was to identify which paradigms are suitable for a specific
persona with regard to objective and perceived correctness. Each paradigm requires the

low medium high

lo
w

m
ed

iu
m

kn
ow

le
dg

e
(h
ow

to
sp
ec
ify

po
lic
y)

mo va on (willingness tospecify policy)

Lazy Expert

Marginally
Concerned

St ruggling
Amateur Technician

Fundamentalist

hi
gh

generic security/privacy domain concrete security/
privacy subdomain

generic

technical

te
ch
ni
ca
lf
oc
us

security/privacy focus

Big 5 (OCEAN Model)

Myers-Briggs Type
Indicator

Keirsey‘s
Temperaments

Wes n‘s classifica on

Dupree‘s Privacy
Personas

Internet Users
Informa on Privacy

Concern (IUIPC)

Morton‘s Informa on
Seeking Preferences

Concern for
Informa on Privacy

(CFIP)

concrete
technical
system or
domain

Fig. 1. Left: classification of different user type models | Right: Dupree’ Persona Matrix

Enabling Users to Specify Correct Privacy Requirements 43

user to make a certain number of decisions during the specification of privacy
requirements. If the decision taken differs from the sample solution, we regard this
deviation as a mistake. We consider a paradigm to be suitable if the ratio of mistakes to
all decisions is low (high objective correctness). Moreover, we aimed at finding the best
matching paradigm for a precise self-estimation with respect to the objective correct-
ness (Can people estimate that they made mistakes?). We defined following research
questions:

• RQ1: Which paradigm best suits a particular type of person (represented by a
persona) in terms of objective correctness?

• RQ2: Which paradigm is best suited to a particular type of person (represented by a
persona) in terms of correctly estimated perceived correctness (confidence regarding
objective correctness)?

4.2 Scenario and Tasks

The scenario and the corresponding privacy requirements in the experiment were
derived from a real project in the context of the digitization of rural areas using the RE
method described in [21]. In this method, workshops with users and experts of the
problem domain are conducted with selected State of the Art RE methods in order to
elicit relevant templates of privacy requirements. In the project, village citizens have
access to digital services such as an online marketplace with local merchants, a delivery
service where citizens deliver goods from local merchants to other citizens (called
BestellBar) and a digital village bulletin board. The participants should imagine that
they use these novel, digital services of this project and that this has potential privacy
impact to them as personalized data is used in those services. The participants had the
task to adjust the privacy requirements of these services to given privacy requirements.
The requirements were not their own but specified by the authors of this paper. The
presetting of the privacy requirements was necessary so that all participants could use
the specification interfaces in a comparable way. This enabled us to compare the
measured mistakes made by the participants.

The requirements were described as part of the six tasks. One task was, for instance;
“When I place an order in the BestellBar app, I do not under any circumstances want to
receive advertising from other providers that refers to the ordered product. They may
not use my data.” The requirements did not match one-to-one with the wording in the
specification interfaces, because a one-to-one match would cause that the participants
compare the buzzwords of the task and the interfaces but not the semantic content.

The scenario description and the tasks were provided on a digital handout, which
the participants were advised to print out. The scenario description was supported by a
short video that introduces the novel, digital services for citizens of a village. Four
specification interfaces were created according to the selected specification paradigms
presented in Sect. 2.2. We refer to these interfaces as the four specification paradigms
in the following. The participants had to complete the same six tasks for each speci-
fication paradigm. The introduction material is presented in the supplementary
experiment material [22].

44 M. Rudolph et al.

All implementations of the specification paradigms in this experiment use the same
templates, which is the outcome from the used RE method [21]. The paradigms tem-
plate instantiation and wizard let the participant instantiate concrete privacy require-
ments from the templates. The paradigms default policies and security levels provide a
limited list of already instantiated privacy requirements from the templates to choose
from. In case of the paradigm security levels, the user can chose from three different
sets of privacy requirements. All tasks in the experiment can be solved with all four
specification paradigm implementations.

During the experiment design we had to decide whether we should provide a
perfect match with the tasks for the paradigm security levels. This means that one of the
security levels solves all tasks of the scenario. Such a perfect match is unlikely in real
life. However, the lack of a perfect solution could confuse the participants in the
experiment letting them abort. In addition, a massive influence on the experiment
results (correctness and satisfaction) was expected. Thus, we decided to have a perfect
match because we did not want to compromise the proper execution of the experiment.

4.3 Procedures and Instruments

Our experiment was created as a publically available online experiment. In order to
avoid misuse, a participant could only start the experiment once with a unique eight
digit participant id. It was possible to interrupt the experiment and continue with the
participant id in the same place. However, it was not possible to repeat already exe-
cuted steps. The experiment was provided in German and English.

Our experiment was structured as follows. First of all, the participants had to agree
to an informed consent and confirm that they are at least 18 years old. Thereafter, the
participants had to answer demographic questions about age, gender and educational
level as well as their relationship to the authors’ institutions and their research topics.
The answers were used to determine whether the participants’ characteristics and
capabilities have an impact on the results of the experiment. Then, a self-assessment
followed about one’s own expertise and motivation in the areas of IT security and
protection of one’s own privacy as well as experience in dealing with digital services.
Afterwards, the participants were asked to select the persona out of the five offered
personas that they think fits best to them. All five personas of Dupree were described
on the basis of nine to twelve original character traits [5] formulated in the ego-
perspective. The order of the personas displayed was randomly determined. Thereupon,
the scenario including the concrete tasks (privacy requirements) was explained by
video and handout. Next, the participants were instructed that on the following pages
they should set all the privacy requirements for each of the four different specification
paradigms: default policies, security levels, template instantiation and wizard. The
order in which the specification paradigms were presented to the participants was
randomly determined to minimize learning effects. After each specification paradigm,
the participants were asked whether they thought they did mistakes, how they liked the
current type of specification in the current scenario and how they would like it
transferred to real life. After completing the four specifications, the participants were
asked to rank the four specification types according to their preference of using them in
real life. Finally, participants should determine how well they can identify with the

Enabling Users to Specify Correct Privacy Requirements 45

scenario and the chosen persona. Screenshots showing all steps of the experiment can
be found in the supplementary experiment material [22].

4.4 Execution

We acquired the participants by means of a non-binding invitation by e-mail in the
circle of friends and acquaintances of the authors as well as in the authors’ institution.
The participants were asked to forward the non-binding invitation to other persons. We
sent each interested person a specific invitation email with a handout attached. The
handout contained instructions for starting and conducting the experiment, the indi-
vidual participant id and the scenario description. We sent 120 personal invitation
emails and deleted them directly after sending in order ensure the anonymity of the
participants. The online experiment was available for 14 days. Participants were
informed about the approximate duration of the experiment of 30–40 min, but had no
time limit for completion.

4.5 Data Analysis

All statistical analyses were conducted with SPSS 19 and Microsoft Excel. First of all,
the plausibility of the self-selection of personas was checked by analyzing whether the
self-reported security knowledge matches the persona classification by Dupree (see
[5]). Moreover, we analyzed how well participants identified with the selected persona.

To answer RQ1, the number of mistakes was analyzed. The different paradigms
required different numbers of decisions: One decision in security levels, six decisions in
default policies, 18 decisions in template instantiation and 18 decisions in wizard. This
means that the pure number of mistakes is not directly comparable, but the ratio of
incorrect decisions had to be compared. To evaluate the differences between the
paradigms, Wilcoxon signed rank test were used. We also performed a Kruskal-Wallis
(suitable for small sample sizes) test (a = 0.05) to investigate whether the persona has
an influence on the objective correctness. The fundamentalist were excluded from
analysis because of their small number.

To answer RQ2, we investigated whether there is an influence of the persona on the
perceived correctness or not. The perceived correctness was measured by asking the
participants after the use of each paradigm whether they think that they solved all tasks
in the paradigm correctly (zero mistakes). A Fisher’s exact test, which is a test for small
sample sizes, was performed for the results of each paradigm.

5 Results and Discussion

5.1 Participant Description

Out of 120 invitations sent, 61 persons finished the experiment with complete data sets.
We did not find any indications that would have caused us to consider records as
invalid. 43% of the participants are female. The participants’ age ranges from 18 to 82
(M = 40.54; SD = 14.37). The majority of the participants (33 out of 61) hold a

46 M. Rudolph et al.

university degree as highest educational level, nine participants hold a doctoral degree,
seven have an entrance qualification for higher education and eleven a secondary
school leaving certificate as highest level of education. About half of the participants
(54%) were related the authors’ institution, 20 of them being scientific and eight non-
scientific employees and five being students working with the authors’ institution.
28 participants (46%) had no relation to the authors’ institution. Table 1 shows the
distribution of the personas chosen by the participants. The largest group with 34% of
the participants is the persona amateur. The fundamentalists make up the smallest
group with five percent. The ratio of the other personas varies between 18 and 23%.

To verify the plausibility of the persona self-selection, we asked the participants to
rate their IT security knowledge. The participants’ security knowledge fits well to the
chosen personas, except for the lazy experts (see Fig. 2 left side). Based on Dupree’s
categorization (see Fig. 1 right side), we expected the lazy experts to have higher self-
estimated knowledge. The participants’ security motivation fits to the model of Dupree
as well (see Fig. 2 right side). Moreover, we asked the participants, how well the
chosen persona matches them on a scale from 1 (Not very well, but it matched best out
of the five options) to 5 (I can identify myself very well with the persona). The
participants responded on average with a score of 3.75. Not a single person reported the
value 1.

Table 1. Chosen personas

Persona Number Ratio Persona Number Ratio

Marginally concerned 12 20% Technician 14 23%
Amateur 21 34% Fundamentalist 3 5%
Lazy expert 11 18% Total 61

Fig. 2. Left: knowledge to persona mapping | Right: motivation to persona mapping

Enabling Users to Specify Correct Privacy Requirements 47

5.2 Experiment Results

The results regarding the objective correctness are presented first. Thereafter, the results
of the perceived correctness in relation to the objective correctness are shown.

Objective Correctness. Different aspects were taken into account in the analysis of
the objective correctness (see Table 2): First, we identified the number of the partici-
pants with perfect objective correctness. Secondly, the concrete number of mistakes in
relation to the decisions per paradigm were analyzed. Fewest mistakes were made with
security levels. Seven percent of participants chose the wrong security level. In the
other three paradigms, which provided more decision options, about one in five
decisions were taken incorrectly. Thus, for the whole population of the experiment
there is no difference in objective correctness, except for a significant difference to the
paradigm security levels (compared to default: z = 3.83, p < 0.01, template: 4.22,

Table 2. Participants with 100% objective correctness and mistakes made by personas

Persona Number of
participants with
all paradigms
correct/n per
persona

% of
participants
per persona

Mistakes made in relation to decisions

Default
Policies

Security
Levels

Template
Instantiation

Wizard

Degrees
of
freedom

6 1 18 18

Marginally
concerned

1/12 8.33% Average
mistakes

0.56 0.25 0.49 0.50

Std.
deviation

0.36 0.45 0.29 0.29

Amateur 4/21 19.05% Average
mistakes

0.12 0.05 0.12 0.12

Std.
deviation

0.22 0.22 0.16 0.14

Lazy expert 1/11 9.09% Average
mistakes

0.15 0.00 0.16 0.21

Std.
deviation

0.26 0.00 0.16 0.21

Technician 4/14 36.36% Average
mistakes

0.17 0.00 0.15 0.11

Std.
deviation

0.27 0.00 0.25 0.16

Fundamentalist 0/3 0% Average
mistakes

0.00 0.00 0.06 0.13

Std.
deviation

0.00 0.00 0.06 0.08

All participants 10/61 16.39% Average
mistakes

0.22 0.07 0.20 0.21

Std.
deviation

0.31 0.25 0.25 0.24

48 M. Rudolph et al.

p < 0.01, wizard: 4.35, p < 0.01). Only 10 out of 61 participants made no mistakes,
thus they achieved 100% objective correctness in all paradigms.

The persona selection has a significant effect on the mistakes made in the paradigms
default policies (v2 = 13.88, p < 0.01), template instantiation (v2 = 14.10, p < 0.01),
and wizard (v2 = 17.04, p < 0.01), and also on the security levels (v2 = 7.99,
p < 0.05) but not that strong. The effect of the persona is likely given because of the
significant difference of the marginally concerned to the other personas. For example,
within the paradigm default policies, the amount of mistakes by the marginally con-
cerned is significantly higher compared to the other personas (for each persona
p < 0.05). The effect sizes for all paradigms are strong (d < 0.6; see details about the
statistical results in the supplementary experiment material [22]).

Perceived Correctness in Relation to Objective Correctness. We asked the partic-
ipants after each paradigm they used, whether they think that they solved all tasks
correctly. The experiment results provide that the persona selection does not influence
the perceived correctness in any paradigm (template: p = 0.96; default: p = 0.87;
security level: p = 0.85; wizard: p = 0.62). This means that there is no difference in
how optimistic or pessimistic the participants of the different personas are regarding
these paradigms. In our experiment, we aimed at identifying which paradigm suits best
for a correct self-estimation (perceived correctness) regarding the objective correctness.
A self-estimation of a privacy requirements specification is rated as correct, if the
participant did zero mistakes and was confident about the perfect solution or if the
participant did at least one mistake and was confident that he did mistakes. Overall, 42
participants thought that they used all paradigms correctly, however, only eight of them
made indeed no mistakes in all paradigms. Twelve persons reported mistakes in one
paradigm and two persons even in all four paradigms. Thus, the perceived correctness
is very high, regardless of the many mistakes that were made. Only four persons had a
too pessimistic self-estimation. Table 3 shows the correct estimations per paradigm for
all participants and for each persona. Overall, the self-estimation was best with the
security levels (78.7%) and worst with the wizard (29.5%). We found that more
decisions during specification led to worse self-estimation.

Table 3. Accuracy of perceived correctness (correct positive (P) and negative (N) estimations)

Default
policies

Security
levels

Template
instantiation

Wizard

P/N % P/N % P/N % P/N %

Marginally concerned 2/1 25.0 8/1 75.0 1/2 25.0 1/0 8.3
Amateur 12/1 61.9 16/1 81.0 6/1 33.3 6/1 33.3
Lazy expert 7/2 81.8 8/0 72.7 2/1 27.3 1/2 27.3
Technician 8/1 64.3 12/0 85.7 6/2 57.1 6/1 50.0
Fundamentalist 3/0 100 2/0 66.7 1/0 33.3 0/0 0.0
All participants 32/5 60.7 46/2 78.7 16/6 36.1 14/4 29.5

Enabling Users to Specify Correct Privacy Requirements 49

Comparison of Results Regarding Personas. Themarginally concernedmade using
the security levels paradigm least mistakes and achieved best perceived correctness
compared to other paradigms (Average Mistakes (AM): 25%, see Table 2; Correct
Estimations (CE): 75%, see Table 3)). In all other paradigms, this group of people made
more mistakes. The amateurs also achieved best results with the security levels (AM:
5%; CE: 81%). For the other paradigms, the AM values are equal at 12%. Regarding the
perceived correctness, participants assessed themselves rather good with the default
policies (CE 61.9%). Amateurs did rather few mistakes with the paradigms template
instantiation and wizard, but the self-assessment is worse than with other paradigms.
The technician achieved as all other personas better results in the paradigms security
levels (AM: 0%; CE: 86%) and default policies (AM: 17%; CE: 64%). However, the
technicians achieved best values regarding the perceived correctness and rather low rates
of mistakes for the paradigms template instantiation (AM: 15%; CE: 57%) and wizard
(AM: 11%; CE: 50%). The lazy experts are described by Dupree as people with a high
level of knowledge and low motivation in terms of security and privacy (see Fig. 1 right
side). It is interesting to note that they performed worse than amateurs and technicians in
many direct value comparisons. The values for the default policies (AM: 15%; CE:
81.8%) and security levels (AM: 0%; CE: 72.7%) are best. Since only three participants
have chosen the persona fundamentalist, no conclusions can be made about this per-
sona. Still, the results reflect the persona scheme of Dupree [5].

5.3 Threats to Validity

We did not control the participants during or after the experiment, which is a threat to
internal validity. We cannot exclude the possibility that the participants talked about the
experiment with other participants before their participation, nor that the participants
could not find the necessary information or concentration to solve the tasks adequately.
Distraction might increase the number of mistakes. However, we adequately instructed
participants with a text handout, a scenario video and instructions in various steps in the
experiment as we would have done in a controlled setting. We did not find any hint for
an inadequate introduction (e.g., in the feedback at the end of the experiment). Thus,
we assess this threat as low. A participant who could not identify with the provided
privacy requirements well, maybe had lower motivation to take effort in correctly using
the paradigms in the experiment. This may negatively affect the objective correctness
and is a threat to internal validity.

The experiment tried to represent the use of privacy requirements in real life. In
reality, participants would have their own individual requirements. However, we had to
preset the privacy requirements in order to measure the correctness as the discrepancy
between the participants’ results and the sample solution. Thus, we cannot be sure
whether the same correctness values would be achieved in the real world with own
privacy requirements. This poses a threat to external validity. The paradigm security
levels in combination with the given tasks does most likely not reflect the reality since
the preset tasks matched perfectly to one of the security levels. This is rarely the case in
real life and therefore limits the external validity to some extent. However, we decided
to propose a perfect solution, as the lack of the perfect match may have influenced the
measured correctness and irritated the participants, which would have been a threat to

50 M. Rudolph et al.

internal validity. Furthermore, the experiment was conducted in a scenario that rep-
resents a single use case for privacy requirements (mono-operation bias). Further
experiments that confirm our results in different scenarios would increase the gener-
alization of the results and therefore the external validity. The number of participants
per persona is quite small, especially the number of fundamentalists (three persons). In
addition, a large number of participants are academics. This does not reflect the overall
population. Those aspects are threats to external validity.

The selection of the specification paradigms is based on our observations of the
paradigms most commonly used in practice. We cannot rule out the possibility that
there are other paradigms that could lead to better results in a comparable experiment.
This implies a threat to conclusion validity with respect to our recommendations of best
suitable specification paradigms. For the specification of privacy requirements the
participants use concrete ‘tools’, which are implementations of the specification
paradigms. This mixes findings on specification paradigms and corresponding tools. To
minimize this threat to conclusion validity, usability experts supported us to make the
‘tools’ as unobtrusive as possible. We discuss the generalizability of the experiment
results in the following section.

5.4 Discussion

We wanted to investigate the relation between the selected persona and specification
paradigm used in relation to objective correctness (RQ1) and self-estimation regarding
perceived correctness (RQ2) with our research questions.

With respect to RQ1, we identified that all personas did least mistakes with the
specification paradigm security levels. The number of mistakes related to decisions
differs only marginally between the other paradigms. However, the persona marginally
concerned differs significantly from the others with respect to objective correctness as
they did more mistakes. The cumulated mistakes are higher than expected by the
authors. This raises the question about the difficulty of the tasks to be solved. It was
possible to solve all tasks without mistakes, because 10 out of 61 participants achieved
the perfect objective correctness (zero mistakes in total). No one explained that he did
not understand the tasks or the scenario in free text comments at the end of the
experiment.

Regarding RQ2, we found that the perceived correctness is related to the number of
decisions of a paradigm. More freedom led to worse perceived correctness in our
experiment. However, there is no significant difference in how personas perform
regarding perceived correctness in these paradigms. We did not expect that only few
participants (8 out of 61) estimated perceived correctness rightly. Most of the others
overestimated themselves and only four underestimated their correctness. Overesti-
mation could in practice frustrate a user of privacy settings, as the system is not acting
as expected. This could reduce trust in the privacy settings interface and its providing
company. The participants underestimating their achieved correctness might appreciate
the correct specification and the effect by the system, but they also might be frustrated
because they have the feeling of not having control over the system.

Our experiment relies on the personas developed by Dupree [5]. We decided to go
for these personas since they were developed based on empirical data. The personas

Enabling Users to Specify Correct Privacy Requirements 51

mainly differ regarding motivation and security knowledge but also include more
valuable information (e.g. valuing convenience more than security). Moreover, they
contain concrete security behaviors such as use of strong passwords. We assume that
such concrete information ease the self-classification compared to a scale with short
statements, which are prone to a subjective interpretation (i.e. expert knowledge might
be interpreted differently). Our two questions in the experiment about security
knowledge and motivation had the purpose to control whether the persona selection is
reasonable. However, we do not consider these to questions as sufficient to replace the
personas. In practice, it would be preferable to have a small selection questionnaire for
the user to persona mapping. However, to the best of our knowledge, that does not
exist.

In the study by Dupree [5], the number of fundamentalists was the smallest by far,
such as in our experiment. More fundamentalists are needed to draw conclusions about
an appropriate specification paradigm. The other personas were represented by 11, 12,
14, and 21 participants, respectively. The numbers seem small as well but were enough
to properly apply statistical analyses with the chosen tests. Nevertheless, the experi-
ment need to be repeated with more participants to improve the generalizability of the
results.

Many participants are academics or related to an academic work environment (69%
academics, 54% employees of the authors’ institution, 93% german-speaking partici-
pants). Obviously, the group of participants does not reflect the overall population (e.g.,
15% academics in Germany). We cannot rule out that this had an influence on the
results and a negative impact their generalizability. It seems unlikely to us that the level
of education has a direct impact, but indirect effects seem reasonable. The level of
education is related to certain jobs and interests and by this to knowledge about IT-
security. More precise questions have to be asked in future to properly investigate the
relation of education to correctness. Questions could be ‘is your job related to IT-
security or privacy?’ and ‘do you spend time in your spare time to learn about privacy?’

6 Conclusion and Future Work

In this article, we have shown that appropriate specification interfaces can be assigned
to users to promote the correct specification of privacy requirements and to give users
confidence that they have made the right decisions. To this end, we have categorized
the common types of specification interfaces used in practice as specification paradigms
and have them used by different user types (personas) according to predefined tasks
within a scenario. Through the results, we can recommend specification paradigm
assignments to personas to achieve the highest possible objective and perceived cor-
rectness. In summary, we can clearly recommend the security levels for all personas. In
addition, amateurs, lazy experts and technicians performed well with default policies.
In case of necessity for fine-grained specifications, template instantiation and wizard
can be effective enough for technicians. Due to the small number of fundamentalists,
we cannot give recommendations for this persona.

The main focus of the overall experiment is to identify potential for increasing
effectiveness, efficiency and satisfaction of privacy policy specification interfaces for

52 M. Rudolph et al.

users. This paper shows that effectiveness can be increased for personas by the
selection of the right specification paradigm. We show in [20] that the specification
paradigm also influences efficiency and satisfaction. In our results, effectiveness and
efficiency of specification paradigms are aligned, satisfaction behaves contrary. People
do not like “security levels” but perform efficiently and effectively with this paradigm.
Vice versa, people like the paradigms “wizard” and “template instantiation”, but are
more ineffective and inefficient with them. This poses a dilemma for the provider that
needs to select the appropriate specification paradigm for the privacy specification
interfaces of the own software product. High effectiveness and efficiency may be
desired by users, however the low satisfaction with the paradigm may hinder users to
specify privacy requirements at all. Contrary, a satisfying tool that leads to incorrect
privacy settings may limit the trust in the provider. Besides that also other obligations
might be fulfilled, such as legal requirements or the necessity of the provider to collect
data due to the business model of the software product. Thus, with current results we
cannot give generic recommendations for the specification paradigms selection. Pro-
viders must carefully balance pros and cons before selecting a paradigm based on the
personas which best reflect the users.

To confirm our results, we need to perform non-exact replications of our experi-
ment including a larger sample of participants from all user types and additional
scenarios. We need to find out whether optimizations in the implementations of the
paradigms can positively influence the objective and perceived correctness. Therefore,
we also need to explore the use of additional paradigms and discuss the current look
and feel as well as the interaction process of the used paradigms.

Acknowledgements. The research presented in this paper is supported by the German Ministry
of Education and Research projects “Nationales Referenzprojekt für IT-Sicherheit in der Industrie
4.0 (IUNO)” (grant number 16KIS0328) and “Transparente und selbstbestimmte Ausgestaltung
der Datennutzung im Unternehmen (TrUSD)” (grant number 16KIS0898). The sole responsi-
bility for the content of this paper lies with the authors.

References

1. European Commission: Special Eurobarometer 431 - Data Protection (2015). http://ec.
europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_431_en.pdf

2. Symantec: State of Privacy Report 2015 (2015). https://www.symantec.com/content/en/us/
about/presskits/b-state-of-privacy-report-2015.pdf

3. Rudolph, M., Feth, D., Polst, S.: Why users ignore privacy policies – a survey and intention
model for explaining user privacy behavior. In: Kurosu, M. (ed.) HCI 2018. LNCS, vol.
10901, pp. 587–598. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91238-7_45

4. Kumaraguru, P., Cranor, L.: Privacy indexes: a survey of Westin’s studies (2005). http://
repository.cmu.edu/isr/856

5. Dupree, J.L., Devries, R., Berry, D.M., Lank, E.: Privacy personas: clustering users via
attitudes and behaviors toward security practices. In: Conference on Human Factors in
Computing Systems (2016)

6. Digman, J.M.: Personality structure: emergence of the five-factor model. Ann. Rev. Psychol.
41, 417–440 (1990)

Enabling Users to Specify Correct Privacy Requirements 53

http://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_431_en.pdf
http://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_431_en.pdf
https://www.symantec.com/content/en/us/about/presskits/b-state-of-privacy-report-2015.pdf
https://www.symantec.com/content/en/us/about/presskits/b-state-of-privacy-report-2015.pdf
http://dx.doi.org/10.1007/978-3-319-91238-7_45
http://repository.cmu.edu/isr/856
http://repository.cmu.edu/isr/856

7. Keirsey, D.: Please Understand Me 2. Prometheus Nemesis Book Company, Carlsbad
(1998)

8. Myers, I.B., McCaulley, M.H., Most, R.: Manual: A Guide to the Development and Use of
the Myers-Briggs Type Indicator, vol. 1985. Consulting Psychologists Press, Palo Alto
(1985)

9. Urban, J.M., Hoofnagle, C.J.: The privacy pragmatic as privacy vulnerable. In: Workshop on
Privacy Personas and Segmentation, SOUPS, Menlo Park, CA, 9–11 July 2014

10. Smith, H.J., Milberg, S.J., Burke, S.J.: Information privacy: measuring individuals’ concerns
about organizational practices. MIS Q. 20, 167–196 (1996)

11. Morton, A., Sasse, M.A.: Desperately seeking assurances: segmenting users by their
information-seeking preferences. In: 2014 Twelfth Annual International Conference on
Privacy, Security and Trust (PST), pp. 102–111 (2014)

12. Malhotra, N.K., Kim, S.S., Agarwal, J.: Internet users’ information privacy concerns
(IUIPC): the construct, the scale, and a causal model. Inf. Syst. Res. 15(4), 336–355 (2004)

13. Information Systems Security Research Group. PERMIS, University of Kent. http://sec.cs.
kent.ac.uk/permis/

14. Johnson, M., Karat, J., Karat, C.M., Grueneberg, K.: Usable policy template authoring for
iterative policy refinement. In: IEEE International Symposium on Policies for Distributed
Systems and Networks, POLICY, Fairfax, Virginia, USA (2010)

15. Uszok, A., et al.: KAoS policy and domain services: toward a description-logic approach to
policy representation, deconfliction, and enforcement. In: IEEE 4th International Workshop
on Policies for Distributed Systems and Networks, POLICY (2003)

16. Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing Facebook privacy
settings: user expectations vs. reality. In: ACM Conference on Internet Measurement (2011)

17. Fang, L., LeFevre, K.: Privacy wizards for social networking sites. In: Proceedings of the
19th International Conference on World Wide Web. ACM, New York (2010)

18. Cranor, L.F.: P3P: making privacy policies more useful. IEEE Secur. Priv. 99, 50–55 (2003)
19. Cranor, L., Langheinrich, M., Marchiori, M.: A P3P Preference Exchange Language 1.0

(APPEL1.0) (2002). https://www.w3.org/TR/P3P-preferences/
20. Rudolph, M., Polst, S.: Satisfying and efficient privacy settings. Mensch und Computer

(2018)
21. Rudolph, M., Feth, D., Doerr, J., Spilker, J.: Requirements elicitation and derivation of

security policy templates—an industrial case study. In: 24th International Requirements
Engineering Conference (RE), Beijing, China, pp. 283–292 (2016)

22. Supplementary Experiment Material including extended Figures for this Paper. http://s.fhg.
de/yU6

54 M. Rudolph et al.

http://sec.cs.kent.ac.uk/permis/
http://sec.cs.kent.ac.uk/permis/
https://www.w3.org/TR/P3P-preferences/
http://s.fhg.de/yU6
http://s.fhg.de/yU6

RE-SWOT: From User Feedback
to Requirements via Competitor Analysis

Fabiano Dalpiaz1(B) and Micaela Parente2

1 RE-Lab, Department of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands

f.dalpiaz@uu.nl
2 Scaura B.V., Amsterdam, The Netherlands

micaelagparente@gmail.com

Abstract. [Context & Motivation] App store reviews are a rich
source for analysts to elicit requirements from user feedback, for they
describe bugs to be fixed, requested features, and possible improve-
ments. Product development teams need new techniques that help them
make real-time decisions based on user feedback. [Question/Problem]
Researchers have proposed natural language processing (NLP) tech-
niques for extracting and organizing requirements-relevant knowledge
from the reviews for one specific app. However, no attention has been
paid to studying whether and how requirements can be identified
from competing products. [Principal ideas/results] We propose RE-
SWOT, a tool-supported method for eliciting requirements from app
store reviews through competitor analysis. RE-SWOT combines NLP
algorithms with information visualization techniques. We evaluate the
usefulness of RE-SWOT with expert product managers from three mobile
app companies. [Contribution] Our preliminary results show that com-
petitor analysis is a promising path for research that has direct impact
on the requirements engineering practice in modern app development
companies.

Keywords: Requirements engineering · SWOT analysis ·
Natural language processing · Requirements analytics · CrowdRE

1 Introduction

User feedback is a precious resource for requirements elicitation [1,12,18]. When
effectively managed, user involvement may be beneficial for project success [1].
On the contrary, ill-managed user involvement may be harmful, e.g, if excessive
effort is required for processing the collected feedback.

Crowd-based Requirements Engineering (CrowdRE) is a recent trend in
Requirements Engineering (RE) that studies semi-automated methods to gather
and analyze information from a large number of users, ultimately resulting in
validated user requirements [11]. Automation, which is a distinguishing feature
of CrowdRE, reduces the effort required to cope with high volumes of feedback.
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 55–70, 2019.
https://doi.org/10.1007/978-3-030-15538-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_4&domain=pdf
http://orcid.org/0000-0003-4480-3887
https://doi.org/10.1007/978-3-030-15538-4_4

56 F. Dalpiaz and M. Parente

Natural Language Processing (NLP) techniques have been employed in Crow-
dRE for summarizing and classifying user input into structured knowledge. Many
of the existing approaches process user-generated reviews posted on app stores:
Guzman and Maalej [12] automatically extract app features and the associated
sentiment, Di Sorbo et al. [7] organize reviews according to their intention, and
the AR-Miner tool [4] identifies and summarizes the most informative reviews.

Current CrowdRE approaches that analyze app store reviews focus on a single
app. A gap exists in the use of competitor analysis to uncover requirements based
on an explicit comparison of one app’s reviews with those of competing apps.
The only work we could identify that considers competitors (see Sect. 2) extracts
and compares pairs of sentences for the same feature from multiple reviews [16].

In this paper, we propose RE-SWOT: a tool-supported method for eliciting
requirements from user reviews through competitor analysis. The tool combines
NLP automation with information visualization techniques, and belongs to the
domain of requirements analytics [5]. Our approach is inspired by classic liter-
ature in management, as it adapts the Strength-Weakness-Opportunity-Threat
(SWOT) analysis framework [14] to the field of RE. By presenting RE-SWOT,
we make three contributions to the literature:

– An algorithm that extracts features from the reviews of a set of competing
apps, and then generates a SWOT matrix on the basis of the sentiment that
the users have expressed toward the identified features;

– An information visualization technique that plots the results of the algorithm
in a chart, and helps analysts visually explore the competing apps with the
aim of eliciting new requirements;

– A qualitative evaluation of the practical applicability of our approach. After
demonstrating our implemented tool to three product managers of different
apps, we collect their opinion through follow-up interviews.

Organization. Section 2 discusses background and related literature. Section 3
details the algorithm for extracting features and classifying them through
the SWOT framework. Section 4 illustrates our information visualization tool.
Section 5 reports on the evaluation, while Section 6 discusses our findings and
presents future work.

2 Related Work

We present the necessary background for this paper in Sect. 2.1, and discuss
related approaches in Sect. 2.2.

2.1 Background

Crowd-Based Requirements Engineering. The rise of social media platforms has
significantly increased the volume of feedback from software users. As a response,
the RE community has initiated a shift toward data-driven and user-centered
prioritization, planning, and management of requirements [21].

RE-SWOT: From User Feedback to Requirements 57

One of the emerging initiatives is Crowd-based Requirements Engineering
(CrowdRE), which is defined [11] as “an umbrella term for automated or semi-
automated approaches to gather and analyze information from a crowd to derive
validated user requirements”. In CrowdRE, the considered feedback comes from
users who are not bond with the software company.

App Store Reviews in Requirements Elicitation. The reviews that are posted in
app stores contain diverse types of feedback. Besides functional issues (e.g., “I
used to love it, but I can’t watch videos anymore!”) and non-functional concerns
(e.g., usability or performance), the users also comment on not-yet-implemented
aspects by requesting improvements or new features [20].

Analyzing app store reviews can lead to a better understanding of how apps
are actually used, fast detection of newly introduced bugs [22], and insights from
a more diverse range of users [15]. Unfortunately, several challenges exist:

– Volume: to cope with the large quantity of reviews, CrowdRE proposes to use
NLP tools [11]. However, requirements elicitation is a “fundamentally human
activity” [3] and new tools are called upon to “bringing the human into the
loop and promoting thinking about the results” [2].

– Noise: Chen et al. [4] found that only 35.1% of app reviews contain informa-
tion that can directly help developers improve their apps. Thus, CrowdRE
approaches need to use filtering and aggregation of content [4,22,23].

– One-way communication: app store reviews lack meta-data about users and
app usage; moreover, the user-developer communication is unidirectional. As
such, the development team cannot reach back the users and ask for clarifi-
cations and context information.

– Conflicting opinions: reviews often contain conflicting opinions [11,15,21,28].
Classic negotiations mechanisms are inhibited by the unidirectional commu-
nication; as a result, prioritization approaches are necessary to weight issues
and wishes according to their prevalence and impact [19].

In practice, app development companies depend on community managers [19]
for reading and replying to user reviews, often facilitated by tools that provide
average ratings, distribution of stars over time, automatic labeling of reviews, etc.
However, such tools do not explicitly support the elicitation of new requirements.

Visual Requirements Analytics. Reddivari et al. [26] proposed a framework that
characterizes the visual requirements analytics process. They argue that, when
proposing a requirements visualization, one has to explicitly define many aspects:
the user, the goal, the questions to be answered, how to preprocess data, and the
visualization type. Furthermore, they explain how requirements analytics tools
need to go beyond the mere visualization and rather focus on the interaction
between analyst and visualization.

58 F. Dalpiaz and M. Parente

2.2 Related Literature: Mining Requirements from App Store
Reviews

Opinion mining approaches are applicable to app store reviews, but extra chal-
lenges exist [10] due to (i) the fine-grained reviews that include comments not
only on product features, but also specific parts of the user interface, or par-
ticular user-app interactions; and (ii) the short length of app store reviews (71
characters on average [10]). While most papers are still exploratory, some key
steps of mining requirements from app store reviews are discussed in the follow-
ing.

Preprocessing Reviews. This activity is necessary to reduce noise in the reviews.
Typical techniques include stop word removal, stemming, and lemmatization.
Unfortunately, none of them delivers perfect accuracy; for example, while remov-
ing common English words tends to improve classification accuracy [20], it can
hide user intentions (e.g., “should” for a feature request, “but” for a bug). Simi-
larly, lemmatization and stemming are alternative ways for standardizing words
with similar meaning, but no clear winner exists [9,20]. Other preprocessing
techniques include removing short reviews [7], matching synonyms, and filtering
words having specific POS tags like nouns, adjectives, and verbs [20].

Classifying Review Content. The goal is to classify reviews according to a
given taxonomy. Yang and Liang [31] distinguish between functional and non-
functional requirements by searching for keywords that are typically associated
with either category. Most techniques in the literature [7] focus on two aspects:
(i) user intention: the user’s goals when writing the review (e.g., reporting a bug
vs. requesting a feature); and (ii) review topic: the entire app, its interface, or a
specific feature. Maalej and Nabil [20] compare various algorithms for classifying
review intention as “Bug report”, “Feature request”, “Rating”, or “User expe-
rience”. Panichella et al. [23] employ a different taxonomy: “Feature request”,
“Problem discovery”, “Information seeking” or “Information giving”, which is
then used by the SURF tool [7] to classify reviews according to both intention
and topics: app, GUI, pricing, security, etc.

Extracting Features. NLP techniques can automatically extract the features
that a review refers to. Harman et al. [13] extract features from publicly available
app descriptions from an app store. They rely on the informal patterns that
developers use to illustrate the main features of an app, like bullet lists. Based on
these patterns, groups of commonly occurring co-located words are employed to
represent the feature. Guzman and Maalej [12] use word collocations appearing
in at least 3 reviews in their fine-grained analysis. Gao et al. [9] identify “phrases”
derived from bi-grams to prioritize issues for developers.

The SAFE framework [17] improves over previous methods, and it exhibits
a precision of 70%, recall of 56% and F1-score of 62%. They do so by defining a
list of POS patterns and sentence patterns that are frequently used to describe
features, and then applying cosine similarity algorithms.

RE-SWOT: From User Feedback to Requirements 59

Summarizing Reviews. Algorithms in this category reduce the feedback vol-
ume. AR-Miner [4] summarizes reviews by displaying the ten most important
topics (groups of features) found, ranked by an importance score called Group-
Score. Guzman et al. [12] use a two-level summary that shows the frequency and
sentiment per topic (groups of features) or per feature.

Competitor Analysis. Jin et al. [16] identify comparable sentences in different
reviews. Through feature extraction, sentiment analysis, similarity functions and
clustering, they compare the opinions on a topic by analyzing pairs of extracted
sentences. The WisCom system [8] enables summarization at the review, app,
and market level. These precursory approaches, however, do not provide a sys-
tematic method for eliciting requirements through competitor analysis.

3 The RE-SWOT Method

Our method for eliciting requirements from app store reviews is inspired by
SWOT analysis, a prominent framework for strategic planning in organizations
that gives an overview of how a product or business is positioned, vis à vis its
external environment [14]. SWOT analysis identifies four types of factors:

– Strengths: internal factors that enhance performance. For example, the high
loyalty of an organization’s employees.

– Weaknesses: internal factors that diminish performance. For instance, reliance
on too rigid business processes.

– Opportunities: external (i.e., outside the organization’s reach) enhancers to
performance that could be exploited. For example, economic growth.

– Threats: external factors that inhibit performance. For example, a large for-
eign firm joining the domestic market, which increases competition.

The crux of SWOT analysis is that, in order for an organization to improve its
competitiveness, it has not only to maximize the internal strengths and minimize
its own weaknesses, but also has to be aware and to react quickly and effectively
to the changing context by exploiting opportunities and mitigating threats.

Table 1. The RE-SWOT matrix: SWOT analysis adapted to CrowdRE.

Feature
performance

App with the feature

Reference app Competitor app

Positive and above
market average

Strength: keep and/or
extend the feature

Threat: imitate the competitor’s
feature to survive

Negative and below
market average

Weakness: fix bugs or
improve on a feature’s
issues

Opportunity: launch new
feature to exploit an existing gap

60 F. Dalpiaz and M. Parente

We draw a parallel between SWOT analysis and RE for a software product.
Consider an app that is distributed through one or more app stores; the require-
ments for the next releases are expected to leverage its strengths, mitigate the
app’s weaknesses, exploit market gaps, and imitate the successful features of the
competitors. Table 1 shows the RE-SWOT matrix that classifies a feature into
one SWOT category by comparing a reference app with a competing app. The
reference app belongs to the company that executes the RE-SWOT analysis.

The matrix builds on the notion of feature performance, a real number in the
[−1,+1] range that represents whether the feature implemented in a given app
has a prevalently positive (>0) or negative (<0) appreciation in the reviews. The
same feature may exhibit different performance when implemented in multiple
apps. In RE-SWOT, feature performance is calculated automatically from user
reviews, as described in Sect. 3.1.

We illustrate the RE-SWOT matrix with some examples. Consider a feature
f1, which is included in a reference app ar; if the feature performance of f1 as
implemented in ar is positive and also above the market average for that feature,
then f1 is a strength for app ar. Consider f2 instead, which is possessed by a
competitor app ac; if the feature performance of f2 as implemented by ac is
negative and below market average, then f2 represents an opportunity for ar.

3.1 Step-by-Step Method Description

We detail the steps of our method (overview in Fig. 1), thus clarifying how the
performance of a feature is calculated and how the RE-SWOT matrix is built.

Fig. 1. The RE-SWOT method: an overview.

Step 1: Identify Features and Transform Ratings. App features are iden-
tified from the user reviews. To do so, we employ NLP techniques for feature
identification, see Sect. 4.1 for the details. Furthermore, the original user ratings

RE-SWOT: From User Feedback to Requirements 61

(a natural number between 1 and 5) are mapped to the [−2,+2] integer scale in
which three stars becomes the neutral score (0).

Step 2: Calculate FPS per Feature. Given a set of apps A = {a1, a2, . . . , am}
and a set of features F = {f1, f2, . . . , fn}, we define the feature performance score
(FPS) of app ai in relation to feature fj as per Eq. 1:

FPSi,j =
Si,j · Vi,j∑m

k=1 |Sk,j · Vk,j | (1)

– Si,j represents the user sentiment for feature fj from app ai: the sum of the
transformed user ratings given to the reviews mentioning the feature, divided
by the maximum possible sum. For instance, if a feature is mentioned in two
5-star reviews and one 2-star review, the feature sentiment score for that
feature corresponds to (2 + 2 − 1)/(2 + 2 + 2) = +0.5.

– Vi,j is the feature volume for feature fj from app ai: the number of user
reviews from app ai that mention feature fj . Take an app with 2 reviews
“App crashes when uploading photos; whenever I try to upload my photos,
an error occurs” and “App is crashing a lot recently”. The feature volume for
upload photos is 1, for only the first review mentions that feature.

Step 3: Generate RE-SWOT Matrix. The FPS scores from Step 2 are
used to generate the RE-SWOT matrix (illustrated earlier in Table 1). For each
feature, the scores for each app are evaluated according to two criteria:

– Positive/negative/neutral FPS. A FPS is positive if Eq. 2 holds true, negative
if Eq. 3 is true, and neutral when the FPS is within the range (−σ,+σ). Based
on the results of an exploratory study in which we applied our formulas to
a few apps and their reviews, we pragmatically set σ to 0.1; in future work,
more rigorous experimentation and tuning are necessary.

FPS i,j ≥ σ (2)
FPS i,j ≤ −σ (3)

– Feature performance in the market. We determine if a feature fj is unique,
above or below market average (FPS j). A FPS is above average if Eq. 4 holds
true, below average if Eq. 5 applies. Moreover, a feature fj is unique when
only app ai has reviews concerning fj .

FPS i,j − FPS j ≥ σ (4)
FPS i,j − FPS j ≤ −σ (5)

Features from the competition with a positive FPS that is above the market
averages are classified as threats. On the other hand, features with a negative
FPS and below the market average represent opportunities. If the FPS refers to
a feature of the reference app, it can be a strength (FPS is positive and above the
market average) or a weakness (FPS is negative and below the market average).
Feature that do not fit the aforementioned scenarios are not classified.

62 F. Dalpiaz and M. Parente

Table 2. The RE-SWOT matrix applied to photo editing apps.

Feature
performance

App with the feature

Photo1 Photo2 or Photo3

Positive and above
market average

Strengths: filters Threats: edit photos, syncing
(Photo2) save photos (Photo3)

Negative and below
market average

Weaknesses: save
photos

Opportunities: filters, save photos
(Photo2) exporting (Photo3)

Step 4: Generate Requirements. In SWOT analysis, the TOWS framework
[29] is used to identify strategies that can improve a company’s competitiveness.
In RE-SWOT, we adapt TOWS to identify the most suitable requirements for
the app to excel in the market. With examples from the RE-SWOT matrix of
Table 2, we illustrate the four types of requirements originating from TOWS:

– SO requirements aim at pursuing opportunities that fit well with the
strengths. For example, feature filters should be boosted to exploit the oppor-
tunity that stems from the negative appreciation of filters in Photo2.

– WO requirements aim at overcoming weaknesses to pursue opportunities.
For instance, the save photos weakness could be overcome by leveraging the
opportunity given by the negative appreciation of that feature in Photo2.

– ST requirements aim at using strengths to reduce vulnerability to threats.
No examples of this category exist in Table 2.

– WT requirements aim at minimizing weaknesses to make them less sus-
ceptible to threats. For example, Photo1 could imitate the implementation of
the feature save photos in Photo3, which is currently a threat.

4 Prototype Tool

We implemented a tool that automatically creates an RE-SWOT matrix starting
from a set of user reviews for the reference app and its competitors. The tool is
built in R and Tableau Software and is available as an open source project1.

The tool consists of two modules: (i) an NLP module implemented in R that
creates the RE-SWOT matrix; and (ii) a visualization module for the analyst to
interact with an RE-SWOT matrix, which is built using Tableau software. Both
modules can be deployed through a Shiny web application.

4.1 NLP Module

First, the module pre-processes the user reviews through the following steps:

1. Tokenization: the reviews are split into sentences and words via Udpipe.
1 https://github.com/RELabUU/RE-SWOT.

https://github.com/RELabUU/RE-SWOT

RE-SWOT: From User Feedback to Requirements 63

2. To lowercase: all tokens are converted to lowercase to make them uniform.
3. Stopword removal: common English words are removed using the stopword

list of the tm package; moreover, additional words that are commonly found
in reviews (e.g., the app name, “feature”, “app”) are filtered out.

4. Noun, verb, and adjective extraction: features are more likely to be
described through nouns, verbs, and adjectives [12]. Thus, we used Udpipe’s
POS tagging to select the tokens that meet those POS tags.

5. Lemmatization: we apply Udpipe’s lemmatizer to the tokens so that words
such as “photos” and “photo” are reduced to the common term “photo”.

In line with previous studies [12], we identify features through a collocation
finding algorithm that identifies pairs of words (nouns, adjectives, verbs) that co-
occur often in the reviews of each app. We exclude pairs that co-occur up to three
times, and collocations that follow the patterns (adj, adj), (verb, adj), and (verb,
verb), for our manual inspection revealed that they did not extract meaningful
features. Hence, the considered collocation patterns are (noun, noun), (noun,
adj), (noun, verb), (adj, noun), (adj, verb), and (verb, noun).

To further cope with the heterogeneous wording that users employ to refer
to a same feature, we merge similar features (e.g., “photo edition” and “edit
picture”) by invoking the Cortical.IO service2 to compute the cosine semantic
similarity between all combinations of features. We merge feature labels with
similarity score ≥0.60, and assign as label that having the highest frequency.

4.2 Visualization Module

This module is an Information Visualization approach for analysts to interact
with the RE-SWOT matrix. We describe it via Pfitzner’s framework et al. [25].

Data Factor. Three data objects are used: reviews, extracted features, and
apps. Reviews have a date, a title, and a rating. A feature has a name, the
related app, the FPS score, and the feature volume. An app can be classified
as reference or competitor. Two relationship link the objects: (i) mention(f, r)
denotes that feature f is mentioned in review r, and (ii) SWOT (f, a, c) denotes
the class c (strength, weakness, opportunity, or threat) of feature f for app a.

Task Factor. This focuses on what actions the user can perform on the data
and is described according to Shneiderman mantra’s dimensions overview, zoom,
filter, and detail-on-demand [27]. An overview of the tool is shown in Fig. 2.

Overview. The user can see a set of circles, each representing a feature. A fea-
ture’s x-axis position represents the app where the feature was identified, and
the y-axis position represents the feature’s uniqueness. The size of the circle
corresponds to the feature frequency in the reviews, and its color illustrates its
SWOT classification from the perspective of the reference app.
2 http://www.cortical.io/compare-text.html.

http://www.cortical.io/compare-text.html

64 F. Dalpiaz and M. Parente

lightroom snapseed vsco

Features in
common

Features
unique to
competition

Features
unique to
lightroom

white

upload video

new

light room

free filter

video editing

mobile

import photo

desktop

social media

raw photo

new ui

user friendly

raw file

raw file

favorite

edit picture

editing tool

editing tool

edit photo

edit photo
photo editingiphonex

interface

version

TO START
Type your app name:
lightroom

Filter by SWOT
Multiple values

Filter by feature volume
Multiple values

Filter by quarter
2017 Q4

Legend - SWOT
Opportun..
Strength
Threat

Weakness

version

editing

background

Fig. 2. The visualization of features in the RE-SWOT tool.

Zoom. The tool allows to zoom into a feature via a click, showing only the
selected feature across all the apps with reviews mentioning that feature.

Filter. The tool allows to filter the visualized information in different ways:

1. By quarter. In Fig. 2, 2017 Q4 is shown;
2. By feature volume: low when the review volume is lower or equal to 1/6 of

the range, medium if between 1/6 and 2/6 of the range, and high otherwise.
In Fig. 2, only features with medium and high volume are shown;

3. By SWOT classification. In Fig. 2, features that are not assigned any of the
four SWOT classes are omitted.

Details-on-Demand. If necessary, the analyst can request details about (i) a
feature, through a tooltip that shown the distribution of user ratings and other
information concerning the feature (Fig. 3); and (ii) a review, showing the entire
sentence in which a feature is mentioned.

5 Evaluation

We performed a preliminary evaluation aimed to determine how practitioners
find RE-SWOT supportive to requirements elicitation through competitor anal-
ysis. In particular, we conducted three semi-structured interviews with three
product management members from different app developers.

RE-SWOT: From User Feedback to Requirements 65

Fig. 3. Inspecting the details of a feature.

Interview Protocol. Due to logistic constraints, the interviews were conducted
remotely via online meetings that allowed for screen sharing and recording. The
interview protocol, fully described in the appendix of [24], included five parts:

1. Introduction (5 min): an explanation of the research and the interview goals.
2. Contextual questions (10 min) were made concerning the company, the inter-

viewee’s role, the product, and their current app review analysis practices.
3. Demo (10 min): the tool was showcased on a set of photo editing apps.
4. Tool use (20 min): the participant could interact freely with the tool prepared

with reviews concerning the interviewee company’s app and its competitors.
In this phase, the researcher minimized interference, while think aloud was
encouraged, and the participant was allowed to stop before the time expired.

5. Follow-up questions (15 min) on the participant’s experience with the tool,
pros and cons, missing features, and a comparison with the current practice.

Two participants were recruited through a post in the online community
MindTheProduct, an international community for product management. One
participant was recruited via convenience sampling. All participants represented
companies with a mobile app on Google Play or iOS App Store, and could
identify 2+ competing app. Both the reference app and the competitors needed
to have 200+ reviews in English over the same period and distribution platform.

Case Descriptions. For confidentiality restrictions, we cannot disclose the
identity of the companies. Pseudonymized data, including the periods from which
we mined the reviews, is summarized in Table 3 and described below:

– Case 1: dating apps. We interviewed a senior business analyst, working for
2 years at a Canadian company whose service (dat-ref) has 150 million reg-
istered users; besides mobile apps for iOS, Android, and Windows Phone,
dat-ref users can also use a website. As competitors, the interviewee sug-
gested the market leader (dat-c1) and a fast-growing company (dat-c2).

– Case 2: travel apps for tourists. The reference app (trv-ref) supports the
booking of activities and tickets, and is produced by a company with 400
employees distributed over three continents. We interviewed a senior product

66 F. Dalpiaz and M. Parente

manager with 6+ years of expertise in the field, who is responsible for the
development roadmap. The competitors are an app for the Asian market
(trv-c1) and the market leader (trv-c2).

– Case 3: puzzle games. The reference app (pzl-ref) has 135 puzzle types and is
created by a small European company (6 employees). We interviewed the CEO
of the company, who is a software engineer and has 9 years of experience in app
development. The competitors pzl-c1 and pzl-c2 are similar apps suggested
by the interviewee.

Table 3. Overview of the data collected for the three cases. The number of features
refers to those that were mined by our tool.

Case 1: Dating apps Case 2: Travel apps Case 3: Puzzle games

May 2018 Dec 2016–May 2018 Jan 2017–Jun 2018

ID Reviews Features ID Reviews Features ID Reviews Features

dat-ref 3,220 280 trv-ref 253 9 pzl-ref 743 11

dat-c1 992 46 trv-c1 506 30 pzl-c1 2,105 72

dat-c2 802 66 trv-c2 375 14 pzl-c2 3,321 176

Results: Current Practice. All interviewees reported that they read the
reviews for their app to some extent. The dat-ref interviewee reads all reviews
approximately once per month to understand user perception and to identify
areas for improvement. The reviews of trv-ref are automatically re-posted to the
development team communication channel, giving everyone the opportunity to
read them on a continuous basis. The CEO of pzl-ref reads the reviews occasion-
ally through the Google Play Developers console, but found them only mildly
useful for guiding product development. None of the interviewees has the habit
of reading their competitors reviews, either due to time constraints (dat-ref) or
because the option has never been considered (trv-ref and pzl-ref).

Positive Aspects and Insights. All participants referred to the visual and
interactive aspect of RE-SWOT as the main positive feature of the tool. Accord-
ing to the dat-ref interviewee, “The tool is easy to learn and navigate”, while
the trv-ref interviewee described the experience as a “deep-dive analysis”.

The dat-ref product manager highlighted other positive aspects: the possi-
bility to zoom and see details can impact positively the communication between
stakeholders, and the automated detection of phrases from the reviews is useful
to work with a large volume of reviews. The same interviewee was surprised to
discover that one of the competitors received fewer reviews than dat-ref.

RE-SWOT: From User Feedback to Requirements 67

The trv-ref interviewee stated to have become aware of a feature from the
competitors that was previously unknown, and this—if time allows—may influ-
ence product development. It was also possible to see that one competitor was
conducting a promotion because people are commenting on promo codes.

The CEO of pzl-ref said that the tool confirms that competitor apps adopt a
similar business model, but found the insight generation limited, mostly due to
the nature of reviews received by games, which are generic and not informative.

Improvements and Missing Features. Both the dat-ref and the trv-ref
interviewees indicated the possibility to see trends over time as the most valu-
able improvement. While the dat-ref product manager found that the feature
could make the tool directly usable in practice, the trv-ref interviewee would
have liked to see the reviews for a custom period of time, instead of selecting
one quarter.

The trv-ref participant observed some weaknesses in the feature extraction
algorithm; despite our attempt to merge some features via lemmatization, there
are still cases in which two word collocations are not merged automatically.

Concerning the SWOT classification, both the trv-ref and the pzl-ref partic-
ipants found some opportunities to be inaccurate, for bugs in other apps do not
necessarily represent an opportunity (trv-ref), and because some opportunities
referred to features that are already implemented in the reference app (pzl-ref).

Finally, the pzl-ref interviewee suggested some usability improvements,
including (i) a filter for the analyst to remove uninformative (e.g., short) reviews;
and (ii) an automatically generated preview of the reviews mentioning a given
feature, a sort of summarization.

Comparison to Current Practice. None of the participants currently read
their competitors reviews; thus, the interviewees answered based on the way
they read their own app’s reviews. The dat-ref interviewee found the feature
generation algorithm to be an improvement over their current practice. The
trv-ref product manager thought that the visualization tool has the potential to
deliver knowledge about the competitors. Finally, the pzl-ref interviewee referred
us to the Google Play Console, which provides review highlights using similar
techniques to RE-SWOT for feature extraction. However, according to the par-
ticipant, analyzing reviews through RE-SWOT is more visual and interactive.

Factors Influencing Adoption. The dat-ref interviewee could see RE-SWOT
being integrated into their workflow if more competitors could be handled (cur-
rently, it supports two competitors besides the reference app), and if trend anal-
ysis was included. As a drawback, the tool uses Tableau Software, which could
make it unaffordable to some companies. Also the trv-ref participant thought
they could adopt the tool, when a functionality was created to support the anal-
ysis of trends. On the other hand, the pzl-ref CEO found no real incentive to
adopt the tool, unless a notification mechanism is put in place so that changes
in sentiment are automatically pushed to the product management.

68 F. Dalpiaz and M. Parente

6 Discussion and Future Work

We have presented the RE-SWOT method for eliciting requirements for mobile
apps based on competitor analysis through the automated processing of user
reviews posted in app stores. RE-SWOT draws inspiration from strategic plan-
ning and classifies app features as strengths, weaknesses, opportunities, and
threats.

RE-SWOT employs NLP algorithms to automatically extract features from
the reviews and to classify the features according to the SWOT framework. The
results are rendered in an interactive visualization that helps analysts explore
their app’s market and identify possible requirements for the next releases.

Main Findings. The feature extraction algorithm was evaluated positively by
the dat-ref participant, while the other two interviewees found that the results
include too many false positives. It is worth noting that the dat-ref receives 100
times the rate of reviews than the other reference apps; as such, we hypothesize
that the algorithm is more effective for apps with a high review volume.

The SWOT classification was understood quite well by all interviewees. The
most recurrent feedback was that not all strengths or weaknesses of the competi-
tors represent actual threats or opportunities. Our to-be-expected conclusion is
that the insights that RE-SWOT returns do not automatically result in new
requirements for the reference app; human analytical skills are essential.

The interactive visualization of the tool was indicated as a positive factor by
all interviewees. On the other hand, they indicated the need to include change
detection techniques, either via trend analysis or through a notification system
that informs analysts of significant changes in the sentiment toward a feature.

Validity Evaluation. We discuss the major threats to validity based on the
distinction between internal, conclusion, construct, and external validity [30].

Internal Validity. All of our interviewees adopted practices in which competi-
tor reviews were not considered. Therefore, the positive appreciation could be
explained by the fact the interviewees had never analyzed competitor reviews.
Moreover, the review volume differed greatly across apps, therefore resulting in
a large variability in terms of the period we analyzed.

Conclusion Validity. The interviews were manually coded into observations, and
therefore we may have inserted our own beliefs during this process. Moreover,
the number of cases (N = 3) is insufficient to draw definitive conclusions.

Construct Validity. RE-SWOT has been evaluated as a whole rather than by
its parts. Therefore, we cannot determine, for example, the extent to which
the SWOT classification mechanism is effective, for the practitioners may have
focused on other factors like the size of the circles (the volume).

RE-SWOT: From User Feedback to Requirements 69

External Validity. As observational case studies were applied, there is no pop-
ulation to sample from. Therefore, generalization is analytical rather than sta-
tistical. Moreover, the number of reviews for case 2 and case 3 are rather low to
justify an automated approach; as such, the case of dating apps is probably the
most representative of the intended audience.

Future Directions. Many improvements to RE-SWOT are possible. For fea-
ture extraction, we adapted Guzman and Maalej’s technique [12], but we could
experiment with the SAFE framework [17] or other recent algorithms. Also, the
thresholds we used to determine the SWOT classes should be adjusted. Fur-
thermore, as pointed out by the interviewees, trend analysis should be included
for increasing the impact of the tool. The sentiment score calculation can be
improved by looking at the text characteristics, instead of using only the number
of stars assigned by the users. Inevitably, more empirical evaluation is necessary;
in particular, we need to assess the effectiveness of the framework when used in
the daily practice of requirements engineers and product managers.

In general, this work offers numerous opportunities for research that combines
NLP and information visualization in RE; for another example of such synergy,
see our work on terminological ambiguity [6]. In order for automated techniques
to become useful for practitioners, the results of automation have to be turned
into requirements analytics tools [26] that are built for use by human analysts.

References

1. Bano, M., Zowghi, D.: A systematic review on the relationship between user
involvement and system success. Inf. Softw. Technol. 58, 148–169 (2015)

2. Berry, D.: Natural language and requirements engineering–nu? In: International
Workshop on Requirements Engineering (2001)

3. Bourque, P., Fairley, R.E.: Guide to the software engineering body of knowledge
(SWEBOK (R)): version 3.0. IEEE Computer Society Press (2014)

4. Chen, N., Lin, J., Hoi, S.C.H., Xiao, X., Zhang, B.: AR-miner: mining informative
reviews for developers from mobile app marketplace. In: Proceedings of ICSE, pp.
767–778 (2014)

5. Cooper Jr., J.R., Lee, S.W., Gandhi, R.A., Gotel, O.: Requirements engineering
visualization: a survey on the state-of-the-art. Proceedings of REV, pp. 46–55
(2009)

6. Dalpiaz, F., van der Schalk, I., Brinkkemper, S., Aydemir, F.B., Lucassen, G.:
Detecting terminological ambiguity in user stories: tool and experimentation. Inf.
Softw. Technol. (2019). https://doi.org/10.1016/j.infsof.2018.12.007

7. Di Sorbo, A., et al.: What would users change in my app? Summarizing app reviews
for recommending software changes. In: Proceedings of FSE, pp. 499–510 (2016)

8. Fu, B., Lin, J., Li, L., Faloutsos, C., Hong, J., Sadeh, N.: Why people hate your app:
making sense of user feedback in a mobile app store. In: Proceedings of SIGKDD,
pp. 1276–1284 (2013)

9. Gao, C., Wang, B., He, P., Zhu, J., Zhou, Y., Lyu, M.R.: PAID: prioritizing app
issues for developers by tracking user reviews over versions. In: Proceedings of
ISSRE, pp. 35–45 (2016)

https://doi.org/10.1016/j.infsof.2018.12.007

70 F. Dalpiaz and M. Parente

10. Genc-Nayebi, N., Abran, A.: A systematic literature review: opinion mining studies
from mobile app store user reviews. J. Syst. Softw. 125, 207–219 (2017)

11. Groen, E.C., et al.: The crowd in requirements engineering: the landscape and
challenges. IEEE Softw. 34(2), 44–52 (2017)

12. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment
analysis of app reviews. In: Proceedings of RE, pp. 153–162 (2014)

13. Harman, M., Jia, Y., Zhang, Y.: App store mining and analysis: MSR for app
stores. In: Proceedings of MSR, pp. 108–111 (2012)

14. Hill, T., Westbrook, R.: SWOT analysis: it’s time for a product recall. Long Range
Plann. 30(1), 46–52 (1997)

15. Hosseini, M., Phalp, K., Taylor, J., Ali, R.: Towards crowdsourcing for requirements
engineering. In: Proceedings of REFSQ, pp. 82–87 (2014)

16. Jin, J., Ji, P., Gu, R.: Identifying comparative customer requirements from product
online reviews for competitor analysis. Eng. Appl. Artif. Intell. 49, 61–73 (2016)

17. Johann, T., Maalej, W.: Democratic mass participation of users in Requirements
Engineering? In: Proceedings of RE, pp. 256–261 (2015)

18. Kabbedijk, J., Brinkkemper, S., Jansen, S., van der Veldt, B.: Customer involve-
ment in requirements management: lessons from mass market software develop-
ment. In: Proceedings of RE, pp. 281–286 (2009)

19. Keertipati, S., Savarimuthu, B.T.R., Licorish, S.A.: Approaches for prioritizing
feature improvements extracted from app reviews. In: Proceedings of EASE, pp.
1–6 (2016)

20. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On automat-
ically classifying app reviews. In: Proceedings of RE, pp. 116–125 (2015)

21. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Towards data-driven requirements
engineering. IEEE Softw. 33, 1–6 (2015)

22. Pagano, D., Maalej, W.: User feedback in the AppStore: an empirical study. In:
Proceedings of RE, pp. 125–134 (2013)

23. Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora, G., Gall, H.C.:
How can I improve my app? Classifying user reviews for software maintenance and
evolution. In: Proceedings of ICSME 2015, pp. 281–290 (2015)

24. Parente, M.G.: Using NLP and information visualization to analyze app reviews.
Master’s thesis, Utrecht University, the Netherlands (2018). https://dspace.library.
uu.nl/handle/1874/368082

25. Pfitzner, D., Hobbs, V., Powers, D.: A unified taxonomic framework for information
visualization. In: Proceedings of APVis (2003)

26. Reddivari, S., Rad, S., Bhowmik, T., Cain, N., Niu, N.: Visual requirements ana-
lytics: a framework and case study. Requir. Eng. 19(3), 257–279 (2014)

27. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of VL/HCC, pp. 336–343 (1996)

28. Srivastava, P.K., Sharma, R.: Crowdsourcing to elicit requirements for MyERP
application. In: Proceedings of CrowdRE, pp. 31–35 (2015)

29. Weihrich, H.: The TOWS matrix–a tool for situational analysis. Long Range Plan.
15(2), 54–66 (1982)

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

31. Yang, H., Liang, P.: Identification and classification of requirements from app user
reviews. In: Proceedings of SEKE, pp. 7–12 (2015)

https://dspace.library.uu.nl/handle/1874/368082
https://dspace.library.uu.nl/handle/1874/368082
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Tracelink Quality

Increasing Precision of Automatically
Generated Trace Links

Paul Hübner(B) and Barbara Paech

Institute for Computer Science, Heidelberg University,
Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
{huebner,paech}@informatik.uni-heidelberg.de

Abstract. [Context and Motivation] In order to use automatically
created trace links during a project directly, the precision of the links
is essential. Our interaction-based trace link creation approach (IL) uti-
lizes the interactions of developers recorded in an integrated development
environment (IDE) while working on a requirement. For this, develop-
ers need to indicate the requirement they are going to work on before
coding. This approach worked well in an open-source project with devel-
opers who were interested in the interaction logs, but did not work well
with students who were not particularly motivated to trigger the inter-
action recording. [Question/problem] Developers often create trace
links themselves by providing issue identifiers (IDs) in commit messages.
This causes little effort and does not require the awareness for interac-
tion recording. However, as confirmed by recent research, typically only
60% of the commits are linked. In this paper, we study whether and how
IL can be improved by a combination with links created by issue IDs in
commit messages. [Principal ideas/results] We changed our approach
so that interaction logs are associated with requirements based on the
IDs in the commit-messages. Thus, developers do not need to manually
associate requirements and interaction logs. We performed a new student
study with this approach. [Contribution] In this new study, we show
that with this new approach and link improvement techniques precision
is above 90% and recall is almost 80%. We also show that for our data
this is better than using commit-messages only and better than the often
used information retrieval-based approaches.

Keywords: Traceability · Interaction · Requirement · Source code ·
Precision

1 Introduction

Existing trace link creation approaches are most often based on information
retrieval (IR) and on structured requirements, such as use cases [3,5]. These
approaches mostly focus on the optimization of recall [3]. In addition, their
precision is bad which makes the approaches not applicable when directly using
created links [5]. Therefore, a review of the created link candidates by an expert
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 73–89, 2019.
https://doi.org/10.1007/978-3-030-15538-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_5

74 P. Hübner and B. Paech

is necessary before their usage. In security-critical domains such as aeronautics
and the automotive industry, complete link sets are required. These links are only
created periodically, when needed for certification to justify the safe operation
of a system [4]. Therefore, the additional effort to remove many false positive
links is accepted.

Nowadays, many software companies use issue tracking systems (ITS) to
specify their requirements [15]. For open source projects, the usage of an ITS
is a crucial point and de facto standard [18]. In ITS, the requirements text is
unstructured and requirement issues are mixed with other issues for e.g. bug
tracking, task and test management [18]. Furthermore, for many development
activities, it is helpful to consider the links between requirements and source
code during development, e.g. in maintenance tasks, for program comprehension
and re-engineering [7,16].

If these links are created continuously during the development, e.g. after each
commit performed by a developer, they can be used continuously. In these cases,
the big effort of handling false positives, and thus bad precision is not practi-
cable. Therefore, a trace link creation approach for links between unstructured
requirements and code with perfect precision and good recall is needed.

Our interaction-based trace link creation approach (IL) aims at continuous
link creation and usage. IL relies on developers manually selecting the require-
ment in their IDE before they start to work on it. Then, interactions recorded in
the IDE are assigned to this requirement and the code files touched during inter-
actions assigned to this requirement are used to create trace links. The approach
is implemented in a corresponding tool1.

In an initial study [10] based on open source data, we could show that IL
links can have perfect precision and good recall (i.e. at least above 80%), if
the developers use the requirements selection systematically. Since the initial
recall of IL for one of the data sets used in this study was below 80%, we also
used source code structure to improve the recall. Source code structure denotes
relations between source code files such as references. Basically, we added further
links by following the references of already linked files.

In a second study [11] with students as developers, the developers did not
perform the manual selection of the requirements systematically. This lead to
the creation of wrong trace links by our IL approach (precision of 43.0%, recall
of 73.7% and f0.5-measure of 0.469). To countervail the creation of wrong links,
we came up with wrong link detection techniques. On the one hand, we used
techniques based on data of the recorded interaction (e.g. interaction duration
and frequency). On the other hand, we used techniques based on the source
code structure. With these wrong link detection techniques, we could improve
the precision of IL to 68.2% (f0.5-measure of 0.624) [11]. However, the precision
improvement also resulted in a decline of the recall to 46.5%. This is still not
satisfying. Thus, we looked for a way to remove the error-prone manual selection
of the requirement by the developers.

1 https://se.ifi.uni-heidelberg.de/il.html, tool and data download.

https://se.ifi.uni-heidelberg.de/il.html

Increasing Precision of Automatically Generated Trace Links 75

The usage of issue identifiers (IDs) to link commits to requirements and bug
reports is a common convention in open source projects [2,18,23]. Developers
often create trace links themselves by providing issue IDs in commit messages
[22]. Trace links can be created by linking all files affected by a commit with
the requirement specified by the issue ID in the commit message. This is little
effort and does not require the awareness for interaction recording. However, as
confirmed by recent research, typically only 60% of the commits are linked [23].
Therefore, our idea is to combine the ID-based linking with interaction recording.
Instead of using manually selected requirements, the issue IDs from developers’
commit messages are used. All code files touched in the interactions before the
commit are associated to the requirement identified through the issue ID.

As the students of our second study also used requirement issue IDs in their
commit messages, we first simulated the combination of issue ID and IL retro-
spectively with the data of our previous study (without using the wrong link
detection techniques). This directly improved the precision from 43.0% to 56.6%
without affecting the recall.

This encouraged us to improve our approach with consideration of IDs in
the commits. This new approach is called ILCom. We applied ILCom in a new
study with students. Without further wrong link detection techniques, ILCom

had a precision of 84.9% and a recall of 67.3% (f0.5-measure of 0.807). We also
applied our wrong link detection techniques [11] and recall improvements [10]
and could finally achieve a precision of 90.0% and a recall of 79.0% (f0.5-measure
of 0.876). Only using the issue IDs and the list of changed files from commits for
link creation similar as described by [23] together with our wrong link detection
and recall improvement techniques resulted in a precision of 67.5% and recall
of 44.3% (f0.5-measure of 0.611). For IR-created links using latent semantic
indexing (LSI) [6], also including our wrong link detection, precision was 36.9%
and recall 55.7% (f0.5-measure of 0.396). Thus, in our new study we show that
ILCom achieves very good precision and recall and that it is much better in both
precision and recall than the standard techniques.

The remainder of the paper is structured as follows. Section 2 introduces
basics for evaluation of automatically created trace links, the projects used
for the evaluation, our basic IL approach and former study results. Section 3
illustrates the details of the ILCom approach and its implementation. It also
reports on our retrospective preliminary study. Section 4 outlines the experi-
mental design of our new study. Section 5 presents and discusses the results of
our new study. Section 6 discusses the threats to validity and Sect. 7 related
work. Finally, Sect. 8 concludes the paper and gives an outlook on our further
research.

2 Background

In this section we introduce basics of trace link evaluation, describe the used
study projects, introduce our IL approach and report about IR based trace link
creation and results of our former studies.

76 P. Hübner and B. Paech

2.1 Trace Link Evaluation

In the following, we sketch the basics of trace link evaluation as already described
in our paper [11]. To evaluate approaches for trace link creation [3,5], a gold
standard which consists of the set of all correct trace links for a given set of
artifacts is important. To create such a gold standard, it is necessary to manually
check whether trace links exist for each pair of artifacts. Based on this gold
standard, precision and recall can be computed.

Precision (P) is the amount of correct links (true positives, TP) within all
links found by an approach. The latter is the sum of TP and incorrect links
(false positive, FP). Recall (R) is the amount of TP links found by an approach
within all existing correct links. The latter is the sum of TP and false negative
(FN) links:

P =
TP

TP + FP
R =

TP

TP + FN
Fβ = (1 + β2) · P · R

(β2 · P) + R

Fβ-scores combine the results for P and R in a single measurement to judge the
accuracy of a trace link creation approach. As shown in the equation, for Fβ

above, β can be used to weight P in favor of R and vice versa. In contrast to
other studies, our focus is to emphasize P, but still consider R. Therefore, we
choose F0.5 which weights P twice as much as R. In addition, we also calculate
F1-scores to compare our results with others. For approaches using structured
[8] and unstructured [19] data for trace link creation good R values are between
70 and 79% and good P values are between 30 and 49%.

2.2 Evaluation Projects

In the following, we describe the three projects we used for the evaluation of our
approach. The first project is Mylyn a open source project which we used in our
first IL evaluation [10]. In the project a plug-in to manage development tasks
directly within the IDE is developed. We used the public accessible project’s
requirements and interaction log data stored in an ITS and source code in the
Git version control system to create our data sets. We created two data sets
using excerpts of the Mylyn project data from the years 2007 and 2012. They
are called M2007 and M2012 in the following. Details can be found in [10].

The other two projects are university student projects we created one data set
for each project using interaction recording of our tools, requirements managed
in an ITS and source code in a version control system. Since the first university
student project finished in 2017 and the second in 2018 the data sets for these
project are called S2017 and S2018 respectively. Both are Scrum-oriented working
with a real world customer in sprints. The first of them lasted from October 2016
to March 2017. We used it in the evaluation of a first IL improvement [11]. The
second project lasted from October 2017 to March 2018. We used this project’s
data set S2018 in the actual evaluation. The details of the second data set are
explained in Sect. 4.2.

Increasing Precision of Automatically Generated Trace Links 77

The aim of the S2017 project was to develop a system to store and manage
all health care reports for a patient in a single data base. The customer was
the IT department of the university hospital. The aim of the S2018 project was
to develop an Android-based indoor navigation app for students in university
buildings. Typical use cases for such an app are navigating to the room of a
certain lecture or finding any other point of interest efficiently. The customer
was a mobile development company. In both projects, an adviser from our chair
was involved. Seven students participated in the S2017 project and six students in
the S2018 project. The projects were split in a corresponding number of sprints.
In each of these sprints, one of the students acted as Scrum master and thus was
responsible for all organizational concerns such as planning the development
during the sprint and communicating with the customer.

For all requirement management-related activities, in both projects a Scrum
Jira2 Project was used. This included the specification of requirements in the
form of user stories and the bundling of the stories in epics. An example of a
user story in the navigation app project is Show point to point route and the
corresponding epic of this story is routing. To assign the implementation of user
stories to developers, sub-task issues were used. A sub-task comprises partial
work to implement a user story, e.g. Show route info box. For the implemen-
tation, the developers used Git as version control system and the Webstorm3

version of intelliJ in the first and the Eclipse IDE with the Android software
development kit (SDK) in the second project. For both IDEs we provided plug-
ins implementing our interaction recording tools. For the usage of Git in the
S2018 project, there was an explicit guideline to use a Jira Issue ID in any com-
mit message to indicate the associated Jira Issue. Although not directly required,
the developers used this convention in the S2017 project as well.

In the first S2017 project, the developers used JavaScript as programming
language which was requested by the customer. Furthermore, the MongoDB4

NOSQL database and the React5 UI framework were used. In the S2018 project,
the customer provided a proprietary Java SDK of their own for the general use
case to develop Android mobile navigation apps. The developers needed two
sprints to understand the complexity of the SDK and to set up everything in a
way to work efficiently on the implementation of requirements. The programming
language for the logic and data management part was Java and the UI was
implemented in Android’s own XML based language.

In both projects at the beginning of the first sprint, we supported the develop-
ers with the installation and initial configuration of our interaction log record-
ing tools. We also gave a short introduction on the implemented interaction-
recording mechanism and how to use the tools during the project.

In Sect. 2.4 we summarize the previous evaluations and compare them with
information retrieval based link creation. In Sect. 3.3 we use the S2017 project to

2 https://www.atlassian.com/software/jira.
3 https://www.jetbrains.com/webstorm/.
4 https://www.mongodb.com/.
5 https://reactjs.org/.

https://www.atlassian.com/software/jira
https://www.jetbrains.com/webstorm/
https://www.mongodb.com/
https://reactjs.org/

78 P. Hübner and B. Paech

test our assumption that using issue IDs in commit messages improves the pre-
cision. In Sect. 4 we use the S2018 project to evaluate our new approach ILCom.

2.3 IL Approach Overview

Figure 1 shows the overview of our IL approach consisting of three steps. In
the first step Interaction Capturing, interaction events in the IDE of a devel-
oper are captured and associated to a requirement. We implemented our app-
roach as plug-in for the IntelliJ IDE. For this, we extended an existing activity
tracker plug-in to also track the interactions with requirements. In addition,
we used the Task & Context functionality of IntelliJ to associate interactions
with requirements. The developers could connect IntelliJ to the Jira project and
the developers had to select the specific Jira issue with the UI of the Task &
Context functionality when working on a requirement. As a result, the inter-
action log contained activation and deactivation events for requirement issues.
These activation and deactivation events were used to allocate all interactions
between the activation and deactivation event for a specific requirement to this
specific requirement. Since the developers also used sub-task issues and sub-tasks
describe details for implementing the requirement, we combined the interactions
recorded for requirements and for the corresponding sub-tasks.

Fig. 1. IL Trace link creation overview: interaction capturing, trace link creation and
improvement ILi

In the second step Trace Link Creation, all interaction events captured for a
requirement are used to generate trace links between the requirement and the
source code files affected by the interactions. We did not consider files such as
build configurations, project descriptions, readme files, meta-data descriptions,
binaries etc. and files from 3rd parties such as libraries, as we focused on the
code created by the developers. Interaction event-specific metadata like the event
type (edit or select), the duration as the sum of all events’ durations based on
the interactions’ time stamps for specific files and the frequency of how often
an interaction occurred for a specific file were captured. The result of this sec-
ond step is a list of trace links including the metadata aggregated from these
interactions which is used as input for the third step Trace Link Improvement.

In this third step, precision is improved by removing potential wrong links
using the interaction-specific metadata frequency, duration, and event type from

Increasing Precision of Automatically Generated Trace Links 79

the previous step. For frequency, duration, and event type, different settings
are possible. Precision is also improved by using the source code structure, i.e.
the references from one source code file to other source code files. In our P2017

study, we found that linking only source code files which are connected by source
code structure with each other improves the precision significantly (source code
structure in story) [11]. Finally, we also use the source code structure to improve
the recall of IL. In this case, the source code structure of source code files which
are already linked to a requirement is utilized. We add links by following the
relations of the source code structure to other source code files up to a certain
level [10].

In the following, we denote our IL approach as IL when applying the first
two steps only and as ILi when also applying the improvement techniques of
the third step.

2.4 IR Based Link Creation and Previous Studies

To compare the results of our IL approach we also created links with information
retrieval (IR). IR based link creation uses the textual content of documents and
creates links based on textual similarity. Before document text content is pro-
cessed by IR preprocessing of the textual content is performed. We performed all
common IR preprocessing steps like stop word removal, punctuation, character
removal, and stemming [1,3]. We also performed camel case identifier splitting
(e.g. RouteInfoBox becomes Route Info Box), since camel case notation has been
used in the source code [6]. In our studies we used the two most common IR
techniques for trace link creation vector space model (VSM) and latent seman-
tic indexing (LSI) [3,5,6]. The basic difference between these two IR techniques
is that LSI can also consider synonyms of terms as similar whereas VSM only
considers equal terms.

In the P2018 project the requirements were specified in German, but the
source code files were in English. Thus we automatically translated the P2018

requirements using the googletrans Python library6 before preprocessing and
IR application. Since the user stories of both student projects P2017 and P2018

contained only short texts, the used threshold values for IR had to be set low.
Source code structure-based precision and recall improvements (cf. Sect. 2.3)
have also been applied to the IR (IRi) and IL created trace links (ILi).

Table 1 shows the results for IR and IL for our previous studies using the
data sets explained in Sect. 2.2. When comparing the precision, recall and f0.5-
measures of IRi and ILi, ILi clearly outperforms IRi in all three data sets.

3 Commit Based Link Creation and ILCom

In this section, we introduce our commit-based variant of IL, called ILCom. We
provide an overview of all trace link creation techniques used in our new study.

6 https://pypi.org/project/googletrans/.

https://pypi.org/project/googletrans/

80 P. Hübner and B. Paech

Table 1. Results for IR and IL in previous studies

Approacha Data

Set

Pre-

cision

Re-call F0.5 F1.0 #Linksb #Sto-

ries

Src Files

CE TP FP GS FN Used GS

ILi Interaction link

creation with

improvement

M2007 1.000 0.929 0.985 0.963 2565 2565 0 2761 196 50 627 627

M2012 1.000 0.800 0.952 0.889 1126 1126 0 1408 282 50 363 702

P2017 0.682 0.465 0.624 0.553 148 101 47 217 116 13 63 91

IR Information retrieval

link creation

M2007 0.310 0.248 0.295 0.275 1058 328 730 1324 996 41 200 585

M2012 0.298 0.558 0.328 0.388 920 274 646 491 217 35 169 444

P2017 0.343 0.161 0.280 0.219 102 35 67 217 182 9 17 91

IRi Information retrieval

link creation with

improvement

M2007 0.386 0.440 0.396 0.411 3143 1214 1929 2761 1547 41 308 627

M2012 0.283 0.557 0.314 0.376 2766 784 1982 1408 624 35 354 702

P2017 0.351 0.217 0.312 0.268 134 47 87 217 170 9 21 91
a IR settings for the data sets are denoted as <IR-model(similarity threshold)>: M2007 LSI(0.3), M2012
LSI(0.5), P2017 LSI(0.1)
b created (CE), true positive (TP) =̂ correct, false positive (FP) =̂ wrong, gold standard (GS), false negative

(FN) =̂ not found

This also includes the creation of trace links by only using commit data [22]. We
also present the results of a preliminary retrospective simulated application of
ILCom to the data set P2017.

3.1 ILCom

The difference between IL and ILCom lies in the first interaction capturing step.
ILCom uses both recorded interactions and issue IDs in commit messages for
link creation. In ILCom, interactions are recorded until a developer performs a
commit. If the commit message contains an issue ID, all recorded interactions are
associated to this issue ID and the history of recorded interactions is cleared. If
multiple issue IDs are contained in the commit message, the recorded interactions
are associated to all issue IDs. If no issue ID is contained in the commit message,
interaction recording continues until there is a commit with a commit message
containing an issue ID. Clearly, this can impact precision and recall, as the
commits without ID might be associated with another issue [9,13]. This will be
discussed in Sect. 5.4. After the association of issue IDs with interactions has
been obtained, link creation can be performed as described for IL in Sect. 2.3.

We implemented the interaction capturing for ILCom for the P2018 project
as plug-in for the Eclipse IDE. Our tool bundles all recorded interactions and
uploads them to the Jira issue specified by the Jira issue ID in the commit
message. The interaction events recorded by our tool comprise a time stamp, the
type of interaction (select or edit), the part of the IDE in which the interaction
occurred (e.g. editor, navigator, etc.), the file involved in the interaction, and
a degree of interest (DOI) metric for the file. The DOI is a numerical value
calculated for a file considering the number of interactions (frequency) and the
type of interactions with the file, i.e. edit interactions are rated higher than select
interactions [12].

Increasing Precision of Automatically Generated Trace Links 81

3.2 Trace Link Creation Techniques

In the following we summarize the notations for the different link creation (IR,
IL, ComL and ILCom) and improvement techniques (shown by subscript i):

IR denotes the approach for link creation by information retrieval and IRi

denotes that also source code structure based improvement techniques have
been applied (cf. Sect. 2.4).

IL denotes the approach for link creation by using the recorded interactions and
ILi denotes that also interaction-specific metadata and source code structure
based improvement techniques have been applied (cf. Sect. 2.3).

ComL denotes the approach for link creation by using the issue IDs from com-
mit messages and the files contained in the commits and ComLi denotes that
also source code structure based improvement techniques have been applied.

ILCom denotes the approach for link creation by using the recorded interac-
tions and the issue IDs from commit messages and ILCom i denotes that also
interaction-specific metadata and source code structure based improvement
techniques have been applied (cf. Sect. 3.1).

3.3 Retrospective Study

As described in the introduction, we analyzed the P2017 project data set regard-
ing IDs in commit messages. We found that there were significantly more com-
mits with issue IDs (per developer) than there were activation and deactivation
events in the recorded interaction logs. For one developer, the processing of 18
requirements was recorded in the interaction logs, but there were 71 commits
with requirement issue IDs for the same developer in Git. This does not directly
indicate that the interaction log recording is wrong, since it is possible that a
developer performed multiple commits for one requirement successively. How-
ever, after a random check of the time span of interaction recording for two
requirements we found that there were commits with different issue IDs in this
time span. This encouraged us to analyze the data further and thus simulate
retrospectively the application of ILCom.

Table 2. 2017 project results: precision and recall for created trace links

Approach Pre-

cision

Re-

call

F0.5 F1.0 #Links #Sto-

ries

#Sub-

tasks

Src Files

CE TP FP GS FN Used GS

IL Interaction link

creation

0.430 0.737 0.469 0.543 372 160 212 217 57 19 98 89 91

ILi With improvement 0.669 0.465 0.615 0.549 151 101 50 217 116 13 72 63 91

ComL Commit link

creation

0.620 0.465 0.581 0.532 163 101 62 217 116 19 98 78 91

ComLi With improvement 0.659 0.401 0.584 0.499 132 87 45 217 130 11 66 59 91

ILCom Inter. and commit

link creation

0.566 0.733 0.593 0.639 281 159 122 217 58 19 98 86 91

ILCom i With improvement 0.736 0.539 0.686 0.622 159 117 42 217 100 13 72 63 91

82 P. Hübner and B. Paech

Table 2 shows the results for our retrospective study with the data from the
data set P2017. We created the trace links by the different approaches as described
in the following. For ComL, we created links for all commits with requirement
issue IDs in the commit message from the requirement referenced by the ID to all
source code files of the commit. For ILCom, we used the interactions recorded for
IL and the commits with issue IDs. We ordered the Git commits with require-
ment issue IDs and the interaction log recording by time. All interaction log
recordings between two commits with issue IDs are assigned to the issue from
the second commit. Since there were also commits without issue ID which we
just ignored in our evaluation, this kind of interaction log recordings to commit
assignment is not perfect. If a developer just did not add an issue ID in a com-
mit, interactions are assigned wrongly and precision is impaired. This simulates
retrospectively the application of ILCom.

Table 2 always shows the best achieved f0.5-measure within all performed
settings for an approach. Moreover, the overall best values for precision and
f0.5-measure are highlighted. ILCom i has a precision of 73.6%, a recall of 53.9%
and a f0.5-measure of 0.686 which outperforms the precision and recall of all
other approaches. This confirmed our idea that IL can be combined with the use
of issue IDs from commit messages.

4 Experiment Design

In this section, we describe the details of our new study starting with the research
questions and the description of how we created the trace links and compared
the results with our former studies in Sect. 4.1, followed by the description of
the data sources in Sect. 4.2 and and the gold standard creation in Sect. 4.3.

4.1 Research Questions

The research questions we answer in our study are:

RQ1: What is the precision and recall of ILCom- and ILCom i-created trace
links? Our hypothesis was that the initial precision of ILCom improves, com-
pared to our P2017 study, since there is no additional effort for requirement
selection by developers. For ILCom i compared to ILCom, we expected a fur-
ther precision improvement.

RQ2: What is the precision and recall of ComL- and ComLi-created trace links?
Our hypothesis was that precision and recall are worse than the precision
of ILCom- and ILCom i-created links respectively, as the latter uses more
information (the interactions).

RQ3: What is the precision and recall of IR- and IRi-created trace links? Our
hypothesis was that IR has a significantly worse precision and similar recall
in comparison to ILCom.

The overall goal of this new study is to evaluate, whether the interaction and
commit based link creation by ILCom improves the precision compared to the

Increasing Precision of Automatically Generated Trace Links 83

only interaction based link creation by IL (RQ1). Moreover, we also would like to
investigate whether recording and using interactions outperforms link creation,
which relies on commit data only (RQ2). Finally, we also compare the results of
ILCom-created links with IR, since IR serves as a baseline for automated link
creation and for the comparison with our previous studies (RQ3).

4.2 Data Sources

In our evaluation we used three different data sources which are described in the
following.

Source Code in the Git Version Control System. The Git repository
comprises 406 commits. 226 commits (55.67% of all commits) did contain a Jira
issue ID which is a similar proportion as reported by others [22]. We excluded
the same file types from the Git repository as for IL (cf. Sect. 2.3).

We used the first 395 commits in the Git Repository for link creation. The
395th commit is the commit for the finish of the project’s last sprint. Commits
after the 395th commit did not contain issue IDs and were performed to refactor
the source code to the customer’s needs after the final project presentation. The
Git repository for the 395th commit contained 40 java and 26 xml files.

Requirements as Issues in Jira. After the project was finished, there were 23
story issues in the Jira project. However, three of the story issues did not specify
requirements, but testing and project organization. Therefore, we removed these
three stories from our evaluation. Furthermore, the processing status of 3 story
issues was unresolved at the end of the project and in addition all sub-tasks of
these 3 unresolved stories where unresolved as well. Therefore, we also removed
these 3 stories and their interaction recordings from our evaluation and used
only the 17 remaining stories and their 74 sub-tasks along with their interaction
recordings.

Interaction Recordings. The interaction recordings for the 17 stories and
74 sub-tasks comprise 6471 interaction events separated in 205 commits. After
removing interaction events whose files were out of scope as described previously
(cf. Sect. 2.3), 4012 interaction events were left in the interaction recordings and
used for link creation.

4.3 Gold Standard Creation

The gold standard creation was performed in March 2018 by the 6 developers
of the project between the finish of the last sprint and the final presentation to
the customer. The developers vetted link candidates between requirements and
the source code files in the actual version (395th commit) in the projects Git
repository.

The developers vetted the links based on their involvement in the sub-tasks
of a requirement. If there were two developers with an equal amount of sub-tasks,

84 P. Hübner and B. Paech

both vetted the links and only the links vetted as correct by both were used in the
gold standard. For each developer, a developer-specific interactive questionnaire
spreadsheet with all link candidates to vet was generated. This contained for
each requirement, all possible link candidates to all 66 source code files. The
vetting resulted in 309 gold standard trace links, where each requirement and
each code file was linked at least once.

5 Results

This section reports the results of our evaluations and answers the RQs.

Table 3. Results for ILCom and ILCom i with different settings

Approach Set-

tinga
Pre-

cision

Re-

call

F0.5 F1.0 #Links Src Files

CE TP FP GS FN Used GS

ILCom Default interaction link

creation

none 0.849 0.673 0.807 0.751 245 208 37 309 101 58 66

ILCom i Interaction type

improvement

T:e 0.904 0.460 0.758 0.609 157 142 15 309 167 58 66

ILCom i Interaction type

improvement

T:s 0.829 0.282 0.597 0.420 105 87 18 309 222 37 66

ILCom i Duration improvement D10 0.885 0.521 0.776 0.656 182 161 21 309 148 52 66

ILCom i Duration improvement D60 0.901 0.411 0.727 0.564 141 127 14 309 182 50 66

ILCom i Frequency

improvement

F2 0.813 0.463 0.706 0.590 176 143 33 309 166 54 66

ILCom i Frequency

improvement

F10 0.850 0.311 0.631 0.455 113 96 17 309 213 40 66

ILCom i Source code structure

in story imp.

Sis 0.904 0.485 0.771 0.632 166 150 16 309 159 40 66

ILCom i Selected improvement

tech. setting

T:e,s;

Sis;CS

0.900 0.790 0.876 0.841 271 244 27 309 65 62 66

a T :e|s = Type :edit|select, D10|D60 = dur. >= 10|60 sec., F2|10 = freq. >= 2|10, Sis = Source

code structure in story, CS = Source code structure

5.1 Answer to RQ1: Comparison of IL and ILCom

Table 3 shows the results for ILCom and for different settings for ILCom i. ILCom

has a precision of 84.9% and a recall of 67.3% and thus a f0.5-measure of 0.807.
Similar to our P2017 study, we evaluated different settings for our improvement
techniques (cf. first column of Table 3) [11]. Initially, we investigated the different
wrong link detection techniques in isolation and then combined different tech-
niques to achieve the overall best precision improvement. On this best precision
result, we also applied our source code structure-based recall improvement. The
last row of Table 3 shows this best case of ILCom i. For this, the setting was
to use the type select and edit (T:e,s), to restrict the source code files to be
connected with each other by code structure in the story (Sis) and to use the
code structure to improve recall (CS). In this best case, ILCom i has a precision

Increasing Precision of Automatically Generated Trace Links 85

of 90.0% and a recall of 79.0% and thus a f0.5-measure of 0.876. Thus, ILCom i

improves precision by 5.1%, recall by 22.7% and f0.5-measure by 0.069 compared
to ILCom.

5.2 Answer to RQ2: Comparison of ILCom and ComL

Table 4 shows the results for ComL and ComLi and for comparison also the
previously reported results of ILCom. ComL has a precision of 66.8% and a
recall of 41.7% and thus a f0.5-measure of 0.597. For ComLi, we first applied
the source code structure in story precision improvement followed by source code
structure recall improvement. ComLi has a precision of 67.5% and a recall of
44.3% and thus a f0.5-measure of 0.611. In comparison to ILCom and ILCom i,
precision, recall, and f0.5-measure are worse respectively.

Table 4. Results for ComL, ComLi and comparison with ILCom

Approacha Pre-
cision

Re-
call

F0.5 F1.0 #Links Src Files

CE TP FP GS FN Used GS

ILCom Inter. and commit
link creation

0.849 0.673 0.807 0.751 245 208 37 309 101 58 66

ILCom i With improvement 0.900 0.790 0.876 0.841 271 244 27 309 65 62 66

ComL Commit link
creation

0.668 0.417 0.597 0.514 193 129 64 309 180 59 66

ComLi With improvement 0.675 0.443 0.611 0.535 203 137 66 309 172 61 66

a For the application of improvement techniques the best case is shown

5.3 Answer to RQ3: Comparison of ILCom and IR

Table 5 shows the results for IR and IRi and for comparison also the previously
reported results of ILCom and ILCom i. IR has a precision of 33.5% and a recall
of 49.2% and thus a f0.5-measure of 0.358. For P2018, IRi has a precision of 36.9%
and a recall of 55.7% and thus a f0.5-measure of 0.396. IRi improves precision by
3.4%, recall by 6.5% and f0.5-measure by 0.038 compared to IR. In comparison
to ILi and ILCom i, precision, recall, and f0.5-measure is worse respectively. For
all data sets, ILi outperforms IRi. The IR results for our former projects are
quite similar and similar to other studies as well [19].

Table 5. Results for IR, IRi and comparison with ILCom and ILCom i

Approacha Pre-

cision

Re-

call

F0.5 F1.0 #Links #Sto-

ries

Src Files

CE TP FP GS FN Used GS

ILCom Inter. and commit link

creation

0.849 0.673 0.807 0.751 245 208 37 309 101 17 58 66

ILCom i With improvement 0.900 0.790 0.876 0.841 271 244 27 309 65 17 62 66

IR Information retrieval

link creation

0.335 0.492 0.358 0.398 454 152 302 309 157 16 60 66

IRi With improvement 0.369 0.557 0.396 0.444 466 172 294 309 137 16 64 66

a IR settings are denoted as <IR-model(similarity threshold)> : VSM(0.2)

86 P. Hübner and B. Paech

5.4 Discussion

Precision and recall of ILCom are better than IL. When looking at all studies
we performed, it can be seen that IL and ILCom outperform all other link cre-
ation approaches, i.e. IR- and commit-based link creation ComL (cf. Table 1 in
Sect. 2.4). The fact that IR link creation between unstructured requirements in
ITS and source code is worse than in structured requirement cases is reported
by others [3,8,19]. This is also confirmed by our three studies (cf. results for IR
in Tables 1 and 5) and was one of our initial motivations for the development of
IL.

There are several possible reasons for the worse behaviour of ComL in com-
parison to ILCom. It is interesting that the precision of ComL is roughly 60% in
the retrospective study and in the new study. That means the issue IDs given
by the developers are only partly correct. This observation is similar to research
within developers’ commits behavior and the contents of commits [9,13]. These
studies report about tangled changes, that is a commit often comprises multiple
unrelated issues. Also, we observed that developers manually excluded files in one
commit, which were correct in the gold standard and then included these files in
a follow-up commit. A reason for this behavior could be a change of the require-
ment during the project time. Thus, the exclusion behavior was correct when
the commit was performed, but was wrong for the final state of the requirement.
The reasons for the worse recall of ComL in comparison to ILCom could be select
interactions. Select interactions are not detected by commits. These missed files
also affect the application of source code structure-based recall improvement.

The improvement techniques developed in our last studies also proved to
be reasonable in this new study. Moreover, the improvement techniques also
performed well for links created with IR and ComL. By applying our wrong link
detection techniques, the precision is improved, independent of how the links
were created. As wrong links detection techniques impair recall, we apply source
code-structured based recall improvement. The improvement of recall by using
the source code structure worked reasonable for IL in the last two studies and
is outperformed in this new study. The application of recall improvement in this
new study resulted in the best overall recall for the complete studies.

Altogether we showed that the creation of links with interaction and com-
mit data by ILCom i achieves very good precision and recall. This confirms our
assumption that the additional effort of manually selecting the requirement to
work on caused the bad precision of IL in our previous P2017 study. We think
that precision and recall can be even better, if developers directly use the created
links during the projects, as in the Mylyn project. The use will likely motivate
developers to use interaction logging and commit IDs carefully.

6 Threats to Validity

As described in our previous study [11] the internal validity is threatened as
manual validation of trace links in the gold standard was performed by the stu-
dents working as developers in a project context of our research group. However,

Increasing Precision of Automatically Generated Trace Links 87

this ensured that the experts created the gold standard. Also the evaluation of
the links was performed after the project had already been finished so that there
was no conflict of interest for the students to influence their grading.

When comparing the results achieved with our approach to IR, the setup of
the IR algorithms is a crucial factor. Regarding preprocessing, we performed all
common steps including the identifier splitting which is specific to our used data
set. However, the low threshold values impair the results for the precision of IR.
Therefore, further comparison of IL and IR in which higher threshold values are
possible (e.g. with more structured issue descriptions) is necessary.

The external validity depends on the availability of interaction logs and
respective tooling and usage of the tooling by developers. The generalizability
based on one student project is clearly limited. Although explicitly requested,
not all commits contained a Jira issue ID in the commit messages. This affects
the resulting association of recorded interaction logs to requirement issues and
thus the created trace links. However, the percentage of commits with issue IDs
is similar as reported for other projects [22]. This indicates that the results of
our evaluation might also apply for industry projects.

7 Related Work

In our previous papers [10,11], we already discussed related work on IR, interac-
tion logging and the assessment of interaction recording quality which is shortly
summarized in the following: The systematic literature review of Borg on IR
trace link creation [3] gives an overview of IR usage and results. In [14], Konopka
uses interaction logs to detect relations between code files and in [24], Soh showed
with an observation study that observed interaction durations do not always cor-
respond to recorded interaction durations.

In [20], Omoronyia published an approach in which interactions are used to
visualize and navigate trace links. In a follow up paper [21] of the same authors,
they also use interactions for trace link creation. They consider developer col-
laboration and rank interaction events. Their approach achieves a precision of
77% in the best case which is still not as good as our results for ILCom.

In [22], Rath report about a data set Ilm7 they created from seven open
source projects for the purpose of evaluating traceability research. They used
the issue IDs in commit messages to link issues to code files. They report that
only 60% of the commits contain an issue ID.

In their follow-up work [23], they use the Ilm7 data set to train different
machine learning classifiers to countervail the problem of commits without issue
IDs. To train their classifiers, they not only used the files and issue IDs from
commits, but also textual similarity (IR) between different artifacts (i.e. the
commit message text, the issue text, the source code text) and further data like
developer-specific information. In their final experiment, they used the trained
machine learning classifiers to identify the matching issues for commits without
issues and achieved an averaged recall of 91.6% and precision of 17.3%. A direct
comparison with IR-based link creation is missing. However, since these results

88 P. Hübner and B. Paech

are quite similar to what others have achieved with relying on IR [19] and ITS
data only, it seems that the usage of IR to train machine learning classifiers
results in the same low precision values as when relying on IR only. When directly
comparing their results with the results achieved by ILCom in this study (recall
of 79.0% and precision of 90%), it is clear that for our research goal of precision
optimization ILCom is far superior.

8 Conclusion and Outlook

In this paper, we investigated the precision and recall of our interaction-based
trace link creation approach ILCom. In contrast to our previous studies, we
changed the implementation of our interaction log recording tool. With the new
implementation, we reduce the additional effort for developers to assign inter-
action log recordings to requirements and removed the need for interaction log
recording awareness.

Our new approach and tool build on the common practice to specify issue
IDs in commit messages. It uses these issue IDs from commit messages to assign
interaction log recording to requirements. ILCom has a precision of 90.0% and
recall of 79.0% which outperforms the results of our previous P2017 study (pre-
cision of 68.2% and recall of 46.5%). Thus, precision is not perfect, but we think
that this is a very good basis for continuous link creation and usage. Further-
more, the new approach is applicable also where developers are not particularly
interested in interaction recording. We showed that our new approach outper-
forms IR and purely commit-based linking and is superior to current machine
learning based approaches as well [23]. Clearly, it is interesting to confirm this
with further studies and to study whether this also holds for more structured
requirements where IR is typically used. Another important step for applicability
in practice is to investigate the maintenance of links such as [17].

Acknowledgment. We thank the students of the projects for their effort.

References

1. Baeza-Yates, R., de Ribeiro, B.A.N.: Modern Information Retrieval, 2nd edn. Pear-
son Addison-Wesley, Boston (2011)

2. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán, D.M., Devanbu, P.T.:
The promises and perils of mining git. In: MSR (2009)

3. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. ESE 19(6), 1565–1616
(2013)

4. Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., Yue, T.: Traceability and SysML
design slices to support safety inspections. ToSEM 23(1), 9 (2014)

5. Cleland-Huang, J., Gotel, O.C.Z., Huffman Hayes, J., Mäder, P., Zisman, A.: Soft-
ware traceability: trends and future directions. In: ICSE/FOSE. ACM (2014)

6. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in
software artifact management systems using information retrieval methods. ToSEM
16(4), 13 (2007)

Increasing Precision of Automatically Generated Trace Links 89

7. Ebner, G., Kaindl, H.: Tracing all around in reengineering. IEEE Softw. 19(3),
70–77 (2002)

8. Hayes, J., Dekhtyar, A., Sundaram, S.: Advancing candidate link generation for
requirements tracing: the study of methods. TSE 32(1), 4–19 (2006)

9. Herzig, K., Zeller, A.: The impact of tangled code changes. In: MSR. IEEE (2013)
10. Hübner, P., Paech, B.: Using interaction data for continuous creation of trace links

between source code and requirements in issue tracking systems. In: Grünbacher,
P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 291–307. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-54045-0 21

11. Hübner, P., Paech, B.: Evaluation of techniques to detect wrong interaction based
trace links. In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.) REFSQ 2018. LNCS,
vol. 10753, pp. 75–91. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77243-1 5

12. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: SIGSOFT/FSE. ACM (2006)

13. Kirinuki, H., Higo, Y., Hotta, K., Kusumoto, S.: Hey! Are you committing tangled
changes? In: ICPC. ACM (2014)

14. Konopka, M., Navrat, P., Bielikova, M.: Poster: discovering code dependencies by
harnessing developer’s activity. In: ICSE. ACM (2015)

15. Maalej, W., Kurtanovic, Z., Felfernig, A.: What stakeholders need to know about
requirements. In: EmpiRE. IEEE (2014)

16. Mäder, P., Egyed, A.: Do developers benefit from requirements traceability when
evolving and maintaining a software system? Empir. SE 20(2), 413–441 (2015)

17. Maro, S., Anjorin, A., Wohlrab, R., Steghöfer, J.: Traceability maintenance: factors
and guidelines. In: ASE (2016)

18. Merten, T., Falisy, M., Hübner, P., Quirchmayr, T., Bürsner, S., Paech, B.: Soft-
ware feature request detection in issue tracking systems. In: IEEE RE Conference
(2016)

19. Merten, T., Krämer, D., Mager, B., Schell, P., Bürsner, S., Paech, B.: Do infor-
mation retrieval algorithms for automated traceability perform effectively on issue
tracking system data? In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS,
vol. 9619, pp. 45–62. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30282-9 4

20. Omoronyia, I., Sindre, G., Roper, M., Ferguson, J., Wood, M.: Use case to source
code traceability: the developer navigation view point. In: IEEE RE Conference
(2009)

21. Omoronyia, I., Sindre, G., Stalhane, T.: Exploring a Bayesian and linear approach
to requirements traceability. IST 53(8), 851–871 (2011)

22. Rath, M., Rempel, P., Mäder, P.: The IlmSeven dataset. In: RE Conference (2017)
23. Rath, M., Rendall, J., Guo, J.L.C., Cleland-Huang, J., Mäder, P.: Traceability in

the wild: automatically augmenting incomplete trace links. In: ICSE (2018)
24. Soh, Z., Khomh, F., Guéhéneuc, Y.G., Antoniol, G.: Noise in Mylyn interaction

traces and its impact on developers and recommendation systems. ESE 23(2),
645–692 (2018)

https://doi.org/10.1007/978-3-319-54045-0_21
https://doi.org/10.1007/978-3-319-77243-1_5
https://doi.org/10.1007/978-3-319-77243-1_5
https://doi.org/10.1007/978-3-319-30282-9_4
https://doi.org/10.1007/978-3-319-30282-9_4

Impact of Gamification on Trace Link
Vetting: A Controlled Experiment

Salome Maro1(B) , Emil Sundklev1, Carl-Oscar Persson1,
Grischa Liebel2(B) , and Jan-Philipp Steghöfer1

1 Software Engineering Division, Chalmers | University of Gothenburg,
Gothenburg, Sweden

{salome.maro,emil.sundklev,carl-oscar.persson,jan-philipp.steghofer}@gu.se
2 School of Computer Science, Reykjavik University, Reykjavik, Iceland

grischal@ru.is

Abstract. [Context] Automatically generated trace links must be vet-
ted by human analysts before use. The task of vetting trace links is con-
sidered boring due to its repetitive nature and tools that are not engaging
to the analyst. Therefore, a lack of developer engagement can hamper the
successful implementation of a traceability strategy in an organisation.
[Objective] In this study, we examine whether two gamification fea-
tures, levels and badges, have a positive effect on human analysts’ engage-
ment and ultimately on the quality of vetted trace links. [Method] We
have conducted a controlled experiment with 24 participants that vetted
trace link candidates and recorded their speed, correctness, enjoyment,
and perceived usability of the tool. [Results] The results indicate that
there was no significant difference between the speed, correctness, and
perceived usability of the control and the experiment group. However,
gamification features significantly increased the users’ perceived enjoy-
ment. Levels and badges were perceived positively by the majority of
the participants while some pitfalls and improvements were pointed out.
[Conclusion] Our study indicates the need for further research as the
results raise several questions, in particular w.r.t. what analyst behaviour
gamification incentivises, and the impact of gamification on long-term
enjoyment.

Keywords: Software engineering · Gamification · Traceability ·
Traceability management

1 Introduction

Traceability is important in the software industry as it aids both developers
and managers in maintaining the relationships between software artefacts such
as requirements, design, code, and documentation. Traceability is also required
by certain safety standards, such as ISO 26262, or to obtain certification for
organisational maturity, e.g., when using Capability Maturity Model Integration
(CMMI). Creating and maintaining trace links is cumbersome when the systems
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 90–105, 2019.
https://doi.org/10.1007/978-3-030-15538-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_6&domain=pdf
http://orcid.org/0000-0003-1560-6833
http://orcid.org/0000-0002-3884-815X
http://orcid.org/0000-0003-1694-0972
https://doi.org/10.1007/978-3-030-15538-4_6

Impact of Gamification on Trace Link Vetting 91

involved are large and contain a large number of artefacts. To reduce the effort of
creating and maintaining trace links, information retrieval approaches [2] such as
machine learning [5] have been proposed to automatically generate trace links.
However, since automated approaches produce a relatively high number of can-
didates that are not valid links, a human analyst needs to vet candidates before
they become actual trace links. This task of vetting trace links is perceived as
boring by many analysts [27].

Previous studies, e.g., Kong et al. [23] and Dekhtyar et al. [10], investigate
how analysts vet trace links and how this process can be improved. However,
none of these studies have investigated how to make the vetting process more
engaging and enjoyable to the human analyst.

When attempting to engage users, gamification has shown to have a posi-
tive motivational effect [15,16,32]. Additionally, gamification has been shown
to reduce the rate of failure and assists in the learning process in some
areas [4]. Specifically for traceability, Parizi [31] showed that gamification con-
cepts improve the task of creating trace links between code and tests during
software development. She also points out that gamification elements could be
useful for other human-centered tracing activities, such as vetting automatically
generated trace links.

To address the lack of studies about the impact and potential benefit of
applying gamification to traceability task, we investigate the effects of gamifica-
tion on vetting automatically generated trace links. Specifically, we investigate
the effect of two gamification features – levels and badges. Concretely, we aim
to answer the following research question:

RQ: What is the impact of gamification on the task of vetting automatically
generated trace links?

To answer these questions, we conducted a controlled experiment in which we
asked 24 participants to vet automatically generated trace links. Twelve partic-
ipants used the traceability management tool Eclipse Capra [26] without mod-
ifications, while the remaining twelve participants used the same tool extended
with gamification elements. We investigated the impact of gamification on the
total number of links vetted, the accuracy of vetted links, on the motivation of
the vetting task, and on the perceived usability of the tool.

Our results show no significant difference between the two groups with
regards to the final precision and recall of the vetted links, total number of
vetted links and usability of the tool. However, the results show that gamifica-
tion elements have the potential to increase enjoyment and motivate the users
for such a task.

The remainder of this paper is structured as follows: In Sect. 2, we discuss
the background as well as similar studies on trace link vetting and gamification
in software engineering. We then describe our methodology in Sect. 3 and our
results in Sect. 4. Section 5 provides answers to our research questions before we
conclude the paper in Sect. 6.

92 S. Maro et al.

2 Background and Related Work

This section discusses the background of our work and related studies. We discuss
trace link vetting and the use of gamification elements in software engineering.

2.1 Vetting Automatically Generated Links

Automatically generated trace links are flawed and need a human analyst to
vet them for correctness and completeness. Hayes et al. [18,19] discovered that
the human analyst can make the generated set of trace links worse. Since then,
several studies have been conducted to better understand and to improve the
process of vetting trace links. In a controlled experiment, Cuddeback et al. [6]
showed that human analysts decreased the quality of a high-quality set of initial
trace links, while they increased the quality if it was initially low. In other
experiments, Cuddeback et al. [7] and Kong et al. [24] confirm these findings.

To understand different strategies used by human analysts in vetting links,
Kong et al. [23] studied logs from a link-vetting experiment and identified strate-
gies such as “accept-focused”, where the analyst only accepted links, and “first
good link”, where the analyst focused on finding the first good link. Additionally,
Hayes et al. [17] conducted a simulation study on the different vetting strategies
to understand which strategy was the most effective. The authors show that
analysts have the best performance when they examine a list of top candidate
links that has been pruned based on some heuristics to remove low ranked links,
and if the tool takes the analyst’s feedback into consideration to modify the list
of candidate links dynamically.

Dekhtyar et al. [10] conducted an experiment to understand how factors such
as the development experience, and tracing experience of the analyst affect their
performance when vetting trace links. The authors showed that development
experience, tracing experience, effort used to search for missing links, and how
prepared the analyst felt had no significant influence on the performance. How-
ever, they also show that the self-reported effort used on validating trace links
had a significant effect on the performance: analysts that spent a lot of time
validating links ended up reducing recall by rejecting correct links.

While these existing studies investigate the performance of the human ana-
lyst, there exist to our knowledge no studies dedicated to improve the trace link
vetting process by making it more engaging.

2.2 Gamification in Software Engineering

Several studies have investigated how to incorporate gamification elements in
software engineering tasks for the purpose of increasing engagement and motiva-
tion of people performing different tasks. Pedreira et al. [32] published a system-
atic mapping study that shows the distribution of gamification studies in software
engineering. The authors show that most studies focus on the software imple-
mentation task (coding), followed by project management and process support,
while only few studies targeted requirements engineering and software testing.

Impact of Gamification on Trace Link Vetting 93

Since the publication of this mapping study, more studies have been published
in the area of requirements engineering, e.g., in requirements elicitation [8,25]
and requirements prioritization [21,22].

Additionally, there exist a number of studies on a meta-level, focusing on
how gamification can best be introduced in software engineering. These studies,
for example Kappen and Nacke [20], Morschheuser et al. [30] and Garcia et
al. [14] define guidelines and frameworks to guide software engineers on how
to effectively gamify software engineering activities. Our research method is in
line with these frameworks that suggest analyzing the activity to be gamified,
implement the gamification features, and evaluate the impact of the features.

We are aware of only one study that targets traceability and is therefore
related to our study. Parizi [31] investigated the impact of gamification when
tracing between code and tests. The authors conducted an experiment show-
ing that use of gamification elements, namely case points, feedback, reputation,
avatars, progress and quests, improved both precision and recall of the recovered
set of manually created trace links. The gamification elements encouraged the
developers to create more links. In this paper, we study a different phenomenon
where gamification elements are applied to encourage the human analyst to vet
trace links based on candidates created automatically.

3 Research Method

In order to answer our research question, we conducted a controlled experi-
ment [34], comparing vetting of automatically generated trace links with and
without gamification.

3.1 Experiment Design

We used a simple one-factor experiment design with two treatments [34], namely
the use of the traceability software without gamification and the use of the same
software with gamification. We refer to the subjects using the software without
gamification as our control group, while the subjects using the gamified software
are in the experiment group. The dependent variables are the overall number of
vetted trace links (vetted), the fraction of correctly vetted trace links (vettedCor),
the self-reported motivation throughout the experiment (motivation), and the
impact of gamification on the perceived usability (usability). The variables vetted
and vettedCor can furthermore be divided into accepted and rejected trace links,
i.e., accepted, rejected, acceptedCor, and rejectedCor. We derive the following null
hypotheses and corresponding alternative hypotheses:

– H0vetted: There is no significant difference in vetted between the control group
and the experiment group.

– H1vetted: There is a significant difference in vetted between the control group
and the experiment group.

– H0vettedCor: There is no significant difference in vettedCor between the con-
trol group and the experiment group.

94 S. Maro et al.

– H1vettedCor: There is a significant difference in vettedCor between the control
group and the experiment group.

– H0motivation: There is no significant difference in motivation between the
control group and the experiment group.

– H1motivation: There is a significant difference in motivation between the con-
trol group and the experiment group.

– H0usability: There is no significant difference in the perceived usability
between the control group and the experiment group.

– H1usability: There is a significant difference in the perceived usability between
the control group and the experiment group.

To decide what kind of gamification elements to implement, we sent out
a survey to 14 subjects that had participated in a previous study using trace
link vetting with Eclipse Capra, reported in [27]. For each candidate gamification
element, we asked the subjects a number of questions pertaining to the potential
enjoyment and distraction caused by the element. We received 11 responses to
our survey. The results and implementation of the gamification elements are
described in Sect. 4.

We used MedFleet as an instrument, a drone fleet coordination system which
contains requirements and fault descriptions as well as source code. A manually
created set of trace links served as a ground truth to which we could compare the
vetting results. We generated trace link candidates using Vector Space Model
with Term Frequency – Inverse Document Frequency (TFIDF), a technique that
is commonly used to generate links between textual artifacts [33].

During the experiment, we asked participants to work through a list of can-
didate trace links between any of the three artefact types. For each link, partic-
ipants had to decide whether the two linked artefacts indeed have a relation to
each other. If yes, the candidate link should be accepted, if not, then it should
be rejected. To support this process, Eclipse Capra offers the ability to open and
view the artifacts the candidate link refers to, including the source code files.
Prior to the experiment, we handed out a written document describing all rele-
vant features of Eclipse Capra. For the experiment group, this description also
contained an explanation of the gamification elements.

Data Collection and Analysis. The participant sample for this experiment
consisted of 24 students with an academic software engineering background. We
assigned the participants randomly into balanced experiment and control groups.
While all subjects were students, some had experience as software developers.
Only eight of the students, four in the control group and four in the exper-
iment group, had experience with traceability. Additionally, all students had
some experience with using Eclipse. The use of student subjects in experimenta-
tion has been debated heavily and controversially [13]. As this is an initial study,
we believe that the use of student subjects is favourable over practitioners due to
the higher homogeneity in their knowledge and thus higher internal validity [13].

After the introduction to Eclipse Capra, participants had 45 min to complete
their task. Using the features of Eclipse Capra freely, we encouraged participants

Impact of Gamification on Trace Link Vetting 95

to accept and reject as many candidate links as they could, while taking the time
they needed for decision making. Participants were allowed to ask questions
regarding the operation of Eclipse Capra and the gamified system during the
entire experiment.

We instrumented Eclipse Capra to monitor participant activity, namely
accept and reject events, as well as opening events of artifact files. Addition-
ally, we collected data through a pre-experiment questionnaire (collecting demo-
graphic data) and a post-experiment questionnaire (collecting perceptions about
gamification and system usability scale (SUS) [3] scores). All survey instruments
as well as the instructions are available online [28].

3.2 Validity Threats

There are several potential threats to validity in this study.
To avoid survey questions being misinterpreted by participants, we ran each

questionnaire through several internal review rounds, identifying and improving
potentially ambiguous questions.

Domain knowledge about the MedFleet system can affect the correctness
of trace links per participant. While none of the participants had any prior
knowledge of MedFleet, and therefore an advantage in domain knowledge, this
lack of domain knowledge could also threaten the external validity of the study.
We accepted this potential threat in favour of having a higher internal validity
due to the homogeneity of the student population.

Individual differences between participants could pose another threat to
validity, as we did not use a crossover design. Since we only had a single soft-
ware system with all the required artefacts (requirements, source code, faults,
and traces between them), we had to accept this potential threat.

Given that gamification features were added to Eclipse Capra, there is a
potential threat that these modifications affected the usability of the system
and, hence, confounded the results. Additionally, the specific implementation
of the features could have an effect on the results. To assess this, we collected
usability information in the post-experiment survey as discussed in Sect. 4.

As for all empirical studies, there is a trade-off between internal and external
validity [13]. We opted for a higher internal validity, e.g., by choosing student
subjects. This naturally limits the generalisability of our results. For this ini-
tial work, we believe that this restriction is acceptable, but at the same time
encourage replications with a more diverse sample of participants.

4 Results

We first explain the two gamification features we chose to test in our
experiment—levels and badges. We then describe the results of our experiments,
including answers from the questionnaires as well as the analysis of vetting
accuracy.

96 S. Maro et al.

Fig. 1. Pilot survey results showing aggregated responses for the gamification features.

Gamification Features. We used the responses from the pilot survey (cf. Sect. 3)
to decide on the gamification features to be implemented and tested in the
experiment. Out of the four suggested gamification features, we selected levels
and badges as the most viable options. As can be seen in Fig. 1, the results of
the pilot survey were very mixed across the different features. While the progress
bar received the most positive results in terms of potential decrease of the time
spent on each link, some commentators also pointed out that a progress bar that
does not fill up quickly, e.g., because of the large number of links to vet, can
be discouraging. In addition, there were participants that felt that they would
optimise towards vetting as many links as possible and potentially skip difficult
ones. Leader boards, on the other hand, received high scores in the ranking for
how satisfying they would make the task, while also showing a high spread.
However, there are indications from the free text comments that leader boards
can be perceived as too competitive, even though findings from the literature
show that competitiveness might have positive effects on performance [11]. In
addition, there were respondents who strongly agreed that they would again
favour number of links over vetting more complicated ones. For both badges and
levels, no indications could be found that they would decrease the time spent
on each link, but both have good values for increase in satisfaction. While there
are indications that levels would shift focus to vetting as many links as possible,
there is no strong indication that users would skip more complicated links.

Both implemented features are shown in Fig. 2. The current level of the user
is shown within the green star next to the total points accumulated and how
much progress is left until the next level is reached. This is different from the
progress bar suggested as a feature since it does not measure progress of the
overall vetting task, but still provides feedback on the progress towards the next

Impact of Gamification on Trace Link Vetting 97

level. The levelling system awards 10 points for accepting or rejecting a candidate
link. The next level is reached after 100 points have been collected.

Fig. 2. The level and badges as shown in the modified version of Eclipse Capra.

We integrated three different badges: one is awarded after accepting 20 links,
one after rejecting 20 links, and one after opening 25 source code files. The figure
shows an icon for each badge, how many links have been accepted or rejected,
how many source code files have been opened, and how much progress has been
made for each badge. When the requirements of a badge are fulfilled, the logo
turns green as can be seen on the “rejected links” badge.

Experience with and Understanding of Experiment System. The post-experiment
part of the survey contained some questions common for both groups. Two ques-
tions aimed at understanding previous experience with systems similar to the
one used in the experiment and the confidence that participants felt in working
with the system. The answers to these questions allowed us to gauge if any of the
groups had an advantage over the other due to previous experience or a vastly
higher confidence in working with the system. The responses in Table 1 show,
however, that no significant differences exist. Only two of the participants, both
in the experiment group, had prior experience in similar systems and confidence
levels for understanding the system are very similar.

Participant Enjoyment and Motivation. To understand the impact of the gam-
ification features on the enjoyment of the participants and on their motivation
to complete the vetting task, all participants were asked explicitly about these
aspects in the post-experiment questionnaire. As can be seen in Fig. 3, the experi-
ment group shows a tendency towards finding the vetting process more enjoyable
and feeling more motivated to complete the task. The Mann-Whitney u-test on
the responses shows that the results are statistically significant (p ≈ 0.040),
thus corroborating H0motivation. This result shows that adding gamification fea-
tures is beneficial to the enjoyment of vetting the links and to the motivation of
completing the task.

98 S. Maro et al.

Table 1. Experience with systems similar to the experiment system and confidence of
understanding the experiment system.

Control group Experiment group

Experience with systems
similar to MedFleet

Yes 0 2

No 12 10

Confidence of understanding
the MedFleet system

Strongly disagree 0 0

Disagree 2 2

Neutral 3 6

Agree 6 3

Strongly agree 1 1

Fig. 3. Results of the post-experiment survey showing aggregated responses for enjoy-
ment of the task and motivation to complete the task.

System Usability Scale. In order to compare the usability of the gamified and the
regular versions of Eclipse Capra, we used the System Usability Scale (SUS) [3].
It contains a total of ten statements which are answered on a five-point Likert
scale. From the responses, we also computed the overall SUS score. For this
purpose, we deducted 1 from the score for each positively-worded statement
(statements 1, 3, 5, 7, and 9) and deducted the score of each negatively worded
statement (statements 2, 4, 6, 8, 10) from 5. The resulting scores were multiplied
by 2.5 and added up to achieve a range from 0 to 100. The results are shown in
Table 2.

According to Bangor et al. [1], SUS scores between 0 and 25 are considered
worst imaginable, scores between 26 and 38 are considered to be poor, scores
between 38 and 52 are considered to be OK, scores between 52 and 73 are
considered to be good, scores between 73 and 85 are considered to be excel-
lent and finally scores between 85 and 100 are considered the best imaginable.
Therefore, the scores provided both by the control group and the experiment
group are in the good range with a slight advantage for the gamified version.

Impact of Gamification on Trace Link Vetting 99

Table 2. SUS for the control group and the experiment group. For each question, the
average values in the groups are depicted, with standard deviation in brackets.

Control group Experiment group

Q1 I think that I would like to use this
system frequently

2.25 (1.55) 3.00 (1.05)

Q2 I found the system unnecessarily
complex

2.33 (1.37) 2.08 (1.08)

Q3 I thought the system was easy to use 3.83 (0.94) 4.17 (0.58)

Q4 I think that I would need the support
of a technical person to be able to use
this system

1.92 (1.08) 2.25 (1.22)

Q5 I found the various functions in the
system were well integrated

3.66 (0.89) 3.75 (0.86)

Q6 I thought there was too much
inconsistency in the system

1.75 (0.75) 1.92 (1.08)

Q7 I would imagine that most people would
learn to use this system very quickly

4.08 (1.16) 4.08 (1.00)

Q8 I found the system very cumbersome to
use

2.25 (1.60) 2.17 (0.94)

Q9 I felt very confident using the system 3.00 (0.95) 3.50 (1.68)

Q10 I needed to learn a lot of things before I
could get going with this system

2.00 (1.21) 2.25 (1.14)

SUS score 66.56 69.58

The results from a Mann-Whitney u-test on the average score from both groups
showed to be insignificant (p ≈ 0.904). The SUS-scores show that the usability of
Eclipse Capra is good with and without extension with level and badge features.
We can thus reject H1usability and conclude that there is no significant difference
in usability.

Attitude Towards Levels and Badges. To gauge the attitudes of the participants
towards the gamification features, we asked both groups different questions about
their perceptions. While the experiment group was asked about how they rated
their experience, the control group was given a brief demonstration of the gami-
fication features after they completed their task and were then asked about how
these features might have influenced their experience. We were also interested
in gauging whether the participants thought that there was an impact on the
vetting process or on their individual performance. All questions were answered
on a five-point Likert scale. The attitudes of the experiment group are shown in
Table 3 and the attitudes of the control group in Table 4.

The averages in the tables show no major difference between the levels and
badges features. The majority of the participants understood the features, but it
was considered easier to understand the badges which is overall the biggest dif-

100 S. Maro et al.

Table 3. Attitude of the experiment group towards the levels and badges feature

Levels Badges

I had no issue understanding the
levels/badges

3.4 (1.31) 4.2 (1.11)

The levels/badges made the task of vetting
trace links satisfying

3.6 (0.90) 3.8 (0.94)

The levels/badges helped decrease the time
spent on each link

3.2 (0.94) 2.9 (0.90)

The levels/badges made me focus more on
verifying as many links as possible instead
of verifying each link correctly

3.1 (1.17) 3.1 (1.38)

I felt that the levels/badges contributed
towards being motivated to complete the
task

3.4 (1.08) 3.5 (1.24)

Overall, the levels/badges feature was a
good addition to the traceability tool

3.9 (0.67) 3.8 (0.94)

ference between the two features. The control group on average thought that the
levels feature would make them focus less on correctness and more on verifying
as many links as possible, at least compared to the badges feature.

Table 4. Attitude of the control group towards the levels and badges feature

Levels Badges

Levels/badges make the task of verifying
trace links more satisfying

3.4 (1.24) 3.6 (1.62)

Levels/badges help in decreasing the time
spent on each link

2.75 (1.49) 2.7 (1.16)

Levels/badges make me focus less on
verifying the links correctly and more on
verifying as many as possible

3.4 (1.38) 2.8 (1.22)

Levels/badges would make me skip the
more advanced links and go for easier ones
in order to “level up”/receive more badges
faster

3.4 (1.24) 3.2 (1.53)

Vetting Task Results. This section presents the results from the vetting task
that all the participants undertook. The results from both groups can be seen
side-by-side in Table 5. On average, participants in the experiment group vetted
130 links, while participants in the control group vetted 160. The average rate
of correctly accepted links for the experiment group was 16.54% and 17.19% for

Impact of Gamification on Trace Link Vetting 101

Table 5. Results of the vetting task for the control group and the experiment group.

True

positive

False

positive

Total

positive

Rate True

negatives

False

negatives

Total

negatives

Rate PrecisionRecall

Control group

Avg. 9 66.92 75.92 17.19% 77.58 5.75 83.33 92.14% 0.17 0.62

Stdev. 2.26 43.79 43.33 57.83 3.28 60.25 0.14 0.19

Experiment group

Avg. 9.67 60 69.67 16.54% 56 4.67 60.67 92.15% 0.17 0.67

Stdev. 2.71 30.84 31.92 21.34 2.46 22.23 0.08 0.18

the control group. The average rate of correctly rejected links for the experiment
group was 92.14% and 92.15% for the control group. This is reflected in the
measures for precision and recall that show a low precision of 0.17 for both
groups, but a recall of 0.62 and 0.67, respectively. This indicates that detecting
correct links was harder compared to rejecting wrong links that were obvious to
spot. Standard deviations for the total number of links as well as for precision
are relatively high, indicating that there was a relatively large spread in the rate
of true positives amongst all selected positives. Indeed, the control group, e.g.,
ranged between a correctness of 7.7% and 52%.

We tested our null hypotheses H0vetted and H0vettedCor with a Mann-
Whitney u-test, yielding p-values of p ≈ 0.542 and p ≈ 0.912, respectively.
Therefore, we can not reject the null hypotheses and can not detect a statisti-
cally significant difference in either the number of vetted links or the correctness
of vetting decisions between the experiment group and the control group.

5 Discussion

In this section we discuss the implications of the results and how they relate to
our research question. To recap, our research question is: What is the impact of
gamification on the task of vetting automatically generated trace links?

Our results show that, on one hand, there is no significant difference in the
total amount of links vetted and also in the accuracy of the vetted links between
the experiment and the control group. From the survey carried out to elicit
which gamification features are suitable, there were indications that gamification
might lead to participants vetting more links but reduce accuracy. However, our
results show that this is not the case. We would like to emphasise that this
is not a negative result. In contrary, the results mean that the newly added
gamification elements did not lead to participants rushing the vetting task in
favour of reaching higher levels or winning badges. Indeed, it was difficult for
participants to know which accuracy they attained since there was no feedback
as to whether the links accepted or rejected were correct. For the future, we
consider alternative means of rewarding correctness, such as rewarding taking
extra time to analyse an artefact in detail. Another alternative proposed by an
experiment participant is to allow the participant to see the vetting decisions of

102 S. Maro et al.

other users before making their own. Decisions of other users would allow the
current user to get an idea of what others thought was correct, but is by no
means guaranteed to be correct. Since reward options are limited if correctness
can not be checked automatically, the usefulness of gamification for trace link
vetting can be restricted. Agreement with other users might be used as a stand-
in, but might lead to skewed results when users are incentivised to agree with
others.

The design of the badges and the associated reward system could have an
influence on the precision achieved by the participants. In our case, participants
felt the need to accept approximately as many links as they rejected since both
actions were associated with the reward of badges. The low number of correct
links among the link candidates might have contributed to the low correctness
rate of accepted links. To better understand this factor, more research is needed
with different types of badge designs and reward systems.

The results show that the experiment group found the vetting task to be more
enjoyable and motivating than the control group. Many studies on gamification
consider how and if a gamified implementation has had an impact on intrinsic and
extrinsic motivation (see, e.g., [12,16,29]). Intrinsic motivation can be described
as being motivated to perform a task because one enjoys doing it, while extrinsic
motivation can be described as completing a task because of the incentive one
gets after completing it [9]. When attempting to motivate people, it is considered
best practice to aim at increasing intrinsic motivation, since being motivated to
do something because of enjoyment is more sought after than being motivated
by extrinsic rewards [9]. In our case, since participants of the experiment group
reported that they enjoyed the task and felt more motivated to perform it, but
did not increase the number of links or their accuracy, there is an indication
that the participants had more intrinsic than extrinsic motivation. However, we
cannot conclude that this is the case and further research is needed to investigate
this motivational aspect by, e.g., letting participants choose if they want to
perform the vetting task or not and observing their performance over time.

Our findings are also inconclusive w.r.t. the long-term effects of gamification.
Since participants were only exposed to the gamification features for one ses-
sion, we can conclude that within this session, enjoyment and motivation was
increased, but can not state that these positive effects would be present over a
longer period of time and a number of consecutive sessions. There is a chance
that participants get used to the features and their level of enjoyment and their
motivation decreases over time. This can be counteracted with a reward system
and gamification features that keep users engaged continuously, e.g., with spe-
cific rewards for higher levels. Our experiment is only an initial step and more
research is required to understand the long-term motivational aspects in more
detail.

6 Conclusion

In this paper, we investigated the impact of gamification on trace link vetting.
We identified suitable gamification features based on existing studies and a sur-

Impact of Gamification on Trace Link Vetting 103

vey, and implemented levels and badges in the traceability management tool
Eclipse Capra. To test the impact of these features, we conducted a controlled
experiment with 24 student participants, comparing the use of Eclipse Capra
with and without gamification features. Specifically, we investigated the impact
of having levels and badges on the correctness and the number of vetted links,
as well as the perceived motivation of the participants and the usability of the
tool.

The results show that our implementation of levels and badge features had
no significant effect on the correctness and amount of vetted links. However,
the participants found the gamified system to be more enjoyable. Furthermore,
participants did not identify differences in the usability of the gamified and the
non-gamified system. The results of our initial survey also showed a difference in
participants’ preferences toward competitive gamification elements (e.g., leader
boards) compared to non-competitive elements (e.g., levels).

For future work, we see a number of possibilities. First, it is essential to
study the long-term effects of gamification on enjoyment or motivation, and
how to keep subjects engaged over longer periods of time. Our experiment only
serves as an initial indication that gamification indeed increases motivation in
the short term, while it remains to be studied whether this effect wears off
over time. Second, we see the need to replicate our study in an industrial setting
with professional developers. Since the experiment setup requires a ground truth
of which traces are correct and which ones are not, this is a challenging task.
Finally, there is a need to study how a more advanced implementation of levels
and badges affect the vetting task since in this study we only test our specific
implementation.

References

1. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean:
adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)

2. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. Empir. Softw. Eng.
(ESE) 19(6), 1565–1616 (2014)

3. Brooke, J., et al.: SUS-a quick and dirty usability scale. Usability Eval. Ind.
189(194), 4–7 (1996)

4. Charles, D., Charles, T., McNeill, M., Bustard, D., Black, M.: Game-based feedback
for educational multi-user virtual environments. Br. J. Educ. Technol. 42(4), 638–
654 (2011)

5. Cleland-Huang, J., Czauderna, A., Gibiec, M., Emenecker, J.: A machine learning
approach for tracing regulatory codes to product specific requirements. In: 32nd
ACM/IEEE International Conference on Software Engineering ICSE 2010, pp.
155–164 (2010)

6. Cuddeback, D., Dekhtyar, A., Hayes, J.: Automated requirements traceability: the
study of human analysts. In: RE 2010, pp. 231–240. IEEE (2010)

7. Cuddeback, D., Dekhtyar, A., Hayes, J.H., Holden, J., Kong, W.K.: Towards over-
coming human analyst fallibility in the requirements tracing process. In: ICSE
2011, pp. 860–863. ACM (2011)

104 S. Maro et al.

8. Dalpiaz, F., Snijders, R., Brinkkemper, S., Hosseini, M., Shahri, A., Ali, R.: Engag-
ing the crowd of stakeholders in requirements engineering via gamification. In:
Stieglitz, S., Lattemann, C., Robra-Bissantz, S., Zarnekow, R., Brockmann, T.
(eds.) Gamification. PI, pp. 123–135. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-45557-0 9

9. Deci, E.L., Koestner, R., Ryan, R.M.: A meta-analytic review of experiments exam-
ining the effects of extrinsic rewards on intrinsic motivation. Psychol. Bull. 125(6),
627 (1999)

10. Dekhtyar, A., Dekhtyar, O., Holden, J., Hayes, J.H., Cuddeback, D., Kong, W.K.:
On human analyst performance in assisted requirements tracing: statistical analy-
sis. In: RE 2011, pp. 111–120. IEEE (2011)

11. Dubois, D.J., Tamburrelli, G.: Understanding gamification mechanisms for soft-
ware development. In: FSE 2013, pp. 659–662. ACM (2013)

12. Eickhoff, C., Harris, C.G., de Vries, A.P., Srinivasan, P.: Quality through flow
and immersion: gamifying crowdsourced relevance assessments. In: Proceedings of
the 35th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 871–880. ACM (2012)

13. Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka, A., Oivo,
M.: Empirical software engineering experts on the use of students and professionals
in experiments. Empir. Softw. Eng. 23(1), 452–489 (2018)

14. Garćıa, F., Pedreira, O., Piattini, M., Cerdeira-Pena, A., Penabad, M.: A frame-
work for gamification in software engineering. J. Syst. Softw. 132, 21–40 (2017)

15. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work? – A literature review
of empirical studies on gamification. In: 47th Hawaii International Conference on
System Sciences (HICSS), pp. 3025–3034. IEEE (2014)

16. Hanus, M.D., Fox, J.: Assessing the effects of gamification in the classroom: a
longitudinal study on intrinsic motivation, social comparison, satisfaction, effort,
and academic performance. Comput. Educ. 80, 152–161 (2015)

17. Hayes, J.H., Dekhtyar, A., Larsen, J., Guéhéneuc, Y.G.: Effective use of analysts’
effort in automated tracing. Requir. Eng. 23(1), 119–143 (2018)

18. Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via infor-
mation retrieval. In: RE 2003, pp. 138–147. IEEE (2003)

19. Hayes, J.H., Dekhtyar, A., Sundaram, S.: Text mining for software engineering: how
analyst feedback impacts final results. In: ACM SIGSOFT Software Engineering
Notes, vol. 30, pp. 1–5. ACM (2005)

20. Kappen, D.L., Nacke, L.E.: The kaleidoscope of effective gamification: deconstruct-
ing gamification in business applications. In: Proceedings of the 1st International
Conference on Gameful Design, Research, and Applications, pp. 119–122. ACM
(2013)

21. Kifetew, F.M., et al.: Gamifying collaborative prioritization: does pointsification
work? In: RE 2017, pp. 322–331. IEEE (2017)

22. Kolpondinos, M.Z.H., Glinz, M.: Behind points and levels–the influence of gamifi-
cation algorithms on requirements prioritization. In: RE 2017, pp. 332–341. IEEE
(2017)

23. Kong, W.K., Hayes, J.H., Dekhtyar, A., Dekhtyar, O.: Process improvement for
traceability: a study of human fallibility. In: RE 2012, pp. 31–40. IEEE (2012)

24. Kong, W.K., Huffman Hayes, J., Dekhtyar, A., Holden, J.: How do we trace require-
ments: an initial study of analyst behavior in trace validation tasks. In: Proceedings
of the 4th International Workshop on Cooperative and Human Aspects of Software
Engineering, pp. 32–39. ACM (2011)

https://doi.org/10.1007/978-3-319-45557-0_9
https://doi.org/10.1007/978-3-319-45557-0_9

Impact of Gamification on Trace Link Vetting 105

25. Lombriser, P., Dalpiaz, F., Lucassen, G., Brinkkemper, S.: Gamified requirements
engineering: model and experimentation. In: Daneva, M., Pastor, O. (eds.) REFSQ
2016. LNCS, vol. 9619, pp. 171–187. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30282-9 12

26. Maro, S., Steghöfer, J.P.: Capra: a configurable and extendable traceability man-
agement tool. In: RE 2016, pp. 407–408. IEEE (2016)

27. Maro, S., Steghöfer, J.P., Huffman Hayes, J., Cleland-Huang, J., Staron, M.: Vet-
ting automatically generated trace links: what information is useful to human
analysts? In: RE 2018, pp. 52–63. IEEE (2018)

28. Maro, S., Sundklev, E., Persson, C.O., Liebel, G., Steghöfer, J.P.: Impact of gam-
ification on trace link vetting: a controlled experiment, January 2019. https://doi.
org/10.5281/zenodo.2540646. Dataset

29. Mekler, E.D., Brühlmann, F., Opwis, K., Tuch, A.N.: Do points, levels and leader-
boards harm intrinsic motivation?: an empirical analysis of common gamification
elements. In: Proceedings of the 1st International Conference on Gameful Design,
Research, and Applications. pp. 66–73. ACM (2013)

30. Morschheuser, B., Hamari, J., Werder, K., Abe, J.: How to gamify? A method for
designing gamification (2017)

31. Parizi, R.M.: On the gamification of human-centric traceability tasks in software
testing and coding. In: Software Engineering Research, Management and Applica-
tions (SERA), pp. 193–200. IEEE (2016)

32. Pedreira, O., Garćıa, F., Brisaboa, N., Piattini, M.: Gamification in software
engineering-a systematic mapping. Inf. Softw. Technol. 57, 157–168 (2015)

33. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval,
vol. 39. Cambridge University Press, Cambridge (2008)

34. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-319-30282-9_12
https://doi.org/10.1007/978-3-319-30282-9_12
https://doi.org/10.5281/zenodo.2540646
https://doi.org/10.5281/zenodo.2540646
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Requirements Management (Research
Previews)

Refinement of User Stories into Backlog
Items: Linguistic Structure

and Action Verbs
Research Preview

Laurens Müter1(B), Tejaswini Deoskar2(B), Max Mathijssen1(B),
Sjaak Brinkkemper1(B), and Fabiano Dalpiaz1(B)

1 RE-Lab, Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

{L.H.F.Muter,M.Mathijssen,S.Brinkkemper,F.Dalpiaz}@uu.nl
2 Department of Languages, Literature, and Communication,

Utrecht Institute of Linguistics, Utrecht University, Utrecht, The Netherlands
T.Deoskar@uu.nl

Abstract. [Context and motivation] In agile system development
methods, product backlog items (or tasks) play a prominent role in the
refinement process of software requirements. Tasks are typically defined
manually to operationalize how to implement a user story; tasks formu-
lation often exhibits low quality, perhaps due to the tedious nature of
decomposing user stories into tasks. [Question/Problem] We inves-
tigate the process through which user stories are refined into tasks.
[Principal ideas/results] We study a large collection of backlog items
(N = 1,593), expressed as user stories and sprint tasks, looking for lin-
guistic patterns that characterize the required feature of the user story
requirement. Through a linguistic analysis of sentence structures and
action verbs (the main verb in the sentence that indicates the task),
we discover patterns of labeling refinements, and explore new ways for
refinement process improvement. [Contribution] By identifying a set of
7 elementary action verbs and a template for task labels, we make first
steps towards comprehending the refinement of user stories to backlog
items.

Keywords: Requirements engineering · User stories · Backlog items ·
Natural language processing · Sprint tasks

1 Introduction

User stories (USs) have made their way into the development process of compa-
nies [1] and their adoption is evolving to higher levels [1,2]. USs are the starting
point for specifying software that is developed, according to the agile devel-
opment paradigm, through a series of sprints. The USs are distributed to the
development teams that refine the USs into a number of (usually 3 to 6) so-called
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 109–116, 2019.
https://doi.org/10.1007/978-3-030-15538-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_7

110 L. Müter et al.

backlog items (but also called tasks) to break down a US into specific executable
tasks for developers to carry out during the sprints.

Software specifications have been thoroughly studied from the viewpoint
of their linguistic structure. Researchers have proposed approaches for finding
ambiguity [3,4] and other types of defects [5] in natural language requirements,
for generating conceptual models [6,7], and much more [8].

Previous work has conducted linguistic analyses of USs and defined guidelines
for writing a good specification in agile development [1,9]. The template structure
of a US “As a [Role] I want to [Action], so that [Benefit]” is often misused
and many real-world USs are poorly written requirements [10]. However, there
is no study on the requirements-related artifacts that stem from USs in agile
development and Scrum, i.e., backlog items or tasks.

Table 1. Example US that has been refined into 3 tasks

US: As a webshop visitor I want to add shipping addresses
so that I can send presents to my friends

Task-1 Create ShippingAddresses records for visitors

Task-2 Update validity check for Addresses

Task-3 Add data-item for LastShippingAddress to visitor

Table 1 shows the refinement of a US into three tasks. By reading the table,
one can see that tasks are the bridge between user-centered requirements (USs)
and development artifacts like code and test cases. It is not surprising that
the tasks are the basic constituents of sprint backlogs, i.e., they define what
functionality will be included in the next release of the product.

The contribution of this paper is a linguistic analysis of a large industrial
product backlog that includes 195 USs and 1,593 tasks. We study the linguistic
structure of the task labels as well as the main verb that indicates what actions
the developers are expected to carry out. Based on the analysis, we distill guide-
lines for writing tasks in a clear and consistent way.

After describing our research approach in Sect. 2, we present our linguis-
tic analysis of the sentence structure (Sect. 3) and of the main verb in a task
(Sect. 4). Finally, we present conclusions and outline future directions.

2 Research Approach

We considered a large product backlog provided to us by a multinational soft-
ware development company, located in the Netherlands, and having circa fifty
employees. The company’s main product is a web-based platform to manage
contract and tender processes of companies in the procurement industry.

Refinement of User Stories into Backlog Items 111

The initial data consisted of 2,702 backlog items, each labeled as Epic, Fea-
ture, Task, or Bug. In this paper, we focus on the tasks (1,593, 59.04%). Each
backlog item has an attribute that defines the development status in the prod-
uct development: New (6.49%), To Do (3.74%), Approved (1.41%), Committed
(1.33%), In Progress (1.26%), Done (85.29%), Removed (0.48%).

Our linguistic analysis started with running the Stanford Part-of-Speech
(POS) tagger to determine the structure of the task labels; for example, “Define
(VB) box (NN) type (NN) actions (NNS) and (CC) implement (VB) them
(PRP). (.)”1 indicates that “define” is a verb, “box” is a singular noun,“actions”
is a plural noun, “and” is a conjunction, and so on.

We experienced that the POS tagger accuracy was not perfect, presumably
because task labels are hardly written as grammatically correct sentences. Two
major problems we encountered were words that can be tagged as either verbs or
nouns (e.g., “update”) and spelling mistakes (e.g., “crate” instead of “create”).

We then looked at the first-occurring verb in each task label, trying to iden-
tify recurring patterns. After tagging the unique verbs, we employed classes of
VerbNet to cluster the identified verbs in families of related verbs.

Finally, we extracted regular expression patterns that fit most of the tasks
and that can be used as a recommended template for task label writers.

3 Linguistic Structure of Task Labels

The goal of this analysis is to identify the most common linguistic structures in
the sentences that represent tasks labels. Because of the vast number of existing
POS tags, we grouped the tags as shown in Table 2. For example, verbs tagged
with different tenses (present/past) are grouped into the verb category.

Table 2. Grouping of POS tags employed in analysis

Group tag POS tags Occurrence % Unique first words

verb VB, VBD, VBG, VBP, VBZ 1,173 73.63 70

noun NN, NNS, NNP, NNPS 322 20.21 65

adjective JJ, JJR, JJS 27 1.69 13

adverb RB, RBR, RBS 27 1.69 4

pronoun PRP, PRP$ 7 0.44 2

other 37 2.32 11

Total 1,593 100 165

Despite the grouping, the Stanford POS tagger identified 968 different lin-
guistic structures that represent the 1,593 tasks, thereby showing the various
ways task labels are formulated by developers.
1 The individual tags refer to the Penn Treebank tagset [11].

112 L. Müter et al.

Table 3. The ten most frequent structures of task labels

Structure Freq. % Example

VB, NN(S), NN 130 8.17 Create tender-settings
component

VB, NN(S), NN, NN(S) 67 4.18 Create messages DB tables

NN, NN(S), NN(S) 25 1.57 Admin licenses breadcrumbs

VB, NN(S), IN, NN 21 1.32 Add filters for KO

VB, NN, NN(S), NN(S), NN 20 1.26 Implement TenderPlan
actions business logic

VB, JJ, NN(S), NN 18 1.13 Create disqualified offers card

VB, NN 27 1.67 Create TenderProcessDefini-
tionLevelRule

VB, NN(S), IN, NN, NN 15 0.94 Bind rules per section item

VB, NN, NN, IN, NN, NN(S) 13 0.82 Create SQL Script for
AcceptedById items

NN, NN(S) 10 0.62 Update actions

POS taggers are trained with long newswire text and not with short, sketched
sentences like task labels, so to further improve the accuracy we performed a
manual amendment of some tags (especially verb instead of noun). The ten
most frequent structures are shown in Table 3. In the table, we use the following
abbreviations: NN = noun, VB = verb, IN = conjunction, and JJ = adjective. The
most frequent pattern is a verb followed by two nouns, for example: “Create
tender-settings component” (VB, NN, NN). Several variations exist that add an
adjective or a conjunction to the sequence of nouns. In the top-10 list, only two
structures start with a noun, which usually indicates the architectural location
of the task. Task labels starting with a noun will be analyzed in future work.

Given the variations in sentence structures as presented in Table 3, we distill
a template that we propose as a guideline for writing task labels. The extended
Baccus-Naur form (EBNF) grammar for the template (shown below) states that
a task is expressed by a verb, followed by one or more follow elements, each
being either a noun, a conjunction, an adjective, a “to”, or a cardinal number.

task = verb, follow, {follow};
follow = noun | conjunction | adjective | "to" | cardinal number;

The pattern matches 42.4% of the tasks in the dataset (676 out of 1,593).
Further research will reveal more detailed patterns in the label set in order to
develop guidelines for task refinement.

4 On the Choice of an Action Verb

Task labels describe an action for the developer to carry out in order to imple-
ment part of a software function, or to improve existing code. We have first

Refinement of User Stories into Backlog Items 113

Table 4. Most frequent action verbs that occur in a task label

Rank Action verb Frequency

1 Create 578

2 Modify 125

3 Add 85

4 Implement 79

5 Change 27

6 Extend 19

7 Set 18

8 Check 16

9 Load 14

10 Remove 13

11 Bind 11

12 Update 11

13 Move 10

14 Show 10

15 Delete 9

16 Get 9

17 Redesign 9

18 Setup 8

19 Fix 8

20 Review 8

analyzed the first action verb that occurs in a task label. To do so, we employed
the Stanford POS tagger and extracted the action verbs from our 1,593 task
labels. This resulted in 56 different verbs, which became 81 after some man-
ual pre-processing of spelling errors and noun-verb conversion. The 20 most
frequently occurring action verbs are shown in Table 4.

The most frequent action verb is create, which amounts to about one third
of the entire task set. This figure is a strong indicator of the feature creep phe-
nomenon [12]. On the other hand, a very related verb such as delete occurs only
in 1.5%. However, while analyzing the results, we observed that quasi-synonyms
exist; for instance, the remove verb is a synonym of delete.

The observed relatedness of some verbs and the quasi-synonyms motivate to
obtain a smaller set of action verbs for use in task descriptions. We resorted to
VerbNet [13], a taxonomy of verbs that groups similar verbs in so-called verb
classes. For example, the class create (create-26.4) includes alternative terms,
besides the namesake verb, the similar verbs coin, fabricate, construct, etc. We
identified verb classes in VerbNet that could act as containers for multiple verbs;
moreover, we performed some adjustments to cope with the domain-specific

114 L. Müter et al.

Table 5. Families of action verbs in task labels

Family Members of the verb-family

Create Code, create, define, design, implement,
insert, make

Update Add, adjust, change, edit, extend, fix,
improve, insert, renew, replace, refactor,
redesign

Merge Bind, export, insert, integrate, invite, link,
list, offer

Delete Delete, remove

Validate Check, evaluate, research, test, verify

Control Accept, allow, apply, bind, cancel, check,
configure, control, determine

Investigate Inquire, investigate, research, search

Table 6. Elementary action verbs for task labeling

Verb Explanation Example

Create Add new features Create new tender property

Update Change existing functionality Update all permissions
screens

Merge Combine existing functionalities Integrate localization in
datetime picker

Delete Remove existing functionalities Delete offer stored procedure

Validate Test existing functionalities Evaluate inserted event

Control Manage existing functionality Control of access to box
content

Investigate Study potential functionality Research angular 2.0
validation and refactoring
components

jargon of software development. The analysis of our dataset resulted in the seven
families of action verbs listed in (Tables 5 and 6).

Our analysis of the data set leads us to distill the following recommendations
regarding the use of elementary action verbs in task labels:

– Each task should start with an action verb.
– The family-verb defines the nature of the development action to be performed

with the code.
– The starting action verb should be in the imperative mood.
– When a suitable member-verb exists in Table 5, that verb should be used.

When re-analyzing our data set using our guidelines, we found many well
formed task labels but also several poorly defined lables. A poorly defined task

Refinement of User Stories into Backlog Items 115

would be “Box breadcrumb component”, which could be rewritten as “Create
box breadcrumb component”. On the other hand, “Update validity check for
Addresses” from Table 1 is a well defined task, for “update” is listed in Table 5.

5 Conclusions and Directions

Our linguistic analysis of a large industrial product backlog resulted in prelim-
inary guidelines for writing backlog items/tasks in a consistent manner, which
also offers possibilities for the development of tools that assist analysts in the
authoring of high-quality task descriptions.

Tasks play a key role in agile development, for they bridge the problem space
(the requirements) and the solution space (the architecture and the code). The
tasks refine the product requirements expressed as USs. A poorly formulated
task is likely to lead to issues in the developed code and sprint velocity.

This research-in-progress paper simply paves the way for future work in the
field. First and foremost, we have used a single dataset in our analysis. The
guidelines are likely to need some amplification, and their impact on software
development needs to be evaluated in vivo. In the long run, we hope this research
will bring insights and theories to the “wild” world of agile development.

References

1. Lucassen, G., Dalpiaz, F., Werf, J.M.E.M., Brinkkemper, S.: The use and effec-
tiveness of user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016.
LNCS, vol. 9619, pp. 205–222. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30282-9 14

2. Kassab, M.: The changing landscape of requirements engineering practices over
the past decade. In: Proceedings of EmpiRE, pp. 1–8 (2015)

3. Berry, D.M., Kamsties, E., Krieger, M.M.: From contract drafting to software spec-
ification: linguistic sources of ambiguity. Technical report, School of Computer
Science, University of Waterloo, Canada (2001)

4. Bano, M.: Addressing the challenges of requirements ambiguity: a review of empir-
ical literature. In: Proceedings of EmpiRE, pp. 21–24 (2015)

5. Rosadini, B., et al.: Using NLP to detect requirements defects: an industrial expe-
rience in the railway domain. In: Proceedings of REFSQ, pp. 344–360 (2017)

6. Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.:
Extracting conceptual models from user stories with visual narrator. Requir. Eng.
22(3), 339–358 (2017)

7. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation
approaches between user requirements and analysis models. Requir. Eng. 16(2),
75–99 (2011)

8. Bakar, N.H., Kasirun, Z.M., Salleh, N.: Feature extraction approaches from natural
language requirements for reuse in software product lines: a systematic literature
review. J. Syst. Softw. 106, 132–149 (2015)

9. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story
models. In: Jark, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 211–225.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6 15

https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-07881-6_15

116 L. Müter et al.

10. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Improving
agile requirements: the quality user story framework and tool. Requir. Eng. 21(3),
383–403 (2016)

11. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated cor-
pus of English: the Penn treebank. Comput. Linguist. 19(2), 313–330 (1993)

12. Jones, C.: Strategies for managing requirements creep. Computer 29(6), 92–94
(1996)

13. Schuler, K.K.: VerbNet: a broad-coverage, comprehensive verb Lexicon. Ph.D. the-
sis, Philadelphia, PA, USA (2005). AAI3179808

Requirements Engineering for Innovative
Software Ecosystems: A Research Preview

Karina Villela1(B), Shashank Kedlaya1,2, and Joerg Doerr1

1 Fraunhofer IESE, Kaiserslautern, Germany
{karina.villela,joerg.doerr}@iese.fraunhofer.de

2 TU Kaiserslautern, Kaiserslautern, Germany
skedlaya@rhrk.uni-kl.de

Abstract. [Context and motivation] In order to stay competitive in the
Digital Transformation era, many organizations are engaging in innova-
tive software ecosystems (SES). However, there is a lack of specific meth-
ods for tackling SES engineering challenges. [Question/problem] This
paper presents a Requirements Engineering (RE) decision framework and
a process for guiding key SES partners in the process of shaping their
SES. [Principal ideas/results] Both the framework and the process build
upon the results of a literature review and interviews with practitioners,
and have undergone a preliminary qualitative evaluation. [Contribution]
The systematic approach for shaping SES together with an explicit and
clear definition of its application context will enable practitioners and
researchers to apply it and/or translate it to other application contexts.

Keywords: Innovative digital solutions · Software ecosystems ·
Requirements Engineering · Software product management ·
Software platform management

1 Introduction

Digital transformation means “the profound and accelerating transformation of
business activities, processes, competencies, and models aimed at fully lever-
aging the changes and opportunities of digital technologies and their impact
across society in a strategic and prioritized way” [3]. The digital solutions in
this scenario are inherently innovative, even disruptive. On the other hand, they
integrate several complex and interdependent systems spanning multiple, inter-
connected application domains and provided by different organizations.

The paradigm of Software Ecosystems (SES) [5] can offer an answer to the
challenge of developing the aforementioned digital solutions. However, Manikas’s
longitudinal literature study [9] concluded that there is a lack of specific theories,
methods and tools for tackling SES problems. He argues that a big part of the
problem derives from the fact that the notion of SES is very wide and arguably
complex. Therefore, one of his recommendations is to focus more on research
contributions to the field and explicitly characterize their context of application.
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 117–123, 2019.
https://doi.org/10.1007/978-3-030-15538-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_8

118 K. Villela et al.

In addition, Manikas’s study [9] allows the conclusion that Requirements Engi-
neering (RE) for Software Ecosystems (RE4SES) has been under-investigated.

Our organization has actively participated in several projects aimed at shap-
ing innovative digital solutions based on SES (e.g., [11]). In these projects, the
characteristic initial situation was the decision by some companies to combine
their strengths in an SES in order to offer solutions that go far beyond their
current and individual portfolio of solutions, towards the digital transformation
of their business. This situation calls for a top-down approach, which means
progressing from the definition of an overall SES concept towards innovative,
typically more disruptive services, applications, and technical infrastructure. A
bottom-up approach, i.e., gradually evolving the existing portfolio of solutions
into a cohesive SES, would not achieve the desired level of innovation. Despite
being typically applied in green field, top-down approaches to software engineer-
ing can also be applied in brown field. In this case, existing assets are incorpo-
rated if they fit the new SES concept. In this paper, we propose an RE decision
framework and a process that build upon, but go beyond, our creativity work-
shops [12]. The goal is to provide holistic guidance to requirements engineers on
how to contribute to the shaping of innovative SES as part of the SES leadership
team [2].

Following Manikas’s characterization scheme [9], our contribution is appli-
cable to ecosystems whose orchestration is not an anarchy, whose means of
value creation are proprietary or hybrid, and whose common technology can
vary. Considering Bosch’s category dimension and the spectrum between directed
and undirected opening-up approaches [1], our contribution targets applications
where the opening-up approach tends to be directed. We did not use Bosch’s
[1] platform dimension because ecosystems aiming at digital transformation fre-
quently span all categories in this dimension.

The remainder of this paper is structured as follows: Sect. 2 presents our
research method together with the findings from the literature and interviews
with practitioners. Section 3 describes our RE decision framework and a process
that sketches the dynamics among the decisions. In Sect. 4, we discuss the results
of an initial qualitative evaluation of our contribution and present our future
work.

2 Research Method and Main Findings

Our research has followed the five steps of the Design Science Research Cycle
(DSRC) [15]: (1) awareness of the problem, (2) suggestion, (3) development, (4)
evaluation and (5) conclusion. This research preview reports on the results from
the first design cycle.

In the first step, we searched the literature for RE4SES challenges from the
scientific perspective and performed individual, semi-structured 1-h interviews
with ten practitioners from our organization in order to capture the practitioners’
perspective. These practitioners reported on the RE challenges experienced in

Requirements Engineering for Innovative Software Ecosystems 119

seven different projects regarding the conception and/or development of innova-
tive SES. For the literature survey, we used the search string “Software Ecosys-
tems” and (“Requirements” or “Requirements Engineering”) in SpringerLink,
ScienceDirect, IEEE Xplore, and ACM Digital Library. In the second step, we
collected from the literature the currently available RE4SES approaches. Based
on the knowledge acquired in steps (1) and (2), we designed an RE decision
framework and a process, which will be described in Sect. 3. The evaluation
step was performed by collecting feedback from eight practitioners (a subset of
the previously interviewed ten practitioners, due to availability) in individual
1-h interviews, where the produced artifacts were explained to the interviewees,
who were then asked to openly comment on their structure and contents and
propose improvements.

Using a clustering approach over the literature survey’s results, we extracted
the following areas of challenges (introduced with an abbreviation for later ref-
erence):

– Requirements negotiation (ReqNeg) due to the interplay with several part-
ners who must align their own interests and schedules and negotiate alterna-
tive solutions [10];

– Software integration (SoftInt) due to release planning cycles not being prop-
erly synchronized and product versions being launched at different points in
time [17];

– Governance (Gov) due to the need to define clear responsibilities, make busi-
ness strategy explicit, and determine the level of knowledge sharing [17];

– Support for the emergent requirements flow (EmergFlow) [7,14,17] due to
the need to contextualize those requirements, map them to specific subsys-
tems, and communicate them to the stakeholders [7].

The practitioners mentioned all these challenges and others: the uncertainty
involved in the shaping of the ecosystem (Unc), as there is no one delivering
concrete ecosystem requirements; the need to deal with several domains as well
as with technical, legal, and business aspects simultaneously (DomAsp); the
challenge of separating the requirements to be fulfilled by the platform (the
common infrastructure in all our projects so far) and by the services and appli-
cations that will build on it (PlatServ); support for the on-boarding of new
ecosystem partners (OnB), which requires the usage of prototypes and convinc-
ing capabilities; and change management (CM), due the need to deal with the
inherent uncertainty and the on-boarding of partners.

As for the currently available RE4SES approaches, there are some approaches
for dealing with specific challenges and activities [4,8,14,16]. However, there is
still no guidance for requirements engineers on how to contribute to the top-down
shaping of SES. As expected in competence/maturity models, Jansen et al. [6]
present a wide range of capabilities, but at a very high level of abstraction.
Santos and Werner [13] provide a set of concrete activities, but focus on the
opening of existing platforms and on monitoring and management activities.

120 K. Villela et al.

3 Decision Framework and Process for RE4SES

The proposed decision framework is composed of the following decision points:
Actors: organizations that interact or are expected to interact directly or

indirectly with each other as part of the SES. Existing relationships such as
trade relationships and collaborations are also of interest.

Business Strategy: flows that implement the ecosystem business, such as the
flow of data, the flow of goods, and the flow of money.

Services/Applications: software services and applications that are required to
implement the business strategy or influence it. Their identification is necessary
to clarify which contributions are needed from the SES partners.

Openness Strategy: the degree of openness for the SES. This has two dimen-
sions: (1) the ecosystem’s openness for new partners, which can be tuned by entry
conditions and facilities for the integration of contributions; and (2) openness of
data, knowledge, artifacts and communication for the SES partners, which can
be defined through IP rules, licensing policies, and collaboration principles.

Technical Infrastructure: requirements for the SES’s common technological
infrastructure at operation time and at development time, which are defined in
alignment with the decisions about the openness strategy. This decision point
also includes the identification of relevant data sources and the definition of user
feedback mechanisms.

The decision points Actors, Business Strategy and Service/Applications were
mainly derived from our workshop approach for the initial design of SES [12]; in
addition, relationships among actors are addressed in [7,16]; the need to define
clear responsibilities and make the business strategy explicit is mentioned in
[7,17]; and Valença et al. refer to the identification of strategic features aimed
at composing an SES roadmap [17]. The decision point Openness Strategy was
motivated by [7] and [4]. The decision point Technical Infrastructure was also
inspired by [7], where a technical infrastructure is made available to support
decisions regarding openness, and by several references reporting the need to
provide user feedback mechanisms [7,14,17].

For the application of the proposed decision framework, we envision the
dynamics depicted in Fig. 1, which presents an iterative process that can be
repeated until the SES concept is clear enough for the realization of its first
version. According to Naab et al. [11], the first versions should cover a small
subset of the SES focused on priority goals and on what needs to be solved in
the short term, with the goal being to learn from the on-boarding of partners
and the initial operation.

Preliminary Definition of SES Concept: Activities for defining the SES con-
cept include the identification of actors and different end-user roles, the defi-
nition of the overall business strategy, the definition of software services and
applications for composing the SES, and a preliminary discussion of openness
alternatives. This also encompasses the indication by key SES partners of their
intended contribution to the SES.

Elaboration of SES Enablers: Both the openness strategy and the technical
infrastructure are key aspects for making the SES attractive to its current and

Requirements Engineering for Innovative Software Ecosystems 121

Fig. 1. Process for guiding the performance of RE4SES (BPMN 2.0)

potential partners. As the technical infrastructure goes beyond providing tech-
nical support to the openness strategy, the elaboration of the openness strategy
and of the technical infrastructure requirements can start in parallel. The open
software enterprise model [4] can help key SES partners in choosing the degree
of openness for their SES.

Definition of the Contribution Strategy: Activities performed by each SES
partner individually to determine their contribution to the SES. Lin̊aker and
Regnell [8] provide guidance on how to perform these activities. A contribution
roadmap should indicate the features included in each contribution release as
well as estimated release dates.

Alignment of Contribution Strategies: Activities to support the alignment
of the contributions proposed by the SES partners, resulting in a joint SES
roadmap. This potentially involves negotiation and may result in refinements
of the overall SES concept and/or individual contributions. Knowing the power-
dependence relations described in [16] is crucial for understanding power disputes
and finding satisfactory solutions.

Assessment of SES Strategy: After making so many decisions and aligning
individual contributions in a joint SES roadmap, it is time to assess the overall
SES strategy in terms of the value it brings to all involved actors and end-users,
consistency among all the decisions made, and the uncertainties and risks to be
addressed and monitored from this time on.

The consideration of business, technical, and legal aspects [11] (DomAsp)
is a concern that crosscuts all activities of the proposed process. The need to
align the interests and contributions of the key SES partners [17] (derived from
ReqNeg and SoftInt) is exactly the reason for: (1) having the key SES partners

122 K. Villela et al.

define the preliminary SES concept jointly (Fig. 1, Activity 1); (2) allowing the
partners to define their contribution strategy separately (Fig. 1, Activity 4); and
(3) giving the key SES partners the opportunity to jointly discuss and align
their contributions (Fig. 1, Activity 5). This setting together with the activities
in Elaboration SES Enablers (Fig. 1, Activities 2 and 3) addresses Gov. In addi-
tion, the aforementioned setting together with the possibility of having several
iterations addresses Unc and makes the application of the process for shap-
ing real-world SES realistic. We believe that EmergFlow, OnB and CM should
be addressed in processes that are complementary to the proposed process.
Finally, we intend to investigate how to refine our approach to address PlatServ
explicitly.

4 Preliminary Evaluation and Future Work

The interviewees evaluated the full description of the decision framework and
process. The evaluation was qualitative and open, with interviewees indicating
the aspects that they particularly liked or disliked, and aspects that they missed.
In some cases, they asked for information to be added to the description of the
decision points. The critical improvement suggestions included making the SES
platform more evident in the decision points and/or process, and addressing
change management and the on-boarding activities. These improvement sugges-
tions are exactly related to the practitioners’ challenges that we believe should
be addressed by complementary processes (OnB and CM) or that we want to
address in future work (PlatServ).

The next step of this research will be to perform a thorough analysis of the
evaluation interviews and thereby conclude the first design cycle. In the second
design cycle, we will make the necessary adaptations to our contribution based
on the received feedback. In addition, we will suggest notations for capturing
decisions and propose the structure of the process artifacts. Regarding the eval-
uation in the second design cycle, we plan to carry out an industrial case study.
In the long term, more case studies and other types of empirical studies should
be performed in order to provide evidence of the suitability of the proposed
approach and support its evolution.

Acknowledgement. This work was done in the context of the project Smart MaaS
funded by the German Federal Ministry for Economic Affairs and Energy (grant num-
ber 01MD18014B).

References

1. Bosch, J.: From software product lines to software ecosystems. In: SPLC, pp. 111–
119. Carnegie Mellon University (2009)

2. Hess, S., Knodel, J., Naab, M., Trapp, M.: Engineering roles for constructing
ecosystems. In: ECSAW. ACM (2016). Article 24

Requirements Engineering for Innovative Software Ecosystems 123

3. i-SCOOP: Digitization, digitalization and digital transformation: the differences
(2017). https://www.i-scoop.eu/digitization-digitalization-digital-transformation-
disruption/. Accessed 22 Oct 2017

4. Jansen, S., Brinkkemper, S., et al.: Shades of gray: opening up a software producing
organization with the open software enterprise model. J. Syst. Softw. 85(7), 1495–
1510 (2012)

5. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: ICSE, pp. 187–190. IEEE (2009)

6. Jansen, S., Peeters, S., Brinkkemper, S.: Software ecosystems: from software prod-
uct management to software platform management. In: IW-LCSP@ICSOB, pp.
5–18 (2013)

7. Knauss, E., Yussuf, A., et al.: Continuous clarification and emergent requirements
flows in open-commercial software ecosystems. RE J. 23(1), 97–117 (2018)

8. Lin̊aker, J., Regnell, B.: A contribution management framework for firms engaged
in open source software ecosystems - a research preview. In: Grünbacher, P., Perini,
A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 50–57. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0 4

9. Manikas, K.: Revisiting software ecosystems research: a longitudinal literature
study. J. Syst. Softw. 117, 84–103 (2016)

10. Manikas, K., Hansen, K.M.: Software ecosystems-a systematic literature review. J.
Syst. Softw. 86(5), 1294–1306 (2013)

11. Naab, M., Rost, D., Knodel, J.: Architecting a software-based ecosystem for the
automotive aftermarket: an experience report. In: ICSA. IEEE (2018)

12. Nass, C., Trapp, M., Villela, K.: Tangible design for software ecosystem with
PlaymobilR©. In: NordiCHI, pp. 856–861. ACM (2018)

13. Santos, R., Werner, C.: ReuseECOS: an approach to support global software devel-
opment through software ecosystems. In: ICGSEW, pp. 60–65. IEEE (2012)

14. Schneider, K., Meyer, S., Peters, M., Schliephacke, F., Mörschbach, J., Aguirre,
L.: Feedback in context: supporting the evolution of IT-ecosystems. In: Ali Babar,
M., Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 191–205.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13792-1 16

15. Takeda, H., Veerkamp, P., Yoshikawa, H.: Modeling design process. AI Mag. 11(4),
37 (1990)

16. Valença, G., Alves, C.: A theory of power in emerging software ecosystems formed
by small-to-medium enterprises. J. Syst. Softw. 134, 76–104 (2017)

17. Valença, G., Alves, C., et al.: Competition and collaboration in requirements engi-
neering: a case study of an emerging software ecosystem. In: RE Conference, pp.
384–393. IEEE (2014)

https://www.i-scoop.eu/digitization-digitalization-digital-transformation-disruption/
https://www.i-scoop.eu/digitization-digitalization-digital-transformation-disruption/
https://doi.org/10.1007/978-3-319-54045-0_4
https://doi.org/10.1007/978-3-642-13792-1_16

Assessment of the Quality of Safety Cases:
A Research Preview

Jose Luis de la Vara1(&), Gabriel Jiménez1, Roy Mendieta2,
and Eugenio Parra1

1 Departamento de Informática, Universidad Carlos III de Madrid,
Leganes, Spain

jvara@inf.uc3m.es,

{gabriel.jimenez,eparra}@kr.inf.uc3m.es
2 The REUSE Company, Leganes, Spain
roy.mendieta@reusecompany.com

Abstract. [Context and motivation] Safety-critical systems in application
domains such as aerospace, automotive, healthcare, and railway are subject to
assurance processes to provide confidence that the systems do not pose undue
risks to people, property, or the environment. The development of safety cases is
usually part of these processes to justify that a system satisfies its safety
requirements and thus is dependable. [Question/problem] Although safety
cases have been used in industry for over two decades, their management still
requires improvement. Important weaknesses have been identified and means to
assess the quality of safety cases are limited. [Principal ideas/results] This
paper presents a research preview on the assessment of the quality of safety
cases. We explain how the area should develop and present our preliminary
work towards enabling the assessment with Verification Studio, an industrial
tool for system artefact quality analysis. [Contribution] The insights provided
allow researchers and practitioners to gain an understanding of why safety case
quality requires further investigation, what aspects must be considered, and how
quality assessment could be performed in practice.

Keywords: Safety case � Quality � Quality assessment � System assurance �
Safety-critical system � Verification Studio

1 Introduction

Safety-critical systems are those whose failure can harm people, property, or the
environment [17], e.g. systems in aerospace, automotive, healthcare, and railway.
These systems are subject to rigorous, systematic, and planned assurance processes to
provide confidence that the systems satisfy given requirements. These requirements can
be system requirements (i.e. about the properties of a system, including safety
requirements) or be indicated in standards with which a system must comply. Among
the artefacts to manage for systems assurance, safety cases are arguably the main ones.

A safety case is a structured argument, supported by a body of evidence, that
provides a compelling, comprehensible and valid case that a system is safe for a given

© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 124–131, 2019.
https://doi.org/10.1007/978-3-030-15538-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_9

application in a given environment [16]. Safety cases have been used in industry for
over two decades, first in application domains such as defence and energy and more
recently in domains such as automotive and healthcare. Many researchers have worked
on the specification and management of structured safety cases [17], e.g. with GSN
(Goal Structuring Notation). The notion of safety case has also evolved towards the
more general concept of assurance case, to justify system dependability, and other
specific cases such as security case. Although the term safety case is not used in some
applications domains and standards, the concept of artefact to justify system safety and
dependability exists in all safety-critical contexts.

Despite the importance and wide use of safety cases, certain aspects of their
development require improvement to ensure that the quality of a safety case is sufficient
and thus system safety has been acceptably justified. Among the authors that have
studied safety case quality, Nancy Leveson is one of the most well-known experts that
has doubted the quality and effectiveness of safety cases. For example, she argues that
confirmation bias can easily appear in a safety case and has reviewed issues in past
safety cases such as obscure language and compliance-only exercises [12]. Greenwell
et al. [8] found several types of fallacies in the arguments of existing safety cases, e.g.
using wrong reasons, drawing wrong conclusions, and omission of key evidence.

Even researchers and practitioners that strongly support the use of safety cases have
acknowledged the risk of developing low-quality safety cases. Kelly [10] has referred
to issues such as the “apologetic safety case”, the document-centric view, the
approximation to the truth, the prescriptive safety case, and the illusion of pictures, and
Bloomfield and Bishop [3] argue that improvements are needed in safety case structure
and confidence. In a seminal paper on software safety certification [9], Hatcliff et al.
refer to the weakness that there are many possible forms of an assurance case, some
good and some bad, and to the lack of guidance to produce effective assurance cases,
among other issues. Langari and Maibaum [11] review challenges for safety cases,
including size and complexity, readability, checking soundness, and checking com-
pleteness, and Wassyng et al. [22] discuss weaknesses about argumentation.

Recent studies about the state of the practice [5, 18] report that practitioners face
challenges to effectively create and structure safety cases, that tool support for safety
cases is basic, and that safety case evolution does not seem to be properly addressed.
How safety case quality is managed, including its evolution, can be improved.

In summary, and as further discussed below, the current practices and tools to
ensure and assess the quality of safety cases seem to be insufficient and further research
is needed. We are working towards filling the gaps in the state of the art, and in this
paper we present a research preview about (1) the main needs to take into account for
effective assessment of the quality of safety cases in practice, and (2) our current results
on the development of a solution to assess safety case quality with Verification Studio
[21], an industrial tool for system artefact quality analysis. We have been able to
successfully use Verification Studio to analyse the quality of safety cases specified with
ASCE (Assurance and Safety Case Environment) [1]. The quality analysis is partial
and several important aspects have not been addressed yet, but the results represent a
promising initial step towards the assessment of the quality of safety cases in industry.

Assessment of the Quality of Safety Cases: A Research Preview 125

This paper distinguishes from prior work by focusing on how the quality of safety
cases should be assessed and proposing a solution linked to quality analysis in practice.
The insights provided can help industry and academia gain a better understanding of
what factors can influence safety case quality, why the topic requires further research,
what aspects should be considered, and how quality assessment could be performed.

The rest of the paper is organised as follows. Section 2 introduces the main needs
for assessing the quality of safety cases. Section 3 presents our current results and
Sect. 4 our next steps. Finally, Sect. 5 summarises our conclusions.

2 Needs for Assessing the Quality of Safety Cases

This section presents the six main needs that, in our opinion, must be addressed to
enable the effective assessment of the quality of safety case in practice.

(1) The information about safety case quality is scattered. There exists guidance
about the quality properties that a safety case should have; e.g. the GSN standard
[7] presents errors to avoid. However, this information is in many different
sources [20]: standards, research literature, tool documentation… It is necessary to
create a unifying framework for safety case quality and that the framework gathers
information from different sources, harmonising the guidance from different
application domains.

(2) Quality metrics for safety cases are limited. As a follow-up need, it is not clear
how safety case quality could be objectively and suitably measured. Some metrics
can be found in the literature, e.g. the number of unsupported claims, but the
metrics (1) have not been developed in the scope of a sound quality framework
and (2) usually deal with simple attributes. Most of the tool support for mea-
surement of safety case quality further corresponds to research prototypes [14].
More mature tools, e.g. AdvoCATE [6], provide very limited and narrow sets of
metrics. In addition, most metrics defined for safety-related assessments (e.g. [4])
do not apply to the specific quality needs of safety cases, but the metrics should be
adapted or re-defined. Once the framework from the previous need is developed,
metrics and measurement procedures must be defined and implemented to be able
to quantitatively asses the quality of safety cases.

(3) Safety case quality goes beyond safety case structure and syntax. Most work
on safety case quality has focused on structural and syntactical aspects [20], e.g.
the language used to specify a claim or how to assess the confidence in a claim.
However, safety case quality is also based on e.g. the semantics of the elements
and how well the argumentation is formed. These aspects indeed relate to some of
the main criticisms that safety cases have received. It is necessary to pay further
attention to them.

126 J. L. de la Vara et al.

(4) Safety cases are most often managed as textual documents. This is arguably
the need that has been most widely disregarded by the research community. Prior
work has focused on analysing graphical structured safety cases [17], but the
reality in industry is that safety cases are most often managed as textual docu-
ments. These documents might include graphical arguments created with e.g.
GSN, but the diagrams would correspond to only a part of the safety case doc-
ument. It is necessary to think of how the textual descriptions could be analysed to
assess the quality.

(5) Safety case quality depends on the quality of many other system artefacts.
Safety cases relate to other artefact types [5], e.g. safety analysis results and V&V
results. Hundreds of references to other artefacts can be found in the safety case of
a complex system, and the quality of the safety case depends on these artefacts.
The relationship with other artefacts and their influence must be characterised
from a quality perspective, also considering that the influence might vary among
artefact types.

(6) Safety case quality evolves. It is strongly recommended that safety cases are
created incrementally [10], evolving from a preliminary version at e.g. system
analysis phase to an interim version during implementation and an operational one
when system development finishes. A safety case should also be maintained
during system operation and can be impacted by changes in other artefacts [5]. It
is necessary that the approaches to assess the quality of safety cases consider that a
safety case evolves during a system’s lifecycle and that what the quality of a
safety case is can vary between different phases.

3 Current Results

We have already started to work to enable our vision for the assessment of the quality
of safety cases. We have first dealt with technological aspects, setting the scope of how
a tool-based solution could effectively support the assessment of safety case quality in
practice. We have performed little work on the quality framework and the quality
metrics related to the first two needs presented above. This requires a deep investi-
gation, including systematic reviews of the literature that take both academic publi-
cations and other sources such as safety standards into account.

Figure 1 presents an overview of our current solution. It is based on the integration
of two commercial tools: ASCE [1] and Verification Studio [21]. ASCE supports the
specification of structured safety cases with e.g. the GSN notation. It is arguably the
main tool in industry for this purpose [5, 18]. Verification Studio supports the analysis
of the quality of different system artefact types and in different formats, such as textual
requirements, logical system models with UML or SysML, or physical system models
with Modelica or Simulink. The analysis is based on metrics for which measurement
procedures are specified and for which quality levels are defined, i.e. the quality will be
assessed as high or low depending on a metric’s measurement result and thresholds.
The quality is analysed according to the information in a System Knowledge Repos-
itory, which is a domain representation with an ontology.

Assessment of the Quality of Safety Cases: A Research Preview 127

The use of Verification Studio is suitable because it fits the needs presented above:

• Verification Studio provides default metrics to analyse artefact quality, mainly
according to an ontology. The users can also define their own metrics and specify
measurement procedures (need 2).

• Verification Studio supports semantics-based analyses of artefact quality, as well as
analyses based on syntactical aspects and on artefact structure (need 3).

• The RSHP language [13] is used as the main basis for artefact representation in
Verification Studio. It supports universal information representation via the different
elements of an artefact, their relationships, and their semantics. Artefacts in different
formats (text, models, etc.) can be represented with RSHP, including safety cases
specified as diagrams or as documents (need 4).

• Verification Studio supports the centralised analysis and management of the quality
of different artefact types, and it is part of tool suite that also supports the man-
agement of the traceability between system artefacts (need 5).

• A recent feature of Verification Studio supports the analysis of the evolution of the
quality of an artefact [19], including the use of different metrics at different
moments of the lifecycle of an artefact to assess its quality (need 6).

For integration of ASCE and Verification Studio, we exploit the OSLC-KM
technology [2], which provides generic means for tool interoperability. The technology
allows us to transform ASCE files into data that Verification Studio can manage, i.e.
data in the RSHP format. We have performed similar RSHP-targeted integrations in the
past (e.g. for SysML [15]).

Once the information about an ASCE diagram (claims, arguments, evidence, etc.)
has been imported into Verification Studio, we can analyse the quality of the safety
case. To show that this is a feasible approach, we have first analysed the quality of
structured safety cases available in the literature (e.g. [10]) with a set of default metrics
that Verification Studio provides to evaluate artefact correctness. The metrics selected
consider the precision, concision, non-ambiguity, singularity, completeness, quanti-
fiers, and quantification in the text of an element. For instance, the number of vague
adverbs and adjectives, the use of “and/or”, the presence of domain terms, the text
length, and the possible subjectivity of the sentences are considered for quality
assessment. We have used a default ontology with English terms but a specialised one
could have been employed, i.e. with case-specific concepts. Further details about how
the quality analyses have been performed are not provided due to page limitations.

Fig. 1. Solution overview

128 J. L. de la Vara et al.

Figure 2 presents a summary of the quality analysis results for a specific safety
case. The report includes a quantitative score of the individual elements of the safety
case (e.g. claims) and a qualitative evaluation with stars to show whether the quality is
low, medium, or high. A pie chart shows an overview.

4 Next Steps

In the previous sections we have presented the needs that we envision for effective
assessment of the quality of safety cases and the results that we have obtained so far. In
this section we present our next steps to realise our vision. Five main steps can be
distinguished to complete the underlying research process.

(1) Review of the current guidance for safety case quality. The goal of this step is
to gather information about the practices that are used or should be used to ensure
safety case quality. Different sources will be used, namely research literature,
safety standards, and practitioners. For the latter, surveys and case studies could
be conducted.

(2) Specification of a quality framework for safety cases. This step aims at pro-
viding a framework based on which safety case quality can be assessed. The
framework, which will address all the needs introduced in Sect. 2, will aggregate
and synthesise the information collected in the previous step and will consist of
different properties that could be analysed, metrics to characterise the properties,
and measurement procedures for the metrics.

(3) Validation of the framework. This step will confirm that the framework is
suitable by comparing it against industrial practices. For example, a wide range of
practitioners could be asked about the framework to identify possible missing
aspects.

Fig. 2. Example of quality analysis results summary

Assessment of the Quality of Safety Cases: A Research Preview 129

(4) Implementation of the framework. This step refers to the enactment of the
validated quality framework via tool support. The tool could correspond to a
tailored usage of Verification Studio, but since the quality framework will be
generic and tool-independent, it could be implemented with other tools (e.g.
AdvoCATE extension).

(5) Validation of the implementation of the framework. The last step will evaluate
whether the framework and its implementation effectively assess safety case
quality. In addition to using past safety cases, we will try to perform the validation
in running projects. The safety cases will be both structured ones and documents,
and we will use publicly available safety cases and safety cases provided by our
industry network.

5 Conclusion

Safety cases must be managed during the lifecycle of many safety-critical systems and
the quality of the safety cases must be ensured. However, weaknesses have been
identified in the current practices for safety case development, affecting safety case
quality and in turn the confidence in the dependability of the corresponding systems.

This paper has presented a research preview on how to address the assessment of
the quality of safety cases. This includes dealing with needs such as that the infor-
mation about safety case quality is scattered, quality metrics for safety cases are lim-
ited, quality goes beyond safety case structure, safety cases are most often managed as
textual documents, safety case quality depends on the quality of many other system
artefacts, and safety case quality evolves. If these needs are not fulfilled, it is difficult
that the quality of safety cases can be effectively assessed in practice.

As a first step to meet the needs, we have developed a preliminary solution to link
safety case specification and system artefact quality analysis. It integrates ASCE
(Assurance and Safety Case Environment) and Verification Studio. The solution has
allowed us to assess the quality of safety cases with a set of default metrics that
Verification Studio provides and to show that the further development with Verification
Studio of means for assessment of safety case quality can be a feasible approach.

We will work on meeting the needs discussed and on tool support in the future,
taking the next steps presented.

Acknowledgments. The research leading to this paper has received funding from the AMASS
project (H2020-ECSEL ID 692474; Spain’s MINECO ref. PCIN-2015-262). We also thank
REFSQ reviewers for their valuable comments to improve the paper.

References

1. Adelard: ASCE Software. https://www.adelard.com/asce/. Accessed 26 Sept 2018
2. Alvarez-Rodriguez, J.M., et al.: Enabling system artefact exchange and selection through a

linked data layer. J. Univ. Comput. Sci. 24(11), 1536–1560 (2018)

130 J. L. de la Vara et al.

https://www.adelard.com/asce/

3. Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible future - an
adelard perspective. In: SCSS (2010)

4. Cruickshank, K.J., et al.: A validation metrics framework for safety-critical software-
intensive systems. In: SoSE (2009)

5. de la Vara, J.L., et al.: An industrial survey on safety evidence change impact analysis
practice. IEEE Trans. Softw. Eng. 42(12), 1095–1117 (2016)

6. Denney, E., Pai, G.: Tool support for assurance case development. Autom. Soft. Eng. 25,
435–499 (2018)

7. Goal Structuring Notation: GSN Community Standard Version 1 (2011)
8. Greenwell, W.S., et al.: A taxonomy of fallacies in system safety arguments. In: ISSC (2006)
9. Hatcliff, J., et al.: Certifiably safe software-dependent systems. In: FOSE (2014)
10. Kelly, T.: Safety cases. In: Handbook of Safety Principles. Wiley, Hoboken (2018)
11. Langari, Z., Maibaum, T.: Safety cases: a review of challenges. In: ASSURE (2013)
12. Leveson, N.: The Use of Safety Cases in Certification and Regulation. MIT (2011)
13. Llorens, J., Morato, J., Genova, G.: RSHP: an information representation model based on

relationships. In: Damiani, E., Madravio, M., Jain, L.C. (eds.) Soft Computing in Software
Engineering. STUDFUZZ, vol. 159, pp. 221–253. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-44405-3_8

14. Maksimov, M., et al.: Two decades of assurance case tools: a survey. In: ASSURE (2018)
15. Mendieta, R., et al.: Towards Effective SysML Model Reuse. In: MODELSWARD (2017)
16. MoD: Defence Standard 00-56 Issue 4 (2007)
17. Nair, S., et al.: An extended systematic literature review on provision of evidence for safety

certification. Inform. Softw. Tech. 56(7), 689–717 (2014)
18. Nair, S., et al.: Evidence management for compliance of critical systems with safety

standards: a survey on the state of practice. Inform. Softw. Tech. 60, 1–15 (2015)
19. Parra, E., et al.: Analysis of requirements quality evolution. In: ICSE (2018)
20. Rinehart, D.J., et al.: Current Practices in Constructing and Evaluating Assurance Cases

With Applications to Aviation. NASA (2015)
21. The REUSE Company: Verification Studio. https://www.reusecompany.com/verification-

studio. Accessed 26 Sep 2018
22. Wassyng, A., Maibaum, T., Lawford, M., Bherer, H.: Software certification: is there a case

against safety cases? In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS,
vol. 6662, pp. 206–227. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21292-5_12

Assessment of the Quality of Safety Cases: A Research Preview 131

http://dx.doi.org/10.1007/978-3-540-44405-3_8
http://dx.doi.org/10.1007/978-3-540-44405-3_8
https://www.reusecompany.com/verification-studio
https://www.reusecompany.com/verification-studio
http://dx.doi.org/10.1007/978-3-642-21292-5_12
http://dx.doi.org/10.1007/978-3-642-21292-5_12

From Vision to Specification

Refining Vision Videos

Kurt Schneider1(&), Melanie Busch1, Oliver Karras1,
Maximilian Schrapel2, and Michael Rohs2

1 Software Engineering Group, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany
{kurt.schneider,melanie.busch,

oliver.karras}@inf.uni-hannover.de
2 Human-Computer Interaction Group, Leibniz Universität Hannover,

Welfengarten 1, 30167 Hannover, Germany
{maximilian.schrapel,

michael.rohs}@hci.uni-hannover.de

Abstract. [Context and motivation] Complex software-based systems involve
several stakeholders, their activities and interactions with the system. Vision
videos are used during the early phases of a project to complement textual
representations. They visualize previously abstract visions of the product and its
use. By creating, elaborating, and discussing vision videos, stakeholders and
developers gain an improved shared understanding of how those abstract visions
could translate into concrete scenarios and requirements to which individuals can
relate. [Question/problem] In this paper, we investigate two aspects of refining
vision videos: (1) Refining the vision by providing alternative answers to pre-
viously open issues about the system to be built. (2) A refined understanding of
the camera perspective in vision videos. The impact of using a subjective (or
“ego”) perspective is compared to the usual third-person perspective.
[Methodology] We use shopping in rural areas as a real-world application
domain for refining vision videos. Both aspects of refining vision videos were
investigated in an experiment with 20 participants. [Contribution] Subjects
made a significant number of additional contributions when they had received not
only video or text but also both – even with very short text and short video clips.
Subjective video elements were rated as positive. However, there was no sig-
nificant preference for either subjective or non-subjective videos in general.

Keywords: Vision � Video � Refinement � Camera-perspective � Experiment

1 Introduction: Shared Understanding and Vision Videos
in RE

When a complex technical or socio-technical system is being conceived, overall visions
are developed before software requirements can be specified. In development processes
like the V-model (www.iabg.de), system requirements and system design precede
software requirements. Changes in business processes, complex interactions, or societal
change call for stakeholder participation and discourse. However, it is often difficult to
convey the concepts and visions to diverse stakeholders [10]. Due to the large number

© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 135–150, 2019.
https://doi.org/10.1007/978-3-030-15538-4_10

http://www.iabg.de
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_10

of available options, building software prototypes for all of them is impossible. Details
of their scope and impact are initially unclear.

One of the main challenges in requirements engineering (RE) is to create a shared
understanding of the future system among developers and different stakeholder groups
[14]. Minutes of stakeholder meetings are usually limited to only one facet of various
points of view and a shared vision [12]. Several researchers [8, 11, 19] proposed
applying videos in RE due to their communication richness and effectiveness [4]. For
example, Brill et al. [6] demonstrate the benefits of using ad-hoc videos compared to
textual use cases in order to clarify requirements with stakeholders.

In RE, videos of human-computer interaction were used to document system context
[15], product vision [6, 23], or scenarios [22, 28, 29]. They were used as input to a
requirements workshop [7], for analyzing usability [22], or for complementing speci-
fications [8, 20]. Fricker et al. [12] proposed to record stakeholder meetings on video as
a source of authentic requirements. Many approaches use videos but do not report details
about how to produce them [6, 8, 18, 28]. This lack of guidance could be a reason why
videos are not yet an established RE documentation practice [17, 21]. In the process of
eliciting, refining, and validating requirements with video, we investigated two aspects
that may contribute to the benefit of videos: (1) Refining visions by presenting alter-
natives and (2) refining the camera perspective for better emotional involvement.
Refining vision videos can empower elicitation and validation. Creighton et al. [8]
proposed a high-tech approach to videos in RE. We follow a different line of research.

Affordable Video Approach: While high-end marketing videos obviously help to
convince people, we target affordable videos that assist in elicitation and validation
of requirements and visions. Hence, creating and refining videos should be affordable
with respect to effort, time, and resources. We envision a video-based approach for
ambitious requirements engineers in ordinary software development teams.

This paper is structured as follows: Sect. 2 introduces the example application as a
background. In Sect. 3, we describe the concepts of vision videos in RE and of refining
them in particular. Related work is presented in Sect. 4, before we outline the exper-
iment design (Sect. 5) and report about results (Sect. 6). Discussion and threats to
validity (Sect. 7) lead to the conclusion (Sect. 8).

2 Application Example: Shopping in Rural Areas

According to Schneider et al. [25, p. 1], “spatial planning problems are characterized by
large and heterogeneous groups of stakeholders, such as municipalities, companies,
interest groups, women and men, young people and children”. Challenges in spatial
planning include shrinking population in rural areas. Mobility options are discussed,
and shopping opportunities are related to mobility: How can inhabitants of villages and
peripheral areas get access to medical services; how can they buy food and daily
supplies if grocery stores close down, and public transportation is missing?

Traditionally, neighborhood help or a grocery bus initiative will be discussed in
meetings with citizens. Scheduling and conducting those meetings is difficult and

136 K. Schneider et al.

usually reaches only a small portion of citizens and stakeholders. Possibilities to par-
ticipate are initially high and decrease as more and more aspects are decided.
According to the “Paradox of Participation”, however, interest in participation tends to
be low in the beginning and only rises when there is little left to decide. Therefore, it is
desirable to enable and motivate stakeholders to start participating early.

CrowdRE stands for technical approaches to support participation of crowds (of
stakeholders, citizens, etc.) in requirements engineering. In [25], we proposed to extend
the approach beyond RE towards participating in public discourse. The example
application chosen for this paper is a sub-aspect of mobility in rural areas. Shopping
without shops seems to call for some kind of ordering online and requires an adequate
way of delivering the ordered goods. All variants of ordering and delivery require
internet access and sophisticated coordination, which must be provided by software.
Long before software can be specified, however, stakeholders should get to see the
vision and the variants associated with different proposals.

Shopping in rural areas is a real-world application domain of growing importance.
This topic has caught public attention and is discussed in newspapers [1]. Findings from
the experiment, therefore, apply to the rural context – and may be applicable to other
domains with similar challenges. This is, however, beyond the scope of this paper.

3 Concepts to Improve the Use of Vision Videos

As outlined above, vision videos are a good representation for communicating what is
proposed, and how it would feel to use it. Following our Affordable Video Approach,
we intend to solicit feedback, questions, and even objections by affordable self-made
video clips in order to start effective discourse early.

Refinement Process: Stakeholders should be able to participate in the process of
comparing alternatives, selecting, and refining options. As refinement progresses, the
discussion with all its proposals and questions and rationale will change its nature:
From imagining a vision over defining system alternatives to finally narrowing down
on software requirements. Requirements are derived by refining visions.

Emotion: Emotional reactions need to be taken seriously. For example, one variant of
delivery is frequently discussed in the media: A parcel service deposits parcels in the
trunk of their recipients. This asynchronous delivery to a personal space sounds
attractive to many. However, when they see how someone opens a trunk with personal
items in it, their emotional reaction is sometimes less positive. Video is always con-
crete. A video confronts stakeholders with possible scenarios that should be considered.
Similar to other prototypes, validation of assumptions and elicitation of unexpected
reactions merge when watching vision videos.

Definition and Investigated Scenarios: The experiment assumes there is a discussion
on shopping in a rural area, as described above. At this point, “some kind of internet
delivery” is proposed.

Refining Vision Videos 137

Definition: By the term “vision video refinement”, we refer to the process of
replacing gaps, abstract, or vague parts of a vision video by more concrete or detailed
video clips (i.e. short parts of the video).

This definition of vision video refinement expands into three scenarios:

1. Open Question: As long as no proposal has been elaborated, vision videos can
show the problem; stakeholders are then asked for their suggestions.

2. Closed Choice: Discussion moderators or requirements engineers identify a small
number of pre-selected options. They create vision videos to visualize those options
in an affordable way. Those videos are distributed and shown to stakeholders,
asking them for feedback, such as advantages and disadvantages, newly arising
questions, concerns, decisions with rationale.

3. Refined Video: After all open questions have been addressed, selected refinements
are embedded in the overall video. Gaps and vague parts have been replaced by
selected video clips. The resulting refined vision video can be distributed, shown at
town hall meetings, or further refined in social media discussions.

The experiment below covers scenarios (1) and (2): Preparing open questions, and
selecting from different variants. Scenario (3) was not included in this experiment since
it follows the same pattern on the next refinement level. We decided to show all
alternatives (A-B-C and 1-2-3) in one video, one after the other (see Fig. 2). Vision
videos should not be longer than a few minutes.

3.1 Camera Perspectives

Emotional involvement and stimulation of empathy are considered strengths of video
[17]. When stakeholders can literally see what an intended solution would mean for
them, they are enabled to judge alternative proposals and to participate effectively in
the decision-making process. Stakeholder groups face different challenges and may

Fig. 1. Examples of subjective (top) and corresponding third-person perspective (bottom) from
the experiment videos. Variant IDs are displayed temporarily (e.g. “Variante A”).

138 K. Schneider et al.

hold different values. Stakeholder should be represented adequately in a video to
improve empathy, e.g. by actors of their age group and by subjects of an experiment.
Inspired by research in the HCI community [2, 13], subjective camera perspective may
also emphasize identification of stakeholders with actors while watching a video. We
illustrate and define core terms for the remainder of this paper (Fig. 1).

Definition: Subjective Camera Perspective
In the subjective (also “first-person” or “ego”) perspective, a video shows the scene
from the perspective of a particular actor. Video seems to be recorded through the
eyes of that actor. Audio reflects what the actor hears in that situation.
Definition: Third-Person Perspective
The situation and scenario is being recorded from an outside point of view. Camera
and microphone do not appear (or pretend to be) close to eyes and ears of an actor.

4 Related Work

Vision Videos for RE: A vision is a positive imagination of the future. It can refer to
the capabilities, features, or quality aspects of a part of reality that does not yet exist,
but can be imagined. Video is the format in which the vision (content) is presented.
Thus, a vision video of a software-based system typically shows a problem, an envi-
sioned solution, and its impact, pretending the solution already exists.

According to this definition, the work by Brill et al. [6] investigated a situation in
which one group of subjects created a textual use case specification while a second
group prepared a vision video during the same short period of time. Complementary
advantages were found. While there was intentional time pressure and inexpensive
equipment used in this case, Creighton et al. [8] produced high-end vision videos in
cooperation with Siemens and overlaid them visually with UML diagrams. Xu et al. [27]
followed this line of research by starting with videos (pixels) and then replacing parts of
them with operational software prototypes (bytes). This work demonstrated that visions
could successfully be fed into software development activities. In our own work, Karras
and Schneider [21] propose developing a quality model for videos that can be used by
requirements engineers to produce “good-enough” vision videos. Today, smartphone
cameras are of sufficient quality to produce useful vision videos [21]. Practitioners need
only a few hints to produce technically sufficient and effective vision videos for eliciting
requirements. Pham et al. [23] explored ways of arranging short videos on a custom-
made video editor that associated the clips and their arrangement with semantic anno-
tations. Vision videos have been created to promote a societal vision, as in the work of
Darby et al. [9] on design fiction: A vision video shows a consultation session of a nurse
with a patient. The visionary aspect is a tool that is able to read and interpret body
sensors. This tool does not yet exist, but the video pretends it does. The video serves as a
visual prototype of the software, its use and context long before even detailed specifi-
cations are known. Brill et al. [6] had used videos for the same purpose in our research
group. This paper addresses the capability of videos for a discussion process of
refinement and discourse rather than for promotional purposes.

Refining Vision Videos 139

Camera Perspective: Galinsky et al. [13, p. 110] show how perspective-taking, i.e.
“the process of imagining the world from another’s vantage point or imagining oneself
in another’s shoes,” decreases stereotyping of others and facilitates social coordination.
Aitamurto et al. [2] suspect that the sense of presence may be positively correlated with
emotional engagement, empathy, and attitude change as viewers embed themselves in
the perspectives of others. The authors suspect that view switching may support taking
different perspectives and lead to a better understanding of the perspectives of the
different characters, e.g. if the video is filmed in first-person view. Akkil and Isokoski
[3] visualized the actor’s gaze point in an egocentric video and show that this improves
the viewers’ awareness of the actor’s emotions. Kallinen et al. [16] compared first- and
third-person perspectives in computer games and found higher presence for first-person
perspective. The concept of embodiment in VR refers to the users’ experience that the
virtual body is perceived as their own. It has been shown that first-person VR envi-
ronments can create this illusion [26]. This paper analyzes the impact of the subjective
perspective in vision videos to refine guidelines for making good vision videos.

5 Experiment Design

We used the Goal-Question-Metric Paradigm [5] to formulate goals, hypotheses,
questions, and metrics of the experiment.

5.1 Goals of Refining Vision Videos

We want to apply vision videos for stimulating discussions on open questions.

Main Improvement Goals: (1) We want to support the process of making choices
by refining a vision into more detailed and concrete scenarios. (2) As a separate
measurement goal, we want to explore the impact of a subjective camera perspective.

Goal 1 can be rephrased into GQM format: (Purpose) Analyze and compare
(Quality Aspect) number of (new) contributions (Object) in feedback (Perspective)
from young adults. Various combinations of text and video are compared, as specified
below.

Research Questions: In particular, we are interested in the benefit of providing a
second medium. With respect to the GQM goal statement, we investigate whether new
contributions can be raised (“stimulated”) by video and text, respectively. The camera
perspective is directly related to Goal 2 above.

RQ1: Can adding videos stimulate discussion better than text alone?
RQ2: Can adding text stimulate discussions better than video alone?
RQ3: Does a subjective camera perspective in refined vision videos help to
empathize with the actor representing a stakeholder?

140 K. Schneider et al.

5.2 Video Set-Up and Experiment Procedure

The chosen study design leads to a simple and uniform process of conducting subject
sessions. We describe here how the procedure unfolds, and explain our rationale with
respect to answering the research questions while considering threats to validity.

Approach to Refining a Vision Video: In a live or online discussion on rural
shopping, discussions led to identifying ordering and delivery as two crucial open
issues. Each subject chooses one refinement A-B-C for ordering, and one refinement 1-
2-3 for delivery. Offered options were: (A) Ordering by taking a picture, (B) using a
Dash Button, and (C) a self-ordering sensitive box. Delivery was offered (1) through
neighbor-pickup, (2) drones, and (3) deposit in the trunk of a parked car. We used
individual sessions for each subject. They saw the videos and texts on a laptop. On the
side, they completed the paper questionnaire. Q1 to Q8 are the feedback “object” of
Goal 1.

In the experiment, we followed the procedure depicted in Fig. 2. We provided a
scenario of buying groceries with two open issues (halt points): (Issue 1) “How can
groceries be ordered?” and (2) “How are they delivered?” Subjects completed a
questionnaire with eight parts Q1…Q8: Triangles in Fig. 2 indicate what parts of the
questionnaire were answered when. For example, Q1 asks for ideas for rural shopping
after reading the intro text. Q2 was completed after an introductory video was shown.

There are two groups of subjects in the experiment (Fig. 2). Group 1 saw sub-
jective style videos first (for ordering), and then third person videos (delivery). Group 2
started with third-person videos (ordering), and then saw subjective videos for deliv-
ery. This cross design is supposed to mitigate learning effects while at the same time
exposing every subject to both camera perspectives. It is important to note that the
presented alternatives (refinements A-B-C and 1-2-3) of ordering and delivery must be
shown in the same order to all subjects: They are part of the stimulus that must be kept
unchanged in order to produce comparable results.

Intro A A CBB C 1 21 2 3 3Intro

Common intro Issue1: ordering Issue2: delivery

Ques onnaire
(parts Q1..Q8)

Video structure:

1 65432

87

Text
first

Text
first

Video
first

Preference
and evalua on

Vi
de

o
vs

. T
ex

t

Eg
o

vs
. T

hi
rd

 P
ar

ty

Study cross design
Group 1: subjec ve third-person
Group 2: third-person subjec ve

mixed perspec ves

Q..

Fig. 2. Video structure and experiment design, with Questionnaire parts Q1..Q8

Refining Vision Videos 141

5.3 Hypotheses

In the first block of hypotheses, we investigate subjective aspects of the research
questions which are devoted preference. The second block of hypotheses investigates
the performance in terms of the number of contributions. In particular, we investigate
the following alternative hypotheses which represent our assumptions. Null hypotheses
are reported in the result section (Sect. 6) together with the results they refer to.

Preference: What do Subjects Like?
Preference is measured by directly asking subjects about their opinion. In the experi-
ment, such a rating is collected after several steps of the experiment.

H11: Subjects prefer obtaining a video in addition to a text to getting only the text.
H21: Subjects prefer obtaining a text in addition to a video to getting only the video.
H31: There is a difference between the Group 1 and Group 2 in how much they like
the subjective perspective.
H41: Subjects’ preference differs between the subjective or third-person perspective.

Performance: Added Contributions to RE and Shared Understanding
Performance is measured by counting contributions (GQM “quality aspect”). In the
context of RE, we consider new ideas, new questions, requirements, and rationale as
“contributions” for improving shared understanding. We did not count meaningless
and repetitive contributions. The quality of contributions was not rated or evaluated. In
this context, the term “idea” refers to a contribution about a new form of ordering or
delivery.

When information is first represented as text and then a video is added, the benefit
of that video is measured in terms of the number of new ideas and new contributions
(see above) compared to the ideas respectively the contributions made after seeing only
text before. In the inverse case, a video is presented first, and then a text is added:

H51: Providing a video in addition to a text leads to new solution ideas.
H61: Providing a video in addition to a text leads to new contributions.
H71: Providing a text in addition to a video leads to new contributions.

Emotional Effect of the Camera Perspective: Which of the Two Perspectives has a
Greater Emotional Potential?
Emotional effect of the camera perspective is measured by directly asking subjects
about their opinion. In the experiment, such a rating is collected after subjects saw both
types of videos, i.e. in subjective and in third-person perspective.

H81: There is a difference in the subjects’ perceived emotional involvement of
between Group 1 and Group 2.

5.4 Selection of Actors, Subjects, and the Affordable Video Approach

There are obviously various age groups of stakeholders affected: Seniors with limited
mobility, but also young people on the verge of leaving the village. Seniors and young
adults will probably react differently to variants, and they will evaluate them from a

142 K. Schneider et al.

different perspective. This important fact is obvious in videos. For this experiment, we
focused on the group of young residents. A young actor in a room with modern
furniture and big-screen TV has more appeal for empathy to young experiment subjects
than a senior in a traditional living room – and vice versa. We collected data (ratings,
evaluations, and contributions) from 20 subjects, aged between 20 and 33 years
(M = 25.2 years). Seven were women, 13 men. We randomly asked members of the
intended age group to participate, e.g. during an Open-Door day at the university.
Nineteen of them use online shopping, but only eight of them had bought articles of
daily use online.

According to our Affordable Video Approach, all video clips together were recorded
within 3:15 h of a single day. They were cut using ordinary video editing software
within another half day. Video equipment consisted of a standard video camera (300 €)
with Rode microphone (330 €) attached, since we found comprehensible audio
important in earlier work [25]. Subjective video clips were recorded using a mobile
phone camera mounted on a Gimbal (180 €) for the subjective video parts. Mobile
phone cameras also would have been sufficient. All four lay actors and video personnel
were members of the research group with no advanced video background or training.

The texts for introduction, ordering, and delivery variants are typically read by
subjects in silence (32 s for intro, 29 s ordering, and 35 s delivery). Subjective videos
on ordering run for 60 s (all three variants together), and 68 s in normal camera
perspective. Delivery is more complex and includes interaction beyond the (first per-
son) actor. Delivery variants run for a total of 155 s (subjective) and 150 s (third-
person).

6 Experiment Results

For evaluating the alternative hypotheses in 5.3, we state corresponding null
hypotheses. We provide additional descriptive analysis of ratings, evaluations, and
subject opinions as boxplots. Results are clustered in the same three above-mentioned
categories: Preference, performance, and emotional effect of the camera perspective.

Preference

H10: Subjects’ preference does not differ between obtaining a video in addition to a
text and getting only the text.

Subjects had first received a text describing the ordering options and then an
additional video illustrating the same ordering options. After watching the video, we
asked whether they preferred having the video in addition to the text, or only the text
(see Fig. 2, Q4). According to a chi-square test of independence ðv2 ¼ 1:05; p ¼ :3Þ,
there is no difference between the two groups. Thus, we could aggregate the data for
analysis. Since we had nominal data, we performed a chi-square goodness-of-fit test
with a significance level a ¼ :05. Corresponding to H10, one would expect a 0.5/0.5
distribution of the stakeholders’ preference. We found significant deviation from the
hypothetical distribution ðv2 ¼ 12:8; p ¼ :0003Þ. We can reject H10 and accept H11.
Subjects prefer obtaining a video in addition to text rather than having only the text.

Refining Vision Videos 143

H20: Subjects’ preference does not differ between obtaining a text in addition to a
video and getting only the video.

Subjects had first received a video illustrating the delivery options and then an
additional text describing the same delivery options. After reading the text, we asked
whether they preferred having the text in addition to the video, or only the video (see
Fig. 2, Q6). We performed a chi-square test of independence ðv2 ¼ 1:25; p ¼ :26Þ,
which indicates no difference between the two groups. Since there is no difference
between the groups, we aggregated the nominal data. We found a significant deviation
from this distribution ðv2 ¼ 7:2; p ¼ :007Þ. Thus, we can reject H20 and conclude:
Subjects prefer obtaining a text in addition to a video rather than having only the
video.

H30: There is no difference between Group 1 and Group 2 in how much they like
the subjective perspective.

At the end of the experiment, the subjects assessed the statement: “I liked the ego-
perspective.” on a Likert-scale from 0 (totally disagree) to 5 (totally agree) (see Fig. 2,
Q8). According to Kolmogorv-Smirnov ðK ¼ :19; p ¼ :07Þ and Shapiro-Wilk tests
(W ¼ :9; p ¼ :05), the data is normally distributed. Next, we performed a Mann-
Whitney U test. The test indicated that the rating of Group 1 ðMdn ¼ 4Þ for the
subjective perspective was significantly higher than for Group 2 ðMdn ¼ 2:5Þ,
Z ¼ 2:35; p ¼ :02. Thus, we can reject H30. There is a difference between Group 1 and
Group 2 in how much they like the subjective perspective.

H40: Subjects consider both subjective and third-person perspectives equally good.

We asked subjects if they preferred subjective or third-person perspective (see
Fig. 2, Q8). According to the chi-square independence test ðv2 ¼ 1:14; p ¼ :56Þ, there
is no difference between the two groups and we can aggregate the nominal data. We
applied a chi-square goodness-of-fit test (a ¼ :05). According to the H40, there would
be a .5/.5 distribution. We found no significant deviation from the hypothesized dis-
tribution (v2 ¼ 1:125; p ¼ :29). We cannot reject H40. There is no significant differ-
ence between the subjects’ preference for one of the two perspectives.

0

1

2

3

4

5

Intro: through
added video

Ordering: thr.
added video

Delivery: thr.
added text

De
gr

ee
of

em
ot

io
na

li
nv

ol
ve

m
en

t
Ra

ng
e:

0
-5

0

1

2

3

4

5

6

7

8

9

10

Intro:
Text

Intro:
Video

Ordering:
Text

Ordering:
Video

Delivery:
Video

Delivery:
Text

Nu
m

be
r

of
co

nt
rib

ut
io

ns

Fig. 3. Emotional involvement at Q2, Q4, Q6; No. of contributions at Q1/2; Q3/4; Q5/6

144 K. Schneider et al.

We asked how emotionally involved subjects were after seeing the second medium
(video after text/text after video). Figure 3 (left) shows the high ratings on a 0 to 5
Likert scale. In all three cases (introduction, ordering, delivery) the emotional
involvement was higher after receiving the second medium. All videos received very
high ratings (Mdn ¼ 4); the stimulated emotional involvement. With text, values are a
little lower.

Performance
The performance is measured in number of contributions after text or videos were
provided. Figure 3 (right) shows the three parts: introduction, ordering, and delivery.
Boxplots on the left of each pair show the number of contributions made after the first
element was provided; the right-hand boxplots show additional contributions solicited
after the second element was provided. Light boxes stand for text, darker ones for
video.

H50: Providing a video in addition to a text does not lead to new solution ideas.

Subjects had first received text and were asked to write down solution ideas (see
Fig. 2, Q1). After participants had received the video, we asked if they had any
additional solution ideas (see Fig. 2, Q2). According to Kolmogorov-Smirnov
(K ¼ :34; p\:001) and Shapiro-Wilk (W ¼ :81; p ¼ :001) tests, the number of solu-
tion ideas are not normally distributed. We investigated whether the two groups differ
from each other by using Mann-Whitney U test: Z ¼ :53; p ¼ :60. Since we did not
find a difference between the two groups, we aggregated the data and performed the
non-parametric one-sample Wilcoxon Signed-Rank test. The test showed a significant
number of additional, not yet mentioned, solution ideas by the stakeholders
(Z ¼ �3:62; p\:001). H50 is rejected: Providing a video in addition to text leads to
new solution ideas.

H60: Providing a video in addition to a text does not lead to new contributions.

After the subjects read the text of the ordering options we asked them to select one
option and to write down their rationale, requirements, and questions (Fig. 2, Q3).
Afterwards the participants received a video of the ordering options and we asked them
for further requirements-related contributions (Fig. 2, Q4). We investigated the col-
lected number of contributions for normal distribution with Kolmogorov-Smirnov test
and Shapiro-Wilk test. Both tests indicated that the data is not normally distributed
(K ¼ :21; p ¼ :02;W ¼ :89; p ¼ :02). There is no difference between the groups by
means of a Mann-Whitney U test: Z ¼ :91; p ¼ :36. We analyzed all data together by
using the one-sample Wilcoxon Signed-Rank test. This test yields a significant dif-
ference, i.e. a significant number of new contributions (Z ¼ �3:62; p ¼ :0002). H60 is
rejected: Providing a video in addition to a text leads to new contributions.

H70: Providing a text in addition to a video does not lead to new contributions.

For the delivery options, subjects saw the video first and we asked them to select
one option. Based on their choice, we asked them to write down their rationale,
requirements, and questions (Fig. 2, Q5). Then they read the text describing the
delivery options and we asked them for further requirements-related contributions

Refining Vision Videos 145

(Fig. 2, Q6). The statistical analysis follows the same procedure: The Kolmogorov-
Smirnov test (K ¼ :27; p\:001) and Shapiro-Wilk test (W ¼ :74; p\:001) showed
that the data is not normally distributed. There was no difference between the groups in
a Mann-Whitney U test: Z ¼ :76; p ¼ :45. We analyzed all data together by using the
non-parametric one-sample Wilcoxon Signed-Rank. The test yields a significant
number of additional contributions after the subjects read the text (Z ¼ �3:06;
p ¼ :001). H70 is rejected. Providing a text in addition to a video leads to new
contributions.

Emotional Effect of the Camera Perspective

H80: There is no difference in the subjects’ perceived emotional involvement
between Group 1 and Group 2.

Subjects first received the text of the variants and then the video. Afterwards, we
asked subjects to indicate their emotional involvement by assessing the statement “I
was more emotionally involved in the problem due to the video.” on a Likert-scale
from 0 (totally disagree) to 5 (totally agree) (see Fig. 2, Q4). While the Kolmogorov-
Smirnov test (K ¼ :20; p ¼ :07) indicated that the data is normally distributed, the
Shapiro-Wilk test found the data to be not normally distributed (W ¼ :88; p ¼ :03).
Due to this discrepancy, we used a non-parametric Mann-Whitney U test. It showed no
difference between the group that watched a subjective video (Mdn ¼ 4) and the group
that watched a third-person video (Mdn ¼ 3), Z ¼ :44; p ¼ :66. We cannot reject H80
and conclude: There seems to be no difference between Group1 and Group 2 in the
perceived emotional involvement of subjects.

Evaluations and Subject Opinions
Finally, we asked subjects in Q7 for more detailed feedback (Fig. 4) after all texts and
videos had been presented.

As Fig. 4 indicates, both text (a) and video (b) were considered important for
making decisions about the refinement variants. Most subjects liked the videos (c).
Most subjects also found videos provided important information (d). The ratings for
“video conveys atmosphere” (e) were even higher, but there were also a few low
ratings. In (f), a large majority considered video quality sufficient, despite the

(a) Text important for choosing a variant
(b) Video important for choosing a vari-
ant
(c) I liked the videos
(d) Videos provide important information
(e) Videos convey atmosphere
(f) Video quality was sufficient
(g) Videos were obsolete

Fig. 4. Subjects’ detailed evaluation results. (g) means: “videos were not obsolete”

146 K. Schneider et al.

Affordable Video Approach. Most disagreed with “videos were obsolete” (g) - not an
obvious result, given the short runtime of all videos and the fact that there were also
texts available.

7 Interpretation and Discussion

We investigated whether adding videos to previously available texts would solicit
additional contributions for discourse. In Q6, we also measured the inverse situation:
Adding text to previously shown videos. In real decision situations about rural areas,
most stake holders would read brief texts (in the newspaper [1], or online) before they
decide to watch a short video about it. The results confirm the usefulness of enriching
early discussions about visions and requirements with both text and video. Preference
and evaluation were very positive, and a number of statistically significant results
confirm that adding either video or text (to the other) stimulated more contributions.

7.1 Threats to Validity

The experiment design presented in Sect. 5 is rather sophisticated. It reflects the
complexity of evaluating the role of vision videos in refining visions towards
requirements. The real-world application domain is of substantial complexity. Hence, a
number of specific threats to validity must be considered.

Internal Validity: Causality. Possible influences on the outcome are numerous, due to
the high complexity. For the experiment, we used texts and videos that were created
independently. Neither did one build on the other, nor was there a competition to
outperform each other. The mission was to explain the introduction and refinement
options concisely and self-sufficiently. Some subjects might have felt pressed to pro-
vide more contributions when they were shown an extra video or text. However, we
checked whether those new contributions were original or repetitive and counted only
new ones. There were several cases in which a question did not solicit any additional
responses.

External Validity: Can results be generalized? Despite the above-mentioned pre-
cautions, our findings cannot be generalized directly to every kind of text and every
type of video. Texts and videos can be useful or difficult to understand and annoying -
intentionally or by accident. There are so many types and styles of video (and text) that
one should take even our significant findings with a grain of salt.

Construct Validity: Adequate concepts? As explained in Sect. 5, we counted new
questions, new reasons to choose or reject a variant as contributions to the discourse as
RE contributions. In the area of RE, a good question can be valuable [14] for clarifying
visions and requirements. The results and findings should be read with this definition in
mind. Conceptualizations of “contribution” that deviate substantially from this defi-
nition may not be covered by our experiment. The treatments in our experiment was
adding a second medium (video/text). We analyzed the effect of getting that treatment
by comparing contributions before and after receiving the second medium.

Refining Vision Videos 147

Conclusion Validity: Adequate conclusions? The positive impact of adding video or
text could be a case of “paraphrasing”, presenting a situation from different angles. It is
possible and likely that adding other media could have had similar effects. We wanted
to investigate whether low-effort video with its own advantages was also qualified as a
useful second medium. Our results confirm the benefit of taking the extra effort of
providing a second medium. Please note that providing “both video and text at a time”
may seem a similar and attractive option, but poses yet another threat to validity: Its
impact will depend highly on how the media are presented: if and in which order
subjects look at them. This aspect was beyond the scope of our study.

Deciding about rural shopping is an integral part of much wider concerns. There are
so many parameters and influence factors that cannot – and should not – be controlled
in order not to distort the phenomenon of interest. We decided to study the very basic
mechanisms of refining a vague vision of shopping into several variants by video. The
technical choice of a camera perspective is related. Those mechanisms are the basis for
more complex interactions of vision and requirements communication and clarification.

8 Conclusions

We had expected to stimulate additional questions and ideas by showing videos –

where usually only a few short texts would be provided. However, we did not expect
the number of additional contributions stimulated by the videos (Fig. 3), and the very
positive evaluation of videos in hindsight (Fig. 4). In the introduction to the experi-
ment, exactly the same text was provided to read – and then to hear in the video.
Nevertheless, almost all subjects recommended showing the video in addition to the
text in the future. We had included the inverse direction (text after video) in the study
as a matter of curiosity. Given the less than 10-line texts and 20-s video clips describing
an ordering refinement, we had not expected performance and preference indicators to
be as clear as they were: Provide both media.

Subjective camera perspective seemed to be a matter of taste. There was no sig-
nificant performance advantage over third-person videos, nor was the empathy rating
higher. Some subjects preferred subjective over third-person perspective – and vice
versa. According to Runeson et al. [24], case studies are appropriate for investigating
phenomena that require complex subsets of reality to occur. Based on this established
baseline of experimental insights, we plan to triangulate our findings in case studies.

Acknowledgement. This work was supported by the Deutsche Forschungsgemeinschaft
(DFG) under Grant No.: 289386339, project ViViReq. (2017–2019).

References

1. Hannoversche Allgemeine Zeitung: Federal mail will sell bread. In rural areas, shopping gets
increasing difficult - now, the postman could sell groceries on the doorstep (original in
German) (2018). 15 Sept 2018

2. Aitamurto, T., Zhou, S., Sakshuwong, S., Saldivar, J., Sadeghi, Y., Tran, A.: Sense of presence,
attitude change, perspective-taking and usability in first-person split-sphere 360° video. In:
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (2018)

148 K. Schneider et al.

3. Akkil, D., Isokoski, P.: Gaze augmentation in egocentric video improves awareness of
intention. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (2016)

4. Ambler, S.: Agile Modeling. Wiley, Hoboken (2002)
5. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:

Encyclopedia of Software Engineering, Wiley (1994)
6. Brill, O., Schneider, K., Knauss, E.: Videos vs. use cases: can videos capture more

requirements under time pressure? In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS,
vol. 6182, pp. 30–44. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14192-8_5

7. Broll, G., Hussmann, H., Rukzio, E., Wimmer, R.: Using video clips to support requirements
elicitation in focus groups – an experience report. In: SE 2007 Workshop on Multimedia
Requirements Engineering (2007)

8. Creighton, O., Ott, M., Bruegge, B.: Software cinema – video-based requirements
engineering. In: 14th IEEE International Requirements Engineering Conference (2006)

9. Darby, A., Tsekleves, E., Sawyer, P.: Speculative requirements: design fiction and RE. In:
26th IEEE International Requirements Engineering Conference (2018)

10. Dutoit, A.H., McCall, R., Mistrík, I., Paech, B.: Rationale Management in Software
Engineering. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-30998-7

11. Feeney, W.: Documenting software using video. In: IEEE Computer Society Workshop on
Software Engineering Technology Transfer (1983)

12. Fricker, S.A., Schneider, K., Fotrousi, F., Thuemmler, C.: Workshop videos for require-
ments communication. Requir. Eng. 21(4), 521–552 (2016)

13. Galinsky, A.D., Ku, G., Wang, C.S.: Perspective-taking and self-other overlap: fostering
social bonds and facilitating social coordination. Group Process. Intergroup Relat. 8(2), 109–
124 (2005)

14. Glinz, M., Fricker, S.A.: On shared understanding in software engineering: an essay.
Comput. Sci.-Res. Dev. 30, 363–376 (2014)

15. Jirotka, M., Luff, P.: Supporting requirements with video-based analysis. IEEE Softw. 23,
42–44 (2006)

16. Kallinen, K., Salminen, M., Ravaja, N., Kedzior, R., Sääksjärvi, M.: Presence and emotion
in computer game players during 1st person vs. 3rd person playing view: evidence from self-
report, eye-tracking, and facial muscle activity data. In: 10th Annual International Workshop
on Presence (2007)

17. Karras, O.: Software professionals’ attitudes towards video as a medium in requirements
engineering. In: Product-Focused Software Process Improvement (2018)

18. Karras, O., Hamadeh, A., Schneider, K.: Enriching requirements specifications with videos –
the use of videos to support requirements communication. In: Softwaretechnik-Trends, vol.
38, no. 1 (2017)

19. Karras, O., Kiesling, S., Schneider, K.: Supporting requirements elicitation by tool-
supported video analysis. In: 24th IEEE International Requirements Engineering Conference
(2016)

20. Karras, O., Klünder, J., Schneider, S.: Enrichment of requirements specifications with videos
– enhancing the comprehensibility of textual requirements. Zenodo (2016)

21. Karras, O., Schneider, K.: Software professionals are not directors: what constitutes a good
video? In: 2018 1st International Workshop on Learning from other Disciplines for
Requirements Engineering (D4RE) (2018)

22. Karras, O., Unger-Windeler, C., Glauer, L., Schneider, K.: Video as a by-product of digital
prototyping: capturing the dynamic aspect of interaction. In: 25th IEEE International
Requirements Engineering Conference Workshops (2017)

Refining Vision Videos 149

http://dx.doi.org/10.1007/978-3-642-14192-8_5
http://dx.doi.org/10.1007/978-3-642-14192-8_5
http://dx.doi.org/10.1007/978-3-540-30998-7

23. Pham, R., Meyer, S., Kitzmann, I., Schneider, K.: Interactive multimedia storyboard for
facilitating stakeholder interaction: supporting continuous improvement in IT-ecosystems.
In: 8th International Conference on the Quality of Information and Communications
Technology (2012)

24. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)

25. Schneider, K., Karras, O., Finger, A., Zibell, B.: Reframing societal discourse as
requirements negotiation: vision statement. In: 25th IEEE International Requirements
Engineering Conference Workshops (2017)

26. Schultze, U.: Embodiment and presence in virtual worlds: a review. JIT 25(4), 434–449
(2010)

27. Xu, H., Creighton, O., Boulila, N., Bruegge, B.: From pixels to bytes: evolutionary scenario
based design with video. In: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (2012)

28. Zachos, K., Maiden, N.: ART-SCENE: enhancing scenario walkthroughs with multi-media
scenarios. In: 12th IEEE International Requirements Engineering Conference (2004)

29. Zachos, K., Maiden, N., Tosar, A.: Rich-media scenarios for discovering requirements. IEEE
Softw. 22(5), 89–97 (2005)

150 K. Schneider et al.

A Lightweight Multilevel Markup
Language for Connecting Software
Requirements and Simulations

Florian Pudlitz(B) , Andreas Vogelsang(B) , and Florian Brokhausen(B)

Technische Universität Berlin, Berlin, Germany
{florian.pudlitz,andreas.vogelsang}@tu-berlin.de,

florian.brokhausen@campus.tu-berlin.de

Abstract. [Context] Simulation is a powerful tool to validate specified
requirements especially for complex systems that constantly monitor and
react to characteristics of their environment. The simulators for such sys-
tems are complex themselves as they simulate multiple actors with mul-
tiple interacting functions in a number of different scenarios. To validate
requirements in such simulations, the requirements must be related to
the simulation runs. [Problem] In practice, engineers are reluctant to
state their requirements in terms of structured languages or models that
would allow for a straightforward relation of requirements to simulation
runs. Instead, the requirements are expressed as unstructured natural
language text that is hard to assess in a set of complex simulation runs.
Therefore, the feedback loop between requirements and simulation is
very long or non-existent at all. [Principal idea] We aim to close the
gap between requirements specifications and simulation by proposing a
lightweight markup language for requirements. Our markup language
provides a set of annotations on different levels that can be applied to
natural language requirements. The annotations are mapped to simula-
tion events. As a result, meaningful information from a set of simulation
runs is shown directly in the requirements specification. [Contribution]
Instead of forcing the engineer to write requirements in a specific way
just for the purpose of relating them to a simulator, the markup language
allows annotating the already specified requirements up to a level that
is interesting for the engineer. We evaluate our approach by analyzing 8
original requirements of an automotive system in a set of 100 simulation
runs.

Keywords: Markup language · Requirements modeling · Simulation ·
Test evaluation

1 Introduction

In many areas, software systems are becoming increasingly complex through the
use of open systems, highly automated or networked devices. The complexity

c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 151–166, 2019.
https://doi.org/10.1007/978-3-030-15538-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_11&domain=pdf
http://orcid.org/0000-0002-0006-1853
http://orcid.org/0000-0003-1041-0815
https://doi.org/10.1007/978-3-030-15538-4_11

152 F. Pudlitz et al.

leads to an increasing number of requirements, which are often expressed in
natural language [9]. To master the complexity of development and test man-
agement, simulation is increasingly being used to anticipate system behavior in
complex environments. Simulation has several advantages over classic testing.
Tests only pass or fail, but there is little information about the contextual situ-
ation. Additionally, simulations are more flexible towards covering variations in
context behavior.

However, in current practice and especially in large companies, simulation
and requirements activities are often not aligned. Simulation scenarios are not
derived from requirements but handcrafted by specialized simulation engineers
based on their own understanding of the problem domain. On the other hand,
the results of simulation runs are not fed back to the level of requirements, which
means that a requirements engineer does not benefit from the insights gained by
running the simulation. This misalignment has several reasons. First, require-
ments engineering and simulation is often conducted in different departments.
Second, simulators are complex systems that need to be configured by simulation
experts. That makes it hard for requirements engineers to use simulators. Third,
requirements and simulations are on different levels of abstraction which makes
it hard to connect events generated by the simulation to requirements, especially,
when they are written in natural language. As a result, the simulation scenarios
are often unrealistic and do not ensure that all requirements are covered.

Modeling can help closing this gap between requirements and simulation.
However, if the necessary models are too formal, requirements engineers fear the
effort to model the requirements. Therefore, we propose a lightweight modeling
approach that allows engineers to annotate their natural language requirements
instead of expressing them as models. Based on these annotations, the respec-
tive part of a requirement can be linked to a simulation event. By analyzing
logs of simulation runs for the linked simulation events, we can feed back infor-
mation about system execution to the level of the annotations and thereby to
the level of requirements. The available annotations build a markup language.
A distinct feature of our markup language is that it contains annotations on
different levels of detail. An engineer can decide how detailed he or she wants
to annotate a requirement. The more detailed a requirement is annotated, the
more information can be retrieved from a simulation run.

In this paper, we present the general idea of our approach, the details of
the markup language, and an evaluation on a Cornering Light System. Our
approach provides a minimal invasive way to connect (existing) requirements
with simulation. Thereby, requirements engineers can profit from insights gained
by simulation much faster and without having to invest in extensive modeling
efforts. The requirements engineer gets feedback whether the requirements are
covered by the current selection of simulation scenarios and whether there are
misconceptions in the requirements that are uncovered by the simulation (e.g.
false assumptions).

Lightweight Multilevel Markup Language 153

2 Background and Related Work

Testing and Simulation: Software Testing is the verification that a software
product provides the expected behavior, as specified in its requirements. The
conventional development and testing process for complex systems is based on
the V-model, which structures the development process into phases of decom-
position of the system elements and their subsequent integration. Each require-
ment being specified on a certain level of abstraction is reflected by a test case
on the same level which determines whether the requirement has been imple-
mented correctly. The increasing complexity of the systems, the many possible
test cases, and the uncertainty about the system’s context challenge this conven-
tional testing process. Therefore, the use of simulations is becoming more and
more popular.

Simulation is the imitation of the operation of a real-world process or sys-
tem [1]. The act of simulating something first requires that a model is developed;
this model incorporates the key characteristics, behavior, and functions of the
selected physical or abstract system or process. A simulator is a program that is
able to run a simulation. Each simulation run is one execution of the simulation.

When simulation is used in a systems development process, the model usually
consists of a submodel that describes the system-under-development (SuD) and
one or several submodels that describe the operational environment of the SuD.
The simulation represents the operation of the SuD within its operational context
over time.

A simulation scenario defines the initial characteristics and preliminaries of
a simulation run and spans a certain amount of time. The scenario defines the
global parameters of the operational context model. The model of the SuD is
not affected by the definition of the simulation scenario. Therefore, a simulation
scenario can be compared to a test case in a conventional testing processes. The
expectation is that the SuD performs according to its desired behavior in a set
of representative simulation scenarios.

Requirements and Test Alignment: Alignment of requirements and
test cases is a well-established field of research and several solutions exist.
Barmi et al. [2] found that most studies of the subject were on model-based
testing including a variety of formal methods for describing requirements with
models or languages. In model based testing, informal requirements of the sys-
tem are the base for developing a test model which is a behavioral model of the
system. This test model is used to automatically generate test cases. One prob-
lem in this area is that the generated tests from the model cannot be executed
directly against an implementation under test because they are on different lev-
els of abstraction. Additionally, the formal representation of requirements often
results in difficulties both in requiring special competence to produce [10], but
also for non-specialist (e.g. business people) in understanding the requirements.
The generation of test cases directly from the requirements implicitly links the
two without any need for manually creating (or maintaining) traces [3]. However,
depending on the level of abstraction of the model and the generated test cases,

154 F. Pudlitz et al.

the value of the traces might vary. For example, for use cases and system test
cases, the tracing was reported as being more natural in comparison to using
state machines [5]. Errors in the models are an additional issue to consider when
applying model-based testing [5].

Lightweight Requirements Modeling: The use of constrained natural lan-
guage is an approach to create requirements models while keeping the appearance
of natural language. Several authors propose different sets of sentence patterns
that should be used to formulate requirements [4,8]. Besides the advantage that
requirements are uniformly formulated, the requirements patterns enrich parts of
the requirement with information about the semantics. This information can be
used to extract information from the requirements. Lucassen et al., for example,
use the structure of user stories to automatically derive conceptual models of the
domain [7]. With our approach, we try to combine the strength of lightweight
requirements annotations with the potential to be enriched with behavioral infor-
mation collected in simulations.

End-to-End Tooling: A comparable approach to validate requirements within
a testing and simulation environment in an end-to-end fashion is presented by
the tool Stimulus by software company Argosim1. Stimulus lets the user define
formalized requirements and enrich the system under development with state
machines and block diagrams to include behavioral and architectural informa-
tion, respectively. With the help of a build-in test suite, signals from the environ-
ment on which the systems depends and reacts can be simulated. The system
behavior within these simulations is evaluated with regards to its constraints
specified by the requirements and violations are detected. The main features
include the detection of contradicting and missing requirements.

This tooling approach however exhibits some major differences to the
methodology proposed in this paper. First and foremost, the form in which
requirements are drafted in Stimulus is in a highly formalized manner from
which this approach is to be differentiated. While there are many efforts within
the research community to explicitly formalize requirements to improve on their
validation possibilities [2], this markup language aims to provide the require-
ments engineer with a means to intuitively annotate natural language require-
ments in order to unfold the implicitly contained information in a way it can be
used for validation purposes within a simulation. Secondly, the testing capability
provided by Stimulus depends on the user to define inputs to the system and
assign a range of values to them for test execution. This step however shall be
automated with the proposed approach. From the data provided by the markups,
a scenario for the simulation environment will be constructed, which evaluates
the underlying constraints.

3 Approach

Our approach is schematically displayed in Fig. 1. The starting point is a
document of requirements formulated in natural language containing software
1 www.argosim.com.

www.argosim.com

Lightweight Multilevel Markup Language 155

specifications. The present requirements are written without pattern or other
grammatical restrictions. With elements of our markup language the engineer
marks key phrases. These are matched with signals of the simulation and sys-
tem, which is called a mapping. The simulation is created automatically and the
resulting scenario contains configurations of the simulation environment influ-
enced by the selections made in the requirements. Simulation results are output
as log files, which in connection with the mapping results, are fed back to the
original requirements document. In addition to log data from traffic simulations,
it is also possible to use real driver log data. In this way, real log data can be
matched with natural language requirements. The simulation results or real data
are displayed directly in the originally analyzed phrases.

In contrast to state of the art procedures, there is no necessity for translation
into executable languages. Therefore, the entire scope of simulation options of
the natural language requirements remains without any translation loss. Another
improvement of today’s standards lies in the testability of software at any state
of development. First behaviors of the software can be simulated with simple
markings early in the development process. Especially new assistance systems
or functions such as autonomous driving are very complex and can only be
tested with complex simulations. The test engineers therefore need a lightweight
approach to evaluate requirements without formal translation.

R1:

R2:

R3:

Requirements Simula on

A SigA

B SigB

C SigC

Mapping

Fig. 1. Schematic representation of a requirements specification linked to a simulation
with influencing intermediate steps

3.1 Markup Language

For marking software functions and environment conditions, we developed a
lightweight multilevel markup language to connect requirements specifications
and simulation runs. We developed our markup language to meet four demands.

First, a lightweight, intuitive approach for marking objects in natural lan-
guage software requirements.

Second, a possibility to observe single objects as well as complex relations
between elements in the simulation without a formal translation.

Third, an extraction of important simulation environment properties that
must occur in the simulation.

156 F. Pudlitz et al.

Fourth, a possibility to evaluate software behavior already during the devel-
opment process.

The resulting language consists of elements, which are assigned to phrases
in the natural language requirements documents with defined content character-
istics. This part of the process is performed by an engineer and is the starting
point for the automated evaluation by the tool. Each element is assigned to one
of four levels, which define the level of detail of the evaluation.

Elements: Elements are the basic component of our markup language. Avail-
able elements and their description are shown in Table 1. It also shows, how the
elements are strictly associated with different levels of detail. The correct under-
standing of the elements by the engineer is crucial, since the manually performed
labeling effects the type of automated simulation evaluation.

Levels: Figure 2 shows the four levels with the associated elements. The prop-
erties as well as the limits of the levels are explained in the following.

L1: Scope-Level

L2: Type-Level

L3: Condition-Level

L4: Causality-Level

System Environment

Value{L1} State{L1} Event{L1} Time

{L3}-Trigger
{L3}-Pre-Condition {L3}-Action

Le
ve

l o
fD

et
ai

l

Value{L1}-Condition
State{L1} -Condition
Event{L1} -Condition
Time -Condition

Fig. 2. Overview of levels and elements

The Scope-Level is used to differentiate between information on the system
and on the simulation environment. As a result, the appearance of the objects
in the simulation is displayed. However, no further information is available.

The Type-Level distinguishes the phrase of Level 1 into different types of text
phrases depending on the behavior in the system. The different Level 2-types
influence the type of evaluation and are the basis for the definition of conditions
in Level 3.

The Condition-Level connects a type of Level 2 with a specific value via
comparison operators to create condition statements. However, the formulated
conditions have no connection among each other.

The Causality-Level establishes a relationship between the conditions of
Level 3 and creates causal relationships. This requires detailed knowledge of the
system and the necessary work process performed by the user is time consuming.
The result however is an in-depth evaluation.

Lightweight Multilevel Markup Language 157

Table 1. Overview of all elements

Level Element Description

1 System Describes all information concerning the system,
including any property perceptible from the
outside as well as internal information. Result:
link to signal available or not available

Environment Describes information on the simulation
environment (e.g., weather) and simulation
properties (e.g., simulation duration), and checks
fulfillment of scenarios before a simulation run.
Result: link to signal available or not available

2 Value{L1} Characterized by a value-continuous range and
linked to system or environment. Result:
progression over simulation time

State{L1} Describes objects with multiple possible, but
exclusive states (e.g., door - open/closed).
Result: all appearing states

Event{L1} Once or sporadically occurring object, often
associated with signals. Result: number of
appearances and average intermediate time

Time Concrete time specifications; automatically
linked to simulation time. Result: not presented

3 Value{L1}-Condition Values of Level 2 linked by <; ≤; =;>; ≥; �= with
a number or parameter. Result: duration of the
fulfilled condition

State{L1}-Condition States of Level 2 linked by = or �= with a
possible state. Result: frequency, and duration in
percent of the fulfilled condition

Event{L1}-Condition Event from Level 2 with the values 1 or 0 for
appearance and non-appearance. Result: number
of appearances and average intermediate time

Time-Condition Time statements from Level 2 linked by
<; ≤; =;>; ≥ or by natural language expressions
such as “longer,” “shorter,” or “within”; must be
linked to other conditions as an extension of
other Level 3 conditions. Result: not presented

4 {L3}-Trigger Level 3 statements linked by AND, OR; if
condition is fulfilled, {L3}-Action is triggered.
Result: number of appearances

{L3}-Pre-Condition Level 3 statements linked by AND, OR;
pre-condition must be fulfilled in order to start a
{L3}-Action. Result: number of appearances
in total and as pre-condition with percentage

{L3}-Action Level 3 statements linked together; following a
{L3}-Trigger or {L3}-Pre-Condition. Result:
number of appearance

158 F. Pudlitz et al.

3.2 Marking Requirements

There are two main motivations to use this approach: to find information needed
in order to choose a suitable simulation scenario; and to check or monitor
functionalities of a software component in different states of development. Our
markup language facilitates the highlighting of necessary information and the
observation in the simulation with an adaptable level of detail.

Figure 3 shows three example requirements [CL-1, CL2, CL-3] of a Cornering
Light in a car, which is automatically switched on when turning. The dynamic
and static cornering light function improves illumination of the road ahead when
cornering.

ID Object Text

CL-1
At v < vMaxInd, the indicator has priority over
the steering wheel angle (e.g., roundabout)

CL-2 Cornering light is activated according to the active
indicator

CL-3 Cornering light is deactivated at v > vMax

Requirement Specification: Cornering Light

Environment

StateS

L1/L2

L2

L2

StateS

ValueS

StateS ValueS

Fig. 3. Example of requirements of a Cornering Light System with initial marks of
elements on Level 1 and 2

CL-1 contains Level 1 (Environment) and Level 2 (StateS and ValueS) mark-
ings. If the aim is to ensure the presence of a roundabout in the simulation, this
element will be marked with “Environment”. The “State” mark for the indica-
tor represents all occurring states. To observe the angle of the steering wheel
and to evaluate the simulation duration, the choice of Level 2 mark “Value” is
necessary.

CL-2 and CL-3 contain only Level 2 (StateS) markings. The subscript S
stands for system; the subscript E describes an element of the simulation envi-
ronment. Concerning objects of the environment, their occurrence is checked
before runtime of the simulation scenario.

Figure 4 shows the identical requirements with an unchanged CL-1, but con-
tinually edited Level 2 objects in CL-2 and CL-3. By linking these objects to a
newly marked condition, a Level 3 statement was created. A special feature is the
link of a time condition in order to extend another condition. A time condition
can exclusively be linked to other conditions.

Lightweight Multilevel Markup Language 159

ID Object Text

CL-1
At v < vMaxInd, the indicator has priority over
the steering wheel angle (e.g., roundabout)

CL-2 Cornering light is activated according to the active
indicator

CL-3
Cornering light is deactivated at v > vMax

Requirement Specification: Cornering Light

Environment

StateS

Cornering Light = activated

Cornering Light = deactivated
ValueS-Condition StateS-Condition

StateS

ValueS

StateS ValueS

v > vMax

StateS-Condition

L1/L2

L3

L3

Fig. 4. Example of Requirements of a Cornering Light System with adopted marks
with increasing complexity on Level 1, 2 and 3

In Fig. 5, which is again showing the identical requirements, the Level 3
elements in CL-3 are brought into a relationship with each other by manually
selecting them. By this causal relationship, Level 4 is reached.

ID Object Text

CL-1
At v < vMaxInd, the indicator has priority over
the steering wheel angle (e.g., roundabout)

CL-2 Cornering light is activated according to the active
indicator

CL-3
Cornering light is deactivated at v > vMax

Requirement Specification: Cornering Light

Environment

StateS

Cornering Light = activated

Cornering Light = deactivated
TRIGGER ACTION

StateS

ValueS

StateS ValueS

v > vMax

StateS-Condition

L1/L2

L3

L4

Fig. 5. Example of requirements of a Cornering Light System with complex marks on
Level 1, 2, 3 and 4

Figure 5 displays the result of the development process performed by the
engineer, in this example with appearance of all four levels. With these marked
requirements, simulations can now be carried out and evaluated in different
depth of detail.

160 F. Pudlitz et al.

Table 2. Mapping from natural language expressions to signal names

signals

roundabout → <RB Stat>
vehicle speed → <V vehicle>

steering wheel angle → <Angle>

Cornering light → <CL Left Stat>
<CL Right Stat>

indicator → <Indicator Left Stat>
<Indicator Right Stat>

constants
vMax → 55

vMaxInd → 30

Table 3. Excerpt of a log file

Vehicle id Source Target Signal Value Time

veh 1 centralBox ECU V vehicle 40 88.010

veh 1 indicator ECU Indicator Left Stat 0 88.020

veh 1 cl ECU CL Left Stat 0 88.030

veh 1 centralBox ECU Angle 0 88.040

veh 1 centralBox ECU V vehicle 25 89.010

veh 1 indicator ECU Indicator Left Stat 1 89.020

veh 1 cl ECU CL Left Stat 1 89.030

veh 1 centralBox ECU V vehicle 20 90.010

veh 1 centralBox ECU Angle 10 90.040

veh 1 centralBox ECU V vehicle 20 91.010

veh 1 centralBox ECU Angle 90 91.040

veh 1 centralBox ECU V vehicle 25 92.010

veh 1 centralBox ECU Angle 10 92.040

veh 1 centralBox ECU V vehicle 40 93.010

veh 1 indicator ECU Indicator Left Stat 0 93.020

veh 1 cl ECU CL Left Stat 0 93.030

veh 1 centralBox ECU Angle 0 93.040

3.3 Simulation Execution and Representation

Before the start of the simulation, the marked text passages are mapped to signal
names, like shown in Table 2. The signal names may be internal signals of the
system or signals of the simulation environment. However, mapping is not always
feasible if the matching signal does not exist in the simulation. This might indi-
cate that the choice of scenario is not suitable or that the state of development
is still too early. Nonetheless, it is still possible to start the simulation and just
validate a subset of the system requirements. Further, the markups from the text
and the signals from the simulation are not necessarily a one-to-one but can also

Lightweight Multilevel Markup Language 161

be established as a one-to-many mapping. The expressions “Cornering Light”
and “indicator” in Table 2 demonstrate such a mapping. When tested in a simu-
lation run, either of the two mapped signals can produce validation results for the
annotated requirement since both should exhibit the same behavior according to
their shared specification. After the preparation of the requirements document,
the simulation can now be started. An excerpt of a possible resulting log file
after running the simulation with CL-1, CL-2 and CL-3 is shown in Table 3.

The log data provided shows that the indicator is turned on at simulation
time 89.020. The vehicle speed being 25 km/h fulfills the condition for the cor-
nering light to be turned on, which the simulation log shows occurred at time
89.030. The values of the vehicle speed and steering angle then indicate that the
vehicle made a turn. After the successful turn the indicator is turned off at time
93.020, which leads to the disabling of the cornering light. The table does not
show the values of the indicator and the cornering light for simulation time 90
through 92, since no changes occurred during that time; with the indicator acti-
vated and the velocity under 30 km/h, the cornering light keeps being activated
as intended.

This example of a small selection of requirements in a simple simulation sce-
nario emphasizes the possible dimensions of a log file based on a whole require-
ments document with a comprehensive simulation. The extent also increases
with the simulation duration.

An essential feedback mechanism is the presentation of the results in the orig-
inal requirements document, depending on the chosen elements in the require-
ments and the analysis of the log data. Figure 6 shows the presentation of the
evaluation results based on the simulation run in the presented example.

Fig. 6. Resulting marks of a simulation evaluation

162 F. Pudlitz et al.

In CL-1, the environment phrasing “roundabout” is mapped to the signal
“RB Stat”. The element “indicator” belongs to Level 2, therefore all occurring
states can be displayed. In contrast, “steering wheel angle” is a value and an
element of Level 2 and therefor it can be displayed graphically over the entire
simulation time. If the steering wheel is turned to the left, the value is negative, so
right turns are positive. Values below 20◦ are lane changes. Large peaks between
45 and 90◦ show the process of turning off.

In Cl-2, two conditions belonging to Level 3 are displayed. Depending on the
selected condition, the according number of appearances is output. Additional
information on State{L1}-Condition is the percentage of fulfillment over the
simulation duration. For Event{L1}-Condition, information about average occur-
rence is available. The possibility of linking these conditions by Time-Conditions
is not displayed; however the latter can not be used alone.

In CL-3, a Trigger and a dependent Action as elements of Level 4 are shown.
Regarding the Trigger, information on total appearance is available. Further
Action-related information is the number of appearances. In combination with
the excerpt of the log file, the tool can confirm the causality of CL-3 and conse-
quentially the given requirement as fulfilled.

The given example illustrates the influence of the specification degree on pos-
sible evaluation options. For basic analysis or early system development stages,
lower and less time-consuming evaluation levels are suitable. However the tool
also includes more complex options of evaluation. Though increasing complexity
requires an increasing effort, evaluation and validation of entire requirements is
possible.

4 Experiment

The approach was used in the automotive context to perform an experiment.
Two aspects were examined: practicality of the language and identification of
errors in its implementation. The following paragraph describes the structure,
and execution. After that, results of the experiment as well as a summary of the
advantages and disadvantages are subject of discussion.

4.1 Experimental Design

Object of the experiment are natural language requirements of Daimler AG.
The used specifications describe the Intelligent Light System. Overall, the spe-
cification contains 3464 requirements and is divided into various subsystems.
Among other things, it includes cross light, motorway light and cornering light.
The requirements of the cornering light system used in Sect. 3 is extended by
four further requirements and implemented in a separate vehicle function. All
used requirements are part of an export of a DOORS database. They are writ-
ten in natural language without limitation to patterns, or other structural or
grammatical constraints. To carry out the marking process, the requirements
are managed in a self-developed tool. The test engineer chooses a selection of

Lightweight Multilevel Markup Language 163

marks according to the desired levels of results. In the presented experiment,
the engineer marks a total of 13 text passages on all 4 levels, consisting of two
markings on Level 1 and 2, five markings on Level 3 and four on Level 4.

Next step is linking the marked text passages to the signals of the simulation.
This supports the creation of a scenario, which itself is the starting point for the
simulation framework VSimRTI [11]. This framework links different simulators
together and enables the virtual modeling of complex systems. Major simulator
is the tool SUMO [6] developed by DLR, used for traffic simulation. VSimRTI
makes it possible to equip SUMO vehicles with additional self-developed func-
tions. An excerpt of an OpenStreetMap of Berlin is used for a realistic road
network and traffic light settings. Inclusion of all environment properties from
Level 1 is checked before the start of the simulation run. The simulation run is
performed 100 times with varying driving routes and an average of 53 vehicles
involved. Each run is taking 163 s.

The vehicle function essentially consists of three parts: two cornering lights
(left and right), and a central control unit. All components in the vehicle com-
municate via a virtual data bus, which is a modeled CAN communication. Each
message sent and received via the bus is also written to a log file. This log file
contains the time stamp, sender and recipient of the message. In addition, for
each simulation step, vehicle data such as the steering angle, vehicle speed and
status of the indicators are included in the log data. Following the simulation,
the log data of all 100 vehicles is loaded by the developed tool. Evaluating these
log data with the signal mapping from the initial step is closing the loop.

4.2 Results and Discussion

The tool reads the log data and provides the results, depending on the marks
and the selected levels, in three categories: requirement fulfilled in green and not
fulfilled in red (available for Level 1 and 4); and information available in blue
(available for Level 2 and 3).

Figure 7 shows the presentation of the results in the original requirements
for this experiment. Level 1, 2 and 3, as part of CL-1, CL-2 and CL-4, show the
evaluation of word groups. One colored markup is displaying the results over
the 100 simulation runs. Level 4 displays the evaluation of a causal connection
between two items. For example in CL-3, v > vMax was marked as trigger for
the action Cornering light is deactivated. Since the requirement is fulfilled over
the entire simulation time, it is colored green.

Even more complex are the requirements CL-5, CL-6 and CL-7, which also
include Level 4 evaluations. Here, the triggers and actions have been marked
and linked with each other across several requirements. The triggers indicator
is deactivated (CL-5), v < vMax (CL-5) and curve radius > angleOff (CL-
6) belong to the action Cornering light is deactivated in CL-6. A third Level 4
causality is also made up of the triggers from CL-5. In addition, the trigger
curve radius < angleOff (CL-7) is connected with all three triggers of CL-5
and the action Cornering light is activated in CL-7. The results are displayed in
the requirement with the included action.

164 F. Pudlitz et al.

Fig. 7. Resulting marks of a simulation evaluation (Color figure online)

The major issue concerning all development approaches is the discrepancy
between natural language requirements specifications and functionality of the
software. The approach presented here bridges the gap between requirements on
the one hand and simulative testing on the other. Particularly complex systems
can be studied by the lightweight method at each stage of development. The
mapping process is currently done manually and is time consuming for large
software systems. However, if the presented approach is used parallel to the
development, the mapping can also be maintained in parallel. New systems can
build on previous mappings. Nevertheless, more research will be needed in an
automated mapping process. Another challenge are changing software design
decisions during the development process, which are not immediately updated
in the original requirements documents. At present, this is performed at a later
time, where some of the simulation and testing has already taken place. In our
approach, the updates still have to be performed manually. However, the software
engineer is motivated to perform the changes right away, so that the requirements
documents always stay current and discrepancies during testing are prevented.

As the experiment shows, the evaluation can partly be sophisticated. This,
however, is due to the complex requirements, which today are manually frag-
mented for testing. Our approach makes structuring and testing of conditions
over multiple requirements possible.

Lightweight Multilevel Markup Language 165

5 Conclusion and Outlook

Complex software systems are based on ever larger requirement documents.
Increasingly, these systems are being tested in simulations. State of the art is
the translation of natural language requirements into executable models. Nowa-
days, the original requirements documents rarely influence the simulations and
simulation results are usually not fed back to the specifications. Our lightweight
multilevel markup language combines natural language requirements with sim-
ulations. Depending on the development stage, software functions can be mo-
nitored or complex requirements can be tested. The degree of detail of the eval-
uation can be determined by the tester. In our approach, there is no necessity
for translating original requirements documents. Our experiment with 100 sim-
ulation runs of a Cornering Light System, the processing procedure, and the
evaluation report illustrates its usability and emphasizes the relevance to large
and complex requirements documents.

In future, we plan further steps for automation. One possible approach can
be the manual signal mapping automated through the use of machine learning.
Another improvement might be automated identification of Level 2 states with
natural language processing methods, which are subject of recent research. Due
to the rapid increase of model-based development, markups in UML diagrams
are also a focus of research.

References

1. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simula-
tion. Prentice Hall, Upper Saddle River (2000)

2. Barmi, Z.A., Ebrahimi, A.H., Feldt, R.: Alignment of requirements specification
and testing: a systematic mapping study. In: IEEE International Conference on
Software Testing, Verification and Validation Workshops (2011). https://doi.org/
10.1109/ICSTW.2011.58

3. Bjarnason, E., et al.: Challenges and practices in aligning requirements with ver-
ification and validation: a case study of six companies. Empir. Softw. Eng. 19(6)
(2014). https://doi.org/10.1007/s10664-013-9263-y

4. Eckhardt, J., Vogelsang, A., Femmer, H., Mager, P.: Challenging incompleteness of
performance requirements by sentence patterns. In: IEEE International Require-
ments Engineering Conference (RE) (2016)

5. Hasling, B., Goetz, H., Beetz, K.: Model based testing of system requirements
using UML use case models. In: International Conference on Software Testing,
Verification, and Validation (2008). https://doi.org/10.1109/ICST.2008.9

6. Krajzewicz, D., Bonert, M., Wagner, P.: The open source traffic simulation package
SUMO, June 2006

7. Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.:
Extracting conceptual models from user stories with visual narrator. Requir. Eng.
22(3) (2017). https://doi.org/10.1007/s00766-017-0270-1

8. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (EARs). In: 2009 17th IEEE International Requirements Engineering Con-
ference, pp. 317–322 (2009). https://doi.org/10.1109/RE.2009.9

https://doi.org/10.1109/ICSTW.2011.58
https://doi.org/10.1109/ICSTW.2011.58
https://doi.org/10.1007/s10664-013-9263-y
https://doi.org/10.1109/ICST.2008.9
https://doi.org/10.1007/s00766-017-0270-1
https://doi.org/10.1109/RE.2009.9

166 F. Pudlitz et al.

9. Luisa, M., Mariangela, F., Pierluigi, N.I.: Market research for requirements analysis
using linguistic tools. Requir. Eng. 9(2), 151 (2004)

10. Nebut, C., Fleurey, F., Traon, Y.L., Jezequel, J.M.: Automatic test generation: a
use case driven approach. IEEE Trans. Softw. Eng. 32(3) (2006). https://doi.org/
10.1109/TSE.2006.22

11. Schünemann, B.: V2X simulation runtime infrastructure VSimRTI: an assessment
tool to design smart traffic management systems. Comput. Netw. 55(14), 3189–
3198 (2011)

https://doi.org/10.1109/TSE.2006.22
https://doi.org/10.1109/TSE.2006.22

Automated Analysis (Research
Previews)

Supporting Feature Model Evolution
by Lifting Code-Level Dependencies:

A Research Preview

Daniel Hinterreiter1(B), Kevin Feichtinger1, Lukas Linsbauer1,
Herbert Prähofer2, and Paul Grünbacher1

1 Institute Software Systems Engineering,
Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz, Austria

{daniel.hinterreiter,kevin.feichtinger,lukas.linsbauer,
paul.grunbacher}@jku.at

2 Institute System Software,
Christian Doppler Laboratory MEVSS, Johannes Kepler University, Linz, Austria

herbert.prahofer@jku.at

Abstract. [Context and Motivation] Organizations pursuing soft-
ware product line engineering often use feature models to define the
commonalities and variability of software-intensive systems. Frequently,
requirements-level features are mapped to development artifacts to
ensure traceability and to facilitate the automated generation of down-
stream artifacts. [Question/Problem] Due to the continuous evolu-
tion of product lines and the complexity of the artifact dependencies,
it is challenging to keep feature models consistent with their underlying
implementation. [Principal Ideas/Results] In this paper, we outline
an approach combining feature-to-artifact mappings and artifact depen-
dency analysis to inform domain engineers about possible inconsistencies.
In particular, our approach uses static code analysis and a variation con-
trol system to lift complex code-level dependencies to feature models.
[Contributions] We demonstrate the feasibility of our approach using
a Pick-and-Place Unit system and outline our further research plans.

Keywords: Product lines · Variation control system · Static analysis

1 Introduction

Feature models are widely used in software product lines and feature-oriented
development approaches to define the commonalities and variability of software-
intensive systems [1]. Frequently, features are defined for different spaces and at
different levels [2,13]: problem space features generally refer to systems’ speci-
fications and are defined during domain analysis and requirements engineering;
solution space features refer to the concrete implementation of systems created
during development. Many techniques exist in software product lines and require-
ments engineering for mapping features to their implementation [1,2,5,7,16].
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 169–175, 2019.
https://doi.org/10.1007/978-3-030-15538-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_12

170 D. Hinterreiter et al.

Such mappings are also the basis for deriving products in a feature-based con-
figuration process to compose valid product variants automatically.

Real-world product lines evolve continuously and engineers thus need to
extend and adapt feature models to reflect the changes. However, engineers
require deep knowledge about the domain and the implementation to avoid
inconsistencies between a feature model and its implementation [4,16]. Ensur-
ing consistency is challenging due to the complexity of both feature-to-artifact
mappings and implementation-level artifact dependencies. Checking and resolv-
ing inconsistencies is particularly important when adding or changing features
during product line evolution [3].

We report our ongoing research towards an approach for lifting code-level
dependencies to the level of features, thus facilitating the detection and resolu-
tion of inconsistencies. Our research is part of a project on developing a platform
for distributed and feature-based clone-and-own engineering [8]. Specifically, our
approach integrates feature modelling, feature-to-artifact mappings [10], and
static analysis [6] (Sects. 2 and 3). It uses a revision-aware feature model [14]
to track the evolution of feature models and their feature-to-artifact mappings.
It further relies on static analysis for determining code dependencies. We present
the results of a preliminary evaluation we conducted using the Pick-and-Place-
Unit case study (Sect. 4) and provide an outlook on future research (Sect. 5).

2 Approach

Figure 1 provides an overview of our approach:
(1) The bottom layer represents the different solution space artifacts such as

source code, models, or documents. The artifacts are managed in a tree struc-
ture. The nodes of the tree represent elements of artifacts, e.g., individual code
statements or paragraphs in a document.

(2a) The approach relies on feature-to-artifact mappings, i.e., each artifact
element needs to know to which feature it belongs. We assume that these map-
pings are automatically created using a variation control system (VCS) [10,15].
A VCS creates and manages mappings between artifacts and their corresponding
features during development and enables the composition of different product
variants using feature-based configuration. For instance, Linsbauer et al. describe
how feature-to-artifact mappings are determined and kept up-to-date in the VCS
ECCO [11,12]: as soon as a developer commits a new product revision or variant
ECCO analyzes the changes in the features and artifacts, which then allows to
incrementally add and refine the mappings.

(2b) Our approach further allows computing the complex dependencies
between implementation artifacts in the artifact dependency graph (ADG). We
realize the ADG as a system dependence graph (SDG) [9] globally representing
the control-flow and data-flow dependencies in a system.

(3) As explained, our aim is to lift implementation-level dependencies to the
level of features, which can then be proposed to a modeller in the feature model
as suggestions to evolve the model. Thus, our approach combines the information

Supporting Feature Model Evolution by Lifting Code-Level Dependencies 171

Fig. 1. The artifact dependency graph and feature-to-artifact mappings allow propos-
ing feature dependencies in the feature model.

from the feature-to-artifact mappings and the dependency graph. In particular,
we use the artifact mappings to collect the corresponding subset of ADG nodes,
which are then the starting point for traversing the dependency graph to find
potential dependencies to other features. During this step, we check if we can
find an artifact mapped to another feature. If so, we suggest a relation between
two features to the modeller.

We distinguish between two levels of feature relations (cf. Table 1): Dependen-
cies are relations required to correctly compose products. For instance, in case
of a def-use dependency, i.e., one feature uses a variable or procedure declared
in the implementation of another feature, a requires constraint must exist at the
level of features to ensure that the automatically composed product compiles
successfully. Interactions indicate weaker relations between features. This is the
case, for instance, if two features write to the same variable or if one feature
writes and the other reads that variable. If such interactions are not considered
in the feature model, the product may still be composed, but harmful interac-
tions may occur during execution, e.g., if two optional features write to the same
output variable. This could be avoided by modeling the two optional features as
alternative features.

172 D. Hinterreiter et al.

3 Implementation

We implemented the approach by integrating a feature modeling environment
with a VCS and tools for analyzing artifact dependencies. We demonstrate the
feasibility of our approach by using static code analysis techniques to lift complex
code dependencies.

Specifically, we adopt the VCS ECCO [11] as part of developing our feature-
oriented platform. While existing VCS are mostly bound to specific artifact
types [10], ECCO can be extended with plug-ins to support different domain-
specific implementation languages and artifact types, as long as they can be
represented in a tree structure. For example, our prototype supports source
code of textual and visual languages of the IEC 61131-3 standard, Java source
code, as well as configuration files for describing mappings of software variables
to hardware endpoints. ECCO then creates and maintains feature-to-artifact
mappings by computing differences in features and artifacts of products [12]. We
do not assume initial feature-to-artifact mappings, as they can be re-created by
replaying the evolution history of a system, which we showed in our preliminary
evaluation. We use a system dependency graph (SDG) [6] to analyze different

Table 1. Dependencies and interactions derived from a system dependency graph.

Type Description

Deps call A feature calls a function or method of a second feature

def-use A feature defines a variable or constant used by a
second feature

Interactions call-call Two features call the same function or method of a
third feature

write-write Two features write to a data object defined by a third
feature

write-read A feature uses data written by a second feature, while a
third feature defines the data object

read-read Two features read a data object defined by a third
feature

Table 2. Dependencies and interactions discovered for different versions of the PPU.

PPU v3 PPU v4 PPU v5

def-use 3 4 5

call 0 0 0

call-call 2 4 4

read-read 0 6 6

write-read 1 19 22

write-write 4 34 58

Supporting Feature Model Evolution by Lifting Code-Level Dependencies 173

types of code-level dependencies (cf. Table 1) and then lift them to the level of
feature models by utilizing the feature-to-artifact mappings of the VCS.

4 Preliminary Evaluation

For the evaluation of our approach we re-played the evolution history of the
Pick-and-Place Unit (PPU) product line [17], thereby automatically computing
the feature-to-artifact mappings using ECCO. We then analyzed feature depen-
dencies and interactions for different PPU versions to demonstrate the feasibility
of our approach. The PPU is a well-known example of a manufacturing system
for transporting and sorting different work pieces. A developer of our lab (not an
author of this paper) implemented different revisions and variants of the PPU
using an IEC-61131-3 compliant programming language for the control part and
Java for the visualization part of the system [8].

For instance, the basic version of the PPU comprises the features Stack,
Crane, and Ramp, while the additional features Stamp and Sorter were later
added to the system. As explained above, a feature model would typically become
inconsistent with its implementation after such code-level changes. To show the
usefulness of our support for lifting dependencies we computed the number of
different types of code-level dependencies and interactions for different versions
of the PPU (cf. Table 2).

We manually inspected the code with the developer of the PPU system to
confirm the validity of the computed dependencies and interactions. For instance,
the newly found dependencies between versions of the PPU are directly related
to the addition of new features. In PPU v3 the feature StackCylinder uses the
variable di machineStarted to check if the machine is currently running. In
PPU v4 feature a Crane is introduced, which also uses this variable to check the
state of the machine, thus leading to a new def-use dependency. Thus, a requires
constraint between the features StackCylinder and Crane could be suggested to
the developer. PPU v5 introduced the feature Ramp, leading to interactions with
the feature Crane. Both features read and write the variable state crane cur
resulting in write-read and write-write interactions showing the close relationship
between these features. Although no direct constraints can be derived from such
interactions, they provide highly valuable hints to developers during evolution.

Overall, the preliminary evaluation with the PPU developer confirmed most
of the found dependencies and interactions.

5 Conclusion and Research Outlook

We proposed an approach that uses feature-to-artifact mappings and an arti-
fact dependency graph to lift artifact-level dependencies to feature models. To
demonstrate usefulness and feasibility of our approach we presented the number
of dependencies and interactions computed for different versions and variants of
the PPU case study system.

174 D. Hinterreiter et al.

In the short term we will use the information about artifact dependencies
and interactions to analyze the coupling and cohesion of features, thus sup-
porting engineers deciding about merging or splitting features during product
line evolution. This will be particularly challenging in our context of distributed
feature-oriented platform evolution [8]. We will extend our dependency analysis
to other types of artifacts. Our long-term plan is to evaluate our approach using
large-scale product lines from our industry partner based on our earlier case
studies on program analysis of industrial automation systems [6].

Acknowledgements. The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Research, Technology and
Development, and KEBA AG, Austria is gratefully acknowledged.

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

2. Berger, T., et al.: What is a feature? A qualitative study of features in industrial
software product lines. In: Proceedings of the 19th SPLC, pp. 16–25 (2015)

3. Bürdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U., Schürr, A.: Reason-
ing about product-line evolution using complex feature model differences. Autom.
Softw. Eng. 23(4), 687–733 (2016)

4. Dintzner, N., van Deursen, A., Pinzger, M.: FEVER: an approach to analyze
feature-oriented changes and artefact co-evolution in highly configurable systems.
Empir. Softw. Eng. 23(2), 905–952 (2018)

5. Egyed, A., Graf, F., Grünbacher, P.: Effort and quality of recovering requirements-
to-code traces: two exploratory experiments. In: Proceedings of the 18th IEEE
International Requirements Engineering Conference, Sydney, Australia, pp. 221–
230 (2010)

6. Grimmer, A., Angerer, F., Prähofer, H., Grünbacher, P.: Supporting program anal-
ysis for non-mainstream languages: experiences and lessons learned. In: Proceed-
ings of the 23rd SANER Conference, pp. 460–469 (2016)

7. Hajri, I., Goknil, A., Briand, L.C., Stephany, T.: Change impact analysis for evolv-
ing configuration decisions in product line use case models. J. Syst. Softw. 139,
211–237 (2018)

8. Hinterreiter, D.: Feature-oriented evolution of automation software systems in
industrial software ecosystems. In: 23rd IEEE International Conference on Emerg-
ing Technologies and Factory Automation, Torino, Italy, September 2018

9. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
SIGPLAN Not. 23(7), 35–46 (1988)

10. Linsbauer, L., Berger, T., Grünbacher, P.: A classification of variation control
systems. In: Proceedings of the 16th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences, GPCE 2017, pp. 49–62.
ACM (2017)

11. Linsbauer, L., Egyed, A., Lopez-Herrejon, R.E.: A variability-aware configuration
management and revision control platform. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering (Companion), pp. 803–806 (2016)

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7

Supporting Feature Model Evolution by Lifting Code-Level Dependencies 175

12. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Variability extraction and model-
ing for product variants. Softw. Syst. Model. 16(4), 1179–1199 (2017)

13. Rabiser, D., et al.: Multi-purpose, multi-level feature modeling of large-scale indus-
trial software systems. Softw. Syst. Model. 17, 913–938 (2018)

14. Seidl, C., Schaefer, I., Aßmann, U.: Capturing variability in space and time with
hyper feature models. In: Proceedings of the 8th International Workshop on Vari-
ability Modelling of Software-Intensive Systems, VaMoS 2014, pp. 6:1–6:8 (2013)

15. Stǎnciulescu, S., Berger, T., Walkingshaw, E., Wa̧sowski, A.: Concepts, operations,
and feasibility of a projection-based variation control system. In: Proceedings of
IEEE ICSME, pp. 323–333 (2016)

16. Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider, W.: Flexible and
scalable consistency checking on product line variability models. In: Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering,
pp. 63–72 (2010)

17. Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching evolution in
industrial plant automation: scenarios and documentation of the pick and place
unit. Technische Universität München, Technical report (2014)

Identifying Requirements in Requests
for Proposal: A Research Preview

Andreas Falkner1, Cristina Palomares2, Xavier Franch2(&),
Gottfried Schenner1, Pablo Aznar2, and Alexander Schoerghuber1

1 Siemens AG Österreich, Vienna, Austria
{andreas.a.falkner,gottfried.schenner,

alexander.schoerghuber}@siemens.com
2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

{cpalomares,franch,paznar}@essi.upc.edu

Abstract. [Context & motivation] Bidding processes are a usual requirement
elicitation instrument for large IT or infrastructure projects. An organization or
agency issues a Request for Proposal (RFP) and interested companies may
submit compliant offers. [Problem] Such RFPs comprise natural language
documents of several hundreds of pages with requirements of various kinds
mixed with other information. The analysis of that huge amount of information
is very time consuming and cumbersome because bidding companies should not
disregard any requirement stated in the RFP. [Principal ideas/results] This
research preview paper presents a first version of a classification component,
OpenReq Classification Service (ORCS), which extracts requirements from RFP
documents while discarding irrelevant text. ORCS is based on the use of Naïve
Bayes classifiers. We have trained ORCS with 6 RFPs and then tested the
component with 4 other RFPs, all of them from the railway safety domain.
[Contribution] ORCS paves the way to improved productivity by reducing the
manual effort needed to identify requirements from natural language RFPs.

Keywords: Requirements elicitation � Requirements identification �
Request for Proposal � Bidding process � Classification

1 Introduction

In a bidding process, an organization or public agency aims at procuring a techno-
logical solution by specifying the requirements in a document called Request for
Proposal (RFP), which is written in natural language and can be several hundred pages
long. Based on this, companies present their bids that need to be compliant to the
RFP. Last, the requesting organization agency will select one of these bids (or a
combination of them) for developing the solution.

In spite of their technical nature, RFPs tend to mix text describing the requirements
with other text that is merely informative (“prose”) and thus is not relevant to the
bidding company for compliance evaluation. This characteristic forces the bidder to
invest resources to identify the real requirements, with the subsequent impact over
productivity.

© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 176–182, 2019.
https://doi.org/10.1007/978-3-030-15538-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_13

The goal of this paper is to present the first results on the use of a software
component, ORCS (OpenReq Classification Service), aimed at extracting requirements
from an RFP in an efficient and effective way. In this context, by “effective” we mean a
technique that does not miss any requirement (100% recall) and as a second priority,
filters as much prose as possible. As stated by Berry [1], there are different notions of
effectiveness, and the one above is justified because missing a requirement could
damage the organization bid.

The paper is organized as follows. A typical bidding process for large infrastructure
projects is introduced in Sect. 2. Section 3 presents the functionalities and internal
structure of ORCS, and Sect. 4 shows the results of the preliminary evaluation of
ORCS with real data (from Siemens). Finally, the paper is concluded in Sect. 5.

2 Bidding Processes for Large Infrastructure Projects

When an infrastructure provider such as Siemens decides to participate in a bid for a
large infrastructure project, several of its departments and stakeholders (project man-
agement, finances, system development, etc.) must work together to find a good
solution to cover all requirements. Requirements are usually organized and edited using
a commercial RE tool such as IBM DOORS or POLARION REQUIREMENTS.

In a typical scenario, a bid project for the RFP is created within the company at the
start of the process. A project team is set up with the bid project manager, the
requirements manager, and the relevant stakeholders necessary for assessing the
RFP. In the initial phase, the main workload is carried by the requirements manager. In
the requirements capturing phase, the requirements manager is responsible for
screening the RFP and for identifying all relevant and referenced external documents
(e.g. international standards). The documents are then imported into the requirements
management (RM) tool. The next step for the requirements manager is to analyse the
imported documents and distinguish between merely informative text sections and text
which specifies relevant requirements. This task is done for every entry in the RM tool.
As there can be thousands of entries to be processed by the requirements manager, this
is an important issue for improving the requirements management process. Consecu-
tively, the identified requirements are assigned to the relevant stakeholder(s) which are
responsible to evaluate them according to different criteria such as risk, compliance,
etc. At the end of the bid project, a list of compliance is compiled, which contains a
statement about the compliance of the bid, i.e. if and under what restrictions an offer
can be submitted.

One of the potential bottlenecks of the process described above is the classification
of the requirements as it is currently manually done by the requirements manager. In
the following we describe how to speed up this process.

Identifying Requirements in Requests for Proposal: A Research Preview 177

3 Identifying Requirements with ORCS

ORCS is part of a larger recommendation system, OpenReq [2]. ORCS’ goal is to re-
commend a value to a requirement property that is binary (i.e., there are no more than
two values available for that property). ORCS tackles that task by providing an API for
a binary classifier. In the context of this paper, the property is isReq, and it represents
whether a piece of text is a real requirement or prose (not relevant for the RE process).
In other contexts, property could be requirement fields such as component (part of a
system to which the requirement is talking about) or priority.

Among all the different possibilities, we decided that ORCS would be implemented
as a supervised machine learning classifier [3]. Considering that we want to discover
the “correct” label of a text and that we have a labelled dataset from previous projects,
unsupervised learning techniques, which are useful for discovering how the data in the
model is structured, do not suit properly [3].

From all the available supervised machine learning algorithms for classification, we
are using Naïve Bayes (NB) [4]. NB is a probabilistic classifier based on applying the
Bayes’ theorem with strong (naive) independence assumptions between the features.
NB is a good algorithm for working with text classification since, when dealing with
text, it is very common to treat each unique word as a feature, and since the vocabulary
in RFP comprises many thousands of words, this makes for a large number of features.
The relative simplicity of the algorithm and the independent features assumption makes
NB a strong performer for classifying texts [4]. Consequently, NB needs less training
time (and therefore it is more scalable). In addition, NB needs less data for training than
other supervised algorithms (such as Random Forest), which makes it good for clas-
sifying requirements in companies that do not have available hundred-thousands of
requirements.

We built ORCS upon a component that already provides a NB classifier imple-
mentation, Mahout1. It offers the basics for different machine learning tasks (e.g.,
classification and clustering). Mahout currently has two NB implementations. The first
is standard Multinomial NB. The second is an implementation of Transformed Weight-
normalized Complement NB as introduced in [5], which extends the Multinomial NB
that performs particularly well on datasets with skewed classes (which is the case in
RFP, where most of the texts are real requirements; just a few pieces of text are non-
relevant).

However, as most of the available implementations of classification algorithms,
installing, configuring and using it is not an easy process, since deep knowledge of
Mahout and how it works is needed (e.g., set up of environment paths, synchronization
of the calls made, etc.). Therefore, we added specific code on top of Mahout to ease its
integration and use by a final user.

Figure 1 shows the microservice-based internal architecture of ORCS. ORCS
allows to Train (MS1) a machine learning model with specific data (this data is basi-
cally a list of pairs <text, property value>) and stores - using the Data Manager (MS5) -
the training in a database (using as key the name of the requirement property and the

1 https://mahout.apache.org/.

178 A. Falkner et al.

https://mahout.apache.org/

name of the organization). Thus, when the recommendation for the value of a
requirement property is necessary, the user just calls the Classify (MS3) microservice
passing the piece of text that needs the recommendation, the name of the requirement
property and the name of the organization. Then, the data manager takes care of setting
up the corresponding machine learning model in the core of Mahout and returning the
recommendation. In addition, there are microservices to Update (MS2) a machine
learning model when new data (again tuples of the kind <text, property value>) is
available and also to Test (MS4) the classifier with a k-fold cross-validation passing the
same kind of tuples as in the last microservice and the number of tests to k. As ORCS is
part of OpenReq, all the data exchanged by the microservices is based on the ontology
presented in [6].

4 Preliminary Evaluation

For the evaluation of the requirements classifier, ten completed bid projects (RFPs)
were made available by the Viennese Siemens Mobility department. In total, they
comprised 28,200 requirement candidates, all of which had been classified by business
experts as either a real requirement (DEF) or a merely informative comment (Prose).
An example of a requirement is “A balise group shall consist of between one and eight
balises”, while an example of Prose is “The purpose of this document is to specify the
unified European Train Control System (ETCS) from a technical point of view”. The
requirements’ ID, text, and classification were extracted from the RM tool used at the
department and stored in 10 JSON files, one for each project. Six of these projects were
randomly chosen as training data set, including cross-validation, and disclosed to the
UPC team. These six projects were used by UPC to run a first evaluation of ORCS
using a 10-fold cross-validation test (Subsect. 4.1). The remaining four projects were
kept secret and only used once for the final evaluation run by Siemens (reported in
Sect. 4.2).

In both evaluations we use standard metrics for binary classification considering
DEF (i.e., classification of a candidate as a real requirement) as the positive case: recall
(true positive rate, number of correct positive results divided by the number of all

Fig. 1. ORCS’ internal architecture

Identifying Requirements in Requests for Proposal: A Research Preview 179

relevant sample) and specificity (true negative rate, i.e., number of correct negative
results divided by the number of all relevant sample). Recall is most important for the
business experts because they want to avoid that some requirement is not detected as
such, thus not being checked for compliance during the bid process which may lead to
(potentially high) non-compliance costs (a business risk that must be avoided).
Specificity is also important because unnecessary efforts arise if many comments are
wrongly classified as DEF: experts are invited to check compliance for them although
this is not necessary. We refrained from combining those two into a single metric (such
as accuracy or F2-metric) in order to give the stakeholders (business experts) the
chance to weight the two against each other.

4.1 Evaluation Results During Training and Validation

For first testing the results of ORCS, we used a stratified 10-fold cross-validation,
which is a well-known technique to evaluate machine learning models. In this case, we
used as sample 6 projects which contained 17,556 requirement candidates. From these
candidates, 15,870 (90.4%) requirements were classified as DEF by experts. This
means that only 1686 (9.6%) were of type Prose. In the case of ORCS, having
unbalanced class labels is not a problem (as explained in Sect. 3).

Table 1 shows the results of calling the ORCS’ Test microservice with k = 10 and
this specific sample. As can be seen in Table 1, average recall is 85.06% and average
specificity is 72.04%, showing a good start point for the classifier.

4.2 Evaluation Results on Non-disclosed Test Data

The 4 projects used as test data set comprise 10,700 requirement candidates, 7,300 of
which were classified as real requirements by experts. As the resulting prevalence (i.e.,
occurrence of DEF in the whole set of requirement candidates) of 69% is considerably
lower than the prevalence of 84% in the training data set, we investigated and found out
that the prevalence in a subset of three projects is 83% (based on micro-averaging [7])
whereas the fourth project shows a prevalence of only 16%. We consider this an outlier
which was caused by the fact that the experts rated whole sections of the RFP as Prose
because they contained information out of the scope of the bid project (e.g., because
their contents were covered by another company in a bidding consortium). Such

Table 1. 10-fold cross-validation results

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 Total/
Avge

reqs 1734 1742 1689 1801 1788 1697 1792 1788 1719 1806 17556

TP 1335 1346 1280 1391 1372 1284 1389 1394 1327 1382 13500

FP 33 43 47 41 50 64 48 45 46 55 472

TN 133 110 127 131 119 124 129 118 101 122 1214

FN 233 243 235 238 247 225 226 231 245 247 2370

Recall 85.14% 84.71% 84.49% 85.39% 84.74% 85.09% 86.01% 85.78% 84.41% 84.84% 85.06%

Specificity 80.12% 71.90% 72.99% 76.16% 70.41% 65.96% 72.88% 72.39% 68.71% 68.93% 72.04%

180 A. Falkner et al.

constellations cannot be covered easily by text-only classification and we still need to
find a way how to deal with them properly.

First results are shown in Table 2. The classifier performs badly on the outlier (Eval
4), with only 21% specificity. However, the micro-average of the rest of the test data
has a quite similar performance as the micro-average of the training data (nearly the
same recall, specificity smaller by several percentage points). This indicates that the
classifier is not overfitted to the training data as long as the prevalence of the test data is
similar to the training data.

5 Conclusions

In this paper, we present an approach of how identifying requirements in RFP in the
setup of Siemens by using ORCS, a component that provides an API for machine
learning classification based on NB. In addition, we present preliminary results of
testing this component in Siemens. Although the results are good, they need to be
improved, especially the recall of component (and therefore the number of false neg-
atives), since we want to avoid that a real requirement is not detected as such, because
in that case it would not be evaluated during the bid process, which may lead to non-
compliance costs if the bid is won. To achieve this, we aim to improve ORCS in
different aspects: NLP preprocessing (mainly stop words removal and lemmatization)
and the incorporation of context in the classification process (e.g., the location of the
text in the RFP so that we can more precisely differentiate between relevant and
irrelevant information).

References

1. Berry, D.M.: Evaluation of tools for hairy requirements and software engineering tasks. In:
REW 2017 (2017)

2. Palomares, C., Franch, X., Fucci, D.: Personal recommendations in requirements engineering:
the OpenReq approach. In: Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.) REFSQ 2018. LNCS,
vol. 10753, pp. 297–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77243-
1_19

3. Shalev, S., Ben, S.: Understanding Machine Learning. Cambridge University Press,
Cambridge (2014)

4. Brink, H., et al.: Real-World Machine Learning. Manning Publications, New York (2016)

Table 2. Evaluation results

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train avg Eval 1 Eval 2 Eval 3 Eval 4 Eval avg

reqs 1525 8123 1854 1382 853 3819 17556 1000 6510 841 2300 8351

TP 1112 6234 1390 1056 663 2832 13287 785 4645 675 343 6105

FP 59 170 29 51 8 115 432 11 375 13 1520 399

TN 257 1073 290 191 99 500 2410 110 784 93 401 860

FN 97 646 145 84 83 372 896 94 706 60 36 987

Recall 91.98% 90.61% 90.55% 92.63% 88.87% 88.39% 90.30% 89.31% 86.81% 91.84% 90.50% 87.65%

Specificity 81.33% 86.32% 90.91% 78.93% 92.52% 81.30% 84.80% 90.91% 67.40% 87.74% 20.87% 71.21%

Identifying Requirements in Requests for Proposal: A Research Preview 181

http://dx.doi.org/10.1007/978-3-319-77243-1_19
http://dx.doi.org/10.1007/978-3-319-77243-1_19

5. Rennie, J., et al.: Tackling the poor assumptions of Naive Bayes text classifiers. In: ICML
2003 (2003)

6. Quer, C., et al.: Reconciling practice and rigour in ontology-based heterogeneous information
systems construction. In: Buchmann, R.A., Karagiannis, D., Kirikova, M. (eds.) PoEM 2018.
LNBIP, vol. 335, pp. 205–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02302-7_13

7. Yang, Y.: An evaluation of statistical approaches to text categorization. J. Inf. Retrieval 1, 69–
90 (1999)

182 A. Falkner et al.

http://dx.doi.org/10.1007/978-3-030-02302-7_13
http://dx.doi.org/10.1007/978-3-030-02302-7_13

Finding and Analyzing App Reviews
Related to Specific Features: A Research

Preview

Jacek D ↪abrowski1,2(B) , Emmanuel Letier1 , Anna Perini2 ,
and Angelo Susi2

1 University College London, London, UK
{j.dabrowski,e.letier}@cs.ucl.ac.uk

2 Fondazione Bruno Kessler, Trento, Italy
{dabrowski,perini,susi}@fbk.eu

Abstract. [Context and motivation] App reviews can be a rich
source of information for requirements engineers. Recently, many
approaches have been proposed to classify app reviews as bug reports,
feature requests, or to elicit requirements. [Question/problem] None
of these approaches, however, allow requirements engineers to search
for users’ opinions about specific features of interest. Retrieving reviews
on specific features would help requirements engineers during require-
ments elicitation and prioritization activities involving these features.
[Principal idea/results] This paper presents a research preview on
our tool-supported method for taking requirements engineering decisions
about specific features. The tool will allow one to (i) find reviews that
talk about a specific feature, (ii) identify bug reports, change requests
and users’ sentiment about this feature, and (iii) visualize and compare
users’ feedback for different features in an analytic dashboard. [Contri-
butions] Our contribution is threefold: (i) we identify a new problem to
address, i.e. searching for users’ opinions on a specific feature, (ii) we pro-
vide a research preview on an analytics tool addressing the problem, and
finally (iii) we discuss preliminary results on the searching component of
the tool.

Keywords: Mining users reviews · Feedback analytics tool ·
Software quality · Requirement engineering

1 Introduction

Developing app reviews analytics tools is an active field of research aimed at
extracting useful information from the large amount of user reviews found in
app stores [12]. Analytics tools exploit data mining and analysis techniques to
address different software engineering problems, including requirements engi-
neering problems. Approaches have been proposed for inferring topics referred
by reviews [14], for analyzing users’ sentiments [5], and for classifying reviews
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 183–189, 2019.
https://doi.org/10.1007/978-3-030-15538-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_14&domain=pdf
http://orcid.org/0000-0003-3392-0690
http://orcid.org/0000-0002-8935-343X
http://orcid.org/0000-0001-8818-6476
http://orcid.org/0000-0002-5026-7462
https://doi.org/10.1007/978-3-030-15538-4_14

184 J. D ↪abrowski et al.

as either bug reports, requests for new features [9], or discussion about non-
functional properties [10,12].

However, these approaches do not allow software professionals to search for
users’ opinions on specific features of interest. Software professional interviewed
about feedback analytics tools indicate two missing features they would like to
see supported in future analytics tools: the ability to group and quantify app
reviews to support requirements prioritization, and the ability to associate app
reviews to work items in project management and issue tracking systems [8].

Our objective is to develop automated techniques to satisfy these requests.
We present an automated tool that given a short feature description (e.g. add
reservations for a Google Trip app), finds app reviews that refer to such feature
and report historical trends about users sentiments, bug reports and enhance-
ment requests related to this feature. Knowing what users’ say about a specific
feature is important to understand their needs [2,13]. It may support engineers to
monitor users’ satisfaction on a feature and its “health condition” over time [10].
This can also help to sketch a roadmap for next release, including decisions on
which features should be changed first to improve the app performance [15].

The following questions guide the development and evaluation of our tool:

RQ1. What natural language and data analysis techniques can be used to
develop our tool?
RQ2. What is the effectiveness of different techniques in searching for users’
opinions on a feature?
RQ3. How useful do requirements engineers find the tool?

This research preview paper motivates our research through an example,
outlines our envisioned technical solution, presents preliminary results for our
app reviews search engine, relates our approach to previous work, and discuss
our future research plans.

2 Motivating Scenarios

Google Trip app is an app that helps its users to organize trips and manage
travel-oriented documents. The app is being used by more than 27,275 users
and received over 8,500 reviews on Google Play Store. These reviews concern
existing or desired functionalities, reported bugs and other aspects related to
quality in-use. We use this app in our initial experiment in Sect. 4.

Suppose the issue tracking system for this app contains requests for intro-
ducing new features and improving existing features (for example add the ability
to create day plans, improve the ability to add a hotel reservation, etc.) and
the project manager has to decide which requests to implement first. Finding
users reviews mentioning each of these features would allow the project man-
agers to quickly compare how often each request appears in app reviews, for how
long each request has been made, and whether the frequency of each request is
increasing or decreasing. This information will provide concrete evidence of the

Finding and Analyzing App Reviews Related to Specific Features 185

relative importance of each request from the users’ perspective. Such informa-
tion is not sufficient by itself to prioritize change request because the perspective
of other stakeholders must also be taken into account, but it can provide useful
evidence-based data to partly inform such decisions.

Suppose now that a requirements engineer and the development team have
been tasked to define and implement detailed requirements for one of these
feature requests. Finding users reviews that refer to the feature will allow them
to quickly identify what users have been saying about the feature. This cheap
elicitation technique might be sufficient in itself or it might be the starting point
for additional more expensive elicitation activities involving interviews, surveys,
prototyping, or observations.

3 An Approach for Analyzing Users’ Feedback on Feature

Figure 1 outlines our approach for finding and analysing users’ reviews related
to specific features. The main component of our tool is the searching compo-
nent that takes as input a query that describes a feature (e.g. add reservations)
and retrieves a set of users reviews that mention that feature. An example of
review retrieved for the feature query add reservations is Please, improve adding
reservations as it crashes and obstructs the booking process. Sentiment analysis
and classification techniques are then used to classify the retrieved reviews as
expressing either positive, neutral or negative sentiments and as reporting a bug
or asking for an enhancement. The results of the search for different feature
queries are then presented on a dashboard.

Fig. 1. Overview of our tool-based approach for finding and analysing users’ opinions
on a specific feature

We are exploring the following techniques to develop our tool:

Searching Component. We propose machine-learned relevance method to
support searching for users’ feedback on a feature [11]. The method exploits
supervised machine learning (ML) techniques to classify reviews to be relevant
or non-relevant to a query. Figure 1 illustrates details of searching component

186 J. D ↪abrowski et al.

to be used for the method. The preprocessor performs standard text normal-
ization steps of query and reviews to refine them from noisy information. The
property extractor determines textual properties of filtered query and reviews,
then convey them to the classifier as basis for selecting reviews to be returned.
To produce a classification model, the learning algorithm is firstly provided with
a training dataset including exemplary reviews annotated with respect to test
queries.

Sentiment Analyzer. Two candidate techniques could be used to analyze senti-
ment of users’ reviews: ML and lexicon-based [6]. ML techniques treat sentiment
identification as binary or multiclass classification problem. The lexicon-based
methods calculate the sentiment score of a word or sentence using lexicon pro-
vided with list of positive and negative words. These methods assume that the
opinion of text is determined as the sum of the sentiment score of each word.
Further, we propose to analyze sentiment on the aspect-level as it allows one
to determine the sentiment within a segment of text for a mentioned feature,
rather than for the text as a whole [6].

Users’ Requests Analyzer. We aim to use one of existing data-driven meth-
ods to classify users’ request as bug report or feature request. These methods
exploit supervised classification techniques such as Naive Bayes, Support Vec-
tor Machine or Logistic Regression, and proved their effectiveness for classifying
users’ request into requirement-related information [4].

4 Preliminary Results

To evaluate the feasibility of searching for users’ opinions on a feature we con-
ducted a preliminary experiment. We collected 200 reviews for Google Trip app
and the app description from Play Store. We manually extracted feature-related
phrases from the description using Part Of Speech patterns and annotated the
reviews with respect to these phrases [7]. We then built a prototype of the search-
ing component using NLTK library and Weka tool. We trained algorithms with
text properties such as query-term proximity, covered query term number, cosine
similarity measure and Boolean matching [11]. We evaluated our prototype using
10-fold cross-validation and obtained precision of 0.360, recall of 0.257 and F1
score of 0.300. We observed that for queries formed by two keywords (e.g. add
reservation) and term proximity less of than three words, the approach achieve
precision at the level of 0.88. Furthermore, we observed that reviews discussing
a queried feature by their synonyms are not retrieved. This problem could be
addressed by query expansion or word embedding techniques.

Further, we concluded that some queries (e.g. search for attractions) express
a functional topic aggregating several real features (e.g. search for place or search
for restaurant) rather than a single feature. We plan to investigate whether we
could use technique for ontology inference based on app description and reviews
and extend our approach by concept similarity measure.

Finding and Analyzing App Reviews Related to Specific Features 187

5 Related Work

Previous work focused on inferring features in app reviews rather than finding
features that talk about specific features [1,5,7]. Guzman and Maalej proposed
an approach for analyzing sentiments of reviews where prospective app features
are identified. The approach identifies features as frequently co-occurring key-
words and extract them from users’ reviews. Extracted features are associated
with sentiment and then grouped using topic modelling. The authors extended
the work by classifying reviews associated with extracted features into categories
related to usability and user experience [1]. Similarly, Johann et al. proposed an
approach for extracting app features from users’ reviews and app description
based on linguistic rules [7]. The approach enables comparing lists of extracted
app features to identify mismatch between extracted app features from reviews
and app description.

These approaches identify phrases corresponding to app features and extract
them from users reviews. They are evaluated against their ability to identify
whether extracted phrases from reviews are really features. In contrast, our app-
roach aims to support software professionals to search for users’ feedback on
specific features of their interest. Therefore, we plan to assess our tool’s ability
to retrieve users’ feedback on a queried feature.

Other works provide tool-based approaches to support feedback analysis [3,
16,17]. The PAID approach groups frequently co-occurring keywords extracted
from users’ reviews and visualize them as topics by theme river [3]. The main
objective of the tool is to visualize changes in topics in different versions of the
app. MARK is a keyword-based tool for a semi-automated review analysis [16].
It enables one to automatically extract keywords from raw user reviews and
rank them using their associations with negative sentiment. The tool provides a
summary of the most relevant reviews related to the keywords and visualizes the
trend of keyword occurrence. Similarly, PUMA extracts phrases from reviews
which are associate with negative sentiment and visualize how sentiments evolve
over a specific time period [17].

We envision our tool will use sentiment and trend analysis techniques similar
to these used by previous app store analysis tools, but will perform a more fine-
grained analysis on the subsets of reviews retrieved by our searching component.

6 Conclusion

In this research preview, we have presented a problem of searching for users’
opinions on a specific feature. We demonstrated the problem and its relevance
to support requirement engineering decisions by motivating scenarios. We pro-
posed our tool-based approach to address the problem and analyze retrieved
reviews in terms of their sentiments and users’ requests. We presented prelimi-
nary results on the feasibility of the approach and technical challenges that need
to be addressed.

As future work, we plan to implement remaining components of the tool and
experiment with different techniques to elaborate our approach. In particular,

188 J. D ↪abrowski et al.

we aim to investigate unsupervised techniques to support searching for opinion-
ated features and analyzing associated sentiments expressed in user reviews. We
plan to user and extend available datasets to evaluate our work [16]. We will
select apps from different domains and app stores to investigate the generality
of our approach. Further, we will use software professionals to (i) identify can-
didate features from app descriptions to form test queries, and to (ii) annotate
users’ feedback with respect to expressed users’ request, opinionated feature and
associated sentiment.

Finally, we will evaluate the usefulness of our tool in practice by observing
and interviewing prospective users.

References

1. Bakiu, E., Guzman, E.: Which feature is unusable? Detecting usability and user
experience issues from user reviews. In: 2017 IEEE 25th International Require-
ments Engineering Conference Workshops (REW), pp. 182–187, September 2017

2. Begel, A., Zimmermann, T.: Analyze this! 145 questions for data scientists in soft-
ware engineering. In: Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, New York, NY, USA, pp. 12–23. ACM (2014)

3. Gao, C., Wang, B., He, P., Zhu, J., Zhou, Y., Lyu, M.R.: PAID: prioritizing app
issues for developers by tracking user reviews over versions. In: 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE), pp. 35–45,
November 2015

4. Guzman, E., El-Haliby, M., Bruegge, B.: Ensemble methods for app review classi-
fication: an approach for software evolution (n). In: 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pp. 771–776,
November 2015

5. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment
analysis of app reviews. In: 2014 IEEE 22nd International Requirements Engineer-
ing Conference (RE), pp. 153–162, August 2014

6. Hemmatian, F., Sohrabi, M.K.: A survey on classification techniques for opinion
mining and sentiment analysis. Artif. Intell. Rev. (2017)

7. Johann, T., Stanik, C., Alizadeh M.B., Maalej, W.: SAFE: a simple approach for
feature extraction from app descriptions and app reviews. In: 25th IEEE Interna-
tional Requirements Engineering Conference, RE 2017, Lisbon, Portugal, 4–8 Sept
2017, pp. 21–30 (2017)

8. Maalej, W., Kurtanović, Z., Nabil, H., Stanik, C.: On the automatic classification
of app reviews. Requirements Eng. 21(3), 311–331 (2016)

9. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On auto-
matically classifying app reviews. In: 2015 IEEE 23rd International Requirements
Engineering Conference (RE), pp. 116–125, August 2015

10. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements
engineering. IEEE Softw. 33(1), 48–54 (2016)

11. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

12. Martin, W., Sarro, F., Jia, Y., Zhang, Y., Harman, M.: A survey of app store
analysis for software engineering. IEEE Trans. Softw. Eng. 43(9), 817–847 (2017)

Finding and Analyzing App Reviews Related to Specific Features 189

13. Morales-Ramirez, I., Muñante, D., Kifetew, F., Perini, A., Susi, A., Siena, A.:
Exploiting user feedback in tool-supported multi-criteria requirements prioritiza-
tion. In: 2017 IEEE 25th International Requirements Engineering Conference (RE),
pp. 424–429, September 2017

14. Di Sorbo, A., Panichella, S., Alexandru, C.V., Visaggio, C.A., Canfora, G.: SURF:
summarizer of user reviews feedback. In: 2017 IEEE/ACM 39th International Con-
ference on Software Engineering Companion (ICSE-C), pp. 55–58, May 2017

15. Traynor, D.: How to make product improvements, August 2018. https://www.
intercom.com/blog/ways-to-improve-a-product/

16. Vu, P.M., Nguyen, T.T., Pham, H.V., Nguyen, T.T.: Mining user opinions in mobile
app reviews: a keyword-based approach (t). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 749–759, November
2015

17. Vu, P.M., Pham, H.V., Nguyen, T.T., Nguyen, T.T.: Phrase-based extraction of
user opinions in mobile app reviews. In: 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pp. 726–731, September 2016

https://www.intercom.com/blog/ways-to-improve-a-product/
https://www.intercom.com/blog/ways-to-improve-a-product/

Requirements Monitoring

Supporting the Selection of Constraints
for Requirements Monitoring

from Automatically Mined Constraint
Candidates

Thomas Krismayer(B), Peter Kronberger, Rick Rabiser, and Paul Grünbacher

Christian Doppler Laboratory MEVSS, Institute for Software Systems Engineering,
Johannes Kepler University Linz, Linz, Austria

thomas.krismayer@jku.at

Abstract. [Context and Motivation] Existing approaches, e.g., in
the areas of specification mining and process mining, allow to automati-
cally identify requirements-level system properties, that can then be used
for verifying or monitoring systems. For instance, specifications, invari-
ants, or constraints can be mined by analyzing source code or system logs.
[Question/Problem] However, the usefulness of mining approaches is
currently limited by (i) the typically high number of mined properties
and (ii) the often high number of false positives that are mined from
complex systems. [Principal Ideas/Results] In this paper, we present
an approach that supports domain experts in selecting constraints for
requirements monitoring by grouping, filtering, and ranking constraint
candidates mined from event logs. [Contributions] Our tool-supported
approach is flexible and extensible and allows users to experiment with
different thresholds, configurations, and ranking algorithms to ease the
selection of useful constraints. We demonstrate the usefulness and scal-
ability of our approach by applying it to constraints mined from event
logs of two complex real-world systems: a plant automation system and
a cyber-physical system controlling unmanned aerial vehicles.

Keywords: Requirements monitoring · Specification mining ·
Constraint selection

1 Introduction

Requirements monitoring approaches [14,17] have been successfully used to con-
tinuously check the adherence of systems to their specification during operation.
However, such approaches rely on manually specifying requirements-level system
properties, which is a challenging problem for complex and continuously evolving
systems.

Researchers from different areas have thus proposed approaches to automat-
ically or semi-automatically extract such properties, e.g., in the form of con-
straints, invariants or validity rules, by analyzing source code or outputs of
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 193–208, 2019.
https://doi.org/10.1007/978-3-030-15538-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_15

194 T. Krismayer et al.

software systems. Automatic extraction of system properties does not preclude
manual definition, but can also be used to find additional properties that human
experts did not think of. In the field of specification mining [9] static approaches
use the source code of a program to detect invariants [15,20], while dynamic
mining approaches analyze the output of the program, e.g., log statements, to
derive specifications [5,8]. Approaches in the area of process mining [11,16] auto-
matically generate models of existing processes, e.g., in the form of Petri nets,
by analyzing (event) logs. In our own research we have developed a 5-step app-
roach [6,7] for mining different types of constraints from event logs recorded in
systems of systems to support requirements monitoring.

The usefulness of mining approaches, however, is typically challenged by
the high number of mined properties and the high number of false positives.
Constraints are only considered for monitoring if they describe something that
can occur at runtime and are deemed as relevant by a domain expert. Users thus
need to review many constraint candidates to select the ones that really need to
be monitored.

In our earlier work on constraint mining [6,7] we presented a mining algo-
rithm that also included preliminary support for ranking and filtering. Dur-
ing experiments with this approach on real-world systems we found that more
advanced filtering and ranking techniques are required and we also received the
feedback that similar constraints should be presented together. In this paper,
we therefore present a significantly improved and extended approach to support
domain experts by filtering, grouping, and ranking constraint candidates mined
for requirements monitoring. We also present a tool supporting all stages of the
mining process. It allows users to experiment with different parameters, con-
figurations, and algorithms, to eventually select constraints for monitoring. We
demonstrate the usefulness and scalability of our approach by applying it to con-
straints mined from event logs of two real-world systems – a plant automation
software system [13] and a cyber-physical system controlling unmanned aerial
vehicles (i.e., drones) [1] – and by collecting feedback from domain experts of
these systems.

2 Running Example

We use the Dronology system by Cleland-Huang et al. [1] as a running example
to illustrate key concepts of our approach. Dronology controls a group of drones
and ensures that the drones operate as expected during their missions. The full
behavior of complex software-intensive systems such as Dronology emerges dur-
ing operation only, when the involved systems interact with each other and with
their environment. Dronology thus relies on a runtime monitoring system that
continuously checks important events for the involved drones. Our requirements
monitoring approach [19], for instance, supports temporal constraints checking
the occurrence, timing and order of events; value constraints checking the cor-
rectness of data related with events; and hybrid constraints combining the former
two.

Supporting the Selection of Constraints for Requirements Monitoring 195

For instance, when a new drone connects to Dronology, a handshake event
is sent containing the coordinates. Dronology then allows to assign routes to
the connected drones, which are executed one after the other. During these
flights each drone sends events to the ground station reflecting the progress on
the assigned route. The events startRoute and endRoute represent the start
and end of the execution of a route. A waypoint event is sent when the drone
reaches one of the defined points of the current route. startRoute–waypoint–
endRoute thus constitute a typical event sequence type (pattern) in Dronology.
Additionally, a drone sends state events – approximately once per second – to
report its position, speed, attitude, battery status, flight mode, etc.

We describe three examples of requirements (R1–R3) that are related with
these events and can be expressed and formalized as constraints (cf. #1, #4,
and #7 shown in Fig. 1):

R1. Drones have to complete the routes they are assigned in a given time.
This can be defined as a temporal constraint (#1) checking that after the
startRoute event occurred, the events waypoint and endRoute occur within
5 min.
R2. While a drone is flying on a route, its altitude has to be within a certain
range to prevent it from crashing. The value constraint #4, for instance,
checks if the flying altitude of the drone is between 5 and 30 m.
R3. When a new drone connects to the system, it has to be on the ground
to wait for commands. The hybrid constraint #7 therefore checks after a
handshake event, if the status reported in the next state event is STANDBY.

Temporal, value, and hybrid constraints all define an explicit trigger event
type and one or multiple conditions. During requirements monitoring the con-
ditions are evaluated as soon as an event of the trigger event type occurs [13].

3 Background: Our Constraint Mining Approach

In our own research we developed a 5-step approach [6,7] for mining different
types of constraints for requirements monitoring by analyzing events and event
data recorded from systems of systems. The final step of our approach also
provided preliminary support for filtering and ranking. This paper presents more
advanced algorithms for filtering, ranking, and grouping as well as tool support
for the mining process. Here we briefly introduce the constraint mining approach,
which is the basis for our approach presented in Sect. 4.

Step 0: Creating a Uniform Event Representation. In this preparatory
step, the input event logs are parsed to an event object structure to make our
approach independent of the type and format of the inputs. Our approach is not
limited to simple logs with events having just a name (description) and a times-
tamp. Instead, events can contain additional data elements storing information
such as sensor values, status information, or settings characterizing process exe-
cution (cf. the data elements described in R2 and R3). This information can often

196 T. Krismayer et al.

also be used to infer the type and provenance of events (i.e., their “scope” [18]).
For instance, each drone is represented as a separate scope.

Step 1: Detecting Event Sequences. Our mining approach first detects
event sequence types within the event log. Analyzing such sequences already
allows to mine temporal constraints on event occurrence, order, and timing.
First, sequence detection is performed for each scope independently. Our algo-
rithm extracts sequence fragments, i.e., frequently co-occurring pairs of events
between any two event types from this scope. For this purpose, we analyze the
ratio of each pair of event types A and B by checking for each two consecu-
tive events of type A (An and An+1), whether an event of type B occurred in
between. We then calculate the ratio of co-occurrences for all pairs of events from
the same scope. If this ratio exceeds a configurable threshold, A–B is considered
a sequence fragment. In our running example both startRoute–waypoint and
startRoute–endRoute form a sequence fragment. The sequence fragments are
then combined such that the average time of the resulting sequence is minimal.
Constraint #1 shown in Fig. 1 is an example of a constraint that could be mined
in the first step.

Our algorithm then searches for events from other scopes that can be fit into
the already extracted sequences. In addition to event sequence types containing
multiple event types occurring in a given order, we also create event sequence
types for individual events.

After detecting the event sequence types, we extract the individual event
sequence instances (i.e., events that together match the event sequence type
pattern) from the recorded event log. Additionally, we compute the time between
the first and the last event of each sequence instance to estimate the maximum
time for the temporal constraint that is generated from the respective event
sequence type. We also remove outliers, i.e., event sequence instances that take
significantly longer than the majority of the instances.

Step 2: Creating Feature Vectors. For each extracted event sequence
instance our approach then generates a feature vector containing all event data
elements and their values from the respective events in the sequence instance.
During the mapping of sequence instances to feature vectors our algorithm
aims to find data elements that contain the same value in all event sequences.
These values can be assumed to remain unchanged for further runs and are
thus extracted as value constraint candidates. We extract constant data element
values that do not belong to the trigger event as candidates for both value con-
straints and hybrid constraints. The reason is that the event might also occur
independently from this sequence, possibly with different data element values.
An example for a hybrid constraint mined in step 2 is constraint #7 shown in
Fig. 1.

Step 3: Analyzing Feature Vectors. We next analyze the distribution of
non-constant values in the feature vectors. For numeric event data elements we
extract an interval that contains all observed values. For example, the data ele-
ment loc.z in waypoint–events, which contains the height of the drone, contains

Supporting the Selection of Constraints for Requirements Monitoring 197

only values between 5 and 30. We can therefore extract constraint #4 shown in
Fig. 1. Additionally, our algorithm detects multiple data elements – potentially
from different events – that have the same value in each feature vector, e.g., an
identifier. We can therefore create a constraint candidate checking that these
data elements have the same value for all future logs.

We also extract all event data elements that have a constant value for a
majority of all sequences. The threshold for the extraction, i.e., the percentage of
sequences that can have a different value, is set to the threshold ε for constraints
to be kept during filtering (cf. Sect. 4). If the data element does not belong to
the first event of the sequence, the constraint is mined both as a value constraint
and a hybrid constraint referring to the first event of the sequence, as also done
for constant values in Step 2.

4 Filtering, Grouping, and Ranking Constraint
Candidates

For complex software systems our constraint mining approach potentially detects
a large number of constraint candidates. While many candidates can be removed
from the list automatically, e.g., by removing duplicates, the selection of con-
straint candidates cannot be fully automated and will always rely on domain
knowledge. Our constraint mining approach outlined in Fig. 1 thus provides fil-
tering, grouping, and ranking strategies to support end users in selecting the
relevant constraints from the candidates.

4.1 Constraint Filtering

The aim of the first step is to reduce the overall number of constraint candidates
that are presented to the end user. For this purpose, we implemented differ-
ent automatic and semi-automatic filters. Our tool implementation additionally
provides an API allowing to add additional filtering algorithms (cf. Sect. 4.4).

Automatic Constraint Filtering. We provide two different automatic strate-
gies to get rid of irrelevant constraint candidates: (i) filtering constraints that
violate frequently; and (ii) finding highly similar constraints to keep just the
most relevant candidate.

The first automatic filter drops frequently violating constraints, which typi-
cally indicate exceptions and problems. Such constraints are rarely selected by
users. Our algorithm filters all constraints, which exceed a defined error rate ε
for the complete input event log. A too high error rate would overly reduce the
number of candidates, while a too low error rate would keep too many false
positives. In our experiments we set ε to one third, which worked well for our
datasets. Using this error rate, for example, the sixth constraint candidate in
Fig. 1, which is only fulfilled for 40% of all state events in the event log, would
be removed from the list. This constraint has been extracted during step 2 for
the sequence handshake–state (cf. Sect. 3), but cannot be generalized to all
state-events.

198 T. Krismayer et al.

Fig. 1. Our approach for filtering, grouping, and ranking constraint candidates. The
constraints are defined in a domain-specific language (DSL) described in [13].

The second automatic filter removes redundant constraint candidates before
presenting them to the user. Specifically, our algorithm detects and filters dupli-
cate constraints and constraints that refer to the same event data element. Dupli-
cates are created, e.g., if a constraint for an event data element is found for a
sequence and for the individual event (cf. Steps 2 and 3 in Sect. 3). Multiple
different constraints can be found for the same event data element because our
algorithm mines both value constraints checking constants and intervals, and
hybrid constraints checking, e.g., a certain value across a sequence of events.
Our automatic filtering algorithm thus decides which constraints to keep and
which to discard based on (i) the constraint type—thereby keeping more gen-
eral constraints as well as (ii) based on the percentage of sequences for which it
evaluates to true—thus keeping constraints with higher accuracy. For instance,

Supporting the Selection of Constraints for Requirements Monitoring 199

value constraints that can be evaluated for every event are preferred over hybrid
constraints that can only be evaluated after a specific other event. In case of
doubt, e.g., if the accuracy of a hybrid constraints is only slightly higher than
the accuracy of a value constraint, we keep both and let the user decide.

Semi-automatic Constraint Filtering. In addition to the (configurable) auto-
matic filtering, we also allow to filter constraint candidates matching user-defined
rules. For instance, a user may decide to only consider temporal constraints or
to filter constraints referring to certain fields that should be ignored. So far, we
have implemented two different semi-automatic constraint filters: one based on
the constraint type and the other based on the names of event data fields appear-
ing in the constraint. The event data fields are stored in JSON format in our
approach, which allows the second filter to target also groups of event data fields
besides specific data fields. For example, it is possible to filter all constraints on
drone location information by filtering for event data items with “location” as
one of their JSON path parts. This filter would, for instance, remove constraints
#2, #3, and #4 shown in Fig. 1, if desired by the user.

4.2 Constraint Grouping

The remaining constraint candidates can automatically be arranged into groups
of similar constraints. Grouping is intended to streamline the selection or rejec-
tion of similar constraints. Correctly grouped constraint candidates allow a
user, for example, to easily reject all constraint candidates related to a wrongly
detected sequence or an irrelevant event type.

The similarities between all pairs of constraint candidates are calculated
based on several weighted parts: the trigger event type, the constraint type,
the event sequence, the event data item names, and the event data item values.
The similarity between two constraint candidates is computed as the weighted
average of these parts. From these similarities the groups are formed such that
the similarity between any two constraint candidates in the group is above a
configurable threshold.

For example, constraints #5 and #7 in Fig. 1 have the same trigger event type
(handshake) and event sequence (handshake – state), but different constraint
types: constraint #7 is a hybrid constraint that refers to data item status,
while constraint #5 is a sequence constraint that does not check any data item.
Constraint #2, #3, and #4 also have the same trigger event type and event
sequence, but additionally have the same constraint type (value constraint).
While they all refer to a location-related event data item, the exact name and
values of the event data items are different.

Grouping the constraints from Fig. 1 by only using the trigger event, i.e.,
setting all other weight factors to 0, thus results in the groups [1], [2, 3, 4],
and [5, 7]. Please note that constraint candidate #6 is already removed during
filtering and thus not part of any group.

200 T. Krismayer et al.

4.3 Constraint Ranking

Before presenting the remaining constraint candidates to the user, they are
ranked to show the ones on top that are more likely to be accepted. For this pur-
pose, our approach offers four ranking algorithms based on accuracy, constraint
type, and combinations of them. New algorithms can be added using our API
as described in Sect. 4.4.

Ranking Based on Accuracy. For this strategy, the rank is primarily based on
the ratio between the number of times a given constraint evaluates to true and
the total number of evaluations for this constraint within the complete event
log. If the computed accuracy is equal for two constraint candidates, they are
ranked based on the absolute number of event sequences for which the constraint
evaluates to true. Candidates with higher accuracy receive a better rank.

Ranking Based on Constraint Type. Since temporal constraints represent the
behavior of the software system to be monitored they are more likely to be
included than the often very specific data checks. This algorithm therefore ranks
temporal constraint candidates highest, followed by hybrid constraints, and then
value constraints.

Combined Ranking. The third algorithm combines the first two ranking algo-
rithms, i.e., it ranks the constraint candidates based on the average rank calcu-
lated from the rankings based on accuracy and type.

Ranking Based on Evaluations. The final ranking algorithm combines the
accuracy and the relative number of positive evaluations (i.e., constraints eval-
uating to true) on the input dataset. The latter is the fraction of the number
of positive evaluations for the given constraint candidate and the highest num-
ber of positive evaluations for any of the candidates in the list. If grouping is
used, our approach ranks the groups rather than the individual constraints. This
is done by ranking the constraint candidates from each group individually and
then ranking the groups based on the highest ranked constraint candidate of
each group.

4.4 Tool Support

We have implemented our filtering, grouping, and ranking algorithms in Java and
provide an API that allows configuring all thresholds and factors influencing the
calculations. New filtering or ranking algorithms or grouping factors can easily
be added by implementing an interface.

We have also implemented a wizard-based interface (cf. Fig. 2) supporting
end users in the mining process. This tool allows users to select the event logs
to be analyzed, to (optionally) configure all stages of the mining process, and to
review the constraint candidates for selection. In the tool, users can experiment
with the different ranking and grouping algorithms and search in the list of
candidates. They can also make minor adaptations to constraint candidates,
e.g., to change the value or operator used in a value constraint. It is possible

Supporting the Selection of Constraints for Requirements Monitoring 201

Fig. 2. End-user tool support for selecting constraints.

to select individual constraints or whole groups of constraints, which are then
exported to text files that can be imported in a monitoring tool, e.g., our own
monitoring tool ReMinds [19].

5 Evaluation

Our research method is shown in Fig. 3. We mined constraints from two datasets
recorded from two different systems. The first dataset includes events monitored
from an industrial plant automation system of our industry partner Primet-
als Technologies [13]. The second dataset contains events from a cyber-physical
system controlling small unmanned aerial vehicles using the Dronology frame-
work [1], already briefly explained when introducing our running example. We
presented a list containing all the constraint candidates mined by our approach
to a domain expert of each of these systems to select the constraints useful for
monitoring. Additionally, we asked them to provide qualitative feedback and, in
a follow-up step, to group the constraint candidates. Specifically, we investigated
the following two research questions:

RQ1: How useful are the presented filtering, grouping, and ranking algo-
rithms? We asked the domain experts to rate the mined constraints using the
options yes (“I would select this mined constraint to be monitored at runtime for
my system”), yes, with minor changes (“I would select this constraint after minor
changes, e.g., of certain parameters or operators defined in the constraint”), and
no (“I would not select this constraint”). For our experiments we treat all con-
straints rated with yes or yes with minor changes as relevant and all candidates
rated with no as not relevant. We also rate constraints marked with yes with
minor changes as useful, because these minor changes can easily be made when
selecting useful constraints in our tool (cf. Sect. 4.4). For RQ1, we checked how
many of the useful constraints, i.e., rated with yes or yes with minor changes,

202 T. Krismayer et al.

Fig. 3. Our research method.

were within the first ten, respectively, first twenty entries of the ranked list. To
experiment with our different ranking algorithms, we ranked the lists differently,
using the strategies described in Sect. 4.3. To compare the effectiveness of our
ranking algorithms we report the precision (PR), recall (RE), and F1 scores for
the first ten and the first twenty entries of the ranked list for our datasets.

PR =
selected relevant

selected
RE =

selected relevant
relevant

F1 = 2 ∗ PR ∗ RE

PR + RE

To evaluate the grouping algorithm we additionally asked the domain experts
to manually group the complete list of constraint candidates. We then applied our
grouping algorithm and compared how well they matched the grouping preferred
by the experts. We again report the precision, recall, and F1 scores.

RQ2: Does the performance of the grouping and ranking scale to larger num-
bers of constraints? We measured the execution time of our grouping and ranking
approach for different, randomly generated constraint sets of different size. These
experiments were performed on a computer equipped with an Intel R© Core

TM
i7-

6700 processor and 16 GB RAM, with 8 GB of memory given to the evaluation
runs.

5.1 Datasets

For the first dataset engineers at Primetals Technologies used ReMinds [19] to
record a 24-hour event log from an automation system running in a metallurgical
plant in China during production. Specifically, the events were recorded from the
Quality Control System (QCS) that collects and analyses data from different
processes within a metallurgical plant. The dataset contains a total of 18,239
events with 35 different event types from four different scopes. Our constraint
mining approach found 34 constraints of which 14 (41%) were regarded as useful
by the domain expert [6]. One of the reasons for rating constraints as not useful

Supporting the Selection of Constraints for Requirements Monitoring 203

were sequences of randomly co-occurring events. Similarly, several constraints
checking the equality of event data items from different events were rated as not
useful.

The second dataset contains events from the Dronology system [1]. To create
our dataset, we used two pre-defined scenarios, in which five drones performed
a total of 105 flights in the simulator. The Dronology simulator allows to exper-
iment with drones using exactly the same control software system, but not the
actual hardware. The scenarios were designed together with a domain expert. In
the first scenario, two drones are used to deliver items from a central warehouse
to one of ten different customer locations and return back to the warehouse. In
the second scenario, three drones perform random aerial maneuvers at a flight
field. Both scenarios are executed at the same time with the same type of drones.
The Dronology dataset contains a total of 15,200 events with five different event
types from five different scopes (i.e., the five different drones). For this dataset
50 constraints were mined of which 27 (54%) were rated as useful [6]. The con-
straints rated as not useful were, e.g., checking events that usually occur after
each other, but are not actually connected. We also found two constraints that
resulted from event data items, that were set to wrong values by the simulator
and are therefore not useful for actual monitoring.

We cannot publish the QCS dataset due to non-disclosure agreements. The
Dronology dataset is available at http://mevss.jku.at/?attachment id=3056.

5.2 Filtering and Ranking

To address our first research question, we conducted experiments to compare
the four ranking approaches, i.e., accuracy, type, combined, and evaluations (cf.
Sect. 4.3), based on what constraint candidates the domain expert regarded as
useful.

The QCS dataset also includes a total of eleven constraint candidates
regarded as useful by the domain expert, but too similar to other useful con-
straints in the candidate list. For the ranking we therefore only considered the
highest-ranked constraint candidate of each of these groups of similar candidates
as relevant. All subsequent candidates were regarded as not relevant. We also
excluded seven constraint candidates from the Dronology dataset, that could
neither be classified as relevant nor as not relevant by the domain expert.

The results for both, the QCS and Dronology datasets can be seen in Table 1.
When using only the ten highest-ranked list entries, the type-based and the
combined ranking strategy gain a much higher F1 measure for the QCS datasets,
while the accuracy-based and evaluations-based strategies reach a higher F1 score
for the Dronology dataset. One reason for the lower values is that ten selected
constraint candidates are just too few (especially compared to the 27 useful
constraints of the Dronology dataset) – leading to low recall values.

http://mevss.jku.at/?attachment_id=3056

204 T. Krismayer et al.

Table 1. Precision, recall, and F1 scores of different ranking algorithms (RQ1).

Data Algorithm PR10 RE10 F1;10 PR20 RE20 F1;20

QCS Acc. 0.2 0.143 0.167 0.45 0.643 0.529

Type 0.7 0.5 0.583 0.55 0.786 0.647

Comb. 0.7 0.5 0.583 0.5 0.714 0.588

Eval. 0.4 0.286 0.333 0.45 0.643 0.529

Dronology Acc. 0.8 0.296 0.432 0.65 0.481 0.553

Type 0.4 0.148 0.216 0.5 0.37 0.425

Comb. 0.5 0.185 0.27 0.7 0.519 0.596

Eval. 0.8 0.296 0.432 0.75 0.556 0.638

Consequently, the F1 measure for all algorithms increases for both datasets
on the 20 top-ranked candidates compared to the top ten. For the 20 highest-
ranked constraint candidates the F1 measure is highest for the evaluations-based
strategy for the Dronology set. For the QCS all strategies gain relatively high
results, with the type-based strategy performing best.

We conclude that the ranking algorithms can indeed support the user in
selecting constraints. Specifically, presenting the top 20 constraint candidates
led to high results for both datasets. Reviewing 20 constraint candidates also is
a realistic task for a user according to our domain experts. For the two datasets
different algorithms perform best, which further hints that allowing the user to
choose the ranking strategy, just like we support with our tool (cf. Sect. 4.4), can
be very helpful.

5.3 Grouping

To evaluate the grouping algorithm we asked each domain expert to manually
group all constraint candidates mined from the respective dataset. We initially
grouped the constraint candidates based only on the trigger event type to aid
the experts in their task. This can be achieved by setting all weight factors (cf.
Sect. 4.2) other than the trigger event factor to zero.

The domain expert from Primetals Technology deemed the default grouping
based solely on the trigger event most useful. For the 34 mined constraints this
approach resulted in eleven groups with one to seven constraints per group.

For the Dronology dataset the domain expert grouped the constraints based
on a more complex rule set. This was necessary, because this dataset contained
fewer event types and grouping based on only the trigger event would have led
to large groups with up to 19 quite diverse constraint candidates. The expert
grouped the constraint candidates first based on the trigger event type and then
split these groups further depending on the constraint type and the event data
elements. Following this strategy we set the weight for the trigger event in the
similarity calculation to three, the weight for the constraint type to two, and the
weight for the event data item to one. Using the default grouping threshold of

Supporting the Selection of Constraints for Requirements Monitoring 205

Fig. 4. Average runtime of grouping and ranking (RQ2).

0.75, this resulted a F1 measure of 0.75 – with precision 0.612 and recall 0.968.
This demonstrates the feasibility of our grouping algorithm. Based on our API,
more specific grouping algorithms, e.g., better fitting the Dronology case, can
easily be added.

5.4 Performance of Grouping and Ranking

To assess the performance and scalability of our grouping and ranking algo-
rithms, we generated random sets of constraints for which we compared the
average runtime of the grouping and ranking. Specifically, we created sets with
25 to 1,000 constraints – in steps of 25 constraints. The constraints were ran-
domly distributed on sequence, value, and hybrid constraints (with equal proba-
bility) and all the event and field names were chosen randomly from ten different
names.

For each of the sets we used our grouping and ranking approach and recorded
their runtime. To ensure that all parts for the similarity calculation are used,
we set all factors for the weighted average to one. For the ranking we used the
combined ranking approach, which has the highest runtime, as it computes and
combines both the type-based and accuracy-based ranking.

We repeated this process ten times to balance out variations in the runtime.
To reduce the influence of the warm-up time of the Java VM, we included an
additional run at the beginning, that was not considered for the calculations.
We report the average runtime in Fig. 4.

The grouping algorithm calculates the similarity between all pairs of con-
straints, i.e., n2 similarity scores for n constraints. As a result a quadratic
increase in runtime had to be expected. The average runtime for the group-
ing and ranking of 1,000 constraints is 1,276 ms. In our experiments we mined
34 and 50 constraints for the QCS and the Dronology datasets; for this number
of constraints the ranking and grouping takes on average only 3 ms.

5.5 Threats to Validity

A threat to the validity of our results is that we rely on feedback from domain
experts from the systems we investigated. However, each domain expert is the

206 T. Krismayer et al.

main developer of the respective system and thus most appropriate for assessing
our filtering, ranking, and grouping algorithms. We thus think that our evalua-
tion is suitable to demonstrate the usefulness of our approach.

One additional threat for our experiments is that we only used two different
systems – too few to make claims on the generalizability of our approach. The
two examples we used, however, are very different from each other and both are
complex, real world systems.

Regarding the performance evaluation of our grouping and ranking algo-
rithms, a quadratic complexity might seem problematic. However, it still took
only about one second to rank and group 1,000 constraints, which means that
the performance is more than sufficient for practical purposes and for allowing
an interactive use of the tool. Also, users would not want to look through a list
of 1,000+ constraints in practice anyway.

6 Related Work

There is a large body of work on algorithms for sorting [2] and clustering [21]
data. Especially with the advent of big data and the related field of data ana-
lytics, filtering, grouping, clustering, and ranking data has become ever-more
challenging and important [4]. Our goal was not to re-invent the wheel, but to
apply existing algorithms to our use cases in requirements monitoring. Here we
describe existing research that also investigated this issue.

For instance, many existing specification mining approaches include some
form of ranking or filtering, mostly filtering constraints with a low rank. Narayan
et al. [12] use an accuracy-based ranking component and remove all mined con-
straints with an accuracy below a threshold, which is set close to 100%. The
approach by Weimer and Necula [20] detects pairs of method calls that have to
occur together (e.g., opening and closing a session) to find wrong usage within
error-handling source code. This very specific use case also forces them to use
multiple filters to, e.g., filter constraints that are never violated during error
handling. Finally, they rank the remaining constraints based on their accuracy
in non-error-handling source. While we also support ranking constraints based
on accuracy, we provide additional filtering, ranking, and grouping algorithms.

The approaches by Lo and Maoz [10] and Lemieux et al. [8] both include
filtering based on user-defined thresholds for accuracy (‘confidence’) and number
of evaluations (‘support’). We also present ranking strategies that include both
of these numbers, but additionally combine them with other information such
as constraint types.

The Daikon system [3] supports filtering very similar constraints (i.e., invari-
ants referring to the same field with slightly different values) and invariants
mined between incompatible abstract types. Our automatic filtering approach
also includes filtering of similar constraints, but additionally detects similar con-
straints with different constraint types.

To the best of our knowledge there exists no approach or tool that also
groups the mined constraints. Also, existing approaches typically do not focus

Supporting the Selection of Constraints for Requirements Monitoring 207

on presenting mined constraints to domain experts and support them in the
selection process.

7 Conclusions

We have presented a tool-supported approach that allows domain experts to
filter, rank, group, and select constraints mined from event logs to support
requirements monitoring at runtime. The approach is flexible and extensible,
i.e., existing algorithms can be combined and configured in different ways and
additional algorithms can easily be added. Our evaluation demonstrates that our
existing algorithms are useful and scale for constraints mined from event logs
of two complex real-world systems – a plant automation software system and
a cyber-physical system controlling unmanned aerial vehicles. We also recently
presented our tool to several potential users of our industry partner during a
workshop and received very positive feedback. In the future we plan to apply
our approach to further systems and perform a user evaluation with our tool.
We also plan to investigate the possibility to use machine learning techniques to
automatically detect the settings for ranking, filtering, and grouping algorithms.

Acknowledgments. The financial support by the Austrian Federal Ministry for Digi-
tal and Economic Affairs, the National Foundation for Research, Technology and Devel-
opment, and Primetals Technologies is gratefully acknowledged.

References

1. Cleland-Huang, J., Vierhauser, M., Bayley, S.: Dronology: an incubator for cyber-
physical systems research. In: Proceedings of the 40th International Conference on
Software Engineering: New Ideas and Emerging Results, pp. 109–112. ACM (2018)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

3. Ernst, M., et al.: The Daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1), 35–45 (2007)

4. Fahad, A., et al.: A survey of clustering algorithms for big data: taxonomy and
empirical analysis. IEEE Trans. Emerg. Top. Comput. 2(3), 267–279 (2014)

5. Gabel, M., Su, Z.: Javert: fully automatic mining of general temporal properties
from dynamic traces. In: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 339–349. ACM (2008)

6. Krismayer, T.: Automatic mining of constraints for monitoring systems of systems.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 924–927. ACM (2018)

7. Krismayer, T., Rabiser, R., Grünbacher, P.: Mining constraints for event-based
monitoring in systems of systems. In: Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp. 826–831. IEEE (2017)

8. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (T).
In: Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering, pp. 81–92. IEEE (2015)

208 T. Krismayer et al.

9. Lo, D., Khoo, S.C., Han, J., Liu, C.: Mining Software Specifications: Methodologies
and Applications. CRC Press, Boca Raton (2011)

10. Lo, D., Maoz, S.: Scenario-based and value-based specification mining: better
together. Autom. Softw. Eng. 19(4), 423–458 (2012)

11. Maita, A.R.C., et al.: A systematic mapping study of process mining. Enterp. Inf.
Syst. 12(5), 505–549 (2018)

12. Narayan, A., Cutulenco, G., Joshi, Y., Fischmeister, S.: Mining timed regular speci-
fications from system traces. ACM Trans. Embed. Comput. Syst. 17(2), 46:1–46:21
(2018)

13. Rabiser, R., Thanhofer-Pilisch, J., Vierhauser, M., Grünbacher, P., Egyed, A.:
Developing and evolving a DSL-based approach for runtime monitoring of systems
of systems. Autom. Softw. Eng. 25(4), 875–915 (2018)

14. Robinson, W.: A requirements monitoring framework for enterprise systems.
Requirements Eng. 11(1), 17–41 (2006)

15. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using
automata-based abstractions. IEEE Trans. Softw. Eng. 34(5), 651–666 (2008)

16. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012)

17. Vierhauser, M., Rabiser, R., Grünbacher, P.: Requirements monitoring frameworks:
a systematic review. Inf. Softw. Technol. 80(December), 89–109 (2016)

18. Vierhauser, M., Rabiser, R., Grünbacher, P., Aumayr, B.: A requirements monitor-
ing model for systems of systems. In: Proceedings of the 23rd IEEE International
Requirements Engineering Conference, pp. 96–105. IEEE (2015)

19. Vierhauser, M., Rabiser, R., Grünbacher, P., Seyerlehner, K., Wallner, S., Zeisel,
H.: ReMinds: a flexible runtime monitoring framework for systems of systems. J.
Syst. Softw. 112, 123–136 (2016)

20. Weimer, W., Necula, G.C.: Mining temporal specifications for error detection. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476.
Springer, Heidelberg (2005)

21. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645–678 (2005)

Combining Monitoring and Autonomous
Feedback Requests to Elicit Actionable

Knowledge of System Use

Dustin Wüest1(&), Farnaz Fotrousi2, and Samuel Fricker1,2

1 Institute for Interactive Technologies,
FHNW University of Applied Sciences and Arts Northwestern Switzerland,

Windisch, Switzerland
{dustin.wueest,samuel.fricker}@fhnw.ch

2 Software Engineering Research Laboratory (SERL-Sweden),
Blekinge Institute of Technology, Karlskrona, Sweden

{farnaz.fotrousi,samuel.fricker}@bth.se

Abstract. [Context and motivation] To validate developers’ ideas of what
users might want and to understand user needs, it has been proposed to collect
and combine system monitoring with user feedback. [Question/problem] So
far, the monitoring data and feedback have been collected passively, hoping for
the users to get active when problems emerge. This approach leaves unexplored
opportunities for system improvement when users are also passive or do not
know that they are invited to offer feedback. [Principal ideas/results] In this
paper, we show how we have used goal monitors to identify interesting situa-
tions of system use and let a system autonomously elicit user feedback in these
situations. We have used a monitor to detect interesting situations in the use of a
system and issued automated requests for user feedback to interpret the moni-
toring observations from the users’ perspectives. [Contribution] The paper
describes the implementation of our approach in a Smart City system and reports
our results and experiences. It shows that combining system monitoring with
proactive, autonomous feedback collection was useful and surfaced knowledge
of system use that was relevant for system maintenance and evolution. The
results were helpful for the city to adapt and improve the Smart City application
and to maintain their internet-of-things deployment of sensors.

Keywords: Requirements monitoring � User feedback �
Requirements elicitation � Smart city

1 Introduction

Software maintenance and evolution constitute a large part of the work of software
engineers [1]. From a requirements engineering perspective, one of the goals is to
gather user feedback about released software to identify user needs that can be trans-
lated into requirements for future releases [2]. Various efforts have been spent to
monitor system use, elicit user feedback, and analyse the obtained data [3]. Common
methods for gathering feedback are hotlines, email, contact forms, and ticket systems,

© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 209–225, 2019.
https://doi.org/10.1007/978-3-030-15538-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_16

feedback forms embedded in software, and user feedback mechanisms of app stores
[2]. This data has been mined and analysed with the aim of extracting requirements [4].

In the context of a European-Asian innovation project, Wise-IoT (www.wise-iot.eu),
we have implemented a FAME-like approach of system monitoring and feedback forms
[5]. We aimed at understanding the problems of the developed prototype systems and
identify opportunities to evolve them to increase value creation and quality-of-
experience. The monitoring data turned out to be difficult to interpret, and the user
feedback requests were disturbing for users [6] or lacked enough information about the
context to which the feedback applied.

These challenges encouraged us to extend the FAME approach by combining
system monitoring and user feedback with autonomously generated proactive requests
for user feedback. We monitored the fulfilment of end-user goals with data gathered
from internet-of-things (IoT) devices to detect whether users are in an interesting
situation, such as having achieved a goal or having deviated from the pathway towards
the goal. With this approach, we could issue requests for user feedback in a targeted
way, making the feedback requests relevant for the concerned users and reducing our
dependency on luck for useful feedback to be received.

In this paper, we present our approach of combining system monitoring with
autonomously triggered user feedback and report on its evaluation in a Smart City
application for parking management. The main research question for the evaluation
was: Do the combination of system monitoring and autonomously triggered user
feedback provide added value to system evolution? We were interested to see whether
autonomous triggering of feedback requests allows eliciting requirements that would
not have been identified by just using a passive monitoring and feedback collection
approach.

The remainder of the paper is structured as follows. Section 2 gives an overview of
related work and background. Section 3 presents the approach. Section 4 describes the
evaluation. Section 5 presents the obtained monitoring and feedback data and answers
the research question. Section 6 discusses the results. Section 7 concludes.

2 Combined Data Gathering for System Evolution

User requirements are changing, which is the primary driver for evolving a software
system. Planning the system’s evolution needs knowledge of when and what
requirements have changed and how to enhance the system. The knowledge can be
acquired by frequent observation or monitoring of how the system is used [7] and
checking whether it meets the users’ requirements [8].

Sometimes, engineers have assumptions of how a system should be evolved and
take the proactive approach of implementing and validating a prototype that exposes
the change to users at runtime [9]. These innovation experiments generate insight for
testing the assumption and deciding whether the change should be sustained or
abandoned [10]. Lean Start-up is an example of the innovation experiment method
designed for small companies [11] and also adopted in large companies [12]. Critical
for the success of innovation experiments is again the monitoring of the system use,

210 D. Wüest et al.

http://www.wise-iot.eu

e.g. to check the use of the innovation, and the collection of user feedback, e.g. to
check whether the innovation generates value for users.

Monitoring the system use allows requirements engineers to determine whether and
to what degree the implemented system is meeting its requirements at runtime [13]. The
insertion of code or sensors into a running system allows the developers to continu-
ously check the system health, observe users, record their activities and study the
system’s behaviour [14]. Such monitoring enables requirements engineers to detect
requirements violations, e.g. system failures, and react fast to evolve the system [15].
Furthermore, observing the user activities, such as a sequence of feature usage, dura-
tion, and other contexts, enables requirements engineers to understand the user needs
better [3]. However, such monitoring data alone might not directly show whether users
are satisfied, what exactly users require, and what the details of the requirements are.

Feedback given by users is another source of information to understand user needs
how satisfied the users are with the system [16]. Several feedback tools have been
designed to collect such information with user feedback. These tools are either offered
standalone or are embedded into the system [17, 18]. The feedback tools trigger
feedback forms either by a user’s request, e.g. pressing the feedback button, or by a
system request, e.g. by an automatic pop-up window [19]. Such feedback forms enable
users to communicate bug reports, feature requests, and praise [20]. The feedback may
be collected as a simple combination of free text, selected categories, ratings, and
screenshots with annotations [21, 22]. Regardless of the dialogue design, several
studies describe challenges of analysing and interpreting user feedback, especially
when information about the context is missing that the feedback applies to [2, 23].

Monitoring and user feedback collection at runtime together supports the com-
munication of user needs while capturing information about the context. Seyff et al.
proposed to connect user feedback with features of the user interface [17]. Fotrousi
et al. proposed to correlate the users’ Quality of Experience and with the system’s
Quality of Service [24]. Oriol et al. proposed a generic framework for combining the
collection of feedback and monitoring data [5].

So far, the combination of monitoring and feedback has been validated with pas-
sively collected user feedback. While relevant insights could be generated, the passive
approach limited developers in targeting feedback collection on interesting situations of
system usage and generated the risk of collecting irrelevant or even fake feedback [25].
To avoid this problem, we rely on proactive, autonomous requests for user feedback
when an interesting situation in the use of a system is detected.

3 Proactive, Autonomous Gathering of User Feedback

3.1 Control Loop

Our approach of eliciting and using monitoring and feedback data is based on the
control loop for self-adaptive systems proposed by Cheng et al. [26]. The control loop
allows collecting data, analysing that data with the help of rules or models of expected
system usage, deciding how to act by interpreting these insights, and acting according
to these decisions. A self-adaptive system fully automates this loop by examining,

Combining Monitoring and Autonomous Feedback Requests 211

introspecting, and modifying itself at runtime. An evolving system keeps the engineers
in the loop, allowing them to understand the system’s achievements, problems, and
needs for evolution.

Our approach can be used to build a control loop for a system to be evolved or
maintained. The system may be a functional prototype or an operational system. The
control loop spans the system runtime, the technical environment in which the system
runs, the users of the system, and the engineers doing the development and
maintenance.

The control loop is parametrised with the endpoints and model of the data that is to
be collected for analysis and may include data from the system, e.g. generated by IoT
sensors, data about the users, e.g. user preferences, and data generated as a result of
user-system interaction, e.g. click-trails. The data parametrisation includes the defini-
tion of the questionnaires for collecting user feedback.

Another type of parametrisation concerns the analysis that is used to detect the
interesting situations in which a proactive, autonomous request should be issued to a
user for collecting feedback from that user. A there are many potential ways of defining
the interestingness of such a situation, we have opted for a flexible plug-in approach.
The currently developed plug-in assumes that a user tries to achieve a goal with a
journey that can be expressed by a sequence of subgoals that the user will achieve
while pursuing the goal.

We have defined interestingness of a situation with respect to the user’s fulfilment
of the goal and adherence to the journey: (a) the goal has been achieved and (b) the user
has deviated from the following subgoal, or the goal if no subgoals remain, he was
expected to achieve. We have implemented the goal monitoring based on the concepts
suggested by Qian et al. [27]. This interpretation of interestingness allows asking the
user to judge his satisfaction with the proposed goal and journey and offering rationales
for the judgment and, if relevant, the deviations.

The start of journeys, the achievement of goals, and deviations from the journeys
are offered to the engineer as a stream of insights. The insights are presented as
structured and semantically annotated data that include collected supporting data and
user feedback and are used by the engineer for further analysis and decision-making
about system evolution and maintenance. The engineer may analyse the recently
generated insights, for example as part of his continuous or daily system monitoring
practice. The engineer may also decide to aggregate or correlate insights based on
attributes of the data included in the included data.

The last step of the control loop, the evolution and maintenance of a system, is
under the control of the engineer. Maintenance may be initiated if the insights indicate
that something is wrong with the deployed system and needs fixing. Evolution may be
initiated if important user needs or other opportunities for value creation are discovered
and prioritised according to standard roadmapping and release planning activities [1].

3.2 Implementation

For implementing the feedback loop, we have developed a component, called SAR,
that may be integrated into a software system and deployed for supporting the evo-
lution of that system. SAR can be connected to streams of data from sensors and

212 D. Wüest et al.

system monitors, thus supporting data collection. SAR can be instrumented with
plugins with models of expected system use and rules for detecting fulfilment of usage
goals or deviations from pathways towards achieving these goals, thus supporting data
analysis. To support the interpretation of the analysis results, SAR can be instrumented
with questionnaires to be triggered to obtain user feedback, thus completing data
collection. SAR, finally, offers an insights stream that an engineer may subscribe, thus
enabling the engineer to decide how to act. The engineer may then act with mainte-
nance of the system and its components or by evolving the system as part of system
development.

Figure 1 shows the integration of SAR into a system. The component may be
integrated into a system that is to be maintained and evolved. SAR assumes the
presence of a front-end application that offers a user interface for interacting with the
users, a system back-end that offers system-specific data, and engineering tools for
maintaining and evolving the system. In the current implementation, SAR offers
libraries helping application developers to connect the front-end with SAR and expects
a standard back-end interface, the Orion Context Broker (fiware-orion.readthedocs.io).
It offers also an Orion interface that allows connecting engineering tools to the insights
stream.

The top layer is the Application Layer. It contains the end-user application and two
front-end libraries that we developed to simplify the integration of the SAR component,
taking care of all communication to the recommender via a RESTful API. The front-
end library is an adaptation of the user feedback framework from the Supersede project
(www.supersede.eu).

The bottom layer is the Information Access Layer. It contains third-party systems
and services that provide IoT data to the recommender system and the end-user
applications. The layer can also include third-party services, depending on the specific

End-User
Applica on Front-End

Library
User Profile

Library

SAR

Insights
Stream SAR Core

Analysis Plugin

Analysis Plugin

Analysis Plugin

Analysis Plugin

System Back-End

Data Broker

Engineering
Tools

Kn
ow

le
dg

e
Pr

oc
es

sin
g L

ay
er

System to be Maintained and Evolved

Ap
pl

ic
a

on

La
ye

r
In

fo
rm

a
on

Ac

ce
ss

 L
ay

er

Fig. 1. Integration architecture (coloured: SAR, white: context into which SAR is integrated).
(Color figure online)

Combining Monitoring and Autonomous Feedback Requests 213

http://fiware-orion.readthedocs.io/en/master/
http://www.supersede.eu

use case, e.g. a street map provider, or a routing framework. In the current imple-
mentation, SAR assumes that data is provided by a broker implementing the NGSI
Open RESTful API (https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/
FI-WARE_NGSI-9_Open_RESTful_API_Specification).

The middle layer is the Knowledge Processing Layer. It contains the parts of SAR
that collect and process data to generate knowledge. SAR consists of multiple modules.
Each module is a web service, some of them used as plug-ins with rules or models of
expected system usage and functionality for analysing the collected data.

An essential plugin is the System and Adherence Monitor. It handles anonymous
user sessions and monitors adherence to the recommendations provided to the user. It
collects and combines user feedback with monitoring information and forwards the
results to the insights stream.

The Insights Stream implements a publish-subscribe pattern to publish insights. An
engineer may subscribe to the stream for obtaining monitoring data that is of interest,
including measurements of the system behaviour, context, and usage and feedback of
the users regarding their preferences, intentions, observations, and opinions. The
stream is structured so that the engineer understands the relationships between the
monitoring data and the user feedback. The tools used by the engineer to listen to the
stream may be as simple as a logger that collects the insights in a format that may be
inspected by an engineer. They may be as complex as a big data analytics tool that
feeds packages of issues to development backlog management tools such as Atlassian
Jira. Analysing the insights stream helps engineers to capture the users’ needs and
problems, which in turn can lead to short cycle times for improving and evolving the
system.

4 Initial Evaluation

4.1 Smart City Application for Parking Management

We have evaluated our proactive, autonomous gathering of user feedback in a smart
city prototype application for Android smartphones, called Rich Parking. The
University of Cantabria (UC) had developed the application for the City of Santander in
Spain. The application made use of thousands of IoT traffic and parking sensors that
were deployed in the city of Santander and helped users find free parking spots within
the city when they are travelling by car. Figure 2a shows a screenshot.

The application used a recommender system to generate recommendations of an
unoccupied parking and a pathway to the recommended parking for end-users. The
parking spot sensors provided data about the spots’ current states (free/occupied) and
allowed the app to display the free spots. Some of the streets contained sensors to
measure traffic load and allowed the app to recommend routes that avoided traffic jams.
Each recommendation consisted of a free parking spot and a fast route to the spot.

The UC team integrated our user feedback mechanism into their Android appli-
cation using the front-end and user profiles libraries. We offered the SAR core as a
service that we connected with the Smart City data broker from Santander using the
NGSI API. For the UC team maintaining the Android application and for the Santander

214 D. Wüest et al.

https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-9_Open_RESTful_API_Specification
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FI-WARE_NGSI-9_Open_RESTful_API_Specification

team maintaining the Smart City infrastructure, we offered access to the Insights Stream
using an own instance of the same NGSI API.

4.2 Parametrisation of the Control Loop

We parametrized the control loop to reveal issues with the Rich Parking application
(e.g., usability problems, missing functionality), the parking and pathway recommender
system (e.g., bad recommendations, slow performance), the behavior of the physical
IoT devices (e.g., sensors delivering wrong values), and third-party software systems
(e.g., outdated street map data).

To detect interesting situations, our system mapped the recommendation to a goal
tree and monitored the user’s adherence to the recommendation. The parking spot was
the main goal, and each street segment of the route was a subgoal. When the users’
GPS location matched with a street segment, the corresponding subgoal was set to
fulfilled. Previous subgoals that were not already marked as fulfilled got marked as
skipped. We specified the interesting situations as being those when subgoals were
skipped, the user achieved the main goal, or abandoned it. In these situations, our goal
monitor issued a feedback request tailored to the situation.

Based on the situation, the recommender system selected the feedback to be
gathered from the user. One of the following three feedback forms was then displayed:

– Type 1, the user deviated from at least 50% of the pathway: the feedback form
asked about the user’s satisfaction with the recommended route (star rating) and the
reasons for the deviation (multiple choice and free text answer). See Fig. 2b.

– Type 2, the user adhered to the pathway but selected a parking spot other than the
recommended one: the feedback form asked about the user’s satisfaction with the
chosen spot (star rating) and the reasons for not taking the recommended parking
spot (multiple choice and free text answer).

Fig. 2. Screenshots of (a) the Rich Parking application and (b) a feedback form.

Combining Monitoring and Autonomous Feedback Requests 215

– Type 3, the users took the recommended spot: the form asked about the user’s
satisfaction with the recommended route and parking spot (star ratings) and offered
to comment with a free text answer.

For the users’ safety, we displayed the optional short feedback forms to the user
only at the end of a session when the user stopped driving. The user could then rate her
experience and provide reasons for the rating. If the user mainly followed the rec-
ommended route, the form asked about the user’s experience with the parking spot she
took. Otherwise, the form asked about the user’s experience with the route and the
reason for the deviation.

For providing anonymity and control of the data collection to the end-user, only
sessions were tracked and only with a random ID. The user could decide to start the
monitoring and whether she agreed to send her GPS data during the monitoring reg-
ularly. The session ended when the user parked the car or cancelled the monitoring.

All events, such as the creation of a session, the start and stop of the monitoring, the
user feedback, and the monitoring result of each location comparison, got augmented
with a timestamp and written into the insights stream. The structure of the insights
stream used the session objects as the top-level entities. This structuring allowed
combining the user feedback with the events that happen in the respective session. For
example, when a user provides feedback about a route recommendation, we could
compare the feedback with the actual route taken by that user.

4.3 Evaluation Setup and Method

The UC team initiated a pilot study to evaluate the Rich Parking application in San-
tander. In this context, we performed the first evaluation of our concept of combining
system monitoring with autonomously triggered user feedback. Public meetings for
citizens of Santander interested in IoT were held. The UC team informed the citizens
about the evolution of Santander as a smart city and gave an overview of the most
relevant projects, including Wise-IoT. The Rich Parking application was presented, and
citizens could volunteer for the pilot study, given the prerequisite that they have an
Android phone and a car. There was no reward for participants who agreed to test the
application. The citizens who volunteered did so because of intrinsic motivation to help
the city’s evolution as a smart city. The pilot study lasted three months, from the end of
February to the end of May 2018.

During the test phase of the pilot study, we were running a logger that listened to
the insights stream and wrote the data from the stream into log files, one file per day.
Once per month, manually analysed the log files and shared the main findings with the
developers of the Rich Parking application.

Since we wanted to know whether the insights stream, i.e. the combination of
system monitoring and proactively, autonomously gathered user feedback, could
provide added value to system evolution, we were not merely observing during the
three-month test phase but applied action research principles. The Spanish developers
evolved the Rich Parking software and maintained the IoT-based smart city system.
The application and its recommender system received two minor updates during the
test phase.

216 D. Wüest et al.

When the test phase ended, we analysed the insights stream data. One goal of the
insights stream was to support system evolution by helping engineers discover potential
problems, user needs, and new requirements. Therefore, the stream should help to
provide answers to engineering questions, such as: how satisfied are the users with the
system? What are the issues that generate user churn? Table 1 shows the full list of
questions.

5 Results

5.1 Collected Data

41 citizens had registered and took part in the pilot study. A total of 303 sessions were
created with recommendations for a route and parking spot. In 68 out of the 303 cases,
users have started the session monitoring after receiving a recommendation. In 26 out
of the 68 monitoring sessions, users allowed the mobile app to send their GPS positions
to the system, enabling the system’s adherence monitoring functionality. In ten out of
these sessions (38.5%), the users have adhered to the recommended route (i.e., less than
50% of the user coordinates sent during the session were farther away from the rec-
ommended route than eight meters).

Table 1. Summarised answers to the engineering questions for system evolution.

Engineer Questions answered by analysing the insights stream

Application
developer

How satisfied are the users with the app and the information it
offers? Mediocre ratings for recommended routes and proposed
parking spots
What are the issues that generate user churn? Parking spots got
occupied before the user arrives. Sensors showed free spots, but there
was not enough space to park the car. Construction work blocked
streets and parking spots
What are the preferences (likes, dislikes) of users? Feedback in the
insights stream shows what parking spots and routes received very
good or bad ratings
What segments of the street map are incorrect? Street segments
with construction work not correctly marked as blocked
What Point-of-Interest information is incorrect? Spaces between
cars too small to park. Sensors between cars. Blocked spaces due to
construction work

Smart city system
engineer

What is the users’ trust rating in the IoT entities? Mediocre ratings
for the parking spots
What are the users’ reasons for the trust ratings in the IoT
entities? Parking spots occupied, or not enough space to park the car
How credible are context information offered by the IoT entities?
The sensors worked fine but needed to see the size of the available
spaces and see objects that are not placed directly on top of them

Combining Monitoring and Autonomous Feedback Requests 217

In 16 out of the 26 adherence-monitoring-enabled sessions, users submitted a
feedback form. Seven of these forms were of type 1 concerning route deviations, five of
type 2 concerning a parking spot deviation, and four of type 3 concerning a fulfilled
recommendation.

We could not track users over multiple sessions due to the session-based privacy
mechanism. We counted individual sessions instead. The users allowed the mobile app
to send their GPS data in 38.2% of all monitoring sessions (26 out of 68). We con-
sidered this to be a good amount because some of the 68 monitoring sessions may have
been started for testing the app functionality and not to go somewhere.

From the 26 sessions with user GPS data, we received 16 submitted feedback
forms. This figure means that 61.5% of users who were presented with a feedback form
decided to fill it out and submit it. If we consider all the sessions in which the
monitoring has started, the ratio is 68/16 = 23.5%. Again, some of the sessions may
have been started for testing the app functionality. We consider the 23.5% feedback
ratio to be high in comparison to other feedback approaches or uses of surveys to
collect feedback. The reason for this result could be that we kept the forms small and
simple and that they were presented to the users in situations and with content that was
relevant to them.

5.2 Data Analysis

The average user satisfaction rating of the parking spots was 2.125 and of the rec-
ommended routes was 2.071 out of 5 stars. We analysed the automatically collected
user feedbacks for reasons why the scores were not higher and coded the free-text
answers. Table 2 shows the resulting categories and number of answers in each
category.

To put the above feedback into context, we visualised the monitoring data on a map
and added the feedback according to the GPS data of the users. Figure 3 shows the
parking spots rated by the users, together with their feedback. It also shows one of the
recommended routes and the corresponding route taken by the user.

Table 2. Categorised user feedback from the free-text answers.

User feedback Number of answers

The parking spot was occupied 6
There was a more direct or faster route 5
The parking spot was too small or the sensor in a bad location 5
The route or parking spot was blocked by construction work 2
The app was too slow or stalled 2
Found a free parking spot before arriving at the proposed one 1

218 D. Wüest et al.

Despite the few user feedbacks received by the system, important issues could be
identified with the analysis of the correlated monitoring and feedback data.

One feedback mentioned a blocked parking spot due to construction work and
another a non-existent spot. When looking at the map, these two spots were close to
each other (white crown markers). Also, a recommendation was leading to another spot
nearby on the same street, and the user gave the feedback that the sensors on that street
did not work because of construction work. The construction work in that street was an
issue that was unveiled by combining user feedback and monitoring data.

The second group of red markers shows an accumulation of parking spots that were
either occupied or too small. However, because of the few data points, we could not say
whether this was a feature specific to that location, or whether this was a more general
problem with the parking spots in the city. For example, one of the positively rated
spots also received negative feedback (stating that the sensor was between two cars,
which means that it was not possible to park there). But the green markers were both
located in less crowded areas of the city, where the chance of finding a free spot was
higher (whether it was the recommended one or another one close by).

Further, one user stated that no parking spot was available at the recommended
location. However, the user’s GPS data showed that the user never was in that location
but went somewhere else instead. This observation is an example of how monitoring
data can be used to verify the validity of user feedback. It seems that there was a
different issue instead, e.g. the user may not have been able to read the map correctly.

5.3 Generated Insights

The analysis surfaced findings with a significant effect on the maintenance and evo-
lution of the smart city system and the Rich Parking application.

Construction Work. Increasing construction work blocked streets and parking spots
during the test phase. The recommender used an external street routing framework that
was not updated with the construction work information in a timely fashion. Therefore,

Fig. 3. Parking spot feedback (red: negative, red with crown: discussed in the text, green:
positive). Blue line: a route recommended to a user. Violet line: route taken by that user. (Color
figure online)

Combining Monitoring and Autonomous Feedback Requests 219

the recommender sometimes proposed routes with blocked street segments. The effect
of increasing construction work during the trial phase appeared to be larger than the
effects of other factors that could have led to improved route recommendations over
time. 38.5% route adherence seems to be quite good, given the construction work
problem as well as possible cases where users might have decided not to follow the
proposed route for other reasons. However, this insight must be taken with care due to
the low number of sessions and the fact that the users were aware of participating in a
test, which could have biased them to follow the proposed routes eagerly. Furthermore,
construction work could also have had a negative effect on the parking spot ratings. If a
user gave a bad rating to a parking spot because it was lying inside a construction zone
and thus not reachable, there was still a chance that next time, the system would
propose one of the parking spots that are close to the badly rated spot and that are still
located within the (same) construction zone.

Parking Sensors and Fluctuation in Parking Spot Availabilities. The system proposed
parking spots to users that were unoccupied at the time when the user requested a
recommendation. During high traffic, there was a good chance that another vehicle
would park on the proposed spot before the user arrives. As a result, users may have
experienced occupied spots and gave bad ratings. Vehicles were sometimes inaccu-
rately placed on the parking sensors, in the worst case in the middle of two parking
spots, and did not trigger the parking sensors. The insight implied that upgrading the
hardware or updating the software is needed. An improvement to the software could be
to let the recommender prioritise regions with large numbers of free parking spots or to
introduce a reservation system. These issues pointed out by the insights stream could
not be solved during the pilot phase. However, they provided developers with facts to
think of how to improve the system.

Ratio Between User Ratings and Available Parking Spots. While we received nine
user ratings about parking spots, the city of Santander contained hundreds of spots. The
coverage of the city’s parking spaces is relatively low. Broader use of the Smart City-
generated IoT data is needed to generate insights for the totality of the city.

6 Discussion

6.1 Revisiting the Research Question

Our research question was: do the combination of system monitoring and autonomously
triggered user feedback provide added value to system evolution? The initial evaluation
of the proposed approach shows that we can answer our research question positively.
The insights generated by the system have exposed important issues to the Rich
Parking application and Smart City system engineers. The successful exposition and
detection of these issues have set the control loop for system evolution in motion,
which allows developers to come up with improved solutions [26].

The insights generated by combing monitoring data and autonomously gathered
user feedback helped to answer the initially posed engineering questions, as Table 1
briefly summarizes. The insights could inform system evolution with advice for new

220 D. Wüest et al.

features and how to enhance existing features: better parking sensors that can sense cars
or obstacles that are not placed exactly on top of the sensors, a solution that takes into
account the amount of fluctuation in the available parking spots, and a better syn-
chronization of the routing framework with the real-world situation, maybe by con-
necting the system to the city’s database with information about construction work or
otherwise blocked streets. Also, knowing the context, which the user feedback applies
to, allows adjusting the recommender to prefer less centrally located spots, or regions in
which the density of free parking spots is higher. This modification could increase the
probability for the user to find a free spot. These findings show the valuable outcome of
combining monitoring data and autonomously gathered user feedback, which is also
aligned with the research by Oriol et al. [5].

The combined analysis of monitoring and feedback data also allowed to identify
two invalid user feedbacks: users who gave feedback about parking spots they never
visited. Without the monitoring data, it would not have been possible to distinguish
between valid and invalid feedback. This result shows that our proposed approach may
be used to reduce the risk of collecting irrelevant or even fake feedback [25].

These findings were possible even though we had to make some compromises
because of data privacy and because few users participated in the pilot and generated
just a small number of feedbacks. User privacy implied that we were not allowed to
identify or track users over multiple sessions. We had to introduce a random ID for
each session and could only perform evaluations on a per-session rather than a per-user
basis. The compromises, however, underline the effectiveness of proactive, autono-
mous gathering of user feedback for generating significant insights that can be trans-
lated into system maintenance and evolution actions.

Our approach targets the collection of user feedback on interesting situations of
system use by basing the feedback requests on monitoring the fulfilment of user goal.
This technique reduces the disturbance of users that is due to the feedback requests, but
still requires feedback. In the presented use case, such disturbance could lead to
accidents and, in the worst case, liability of the vendor for such an accident. We had
chosen to avoid dangerous disturbance and ask users for feedback when they were in a
safe situation after the experience. This delayed request for feedback may have been
reducing the ability of the users to remember important details of the experience and
produced ambiguity for understanding the context the feedback applies to. The insights
generated about the monitored applications and systems may still be considered rele-
vant. Earlier research showed that the disturbances have negligible impacts on the
satisfaction level of the users with systems [6].

6.2 Discussion of the Results

One could argue that the issues found are to some extent obvious and that the same
conclusions could be reached by “thinking hard” about the application. In retrospective,
such sense-making is relatively easy. Identifying and expressing such issues in advance
is difficult [28] and one of the reasons why requirements engineering is non-trivial. Our
evaluation has shown an example of field testing of a prototype application and has
shown that proactive, autonomous gathering of user feedback may be effective.

Combining Monitoring and Autonomous Feedback Requests 221

More lightweight approaches, such as questionnaires, may be used as an alternative
or complement to elicit requirements [29]. With our approach, real system may be
observed in use in the real environment and by real users. This gives the advantage that
elicited input such as a feedback may be connected to a specific context, such as a
physical location, time, or situation, where a system needs modification. Alternative
elicitation approaches, such as surveys, would be too short in time, disturb many users,
and would not allow understanding the contexts to which the users’ feedbacks pertain.

In addition to being used during prototype development, our approach also has the
advantage of being useful for a situation where a deployed system is evolved or
maintained. With very little effort and cost, our approach allows continuously moni-
toring a system and warn support engineers for failures that result from the slow decay
of the system that is being used often in situations where the context is changing. The
availability of a development kit, outlined in Sect. 3.2, limits the effort of setting up the
monitoring and feedback mechanism.

In comparison to bespoke methods, our approach also has the benefit that physical
presence of an analyst or engineer is not required. It thus offers support and scales well
in situations where the system is being deployed and used over geographical space.
That has been the case for the Smart City application, where it would have been
impractical to put a person on the side of the users.

The presented full automation of data collection, analysis, and streaming of insights
may offer benefits beyond system maintenance and evolution. For example, the
approach may be used by a system to self-adapt. Integration of the insights stream into
a recommender system would allow the system to use the user feedback, ratings, and
context data from the stream to improve future recommendations by automatically
enhancing or discounting recommendation options. If some entities contained in the
recommendations (such as points of interest) receive many bad user ratings, the rec-
ommender system may avoid recommendations with these entities in the future.

6.3 Threats to Validity

Conclusion Validity. We conducted a qualitative evaluation and did not focus on
statistical significance, which can be seen as a threat. The number of logged sessions
with GPS data was relatively small. However, the insights stream proved its usefulness
by pointing out possibilities for system improvement which are valid for the involved
group of users. The findings are in accordance with feedback given in the final survey
conducted by the pilot partners.

Internal Validity. Due to the participant selection method, the participants had an
interest in IoT that is above average. The participants could have been motivated to
send GPS data or feedback just because they knew that they were part of a study. There
is the possibility that the participants were friendlier than the average user. However,
looking at the feedback ratings, we saw that they were not hesitant to give one-star
ratings when they encountered a problem with a recommendation.

222 D. Wüest et al.

Construct Validity. The pilot has focused on the data collection and analysis steps of
Chen’s control loop. The short duration of the pilot period limited the ability to observe
the decision-making and acting steps in the evaluation. A longer testing period would
have allowed to include major software updates and measure their impact. Further, it
needs to be noted that the feedback forms in the application focused on parking spot
and route recommendations, and not on other aspects of the Smart City application and
system. This focus could have held back participants from providing broader feedback.

Another concern is the construct of the interestingness of a situation. In the pre-
sented study, the interestingness was defined by asking developers for assumptions
about what could go wrong, such as users not reaching the parking or being dissatisfied
with it. This method depends much on human input, and it would be interesting to find
methods to decide about interestingness in an automated manner. Using such triggers
for the most “interesting situations” could allow reducing the need of disturbing the
users, e.g. by reducing the number or frequency of feedback requests.

External Validity. So far, we have evaluated our concept in only one scenario with
participants were interested in the scenario. Our results show the applicability of our
method in systems that have a physical dimension, i.e. a city. They also show results
that can be obtained with users that have a positive attitude, leaving the impact of
neutral or negative users open. Generalization should be the subject of further
evaluations.

7 Conclusion

We have presented an approach that combines system monitoring with proactive,
autonomous user feedback collection. The approach offers automated collection of data
from a runtime system and its users and analysis of that data to offer insights that
support engineers in decision-making for system maintenance and evolution. We let
our implementation of the approach be integrated in a pilot of a Smart City prototype
application. The initial evaluation has shown that the approach was valuable for system
evolution: the results were helpful for the Smart City Santander partners to adapt and
improve their application as well as the IoT sensors deployed in the city. The evidence
from the use case shows that our concept provides a systematic approach for gathering
user needs, potential issues, and new requirements. Such an approach can be especially
helpful for distributed systems and the IoT where it is difficult to localize the reasons
for potential issues and weaknesses of the system.

Acknowledgment. Part of this work has been supported by the European Union’s Horizon 2020
Research and Innovation Programme within the project WISE-IoT under the EU grant agreement
No. 723156 and the Swiss SERI grant agreement No. 16.0062.

Combining Monitoring and Autonomous Feedback Requests 223

References

1. Kittlaus, H.-B., Fricker, S.: Software Product Management. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-642-55140-6

2. Stade, M., Fotrousi, F., Seyff, N., Albrecht, O.: Feedback gathering from an industrial point
of view. In: IEEE 25th International Requirements Engineering Conference, Lisbon,
Portugal (2017)

3. Maalej, W., Nyebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements engineering.
IEEE Softw. 33(1), 48–54 (2016)

4. Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment analysis of
app reviews. In: 22nd International Requirements Engineering Conference (RE 2014),
Karlskrona, Sweden (2014)

5. Oriol, M., Stade, M., Fotrousi, F., Nadal, S., Varga, J., Seyff, N., et al.: FAME: supporting
continuous requirements elicitation by combining user feedback and monitoring. In: 26th
International Requirements Engineering Conference (RE 2018), Lisbon, Portugal (2018)

6. Fotrousi, F., Fricker, S., Fiedler, M.: The effect of requests for user feedback on quality of
experience. Softw. Qual. J. 26(2), 385–415 (2018)

7. Chapin, N., Hale, J., Khan, K., Ramil, J., Tan, W.-G.: Types of software evolution and
software maintenance. J. Softw. Maint. Evol.: Res. Pract. 13(1), 3–30 (2001)

8. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In: 2nd
International Symposium on Requirements Engineering (RE 1995), York, U.K. (1995)

9. Ali, R., Dalpiaz, F., Giorgini, P., Souza, V.E.S.: Requirements evolution: from assumptions
to reality. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2011. LNBIP, vol. 81, pp. 372–
382. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21759-3_27

10. Bosch, J.: Building products as innovation experiment systems. In: Cusumano, Michael A.,
Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-30746-1_3

11. Blank, S.: Why the lean start-up changes everything. Harvard Bus. Rev. 91(5), 63–72 (2013)
12. Edison, H., Smørsgård, N., Wang, X., Abrahamsson, P.: Lean internal startups for software

product innovation in large companies: enablers and inhibitors. J. Syst. Softw. 135, 69–87
(2018)

13. Carreño, L., Winbladh, K.: Analysis of user comments: an approach for software
requirements evolution. In: 35th International Conference on Software Engineering (ICSE
2013), San Francisco, CA, USA (2013)

14. Wellsandt, S., Hribernik, K., Thoben, K.: Qualitative comparison of requirements elicitation
techniques that are used to collect feedback information about product use. In: 24th CIRP
Design Conference, Milano, Italy (2014)

15. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebraic
Program. 78(5), 293–303 (2009)

16. Knauss, E., Lübke, D., Meyer, S.: Feedback-driven requirements engineering: the heuristic
requirements assistant. In: 31st International Conference on Software Engineering (ICSE
2009), Vancouver, British Columbia, Canada (2009)

17. Seyff, N., Ollmann, G., Bortenschlager, M.: AppEcho: a user-driven, in situ feedback
approach for mobile platforms and applications. In: 1st International Conference on Mobile
Software Engineering and Systems (MOBILESoft 2014), Hyderabad, India (2014)

18. Fotrousi, F., Fricker, S.: QoE probe: a requirement-monitoring tool. In: Requirements
Engineering: Foundation for Software Quality (REFSQ 2016), Göteborg, Sweden (2016)

19. Maalej, W., Happel, H., Rashid, A.: When users become collaborators: towards continuous
and context-aware user input. In: OOPSLA 2009, Orlando, FL, USA (2009)

224 D. Wüest et al.

http://dx.doi.org/10.1007/978-3-642-55140-6
http://dx.doi.org/10.1007/978-3-642-21759-3_27
http://dx.doi.org/10.1007/978-3-642-30746-1_3

20. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On automatically
classifying app reviews. In: 23rd International Requirements Engineering Conference (RE
2015), Ottawa, Ontario, Canada (2015)

21. Morales-Ramirez, I., Perini, A., Guizzardi, R.: An ontology of online user feedback in
software engineering. Appl. Ontol. 10(3–4), 297–330 (2015)

22. Elling, S., Lentz, L., de Jong, M.: Users’ abilities to review web site pages. J. Bus. Tech.
Commun. 26(2), 171–201 (2012)

23. Pagano, D., Brügge, B.: User involvement in software evolution practice: a case study. In:
35th International Conference on Software Engineering (ICSE 2013), San Francisco, CA,
USA, pp. 953–962 (2013)

24. Fotrousi, F., Fricker, S.A., Fiedler, M.: Quality requirements elicitation based on inquiry of
quality-impact relationships. In: 22nd IEEE International Conference on Requirements
Engineering, Karlskrona, Sweden (2014)

25. Dalpiaz, F.: Social threats and the new challenges for requirements engineering. In: 1st
International Workshop on Requirements Engineering for Social Computing (RESC 2011),
Trento, Italy (2011)

26. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research roadmap. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering
for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02161-9_1

27. Qian, W., Peng, X., Wang, H., Mylopoulos, J., Zheng, J., Zhao, W.: MobiGoal: flexible
achievement of personal goals for mobile users. IEEE Trans. Serv. Comput. 11(2), 384–398
(2018)

28. Ericsson, K.A., Simon, H.A.: Verbal reports as data. Psychol. Rev. 87(3), 215–251 (1980)
29. Zowghi, D., Coulin, C.: Requirements elicitation: a survey of techniques, approaches, and

tools. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Requirements,
pp. 19–46. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28244-0_2

Combining Monitoring and Autonomous Feedback Requests 225

http://dx.doi.org/10.1007/978-3-642-02161-9_1
http://dx.doi.org/10.1007/978-3-642-02161-9_1
http://dx.doi.org/10.1007/3-540-28244-0_2

Open Source

Selecting Open Source Projects
for Traceability Case Studies

Michael Rath(B) , Mihaela Todorova Tomova, and Patrick Mäder

Technische Universität Ilmenau, Ilmenau, Germany
{michael.rath,mihaela.todorova-tomova,patrick.maeder}@tu-ilmenau.de

Abstract. [Context & Motivation] Once research questions and ini-
tial theories have shaped, empirical research typically requires to select
cases to study subsumed ideas. Issue trackers of todays open source sys-
tems (OSS) are a gold mine for empirical research, not least to study
trace links among the included issue artifacts. [Question / problem]
The huge amount of available OSS projects complicates the process of
finding suitable cases to support the research goals. Further, simply pick-
ing a large number of projects on a random basis does not imply gener-
alizability. Therefore the selection process should be carefully designed.
[Principle ideas / results] In this paper we propose a method to choose
OSS projects to study trace links found in issue tracking systems. Builds
upon purposive sampling and cluster analysis, relevant project character-
istics are identified whereas irrelevant information is filtered. Every step
of the method is demonstrated on a live example. [Contributions] The
proposed strategy selects an information-rich, representative and diverse
sample of OSS to perform a traceability case study. Our work may be
used as practical guide for other researchers to perform project selection
tasks.

1 Introduction

Case study is a commonly conducted research strategy. It has been successfully
applied in different domains including software engineering, medicine, political
and social science [23]. A case study allows to test an individual hypothesis and
can be viewed as a robust research method when performing an in-depth investi-
gation [11,28]. To fully maximize the benefits of a case study, it is important to
select samples in a systematic manner. However, time constraints, and lack of a
well developed program theory often constrain grounded-theoretical approaches
suggested in the literature. Therefore researchers fall back to basic selection (ran-
dom) schemes, impressionistic evidence, or guesswork to aid them in making the
critical decision of which cases to include in their study [28]. Further, simply
increasing the sample size does not imply more generalizability of the performed
study [18]. Nevertheless, different kinds of sampling methods and strategies exist
to aid researchers in making decisions on how to perform the case sampling.

In this paper, we present a practical example how to select software projects
to perform a case study in context of requirements traceability research. The
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 229–242, 2019.
https://doi.org/10.1007/978-3-030-15538-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_17&domain=pdf
http://orcid.org/0000-0001-8938-3690
http://orcid.org/0000-0001-6871-2707
https://doi.org/10.1007/978-3-030-15538-4_17

230 M. Rath et al.

presented approach is based on a qualitative method called purposive sampling
followed by a clustering technique. For the outlined example, we formulate a
research topic driving the project selection process and results in small yet
information-rich and representative collection of projects. This collection is suit-
able to actually perform the case study, which itself is out of scope of this work.

The remaining paper is structured as follows. Section 2 presents related work
concerning case studies. The next section, provides the background on purposive
sampling and clustering algorithms, the main techniques used in our approach.
Afterwards, in Sect. 4, we describe the approach starting with formulating the
research topic, identifying relevant case characteristics and performing the clus-
tering. Section 5 evaluates and interprets the created project clusters. Further is
shows how to chose individual projects from the clusters in order to create the
final set of projects for the case study. The paper ends with a conclusion.

2 Related Work

In Flyvbjerg [11], the author investigates five common misunderstandings about
case studies. Common wisdom is that a case study is the detailed examination of
a single example, which “cannot provide reliable information about the broader
class”. The author argues, that a case study is reliable and further is more than
a pilot method to be used only in preparing the real study’s larger surveys. The
discussed misunderstandings center around concerns about the theory, reliability,
and validity of a case study as a scientific method. The author shows, that
case studies are generalizable. However, a strategic selection of cases is required,
whereas a random or stratified sampling may not be sufficient. Therefore different
information-related selection methods are presented.

Curtis et al. [8] examine samples for three different case studies and which are
later evaluated based on six guidelines as suggested by Miles and Huberman [17].
Two guidelines check whether the sampling strategy can be considered as ethical
and if it is relevant to the research question and conceptual framework. A third
guideline considers factors such as accessibility, time, and cost. The remaining
three guidelines examine if the sample generates rich information about the
researched topic, enhances the generalizability of the findings, and produces
believable explanations/descriptions. In their work, the authors acknowledge the
importance of guidelines, but a “simple blueprint” for qualitative research is very
hard to construct since each study depends on a different strategy. Depending
on the researched topic misinterpretation of parts of the guidelines can arise. For
example, researchers may have different opinions on what is considered believable
and ethical.

Nagappan et al. [18] investigate diversity and representativeness and thus,
whether phenomena found in few case (e. g. projects) are reflective of others. The
paper introduces a measure called sample coverage combining the two concepts
to access the quality of a sample. A sample is diverse, if it contains members of
every subgroup of a population. On the other hand, a sample is representative,
if the size of each subgroup is proportional to the size of the subgroup in the

Selecting Open Source Projects for Traceability Case Studies 231

population, i. e. each sample in the population can be chosen with equal prob-
ability [12]. A better coverage can be achieved when the similarity between the
candidate samples is smaller, and therefor the distance, defined by a similarity
function, between projects is larger. Thus, new projects should be added to an
existing sample set in order to maximize the sample coverage.

Another important step when performing studies is to find information-rich
cases that can help researchers to better understand complex issues. While quan-
titative research methods, such as random sampling, concentrate on selecting
unbiased, representative samples, qualitative research methods give researchers
the opportunity to clarify or deepen their understanding about the phenomenon
under study [13]. A widely used qualitative research method for identification
and selection of information-rich cases is purposive sampling [19,24,25]. We dis-
cuss purposive sampling in more detail in Sect. 3.

Ryzin [28] uses hierarchical, agglomerative clustering to guide purposive
selection of projects. After building the clusters, the author proposes to select
projects randomly or by choosing projects most similar to the means of the
whole cluster. The author highlights multiple benefits of using cluster analysis
in project selection. Clusters can be easily build with different number of sam-
ples: small and large. After cluster creation, the assignment of projects to clusters
can be integrated with judgmental criteria that provide additional information
and insight to guide the selection process. At last, the results of a cluster analysis
are a basis to decide about the extent to which the findings can be generalized
to the population of projects.

3 Background

This section provides background of important concepts used in the paper.

3.1 Purposive Sampling

Purposive sampling, also known as judgment or purposeful sampling, is a non-
probability sampling method. The samples are selected according to the objective
of the study. Contrasting probability sampling, which leads to greater breadth of
information from a larger number of units, purposive sampling leads to greater
depth of information from a small number of carefully selected cases. Patton [20]
examines 16 different purposive sampling methods. However, the precise under-
standing of what sampling methods are part of purposive sampling often differs
in the literature.

Teddlie and Yu [25] categorizes purposive sampling methods, including those
found in [20], based on the strategies they describe. The authors identified four
categories:

1. Sampling to achieve representativeness or comparability
2. Sampling special or unique cases
3. Sequential sampling
4. Sampling using multiple purposive techniques.

232 M. Rath et al.

The first category handles samples that represent a broader group of cases
or sets up comparisons among different types of cases. Six types of purposive
sampling procedures are present this category: typical case sampling, extreme
or deviant case sampling, intensity sampling, maximum variation sampling,
homogeneous sampling, and reputational sampling. This category concentrates
on both representative (e.g. typical case sampling) and contrasting cases (e.g.
extreme case sampling).

The second category deals with special and unique cases rather than typical
ones. It consists of four types: revelatory case sampling, critical case sampling,
sampling politically important cases, and complete collection or criterion sam-
pling.

The third category is based on sequential selection. Here, the main objective
is to select units or cases based on their relevance. Often such techniques are
used when the goal of the project is to generate theories or the sample evolves
during data collection (known as gradual selection). Theoretical sampling, con-
firming and disconfirming cases, opportunistic sampling and snowball sampling
are examples of sequential sampling.

The last category represents combination of two or more purposive sampling
techniques. Such an approach might be useful depending on the complexity of
the research study.

Table 1 shows purposive sampling technics applied in this paper.

Table 1. Purposive sampling methods used in this paper.

Method Pro/Con Example

Typical + Describes illustrative samples R† Graduating students

+ Separates familiar from
unfamiliar

S‡ Schools where nothing
unusual is found

− Correctly identifying typical
case

Maximum
Variation

+ Covers cases that are extreme
in one way and average in other
ways

R People listening to radio

− Depends on variety of the
samples

Participants must differ from
each other as much as possible
(age, gender)

homogenous
Sampling

+ Recruitment costs an efforts
are low

R Leadership in villages after
natural disaster

− Yields estimates that are not
generalizable to the target
population

S Cases where leader is present
and examine his qualities

†Research, ‡Sample

Selecting Open Source Projects for Traceability Case Studies 233

3.2 Clustering Analysis

Clustering analysis is a multivariate classification technique used in quantita-
tive research. The main idea of clustering is to group data into sets of related
observations. Thus, observations in the same cluster are more similar to obser-
vations from other clusters. At the end of the analysis, every observation is part
of a single cluster. The individual clusters are built by grouping observations
based distance (linkage) function, which describes the similarity of the observa-
tions. Different linkage methods exist to measure the distance and dissimilarity
between two clusters: minimal linkage, maximal linkage, average linking, or Ward
linkage. The latter is based on sum of squares between all observations in the
cluster and the centroid of the cluster. It aims to build homogeneous groups
since clusters are joint based on the least variation [28].

The result of clustering is frequently presented as a tree like diagram called
dendrogram. Each level of the dendrogram represents a segmentation of the
data, and thus a different number of clusters. Finding the number of clusters
is a manual step dependent on the specific research topic. Usually the most
appropriate way to do this is by analysing the distances between the levels of
the dendrogram and the resulting clusters [28]. The final number of clusters is
then determined by the placing a cut-off line. When the distances between the
levels is very high, i. e. a jump [27] exists, the cut-off line needs to be placed at
a smaller distance.

4 Project Selection Approach

In this section we describe our project selection approach. Starting with the
definition of a research topic, we derive characteristics describing the topic. Next,
we calculate the characteristics for a large population of open source software
(OSS) projects. By applying the introduced sampling techniques and clustering
(see Sect. 3), we select a set of projects suitable to perform the case study defined
by the initial research question.

4.1 Example Research Topic: Trace Links in Issue Tracking Systems

To demonstrate our approach, we first need to define a research topic for the case
study. Usually, this initial step is not required and the topic is already at hand. As
an example, we want to study trace links in open source issue tracking systems
(ITS). In particular, we are interested whether existing trace links could be
derived from properties of the linked issue artifacts or if the links introduce new
information. For example, developers might link two issues because they share
similar textual information or they belong to the same software component. In
this situation, the links basically introduce no new information and could be
potentially automatically created.

Research Topic: Do trace links in open source issue tracking systems intro-
duce new information?

234 M. Rath et al.

The goal of our approach is to identify a subset of open source systems suitable
to perform the case study and provide answers to the research topic.

Fig. 1. Schema of the proposed approach to select projects for a case study.

4.2 Schematic Overview

The schema of the proposed selection method is depicted in Fig. 1. At first (①),
characteristics that best describe the research topic need to be defined. Here,
only relevant data should be included. Most analysts recommend the use of a
limited number of clearly interpretable variables. If irrelevant information is not
omitted, false interpretations can occur in later stages of the study or it can
be much harder to analyse and interpret data. As we show, purposive sampling
methods help in defining the characteristics. Next (②), a cluster analysis is per-
formed to group similar projects. At this point, the number of clusters need to be
determined. To ensure that the optimal amount of clusters, different placements
of the cut-off (③) line as well as the validity of the results must be considered.
The resulting clusters build a representative set of projects for the case study.
To ensure diversity, projects from every cluster must be selected. Depending on
the size of the clusters multiple projects can be chosen. The selection can be
performed on a random basis (④).

4.3 Data Source

The defined research topic deals with open source projects using issue track-
ing systems. This topic defines the population, or universe [18], of the research.
Based on popularity of ITS [15], we applied homogenous case sampling by select-
ing the Jira Issue Tracker [16]. Focusing on one ITS, further simplifies the data
collection process described in the next section.

Selecting Open Source Projects for Traceability Case Studies 235

The Apache Software Foundation (AFS)1 is the world largest open source
foundation hosting 350+ projects [1]. Having Jira as a key tool, the ASF offers
an Jira instance for every contained project. The projects have different sizes,
use different programming languages, and stem from a variety of domains [1]
resulting in an ideal source for searching for projects used in case studies.

Fig. 2. Example feature and its properties as represented in Jira issue tracker.

4.4 Data Representation and Acquisition

Figure 2 shows an example issue PIG-40592 from project PIG. An issue is the
fundamental artifact used in Jira ITS. It summarizes a variety of information
including summary/title (❶), description (❷), meta data (❸), issues links (❹),
and comments (❺). The meta data type specifies the artifact (issue) type. Jira
has a predefined list of issue types containing bug, improvement, new feature, and
task. The link property allows to create trace links between different artifacts
within a projects. Similar to issues, trace links are typed and the predefined list
of link types includes relates, and clones. Selecting projects based on the links
is the purpose of our case study.

The Jira platform offers a RESTful web service, which allows to interact with
the system programmatically. We used the data collection process defined in [21]

1 https://www.apache.org.
2 https://jira.apache.org/jira/browse/PIG-4059.

https://www.apache.org
https://jira.apache.org/jira/browse/PIG-4059

236 M. Rath et al.

to retrieve the issues and trace links of the projects hosted by AFS. The captured
data is locally stored within a database for further processing. The project data
collection was performed early in May 2018.

4.5 Sampling Strategies

All 350+ AFS projects are potential candidates for the example trace link study.
We apply different purposive sampling techniques and apply metrics based on
diversity and representativeness to identify a smaller, yet still information-rich
subset to be used in the study.

The projects hosted by AFS are at different maturity levels. The AFS defines
a rigorous incubation process [2] for the projects, which enter the program as
candidates, then become podlings, and ultimately lead to a new Apache Top-
Level-Project (TLP). One criteria to become a TLP is to setup a specific project
infrastructure including an issue tracker. Aiming for mature projects which fol-
low the AFS guide lines, we use homogenous case sampling and only consider
TLP projects. At the time of data retrieval, 219 Top-Level-Projects3 using Jira
existed.

Next, we need to define characteristics (i. e. dimensions [18]) of the remaining
projects. Later, the clustering is performed based on these characteristics.

When studying trace links, the most important characteristic is the amount
of existing links in a project. Further characteristics are derived directly from
the issues properties (see Fig. 2).

Textual artifact information, available in issue title and description, is often
used in trace link analysis. It allows application of a wide range of textual similar-
ity algorithms, such as TF-IDF [6], LSI [9,22] or LDA [7,10]. Thus we incorporate
the existence of textual information in linked issues in the set of characteristics.

A previous study by Tomova et al. [26] identified the issue type as a relevant
property when considering trace links. Especially the issue types bug (a problem
which impairs or prevents the functions of a product), feature (a new feature of
the product), and improvement (an enhancement to an existing feature) are of
major interest.

To identify possible link patterns, i. e. combinations of issue types and link
types, characteristics complementing textual analysis might be beneficial. As
such, the component information is of special interest. Issues having the same
type and component are similar to each other and may be more likely linked
as duplicates or cloners. Further comments attached to issues are valuable, too.
There, developers record additional details and collaborate with each other [3].
This activity might trigger the creation of trace links to other issues.

4.6 Data Preparation

After identification, the characteristics need to be calculated and prepared in
order to apply the cluster analysis.

3 https://projects.apache.org/projects.html.

https://projects.apache.org/projects.html

Selecting Open Source Projects for Traceability Case Studies 237

At first, we built the set IBFI ⊂ I of all issue I representing the bugs, features
and improvements and for every project. Projects without all three issue types
were discarded. Next, we calculated the set Ilnk,BFI containing all i ∈ IBFI that
are linked to another issue j ∈ IBFI , j �= i. Next, we calculated the following
values for every project:

– nBFI = |IBFI |: the number of bugs, features and improvements in a project.
Its value estimates the size of a project. There is no such thing as the size of a
(software) project. The standard ISO/IEC 14143/1 [14] defines functional size
by quantify the functional user requirements (FUR). Counting the respective
issues is one way reflecting the number of requirements what the software or
product shall do.

– nlnk,BFI : the total number of links between issues of type bug, feature and
improvement. This value also reflects the size of a project, but from a linking
perspective.

– meancom,BFI : the average number of comments for an issue of type bug, fea-
ture and improvement. It captures the collaboration activity in the respective
project.

– lnkBFI = |Ilnk,BFI |
|IBFI|

which represents the percentage of linked issues of type
bug, feature, and improvements.

– lnkdesc,BFI : the fraction of linked issues i ∈ IBFI , that have non-empty
description.

– lnkcomp,BFI : the fraction of linked issues i ∈ IBFI , that have an assigned
component.

Aiming for many links, we filtered the projects on a link basis using lnkBFI .
Being a fractional quantity, the value accounts for different project sizes. We
removed those projects having lnkBFI lower than the average of 13% of all TLP.
After this filtering step, 93 out of the initial 219 projects remained.

We applied typical case sampling by placing constraints on lnkBFI . The
remaining characteristics are left untouched, aiming for maximum variation sam-
pling.

4.7 Clustering Analysis

The characteristics nBFI , nlnk,BFI , and meancom,BFI greatly vary in magni-
tude. In order to make the data less sensitive to the existing differences, they
need to be scaled [28]. We applied a normalization scheme, such that the val-
ues have zero mean and unit variance. The other three characteristics represent
percentages and thus are already in a closed range. The resulting transformed
dataset is used as input for agglomerative clustering. We chose the common ward
linkage to create homogenous clusters. The outcome of the clustering is shown
as dendrogram in Fig. 3.

5 Evaluation

Analysing the dendrogram shown in Fig. 3, an important decision is to place
the cut-off line, which ultimately defines the number of clusters. Trying different

238 M. Rath et al.

Fig. 3. Dendrogram resulting of hierarchical clustering with cut-off line at distance 3.5.

Table 2. Identified clusters, their size and example projects within the clusters.

Cluster #Projects Example projects

C1 3 Hive, Lucene-Core, Spark

C2 1 HBase

C3 1 Hadoop

C4 47 Archiva, Apache Commons-Lang, Shiro

C5 7 Camel, Drill, Maven, Wicket

C6 4 Cassandra, Cordova, Flink, OFBiz

C7 4 BookKeeper, Gora, Log4Net, Zookeeper

C8 26 Giraph, Jena, Pig, Subversion

configurations, we finally settled to place the cut-off line at a distance of 3.5 and
thus constructing 8 clusters. At this distance, no more major distance jumps are
present in the tree. Additionally, the resulting clusters are well interpretable.
Table 2 shows the number of projects (cluster size) as some example projects for
each cluster. A common strategy to interpret the cluster meanings is to examine
their differences compared to the grand means (macro averages) calculated from
all 93 input projects [28]. The cluster mean values for all six characteristics along
with the grand means are shown in Table 3. The interpretation of the clusters is
as follows.

C1 This cluster combines three projects, which have an equal size, i. e. minor
variation, in terms of nBFI and nlnk,BFI , but are among the largest of all
projects. The remaining characteristics are above average, except for the
fraction of linked bugs, features and improvements (lnkcomp,BFI). The value
is the lowest among all clusters.

Selecting Open Source Projects for Traceability Case Studies 239

Table 3. Cluster means of all projects. The color coding indicates, whether the respec-

tive value is greater or less then the grand mean (macro average).

Cluster means

Cluster nBFI nlnk,BFI meancom,BFI lnkBFI lnkdesc,BFI lnkcomp,BFI

C1 16,536 3,619 11 0.28 0.92 0.21
C2 15,274 2,547 25 0.22 0.95 0.12
C3 31,073 10,407 18 0.39 0.96 0.25
C4 1,225 172 5 0.21 0.92 0.14
C5 6,781 948 6 0.21 0.94 0.18
C6 9,626 1,288 12 0.18 0.95 0.13
C7 1,116 197 17 0.23 0.97 0.18
C8 2,610 390 10 0.20 0.94 0.14
Grand Mean 3,353 587 8 0.21 0.93 0.15

C2 This cluster consists of Apache HBase, whose characteristics are above the
grand means.

C3 The third cluster represents the project Apache Hadoop, which has by far
the most issues and links. Further, Hadoop achieves the highest value in
nearly all characteristics (except for lnkcomp,BFI).

C4 Cluster four consists of 47 projects, making it the largest one. However, all
other characteristics are below the grand averages.

C5 The average characteristics of the seven projects in cluster C5 are all above
average, except for the low fraction of mean number of comments per bug,
feature, and improvement.

C6 The sixth cluster consists of four quite large (nBFI and nlnk,BFI) projects.
However, the mean number of comments per issue is low in these projects.
The remaining characteristics are above average.

C7 This cluster combines four small projects. All projects have a high fraction of
linked bugs, features, and improvements and thus lnkdesc,BFI is the highest
of all clusters. The remaining characteristics are also above the grand means.

C8 The second largest cluster has 26 small projects in terms of nBFI and
nlnk,BFI . The percentage of bugs, features, and improvements that are linked
(lnkBFI) and those with an assigned component (lnkcomp,BFI) is below aver-
age. The remaining two characteristics are above average.

The projects in the eight clusters represent the characteristics that describe
the topic under study. The number of the samples, software projects in our
exemplary study, within clusters can be very large, e. g. like clusters C4 and C8

which together represent 80% of all projects. Depending on the situation, not
every observation of a cluster must be considered for further analysis. However,
to ensure diversity, at least one project from each cluster must be selected. To
guarantee unbiased selection random sampling can be used to pick more projects.

No imperative exists, to actually chose from each cluster [28]. This depends
on the design of the research. In our example, special care should be taken of

240 M. Rath et al.

clusters C2 and C3, representing the two projects Apache HBase and Apache
Hadoop. Each cluster consists of only one project, and thus no actual grouping
occurred. Further, the seven calculated values for each cluster are near the upper
and lower bounds compared to grand means. Therefore the two projects could
be seen as outliers and may not be included in the final project selection.

6 Threats to Validity

In this section, we discuss threats to the validity of our study and how we
mitigated them.

A threat to internal validity exists by choosing only projects of the Apache
Software Foundation (ASF). We used this setup, because the project host defines
the concept of project, i. e. it needs to have an issue tracking system, a web page,
documentation and thus a certain level of maturity defined by ASF. However,
this does not limit the scope of our approach researching trace links among
artifacts in the projects.

We only consider Jira as issue tracking system. In our approach, we calcu-
late seven project metrics based on issue types, links between issues, and tex-
tual description/comments of issues. These properties are not specific for Jira.
Basically every issue tracking system, whether open-source like Bugzilla, Github
Issues, MantisBT, Redmine, and Trac, or proprietary including HP Quality Cen-
ter, IBM Rational, Microsoft Team Foundation Server, and JetBrains YouTrack
provides these basic features [5]. Therefore the presented metrics can be calcu-
lated for these issue tracking systems as well. We settled on Jira based on its
popularity [15] and ease of accessing the stored artifacts via the RESTful web
service.

Our approach focused solely on open-source projects. A potential threat to
external validity arises when we want to generalize our findings to a wider set
of projects, including commercial development. Jira is used by over 60.000 cus-
tomers according to its owning company Atlassian, including many large and
well-know commercial enterprises [4]. We expect similar usage of issue artifacts
in these projects in respect to our calculated metrics, i. e. creating, typing and
linking of issue artifacts.

Another threat exists when generalizing our approach outside of traceability
analysis. As depicted in Fig. 1, performing steps ① and ③ is inherently tied to
a specific research question by defining case characteristics and placing the cut-
off line. Other research topics may require different characteristics and cluster
adjustments. However, the overall idea of purposive sampling, clustering and
random selection is generalizable. Depending on the initial size of projects to
choose from, the clustering step is optional.

7 Conclusion

When conducting a case study it is important to gather information-rich sam-
ples, such as software projects, that well represent the researched topic and give

Selecting Open Source Projects for Traceability Case Studies 241

scientists the opportunity not only to test hypothesis but also to learn from
the selected samples. In this paper, we first investigated different strategies and
important metrics when selecting samples for a study. Based on related work, we
proposed an approach to select projects in a systematic way while taking into
account important characteristics of the researched topic and metrics such as
representativeness and diversity. As running example, we formulated a practical
research question on the trace links in open source projects. We applied several
purposive sampling techniques to describe trace link of the projects hosted by the
apache software foundation. In this process, unnecessary information was filtered
and characteristics characteristics strategically chosen. A hierarchical clustering
algorithm was applied to identify patterns and group similar projects. Choosing
projects out of the clusters via random sampling guarantees a variety of repre-
sentative and diverse samples for later stages of the case study. Hopefully our
work may be used as practical guideline to support other researchers for setting
up their case studies.

In future work, we want to answer the stated research question, which only
served as an interesting placeholder to drive the project selection method.

References

1. Apache Annual Report FY2018. https://s.apache.org/FY2018AnnualReport
(2018). Accessed 29 Sept 2018

2. Apache Incubation Process. https://incubator.apache.org/policy/process.html
(2018). Accessed 29 Sept 2018

3. Commenting on an Issue. https://confluence.atlassian.com/jira064/commenting-
on-an-issue-720416302.html (2018). Accessed 29 Sept 2018

4. https://www.atlassian.com/customers (2019). Accessed 03 Jan 2019
5. Comparison of issue-tracking systems. https://en.wikipedia.org/wiki/Comparison

of issue-tracking systems (2019). Accessed 03 Jan 2019
6. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-

ability links between code and documentation. IEEE Trans. Softw. Eng. 28(10)
970–983 (2002)

7. Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic
modeling. In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, ICSE 2010, Cape Town, South Africa, 1–8 May 2010. vol.
1, ACM (2010)

8. Curtis, S., Gesler, W., Smith, G., Washburn, S.: Approaches to sampling and case
selection in qualitative research: examples in the geography of health. Soc. Sci.
Med. 50(7—-8), 1001–1014 (2000)

9. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: 20th IEEE International Con-
ference on Software Maintenance (ICSM) (2004)

10. Dekhtyar, A., Hayes, J.H., Sundaram, S.K., Holbrook, E.A., Dekhtyar, O.:
Technique integration for requirements assessment. In: 15th IEEE International
Requirements Engineering Conference, RE 2007, 15–19th October 2007, New Delhi,
India. IEEE Computer Society (2007)

11. Flyvbjerg, B.: Five misunderstandings about case-study research. Qual. Inq. 12(2),
219–245 (2006)

https://s.apache.org/FY2018AnnualReport
https://incubator.apache.org/policy/process.html
https://confluence.atlassian.com/jira064/commenting-on-an-issue-720416302.html
https://confluence.atlassian.com/jira064/commenting-on-an-issue-720416302.html
https://www.atlassian.com/customers
https://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems
https://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems

242 M. Rath et al.

12. Foucault, M., Palyart, M., Falleri, J., Blanc, X.: Computing contextual metric
thresholds, ACM (2014)

13. Ishak, N.M., Bakar, A.Y.A.: Developing sampling frame for case study: challenges
and conditions. World J. Educ. 4(3), 29–35 (2014)

14. ISO/IEC 14143/1: Information technology, software measurement, functional size
measurement, Part 1: definition of concepts. Standard, International Organization
for Standardization, Geneva (2007)

15. Issue management tools - popularity ranking (2017). https://project-management.
zone/ranking/category/issue

16. Jira Issue Tracking System (2018). https://www.atlassian.com/software/jira
17. Miles, M.B., Huberman, A.M., Huberman, M.A., Huberman, M.: Qualitative Data

Analysis: An Expanded Sourceboo. Sage, Thousand Oaks (1994)
18. Nagappan, M., Zimmermann, T., Bird, C.: Diversity in software engineering

research, ACM (2013)
19. Palinkas, L.A., Horwitz, S.M., Green, C.A., Wisdom, J.P., Duan, N., Hoagwood,

K.: Purposeful sampling for qualitative data collection and analysis in mixed
method implementation research. Adm. Policy Ment. Health Ment. Health Serv.
Res. 42(5), 533–544 (2015)

20. Patton, M.Q.: Qualitative Evaluation and Research Methods. Sage Publications,
Thousand Oaks (1990)

21. Rath, M., Rempel, P., Mäder, P.: The IlmSeven dataset. In: 25th IEEE Inter-
national Requirements Engineering Conference, RE 2017, Lisbon, Portugal, 4–8
September 2017. pp. 516–519. IEEE Computer Society (2017)

22. Rempel, P., Mäder, P., Kuschke, T.: Towards feature-aware retrieval of refinement
traces. In: 7th International Workshop on Traceability in Emerging Forms of Soft-
ware Engineering, TEFSE 2013, 19 May 2013, San Francisco, CA, USA. IEEE
Computer Society (2013)

23. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering - Guidelines and Examples. Wiley, Hoboken (2012)

24. Suri, H.: Purposeful sampling in qualitative research synthesis. Qual. Res. J. 11(2),
63–75 (2011)

25. Teddlie, C., Yu, F.: Mixed methods sampling: a typology with examples. J. Mixed
Methods Res. 1(1), 77–100 (2007)

26. Tomova, M.T., Rath, M., Mäder, P.: Use of trace link types in issue tracking
systems. In: Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden, 27 May–03
June 2018. ACM (2018)

27. Tryfos, P.: Methods for Business Analysis and Forecasting: Text and Cases. Wiley,
Hoboken (1998)

28. Van Ryzin, G.G.: Cluster analysis as a basis for purposive sampling of projects in
case study evaluations. Eval. Pract. 16(2), 109–119 (1995)

https://project-management.zone/ranking/category/issue
https://project-management.zone/ranking/category/issue
https://www.atlassian.com/software/jira

Managing Requirements Knowledge at a
Large Scale

Crowd Intelligence in Requirements
Engineering: Current Status

and Future Directions

Javed Ali Khan1, Lin Liu1(&), Lijie Wen1, and Raian Ali2

1 Tsinghua University, Beijing 100084, China
linliu@tsinghua.edu.cn

2 Bournemouth University, Poole BH12 5BB, UK

Abstract. Software systems are the joint creative products of multiple stake-
holders, including both designers and users, based on their perception, knowl-
edge and personal preferences of the application context. The rapid rise in the
use of Internet, mobile and social media applications make it even more possible
to provide channels to link a large pool of highly diversified and physically
distributed designers and end users, the crowd. Converging the knowledge of
designers and end users in requirements engineering process is essential for the
success of software systems. In this paper, we report the findings of a survey of
the literature on crowd-based requirements engineering research. It helps us
understand the current research achievements, the areas of concentration, and
how requirements related activities can be enhanced by crowd intelligence.
Based on the survey, we propose a general research map and suggest the pos-
sible future roles of crowd intelligence in requirements engineering.

Keywords: Requirements engineering � Crowd intelligence � User feedback �
Crowdsourcing

1 Introduction and Background

Software systems are engineered via interactive processes between multiple stake-
holders in the developmental and operational environment. Depending on ones’
command of design ability, and knowledge about the application domain, the creative
process can happen either in the designer’s mind or the user’s mind or together [9]. The
success of software product is measured by the degree it meets the intended design
purposes and end-user needs [60]. Minimizing the cost and the speed in achieving that
target is always desired. While conventional requirements engineering (RE) approaches
often rely on limited number of stakeholders, e.g. through interviews and focus groups,
it is made possible today to involve a large group of potential users and contributors
distributed geographically and culturally. Therefore, RE for today’s software, can
benefit from novel techniques and tools to support converging crowd intelligence in
requirements elicitation and decision [7, 70, 77]. Crowd intelligence arises from the
cooperation, combined efforts, and competition amongst end users, who are interested
to take part in requirements engineering activities.

© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 245–261, 2019.
https://doi.org/10.1007/978-3-030-15538-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_18

To cater for the diversity of the crowd in requirements elicitation, some effort has
been made in term of persona and adaptive feedback acquisition [3]. The foci are on
software systems being developed in open environment and offered in open market
more than dedicated products for specific customers [3, 63]. But these techniques can
only provide initial segmentation which needs further support to cater for the many
facets of diversity in the crowd including those found in their comments and feedbacks
[12, 19, 32, 42]. Therefore, more scalable mechanisms are needed where users can
actively participate in different feedback channels thus contributing to the future system
design decisions [72, 73].

Crowdsourcing has existed as a business paradigm long before the Internet era.
However, its integration with the internet has brought great popularities and successful
applications in many disciplines [10, 38, 76, 78, 84]. An extensive analysis to the
crowdsourcing literature has led to a crowdsourcing taxonomy, which is composed of
four major concepts: crowd, client, task and platform [30]. In recent years, crowd-
sourcing has attracted much attention and was widely experimented in software
engineering including requirements engineering [50]. One notable area is the engi-
neering of crowdsourcing platforms to allow crowd intelligence to emerge, e.g. Wis-
dom of Crowd. The degree and focus areas of such crowd intelligence together with the
facilities and algorithms built to allow it, are diverse. Also, it became apparent that
activities like aggregation of crowd input and the derivation of collective decisions
require the power of AI at the planning time and also production time.

In this paper, we explore such diversity and status of using crowd intelligence for
requirements engineering and facilitating it through AI. We conduct a literature survey
to evaluate the current status of the field of Intelligent Crowd-based RE. We describe
our method in Sect. 2 and then our research findings in Sect. 3. We depict a map for the
areas of research in Sect. 4, which fits the pieces into an integral picture and discuss
possible future directions in Sect. 5.

2 Research Method

In this section, we describe our literature survey process including the research ques-
tions and the searching, filtering and analysis processes. In requirements engineering
research, there is a growing interest in crowd-based RE. While crowd-based RE
(CrowdRE) is considered promising, it is unclear what is the status of the research and
practice in CrowdRE and what are the current challenges. Thus, we identified the main
research questions of our literature survey as:

RQ1. What are the current foci of CrowdRE research?
RQ2. How traditional RE activities are mapped with CrowdRE activities and how
crowd-based techniques support RE activities?
RQ3. What is a possible future role of intelligence in CrowdRE?

Search criteria required a paper title to meet the following search string and vari-
ations of it: (“CrowdRE” OR “Requirements Crowdsourcing” OR (“Crowd” AND
“Requirements Engineering”) OR “Crowd-based Requirements Engineering” OR
(“Crowd intelligence” AND “Requirements Engineering”). The papers must be written

246 J. A. Khan et al.

in English and must have been published in peer reviewed conferences, journals, book
chapters or be a refereed thesis. Snowballing approach was used to expand the search
results.

Online libraries which were used for searching the research papers are: IEEE
Xplore, ACM Library, ResearchGate, Springer Library, Elsevier Science direct and
Google Scholar. The duration searched was between January 2010 and September
2018. Main conferences, workshops and journals whose title meet the search criteria
were also searched in order to ensure important papers, while other major RE related
conferences, workshops and journals are also included, e.g. IEEE RE conference,
REFSQ, CrowdRE workshop, CAiSE, RCIS, REJ, IST and JSS.

The initial searching process led to 127 papers in total. Then a manual selection
process was conducted and we excluded papers which were published in languages
other than English, in unrecognized venues and meeting the search criteria but without
being centered on the topic. For this, we read the title, abstract of each paper in order to
check its relevance, if still relevant or uncertain, the introduction and even the whole
paper is read. In total 97 papers where selected, out of which 77 papers are directly
related to CrowdRE, while the remaining 20 papers are supportive papers to CrowdRE
concepts like Crowdsourcing Taxonomy, books on crowd wisdoms, crowd motiva-
tions, software crowdsourcing companies case study etc. The final list of papers was
validated again by the 2nd author of the paper, by looking at the title and reading the
content if necessary. Also, the selection criteria were double checked, to ensure that no
relevant papers were missed in the selection process. The major keywords from the title
of the included papers were: requirements/requirement engineering, software, crowd,
requirements crowdsourcing, mining, users/user, feature, reviews, case study,
approach, online, elicitation, collaborative, and so on. Taking a closer look at the nature
of the studies included in our survey, the surveyed studies included visions and pre-
views, case studies, data analytics studies, tools and demos, domain-specific studies
and applications. The survey papers included in our paper were studies which collected
data about usage of crowdsourcing requirements elicitations [28]. We analyzed each
paper to identify its nature of study and then grouped them into the categories. There
are 34 technical solutions papers, 3 empirical study papers, 7 data analysis papers, 4
papers are about domain applications, 7 case studies, 7 papers about RE tools, there are
also 4 surveys, 3 research previews, and 8 vision papers.

3 RE Activities: Crowd Support and Main Issues

CrowdRE is mainly founded on the assumption that it is important to collect up-to-date
observations and experience of the “crowd” about a system and predict the future
requirements. Also, CrowdRE is still developing, therefore there are exploratory
studies on CrowdRE models, activities and validation with expert software engineers,
end users and researchers through surveys and questionnaires in order to find some
relationship between crowdsourcing features and requirements elicitation to better
understand the needs of end users and overcomes human cognitive limitations by
monitoring users at run time [2, 28, 29, 68]. In this section, the results of our survey

Crowd Intelligence in Requirements Engineering 247

around the status of the field and how this role has been fulfilled so far, including the
support from AI, will be presented.

3.1 The Crowd in the Requirements Engineering Activities

Requirements is pivotal in software engineering as it is fundamental to ensure product
quality and customer satisfaction. Major requirements engineering activities, such as
requirements elicitation, modeling, analysis and validation, prioritization, and runtime
adaptation and evolution are all serving these two ultimate goals. The role of the crowd
can vary according to the RE activity and also the RE technique and model used. For
example, while we would expect requirements expressed as User Stories to be
understood fairly by the crowd, requirements validation may need advanced simulation
and scenario building skills, and hence tools to engage and get meaningful input from
the crowd. We try to answer RQ1 through this section by highlight current CrowdRE
research focus through literature.

Requirements Elicitation. Requirements elicitation is the process of gathering user
demand and needs to be addressed by the software. As we can see from Table 1, 70 out
of 77 paper covers requirements elicitation, using different approaches with different

Table 1. Requirements activities that crowd are involved

RE. activities Perspectives/activities No. of
studies

Elicitation General
requirements

[1, 13, 34, 39, 44, 50, 56–58, 70,
77, 84, 87]

70

Features [25, 49, 58, 69, 90, 91]
NFRs [4, 5, 23, 51, 72]
Run-time
feedback

[22, 31, 41, 71, 72, 96]

Emerging
requirements

[15, 42, 57]

Design rationale [37]
Modelling and
specification

Use cases [27, 46], process models [12, 26], Goals [61,
68], i* [59], feature models [19, 68]

8

Analysis and
validation

By crowd [48, 54, 72], by textual data analysis [13, 20,
25, 33, 41, 42, 49, 51, 52, 62, 64, 80, 86, 88, 89], by
prototyping [22], sentiment analysis [21, 79], image
and unstructured data analysis [21, 73]

22

Prioritization User rating and comments [14, 43], developer voting
[72], crowd members vote [70, 72], statistical analysis
[21], gamified approaches [36]

6

Run-time Monitoring [2, 20, 73, 75, 93], adaption [3, 26, 55],
evolution [25, 45, 66, 85], discovery [81], context [21,
42, 48]

16

248 J. A. Khan et al.

foci (type of requirements elicitation), where some of papers references are shown in
Table 1. For this, we analysed each paper content to identify foci of requirements
elicitation and grouped them into categories shown in Table 1. For example, there are
works focusing on elicit general requirements, including: building personas for users
profiling [3] and identify Personae Non Gratae (potential system attackers or abusers)
[51], collecting runtime user feedbacks, or on extraction of novel or emerging func-
tional or non-functional requirements [23], such as usability, user experience [4] and
awareness [75], or security and privacy requirements [5, 8], or building elicitation tools
for crowd.

Requirements Modeling. In requirements modeling, graphical models such as use
cases, sequence diagrams, i*, goal, activity diagrams, etc. are typically used by
developers and stakeholders to better understand and communicate about the
requirements [1, 12, 27, 59]. Requirements modeling is considered as challenging for
massive crowds, it is only possible to build collaborative modelling tools for small or
medium sized groups [27], or competition platforms for the crowd to bid for an award
for best requirements specifications [1, 64]. For example, Almaliki et al. [3] suggested
clustering the crowd and their different styles of input, the crowd is being modelled
linked to feedback acquisition process by a model-driven process. Specifically, linking
the user’s personas into associated goal models, then goal models are converted into
use case models. Sherief et al. [68] proposed an architecture and ontology for acquiring
crowd feedback and linking it to requirements models.

Requirements Analysis and Validation. Requirements analysis focuses on parsing
and understanding the elicited requirements. During requirements analysis, inconsis-
tences, ambiguities, and incompleteness in gathered and documented and possibly
modeled requirements are identified. Hosseini et al. [31] propose a technique for
feedback annotation, called CRAFT, which aims to harnessing the power and wisdom
of the crowd. Stade et al. [73] argue that CrowdRE process cannot be implemented ad-
hoc and that much work is needed to create and analyse a continuous feedback and
monitoring data stream. Similarly, Liu et al. [46] propose to collect users click events in
order to correlate user behavioral data with active feedbacks so that they can efficiently
solves user issues. Almaliki et al. [3], proposed persona-based feedback acquisition
technique using quantitative and qualitative analysis to help engineers understanding
the diverse behaviors of the users. Maalej et al. [48] surveyed the state-of-the-art
elicitation approaches of user input, and found that there is currently no unified model
of user input. They proposed a development process enabling users to become “pro-
sumers” of software applications and giving more continuous, direct and rich input.
Requirements validation is the process of making sure that requirements gathered are
aligned with the stakeholder’s actual needs and are correct, consist and testable. As
shown in Table 1, quite a few papers acknowledge that requirements validation in
CrowdRE is challenging [28, 54, 68, 72, 73].

Requirements Prioritization. Requirements prioritization and negotiation play a
pivotal role in CrowdRE [67]. A large number of stakeholders often result in a large set
of requirements and preferences, but only a subset can be implemented in the software
under design. Thus, prioritization and triage is required to solve this problem.

Crowd Intelligence in Requirements Engineering 249

Researchers have used approaches such as, user rating and comments, developer
voting, crowd member’s votes, statistical analysis, gamified approaches [36, 61]. Lim
and Finkelstein [43] developed tool named StakeRare, which uses social networking
and collaborative filtering to elicit and prioritize large set of requirements.

Requirements Evolution. In CrowdRE, user feedback loops can be obtained itera-
tively throughout the lifecycle of the product. New requirements are gathered at run
time and referred to when planning for the next release of the software system.
Therefore, user’s activities need to be monitored or reported to capture the usage
context and users’ intentions in the form of user’s behaviors log. There are existing
works on runtime adaptation or evolution in CrowdRE [2, 15, 20, 21, 26, 45, 55, 81].

3.2 Utilities in CrowdRE

Based on our survey in CrowdRE, we found that researchers focus was on the fol-
lowing aspects: the crowd, the tasks delegated to the crowd, and the design of
mechanisms, such as those enabling crowd competition and collaboration, the media or
channel for communication, the incentives for engaging the crowd, and ways to
evaluate the quality of deliverables from the crowd.

Crowd. Crowd are the entities who will take part in the requirements processes. Crowds
are mainly classified according to the following three properties: scale, level of skills, and
roles. In the case of CrowdRE, we mainly deal with requirements approaches involving
large crowd, but not necessarily unknown or random. Level of knowledge and expertise
is the property representing the required skills of the crowd in a specific subject domain
[65]. Stratified coverage could be specified to enable the acquisition of differences of
viewpoints, e.g. from lowly and highly skills crowd. In the literature, there level of
expertise of the crowd is one of the requirements of a crowdsourcing project. Techniques
are proposed by Srivastava and Sharma [72], Levy et al. [39] and Groen [22], where
macro user communities were involved to elicit requirements using different media
channels (LinkedIn, users forums and research workshops). Munante et al. [55] gather
preferences of both domain experts and end users in the form of personas and ques-
tionnaires about configuration requirements for adaptive systems. Rolemeans which the
remit and expectation of the crowd members involved in CrowdRE. In the literature,
there are end users, domain experts, software engineers being involved for different
purposes. Snijders [70], proposed a CrowdRE approach that gathered requirements are
analysed and prioritized by involving crowd members. Similarly, in Groen et al. [21]
requirements gathered are validated by developers or third-party experts.

Task. Task is the requirement activity in which the crowd participates. Tasks in
CrowdRE are categorized according to their type and complexity, as shown in Table 3.
Task type refers to the nature of the task for which crowd will participate. In Table 1, it
can be seen that task type is extraction of raw requirements [34], provide feedbacks [39,
48], bugs identification [20, 21, 31, 73], feature request identification [29, 52], non-
functional requirements [31, 72]. Task complexity: means whether the task is simple,
medium, or complex to complete. Complexity is inter-related with crowd role, level of
skills and the time needed by the crowd to perform it.

250 J. A. Khan et al.

Mechanisms. Mechanisms are the means by which CrowdRE approaches achieve
their intended goals of participation, including the media or sources used to reach out
for the crowd, the incentives to motivate crowd for participating in RE activities and
crowd collaboration or aggregation mechanisms. Mechanisms are further decomposed
into the following sub-heading, as can be seen in Table 3, which is sketched based on
literature.

Collaboration and Aggregation: Collaboration means that whether individuals in the
crowd need to collaborate to complete a task. While aggregation means that individ-
ual’s contributions are aggregated to present some useful information. In the literature,
there are approaches requiring different types of collaborations to complete a task [3,
28, 39, 50, 83] and approaches to aggregate the individual contributions at the end [21,
43, 55, 73]. Groen et al. [20, 21] proposed theoretical models for CrowdRE using
concepts of crowdsourcing where individuals’ tasks are aggregated to provide a final
list of identified requirements. Only few approaches adopted competition among
crowds to yield optimal solutions [1, 22].

Media/Channel: In order to gain access to massive crowd, we need certain media.
CrowdRE uses different channels to achieve this. Many existing work uses a general
purpose media to access a community of crowd, online forums and mobile application
marketplaces [29, 31, 35, 56], a few others uses social network tools to access crowd
along with LinkedIn [22, 72], research workshops [39], mobile stores and twitter [6, 62,
79, 91], as in Table 3. Similarly, MuruKannaiah et al. [56, 57], developed their own
crowd requirements research dataset to research user communities and other diverse
characteristics of crowd members, which can be used for analysis and prioritization of
requirements using Amazon Mechanical Turk, which is a crowd-based platform.
Details of media/channel used in literature are depicted in Table 2.

Table 2. Types of media

Type of
media

Researchers used media type

Twitter Guzman et al. [22, 25], Williams and Mahmoud [79]
User
forums

Bakiu et al. [4] (epinions.com), Do et al. [15] (Firefox, Lucene and Mylyn),
Greenwood et al. [19], Kanchev et al. [34, 35] (Reddit.com), Li et al. [41]
(sourceforge.net), Qi et al. [62] (Jd.com), Xiao et al. [80] (epinions.com), Shi
et al. [69] (JIRA)

LinkedIn Groen [22], Srivastava and Sharma [72]
Mobile
stores

Groen et al. [23], Johann et al. [33], Maalej and Nabil [49], Williams et al.
[87], Dhinakaran et al. [88], Liu et al. [91]

Amazon
store

Groen et al. [23], Kurtanovic and Maalej [37]

Issue
tracking

Merten et al. [52] (GitHub ITS & Redmine ITS)

MTurk Murukannaiah et al. [56, 57], Breaux et al. [8], Gemkow et al. [89], Khan et al.
[90]

Crowd Intelligence in Requirements Engineering 251

http://epinions.com
http://Reddit.com
http://sourceforge.net
http://Jd.com
http://epinions.com

Incentives/Motivation: To engage the crowd in feedback generation or requirements
elicitation, certain motivation and incentives strategies are required. Most common
motivations are rewards [1, 56] gamification and public acknowledgement [3, 70, 73]
or multiple techniques in combination. Snijders et al. [71], propose REfine, a game-
based requirements elicitation technique which use gamification to constantly motivate
the crowd members for giving feedback and keeping them involved. Srivastava and
Sharma [72], Levy et al. [39], Groen [22] and Munante et al. [55] propose that rewards
and acknowledgements can be used to motivate experts and non-experts crowd
members. Piras et al. [61] proposed to develop a framework for analyzing, modeling
and accomplishing acceptance requirements for software application using
gamification.

Quality. It is an important question to answer in CrowdRE to evaluate and ensure the
quality of requirements obtained from the crowd either as individuals or as groups
following some collective intelligence model. This problem remains largely uninves-
tigated in the literature. It is well argued in general crowd intelligence literature [94]
that diverse, independent and decentralized crowd performs better than experts in
certain circumstances and when communication and aggregation of knowledge is also
done properly. We need to find out what are the necessary conditions and quality
measures for crowd to deliver useful results. Getting knowledge from the crowd is by
itself not a guarantee for quality knowledge. Indeed, as discussed in [92], quality is
relates to the way the crowd is approached and organized, but not only to the quality of
their input. One the other hand, ideal solutions from experts may be either biased
towards their own expertise, or too ambitious in reality. Researcher’s needs to explore
this part further in future research, as up to date, according to our knowledge there is
less research study and needs further exploration.

4 A Research Map for Intelligent CrowdRE

To support crowd intelligence in RE, we have developed a research map, described in
Table 3, mapping the current research work in CrowdRE in response to RQ2 and RQ3.
The map describes each requirements engineering activity with respect to Crowd
activities covering: crowd tasks and mechanisms. The columns show the crowd-
sourcing activities’ while rows show RE activities. Possible techniques used for crowd
motivation are given in Table 3 under the heading incentives/motivations.

There are diverse research efforts on crowd requirements engineering in the sur-
veyed literature using AI techniques. For example, there are works on using natural
language processing (NLP) techniques in classifying, clustering, categorizing users’
feedback into feature requests, bugs, or simple compliments [16, 37, 41, 53, 69].
Analysis of user feedbacks and runtime human-computer interactions are experimented
using NLP and text mining techniques. Maalej et al. also highlighted the issues and
emphases to use automated techniques to categorize users’ feedbacks into different
categories in crowd-based requirements engineering [49, 58]. We adhere not the
possibility that users may give feedback in the form of images, audio or video, thus
analysis is required to deal with such unstructured data. Also, AI techniques such as

252 J. A. Khan et al.

swarm algorithms, case-based learning and collaborative filtering can be used with
crowd-generated data to get useful insights. As more recently, Sarro et al. [86], used
Case Based Reasoning (CBR) algorithm to predict mobile apps rating based on the
features claimed for mobile apps in their description. Also, Gemkow et al. [89], applied
AI techniques to a crowd-generated dataset, to extract the domain-specific glossary
terms, and Seyff et al. [85], propose to use AI techniques together with crowd-
generated data in order to observe the effects of requirements on sustainability. As
CrowdRE generated a massive amount of candidate requirements, automated and AI
techniques are required to validate the volume and diversity of test cases and contexts
of use [85].

Table 3. Research map for CrowdRE

RE activities Tasks Mechanisms

Role/expertise Types Collaboration/
competition

Media/
channel

Incentives/
motivation

Quality of
requirements
gathered

Elicitation System
user/low

Feature requests,
new
requirements

Collaboration
between
crowd/aggregation
in final outcome

Twitter,
User forums,
Facebook,
websites,
mobile app
stores

Gamification
vouchers,
social
recognition,
cash

No individual
guarantee, by
statistical
analysis

Modeling Analysts &
domain
experts/logs
analysed by
development
team/medium-
high

Co-modelling,
goal modeling,
feature
modeling,
process
modeling,
argumentation

Direct/indirect
collaboration

Platform-
based

Gamification,
assigned or
obliged

Relying on
individual
expertise

Analysis & runtime
adaptation/evolution

feedbacks on
bugs, monitoring
run time logs of
exceptions,
abnormal
behaviors
information
retrieval,
sentiment
analysis,
language
patterns,
recommender
system

No collaboration
between
crowd/aggregation
in final outcome

Manual or
automated
text analysis,
speech act
recognition
tools, log
analysis and
mining tools

Gamification,
social
recognition,
cash, assigned
or obliged

Relying on
individual
expertise,
fairly reliable

Validation Developer or
3rd party/high

Annotation or
walkthrough
review

Validation
need to
check the
influence

Relying on
Individual
expertise

Prioritization and
negotiation

System
user/low

Preference
elicitation, win-
condition
elicitation

Direct/indirect
group decision
making

Voting or
group
decision
making tools

Gamification,
cash
vouchers,
social
recognition

No individual
guarantee, by
consensus

Crowd Intelligence in Requirements Engineering 253

To support our proposed framework, we have identified some related studies in the
literature which also focus on using crowd intelligence. Dabrowski et al. [12] proposes
that statistical techniques can be used to maximize the capacity of crowd in identifying
new software requirements. Also, Liang et al. [42] use requirements mining from
crowd user’s behaviors data to recommend services to crowd users. Recently, Seyff
et al. [85] proposed a crowd-based approach for engaging stakeholders in a continuous
cycle of negotiation regarding the possible effects of requirements on sustainability. In
their model, firstly, feedback regarding software services are gathered using crowd
platform, then machine learning techniques are applied to cluster and analyse feedback
gathered.

So far, there are few works been done in crowd requirements modeling. Khan et al.
[90], propose semi-automated goal modeling approach to model features identified
from CrowdRE. For requirements analysis and validation, Mead et al. [51] proposed
that machine learning algorithms can be used to analyse individual Personae Non
Gratae created by crowd users. To accommodate AI and exploit human intelligence in
requirements analysis, Dhinakaran et al. [88] proposed an active learning approach to
classify requirements into features, bugs, rating and user experience. Recently, Wil-
liams et al. [87] proposed that automated social mining and domain modeling tech-
niques can be used to analyse mobile app success and failure stories to identify end-
users’ concerns of domain. Khan et al. [90], applied AI techniques to a crowd-generated
dataset to cluster relevant features and then draw a semi-automated goal model from
the extracted features. Stade et al. [73] proposed that automated approaches are
required to combine monitored data with feedback data in crowd environment. To
support continuous requirements elicitation Oriol et al. [93], proposed a framework to
simultaneously collect feedbacks and monitoring data from mobile and web users.
Gamification can be used to keep the crowd motivated and engaged. Kifetew et al. [36]
developed gamification-based requirements prioritization tool to prioritize require-
ments. Moreover, our proposed framework is not final, that could be changed, and that,
it needs verification and validation before being put into practice.

Recently, Williams et al. [87] proposed that automated social mining and domain
modeling techniques can be used to analyse crowd-generated requirements. It can be
seen in Table 3, possible AI techniques that can used for CrowdRE analysis, validation
and modeling are, information retrieval, sentiment analysis, language patterns,
annotation, walkthrough, co-modeling, goal modeling, feature modeling and business
process modeling, AI argumentation, CBR, Swarm algorithms and collaborative fil-
tering respectively. This lead to give answer to RQ2. These tasks are different nature
but it can be overridden by introducing automated algorithms together with interac-
tions with experts or knowledge base integrating crowd input and expert rules.

5 Discussion and Future Direction

Crowd participation are of potential aid for all RE activities. The size and significance of
participation may vary but the added value is also the sense of participation itself where
the crowd feel relatedness and ownership of the solutions all the way through the
development process. Relatedness is a pillar of motivation as explained in

254 J. A. Khan et al.

self-determination theory (SDT) [11, 97]. Similar social principle can be adopted for
motivating crowd members by integrating social media with crowd-based activities.
Besides this, fun and enjoyable activities like visual effects, animations can be used to
motivate and engage crowdmembers.Aesthetics in games are as important as level design
and rewards. Continuous learning opportunities provided for user communities will also
keep them interested in being involved. In fact, a one-size-fits all style for motivation
would not work and personalization and cultural-awareness are needed [95, 96].

Much work has been done on requirements elicitation using the crowd. Require-
ments activities in CrowdRE are mostly focusing on user feedbacks. To cater for crowd
intelligence, we can approach both experts (analysts, developers, domain experts) and
non-expert users. Their input is then applied on the gathered feedbacks in different
ways such as sentimental analysis, information retrieval, co-modeling, goal modeling,
usage mining, annotation, walkthrough reviews and prototyping. User communities
voluntarily contribute their data and intelligence by allowing run time monitoring of
their behavior in order to identify recurring patterns. User logs are created from there
feedback on usability issues, abnormal behaviors and run time exceptions, which are
used as a media source. The nature of monitoring task is complex and required medium
to high expertise.

For requirements modeling, we suggest direct or indirect collaboration support to
incorporate crowd intelligence into requirements discoveries and decisions. Co-
modeling scale shall be increased to cope with the volume and diversity of crowd.
Semi-automated and fully automated goal-modeling techniques shall be used to model
CrowdRE. Also, Argumentation can be used to model CrowdRE and capture
requirements rationale. The current trend for collaborative modelling environments is
more and more artefact-driven, as it embodied in the open software development
platforms.

Our research map shows that multiple media channels are provided through which
crowd input can be gathered. Different types of tasks can be delegated to the crowd
using those media channels. The map suggests that for crowd intelligence to take effect,
collaboration, competition or aggregation support is mandatory while there might be
some projects which do not require collaborations amongst the crowd members.
Mechanisms for collaborative tasks are provided to the crowd.

Similarly, input from different tasks can be aggregated to form the final outcome.
For automated aggregation of individual contributions, data mining and analysis tools
play an important role. To take maximum advantage of crowd intelligence in
requirements gathering, certain incentives must be given to user communities in order
to keep them motivated for actively and continuous feedback. For crowd intelligence to
take effect, the crowd members have to be independent, diversified in terms of
knowledge and skills [94]. Thus, we may look for differences rather than consensus
when we collect raw requirements information, in particular, for paradigms like uni-
versal design and software product lines engineering (SPLE). When we analyse them
and seek for creative ideas, we let the knowledge build up and form a continuation to
better quality and better user experience by tracking and knowledge management
tools [17, 18].

Crowd Intelligence in Requirements Engineering 255

Harnessing the role of crowd in the validation is promising to cater for scalability
and coverage of different user groups. In CrowdRE, raw requirements data come from
end users are often massive in size, and are not generated by expert in RE, which leads
to a threat. Therefore, automated requirements validation techniques are required for
refining the set of requirements, reducing the complexity of task, or crowd sourcing the
task back to the mass. Picking right requirements for the next release is important,
which can be done through requirements prioritization and negotiation. AI argumen-
tation, is best fit for eliminating ambiguity and decision making. Further work is
required in CrowdRE for preference elicitation and win-condition elicitation. By
considering the users ranking, rating and comments about current product features,
adopt some statistical analysis could bring the state-of-the practice to a next level of
success. Automated techniques, possibly supported by AI, are required to effectively
prioritize the identify candidate requirements and keep as many stakeholders involved
in the decision process as possible.

Once a list of candidate requirements is identified, they can be presented to the
crowd members to elicit their preferences in prioritizing the potential requirements
[80]. We can gather crowd intelligence in the form of preference elicitation and win-
condition elicitation to support prioritization and negotiation. To support this, the
proposed framework provides direct or indirect group decision making and voting
mechanism. For requirements prioritization and negotiation, end users’ participation is
essential, thus it is necessary to keep them motivated by combining possible means,
such as gamification, vouchers, social recognitions and monetary awards in order to
achieve better user satisfaction and improved software usability.

Monitoring end users’ behavior while interacting with the software system are very
essential in CrowdRE. There is existing work in monitoring end user behavior by
mining user logs and mouse click events. But it is only a start at a few minor points of
the entire landscape. With the integration of crowd intelligence, we can collect feed-
backs on usability issues, abnormal behaviors and run time exceptions. Intelligent
Mechanisms are required to correlate monitoring data with user feedbacks, so that
developers can better interpret the user’s feedback. Although Monitoring tasks are very
complex but its handling costs can be minimized with the introduction of automated
tools. With the support of log analysis and data mining tools, it is easier for the
development team in understanding the user feedback.

One open problem is in managing privacy of users which may deter users from
participating, e.g. in discussion in an open forum for employees of a large-scale
company. Privacy can be tackled by certain motivation mechanisms, including assur-
ance by the organization policies, and data protection measures, including the right of
the crowd to know how their individual input was judged and by whom. We note here
that such measures can become a burden on the organization to adopt CrowdRE, e.g. in
responding to Freedom of Information requests and the right of citizens to Automated
Decision Making in the GDPR in Europe.

Acknowledgment. Financial support from the Natural Science Foundation of China Project no.
61432020 is gratefully acknowledged.

256 J. A. Khan et al.

References

1. Adepetu, A., Ahmed, K.A., Abd, Y.A., Zaabi, A.A., Svetinovic, D.: CrowdREquire: a
requirements engineering crowdsourcing platform. In: Proceedings of the AAAI Spring
Symposium: Wisdom of the Crowd (2012)

2. Ali, R., Solis, C., Nuseibeh, B., Maalej, W.: Social sensing: when users become monitors.
In: 19th ACM SIGSOFT Symposium and the 13th Conference on ESEC/FSE (2011)

3. Almaliki, M., Ncube, C., Ali, R.: Adaptive software-based feedback acquisition: a persona-
based design. In. Proceedings of the IEEE 9th International Conference on RCIS 2015,
pp. 100–111 (2015)

4. Bakiu, E., Guzman, E.: Which feature is unusable? Detecting usability and user experience
issues from user reviews. In: RE Workshops, pp. 182–187 (2017)

5. Bano, M., Zowghi, D.: Crowd vigilante. In: Kamalrudin, M., Ahmad, S., Ikram, N. (eds.)
APRES 2017. CCIS, vol. 809, pp. 114–120. Springer, Singapore (2018). https://doi.org/10.
1007/978-981-10-7796-8_9

6. Bozzon, A., Brambilla, M., Ceri, S., Silvestri, M., Vesci, G.: Choosing the right crowd:
expert finding in social networks. In: EDBT, pp. 637–648 (2013)

7. Brabham, D.C.: Crowdsourcing as a model for problem solving: an introduction and cases.
Converg.: Int. J. Res. New Media Technol. 14(1), 75–90 (2008)

8. Breaux, T.D., Schaub, T.D.: Scaling requirements extraction to the crowd: experiments with
privacy policies. In. Preceding of IEEE Requirement Engineering Conference (RE 2014),
pp. 163–172 (2014)

9. Burnay, C., Horkoff, J., Maiden, N.: Stimulating stakeholders’ imagination: new creativity
triggers for eliciting novel requirements. In: Proceedings of IEEE RE Conference (RE 2016),
pp. 36–45 (2016)

10. Byren, E.: Internal crowdsourcing for innovation development. Chalmers University of
Technology, Sweden (2013)

11. Clifton, J.: State of the American WorkPlace (2013)
12. Dabrowski, J., Kifetew, F.M., Muñante, D., Letier, E., Siena, A., Susi, A.: Discovering

requirements through goal-driven process mining. In: RE 2017 Workshops (2017)
13. Dalpiaz, F., Korenko, M., Salay, R., Chechik, M.: Using the crowds to satisfy unbounded

requirements. In: Proceedings of CrowdRE@RE 2015, pp. 19–24 (2015)
14. Dheepa, V., Aravindhar, D.J., Vijayalakshmi, C.: A novel method for large scale

requirement elicitation. Int. J. Eng. Innov. Technol. 2, 375–379 (2013)
15. Do, A.Q., Bhowmik, T.: Refinement and resolution of just-in-time requirements in open

source software: a case study. In: RE Workshops 2017, pp. 407–410 (2017)
16. Ferrari, A., Donati, B., Gnesi, S.: Detecting domain-specific ambiguities: an NLP approach

based on Wikipedia crawling and word embeddings. In: Proceedings of RE Workshops
2017, pp. 393–399 (2017)

17. Fricker, S.A., Wallmüller, E., Paschen, I.: Requirements engineering as innovation
journalism: a research preview. In: Proceedings of RE 2016, pp. 335–340 (2016)

18. Fricker, S.A.: Systematic mapping of technology-enabled product innovations. In: RE 2016
Workshops (2016)

19. Greenwood, P., Rashid, A., Walkerdine, J.: UdesignIt: towards social media for community-
driven design. In. Proceedings of the 34th International Conference on SE, pp. 1321–1324

20. Groen, E.C., Doerr, J., Adam, S.: Towards crowd-based requirements engineering: a
research preview. In: Fricker, S.A., Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013,
pp. 247–253. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16101-3_16

Crowd Intelligence in Requirements Engineering 257

http://dx.doi.org/10.1007/978-981-10-7796-8_9
http://dx.doi.org/10.1007/978-981-10-7796-8_9
http://dx.doi.org/10.1007/978-3-319-16101-3_16

21. Groen, E.C., et al.: The crowd in requirement engineering - the landscape and challenges.
IEEE Softw. 34(2), 44–52 (2017)

22. Groen, E.C.: Crowd out the competition gaining market advantage through crowd-based
requirements engineering. In: IEEE Ist Workshop on CrowdRE, pp. 13–18 (2015)

23. Groen, E.C., Kopczynska, S., Hauer, M.P., Krafft, T.D., Dörr, J.: Users - the hidden software
product quality experts?: A study on how app users report quality aspects in online reviews.
In: RE 2017 Conference (2017)

24. Guzman, E., Alkadhi, R., Seyff, N.: A needle in a haystack: what do Twitter users say about
software?. In: Proceedings of RE 2016 International Conference, pp. 96–105 (2016)

25. Guzman, E., Ibrahim, M., Glinz, M.: A little bird told me: mining tweets for requirements
and software evolution. In: Proceedings of RE 2017, pp. 11–20 (2017)

26. Hamidi, S., Andritsos, P., Liaskos, S.: Constructing adaptive configuration dialogs using
crowd data. In: ASE (2014)

27. Hu, W., Jiau, H.C.: UCFrame: a use case framework for crowd-centric requirement
acquisition. ACM SIGSOFT Softw. Eng. Notes 41(2), 1–13 (2016)

28. Hosseini, M., Shahri, A., Phalp, K., Taylor, J., Ali, R., Dalpiaz, F.: Configuring
crowdsourcing for requirements elicitation. In: RCIS, pp. 133–138 (2015)

29. Hosseini, M., Phalp, K., Taylor, J. Ali, R.: Towards crowdsourcing for requirement
engineering. In. 20th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ), Springer, Heidelberg (2014)

30. Hosseini, M., Phalp, K., Taylor, J., Ali, R.: The four pillars of crowdsourcing: a reference
model. In: IEEE 8th RCIS (2014)

31. Hosseini, M., Groen, E.C., Shahri, A., Ali, R.: CRAFT: a crowed-annotated feedback
technique. In. IEEE 25th International RE Conference Workshops, pp. 170–175 (2017)

32. Johann, T., Maalej, W.: Democratic mass participation of users in requirements engineering?
In: Proceedings of the 23rd IEEE RE Conference, pp. 256–261 (2015)

33. Johann, T., Stanik C., Alireza, M., Alizadeh, B., Maalej, W.: SAFE: a simple approach for
feature extraction from app descriptions and app reviews. In: RE 2017 (2017)

34. Kanchev, G.M., Murukannaiah, P.K., Chopra, A.K., Sawyer, P.: Canary: an interactive and
query-based approach to extract requirements from online forums. In: RE 2017 (2017)

35. Kanchev, G.M., Chopra, A.K.: Social media through the requirements lens: a case study of
Google maps. In: CrowdRE@RE 2015, pp. 7–12 (2015)

36. Kifetew, F.M., et al.: Gamifying collaborative prioritization: does pointsification work. In:
RE 2017, pp. 322–331 (2017)

37. Kurtanovic, Z., Maalej, W.: Mining user rationale from software reviews. In: RE 2017
(2017)

38. Lakhani, K.R., Garvin, D.A., Lonstein, E.: TopCoder (A): developing software through
crowdsourcing. Harvard Business School (2010)

39. Levy, M., Hadar, I., Teeni, D.: A gradual approach to crowd-base requirements engineering:
the case of conference online social networks. In: IEEE 2nd CrowdRE, pp. 26–30 (2017)

40. Li, W., et al.: Crowd intelligence in AI 2.0 era. Front. IT EE 18(1), 15–43 (2017)
41. Li, C., Huang, L., Luo, J.G.B., Ng, V.: Automatically classifying user requests in

crowdsourcing requirements engineering. JSS 138, 108–123 (2018)
42. Liang, W., Qian, W., Wu, Y., Peng, X., Zhao, W.: Mining context-aware user requirements

from crowd contributed mobile data. In: Internetware, pp. 132–140 (2015)
43. Lim, S.L., Finkelstein, A.: StakeRare: using social networks and collaborative filtering for

large-scale requirements elicitation. IEEE Trans. SE 38, 707–735 (2012)
44. Linåker, J., Wnuk, K.: Requirements analysis and management for benefiting openness. In:

RE Workshops 2016 (2016)

258 J. A. Khan et al.

45. Liu, L., et al.: Requirements cybernetics: elicitation based on user behavioral data. JSS 124,
187–194 (2017)

46. Lutz, R., Schäfer, S., Diehl, S.: Using mobile devices for collaborative requirements
engineering. In: ASE 2012 (2012)

47. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements
engineering. IEEE Softw. 33, 48–54 (2016)

48. Maalej, W., Happel, H.-J., Rashid, A.: When users become collaborators: towards
continuous and context-aware user input. In: Proceedings of the 24th ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA 2009) (2009)

49. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On automatically
classifying app reviews. In: Proceedings of the 23rd RE Conference (RE 2015), pp. 116–125
(2015)

50. Mao, K., Capra, L., Harman, M., Jia, Y.: A survey of the use of crowdsourcing in software
engineering. J. Syst. Softw. 126, 57–84 (2016)

51. Mead, N., Shull, F., Spears, J., Heibl, S., Weber, S., Cleland-Huang, J.: Crowd sourcing the
creation of personae non gratae for requirements-phase threat modeling. In: RE 2017,
pp. 412–417 (2017)

52. Merten, T., Falis, M., Hübner, P., Quirchmayr, T., Bürsner, S., Paech, B.: Software feature
request detection in issue tracking systems. In: Proceedings of RE 2016, pp. 166–175 (2016)

53. Misra, J., Sengupta, S., Podder, S.: Topic cohesion preserving requirements clustering. In:
RAISE@ICSE 2016 (2016)

54. Moketar, N.A., Kamalrudin, M., Sidek, S., Robinson, M., Grundy, J.C.: An automated
collaborative requirements engineering tool for better validation of requirements. In: ASE
2016, pp. 864–869 (2016)

55. Munante, D., Siena, A., Kifetew, F.M., Susi, A., Stade, M., Seyff, N.: Gathering
requirements for software configuration from the crowd. In: RE Workshops (2017)

56. Murukannaiah, P.K., Ajmeri, N., Singh, M.P.: Towards automating Crowd RE. In:
Proceedings of IEEE 25th International RE Conference Workshops, pp. 512–515 (2017)

57. Murukannaiah, P.K., Ajmeri, N., Singh, M.P.: Acquiring creative requirements from the
crowd: understanding the influences of personality and creative potential in crowd RE. In:
RE 2016, pp. 176–185 (2016)

58. Nascimento, P., Aguas, R., Schneider, D.S., Souza, J.M.: An approach to requirements
categorization using Kano’s model and crowds. In: CSCWD 2012, pp. 387–392 (2012)

59. Niu, N., Koshoffer, A., Newman, L., Khatwani, C., Samarasinghe, C., Savolainen, J.:
Advancing repeated research in requirements engineering: a theoretical replication of
viewpoint merging. In: RE 2016, pp. 186–195 (2016)

60. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: FOSE 2000 (2000)
61. Piras, L., Giorgini, P., Mylopoulos, J.: Acceptance requirements and their gamification

solutions. In: RE 2016 (2016)
62. Qi, J., Zhang, Z., Jeon, S., Zhou, Y.: Mining customer requirements from online reviews: a

product improvement perspective. Inf. Manag. 53(8), 951–963 (2016)
63. Regnell, B., Brinkkemper, S.: Market-driven requirements engineering for software

products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software
Requirements, pp. 287–308. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-
28244-0_13

64. Rooijen, L., Bäumer, F.S., Platenius, M.C., Geierhos, M., Hamann, H., Engels, G.: From
user demand to software service: using machine learning to automate the requirements
specification process. In: RE Workshops, March 2017

Crowd Intelligence in Requirements Engineering 259

http://dx.doi.org/10.1007/3-540-28244-0_13
http://dx.doi.org/10.1007/3-540-28244-0_13

65. Saito, S., Iimura, Y., Massey, A.K., Antón, A.I.: How much undocumented knowledge is
there in agile software development?: case study on industrial project using issue tracking
system and version control system. In: RE 2017, pp. 194–203 (2017)

66. Salay, R., Dalpiaz, F., Chechik, M.: Integrating crowd intelligence into software. In: CSI-SE
2015, pp. 1–7 (2015)

67. Schneider, K., Karras, O., Finger, A., Zibell, B.: Reframing societal discourse as
requirements negotiation: vision statement. In: RE Workshops 2017, pp. 188–193 (2017)

68. Sherief, N., Abdelmoez, W., Phalp, K., Ali, R.: Modelling users feedback in crowd-based
requirements engineering: an empirical study. In: Ralyté, J., España, S., Pastor, Ó. (eds.)
PoEM 2015. LNBIP, vol. 235, pp. 174–190. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25897-3_12

69. Shi, L., Chen, C., Wang, Q., Boehm, B.M.: Is it a new feature or simply “Don’t Know
Yet”?: on automated redundant OSS feature requests identification. In: RE 2016, pp. 377–
382 (2016)

70. Snijders, R., Dalpiaz, F., Hosseini, M., Shahri, A., Ali, R.: Crowd-centric requirement
engineering. In. IEEE/ACM 7th International Conference on Utility and Cloud Computing
(2014)

71. Snijders, R., Dalpiaz, F., Hosseini, M., Ali, R., Ozum, A.: REfine: a gamified platform for
participatory requirement engineering. In: 23rd IEEE RE Conference, pp. 1–6 (2015)

72. Srivastava, P.K., Sharma, R.: Crowdsourcing to elicit requirements for MyERP application.
In: IEEE Ist International Workshop on CrowdRE, pp. 31–35 (2015)

73. Stade, M., et al.: Providing a user forum is not enough: first experiences of a software
company with CrowdRE. In: IEEE 2nd International Workshop on CrowdRE, pp. 164–169
(2017)

74. Stol, K., Fitzgerald, B.: Two’s company, three’s a crowd: a case study of crowdsourcing
software development. In: Proceedings of 36th ICSE (2014)

75. Sutcliffe, A., Sawyer, P.: Beyond awareness requirements. In: RE 2016, pp. 383–388 (2016)
76. Surowiecki, J.: Why the Many are Smarter than the Few and How Collective Wisdom

Shapes Business, Economics, Society and Nations. Brown, Little, New York (2004)
77. Todoran, I., Seyff, N., Glinz, M.: How cloud providers elicit consumer requirements: an

exploratory study of nineteen companies. In: 21st IEEE RE Conference (2013)
78. Wikipedia: Crowdsourcing (2017). https://en.wikipedia.org/wiki/Crowdsourcing. Accessed

28 Nov 2017
79. Williams, G., Mahmoud, A.: Mining Twitter feeds for software user requirements. In: RE

2017, pp. 1–10 (2017)
80. Xiao, S., Wei, C., Dong, M.: Crowd intelligence: analyzing online product reviews for

preference measurement. Inf. Manag. 53(2), 169–182 (2016)
81. Xie, H., et al.: A statistical analysis approach to predict user’s changing requirements for

software service evolution. J. Syst. Softw. 132, 147–164 (2017)
82. Zhang, W., Mei, H.: Software development based on collective intelligence on the internet:

feasibility, state-of-the-practise, and challenges. SCIENTIA SINICA Informationis (2017).
(in Chinese)

83. Muganda, N., Asmelash, D., Samali, M.: Groupthink decision making deficiency in the
requirements engineering process: towards a crowdsourcing model (2012)

84. Wang, H., Wang, Y., Wang, J.: A participant recruitment framework for crowdsourcing
based software requirement acquisition. In: Conference on Global Software Engineering
(2014)

85. Seyff, N., et al.: Crowd-focused semi-automated requirements engineering for evolution
towards sustainability. In: Proceedings of 26th RE@Next Conference (RE 2018) (2018)

260 J. A. Khan et al.

http://dx.doi.org/10.1007/978-3-319-25897-3_12
http://dx.doi.org/10.1007/978-3-319-25897-3_12
https://en.wikipedia.org/wiki/Crowdsourcing

86. Sarro, F., Harmna, M., Jia, Y., Zhang, Y.: Customer rating reactions can be predicted purely
using app features. In: Proceedings of 26 IEEE RE Conference (RE 2018) (2018)

87. Williams, G., Mahmoud, A.: Modeling user concerns in the app store: a case study on the
rise and fall of Yik Yak. In: Proceedings of 26 IEEE RE Conference (RE 2018) (2018)

88. Dhinakaran, V.T., Pulle, R., Ajmeri, N., Murukannaiah, K.P.: App review analysis via active
learning: reducing supervision effort without compromising classification accuracy. In: RE
2018 (2018)

89. Gemkow, T., Conzelmann, M., Hartig, K., Volesang, A.: Automatically glossary term
extraction form large-scale requirements specifications. In: 26th IEEE RE Conference (2018)

90. Khan, J.A., Lin, L., Jia, Y., W, L.: Linguistic analysis of crowd requirements: an
experimental study. In: Proceedings of 27th IEEE RE Workshop (Empri 2018), pp. 24–31
(2018)

91. Liu, X., Leng, Y., Yang, W., Zhai, C., Xie, T.: Mining android app descriptions for
permission requirements recommendation. In: 26th IEEE RE Conference (2018)

92. Hosseini, M., Moore, J., Almaliki, M., Shahri, A., Phalp, K.T., Ali, R.: Wisdom of the crowd
within enterprises: practices and challenges. Comput. Netw. 90, 121–132 (2015)

93. Oriol, M., et al.: FAME: supporting continuous requirements elicitation by combining user
feedback and monitoring. In: Proceedings of 26th RE Conference (RE 2018) (2018)

94. Surowiecki, J.: The Wisdom of Crowds. Anchor Books, New York (2005)
95. Shahri, A., Hosseini, M., Almaliki, M., Phalp, K., Taylor, J., Ali, R.: Engineering software-

based motivation: a persona-based approach. In: The 10th IEEE Conference RCIS (2016)
96. Almaliki, M., Ali, R.: Persuasive and culture-aware feedback acquisition. In: Meschtscher-

jakov, A., De Ruyter, B., Fuchsberger, V., Murer, M., Tscheligi, M. (eds.) PERSUASIVE
2016. LNCS, vol. 9638, pp. 27–38. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-31510-2_3

97. Ryan, R.M., Deci, E.L.: Self-determination theory and the facilitation of intrinsic motivation,
social development, and well-being. Am. Psychol. 55(1), 68 (2000)

Crowd Intelligence in Requirements Engineering 261

http://dx.doi.org/10.1007/978-3-319-31510-2_3
http://dx.doi.org/10.1007/978-3-319-31510-2_3

Towards a Meta-model for Requirements-
Driven Information for Internal Stakeholders

Ibtehal Noorwali1(&), Nazim H. Madhavji1, Darlan Arruda1,
and Remo Ferrari2

1 Department of Computer Science, University of Western Ontario,
London, ON, Canada

{inoorwal,darruda3}@uwo.ca, madhavji@gmail.com
2 Siemens Mobility, New York, USA
remo.ferrari@siemens.com

Abstract. [Context & Motivation] Providing requirements-driven information
(e.g., requirements volatility measures, requirements-design coverage informa-
tion, requirements growth rates, etc.) falls within the realm of the requirements
management process. The requirements engineer must derive and present the
appropriate requirements information to the right internal stakeholders (IS) in
the project. [Question/Problem] This process is made complex due to project-
related factors such as numerous types of ISs, varying stakeholder concerns with
regard to requirements, project sizes, a plethora of software artifacts, and many
affected processes. However, there is little guidance in practice as to how these
factors come into play together in providing the described information to the ISs.
[Principle ideas/results] Based on analyzed data from an action research
(AR) study we conducted in a large systems project in the rail-automation
domain, we propose a meta-model that consists of the main entities and rela-
tionships involved in providing requirements-driven information to internal
stakeholders within the context of a large systems project. The meta-model
consists of five main entities and nine relationships that are further decomposed
into three abstraction levels. We validated the meta-model in three phases by
researchers and practitioners. [Benefits/Contribution] The meta-model is
anticipated to facilitate: (i) control and management of process and resources for
providing requirement-driven information to stakeholders and (ii) communica-
tion among internal stakeholders.

Keywords: Requirements engineering � Requirements management �
Requirements metrics � Meta-model � Internal stakeholders � Empirical study

1 Introduction

Context. The requirements engineering (RE) process and resultant requirements
usually inform and interact with downstream (e.g., design and testing), upstream (e.g.,
contract management), and side-stream (e.g., project and quality management) pro-
cesses in various ways. Each of these processes involves numerous internal stake-
holders (e.g., managers, developers, architects, etc.) who, in turn, have different

© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 262–278, 2019.
https://doi.org/10.1007/978-3-030-15538-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_19

concerns with regard to the impact of requirements on their respective processes. In
other words, the various stakeholders need different types of requirements information
in order for them to manage, control, and track their respective process activities (e.g.,
requirements engineer: measures that track and monitor requirements growth; architect:
requirement-design coverage information; systems manager: percentage of require-
ments dropped per release; etc.) [1–4]. The burden of providing this information
(hereon, “requirements-driven information”), generally falls within the realm of the
requirements management process [5, 6].

Problem. To this end, we conducted an action research (AR) study in a large systems
project in the rail-automation domain to derive requirements-driven information that
can be used by the project’s internal stakeholders (IS) (see Sect. 3.2). However, we
found it difficult for requirements engineers to derive and provide the various internal
stakeholders with the correct requirement-driven information that addresses their var-
ious concerns due to a lack of understanding of: (i) the type of information that can be
generated from system requirements, (ii) who the ISs are that would benefit from
information generated from system requirements, (iii) the concerns of ISs which can be
addressed by providing requirement-driven information, (iv) how the ISs use that
information to address their various concerns, and (v) the type of artifacts needed to
derive the requirements-driven information. This problem is also mirrored in the sci-
entific literature (discussed in more detail in Sect. 2).

Principle Idea. To address the problem we experienced in industry we ask the fol-
lowing research questions: RQ1: What are the types of entities involved in the process
of providing requirements-driven information to ISs in a large systems project? RQ2:
What are the relationships that exist among the entities involved in the process of
providing requirements-driven information to ISs in a large systems project? To answer
the research questions, we performed a post-analysis on the data gathered from the AR
study we conducted in industry (see Sect. 3.1). The result of the post-analysis is a meta-
model that maps out the entities and relationships involved in providing requirements-
driven information to ISs. The anticipated benefits of using the meta-model include
(i) control and management of processes and resources involved in providing
requirement-driven information to ISs and (ii) communication among ISs.

Contributions. The key contributions of this paper are: (i) descriptions of the entities
involved in providing requirements-driven information to ISs, (ii) descriptions of the
relationships among the identified entities, (iii) an empirically derived meta-model that
combines the identified entities and relationships, and (iv) a discussion of the meta-
model and its implications on industry and research.

Paper Structure. Section 2 describes related work; Sect. 3 describes the research
methods; Sect. 4 presents the meta-model with a detailed description; Sect. 5 discusses
the validation procedures and threats to validity; Sect. 6 discusses implications of the
meta-model, and Sect. 7 concludes the paper and describes future work.

Towards a Meta-model for Requirements-Driven Information for Internal Stakeholders 263

2 Related Work

This section focuses on three key issues in RE meta-models: (a) ISs and their concerns,
(b) requirements-driven information, and (c) relationships among the preceding two
items. With respect to IS, the literature lacks a comprehensive understanding of the
types of ISs that can exist in large systems engineering projects and their concerns
regarding requirements. Though the term “stakeholders” is well-known in RE, in-depth
research has focused on external stakeholders (i.e., client/customer, business) and their
concerns, which are usually translated into new requirements [7], while the concerns of
ISs (e.g., project managers, architects, etc.) are rarely addressed [8]. In the rare cases in
which ISs are addressed, the problem is two-fold: (1) they focus on developer concerns
only (e.g., source code defect analytics) [8], or (2) the stakeholders are roughly divided
into generic notions of “developer” and “manager” [1]. However, our observation is
that ISs and their concerns exist at a finer granularity (e.g., different types of managers,
technical stakeholders, and concerns).

In addition, requirements-driven information is usually limited to requirements
quality metrics (e.g. use case completeness metrics) [9] and basic progress metrics
(e.g., number of ‘complete’ requirements) [6, 10] that do not specifically address the
concerns of the spectrum of internal stakeholders within a project.

Finally, the relationships amongst: (i) internal stakeholders, (ii) stakeholder con-
cerns, and (iii) requirements-driven information have not yet received significant
research attention. Thus, managing these elements to derive requirements-driven
information from the correct sources and providing it to the correct ISs becomes a
tedious task in practice.

From the above analysis, to our knowledge, a model to support the requirements
management task of deriving and reporting requirements-driven information to internal
stakeholders is currently lacking. The remainder of this paper addresses this gap.

3 Research Method

The meta-model presented in this paper is a result of a post analysis performed on data
gathered from an AR study we conducted in industry. Figure 1 provides an overview of
the research methods and data used in this study. The following subsections discuss the
data gathering and data analysis stages in detail.

Fig. 1. Overview of study research methods and data

264 I. Noorwali et al.

3.1 Data Gathering: Action Research Study

Action research (AR) is an iterative process involving researchers and practitioners
acting together on a particular cycle of activities, including problem diagnosis, action
planning, intervention/action taking, evaluation, and reflection/learning [11], where
researchers identify problems through close involvement with industrial projects, and
create and evaluate solutions in an almost indivisible research activity. We note that,
because the goal of the AR study was to derive requirements-driven information (not
reported in this paper) to be used by the ISs, we limit our description of the AR
procedure to details relevant to the meta-model and its underlying constructs.

Our AR study, which followed the described approach [11], was conducted in a
large-scale rail automation project in a multi-national company in the United States.
The overall project (i.e., program) consisted of three sub-projects, each sub-project
consisted of a product that had its own set of requirements, architecture design, test
cases, and engineering team. Table 1 shows a breakdown of the software artifacts,
number of requirements, design objects, and test cases per product that the first author
worked with. Other official project documents that were analyzed included: require-
ments and change management plans and project personnel documentation that
describe the roles and responsibilities of the ISs involved in the projects. The project
adopted a waterfall software development approach. The internal project stakeholders
included: systems manager, R&D managers, test mangers, developers, architects, tes-
ters, project managers, program managers, safety managers, quality mangers, financial
managers, and project operations managers.

The AR study began in February 2017. The primary researcher (1st author) was
onsite full-time for ten months and worked with the primary industrial partner (4th
author) and secondary industrial participants (internal project stakeholders) in con-
sultation with a senior researcher (2nd author).

In the diagnosis phase, the primary researcher, primary industrial partner and senior
researcher, through a series of unstructured interviews, found that a central problem in
the projects’ RE process is a difficulty in tracking, monitoring, and managing
requirements-driven information such as requirement growth (e.g., how many
requirements so far), volatility (e.g., number of changed requirements over releases),
and coverage (e.g., number of requirements that have been covered by test and design)
and a difficulty in in accessing this information by ISs. To solve this problem, the
industrial partner and researcher conducted several meetings, as part of the action
planning phase, and decided to derive, define, and validate a set of requirements

Table 1. Software artifact breakdown per product

Product # of req. spec.
docs.

of reqs. # of design
docs.

of design
objects

of test
cases

Product 1 40 59335 23 8373 1770
Product 2 13 25502 3 1199 960
Product 3 37 50051 28 24618 827
Total 90 134888 54 34190 3557

Towards a Meta-model for Requirements-Driven Information for Internal Stakeholders 265

metrics and analytics that can be provided to ISs and used within the requirements
management and software development processes. The requirements-driven informa-
tion would include: measures on requirements size, growth, coverage, volatility, safety
requirements distribution.

In the intervention phase, the primary researcher, with continuous feedback from
the primary industrial partner, conducted a document analysis on the requirements,
design, and test documents in which the meta-data were gathered in spreadsheets and
the completeness and consistency of the data were ensured (see Table 1). The
researcher then used the gathered meta-data to define a set of metrics using GQM+ [12]
(not reported in this paper). The measures for the different products (see Table 1) were
calculated and organized in spreadsheets and graphs. To familiarize the ISs with the
derived information and to gather feedback from them, three iterations of focus groups
were held. IS feedback included suggestions for new metrics and addition of
descriptive information (e.g., dates) to the tables and graphs. After the three rounds of
focus groups, the researcher provided the updated requirements-driven information to
the ISs individually and upon request. Thus, the researcher received continuous
feedback through direct engagement with the internal stakeholders and observation of
the stakeholders’ use of the information. Once the requirements metrics were inserted
into the requirements management process, the primary researcher and industrial
partner decided to add the requirements ‘analytics’ element by proposing a ‘traffic-
light’ system that would provide insight into the projects’ health. Such a system would
utilize the derived requirements metrics in conjunction with other project artifacts such
as project schedules, budget, resources, etc. The researcher evaluated the intervention
effects of the derived metrics on the requirements management and system develop-
ment processes through informal discussions with the primary and secondary industrial
participants and observations of the processes. Issues such as improved requirement-
design coverage, improved planning of time and effort per release, etc. were noted.

As part of the reflection and learning phase of the AR study, the primary researcher
took on the task of eliciting the challenges and lessons learned during the study, which
resulted in the identification of the problems in Sect. 1 (i.e., lack of understanding of:
the types of requirements-driven information, the ISs and their concerns with regard to
the requirements-driven information, IS usage of the information, the project artifacts
needed to derive the information). This, in turn, led to the research questions posed in
Sect. 1. In an attempt to answer these questions, and given the availability of data from
the AR study, a post-analysis was conducted to construct the meta-model, which we
discuss in the following subsection.

3.2 Data Analysis: Meta-model Building Procedure

To answer the research question posed in Sect. 1, we adopted the model construction
process by Berenbach et al. [5] as we found it to be comprehensive. Berenbach states
that a holistic understanding of the domain of interest is a prerequisite before com-
mencing a model-construction process [5]. Our AR study allowed us to gain first-hand
and in-depth knowledge of the overall context of the requirements engineering and
software development processes in the project under study. Moreover, our continuous
collaboration with our industrial partner allowed for live feedback throughout the AR

266 I. Noorwali et al.

study and model-construction process, thus supporting incremental validation of the
resultant meta-model. The key steps of the model construction process are:

(i) Identify entities (RQ1): The entities were incrementally identified and added to
the meta-model by analyzing the data gathered from the AR study. First, the
primary researcher extracted the metrics and the IS concerns they addressed
from the metric spreadsheets and GQM+ document that was used to define the
metrics during the AR study. The ISs were identified from the project’s per-
sonnel documents and from meeting minutes that were gathered from the focus
groups that were conducted during the AR. The project processes were extracted
from the project’s requirements management and change plans. We note that, up
until this point of the entity identification process, the entities were concrete
project data. We then began creating abstractions of the identified entities. For
example, stakeholder categories in light of their requirements-related informa-
tion needs (i.e., primary technical stakeholders, regular technical stakeholders,
mid-level managers, high-level managers) were identified through analyzing the
ISs’ feedback and the primary researcher’s correspondences with the ISs during
the AR study. Specifically, the level of detail of the requirements-driven infor-
mation requested by the ISs and the frequency with which they requested it were
the main factors in determining these categories (see Fig. 1).

(ii) Identify relationships among entities (RQ2): We identified the relationships
among the entities based on organizational rules such as the relationships
between software artifacts and processes and their constituents. Other relation-
ships were identified based on the metrics derived from the AR study such as the
relationship between requirements metrics and their types. Finally, some rela-
tionships were identified based on our observations of the process and interac-
tions between various elements in the project such as the relationship between
ISs and their concerns.

(iii) Synthesize the meta-model: the identification of the entities and their relation-
ships occurred iteratively and in parallel. Therefore, meta-model synthesis was
an ongoing process since the beginning of the meta-model building procedure.
For example, when we identified three main entities at the beginning of the
process (i.e., requirements metrics, ISs, and IS concerns), we added the rela-
tionships between them and further entities and relationships were iteratively
added as we gained better understanding of the entities and relationships
involved. Moreover, the meta-model was incrementally updated in tandem with
the feedback received from the reviews by the industrial partner, senior
researcher and junior researcher, which resulted in the first version of the meta-
model that did not include abstraction levels. After further evaluation and
feedback at a workshop session [13] (see Sect. 5 for validation details), the
abstraction levels were added, and the entities and relationships were updated
accordingly.

We adopted Berenbach’s [5] notation, for familiarity by the sponsor’s organization,
to depict the meta-model elements. An entity is represented by a rectangular box with
the name of the entity. A relationship is represented by a line connecting two elements
with a label to indicate the type of relationship between the elements.

Towards a Meta-model for Requirements-Driven Information for Internal Stakeholders 267

4 A Meta-model for Requirements-Driven Information
for Internal Stakeholders

The meta-model is intended to complement the organization’s requirements engi-
neering process, specifically, the requirements management process. The company’s
requirements engineering process consists of: requirements elicitation, analysis, vali-
dation and management. The requirements management process includes a number of
activities: tracing, managing requirements workflow states, managing requirements
change, deriving and reporting requirements measures and other relevant requirements-
driven information; the meta-model is intended to support this latter activity.

The current version of the meta-model for requirements-driven information for ISs
consists of entities and relationships organized across three abstraction levels as pro-
posed by [14]. In this section we will discuss the entities, relationships among the
entities, and abstraction levels. Figure 21 depicts the synthesized meta-model.

Entities. The meta-model consists of five main entities that are pertinent to the process
of deriving and providing requirements-driven information to ISs: requirements-driven
information consists of information mainly derived from requirements and require-
ments meta-data and that may be supported with other artifact data; ISs who are
involved in the system development and use the requirements-driven information;
concerns that the ISs have with regard to the requirements-driven information and that
are addressed by that information; artifacts from which the requirements driven
information is derived; and processes in which the IS are involved in. These entities are
represented at abstraction Level 1, the highest level of abstraction in the meta-model.
Entities and relationships at level 1 are abstract and generalizable enough to be
applicable to any context regardless of domain, software development process, or
organizational structure.

The decomposed entities constitute abstraction Level 2 of the meta-model. Entities
at Level 2 are also intended to be generalizable to different contexts. However, its
applicability may differ from one context to another. For example, while in a large
systems project, such as ours, the distinctions between managerial and technical ISs are
well defined, the differences may not be so evident in a smaller, more agile project.

Thus, it is up to the project stakeholders to decide which ISs fall into which entity
type. Table 2 consists of the entity descriptions at abstraction level 2. Due to space
limitations, we restrict our discussion to entities that are not deemed self-explanatory.

The entities at abstraction level 2 are further decomposed into entities at abstraction
Level 3. Level 3 is the project specific level in which the entities are tailored to
represent the environment of a given project in a specific domain and development
process.

For example, requirement metrics in our study consisted of size, growth, volatility,
coverage, and maturity metrics. Another project’s requirements metrics may include
only volatility metrics. The same applies to other entities. Because entities at level 3 are

1 High resolution images of Figs. 2 and 3 can be found at: http://publish.uwo.ca/*inoorwal/Uploads/
Meta-Model_publish.pdf.

268 I. Noorwali et al.

http://publish.uwo.ca/%7einoorwal/Uploads/Meta-Model_publish.pdf
http://publish.uwo.ca/%7einoorwal/Uploads/Meta-Model_publish.pdf

F
ig
.2

.
M
et
a-
m
od

el
fo
r
re
qu

ir
em

en
ts
-d
ri
ve
n
in
fo
rm

at
io
n
fo
r
in
te
rn
al

st
ak
eh
ol
de
rs

Towards a Meta-model for Requirements-Driven Information for Internal Stakeholders 269

specific to our project, we did not include a detailed description of them. However, they
can be seen in Fig. 1 and they illustrate how the meta-model can be applied within a
large systems project.

Relationships. The following relationships are represented in the model: (1) is-used-
by: represents the relationship when an inanimate entity (e.g., requirements metrics) is
used by an animate entity (e.g., IS) to aid in technical or managerial tasks. (2) is-used-
in: represents the relationship between entities when an inanimate entity (e.g., artifact)
is used in another inanimate entity (e.g., process) to support the definition, execution, or
management of the inanimate entity it is being used in. (3) addresses: represents the
relationship between requirements-driven information and IS concerns. (4) consists-of:
this relationship is used when an entity (e.g., requirements driven information) is
composed of one or more of the related entities (e.g., requirements metrics and ana-
lytics). (5) is-derived-from: indicates that one entity (e.g., requirements size metrics)
can be defined and specified from another entity (e.g., requirements specifications).
(6) manages: indicates that an entity (e.g., ISs) can create, add, remove, modify the

Table 2. Descriptions of meta-model entities at abstraction level 2

Entity Description

Requirements
metric

A measurement derived from requirements to provide a quantitative
assessment of certain requirements attributes

Requirement
analytics

Analytics on requirements data in conjunction with other software
artifacts (e.g., design, code, budget and schedule documents, etc.) that
aims to gain insight about the state of the project from a requirements
perspective

High-level
managerial IS

Managerial stakeholders who manage at the project level or higher (i.e.,
program or regional levels) such as the program or regional R&D
manager, etc.

Mid-level
managerial IS

Managerial stakeholders who manage at the project level or lower (i.e.,
product level) such as test manager, product quality manager, etc.

Regular technical
IS

Technical ISs who use requirement-driven information regularly such
as architects and requirements engineers

Irregular technical
IS

Technical internal stakeholders who use requirement-driven
information less frequently such as developers and testers

Managerial IS
concern

Managerial issues that ISs care about in relation to the requirements
such as estimating time and effort for a software release

Technical IS
concern

Technical issues that ISs care about in relation to the requirements such
as increasing requirement-design coverage

Downstream
process

Activities involved in system development and initiated after the
requirements engineering process such as development, design, testing,
etc.

Upstream process Activities that are involved in system development and are initiated
before the RE process such as contract/client management

Sidestream
process

Activities involved in system development and initiated and executed
alongside the RE process such as quality and project management, etc.

270 I. Noorwali et al.

related entity (e.g., software artifacts). (7) involved-in: indicates that an entity (e.g., IS)
actively participates in the related entity (e.g., processes). The participation can be in
the form of execution, management, support etc. (8) has: indicates that an entity (e.g.,
ISs) possesses one or more of the related entities (e.g., IS concerns).

The number of relationships among the entities increase as we go lower in
abstraction level. This provides a more detailed picture of how the decomposed entities
relate to one another [14] in different ways. For example, at Level 1 there is one
‘addresses’ relationship between requirements-driven information and IS concerns. The
‘addresses’ relationships among the decomposed entities at Level 2 increase in number
and are more nuanced: requirements metrics ‘addresses’ managerial and technical IS
concerns while requirement analytics ‘addresses’ managerial IS concerns only. Fig-
ure 3 shows the expansion of Level 2 relationships. Similarly, the number of rela-
tionships among the decomposed entities at Level 3 increase in comparison to the
relationships among the entities at Level 2. The relationships at Level 3 are project
specific and thus can be tailored to project and organization rules. Due to space lim-
itations and to preserve the readability of the model, we did not include project-specific
relationships at level 3. Finally, the relationships that cross over the abstraction
boundaries are ‘consist-of’ relationships that connect the higher-level entities with their
lower-level constituents.

Rationale. We believe that several entity and relationship choices in the meta-model
warrant a discussion of their rationale. The identification of categories of ISs and IS
concerns is based on their needs regarding requirements-driven information and
therefore a discussion is warranted. The meta-model separates managerial and technical
internal stakeholders because they have different concerns regarding requirements

Fig. 3. A detailed overview of the relationships at abstraction level 2

Towards a Meta-model for Requirements-Driven Information for Internal Stakeholders 271

measures and information, and, therefore, require different types of requirements-
driven information. For example, an architect is concerned with tracking and improving
requirements-architecture coverage and, thus, needs to know the number of require-
ments with and without links to architecture. On the other hand, a R&D product
manager is concerned with estimating time and effort for a product release. Therefore,
s/he needs the number of allocated requirements for a specific release. However, our
experience with a large–scale systems project revealed that managerial ISs may also
have technical concerns. Then, how does the separation between managerial and
technical ISs affect the generated requirements measures? We observed that even in the
case when a technical and managerial IS share the same technical concern, the sepa-
ration between managerial and technical ISs affected the level of detail of the relevant
requirements-driven information. For example, both architect and a R&D manager may
want to gain insight into the state of requirements-architecture coverage. However,
while the architect is interested in detailed measures (e.g., the number of requirements
that do not have links to architecture per feature, per release, and per requirements
baseline), the R&D manager is interested in more big-picture measures (e.g., the overall
percentage of requirements that have links to architecture per requirements baseline).

As for the separation between regular and irregular technical ISs, we observed that
regular technical ISs need to be frequently updated with requirements-driven infor-
mation while irregular technical ISs require the relevant information less frequently.
For example, the architect requires a monthly report of requirement-architecture cov-
erage measures and in detail. On the other hand, a tester requires requirement-test
coverage measures only before a product release. Similarly, the separation between
high-level and mid-level managerial ISs dictates both the frequency and level of detail
of the relevant requirements information they need. These categorizations can aid the
requirements engineer in knowing: what measures and information to generate and
report from the requirements, to whom they should be reported, how to report it (i.e.,
level of detail), and when (i.e., how frequently), which, in turn, will facilitate the
requirements management task of generating and reporting requirements relevant
information.

Finally, the rationale for separating the meta-model into abstraction levels is to
facilitate the tailoring of the meta-model to different contexts, and, thus, improving its
generalizability.

Example Scenario. Figure 2 depicts an instantiation of the model based on our project
data. For example, the measure ‘% of requirements with links to design for require-
ments baseline 3.2’ is derived from the project’s requirements specification and uses
the attributes ‘REQ Type’ and ‘In-links from design’ in the requirements database to
calculate the measure. The requirements measure is used in ‘creating design objects
that address the system requirements’ that ‘John’ (architect) is involved in and who
wants to ‘increase requirements-design coverage by 10% for baseline 3.3’. Knowing
that ‘John’ is a regular technical IS, the measure will be reported to him in detail, which
includes the percentage and absolute value of requirements-design coverage for
baseline 3.2. and a list of the requirements that do not have links to design is also
provided.

272 I. Noorwali et al.

5 Meta-model Validation

In [15], Shaw states that the form of validation in software engineering must be
appropriate for the type of research result. For a qualitative model, validation through
evaluation demonstrates that the study results (i.e., meta-model) describes the phe-
nomena of interest adequately [15] and validation through experience shows evidence
of its usefulness. Thus, the objectives of our validation are to: (i) ensure that the meta-
model adheres to the scientific principles of model building, (ii) identify missing,
superfluous, and/or incorrect entities and relationships, (iii) ensure that constructs (i.e.,
entities and relationships) represent their correct real-world meaning, and (iv) show
preliminary evidence of its usefulness in practice.

To this end, the meta-model went through three phases of validation (see Table 3)
by eight validators (see Table 4). The validators’ areas of expertise include empirical
software engineering, requirements engineering, quality and architecture, testing,
software ecosystems, global and cross-organizational software development, agile
methods, agent-oriented analysis, modeling, simulation, and prototyping of complex
sociotechnical systems.

Table 3. Meta-model validation phases

Validation
phase

Type of
validation

Involved
validators

Method Output

Phase 1 Evaluation V1, V2,
V3

Expert
opinion

Version 1 of the model (not
included in paper)

Phase 2 Evaluation V1, V4,
V5, V6

Live study at
workshop

Version 2 of the model
(included in paper)

Phase 3 Evaluation,
experience

V7, V8 Expert
opinion

Evidence of meta-model
usefulness

Table 4. Profile of meta-model validators

Validator Research
experience

Industry experience Involved in
studied project?

V1 Researcher 40 years 33 years of industry
collaboration

No

V2 Practitioner 6 years 7 years Yes
V3 Researcher 5 years 4 years No
V4 Researcher 16 years 10 years of industry

collaboration
No

V5 Researcher 44 years 30 years of industry
collaboration

No

V6 Researcher 25 years 11 years No
V7 Practitioner 2 years 17 years Yes
V8 Practitioner 9 years 8 years No

Towards a Meta-model for Requirements-Driven Information for Internal Stakeholders 273

Phase 1. V1 reviewed the meta-model for the soundness of its entities and rela-
tionships. He also brought to our attention the notion of ‘change’ in the meta-model.
That is, who makes the changes to requirements metrics, software artifacts and
stakeholders? This is in line with Berenbach’s approach in which he states that the
following questions must be asked when building a meta-model [5]: Who creates the
entities? Who modifies them? How do they become obsolete? This feedback from V1
resulted in the addition of the ‘manages’ relationship between: ISs and metrics, ISs and
software artifacts, ISs and ISs (see Sect. 4 and Fig. 2). V2 is the main requirements
management figure in the project that we conducted our AR study. He manages the RE
processes for all the products in the rail-automation project. He, therefore, is the most
knowledgeable internal stakeholder on the RE processes. His validation consisted of
feedback on the soundness of the meta-model constructs (i.e., entities and relationships)
and ensured that the entities and relationships represented the project accurately. V3
also reviewed the technical aspects of the meta-model to ensure the correctness of the
meta-model. He also aided the first author in identifying proper relationship labels and
reviewing the semantics of the meta-model.

Phase 2 consisted of a collaborative, live study at EmpiRE’18 [13] in which the
meta-model from phase 1 was presented and explained to the audience. The partici-
pants were given questions to validate the meta-model, and then asked to write their
answers on post-it notes that were pinned to their designated areas on the wall.
27 answers were provided in total and were used to enhance the meta-model. The main
piece of feedback from the live study was the suggestion to divide the meta-model into
abstraction levels.

Phase 3 is ongoing and consists of validating the meta-model for its usefulness in
practice. To this end, we have sent out the meta-model to practitioners to gather their
feedback on its usefulness. So far, we have received feedback from two practitioners
(V7 and V8), who both asserted that the meta-model would be useful in practice with
some modifications. V7, who has managed the project’s quality management processes
and is involved in the system architecture, says the meta-model would be very useful in
managing the requirement-driven information that can be generated and disseminated
among ISs. However, he suggests that “this information get captured in modeling tools
and thus tied to the system structure as opposed to chapters in a document” for
increased usability. V8 is from an external organization and states that “I think the key
are stakeholders. So taking the perspective of “WHO does/needs/provides WHAT?”,
this model would be a great way to elaborate what the stakeholder descriptions/roles
are (for the internal stakeholders, and secondarily for the customer/upper manage-
ment). In that respect, this model is a mental model that is used after having done
stakeholder discovery (e.g., with the onion model) and gives some tools while docu-
menting the stakeholder roles (e.g., when determining the importance & influence).”
Thus, phase three provides preliminary evidence for the anticipated practical benefits
discussed in Sect. 1. V8 also suggested the replacement of the monochrome color
scheme with different colors to facilitate reading and comprehension of the meta-
model.

274 I. Noorwali et al.

5.1 Threats to Validity

We discuss the study validity threats and how we mitigated them according to Runeson
and Host’s guidelines [16].

Internal Validity is concerned with the validity of causal relationships, typically in
scientific experiments. Given that our study objective does not include investigation of
causal relationships, this threat is not relevant to our study.

External Validity is concerned with the generalizability of the results to other
contexts. The meta-model is based on the AR study conducted within the safety-
critical, transportation domain, which may limit the meta-model’s generalizability.
Thus, readers must interpret and reuse the results in other contexts with caution.
Despite this limitation, the results constitute an important data-point for making sci-
entific progress. Further validation of the meta-model in different domains and project
sizes is encouraged in order to improve its generalizability.

Construct Validity concerns the operationalized constructs of the study in that
whether or not they accurately represent the real-world phenomena. It is possible that
some meta-model entities (e.g., stakeholder concerns, metrics, etc.) might not have
been captured accurately by the researcher. In order to minimize this threat, we vali-
dated the model constructs with our industrial partner and analyzed them against
official project documentation to ensure that the constructs accurately reflect their real-
world counterparts. In addition, given that the meta-model was not the main goal of the
AR study, there is a risk that important data is missing from the meta-model. This risk
was mitigated by obtaining feedback from a variety of sources on the meta-model
entities and relationships during the workshop (see Sect. 5 for workshop details).

Reliability is concerned with the degree of repeatability of the study. The AR study
followed AR principles for software engineering [17] to ensure rigor during the study.
In addition, the AR and meta-model creation processes were documented to ensure
traceability and analysis. Although a level of subjectivity is inevitable during the meta-
model development process, our continuous involvement with our industrial partners
and researchers inside and outside of the study helps to mitigate this threat.

6 Implications

Implications for Practice. The meta-model can aid in aligning internal stakeholder
concerns with requirements-driven information that can be generated within the project
[18]. It can also be an effective tool for enabling effective communication as well as
controlling project complexity [18]. In our case, the complexity is the network of
numerous internal stakeholders, stakeholder concerns, requirement metrics and ana-
lytics, downstream, upstream and side-stream processes, and a web of interactions
amongst them. Therefore, mapping out the numerous elements and the relationships
amongst them will equip requirement engineers with the understanding needed to
effectively control and manage the requirements-driven information they are required
to provide [18] and communicate to the right people (see Phase 3 of validation in
Sect. 5). The meta-model could also aid incoming personnel (e.g., new requirements

Towards a Meta-model for Requirements-Driven Information for Internal Stakeholders 275

engineers) in understanding this complex web of interactions, which, in turn, will help
them in their requirements management tasks.

The meta-model can also serve as a stepping-stone toward operationalizing the
entities and relationships in the meta-model in the form of a tool (e.g., dashboard) that
could aid practitioners in the requirements management process by implementing
features inspired by the meta-model (see Phase 3 of validation in Sect. 5).

Implications for Research. The importance of requirements-driven information for
internal stakeholders has been recognized by researchers [2, 8]. Some research efforts
have targeted architects’ and testers’ information needs in relation to requirements and
requirements specifications [2, 19] by proposing view-based solutions that would allow
testers and architects to view the requirements specification in a format that will pro-
vide them with the requirements-based information they need. We take this work
further by attempting to explicate the types of stakeholders in light of their needs with
regard to requirements-driven information. Further research can be conducted to
explore further questions addressing IS information needs with regard to requirements.
Such questions could include: what are the types of ISs in an agile environment? What
are their information needs with regard to requirements in an agile environment? In
addition to requirements metrics and analytics, what other types of information can be
generated from requirements and that can benefit internal stakeholders in their
processes?

7 Conclusions and Future Work

Requirements is an information-rich software artifact that has the potential to provide
ISs with information that can guide their respective processes. However, little is known
about the types of ISs in light of their requirements-information needs, the information
that can be generated from requirements, and how this information is used by ISs, all of
which complicates the requirements management process. Based on empirical data that
we gathered and analyzed from an AR study conducted in a large-scale rail automation
project, we identified the main entities and relationships involved in providing
requirement-driven information, which we assembled into a meta-model. The empiri-
cally derived meta-model depicts the internal stakeholders, internal stakeholder con-
cerns, requirements-driven information, artifacts, processes, and relationships among
them at three abstraction levels.

Our preliminary validation shows that the meta-model aids in understanding the
complex network of entities and relationships involved in providing requirements-
driven information to internal stakeholders. More specifically, the explicit identification
of the types of internal stakeholders and their needs in relation to requirement-driven
information (see Sect. 3) could facilitate: (i) communication among internal stake-
holders and (ii) proper identification and presentation of requirement-driven informa-
tion for the correct internal stakeholders (see Sect. 4).

For future work, we intend to extend the meta-model to include cardinalities, which
will provide a more accurate representation of a project’s rules and policies. For
example, only one IS (i.e., requirements engineer) manages the requirements-driven

276 I. Noorwali et al.

information. This cardinality is a representation of the current project practices.
Therefore, upon reading the meta-model, one would know that one person is in charge
of managing the various requirements-driven information and so appropriate inter-
pretation is facilitated. We also plan to incorporate the meta-model into the organi-
zation’s requirements management plan to validate it empirically for its practicality,
usefulness, and benefits within the project.

Acknowledgements. We thank Philipp Hullmann and Eduard Groen for their valuable feed-
back. This work is supported by the Ministry of Education of Saudi Arabia.

References

1. Buse, R.P.L., Zimmermann, T.: Information needs for software development analytics. In:
International Conference on Software Engineering, Zurich, Switzerland, pp. 987–996 (2012)

2. Gross, A., Doerr, J.: What do software architects expect from requirements specifications?
Results of initial explorative studies. In: 1st IEEE International Workshop on the Twin Peaks
of Requirements and Architecture, pp. 41–45. IEEE, Chicago (2012)

3. Hess, A., DIebold, P., Seyff, N.: Towards requirements communication and documentation
guidelines for agile teams. In: Proceedings of the 2017 IEEE 25th International
Requirements Engineering Conference Workshops, REW 2017, pp. 415–418 (2017)

4. Doerr, J., Paech, B., Koehler, M.: Requirements engineering process improvement based on
an information model. In: Proceedings of the IEEE International Requirements Engineering
Conference, pp. 70–79 (2004)

5. Berenbach, B., Paulish, D.J., Kazmeier, J., Rudorfer, A.: Software and Systems Require-
ments Engineering in Practice. McGraw Hill, New York City (2009)

6. Wiegers, K.E.: More about Software Requirements: Thorny Issues and Practical Advice.
Microsoft Press, Redmond (2006)

7. Sarkar, P.K., Cybulski, J.L.: Aligning system requirements with stakeholder concerns: use of
case studies and patterns to capture domain expertise. In: Australian Workshop on
Requirements Engineering, pp. 67–82 (2002)

8. Hassan, A.E., Hindle, A., Runeson, P., Shepperd, M., Devanbu, P., Kim, S.: Roundtable:
what’s next in software analytics. IEEE Softw. 30, 53–56 (2013)

9. Costello, R.J., Liu, D.-B.: Metrics for requirements engineering. J. Syst. Softw. 29, 39–63
(1995)

10. Berenbach, B., Borotto, G.: Metrics for model driven requirements development. In:
Proceedings of the 28th International Conference on Software Engineering - ICSE 2006,
Shanghai, China, pp. 445–451 (2006)

11. Susman, G., Evered, R.D.: An assessment of the scientific merits of action research. Adm.
Sci. Q. 23, 582–603 (1978)

12. Basili, V., Heidrich, J., Lindvall, M., Munch, J., Regardie, M., Trendowicz, A.: GQM^+ strategies –
aligning business strategies with software measurement. In: First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), pp. 488–490 (2007)

13. Noorwali, I., Madhavji, N.H.: A domain model for requirements-driven insight for internal
stakeholders a proposal for an exploratory interactive study. In: 2018 IEEE 7th International
Workshop on Empirical Requirements Engineering, pp. 32–36 (2018)

14. Monperrus, M., Beugnard, A., Champeau, J.: A definition of “abstraction level” for
metamodels. In: Proceedings of the International Symposium on Workshop on the
Engineering of Computer Based Systems, pp. 315–320 (2009)

Towards a Meta-model for Requirements-Driven Information for Internal Stakeholders 277

15. Shaw, M.: Writing good software engineering research papers. In: International Conference
on Software Engineering, vol. 6, pp. 726–736 (2003)

16. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

17. dos Santos, P.S.M., Travassos, G.H.: Action research can swing the balance in experimental
software engineering. Adv. Comput. 83, 205–276 (2011)

18. Humphrey, W.S., Kellner, M.I.: Software process modeling: principles of entity process
models. In: Proceedings of the 11th International Conference on Software Engineering,
pp. 331–342. ACM (1989)

19. Hess, A., Doerr, J., Seyff, N.: How to make use of empirical knowledge about testers’
information needs. In: IEEE 25th International Requirements Engineering Conference
Workshops, pp. 327–330. IEEE Computer Society (2017)

278 I. Noorwali et al.

In Situ/Walkthroughs (Research
Previews)

Towards a Catalogue of Mobile
Elicitation Techniques

Research Preview

Nitish Patkar(B), Pascal Gadient(B), Mohammad Ghafari(B),
and Oscar Nierstrasz(B)

Software Composition Group, University of Bern, Bern, Switzerland
{nitish.patkar,pascal.gadient,mohammad.ghafari,

oscar.nierstrasz}@inf.unibe.ch
http://scg.unibe.ch/staff

Abstract. [Context and Motivation] Mobile apps are crucial for
many businesses. Their reach and impact on the end users and on the
business in return demands that requirements are elicited carefully and
properly. Traditional requirements elicitation techniques may not be ade-
quate in the mobile apps domain. [Question/problem] Researchers
have proposed numerous requirements elicitation techniques for the
mobile app domain, but unfortunately, the community still lacks a com-
prehensive overview of available techniques. [Principle ideas/results]
This paper presents a literature survey of about 60 relevant publications,
in which we identify 24 techniques that target mobile apps. We found that
only every second strategy was evaluated empirically, and even worse,
non-functional requirements were rarely considered. We provide an eval-
uation scheme that is intended to support readers in efficiently finding
opportune elicitation techniques for mobile apps. [Contribution] The
found literature characteristics may guide future research and help the
community to create more efficient, yet better, apps.

Keywords: Requirements elicitation · Mobile applications ·
Literature survey

1 Introduction

Mobile applications have substantially gained traction since the two major distri-
bution platforms and their operating systems came into existence a decade ago,
i.e., Google’s Play Store (Android OS), and Apple’s App Store (iOS OS). For
example, the iOS platform encountered an increase in numbers of published apps
from 2008 to 2018 of about 2 500 times, leading to 2M apps that are currently
available in the store.1 Similar numbers have been reported for the Android plat-
form.2 As a result, there exists a large base of users who demand seamless app
experiences.
1 https://www.statista.com/statistics/263795.
2 https://www.statista.com/statistics/266210.

c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 281–288, 2019.
https://doi.org/10.1007/978-3-030-15538-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_20&domain=pdf
https://www.statista.com/statistics/263795
https://www.statista.com/statistics/266210
https://doi.org/10.1007/978-3-030-15538-4_20

282 N. Patkar et al.

The requirements elicitation phase of requirements engineering, which plays
a critical role in the success of software applications, must take innovative forms
to meet the individual needs of mobile app users. Typical difficulties are caused
by the global variety of user affections, inconsistent device capabilities such as
different screen size or battery life, and contextual factors such as user mobility.
The research community has recognized this need, and since then has either
proposed new elicitation techniques or modified existing ones to overcome these
difficulties.

This paper aims to survey relevant literature, and to provide an initial step
towards a comprehensive overview of requirements elicitation geared specifically
towards mobile apps. Furthermore, we classify elicitation methods and propose
an evaluation scheme for practitioners, based on our own criteria, which should
provide invaluable immediate feedback to its users. Towards this aim, we pose
the following three research questions:

– RQ1: What are the characteristics of current research in the field of mobile
requirements elicitation i.e. requirements elicitation for mobile apps and use
of mobile devices in requirements elicitation? We elaborate on seven major
properties found during the literature survey.

– RQ2: What are the existing techniques to elicit requirements for mobile appli-
cations? We reviewed 60 publications shortlisted by well-defined inclusion and
exclusion criteria, and we could identify 32 distinct elicitation methods.

– RQ3: How can developers be supported in the efficient selection of appropriate
elicitation techniques? We established an evaluation scheme that supports 19
parameters in six categories on which our elicitation methods can be evaluated
successfully with little overhead for the practitioner.

The remainder of the paper is structured as follows: Sect. 2 outlines the
research methodology we followed for conducting our literature survey. Section 3
presents an overview of the current research characteristics we found. In Sect. 4
we present several elicitation methods and propose a classification of these meth-
ods, leading ultimately to an actionable scheme for development leads. Finally,
in Sect. 5 we report our conclusions.

2 Literature Survey

To carry out the literature survey we closely followed a well-known procedure
from Kitchenham et al. [2]: conducting an initial search, screening the primary
studies based on inclusion and exclusion criteria, before finally, the data are
extracted and aggregated.

We performed three search iterations on five major digital libraries, i.e., the
ACM Digital Library, Springer Link, IEEE Explore, ScienceDirect, and Google
Scholar. In the first iteration we used the search term “mobile requirements
elicitation”, and in the second the two terms “mobile requirement elicitation”
and “mobile requirements engineering”, as these terms lead to different results
in some search engines. After carefully reviewing the results, we evaluated the

Towards a Catalogue of Mobile Elicitation Techniques 283

cited publications of all relevant papers in the third iteration. We considered
publications until October 2018, and did not apply any other filter to avoid
incomplete results due to papers not closely following the publication guidelines,
e.g., using proper release dates. Ultimately, we collected 182 publications.

We then applied several inclusion and exclusion criteria to abstracts and
introductions of the found literature. The inclusion criteria were: (i) the abstract
or introduction should indicate a proposed elicitation method for mobile appli-
cations, or the use of a mobile device for eliciting requirements, (ii) the abstract
is written in English, and finally, (iii) the study is accessible. In contrast, the
exclusion criteria were: (i) languages other than English are used in the body
of the paper, (ii) the paper is a short version of an extended paper, or (iii) the
content is not relevant, e.g., it presents a literature review rather than proposing
a method.

In the end, 60 publications satisfied all criteria and were considered for the
subsequent in-depth study. The complete list of the papers can be accessed
online.3

3 Empirical Discoveries

We now present the seven major subjects that we identified while carrying out
the literature survey in our investigation of RQ1. We collected the properties by
carefully reading each publication, while taking notes about specific peculiarities,
i.e., related to the evaluation, meta information, and people. Complementary
information is only available online due to page limit restrictions. (See footnote 3)
Evaluation. 31 publications included an evaluation, while 29 did not report any
evaluation. Of the 31 publications, 13 presented a case or field study, 16 described
a controlled or industrial experiment, and two publications reported on evalu-
ations with students. We clearly see that constrained (controlled or industrial)
experiments prevail. Objective data-driven evaluation techniques were highly
popular, i.e., about 63%.
Effectiveness. Several different factors have a major impact on effectiveness; the
ethnicity or cultural background of analysts being one of them. For example, the
risk of misunderstood cultural differences is omnipresent when Indian citizens are
working on requirements elicitation for a Swiss project. The literature proposes
for such scenarios the observation technique that forces the subject to reason
about localities. Another factor concerns data privacy obligations, which could
substantially impede the effectiveness of traditional elicitation methods, e.g.,
interview, if the client or stakeholder is not allowed to reveal the desired infor-
mation. Unfortunately, the corresponding resolution strategy remains unclear
from literature. In our study we found several factors that reduce effectiveness
of requirements elicitation techniques, however, a resolution strategy has been
proposed only for a few.

3 http://scg.unibe.ch/download/supplements/REFSQ19 Supplementary Materials.
pdf.

http://scg.unibe.ch/download/supplements/REFSQ19_Supplementary_Materials.pdf
http://scg.unibe.ch/download/supplements/REFSQ19_Supplementary_Materials.pdf

284 N. Patkar et al.

Focus. Most of the methods are either human- or data-centric; only six publica-
tions propose an aggregation instead. Data-centric methods are useful to gather
non-functional requirements (NFRs) or feature improvement requirements. They
could cause severe privacy breaches, due to the availability of sensitive data.
Furthermore, data-centric methods do not require stakeholders to be involved,
but instead they rely heavily on natural language processing experts, and they
require additional physical assets, such as computing hardware and workspaces,
to analyze an enormous number of apps. In contrast, human-centric methods
encourage creativity throughout the elicitation phase, and depend on the inten-
sive use of human resources. We further discovered that benefits, drawbacks, and
the evaluation of the proposed methods are frequently not the main concern of
the authors, but rather they tend to focus on technical aspects of their solution.
Non-functional Requirements. While no method pays exclusive attention to
NFRs, some methods do support the elicitation of certain NFRs, for instance, run
time performance and user interface issues highlighted in app store reviews [1].
NFRs are crucial since they increase the app’s usability for users, and answer
special user needs, e.g., the need for privacy and compatibility. Unfortunately,
we did not find any guideline or evaluation scheme that would assist developers
in choosing opportune methods for NFR elicitation.
Traditional Requirements Elicitation Techniques. Numerous traditional
elicitation techniques such as interview, brainstorming, and focus groups have
been adapted for mobile apps [4]. In addition, techniques based on data mining
have also become very popular in mobile app requirements elicitation due to
the extraordinarily large corpora used in app stores that provide a plethora of
different features ready to use for requirements engineering, e.g., end user review
data and ratings. How to adapt a particular traditional requirements elicitation
technique for mobile apps domain remains unanswered, as we did not find any
guidelines or efforts put into this direction.
Collaboration Strategies. We found that about 68.3% of the reviewed publi-
cations, encourage active collaboration between analysts and stakeholders, 26.6%
put the elicitation responsibility completely on the analysts’ shoulders, and
31.6% suggest working only with data, avoiding any collaboration. Surprisingly,
starting in the year 2004, 19% suggest that stakeholders should perform elic-
itation themselves. Furthermore, collaborative methods are frequently used in
combination with methods targeting analysts, e.g., interviews. Unfortunately,
clear patterns and guidelines are missing to help analysts choose a satisfactory
combination.
End User Demographics. Eleven publications specifically focused on meth-
ods for children, the elderly, disabled people, and the illiterate. Of concern were
elements that make apps delightful to use for them, or that match surprise factor
to the audience, e.g., gaining attention by audible notification is inaccessible to
people suffering from deafness. All of the reviewed publications rely either on
direct or indirect measures to gather contextual information and tacit knowledge.
Direct measures, for example in app user feedback functionality, show a prefer-
ence for eliciting requirements in the stakeholders’ domain, which is especially

Towards a Catalogue of Mobile Elicitation Techniques 285

helpful to capture functional requirements that are hard to formulate verbally.
Indirect measures provide valuable insights without any end user interaction, for
instance, data is collected autonomously while an app executes in the background
(e.g., location), or is gathered by observing user activities within the app.

4 Discussion

Here we present the found elicitation methods, classify them, and build a first
version of an actionable scheme. RQ2 and RQ3 are briefly covered in Subsects. 4.1
and 4.2, respectively.

Table 1. Classification of methods

4.1 Elicitation

A total of 24 elicitation methods were found in the 60 publications we studied.
Due to space restrictions we only present an overview of the found methods in
Table 1.

The classification of such methods is a non-trivial task as several parties
with diverse interests are involved, e.g., stakeholders, developers, and end users.
Numerous solutions to this classification problem have been proposed, e.g., based
on the means of communication [4], or as suggested in our previous work, based
on the commonalities between identifying problems and finding solutions [3].

As elicitation methods for mobile applications differ from traditional require-
ments elicitation methods, most evaluation schemes provide barely any help
to mobile application developers. Hence we propose a novel evaluation scheme,
where methods are classified according to data- and people-centric criteria, since
one of the main purposes of current mobile apps is to provide access to a service-
oriented infrastructure (e.g., social media), that relies on a plethora of user data
(e.g., user feeds) to connect people (e.g., friends).

286 N. Patkar et al.

We consequently grouped the elicitation methods into four categories as
shown in Table 1: (i) Data-centric. Physical involvement of stakeholders is not
required; these methods are intended to be used by analysts or requirement
engineers. (ii) Collaboration-centric. Stakeholders and analysts have to physi-
cally work together in dedicated sessions. (iii) Stakeholder-centric. Stakeholders
do not require the presence of analysts or requirement engineers to elicit require-
ments. (iv) Analyst-centric. These methods are intended to be used exclusively
by analysts or requirement engineers; physical presence of stakeholders is not
mandatory.

4.2 Evaluation Scheme

As it is important for practitioners to quickly select elicitation methods that best
suit their organizational needs, we propose an evaluation scheme that provides
immediate feedback regarding the selection of major requirements elicitation
techniques in the mobile application domain. For each of the elicitation tech-
niques we propose 19 evaluation parameters (P01, ... , P19) classified into six
high level categories. Each category addresses a specific organizational resource.

The scheme is illustrated in Fig. 1 and supports various use cases: in the
primary use case, the reader first determines the relevance of parameters or
parameter categories in the topmost rows. Once the reader chooses the conve-
nient parameters, the available methods are ready to explore in the respective
columns. For example, if the reader is willing to convert an existing web appli-
cation or a business process into a mobile app (P18), methods such as Focus
groups or Collaborative problem definition will be efficient to apply as shown in
Fig. 1a. Furthermore, the reader can exclude techniques by avoiding parameter
combinations that are guaranteed to be unfeasible in the corresponding envi-
ronment. For instance, if the reader can not afford to have personal collabora-
tive interactions (collaborative-centric row category) with users or stakeholders
(Stakeholders/Users column), all techniques that lie on the intersection of the
row and the column are out of reach for the reader, however, the other tech-
niques still remain available, e.g., the elicitation method App log/app usage data
mining would be a legitimate choice. We provide another motivating example for
requirements engineers that already hold data assets, e.g., data collected from
app store reviews or social media platforms: These users can directly obtain all
data-related methods by considering all methods available in the Data-centric
row. Identical procedures, but with other parameters, can be performed with
Fig. 1b.

In future work we plan to evaluate the utility of the evaluation scheme in
practice, and to iterate its design to better support the selection of requirements
elicitation methods for mobile apps.

Towards a Catalogue of Mobile Elicitation Techniques 287

Fig. 1. Mobile requirements elicitation evaluation scheme

5 Conclusion

We have reviewed major relevant literature in the domain of requirements elici-
tation for mobile apps or using mobile devices, we extracted numerous elicitation
methods, and derived categories suitable for easy selection. In addition, we dis-
covered several different characteristics that have not yet been comprehensively
covered in existing literature. Ultimately, we built an evaluation scheme which
remains to be validated in practice, though we believe it is well-suited for all
complex requirements elicitation scenario, as it is easy to apply and delivers

288 N. Patkar et al.

immediate results. We are currently in the process of preparing an extended
version of this literature survey.

Acknowledgments. We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Agile Software Analysis” (SNSF project
No. 200020-162352, Jan 1, 2016 - Dec. 30, 2018). We also thank CHOOSE, the Swiss
Group for Original and Outside-the-box Software Engineering of the Swiss Informatics
Society, for its financial contribution to the presentation of this paper.

References

1. Gebauer, J., Tang, Y., Baimai, C.: User requirements of mobile technology: results
from a content analysis of user reviews. Inf. Syst. e-Bus. Manag. 6(4), 361–384
(2008)

2. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman, S.:
Systematic literature reviews in software engineering-a systematic literature review.
Inf. Softw. Technol. 51(1), 7–15 (2009)

3. Senft, B., Fischer, H., Oberthür, S., Patkar, N.: Assist users to straightaway suggest
and describe experienced problems. In: Marcus, A., Wang, W. (eds.) DUXU 2018.
LNCS, vol. 10918, pp. 758–770. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91797-9 52

4. Zhang, Z.: Effective requirements development - a comparison of requirements elic-
itation techniques. In: Berki, E., Nummenmaa, J., Sunley, I., Ross, M., Staples,
G. (eds.) Software Quality Management XV: Software Quality in the Knowledge
Society, pp. 225–240. British Computer Society (2007)

https://doi.org/10.1007/978-3-319-91797-9_52
https://doi.org/10.1007/978-3-319-91797-9_52

Towards the Next Generation of Scenario
Walkthrough Tools – A Research Preview

Norbert Seyff1(B), Michael Vierhauser2, Michael Schneider3,
and Jane Cleland-Huang2

1 Institute for Interactive Technologies, FHNW & University of Zurich,
Windisch, Switzerland
norbert.seyff@fhnw.ch

2 Department of Computer Science and Engineering, University of Notre Dame,
South Bend, IN, USA

{mvierhau,janeclelandhuang}@nd.edu
3 Vocational School Baden, Baden, Switzerland

michael.schneider@bbbaden.ch

Abstract. [Context and motivation] With the rise of cyber-physical
systems (CPS), smart ecosystems, and the Internet of Things (IoT),
software-intensive systems have become pervasive in everyone’s daily
life. The shift from software systems to ubiquitous adaptive software-
intensive systems not only affects the way we use software but fur-
ther has an impact on the way these systems are designed and devel-
oped. Gathering requirements for such systems can benefit from elici-
tation processes that are conducted in the field with domain experts.
[Question/problem] More traditional elicitation approaches such as
interviews or workshops exhibit limitations when it comes to gathering
requirements for systems of this nature – often lacking an in-depth con-
text analysis and understanding of contextual constraints which are eas-
ily missed in a formal elicitation setting. Furthermore, dedicated meth-
ods which focus on understanding the system context such as contextual
design are not widely adopted by the industry as they are perceived to be
time-consuming and cumbersome to apply. [Principal ideas/results].
In this research preview paper we argue that scenario-based RE, scenario
walkthrough approaches in particular, have the potential to support
requirements elicitation for ubiquitous adaptive software-intensive sys-
tems through facilitating broader stakeholder involvement and enabling
contextual requirements elicitation within the workplace of future system
end-users. The envisioned on-site scenario walkthroughs can either be
conducted by an analyst or by future end-users of the system themselves.
[Contribution] We describe a research agenda including our ongoing
research and our efforts to develop a novel framework and tool support
for scenario-based RE.

Keywords: Contextual requirements elicitation · Scenario-based RE ·
Society

c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 289–296, 2019.
https://doi.org/10.1007/978-3-030-15538-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_21

290 N. Seyff et al.

1 Introduction and Motivation

Discovering, analyzing, and specifying requirements is of utmost importance
for successful software- and systems engineering [10,12]. However, traditional
requirements elicitation approaches (e.g., interviews and workshops) exhibit var-
ious limitations when it comes to the design and development of ubiquitous,
adaptive software-intensive systems such as cyber-physical systems (CPS), smart
ecosystems, cloud systems, and applications for the Internet of Things (IoT).
There is a need for methods which are better-suited for gathering requirements
from a large number of diverse stakeholders, require lower effort, and can be
applied remotely [17]. Furthermore, a deep understanding of contextual issues
is beneficial for the development of such systems [6] and contextual constraints
can be easily missed in a more formal elicitation setting. Existing contextual
requirements engineering methods such as contextual design [2] are often time-
consuming to apply and are therefore not widely used in industry.

In this research preview paper, we argue that scenario-based RE, in partic-
ular, scenario walkthrough approaches have the potential to support require-
ments elicitation for ubiquitous adaptive software-intensive systems. We foresee
different ways in which scenario walkthroughs can facilitate broader stakeholder
involvement and create a more engaging requirements elicitation process. These
include workshops with selected stakeholders as well as on-site scenario walk-
throughs conducted either by an analyst or directly by end-users of the future
systems. We furthermore envision that scenario tools would not only be applied
during system design time, but could allow end-users and other stakeholders to
continuously provide feedback and generate new ideas during system run time
in order to support system evolution. These ideas are based on previous work
and experiences in the field, as scenario-based RE has a long established tra-
dition of using walkthroughs to support requirements elicitation and scenario
validation within workshop settings and even on-site [1,7,8,15,19]. However,
techniques developed a decade ago were based on technologies that simply were
not mature enough at that time, rendering the successful, large-scale adoption
of these approaches difficult if not infeasible.

In Sect. 2 we look back at seminal related work in the field of scenario-based
RE, discuss limitations of previous scenario-based approaches, and identify new
opportunities introduced by recent technological advances. Section 3 presents
our research agenda and highlights research questions to drive future research
in scenario-based RE. In Sect. 4 we present early research results in the form of
a novel scenario tool prototype which will be the basis for evaluating scenario-
based requirements discovery in different settings. Finally, Sect. 5 concludes this
paper.

2 Looking Back a Decade: Earlier Tools and Limitations

Scenarios are used in diverse ways throughout the software system development
life cycle, including requirements elicitation, negotiation, modelling, and speci-
fication [1]. The work presented in this paper focuses on scenario-based RE for

Towards the Next Generation of Scenario Walkthrough Tools 291

the discovery of requirements – a field of research which has not received much
attention from the RE community in recent years.

One of the leading tool environments, that was also applied in industrial
projects, was ART-SCENE (Analyzing Requirements Tradeoffs – Scenario Eval-
uation) [7]. ART-SCENE was a simple-to-use tool environment which allowed the
specification of Use Cases and the generation of normal and alternative course
scenarios. ART-SCENE-based scenario walkthroughs were mainly conducted in
workshop settings where a facilitator used the ART-SCENE Scenario Presenter
to walk through the generated scenarios and to explore what-if questions with
key stakeholders [7]. Additionally, ART-SCENE extensions also included multi-
media representations of scenarios which were designed to improve the discovery
of requirements [19].

ART-SCENE extensions also included an ART-SCENE variant for Personal
Digital Assistants (PDAs) which enabled analysts to conduct scenario walk-
throughs on-site, in the workplace of future system users [8,15]. These walk-
throughs with the so-called Mobile Scenario Presenter (MSP) were successful
in terms of requirements knowledge discovered [8,15]. However, at this time,
mobile technologies were still in their infancy. Technological constraints, includ-
ing the limited availability of suitable devices to run the mobile scenario-based
tool, made it cumbersome for analysts to collect requirements on-site [8,15]. Fur-
thermore, due to limited availability of mobile internet and the overall limited
usability of software running on these devices, mobile scenario-based require-
ments elicitation remained a niche domain that did not gain broader attention.

Now, over a decade later, many of the previous hardware-imposed limitations
have been resolved. Mobile devices, such as smartphones and tablets, are used
on a daily basis, even by non-technical users, mobile internet is available almost
anywhere, and cloud-based services allow fast access and storage of data.

However, due to the importance of contextual RE [6], other RE approaches
making use of mobile devices have been developed. This for example includes
the iRequire [14] approach, which focuses on end-users and allows them to take
pictures of the system context and document text based requirements, but lacks
end-user guidance and does not include underlying contextual models. Other
approaches focusing on system evolution such as the ConTexter approach [18]
use GPS positions of predefined objects to gather structured feedback on IT
Ecosystems. In recent years several feedback approaches allowing end-users to
give feedback on software systems have been developed (e.g., [5,11]). The evalua-
tion of such approaches indicates that end-users are able to gather requirements
for future systems. However, to the best of our knowledge, none of these exist-
ing mobile approaches are based on scenarios. Therefore, re-visiting (on-site)
scenario-based requirements elicitation, which provides focus and structure in
the form of scenarios and adopting it to today’s environment and system needs
is a timely, and worthwhile endeavor.

292 N. Seyff et al.

Fig. 1. Overview of the envisioned scenario-based RE framework.

3 Research Agenda

Our proposed research on scenario-based RE is driven by four key ideas: (1)
the extension and reuse of scenario-based RE, making use of novel technologies
(e.g., smartphones) and (2) its application within new domains. We further strive
to (3) include end-users, who have previously been neglected, in the scenario-
based requirements discovery process and (4) study the suitability of scenarios
regarding new development paradigms (Fig. 1).

More specifically, we pursue the following research questions (RQ):
RQ1: To what extent can novel tools and techniques, built over current tech-

nologies, overcome the limitations of scenario walkthroughs as experienced in
the past? With this first research question we focus on leveraging past experi-
ences [8,15] and transition from old technologies such as PDAs to new up-to-date
technologies such as smartphones, tablets and other mobile devices, as well as
cloud-based computing. The research objective thus is to develop a framework
and tool prototypes that leverage new technologies to address past limitations.

RQ2: What is the impact of using scenario-based approaches on the devel-
opment of ubiquitous adaptive software-intensive systems from an analyst’ point
of view? We frame the second objective to investigate the suitability of the
framework by applying it to different kinds of systems and by evaluating the
usability and usefulness of the tools via user studies (e.g., using the cognitive
dimensions of notations framework [3,13]). We present our initial prototype of
the framework and tools alongside an initial application scenario in Sect. 4.

RQ3: To what extend can our novel scenario tools be used by non-RE experts
such as (future) system end-users? In a second phase we will go beyond the
initial scope and capabilities of scenario-based walkthroughs and actively involve
end-users in the scenario generation and validation process.

Towards the Next Generation of Scenario Walkthrough Tools 293

RQ4: How can a scenario-based approach be integrated with modern develop-
ment paradigms and support the ongoing evolution of software systems? Histori-
cal scenario-based approaches were designed at a time when more linear develop-
ment processes, such as waterfall or the Unified Process (i.e., longer iterations),
were common. However, we aim to explore integration of the scenario-based app-
roach into new development paradigms, including rapid prototyping, agile soft-
ware development, rapid release cycles, and DevOps. This will include to actively
involve end-users and incorporating crowd-based feedback mechanisms [9,16] for
existing features and also for iterative improvements to the overall systems.

4 NextGen Scenario-Based Requirements Discovery

As part of our initial effort to re-create and extend the previous scenario-based
and mobile requirements tools [8,15] we developed an initial proof-of-concept
framework supporting the generation, validation, and walkthrough of scenar-
ios, for use in workshops and on-site. The prototype implementation currently
includes key features available in the previous ART-SCENE solution. We devel-
oped a cloud-based web tool for generating new scenarios, and for managing
existing ones, documenting individual steps for scenarios and generating “what-
if” questions based on these scenarios. Secondly, a mobile application allows
the on-site use of these scenarios by providing views that enable step-by-step
walkthroughs of a scenario, commenting on individual steps, and adding diverse
multimedia attachments such as images. A screenshot of the scenario manage-
ment tool, alongside the mobile view is depicted in Fig. 2.

As part of our initial evaluation, we plan to use the tool-supported app-
roach for understanding the system context and gathering requirements for

Fig. 2. Scenario management tool & mobile scenario tool prototype.

294 N. Seyff et al.

the Dronology system, a platform for managing, coordinating, and controlling
unmanned aerial vehicles (UAV’s) with support for collaborative tasks [4].

In a first pilot study the prototype tool was used by the authors to create
initial scenarios for a community project which were validated in a workshop
and used to capture requirements on-site. Workshop participants included city
representatives, first-responders and firefighters, who discussed scenarios and
necessary steps to use UAVs to support river-search-and-rescue and medical
supply delivery. We found that the tool allowed us to create scenarios for the
different UAVs use cases, and to capture requirements regarding their usage,
deployment, and management on-site and in real-time.

Based on the feedback received during the pilot study and our ideas for how
to further improve our prototype, we plan to redesign the user interface and
improve the usability of the tool. A key goal is to develop a user interface which
focuses on end-user needs, allowing them to use the tool without the help of an
analyst. Furthermore, we are planning to make use of mobile positioning and
tracking technologies (e.g., GPS) to trigger events automatically and document
the geographic location of requirements. Another envisioned feature is to use the
mobile device’s sensors to capture contextual information (e.g., WiFi reception
strength, proximity to other devices). This more advanced prototype will provide
the basis for a fully fledged user study. In a first phase, we plan an evaluation
of the prototype stakeholders of the Dronology project in workshops and on-site
meetings. In a second phase, we will provide the prototype to future end-users of
the Dronology system (e.g., firefighter) to document their requirements for the
system.

In the more distant future, we plan to use the prototype in other projects
and we will also explore new features such as integrating augmented reality or
video-based approaches.

5 Conclusion

In this paper we present our ideas and initial results towards a new framework
supporting scenario-based requirements elicitation. We build upon experiences
from our previous work in this area nearly a decade ago and aim to overcome
previous technical limitations by using new technologies. We further aim towards
extending previous scenario-based approaches, for example by actively involving
end-users in collecting requirements and providing feedback to existing or newly
developed features. Finally, as part of our ongoing research we have started to
evaluate the approach in context of smart- and cyber-physical systems.

Acknowledgments. This project has been funded by the Austrian Science
Fund (FWF J3998-N319) and the US National Science Foundation Grants (CCF-
1741781, CCF-1649448).

Towards the Next Generation of Scenario Walkthrough Tools 295

References

1. Alexander, I.F., Maiden, N.: Scenarios, Stories, Use Cases: Through the Systems
Development Life-Cycle, 1st edn. Wiley, Hoboken (2004)

2. Beyer, H., Holtzblatt, K.: Contextual design. Interactions 6(1), 32–42 (1999)
3. Blackwell, A., Green, T.: Notational systems-the cognitive dimensions of notations

framework. In: Proceedings of the HCI Models, Theories, and Frameworks: Toward
a Multidisciplinary Science, pp. 103–134. Morgan Kaufmann (2003)

4. Cleland-Huang, J., Vierhauser, M., Bayley, S.: Dronology: an incubator for cyber-
physical systems research. In: Proceedings of the 40th International Conference
on Software Engineering: New Ideas and Emerging Results, ICSE-NIER 2018, pp.
109–112. ACM (2018)

5. Doerr, J., Hess, A., Koch, M.: RE and society - a perspective on RE in times of
smart cities and smart rural areas. In: Proceedings of the 26th IEEE International
Requirements Engineering Conference (2018)

6. Knauss, A., Damian, D., Schneider, K.: Eliciting contextual requirements at design
time: a case study. In: Proceedings of the 4th IEEE International Workshop on
Empirical Requirements Engineering, pp. 56–63 (2014)

7. Maiden, N.: Systematic scenario walkthroughs with art-scene, pp. 166–178. Wiley
(2004)

8. Maiden, N., Seyff, N., Grunbacher, P.: The mobile scenario presenter: integrating
contextual inquiry and structured walkthroughs. In: Proceedings of the 13th IEEE
International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, pp. 115–120. IEEE (2004)

9. Morales-Ramirez, I., Perini, A., Guizzardi, R.S.: An ontology of online user feed-
back in software engineering. Appl. Ontol. 10(3–4), 297–330 (2015)

10. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceed-
ings of the Conference on the Future of Software Engineering, pp. 35–46. ACM
(2000)

11. Oriol, M., et al.: FAME: supporting continuous requirements elicitation by combin-
ing user feedback and monitoring. In: Proceedings of the 26th IEEE International
Requirements Engineering Conference, pp. 217–227 (2018)

12. Robertson, S., Robertson, J.: Mastering the Requirements Process: Getting
Requirements Right. Addison-Wesley, Boston (2012)

13. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131 (2009)

14. Seyff, N., Bortenschlager, M., Ollmann, G.: iRequire: gathering end-user require-
ments for new apps. In: Proceedings of the 2011 IEEE 19th International Require-
ments Engineering Conference, pp. 347–348 (2011)

15. Seyff, N., Graf, F., Maiden, N., Grünbacher, P.: Scenarios in the wild: experiences
with a contextual requirements discovery method. In: Glinz, M., Heymans, P. (eds.)
REFSQ 2009. LNCS, vol. 5512, pp. 147–161. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02050-6 13

16. Seyff, N., Todoran, I., Caluser, K., Singer, L., Glinz, M.: Using popular social
network sites to support requirements elicitation, prioritization and negotiation. J.
Internet Serv. Appl. 6(1), 7 (2015)

17. Todoran, I., Seyff, N., Glinz, M.: How cloud providers elicit consumer requirements:
an exploratory study of nineteen companies. In: Proceedings of the 21st IEEE
International Requirements Engineering Conference, pp. 105–114, July 2013

https://doi.org/10.1007/978-3-642-02050-6_13
https://doi.org/10.1007/978-3-642-02050-6_13

296 N. Seyff et al.

18. Wehrmaker, T., Gärtner, S., Schneider, K.: ConTexter feedback system. In: Pro-
ceedings of the 34th International Conference on Software Engineering, pp. 1459–
1460. IEEE (2012)

19. Zachos, K., Maiden, N.: Art-scene: enhancing scenario walkthroughs with multi-
media scenarios. In: Proceedings of the 12th International Requirements Engineer-
ing Conference, pp. 360–361. IEEE (2004)

A Research Preview on TAICOS –
Tailoring Stakeholder Interests to

Task-Oriented Functional Requirements

Philipp Haindl1(B), Reinhold Plösch1, and Christian Körner2

1 Institute of Business Informatics - Software Engineering,
Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

{philipp.haindl,reinhold.ploesch}@jku.at
2 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany

christian.koerner@siemens.com

Abstract. [Context and Motivation] Without a concrete functional
context, non-functional requirements can be approached only as cross-
cutting concerns and treated uniformly across the feature set of an
application. This neglects, however, the heterogeneity of non-functional
requirements that arises from stakeholder interests and the distinct func-
tional scopes of software systems. [Question/problem] Earlier stud-
ies have shown that the different types and pursued objectives of non-
functional requirements result in either vague or unbalanced specification
of non-functional requirements. [Principal ideas/results] We propose
a task analytic approach for eliciting and modeling user tasks with the
software product. Stakeholder interests are structurally related to these
user tasks and refined individually as a constraint in the context of each
concrete user task. This individual refinement provides DevOps teams
with important guidance on how the respective constraint can be satis-
fied in the software lifecycle and thus how the interest of the stakeholder
can be satisfied sufficiently. [Contribution] We provide a structured
approach, intertwining task-centered functional requirements with non-
functional stakeholder interests to specify constraints on the level of user
tasks. The results of a preliminary interview study with domain experts
reveal that our task-constraint tailoring method increases the compre-
hensibility of requirements, clarity and quality of specifications.

Keywords: Stakeholder interests · Requirements negotiation ·
Task modeling · Constraint specification

1 Introduction

Intertwining functional and non-functional requirements is a challenging
endeavor in software projects of any scale. We use the term stakeholder interest
to represent our broader understanding of non-functional requirements ranging
from development to operational aspects. As the complexity of satisfying an
c© Springer Nature Switzerland AG 2019
E. Knauss and M. Goedicke (Eds.): REFSQ 2019, LNCS 11412, pp. 297–303, 2019.
https://doi.org/10.1007/978-3-030-15538-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15538-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-15538-4_22

298 P. Haindl et al.

interest might differ between software features, the lack of precise specification
often results in undetected non-functional dependencies between components
and features in development, as well as increasing operational efforts through-
out the DevOps cycle [15]. Focusing on concrete tasks that users will perform
with a software system makes the individual relation between functional and
non-functional requirements more tangible and facilitates negotiation [3], and
assessment of tradeoffs in satisfying constraints [2].

In this paper we present the TAICOS (Task-Interest-Constraint Satisfycing)
approach to eliciting and modeling user tasks based on a modified form of hier-
archical task analysis [1], and tailoring stakeholder interests so that they can
be refined into constraints and satisficed during the full software lifecycle. In
contrast to existing approaches our approach methodically facilitates to derive
constraints that satisfice the original interest, i.e. to satisfy an interest suffi-
ciently and not better than required.

To give a better understanding of the terminology used in the TAICOS
method, we want to clarify the meaning of the following terms used in this
paper.

– Satisfice: is a portmanteau of satisfy and suffice. It expresses the intention to
satisfy a requirement in a complex system only sufficiently and not optimally
- so that a multitude of goals can be satisfied concurrently.

– Task: is a sequence of actions that people perform to attain a goal. Tasks
differ in the goals they attain, their input modalities (e.g., software-based,
in-person), and the actions they require for their attainment [1].

– Constraint: is a “nonfunctional requirement that acts to constrain the solu-
tion” [4] possibly more than it would need to satisfy functional requirements.
Features and constraints cannot be seen isolated as constraints influence soft-
ware design and architectural decisions [5].

– Stakeholder Interest: extends the primarily technical notion of constraints
to also capture non-engineering interests such as customer value, legal or
business aspects articulated by stakeholders of a software product.

2 Related Work

Goal-driven [9,12] approaches have proven to be effective for requirements elici-
tation. According to Fotrousi et al. [7], the key limitation of goal models is that
the impact of an unsatisfied constraint is hardly comprehensible for stakehold-
ers. Riegel et al. [11] elaborate on a requirements prioritization method which
does also cover non-engineering related stakeholder interests such as customer
value or implementation costs. Regnell et al. [10] presented a framework for
visualizing and prioritizing interrelations between constraints. Yang et al. in [14]
present approaches to resolve ambiguities between functional requirements and
constraints based on architectural design patterns.

Our approach augments the computer-implemented development method
outlined by US Pat. No. 15/661,498 [8] which aims to find suitable quantitative
constraints for non-functional requirements through Monte-Carlo simulations.

Tailoring Stakeholder Interests to Task-Oriented Functional Requirements 299

The presented research preview explicitly facilitates to elicit, refine and specify
constraints in the context of an individual functional requirement with quan-
titative measures. Also, it supports requirements engineers to evaluate possible
trade-offs of contradicting non-functional requirements on the level of user tasks.

3 The TAICOS Approach

The TAICOS approach hierarchically decomposes functional blocks of software
into user tasks and specifies concrete constraints for each task and stakeholder
interest. This is done through relating user tasks and stakeholder interests in a
tabular form and refining the interests to concrete constraints with the relevant
stakeholders.

3.1 Eliciting User Tasks and Stakeholder Interests

Our approach defines multiple steps for eliciting tasks and is based on hierarchi-
cal task analysis [1] with some modifications to carve out the functional scope
of the elicited actions. Initially, the objective, scope boundaries, and necessary
data (e.g., about task execution, dependencies between tasks or constraints) for
each task are defined. Based on its superordinate goal, the task is decomposed
into subtasks to later allow a precise tailoring of the interests to each subtask.
Finally, the task details are identified to explicate the users’ pursued goal with
the task and how the later software system shall support it. While hierarchical
task analysis allows infinite refinement of tasks to the point that tasks are purely
operational for a user, TAICOS only allows refinement of tasks by means of task
detail tables. If the refinement of the task cannot be described in an operational
manner, a separate model should be created for refinement. This assures that
tasks and constraints are properly treated and described at the refined level.

Task Details. For the structured elicitation of task details, our approach offers
two perspectives: (1) user intentions, the user’s interactions during execution of
the task; and (2) system responsibilities to support these user intentions through
the system. Both perspectives are then compared with each other in tabular form
and refined with pre- and postconditions, as well as information objects, which
describe the information generated or required for task execution. The main
objective of this refinement step is to map the fine-grained intentions of the user
to suitable functional requirements by carving out the minimal and satisfactory
technical solution which allows the user to execute the task effectively.

Stakeholder Interests. Based on existing frameworks [6,13] of interests influ-
encing the software lifecycle, TAICOS aims to capture all stakeholders’ interests
that influence how the later software system needs to support users’ tasks, as
well as to identify what other objectives must be considered throughout the
DevOps cycle from development and operation to decommissioning.

300 P. Haindl et al.

3.2 Tailoring Stakeholder Interests to User Tasks

In the last step of our method, stakeholder interests are individually analyzed
in the context of a specific user task and eventually specified as a concrete
constraint. The overall objective of this step is to specify constraints which sat-
isfice the elicited stakeholder interest. As a practical example the performance of
each user task might be subjected to different quantitative expectations. Table
1 shows how our approach explicitly tackles the different relevance of course-
grained stakeholder interests among different user tasks.

Table 1. Exemplary task-interest-constraint matrix.

User Tasks

Search
for book

Update
credit card
information

Change
shipping
address

Write
book review

In
t
e
r
e
s
t
s

The software must
react quickly
to user inputs.

Search results
must be provided
within 1 sec.

Card information
must be updated
within 2 sec.

Shipping address
must be updated
within 2 sec.

Review service
must finalize
within 3 sec.

Customer data
must be deleted
physically. n/a

Delete primary,
secondary and
previous cards of
the customer.

Delete current
and previous
shipping
addresses.

Anonymize book
review.

The software must
be maintainable
with moderate
effort.

Technical debt
must be
below 1 day.

Technical debt
must be
below 2 days.

Technical debt
must be
below 2 days.

Technical debt
must be
below 2 days.

Assure that the
software uses
encryption when
exchanging data. n/a

Send encrypted
security tokens to
credit card
billing system for
authorization of
credit card
transactions.

n/a n/a

The software must
be resilient to
external service
outages.

Failover to
alternative
service
implementation
after 2
consecutive
failures.

Rollback of
transaction upon
first service
outage.

Failover to
alternative
service
implementation
after 3
consecutive
failures.

Suspend and
restart service
implementation
after 2
consecutive
failures.

Our approach addresses the problem that stakeholder interests have variable
relevance within the system depending on the functional scope within which
these must be satisfied. Therefore stakeholder interests and user tasks are related
in a two-dimensional matrix, and the relevance and concrete expression for each
interest are evaluated and collaboratively specified among stakeholders. This
also ensures that all elicited interests are thoroughly analyzed in the context
of user tasks to identify whether they are relevant in each narrow task context
and how they can be satisfied within that context. As an example, the generic
interest “The software must be resilient to external service outages” must be
differently treated depending on the security impact of the service outage and
is thus reflected in the respectively refined constraints. As another example, the

Tailoring Stakeholder Interests to Task-Oriented Functional Requirements 301

refinement of the interest “The software must be maintainable with moderate
effort” shows that the maintainability requirements for each user task need to
be differently satisficed depending on the importance of the task, the expected
source code change frequency or the expected lifetime of the task.

4 Preliminary Evaluation Results

To validate our method, we conducted 11 expert interviews with senior software
engineers, technical product and project managers, and requirements engineers
from 11 different companies in Austria. The interviews were conducted face-
to-face and comprised 20 open and four closed questions on a four-point Likert
scale. One part of the interviews captured educational and company background,
roles held by the experts and how the respective companies model functional
requirements and constraints in software projects. The second part comprised
questions to evaluate our approach to the task-centered modeling of functional
requirements and tailoring multi-domain constraints to elicited user tasks.

4.1 Evaluation of Tailoring Stakeholder Interests in the Context
of User Tasks

In the interviews we presented the experts with a selection of tasks from a well-
known online book store and a list of generally understandable performance,
privacy, and legal interests. Then, we illustrated how these interests can be used
in our approach to derive constraints on the level of user tasks. Finally, we asked
the experts four questions to evaluate our method for tailoring these interests in
the context of individual user tasks.

Benefits and Weaknesses of the Interest-Tailoring Approach. We asked
the experts two open questions to elaborate the benefits of our interest tailoring
approach on the level of user tasks. Subsequently, we condensed their answers
to these questions into eight categories, summarizing the main statements of
the experts. Increased comprehensibility of the specification was expressed as
a benefit by 82% of the experts, namely by increasing the clarity of objectives
pursued through an interest. In 55% of the interviews, the experts mentioned
the increased specification quality of constraints derived from interests, and 36%
said it would help them to assess project risks by better understanding interests
and their interdependencies.

In 18% of interviews, experts expressed the prioritization of interests, the
time savings accrued by deriving constraints from interests, and the ease of doc-
umentation as benefits of the approach. Only 9% of experts mentioned that our
approach could also help them to detect critical paths. Based on the open answers
examining the weaknesses, we codified experts’ answers into three groups. 45%
of experts believed that the approach would introduce an additional specification
effort but also expressed that the expected benefits outweighed these tradeoffs
accompanying any structured method. 27% of experts mentioned the complexity

302 P. Haindl et al.

of the approach as a drawback, and a further 18% anticipated that our approach
would result in explicitly specifying standard industry constraints that usually
need no special documentation. (e.g., a default availability, common security
requirements).

Suitability of the Interest-Tailoring Approach. Finally, the experts were
asked to rate the overall suitability of the approach on a four-point Likert scale.
Again we received predominantly positive feedback, with 55% experts judging
the approach as suitable and 36% as rather suitable. The 9% of experts judg-
ing the approach as rather unsuitable argued that a precise and comprehensive
specification of constraints from interests should only be done for selected fea-
tures and not on the level of user tasks. No expert judged the interest tailoring
approach as unsuitable for their projects.

5 Threats to Validity

We see a threat to construct validity in the different interpretations of the
questions by the experts, which is mainly due to their different roles and expe-
riences. We addressed this threat by showing each expert concrete definitions
of the terminology used in the interview and discussed any ambiguities. When
summarizing the interview answers, we also considered the background and role
of each expert to determine from what view and with what intention the state-
ment was given. The foremost threat to internal validity can be seen in some
experts’ trend to answer in confirmation of our theories, which became evident
when elaborating on the practice of eliciting constraints. This could have led to
confirmation bias, but we regard this as negligible because in response to this
trend to answer towards confirming our theories, we asked follow-up questions
to capture experts’ actual experiences. We addressed the threat to external
validity by selecting experts who operate in different industry sectors, and we
also selected only one expert per company. However, we see a threat to the
generalizability of the results to other industries due to the different size and
maturity of requirements engineering practices in the companies.

6 Conclusion and Future Work

Utilizing the proposed hierarchical task analysis approach to structurally decom-
pose tasks into subtasks seems to offer a promising approach to clarify the core
functionality needed to support the users’ goals for involved stakeholders. Stake-
holder interests can be effectively tailored to constraints within the context of a
user task so that each interest can be fulfilled in a satisfying but not inevitably
optimal way. Our approach explicitly addresses challenges arising from both the
heterogeneity of stakeholder interests and the interdependences of functional
requirements and constraints in software systems. Future work will concentrate
on additional model elements for tagging tasks with contextual information and

Tailoring Stakeholder Interests to Task-Oriented Functional Requirements 303

ensuring comprehensibility and applicability for large-scale software engineering
projects. We also would like to improve the interest-tailoring method to reduce
ambiguities which may occur when assessing the relevance and impact of each
interest for each task. Finally, after having applied the TAICOS approach prac-
tically in different companies we also plan to conduct a more thorough validation
comprising interviews and surveys with these companies to gather empirical evi-
dence about its suitability and limitations.

References

1. Annett, J.: Hierarchical task analysis. In: The Handbook of Task Analysis for
Human-Computer Interaction, pp. 67–82. Taylor & Francis, London (2003)

2. Berander, P., Andrews, A.: Requirements prioritization. In: Aurum, A., Wohlin,
C. (eds.) Engineering and Managing Software Requirements, pp. 69–94. Springer,
Heidelberg (2005). https://doi.org/10.1007/3-540-28244-0 4

3. Blaine, J.D., Cleland-Huang, J.: Software quality requirements: how to balance
competing priorities. IEEE Softw. 25(2), 22–24 (2008)

4. Bourque, P., Fairley, R.E.: Guide to the Software Engineering Body of Knowledge,
3rd edn. IEEE Computer Society Press, Los Alamitos (2014)

5. Broy, M.: Rethinking nonfunctional software requirements. Computer 48(5), 96–99
(2015)

6. Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software
engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Con-
ceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02463-4 19

7. Fotrousi, F., Fricker, S.A., Fiedler, M.: Quality requirements elicitation based on
inquiry of quality-impact relationships. In: 2014 IEEE 22nd International Require-
ments Engineering Conference (RE), pp. 303–312 (2014)

8. Gehmeyr, A., Höfler, W., Kochseder, R., Rettner, J., Horn, S.: Computer-
implemented product development method, US Patent no. 15/661,498 (2018)

9. Lamsweerde, A.V.: Goal-oriented requirements engineering: a guided tour. In: Pro-
ceedings Fifth IEEE International Symposium on Requirements Engineering, pp.
249–262 (2001)

10. Regnell, B., Svensson, R.B., Olsson, T.: Supporting roadmapping of quality require-
ments. IEEE Softw. 25(2), 42–47 (2008)

11. Riegel, N., Doerr, J.: A systematic literature review of requirements prioritization
criteria. In: Fricker, S.A., Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013, pp.
300–317. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16101-3 22

12. Rolland, C., Salinesi, C.: Modeling goals and reasoning with them. In: Aurum, A.,
Wohlin, C. (eds.) Engineering and Managing Software Requirements, pp. 189–217.
Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28244-0 9

13. Roman, G.C.: A taxonomy of current issues in requirements engineering. Computer
18(4), 14–23 (1985)

14. Yang, H., Zheng, S., Chu, W.C.C., Tsai, C.T.: Linking functions and quality
attributes for software evolution. In: 2012 19th Asia-Pacific Software Engineering
Conference, vol. 1, pp. 250–259 (2012)

15. Zowghi, D., Coulin, C.: Requirements Elicitation: A Survey of Techniques,
Approaches, and Tools. In: Aurum, A., Wohlin, C. (eds.) Engineering and Manag-
ing Software Requirements, pp. 19–46. Springer, Berlin Heidelberg (2005). https://
doi.org/10.1007/3-540-28244-0 2

https://doi.org/10.1007/3-540-28244-0_4
https://doi.org/10.1007/978-3-642-02463-4_19
https://doi.org/10.1007/978-3-319-16101-3_22
https://doi.org/10.1007/3-540-28244-0_9
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2

Author Index

Ali, Raian 245
Arruda, Darlan 262
Aznar, Pablo 176

Bettaieb, Seifeddine 3
Briand, Lionel 3
Brinkkemper, Sjaak 109
Brokhausen, Florian 151
Busch, Melanie 135

Cleland-Huang, Jane 289

Dąbrowski, Jacek 183
Dalpiaz, Fabiano 55, 109
de la Vara, Jose Luis 124
Deoskar, Tejaswini 109
Doerr, Joerg 39, 117

Falkner, Andreas 176
Feichtinger, Kevin 169
Ferrari, Remo 262
Fotrousi, Farnaz 209
Franch, Xavier 176
Fricker, Samuel 209

Gadient, Pascal 281
Garceau, Michael 3
Ghafari, Mohammad 281
Grünbacher, Paul 169, 193

Haindl, Philipp 297
Hinterreiter, Daniel 169
Hübner, Paul 73

Jiménez, Gabriel 124

Karras, Oliver 135
Kedlaya, Shashank 117
Khan, Javed Ali 245
Körner, Christian 297
Krismayer, Thomas 193
Kronberger, Peter 193

Letier, Emmanuel 183
Liebel, Grischa 90
Linsbauer, Lukas 169
Liu, Lin 245

Mäder, Patrick 229
Madhavji, Nazim H. 262
Maro, Salome 90
Mathijssen, Max 109
Mendieta, Roy 124
Müter, Laurens 109

Nierstrasz, Oscar 281
Noorwali, Ibtehal 262
Nou, Grégory 3

Paech, Barbara 73
Palomares, Cristina 176
Parente, Micaela 55
Parra, Eugenio 124
Patkar, Nitish 281
Perini, Anna 183
Persson, Carl-Oscar 90
Pfahl, Dietmar 21
Plösch, Reinhold 297
Polst, Svenja 39
Prähofer, Herbert 169
Pudlitz, Florian 151

Rabiser, Rick 193
Rath, Michael 229
Rohs, Michael 135
Rudolph, Manuel 39

Sabetzadeh, Mehrdad 3
Schenner, Gottfried 176
Schneider, Kurt 135
Schneider, Michael 289
Schoerghuber, Alexander 176
Schrapel, Maximilian 135
Seyff, Norbert 289
Shah, Faiz Ali 21
Shin, Seung Yeob 3

Sirts, Kairit 21
Steghöfer, Jan-Philipp 90
Sundklev, Emil 90
Susi, Angelo 183

Tomova, Mihaela Todorova 229

Vierhauser, Michael 289
Villela, Karina 117
Vogelsang, Andreas 151

Wen, Lijie 245
Wüest, Dustin 209

306 Author Index

	Preface
	Organization
	Contents
	Automated Analysis
	Decision Support for Security-Control Identification Using Machine Learning
	1 Introduction
	2 Background and Related Work
	2.1 Information Security Standards
	2.2 Security Requirements Engineering
	2.3 Applications of Machine Learning in Requirements Engineering

	3 Field Study on Security Assessment
	4 Approach
	4.1 Source Data for Building a Classification Model
	4.2 Machine Learning Features
	4.3 Dealing with Imbalance
	4.4 Choice of Classification Algorithm

	5 Case Study
	5.1 Research Questions
	5.2 Implementation
	5.3 Case Study Data
	5.4 Experimental Setup
	5.5 Metrics

	6 Results
	6.1 RQ1
	6.2 RQ2
	6.3 RQ3

	7 Threats to Validity
	8 Conclusion
	References

	Is the SAFE Approach Too Simple for App Feature Extraction? A Replication Study
	1 Introduction
	2 SAFE Approach
	3 Research Method
	3.1 SAFE Implementation
	3.2 Strategy for Matching SAFE-Extracted and True Features
	3.3 User Review Datasets
	3.4 Experimental Setup

	4 Results and Discussion
	4.1 Validation of SAFE Implementation (RQ-A)
	4.2 Evaluation of SAFE Approach (RQ-B)

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

	Making Sense of Requirements
	Enabling Users to Specify Correct Privacy Requirements
	Abstract
	1 Introduction
	2 The Variety of Privacy Specification Interfaces
	2.1 Related Work Regarding End-User Privacy Specification Interfaces
	2.2 Selected Specification Paradigms

	3 The Different Types of Users
	3.1 Related Work Regarding User Type Models
	3.2 Selection of the User Type Model

	4 Experiment Design and Execution
	4.1 Research Questions
	4.2 Scenario and Tasks
	4.3 Procedures and Instruments
	4.4 Execution
	4.5 Data Analysis

	5 Results and Discussion
	5.1 Participant Description
	5.2 Experiment Results
	5.3 Threats to Validity
	5.4 Discussion

	6 Conclusion and Future Work
	Acknowledgements
	References

	RE-SWOT: From User Feedback to Requirements via Competitor Analysis
	1 Introduction
	2 Related Work
	2.1 Background
	2.2 Related Literature: Mining Requirements from App Store Reviews

	3 The RE-SWOT Method
	3.1 Step-by-Step Method Description

	4 Prototype Tool
	4.1 NLP Module
	4.2 Visualization Module

	5 Evaluation
	6 Discussion and Future Work
	References

	Tracelink Quality
	Increasing Precision of Automatically Generated Trace Links
	1 Introduction
	2 Background
	2.1 Trace Link Evaluation
	2.2 Evaluation Projects
	2.3 IL Approach Overview
	2.4 IR Based Link Creation and Previous Studies

	3 Commit Based Link Creation and ILCom
	3.1 ILCom
	3.2 Trace Link Creation Techniques
	3.3 Retrospective Study

	4 Experiment Design
	4.1 Research Questions
	4.2 Data Sources
	4.3 Gold Standard Creation

	5 Results
	5.1 Answer to RQ1: Comparison of IL and ILCom
	5.2 Answer to RQ2: Comparison of ILCom and ComL
	5.3 Answer to RQ3: Comparison of ILCom and IR
	5.4 Discussion

	6 Threats to Validity
	7 Related Work
	8 Conclusion and Outlook
	References

	Impact of Gamification on Trace Link Vetting: A Controlled Experiment
	1 Introduction
	2 Background and Related Work
	2.1 Vetting Automatically Generated Links
	2.2 Gamification in Software Engineering

	3 Research Method
	3.1 Experiment Design
	3.2 Validity Threats

	4 Results
	5 Discussion
	6 Conclusion
	References

	Requirements Management (Research Previews)
	Refinement of User Stories into Backlog Items: Linguistic Structure and Action Verbs
	1 Introduction
	2 Research Approach
	3 Linguistic Structure of Task Labels
	4 On the Choice of an Action Verb
	5 Conclusions and Directions
	References

	Requirements Engineering for Innovative Software Ecosystems: A Research Preview
	1 Introduction
	2 Research Method and Main Findings
	3 Decision Framework and Process for RE4SES
	4 Preliminary Evaluation and Future Work
	References

	Assessment of the Quality of Safety Cases: A Research Preview
	Abstract
	1 Introduction
	2 Needs for Assessing the Quality of Safety Cases
	3 Current Results
	4 Next Steps
	5 Conclusion
	Acknowledgments
	References

	From Vision to Specification
	Refining Vision Videos
	Abstract
	1 Introduction: Shared Understanding and Vision Videos in RE
	2 Application Example: Shopping in Rural Areas
	3 Concepts to Improve the Use of Vision Videos
	3.1 Camera Perspectives

	4 Related Work
	5 Experiment Design
	5.1 Goals of Refining Vision Videos
	5.2 Video Set-Up and Experiment Procedure
	5.3 Hypotheses
	5.4 Selection of Actors, Subjects, and the Affordable Video Approach

	6 Experiment Results
	7 Interpretation and Discussion
	7.1 Threats to Validity

	8 Conclusions
	Acknowledgement
	References

	A Lightweight Multilevel Markup Language for Connecting Software Requirements and Simulations
	1 Introduction
	2 Background and Related Work
	3 Approach
	3.1 Markup Language
	3.2 Marking Requirements
	3.3 Simulation Execution and Representation

	4 Experiment
	4.1 Experimental Design
	4.2 Results and Discussion

	5 Conclusion and Outlook
	References

	Automated Analysis (Research Previews)
	Supporting Feature Model Evolution by Lifting Code-Level Dependencies: A Research Preview
	1 Introduction
	2 Approach
	3 Implementation
	4 Preliminary Evaluation
	5 Conclusion and Research Outlook
	References

	Identifying Requirements in Requests for Proposal: A Research Preview
	Abstract
	1 Introduction
	2 Bidding Processes for Large Infrastructure Projects
	3 Identifying Requirements with ORCS
	4 Preliminary Evaluation
	4.1 Evaluation Results During Training and Validation
	4.2 Evaluation Results on Non-disclosed Test Data

	5 Conclusions
	References

	Finding and Analyzing App Reviews Related to Specific Features: A Research Preview
	1 Introduction
	2 Motivating Scenarios
	3 An Approach for Analyzing Users' Feedback on Feature
	4 Preliminary Results
	5 Related Work
	6 Conclusion
	References

	Requirements Monitoring
	Supporting the Selection of Constraints for Requirements Monitoring from Automatically Mined Constraint Candidates
	1 Introduction
	2 Running Example
	3 Background: Our Constraint Mining Approach
	4 Filtering, Grouping, and Ranking Constraint Candidates
	4.1 Constraint Filtering
	4.2 Constraint Grouping
	4.3 Constraint Ranking
	4.4 Tool Support

	5 Evaluation
	5.1 Datasets
	5.2 Filtering and Ranking
	5.3 Grouping
	5.4 Performance of Grouping and Ranking
	5.5 Threats to Validity

	6 Related Work
	7 Conclusions
	References

	Combining Monitoring and Autonomous Feedback Requests to Elicit Actionable Knowledge of System Use
	Abstract
	1 Introduction
	2 Combined Data Gathering for System Evolution
	3 Proactive, Autonomous Gathering of User Feedback
	3.1 Control Loop
	3.2 Implementation

	4 Initial Evaluation
	4.1 Smart City Application for Parking Management
	4.2 Parametrisation of the Control Loop
	4.3 Evaluation Setup and Method

	5 Results
	5.1 Collected Data
	5.2 Data Analysis
	5.3 Generated Insights

	6 Discussion
	6.1 Revisiting the Research Question
	6.2 Discussion of the Results
	6.3 Threats to Validity

	7 Conclusion
	Acknowledgment
	References

	Open Source
	Selecting Open Source Projects for Traceability Case Studies
	1 Introduction
	2 Related Work
	3 Background
	3.1 Purposive Sampling
	3.2 Clustering Analysis

	4 Project Selection Approach
	4.1 Example Research Topic: Trace Links in Issue Tracking Systems
	4.2 Schematic Overview
	4.3 Data Source
	4.4 Data Representation and Acquisition
	4.5 Sampling Strategies
	4.6 Data Preparation
	4.7 Clustering Analysis

	5 Evaluation
	6 Threats to Validity
	7 Conclusion
	References

	Managing Requirements Knowledge at a Large Scale
	Crowd Intelligence in Requirements Engineering: Current Status and Future Directions
	Abstract
	1 Introduction and Background
	2 Research Method
	3 RE Activities: Crowd Support and Main Issues
	3.1 The Crowd in the Requirements Engineering Activities
	3.2 Utilities in CrowdRE

	4 A Research Map for Intelligent CrowdRE
	5 Discussion and Future Direction
	Acknowledgment
	References

	Towards a Meta-model for Requirements-Driven Information for Internal Stakeholders
	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Data Gathering: Action Research Study
	3.2 Data Analysis: Meta-model Building Procedure

	4 A Meta-model for Requirements-Driven Information for Internal Stakeholders
	5 Meta-model Validation
	5.1 Threats to Validity

	6 Implications
	7 Conclusions and Future Work
	Acknowledgements
	References

	In Situ/Walkthroughs (Research Previews)
	Towards a Catalogue of Mobile Elicitation Techniques
	1 Introduction
	2 Literature Survey
	3 Empirical Discoveries
	4 Discussion
	4.1 Elicitation
	4.2 Evaluation Scheme

	5 Conclusion
	References

	Towards the Next Generation of Scenario Walkthrough Tools – A Research Preview
	1 Introduction and Motivation
	2 Looking Back a Decade: Earlier Tools and Limitations
	3 Research Agenda
	4 NextGen Scenario-Based Requirements Discovery
	5 Conclusion
	References

	A Research Preview on TAICOS – Tailoring Stakeholder Interests to Task-Oriented Functional Requirements
	1 Introduction
	2 Related Work
	3 The TAICOS Approach
	3.1 Eliciting User Tasks and Stakeholder Interests
	3.2 Tailoring Stakeholder Interests to User Tasks

	4 Preliminary Evaluation Results
	4.1 Evaluation of Tailoring Stakeholder Interests in the Context of User Tasks

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Author Index

