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5
Removing the Dye Kitchen 

from the Textile Supply Chain

Celina Jones and Claudia E. Henninger

5.1  Introduction

This chapter focuses on removing the dye kitchen from the textile supply 
chain; the latter is defined as a sequence of processes necessary to see a 
garment through from production to distribution (Lambert et al. 2006; 
Henninger et al. 2015). In the textile supply chain, the dye kitchen is the 
name given to the place where synthetic dyes and machinery apply colour 
to textiles. This process can occur in multiple stages, which implies that 
the textile can have a variety of forms: fibre, yarn, fabric or finished gar-
ment. The selection process of the actual dye for the textile is dependent 
on the fibre chemistry and method of application. Within the textile 
industry, the two main methods of dyeing are (1) exhaust or batch dye-
ing, which implies the immersion of textiles or garment into a dye bath 
containing predominantly water; and (2) padding, which is characterized 
by colour being padded onto the material through a pad mangle (McLaren 
1986; Bird et  al. 1975). The dyeing process is complex in nature and 
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requires a certain pH (a figure describing the acidity or basicity of water) 
(e.g. Kobya et  al. 2006; Claudio 2007) and temperature, as both can 
influence the ability of the dye to be attracted to the fibre surface and 
leave the dye liquor (Ingamells 1993). Both dyeing processes, exhaust or 
batch and padding, can be applied in a controlled manner, for the dye to 
diffuse into the textile substrate (Bird et al. 1975). Another method of 
applying dyes to textiles is by printing onto garments or accessories. This 
can be performed through using either printing paste via a silk screen 
method or printing ink via an inkjet printer. The choice of machinery 
used is dependent on the fibre type and end use of the textile product.

Prior to performing the dyeing process, textiles need to be carefully 
prepared by impurities being removed from the textiles through processes 
including, but not limited to:

• Desizing–removes the sizing agent applied to the warp yarns, which is 
applied in order to reduce friction and reduce yarn breakage on the 
loom (DuPont 2018)

• Scouring–removes grease and dirt from the fabric and implies a deep 
clean by boiling the fabric in a soda and water solution (Baxter 
Packwood 2001)

• Bleaching–removes residual colouring matter, with hydrogen peroxide 
(H2O2) being one of the most commonly used bleaching agents (Liu 
et al. 2018; Yu et al. 2018)

One of the reasons why materials need to be treated through any of 
these processes mentioned above is to ensure that the woven or knitted 
cloth is dyed in a homogeneous manner (Baxter Packwood 2001; DuPont 
2018; Yu et al. 2018). Once cleaned and the dying process has been com-
pleted, post-treatments are required to fix the dye to the textiles. A major-
ity of these processes require a vast amount of water and chemicals.

As such, it may not be surprising that the fashion and textile industry 
has received negative spotlight, as the dyeing process, including the pre- 
and post-treatment of these textiles, can have devastating environmental 
implications. To explain, in 2011, it was reported that a factory in China 
leaked dyes, which led to the Jian River turning into a deep red colour 
(Kaye 2013; Trusted Clothes 2016). A public outcry followed that called 
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for tougher regulations and higher environmental protection standards to 
be enforced globally.

The chemicals used within the dyeing process as well as the vast amount 
of water not only have implications for the natural environment but also 
affect human health by increasing the risk of terminal illnesses (Kant 
2012; Akarslan and Demiralay 2015; The True Cost 2015). As a result 
more attention is paid to the selection process of dyes—natural and/or 
synthetic dyes, adapting and modifying synthetic dyes, finding new and 
less harmful auxiliaries, reducing water consumption and implementing 
measures (in industry and at government level) to reduce harmful efflu-
ent released into the local environment (Chhabra 2015; Van Berkel 2017; 
Irfan et al. 2018). Whilst investigating new processes and solutions is of 
vital importance, a key question that thus far lacks in investigation is 
what are the implications of removing the dye kitchen in its entirety from 
the textile supply chain process, an aspect that has been explored in 
this chapter.

5.2  Textile Colouration Techniques

Traditional textile colouration techniques involve the object being 
observed absorbing various wavelengths of visible light through the use of 
colourants, pigments and dyes. Whilst this is the most common manner 
in which light interacts with objects and the human eye perceives colour, 
it is also possible through structural colour (Nassau 2001; Shao et  al. 
2016). Structural colour works by the microscopic structure of the object 
scattering or reflecting various wavelengths of light resulting in the 
observer perceiving colour (Kinoshita 2008). Attempts have been made 
in the textile industry to mimic structural colour observed in nature, 
particularly those of certain species of butterfly and beetle (Jones 2017; 
Yavuz et al. 2018). To explain, in both the creative and scientific worlds, 
butterflies have fascinated many, due to their aesthetic properties. The 
Morphinae group, which contains the male Morpho butterfly, has gener-
ated great interest as it exhibits a vibrant iridescent blue on its wings. This 
genus has been extensively studied during the nineteenth and twentieth 
centuries (Walter 1895; Ghiradella 1991; Tabata et  al. 1996; Vukusic 
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et al. 1999) due to the nature of its complex scale structure and combina-
tion of optical processes to achieve an iridescent optical effect. When the 
wings of the Morpho butterfly are examined under a scanning electron 
microscope, they contain ground and cover scales. Each cover scale over-
laps a ground scale, and both scales align in rows with a specific amount 
of spacing between them (Kinoshita 2008; Saito et al. 2018).

Honing in even further on the structure of both the cover and ground 
scales, it becomes apparent that they contain a lamellar structure, which 
is often referred to as a Christmas tree or shelf-like structure. In the cover 
scales, these lamellar structures are attached to a thick base, whereas in 
the ground scale they are attached to a trabeculae, which is a connected 
series of rows (Kinoshita 2008). The cover scales provide thin-film inter-
ference. The combination of the cuticle-rich shelf-like structures and air- 
rich layers (between the shelf-like structures and the gap between the 
ground and cover scales) provides multilayer interference (Kinoshita 
2008; Saito et al. 2018).

Between each shelf structure there is a random height distribution. 
This is allegedly responsible for cancelling out any interference between 
neighbouring ridges and enables each structure to scatter the light inde-
pendently. The distance between each ridge also provides diffraction grat-
ing, which is partly attributed to generating the iridescent effect observed 
in this species of butterfly (Kinoshita 2008; Saito et al. 2018). The ground 
scale contains melanin, which is responsible for the absorption of the 
complementary colours and enhances the contrast of the blue colouring 
(Kinoshita 2008). A key question that emerges here is whether it would 
be possible to reproduce these naturally occurring optical processes in 
textiles, and thus be able to remove the dye kitchen from the textile 
supply chain.

One of the first companies that has managed to imitate the micro-
structure of the Morpho butterfly is the Japanese company Tejin (2010), 
naming their invention the Morphotex® fibre (Tejin 2010; Das et  al. 
2017). As previously indicated, the optical processes, such as thin-film 
and multilayer interferences, generated from the interaction of light with 
the lamellar structure on the surface of the wings of the butterfly, are 
responsible for generating the vibrant iridescent blue observed. The core 
of the Morphotex® fibre contains 61 alternate layers of nylon 6 and poly 
(ethylene terephthalate) (thereafter referred to as polyester) surrounded 
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by a polyester sheath. This creates a fibre with a multilayer interference 
core, responsible for the iridescence created by the fibre. By manipulating 
accurately the thickness of the nylon 6 and polyester layers in the fibre 
core, Teijin fibres have managed to successfully create these fibres to give 
a red, blue and green iridescence (Tejin 2010).

Kinoshita (2008) highlights that the polymers selected to create the 
Morphotex® fibre have relatively close refractive indices (1.60 for nylon 6 
and 1.55 for polyester) and the lack of vibrant iridescence can be 
 attributed to this closeness. A cross section of the Morphotex® fibre was 
observed under a scanning electron microscope (shown in Fig.  5.1). 

Fig. 5.1 (a) and (b) Scanning electron microscope images of Morphotex® fibre 
cross section
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A melt- spinning process, similar to that used in the formation of bicom-
ponent fibres, could have been used to create the fibre.

Bicomponent and microfibres are made from two different polymers, 
which either are extruded separately and then combined to make one 
fibre or are extruded together and combined as the fibres leave the spin-
neret. The most common of these structures are side-side and core-sheath. 
The purpose of manufacturing these types of fibres is due to the range of 
properties they can provide, aesthetically and/or functionally. The afore-
mentioned butterflies are not the only creatures that exhibit structural 
colour; the bodies and wings of various beetles showcase similar attri-
butes (Saito et al. 2018). However, the mechanisms responsible for caus-
ing the observer to perceive colour, differ from that of the wings of the 
male Morpho butterfly (e.g. Kinoshita 2008; Saito et al. 2018). To reiter-
ate this finding, the exoskeleton of the Chrysina gloriosa beetle (see 
Fig. 5.2) contains regularly spaced cells with a siloxane oligomer-based 
cholesteric liquid crystal. This enables the exocuticle to reflect left (anti-
clockwise) circularly polarized light (Sharma et al. 2009). The orientation 
of the molecules inside the liquid crystals is responsible for manipulating 
light and creating the phenomenon viewed by the observer.

Researchers have successfully coated textile fibres with cholesteric liq-
uid crystals (Lagerwall and Scalia 2012; Picot et  al. 2013; Kang et  al. 
2017). In the research conducted by Picot et al. (2013) a solution con-
taining cholesteric liquid crystals was spray-coated onto polyamide fibres, 
and then UV cured.

Picot et al. (2013) stated that cholesteric liquid crystals produce a fibre 
with intense and bright colours, due to the properties of these materials. 
These liquid crystals are independent of temperature as they are cross 
linked by free radical polymerisation. This implies that their colour can-
not change (Picot et al. 2013). Textile designers have explored ways of 
applying microencapsulated cholesteric liquid crystals onto garments and 
other textiles; however, the outcome from these explorations has been 
that their (textile design) colour is dictated by a change in temperature. 
Typically, these types of cholesteric liquid crystals have been used on bat-
teries and for medical applications. Textile designer Sara Robertson 
(2011) explored the use of heat as a design tool, silk screen printing these 
microcapsules onto textile substrates.
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Fig. 5.2 Photograph of the beetle Chrysina gloriosa. (a) The bright green colour, 
with silver stripes, seen with a left circular polarizer. (b) The green colour is mostly 
lost when seen with a right circular polarizer

Along with beetles and butterflies, inspiration for incorporating struc-
tural colour into textiles has also come from observing opal stones, using 
self-assembled colloidal photonic crystals. In a recent study, Yavuz et al. 
(2018) applied these materials to woven cotton fabric, with the result 
displaying different iridescence at different viewing angles. This work 
used monodisperse and spherically uniform nanospheres of poly (styrene- 
methyl methacrylate-acrylic acid) synthesized by soap-free emulsion 
polymerization and deposited by an electrostatic self-assembly technique 
onto a chitosan-cationized woven cotton fabric (Yavuz et  al. 2018). A 
further study conducted by Pursiainen et al. (2008) has managed to pro-
duce a stretchy material also inspired by structural colour in opals, with 
the colour of the material changing upon being stretched. Typically, 
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 previous films were susceptible to cracking; however, the aim of this 
research was to overcome this setback.

5.3  Concluding Remarks

This chapter was set out to explore whether it is possible to remove the 
dye kitchen from the textile supply chain, by looking at alternative modes 
of colouring fabrics. As indicated, mimicking nature and structures pres-
ent in the wings of male Morpho butterflies or beetle provides a new way 
of applying dyes to fabrics. Yet, some of the more traditional dyeing tech-
niques are still needed, as some of these examples mentioned previously 
required the use of a dark pigment or dye to absorb the remaining wave-
lengths of light that are not reflected. Thus, corresponding fibres or 
ground fabrics must be dyed either by exhaust/batch dyeing or padding. 
Therefore some may argue the use of synthetic dyestuffs to achieve these 
optical effects does not completely remove the use of the dye kitchen 
from the production process but rather alters it slightly whilst further 
providing new opportunities to researching colouring processes in nature. 
Although research in this area continues to grow, the benefits of combin-
ing this research with that exploring the adaptation and modification of 
synthetic dyes, and finding new and less harmful auxiliaries, cannot be 
overlooked. As trend forecasting shows, the need for brands to have the 
‘right’ colour for the right season ensures that fashion products are in 
trend and will only sell if customers are satisfied. Textile colour is there-
fore an important property and is required by the consumer; conse-
quently if current production methods have a detrimental impact on the 
environment, alternatives methods must be considered.
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