
The Attacker Does not Always Hold
the Initiative: Attack Trees
with External Refinement

Ross Horne1, Sjouke Mauw2, and Alwen Tiu3(B)

1 CSC, University of Luxembourg, Esch-sur-Alzette, Luxembourg
ross.horne@uni.lu

2 CSC/SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
sjouke.mauw@uni.lu

3 Research School of Computer Science, Australian National University,
Canberra, Australia

alwen.tiu@anu.edu.au

Abstract. Attack trees provide a structure to an attack scenario, where
disjunctions represent choices decomposing attacker’s goals into smaller
subgoals. This paper investigates the nature of choices in attack trees. For
some choices, the attacker has the initiative, but for other choices either
the environment or an active defender decides. A semantics for attack
trees combining both types of choice is expressed in linear logic and
connections with extensive-form games are highlighted. The linear logic
semantics defines a specialisation preorder enabling trees, not necessarily
equal, to be compared in such a way that all strategies are preserved.

Keywords: Attack trees · Linear logic · Extensive-form games ·
Game semantics

1 Introduction

An attack tree is a rooted labelled tree profiling the goals of an attacker. The
use of AND-OR trees for security modelling dates back to 1999, when Schneier
proposed attack trees as a simple and comprehensive way of representing security
scenarios and to allow for their quantitative analysis [36]. Since 1999, numerous
extensions of attack trees have been proposed. They augment the original model
with additional refinement operators [7,25,27] or support not only offensive but
also defensive behaviour [9,30,35]. An exhaustive overview of the existing attack
tree-based models can be found in [31].

In most established semantics for attack trees, notably a semantics based
on multisets [33], there is an implicit assumption that the attacker always has
the initiative. This worst case scenario for the defender is a realistic assumption
in traditional security scenarios, where the configuration of defensive measures
is typically static. This implicit assumption gives the attacker the advantage

c© Springer Nature Switzerland AG 2019
G. Cybenko et al. (Eds.): GraMSec 2018, LNCS 11086, pp. 90–110, 2019.
https://doi.org/10.1007/978-3-030-15465-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15465-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-15465-3_6

The Attacker Does not Always Hold the Initiative 91

that, whenever there is a choice to make between different avenues of attack, the
attacker has sufficient knowledge to control such choices.

In the interest of security, allowing the attacker to always retain the initiative
is undesirable. The defender may take the initiative by being aware of design deci-
sions affecting the security risk of a system; minimising the risk by pro-actively
closing down more damaging avenues of attack. Avenues can be closed down by
active policy choices, for example avoiding outdated operating systems without
ASLR; or inspecting workspaces to ensure sensitive information is not left unat-
tended. One of several more sophisticated ways of addressing this problem is by
Moving Target Defence [26], proposed, in a federal plan, as a methodological
approach to security breaking the asymmetry of the game between the attacker
and defender. Instead of the system defences being static, while the attacker
holds the advantage of being able to constantly adapt, the system defences can
also constantly change. Such constant changes can result in situations where
the attacker has insufficient knowledge to make an optimal choice. As a further
example, consider honey pots, where, by directing a potentially malicious soft-
ware to a sandbox, a network of defenders learns information about a network of
attackers rather than vice versa. Such pro-active and adaptive defence policies
can be categorised as intrusion tolerant approaches to system security [17].

As a simple policy scenario, where the initiative shifts in the favour of the
defender, consider for example the attack tree in Fig. 1 adapted from the first
attack-defence tree to appear in the literature [36]. The tree consists of goals that
are disjunctively refined, indicated by the branching of the tree. A disjunctively
refined node indicates that one of several sub-goals should be achieved in order
for the attacker to succeed in its goal. For example, to open the safe the attacker
can choose one of the sub-goals “pick lock”, “cut open safe” or “learn combo”.
For now we assume the attacker has the initiative for this decision, hence is able
to try any of these three options.

Now, in contrast to the root node, consider the node “learn combo”, which
is disjunctively refined into “find written combo” and “get combo from target”.
The question is whether the attacker has the luxury to resolve this choice. We
can say that this is a choice, but, arguably, a choice that is external to the
attacker. Suppose that managers take a proactive decision to counter this risk,
assessing that an attacker finding a combo written by an employee is not only
a serious risk but one that can be made unlikely by a clear company policy
and security inspections of the workplace. Thus an action such as “find written
combo” is an opportune event that, by policy, can be made more difficult for the
attacker to achieve. Later, new data may arrive, perhaps for a foreign branch
office, suggesting having employees susceptible to subversion is the greatest risk;
a risk that can also be dynamically countered by a pro-active policy decisions
by the defender, aware of the range of possible attacks.

We annotate the node “learn combo” with a box � to indicate that there
is a choice; but, by system design, a choice external to the attacker. The box
notation has several connotations: firstly, a box suggests the choice is treated as
a black box inside which the attacker cannot access; secondly, a box is typically

92 R. Horne et al.

open safe

pick lock cut open safe learn combo

find written combo get combo from target

threaten eavesdrop bribe

Fig. 1. Attack tree for opening a safe.

used for the external choice operator in models of concurrency [11]; thirdly, for
readers familiar with modal logic, there is a connection with the box modality in
the sense that the attacker must be prepared for all possible branches that may
arise, assuming, for external choices, the attacker does not know which branches
will be made unlikely by defensive measures.

The box suggests a simple extension of the methodology for using attack
trees as a tool for security risk analysis and system design. Given an attack
tree representing the potential attacks on a system, we observe each node where
a choice is made and ask the question: “can the system be designed, e.g., by
company guidelines or a moving target defence policy, such that the attacker
does not have sufficient knowledge to make an optimal choice?”

Identifying some choices as external to the attacker, subtly changes the quan-
titative analysis performed over an attack tree. For example, in the attack tree
adapted from Schneier, marking one node as external will never benefit the
attacker—the damage of an attack may be reduced and the cost to the attacker
may increase. By comparing the result of risk analysis with and without the
node marked as external we can assess the impact of concentrating resources on
a policy decision. We may wish to discover, for example, the percentage increase
in cost to the attacker incurred by a policy decision. For example, without any
pro-active policy, we may assess that the cheapest attack is to “find a writ-
ten combo” at the cost of $10 k outlay to the attacker. However, with a policy
avoiding the cheapest attack by which the combo can be learnt in the running
example, we may assess that if the cheapest option the attacker can choose is
to cut open the safe at the cost of $12 k, then we can conclude there is a 20%
increase in the cost to the attacker. This assessment is of course dependant on
data available on the attack scenario.

The Attacker Does not Always Hold the Initiative 93

The presence of external choices also demands a more refined semantics that
distinguishes moves by the attacker and the attacker’s external environment.
Sometimes the environment is the defender, but external choice may model
uncertainty inherent in the environment the attacker operates. The semantics
of external choices becomes particularly interesting when considering the notion
of “specialisation” [25] introduced for comparing attack trees that are not nec-
essarily equivalent. This paper introduces several semantics for attack trees: a
minimal extension of the standard multiset semantics [33]; a novel game seman-
tics [3,16,29]; and semantics based on linear logic [21]. Our use of the game
semantics is particularly novel since it reconnects a branch of game theory aris-
ing from the study of logic with quantitative game theory. We find that the linear
logic semantics preserves optimal strategies.

Outline. Section 2, for clarity, begins with a minimal attack tree model with
disjunctive refinement only. The section lays down a case for a semantics with
specialisation and how specialisation exposes the need for external refinement.
The semantics of external refinement is explored from the perspectives of sets.
Section 3 expands on the model in the previous section from the perspective of
game semantics and logic.

Remark on Conjunctive Refinement. Attack trees feature both conjunctive and
disjunctive refinement. However, this paper concerns only disjunctive refinement.
This choice is made for pedagogical reasons—to explore the new feature of exter-
nal refinement in a minimal setting. All semantics introduced in this paper can
be extended with conjunctive refinement, following the use of the multiplicative
connectives of linear logic in related work [25].

2 Specialisation for Attack Trees with Disjunctive
Refinement

This section considers a minimal fragment of the attack tree notation in which
we can explain the subtlety between choices that an attacker makes and choices
where the attacker does not necessarily have the power to make decisions.

Central to this development are the notion of action refinement, the refine-
ment of basic actions into attack trees consisting of several actions, and special-
isation [25]. Attack trees are expected to evolve as new attacks are considered,
or larger attack trees are pruned down to just the relevant actions. In such
scenarios, a specialisation order can be used to ensure that certain properties
are preserved by the specialisation, e.g., quantitative attribute values associated
with two trees are correlated in some way.

2.1 Attack Trees with Disjunctive Refinement only

We begin with perhaps the simplest possible attack tree model—attack trees
with disjunctive refinement only. Such trees consist of basic actions represent-
ing goals of an attacker, such as “disrupt network” or “kill node”, and nodes

94 R. Horne et al.

that are disjunctively refined into sub-goals. For example the first tree in Fig. 2,
disjunctively refines “disrupt database”, by indicating at least one of “disrupt
network” or “kill node” should be achieved.

disrupt database

kill master node kill data node

disrupt database

disrupt network kill node

kill master node kill data node
disrupt database

disrupt network kill node
refine “kill node” prun e “disrupt net work”

Fig. 2. Three attack trees: the middle tree obtained from the tree on the left by action
refinement ; the third tree on the right a specialisation of the tree in the middle.

A central idea in the attack tree methodology is action refinement. For exam-
ple, “kill node” can be refined disjunctively to “kill master node” or “kill data
node”. This action refinement transforms the first tree in Fig. 2 to the second
tree.

Perhaps the simplest semantics is to interpret each basic node as a singleton
set and disjunction using union (the labels at nodes are just helpful annotations).
Note this is semantically equivalent to the established multiset semantics [33]
in this simplified scenario where there are no conjunctive nodes. Conjunctive
refinement, representing when multiple sub-goals should all be achieved in order
to achieve a goal (essentially an attack vector) is omitted. We know how to
reintroduce conjunctive refinement into this model at a later stage, but we focus
this study on choices only.

Under this set semantics, the first two trees in Fig. 2 are interpreted simply
by the following sets.

first tree: {“disrupt network”, “kill node”}
second tree: {“disrupt network”, “kill master node”, “kill data node”}

Notice that the sets are different hence the trees are neither equivalent in this
simple semantics.

Now consider the third tree in Fig. 2, which is also clearly not equivalent to
the second tree in Fig. 2. However, for any interpretation of basic actions as sets
those trees are related by subset inclusion, as follows.

{“kill master node”, “kill data node”}
⊆ {“disrupt network”, “kill master node”, “kill data node”}

The Attacker Does not Always Hold the Initiative 95

In this situation, where trees are related by subset inclusion, we say the tree
with the smaller denotation specialises the other.

Specialisation has several useful applications in the attack tree methodology.
Typically an attack tree is not a fixed static specification. It evolves as domain
knowledge is added to the tree, or knowledge is pruned from the tree to focus on
the relevant part of an attack [34]. In some use cases, multiple trees can be com-
bined to model a more complex system. In other use cases, differences between
two attack trees for the same scenario but generated by different agents may
need to be reconciled, while showing the semantics of one or more attack trees
is reflected in the combined tree. Previously the idea of specialisation has been
explicitly explored in the setting of attack trees with sequential refinement [25].

2.2 Distinguishing Disjunctive from External Refinement Using
a Box Annotation

We extend attack trees by allowing disjunctive refinement to be annotated with
a box. Consider the attack tree in Fig. 3, differing from the second attack tree
in Fig. 2 only with respect to the box annotation.

disrupt database

disrupt network kill node

kill master node kill data node

Fig. 3. Attack tree with a node labelled as external.

The box annotation indicates that the choice between the two sub-goals,
namely “kill master node” and “kill data node”, is external to the attacker and
is instead made by the environment or an implicitly modelled defender of the
system. To give a concrete scenario, the attacker can choose between setting
out to disrupt the network or kill a node. However, we assume that the system
has been designed such that the attacker cannot reliably distinguish between
master nodes and data nodes hence, in the sub-tree “kill node”, does not have
the luxury to choose. Throughout this work we assume the limit case where the
attacker must assume the worst case scenario for the attacker, implicitly by an
active defender stacking the odds against the attacker.

Notice that this scenario suggests that there is an implicit system design
decision at that point. This, we claim, can be used to model the impact of a

96 R. Horne et al.

policy decision in the system design, such as a moving target defence strat-
egy, explicitly built into the configuration of the network to keep the defender
guessing—breaking the asymmetry between the attacker and defender.

To help understand the impact of annotating a node as external consider
the notion of an attribute domain [33]. An attribute domain simply determines
a way of propagating quantities through attack trees. For example, we might
want to calculate the maximum damage (in the running scenario, say seconds of
downtime) the attacker can induce according to an attack tree. Calculations are
performed with respect to a valuation mapping basic actions to values, such as
the following.

“disrupt network” �→ 20, “kill master node” �→ 100, “kill data node” �→ 2

If we consider the central attack tree in Fig. 2, without the box annotation, the
maximum damage, in the previous section, is simply the maximum of all values
assigned to basic actions, i.e., maximum damage 100 s downtime.

The difference with the same attack tree with the box annotation, in Fig. 3, is
that the external refinement is interpreted by minimum. Recall a moving target
defence strategy has been explicitly implemented to make the more damaging
outcome unlikely. Thus, under the same valuation, for the same tree but with the
box annotation, the maximum damage is calculated to max{20,min{100, 2}}, i.e.
maximum damage 20 s downtime.

More subtly, observe that the 20 s of downtime corresponds to the situation
where the attacker decides to take the action “disrupt network”. This choice can
be explained in term of a game between two players—the attacker and its envi-
ronment (sometimes, but not always, an active defender). The attacker aims to
achieve maximum damage, while the environment aims to minimise damage. Ini-
tially the attacker has two choices, between “disrupt network” and the sub-tree
named “kill node”. However, the sub-tree “kill node” consists of two alternatives
“kill master node” and “kill data node” that are in control of the environment.
A perfect play for the environment (or defender) in the sub-tree “kill node”, is
to play the least damaging option. For the above example valuation, the least
damaging option is “kill data node”. Thus the optimal strategy for the attacker
is to play the action “disrupt network”, since if it plays the sub-tree “kill node”
then the defender can be assumed to take the least damaging option “kill data
node”, resulting in less damage than 20 s downtime.

In the above example, the attacker has imperfect information about some
moves in the game. In particular, those moves annotated with a box. Further-
more, for any valuation, the attribute domain gives the same answer as the
game explanation, e.g., changing “kill data node” to damage 300, will result in
an optimal play, where the attacker selects sub-tree “kill node” then the defender
chooses “kill master node” resulting in a damage of 100 s downtime. The next
sections make the underlying game semantics precise.

Note, given sufficient data, alternatively such scenarios can be modelled prob-
abilistically, where uncertainty in the environment does not exclude the worst
option, only making it less likely. This can lead to more precise results. However,

The Attacker Does not Always Hold the Initiative 97

we argue the approach of simply identifying external choices, is simpler, since no
data on probabilities is required. Furthermore, all data has inherent uncertainty,
hence risk analysis can at best provide ballpark figures. For example, the high
level information a risk analyst is likely to appreciate from the analysis in this
section is, as follows: “the proposed moving target defence policy, can result in
reducing database down time from an attack by up to 80% (20 s downtime rather
than 100 s)”. Such an improvement would likely sway the security policy of an
organisation.

2.3 A Distributive Lattice Semantics Covering External Refinement

Perhaps the simplest semantics that we can use to make the intuition of exter-
nal choice precise is based on distributive lattices. In order to define a suitable
distributive lattice model of attack trees (still without conjunctive refinement),
we follow a standard construction for free finite distributive lattices, due to
Birkhoff [8]. We require a function, the prime-irreducible closure π, that maps
any finite non-empty set to its greatest prime-irreducible subsets. A prime-
irreducible set is simply a set W such that if x, y ∈ W then neither x ⊆ y
nor y ⊆ x. Thereby only maximal sets are recorded in the prime-irreducible
closures, for example π({{a} , {a, b}}) = {{a, b}}.

Each basic action is interpreted as a prime-irreducible set, external refinement
is interpreted as the prime-irreducible closure of the union of two sets, while
disjunctive refinement is interpreted by the prime-irreducible closure of the point-
wise union of sets of sets, where point-wise union is defined as follows:

V + W = {x ∪ y : x ∈ V, y ∈ W}

In order to discuss disjunctive attack trees, it is convenient to have the following
grammar.

t := a basic actions
| t � t disjunctive refinement (as in standard attack trees)
| t � t external refinement (nodes annotated with �)

Basic actions record the labels at the leaves of attack trees, such as “disrupt
network”. Note labels at nodes, when attack trees are represented graphically,
are not recorded in this grammar, since they are generally treated implicitly;
although recent work has also considered grammars where the labels at nodes
are remembered during tree transformations [20].

Definition 1. The “distributive lattice semantics” is defined by the following
mapping, where ϑ is any valuation mapping basic actions to non-empty prime-
irreducible sets.

Idl
ϑ (a) = ϑ(a) Idl

ϑ (t � u) = π
(
Idl

ϑ (t) ∪ Idl
ϑ (u)

)
Idl

ϑ (t � u) = π
(
Idl

ϑ (t) + Idl
ϑ (u)

)

98 R. Horne et al.

Note it is standard in model theory to consider all interpretations of atoms,
as achieved by the considering all mapping ϑ in the above semantics. From an
attack tree perspective considering all interpretations, has the effect of ensuring
the semantics is robust under all possible action refinements (replacing of basic
actions by more complex attack trees). This issue is less significant for attack
trees with disjunctive refinement, but becomes significant for extension of this
model, e.g., where conjunctive refinement and external refinement co-exist. Thus
we adopt a good model-theoretic practices to facilitate extensions.

In this distributive lattice model, based on certain sets of sets, the outer level
set lists the choices that the environment has, while the inner level sets list the
choices that the attacker has after the environment chose one set from the outer
level set. The distributive lattice specialisation preorder is defined as follows.

Definition 2 (distributive lattice specialisation). Given two disjunctive
attack trees t and u, t specialises u, written t � u whenever, for all valuations
ϑ, and for all y ∈ Idl

ϑ (u), there exists x ∈ Idl
ϑ (t) such that x ⊆ y. I.e., every set

in the denotation of u covers some set in the denotation of t.

(a)

disrupt database

disrupt network kill master node

disrupt database

disrupt network kill node

kill master node kill data node (b)
kill node

kill master node kill data node

Fig. 4. Three attack trees related by distributive lattice specialisation: the attacker has
the least advantage in the tree (a), and the greatest advantage in tree (b). The tree in
Fig. 3 lies between these trees.

According to the above definition the trees in Fig. 4 are related by specialisation.
The trees in this figure have the following respective denotations, under one
possible valuation ϑ(“kill master node” �→ {{master}}, ϑ(“kill data node” �→
{{data}}, and ϑ(“disrupt network” �→ {{network}}. The central denotation in
this chain is for the tree in both Figs. 3 and 4.

Fig. 4(a) {{master} , {data}} � {{network, master} , {network, data}} Fig. 3
� {{network, master}} Fig. 4(b)

The above inequalities hold under any possible valuation ϑ mapping basic actions
to non-empty prime-irreducible sets.

The Attacker Does not Always Hold the Initiative 99

Observe, under the maximum damage attribute domain and example valu-
ation defined in previous sections, the maximum damage increases from left to
right according to the specialisation order. For the trees in Figs. 4(a), 3 and 4(b),
the maximum damage is respectively 2 s, 20 s and 100 s downtime. Furthermore,
we know that for any valuation the same inequalities will be preserved.

The above observations leads us to the following compatibility criterion:

An attribute domain is compatible with a specialisation relation whenever
for all pairs of trees related by specialisation, there is a correlation between
the values at the root of the trees, for any assignment of values to basic
actions at the leaves.

The above is a criterion, not a definition, that can be instantiated with any notion
of attack tree, specialisation and correlation. The following is a definition specific
to disjunctive attack trees and preorders for specialisation and correlation.

Definition 3. An attribute domain for disjunctive attack trees D = (D, f, g)
is given by domain D ordered by ≤, where f and g are binary operators. The
interpretation in that domain is defined as follows, for any valuation ϑ mapping
basic actions to D:

ID
ϑ (a) = ϑ(a) ID

ϑ (t � u) = f(ID
ϑ (t) , ID

ϑ (u)) ID
ϑ (t � u) = g(ID

ϑ (t) , ID
ϑ (u))

An attribute domain D is compatible with a specialisation �, whenever for all
attack trees t and u such that t � u, and all valuations ϑ, we have ID

ϑ (t) ≤ ID
ϑ (u).

A concrete example of an attribute domain compatible with the distributive lat-
tice semantics is the maximum damage attribute domain used in examples so
far (N,min,max). Further examples include attribute domains based on classi-
cal propositional logic and de Morgan algebras (e.g. three value logic indicating
low, medium and high risk). The product of distributive lattices is a distributive
lattice. Thus, multi-parameter attribute domains [5,12,28], such as the product
of the maximum damage attribute domain and an attribute domain indicating
whether an attack is possible using classical propositional logic, are also com-
patible with the distributive lattice semantics.

In the next section, we observe that the distributive lattice semantics is sim-
ply a way of representing normal form games.

3 A Game Semantics for Disjunctive Attack Trees

As suggested informally, for examples presented so far, the interplay between dis-
junctive and external refinement, respectively choices made by the attacker and
the environment of the attacker, can be considered as an extensive-form game.
An extensive-form game is described as a tree of choices annotated to indicate
whether the proponent or opponent makes the choice—where the proponent and
opponent are respectively the attacker and its environment (or defender) in the
setting of disjunctive attack trees. Extensive-form games can be seen as a natural

100 R. Horne et al.

disrupt database

disrupt master node

disrupt network kill master node

disrupt data node

disrupt network kill data node

Fig. 5. An attack tree equivalent under the distributive lattice semantics to the tree
in Fig. 3; but strictly more generous to the attacker under two-player simulation
(Definition 4).

extension of the distributive lattice semantics, preserving more structure about
the knowledge of the attacker and defender at various points in the game.

To see how the distributive lattice semantics forgets some of the
structure of an extensive-form game consider the tree in Fig. 5, which
has the following denotation, identical to the denotation of the tree in
Fig. 3: {{network,master} , {network, data}}, considered under the previously
described mapping of basic actions to non-empty prime-irreducible sets:
ϑ(“kill master node” �→ {{master}}, ϑ(“kill data node” �→ {{data}}, and
ϑ(“disrupt network” �→ {{network}}.

If we consider only the optimal strategy for the games, it is fine to consider the
trees in Figs. 3 and 5 to be equivalent. In the optimal strategy for the tree in Fig. 5
the defender gets to move first, and will ensure that the least damaging choice
is taken—the sub-tree labelled “disrupt data node” under the running example
valuation. In the sub-game “disrupt data node”, the attacker chooses “disrupt
network” or “kill data node”, taking the most damaging option—“disrupt net-
work” according our running attribute domain. This gives the same result, 20 s
downtime—the same answer as for the optimal game on the tree in Fig. 3.

An explanation for why the two attack trees described are equivalent is that
optimal strategies pick out the minimal and maximal strategies, depending on
which player holds the initiative. Minimum and maximum distribute over each
other, hence an extensive-form game can always be normalised into a game where
both players simultaneously declare their optimal position—a normal form game.
If we consider disjunctive attack trees to be extensive-form games, then the
distributive lattice semantics can be regarded as capturing the normal forms of
such games. In such a setting, the main argument for permitting extensive-form
games is data-structures for extensive form game may be exponentially smaller
than for normal-form games.

The Attacker Does not Always Hold the Initiative 101

3.1 Sub-optimal Strategies and a Games Semantics for Disjunctive
Attack Trees

A subtle argument for preserving the structure of play in an attack tree, based on
semantics, is we may desire to preserve not just the meaning of optimal strategies,
but also suboptimal strategies, where one player makes a suboptimal choice, or
dually a lucky choice. Consider the trees in Figs. 3 and 5 as extensive-form games,
presented syntactically by the respective terms related by the inequality below.

network � (master � data) � (network � master) � (data � network)

We can say that the tree on the left can be simulated (notation: �) by the tree
on the right as follows. If the attacker chooses “disrupt network” (abbreviated
network) on the left, “disrupt network” is still enabled for the attacker on all
paths on the right. If the attacker chooses master �data on the left, then for all
paths the defender can choose in (network � master)� (data � network), there
is a corresponding path for the defender on the left where master is enabled and
another path where data is enabled.

Notice the switching from the attacker to the defender and back in the infor-
mal explanation of the above example. This two-player simulation game can be
defined by the following coinductive definition.

Definition 4 (two-player simulation). Given a disjunctive attack tree t, the
moves of the attacker t =⇒A t′ are given by all terms t′ reachable from t by maximal
sequences of rewrites of the form t1 � t2 −→ ti, where i ∈ {1, 2} (or t =⇒A t if
there is no such transition). Dually, the moves of the defender t =⇒D t′ are given
by terms t′ reachable by maximal sequences of transitions of the form t1�t2 −→ ti,
where i ∈ {1, 2} (or t =⇒D t if there is no such transition).

A two-player simulation R is a relation between attack trees such that, when-
ever t R u the following hold:

– If t =⇒A t′ and u =⇒D u′ then there exist t′′ and u′′ such that t′ =⇒D t′′

and u′ =⇒A u′′ and t′′ R u′′.
– If neither player can move in either tree, t and u are the same basic action.

We say a tree t is simulated by u, written t � u whenever there exists a two-
player simulation R such that t R u.

Example of Two-Player Simulation. Consider again the running example. To
verify network � (master � data) � (network � master) � (data � network)
holds, observe the pair is contained in a two-player simulation S containing the
following pairs.

network � (master � data) S (network � master) � (data � network)
master S master network S network data S data

To see that the above relation is a two-player simulation consider the four initial
moves:

102 R. Horne et al.

1. Consider when the attacker moves in the first tree to network and the
defender moves in the second tree to network � master. This pair of moves
can be matched by the move network � master =⇒A network, reaching the
pair network S network.

2. The case where the attacker moves to network in the first and defender moves
to data � network in the second is similar to the first case.

3. The attacker moves to master�data in the first tree and the defender moves
to network � master is the second tree. This pair of moves can be matched
by transitions master � data =⇒D master in the first tree and network �
master =⇒A master in the second tree. Since master S master we are done.

4. The final case, where the attacker moves to master � data in the first tree
and the defender moves to network � master is the second tree, is similar to
the third case.

Each pair in the simulation can be considered as a reachable pair of sub-games.
In each pair of sub-games, optimal strategies remain correlated, even if a player
made a sub-optimal choice in order to reach that sub-game. To see this, consider
all sub-games, in the relation S under any distributive attribute domain and any
valuation. The value, e.g., maximum damage, on the left is always less than or
equal to the value on the right.

Another way to understand the two-player simulation intuitively is that the
attacker plays according to the first board, while the defender plays according
to the second board. If the actual attack scenario is the first board the defender
can still perform its defences, and, symmetrically, if the actual attack scenario is
the second board the attacker can still perform its attack. This indicates that in
the first board, the attacker may be more restricted than in the second board,
and, symmetrically, in the second board the defender may be more restricted
than in the first board.

Stated in other terms: no matter what happens, the attacker can always be at
least as effective in the attack tree on the right of a 2-player simulation relation,
i.e., according to the tree in Fig. 5 in the running example, rather than the tree
in Fig. 3.

A Counter-Model for a Two-Player Simulation. In contrast, there is no two-
player simulation in the opposite direction. That is (network � master) �
(data � network) is not simulated by network � (master � data). To see why,
observe initially the attacker cannot move in the first tree, nor can the defender
move in the second tree. This identity initial move can be followed up by four
possible moves to chose from.

1. In this first case, master � network is not simulated by network, since if
the attacker makes the move master �network =⇒A master, this cannot be
matched by network.

2. In the second case, for reasons similar to the first case, data�network is not
simulated by network.

3. In the third case, network�master is not simulated by master�data. To see
why, observe that if the attacker makes move network�master =⇒A master

The Attacker Does not Always Hold the Initiative 103

and the defender makes move master � data =⇒D data, clearly master and
data are not equal in all models.

4. In the fourth case, for reasons similar to the third case, network �data is not
simulated by master � data.

The above reasoning is independent of any valuation in a particular attribute
domain. The above reasoning is satisfied by any semantics compatible, according
to compatibility criterion, with respect to the specialisation relation defined by
two-player simulation. However, we can give a concrete counter-model explained
below.

If we consider a multi-parameter attribute domain, for example the product
of maximum damage and whether an attack is possible, we can see that in each
of the four cases above there is a valuation where the attacker has the initiative
on the left but cannot maintain the initiative on the right. In concrete terms,
consider the following valuation:

network �→ (5, false), master �→ (20, false) data �→ (5, true)

We can now calculate the optimal strategy using this distributive attribute
domain and valuation in each of the four cases above. We get the following
inequalities for the respective cases.

1. For master � network and network, we have (20, false) > (5, false).
2. For data � network and network, we have (5, true) > (5, false).
3. For network � master and master � data we have (20, false)
= (5, true).
4. For network � data and master � data we have (5, true)
= (20, false).

Thus in none of the pairs of sub-games enumerated, is it the case that the
valuation on the left is less than or equal to the valuation on the right. Thus the
correlation between the optimal strategies is broken in the sub-games.

An Example Specialising Disjunctive Refinement to External Refinement. As
another example, observe the tree network � (master � data), from Fig. 3, is
simulated by tree network �master � data where external refinement is relaxed
to disjunctive refinement, i.e., the middle tree in Fig. 2.

Initially, the attacker moves in the first tree to reach either network or
master � data. In response to the former move, network can be matched by
a move by the attacker on the second tree to network. The later move can be
matched by the defender making move master � data =⇒D master in the first
tree and the attacker making the move master�data =⇒A master in the second
tree. Thus the relation T , defined as follows, is a two-player simulation.

network � (master � data) T network � master � data
network T network master T master

Next we provide a proof system where implication coincides with simulation.

104 R. Horne et al.

3.2 Specialisation Expressed Using Additive Linear Logic

We provide a brief introduction to the additive fragment of linear logic [21],
which is used to logically characterise 2-player simulation on disjunctive attack
trees. A proof system for additive linear logic, ALL, is given in Fig. 6. Rules are
expressed in the sequent calculus, where a sequent, of the form � Δ, where Δ is a
multiset of propositions (thus permitting comma separated formulae to exchange
position).

Linear negation, indicated by an overline, is a synthetic operator distinct from
classical negation. Additive disjunction, P ⊕Q (called “plus”), has a De Morgan
dual additive conjunction, P &Q (called “with”), such that P & Q = P ⊕Q and
P ⊕ Q = P &Q. All negations can be pushed to the atomic propositions a where
a = a.

Fig. 6. A sequent calculus for Additive Linear Logic.

If we desire to prove that P implies Q, written P � Q, we search for a proof of
the sequent � P ,Q. For example, the axiom states that a basic action specialises
itself. Also, the following is a proof of showing that with (&) distributes in one
direction over plus (⊕), i.e. a ⊕ (b & c) � (a ⊕ b) & (a ⊕ c).

axiom
� a, a

⊕
� a, a ⊕ b

axiom
� a, a

⊕
� a, a ⊕ c

&
� a, (a ⊕ b) & (a ⊕ c)

axiom
� b, b

⊕
� b, a ⊕ b

⊕
� b ⊕ c, a ⊕ b

axiom
� c, c

⊕
� c, a ⊕ c

⊕
� b ⊕ c, a ⊕ c

&
� b ⊕ c, (a ⊕ b) & (a ⊕ c)

&
� a & (b ⊕ c), (a ⊕ b) & (a ⊕ c)

The linear implication (a & b) ⊕ (a & c) � a & (b ⊕ c) also holds by a similar
proof. However, take care that, unlike classical logic which defines a distributive
lattice, the converse implications do not hold. Thus linear logic preserves more
structure regarding how operators are nested, as required to preserve the sub-
games of an extensive-form game explained in the previous section.

We now define a linear logic semantics by using the following embedding of
disjunctive attack trees as propositions in additive linear logic.

�t � u� = �t� ⊕ �u� �t � u� = �t� & �u� �a� = a

In this semantics, specialisation is defined by the provable linear implications.
For example, by the proof above we have the following specialisation.

�network � (master � data)� � �(network � master) � (data � network)�

The Attacker Does not Always Hold the Initiative 105

Notice that the above example was already established by two-player simulation
S in the previous section.

As another example, we have the following implication.

�network � (master � data)� � �network � master � data�

This implication, demonstrating a specialisation between attack trees, is verified
by the following proof in the sequent calculus.

� network, network
axiom

� network, network ⊕ (master ⊕ data)
⊕

� master,master
axiom

� master,master ⊕ data
⊕

� master ⊕ data,master ⊕ data
⊕

� master ⊕ data, network ⊕ (master ⊕ data)
⊕

� master ⊕ data, network ⊕ (master ⊕ data)
⊕

� network &
(
master ⊕ data

)
, network ⊕ (master ⊕ data)

&

The above proof also corresponds to a two-player simulation presented previ-
ously.

Logically speaking, the following theorem is a soundness and complete-
ness result, checking, for any disjunctive attack tree, there is a correspondence
between provable implications and two-player simulations.

Theorem 1. Given disjunctive attack trees t and u, � �t� � �u� if and only if
t � u.

The above theorem follows from the soundness and completeness of an estab-
lished game semantics for ALL [16]. Two-player simulation is simply a reformu-
lation of ALL games directly on attack trees. The proof involves a more refined
but equivalent multi-focussed [4,13] proof system for ALL, from which strategies
are extracted.

Recall that two-player simulation preserves optimal strategies in all sub-
games. The following proposition follows, since the distributive lattice semantics
preserves the optimal strategy for the main game tree, which is obviously also a
sub-game.

Proposition 1. Given disjunctive attack trees t and u, if t � u then t � u.

As demonstrated previously using Figs. 3 and 5, the distributive semantics does
not preserve sub-optimal strategies, hence the converse does not hold.

106 R. Horne et al.

4 Related and Future Work

We highlight related work in two directions, both connecting games and attack
trees.

Related Work on Multiplicative-Additive Games and Game Semantics. Connec-
tions between dialogue games and logic are as old as the study of logic itself. For
linear logic, the pioneering work on games semantics, due to Blass [10], suffered
from compositionality issues that were fixed for the multiplicative fragment [1].
For MALL, the first satisfactory model proposed is based on a “truly concur-
rent” game semantics [3] where both players may simultaneously be active in
different parts of the arena in which the game is played. Game models for an
“intuitionistic” restriction of MALL have been developed [32] based on the idea of
focussing. Focussing [4], exploits the fact that during proof search, half the rules
are “invertible” meaning there is no need to backtrack once a decision is made.
The two-player simulations in this work are based on a “neutral” approach to
game semantics [16] for MALL based on multi-focussing [13], which disposed of
the “intuitionistic” restriction. We have recreated this game semantics directly
over attack trees, leading to a more direct but, in the case of conjunctive refine-
ment, less symmetric definition.

Previous work on specialisation [25] of attack trees with sequential refine-
ment [27] employs an extension of linear logic, called MAV [24], modelling sequen-
tiality using a non-commutative operator. Since MAV extends MALL, external
refinement and sequential refinement can co-exists in MAV. Defining a game
semantics for MAV however remains an open problem. Game semantics, distinct
from MALL games, have been applied to other security problems [2,15,18]

Related Work on Game Theory Applied to Attack Trees. Models capturing a
game-strategic interaction between the attacker and the defender in attack trees
have been noted previously. In [29], for instance, a relation between the proposi-
tional semantics of attack-defence trees and two player, binary, zero-sum games
has been established. It shows that the two models are equivalent, however this
result only applies to the problem of the satisfiability of a security scenario.
In [23], Hermanns et al. lift the zero-sum assumption and consider three-valued
logic (undecided, won by the attacker, won by the defender) to analyse the secu-
rity scenarios using attack-defence diagrams. Attack-defence diagrams represent
a game between an attacker and a defender competing with each other to swing
the game from ‘undecided’ to ‘won’ by one of them. These diagrams however,
have much richer structure than ADTrees – they are directed graphs handling
cyclic behaviours, and capture quantitative information as well as dependencies
between actions.

Several other game-based approaches to analysing security scenarios mod-
elled by attack trees. In [6], ADTrees are transformed into stochastic two-player
game and probabilistic model checking techniques are used to answer questions
on the probability of successful attacks, with respect to various constraints, such
as time. Model checking, and more precisely timed automata and the Uppaal

The Attacker Does not Always Hold the Initiative 107

tool, has also been used for the analysis of ADTrees [19]. The particularity of
this framework is that it assumes that the defender acts only once. At the very
beginning of the scenario, he selects a set of possible countermeasures to be
implemented and the objective of the analysis is to find the most optimal strat-
egy (from the quantitative perspective) of the attacker in this fixed setting. Yet
another approach based on two-player Stackelberg stochastic games has also
been proposed [37]. Their analysis is based on converting attack-response tree
to security games, in order to evaluate the effectiveness of intrusion tolerance
engines.

Future work will illustrate the subtitles of models combining external refine-
ment and conjunctive refinement. Future work also includes reconciling the
semantics in the current paper with the above probabilistic approaches to
games, with the objective of defining a notion of specialisation that preserves
“mixed” strategies and probabilistic attribute domains. Probabilities can also be
approached from the perspective of logic and game semantics [14].

5 Conclusion

The contribution of this paper is a minimal methodology for analysing the impact
of a pro-active security policy where some choices are external to the attacker.
External choices are modelled by annotating some disjunctive refinements in
an attack tree with a box �. The methodology is made precise by developing
two semantics, formalising the key observation that breaking the asymmetry in
attack scenarios exposes a game between moves by an attacker and its environ-
ment.

This paper highlights advantages particular to the semantics defined by an
embedding in MALL. The semantics based on ALL, Fig. 6, admits a decidable spe-
cialisation preorder for comparing trees not necessarily equivalent, with O(mn)
time-complexity [22], where m and n are the sizes of the two trees being com-
pared. The specialisation preorder can be characterised (Theorem 1) by a game
semantics (Definition 4) unfolding the extensive-form game underlying an attack
tree, such that all strategies are preserved. Specialisation respects (Proposition 1)
a more obvious semantics based on distributive lattices (Definition 2), preserv-
ing optimal strategies only. Recall that, without a semantics, attack trees can be
interpreted differently by tools, possibly unpredictably affecting the quantitative
analysis of attacks.

Acknowledgment. Horne and Tiu receive support from MOE Tier 2 grant
MOE2014-T2-2-076 and the National Research Foundation Singapore under its
National Cybersecurity R&D Program (Award No. NRF2014NCR-NCR001-30). Mauw
received funding from the Fonds National de la Recherche Luxembourg, grant
C11/IS/1183245 (ADT2P), and the European Commissions Seventh Framework Pro-
gramme (FP7/2007–2013) under grant agreement number 318003 (TREsPASS).

108 R. Horne et al.

References

1. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative
linear logic. J. Symbolic Logic 59(2), 543–574 (1994). https://doi.org/10.2307/
2275407

2. Abramsky, S., Jagadeesan, R.: Game semantics for access control. In: Proceedings
of the 25th Conference on Mathematical Foundations of Programming Semantics
(MFPS 2009) Electronic Notes in Theoretical Computer Science, vol. 249, pp.
135–156 (2009). https://doi.org/10.1016/j.entcs.2009.07.088

3. Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: 14th
Annual IEEE Symposium on Logic in Computer Science LICS, Trento, Italy, 2–5
July 1999, pp. 431–442. IEEE Computer Society (1999). https://doi.org/10.1109/
LICS.1999.782638

4. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

5. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7 6

6. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: 2016 IEEE 29th Computer Security Foundations Sym-
posium (CSF), pp. 105–119. IEEE Computer Society (2016). https://doi.org/10.
1109/CSF.2016.15

7. Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 83–102.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 7

8. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937). https://doi.org/
10.1215/S0012-7094-37-00334-X

9. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense trees for economic evaluation of
security investments. In: First International Conference on Availability, Reliability
and Security (ARES 2006), pp. 416–423. IEEE Computer Society (2006). https://
doi.org/10.1109/ARES.2006.46

10. Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1), 183–220
(1992). https://doi.org/10.1016/0168-0072(92)90073-9

11. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833

12. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice
of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS
2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/
10.1007/11962977 19

13. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing.
In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol.
273, pp. 383–396. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-
387-09680-3 26

14. Danos, V., Harmer, R.S.: Probabilistic game semantics. ACM Trans. Comput.
Logic (TOCL) 3(3), 359–382 (2002). https://doi.org/10.1145/507382.507385

15. Debbabi, M., Saleh, M.: Game semantics model for security protocols. In: Lau,
K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 125–140. Springer,
Heidelberg (2005). https://doi.org/10.1007/11576280 10

16. Delande, O., Miller, D., Saurin, A.: Proof and refutation in MALL as a game. Ann.
Pure Appl. Logic 161(5), 654–672 (2010). https://doi.org/10.1016/j.apal.2009.07.
017

https://doi.org/10.2307/2275407
https://doi.org/10.2307/2275407
https://doi.org/10.1016/j.entcs.2009.07.088
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1007/978-3-662-46666-7_6
https://doi.org/10.1109/CSF.2016.15
https://doi.org/10.1109/CSF.2016.15
https://doi.org/10.1007/978-3-319-66402-6_7
https://doi.org/10.1215/S0012-7094-37-00334-X
https://doi.org/10.1215/S0012-7094-37-00334-X
https://doi.org/10.1109/ARES.2006.46
https://doi.org/10.1109/ARES.2006.46
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1145/828.833
https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1145/507382.507385
https://doi.org/10.1007/11576280_10
https://doi.org/10.1016/j.apal.2009.07.017
https://doi.org/10.1016/j.apal.2009.07.017

The Attacker Does not Always Hold the Initiative 109

17. Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed computing
systems. In: Proceedings of 1991 IEEE Computer Society Symposium on Research
in Security and Privacy, pp. 110–121, May 1991. https://doi.org/10.1109/RISP.
1991.130780

18. Dimovski, A.S.: Ensuring secure non-interference of programs by game semantics.
In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 81–96. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11851-2 6

19. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen,
D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M.,
Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44878-7 3

20. Gadyatskaya, O., Jhawar, R., Mauw, S., Trujillo-Rasua, R., Willemse, T.A.C.:
Refinement-aware generation of attack trees. In: Livraga, G., Mitchell, C. (eds.)
STM 2017. LNCS, vol. 10547, pp. 164–179. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68063-7 11

21. Girard, J.-Y.: Linear logic. Theoret. comput. Sci. 50(1), 1–101 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

22. Heijltjes, W., Hughes, D.J.: Complexity bounds for sum-product logic via additive
proof nets and petri nets. In: 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp. 80–91. IEEE
Computer Society (2015). https://doi.org/10.1109/LICS.2015.18

23. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp.
163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-
0 9

24. Horne, R.: The consistency and complexity of multiplicative additive system vir-
tual. Sci. Ann. Comput. Sci. 25(2), 245 (2015). https://doi.org/10.7561/SACS.
2015.2.245

25. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on
linear logic. Fund. Inform. 153(1–2), 57–86 (2017). https://doi.org/10.3233/FI-
2017-1531

26. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, vol. 54. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0977-9

27. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

28. Jiang, R., Luo, J., Wang, X.: An attack tree based risk assessment for location
privacy in wireless sensor networks. In: WiCOM, pp. 1–4 (2012). https://doi.org/
10.1109/WiCOM.2012.6478402

29. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–defense trees and
two-player binary zero-sum extensive form games are equivalent. In: Alpcan, T.,
Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 245–256.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17197-0 17

30. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. 24(1), 55–87 (2014). https://doi.org/10.1093/logcom/exs029

31. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. C. S. Rev. 13–14, 1–38 (2014)

32. Laurent, O.: Polarized games. Ann. Pure Appl. Logic 130(1–3), 79–123 (2004).
https://doi.org/10.1016/j.apal.2004.04.006

https://doi.org/10.1109/RISP.1991.130780
https://doi.org/10.1109/RISP.1991.130780
https://doi.org/10.1007/978-3-319-11851-2_6
https://doi.org/10.1007/978-3-319-44878-7_3
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1109/LICS.2015.18
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.3233/FI-2017-1531
https://doi.org/10.3233/FI-2017-1531
https://doi.org/10.1007/978-1-4614-0977-9
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1109/WiCOM.2012.6478402
https://doi.org/10.1109/WiCOM.2012.6478402
https://doi.org/10.1007/978-3-642-17197-0_17
https://doi.org/10.1093/logcom/exs029
https://doi.org/10.1016/j.apal.2004.04.006

110 R. Horne et al.

33. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

34. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from
authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005).
https://doi.org/10.1007/11555827 14

35. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees: towards unifying
the constructs of attack and defense trees. Secur. Commun. Netw. 5(8), 929–943
(2012). https://doi.org/10.1002/sec.299

36. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
37. Zonouz, S.A., Khurana, H., Sanders, W.H., Yardley, T.M.: RRE: a game-theoretic

intrusion response and recovery engine. IEEE Trans. Parallel Distrib. Syst. 25(2),
395–406 (2014). https://doi.org/10.1109/TPDS.2013.211

https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11555827_14
https://doi.org/10.1002/sec.299
https://doi.org/10.1109/TPDS.2013.211

	The Attacker Does not Always Hold the Initiative: Attack Trees with External Refinement
	1 Introduction
	2 Specialisation for Attack Trees with Disjunctive Refinement
	2.1 Attack Trees with Disjunctive Refinement only
	2.2 Distinguishing Disjunctive from External Refinement Using a Box Annotation
	2.3 A Distributive Lattice Semantics Covering External Refinement

	3 A Game Semantics for Disjunctive Attack Trees
	3.1 Sub-optimal Strategies and a Games Semantics for Disjunctive Attack Trees
	3.2 Specialisation Expressed Using Additive Linear Logic

	4 Related and Future Work
	5 Conclusion
	References

