
George Cybenko
David Pym
Barbara Fila (Eds.)

 123

LN
CS

 1
10

86

5th International Workshop, GraMSec 2018
Oxford, UK, July 8, 2018
Revised Selected Papers

Graphical Models
for Security

Lecture Notes in Computer Science 11086

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

George Cybenko • David Pym •

Barbara Fila (Eds.)

Graphical Models
for Security
5th International Workshop, GraMSec 2018
Oxford, UK, July 8, 2018
Revised Selected Papers

123

Editors
George Cybenko
Dartmouth College
Hanover, NH, USA

David Pym
University College London
London, UK

Barbara Fila
IRISA, INSA Rennes
Rennes, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-15464-6 ISBN 978-3-030-15465-3 (eBook)
https://doi.org/10.1007/978-3-030-15465-3

Library of Congress Control Number: 2019933891

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7734-2912
https://orcid.org/0000-0002-6504-5838
https://orcid.org/0000-0002-1824-7621
https://doi.org/10.1007/978-3-030-15465-3

Preface

The 5th International Workshop on Graphical Models for Security (GraMSec) was held
at Oxford, UK, on July 8, 2018, in conjunction with the Federated Logic Conference
(FLoC) 2018.

Previous GraMSec workshops were held in Grenoble, France (2014), Verona, Italy
(2015), Lisbon, Portugal (2016), and Santa Barbara, USA (2017). GraMSec 2019 will
be held at Hoboken, USA on June 24, 2019, co-located with the 32nd IEEE Computer
Security Foundations Symposium.

GraMSec workshops bring together international researchers interested in the use of
graphical security models to represent and analyze the security of systems. This topic
has gained considerable research attention over the past two decades, and the workshop
allows the community of security researchers, as well as security professionals from
industry and government, to exchange ideas and advances in graphical security models,
metrics, and measurements. Such graphical models are being used to capture different
security facets and can address a range of challenges including security assessment,
automated defence, secure services composition, security policy validation, and
verification.

Specific technical areas addressed by the GraMSec workshops include:

– Graph representations: mathematical, conceptual, and implemented tools for
describing and reasoning about security

– Logical approaches: formal logical tools for representing and reasoning about
graphs and their use as modeling tools in security

– Machine learning: modeling and reasoning about the role of big data and machine
learning in security operations

– Networks in national security: terrorist networks, counter-terrorism networks; safety
in national infrastructure (e.g., utilities and transportation)

– Risk analysis and management: models of risk management in business and
organizational architectures

– Social networks: using and reasoning about social graphs, network analysis, net-
work protocols, social mapping, sociometry

These proceedings consist of the seven accepted papers, which were selected from
21 submissions. In addition to presentations based on these papers, Michael Fisk of Los
Alamos National Laboratory gave a keynote talk titled “Intrusion Tolerance in
Complex Cyber System”.

Graphical security models provide powerful mechanisms for modern complex
systems security expression and analysis. These proceedings illustrate that the technical
area is broad and advancing in several novel and exciting directions.

February 2019 George Cybenko
David Pym
Barbara Fila

Organization

Program Committee

Ludovic Apvrille Telecom ParisTech, France
Stefano Bistarelli Università di Perugia, Italy
Tristan Caulfield University College London, UK
Nora Cuppens-Boulahia IMT Atlantique, France
George Cybenko Dartmouth College, USA
Harley Eades III Augusta University, USA
Barbara Fila INSA Rennes, IRISA, France
Olga Gadyatskaya SnT, University of Luxembourg, Luxembourg
Rene Rydhof Hansen Aalborg University, Denmark
Sushil Jajodia George Mason University, USA
Sjouke Mauw University of Luxembourg, Luxembourg
Guy McCusker University of Bath, UK
Per Håkon Meland SINTEF ICT, Norway
Andreas L Opdahl University of Bergen, Norway
Xinming Ou University of South Florida, USA
Stephane Paul Thales Research and Technology, France
Sophie Pinchinat IRISA Rennes, France
David Pym University College London, UK
Sasa Radomirovic University of Dundee, UK
Marielle Stoelinga University of Twente, The Netherlands
Jan Willemson Cybernetica, Estonia

Additional Reviewers

Albanese, Massimiliano
Allard, Tristan
Horne, Ross
Kumar, Rajesh

Lê Cong, Sébastien
Paul, Soumya
Schwarzentruber, François
Widel, Wojciech

Intrusion Tolerance
in Complex Cyber Systems

(Invited Talk)

Mike Fisk

Chief Information Officer
Los Alamos National Laboratory, NM, USA

mike.fisk@lanl.gov

Abstract. In this talk, we will consider intrusion tolerance as a desirable
property of cyber systems and discuss the relationship between intrusion tol-
erance and resilience. Intrusion-tolerant complex systems maintain certain
security properties even when components of those systems are compromised.
We will examine some ways to quantify intrusion tolerance using graphical
models of complex cyber systems with a focus on the misuse of authentication
credentials and the exploitation of trust relationships. Finally, we will provide
some examples of the impact of this analysis on real-world policy decisions.

Contents

Tendrils of Crime: Visualizing the Diffusion of Stolen Bitcoins 1
Mansoor Ahmed, Ilia Shumailov, and Ross Anderson

Deciding the Non-emptiness of Attack Trees . 13
Maxime Audinot, Sophie Pinchinat, François Schwarzentruber,
and Florence Wacheux

Combining Bayesian Networks and Fishbone Diagrams to Distinguish
Between Intentional Attacks and Accidental Technical Failures. 31

Sabarathinam Chockalingam, Wolter Pieters, André Teixeira,
Nima Khakzad, and Pieter van Gelder

Disclosure Analysis of SQL Workflows . 51
Marlon Dumas, Luciano García-Bañuelos, and Peeter Laud

On Linear Logic, Functional Programming, and Attack Trees 71
Harley Eades III, Jiaming Jiang, and Aubrey Bryant

The Attacker Does not Always Hold the Initiative: Attack Trees
with External Refinement . 90

Ross Horne, Sjouke Mauw, and Alwen Tiu

A State Machine System for Insider Threat Detection 111
Haozhe Zhang, Ioannis Agrafiotis, Arnau Erola, Sadie Creese,
and Michael Goldsmith

Author Index . 131

Tendrils of Crime: Visualizing
the Diffusion of Stolen Bitcoins

Mansoor Ahmed(B), Ilia Shumailov, and Ross Anderson

Department of Computer Science and Technology, University of Cambridge,
Cambridge, UK

{mansoor.ahmed,ilia.shumailov,ross.anderson}@cl.cam.ac.uk

Abstract. The first six months of 2018 have seen cryptocurrency thefts
of $761 million, and the technology is also the latest and greatest tool for
money laundering. This increase in crime has caused both researchers and
law enforcement to look for ways to trace criminal proceeds. Although
tracing algorithms have improved recently, they still yield an enormous
amount of data of which very few datapoints are relevant or interesting to
investigators, let alone ordinary bitcoin owners interested in provenance.
In this work we describe efforts to visualize relevant data on a blockchain.
To accomplish this we come up with a graphical model to represent the
stolen coins and then implement this using a variety of visualization
techniques.

Keywords: Bitcoin · Cybercrime · Cryptocrime · Visualization

1 Introduction

All Bitcoin transactions are written on the blockchain, a public append-only
file. Tracing transactions might seem trivial, given the linear nature of the data
structure. And there are already many visualizations of Bitcoin, ranging from
simple diagrams of the transactions within each block to more involved projects
showing clusters of communities within the network [1,4]. However, things are
not so simple when one tries to analyse provenance information such as the flow
of stolen coins.

We need to first understand the context of this research. The next section
will provide some background on how Bitcoin transactions work. Next, we will
look into what taint tracking is and why it is required; after that we will look at
tracking techniques in the existing literature and why we chose one particular
method. Next we introduce the difficulties with visualizing this tracking data
and then present our solutions. We finally discuss the related work and conclude
by pointing at avenues for future research.

2 Bitcoin Primer

In the interest of brevity, we abstract and simplify some of the relevant features
of Bitcoin transactions. For a more thorough explanation, we direct the reader
to the original paper [11] or to the standard textbook [12].
c© Springer Nature Switzerland AG 2019
G. Cybenko et al. (Eds.): GraMSec 2018, LNCS 11086, pp. 1–12, 2019.
https://doi.org/10.1007/978-3-030-15465-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15465-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-15465-3_1

2 M. Ahmed et al.

2.1 Transactions

To perform a Bitcoin transaction, you must first locate an Unspent Transaction
Output (UTXO) for which you have a signing key, and spend it by signing it
over to someone else. Essentially, the total amount of bitcoin you can spend is
the total amount of UTXOs attributed to public keys whose private keys are in
your control.

More generally, each transaction in Bitcoin is a signed blob that is interpreted
by Bitcoin’s scripting system, called “Script”. Each valid transaction consists of
a set of input UTXOs, a set of signatures that verify using the public keys
associated with those UTXOs, a set of output addresses, and an amount of
cryptocurrency to be sent to each of the outputs.

It is impossible to subdivide a UTXO, so if Bob wants to pay Alice 0.5 bitcoins
but his savings are in the form of a single UTXO worth 50 bitcoins, then he has
to make a transaction with two outputs: one to Alice (for 0.5 bitcoins), and
one to a change address owned by himself (for 49.5 bitcoins). As a result, many
bitcoin transactions have multiple outputs, and public keys in bitcoin tend to
be short-lived. It is standard practice for a wallet application to generate a new
keypair for each transaction and use the public key as the change address.

Transactions can refer to UTXOs in blocks of many different ages. So while
the first input to a transaction could be from the block immediately preceding
the current one, the second could be from a block two years ago (roughly 50,000
blocks). Such hop lengths make temporal visualizations of bitcoin transactions
quite problematic.

2.2 A Loose Transaction Taxonomy

For our purposes, we classify bitcoin transactions into the following types:

1-to-1 transactions
Transactions where a single UTXO is sent to a single output. These are often
used as building blocks in more complex payment schemes.

Many-to-2 transactions
The workhorse of bitcoin transactions; as discussed, these are a natural con-
sequence of the indivisibility of UTXOs, and most legitimate transactions
belong in this category.

1-to-many transaction
These are quite rare since normal payments to multiple entities are exe-
cuted by most wallets as a chain of transactions. 1-to-many transactions are
often used in money-laundering schemes (also known as mixes) to split crime
proceeds proceeds into many wallets in order to make tracing difficult.

Many-to-many transactions
These are like 1-to-many transactions except that they have multiple input
UTXOs. They are the second component in a typical mix; they shuffle cryp-
tocurrency between different keys, mostly controlled by the same people.

Tendrils of Crime: Visualizing the Diffusion of Stolen Bitcoins 3

Where transactions have many inputs and the inputs are signed by different
keys, this provides extra information to the analyst, namely that the keys in
question were under the same control. Heuristics like this enable analysts to
cluster related transactions [9].

3 Taint Tracking

A specialist analysis firm has reported that in the first six months of 2018, 761
million dollars’ worth of cryptocurrencies have been stolen [14]. Even if we only
count major reported thefts from exchanges, perhaps 6–9% of the bitcoins in
circulation have been stolen at least once [7]; the true number is undoubtedly
higher. If one is to make good the victims of these crimes, then we need to be
able to track down stolen or otherwise tainted bitcoins.

Bitcoin tracing is also important for law enforcement officers, regulators and
researchers investigating ransomware, sanctions busting, online drug trafficking
and other crimes facilitated by cryptocurrency. And the legal status of a bitcoin
UTXO may depend on its history. Referring to Figs. 1–3, the red taint might
mean that a bitcoin was stolen, green that it passed through the hands of an
Iranian company under international sanctions, blue that it passed through a
mix in contravention of money-laundering regulations and yellow that it was
used to buy and sell drugs on AlphaBay. In the first case, it will still normally
belong to the theft victim, who could sue to recover it. In the second, third and
fourth, its owner may be prosecuted under applicable law. In the second, an
owner who was a banker might be at risk of losing their licence. In the fourth,
it may also be liable to particularly stringent asset-forfeiture laws; any wallet
containing drug proceeds may be seized in many jurisdictions, with the onus
then falling on the owner to prove honest provenance of any sums they wish to
recover.

3.1 Status Quo

For a while, Bitcoin researchers focused on two ways of doing tracing: poison
and haircut. To illustrate the difference, suppose you have a wallet with three
stolen bitcoin and seven freshly-mined ones. Then under poison all the coins you
spend from this wallet are considered 100% stolen, while under haircut they are
reckoned to be 30% stolen.

This goes across to multiple types of taint. In poison, if you have inputs with
four different kinds of taint then all the outputs are tainted with everything.
This leads to rapid taint contagion. Figure 1a illustrates poison tainting.

Haircut is only slightly different. Here, taint is not binary but fractional. So,
instead of saying that all the outputs are tainted with the four kinds of taint, we
associate a fractional value to the taint. If half of the input was tainted red then
all the outputs are half red-tainted. Taint diffuses quickly through the network as
in poison, but the result is rapid taint diffusion, rather than contagion. Figure 1b
illustrates haircut tainting.

4 M. Ahmed et al.

(a) Poison Tainting (b) Haircut Tainting

Fig. 1. The long-standing methods proposed within the Bitcoin community for taint
tracking. (Color figure online)

To put numbers to the diffusion, we ran poison and haircut on a couple of
major thefts from 2014 and found that by 2017 more than 90% of wallets active
on the network were tainted. This diffusion prevents any sensible recourse for
victims – if we were to recover the 9% of stolen bitcoin and refund the victims,
we might as well levy a 9% tax on all users. That is politically and technically
impractical. What we need is a deterministic manner of tainting that does not
diffuse wildly.

3.2 FIFO Taint Tracking

The diffusion problem is tackled by recent work by Anderson et al. [2,3]. They
proceed from on Clayton’s case – a legal precedent in London in 1816 and in
force throughout the UK, Canada and many other Commonwealth countries.
The judge in that case decided that funds whose ownership is under dispute
must be tracked through accounts on a strict First-In-First-Out (FIFO) basis.
A natural conclusion is that taint in a cryptocurrency should be tracked in this
way. This greatly cuts the diffusion as taint is conserved. It is shown in Fig. 2.

Each bitcoin is divided into 100 million satoshi, and each satoshi is unique,
in that it has a unique and public history. The data to enable tracing is built
into the system; we just need the right algorithm to parse it; and FIFO appears
to be that algorithm.

The FIFO principle is well-known in computer science as well as in law. FIFO
tracking of disputed cryptocurrency turns out to be lossless and deterministically
reversible. In addition to tracking a stolen bitcoin forwards – as one has to do
with the poison or haircut methods – one can track a current UTXO backwards
to all the reward blocks in which its component satoshi came into existence. This
also makes for a much cleaner implementation. The tricky bit is the handling
of transaction fees but once that’s done, we can track the provenance of any
satoshi.

Tendrils of Crime: Visualizing the Diffusion of Stolen Bitcoins 5

Fig. 2. FIFO tainting. (Color figure online)

3.3 Taintchain

We implemented FIFO tracking and built it into a system we call the taintchain.
This starts off from a set of reported thefts or other crimes and propagates
the taint backwards or forwards throughout the entire blockchain. If working
forwards, start from all tainted transaction outputs and mark all the affected
satoshis as tainted until you reach the end of the blockchain. If working back-
wards, trace each UTXO of interest backwards and if at any point you encounter
a taint, then return taint for the affected satoshis. This was described in [2].

The visualization problem we tackle is how to analyse the data generated by
the taintchain system1.

4 Visualizing Taint

When we started analysing the taintchain, we ran into a number of issues. First
is Big Data: just with 56 kinds of taint, we ended up with a dataset of about
450 GB. This grows about linearly as the user starts considering more crimes or
more kinds of taints.

The second problem is that the things we’re looking for – side effects of
crime – are not always amenable to algorithmic analysis. Different criminals use
different strategies to lauder their money; and mixes are designed to be difficult
to deal with.

We surmised that a good visual representation of the data might help us to
spot patterns. Moreover, it would possibly make the taintchain more usable –
you could just enter your txhash and follow the taint.

4.1 Preliminary Model

Our first prototype used a simple graphical model for our taintchain data. We
represented each transaction as a vertex and each hop as an edge. By hop, we
1 Accessible at: https://github.com/TaintChain.

https://github.com/TaintChain

6 M. Ahmed et al.

refer to the output of a transaction that has been used as an input somewhere
else. Then we looked to represent our graph sensibly on-screen.

We decided to retain the chronological order and represent blocks as columns
of transactions. Each transaction is a coloured rectangle where the colour reflects
the kind of taint, and the size of rectangle reflects the number of satoshis tainted.
Lastly, we decided to ignore clean satoshis as the data was sparse and required
too much scrolling. We displayed this model as a static SVG graphic with click-
to-reveal txhashes. Figure 3 shows an example.

Fig. 3. An illustrative image from our preliminary visualization showing multitaint
movement. (Color figure online)

To our surprise, even this rudimentary model gave us good results. We
were able to spot quite a few interesting patterns via the visualization that
we wouldn’t have been able to see otherwise. For example, Fig. 4 shows someone
collecting crime proceeds, that they had initially split to many addresses, into
a single address. We call this a collection pattern and we observed similar pat-
terns many times; in some of the instances, we were able to connect the collection
address to illegal gambling sites.

Figure 5 shows the converse of a collection pattern: a splitting pattern. These
may occur close to the time of a crime as criminals try to cover their tracks by
feeding their loot into systems that divide their winnings into hundreds of tiny
transactions.

4.2 Limitations of Preliminary Model

One of the main problems we faced was sheer data density. In Fig. 6 we are
displaying only four kinds of taint and yet it is strenuous to follow the many lines.
Increased spacing is not a solution here as that would result in an unmanageable
amount of vertical scrolling.

Another problem we faced was that taint tends to overlap, as shown in Fig. 7.
In that case, do we retain just one colour? Or do we create a new colour to
represent the combination?

Tendrils of Crime: Visualizing the Diffusion of Stolen Bitcoins 7

Fig. 4. A collection pattern Fig. 5. A splitting pattern

Fig. 6. Transaction density. The
sheer number of tainted transactions
renders some sections of the taintgraph
uninterpretable.

Fig. 7. Complex collection pat-
tern. We can see here the attempts
by various actors to collect funds. How-
ever, this is difficult to spot due to the
high degree of collocation of transac-
tions. (Color figure online)

4.3 Interactive Visualization

We therefore decided to rethink our approach. The second prototype makes the
graph interactive so the user can choose which information is relevant to her on
the fly. Secondly, we decided to make the edges more meaningful. Rather than
just show a connection between nodes, we incorporated the proportion of satoshis

8 M. Ahmed et al.

Fig. 8. These screenshots illustrate how the graph dynamically changes based on the
taint type currently selected.

transferred in each hop into the edges. Lastly, we decided to abandon displaying
the blocks as columns of transactions; instead we now focussed solely on the
transaction flows and included the block information as a hint box displayed on
mouse hover. Thus, now the depth of a vertex does not necessarily relate to its
chronological order.

One of the problems that immediately vanished by the move to interactive
representation was that of taint overlap. In our new system, we simply included
a drop-down menu where the user can choose the taint type of interest and the
graph adjusts its edges accordingly. Figure 8 shows this in action.

Making the graph interactive came at a cost, though, since now we want to
store as much of the taintgraph in RAM instead of on disk for greater respon-
siveness. Second, since the graph expands on click, random exploration could
lead to many uninteresting paths being followed.

Tendrils of Crime: Visualizing the Diffusion of Stolen Bitcoins 9

We discovered some interesting patterns using this visualization. We were
able to find multiple instances of peeling chains, as shown in Fig. 9. These are
usually seen used by exchanges or gambling sites – in this case a notorious
criminal exchange. Its operators would pool their money into a single wallet and
then they would pay their customers successively, each time sending most of it
to themselves at a change address. In this case, we can also see that this criminal
exchange tried to hide their identity by shuffling their keys four times.

Fig. 9. A peeling chain, discovered by following the larger branch at each vertex.

However, although these visualisations are better than nothing, there still
remains much to be done. A fundamental issue seems to be that of the large out-
degree of some transactions. A transaction can have an (effectively) unbounded
number of outputs, which makes visualizations difficult. Figure 10 illustrates this
difficulty. One possible solution is to have a filter for transactions: collapse all
the outputs below a certain threshold. This would give a cleaner display image,
but might hamper investigations. We are still exploring effective aggregations
that do not result in egregious information loss.

5 Related Work

A number of previous attempts have been made to visualize the Bitcoin net-
work, with most of them focusing on some specific task. Early attempts were
concerned with simple property representations e.g. Reid and Harrigan featured
loglog plots of graph centrality measurements, graph representations with sizes of
nodes showing the amounts of money transferred, geographical activity acquired
through IP address mappings from Bitcoin Faucet, and graph representation of
poison tainting [13].

Later came systems like BitIodine with graph-like outputs to support com-
monly available graph representation tools [15]. Graph approaches to transaction
visualization were also adopted for educational purposes by systems like Coin-
Vis [1], while bitcoin-tx-graph-visualizer used alluvial diagrams to show Bitcoin
movement [8].

10 M. Ahmed et al.

Fig. 10. Exhaustive vertical scrolling due to high outdegrees of transactions. Notice
the scroll bar on the right.

A more mature system was BitConeView, presented by Battista and Donato
in 2015 [4]. This was among the first to provide a sensible GUI to inspect how
a particular UTXO propagated through the network. In order to explain what
it means for money to move, the authors came up with ‘purity’ – basically a
version of haircut tainting. They only evaluated the usability of their system
informally, and came to the conclusion that more improvements were necessary
to the way purity was presented to the user.

McGinn et al. devised a graph visualization of blockchain that allowed them
to detect laundering activity and several denial-of-service attacks [5]. Unlike
previous approaches, they made use of top-down system-wide visualization to
understand transaction patterns. The follow-up paper from Molina et al. pro-
posed an extension to a global view, in which graph analysis is aided by human
intuition [10].

In our system we set out to learn from and build on all of this previous work.
In particular, we focus on data representation in taint propagation when a taint
graph becomes too massive for humans to comprehend.

Unlike BitConduit and similar systems, we are not doing any actor character-
ization in our visualisation tool [6]. The generation of graph colours is exogenous,
relying on external theft reports or of software that analyses patterns of mixes,
ransomware and other undesirable activity.

Tendrils of Crime: Visualizing the Diffusion of Stolen Bitcoins 11

6 Future Work and Conclusion

In this short paper, we have presented a system for visualizing FIFO taint dif-
fusion without any information-losing abstractions. This system has helped us
spot interesting patterns that hint at the operational techniques of criminals
operating on the Bitcoin network. We have made this system publicly available
for anyone to use and modify.

It still suffers from a number of shortcomings that invite further work. One
avenue for research would be to explore different heuristics to portray the data
more concisely. One might aim at a system that presents a global, zoomed-
out view of the data and successively introduces more information as the user
explores a particular pattern on the blockchain. Another direction would be
to highlight suspicious patterns of transactions automatically, for example, by
marking coins that have recently emerged from a flurry of splits and merges.
There are many other plausible heuristics to explore, a lot of data to analyse,
and real social problems to tackle.

References

1. Aghaseyedjavadi, A., Bloomer, B., Giudici, S.: Coin viz
2. Anderson, R., Shumailov, I., Ahmed, M.: Making bitcoin legal. In: Twenty-Sixth

International Security Protocols Workshop (2018)
3. Anderson, R., Shumailov, I., Ahmed, M., Rietmann, A.: Bitcoin redux. In: 17th

Annual Workshop on the Economics of Information Security (2018)
4. Battista, G.D., Donato, V.D., Patrignani, M., Pizzonia, M., Roselli, V., Tamassia,

R.: Bitconeview: visualization of flows in the Bitcoin transaction graph. In: 2015
IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 1–8 (2015)

5. McGinn, D., Birch, D., Akroyd, D., Molina-Solana, M., Guo, Y., Knottenbelt,
W.J.: Visualizing dynamic bitcoin transaction patterns. Big Data 4(2), 109–119
(2016)

6. Kinkeldey, C., Fekete, J.D., Isenberg, P.: BitConduite: visualizing and analyzing
activity on the Bitcoin network. In: EuroVis 2017 - Eurographics Conference on
Visualization, Posters Track (2017)

7. Lee, T.: A brief history of Bitcoin hacks and frauds. Ars Technica, 12 May 2017
8. Lu., W.: Bitcoin-tx-graph-visualizer. http://www.npmjs.com/package/bitcoin-tx-

graphvisualizer
9. Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among men

with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, IMC 2013, pp. 127–140. ACM, New York (2013). https://doi.org/10.
1145/2504730.2504747

10. Molina-Solana, M., Birch, D., Guo, Y.K.: Improving data exploration in graphs
with fuzzy logic and large-scale visualisation. Appl. Soft Comput. 53, 227–235
(2017)

11. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

12. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and Cryp-
tocurrency Technologies: A Comprehensive Introduction. Princeton University
Press, Princeton (2016). https://books.google.co.uk/books?id=LchFDAAAQBAJ

http://www.npmjs.com/package/bitcoin-tx-graphvisualizer
http://www.npmjs.com/package/bitcoin-tx-graphvisualizer
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1145/2504730.2504747
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://books.google.co.uk/books?id=LchFDAAAQBAJ

12 M. Ahmed et al.

13. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: 2011
IEEE Third International Conference on Privacy, Security, Risk and Trust and
2011 IEEE Third International Conference on Social Computing, pp. 1318–1326
(2011)

14. Reuters: Cryptocurrency exchange theft surges in first half of 2018: report. https://
reut.rs/2KLI3ow

15. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the
Bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol.
8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45472-5 29

https://reut.rs/2KLI3ow
https://reut.rs/2KLI3ow
https://doi.org/10.1007/978-3-662-45472-5_29
https://doi.org/10.1007/978-3-662-45472-5_29

Deciding the Non-emptiness
of Attack Trees

Maxime Audinot1, Sophie Pinchinat1(B), François Schwarzentruber1,2,
and Florence Wacheux1

1 Univ. Rennes, IRISA, CNRS, Rennes, France
{maxime.audinot,sophie.pinchinat,florence.wacheux}@irisa.fr

2 ENS Rennes, Rennes, France
francois.schwarzentruber@ens-rennes.fr

Abstract. We define and study the decision problem of the non-
emptiness of an attack tree. This decision problem reflects the natural
question of knowing whether some attack scenario described by the tree
can be realized in (a given model of) the system to defend. We establish
accurate complexity bounds, ranging fromNP-completeness for arbitrary
trees down toNLOGSPACE-completeness for trees with no occurrence of
the AND operator. Additionally, if the input system to defend has a succinct
description, the non-emptiness problem becomes PSPACE-complete.

1 Introduction

Attack trees are one of the most prominent graphical models for security, origi-
nally proposed by [20]. They are intuitive and provide a readable description of
the (possibly many) ways of attacking a critical system, thus enabling efficient
communication between security experts and decision makers.

For about a decade, formal methods have been deployed to tame these mod-
els, with the perspective to develop all kinds of assistant tools for attack trees.
The formal approaches range among attack tree quantitative analysis [1,12],
system-based approaches to assist experts in their design [2,3], and automated
generation of attack trees [9,15,17]. All of these approaches rely on solid seman-
tics. To cite a few, there are the multi-set semantics [14], the series-parallel graph
semantics [11], the linear logic semantics [8], and the path/trace semantics [2,3].

It is important to notice that the path semantics of attack trees provides a
natural way of interpreting the tree as a set of attacking scenarios in the system to
defend. Such semantics therefore relies not only on the description of the tree but
also on a formal definition of the system. This formal definition should reflect the
evolution of the system when attacked, in other words its operational semantics.
For example, in the ATSyRA tool [18] or in the Treemaker tool [10], the experts
specify a system in some Domain Specific Language, then this specification is
compiled into a transition system whose states denote the system configurations
and whose transitions describe the ability for an attacker to act on the system,
hence to modify the current configuration.

M. Audinot—This author was funded by DGA, Bruz.

c© Springer Nature Switzerland AG 2019
G. Cybenko et al. (Eds.): GraMSec 2018, LNCS 11086, pp. 13–30, 2019.
https://doi.org/10.1007/978-3-030-15465-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15465-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-15465-3_2

14 M. Audinot et al.

Although this is not made formal here, we claim that most of the existing
semantics of attack trees in the literature intrinsically “contain” such an opera-
tional view of attack trees. It is therefore essential for further tools development
to investigate computational aspects in terms of relevant decision problems such
tools will need to solve.

One of the basic decision problems we can think of is addressed in the setting
of the path semantics, and is called the non-emptiness of an attack tree, where
the issue is to decide whether the tree describes a non-empty set of attacks on
a given system or not. If the answer is no, then the expert is done because
her attack tree describes ways of attacking that cannot be implemented by an
attacker, meaning that the system is safe. Otherwise, the expert is informed
that the system is vulnerable, and should carry on with her analysis. To our
knowledge, there is currently no result regarding this question.

In this paper, we formalize this non-emptiness decision problem, establish
tight computational complexity bounds, and discuss the impact of these results
for tools development. More precisely, we show that:

1. For arbitrary attack trees, namely with no restrictions on the operators used
in their description1, this problem is NP-complete (Theorem 1);

2. Additionally to this general result, we consider the subclass of so-called
AND-free attack trees, by disallowing the AND operator. For this sub-
class, we exhibit a polynomial-time algorithm to solve the non-emptiness
problem (Theorem 4), and show that this restricted decision problem is
NLOGSPACE-complete (Theorem 5);

3. Finally, we consider a variant of the non-emptiness decision problem where the
input system has a symbolic presentation, as it is the case in most practical
applications (see for example the tool ATSyRA [18]). We argue that the price
to pay for this succinct way of specifying the system yields
a PSPACE-complete complexity (Theorem 6).

The paper is organized as follows. We start by recalling the definition of tran-
sition systems in Sect. 2, and the central notions of concatenation and parallel
decomposition of formal finite words needed to define the path semantics of attack
trees in Sect. 3. Attack trees are introduced in Sect. 4, as well as the formal defi-
nition of the non-emptiness decision problem. Section 5 is dedicated to the non-
emptiness problem for arbitrary attack trees, while Sect. 6 focuses on the subclass
of AND-free attack trees. In Sect. 7, we discuss the case of symbolic transition sys-
tems, and conclude the contribution by pointing out some future work in Sect. 8.

2 Transition Systems

Let Prop = {ι, ι1, . . . , γ, γ1 . . .} be a countable set of atomic propositions.

Definition 1. A labeled transition system over Prop is a structure
S = (S,→, λ), where S is a finite set of states (whose typical elements are
1 Operators one can find in the dedicated literature, see Definition 5.

Deciding the Non-emptiness of Attack Trees 15

Fig. 1. A labeled transition system.

s, s′, s0, s1, . . .); →⊆ S×S is the transition relation, and we write s → s′ instead
of (s, s′) ∈→; and λ : Prop → 2S is the valuation function that assigns a set of
propositions to states.

The size of S is |S| := |S| + |→|.
An example of labeled transition system with nine states {s0, . . . , s8} is

depicted in Fig. 1. In such structures, paths are central objects as they represent
the dynamic of the system.

Definition 2. A path of S is a sequence π = s0 . . . sn of states of S, such that
n ≥ 0 and si → si+1, for every i < n. The set of paths of S is denoted Π(S).

In the following, we write s →∗ s′ whenever there exists a path π = s0 . . . sn
with s = s0 and s′ = sn.

We consider two notions on paths, namely concatenation and parallel decom-
position, that will serve us to define the path semantics of attack trees. Because
paths can be seen as finite words, i.e. finite sequence of states, we define these
notions in the abstract setting of words.

3 Concatenation and Parallel Decomposition

We write w(i) for the (i + 1)-th letter of the word w, so that letter positions in
words start at 0. Also, let |w| be the size of w, so that |w| − 1 is its last letter
position. We also write w.first and w.last for w(0) and w(|w| − 1) respectively,
and for [k, l] ⊆ [0, |w| − 1], we write w[k, l] := w(k) . . . w(l). A factor of a word
w is a word w′, such that w[k, l] = w′ for some [k, l] ⊆ [0, |w| − 1], and we call
interval [k, l] an anchoring of w′ in w; note w′ may have several anchorings in w.

We now introduce the concatenation of words (Definition 3) and the parallel
decompositions of a word (Definition 4). The concatenation w of two words w1

and w2 is similar to the usual notion of concatenation except that the last letter
of w1 and the first letter w2 which should be the same are merged. Figure 2
shows the concatenation of words s0s2s7s1 and s1s4s6.

Definition 3 (Concatenation). Let w1, w2 be two words of respective sizes
n1 and n2 and such that w1.last = w2.first. The concatenation of w1 and w2,

16 M. Audinot et al.

Fig. 2. Concatenation of words s0s2s7s1 and s1s4s6.

denoted by w1·w2, is the word of size n1 + n2 − 1, where w[0, n1 − 1] = w1 and
w[n1, n1 + n2 − 1] = w2. We naturally extend the definition of concatenation to
sets of words: for two sets of words W1 and W2, we let W1·W2 := {w1·w2 | w1 ∈
W1 and w2 ∈ W2}.

Intuitively, a parallel decomposition of a word w is the choice of a finite set of
factors that entirely covers w. Figure 3a shows a possible parallel decomposition
of the word s0s2s7s1s4s6s3.

Definition 4 (Parallel decompositions of a word). A set of words {w1, . . . ,
wn} is a parallel decomposition of a word w whenever the following holds.

1. For every i ∈ [1, n], the word wi is a factor of w at some anchoring [ki, li];
2. For every j ∈ [0, |w| − 2], [j, j + 1] ⊆ [ki, li], for some i ∈ [1, n].

The intervals [ki, li] form a covering of [0, |w| − 1].

Notice that our notion of covering is stronger than the classic notion of inter-
val covering which requires that the union of intervals [ki, li] matches [0, |w|−1].
Indeed, Point 2 of Definition 4 requires that each 2-size factor of w is also a factor
of some of the words wi. In particular, the three words w1, w2, w3 as chosen in
Fig. 3b do not form a parallel decomposition of word s0s2s7s1s4s6s3, since the
2-size word s2s7 is not a factor of any of these three words.

Fig. 3. Decomposition of word s0s2s7s1s4s6s3.

Deciding the Non-emptiness of Attack Trees 17

We recall that Prop = {ι, ι1, . . . , γ, γ1 . . .} is a countable set of atomic propo-
sitions, and we now define attack trees.

4 Attack Trees

In our formal setting, attack trees are finite labeled trees whose leaves are labeled
by a pair 〈ι, γ〉, where ι, γ ∈ Prop and whose internal nodes (non-leaves) are
labeled by either symbol OR, symbol SAND (sequential and) or symbol AND. In
our setting, and in most existing approaches in the literature, such labels cor-
respond respectively to the union, the concatenation and the parallel decom-
position of sets of paths (see Definition 6). W.l.o.g., we suppose that OR-nodes
and SAND-nodes are binary, i.e. their nodes have exactly two children, since the
corresponding semantics is associative (Definition 6). Figure 4 shows an attack
tree with 4 leaves and 3 internal nodes.

AND

SAND

〈ι1, γ1〉 〈ι2, γ2〉

OR

〈ι3, γ3〉 〈ι4, γ4〉

Fig. 4. Example of an attack tree.

Definition 5 (Attack tree). An attack tree is defined by induction as follows.

1. A leaf labeled by a pair of propositions 〈ι, γ〉 ∈ Prop×Prop is an attack tree;
2. Given two attack trees τ1 and τ2, one can form the attack trees OR(τ1, τ2) and

SAND(τ1, τ2);
3. Given a finite sequence τ1, τ2 . . . , τn of attack trees, one can form the attack

tree AND(τ1, . . . , τn).

An attack tree τ is AND-free if it is built only by means of Rules 1 and 2 of
Definition 5. We will refer to a pair 〈ι, γ〉 of propositions labeling the leaves of
attack trees as a reachability goal, and to propositions ι and γ as the precondition
and the postcondition of this reachability goal 〈ι, γ〉 respectively.

An attack tree τ is interpreted in a transition system S as a set �τ�S of paths
in S.

Definition 6 (Path semantics). The path semantics of τ in a transition
system S is the set �τ�S ⊆ Π(S) defined by induction as follows.

– �〈ι, γ〉�S = {π ∈ Π(S) | π.first ∈ λ(ι) and π.last ∈ λ(γ)}

18 M. Audinot et al.

– �OR(τ1, τ2)�S = �τ1�
S ∪ �τ2�

S

– �SAND(τ1, τ2)�S = �τ1�
S ·�τ2�S

– �AND(τ1, τ2, . . . , τn)�S is the set of paths π of S that admit a parallel decom-
position {π1, π2, . . . , πn} with π1 ∈ �τ1�

S , . . . , πn ∈ �τn�S .

Remark that the semantics for OR and SAND are associative because the cor-
responding operators on sets are. On the contrary, the semantics of AND is not
associative, as shown in Example 1, and we therefore cannot restrict to a binary
operator.

Example 1. Consider the system of Fig. 1. The set �AND(〈ι1, γ1〉, 〈ι4, γ4〉,
〈ι2, γ2〉)�S contains the four paths s0s1s2s5s7s8, s0s1s3s5s7s8, s0s1s2s5s6s8, and
s0s1s3s5s6s8, but �AND(〈ι1, γ1〉, 〈ι4, γ4〉)�S = ∅ because there is no state that
is both on a path in �〈ι1, γ1〉�S and on a path in �〈ι4, γ4〉�S , so that the set
�AND(AND(〈ι1, γ1〉, 〈ι4, γ4〉), 〈ι2, γ2〉)�S is also empty.

Now that attack trees are defined, we turn to the central problem of this
contribution.

5 The Non-emptiness Problem for Attack Trees

The non-emptiness decision problem for attack trees, that we shortly call Non-
emptiness, is the following decision problem.

Non-emptiness: Given a system S and an attack tree τ , do we have �τ�S
= ∅?

Theorem 1. Non-emptiness is NP-complete.

The rest of this section is dedicated to the proof of Theorem1: we establish
the NP upper bound in Subsect. 5.1 (Theorem 2), and in Subsect. 5.2, we resort
to the result by [2] to obtain the NP lower bound (Theorem3).

5.1 The Problem Non-emptiness is NP-easy

We provide a non-deterministic polynomial-time algorithm (Algorithm2) that
answers the problem Non-emptiness.

This algorithm, called nonemptiness(τ,S), relies on the abstract semantics
(Definition 7) of attack trees, that consists only in sequences of key states that
occur along paths of the path semantics. Notice that such sequences may not
realize any path in S, and will therefore be seen as words w,w′, . . . ∈ S∗.

Preliminarily to giving the definition of the abstract semantics of attack trees,
we introduce the notion of linearization of a finite set of words: a linearization
of words w1, . . . , wn is any word in the set Lin(w1, . . . , wn) defined as follows.

– If n > 2, then Lin(w1, . . . , wn) := Lin2(Lin(w1, . . . , wn−1), wn);
– Otherwise Lin(w1, w2) := Lin2(w1, w2).

Deciding the Non-emptiness of Attack Trees 19

where Lin2(w1, w2) is defined inductively by: Lin2(ε, ε) := ε, and Lin2(sw, s′w′)
:= s.Lin2(w, s′w′) ∪ s′.Lin2(s.w,w′), to which we add s.Lin2(w,w′) in case
s = s′. For example, Lin2(s2s7, s2s4) contains s2s7s2s4, s2s2s4s7, and s2s7s4.

Definition 7 (Abstract semantics). The abstract semantics �τ�S
abs ⊆ S∗ is

defined by induction over τ :

– �〈ι, γ〉�S
abs = {s1s2 | s1 |= ι, s2 |= γ};

– �OR(τ1, τ2)�S
abs = �τ1�

S
abs ∪ �τ2�

S
abs;

– �SAND(τ1, τ2)�S
abs = �τ1�

S
abs·�τ2�S

abs;
– �AND(τ1, . . . , τn)�S

abs contains all linearizations w of some words w1 ∈
�τ1�

S
abs, . . . wn ∈ �τn�S

abs, such that every letter occurrence of w, but w.first
and w.last, either is strictly between wj .first and wj .last for some j, or
equals both wj .first and wk.last for some j
= k.

Intuitively, �τ�S
abs contains key states in the sense that those are states sat-

isfying the relevant pre/post-conditions appearing in the tree τ .

Example 2. Recall the labeled transition system of Fig. 1. The word s2s7 is in
the set �〈ι3, γ3〉�S

abs since s2 and s7 are states satisfying the precondition ι3
and the postcondition γ3 respectively, but s2s7 is not a path in S. Because
s2s7 is in �〈ι3, γ3〉�S

abs and s7s8 is in �〈ι4, γ4〉�S
abs, the word s2s7s8 belongs to

�SAND(〈ι2, γ2〉, 〈ι4, γ4〉)�S
abs.

Algorithm 2 nonemptiness(τ,S) consists in two steps:

(a) A call to the sub-routine guessAbstractPath(τ,S) (Algorithm 1) in order
to guess a word w that plays the role of a certificate with key states;

(b) A check that w is “realizable” in S, i.e. that there exists a path between any
two consecutive key states occurring in w.

Step (a) amounts to executing Algorithm1, which non-deterministically
guesses a word in �τ�S

abs. In case of leaf tree 〈ι, γ〉, the algorithm non-
deterministically guesses two states s1, s2 and verifies the property that ι holds
in s1 and γ holds in s2. If this property holds, Algorithm1 returns the two-
letter word s1s2, otherwise it rejects the input. For a tree of the form OR(τ1, τ2),
the algorithm non-deterministically guesses one of the two sub-trees, i.e., some
i ∈ {1, 2}, and then recursively executes guessAbstractPath(τi,S). For a tree of
the form SAND(τ1, τ2), the algorithm guesses two words w1 and w2 in �τ1�

S
abs and

�τ2�
S
abs respectively, and returns the word w1·w2 whenever w1.last = w2.first,

otherwise it rejects the input. For the case of a tree of the form AND(τ1, . . . , τn),
the algorithm guesses words wi in �τi�

S
abs, then it guesses a linearization of those,

and finally verifies that this latter guess is indeed a linearization (see the forall
loop in the last case of Algorithm 1).

20 M. Audinot et al.

The following proposition formally states the specification of Algorithm1:

Proposition 1. – Any non-rejecting execution of Algorithm1 returns a word
in �τ�S

abs.
– Reciprocally, for every word in �τ�S

abs, there exists a non-rejecting execution
of Algorithm1 that returns this word.

Proof. The proof can be conducted by induction on τ and is left to the reader.

Input: An attack tree τ and a transition system S
Output: A word w ∈ �τ�S

abs
switch τ do

case 〈ι, γ〉 do
guess s1, s2 ∈ S;
check s1 ∈ λ(ι) and s2 ∈ λ(γ);
return s1s2;

end
case OR(τ1, τ2) do

guess i ∈ {1, 2};
return guessAbstractPath(τi, S);

end
case SAND(τ1, τ2) do

w1 := guessAbstractPath(τ1, S);
w2 := guessAbstractPath(τ2, S);
check w1.last = w2.first;
return w1·w2

end
case AND(τ1, . . . , τn) do

wi := guessAbstractPath(τi, S) for each 1 ≤ i ≤ n;
guess w, a linearization of w1, . . . , wn;
forall letters s of w except w.first and w.last do

check there exist j, k ∈ [1, n] such that either s is strictly between wj .first
and wj .last in w, or s equals both wj .first and wk.last

end
return w;

end

end

Algorithm 1. guessAbstractPath(τ,S).

Regarding Step (b) of Algorithm2, the procedure consists in verifying that
the word w resulting from Step (a) can be realized by a path in the system
S, in the sense that there exist sub-paths between every successive key states
occurring in w (see Definition 8).

Definition 8. Given a system (S,→, λ), a word w = s0 . . . sn ∈ S∗ is realized
by a path π in S if π = π0· . . . ·πn−1 for some πi’s that are paths from si to si+1

in S respectively. Notice that w.first = π.first and w.last = π.last. Note also
that any factor of w is also realizable.

Deciding the Non-emptiness of Attack Trees 21

Verifying that the word is realizable by a path uses the Boolean function reachS
whose specification is: given two states s1, s2 ∈ S, reachS(s1, s2) is true iff there
is a path from s1 to s2 in S. It is well known that such a function can be
implemented in polynomial time.

Input: An attack tree τ and a transition system S
Output: Accept whenever �τ�S �= ∅.
//Step (a)
w := guessAbstractPath(τ, S);
//Step (b)
foreach s1, s2 successive in w do

check reachS(s1, s2)
end
accept

Algorithm 2. nonemptiness(τ,S).

The correctness of Algorithm 2 follows from Proposition 2:

Proposition 2. The two following statements are equivalent:

(i) There exists a word w ∈ �τ�S
abs that can be realized by a path of S;

(ii) �τ�S
= ∅.
Proof. We show that (i) implies (ii) by establishing an inductive proof over τ
that if w ∈ �τ�S

abs can be realized by a path π of S, then π ∈ �τ�S .
If w ∈ �〈ι, γ〉�S

abs then w.first |= ι and w.last |= γ, if w can be realized by
some path π, then w.first = π.first and w.last = π.last. One easily concludes
that π ∈ �〈ι, γ〉�S . If w ∈ �OR(τ1, τ2)�S

abs, which by Definition 7, equals �τ1�
S
abs ∪

�τ2�
S
abs, pick some i such that w ∈ �τi�

S
abs. By induction hypothesis, we then get

πi ∈ �τi�
S that realizes w and because �τi�

S ⊆ �OR(τ1, τ2)�S , word w is realized
by πi ∈ �OR(τ1, τ2)�S , which allows us to conclude. If w ∈ �SAND(τ1, τ2)�S

abs, which
by Definition 7, equals �τ1�

S
abs·�τ2�S

abs, then w = w1·w2, with w1 ∈ �τ1�
S
abs and

w2 ∈ �τ2�
S
abs. Since moreover w can be realized, so are its two factors w1 and

w2, say by some paths π1 and π2. By induction hypothesis, π1 ∈ �τ1�
S and π2 ∈

�τ2�
S . Now, π1.last = w1.last = w2.first = π2.first, word w is clearly realized

by π1·π2 with π ∈ �SAND(τ1, τ2)�S . The last case where w ∈ �AND(τ1, . . . , τn)�S
abs

is tedious, and omitted here.
To show that (ii) implies (i), we establish by induction over τ that if π ∈ �τ�S ,
then there is a word w ∈ �τ�S

abs that is realized by π.
Suppose π ∈ �〈ι, γ〉�S , then clearly the word (π.first)(π.last) is in �〈ι, γ〉�S

abs,
and is by construction realizable by π.

Suppose π ∈ �OR(τ1, τ2)�S = �τ1�
S ∪ �τ2�

S . Pick i such that π ∈ �τi�
S .

By induction hypothesis, there exists w that is realized by π and in �τi�
S
abs ⊆

�OR(τ1, τ2)�S
abs, which concludes the argument.

Suppose π ∈ �SAND(τ1, τ2)�S . Pick π1 ∈ �τ1�
S and π2 ∈ �τ2�

S with π = π1·π2.
By induction hypothesis, there is a word w1 ∈ �τ1�

S
abs that can be realized by

22 M. Audinot et al.

π1, and similarly, there is a word w2 ∈ �τ2�
S
abs that can be realized by π2. Since

w1.last = π1.last = π2.first = w2.first, the word w = w1·w2 is well defined,
clearly belongs to �SAND(τ1, τ2)�S

abs, and is realized by π.
The case where π ∈ AND(τ1, . . . , τn) is tedious and left to the reader.

Proposition 3. Algorithm2 is non-deterministic and runs in polynomial time.

Proof. Clearly Step (a) makes at most one call to Algorithm 1 (which is non-
deterministic and runs in polynomial time, see just below) per each node of the
input tree, so Step (a) runs in time linear in the size of the input. Step (b)
executes a call to the polynomial-time algorithm Reach at most a number of
times bounded by the size of the word output in Step (a) – hence a polynomial
number.

Regarding the complexity of Algorithm1, the guesses made are either some
i ∈ {1, 2}, or a pair of states, or some linearization of a set of words. All those
have a polynomial size because the first is constant sized, the second in logarith-
mic in the size of the input system S, and any linearization has a size at most
twice the number of leaves in the input tree.

This concludes the proof of Proposition 3.

By Propositions 2 and 3, we obtain:

Theorem 2. Non-emptiness ∈ NP.

The next section completes the proof of Theorem 1.

5.2 The Problem Non-emptiness is NP-hard

We inherit from the result [2, Proposition 2] that can be rephrased as follows in
our context.

Theorem 3. Non-emptiness is NP-hard, even if we restrict to trees of the
form AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉).

The proof of Theorem 3 is based on a polynomial reduction from the
propositional satisfiability problem to Non-emptiness for trees of the form
AND(〈ι1, γ1〉, . . . , 〈ιn, γn〉). Because the former is NP-hard [7], so is the latter,
Non-emptiness.

We recall some basic vocabulary. Let {p1, . . . , pr} be a set of propositions. A
literal 	 is either a proposition p or its negation ¬p. A clause C is a disjunction
of literals. The propositional satisfiability problem SAT is as follows.

Input: A set C = {C1, . . . , Cm} of clauses.
Output: Does there exist a valuation over Prop that satisfies the set of clauses C ?

Deciding the Non-emptiness of Attack Trees 23

Consider C = {C1, . . . , Cm}, an instance of SAT, and let {p1, . . . , pr} be an
ordering of the set of propositions occurring in the clauses of C . It is standard to
write |C | for the cumulative sum of the clauses’ size, where the size of a clause
is the number of its literals. In the following, we denote by 	i an occurrence of
proposition pi or ¬pi.

We define the labeled transition system SC := (SC ,→C , λC) over the set of
propositions Prop = {start, C1, . . . , Cm}, where start is a fresh proposition, as
follows:

– The set of states is SC =
r⋃

i=1

{pi,¬pi} ∪ {init}, where init is a fresh state;

– The transition relation is →C = {(init, 	1)} ∪ {(i, 	i+1) | 1 ≤ i ≤ r − 1};
– The labeling of states λC : {start, C1, . . . , Cm} → 2S is such that λC (start) =

{init} and λC (Ci) = {	 | 	 ∈ Ci} for every 1 ≤ i ≤ m.

Fig. 5. The system S{C1,C2} where C1 = p1 ∨ ¬p2 and C2 = p1 ∨ p3.

For example, the transition system corresponding to the set formed by the
set of clauses C1 = p1 ∨ ¬p2 and C2 = p1 ∨ p3 is depicted in Fig. 5.

We now let the attack tree τC := AND(〈start, C1〉, 〈start, C2〉, . . . , 〈start, Cm〉).
The reduction that we have described maps any instance C = {C1, . . . , Cm}

of SAT to the instance (SC , τC) of Non-emptiness. It is trivially computable in
polynomial time.

We now prove that �τC �SC
= ∅ if, and only if C is satisfiable.
(⇐) Suppose that C is satisfiable. There exists a valuation over Prop that

satisfies a set of clauses C . First, we consider the path that starts from init and
that follows the literals that are made true by this valuation. Second, we take
the longest prefix π of that path that ends in a state labeled by Cj . As all Ci

are satisfied by the valuation, all Ci appear on π, which shows π ∈ �τC �SC .
(⇒) Let π ∈ �τC �SC . By definition of SC , π cannot visit both a proposition

and its negation. Therefore, π trivially denotes a partial valuation – that is
completed by assigning false to all other propositions. Since π ∈ �τC �SC , π visits
a state labeled by Ci for every i, which shows that the valuation satisfies all the
clauses. Hence, C is satisfiable.

24 M. Audinot et al.

6 The Non-emptiness Problem for AND-free Attack Trees

We here show that the complexity of deciding the non-emptiness of an attack
tree boils down to NLOGSPACE if the input trees are AND-free. We write
Non-emptinessAf for this restricted version of the problem.

For a start, we establish that Non-emptinessAf is in P (Theorem 4), and
later in the section, we improve this bound by showing that Non-emptinessAf

is NLOGSPACE-complete (Theorem 5).

Theorem 4. Non-emptinessAf is in P.

We prove Theorem 4 by developing the polynomial-time Algorithm3 that
answers Non-emptinessAf . This algorithm amounts to verifying the non-
emptiness of the set returned by the the divide-and-conquer Algorithm5, namely
the set pairs(τ,S) of pairs of states in S that are ends (first and last states) of
some path in �τ�S .

Input: An AND-free attack tree τ and a transition system S = (S, →, λ)
Output: �τ�S �= ∅?
return pairs(τ, S) �= ∅

Algorithm 3. nonemptinessAf(τ,S).

Before detailing Algorithm 5, we recall the simple Algorithm 4 used for the
base case of leaf trees. This latter algorithm computes in polynomial time the set
ends(ι, γ,S) of pairs of states that end a given path in �τ�S . Algorithm 4 calls
ReachableFromS(s) which computes the set of states reachable from s in S,
that is the set of states s′ such that s →∗ s′; clearly, the set ReachableFromS(s)
can be computed in polynomial time in the size of S.

Input: Two propositions ι, γ ∈ Prop and a transition system S = (S, →, λ) over Prop
Output: The set {(s, s′) ∈ S × S | s ∈ λ(ι), s′ ∈ λ(s′) and s →∗ s′}
P := ∅;
foreach s ∈ λ(ι) do

P := P ∪ {s} × (ReachableFromS(s) ∩ λ(γ))
end
return P

Algorithm 4. ends(ι, γ,S).

Since S is finite and since the size of the sets λ(ι) and λ(γ) are less than
or equal to the size of S, and because ReachableFromS(s) is computable in
polynomial time, we can claim the following.

Deciding the Non-emptiness of Attack Trees 25

Lemma 1. Algorithm4 terminates and its execution time is polynomial.

It is also not hard to establish the correctness of Algorithm 4.

Lemma 2. Algorithm4 returns {(s, s′) ∈ S × S | s ∈ λ(ι), s′ ∈ λ(s′) and s →∗

s′}.
We now describe the central Algorithm 5, which is defined by induction on τ .

Input: An AND-free attack tree τ and a transition system S = (S, →, λ)
Output: The set {(π.first, π.last) | π ∈ �τ�S}
switch τ do

case 〈ι, γ〉 do
return ends(ι, γ, S);

end
case OR(τ1, τ2) do

return pairs(τ1, S) ∪ pairs(τ2, S)
end
case SAND(τ1, τ2) do

return { (s1, s2) | there exists s3 such that (s1, s3) ∈ pairs(τ1, S) and
(s3, s2) ∈ pairs(τ2, S)) }

end

end

Algorithm 5. pairs(τ,S).

Lemma 3. Algorithm5 terminates and computes in polynomial time the set

{(s, s′) ∈ S × S | there exists π ∈ �τ�S s.t. s = π.first and s′ = π.last}

Proof. The algorithm terminates since recursive calls are executed on smaller
trees and the base case is a call to Algorithm 4 which terminates by Lemma 1.
The correctness of Algorithm 5 can be established by conducting an inductive
reasoning on τ while taking into account the semantics of the OR and SAND
operators according to Definition 6. It is left to the reader. Regarding the time
complexity of Algorithm5, one can easily see that each node of the tree is visited
once and that for each node the computation is in polynomial time, so that the
overall time complexity remains polynomial.

We now can conclude the proof of Theorem4 by observing that deciding the
non-emptiness of an AND-free attack tree is equivalent to deciding pairsS(τ)
=
∅?, which can be achieved in polynomial time by Lemma 3 and the fact that
verifying the non-emptiness of some set can be done in O(1).

Actually, the optimal complexity of Non-emptinessAf is the following.

Theorem 5. Non-emptinessAf is NLOGSPACE-complete.

26 M. Audinot et al.

Input: An AND-free attack tree τ and a transition system S
Output: Accept whenever �τ�S
= ∅.
guess s ∈ S;
node := root of τ ;
lastOp := down;
repeat

if node = 〈ι, γ〉 then

check s |= ι;
loop

guess whether we break the loop or not; if yes, break the loop;
guess s′ ∈ S with s → s′;
s := s′

endLoop
check s |= γ;

end
if (lastOp = down) or (lastOp = over) then

Try to perform and update node with operation down, over, up in priority order;
Store in lastOp the last performed operation

else
Try to perform and update node with operation over, up in priority order;
Store in lastOp the last performed operation

end

until (node = root of τ) and (lastOp = up);
accept

Algorithm 6. nonemptinessNLANDfree(τ ,S).

Proof. The NLOGSPACE-hardness of Non-emptinessAf follows from a trivial
logspace reduction from the s−t-connectivity in an explicit graph – which is
NLOGSPACE-complete according to [21] – to the non-emptiness of the path
semantics of a leaf attack tree (of the form 〈ι, γ〉).

For the NLOGSPACE-easiness, we describe Algorithm 6 which is a non-
deterministic logspace algorithm that decides Non-emptinessAf . Algorithm 6
may look technical but its idea is simple: non-deterministically guess a path in
S and simultaneously perform an exploration of the tree akin to a depth-first
traversal. For SAND-nodes, perform the depth-first traversal as usual. For OR-
nodes, guess one of the two children to explore while the other child is dismissed.
When a leaf node 〈ι, γ〉 is visited, non-deterministically extend the path with a
suffix and check that the first state of this suffix is labeled by ι and that its last
state is labeled by γ (see the first if-block in the repeat-loop).

The constructed path is not entirely stored: only its current last state s is
memorized which requires a logarithmic number of bits in the size of S. This
exploration is implemented in logarithmic space via a technical trick similar to
the one proposed in [13] for tree canonization.

Before explaining the variant of the depth-first traversal we use, we describe
the technical trick for a standard depth-first traversal [13].

Deciding the Non-emptiness of Attack Trees 27

The traversal relies on three operations: down, over ,
up. The standard operations work as follows: operation
down moves to the first child of the current node and
fails if the current node has no children; operation over
moves to the next sibling (left to right) of the current
node and fails if the current node has no next sibling;
operation up moves to the parent of the current node
and fails if the current node is the root.

. . .

do
w
n

over

up

In order to visit only one child of an OR node, we modify the behavior of
operations down and over ; the behavior of operation up remains unchanged: if
the current node is an OR-node, operation down guesses a child and moves to
it; if the parent of the current node is an OR node, operation over always fails
(instead of moving to the next sibling). The obtained modification of the depth-
first traversal is such that exactly one child of an OR node is non-deterministically
chosen and visited.

Algorithm 6 starts its exploration at the root of the attack tree and guesses a
starting state s in S. During the execution of the algorithm, variable s stores the
last state in the current guessed path, variable node stores the current visited
node in the tree and lastOp stores the last operation that was performed. At
the beginning, we consistently suppose (by convention) that operation down
has been performed. The repeat-loop performs the modified traversal of the
attack tree. As already mentioned above, the first if -block treats a leaf 〈ι, γ〉: it
non-deterministically moves forward in the path and checks that the built path
complies with the pre/post-conditions ι and γ. The second if -block controls
the depth-first traversal. The repeat-loop ends when the traversal is finished,
namely when the current node is the root of τ and the last operation is up.

7 The Case of Symbolic Transition Systems

So far in this paper, we have assumed that the system S is described in exten-
sion. However, in realistic applications, this explicit description may be huge
owing to the classic state explosion problem. A way to circumvent this explo-
sion is to represent systems in an implicit manner, known as symbolic transition
systems. Typical symbolic representations are data structures such as BDDs [5]
or languages such as STRIPS [6].

We introduce the decision problem Non-emptinesssymb akin to Non-
emptiness but where the input system is given symbolically. The price to pay
for dealing with a succinct presentation of the system S yields the following
increase of complexity.

Theorem 6. Non-emptinesssymb is PSPACE-complete.

Regarding the PSPACE-hardness of Non-emptinesssymb, it is known that
the symbolic reachability problem, i.e. knowing if in a symbolic transition sys-
tem there exists some path from a given set of source states to a set of tar-
get states, is PSPACE-complete [6]. As an immediate consequence, deciding

28 M. Audinot et al.

the non-emptiness of attack trees is already PSPACE-hard for leaf trees, i.e.
whether �〈ι, γ〉�S
= ∅.

Concerning the PSPACE-easiness of Non-emptinesssymb, we can adapt
Algorithms 1 and 2 for Non-emptiness as follows. First, guessing a state s of
S is performed by guessing the polynomial number of bits that encode s in
the symbolic representation of S; this information is logarithmic in the expo-
nential number of states denoted by the symbolic transition system, hence this
information has a size that is polynomial in the size of the symbolic system. Sec-
ond, checking reachS(s1, s2) is an instance of the symbolic reachability problem,
known to be computable by an algorithm running in polynomial space [6].

All in all, those adaptations of Algorithms 1 and 2 yield an algorithm that
is non-deterministic with a logspace complexity. This shows that the problem
Non-emptinesssymb is in NPSPACE. Invoking Savitch’s Theorem [19] that
states the equality of the two complexity classes NPSPACE and PSPACE is
enough to conclude.

8 Conclusion and Future Work

We have addressed the very natural decision problem of the non-emptiness of
an attack tree, which involves an input tree and an input transition system, and
we have studied its computational complexity. Mainly, the problem is (1) NP-
complete for arbitrary trees, (2) NLOGSPACE-complete if we restrict to AND-
free trees, and (3) PSPACE-complete for arbitrary trees and symbolic transition
systems.

Regarding the most general problem Non-emptiness with no restriction on
attack trees, the established NP upper bound (Theorem4) means that when
the system is represented explicitly and is of “reasonable” size, it is relevant to
consider implementations based on one (or a combination) of the following intel-
ligent search algorithmic techniques: backtracking, backjumping, integer linear
programming, reduction to SAT, use of SMT solvers. The use of a SAT solver
could be used to encode the AND-constraints (parallel decomposition). Actually,
it has already been successfully applied for a related problem in [3]: deciding
the membership of a path in the semantics of an attack tree τ with respect to a
system S, formally “π ∈ �τ�S?”.

Regarding our complexity results for the problem Non-emptinessAf , for the
case of AND-free attack trees, we first showed that it is in P (Theorem 4), which
means that we have an efficient algorithm. Even better, we showed that it is
in NLOGSPACE (Theorem 5). Because the class NLOGSPACE falls within
NC (Nick’s class) [16, Theorem 16.1], the problem Non-emptinessAf can be
efficiently solved on parallel architectures (see [16, p. 376]).

In the future, we plan to resort to solvers to design and implement a reasoning
tool on the non-emptiness of attack trees. Actually, such a reasoning tool also
requires to solve the reachability problem (see the procedure reachS used in
Algorithm 2). For these reasons, we will not only use a mere SAT solver but

Deciding the Non-emptiness of Attack Trees 29

intend to draw on the DPLL(T)2 architecture [4] of Satisfiability Modulo Theory
(SMT) solvers. In our case, the theory T would be the system S itself, over which
we solve the reachability problem. While an SMT solver architecture decomposes
into a SAT solver and a decision procedure for T , our case would rather require
an architecture decomposed into a SAT solver and a model checker. On the one
hand, the constraints reflected by the abstract semantics �τ�S

abs may be solved
by the SAT solver that returns a possible valuation reflecting a word w ∈ �τ�S

abs.
On the other hand, the model checker would verify that word w can be realized
by a path in the system S. Similarly to what is done in SMT solvers, the SAT
solver and the model checker will exchange information: the SAT solver provides
elements w ∈ �τ�S

abs to the model checker and the model checker informs the
SAT solver when a w is inconsistent within S. Interestingly, such an approach
would synthesize a “witness” path of any non-empty attack tree.

References

1. Aslanyan, Z., Nielson, F.: Model checking exact cost for attack scenarios. In: Maf-
fei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 210–231. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 10

2. Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 83–102.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 7

3. Audinot, M., Pinchinat, S., Kordy, B.: Guided design of attack trees: a system-
based approach - to be published. In: 31th IEEE Computer Security Foundations
Symposium, CSF 2018. IEEE (2018)

4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, pp. 825–885. IOS Press, Amsterdam (2009)

5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

6. Bylander, T.: The computational complexity of propositional STRIPS planning.
Artif. Intell. 69(1–2), 165–204 (1994)

7. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM
(1971)

8. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on
linear logic. Fundam. Inform. 153(1–2), 57–86 (2017)

9. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Attack tree generation
by policy invalidation. In: Akram, R.N., Jajodia, S. (eds.) WISTP 2015. LNCS,
vol. 9311, pp. 249–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24018-3 16

10. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Transforming graphi-
cal system models to graphical attack models. In: Mauw, S., Kordy, B., Jajodia, S.
(eds.) GraMSec 2015. LNCS, vol. 9390, pp. 82–96. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29968-6 6

2 Where DPLL stands for Davis-Putnam-Logemann-Loveland and T is a first-order
theory.

https://doi.org/10.1007/978-3-662-54455-6_10
https://doi.org/10.1007/978-3-319-66402-6_7
https://doi.org/10.1007/978-3-319-24018-3_16
https://doi.org/10.1007/978-3-319-24018-3_16
https://doi.org/10.1007/978-3-319-29968-6_6
https://doi.org/10.1007/978-3-319-29968-6_6

30 M. Audinot et al.

11. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

12. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1 11

13. Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, 4–6 May 1992, pp. 400–404 (1992)

14. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

15. Nielson, H.R., Nielson, F., Vigo, R.: Discovering, quantifying, and displaying
attacks. Log. Meth. Comput. Sci. 12 (2016)

16. Papadimitriou, C.H.: Computational Complexity. Academic Internet Publ., Ven-
tura (2007)

17. Pinchinat, S., Acher, M., Vojtisek, D.: Towards synthesis of attack trees for sup-
porting computer-aided risk analysis. In: Canal, C., Idani, A. (eds.) SEFM 2014.
LNCS, vol. 8938, pp. 363–375. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-15201-1 24

18. Pinchinat, S., Acher, M., Vojtisek, D.: ATSyRa: an integrated environment for
synthesizing attack trees. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec
2015. LNCS, vol. 9390, pp. 97–101. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29968-6 7

19. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

20. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. Softw. Tools
24(12), 21–29 (1999)

21. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/978-3-319-15201-1_24
https://doi.org/10.1007/978-3-319-15201-1_24
https://doi.org/10.1007/978-3-319-29968-6_7
https://doi.org/10.1007/978-3-319-29968-6_7

Combining Bayesian Networks and
Fishbone Diagrams to Distinguish
Between Intentional Attacks and
Accidental Technical Failures

Sabarathinam Chockalingam1(B), Wolter Pieters1, André Teixeira2,
Nima Khakzad1, and Pieter van Gelder1

1 Faculty of Technology, Policy and Management, Delft University of Technology,
Delft, The Netherlands

{S.Chockalingam,W.Pieters,N.KhakzadRostami,P.H.A.J.M.vanGelder}@tudelft.nl
2 Department of Engineering Sciences, Uppsala University, Uppsala, Sweden

Andre.Teixeira@angstrom.uu.se

Abstract. Because of modern societies’ dependence on industrial con-
trol systems, adequate response to system failures is essential. In order
to take appropriate measures, it is crucial for operators to be able to
distinguish between intentional attacks and accidental technical failures.
However, adequate decision support for this matter is lacking. In this
paper, we use Bayesian Networks (BNs) to distinguish between inten-
tional attacks and accidental technical failures, based on contributory
factors and observations (or test results). To facilitate knowledge elici-
tation, we use extended fishbone diagrams for discussions with experts,
and then translate those into the BN formalism. We demonstrate the
methodology using an example in a case study from the water manage-
ment domain.

Keywords: Bayesian Network · Fishbone diagram ·
Intentional attack · Safety · Security · Technical failure

1 Introduction

Today’s society depends on the seamless operation of Critical Infrastructures
(CIs) in different sectors such as energy, transportation, and water management,
which is essential to the success of modern economies. Over the years, CIs have
heavily relied on Industrial Control Systems (ICS) to ensure efficient operations,
which are responsible for monitoring and steering industrial processes as, among
others, water treatment and distribution, and flood control.

Modern ICS no longer operates in isolation, but uses other networks to facil-
itate and improve business processes [23]. For instance, ICS uses internet to
facilitate remote access to vendors and support personnel. This increased con-
nectivity, however, makes ICS more vulnerable to cyber-attacks. The German
c© Springer Nature Switzerland AG 2019
G. Cybenko et al. (Eds.): GraMSec 2018, LNCS 11086, pp. 31–50, 2019.
https://doi.org/10.1007/978-3-030-15465-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15465-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-15465-3_3

32 S. Chockalingam et al.

steel mill incident is a typical example of a cyber-attack in which adversaries
made use of corporate network to enter into the ICS network [35]. As an ini-
tial step, the adversaries used both the targeted email and social engineering
techniques to acquire credentials for the corporate network. Once they acquired
credentials for the corporate network, they worked their way into the plant’s
control system network and caused damage to the blast furnace.

It is essential to distinguish between (intentional) attacks and (accidental)
technical failures that would lead to abnormal behavior in a component of the
ICS and take suitable measures. However, there are challenges to achieve these
goals. One particularly important challenge is that the abnormal behavior in a
component of the ICS due to attacks is often initially diagnosed as a technical
failure [28]. This could be due to the imbalance in the frequency of attacks and
technical failures. On the other hand, this could be based on one of the myths
of ICS security: “our facility is not a target” [21]. In most cases, the initiation
of response strategy aimed at technical failures would be ineffective in case of a
targeted attack, and may lead to further complications. For instance, replacing
a sensor that is sending incorrect measurement data with a new sensor would
be a suitable response strategy to technical failure of a sensor. However, this
may not be an appropriate response strategy to an attack on the sensor as it
would not block the corresponding attack vector. Furthermore, the initiation of
inappropriate response strategies would delay the recovery of the system from
adversaries and might lead to harmful consequences. Noticeably, there is a lack
of decision support to distinguish between attacks and technical failures.

Bayesian Networks (BNs) can be potentially used to tackle the challenge of
distinguishing attacks and technical failures as they enable diagnostic reasoning,
which could help to identify the most likely cause of an event based on certain
symptoms (or effects) [24]. The diagnostic inference capability of BN has been
widely employed in real-world applications especially in medical diagnosis [31],
and fault diagnosis [30]. However, BNs are difficult to interpret for ICS domain
experts and are therefore unsuitable for extracting the necessary knowledge.
Conversely, fishbone diagrams are easy-to-use for brainstorming with experts
[9], but lack essential capacities for diagnostic inference. Therefore, fishbone dia-
grams can be potentially combined with BNs to suit the purposes of present chal-
lenge. This research aims to provide decision support for distinguishing between
attacks and technical failures by addressing the research question: “How could
we combine Bayesian Networks and Fishbone Diagrams to find out whether an
abnormal behavior in a component of the ICS is due to (intentional) attack or
(accidental) technical failure or neither?”. The research objectives are:

• RO1. To develop a framework for constructing BN models for determining
the major cause of an abnormal behavior in a component of the ICS.

• RO2. To leverage fishbone diagrams for knowledge elicitation within our BN
framework, and demonstrate the application of the developed methodology
via a case study.

The scope of our BN framework development is the choice of appropriate
types of variables and relationships between the determined variables. Firstly,

Combining Bayesian Networks and Fishbone Diagrams 33

we identify appropriate types of variables from existing diagnostic BN models in
other domains and adapt them to the purposes of the present study (i.e., distin-
guishing attacks and technical failures); accordingly, the relationships between
the selected variables should be established. Furthermore, we provide a system-
atic method for incorporating fishbone diagrams within our BN framework to
effectively elicit knowledge from different sources.

The remainder of this paper is structured as follows: Sect. 2 provides an
essential foundation of diagnostic BNs and previous related work, followed by
an overview of the state-of-the-art regarding fishbone diagrams in Sect. 3. In
Sect. 4, we illustrate the different layers and components of ICS and describe the
case study in the water management domain that is used to demonstrate our pro-
posed methodology. In Sect. 5, our BN framework is developed with appropriate
types of variables and the relationships between these variables are established.
Furthermore, we demonstrate the application of the developed methodology to
a case study in the water management domain in Sect. 5. Section 6 presents the
conclusions and future work directions.

2 Diagnostic Bayesian Networks

This section explains diagnostic BNs with an example, and reviews existing
diagnostic BNs in different domains. BNs belong to the family of probabilistic
graphical models [2]. BNs consist of a qualitative and a quantitative part [7].
The qualitative part is a directed acyclic graph consisting of nodes and edges.
Each node represents a random variable, while the edges between the nodes
represent the conditional dependencies among the random variables. The quan-
titative part takes the form of a priori marginal and conditional probabilities so
as to quantify the dependencies between connected nodes. An example of a BN
model, representing the causal relationships between the risk factor “Smoking”,
the diseases “Bronchitis” and “Lung Cancer”, and the symptoms “Shortness of
Breath” and “Fatigue”, is shown in Fig. 1(a).

When more evidence or information becomes available for some variables in
the BN, the probabilities of other variables in the BN could be updated. This is
called probability propagation, inference, or belief updating [24]. In the example
shown in Fig. 1(b), the physician provides the evidence (via observation or sup-
position) for the symptoms “Shortness of Breath = False” and “Fatigue = True”.
Based on such evidence, the BN computes the posterior (updated) probabilities
of the other nodes using Bayes’ theorem. The BN in Fig. 1(b) determines that
the absence of shortness of breath and the presence of fatigue are more likely due
to lung cancer than bronchitis. In this case, we had evidence for symptoms (or
effects) and inferred the most likely cause. This is called diagnostic or bottom-
up reasoning. BNs also support three other types of reasoning: (i) Predictive or
top-down: reasoning from causes to symptoms, (ii) Intercausal: reasoning about
mutual causes of a common effect, and (iii) Combined: combination of different
types of the above-mentioned reasoning [24].

BN models have widely been used for diagnostic analysis in different domains
including agriculture [3], cyber security [25,26,33,38], health care [6,11,13,20,

34 S. Chockalingam et al.

29,32,39], and transportation [16,19,22]. Chen et al. [3] proposed a two-layer BN
for maize disease diagnosis. In their model, the upper layer consists of diseases
and the lower layer consists of symptoms. However, their BN model did not take
into account other variables like risk factors. In this case, it could be difficult
to diagnose a particular disease among other potential diseases with the same
symptoms.

Pecchia et al. [33] developed a two-layer näıve BN model for detecting com-
promised users in shared computing infrastructures. In their model, the upper
layer consists of a hypothesis variable “the user is compromised” while the
lower layer consists of information variables. When more evidence or information
becomes available for the information variables, this BN would help to diagnose
whether the user has been compromised. In contrast to the BN model developed
by Chen et al. [3], the upper layer consists of only one variable.

Fig. 1. (a) A typical BN model for disease diagnosis. (b) Updated probabilities given
observed symptoms (evidence).

Onísko et al. [32] proposed a three-layer BN for multiple-disorder diagnosis.
In their model, the upper layer consists of risk factors, the middle layer consists of
disorders, and the lower layer consists of symptoms and test results. In contrast

Combining Bayesian Networks and Fishbone Diagrams 35

to the BN models developed by Chen et al. [3] and Pecchia et al. [33], their BN
model takes into account risk factors. Curiac et al. [6] also proposed a similar
three-layer BN model for psychiatric disease diagnosis.

Huang et al. [16] proposed a four-layer BN for fault diagnosis of vehicle info-
tainment system. In their work, the upper layer consists of root causes, the
middle layer consists of intermediate nodes which are usually the group or cate-
gory of the root causes, and two lower layers being distinguished with different
colours. One of the lower layers consists of observations (or test results) while
the other consists of a symptom. In contrast to the BN models proposed by
Onísko et al. [32] and Curiac et al. [6], their BN model did not take into account
risk factors. On the other hand, their BN model considered observations (or
test results) and symptom as separate layers. The observations (or test results)
nodes could better help the diagnostic technicians who were not familiar with
the list of diagnostic tests to be performed for diagnosing a particular root cause
in the BN. The accuracy of posterior probabilities of non-evidenced variables
in the BN would be improved as the observations (or test results) would make
more evidence or information available based on the results of diagnostic tests
performed.

Huang et al. [16] defined symptom as the failure symptom reported by the
customer such as “no-sound”, “no-display” in their vehicle infotainment system.
In addition, they defined observations as any information useful for allocating the
root causes such as those mentioned in the customer’s reports or the outcomes of
tests performed by diagnostic technicians. However, there is no clear distinction
between the information from customer’s reports that could be used to determine
the observation nodes and a symptom node in the BN construction.

3 Fishbone Diagrams

This section explains fishbone diagrams, and highlights their application in both
safety and security. Fishbone diagrams help to systematically identify and organ-
ise the possible contributing factors (or sub-causes) of a particular problem
[8,9,17,18,40]. Figure 2 shows the generic structure of a fishbone diagram, con-
sisting of a problem and its possible contributing factors (or sub-causes) sorted
and related under different categories. Each category represents the major cause
of the problem. The categories used in the fishbone diagram depend on the
classification scheme used for that application. In general, the arrows in the fish-
bone diagram represent the causal relation between the causes and the problem
(effect). The major advantages of fishbone diagram include: (i) fishbone diagrams
are easily adaptable based on the discussions during brainstorming sessions [9],
(ii) fishbone diagram encourages and guides data collection by showing where
knowledge is lacking [9,17], (iii) fishbone diagram structure stimulates group
participation [9,17], (iv) fishbone diagram structure helps to stay focused on the
content of the problem during brainstorming sessions [9].

Fishbone diagrams are used in security and safety applications [1,27,41,42].
Asllani et al. [1] used fishbone diagrams to identify possible contributory fac-
tors of network failure/intrusions, and used six different categories to sort

36 S. Chockalingam et al.

and relate contributory factors. For instance, they considered the problem as
“Network Failure/Intrusions” and one of the potential contributory factors as
“Antivirus Update” under the category “Processes”. This implies that not
updating antivirus could contribute to network failure/intrusions. Zhao et al.
[41] used fishbone diagrams to illustrate possible contributory factors of tower
crane accidents under five different categories. Luca et al. [27] used fishbone
diagrams to illustrate possible contributory factors of noisy functioning of an
automotive flue gas system under four different categories. Zhu et al. [42] used
fishbone diagrams to illustrate possible contributory factors of crude oil vapors
explosion in the drain under six different categories.

Fig. 2. Generic fishbone diagram structure

4 Industrial Control Systems

In this section, we illustrate the three different layers and major components in
each layer of ICS. Furthermore, we provide an overview of a case study in the
water management domain.

4.1 ICS Architecture

Domain knowledge on ICS is the starting point for the development and appli-
cation of our BN framework. A typical ICS consists of three layers: (i) Field
instrumentation layer, (ii) Process control layer, and (iii) Supervisory control
layer [10], bound together by network infrastructure, as shown in Fig. 3.

The field instrumentation layer consists of sensors (Si) and actuators (Ai),
while the process control layer consists of Programmable Logic Controllers
(PLCs)/Remote Terminal Units (RTUs). Typically, PLCs have wired communi-
cation capabilities whereas RTUs have wired or wireless communication capa-
bilities. The PLC/RTU receives measurement data from sensors, and controls

Combining Bayesian Networks and Fishbone Diagrams 37

the physical systems through actuators [37]. The supervisory control layer con-
sists of historian databases, software application servers, Human-Machine Inter-
face (HMI), and workstation. The historian databases and software applica-
tion servers enable the efficient operation of the ICS. The low-level components
are configured and monitored with the help of workstation and HMI, respec-
tively [37].

Fig. 3. Typical ICS architecture and layers

4.2 Case Study Overview

This case study overview is based on a site visit to a floodgate in the Nether-
lands. Some critical information has purposely been anonymised for security
concerns. Figure 4 schematises a floodgate being primarily operated by Supervi-
sory Control and Data Acquisition (SCADA) system along with an operations
centre.

38 S. Chockalingam et al.

Figure 5 illustrates the SCADA architecture of the floodgate. The sensor (S1)
(which is located near the floodgate) is used to measure the water level. There is
also a water level scale which is visible to the operator from the operations centre.
The sensor measurements are then sent to the PLC. If the water level reaches
the higher limit, PLC would send an alarm notification to the operator through
the HMI, and the operator would need to close the floodgate in this case. The
HMI would also provide information like the water level and the current state of
the floodgate (open/close). The actuator opens/closes the floodgate. The data
transmission used in this case is wired. Electricity is the only energy source in
the operations centre.

Fig. 4. Physical layout of the floodgate

Fig. 5. SCADA architecture of the floodgate

Combining Bayesian Networks and Fishbone Diagrams 39

5 Development and Application of the Methodology

In this section, we describe our framework with the type of variables and their
relationships. Furthermore, we use an illustrative case of a floodgate in the
Netherlands to explain how we combine BN and fishbone diagram to distinguish
between (intentional) attacks and (accidental) technical failures.

5.1 Framework for Distinguishing Attacks and Technical Failures

The developed BN framework is grounded in BN models used for diagnostic pur-
poses in different domains [6,16,32,33]. Studying the aforementioned diagnostic
BN models in Sect. 2, we adopted and customised a set of variables to develop
our BN framework. The type of variables which we adopted are: (i) risk factors
[6,32], (ii) hypothesis [33], and (iii) observations (or test results) [16].

Pecchia et al. [33] used a hypothesis variable in their BN model as a classifier
node to classify whether the user is compromised or not in shared computing
infrastructures. We adopted the notion of a classifier node from Pecchia et al.
[33] as it is the basis to the purposes of the present study. However, we defined it
as the problem variable as it is an abnormal behavior in a component of the ICS
(observable problem) in our work. For instance, the sensor (S1) sends incorrect
water level measurements. The purpose of the hypothesis variable in Pecchia et
al. is to determine whether the user is compromised or not in sharing computing
infrastructures, whereas in our work it is used to determine the major cause
of the problem. An abnormal behavior in the technological components could
be mainly caused by intentional attacks, accidental technical failures, human
errors, or natural disasters [14]. However, the main objective of our study is
to distinguish between attacks and technical failures. Therefore, we considered
intentional attack and accidental technical failure as major causes of the prob-
lem. In addition, we introduced a category “others” in case the major cause of
the problem is neither intentional attack nor accidental technical failure. For
instance, the sensor (S1) is misplaced in a different location by an operator. In
this case, the major cause of the problem is human error and would thus be
determined as “others”.

Onísko et al. [32] and Curiac et al. [6] defined risk factors as the factors
that would increase the likelihood of a disease. We, accordingly, adopted the
term risk factors, and defined them as contributory factors since they contribute
to the major cause of the problem in our work. For instance, “weak physical
access-control” could contribute to the sensor (S1) sending incorrect water level
measurements due to an attack. Furthermore, there might be common contrib-
utory factors to different major causes of the problem. For instance, “outdated
technology” could contribute to both the sensor (S1) sending incorrect water
level measurements due to an attack and a technical failure.

40 S. Chockalingam et al.

In general, observations (or test results) play an important role in diagnostics.
Huang et al. [16] defined observations as any information useful for allocating
the root causes such as those mentioned in the customer’s reports or the out-
comes of tests performed by diagnostic technicians. We defined observations (or
test results) as any information useful for determining the major cause of the
problem based on the outcomes of tests. For instance, the outcome of the test
“whether the sensor (S1) sends correct water level measurements after clean-
ing the sensor (S1)?” would provide an additional information to determine the
major cause (accidental technical failure) of the problem accurately. The obser-
vation (or test results) variables can be elicited from different sources such as
experts, product manuals, and previous incident reports. For instance, the global
water level sensor WL400 product manual lists troubleshooting tests for incor-
rect water level measurements due to (accidental) technical failures [12]. One of
the troubleshooting tests listed in the product manual is to clean the sensor fol-
lowing the maintenance instructions and check whether the sensor sends correct
water level measurements. Figure 6 shows the BN structure to build BN models
for determining the major cause of an abnormal behavior in a component of the
ICS, representing the causal relationship between the contributory factors, the
problem, and the observations (or test results).

Fig. 6. BN structure to determine the major cause of an abnormal behavior in a
component of the ICS

Combining Bayesian Networks and Fishbone Diagrams 41

5.2 Combining Bayesian Networks and Fishbone Diagrams

Knowledge elicitation plays an important role to construct BN model especially
with the appropriate variables for the considered problem [15,34]. There are
challenges to solely rely on BN for knowledge elicitation. For instance, BN is not
easy-to-use for brainstorming with domain experts as it could be time-consuming
to explain the notion of BN and also to change its structure instantly based on
discussions during brainstorming sessions. Notably, expert knowledge is one of
the predominant data sources utilised to build BN structure with appropriate
variables especially in domains where there is a limited availability of data like
cyber security [5]. Therefore, our framework would be incomplete without an
effective method for knowledge elicitation.

In our work, fishbone diagram is used as the foundation to develop an effec-
tive method for knowledge elicitation especially based on their advantages stated
in Sect. 3. Furthermore, there are additional benefits in the use of fishbone dia-
gram in our work. We would mainly rely on experts from two different domains
in addition to other sources for knowledge elicitation to construct BN models: (i)
security, dealing with intentional attacks, and (ii) safety, dealing with accidental
technical failures. In case we start building a BN model directly without utilising
the fishbone diagram to elicit data from experts, it would be difficult to visu-
alise which contributory factors and observations (or test results) corresponds
to each major cause of the problem. This could make it difficult for the experts
especially during brainstorming sessions. The fishbone diagram structure shows
the potential to tackle this challenge. In some cases, there might be common
contributory factors. For instance, “outdated technology” is a common contrib-
utory factor to two major causes of the problem (i.e., “outdated technology”
could contribute to the sensor (S1) sending incorrect water level measurements
due to both “intentional attack” and “accidental technical failure”). If we start
building a BN model directly without utilising the fishbone diagram to elicit
data from experts, this could lead to duplication of common contributory fac-
tors using different terminologies in the BN.

In addition, BN structure is not easily changeable especially with a large
number of contributory factors and observations (or test results) elicited from
experts during brainstorming sessions. The fishbone diagram structure makes it
easier to refine/update a large number of contributory factors and observations
(or test results) instantly based on discussions during brainstorming sessions with
experts. It would also help to visualise contributory factors and observations (or
test results) from other sources such as literature and previous incidents. Finally,
we can convert the constructed fishbone diagram into a corresponding BN model
after the completion of knowledge elicitation to constitute the quantitative part
of the corresponding BN model.

5.3 Extended Fishbone Diagrams and Translated BNs

We considered the example problem “sensor (S1) sends incorrect water level mea-
surements” as it could develop more complex situations in the case of floodgate.

42 S. Chockalingam et al.

In case the floodgate closes when it should not based on the incorrect water level
measurements sent by the sensor (S1), it would lead to severe economic damage,
for instance, by delaying cargo ships. On the other hand, in case the floodgate
opens when it should not due to incorrect water level measurements sent by the
sensor (S1), it would lead to flooding.

Figure 7 shows a fishbone diagram based on the example mentioned above.
We considered “sensor (S1) sends incorrect water level measurements” as the
problem. Furthermore, we considered two major causes of the problem: inten-
tional attack and accidental technical failure as mentioned earlier. These major
causes of the problem would be the categories in our fishbone diagram. Finally,
we mapped the appropriate contributory factors under each category. In this
case, “outdated technology” is the common contributory factor that could con-
tribute to sensor (S1) sending incorrect water level measurements due to inten-
tional attack and accidental technical failure. In this case, we listed “weak phys-
ical access-control” as one of the contributory factors in the category of inten-
tional attack. This is because weak physical access-control could contribute to
sensor (S1) sending incorrect water level measurements due to an intentional
attack.

Fig. 7. Fishbone diagram example

Noticeably, fishbone diagrams do not consist of observations (or test results),
which need to be elicited in our work. However, we could extend the fishbone
diagram to incorporate observations (or test results) as shown in Fig. 8. This
would allow us to elicit complete information needed to construct BN models
especially with the three different types of variables and cause-effect relationships
in our BN framework. The extended fishbone diagram is shown in Fig. 8 with an
additional component: observations (or test results). The arrows in the fishbone
diagram represent the causal relationship. The categories stated on the left side

Combining Bayesian Networks and Fishbone Diagrams 43

of the problem in the fishbone diagram are the major causes of the problem.
Therefore, these categories has the arrows directing towards the problem which
represent the causal relationship between the causes and the problem. However,
the categories stated on the right side of the problem are used for reference
to elicit observations (or test results) that would be useful for determining the
particular major cause of the problem. Figure 9 shows the extended version of
our fishbone diagram example with observations (or test results).

Fig. 8. Extended fishbone diagram structure

Fig. 9. Extended fishbone diagram example

Extended fishbone diagrams might look similar to qualitative bowtie dia-
grams, but, they are different. The observations (or test results) on the right side
of the problem node in the extended fishbone diagram help distinguish between
different events (intentional attack and accidental technical failure), Whereas
bowtie diagrams are aimed at representing the possible consequences of a fixed
event. Furthermore, qualitative bowties [36] consider recovery measures/reactive
controls on the right side of the problem node. This is not relevant to our appli-
cation because we focus on diagnostics. On the other hand, extended fishbone

44 S. Chockalingam et al.

diagrams consider preventive controls/barriers implicitly on the left side of the
problem node, as part of the contributory factors. For instance, “weak physical
access-control for the sensor” is one of the contributory factors. The evidence
supplied by the operator in the BN for this node would depend on the preven-
tive controls/barriers that are in place. In case there are physical access-control
measures implemented in that specific application, the operator would supply
the evidence as ‘No’ for this node in the BN.

Once the fishbone diagram is developed, it should be translated to a BN
based on the following steps:

i. The considered problem in the fishbone diagram is mapped to the problem
variable in the middle layer of the BN as shown in Fig. 10.

ii. The categories used in the fishbone diagram would be states of the problem
variable in our BN. In addition to these states, there would be an additional
state “Others” in our BN. As mentioned in Sect. 5.1, this would be deter-
mined in case the major cause of the problem is neither intentional attack
nor accidental technical failure.

iii. The elicited contributory factors in the fishbone diagram are mapped to
the contributory factor variables in the upper layer of the BN as shown in
Fig. 10. The contributory factors that correspond to both intentional attack
and accidental technical failure in the fishbone diagram would be treated
as a single contributory factor in the BN. For instance, “outdated technol-
ogy” in our example would be treated as a single contributory factor in BN
as shown in Fig. 10. However, the contributory factors that correspond to
both intentional attack and accidental technical failure would be reflected
through the conditional probabilities of “sensor (S1) sends incorrect water
level measurements”. We considered the contributory factors as binary dis-
crete variables based on their features. However, continuous variables could
also have been used. We utilised the states “Yes” and “No” for our contrib-
utory factors as shown in Fig. 10.

iv. The elicited observations (or test results) in the fishbone diagram are
mapped to the observations (or test results) in the lower layer of the BN as
shown in Fig. 10. We considered the observations (or test results) as binary
discrete variables based on their characteristics. We employed the states
“Yes” and “No” for our observations (or test results) as shown in Fig. 10.

Once the fishbone diagram is translated to a corresponding BN model, the
quantitative part of the BN should be populated. Due to limited data availability,
expert knowledge is the predominant data source used to populate CPTs of
BNs in cyber security [5]. In our work, we did not investigate whether fishbone
diagrams could be used as a means to elicit probabilities from experts as our
main objective is to elicit appropriate variables in the construction of the BN
structure for the considered problem.

Combining Bayesian Networks and Fishbone Diagrams 45

Fig. 10. Translated BN from fishbone diagram example

However, it is important to investigate whether fishbone diagrams could be
used to elicit CPTs from experts in the future. The translated BN with illustra-
tive priori marginal and conditional probabilities, representing the causal rela-
tionships between the contributory factors, the problem, and the observations
(or test results), is shown in Fig. 11.

Once the quantitative part of the BN is populated, the BN could be used in
practice for different scenarios and their probabilities could be updated based
on evidences obtained. In the example shown in Fig. 11, we provided the evi-
dence for the contributory factors “Weak Physical Access Control = Yes”, “Out-
dated Technology = Yes”, “Poor Maintenance = No” and “Sensor without Self-
diagnostic Function = No”, and observation (or test result) “Abnormalities in
the other locations = Yes”. Based on such evidence, the BN computes the pos-
terior (updated) probabilities of the other nodes. The BN in Fig. 11 determines
that the problem “Sensor (S1) sends incorrect water level measurements” is most
likely due to (intentional) attack based on the evidence provided.

46 S. Chockalingam et al.

Fig. 11. Translated BN with updated probabilities based on the evidence

6 Conclusions and Future Work

Adequate decision support for distinguishing intentional attacks and accidental
technical failures is missing. In this paper, we customised and utilised three dif-
ferent types of variables from existing diagnostic BN models in a BN framework

Combining Bayesian Networks and Fishbone Diagrams 47

to construct BN models for distinguishing intentional attacks and accidental
technical failures. In our BN framework, the upper layer consists of contributory
factors, the middle layer consists of a problem variable and the lower layer con-
sists of observations (or test results). Furthermore, we extended and combined
fishbone diagram with our BN framework to support knowledge elicitation from
different sources. The important characteristics of our framework include: (i) it
serves as a basis to provide decision support for responding to safety and secu-
rity problems arise in the components of ICS, (ii) While determining the most
likely cause of an abnormal behavior in a component of the ICS, it helps to
consider both the contributory factors and observations (or test results) associ-
ated with it, and (iii) it facilitates knowledge elicitation especially from experts
and its integration in BNs. Finally, we demonstrated the use of the developed
methodology with an example problem “sensor (S1) sends incorrect water level
measurements” based on a case study in water management domain.

This work belongs to the broader theme of “Integrated safety and security”.
There are several studies within the sub-theme of “Integrated safety and secu-
rity risk assessment” [4]. However, this work is associated with the sub-theme
of “Integrated safety and security diagnostics”, which mainly deals with the
problem of distinguishing intentional attacks and accidental technical failures.

In the future, it would be useful to investigate whether fishbone diagrams
could be used to elicit CPTs. The developed methodology would not be directly
applicable when several problems arise at the same time. Therefore, it is impor-
tant to address how fishbone diagrams could be used to elicit knowledge for
those cases in the future and how it could be translated to a corresponding BN.
Furthermore, we aim to evaluate our methodology based on applications in the
water management domain.

Acknowledgements. This research received funding from the Netherlands Organi-
sation for Scientific Research (NWO) in the framework of the Cyber Security research
program under the project “Secure Our Safety: Building Cyber Security for Flood Man-
agement (SOS4Flood)”.

References

1. Asllani, A., Ali, A.: Securing information systems in airports: a practical approach.
In: 2011 International Conference for Internet Technology and Secured Transac-
tions (ICITST), pp. 314–318. IEEE (2011)

2. Ben-Gal, I., Ruggeri, F., Faltin, F., Kenett, R.: Bayesian networks. Encyclopedia
of statistics in quality and reliability (2007)

3. Chen, G., Yu, H.: Bayesian network and its application in maize diseases diagnosis.
In: Li, D. (ed.) CCTA 2007. TIFIP, vol. 259, pp. 917–924. Springer, Boston, MA
(2008). https://doi.org/10.1007/978-0-387-77253-0 22

4. Chockalingam, S., Hadžiosmanović, D., Pieters, W., Teixeira, A., van Gelder, P.:
Integrated safety and security risk assessment methods: a survey of key characteris-
tics and applications. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen,
S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 50–62. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71368-7 5

https://doi.org/10.1007/978-0-387-77253-0_22
https://doi.org/10.1007/978-3-319-71368-7_5

48 S. Chockalingam et al.

5. Chockalingam, S., Pieters, W., Teixeira, A., van Gelder, P.: Bayesian network mod-
els in cyber security: a systematic review. In: Lipmaa, H., Mitrokotsa, A., Mat-
ulevičius, R. (eds.) NordSec 2017. LNCS, vol. 10674, pp. 105–122. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70290-2 7

6. Curiac, D.I., Vasile, G., Banias, O., Volosencu, C., Albu, A.: Bayesian network
model for diagnosis of psychiatric diseases. In: Proceedings of the ITI 2009 31st
International Conference on Information Technology Interfaces, pp. 61–66. IEEE
(2009)

7. Darwiche, A.: Bayesian networks. Found. Artif. Intell. 3, 467–509 (2008)
8. Desai, M.S., Johnson, R.A.: Using a fishbone diagram to develop change man-

agement strategies to achieve first-year student persistence. SAM Adv. Manag. J.
78(2), 51 (2013)

9. Doggett, A.M.: Root cause analysis: a framework for tool selection. Qual. Manag.
J. 12(4), 34–45 (2005)

10. Endi, M., Elhalwagy, Y., et al.: Three-layer PLC/SCADA system architecture in
process automation and data monitoring. In: 2010 The 2nd International Confer-
ence on Computer and Automation Engineering (ICCAE), vol. 2, pp. 774–779.
IEEE (2010)

11. Estabragh, Z.S., et al.: Bayesian network modeling for diagnosis of social anxi-
ety using some cognitive-behavioral factors. Netw. Model. Anal. Health Inform.
Bioinform. 2(4), 257–265 (2013)

12. GlobalWater: Global water level sensor - wl400 product manual (2009). http://
www.globalw.com/downloads/WL400/WL400manual.pdf

13. González-López, J., et al.: Development and validation of a Bayesian network for
the differential diagnosis of anterior uveitis. Eye 30(6), 865 (2016)

14. Grimvall, G., Holmgren, Å., Jacobsson, P., Thedéen, T.: Risks in Technological
Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84882-641-0

15. Henrion, M.: Practical issues in constructing a Bayes’ belief network. arXiv preprint
arXiv:1304.2725 (2013)

16. Huang, Y., McMurran, R., Dhadyalla, G., Jones, R.P.: Probability based vehicle
fault diagnosis: Bayesian network method. J. Intell. Manuf. 19(3), 301–311 (2008)

17. Ilie, G., Ciocoiu, C.N.: Application of fishbone diagram to determine the risk of an
event with multiple causes. Manag. Res. Pract. 2(1), 1–20 (2010)

18. Ishikawa, K., Ishikawa, K.: Guide to Quality Control, vol. 2. Asian Productivity
Organization, Tokyo (1982)

19. Jianhui, L., Zhang, J., Mingdi, J.: Application of BN in the fault diagnosis of brake
failure system. Appl. Mech. Mater. 602–605, 1684–1688 (2014)

20. Kahn Jr., C.E., Roberts, L.M., Shaffer, K.A., Haddawy, P.: Construction of a
Bayesian network for mammographic diagnosis of breast cancer. Comput. Biol.
Med. 27(1), 19–29 (1997)

21. KasperskyLab: Five myths of industrial control systems security (2014). https://
media.kaspersky.com/pdf/DataSheet KESB 5Myths-ICSS Eng WEB.pdf

22. Kipersztok, O., Dildy, G.A.: Evidence-based Bayesian networks approach to air-
plane maintenance. In: Proceedings of the 2002 International Joint Conference on
Neural Networks, IJCNN 2002, vol. 3, pp. 2887–2892. IEEE (2002)

23. Knowles, W., Prince, D., Hutchison, D., Disso, J.F.P., Jones, K.: A survey of cyber
security management in industrial control systems. Int. J. Crit. Infrastruct. Prot.
9, 52–80 (2015)

24. Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. CRC Press, Boca
Raton (2010)

https://doi.org/10.1007/978-3-319-70290-2_7
http://www.globalw.com/downloads/WL400/WL400manual.pdf
http://www.globalw.com/downloads/WL400/WL400manual.pdf
https://doi.org/10.1007/978-1-84882-641-0
http://arxiv.org/abs/1304.2725
https://media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf
https://media.kaspersky.com/pdf/DataSheet_KESB_5Myths-ICSS_Eng_WEB.pdf

Combining Bayesian Networks and Fishbone Diagrams 49

25. Kwan, M., Chow, K.-P., Lai, P., Law, F., Tse, H.: Analysis of the digital evidence
presented in the Yahoo! Case. In: Peterson, G., Shenoi, S. (eds.) DigitalForensics
2009. IAICT, vol. 306, pp. 241–252. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04155-6 18

26. Kwan, M., Chow, K.-P., Law, F., Lai, P.: Reasoning about evidence using Bayesian
networks. In: Ray, I., Shenoi, S. (eds.) DigitalForensics 2008. ITIFIP, vol. 285, pp.
275–289. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-387-84927-
0 22

27. Luca, L., Stancioiu, A.: The study applying a quality management tool to identify
the causes of a defect in an automotive. In: Proceedings of the 3rd International
Conference on Automotive and Transport Systems (2012)

28. Macaulay, T., Singer, B.L.: Cybersecurity for Industrial Control Systems: SCADA,
DCS, PLC, HMI, and SIS. Auerbach Publications, Boca Raton (2016)

29. Moreira, M.W., Rodrigues, J.J., Oliveira, A.M., Ramos, R.F., Saleem, K.: A
preeclampsia diagnosis approach using Bayesian networks. In: 2016 IEEE Inter-
national Conference on Communications (ICC), pp. 1–5. IEEE (2016)

30. Nakatsu, R.T.: Reasoning with Diagrams: Decision-Making and Problem-Solving
with Diagrams. Wiley, Hoboken (2009)

31. Nikovski, D.: Constructing bayesian networks for medical diagnosis from incom-
plete and partially correct statistics. IEEE Trans. Knowl. Data Eng. 9(4), 509–516
(2000)

32. Onísko, A., Druzdzel, M.J., Wasyluk, H.: Extension of the Hepar II model to
multiple-disorder diagnosis. In: K�lopotek, M., Michalewicz, M., Wierzchoń, S.T.
(eds.) Intelligent Information Systems, pp. 303–313. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-7908-1846-8 27

33. Pecchia, A., Sharma, A., Kalbarczyk, Z., Cotroneo, D., Iyer, R.K.: Identifying
compromised users in shared computing infrastructures: a data-driven Bayesian
network approach. In: 2011 30th IEEE International Symposium on Reliable Dis-
tributed Systems, pp. 127–136. IEEE (2011)

34. Przytula, K.W., Thompson, D.: Construction of Bayesian networks for diagnostics.
In: 2000 IEEE Aerospace Conference Proceedings, vol. 5, pp. 193–200. IEEE (2000)

35. RISI: German steel mill cyber attack (2018). http://www.risidata.com/database/
detail/german-steel-mill-cyber-attack

36. de Ruijter, A., Guldenmund, F.: The bowtie method: a review. Saf. Sci. 88, 211–
218 (2016)

37. Skopik, F., Smith, P.D.: Smart Grid Security: Innovative Solutions for a Modern-
ized Grid. Syngress, Boston (2015)

38. Wang, J.A., Guo, M.: Vulnerability categorization using Bayesian networks. In:
Proceedings of the Sixth Annual Workshop on Cyber Security and Information
Intelligence Research, p. 29. ACM (2010)

39. Wang, X.H., Zheng, B., Good, W.F., King, J.L., Chang, Y.H.: Computer-assisted
diagnosis of breast cancer using a data-driven Bayesian belief network. Int. J. Med.
Inform. 54(2), 115–126 (1999)

40. White, A.A., et al.: Cause-and-effect analysis of risk management files to assess
patient care in the emergency department. Acad. Emerg. Med. 11(10), 1035–1041
(2004)

https://doi.org/10.1007/978-3-642-04155-6_18
https://doi.org/10.1007/978-3-642-04155-6_18
https://doi.org/10.1007/978-0-387-84927-0_22
https://doi.org/10.1007/978-0-387-84927-0_22
https://doi.org/10.1007/978-3-7908-1846-8_27
http://www.risidata.com/database/detail/german-steel-mill-cyber-attack
http://www.risidata.com/database/detail/german-steel-mill-cyber-attack

50 S. Chockalingam et al.

41. Zhao, C.H., Zhang, J., Zhong, X.Y., Zeng, J., Chen, S.J.: Analysis of accident
safety risk of tower crane based on fishbone diagram and the analytic hierarchy
process. In: Applied Mechanics and Materials. vol. 127, pp. 139–143. Trans Tech
Publications (2012)

42. Zhu, Y., Qian, X.M., Liu, Z.Y., Huang, P., Yuan, M.Q.: Analysis and assessment
of the Qingdao crude oil vapor explosion accident: lessons learnt. J. Loss Prev.
Process. Ind. 33, 289–303 (2015)

Disclosure Analysis of SQL Workflows

Marlon Dumas1, Luciano Garćıa-Bañuelos1(B), and Peeter Laud2

1 University of Tartu, Tartu, Estonia
{marlon.dumas,luciano.garcia}@ut.ee

2 Cybernetica, Tartu, Estonia
peeter.laud@cyber.ee

Abstract. In the context of business process management, the imple-
mentation of data minimization requirements requires that analysts are
able to assert what private data each worker is able to access, not only
directly via the inputs of the tasks they perform in a business process,
but also indirectly via the chain of tasks that lead to the production of
these inputs. In this setting, this paper presents a technique which, given
a workflow that transforms a set of input tables into a set of output tables
via a set of inter-related SQL statements, determines what information
from each input table is disclosed by each output table, and under what
conditions this disclosure occurs. The result of this disclosure analysis is
a summary representation of the possible computations leading from the
inputs of the workflow to a given output thereof.

1 Introduction

Data minimization is one of the principles underpinning the European General
Data Protection Regulation (GDPR) as well as previous privacy frameworks and
standards such as ISO 29100 [3]. In the context of Business Process Management
(BPM) this principle entails that workers, contractors, and other stakeholders
involved in the execution of a business process, should only have access to pri-
vate data to the extent it is required to perform the tasks for which they are
responsible. In order to verify compliance vis-a-vis of this requirement, analysts
need to have a fine-grained understanding of what private data each worker is
able to access, not only directly via the inputs of the tasks they perform, but
also indirectly via the chain of tasks that lead to the production of these inputs.

Previous work on business process privacy analysis [1] has led to techniques
for boolean (“yes-no”) disclosure analysis. These techniques allow an analyst to
determine whether or not a given stakeholder has access to a data object or
data collection (e.g. a document or a database table). However, it does not allow
analysts to determine what part of the data collection (e.g. what attributes) are
accessible to each stakeholder and under which conditions.

This paper proposes a finer-grained disclosure analysis technique which char-
acterizes how the contents of the database on top of which a business process
is executed, affects each output of the process, specifically, which columns of

c© Springer Nature Switzerland AG 2019
G. Cybenko et al. (Eds.): GraMSec 2018, LNCS 11086, pp. 51–70, 2019.
https://doi.org/10.1007/978-3-030-15465-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15465-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-15465-3_4

52 M. Dumas et al.

which tables become part of an output, in which manner, and under which con-
ditions. The proposed technique tasks as input a SQL workflow, which we define
as a process model in the standard BPMN notation1 in which each task corre-
sponds to a SQL statement executed against a database. Each SQL statement
in the workflow queries a set of input tables from the database and produces
new tables, which can be later used by subsequent tasks in the workflow. The
table (or set of tables) that are taken as input by the first SQL statements in
the workflow are called the inputs. Conversely, the tables produced by the last
SQL statements in the workflow are called the final output(s), while the tables
produced by intermediate tasks in the workflow are called intermediate outputs.

As a running example, Fig. 1 presents an example SQL workflow from an Aid
Distribution process, in which a country facing a catastrophe, requests aid from
the international community. The situation requires distributing goods to the
population via maritime transportation. Henceforth, a SQL workflow is executed
to identify ships in nearby locations and to allocate berths to ships, such that
ships can move people and goods from/to the requesting country.

Compute
reachable

ports

Compute
feasible

ports

Allocate
ship to port/

berth

Ports
Reachable ports Feasible ports

Parameters
(deadline,
ship name)

Berths

Ship/berth
allocations

Slots

Ships

Fig. 1. Conceptual model of the Aid distribution scenario

Some of the inputs used in this workflow are confidential (e.g. ship location
and capacities) and the countries involved in the process seek to minimize their
exposure to different stakeholders. Accordingly, an analyst needs to determine:
(i) who gets access to which input tables during the performance of the pro-
cess? (ii) what information (e.g. table columns or functions over columns) are
disclosed? and (iii) under what conditions this disclosure occurs? The disclosure
analysis technique proposed in this paper supports this task by determining what
information is disclosed via each intermediate and final output of the workflow,
and under which conditions (i.e. for which table rows) this disclosure occurs.

The rest of the paper is structured as follows. Section 2 formalizes the notion
of SQL workflow. Section 3 presents the disclosure analysis technique, while
Sect. 4 presents how the output of this technique can be simplified and visu-
ally presented. Section 5 discusses related work, while Sect. 6 draws conclusions.

1 http://www.bpmn.org/.

http://www.bpmn.org/

Disclosure Analysis of SQL Workflows 53

2 SQL Workflows

For the disclosure analysis, we assume that the overall computation is specified as
a set of inter-related SQL statements over a database. Each step takes some input
tables and derives new information that is stored in output tables which might
be used by subsequent steps. Each task in the SQL workflow is associated with
a SQL statement. Listing 1.1 presents the script associated with task “Compute
reachable ports” from the running example.

Listing 1.1. SQL script associated with task “Compute reachable ports”

1 create function earliest arrival(
2 ship_latitude double, ship_longitude double,
3 port_latitude double, port_longitude double,
4 max_speed bigint) returns bigint as
5 $$
6 select ceil((point(ship_latitude, ship_longitude)
7 <@> point(port_latitude, port_longitude)) / max_speed)::bigint
8 $$
9 language SQL immutable returns null on null input;

10

11 select port.port_id as port_id,
12 earliest arrival(ship.longitude, ship.latitude, port.longitude,
13 port.latitude, ship.maxspeed) as arrival
14 into reachable_ports
15 from ports as port, ships as ship, parameters as p
16 where earliest arrival(ship.longitude, ship.latitude,
17 port.longitude, port.latitude, ship.maxspeed) <= p.deadline
18 and ship.name = p.shipname
19 and port.port_id = port.port_id;

The syntax used in the script is that of PostgreSQL and, as it can be seen, the
underlying query is not trivial. In this example, the script includes a user defined
function (i.e. earliest arrival) that computes the time for a ship to reach
a port given their coordinates and the ship’s speed. Each task can be associated
with any number of user-defined functions and at least one select-into statement
that would store the outcome of the computation on a (temporary) table, to
be consistent with the intent specified in the conceptual model. In Listing 1.1,
such select-into statement is defined in lines 11–19. Moreover, it can be seen
that such statement takes as input tables ports, ships and parameters
(highlighted in line 15) and stores the result in table reachable ports (line
14), consistent with the model. The select statement, in turn, calls the function
earliest arrival in lines 12 and 16, which is defined in lines 1–9.

SQL workflows may include sophisticated constructs to captures conditional
branching and concurrency, as per the BPMN standard. For simplicity, the dis-
closure analysis is performed not on the whole SQL workflow but on the set
of the runs of it. A run is the set nodes and edges that are visited on a SQL
workflow to track one possible execution of the workflow.

To illustrate the concept of run, consider the sample workflow in Fig. 2, which
contains AND gateways (cf. diamonds decorated with +) and XOR gateways (cf.
decorated with ×). The semantics of such gateways, as defined in the BPMN
specification [8], is the following. An AND gateway activates all the elements on
the outgoing paths and synchronizes the completion of all the elements on the

54 M. Dumas et al.

Fig. 2. Sample SQL workflow and its runs

incoming paths. Conversely, a XOR gateway activates only one outgoing path
(cf. based on a predicated associated with the edge) or waits for the completion
of one of the incoming paths. Henceforth, a run of this workflow is a connected
subgraph of the process model that contains the start (entry) and the end (exit)
node, and such that at most one outgoing edge of each XOR-split is represented.
In the example shown in Fig. 2, there are exactly two runs, one of which is
highlighted.

Before describing the method, we need to introduce some notation. Con-
ceptually, a SQL workflow can be represented as a directed graph, formally
defined as tuple W = (V, E ,P,O,F ,V×,V+,AD,AQ). There, V is the set of
nodes and E ⊆ V × V the set of control flow edges. For convenience, we assume
that V = P ∪ V× ∪ V+ ∪ {vs} ∪ Ve, where P denotes the set of data processing
nodes, G× the set of AND gateways, V+ XOR gateways, vs is the start node,
and Ve is a non-empty set of end nodes (e.g. ve). A SQL workflow must have
exactly one start node and at least one end node. O is the set of data objects
and F ⊆ (O ×P)∪ (P ×O) the set of dataflow edges. Similarly, AD : O → SQL
is a mapping that associates data objects with SQL data definition statements,
and AQ : P → SQL a mapping that associates processing nodes with SQL data
manipulation statements. Finally, we will write •v = {v′ ∈ V|(v′, v) ∈ E} to
denote the set of predecessors of node v and v• = {v′ ∈ V|(v, v′) ∈ E} to refer
to the set of successors of v.

Consider the workflow W. We write P(W) to denote the set of all runs of W,
iff for every ρ ∈ P(W) with ρ = (V ′, E ′), all the following conditions hold: (i) ρ is
subgraph of W, i.e. V ′ ⊆ V and E ′ = E ∩(V ′ ×V ′), (ii) ρ includes start/end nodes
of W, i.e. vs, ve ∈ V ′, (iii) ρ includes exactly one path incoming/outgoing XOR
gateways, i.e. ∀g ∈ V ′ ∩ V× : | • g ∩ V ′| = |g • ∩V ′| = 1, (iv) ρ includes all paths
incoming/outgoing nodes other than XOR gateways, i.e. ∀g ∈ V ′ \ V× : •g ⊂
V ′ ∧ g• ⊂ V ′, and (v) all the nodes in ρ are in a path from the start node and
finishes in at least one of end node ve, i.e. ∀v ∈ V ′,∃ve ∈ Ve : (vs, v), (v, ve) ∈ E ′∗.
The set P(W) can be trivially computed if W is acyclic, using a tailored depth-
first search traversal as presented in [9]. When the input SQL workflow contains
loops, it is possible to unroll all the loops one iteration. The method described
here can then be applied on the resulting acyclic workflow.

Disclosure Analysis of SQL Workflows 55

Note that the notion of a run is defined over the control flow edges of the
input workflow. However, the data dependencies can be trivially derived for each
run ρ by computing the subgraph over dataflow nodes (i.e. data objects) and
edges induced by the set of data processing nodes of ρ. Formally, O(ρ) ⊂ O
denotes the set of data objects associated with run ρ and is defined as O(ρ) =
{o ∈ O|∃v ∈ V ′ : (v, d) ∈ E ′ ∨ (d, v) ∈ E ′}.

Finally, given a run ρ of a SQL workflow W, we would need to derive the
SQL script that the run would execute. Such a script can be derived from the
SQL statements associated with data objects and data processing nodes, by
concatenating them following a topological order of the nodes in the run. It is
this script that serves as input to the disclosure analysis described below.

3 Disclosure Analysis

3.1 Databases, Schemas, and Queries

Workflow runs (cf. previous section) can be straightforwardly turned to relational
algebra workflows. These workflows carry the same information, without the
syntactic baggage of SQL. These workflows are defined in Fig. 3, also depending
on the definitions of relation and database schemas, as stated below.

A relation schema is r(a1 : D1, . . . , an : Dn;Disr), where r is relation name,
a1, . . . , an are attribute names, D1, . . . , Dn are sets, and Disr is a set of subsets of
the set of attributes {a1, . . . , an}. The last component indicates, which attributes
or sets of them must be unique in a relation satisfying this schema. An element
of Disr describes a possible index for a table satisfying the relation schema r. In
our analysis, we require Disr to contain at least one set of attributes.

Let D[r] denote the set D1 × · · · × Dn. A relation R over the schema r is a
subset of D[r], such that for each {ai1 , . . . , aik} ∈ Disr and each (xi1 , . . . , xik) ∈
Di1×· · ·×Dik there is at most one (y1, . . . , yn) ∈ R satisfying yi1 = xi1 , . . . , yik =
xik . Let Xr denote the set of all relations over the schema r. For x ∈ D[r], let
x[ai] denote the value of attribute ai on x.

A database schema is dbs = (t1 : r1, . . . , tm : rm), where t1, . . . , tm are table
names and r1, . . . , rm are relation schemas. A database over the schema is a
tuple of relations D = (R1, . . . , Rm), where Ri is over ri. For a fixed dbs, let Y
denote the set of all databases over the schema dbs, and let D[ti] denote the set
D[ri]. For a database Y ∈ Y, let Y.ti ⊆ D[r] denote its table ti.

Suppose that we have selected the primary keys for each table in the database.
That means, for each t : r in the database schema, we have selected indexr ∈ Disr.
We can then think of a relation R over the schema r(a1 : D1, . . . , an : Dn;Disr)
as a set of partial functions fr1 , . . . , frn from the cartesian product

∏
ai∈indexr

Di to
each of the sets D1, . . . , Dn. All these partial functions are defined on the same
domain. If ai ∈ indexr, then the function fri must be a partial projection.

The syntax for workflows of simple database queries is given in Fig. 3. The
workflow is executed against a database with a certain schema dbs. The meaning
of the syntax for queries Q is the following.

56 M. Dumas et al.

Q ::= t | Q1 × · · · × Qk | [Q]a→a′ | σ(Q; e)
| πa1,...,ak (Q) | cola←e(Q) | let t = Q1 in Q2 | Q1 ∪ Q2

| Q1 ∩ Q2 | Q1 �e Q2 | groupa1,...,ak

(a′
1

⊗
1),...,(a

′
l
,
⊗

l)
(Q)

e ::= a | ⊗(e1, . . . , ek)

Fig. 3. Syntax of queries

– The query t returns the table t. This table must exist in the current database.
– The query Q1×· · ·×Qk returns the cartesian product of the results of queries

Q1, . . . , Qk. We require that the names of the attributes in Q1 × · · · × Qk

are unique, i.e. the queries Q1, . . . , Qk result in datasets which have non-
intersecting sets of attributes.

– [Q]a→a′ executes the query Q. Its result is a relation with a certain schema;
this schema must contain attribute a, which is then renamed to a′.

– σ(Q; e) filters the result of the query Q with the expression e. The expression
e, which must return a Boolean value, is built up from attributes and arith-
metic/relational/logical etc. operations ⊗. We expect the expressions e to be
well-typed, but will not discuss this here any more.

– πa1,...,ak
(Q) projects the result of Q onto attributes a1, . . . , ak. The dataset

returned by Q must have these attributes in its schema.
– cola←e(Q) runs Q and then adds a new column (a new attribute) to the result.

The name of the attribute is a. Its value for each row is computed from the
existing attributes of this row according to the expression e.

– let t = Q1 in Q2 is used to build workflows. It executes the query Q1 against
the current and gives the resulting dataset the name t. It will then execute
the query Q2 against the database the contains the current database, as well
as the the table t.

– Q1 ∪ Q2 and Q1 ∩ Q2 return the union and the intersection of the results of
Q1 and Q2, which must have the same schema.

– Q1 �e Q2 returns all such rows r1 from the result of Q1, such that there exists
no row r2 in the result of Q2, such that the boolean expression e holds. This
construction is used to build outer joins.

– groupa1,...,ak

(a′
1

⊗
1),...,(a

′
l,

⊗
l)
(Q) expresses grouping and aggregation of the result

of Q. The resulting dataset will have attributes a1, . . . , ak, a′
1, . . . , a

′
l, with

{a1, . . . , ak} forming the index. There will be a row with particular values
of a1, . . . , ak if the result of Q had at least one row with these values. The
attribute a′

i in the query result will be the aggregation by
⊗

i of the attributes
a′

i in all these rows in the result of Q.

Figure 3 gives us a rich language for expressing SQL workflows, allowing the use
of various types of filters, joins, and projections. Note that the ORDER BY com-
ponent of a SQL statement does not change the resulting relation, hence sorting
does not appear among our relational algebra operations. However, sorting may
be combined with the row_number() function that exists in some SQL dialects.
More generally, the row number generation can be done after the dataset has

Disclosure Analysis of SQL Workflows 57

been partitioned according to the values of some other column(s). The row num-
bers of sorted datasets have been used in the last step of the scenario depicted
in Fig. 1. Such use of ordering and row numbers can be modelled with the help
of grouping and aggregation.

3.2 Dependency Graphs and Summaries

A dependency graph (DG) is a directed graph G = (V,E, s, t, . . .), where s, t :
E → V give the source and the target nodes of arcs. The DG also has the
following additional components:

– There are subsets of nodes I,O ⊆ V . The in-degree of any node in I and the
out-degree of any node in O is 0. The in-degree of any node in O is 1. These
nodes represent the inputs coming to, and the outputs produced by the DG.

– There is a set Op of possible operations. Each internal node v (i.e. v ∈
V \(I ∪ O)) has a label λ(v) ∈ Op.

– For each internal node v, its incoming arcs are linearly ordered; let <v denote
the ordering relation. The number of incoming arcs of an internal node v is
equal to the number of operands that the operation λ(v) expects.

Let V be a set of values; the operations in Op consume and produce values.
Given the semantics �⊗� : V∗ → V of each operation ⊗ ∈ Op, the dependency
graph G defines a mapping �G� : VI → VO. If G has no directed cycles, then
this mapping is defined by assigning a value to each node of G, with the values
for input nodes given by the input to �G�; the values of intermediate nodes
v computed by applying λ(v) to the values of direct ancestors of v; and the
values of output nodes being equal to the values of their direct ancestors. For
dependency graphs with directed cycles, the semantics can be defined using a
fix-point construction [11], if there is a partial order on V with the least element
⊥, and if the operations are monotonic. In this deliverable, we do not have cyclic
dependency graphs, hence we will not discuss this any more.

A dependency graph may be infinite, with infinitely many inputs and outputs,
as well as with nodes having an infinite number of incoming edges. In the latter
case, the operation in the node must make sense for infinite number of inputs
(e.g. it may be conjunction or disjunction of booleans). If G is infinite then �G�
is still well-defined as long as for each output node vO there is a bound BO, such
that any path in the graph ending in vO has length at most BO.

The computations of an SQL workflow can naturally be expressed as infinite
dependency graphs. Given a table t with the schema r(a1 : D1, . . . , an : Dn) and
its index indexr, we express its use in a workflow by the input nodes vt

i,K for each
attribute ai and each possible value K of the index attributes of t. Additionally,
the use of the table t is expressed by the input nodes vt

∃,K , denoting whether the
row with the index value K is present in the database. As the index attributes
typically come from infinite sets (e.g. integers), there are infinitely many possible
values K. The input nodes vt

i,K and vt
∃,K are followed by computation nodes for

the expressions e occurring in the workflow. Again, these are replicated as many

58 M. Dumas et al.

times as there are possible values for index attributes in the relations that they
work on. We end up with a graph with output nodes wj,K′ and w∃,K′ for each
possible value K ′ of the index of the resulting dataset. The attributes of the
index of the resulting dataset, and hence also the set from which the values K ′

come from, can be computed from the query as shown in Fig. 4.

Q indexQ
t

∏
ai∈indexr

Di, where r(a1 : D1, . . . , an : Dn) is the schema of t

Q1 × · · · × Qk indexQ1 × · · · × indexQk

[Q]a→a′ indexQ
σ(Q; e) indexQ
πa1,...,ak (Q) indexQ
cola←e(Q) indexQ
let t = Q1 in Q2 indexQ2 , where indext ← indexQ1

Fig. 4. Computing the index set of the query

We represent the infinite dependency graphs as finite summaries. The sum-
mary dependency graph (SDG) has the same components (V,E, I,O, λ,<) as a
DG. However, there is additional structure for the nodes and the edges.

– There is a set of possible index sets S. The elements of S are typically the
set of integers, the set of strings, the unit set (a set with a single element).
For handling a particular database schema, S must contain all sets Di that
are associated to some attribute in the index of some table in this schema.

– Each node v ∈ V has the dimension dim(v) and input dimension
−→
dim(v).

They are both sets.
• In our representation, both dim(v) and

−→
dim(v) are sets that can be

expressed as polynomials over S. A polynomial over a set of sets X is
a set of the form

∑n
i=1

∏mi

j=1 Xij , where Xij ∈ X , and
∑

denotes the
non-intersecting union (or: sum) of sets. Hence there is a finite represen-
tation for dim(v) and

−→
dim(v).

– Each node v has a mapping δ(v) from
−→
dim(v) to dim(v).

• In our representation, the mapping δ(v) is a canonical polynomial map.
Let

−→
dim(v) =

∑n
i=1

∏mi

j=1 Xij and dim(v) =
∑s

i=1

∏ti
j=1 Yij . A canonical

polynomial map is built up from identity mappings between Xij and Yi′j′

(which must be the same set) as follows:
∗ A canonical mapping c :

∏m
j=1 Xj → ∏t

j=1 Yj is defined by an injec-
tive mapping γ : {1, . . . , t} → {1, . . . , m} satisfying Xγ(j) = Yj for all
j ∈ {1, . . . , t}. The mapping c is given by

c(x1, . . . , xm) = (xγ−1(1), . . . , xγ−1(t)).

∗ A canonical mapping from
∏m

j=1 Xj to
∑s

i=1

∏ti
j=1 Yij consists of an

index q ∈ {1, . . . , s} and a canonical mapping of the previous kind
from

∏m
j=1 Xj to

∏tq
j=1 Yqj .

Disclosure Analysis of SQL Workflows 59

∗ A canonical mapping from
∑n

i=1

∏mi

j=1 Xij to
∑s

i=1

∏ti
j=1 Yij consists

of n canonical mappings of the previous kind.
• If δ(v) is not the identity mapping, then the node v must have exactly

one incoming arc.
– Each arc α ∈ E still has a single target node t(α). But an arc may have

several source nodes, i.e. s(α) ⊆ V .
– Each arc α ∈ E has a mapping δ(α) from

−→
dim(t(α)) to

∑
v∈s(α) dim(v).

• Mapping δ(α) is again a canonical polynomial map.

A summary dependency graph Gsum is expanded to a potentially infinite
dependency graph G = expand(Gsum) in the following manner:

– For each node v in the summary dependency graph, there are nodes
{(v, x) |x ∈ dim(v)} in the actual dependency graph, which have the same
operation λ(v).

• We call the node (v, x) in the actual dependency graph the instance x of
the node v in the SDG.

– For each arc α going to a vertex v in the summary dependency graph, and for
each element x ∈ −→

dim(v), there is an edge from the node δ(α)(x) to the node
δ(v)(x). Note that the output of δ(α)(x) is a pair of some node w ∈ s(α) and
a value y ∈ dim(w).

• Let x ∈ dim(v). If δ(v) is the identity mapping and thus v ∈ Gsum may
have several input arcs, the ordering <(v,x) of the inputs of the vertex
(v, x) ∈ G is inherited from v. The vertex (v, x) has the same number of
input arcs as the vertex v does.

• Otherwise, the vertices (v, x) ∈ G may have any number of inputs, per-
haps an infinite number. In this case, λ(v) must be an associative and
commutative operation, and make sense for infinite number of inputs.

In our analysis, we translate an SQL workflow into a summary dependency
graph. The semantics of a summary dependency graph is the same as the seman-
tics of the dependency graph resulting from its expansion. This semantics can
be related to the semantics of the SQL workflow in a manner that shows their
equivalence. We simplify the summary dependency graph, removing spurious
dependencies, while changing the semantics of the graph only in a manner that
still relates it to the SQL workflow. From the resulting graph, we can read out
the actual dependencies of each output, including the actual computation, as
well as the conditions of outputting them.

The translation of a query Q to a summary dependency graph works in
syntax-directed manner. We first translate the database schema, resulting in a
Partial Summary Dependency Graph (PSDG) consisting of only input nodes.
Beside the PSDG, we also get a mapping from the attributes of tables to the
nodes. This PSDG is given as the input to the translation of Q. The result is
another PSDG, which is post-processed to add the output nodes. The translation
is given in AppendixA. Figure 5 shows the result of translating the workflow
consisting of Listing 1.1, followed by the query into a SDG. We have removed

60 M. Dumas et al.

dead nodes, and identity nodes from this figure. In this figure, the rectangles
with sharp corners denote the nodes of SDG. In the top row, it lists the name of
the operation and the ID of the node v. The following rows list the components
of dim(v), these components are elements of S. An arc α, where δ(α) is the
identity mapping, is depicted as line ending in an arrow, possibly with a short
label in the middle, indicating the position of the value flowing along this arc in
the operation at t(α). If δ(α) is not identity, then it is depicted inside a rectangle
with rounded corners. At the top of this rectangle is the label of the arc (if any),
and other rows show, which dimension components of the target node correspond
to which dimension components of the source node.

1 select rport.port_id, port.name,
2 earliest arrival(ship.longitude, ship.latitude, port.longitude,
3 port.latitude, ship.maxspeed) as arrival
4 from reachable_ports as rport, port, ship, parameters as p
5 where port.port_id = rport.port_id
6 and ship.name = p.shipname

4 Simplifications and Output Presentation

4.1 Simplifying the SDG

We have implemented a number of simplifications of SDG, both structural and
semantical. Below we discuss these simplifications on the basis of the full scenario
depicted in Fig. 1. A simplification operation, applied to a certain node or a group
of nodes, checks whether the local context of these nodes matches some pattern.
If it does, then these nodes are replaced with some other nodes that have the
same effect semantically (or an effect that is similar in the view of our task to
find which inputs end up where, how, and when), but have simpler structure.

The SDG is a very helpful data structure in determining the applicability
of simplifications. The applicability of many simplifications can be determined
locally, i.e. by considering a subgraph of bounded diameter. Also, more com-
plex structural transformations have applicability checks which consist of simple
traversals of the graph. Hence the current set of simplifications may be easily
extended, depending on the needs of analysed scenarios.

One simplification may enable others. We thus run the simplifications in the
order that seems to make the most sense; some simplifications (e.g. the removal
of dead nodes) are run many times. In the following, we will describe some
simplifications that our analyzer currently runs.

Removal of dead nodes. A node that has no descendants may be removed,
unless it is an output node. Running this removal many times, we will remove
all nodes that are not backwards reachable from any output node.

Folding of identity operations. An ID node (the node whose operation
is identity; our translation from relational algebra expressions, given in
AppendixA, produces many such nodes) can be cut out of paths: if v is
an ID node and α is the arc leading to it, and β is any arc with the source
v, then β may be replaced with the arc β ◦ α: we define s(β ◦ α) = s(α),

Disclosure Analysis of SQL Workflows 61

Fig. 5. Initial SDG

t(β ◦ α) = t(β) and δ(β ◦ α) = δ(α) ◦ δ(β), assuming that δ(v) is the identity
mapping (which is always the case in the SDGs that we construct). After
all arcs leaving v have been replaced, v is dead and can be removed by the
previous simplification.

Splitting nodes with sum dimensions. A node v with dim(v) =∑n
i=1

∏mi

j=1 Xij , where n > 1, is replaced with n nodes having the same oper-
ation, each corresponding to one component of dim(v). This transformation
makes subsequent structural simplifications easier to apply.

Folding the “&”-nodes. If v and v′ are both computing boolean conjunctions,
and there is an arc α from v′ to v, then we add arcs from all predecessors of
v′ to v (with the correct δ(·)-mapping) and remove the arc α. If there were
no other arcs leaving v′, then it is dead.

62 M. Dumas et al.

Joining nodes with identical computation. If two nodes have the same
operation and the same inputs, they can be turned to a single node. In our
SDGs, the recognition of these nodes is complicated by the need to determine
if a suitable isomorphism between their dimensions exists.

Reducing the dimension of a node. In our SDG-s, the dimensions of nodes
are products of elements of S. If for some node v in SDG, the predecessors of
the nodes corresponding to v in the infinite dependency graph do not depend
on some component of the elements in dim(v), then this component may be
removed from dim(v).

Joining components of dimensions. Let v be a node that computes a boolean
result, and let dim(v) =

∏n
i=1 Xi. Suppose that we have deduced that there

are indices i, j ∈ {1, . . . , n}, such that a node (v, (x1, . . . , xn)) in the expanded
dependency graph may be true only if xi = xj . This may happen in a work-
flow that creates complex joins of tables, joining the same table many times
while requiring the primary keys to be equal; we use these equality checks
to deduce that v implies xi = xj . It may also happen due to uniqueness
constraints on attributes, when conjunctions of several comparisons involving
these attributes are formed. If we have identified that the i-th and the j-th
component of dim(v) have to be equal for v to be true, and when v being false
only implies that certain outputs are not made, then we can identify these
components and thereby reduce the dimension of v. This reduction works
differently from the previous simplification, and has to be propagated along
the SDG in both directions.

Arithmetic simplifications. A conjunction with a single input, or a sum with
a single input can be turned to an ID node. A conjunction with a FALSE-
input can be turned to FALSE-node (with no inputs). A COALESCE-operation
can also be simplified if we know that some of its arguments certainly are, or
certainly are not NULL.

Figure 6 depicts the results of the simplifications applied to the SDG in Fig. 5.

4.2 Presenting the Result of the Analysis

The dependencies and conditions are depicted in our final, simplified SDG, but
they are not given in terms of certain rows existing or not existing in the tables
of the database. To present the outcome, we have to map from the product of
elements of S back into tables. Let v• be a particular output node, for which
we are interested in the computation of the value it outputs, as well as in the
condition that must be satisfied for the output to take place. We perform the
following steps for obtaining the description of the outputs from v•.

– First, we remove all output nodes except v• from the SDG, and remove all
dead nodes from it. After that, we will transform the directed acyclic SDG
into a tree T , by duplicating nodes with several outgoing arcs. The root of T
is v•. The leaves of T are the input nodes, referring to a particular attribute
in a particular table.

Disclosure Analysis of SQL Workflows 63

Fig. 6. Final SDG

– Let PC be the set of all dimension components (i.e. the elements of S) of all
nodes in T , formally

PC =
⋃

v∈V (T)

({(v, i,Xi) | dim(v) =
n∏

i=1

Xi} ∪ {(v,−i,Xi) | −→
dim(v) =

n∏

i=1

Xi}
)
.

Let C be the set PC factored by an equivalence relation generated by the
δ(·)-mappings of all vertices and the δ(·)-mappings of all arcs in T . The set
C is the inventory of all different dimension components that occur in T .

– Each input node refers to a table, and its dimension refers to some elements
of C. The inputs nodes with the same table and the same elements of C
correspond to the same row of the table. We replace the input nodes, and
forget the dimensions and their maps of the internal nodes and arcs. For
input nodes with partially overlapping sets of elements of C, we introduce the
equality checks of the respective components of the table rows, which must
be satisfied for the node v• to output anything.

The result, when v• is the node with ID 1415 in Fig. 6, is depicted in Fig. 7.

64 M. Dumas et al.

shipport

parameters

latitude

distance

1

longitude

2

name

=

speed

÷

2

latitude

3

longitude

4

deadline

2

shipname

1

1

Filter

1

AND

2

Fig. 7. Representation of the computations

5 Related Work

One of the most prominent examples of methods to quantify the potential disclo-
sure of information is that of differential privacy, which has been widely studied
in the context of program analysis, using e.g. types [5] or theorem proving [2].
These techniques allow one to reason about the theoretical bounds of the amount
information revealed by a program on its output relative to its input. In a sim-
ilar vein, techniques have been proposed to analyze sensitivity and differential
privacy for database queries expressed in SQL [6], and other SQL-like languages
(e.g. PINQ) [7]. Here, the reasoning on sensitivity is formulated in terms of indi-
vidual database queries and the effects on the output of those queries with respect
to variations on the input tables. In recent work [4,10], we have extended the
results on differential privacy to reason about not only one single computation
step, but to assess the overall differential privacy of a data processing workflows,
which require the aggregation of the sensitivity of the steps in a workflow that
can be observed by one stakeholder. The goal of works on differential privacy is
the to derive theoretical bounds of the amount of information that a stakeholder
can infer from the outputs of programs or steps on a workflow. Conversely, in
this work we look not at quantifying the disclosure of information but rather
providing an insight on what is disclosed and on the conditions that must hold
for that disclosure to happen.

Also close to our setting is the work on information leak detection on business
process models reported in [1]. Such method takes as input workflows on which
tasks have been classified in levels of confidentiality, which can be either high
or low. By using a reachability analysis, the method is capable of identifying
structures on the workflow (e.g. sequencing of tasks, mutual exclusion, etc) where

Disclosure Analysis of SQL Workflows 65

information may be leaked to stakeholders, when changes between domains of
confidentiality are not properly guarded. In contrast, our method considers the
underlying computation (e.g. SQL code) and identifies what information as well
as the conditions that will be revealed after having executing a SQL workflow.

6 Conclusions and Future Work

The paper presented an analysis technique to determine what information from
each input table is disclosed by each output table of a SQL Workflow, and
under what conditions this disclosure occurs. The proposed technique has been
implemented on top of the Pleak open-source business process privacy analysis
toolset. The source code of the toolset is available at https://github.com/pleak-
tools while a demonstrator is available at http://pleak.io/.

The current technique operates over unprotected workflows, meaning work-
flows that do not make use of any Privacy-Enhancing Technologies (PETs) such
as multi-party computation, encryption, or differential privacy. In future work,
we plan to extend the technique to take as input workflows where some of the
tasks have PETs attached to them. This extension would allow analysts to per-
form “what-if” privacy analysis. Concretely, an analyst would be able to see
how the addition, removal, or modification of a PET in a workflow affects the
information that is disclosed to different parties.

Another extension is the ability to compare a disclosure report against a pri-
vacy policy. This capability would allow an analyst to determine what additional
PETs could be added to a given process in order to fulfill a privacy policy.

Acknowledgments. This research was funded by the Air Force Research laboratory
(AFRL) and Defense Advanced Research Projects Agency (DARPA) under contract
FA8750-16-C-0011. The views expressed are those of the author(s) and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

A Translating SQL Workflows to Internal Representation

The translation of a query Q to a summary dependency graph (SDG) proceeds
by first translating the database schema, then performing the syntax-directed
translation of the actual query Q, followed by the addition of output nodes.
We call the intermediate graphs Partial Summary Dependency Graphs (PDSG),
where the partiality indicates the lack of output nodes.

Let G be a PSDG and consider a relation schema r with attributes a1, . . . , an.
A representation of r in G is a mapping R : {∃, a1, . . . , an} → V (G), such that
dim(R(∃)) = dim(R(a1)) = · · · = dim(R(an)), the output type of each R(ai)
matches with the type of ai, and the output type of R(∃) is boolean. We write
dim(R) for dim(R(∃)). A representation of a database schema dbs in G is a
mapping from the contained relations into their representations in G.

https://github.com/pleak-tools
https://github.com/pleak-tools
http://pleak.io/

66 M. Dumas et al.

Translating a Database Schema. The translation of a database schema dbs
returns a PSDG Gdbs , as well as a representation Rdbs of dbs in it. These are
the following:

– Let t : r be a table declaration in dbs, where r is the relation schema
r(a1 : D1, . . . , an : Dn; indexr), with certain attributes belonging to the index.
W.l.o.g. let a1, . . . , ah be the index attributes. The graph G will contain nodes
vt

∃ and vt
i for 1 ≤ i ≤ n. The input dimension and the dimension of all

nodes is I =
∏h

i=1 Di. All nodes are input nodes. During the execution, the
instance (x1, . . . , xh) of the node vt

i is supposed to carry the value of the
attribute ai in the row of the table t that corresponds to the index value
(a1 = x1, . . . , ah = xh). The instance (x1, . . . , xh) of the node vt

∃ carries the
value true iff the table t has a row with index value (a1 = x1, . . . , ah = xh).

– The representation Rdbs maps each table t to the mapping {∃ �→ vt
∃}∪{ai �→

vt
i | 1 ≤ i ≤ |t|}.

Translating the Query. The translation G of a query Q against a database with
schema dbs takes as input a PSDG G◦ and a representation Rdbs of dbs in it.
It returns a new PSDG G• (which is obtained from G◦ by adding zero or more
nodes to it) and a representation of attr(Q) in G•, where attr(Q) is the schema
of the output relation of Q.

The translation G may call the translation E for expressions e. It takes as
input a PSDG G◦ and a representation R of a relation schema in G◦. This
relation schema must contain all attributes used by e. The translation E returns
a new PSDG G• and a node ve ∈ V (G•). The translation E works as follows.

– E�a�(G◦, R) returns G◦ and R(a).
– E�⊗(e1, . . . , ek)�(G◦, R) calls E�e1�, . . . , E�ek� one after another. Let the out-

put of E�ei� be Gi and vi. Then the inputs to E�ei� are Gi−1 (with G0 ≡ G◦)
and R. After obtaining Gk, add a new node v to the graph. Its label is ⊗, and
its dimension and input dimension are both dim(R). Also add arcs α1, . . . , αk

to the graph, going from nodes v1, . . . , vk to the node v. For all i, the mapping
δ(αi) is equal to the identity map on dim(R). Return the modified graph Gk

and the vertex v.

The translation G works as follows.

– G�t�(G◦, Rdbs) returns G◦ and Rdbs(t).
– G�Q1 × · · · × Qk�(G◦, Rdbs) calls G�Q1�, . . . ,G�Qk� one after another. Let the

output of G�Qi� be Gi and RQ
i . Then the inputs to G�Qi� are Gi−1 (with

G0 ≡ G◦) and Rdbs . After obtaining Gk and RQ
1 , . . . , RQ

k , we add the following
nodes and arcs to Gk:

• Let I =
∏k

i=1 dim(RQ
i).

• Add a node v∃. The label of this node is “&” (boolean conjunction). Its
dimension and input dimension are both I.

• For each i ∈ {1, . . . , k} add an arc α∃,i from the node RQ
i (∃) to v∃. The

mapping δ(α∃,i) is the canonical projection from I to its i-th component
dim(RQ

i).

Disclosure Analysis of SQL Workflows 67

• For each i ∈ {1, . . . , k} and each attribute aj ∈ attr(Qi) add a node vi,j .
The label of this node is “ID” (the identity mapping). Its dimension and
input dimension are both I.

• Also, add an arc αi,j from RQ
i (aj) to vi,j . The mapping δ(αi,j) is the

canonical projection from I to its i-th component dim(RQ
i).

Let the output PSDG G• be the modified graph Gk. The output representa-
tion R maps ∃ to v∃ and the attribute aj in attr(Qi) to vi,j .

– G�[Q]a→a′�(G◦, Rdbs) runs (G•, R) = G�Q�(G◦, Rdbs). It returns G• and
R[a′ �→ R(a)].

– G�σ(Q; e)�(G◦, Rdbs) runs (G′, R) = G�Q�(G◦, Rdbs) and (G′′, v?) =
E�e�(G′, R). It adds a node v∃ to G′′. The label of this node is “&” and
both its dimension and input dimension are dim(R). The node v∃ has two
inputs, from R(∃) and from v?. The δ(·)-mappings of both respective arcs
are the identity mappings over dim(R). Let G• be the modified graph G′′.
The translation returns G• and R[∃ �→ v∃].

– G�πa1,...,ak
(Q)�(G◦, Rdbs) runs (G•, R) = G�Q�(G◦, Rdbs). It returns G• and

R restricted to {∃, a1, . . . , ak}.
– G�cola←e(Q)�(G◦, Rdbs) runs (G′, R) = G�Q�(G◦, Rdbs) and (G•, ve) =

E�e�(G′, R). It returns G• and R[a �→ ve].
– G�let t = Q1 in Q2�(G◦, Rdbs) runs (G′, R0) = G�Q1�(G◦, Rdbs), followed by

(G•, R) = G�Q2�(G′, Rdbs [t �→ R0]). It returns G• and R.
– G�Q1 ∪ Q2�(G◦, Rdbs) runs

(G′, R′) = G�Q1�(G◦, Rdbs)
(G′′, R′′) = G�Q2�(G′, Rdbs).

For each attribute a ∈ attr(Q1) = attr(Q2) it will then add a node va to
G′′, with the operation “ID” and its dimension and input dimension both
being equal to dim(R′) + dim(R′′). The mapping δ(va) is the identity map-
ping. The node va has a single incoming arc αa, which has two sources—
R′(a) and R′′(a). The mapping δ(αa) is the identity mapping from

−→
dim(va)

to dim(R′(a)) + dim(R′′(a)).
We also add a node v∃ to the graph G′′ with the same dimension, input
dimension and δ(·)-mapping as described in the previous paragraph. The
operation in this node is again “ID” (boolean disjunction), and it again has a
single incoming arc α∃ with two sources: R′(∃) and R′′(∃), with the mapping
δ(()α∃) again being the identity map.
Let the output PDSG G• be the graph G′′ with the added nodes and arcs.
The output representation R maps ∃ to v∃ and each attribute a to va.

– G�Q1 ∩ Q2�(G◦, Rdbs) runs

(G′, R′) = G�σ(Q1 × [Q2]a:attr(Q2)→a′ ;
∧

a∈attr(Q1)

a = a′)�(G◦, Rdbs)

first, while also keeping the representation R1 that was produced while
G�Q1�(G◦, Rdbs) was run as a subroutine. Here the write-up [Q2]a:attr(Q2)→a′

68 M. Dumas et al.

denotes that we have renamed all attributes a of Q2 into their primed ver-
sions.
We add to G′ a node v∃ with the operation “

∨
” (boolean disjunction). We

let dim(v∃) = dim(R1) and
−→
dim(v∃) = dim(R′). Recall that dim(R′) is equal

to the Cartesian product of dim(R1) and the dimension of the nodes result-
ing from the translation of the query Q2. The mapping δ(v∃) is the natural
projection to the first component of this product.
As dim(v∃) �= −→

dim(v∃), this node may have a single incoming arc. This arc
comes from the node R′(∃), its δ(·)-mapping is the identity mapping.
We return the graph G′ with the extra node and arc. As the output repre-
sentation, we return R1[∃ �→ v∃].

– G�Q1 �e Q2�(G◦, Rdbs) runs

(G′, R2) = G�Q1 × Q2�(G◦, Rdbs)
(G′′, ve) = E�e�(G′, R2).

We also keep the representation R1 that was produced when G�Q1�(G◦, Rdbs)
was run as a subroutine. After that, we add the following nodes and arcs to
G′′.

• Node v1, operation “&”, with dimension and input dimension equal to
dim(R2). Its inputs are ve and R2(∃).

• Node v2, operation “
∨

”. Its dimension is equal to dim(R1) and its input
dimension to dim(R2). The mapping δ(v2) is the natural projection from
the second to the first. The input to v2 is the node v1.

• Node v3, operation “NOT”. Its dimension and input dimension are equal
to dim(R1). Its input is the node v2.

• Node v4, operation “&”. Its inputs are v3 and R1(∃).
For all arcs described above, their δ(·)-mapping is the identity mapping. The
translation returns the PSDG G′′ together with added nodes and arcs. As the
output representation, it returns R1[∃ �→ v4].

– G�groupa1,...,ak

(a′
1

⊗
1),...,(a

′
l,

⊗
l)
(Q)�(G◦, Rdbs) first runs (G′, R′) = G�Q�(G◦, Rdbs).

It will determine the types D1, . . . , Dk of the attributes a1, . . . , ak of Q. These
types must be elements of S. The following nodes and arcs are then added to
G′:

• Nodes vTD
1 , . . . , vTD

k . These are input nodes of the SDG. The dimension
of vTD

i is Di. In the infinite dependency graph, a node v corresponding
to the value x ∈ Di and the node vTD

i , is expected to carry the value x.
Let I = D1 × · · · × Dk.

• Nodes v=
1 , . . . , v=

k . The operation of these nodes is “=” (equality check).
The dimension and input dimension of these nodes is dim(R′) × I. The
node v=

i has two inputs: vTD
i and R′(ai). The δ(·)-mappings for the arcs

connecting these nodes are the natural projections.
• Node v=. The operation of this node is “&”. Its dimension and input

dimension are both dim(R′) × I. Its inputs are the nodes v=
1 , . . . , v=

k .
• Node v∃. The operation of this node is “

∨
”. Its dimension is I and its

input dimension is dim(R′) × I. The mapping δ(w∃) is the natural pro-
jection. Node v∃ receives its input from v=.

Disclosure Analysis of SQL Workflows 69

• Nodes vf
1 , . . . , vf

l . The operation of these nodes is “Output”; this oper-
ation takes two arguments and returns the first one only if the second
one is true. Their dimension and input dimension are dim(R′) × I. The
inputs of the node vf

j are v= (for the first,“conditioning” argument) and
R′(a′

j) (for the second, “value” argument). The δ(·)-mapping for the arc
connecting to the first input is the identity mapping, while for the arc
connecting to the second input is the natural projection from dim(R′)×I
to dim(R′).

• Nodes v⊗
1 , . . . , v⊗

l . The operation of the node v⊗
j is “

⊗
j”. The dimension

of v⊗
j is I, while its input dimension is dim(R′) × I. The mapping δ(v⊗

j)
is the natural projection. The input to the node v⊗

j is the node vf
j .

We see that the expansions of the nodes v⊗
j in the infinite dependency graph

perform the actual aggregations of the values of the dataset resulting from
the query Q. We have implicitly assumed that the NULL-values among the
inputs of the operations

⊗
j do not change their output value.

The translation returns the graph G′ together with the added nodes and arcs.
The output representation R is the following:

• R(∃) = w∃;
• R(ai) = vTD

i for the attributes a1, . . . , ak;
• R(a′

j) = v⊗
j for the attributes a′

1, . . . , a
′
l.

Adding Output Nodes. Let the query Q be translated by calling G�Q� on the
translation of the database schema. The result of G�Q� is a PSDG G and a
representation R of attr(Q) in G. We add the following nodes and arcs to G:

– For each ai ∈ attr(Q), add nodes vi and vO
i . For both of them, their dimension

and input dimension are equal to dim(R). Node vi is an internal node, while
vO

i is an output node. There is an arc from vi to vO
i ; its δ(·)-mapping is

the identity mapping on dim(R). There are two arcs into vi, first from R(∃)
and second from R(ai). Their δ(·)-mappings are also the identity mappings on
dim(R). The operation of vi is named “Output”. The semantics of an“Output”
operation is to return the second argument, if the first argument is true, and
to return NULL otherwise.

References

1. Accorsi, R., Lehmann, A., Lohmann, N.: Information leak detection in business
process models: theory, application, and tool support. Inf. Syst. 47, 244–257 (2015)

2. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning
for differential privacy. ACM Trans. Program. Lang. Syst. 35(3), 9 (2013)

3. Colesky, M., Hoepman, J.-H., Hillen, C.: A critical analysis of privacy design strate-
gies. In: IEEE Security and Privacy Workshops (SP), pp. 33–40. IEEE Computer
Society (2016)

4. Dumas, M., Garćıa-Bañuelos, L., Laud, P.: Differential privacy analysis of data
processing workflows. In: Kordy, B., Ekstedt, M., Kim, D.S. (eds.) GraMSec 2016.
LNCS, vol. 9987, pp. 62–79. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46263-9 4

https://doi.org/10.1007/978-3-319-46263-9_4
https://doi.org/10.1007/978-3-319-46263-9_4

70 M. Dumas et al.

5. Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., Pierce, B.C.: Linear dependent
types for differential privacy. In: Proceedings of POPL 2013, pp. 357–370. ACM
(2013)

6. Johnson, N., Near, J.P., Song, D.: Towards practical differential privacy for SQL
queries. Proc. VLDB Endow. 11(5), 526–539 (2018)

7. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: Proceedings of SIGMOD 2009, pp. 19–30. ACM (2009)

8. OMG: Business Process Model and Notation (BPMN), Version 2.0. Technical
report, Object Management Group, January 2011

9. Perumal, S., Mahanti, A.: A graph-search based algorithm for verifying workflow
graphs. In: Proceedings of DEXA 2005, pp. 992–996. IEEE Computer Society
(2005)

10. Pettai, M., Laud, P.: Combining differential privacy and mutual information for
analyzing leakages in workflows. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS,
vol. 10204, pp. 298–319. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54455-6 14

11. Tšahhirov, I., Laud, P.: Application of dependency graphs to security protocol
analysis. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 294–
311. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-4 20

https://doi.org/10.1007/978-3-662-54455-6_14
https://doi.org/10.1007/978-3-662-54455-6_14
https://doi.org/10.1007/978-3-540-78663-4_20

On Linear Logic, Functional
Programming, and Attack Trees

Harley Eades III1(B), Jiaming Jiang2, and Aubrey Bryant1

1 Computer Science, Augusta University, Augusta, USA
harley.eades@gmail.com

2 Computer Science, North Carolina State University, Raleigh, USA

Abstract. This paper has two main contributions. The first is a new
linear logical semantics of causal attack trees in four-valued truth tables.
Our semantics is very simple and expressive, supporting specializations,
and supports the ideal semantics of causal attack trees, and partially
supporting the filter semantics of causal attack trees. Our second contri-
bution is Lina, a new embedded, in Haskell, domain specific functional
programming language for conducting threat analysis using attack trees.
Lina has many benefits over existing tools; for example, Lina allows
one to specify attack trees very abstractly, which provides the ability
to develop libraries of attack trees, furthermore, Lina is compositional,
allowing one to break down complex attack trees into smaller ones that
can be reasoned about and analyzed incrementally. Furthermore, Lina
supports automatically proving properties of attack trees, such as equiv-
alences and specializations, using Maude and the semantics introduced
in this paper.

1 Introduction

Attack trees are perhaps the most popular graphical model used to conduct
threat analysis of both physical and virtual secure systems. They were made
popular by Bruce Schneier in the late nineties [16]. In those early years attack
trees were studied and used as a syntactic tool to help guide analysis. However,
as systems grew more complex the need for a semantics of attack trees become
apparent; after all, without a proper semantics how can we safely manipulate
attack trees, extend their expressivity, or compare them?

A number of different models of attack trees have been proposed: a model
in Boolean algebras [10,11,15], series-parallel pomsets [12], Petri nets [13], and
tree automata [1]. There have also been various extensions, such as, adding
sequential composition [6], and defense nodes [9,10]. All of these models and
extensions have their benefits, but at the heart of them all is logic.

The model in Boolean algebras was the first and most elegant model of
attack trees, but it failed to capture the process aspect of attack trees, that
is, the fact that base attacks are actual processes that need to be carried out,
and the branching nodes compose these processes in different ways. Thus, the

c© Springer Nature Switzerland AG 2019
G. Cybenko et al. (Eds.): GraMSec 2018, LNCS 11086, pp. 71–89, 2019.
https://doi.org/10.1007/978-3-030-15465-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15465-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-15465-3_5

72 H. Eades III et al.

community moved towards models of resources like parallel-series pomsets, Petri
nets, and automata. However, the complexity of these models increased, and
hence, comparing these models becomes difficult. Furthermore, this increased
complexity makes it hard to decide which to use and under which circumstances.
This difficulty can be resolved by recovering the elegant logical model of attack
trees.

Linear Logic. It is fitting that attack trees are the most popular model used in
threat analysis, because linear logic, one of the most widely studied logics used to
reason about resources, is also an excellent candidate for modeling attack trees.
In fact, Horne et al. [5] has already produced a number of interesting results.
Most importantly, they show that attack trees can be modeled as formulas in
linear logic, which then one can prove properties between attack trees by proving
implications between them. Furthermore, by studying attack trees from a linear
logical perspective they introduce a new property between attack trees called
specializations. Prior to their paper the literature was primarily concerned with
equality between attack trees, but the logical semantics of attack trees reveal
how one can break these equalities up into directional rewrite rules. An attack
tree is a specialization of another if the former is related to the later via these
rewrite rules. The logical semantics model the rewrite rules as implications.

This paper has two main contributions. The first is a new simple linear log-
ical semantics of causal attack trees – attack trees with sequential composi-
tion – in four-valued truth tables. It comes in two flavors: the ideal quaternary
logic (Sect. 3.1) and the filterish quaternary logic (Sect. 3.2). These two types of
semantics correspond to truth table semantics for Horne et al.’s [5] ideal and
filter semantics of causal attack trees.

Functional Programming. Our second contribution is Lina, a new domain
specific functional programming language for conducting threat analysis using
attack trees. Consider the example attack trees in Fig. 1. Both of these contain
actual Lina programs for each of the corresponding attack trees; in fact, every
example in this paper is a Lina program. Lina supports causal attack trees with
attributes or without; thus, there are two types of base attacks: base attacks
with attributes, denoted base_wa, and base attacks with no attributes, denoted
base_na; an example usage of the former can be found in Fig. 3. Lina is designed
to be extremely simple, and to reflect the typical pseudocode found throughout
the literature. However, Lina is more than just a simple definitional language.

Lina is an embedded domain-specific programming language whose host lan-
guage is the Haskell programming language [7]. So, why Haskell? As security
researchers and professionals, we are in the business of verifying the correctness
of various systems. Thus, we should be taking advantage of verification tools
to insure that our constructions, tools, and analysis are correct. By embedding
Lina into Haskell, we are able to take advantage of cutting-edge verification tools
while conducting threat analysis. For example, right out the box Lina supports
property-based randomized testing using QuickCheck [2], and refinement types
in Liquid Haskell [17] to verify properties of our attack trees or the attribute
domains used while analyzing attack trees. Furthermore, Haskell’s advanced type

On Linear Logic, Functional Programming, and Attack Trees 73

seq_node "ATM attack"

(and_node "get credentials"

(base_na "steal card")

(or_node "get PIN"

(base_na "social engineer")

(base_na "find a post-it")))

(base_na "withdraw money")

or_node "ATM attack"

(seq_node "attack vector 1"

(and_node "get credentials 1"

(base_na "social engineer")

(base_na "steal card"))

(base_na "withdraw money"))

(seq_node "attack vector 2"

(and_node "get credentials 2"

(base_na "steal card")

(base_na "find a post-it"))

(base_na "withdraw money"))

Fig. 1. Attack trees for an ATM attack from Figs. 1 and 2 of Kordy et al. [8] and their
corresponding Lina scripts.

74 H. Eades III et al.

system helps catch bugs while we develop our attack trees and their attribute
domains as a side-effect of type checking. Finally, functional programs are short,
but not obfuscated, and hence allow for very compact and trustworthy programs.

That being said, we are designing Lina so that it can be used with very little
Haskell experience. It is our hope that one will be able to make use of Lina
without knowing Haskell, and we plan to develop new tooling to support this.

Lina approaches threat analysis from a programming language perspective,
leading to a number of new advances. First, as Gadyatskaya and Trujillo-Rasua
[4] argue, as a community we need to start building more automated means
of conducting threat analysis, and there is no better way to build or connect
automated tools than a programming language. Lina is perfect as a target for
new tools, and it can be connected to existing tools fairly easily. In fact, Lina
already supports automation using the automatic rewrite system Maude [3]; for
example, the two attack trees in Fig. 1 can be automatically proven equivalent to
each other in Lina. This is similar to Kordy’s [8] SPTool, but Lina goes further
and supports more than one backend rewrite system; for example, Lina is the
first tool to support automatically proving specializations of attack trees. The
user can choose which backend they wish to use.

2 Causal Attack Trees

We begin by introducing causal attack trees. This formulation of attack trees was
first proposed by Jhawar et al. [6], where they called them SAND attack trees,
however sequential composition does not always maintain the same properties
as conjunction; for example, classically it is a self dual operator. Thus, we follow
Horne et al.’s lead [5] and call them causal attack trees.

Definition 1. Suppose B is a set of base attacks whose elements are denoted by
b. Then an attack tree is defined by the following grammar:

A,B ,C ,T := b | OR(A,B) | AND(A,B) | SEQ(A,B)

Equivalence of attack trees, denoted by A ≈ B, is defined as follows:

OR(A,A) ≈ A
OR(A,B) ≈ OR(B ,A)
AND(A,B) ≈ AND(B ,A)

OR(OR(A,B),C) ≈ OR(A,OR(B ,C))
AND(AND(A,B),C) ≈ AND(A,AND(B ,C))
SEQ(SEQ(A,B),C) ≈ SEQ(A, SEQ(B ,C))
AND(A,OR(B ,C)) ≈ OR(AND(A,B),AND(A,C))
SEQ(A,OR(B ,C)) ≈ OR(SEQ(A,B),SEQ(A,C))

Throughout the sequel we will show that the previous rules are sound with
respect to our new model, but just as Horne et al. [5] did, we will then show
that there are properties of attack trees that these rules do not support, but our
semantics allows.

On Linear Logic, Functional Programming, and Attack Trees 75

3 A Quaternary Semantics for Causal Attack Trees

Kordy et al. [10] gave a very elegant and simple semantics of attack-defense trees
in Boolean algebras. Unfortunately, while their semantics is elegant, it does not
capture the resource aspect of attack trees, it allows contraction, and it does
not provide a means to model sequential composition. In this section we give a
semantics of attack trees in the spirit of Kordy et al.’s using a four-valued logic.
This section was formally verified in the Agda Proof Assistant [14]1.

We now give two types of quaternary semantics for casual attack trees. We
do this by defining two four-valued logics we call quaternary logics. The propo-
sitional variables, elements of the set PVar, of our quaternary logics, denoted by
P , Q, R, and S, range over the set 4 = {0, 1

4 , 1
2 , 1}. We think of 0 and 1 as we

usually do in Boolean algebras, but we think of 1
4 and 1

2 as intermediate values
that can be used to break various structural rules2. In particular we will use
these values to prevent exchange for sequential composition from holding, and
contraction from holding for parallel and sequential composition.

We use the usual notion of equivalence between propositions; that is, propo-
sitions φ and ψ are considered equivalent, denoted by φ ≡ ψ, if and only if they
have the same truth tables. In addition, we define a notion of entailment for
the quaternary logics. Denote by P ≤4 Q the usual natural number ordering
restricted to 4. Then we have the following result immediately.

Lemma 1 (Entailment in the Quaternary Logics). P ≡ Q if and only if
P ≤4 Q and Q ≤4 P

This result shows that we can break up the equivalence of attack trees into
directional properties captured here by entailments, and hence, every equivalence
proved throughout this section can also be used directionally.

3.1 The Ideal Quaternary Logic

The ideal semantics for casual attack trees was first proposed by Horne et al. [5].
In this section we give a simple truth table semantics that corresponds to their
ideal semantics within the ideal quaternary logic.

Definition 2. The logical connectives of the ideal quaternary logic are defined
as follows:

1 The formalization can be found at https://github.com/MonoidalAttackTrees/
ATLL-Formalization.

2 Choosing 1
4

and 1
2

as the symbols for the intermediate values was arbitrary, and one
can choose any symbols at all for these two values and the semantics will still be
correct.

https://github.com/MonoidalAttackTrees/ATLL-Formalization
https://github.com/MonoidalAttackTrees/ATLL-Formalization

76 H. Eades III et al.

Parallel Composition:
P �I Q = 1,

where neither P nor Q are 0
P �I Q = 0, otherwise

Sequential Composition:
P �I Q = 1

2 ,
where P ∈ {1

2 , 1} and Q �= 0
P �I Q = 1

4 ,
where P = 1

4 and Q �= 0
P �I Q = 0, otherwise

Choice:
P �I Q = max(P,Q)

These definitions are carefully crafted to satisfy the necessary properties to
model attack trees on the ideal semantics. Comparing these definitions with
Kordy et al.’s [10] work we can see that choice is defined similarly, but parallel
composition is not a product – ordinary conjunction – but rather a linear tensor
product. Sequential composition is not actually definable in a Boolean algebra,
and hence makes use of the intermediate values to insure that neither exchange
nor contraction hold.

In order to model attack trees, the previously defined logical connectives must
satisfy the appropriate equivalences corresponding to the equations between
attack trees. We break these properties up into the following lemmata.

Lemma 2 (Basic Properties for Choice). The following properties hold:

1. (P �I Q) ≡ (Q �I P)
2. ((P �I Q) �I R) ≡ (P �I (Q �I R))
3. P ≤4 (P �I Q)
4. Q ≤4 (P �I Q)
5. If P ≤4 R and Q ≤4 R, then (P �I Q) ≤4 R
6. If P ≤4 R and Q ≤4 S, then (P �I Q) ≤4 (R �I S)

Proof. Each of the properties hold by comparing truth tables.

The previous lemma shows that choice has the same properties as Boolean dis-
junction. Hence, it is possible to show using these rules that P �I P ≡ P which
follows from properties three, four, and five.

Lemma 3 (Basic Properties for Parallel Composition). The following
properties hold:

1. (P �I P) �≡ P
2. (P �I Q) ≡ (Q �I P)
3. ((P �I Q) �I R) ≡ (P �I (Q �I R))
4. (P �I (Q �I R)) ≡ ((P �I Q) �I (P �I R))
5. If P ≤4 R and Q ≤4 S, then (P �I Q) ≤4 (R �I S)

Proof. We give the proof of property one. The other properties hold by com-
paring truth tables. Suppose P = 1

2 , then P �I P = 1
2 �I

1
2 = 1, but 1 is not

1
2 .

On Linear Logic, Functional Programming, and Attack Trees 77

The previous lemma shows that sequential composition is a linear tensor product.
In particular, the first property guarantees that sequential composition does not
contract parallel copies of attack trees into a single attack tree.

Lemma 4 (Basic Properties for Sequential Composition). The following
properties hold:

1. (P �I P) �≡ P
2. (P �I Q) �≡ (Q �I P)
3. (P �I (Q �I R)) ≡ ((P �I Q) �I R)
4. (P �I (Q �I R)) ≡ ((P �I Q) �I (P �I R))
5. If P ≤4 R and Q ≤4 S, then (P �I Q) ≤4 (R �I S)

Proof. We give proofs for properties one and two, but the others hold by compar-
ing truth tables. As for property one, suppose P = 1, then P �I P = 1�I 1 = 1

2 ,
but 1 is not 1

2 . Now for property two, suppose P = 1 and Q = 1
4 , then

P �I Q = 1 �I
1
4 = 1

2 , but Q �I P = 1
4 �I 1 = 1

4 .

This lemma is similar to the previous. However, property two guarantees that
sequential composition is not commutative.

Lemma 5 (The Ideal Properties). The following properties hold:

1. ((P �I Q) �I (R �I S)) ≤4 ((P �I R) �I (Q �I S))
2. ((P �I Q) �I R) ≤4 (P �I (Q �I R))
3. (P �I (Q �I R) ≤4 (Q �I (P �I R))
4. (P �I Q) ≤4 (P �I Q)

Proof. Each property holds by comparing truth tables.

At this point it is quite easy to model attack trees as formulas. The following
defines their interpretation.

Definition 3. Suppose B is some set of base attacks, and ν : B → PVar is
an assignment of base attacks to propositional variables. Then we define the
interpretation of attack trees to propositions as follows:

�b ∈ B� = ν(b)
�AND(A,B)� = �A� �I �B�

�SEQ(A,B)� = �A� �I �B�
�OR(A,B)� = �A� �I �B�

We can use this semantics to prove equivalences between attack trees.

Lemma 6 (Equivalence of Attack Trees in the Ideal Quaternary
Semantics). Suppose B is some set of base attacks, and ν : B → PVar is an
assignment of base attacks to propositional variables. Then for any attack trees
A and B, if A ≈ B, then �A� ≡ �B�.

Proof. This proof holds by induction on the form of A ≈ B .

78 H. Eades III et al.

3.2 The Filterish Quaternary Logic

We now introduce the filterish semantics for casual attack trees. This is a
restricted notion of the filter semantics of Horne et al. [5]. We were unable
to find a quaternary semantics for the full filter semantics, because we obtained
contractions when attempting to satisfy the corresponding specialization prop-
erties in the filter model. We are unsure if these contradictions arise due to the
fact that the semantics proposed here is intuitionistic while Horne et al. [5] use
classical logic, or if four values just are not enough, or if we just have not been
able to find it.

In this section we do as we did in the previous and define a quaternary logic
called the filterish quaternary logic.

Definition 4. The logical connectives of the filterish quaternary logic are
defined as follows:

Parallel Composition:
P �F Q = 1

2 ,
where neither P nor Q are 0

P �F Q = 0, otherwise

Sequential Composition:
P �F Q = 1,

where P ∈ {1
2 , 1} and Q �= 0

P �F Q = 1
4 ,

where P = 1
4 and Q �= 0

P �F Q = 0, otherwise
Choice:
P �F Q = max(P,Q)

We have the same basic properties as the ideal quaternary logic. We omit proofs,
because they are similar to the corresponding properties in the ideal semantics.

Lemma 7 (Basic Properties for Choice). The following properties hold:

1. (P �F Q) ≡ (Q �F P)
2. ((P �F Q) �F R) ≡ (P �F (Q �F R))
3. P ≤4 (P �F Q)
4. Q ≤4 (P �F Q)
5. If P ≤4 R and Q ≤4 R, then (P �F Q) ≤4 R
6. If P ≤4 R and Q ≤4 S, then (P �F Q) ≤4 (R �F S)

Lemma 8 (Basic Properties for Parallel Composition). The following
properties hold:

1. (P �F P) �≡ P
2. (P �F Q) ≡ (Q �F P)
3. ((P �F Q) �F R) ≡ (P �F (Q �F R))
4. (P �F (Q �F R)) ≡ ((P �F Q) �F (P �F R))
5. If P ≤4 R and Q ≤4 S, then (P �F Q) ≤4 (R �F S)

Lemma 9 (Basic Properties for Sequential Composition). The following
properties hold:

1. (P �F P) �≡ P

On Linear Logic, Functional Programming, and Attack Trees 79

2. (P �F Q) �≡ (Q �F P)
3. (P �F (Q �F R)) ≡ ((P �F Q) �F R)
4. (P �F (Q �F R)) ≡ ((P �F Q) �F (P �F R))
5. If P ≤4 R and Q ≤4 S, then (P �F Q) ≤4 (R �F S)

We now give the filterish properties that correspond to a subset of the filter
properties proposed by Horne et al. [5].

Lemma 10 (The Filterish Properties). The following properties hold:

1. ((P �F R) �F (Q �F S)) ≤4 ((P �F Q) �F (R �F S))
2. (P �F (Q �F R)) ≤4 ((P �F Q) �F R)

The remaining filter properties proposed by Horne et al. [5] actually fail in both
directions.

Lemma 11. There exists an P , Q, and R that cause the following properties to
not hold:

1. (P �F (Q �F R)) ≤r (Q �F (P �F R))
2. (P �F Q) ≤4 (P �F Q)

Interestingly, if we change Definition 4 so that all the basic properties hold and
Lemma 11 holds, then the inequalities in Lemma 10 degenerate to equalities. We
were unable to find a definition of the logical connectives that make all of the
properties in both of the previous lemmas hold.

Just as we did for the ideal quaternary semantics we can show that we can
model attack trees as formulas. The following defines their interpretation.

Definition 5. Suppose B is some set of base attacks, and ν : B → PVar is
an assignment of base attacks to propositional variables. Then we define the
interpretation of attack trees to propositions as follows:

�b ∈ B� = ν(b)
�AND(A,B)� = �A� �F �B�

�SEQ(A,B)� = �A� �F �B�
�OR(A,B)� = �A� �F �B�

We can use this semantics to prove equivalences between attack trees.

Lemma 12 (Equivalence of Attack Trees in the Ideal Quaternary
Semantics). Suppose B is some set of base attacks, and ν : B → PVar is an
assignment of base attacks to propositional variables. Then for any attack trees
A and B, if A ≈ B, then �A� ≡ �B�.

Proof. This proof holds by induction on the form of A ≈ B .

80 H. Eades III et al.

3.3 An Example Specialization

The quaternary logics introduced in the previous section do indeed capture all
of the equivalences of attack trees, but they also support proving specializations.
Consider the example attack trees in Fig. 2. In the ideal semantics attack tree C is
a sound specialization of attack tree A, and attack tree B is a sound specialization
of attack tree A. Attack tree C requires the attacker to break into the system
before they can steal the backup, but attack tree A does not require this. Then
attack tree B has dropped bribing the sysadmin and simply requires the attacker
to just steal the backups. Notice that none of the attack trees in Fig. 2 are
equivalent. So how do we prove these specializations are sound? We prove that
they are related through an entailment rather than an equivalence.

A.
and_node "obtain secret"
(or_node "obtain encrypted file"

(base_na "bribe sysadmin")
(base_na "steal backup"))

(seq_node "obtain password"
(base_na "break into system")
(base_na "install keylogger"))

B.
seq_node "break in, obtain secret"
(base_na "break into system")
(and_node "obtain secret inside"

(base_na "install keylogger")
(base_na "steal backup"))

C.
or_node "obtain secret"
(and_node "obtain secret via sysadmin"
(base_na "bribe sysadmin")
(seq_node "obtain password"

(base_na "break into system")
(base_na "install keylogger")))

(seq_node "break in, obtain secret"
(base_na "break into system")
(and_node "obtain secret inside"

(base_na "install keylogger")
(base_na "steal backup")))

Fig. 2. Encrypted data attack from Figs. 1(A), 3(B) and 2(C) of Horne et al. [5].

Definition 6. An attack tree A is a sound specialization of an attack B if and
only if �A� ≤4 �B�.

We can now formally prove that the attack tree C is a specialization of attack
tree A, and that attack tree B is a specialization of attack tree A from Fig. 2.

Example 1. First, consider the following assignment:

a := "bribe sysadmin" b := "break into system"
c := "install keylogger" d := "steal backup"

Then we have the following interpretations:

On Linear Logic, Functional Programming, and Attack Trees 81

�A� = �AND(OR(a, d), SEQ(b, c))�
= (a �I d) �I (b �I c)

�B� = �SEQ(b,AND(c, d))�
= b �I (c �I d)

�C� = �OR(AND(a, SEQ(b, c)), SEQ(b,AND(c, d)))�
= (a �I (b �I c)) �I (b �I (c �I d))

We reuse the same names for base attacks across the interpretations above.
Finally, we have the following two entailments:

�C� ≤4 �A� :

(a �I (b �I c)) �I (b �I (c �I d))
≤4 (a �I (b �I c)) �I (b �I (d �I c))
≤4 (a �I (b �I c)) �I (d �I (b �I c))
≤4 (a �I d) �I (b �I c)

�B� ≤I �A� :

b �I (c �I d)
≤4 b �I (c �I (a �I d))
≤4 b �I ((a �I d) �I c)
≤4 (a �I d) �I (b �I c)

Notice that neither �A� ≤4 �C � nor �A� ≤4 �B� hold, and thus, equivalences
cannot prove the previous properties.

4 Lina: An EDSL for Conducting Threat Analysis Using
Causal Attack Trees

All of the models mentioned in this paper have been incorporated into a new
embedded domain specific language (EDSL) for conducting threat analysis called
Lina3 which means small, young palm tree, but we constructed the name by
combining the words linear and attack.

Lina is embedded inside of Haskell, a statically-typed functional program-
ming language. The most important property of any EDSL is that they sub-
sume the entirety of their host language, and can be prototyped quite rapidly.
Haskell contributes several advantages, such as cutting edge verification tools,
and a strong type system for catching bugs quickly.

Lina currently supports three types of causal attack trees:

– Process Attack Trees: these are attack trees with no attributes at all,
– Attributed Process Attack Trees: these are attack trees with attributes on

the base attacks only. This is an intermediate representation used to build
full attack trees.

– Full Attack Trees: these are attributed process attack trees with an associated
attribute domain.

Internally, we represent causal attack trees by a simple data type, called IAT,
whose nodes are labeled with an integer identifier we call ID. We then define
each type of attack tree as a record (labeled tuple):

3 Lina is under active development and its implementation can be found online at
https://github.com/MonoidalAttackTrees/Lina.

https://github.com/MonoidalAttackTrees/Lina

82 H. Eades III et al.

-- Attributed Process Attack Tree
data APAttackTree attribute label =
APAttackTree {
process_tree :: IAT,
labels :: B.Bimap label ID,
attributes :: M.Map ID attribute

}

-- Process Attack Tree
type PAttackTree label = APAttackTree () label

-- Full Attack Tree
data AttackTree attribute label = AttackTree {

ap_tree :: APAttackTree attribute label,
configuration :: Conf attribute

}

A B.Bimap is a dictionary where we can efficiently look up IDs given a label or
efficiently look up labels given an ID. A M.Map is a typical dictionary, and ()
is the unit type.

This design has several benefits. Internal attack trees are very easy to trans-
late to various backends, especially formulas because we can use the IDs on base
attacks as atomic formulas – which has its own benefits discussed below – and
modifying labels and attributes is more efficient than having them labeled on the
trees themselves. The previous data types reveal that actually all attack trees
are attributed process attack trees, and a process attack tree simply does not
use the attributes. This allows Lina to offer a uniform syntax for specifying all
types of attack tree.

One important aspect of the definition of the various forms of attack trees
is that the types label and attribute are actually type variables, and thus,
our definition of attack trees is very general; in fact, label and attribute can
be instantiated with any type whose elements are comparable. This property is
captured by ad-hoc polymorphism using type classes in Haskell, and is checked
during type checking.

Conducting threat analysis using attack trees requires them to be associated
with an attribute domain. Typically, an attribute domain is a set, together with
operations for computing the attribute of the branching nodes of an attack tree
given attributes on the base attacks. In Lina attribute domains are defined by a
type, here called attribute, and a configuration:

data Conf attribute = (Ord attribute) => Conf {
orOp :: attribute -> attribute -> attribute,
andOp :: attribute -> attribute -> attribute,
seqOp :: attribute -> attribute -> attribute

}

Utilizing higher-order functions we can define configurations easily and gener-
ically. For example, here is the configuration that computes the minimum
attribute for choice nodes, the maximum attribute for parallel nodes, and takes
the sum of the children nodes as the attribute for sequential nodes:

minMaxAddConf :: (Ord attribute,Semiring attribute) => Conf attribute
minMaxAddConf = Conf min max (.+.)

Notice here that this configuration will work with any type at all whose elements
are comparable and form a semiring, thus making configurations generic and
reusable. This includes types like Integer and Double.

The definitional language for attributed process attack trees of type
APAttackTree attribute label is described by the following grammar:

On Linear Logic, Functional Programming, and Attack Trees 83

at ::= base_na label | base_wa attribute label | or_node label at1 at2
| and_node label at1 at2 | seq_node label at1 at2

import Lina.AttackTree

vehicle_attack :: APAttackTree Double String
vehicle_attack = start_PAT $

or_node "Autonomous Vehicle Attack"
(seq_node "External Sensor Attack"

(base_wa 0.2 "Modify Street Signs to Cause Wreck")
(and_node "Social Engineering Attack"

(base_wa 0.6 "Pose as Mechanic")
(base_wa 0.1 "Install Malware")))

(seq_node "Over Night Attack"
(base_wa 0.05 "Find Address where Car is Stored")
(seq_node "Compromise Vehicle"

(or_node "Break In"
(base_wa 0.8 "Break Window")
(base_wa 0.5 "Disable Door Alarm/Locks"))

(base_wa 0.1 "Install Malware")))

Fig. 3. Lina Script for an Autonomous Vehicle Attack.

A full example of the definition of an attributed process attack tree for
attacking an autonomous vehicle can be found in Fig. 3. The definition of
vehicle_attack begins with a call to start_PAT. Behind the scenes, all of
the ID’s within the internal attack tree are managed implicitly, which requires
the internals of Lina to work within a special state-based type. The function
start_PAT initializes this state. Finally, we can define the vehicle attack tree as
follows:
vehicle_AT :: AttackTree Double String
vehicle_AT = AttackTree vehicle_attack minMaxMaxConf

This attack tree associates the vehicle attack attributed process attack tree with
a configuration called minMaxMaxConf that simply takes the minimum as the
attribute of choice nodes, and the maximum as the attribute of every parallel
and sequential node. Lina as two important features that other tools lack. First,
it can abstract the definitions of attack trees. Second, it is highly compositional,
because it is embedded inside of a functional programming language. Consider
the following abstraction of vehicle_attack:

vehicle_AT' :: Conf Double -> AttackTree Double String
vehicle_AT' conf = AttackTree vehicle_attack conf

Here the configuration has been abstracted. This facilitates experimentation
because the security practitioner can run several different forms of analysis on
the same attack tree using different attribute domains. Attack trees in Lina can
also be composed and decomposed; hence, complex trees can be broken down
into smaller ones, then studied in isolation. This helps facilitate correctness, and
offers more flexibility. As an example, in Fig. 4 we break up vehicle_attack
into several smaller attack trees. We can see in the example that if we wish to

84 H. Eades III et al.

se_attack :: APAttackTree Double String
se_attack = start_PAT $

and_node "social engineering attack"
(base_wa 0.6 "pose as mechanic")
(base_wa 0.1 "install malware")

bi_attack :: APAttackTree Double String
bi_attack = start_PAT $

or_node "break in"
(base_wa 0.8 "break window")
(base_wa 0.5 "disable door alarm/locks")

cv_attack :: APAttackTree Double String
cv_attack = start_PAT $

seq_node "compromise vehicle"
(insert bi_attack)
(base_wa 0.1 "install malware")

es_attack :: APAttackTree Double String
es_attack = start_PAT $

seq_node "external sensor attack"
(base_wa 0.2 "modify street signs to cause

wreck")
(insert se_attack)

on_attack :: APAttackTree Double String
on_attack = start_PAT $

seq_node "overnight attack"
(base_wa 0.05 "Find address where car

is stored")
(insert cv_attack)

vehicle_attack'' :: APAttackTree Double String
vehicle_attack'' = start_PAT $

or_node "Autonomous Vehicle Attack"
(insert es_attack)
(insert on_attack)

Fig. 4. The autonomous vehicle attack decomposed

use an already defined attack tree in an attack tree we are defining, then we
can make use of the insert function. As we mentioned above, behind the scenes
Lina maintains a special state that tracks the identifiers of each node; thus, when
one wishes to insert an existing attack tree, which will have its own identifier
labeling, into a new tree, then that internal state must be updated; thus, insert
carries out this updating. Lina is designed so that the user never has to encounter
that internal state. So far we have introduced Lina’s basic design and definitional
language for specifying causal attack trees, and we have already begun seeing
improvements over existing tools; however, Lina has so much more to offer. We
now introduce Lina’s support for reasoning about and performing analysis on
causal attack trees. Kordy et al. [8] introduce the SPTool, an equivalence checker
for causal attack trees that makes use of the rewriting logic system Maude [3]
which allows one to specify rewrite systems and systems of equivalences. Kordy
et al. specify the equivalences for causal attack trees from Jhawar et al.’s [6]
work in Maude, and then use Maude’s querying system to automatically prove
equivalences between causal attack trees. This is a great idea, and we incorpo-
rate it into Lina, but we make several advancements over SPTool. Lina includes
a general Maude interface, and allows the user to easily define new Maude back-
ends, where a Maude backend corresponds to a Maude specification of a partic-
ular rewrite system. Currently, Lina has two Maude backends: equivalences for
causal attack trees, and the multiplicative attack tree linear logic (MATLL). The
former is essentially the exact same specification as the SPTool, but the latter
corresponds to the two quaternary logics defined in Sect. 3. Attributed process
attack trees are converted into the following syntax:

(Maude Formula) F := ID | F1;F2 | F1.F2 | F1 + F2

On Linear Logic, Functional Programming, and Attack Trees 85

mod MATLL is
protecting LOOP-MODE .
sorts Formula .
subsort Nat < Formula .
op _||_ : Formula Formula -> Formula [ctor assoc comm] .
op _._ : Formula Formula -> Formula [ctor assoc comm prec 41] .
op _;_ : Formula Formula -> Formula [ctor assoc prec 40] .
var a b c d : Formula .
rl [a1] : a . (b || c) => (a . b) || (a . c) .
rl [a1Inv] : (a . b) || (a . c) => a . (b || c) .
rl [a2] : a ; (b || c) => (a ; b) || (a ; c) .
rl [a2Inv] : (a ; b) || (a ; c) => a ; (b || c) .
rl [a3] : (b || c) ; a => (b ; a) || (c ; a) .
rl [a3Inv] : (b ; a) || (c ; a) => (b || c) ; a .
rl [a4] : (a . b) ; c => a . (b ; c) .
rl [a4Inv] : a . (b ; c) => (a . b) ; c .
rl [a5] : (a ; b) . (c ; d) => (a . c) ; (b . d) .
rl [a5Inv] : (a . c) ; (b . d) => (a ; b) . (c ; d) .
rl [switch] : a ; (b . c) => b . (a ; c) .
rl [seq-to-para] : a ; b => a . b .
endm

Fig. 5. Maude specification for MATLL.

This is done by simply converting the internal attack tree into the above
syntactic form. For example, the Maude formula for the autonomous vehicle
attack from Fig. 3 is (0 ; (1 . 2)) || (5 ; ((6 || 7) ; 2)), where each
integer corresponds to the identifier of the base attacks. Note that the base
attack 2 appears twice, this is because this base attack appears twice in the
original attack tree. This syntax is then used to write the Maude specification
for the various backends. The full Maude specification for the causal attack
tree equivalence checker can be found in Appendix A. However, Kordy et al.’s
specification only supports proving equivalences, but what about specializations?
Lina supports proving specializations between attack trees using the MATLL
Maude backend. Its full Maude specification can be found in Fig. 5. The axioms
a1 through a5 are actually equivalences, but the last two rules are not. At this
point we can use these backends to reason about attack trees. The programmer
can make queries to Lina by first importing one or more Lina modules, and
then making a query using Haskell’s REPL – read, evaluate, print, loop – called
GHCi. Consider the example Lina program in Fig. 6. These are the attack trees
from Fig. 2. Then an example Lina session is as follows:

> :load source/Lina/Examples/Specializations.hs
...
Ok, modules loaded
> is_specialization enc_data2 enc_data1
True
>

In this session we first load the Lina script from Fig. 6 which is stored in the
file Specializations.hs. Then we ask Lina if enc_data2 is a specialization of
enc_data1, and Lina responds True, thus automating the proof given in Exam-
ple 1. In addition to reasoning about attack trees, Lina also support analysis of

86 H. Eades III et al.

import Lina.AttackTree
import Lina.Maude.MATLL
-- A
enc_data1 :: PAttackTree String
enc_data1 = start_PAT $

and_node "obtain secret"
(or_node "obtain encrypted file"

(base_na "bribe sysadmin")
(base_na "steal backup"))

(seq_node "obtain password"
(base_na "break into system")
(base_na "install keylogger"))

-- C
enc_data2 :: PAttackTree String
enc_data2 = start_PAT $

or_node "obtain secret"
(and_node "obtain secret via sysadmin"

(base_na "bribe sysadmin")
(seq_node "obtain password"

(base_na "break into system")
(base_na "install keylogger")))

(seq_node "break in, then obtain secret"
(base_na "break into system")
(and_node "obtain secret from inside"

(base_na "install keylogger")
(base_na "steal backup")))

Fig. 6. Full Lina script for the attack trees A and C from Fig. 2.

attack trees. Currently, Lina supports several types of analysis: evaluating attack
trees, querying the attack tree for the attribute value of a node, projecting out
the set of attacks from an attack tree, and computing the maximal and minimal
attack. When one defines an attack tree that tree is left unevaluated; that is, the
attribute dictionary associated with the attack tree only has attributes recorded
for the base attacks. If one wishes to know the attribute values at the branching
nodes, then one must evaluate the attack tree, which populates the attribute
dictionary with the missing attributes. For example, we may evaluate the attack
tree for the autonomous vehicle attack from Fig. 3, and query the tree for the
attributes at various nodes:

> let (Right e_vat) = eval vehicle_AT
> e_vat <@> "social engineering attack"
0.6
>

Here we first evaluate the attack tree vehicle_AT giving it the name e_vat,
and then we use the attributed query combinator <@> to ask for the attribute at
the parallel node labeled with "social engineering attack". Note that the
evaluator, eval, uses the configuration associated with the attack tree to com-
pute the values at each branching node. It is also possible to project out various
attacks from an attack tree. In Lina an attack corresponds to essentially an attack
tree with no choice nodes. We call its data type Attack attribute label. An
attack does not have any choice nodes, because they are all split into multiple
attacks; one for each child node. For example, the set of possible attacks for the
autonomous vehicle attack from Fig. 3 can be found in Fig. 7. Lina can com-

On Linear Logic, Functional Programming, and Attack Trees 87

pute these automatically using the get_attacks command. Finally, given the
set of attacks for the autonomous vehicle attack we can also compute the set of
minimal and maximal attacks. For example, consider the following session:

> min_attacks.get_attacks $ vehicle_AT
[SEQ("over night attack",0.5)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.5)
("disable door alarm/locks",0.5)
("install malware",0.1))]

SEQ("external sensor attack",0.6)
("modify street signs to cause wreck",0.2)
(AND("social engineering attack",0.6)

("pose as mechanic",0.6)
("install malware",0.1))

SEQ("over night attack",0.8)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.8)

("break window",0.8)
("install malware",0.1))

SEQ("over night attack",0.5)
("Find address where car is stored",0.05)
(SEQ("compromise vehicle",0.5)

("disable door alarm/locks",0.5)
("install malware",0.1))

Fig. 7. Set of possible attacks for an autonomous vehicle attack.

In this session we first apply get_attacks to vehicle_AT to compute the
set of possible attacks, and then we compute the minimal attack from this set.

5 Conclusion and Future Work

We made two main contributions: a new four-valued truth table semantics of
causal attack trees that supports specializations of attack trees, and a new
embedded domain specific programming language called Lina for specifying, rea-
soning, and analyzing attack trees.

We plan to investigate completeness results with respect to the ideal and
filterish quaternary logics. Lina is under active development, and we have a
number of extensions planned, for example, adding support for attack-defense
trees, attack(-defense) graphs, attack nets, a GUI for viewing the various models,
and a SMT backend. Finally, it is necessary for number of case studies to be
carried out within Lina to be able to support the types of analysis required for
real world applications.

88 H. Eades III et al.

Acknowledgments. This work was supported by NSF award #1565557. We thank
Clément Aubert for helpful discussions and feedback on previous drafts of this paper,
and the anonymous reviewers whose recommendations made this a better paper.

A Maude Specification for Causal Attack Trees

mod Causal is

protecting LOOP-MODE .

sorts Formula .
subsort Nat < Formula .

op _||_ : Formula Formula -> Formula [ctor assoc comm] .
op _._ : Formula Formula -> Formula [ctor assoc comm] .
op _;_ : Formula Formula -> Formula [ctor assoc] .
op EQ(_,_) : Formula Formula -> Bool .

var P Q R S : Formula .

eq P . (Q || R) = (P . Q) || (P . R) .
eq P ; (Q || R) = (P ; Q) || (P ; R) .
eq (Q || R) ; P = (Q ; P) || (R ; P) .

ceq EQ(P,Q) = true
if P = Q .

eq EQ(P,Q) = false .

endm

References

1. Camtepe, S.A., Yener, B.: Modeling and detection of complex attacks. In: Security
and Privacy in Communications Networks, pp. 234–243, September 2007

2. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. SIGPLAN Not. 46(4), 53–64 (2011)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet, N., Meseguer, J., Talcott,
C.: Maude manual (version 2.1). SRI International, Menlo Park (2005)

4. Gadyatskaya, O., Trujillo-Rasua, R.: New directions in attack tree research: catch-
ing up with industrial needs. In: Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec
2017. LNCS, vol. 10744, pp. 115–126. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-74860-3 9

5. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on
linear logic. Fundam. Inform. 153(1–2), 57–86 (2017)

https://doi.org/10.1007/978-3-319-74860-3_9
https://doi.org/10.1007/978-3-319-74860-3_9

On Linear Logic, Functional Programming, and Attack Trees 89

6. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

7. Jones, S.P.: Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, Cambridge (2003)

8. Kordy, B., Kordy, P., van den Boom, Y.: SPTool - equivalence checker for SAND

attack trees. In: Cuppens, F., Cuppens, N., Lanet, J.-L., Legay, A. (eds.) CRiSIS
2016. LNCS, vol. 10158, pp. 105–113. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-54876-0 8

9. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

10. Kordy, B., Pouly, M., Schweitzer, P.: Computational aspects of attack–defense
trees. In: Bouvry, P., K�lopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka,
A., Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 103–116. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-25261-7 8

11. Kordy, B., Pouly, M., Schweitzer, P.: A probabilistic framework for security scenar-
ios with dependent actions. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS,
vol. 8739, pp. 256–271. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10181-1 16

12. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

13. McDermott, J.P.: Attack net penetration testing. In: Proceedings of the 2000 Work-
shop on New Security Paradigms, NSPW 2000, pp. 15–21. ACM, New York (2000)

14. Norell, U.: Dependently typed programming in AGDA. In: Proceedings of the 4th
International Workshop on Types in Language Design and Implementation, TLDI
2009, pp. 1–2. ACM, New York (2009)

15. Piètre-Cambacédès, L., ouissou, M.: Beyond attack trees: dynamic security mod-
eling with Boolean logic driven Markov processes (BDMP). In: 2010 European on
Dependable Computing Conference (EDCC), pp. 199–208, April 2010

16. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. 24, 21–29
(1999)

17. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Peyton-Jones, S.: Refinement
types for haskell. SIGPLAN Not. 49(9), 269–282 (2014)

https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-54876-0_8
https://doi.org/10.1007/978-3-319-54876-0_8
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-25261-7_8
https://doi.org/10.1007/978-3-319-10181-1_16
https://doi.org/10.1007/978-3-319-10181-1_16
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17

The Attacker Does not Always Hold
the Initiative: Attack Trees
with External Refinement

Ross Horne1, Sjouke Mauw2, and Alwen Tiu3(B)

1 CSC, University of Luxembourg, Esch-sur-Alzette, Luxembourg
ross.horne@uni.lu

2 CSC/SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
sjouke.mauw@uni.lu

3 Research School of Computer Science, Australian National University,
Canberra, Australia

alwen.tiu@anu.edu.au

Abstract. Attack trees provide a structure to an attack scenario, where
disjunctions represent choices decomposing attacker’s goals into smaller
subgoals. This paper investigates the nature of choices in attack trees. For
some choices, the attacker has the initiative, but for other choices either
the environment or an active defender decides. A semantics for attack
trees combining both types of choice is expressed in linear logic and
connections with extensive-form games are highlighted. The linear logic
semantics defines a specialisation preorder enabling trees, not necessarily
equal, to be compared in such a way that all strategies are preserved.

Keywords: Attack trees · Linear logic · Extensive-form games ·
Game semantics

1 Introduction

An attack tree is a rooted labelled tree profiling the goals of an attacker. The
use of AND-OR trees for security modelling dates back to 1999, when Schneier
proposed attack trees as a simple and comprehensive way of representing security
scenarios and to allow for their quantitative analysis [36]. Since 1999, numerous
extensions of attack trees have been proposed. They augment the original model
with additional refinement operators [7,25,27] or support not only offensive but
also defensive behaviour [9,30,35]. An exhaustive overview of the existing attack
tree-based models can be found in [31].

In most established semantics for attack trees, notably a semantics based
on multisets [33], there is an implicit assumption that the attacker always has
the initiative. This worst case scenario for the defender is a realistic assumption
in traditional security scenarios, where the configuration of defensive measures
is typically static. This implicit assumption gives the attacker the advantage

c© Springer Nature Switzerland AG 2019
G. Cybenko et al. (Eds.): GraMSec 2018, LNCS 11086, pp. 90–110, 2019.
https://doi.org/10.1007/978-3-030-15465-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15465-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-15465-3_6

The Attacker Does not Always Hold the Initiative 91

that, whenever there is a choice to make between different avenues of attack, the
attacker has sufficient knowledge to control such choices.

In the interest of security, allowing the attacker to always retain the initiative
is undesirable. The defender may take the initiative by being aware of design deci-
sions affecting the security risk of a system; minimising the risk by pro-actively
closing down more damaging avenues of attack. Avenues can be closed down by
active policy choices, for example avoiding outdated operating systems without
ASLR; or inspecting workspaces to ensure sensitive information is not left unat-
tended. One of several more sophisticated ways of addressing this problem is by
Moving Target Defence [26], proposed, in a federal plan, as a methodological
approach to security breaking the asymmetry of the game between the attacker
and defender. Instead of the system defences being static, while the attacker
holds the advantage of being able to constantly adapt, the system defences can
also constantly change. Such constant changes can result in situations where
the attacker has insufficient knowledge to make an optimal choice. As a further
example, consider honey pots, where, by directing a potentially malicious soft-
ware to a sandbox, a network of defenders learns information about a network of
attackers rather than vice versa. Such pro-active and adaptive defence policies
can be categorised as intrusion tolerant approaches to system security [17].

As a simple policy scenario, where the initiative shifts in the favour of the
defender, consider for example the attack tree in Fig. 1 adapted from the first
attack-defence tree to appear in the literature [36]. The tree consists of goals that
are disjunctively refined, indicated by the branching of the tree. A disjunctively
refined node indicates that one of several sub-goals should be achieved in order
for the attacker to succeed in its goal. For example, to open the safe the attacker
can choose one of the sub-goals “pick lock”, “cut open safe” or “learn combo”.
For now we assume the attacker has the initiative for this decision, hence is able
to try any of these three options.

Now, in contrast to the root node, consider the node “learn combo”, which
is disjunctively refined into “find written combo” and “get combo from target”.
The question is whether the attacker has the luxury to resolve this choice. We
can say that this is a choice, but, arguably, a choice that is external to the
attacker. Suppose that managers take a proactive decision to counter this risk,
assessing that an attacker finding a combo written by an employee is not only
a serious risk but one that can be made unlikely by a clear company policy
and security inspections of the workplace. Thus an action such as “find written
combo” is an opportune event that, by policy, can be made more difficult for the
attacker to achieve. Later, new data may arrive, perhaps for a foreign branch
office, suggesting having employees susceptible to subversion is the greatest risk;
a risk that can also be dynamically countered by a pro-active policy decisions
by the defender, aware of the range of possible attacks.

We annotate the node “learn combo” with a box � to indicate that there
is a choice; but, by system design, a choice external to the attacker. The box
notation has several connotations: firstly, a box suggests the choice is treated as
a black box inside which the attacker cannot access; secondly, a box is typically

92 R. Horne et al.

open safe

pick lock cut open safe learn combo

find written combo get combo from target

threaten eavesdrop bribe

Fig. 1. Attack tree for opening a safe.

used for the external choice operator in models of concurrency [11]; thirdly, for
readers familiar with modal logic, there is a connection with the box modality in
the sense that the attacker must be prepared for all possible branches that may
arise, assuming, for external choices, the attacker does not know which branches
will be made unlikely by defensive measures.

The box suggests a simple extension of the methodology for using attack
trees as a tool for security risk analysis and system design. Given an attack
tree representing the potential attacks on a system, we observe each node where
a choice is made and ask the question: “can the system be designed, e.g., by
company guidelines or a moving target defence policy, such that the attacker
does not have sufficient knowledge to make an optimal choice?”

Identifying some choices as external to the attacker, subtly changes the quan-
titative analysis performed over an attack tree. For example, in the attack tree
adapted from Schneier, marking one node as external will never benefit the
attacker—the damage of an attack may be reduced and the cost to the attacker
may increase. By comparing the result of risk analysis with and without the
node marked as external we can assess the impact of concentrating resources on
a policy decision. We may wish to discover, for example, the percentage increase
in cost to the attacker incurred by a policy decision. For example, without any
pro-active policy, we may assess that the cheapest attack is to “find a writ-
ten combo” at the cost of $10 k outlay to the attacker. However, with a policy
avoiding the cheapest attack by which the combo can be learnt in the running
example, we may assess that if the cheapest option the attacker can choose is
to cut open the safe at the cost of $12 k, then we can conclude there is a 20%
increase in the cost to the attacker. This assessment is of course dependant on
data available on the attack scenario.

The Attacker Does not Always Hold the Initiative 93

The presence of external choices also demands a more refined semantics that
distinguishes moves by the attacker and the attacker’s external environment.
Sometimes the environment is the defender, but external choice may model
uncertainty inherent in the environment the attacker operates. The semantics
of external choices becomes particularly interesting when considering the notion
of “specialisation” [25] introduced for comparing attack trees that are not nec-
essarily equivalent. This paper introduces several semantics for attack trees: a
minimal extension of the standard multiset semantics [33]; a novel game seman-
tics [3,16,29]; and semantics based on linear logic [21]. Our use of the game
semantics is particularly novel since it reconnects a branch of game theory aris-
ing from the study of logic with quantitative game theory. We find that the linear
logic semantics preserves optimal strategies.

Outline. Section 2, for clarity, begins with a minimal attack tree model with
disjunctive refinement only. The section lays down a case for a semantics with
specialisation and how specialisation exposes the need for external refinement.
The semantics of external refinement is explored from the perspectives of sets.
Section 3 expands on the model in the previous section from the perspective of
game semantics and logic.

Remark on Conjunctive Refinement. Attack trees feature both conjunctive and
disjunctive refinement. However, this paper concerns only disjunctive refinement.
This choice is made for pedagogical reasons—to explore the new feature of exter-
nal refinement in a minimal setting. All semantics introduced in this paper can
be extended with conjunctive refinement, following the use of the multiplicative
connectives of linear logic in related work [25].

2 Specialisation for Attack Trees with Disjunctive
Refinement

This section considers a minimal fragment of the attack tree notation in which
we can explain the subtlety between choices that an attacker makes and choices
where the attacker does not necessarily have the power to make decisions.

Central to this development are the notion of action refinement, the refine-
ment of basic actions into attack trees consisting of several actions, and special-
isation [25]. Attack trees are expected to evolve as new attacks are considered,
or larger attack trees are pruned down to just the relevant actions. In such
scenarios, a specialisation order can be used to ensure that certain properties
are preserved by the specialisation, e.g., quantitative attribute values associated
with two trees are correlated in some way.

2.1 Attack Trees with Disjunctive Refinement only

We begin with perhaps the simplest possible attack tree model—attack trees
with disjunctive refinement only. Such trees consist of basic actions represent-
ing goals of an attacker, such as “disrupt network” or “kill node”, and nodes

94 R. Horne et al.

that are disjunctively refined into sub-goals. For example the first tree in Fig. 2,
disjunctively refines “disrupt database”, by indicating at least one of “disrupt
network” or “kill node” should be achieved.

disrupt database

kill master node kill data node

disrupt database

disrupt network kill node

kill master node kill data node
disrupt database

disrupt network kill node
refine “kill node” prun e “disrupt net work”

Fig. 2. Three attack trees: the middle tree obtained from the tree on the left by action
refinement ; the third tree on the right a specialisation of the tree in the middle.

A central idea in the attack tree methodology is action refinement. For exam-
ple, “kill node” can be refined disjunctively to “kill master node” or “kill data
node”. This action refinement transforms the first tree in Fig. 2 to the second
tree.

Perhaps the simplest semantics is to interpret each basic node as a singleton
set and disjunction using union (the labels at nodes are just helpful annotations).
Note this is semantically equivalent to the established multiset semantics [33]
in this simplified scenario where there are no conjunctive nodes. Conjunctive
refinement, representing when multiple sub-goals should all be achieved in order
to achieve a goal (essentially an attack vector) is omitted. We know how to
reintroduce conjunctive refinement into this model at a later stage, but we focus
this study on choices only.

Under this set semantics, the first two trees in Fig. 2 are interpreted simply
by the following sets.

first tree: {“disrupt network”, “kill node”}
second tree: {“disrupt network”, “kill master node”, “kill data node”}

Notice that the sets are different hence the trees are neither equivalent in this
simple semantics.

Now consider the third tree in Fig. 2, which is also clearly not equivalent to
the second tree in Fig. 2. However, for any interpretation of basic actions as sets
those trees are related by subset inclusion, as follows.

{“kill master node”, “kill data node”}
⊆ {“disrupt network”, “kill master node”, “kill data node”}

The Attacker Does not Always Hold the Initiative 95

In this situation, where trees are related by subset inclusion, we say the tree
with the smaller denotation specialises the other.

Specialisation has several useful applications in the attack tree methodology.
Typically an attack tree is not a fixed static specification. It evolves as domain
knowledge is added to the tree, or knowledge is pruned from the tree to focus on
the relevant part of an attack [34]. In some use cases, multiple trees can be com-
bined to model a more complex system. In other use cases, differences between
two attack trees for the same scenario but generated by different agents may
need to be reconciled, while showing the semantics of one or more attack trees
is reflected in the combined tree. Previously the idea of specialisation has been
explicitly explored in the setting of attack trees with sequential refinement [25].

2.2 Distinguishing Disjunctive from External Refinement Using
a Box Annotation

We extend attack trees by allowing disjunctive refinement to be annotated with
a box. Consider the attack tree in Fig. 3, differing from the second attack tree
in Fig. 2 only with respect to the box annotation.

disrupt database

disrupt network kill node

kill master node kill data node

Fig. 3. Attack tree with a node labelled as external.

The box annotation indicates that the choice between the two sub-goals,
namely “kill master node” and “kill data node”, is external to the attacker and
is instead made by the environment or an implicitly modelled defender of the
system. To give a concrete scenario, the attacker can choose between setting
out to disrupt the network or kill a node. However, we assume that the system
has been designed such that the attacker cannot reliably distinguish between
master nodes and data nodes hence, in the sub-tree “kill node”, does not have
the luxury to choose. Throughout this work we assume the limit case where the
attacker must assume the worst case scenario for the attacker, implicitly by an
active defender stacking the odds against the attacker.

Notice that this scenario suggests that there is an implicit system design
decision at that point. This, we claim, can be used to model the impact of a

96 R. Horne et al.

policy decision in the system design, such as a moving target defence strat-
egy, explicitly built into the configuration of the network to keep the defender
guessing—breaking the asymmetry between the attacker and defender.

To help understand the impact of annotating a node as external consider
the notion of an attribute domain [33]. An attribute domain simply determines
a way of propagating quantities through attack trees. For example, we might
want to calculate the maximum damage (in the running scenario, say seconds of
downtime) the attacker can induce according to an attack tree. Calculations are
performed with respect to a valuation mapping basic actions to values, such as
the following.

“disrupt network” �→ 20, “kill master node” �→ 100, “kill data node” �→ 2

If we consider the central attack tree in Fig. 2, without the box annotation, the
maximum damage, in the previous section, is simply the maximum of all values
assigned to basic actions, i.e., maximum damage 100 s downtime.

The difference with the same attack tree with the box annotation, in Fig. 3, is
that the external refinement is interpreted by minimum. Recall a moving target
defence strategy has been explicitly implemented to make the more damaging
outcome unlikely. Thus, under the same valuation, for the same tree but with the
box annotation, the maximum damage is calculated to max{20,min{100, 2}}, i.e.
maximum damage 20 s downtime.

More subtly, observe that the 20 s of downtime corresponds to the situation
where the attacker decides to take the action “disrupt network”. This choice can
be explained in term of a game between two players—the attacker and its envi-
ronment (sometimes, but not always, an active defender). The attacker aims to
achieve maximum damage, while the environment aims to minimise damage. Ini-
tially the attacker has two choices, between “disrupt network” and the sub-tree
named “kill node”. However, the sub-tree “kill node” consists of two alternatives
“kill master node” and “kill data node” that are in control of the environment.
A perfect play for the environment (or defender) in the sub-tree “kill node”, is
to play the least damaging option. For the above example valuation, the least
damaging option is “kill data node”. Thus the optimal strategy for the attacker
is to play the action “disrupt network”, since if it plays the sub-tree “kill node”
then the defender can be assumed to take the least damaging option “kill data
node”, resulting in less damage than 20 s downtime.

In the above example, the attacker has imperfect information about some
moves in the game. In particular, those moves annotated with a box. Further-
more, for any valuation, the attribute domain gives the same answer as the
game explanation, e.g., changing “kill data node” to damage 300, will result in
an optimal play, where the attacker selects sub-tree “kill node” then the defender
chooses “kill master node” resulting in a damage of 100 s downtime. The next
sections make the underlying game semantics precise.

Note, given sufficient data, alternatively such scenarios can be modelled prob-
abilistically, where uncertainty in the environment does not exclude the worst
option, only making it less likely. This can lead to more precise results. However,

The Attacker Does not Always Hold the Initiative 97

we argue the approach of simply identifying external choices, is simpler, since no
data on probabilities is required. Furthermore, all data has inherent uncertainty,
hence risk analysis can at best provide ballpark figures. For example, the high
level information a risk analyst is likely to appreciate from the analysis in this
section is, as follows: “the proposed moving target defence policy, can result in
reducing database down time from an attack by up to 80% (20 s downtime rather
than 100 s)”. Such an improvement would likely sway the security policy of an
organisation.

2.3 A Distributive Lattice Semantics Covering External Refinement

Perhaps the simplest semantics that we can use to make the intuition of exter-
nal choice precise is based on distributive lattices. In order to define a suitable
distributive lattice model of attack trees (still without conjunctive refinement),
we follow a standard construction for free finite distributive lattices, due to
Birkhoff [8]. We require a function, the prime-irreducible closure π, that maps
any finite non-empty set to its greatest prime-irreducible subsets. A prime-
irreducible set is simply a set W such that if x, y ∈ W then neither x ⊆ y
nor y ⊆ x. Thereby only maximal sets are recorded in the prime-irreducible
closures, for example π({{a} , {a, b}}) = {{a, b}}.

Each basic action is interpreted as a prime-irreducible set, external refinement
is interpreted as the prime-irreducible closure of the union of two sets, while
disjunctive refinement is interpreted by the prime-irreducible closure of the point-
wise union of sets of sets, where point-wise union is defined as follows:

V + W = {x ∪ y : x ∈ V, y ∈ W}

In order to discuss disjunctive attack trees, it is convenient to have the following
grammar.

t := a basic actions
| t � t disjunctive refinement (as in standard attack trees)
| t � t external refinement (nodes annotated with �)

Basic actions record the labels at the leaves of attack trees, such as “disrupt
network”. Note labels at nodes, when attack trees are represented graphically,
are not recorded in this grammar, since they are generally treated implicitly;
although recent work has also considered grammars where the labels at nodes
are remembered during tree transformations [20].

Definition 1. The “distributive lattice semantics” is defined by the following
mapping, where ϑ is any valuation mapping basic actions to non-empty prime-
irreducible sets.

Idl
ϑ (a) = ϑ(a) Idl

ϑ (t � u) = π
(
Idl

ϑ (t) ∪ Idl
ϑ (u)

)
Idl

ϑ (t � u) = π
(
Idl

ϑ (t) + Idl
ϑ (u)

)

98 R. Horne et al.

Note it is standard in model theory to consider all interpretations of atoms,
as achieved by the considering all mapping ϑ in the above semantics. From an
attack tree perspective considering all interpretations, has the effect of ensuring
the semantics is robust under all possible action refinements (replacing of basic
actions by more complex attack trees). This issue is less significant for attack
trees with disjunctive refinement, but becomes significant for extension of this
model, e.g., where conjunctive refinement and external refinement co-exist. Thus
we adopt a good model-theoretic practices to facilitate extensions.

In this distributive lattice model, based on certain sets of sets, the outer level
set lists the choices that the environment has, while the inner level sets list the
choices that the attacker has after the environment chose one set from the outer
level set. The distributive lattice specialisation preorder is defined as follows.

Definition 2 (distributive lattice specialisation). Given two disjunctive
attack trees t and u, t specialises u, written t � u whenever, for all valuations
ϑ, and for all y ∈ Idl

ϑ (u), there exists x ∈ Idl
ϑ (t) such that x ⊆ y. I.e., every set

in the denotation of u covers some set in the denotation of t.

(a)

disrupt database

disrupt network kill master node

disrupt database

disrupt network kill node

kill master node kill data node (b)
kill node

kill master node kill data node

Fig. 4. Three attack trees related by distributive lattice specialisation: the attacker has
the least advantage in the tree (a), and the greatest advantage in tree (b). The tree in
Fig. 3 lies between these trees.

According to the above definition the trees in Fig. 4 are related by specialisation.
The trees in this figure have the following respective denotations, under one
possible valuation ϑ(“kill master node” �→ {{master}}, ϑ(“kill data node” �→
{{data}}, and ϑ(“disrupt network” �→ {{network}}. The central denotation in
this chain is for the tree in both Figs. 3 and 4.

Fig. 4(a) {{master} , {data}} � {{network, master} , {network, data}} Fig. 3
� {{network, master}} Fig. 4(b)

The above inequalities hold under any possible valuation ϑ mapping basic actions
to non-empty prime-irreducible sets.

The Attacker Does not Always Hold the Initiative 99

Observe, under the maximum damage attribute domain and example valu-
ation defined in previous sections, the maximum damage increases from left to
right according to the specialisation order. For the trees in Figs. 4(a), 3 and 4(b),
the maximum damage is respectively 2 s, 20 s and 100 s downtime. Furthermore,
we know that for any valuation the same inequalities will be preserved.

The above observations leads us to the following compatibility criterion:

An attribute domain is compatible with a specialisation relation whenever
for all pairs of trees related by specialisation, there is a correlation between
the values at the root of the trees, for any assignment of values to basic
actions at the leaves.

The above is a criterion, not a definition, that can be instantiated with any notion
of attack tree, specialisation and correlation. The following is a definition specific
to disjunctive attack trees and preorders for specialisation and correlation.

Definition 3. An attribute domain for disjunctive attack trees D = (D, f, g)
is given by domain D ordered by ≤, where f and g are binary operators. The
interpretation in that domain is defined as follows, for any valuation ϑ mapping
basic actions to D:

ID
ϑ (a) = ϑ(a) ID

ϑ (t � u) = f(ID
ϑ (t) , ID

ϑ (u)) ID
ϑ (t � u) = g(ID

ϑ (t) , ID
ϑ (u))

An attribute domain D is compatible with a specialisation �, whenever for all
attack trees t and u such that t � u, and all valuations ϑ, we have ID

ϑ (t) ≤ ID
ϑ (u).

A concrete example of an attribute domain compatible with the distributive lat-
tice semantics is the maximum damage attribute domain used in examples so
far (N,min,max). Further examples include attribute domains based on classi-
cal propositional logic and de Morgan algebras (e.g. three value logic indicating
low, medium and high risk). The product of distributive lattices is a distributive
lattice. Thus, multi-parameter attribute domains [5,12,28], such as the product
of the maximum damage attribute domain and an attribute domain indicating
whether an attack is possible using classical propositional logic, are also com-
patible with the distributive lattice semantics.

In the next section, we observe that the distributive lattice semantics is sim-
ply a way of representing normal form games.

3 A Game Semantics for Disjunctive Attack Trees

As suggested informally, for examples presented so far, the interplay between dis-
junctive and external refinement, respectively choices made by the attacker and
the environment of the attacker, can be considered as an extensive-form game.
An extensive-form game is described as a tree of choices annotated to indicate
whether the proponent or opponent makes the choice—where the proponent and
opponent are respectively the attacker and its environment (or defender) in the
setting of disjunctive attack trees. Extensive-form games can be seen as a natural

100 R. Horne et al.

disrupt database

disrupt master node

disrupt network kill master node

disrupt data node

disrupt network kill data node

Fig. 5. An attack tree equivalent under the distributive lattice semantics to the tree
in Fig. 3; but strictly more generous to the attacker under two-player simulation
(Definition 4).

extension of the distributive lattice semantics, preserving more structure about
the knowledge of the attacker and defender at various points in the game.

To see how the distributive lattice semantics forgets some of the
structure of an extensive-form game consider the tree in Fig. 5, which
has the following denotation, identical to the denotation of the tree in
Fig. 3: {{network,master} , {network, data}}, considered under the previously
described mapping of basic actions to non-empty prime-irreducible sets:
ϑ(“kill master node” �→ {{master}}, ϑ(“kill data node” �→ {{data}}, and
ϑ(“disrupt network” �→ {{network}}.

If we consider only the optimal strategy for the games, it is fine to consider the
trees in Figs. 3 and 5 to be equivalent. In the optimal strategy for the tree in Fig. 5
the defender gets to move first, and will ensure that the least damaging choice
is taken—the sub-tree labelled “disrupt data node” under the running example
valuation. In the sub-game “disrupt data node”, the attacker chooses “disrupt
network” or “kill data node”, taking the most damaging option—“disrupt net-
work” according our running attribute domain. This gives the same result, 20 s
downtime—the same answer as for the optimal game on the tree in Fig. 3.

An explanation for why the two attack trees described are equivalent is that
optimal strategies pick out the minimal and maximal strategies, depending on
which player holds the initiative. Minimum and maximum distribute over each
other, hence an extensive-form game can always be normalised into a game where
both players simultaneously declare their optimal position—a normal form game.
If we consider disjunctive attack trees to be extensive-form games, then the
distributive lattice semantics can be regarded as capturing the normal forms of
such games. In such a setting, the main argument for permitting extensive-form
games is data-structures for extensive form game may be exponentially smaller
than for normal-form games.

The Attacker Does not Always Hold the Initiative 101

3.1 Sub-optimal Strategies and a Games Semantics for Disjunctive
Attack Trees

A subtle argument for preserving the structure of play in an attack tree, based on
semantics, is we may desire to preserve not just the meaning of optimal strategies,
but also suboptimal strategies, where one player makes a suboptimal choice, or
dually a lucky choice. Consider the trees in Figs. 3 and 5 as extensive-form games,
presented syntactically by the respective terms related by the inequality below.

network � (master � data) � (network � master) � (data � network)

We can say that the tree on the left can be simulated (notation: �) by the tree
on the right as follows. If the attacker chooses “disrupt network” (abbreviated
network) on the left, “disrupt network” is still enabled for the attacker on all
paths on the right. If the attacker chooses master �data on the left, then for all
paths the defender can choose in (network � master)� (data � network), there
is a corresponding path for the defender on the left where master is enabled and
another path where data is enabled.

Notice the switching from the attacker to the defender and back in the infor-
mal explanation of the above example. This two-player simulation game can be
defined by the following coinductive definition.

Definition 4 (two-player simulation). Given a disjunctive attack tree t, the
moves of the attacker t =⇒A t′ are given by all terms t′ reachable from t by maximal
sequences of rewrites of the form t1 � t2 −→ ti, where i ∈ {1, 2} (or t =⇒A t if
there is no such transition). Dually, the moves of the defender t =⇒D t′ are given
by terms t′ reachable by maximal sequences of transitions of the form t1�t2 −→ ti,
where i ∈ {1, 2} (or t =⇒D t if there is no such transition).

A two-player simulation R is a relation between attack trees such that, when-
ever t R u the following hold:

– If t =⇒A t′ and u =⇒D u′ then there exist t′′ and u′′ such that t′ =⇒D t′′

and u′ =⇒A u′′ and t′′ R u′′.
– If neither player can move in either tree, t and u are the same basic action.

We say a tree t is simulated by u, written t � u whenever there exists a two-
player simulation R such that t R u.

Example of Two-Player Simulation. Consider again the running example. To
verify network � (master � data) � (network � master) � (data � network)
holds, observe the pair is contained in a two-player simulation S containing the
following pairs.

network � (master � data) S (network � master) � (data � network)
master S master network S network data S data

To see that the above relation is a two-player simulation consider the four initial
moves:

102 R. Horne et al.

1. Consider when the attacker moves in the first tree to network and the
defender moves in the second tree to network � master. This pair of moves
can be matched by the move network � master =⇒A network, reaching the
pair network S network.

2. The case where the attacker moves to network in the first and defender moves
to data � network in the second is similar to the first case.

3. The attacker moves to master�data in the first tree and the defender moves
to network � master is the second tree. This pair of moves can be matched
by transitions master � data =⇒D master in the first tree and network �
master =⇒A master in the second tree. Since master S master we are done.

4. The final case, where the attacker moves to master � data in the first tree
and the defender moves to network � master is the second tree, is similar to
the third case.

Each pair in the simulation can be considered as a reachable pair of sub-games.
In each pair of sub-games, optimal strategies remain correlated, even if a player
made a sub-optimal choice in order to reach that sub-game. To see this, consider
all sub-games, in the relation S under any distributive attribute domain and any
valuation. The value, e.g., maximum damage, on the left is always less than or
equal to the value on the right.

Another way to understand the two-player simulation intuitively is that the
attacker plays according to the first board, while the defender plays according
to the second board. If the actual attack scenario is the first board the defender
can still perform its defences, and, symmetrically, if the actual attack scenario is
the second board the attacker can still perform its attack. This indicates that in
the first board, the attacker may be more restricted than in the second board,
and, symmetrically, in the second board the defender may be more restricted
than in the first board.

Stated in other terms: no matter what happens, the attacker can always be at
least as effective in the attack tree on the right of a 2-player simulation relation,
i.e., according to the tree in Fig. 5 in the running example, rather than the tree
in Fig. 3.

A Counter-Model for a Two-Player Simulation. In contrast, there is no two-
player simulation in the opposite direction. That is (network � master) �
(data � network) is not simulated by network � (master � data). To see why,
observe initially the attacker cannot move in the first tree, nor can the defender
move in the second tree. This identity initial move can be followed up by four
possible moves to chose from.

1. In this first case, master � network is not simulated by network, since if
the attacker makes the move master �network =⇒A master, this cannot be
matched by network.

2. In the second case, for reasons similar to the first case, data�network is not
simulated by network.

3. In the third case, network�master is not simulated by master�data. To see
why, observe that if the attacker makes move network�master =⇒A master

The Attacker Does not Always Hold the Initiative 103

and the defender makes move master � data =⇒D data, clearly master and
data are not equal in all models.

4. In the fourth case, for reasons similar to the third case, network �data is not
simulated by master � data.

The above reasoning is independent of any valuation in a particular attribute
domain. The above reasoning is satisfied by any semantics compatible, according
to compatibility criterion, with respect to the specialisation relation defined by
two-player simulation. However, we can give a concrete counter-model explained
below.

If we consider a multi-parameter attribute domain, for example the product
of maximum damage and whether an attack is possible, we can see that in each
of the four cases above there is a valuation where the attacker has the initiative
on the left but cannot maintain the initiative on the right. In concrete terms,
consider the following valuation:

network �→ (5, false), master �→ (20, false) data �→ (5, true)

We can now calculate the optimal strategy using this distributive attribute
domain and valuation in each of the four cases above. We get the following
inequalities for the respective cases.

1. For master � network and network, we have (20, false) > (5, false).
2. For data � network and network, we have (5, true) > (5, false).
3. For network � master and master � data we have (20, false)
= (5, true).
4. For network � data and master � data we have (5, true)
= (20, false).

Thus in none of the pairs of sub-games enumerated, is it the case that the
valuation on the left is less than or equal to the valuation on the right. Thus the
correlation between the optimal strategies is broken in the sub-games.

An Example Specialising Disjunctive Refinement to External Refinement. As
another example, observe the tree network � (master � data), from Fig. 3, is
simulated by tree network �master � data where external refinement is relaxed
to disjunctive refinement, i.e., the middle tree in Fig. 2.

Initially, the attacker moves in the first tree to reach either network or
master � data. In response to the former move, network can be matched by
a move by the attacker on the second tree to network. The later move can be
matched by the defender making move master � data =⇒D master in the first
tree and the attacker making the move master�data =⇒A master in the second
tree. Thus the relation T , defined as follows, is a two-player simulation.

network � (master � data) T network � master � data
network T network master T master

Next we provide a proof system where implication coincides with simulation.

104 R. Horne et al.

3.2 Specialisation Expressed Using Additive Linear Logic

We provide a brief introduction to the additive fragment of linear logic [21],
which is used to logically characterise 2-player simulation on disjunctive attack
trees. A proof system for additive linear logic, ALL, is given in Fig. 6. Rules are
expressed in the sequent calculus, where a sequent, of the form � Δ, where Δ is a
multiset of propositions (thus permitting comma separated formulae to exchange
position).

Linear negation, indicated by an overline, is a synthetic operator distinct from
classical negation. Additive disjunction, P ⊕Q (called “plus”), has a De Morgan
dual additive conjunction, P &Q (called “with”), such that P & Q = P ⊕Q and
P ⊕ Q = P &Q. All negations can be pushed to the atomic propositions a where
a = a.

Fig. 6. A sequent calculus for Additive Linear Logic.

If we desire to prove that P implies Q, written P � Q, we search for a proof of
the sequent � P ,Q. For example, the axiom states that a basic action specialises
itself. Also, the following is a proof of showing that with (&) distributes in one
direction over plus (⊕), i.e. a ⊕ (b & c) � (a ⊕ b) & (a ⊕ c).

axiom
� a, a

⊕
� a, a ⊕ b

axiom
� a, a

⊕
� a, a ⊕ c

&
� a, (a ⊕ b) & (a ⊕ c)

axiom
� b, b

⊕
� b, a ⊕ b

⊕
� b ⊕ c, a ⊕ b

axiom
� c, c

⊕
� c, a ⊕ c

⊕
� b ⊕ c, a ⊕ c

&
� b ⊕ c, (a ⊕ b) & (a ⊕ c)

&
� a & (b ⊕ c), (a ⊕ b) & (a ⊕ c)

The linear implication (a & b) ⊕ (a & c) � a & (b ⊕ c) also holds by a similar
proof. However, take care that, unlike classical logic which defines a distributive
lattice, the converse implications do not hold. Thus linear logic preserves more
structure regarding how operators are nested, as required to preserve the sub-
games of an extensive-form game explained in the previous section.

We now define a linear logic semantics by using the following embedding of
disjunctive attack trees as propositions in additive linear logic.

�t � u� = �t� ⊕ �u� �t � u� = �t� & �u� �a� = a

In this semantics, specialisation is defined by the provable linear implications.
For example, by the proof above we have the following specialisation.

�network � (master � data)� � �(network � master) � (data � network)�

The Attacker Does not Always Hold the Initiative 105

Notice that the above example was already established by two-player simulation
S in the previous section.

As another example, we have the following implication.

�network � (master � data)� � �network � master � data�

This implication, demonstrating a specialisation between attack trees, is verified
by the following proof in the sequent calculus.

� network, network
axiom

� network, network ⊕ (master ⊕ data)
⊕

� master,master
axiom

� master,master ⊕ data
⊕

� master ⊕ data,master ⊕ data
⊕

� master ⊕ data, network ⊕ (master ⊕ data)
⊕

� master ⊕ data, network ⊕ (master ⊕ data)
⊕

� network &
(
master ⊕ data

)
, network ⊕ (master ⊕ data)

&

The above proof also corresponds to a two-player simulation presented previ-
ously.

Logically speaking, the following theorem is a soundness and complete-
ness result, checking, for any disjunctive attack tree, there is a correspondence
between provable implications and two-player simulations.

Theorem 1. Given disjunctive attack trees t and u, � �t� � �u� if and only if
t � u.

The above theorem follows from the soundness and completeness of an estab-
lished game semantics for ALL [16]. Two-player simulation is simply a reformu-
lation of ALL games directly on attack trees. The proof involves a more refined
but equivalent multi-focussed [4,13] proof system for ALL, from which strategies
are extracted.

Recall that two-player simulation preserves optimal strategies in all sub-
games. The following proposition follows, since the distributive lattice semantics
preserves the optimal strategy for the main game tree, which is obviously also a
sub-game.

Proposition 1. Given disjunctive attack trees t and u, if t � u then t � u.

As demonstrated previously using Figs. 3 and 5, the distributive semantics does
not preserve sub-optimal strategies, hence the converse does not hold.

106 R. Horne et al.

4 Related and Future Work

We highlight related work in two directions, both connecting games and attack
trees.

Related Work on Multiplicative-Additive Games and Game Semantics. Connec-
tions between dialogue games and logic are as old as the study of logic itself. For
linear logic, the pioneering work on games semantics, due to Blass [10], suffered
from compositionality issues that were fixed for the multiplicative fragment [1].
For MALL, the first satisfactory model proposed is based on a “truly concur-
rent” game semantics [3] where both players may simultaneously be active in
different parts of the arena in which the game is played. Game models for an
“intuitionistic” restriction of MALL have been developed [32] based on the idea of
focussing. Focussing [4], exploits the fact that during proof search, half the rules
are “invertible” meaning there is no need to backtrack once a decision is made.
The two-player simulations in this work are based on a “neutral” approach to
game semantics [16] for MALL based on multi-focussing [13], which disposed of
the “intuitionistic” restriction. We have recreated this game semantics directly
over attack trees, leading to a more direct but, in the case of conjunctive refine-
ment, less symmetric definition.

Previous work on specialisation [25] of attack trees with sequential refine-
ment [27] employs an extension of linear logic, called MAV [24], modelling sequen-
tiality using a non-commutative operator. Since MAV extends MALL, external
refinement and sequential refinement can co-exists in MAV. Defining a game
semantics for MAV however remains an open problem. Game semantics, distinct
from MALL games, have been applied to other security problems [2,15,18]

Related Work on Game Theory Applied to Attack Trees. Models capturing a
game-strategic interaction between the attacker and the defender in attack trees
have been noted previously. In [29], for instance, a relation between the proposi-
tional semantics of attack-defence trees and two player, binary, zero-sum games
has been established. It shows that the two models are equivalent, however this
result only applies to the problem of the satisfiability of a security scenario.
In [23], Hermanns et al. lift the zero-sum assumption and consider three-valued
logic (undecided, won by the attacker, won by the defender) to analyse the secu-
rity scenarios using attack-defence diagrams. Attack-defence diagrams represent
a game between an attacker and a defender competing with each other to swing
the game from ‘undecided’ to ‘won’ by one of them. These diagrams however,
have much richer structure than ADTrees – they are directed graphs handling
cyclic behaviours, and capture quantitative information as well as dependencies
between actions.

Several other game-based approaches to analysing security scenarios mod-
elled by attack trees. In [6], ADTrees are transformed into stochastic two-player
game and probabilistic model checking techniques are used to answer questions
on the probability of successful attacks, with respect to various constraints, such
as time. Model checking, and more precisely timed automata and the Uppaal

The Attacker Does not Always Hold the Initiative 107

tool, has also been used for the analysis of ADTrees [19]. The particularity of
this framework is that it assumes that the defender acts only once. At the very
beginning of the scenario, he selects a set of possible countermeasures to be
implemented and the objective of the analysis is to find the most optimal strat-
egy (from the quantitative perspective) of the attacker in this fixed setting. Yet
another approach based on two-player Stackelberg stochastic games has also
been proposed [37]. Their analysis is based on converting attack-response tree
to security games, in order to evaluate the effectiveness of intrusion tolerance
engines.

Future work will illustrate the subtitles of models combining external refine-
ment and conjunctive refinement. Future work also includes reconciling the
semantics in the current paper with the above probabilistic approaches to
games, with the objective of defining a notion of specialisation that preserves
“mixed” strategies and probabilistic attribute domains. Probabilities can also be
approached from the perspective of logic and game semantics [14].

5 Conclusion

The contribution of this paper is a minimal methodology for analysing the impact
of a pro-active security policy where some choices are external to the attacker.
External choices are modelled by annotating some disjunctive refinements in
an attack tree with a box �. The methodology is made precise by developing
two semantics, formalising the key observation that breaking the asymmetry in
attack scenarios exposes a game between moves by an attacker and its environ-
ment.

This paper highlights advantages particular to the semantics defined by an
embedding in MALL. The semantics based on ALL, Fig. 6, admits a decidable spe-
cialisation preorder for comparing trees not necessarily equivalent, with O(mn)
time-complexity [22], where m and n are the sizes of the two trees being com-
pared. The specialisation preorder can be characterised (Theorem 1) by a game
semantics (Definition 4) unfolding the extensive-form game underlying an attack
tree, such that all strategies are preserved. Specialisation respects (Proposition 1)
a more obvious semantics based on distributive lattices (Definition 2), preserv-
ing optimal strategies only. Recall that, without a semantics, attack trees can be
interpreted differently by tools, possibly unpredictably affecting the quantitative
analysis of attacks.

Acknowledgment. Horne and Tiu receive support from MOE Tier 2 grant
MOE2014-T2-2-076 and the National Research Foundation Singapore under its
National Cybersecurity R&D Program (Award No. NRF2014NCR-NCR001-30). Mauw
received funding from the Fonds National de la Recherche Luxembourg, grant
C11/IS/1183245 (ADT2P), and the European Commissions Seventh Framework Pro-
gramme (FP7/2007–2013) under grant agreement number 318003 (TREsPASS).

108 R. Horne et al.

References

1. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative
linear logic. J. Symbolic Logic 59(2), 543–574 (1994). https://doi.org/10.2307/
2275407

2. Abramsky, S., Jagadeesan, R.: Game semantics for access control. In: Proceedings
of the 25th Conference on Mathematical Foundations of Programming Semantics
(MFPS 2009) Electronic Notes in Theoretical Computer Science, vol. 249, pp.
135–156 (2009). https://doi.org/10.1016/j.entcs.2009.07.088

3. Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: 14th
Annual IEEE Symposium on Logic in Computer Science LICS, Trento, Italy, 2–5
July 1999, pp. 431–442. IEEE Computer Society (1999). https://doi.org/10.1109/
LICS.1999.782638

4. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

5. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7 6

6. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: 2016 IEEE 29th Computer Security Foundations Sym-
posium (CSF), pp. 105–119. IEEE Computer Society (2016). https://doi.org/10.
1109/CSF.2016.15

7. Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 83–102.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 7

8. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937). https://doi.org/
10.1215/S0012-7094-37-00334-X

9. Bistarelli, S., Fioravanti, F., Peretti, P.: Defense trees for economic evaluation of
security investments. In: First International Conference on Availability, Reliability
and Security (ARES 2006), pp. 416–423. IEEE Computer Society (2006). https://
doi.org/10.1109/ARES.2006.46

10. Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1), 183–220
(1992). https://doi.org/10.1016/0168-0072(92)90073-9

11. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984). https://doi.org/10.1145/828.833

12. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice
of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS
2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). https://doi.org/
10.1007/11962977 19

13. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing.
In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol.
273, pp. 383–396. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-
387-09680-3 26

14. Danos, V., Harmer, R.S.: Probabilistic game semantics. ACM Trans. Comput.
Logic (TOCL) 3(3), 359–382 (2002). https://doi.org/10.1145/507382.507385

15. Debbabi, M., Saleh, M.: Game semantics model for security protocols. In: Lau,
K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 125–140. Springer,
Heidelberg (2005). https://doi.org/10.1007/11576280 10

16. Delande, O., Miller, D., Saurin, A.: Proof and refutation in MALL as a game. Ann.
Pure Appl. Logic 161(5), 654–672 (2010). https://doi.org/10.1016/j.apal.2009.07.
017

https://doi.org/10.2307/2275407
https://doi.org/10.2307/2275407
https://doi.org/10.1016/j.entcs.2009.07.088
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1007/978-3-662-46666-7_6
https://doi.org/10.1109/CSF.2016.15
https://doi.org/10.1109/CSF.2016.15
https://doi.org/10.1007/978-3-319-66402-6_7
https://doi.org/10.1215/S0012-7094-37-00334-X
https://doi.org/10.1215/S0012-7094-37-00334-X
https://doi.org/10.1109/ARES.2006.46
https://doi.org/10.1109/ARES.2006.46
https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1145/828.833
https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/11962977_19
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1145/507382.507385
https://doi.org/10.1007/11576280_10
https://doi.org/10.1016/j.apal.2009.07.017
https://doi.org/10.1016/j.apal.2009.07.017

The Attacker Does not Always Hold the Initiative 109

17. Deswarte, Y., Blain, L., Fabre, J.C.: Intrusion tolerance in distributed computing
systems. In: Proceedings of 1991 IEEE Computer Society Symposium on Research
in Security and Privacy, pp. 110–121, May 1991. https://doi.org/10.1109/RISP.
1991.130780

18. Dimovski, A.S.: Ensuring secure non-interference of programs by game semantics.
In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp. 81–96. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11851-2 6

19. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen,
D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M.,
Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44878-7 3

20. Gadyatskaya, O., Jhawar, R., Mauw, S., Trujillo-Rasua, R., Willemse, T.A.C.:
Refinement-aware generation of attack trees. In: Livraga, G., Mitchell, C. (eds.)
STM 2017. LNCS, vol. 10547, pp. 164–179. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68063-7 11

21. Girard, J.-Y.: Linear logic. Theoret. comput. Sci. 50(1), 1–101 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

22. Heijltjes, W., Hughes, D.J.: Complexity bounds for sum-product logic via additive
proof nets and petri nets. In: 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp. 80–91. IEEE
Computer Society (2015). https://doi.org/10.1109/LICS.2015.18

23. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp.
163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-
0 9

24. Horne, R.: The consistency and complexity of multiplicative additive system vir-
tual. Sci. Ann. Comput. Sci. 25(2), 245 (2015). https://doi.org/10.7561/SACS.
2015.2.245

25. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on
linear logic. Fund. Inform. 153(1–2), 57–86 (2017). https://doi.org/10.3233/FI-
2017-1531

26. Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Wang, X.S.: Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats, vol. 54. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-1-4614-0977-9

27. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

28. Jiang, R., Luo, J., Wang, X.: An attack tree based risk assessment for location
privacy in wireless sensor networks. In: WiCOM, pp. 1–4 (2012). https://doi.org/
10.1109/WiCOM.2012.6478402

29. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–defense trees and
two-player binary zero-sum extensive form games are equivalent. In: Alpcan, T.,
Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 245–256.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17197-0 17

30. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic
Comput. 24(1), 55–87 (2014). https://doi.org/10.1093/logcom/exs029

31. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. C. S. Rev. 13–14, 1–38 (2014)

32. Laurent, O.: Polarized games. Ann. Pure Appl. Logic 130(1–3), 79–123 (2004).
https://doi.org/10.1016/j.apal.2004.04.006

https://doi.org/10.1109/RISP.1991.130780
https://doi.org/10.1109/RISP.1991.130780
https://doi.org/10.1007/978-3-319-11851-2_6
https://doi.org/10.1007/978-3-319-44878-7_3
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1007/978-3-319-68063-7_11
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1109/LICS.2015.18
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.3233/FI-2017-1531
https://doi.org/10.3233/FI-2017-1531
https://doi.org/10.1007/978-1-4614-0977-9
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1109/WiCOM.2012.6478402
https://doi.org/10.1109/WiCOM.2012.6478402
https://doi.org/10.1007/978-3-642-17197-0_17
https://doi.org/10.1093/logcom/exs029
https://doi.org/10.1016/j.apal.2004.04.006

110 R. Horne et al.

33. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

34. Ray, I., Poolsapassit, N.: Using attack trees to identify malicious attacks from
authorized insiders. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 231–246. Springer, Heidelberg (2005).
https://doi.org/10.1007/11555827 14

35. Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees: towards unifying
the constructs of attack and defense trees. Secur. Commun. Netw. 5(8), 929–943
(2012). https://doi.org/10.1002/sec.299

36. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
37. Zonouz, S.A., Khurana, H., Sanders, W.H., Yardley, T.M.: RRE: a game-theoretic

intrusion response and recovery engine. IEEE Trans. Parallel Distrib. Syst. 25(2),
395–406 (2014). https://doi.org/10.1109/TPDS.2013.211

https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11555827_14
https://doi.org/10.1002/sec.299
https://doi.org/10.1109/TPDS.2013.211

A State Machine System for Insider
Threat Detection

Haozhe Zhang(B), Ioannis Agrafiotis, Arnau Erola, Sadie Creese,
and Michael Goldsmith

Department of Computer Science, University of Oxford, Oxford, UK
{haozhe.zhang,ioannis.agrafiotis,arnau.erola,
sadie.creese,michael.goldsmith}@cs.ox.ac.uk

Abstract. The risk from insider threats is rising significantly, yet
the majority of organizations are ill-prepared to detect and mitigate
them. Research has focused on providing rule-based detection systems
or anomaly detection tools which use features indicative of malicious
insider activity. In this paper we propose a system complimentary to the
aforementioned approaches. Based on theoretical advances in describ-
ing attack patterns for insider activity, we design and validate a state-
machine system that can effectively combine policies from rule-based
systems and alerts from anomaly detection systems to create attack pat-
terns that insiders follow to execute an attack. We validate the system
in terms of effectiveness and scalability by applying it on ten synthetic
scenarios. Our results show that the proposed system allows analysts to
craft novel attack patterns and detect insider activity while requiring
minimum computational time and memory.

Keywords: Insider threat · Tripwires · Attack patterns

1 Introduction

There is growing evidence suggesting that organisations face significant risks
from insider threats. According to the Breach Level Index 40% of the publicly
reported data breaches were attributed to insiders who either maliciously or acci-
dentally caused harm to their organisations [8]. In a similar vein, a survey con-
ducted by ISACA [23] demonstrated that roughly 60% of the cyber-attacks which
organisations experienced in 2014 were attributed to insiders threats. Beside the
increase in the number of insider attacks, the inner knowledge and legitimate
access to the systems, security practices and sensitive company data that insid-
ers possess render these types of attacks the most costly [3,20,22], with reports
suggesting that average damage can exceeded seven million dollars [14].

The dire implications, the increase in frequency, as well as challenges in
detecting and mitigating these threats have attracted the interest of the research
community over the last 20 years. Research has focused on conceptualising
the problem of insider threat [10,17,19] and proposing anomaly detection sys-
tems [11,12,15,22]. On the other hand, large organisations and stakeholders
c© Springer Nature Switzerland AG 2019
G. Cybenko et al. (Eds.): GraMSec 2018, LNCS 11086, pp. 111–129, 2019.
https://doi.org/10.1007/978-3-030-15465-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15465-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-15465-3_7

112 H. Zhang et al.

involved in the defence and intelligence community have tried to mitigate the
risk of insider threat by training investigators to determine when employees may
become a risk and by forming transparent security policies [1,26].

In this paper we propose a novel system which complements current
approaches in insider threat detection and combines information from anomaly
detection tools and security policies from rule-based systems. More specifically,
our system provides a visual interface to security analysts that enables them
to design and detect attack pattens which insiders follow. It utilises knowledge
from theoretical works describing behaviours that may indicate insider activ-
ity [3], parses different types of logs to create attack graphs, provides alerts
when an attack pattern is complete and outputs statistical data and visualisa-
tions that describe employees’ activity on real time. We validate our system in
ten synthetic scenarios and report our results regarding the effectiveness and
efficiency of the detection system as well as its scalability.

In what follows, Sect. 2 reviews the literature on insider threat with focus on
theoretical advances and implementions of anomaly detection system and Sect. 3
describes the system architecture and the methodology we followed to capture
the requirements for our system. Section 4 presents the synthetic scenarios and
discusses our results, while Sect. 5 concludes the paper.

2 Literature Review

Literature on insider threat can be dichotomised in theoretical works aiming to
understand behavioural factors, identify attack patterns and create conceptual
models, and in practical research where a variety of anomaly detection tools
with different capabilities are proposed. Carnegie Mellon University were the
pioneers in examining human aspects of insider threat. In the CERT project,
they applied System Dynamics to examine a series of insider threat case stud-
ies [10,17]. Their proposed framework comprises four broad categories of insider
cases, namely Information Technology (IT) Sabotage, Intellectual Property (IP)
theft, Data and Financial Fraud, and Espionage. For each category, further
behavioural aspects are identified and critical paths which insiders tend to fol-
low are revealed. Their comprehensive work led to a series of “Management and
Education of the Risk of Insider Threat” (MERIT) studies where emphasis was
placed on understanding how qualitative characteristics such as disgruntlement
and dissatisfaction can be early indicators of insider threat activity [16].

Sarkar [24] provides a different perspective by distinguishing two classes of
insiders, namely malicious and accidental. He identifies capability, motivation
and opportunity as the three key factors which prompt insiders to act mali-
ciously while human mistakes, errors, carelessness and bad design of the systems
were the main characteristics of accidental insiders. In a similar vein, Nurse et
al. examined a number of insider threat cases and developed a framework which
describes not only technical or behavioural indicators but focuses on the motiva-
tion of the attackers as well [19]. Agrafiotis et al. analysed more than 100 cases of
insider activity, identified unique atomic steps which insiders follow and recon-
structed all the cases based on these steps. They examined the common steps

A State Machine System for Insider Threat Detection 113

in these cases and effectively revealed more than ten different attack patterns
which insiders followed to execute their attack [3]. These attack patterns along
with publicly available security policies are formalised in [1], where a grammar
for insider threat detection is proposed.

Another strand of literature emphasises on designing practical solutions to
detect insider threats. Such works utilise different machine learning techniques to
create profiles of employees based on their digital activity and try to distinguish
abnormal actions [5,15,18]. Parveen et al. [21] focus on streaming data and use
unsupervised learning techniques to identify changes in employees behaviour over
time, a concept which they coined as “concept-drift”. Chen et al. [11] proposed a
user-relationship network for identifying collaborative insider attacks and intro-
duced an unsupervised learning framework, the Community-based Anomaly
Detection System (CADS). The underlying algorithm is a combination of kNN
and PCA. Buford et al. [9] examined the concept of situation awareness in the
automatic insider threat detection by designing an agent-based approach able
to simulate insider behaviour and potentially detect changes in behaviour pat-
terns Brdiczka et al. [7], explored the use of psychological profiling to reduce
the number of false positive alerts in detection systems. Another interesting
approach used Bayesian networks to infer the behavioural attributes of users
based on sentiment analysis on text and social network analysis [4]. Lastly, [27]
presents an unsupervised anomaly detection method using an ensemble of indi-
vidual detectors to identify unknown attacks. Authors assert they can achieve or
even improve the same performance of detectors that tackle specific scenarios.

Our review of the literature suggests that there is no unified effort to bring
together the conceptual models which consider human aspects, the rule-based
models which capture security-policy violations and the anomaly detection tools.
A system proposed in [2] considers all these elements but has validated only the
anomaly detection engine. In this paper we address this gap by designing a sys-
tem which is able to capture information for attack patterns as presented in [3]
using as a framework the grammar presented in [1] which can formalise policy
violations and attack patterns which include alerts from anomaly detection sys-
tems. By effectively filling this gap, we enable analysts to design and test known
or novel attack patterns, obtain a holistic perspective of employees’ behaviours
in real time and prevent insider attacks before being utilised.

3 System Architecture and Implementation

The detection system proposed in this paper is a state machine model and follows
the tripwire grammar defined in [1], which is a formal language to clearly and
unambiguously describe policy violations and attack patterns. Due to the fact
that these violations can be triggered by a single system log and that no previous
knowledge of the users profile is required, they are coined as tripwires.

An attack pattern P , as the Fig. 1 shows, is a directed acyclic graph contain-
ing a finite number of states Σ and transitions Φ. Each transition is directed
from one state to another, in such a way that there does not exist a consistently-
directed sequence of transitions that starts from an arbitrary state σ and loops

114 H. Zhang et al.

back to σ again. The states reflect the status of progress of P for a specific user
and the transitions represent the attack steps that can be chosen from P . We
use S ∈ P and φ ∈ P to represent that the state S and the transition φ are in
the pattern P .

Figure 1 shows an example of an attack pattern P describing an IP theft. The
attack pattern captures the sequence of observed behaviour (observed behaviour
is identified by parsing the necessary logs that organisations keep to monitor
digital activity i.e., file logs, web logs, system logs within a specific time frame-
work) and once complete (the S4 state is reached) an alert is triggered. Formally,
the attack pattern P is defined by the states ΣP = {S0, S1, S2, S3, S4} and tran-
sitions ΦP = {φ0, φ1, φ2, φ3, φ4} where Si or φi represents a state or a transition
with id i and belongs to attack pattern P . The Sfrom, Sto, trigger and time for
any transition is defined below:

φx : Sx
<UserN,ActionY >,time−−−−−−−−−−−−−−−−→ Sx + 1,

A key aspect of the transition that challenges the state machine model is
the time within which a specific transition should be observed. The rationale
behind being that an attack pattern must be executed within a specific time
framework. It would be of no interest for example to observe a user accessing

Fig. 1. The attacking progress of users u1 and u2

A State Machine System for Insider Threat Detection 115

sensitive files and correlate this action to an email that is sent a month after.
Once a completed attack is detected by the system, an alert is raised which
comprises 〈user, time, trace〉; where time indicates when the attack happened
and the trace is the sequence of attack steps committed by the user to complete
the attack.

The proposed system allows analysts to create and edit attack patterns using
an interface. It further enables analysts to match the organisation logs and alerts
from detection systems to behaviours of interest as well as to monitor when
there are accomplished by employees. The system parses the logs and tracks
progress of all employees with respect to the created attack patterns in real-
time and provides detailed statistics of the attacks through these interfaces. As
Fig. 2 shows, our detection system comprises two parts: the front-end and the
back-end. The front-end refers to the presentation layer focusing on providing
user-friendly interfaces, while the back-end refers to the data access layer which
handles the logic of the detection system and storage of data.

JavaScript is chosen as the primary programming language due to its highly
increasing popularity for web based application developing. The community
of JavaScript provides a powerful open-source libraries for building interfaces
including D3.js [6] which is for creating dynamic, interactive data visualisations
in browsers and React.js [13] which is for handling efficient updates of interfaces.
The D3.js is applied for the construction of statistical charts in the interfaces,
and the React.js is useful for the real-time update of the model monitor. The

Fig. 2. The structure of state machine system

116 H. Zhang et al.

back end of detection system is developed using Node.js [25] which is an open
source JavaScript run-time environment for executing JavaScript code server-
side, while the front end interfaces are developed in HTML, CSS and JavaScript
which can be executed by browsers.

We have designed the system with a modular approach meaning that the
interfaces and subsystems are independent: they are encapsulated and have dif-
ferent duties. This was motivated by the fact that it is easier to modify the
system to adapt to different datasets and attack patterns. We can modify or
turn off one sub-system without changing others to meet different requirements.
For example, when connecting a new organisation with a different log format, the
system requires different parsing functions to translate the logs to the formatted
inputs that can be recognised by the timed state map. The timed state map com-
ponent maintains progress for attack patterns for every user. It is the subsystem
server’s duty to parse the logs, so we need to replace the old server with a new
one which contains the specific parsing functions for the new organisation.

3.1 Main Components of the System

The system comprises three sub-models which are state-model, transition-model
and history. The state-model and transition-model are defined as set of tuples
which are named state tuples and transition tuples respectively, or s-tuple and
t-tuple for short. The history comprises different types of tuples recording the
history of processing raw logs. Storing every possible instantiation of an attack
pattern for every employee is not feasible, as will lead to a state explosion. We
create a single instance for every attack pattern per user and we aggregate in
their graph all the necessary information and present the most advanced state.
All actions are recorded and once the time frame for observing a transition has
elapsed, the system is able to back track to the second most advanced state based
on the historical data. This is achieved with the use of s-tuples and t-tuples.

More specifically, an s-tuple is the record indicating the state a user is at and
it contains the components user, state and time; where the time indicates the
time the user reaches this state. A t-tuple is the record of a transition commenced
by a user and it contains the components user, transition and time. All users are
in the initial states for all the attack patterns by default. A transition φ can be
triggered by a user when the φ.Sfrom has already been reached by the user, and
the user is carrying out the φ.trigger and satisfies the φ.time. We name the set
of states reached by a user the territory of the user and users can expand their
territories on the attack patterns by triggering attack steps leading from the
states in their territory to unoccupied states. Figure 1 shows the attack progress
of users u1 and u2 with respect to the attack pattern P . The territory of u1 is
{S0, S1, S2, S3, S4} and the territory of u2 is {S0, S1}.

The trace of an s-tuple s is defined as the sequence of history states the user
s.user has reached from the initial state S0 to the s.state. For example, the trace
of tuple 〈u1, S4, time〉 is [S0, S1, S2, S3, S4] and the trace of tuple 〈u2, S1, time〉
is [S0, S1]. We store the progress of a user in an attack pattern by keeping only

A State Machine System for Insider Threat Detection 117

one record for a state or transition in the attack pattern tree. Formally, this is
ensured by the two model-rules:

1. at the certain time, a single state can be reached by a single user at most
one time, i.e. there cannot be two s-tuples s1 and s2 such that s1.user =
s2.user ∧ s1.state = s2.state.

2. at the certain time, a single transition can be commenced by a single user at
most one time, i.e. there cannot be two t-tuples t1 and t2 such that t1.user =
t2.user ∧ t1.Sfrom = t2.Sfrom ∧ t1.Sto = t2.Sto.

The history is used to keep track of the statistical information generated during
the processing. This data is useful for the evaluation of the attack patterns and
provides useful insights on common routes that attackers follow, allowing an
analyst to act before the final steps of an attack are executed. The history of
logs processed by the detection is shown in the Processing Log panel on the top
left corner in Fig. 3.

To update the model, every time the system parses a log it matches it to the
territory of the user which is all the states the user is currently in. Then, the
system calculates all the transitions that the user can trigger based on the
current state; this set of transitions is named candidate transitions: Φcandidate.
Since each transition refers to only one attack step, we only need to consider the
transitions extended from the territory, which means the transitions directed
from the states occupied by the user, i.e. Φcandidate = {φ | φ ∈ Φ, φ.Sfrom ∈
Suser}.

Next, since the calculation of candidate transitions does not consider the
triggering events and timeout constraints, we know Φtarget ⊆ Φcandidate. So, we
need to filter the Φcandidate by applying the trigger and timeout constraints.
Also, if a transition expires, we need to create a timeout event which represents
a transition from the current state to S0.

Once the set of target transitions is determined, we need to update the state-
model, transition-model and history accordingly. For each timeout event φtimeout

∈ Φtarget, we remove the s-tuple with value 〈Tuple.user, φtimeout.Sfrom〉 from the
state-model which indicates that the user is no longer at the state and we add
or update the timeout-history tuple with value 〈Tuple.user, φtimeout, times〉: if
the tuple already exists, we set the initial times to one, else we increase times by
one. Next, for each transition φ ∈ Φtarget, we add an s-tuple 〈Tuple.user, φ.Sto,
Tuple.time〉 and a t-tuple 〈Tuple.user, φ.Sfrom, φ.Sto, Tuple.time〉 to the state-
model and transition-model. Similar to the timeout transition, we add or update
the transition-history tuple with value 〈Tuple.user, φ, times〉. According to the
two model-rules introduced above, if there are s-tuples and t-tuples with the
same Tuple.user, φ.Sfrom and φ.Sto values, we just update the time of the tuples
without adding a new one. So, the model of the state map keeps only the latest
behaviours of the users. Finally, when the output state is reached, i.e. φSto

∈ Σf ,
an alert-history tuple with value 〈Tuple.user, trace, Tuple.time〉 will be created
and add to the history.

118 H. Zhang et al.

During the calculation of target transitions, all transitions should be com-
menced once the input raw-data tuple are parsed. However, there is a spe-
cial case that there can be multiple transitions Φduplicate moving to the same
state, i.e. Φduplicate ⊆ Φtarget, s.t.∀φi, φj ∈ Φduplicate, φi.Sto = φj .Sto. For this
case, we remove other transitions and only leave a transition φlatest which is
directed from the state with the latest reaching time, i.e. φlatest ∈ {∀φi ∈
Φduplicate, φlatest.Sfrom.time ≥ φi.Sfrom.time}. Note the φlatest is selected ran-
domly from the transitions directed from the latest occupied state and this
ensures there will be at most one transition directed to a state at one time.

Removing some of the transitions in Φduplicate will change the resulting t-
tuples but the result of s-tuples would not be affected because the φlatest who
has the same target state with removed transitions is persistent: the target state
would be reached anyway, which means the upcoming updates would not be
affected. Commencing only the φlatest ensures the trace of an s-tuple is deter-
ministic (can be represented by an array) and trace follows the latest behaviours.

Visual interfaces are the GUIs developed to allow researchers to access and
manipulate the data of the state map, as well as to visualise statistics about
attacks. Several visual interfaces with different functions are developed in this
project.

The first visualisation of the interface is the progress view, which reflects the
real-time progress of attacks for a selected attack pattern. Consider that the
attack pattern pattern2 is selected, as Fig. 3 shows; the attack pattern is shown
by a DAG on the right of the interface. The s-tuples are reflected by labelling
the users beside the states that they belong to. The size of a state S in the DAG
reflects the number of users at S, i.e. a larger state means there are more users
at S. The history of logs processed by the detection is shown in the Processing
Log panel on the top left corner.

As Fig. 4 shows, the data for transitions are grouped by their transition id
and presented by tables where vertical columns depict the number of times that
the user commenced a transition. In addition, the interfaces provide a bar chart
showing the comparison of frequencies of these transitions. The horizontal axis
shows the transitions and different colours with different proportions in a bar
refer to the number of times that the user commenced this transition. A DAG of
a selected attack pattern is also provided, which reflects the frequencies of these
transitions: the transitions with higher frequency have thicker links in the DAG.
These views can reflect on design problems of the attack patterns, such as the
interval time of a transition is too short or too long.

Alert view presents statistics on alerts that are flagged. With a similar interface
as the transition view, the alerts are grouped by their traces and are represented
in tables with columns named user and time as shown in Fig. 5a. The interface
also provides a bar chart indicating the number of these alerts. In addition, by
comparing the number and composition of different groups of alerts, analysts
can get statistical results such as “which trace of a given attack pattern is more
frequent” and “which employees are more likely to commit a given attack.”

A State Machine System for Insider Threat Detection 119

Fig. 3. The progress view of a model monitor

Pattern editor enables analysts to design and implement attack patterns in
the state map, i.e. creating and modifying attack patterns through the buttons
and input boxes without coding. The interface enables analysts to input the
values for the attributes of ΣP and ΦP . These attributes are based on the data
available and the system supports a predetermined number of attributes. The
data that are currently supported are raw data from logs (file, web, email, login)
and alerts from the CITD anomaly detection system. These alerts can be either
unusual deviations from a normal behaviour or policy violations [2]. When special
attributes are required it is straightforward to manually denote these into the
parser module which will then update the pattern editor. Further details can be
found in Appendix 1.C.

Log importer sends logs to the server so it can be considered as the organisation
part shown in Fig. 2. As Fig. 5b shows, it allows analysts to edit and send test
logs to the system. The server of the system will consume the logs and start
processing them.

4 System Validation

We validate our system in terms of efficiency and scalability on ten synthetic sce-
narios. These scenarios were designed as part of the Corporate Insider Threat

120 H. Zhang et al.

Fig. 4. The transition view of the model monitor (Color figure online)

(a) The table in the alert view (b) Log importer

Fig. 5. The table in the alert view & log importer

Detection (CITD) project, which was sponsored by the UK National Cyber Secu-
rity Programme in conjunction with the Centre for the Protection of National
Infrastructure. The ground truth of these scenarios was made available to the
authors only after all the results for all the scenarios was generated.

A State Machine System for Insider Threat Detection 121

Each scenario contained login, file, website, email and usb activity logs for
a period of one year (01/01/2013–31/12/2013), the number of employees varied
from 12 to 300 and captured cases from IP theft to sabotage and financial gains.
To evaluate the detection system, the attack patterns presented in [3] were imple-
mented using the attack pattern editor interface. The system returned alerts on
employees, indicating the paths of the attack which the employees followed and
the time when the last step occurred. More details about the dataset for each
scenario can be found in Appendix 1.A. The specific attack patterns with the
time frameworks can be found in Appendix 1.B.

4.1 Efficiency of the System

Due to space limitations, we will present in detail the results and visual outputs
from one scenario and we will discuss the overall effectiveness of the tool on the
rest of the scenarios in Sect. 5. The chosen scenario describes a disgruntled soft-
ware developer who had recently being offered a position in a rival company. The
developer had then used their company email address to send source code files
to their own personal webmail address. There are particular folders of interest
in the file log data which start from the path /svn or /development. Only one
attack pattern was triggered when we run the system that pertained to IP data
exfiltration via email and indicated the perpetrator of the attack. The single and
correct output alert in this scenario was nricha1989, 19/12/2013 19 : 25 : 03,
S0−> S1−> S2−> S3−> S5−> S6.

Statistical data on transitions of all employees is shown in Fig. 6. The data
of transitions on the left side of the image enable analysts to select a specific
transition to identify its characteristics and the number of times this transition
occurred. The bar chart on the right shows on the x axis the transitions and
on y axis the number of times this transition occurred. The bars are coloured
differently and each colour represents different employees in the organisation.
Analysts can hoover over a bar to elicit further details. The transparency of the
colour is proportional to the number of times this employee has triggered the
transition.

From Fig. 6 we can see that the vast majority (over 95%) of transitions refer
to the first two steps of the attack pattern which are login and access to sensi-
tive files. Due to the fact that the number of transitions for the next states is
rather small, the colour indicating their frequency is not visible in the figure but
the number be retrieved from the statistical data. It is expected to observe an
overwhelming number of transitions for the first two steps and an equally over-
whelming number of time out events in Fig. 7 for these transitions. Employees
login to the organisation’s system to access files as part of their daily routine.
They normally need to access multiple files, so the “sensitive file accessing” steps
are more frequent than the “login” steps. The frequencies of the next steps in
the progression of the attack pattern are much lower because the CITD system
generated a small number of cmss alerts. The number of transitions to the next
step is reduced to one. Only the insider cmss accessed an unusual volume of

122 H. Zhang et al.

Fig. 6. The transition view of the scenario 1 (Color figure online)

files and sent emails with big attachments to their personal email address. This
behaviour is denoted by the transitions cmss.

As Fig. 7 shows, setting appropriate time frameworks for the transitions
between states is of paramount importance. In our case, most of the transitions
after the first two steps expired because the employees did not proceed further.
The timeout events ensured that reasonably short intervals, e.g. in within a
day, are required for an attack to be accomplished. Our results here highlight
how valuable a state machine system can be in insider threat detection. An
anomaly detection system would only provide indicators of abnormal behaviour
and would probably increase the number of false positive alerts. Furthermore,
these systems tend to be oblivious to the sequence with which certain actions
take place. When alerts from such systems are combined with alerts from rule-
based tools then behavioural aspects of an attack can be inferred as shown in

A State Machine System for Insider Threat Detection 123

our example. Furthermore, it is possible for an analyst to intervene before the
final step of an attack is executed and mitigate the harms for an organisation.

Fig. 7. The timeout view of the scenario 1 (Color figure online)

Similar conclusions can be drawn for all the other scenarios, where our sys-
tem has generated no false positives but failed to identify the perpetrator in
three scenarios. In all cases the frequency of the steps decrease exponentially the
further we proceed in the attack pattern. This is an indication that the attack
patterns presented in [3] effectively indicate insider activity. Furthermore, our
system can complement an anomaly detections system as well as a rule-based
tool and decrease the number of false positive alerts generated by these systems.
On the other hand, the lack of an alert for three scenarios reveals that there is
further work to be conducted in the design of attack patterns. The attacks in
for the scenarios which the system did not generate an alert were subtle and the
perpetrators were amongst the users who reached the higher states of certain
attack patterns. We believe that the statistical data provided by our system can
enable analysts to refine and tailor attack patterns to specific organisations. The
key success criterion being that the more advanced the state is the less frequent
its transitions should be.

4.2 Scalability of the System

Focusing on memory usage, the three components which are stored in memory
are the state-model, the transition-model and the history. The sizes of the state

124 H. Zhang et al.

and transition models are O(|S|) and O(|T |) respectively, where |S| and |T | are
the number of states and transitions in the attack patterns. The complexity of the
history is the sum of transition-history, alert-history and timeout-history. The
size required by the alert-history is based on the number of logs. However, since
the number of alerts raised by the detection system is fairly small, the memory
required by the alert-history can be omitted. So, the space complexity of the
history is |transition − history| + |timeout − history| = O(2|T |). As the model
maintains a behaviour profile for each user, by summing up the complexities
calculated above, the space complexity of the detection system is O(|U |(3|T | +
|S|)), where |U | is the number of employees in the organisation.

The rather small complexity is due to the fact that the system does not create
an instantiation of an attack pattern for every initial step for every employee.
We have managed to trim the number of attack pattern instances per employee
by updating the state in the attack pattern when someone is repeating previous
steps to where he is and by treating effectively the timeout event.

The speed in computation depends on the update function which performs
two steps for each input log: (1) calculating the target transitions by selecting
the transitions satisfying the input log and (2) updating the model concerning
the target transitions. In worst case scenario, the target transitions are all the
transitions in the detection system, so the complexity of the first step is O(|T |).
The second step is the update of the model including the update of state-model,
transition-model and history. The time complexity is mainly related to the time
required to access the specific tuple in the model. Since the state-model for a
user is implemented as an array, the complexity is O(|S|). The transition-model
is implemented using a key-value pair and we can access the specific transition
using the key in O(1). Finally, to update the alert-history we add the new alert to
the object, so the complexity for the alert-history is O(1). Accessing a specific
tuple in transition-history and timeout-history is O(1), so the complexity of
updating transition-history and timeout-history are same. Therefore, the update
complexity for a log is O(|T |), and the evaluation time for a dataset is O(|T ||D|),
where |D| is the number of logs in the dataset.

The design of the system interfaces considered scalability requirements. For
the transition statistics, the records for transitions were grouped and represented
by table of records rather than listed plainly, which significantly increased the
readability of records. Also, the tool uses D3.js to implement the graphs and
charts in the interface. It represents the graphs and charts by DOM manipula-
tion. However, the performance of D3.js degrades significantly as the volume of
data increases. In stress-testing datasets with large number of employees (more
than 20000), the program ran out of memory. One solution for this is to ren-
der the graphs and charts in the back-end and present them in the browser.
This could resolve the smoothness problem and the memory issue. However, the
interactions would be disabled as the charts are static images.

A State Machine System for Insider Threat Detection 125

5 Conclusions

The topic of insider threat has attracted the interested of the research commu-
nity the last 20 years. A strand of literature has focused on proposing theoretical
frameworks to conceptualise the problem whereas a different strand has empha-
sised on proposing anomaly detection systems. Organisations, in an attempt to
mitigate risks from insider threats have developed security policies and rule-
based systems to monitor for violations of these policies. In this paper we pro-
posed a state machine system which complements all the aforementioned devel-
opments and combines data from detection systems and rule-based systems. Our
system enables analysts to design and test attack patterns, incorporate data from
anomaly detection or policy violation systems into these patterns and obtain a
holistic understanding of the actions that employees perform. We have validated
our approach on ten synthetic scenarios and by implementing the attack pat-
terns provided in [3] we were able to detect the perpetrators in seven of these
scenarios without generating false positive alerts. We have shown that our sys-
tem is scalable in terms of computational time and memory usage, since the time
complexity depends linearly on the size of the attack patterns and the memory
complexity depends linearly on the product of the number of employees and the
size of the attack patterns. Finally our system can provide real-time alerts for
better situational awareness. Moving forward we intend to improve the perfor-
mance of our system by adding a multi-threading module and deploy it on a real
organisation.

Appendix 1.A Dataset for Every Scenario

The detection system can have access to both raw data logs and alerts from
anomaly detection systems. In our evaluation, these datasets contain both the
organisation logs and the alerts generated by the CITD system which is in the
same format with the other logs. Logs in each dataset are stored as cmss files,
including

– cmss, which are the alerts generated by CITD system,
– cmss, which records the target addresses of emails sent by the users,
– cmss, which records the history of login and logout of the users,
– cmss, which contains the path of files accessed by the users,
– cmss, which records the URLs of websites accessed by the users,
– and cmss, containing the activity related to usb (inserted, removed).

This cmss data is composed by the attributes cmss, cmss, cmss and cmss
which refer to the user’s id, the time when this log is generated, the device’s id
and the behaviour of the user recorded by this log. An example of a row in the
cmss is:

tellis1985,17/05/2013 14:49:11,PC025,http://sourceforge.net

126 H. Zhang et al.

Alert logs store the alert information in cmss and the severity of this alert
in the extended attribute cmss which can be “Green”, “Yellow” and “Red” as
explained in [2]. An example of an alert data is:

{text}
dricha1967,01/01/2013 06:39:19,PC060,Out of hours login,Red

Files for the same scenario are merged and sorted according to their cmss
so we have a file for each scenario containing all the logs from oldest to newest.
In addition to the logs, the information of employees and their occupation role
duties is also provided for each dataset. This information can be further used
in building novel attack patterns or refining current ones. For example, we may
want to detect and add a step if any employee accesses sensitive files where
admin is part of a path or a name of a file.

Appendix 1.B Attack Patterns

Figure 8 shows the attack pattern which raised an alert for the scenario explained
in detail in Sect. 4. The texts next to the transitions contain the ids of the original
attack steps in [3] and brief descriptions of the implementation of the transitions.
For example, the transition from S0 to S1 in Fig. 8 refers to the attack step cmss
that insiders login to the organisations’ system using own credentials and this is
implemented by capturing the logs in login system with value cmss.

Fig. 8. The attack pattern which generated an alert in our scenario

A State Machine System for Insider Threat Detection 127

Figure 9 illustrates the trace followed by the insider (which is highlighted)
and the thickness of the arrows in the figure represents the frequency of the
transitions.

Fig. 9. The attack path which the insider followed in Scenario 1 (Color figure online)

Appendix 1.C Pattern Editor

Figure 10 presents the pattern editor interface and illustrates how analysts can
straightforwardly design novel attack patterns without the need to change the
code of the tool.

128 H. Zhang et al.

Fig. 10. The interface of the pattern editor

References

1. Agrafiotis, I., Erola, A., Goldsmith, M., Creese, S.: Formalising policies for insider-
threat detection: a tripwire grammar. J. Wirel. Mob. Netw. Ubiquit. Comput.
Dependable Appl. (JoWUA) 8(1), 26–43 (2017)

2. Agrafiotis, I., Erola, A., Happa, J., Goldsmith, M., Creese, S.: Validating an insider
threat detection system: a real scenario perspective. In: 2016 IEEE Security and
Privacy Workshops (SPW), pp. 286–295. IEEE (2016)

3. Agrafiotis, I., Nurse, J.R., Buckley, O., Legg, P., Creese, S., Goldsmith, M.: Identi-
fying attack patterns for insider threat detection. Comput. Fraud Secur. 2015(7),
9–17 (2015)

4. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Pro-
cess. 50(2), 174–188 (2002)

5. Bishop, M., et al.: Insider threat identification by process analysis. In: 2014 IEEE
Security and Privacy Workshops (SPW), pp. 251–264. IEEE (2014)

6. Bostock, M.: D3.js. Data Driven Doc. 492, 701 (2012)
7. Brdiczka, O., et al.: Proactive insider threat detection through graph learning

and psychological context. In: 2012 IEEE Symposium on Security and Privacy
Workshops (SPW), pp. 142–149. IEEE (2012)

8. Gemalto’s Breach Level Index: Data breach database and risk assessment calcula-
tor (2016). http://www.breachlevelindex.com/

9. Buford, J.F., Lewis, L., Jakobson, G.: Insider threat detection using situation-
aware MAS. In: 2008 11th International Conference on Information Fusion, pp.
1–8. IEEE (2008)

http://www.breachlevelindex.com/

A State Machine System for Insider Threat Detection 129

10. Cappelli, D.M., Moore, A.P., Trzeciak, R.F.: The CERT Guide to Insider Threats:
How to Prevent, Detect, and Respond to Information Technology Crimes (Theft,
Sabotage, Fraud). Addison-Wesley, Boston (2012)

11. Chen, Y., Malin, B.: Detection of anomalous insiders in collaborative environments
via relational analysis of access logs. In: Proceedings of the First ACM Conference
on Data and Application Security and Privacy, pp. 63–74. ACM (2011)

12. Eberle, W., Graves, J., Holder, L.: Insider threat detection using a graph-based
approach. J. Appl. Secur. Res. 6(1), 32–81 (2010)

13. Fedosejev, A.: React.js Essentials. Packt Publishing Ltd., Birmingham (2015)
14. Health Professions Education Unit United Kingdom: Ponemon cyber crime report:

it, computer and internet security (2015). http://www8.hp.com/uk/en/software-
solutions/ponemon-cyber-security-report/

15. Magklaras, G., Furnell, S.: Insider threat prediction tool: evaluating the probability
of IT misuse. Comput. Secur. 21(1), 62–73 (2001)

16. Moore, A.P., Cappelli, D., Caron, T.C., Shaw, E.D., Spooner, D., Trzeciak, R.F.:
A preliminary model of insider theft of intellectual property (2011)

17. Moore, A.P., Cappelli, D.M., Trzeciak, R.F.: The “Big Picture” of insider IT sabo-
tage across U.S. critical infrastructures. In: Stolfo, S.J., Bellovin, S.M., Keromytis,
A.D., Hershkop, S., Smith, S.W., Sinclair, S. (eds.) Insider Attack and Cyber Secu-
rity, pp. 17–52. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-
77322-3 3

18. Myers, J., Grimaila, M.R., Mills, R.F.: Towards insider threat detection using web
server logs. In: Proceedings of the 5th Annual Workshop on Cyber Security and
Information Intelligence Research: Cyber Security and Information Intelligence
Challenges and Strategies, p. 54. ACM (2009)

19. Nurse, J.R., et al.: Understanding insider threat: a framework for characterising
attacks. In: 2014 IEEE Security and Privacy Workshops (SPW), pp. 214–228. IEEE
(2014)

20. Nurse, J.R.C., et al.: A critical reflection on the threat from human insiders – its
nature, industry perceptions, and detection approaches. In: Tryfonas, T., Askoxy-
lakis, I. (eds.) HAS 2014. LNCS, vol. 8533, pp. 270–281. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07620-1 24

21. Parveen, P., Thuraisingham, B.: Unsupervised incremental sequence learning for
insider threat detection. In: 2012 IEEE International Conference on Intelligence
and Security Informatics (ISI), pp. 141–143. IEEE (2012)

22. Rashid, T., Agrafiotis, I., Nurse, J.R.: A new take on detecting insider threats:
exploring the use of hidden Markov models. In: Proceedings of the 2016 Interna-
tional Workshop on Managing Insider Security Threats, pp. 47–56. ACM (2016)

23. ISACA and RSA Conference: State of Cybersecurity: implications for 2015 (2015).
http://www.isaca.org/cyber/Documents/State-of-Cybersecurity Res Eng 0415.
pdf

24. Sarkar, K.R.: Assessing insider threats to information security using technical,
behavioural and organisational measures. Inf. Secur. Tech. Rep. 15(3), 112–133
(2010)

25. Tilkov, S., Vinoski, S.: Node.js: using Javascript to build high-performance network
programs. IEEE Internet Comput. 14(6), 80–83 (2010)

26. Upton, D.M., Creese, S.: The danger from within. Harv. Bus. Rev. 92(9), 94–101
(2014)

27. Young, W.T., Memory, A., Goldberg, H.G., Senator, T.E.: Detecting unknown
insider threat scenarios. In: 2014 IEEE Security and Privacy Workshops, pp. 277–
288, May 2014. https://doi.org/10.1109/SPW.2014.42

http://www8.hp.com/uk/en/software-solutions/ponemon-cyber-security-report/
http://www8.hp.com/uk/en/software-solutions/ponemon-cyber-security-report/
https://doi.org/10.1007/978-0-387-77322-3_3
https://doi.org/10.1007/978-0-387-77322-3_3
https://doi.org/10.1007/978-3-319-07620-1_24
http://www.isaca.org/cyber/Documents/State-of-Cybersecurity_Res_Eng_0415.pdf
http://www.isaca.org/cyber/Documents/State-of-Cybersecurity_Res_Eng_0415.pdf
https://doi.org/10.1109/SPW.2014.42

Author Index

Agrafiotis, Ioannis 111
Ahmed, Mansoor 1
Anderson, Ross 1
Audinot, Maxime 13

Bryant, Aubrey 71

Chockalingam, Sabarathinam 31
Creese, Sadie 111

Dumas, Marlon 51

Eades III, Harley 71
Erola, Arnau 111

García-Bañuelos, Luciano 51
Goldsmith, Michael 111

Horne, Ross 90

Jiang, Jiaming 71

Khakzad, Nima 31

Laud, Peeter 51

Mauw, Sjouke 90

Pieters, Wolter 31
Pinchinat, Sophie 13

Schwarzentruber, François 13
Shumailov, Ilia 1

Teixeira, André 31
Tiu, Alwen 90

van Gelder, Pieter 31

Wacheux, Florence 13

Zhang, Haozhe 111

	Preface
	Organization
	Intrusion Tolerance in Complex Cyber Systems (Invited Talk)
	Contents
	Tendrils of Crime: Visualizing the Diffusion of Stolen Bitcoins
	1 Introduction
	2 Bitcoin Primer
	2.1 Transactions
	2.2 A Loose Transaction Taxonomy

	3 Taint Tracking
	3.1 Status Quo
	3.2 FIFO Taint Tracking
	3.3 Taintchain

	4 Visualizing Taint
	4.1 Preliminary Model
	4.2 Limitations of Preliminary Model
	4.3 Interactive Visualization

	5 Related Work
	6 Future Work and Conclusion
	References

	Deciding the Non-emptiness of Attack Trees
	1 Introduction
	2 Transition Systems
	3 Concatenation and Parallel Decomposition
	4 Attack Trees
	5 The Non-emptiness Problem for Attack Trees
	5.1 The Problem is -easy
	5.2 The Problem is -hard

	6 The Non-emptiness Problem for AND-free Attack Trees
	7 The Case of Symbolic Transition Systems
	8 Conclusion and Future Work
	References

	Combining Bayesian Networks and Fishbone Diagrams to Distinguish Between Intentional Attacks and Accidental Technical Failures
	1 Introduction
	2 Diagnostic Bayesian Networks
	3 Fishbone Diagrams
	4 Industrial Control Systems
	4.1 ICS Architecture
	4.2 Case Study Overview

	5 Development and Application of the Methodology
	5.1 Framework for Distinguishing Attacks and Technical Failures
	5.2 Combining Bayesian Networks and Fishbone Diagrams
	5.3 Extended Fishbone Diagrams and Translated BNs

	6 Conclusions and Future Work
	References

	Disclosure Analysis of SQL Workflows
	1 Introduction
	2 SQL Workflows
	3 Disclosure Analysis
	3.1 Databases, Schemas, and Queries
	3.2 Dependency Graphs and Summaries

	4 Simplifications and Output Presentation
	4.1 Simplifying the SDG
	4.2 Presenting the Result of the Analysis

	5 Related Work
	6 Conclusions and Future Work
	A Translating SQL Workflows to Internal Representation
	References

	On Linear Logic, Functional Programming, and Attack Trees
	1 Introduction
	2 Causal Attack Trees
	3 A Quaternary Semantics for Causal Attack Trees
	3.1 The Ideal Quaternary Logic
	3.2 The Filterish Quaternary Logic
	3.3 An Example Specialization

	4 Lina: An EDSL for Conducting Threat Analysis Using Causal Attack Trees
	5 Conclusion and Future Work
	A Maude Specification for Causal Attack Trees
	References

	The Attacker Does not Always Hold the Initiative: Attack Trees with External Refinement
	1 Introduction
	2 Specialisation for Attack Trees with Disjunctive Refinement
	2.1 Attack Trees with Disjunctive Refinement only
	2.2 Distinguishing Disjunctive from External Refinement Using a Box Annotation
	2.3 A Distributive Lattice Semantics Covering External Refinement

	3 A Game Semantics for Disjunctive Attack Trees
	3.1 Sub-optimal Strategies and a Games Semantics for Disjunctive Attack Trees
	3.2 Specialisation Expressed Using Additive Linear Logic

	4 Related and Future Work
	5 Conclusion
	References

	A State Machine System for Insider Threat Detection
	1 Introduction
	2 Literature Review
	3 System Architecture and Implementation
	3.1 Main Components of the System

	4 System Validation
	4.1 Efficiency of the System
	4.2 Scalability of the System

	5 Conclusions
	Appendix 1.A Dataset for Every Scenario
	Appendix 1.B Attack Patterns
	Appendix 1.C Pattern Editor
	References

	Author Index

