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Preface

These proceedings contain the papers selected for presentation at the 17th Smart Card
Research and Advanced Applications Conference (CARDIS 2018), which was held in
Montpellier, France, during November 12–14, 2018, and organized by the Montpellier
Laboratory of Informatics, Robotics and Microelectronics (LIRMM).

Since 1994, CARDIS has provided a forum for experts from industry and academia
to exchange ideas on the security of smart cards and related applications. The smart
card object has been part of our daily life for so many years in the form of personal
devices (banking cards, SIM cards, electronic IDs, etc.) that we do not remember a life
without it. In relation to smart card security, the root of trust of embedded solutions is
becoming key as Machine-to-Machine (M2M) and Internet of Things (IoT) applica-
tions are increasing massively. This increased exposure naturally widens the attack
space, whether physical or logical, local or remote. It is more important than ever to
understand how smart cards and other embedded devices can be secured by discussing
all aspects of their design, development, deployment, evaluation, and application.

This year, CARDIS received 28 valid submissions from 12 countries. Each paper
was double-blind reviewed by at least three independent reviewers. We selected 13
papers based on 102 written reviews from the 30 members of the Program Committee
with the help of 35 external reviewers. The technical program also featured three
invited talks: Frank Piessens from KU Leuven in Belgium presented “Security
Specifications for the Hardware/Software Interface”; Benoit Feix from eshard in France
presented “Exploiting a New Dimension in Side-Channel Analysis: Scatter on
Symmetric and Asymmetric Embedded Cryptography”; and Wyseur Brecht from
Nagravision in Switzerland presented “Challenges in Securing Industrial IoT and
Critical Infrastructure.” A free tutorial was held co-located with the conference:
“Understanding Leakage Detection” organized by the REASSURE Consortium.

We would like to thank the general chair, Philippe Maurine, for the great venue and
smooth operation of the conference. We would also like to express our gratitude to the
Program Committee and the external reviewers for their thorough work, which enabled
the technical program to be of such high quality, and the Steering Committee for giving
us the opportunity to serve as program chairs at such a prestigious conference. The
financial support of all the sponsors was highly appreciated and greatly facilitated the
organization of the conference; we thank the sponsors: ANSSI, CNRS, Gemalto,
Nagra-Kudelski, LETI-CEA, LIRMM, Rambus, STMicroelectronics, University of
Montpellier. Last but not least, we would like to thank all the authors who submitted
their work to CARDIS 2018.

January 2019 Begül Bilgin
Jean-Bernard Fischer
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Convolutional Neural Network Based
Side-Channel Attacks in Time-Frequency

Representations

Guang Yang1,2, Huizhong Li1,2, Jingdian Ming1,2, and Yongbin Zhou1,2(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

{yangguang2,lihuizhong,mingjingdian,zhouyongbin}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Profiled attacks play a fundamental role in the evaluation
of cryptographic implementation worst-case security. For the past six-
teen years, great efforts have been paid to develop profiled attacks from
Template Attacks to deep learning based attacks. However, most attacks
are performed in time domain – may lose frequency domain information.
In this paper, to utilize leakage information more effectively, we pro-
pose a novel deep learning based side-channel attack in time-frequency
representations. By exploiting time-frequency patterns and extracting
high level key-related features in spectrograms simultaneously, we aim
to maximize the potential of convolutional neural networks in profiled
attacks. Firstly, an effective network architecture is deployed to perform
successful attacks. Secondly, some critical parameters in spectrogram are
studied for better training the network. Moreover, we compare Template
Attacks and CNN-based attacks in both time and time-frequency domain
with public datasets. The heuristic results in these experiments provide
a new perspective that CNN-based attacks in spectrograms give a very
feasible option to the state-of-the-art profiled attacks.

Keywords: Side-Channel Attacks · Time-frequency analysis ·
Spectrogram · Convolutional neural networks · Deep learning

1 Introduction

Side-Channel Attacks (SCAs), introduced in 1996 by Paul Kocher [16], have
become a serious threat to practical security of cryptographic devices. They
exploit side-channel leakages, such as power consumption and electromagnetic
radiation, to recover the secret information of cryptographic algorithm imple-
mented in a physical device. Side-Channel Attacks can be divided into two
classes: non-profiled attacks, such as Differential Power Analysis (DPA) [17], Cor-
relation Power Analysis (CPA) [4] and Mutual Information Analysis (MIA) [11],

c© Springer Nature Switzerland AG 2019
B. Bilgin and J.-B. Fischer (Eds.): CARDIS 2018, LNCS 11389, pp. 1–17, 2019.
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2 G. Yang et al.

and profiled attacks, such as Template Attacks (TA) [6] and Stochastic Attacks
(SA) [30].

Among all the SCAs, profiled attacks are recognized as the most powerful
ones and play a fundamental role of security evaluation of cryptographic algo-
rithm implementations. A profiled attack consists of two phases: the profiling
phase and the attack phase. For the profiling phase, the attacker procures a copy
of the target device and learns the unique physical leakage characteristics with
known keys. For the attack phase, the attacker attempts to recover the unknown
key in the target device with the help of profiled leakage details. Among profiled
attacks, TA is the most popular profiling approach. But in real profiled attacks,
the dependency of preprocessing (need trace alignment), difficulties of numerical
problems (need careful calculation) and curse of dimensionality (need dimension
reduction) together affect the performance of TA [8].

Recently, a line of machine learning (ML), especially deep learning (DL)
based attacks, raises SCA community’s concern [5,14,21,24–26,28]. In 2016,
Maghrebi et al. conducted the first analysis of deep learning techniques for pro-
filed attacks [21]. In 2017, Cagli et al. found that convolutional neural network
(CNN) based profiled attacks are robust to trace deformation like jitter due
to CNN’s translation invariance [5]. In 2018, Prouff et al. studied how hyper-
parameters affect deep learning based attacks in the presence of masking and
desynchronization [26]. Picek et al. considered the class imbalance problem when
training ML/DL models [24]. Robyns et al. proposed a Correlation Optimization
method to improve Correlation Electromagnetic Analysis (CEMA) [28].

Generally, the SCAs including TA and deep learning based attacks are usually
performed in the time domain and less in frequency domain. Because the side-
channel measurements (traces) are usually acquired in waveform, most attacks
focus on analysing raw traces. But there are still several works proving that
SCA in frequency has its own advantages in non-profiled attacks [10,20,22,28].
Normally, directly analysing traces in time domain is less efficient while the traces
are misaligned. To transform traces from time domain to frequency domain, a
Fourier transform is performed. But the Fourier transform is only able to retrieve
the global frequency content of a signal, thus more irrelevant information will
be included and the time information is lost [10]. To overcome this shortcoming,
short-time Fourier transform (STFT) is an optional approach. STFT computes
the Fourier transform over windowed trace segmentation and shifts window over
the trace. Previous work shows that CPA can be used on spectrograms (squared
magnitude of STFT) [15]. In the field of image processing, CNN processes 2D
signal better because it handles features in two dimension (2D) simultaneously.
We inspire by the success of CNN in these areas and aim to perform successful
profiled attacks based on CNN in spectrograms.

In this paper, we propose a novel deep learning based SCAs method with raw
traces in time-frequency representations. In our work, we transform traces into
spectrograms as the first step, then use CNN to learn time-frequency 2D pat-
terns and extract high level key-related features. Effective network architecture
is deployed to perform successful attacks. Furthermore, we study the relationship
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between some critical parameters (leakage patterns and window size) in spectro-
grams and the network performance. Finally, we demonstrate the effectiveness
of our proposed method by comparing TA and CNN-based attacks in both time
and time-frequency domain with public datasets.

2 Preliminaries

2.1 Notations

Let x = {xi|i = 1, 2, . . . , N} denote side-channel leakage acquisitions (traces)
from a certain physical device, where xi denotes a single trace corresponding
to one cryptographic calculation. Notice that xi is an one-dimension (1D) time
sequence vector and the i-th entry of the vector x is denoted by x[i]. Let X =
{Xi|i = 1, 2, . . . , N} denote the spectrogram representation of x. Notice that
Xi = STFT(xi) is a two-dimension (2D) time-frequency image metrix and the
i, j-th entry of the matrix X is denoted by X[i, j]. During the acquisition, a
target sensitive variable V = f(T,K) is handled, where T denotes plaintext
or ciphertext, K the part of secret key the attacker aims to retrieve and f
some transform functions (not mainly concerned in this paper). T is uniformly
distributed which guarantees the randomness of corresponding measurement x.

2.2 Spectrogram

The short-time Fourier transform (STFT) is a ubiquitous tool for signal
analysis and processing. As the signal is analysed in the frequency domain, it
overcomes the time-domain limitations. Moreover, STFT can provide a precise
time-frequency resolution within a specified window of the fixed size. In practice,
the procedure for computing STFT is to divide a long time signal into several
shorter segments of equal length and then compute the discrete time Fourier
transform (DTFT) separately on each segment. Indeed, the STFT is usually
computed with overlapping analysis windows, which introduces dependencies
between adjacent windows and reduce artifacts at the boundary. In the discrete
case, STFT function could be expressed as Eq. (1):

STFT{x[n]}(m,ω) ≡ X(m,ω) =
∞∑

n=−∞
x[n]w[n − mH]e−jωn , (1)

where X(m,ω) is DTFT of windowed data, x[n] is input signal at time n, w[n]
is window function, ω is phrase, m is position of window and H is an overlap
constant between successive windows. In time-frequency signal processing, it is
a common practice to work only with the magnitude of the STFT of a signal, so
the phase information is ignored as in Eq. (2):

spectrogram{x[n]}(m,ω) ≡ |X(m,ω)|2. (2)

In other words, spectrogram is the visual representation of the energy of a sig-
nal expressed as a function of frequency and time. For the sake of clarity, an
illustration of trace and spectrogram is shown in Fig. 1, the spectrogram in (b)
is the energy of STFT function.
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Fig. 1. An example of trace and spectrogram. The spectrogram is the magnitude of
STFT (A bar graph is used here to show the 2D spectrogram intuitively).

2.3 Profiled Side-Channel Attacks

A profiled attack consists of two phases: an offline profiling phase (training in
machine learning context), and an online attack phase (testing respectively).

In profiling phase, the attacker has a device with knowledge about the secret
key implemented and acquires a set of N side-channel traces xprofiling = {xi|i =
1, 2, . . . , N}. Each trace xi is corresponding to vi = f(ti, k) in one encryption or
decryption with known key k. Usually the traces are measured from power con-
sumption or electromagnetic radiation using probes with an oscilloscope. Once
the acquisition is done, the attacker builds suitable models and computes the
estimation of probability:

Pr[x|V = v] , (3)

from a profiling set {xi, vi}i=1,2,...,N .
In the attack phase, the attacker acquires a small new set of traces xattack =

{xi|i = 1, 2, . . . ,M} with a fixed unknown key k∗. With the help of the estab-
lished models, the attacker can easily calculate the estimated posterior proba-
bilities among k guesses following the Maximum Likelihood Criterion:

dk =
M∏

i=1

Pr[vi = f(ti, k)|x = xi] =
M∏

i=1

Pr[x = xi|vi = f(ti, k)] · Pr[vi = f(ti, k)]

Pr[x = xi]
. (4)

Equation (4) stands only when acquisitions are independent which is a practical
condition in reality.

The most widely used profiled attacks are Template Attacks (TA) [6] and its
modified version Efficient Template Attacks (ETA) [9]. In TA, the attacker esti-
mates conditional probability Eq. (3) by assuming that x follows a multivariate
Gaussian distribution and estimating the mean trace x̄ti,k and the covariance
matrix Σti,k for each possible (ti, k) pair. Equation (3) then turns into:

Pr[x|V = v] =
exp(− 1

2 · (x̄ − x)T · Σ−1 · (x̄ − x))
√

(2π)N · |Σ| . (5)
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In ETA, the attacker replaces the covariance matrixes with one pooled covariance
matrix to cope with some statistical difficulties [9].

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a category of neural networks with
advantages including being similar to the human visual processing system, being
highly optimized in structure for processing images, and being effective at learn-
ing and extracting abstractions of features [2]. In this section, we will introduce
basic concepts of CNN.

Fig. 2. The overall architecture of CNN

Figure 2 shows an overall architecture of CNN with two main parts: feature
extractor and classifier. Feature extractor is composed of stacked operations of
convolution, activation, pooling and sometimes normalization layers. The clas-
sifier is composed of several fully-connected layers of neurons. Each layer of the
network receives the output from its immediate previous layer as its input, and
passes its output as the input to the next layer, as it is called forward propaga-
tion. Higher-level features are derived from features propagated from lower level
layers and finally calculate classification probabilities in the last output layer (for
a classification task, usually the output layer is activated by softmax function as
detailed in [5]).

Convolutional Layer. Convolutional layer is locally connected with shared
weights in learnable kernels. Convolutional operation can be defined as:

s(t) ≡ (x ∗ w)(t) =
n∑

a=1

x(a)w(t − a) , (6)

where x are digital signals, w is the kernel function. Stride also affects Eq. (6) by
controlling the step length of convolutional operation. The convolutional oper-
ations bring sparse connectivity and weight sharing. These properties reduce
parameter amounts and computing time. The output of convolutional layers
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finally go through a non-linear activation function to simulate a biological neu-
ron functionality. The activation adopted in this paper is Rectified Linear Unit
(ReLU): y = max(0, x) [18].

Pooling Layer. Pooling layer performs the downsampled operations to keep
useful features and discard unnecessary details [3]. It helps represent translation
invariance. The pooling kernel also slides window on the signal. For example, if
a 2 × 2 max-pooling kernel with 2 × 2 strides is used, it outputs the maximum
values within the window. Finally, the output size will be half of the input size.

Through training CNN, Backward Propagation algorithm is used with opti-
mizer, such as SGD, Adagrad, AdaDelta, RMSprop, and Adam [29]. In this
paper, we use Adam for efficient training with better convergence of deep learn-
ing algorithms [19].

3 Our Method

In this section we describe the leakages in spectrograms and discuss how to use
CNN profiling and attacking from spectrograms.

3.1 Leakages in Spectrograms

In Sect. 2.2 we describe the mathematical definition of STFT and show a quick
look of spectrogram. As STFT indicates the spectral content of the signal at
each short time segment, it is a function of time and frequency that indicates
how the spectral content of a signal evolves over time. Sliding windows are
moved to obtain the spectral content of the signal over different time intervals,
and the window length affects the time frequency resolution of the STFT. A
small window results in a fine time resolution but a coarse frequency resolution
because small windows have a short time duration but a wide bandwidth. A
large window, on the contrary, results in a fine frequency resolution but a coarse
time resolution because large windows have a long time duration but a narrow
frequency bandwidth.

In profiling phase, as the sensitive value V = f(T,K) is related to the secret
key, the attacker often uses statistical tools to locate the sensitive value position
among discrete digital sample points. Such tools include Pearson correlation
coefficient: ρx,v = cov(x,v)

σx·σv
and Signal Noise Ratio (SNR): snrx,v = Var[E[x|v]]

E[Var[x|v]] .
By repetitively computing above equations through all sample points over raw
trace set xprofiling, leakage points (points of interest, PoI) stand out from sample
points with high ρ or snr.

We transfer these statistical tools detecting leakages in 2D spectrograms and
find leakage existing in spectral-temporal patterns within expectation. Specif-
ically, we calculate ρ and snr through each sample point (pixel) in the 2D
spectrogram. For example, spectrogram set X = {Xi|i = 1, 2, . . . , N} is first
calculated using Eq. (1) from raw trace set x = {xi|i = 1, 2, . . . , N}, where Xi
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(a) Pearson correlation coefficient (b) Signal Noise Ratio

Fig. 3. Leakage detection of traces and spectrograms in Grizzly dataset (Color figure
online)

is a matrix. After pixel-wise leakage detection, correlation coefficient matrix and
SNR matrix can be obtained.

Figure 3 shows the leakage characteristics in traces and spectrograms from
Grizzly dataset (detailed in Sect. 4.1). In both subfigures, the upper part is
the normal leakage detection result of traces, the lower part is the result of
spectrograms in the form of heat map. In heat maps, connected regions in white
and yellow are dramatically distinguished from others in black, where brighter
color corresponds to high numerical value of ρ and snr. Leakage in spectrogram
is detected in warm regions, which reveals the fact that spectrogram contains
the time-frequency leakage simultaneously. Time synchronization can be found
in the upper and lower parts of the figure, while the difference between the raw
trace and spectrogram leakages is that the leakages on the spectrogram form
clusters on the two-dimensional plane. This simultaneity reflects in unique 2D
image patterns which is quite suitable for CNN to classify.

3.2 Builds CNN with Spectrograms

In this section, the 2D CNN network architecture is described in detail. We refer
to some classic CNN architectures such as AlexNet [18] and VGGNet [31] to build
our network. As shown in Fig. 4, the spectrograms are fed to the network, and
the label of the spectrogram is the key-related sensitive variable. It is passed
through a 2D convolutional layer, where we use filters with a small receptive
field to extract features. In order to minimize information loss in the time and
frequency dimensions, we set the convolution kernel size of equal width and
height. The convolution operation extract patterns simultaneously on time and
frequency. After the convolutional layer, a max-pooling layer is added with stride
2 × 2 to downsample the time-frequency feature map. Then the combination of
convolutional layer and pooling layer is performed once more for further feature
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extraction and reduction of network parameters amount. The max-pooling layer
is followed by a fully-connected layer to flatten the data. All hidden layers are
equipped with the ReLU non-linearity. The final layer is a fully-connected layer
with 256 neuron nodes, corresponding to 256 categories respectively.

Fig. 4. A base network architecture for 2D CNN with spectrograms

4 Experiments

In this work, all experiments are conducted on an Intel(R) Xeon(R) CPU E5-
2667 v3 @ 3.20 GHz 32 core machine, one NVIDIA Tesla K80 GPU and two
NVIDIA Titan Xp GPUs. We use the Keras library [7] (version 2.1.3) with
TensorFlow library [1] (version 1.4.1) as backend for CNN linked to NVIDIA
CuDNN.

4.1 Datasets

We consider three public datasets which mainly differ from implementations. All
the datasets are made public exclusively for SCA research. We use these datasets
for reproducibility of our results.

DPA contest V4.1 (DPAv4.1) provides measurement of a masked soft-
ware implementation of AES-256 on an Atmel ATMega-163 smart-card [34]. For
the acquisitions, we have 125 points per clock. We preselect consecutive 500
points for each trace. In our experiment, we use the first round S-box output as
the label to train CNN:

V = Sbox[P ⊕ k∗] ⊕ M, (7)

where P is a plaintext byte, M is a known mask byte. Since all AES intermediate
variables are defined in Galois field GF (28), label V contains 256 classes.

Grizzly provides measurement of an unprotected implementation of the
8-bit CPU Atmel XMEGA 256 A3U [23]. In our experiments, we have 1000
points per clock. We preselect consecutive 2500 points for each trace. Our goal
is to determine the success of the profiled attacks in recovering the byte k pro-
cessed. The S-box output V is the label to train CNN, which is provided in the
dataset.
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DPA contest V2 (DPAv2) provides measurement of an unprotected hard-
ware implementation of the AES-128 algorithm on SASEBO GII FPGA board
[33]. There are roughly 213 points per clock. We preselect consecutive 1000 points
for each trace. Since the parallel block cipher encryption is implemented, DPAv2
is a difficult dataset to attack. Previous works showed the most suitable leakage
operation is the register writing in the last round:

V = Sbox−1[C1 ⊕ k∗] ⊕ C2, (8)

where C1 and C2 are two ciphertext bytes. In our experiments, C1 is the 12-th
ciphertext byte and C2 is the 8-th one according to [25].

4.2 Evaluation Method

In this paper, evaluation metrics like top-1 accuracy (Acc), top-3 accuracy (Top3
Acc), success rate (SR) and guessing entropy (GE) are used to evaluate the
effectiveness of key retrieval. For SR and GE as detailed in [32], we run the
attack 100 times with randomly selected sub-samples of Dvalidate or Dattack to
find the average number of traces to achieve GE<1 bit and SR>80%. We run a
10-fold cross-validation on Dprofiling to determine the STFT window size, and
a normal training and attack on Dprofiling and Dattack to compare different
profiled attacks.

4.3 Preprocessing

For each dataset, we preselect a continuous segmentation of all sample points
to reduce computing complexity. Then we perform STFT on each dataset with
customized window size through exhaustive search for better attacking perfor-
mances, detailed in Sect. 4.5. Just as the normal SCA and deep learning app-
roach, we split each dataset into 2 distinct part Dprofiling and Dattack. While in
training phase, the Dprofiling is further divided into 2 parts Dtrain and Dvalidate,
where the validation set Dvalidate serves as an indicator of early stopping to avoid
overfitting. Table 1 shows the data splitting size in each dataset.

Table 1. Data splitting size in 3 datasets

Dataset Profiling Attack

DPAv4.1 9000 1000

Grizzly 51200 10000

DPAv2 90000 10000

Finally, before training the networks, a Min-max normalization X−Xmin
Xmax−Xmin

is performed to scale features into [0, 1] range, which will avoid gradient prob-
lems in network training phase. Notice that data augmentation [5,24,27] is not
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performed in our experiments, because the purpose of our experiments is to
determine the validity of utilizing spectrograms, not to solve misalignment or
jitter problems. And also there are no class imbalance issues since we consider
identity function to generate the label.

4.4 CNN Architecture

The signal, represented by 1D raw traces or 2D spectrograms, is feed-forwarded
through CNN layers. The feature extraction part includes one or more oper-
ations: convolutional filter, activation, batch normalization and pooling [5,21].
Convolutional stride is set to 1 and zero-padding is used to prevent valid opera-
tion in the edge of feature map. The pooling stride is set to 2 for downsampling
layer input size and the parameter amount of next layer. The classification part
contains a stack of layers followed by several fully-connected layers with ReLU.
A dropout rate of 50% is between the last 2 fully-connected layers to prevent
overfitting. Sometimes a global max-pooling is used to downsample feature map
in each channel to reduce the parameter size of fully-connected layers. The last
fully-connected layer contains 256 neurons activated by softmax function, calcu-
lating the classification score. The cross-entropy is used as loss function.

The 2D CNN basic architecture is illustrated in Sect. 3.2. The design of neural
architecture is under an overall consideration among previous works [5,18,21,26].
The detailed architecture is slightly different between 3 datasets in the number
of convolutional layers and pooling layers. For DPAv4.1 and Grizzly, since they
are software implementations and the data amount is small, fewer convolution
operations and small filters (size 3 and 5) are performed. For DPAv2, since it is
an FPGA implementation, more convolutional operations and large filters (size
11) are used to enlarge receptive field against high sampling rate, and improve
the feature extracting robustness against noises.

To train a proper network, several techniques are used to prevent overfit-
ting and get better network generalization. The Adam optimizer with reduced
learning rate is used to minimize the cross-entropy corresponds to maximize
the likelihood of the right label. A mini batch of 200 is employed. The learning
rate is initially 0.001 and reduced to half when the loss doesn’t decrease for 10
epochs with a threshold of 0.0001. We set 200 epochs for the training, but also
set an early stopping threshold of 40 epochs (which monitors the validation loss
and stops the training if the loss doesn’t fall). During the training, the network
kernel weights are recorded for the best validation loss. Once the training is
done we reconstruct the neuron network with the best recorded weights. With
higher values for training epochs, overfitting occurs and no improvements have
been noticed. The weight of filters activated by ReLU is randomly initialized
with Gaussian distribution N(0,

√
2
nl

) according to [12], where nl is the neuron
number of previous layer.
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4.5 Spectrogram Parameters

In this work, a single trace is segmented in several windows with overlap of 90%.
We set the overlap for 90%, because it doesn’t impact the real time-frequency
resolution and more importantly would benefit for software implementations
which have stronger but sparser leakage signals [35], such as Grizzly. The Han-
ning window is used to segment traces as a common choice. The STFT of each
window is calculated in order to find square of the magnitude of dominating fre-
quency. Then we scale the spectrogram images to [0, 1] range for the convenience
of network training as described before.

In STFT, small window size results in high time resolution but low frequency
resolution, and vice versa in large window size scenario. Because of the trade-off
between time and frequency in STFT, spectrogram can not guarantee both high
time and frequency resolution. As each dataset is measured in different imple-
mentations running frequencies and sampling rates, we introduce both absolute
window size (window length) and relative window size (percentage of one clock)
to represent window size. To find an optimal window size for SCA on spectro-
gram, an exhaustive search is used to determine window size, evaluated by a
10-fold cross-validation on the profiling set Dprofiling. We evaluate the robust-
ness of window size configuration by calculating the average evaluation metrics
on 10 validation sets.

Table 2 shows the cross-validation evaluation results on Dprofiling with the
help of 2 NVIDIA Titan Xp GPUs. It takes 3 h for DPAv4.1, 6 h for Grizzly
and 8 h for DPAv2 to run the cross-validation algorithms, roughly 3 min, 6 min
and 8 min for a single training. In DPAv4.1, a window size of 64 (1/2 of a clock)
achieves the best accuracy where a single spectrogram (Spc for short) has an
average success rate of 95.9%. Since DPAv4.1 is a software implementation on
a smart card, the noise is much lower than other two datasets. The leakages
distribute in large range of time and frequency with high SNR. Window size
influences the attack so little that similar accuracy is achieved with various
window sizes. In Grizzly, when the window size is set to 125 (1/8 of a clock), the
network loss converges to 3.74 and 8.49% accuracy is achieved. It takes only 3
traces for GE under 1 bit and 4 traces for SR more than 80%. When the window
goes larger or smaller, more traces are needed accordingly. Same phenomenon
occurs in DPAv2 dataset where proper windows size (100, 1/2 of a clock) results
in better performances—averaging 700 traces to achieve SR over 80%. Large
window (200 or 300) brings a coarse time resolution which explains the decline
in performances. Furthermore, small window (less than 50) leads to profiling
failure, thus no guarantee of successful key recovery.

As a matter of fact, the choice of window size is conditioned by two limi-
tations: (1) the window length should be small enough (better within a clock
length) so that the windowed trace segmentation is essentially stationary over the
window interval, (2) the window length should be large enough (better more than
64) so that the DTFT of the windowed trace segmentation provides a reason-
able frequency resolution. Considering both two constraints empirically, we think
window size from 64 to 256 suits most cases in practice. Specifically, balanced
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Table 2. Cross-validation averaging results for different window sizes of STFT to
perform a 2D CNN-based attack

Window@Percentage Spc size Loss Acc Top3 Acc GE< 1 SR> 80%

DPAv4.1 8@1/16 (4,494) 0.159 95.3% 99.6% 1 1

16@1/8 (8,243) 0.168 94.9% 99.7% 1 1

32@1/4 (16,181) 0.153 95.2% 99.7% 1 1

64@1/2 (32,63) 0.142 95.9% 99.7% 1 1

125@1 (63,29) 0.199 94.1% 99.6% 1 1

187@3/2 (94,17) 0.195 94.5% 99.5% 1 1

Grizzly 62@1/16 (32,349) 4.08 6.56% 16.86% 5 5

125@1/8 (63,183) 3.74 8.49% 21.28% 3 4

250@1/4 (126,91) 3.76 8.28% 21.07% 3 4

500@1/2 (251,41) 5.00 2.95% 7.40% >10 >10

1000@1 (501,16) 5.51 0.51% 1.53% >10 >10

1000@3/2 (751,7) 5.01 1.98% 5.55% >10 >10

DPAv2 12@1/16 (6,495) 5.544 0.43% 1.29% >1500 >1500

25@1/8 (12,326) 5.544 0.43% 1.30% >1500 >1500

50@1/4 (25,191) 5.536 0.62% 1.63% 750 750

100@1/2 (50,91) 5.536 0.65% 1.67% 700 700

200@1 (100,41) 5.538 0.60% 1.58% 950 900

300@3/2 (300,48) 5.538 0.63% 1.60% 950 950

time and frequency resolutions lead to a balanced spectrogram image width and
height. On the one hand, a balanced spectrogram size takes both time and fre-
quency into consideration in STFT. On the other hand, a “square” spectrogram
image is more suitable for convolution and pooling operations because the filter
size and stride are usually designed with same width and height. For example,
when the window is 1000 long in Grizzly, the spectrogram size is 501×16, namely
high time but low frequency resolution, after 4 convolution layers and pooling
layers with downsampling rate 2, the spectrogram size becomes 32 × 1 which
implies redundant frequency information but exhausted temporal information.
The imbalance in information utilization probably leads to information loss and
profiling failure.

4.6 Attack Comparisons

In this section, by applying the proper STFT window size and network archi-
tecture in previous sections, we represent traces into spectrograms and compare
different profiled attacks in raw and time-frequency representations.

To exploit leakages in spectrogram and confirm the effectiveness of CNN-
based attacks, we evaluate several CNN-based attacks and Template Attacks
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(as baseline method) in raw traces and spectrograms on each dataset. For clar-
ity, Efficient Template Attacks (ETA) in both spectrograms and traces are per-
formed after a PoI selection (5,25,50 points with highest correlation coefficient).
Furthermore, Principal Component Analysis (PCA) [13] is also used before ETA
and serves as a reference feature extractor of raw traces and spectrograms. We
select top 5, 10, 20, 30 eigenvectors picking by correlation coefficient to perform
ETAs. For CNN-based attacks, to take the most of the profiling set, we random
split a small ratio of the data as validation set when training in case of overfit-
ting. Similar network architecture is used for 1D CNN as the same as 2D CNN
by replacing 2D operations into 1D operations. 200 epochs (recording the best
validation loss during training) are deployed for better convergence.

Table 3. Attack results of our method and baseline methods

Method DPAv4.1 Grizzly DPAv2

Acc GE< 1 SR> 0.8 Acc GE< 1 SR> 0.8 Acc GE< 1 SR> 0.8

Spc 2D CNN 95.5% 1 1 8.47% 3 4 0.82% 400 550

ETA,5poi 15.0% 4 3 2.46% 7 5 0.67% 600 550

ETA,25poi 58.4% 2 2 2.85% 6 6 0.61% 650 750

ETA,50poi 82.5% 1 1 3.64% 5 5 0.65% 1000 1050

PCA-ETA 82.5% 1 1 5.75% 5 4 0.59% 650 650

Trc 1D CNN 96.5% 1 1 9.52% 3 4 0.63% 750 650

ETA,5poi 1.9% 9 7 2.08% 8 7 0.59% 1500 1500

ETA,25poi 32.1% 2 2 2.76% 7 6 0.61% 950 1000

ETA,50poi 63.5% 2 2 2.59% 7 6 0.57% 750 850

PCA-ETA 86.9% 1 1 4.48% 6 5 0.60% 850 750

The results we obtained are summarized in Table 3 and Fig. 5 (without
DPAv4.1 brevity). As for DPAv4.1, CNN-based attack in spectrograms can
achieve more than 95% accuracy with a single spectrogram to recover the key
byte, which proves the soundness of attacks in spectrograms. Next, we test our
methods on Grizzly, an 8 bit MCU software implementation. As it is shown
in Table 3 and Fig. 5, ETA in spectrograms get higher accuracy than in raw
traces with same PoI number. PCA-ETA also works better in spectrograms than
in traces with top 5, 10, 20, 30 eigenvectors picking by correlation coefficient.
Meanwhile, CNN-based attacks significantly outperform ETA in both time and
time-frequency domain, gaining GE<1 bit with only 3 traces. Finally we chal-
lenge our method in DPAv2, which is much more difficult to attack. The result
shows that attacks in spectrogram are more effective than in raw traces with
same profiling techniques. There, only 400 spectrograms are needed for GE less
than 1 bit with the 2D CNN in spectrograms, compared with more than 750
traces with attacks (including 1D CNN) in raw traces. Since in this experiment
more traces/spectrograms (nearly all profiling set Dprofiling) are used for train-
ing, and evaluation is performed on Dprofiling, the neuron network trains with
more data than in Sect. 4.5 and gets better performances.

Naturally, spectrogram is a combined representation of time domain and fre-
quency domain. Compared with raw traces in time domain, spectrograms lose
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Fig. 5. Results of Grizzly (A, B) and DPAv2 (C, D)

little time resolution but gain frequency resolution. A single pixel in spectrogram
contains both time-frequency information than a point in raw traces with higher
ρ and snr. This peculiarity shows its advantage if time information is not good
enough for a successful attack. Last but not least, as it is observed in Sect. 3.1,
PoI in spectrogram show patterns, gathered in clusters along time domain and
expanded in low frequency domain. Patterns hide local time-frequency high level
features in spectrogram. CNN extracts feature through recognizing patterns,
which explains CNN-based attacks exceed ETA because PoI selection destroys
2D time-frequency patterns and ETA itself can’t handle these 2D patterns.
Therefore, CNN is naturally the choice of attacks in spectrograms.

5 Conclusions

In this paper, we investigate the side-channel leakage in time-frequency represen-
tations and propose a new profiling strategy using CNN. Experiments show that
by analysing temporal-frequency transformation in spectrogram representation,
2D time-frequency patterns can be utilized for extracting high level features
and classified for key recovery. Effects of different window sizes on CNN-based
attacks are studied. Compared with classic profiled attacks in 1D raw traces,
CNN-based attacks in 2D spectrograms achieve better performances than Tem-
plate Attacks and at least same effectiveness (sometimes better) as CNN-based
attacks in raw traces.
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Despite results shown here, there is still room for improvement. Side-channel
countermeasures, masking and hiding, are not considered in this work, as this
paper focus on pioneering a new profiled side-channel strategy. As STFT is
calculated on each independent single trace, masking and hiding are completely
reflected in single spectrogram. In other words, leakage existing in high order
and random spatial positions, which can be analysed by CNN due to its feature
extraction and transformation invariance. Future works will study CNN based
attacks in time-frequency representations in the presence of masking and hiding
countermeasures.
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Abstract. Belief propagation, or the sum-product algorithm, is a pow-
erful and well known method for inference on probabilistic graphical
models, which has been proposed for the specific use in side channel
analysis by Veyrat-Charvillon et al. [14].

We define a novel metric to capture the importance of variable nodes
in factor graphs, we propose two improvements to the sum-product algo-
rithm for the specific use case in side channel analysis, and we explicitly
define and examine different ways of combining information from multi-
ple side channel traces. With these new considerations we systematically
investigate a number of graphical models that “naturally” follow from
an implementation of AES. Our results are unexpected: neither a larger
graph (i.e. more side channel information) nor more connectedness neces-
sarily lead to significantly better attacks. In fact our results demonstrate
that in practice the (on balance) best choice is to utilise an acyclic graph
in an independent graph combination setting, which gives us provable
convergence to the correct key distribution. We provide evidence using
both extensive simulations and a final confirmatory analysis on real trace
data.

Keywords: Belief propagation · Factor graphs · AES ·
Inference based attacks · Side channel attacks · Template attacks

1 Introduction

Side channels in the form of power or EM traces are a significant source of
information for adversaries. Extracting as much as possible of this information
is clearly desirable, and the utilisation of graphical models for this purpose was
early on described in publications such as [3,6,12]. These papers represented
the algorithm under attack as a Markov model and inferred information about
the underlying hidden state by using statistical inference, e.g. the max-product
algorithm.

The key idea in such types of attacks is that the graphical model defines how
variables (observed and hidden) depend on each other. By using different types
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B. Bilgin and J.-B. Fischer (Eds.): CARDIS 2018, LNCS 11389, pp. 18–34, 2019.
https://doi.org/10.1007/978-3-030-15462-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15462-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-15462-2_2


A Systematic Study of the Impact of Graphical Models 19

of algorithms it is possible to infer information about the hidden variables. The
use of the sum-product algorithm (aka belief propagation, BP) on a factor graph
was proposed recently in [14] as a way to utilise graphical models for complex
algorithms such as AES. It proved to be very powerful: in comparison to other
profiled attacks, this method can cope with very noisy side channel traces, and
even combine information from many traces effectively. In follow on works this
type of attack was compared to other types of DPA style attacks [4], and used in
different contexts [13]. Although the method performed well in all these papers,
it is well known that there are no guarantees for convergence, or even for the
inferred distributions to be at all meaningful. This is due to the nature of the
factor graphs that result from a typical implementation of e.g. AES. Thus like
many other analysis methods it is possible that the method completely fails in
some contexts, but is strong in other contexts.

In this submission we set out to determine how to best configure a graphical
model to ensure attack success. We focus our study around the AES algorithm
that was also chosen by the seminal papers introducing this method. Our results
challenge in particular the intuition that “more” leakage makes for stronger
attacks. This is interesting because more leakage intuitively implies more poten-
tial information: even if multiple leakages may provide redundant information
(it is well known that AES achieves full diffusion after two rounds), this redun-
dant information could be hoped to implicitly improve the signal quality. Con-
sequently, one could expect that the more leakage information about AES is
included in a factor graph, the more of this information can propagate to the
key bytes.

1.1 Outline of This Paper

We review the necessary background on using (loopy) belief propagation in
Sect. 2. Thereafter in Sect. 3 we explain two improvements of the sum-product
algorithm. In Sect. 4 we give a novel definition that captures the importance of
a variable node. We also define several variations of factor graphs of particular
interest for attacks on AES. These variations essentially represent progressively
smaller graphs, whereby the smallest is an acyclic graph requiring the least
memory. For this graph the results guarantee convergence of the sum-product
algorithm without any loss of success rate and efficiency. We also spell out three
methods for combining multiple traces. Sections 5, 6, and 7 present results of
experiments using simulated (we simulate leakage according to a weighted bit
model, and add Gaussian noise) and real trace data. We observe that except
for the noisiest of cases the acyclic graph with the most pragmatic trace com-
bination method is on par with more complex variations. We conclude with
recommendations for practice in Sect. 8.

To aid the flow of the paper we opted to supplying comprehensive tables and
figures primarily in the appendix. The text however does summarise the most
important findings from both tables and figures. There is also a full version of
this work available on the IACR Eprint archive [2].
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2 Preliminaries

The key ingredients for the attacks that we aim to study are a suitable graphical
model and an algorithm for inference. We review these briefly using and relating
them to AES as appropriate (for a more in-depth description we refer the reader
to [7]). At the end of this section we provide the necessary details about our
simulation environment.

2.1 Inference on Graphical Models

A factor graph is a bipartite graph G = (V,F , E) where V,F are two finite sets
of vertices and E (⊂ V × F) is a set of undirected edges. We will refer to the
vertices in V as variable nodes and the vertices in F as factor nodes. We will
use the i, j, k to denote the variable nodes and f, g, h to denote the factor nodes.
Given i ∈ V, the set ∂i is defined as ∂i := {f ∈ F : (i, f) ∈ E}. For any f ∈ F
the adjacent vertices ∂f is defined in the same way.

A factor graph gives the joint distribution of the random variables XV :=
(X1, . . . , X|V|) where each Xi corresponds to a vertex in V. For any subset of
variable nodes I := {i1, i2, . . . , im} ⊂ V we will denote the corresponding random
variables as XI := (Xi1 ,Xi2 , . . . , Xim). The values of these random variables xI ,
are also defined in a similar way. For our application each random variable Xi

can have values xi ∈ X := {0, 1}n. For the rest of this article X will denote the
set {0, 1}n unless specified otherwise. For the definition of the joint distribution
we refer to the full version [2].

Constructing a Factor Graph. A factor graph can be constructed from (the
implementation of) any iterative function F 1. The input variables, intermediate
variables used in the iterative function, and the output variables are represented
as the variable nodes of the factor graph. The factor nodes correspond to the
basic functions/operations used to define (or implement) F . A factor node is
usually connected to two or more variable nodes which represent the inputs and
outputs of the function.

In practice an AES assembly implementation can be easily translated to
a factor graph. The sixteen plaintext bytes and key bytes are represented as
variable nodes. Parsing the (assembly) code, whenever an arithmetic operation
is performed we add a factor node for this operation, and a new variable node to
represent the output of the operation, and connect these elements to the existing
graph. Although leaky, we excluded memory operations, such as ldr and str
operations from our factor graph (so we do not artificially inflate leakages). Our
AES factor graph thus includes the following factor operations: XOR, SBOX, and
XTIMES.

1 A factor graph can also be constructed for non-iterative functions but this is not
necessary for our work.
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The Sum-Product Algorithm. The sum-product algorithm, also known as
the belief propagation (BP) algorithm, is an iterative “message” passing algo-
rithm where the messages are the probability distributions over the single vari-
able space X . For each edge in E there are two such distributions νi→f (·), which
is the message from variable node to factor node and ν̃f→i(·), which is the mes-
sage from a function node to variable node. The messages at the tth iteration
are denoted as ν

(t)
i→f and ν̃

(t)
f→i.

For the definition of the sum-product algorithm, we refer the reader to the
full version [2] of this article. When the factor graph is acyclic, the algorithm
converges after a fixed number of iterations. When the factor graph contains
cycles, it becomes loopy belief propagation and no longer has guaranteed con-
vergence. A frequently used heuristic to stop the BP algorithm in such cases is
to terminate after tmax iterations which is a fixed parameter to the algorithm.
Typically one chooses tmax in line with the size (i.e. diameter) of the graph. For
further details on factor graphs and BP algorithm we refer the interested readers
to [7,11].

In our implementation, all variable nodes send their initial distribution along
all their connected edges in the first round of the algorithm. Once completed, the
factor nodes send their messages, by selecting an adjacent variable node, then col-
lecting all incoming messages (excluding the one from the target variable node)
and applying their own ‘function’ on these messages. They do this for all adjacent
variable nodes. Upon termination of the algorithm, the marginal distributions of
all sixteen key bytes are computed. This is done by taking the product of each
key’s initial distribution with all incoming messages to the respective key byte.
To judge success of an attack, the keys are ranked according their probability.

2.2 Attack Setup and Implementation Details

The work presented in this paper uses an adaptation of AES FURIOUS (originally
written for Atmel’s AVR) written in the ARM Thumb assembly language. Our
lab setup consists of custom host board with an ARM Cortex-M0 of the LPC
series. The board has an on board signal amplifier and filter. We utilise a stable
external clock running at 125 MHz. The data is recorded by a PicoScope 2000
Series instrument. We took 150000 traces, of which 120000 were used for template
building and 30000 for doing repeat attacks. In any attack the result of the
template matching is utilised as the input probability distributions for the (leaky)
variable nodes.

Because real trace data implies a fixed device leakage model and a corre-
sponding signal-to-noise ratio (SNR), we also performed two types of simula-
tions with varying SNRs. The first simulation was via using the tool ELMO [10],
which emulates the leakage of a Cortex-M0. The emulator was built by profil-
ing a different type of M0, manufactured by ST Micro. Thus we would expect
the simulation results (when appropriate levels of Gaussian noise is added) to
match our real trace results. We also performed Hamming weight (HW) based
simulation, which turned out to give identical results to the ELMO simulations
hence we opted to not include them in our tables.
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In our implementation we set the value of tmax (used by the BP algorithm) to
be 50. This value was chosen because it is greater than the diameter of the largest
graph G (which has a diameter of 42), and thus gives room for propagation
around the loops. For the calculation of first-order success rates (SR) and key
ranks, we follow the recommendation of [9] and compute average key ranks over
200 repeat experiments.

3 Improving Loopy Belief Propagation

Different variations of the (loopy) BP algorithm are proposed in the litera-
ture. We add our own improvements and explain the resulting algorithm in
this section.

3.1 Epsilon Exhaustion

One of the parameters for the Belief Propagation Algorithm is how many itera-
tions to run. This is represented by the value tmax. In this paper we propose an
additional termination criterion, which allows the algorithm to terminate early,
if certain conditions are met. As the BP algorithm is a message passing algo-
rithm, there may come a point after a number of iterations where the messages
being updated have received most of the information in the graph, and will
not change significantly. If this is detected over a series of consecutive rounds,
we can deduce that the factor graph has reached a stable equilibrium, and we
can therefore terminate the algorithm without being at risk of discarding useful
information.

We implement this by having two user defined parameters, ε and εs. After
each iteration of the BP algorithm, we observe the incoming messages at the
sixteen key byte nodes. If the Euclidean distance between the message from the
current iteration and the message from the previous iteration is greater than
the threshold ε, we conclude that the current round did not provide the key
bytes with enough new information. If this occurs over εs consecutive rounds,
we conclude that as enough information has propagated, further rounds would
not benefit the key bytes, and it is safe to terminate the BP algorithm early.

We used the Euclidean distance metric to measure the difference between two
probability distributions after considering other possibilities, see also Sect. 4.1.

3.2 Ground Truth Checking

One open problem encountered in template-based DPA style attacks is differen-
tiating a ‘good’ trace from a ‘bad’ one, when it is not simply characterised by a
large variance. For instance, even a small clock jitter can slightly misalign a trace
in relation to the template values, which typically means that template matching
gives very poor results. Due to the nature of the Belief Propagation algorithm,
we compute the marginal distribution of the key bytes by taking the product of
all their incoming messages (Sect. 2.1). If an erroneous trace is computed in an
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Algorithm 1. BP algorithm with epsilon exhaustion and ground truth
check
1 function BPA(Gaes, ε, εs, εg, tmax, k∗, ip)

/* k∗, ip are the variable nodes corresponding to the key and

plaintext respectively */

2 Initialize the messages as i.i.d uniform random variables
3 count := 0
4 foreach t ∈ {1, . . . , tmax} do
5 foreach (i, f) ∈ E do

6 update ν
(t)
i→f with incoming messages

7 end
8 foreach (i, f) ∈ E do

9 update ν̃
(t)
f→i with incoming messages

10 end

11 if (k∗, f) ∈ E, ‖ν̃
(t)
f→k∗ − ν̃

(t−1)
f→k∗‖∞ < ε then

12 count = count + 1
13 if count == εs then

/* Epsilon Exhaustion check */

14 break

15 else
16 count = 0
17 end

18 end
19 if ‖νf→ip − μL[ip]‖∞ < εg then

/* Ground truth check */

/* μL[ip] is the leakage distribution at node ip */

20 return 0;

21 else
22 return −1 /* Discard trace */

attack, an erroneous distribution sent to a key byte can detrimentally alter the
marginal; in a worst case scenario, if the erroneous message has probability 0 for
the correct key byte value, the attack will never successfully recover the key. In
this paper we present a way of detecting an erroneous trace, by considering a
known plaintext attack against AES.

Assuming we know the plaintext values, the idea is to check the “belief”
about them after BP has terminated. We would expect that for a good trace,
once all information has propagated through the graph, the belief about the
plaintext values would be consistent with what we know to be the true values. If
this is not the case, then BP is unlikely to have converged to a meaningful key
distribution either. We measure the consistency between the initial distribution
of the plaintext bytes and the distribution after BP using the Euclidean distance
(as with the termination criterion).

For the ground truth check to work we need to assume some leakage on
the key bytes in the graph (this may come from the key schedule for instance).



24 J. Green et al.

If the probability distribution on the key bytes was uniform (i.e. we assume no
information on the key bytes), then, because the key byte nodes are connected
to the plaintext byte nodes via an XOR factor node, we could not infer any
information about the plaintext byte nodes. This is due to the XOR “locking
effect”: XOR the acts like a one-time pad if one of the two inputs is uniform.

4 Studying AES FURIOUS Factor Graphs

Previous work already explored the effect of some choices regarding the actual
construction of the factor graph for implementations of AES. We are interested
whether or not there is a trade-off between the number of included factor nodes
and the efficiency of an attack. Utilising fewer nodes is advantageous in practice
not only because fewer profiles have to be created (and therefore fewer profiling
traces are required) but also because having to correctly match fewer templates
during an attack leads to more robust attacks (in practice traces are not perfectly
aligned).

Our “base” graph G takes into account all intermediate steps, and we also
assume some leakage via the key schedule on the key bytes. We then introduce
a measure that is novel in the context of Belief Propagation in the context of
side channels to judge the “importance” of a node in relation to the key bytes
in Sect. 4.1, and then study reduced graphs systematically in Sect. 4.2.

4.1 Importance of a Variable Node

We want to assess whether or not it is necessary to include all the nodes of the
factor graph from the full AES. More specifically, one could wonder what “effect”
the information from nodes from the second and further rounds of AES have on
the key. It is known that AES reaches full state diffusion after two rounds of
AES, but there is no implication that nodes from future rounds provide more or
less information than nodes in the first two rounds.

To quantify the “effect” of a node we somehow want to consider its contri-
bution in the detection of the (unknown) key. For an important node we would
expect that any change in it’s input distribution would result in a change in a
key byte(s) distribution.

The effect or importance of a node in the factor graph is quantified by the
“distance” of it’s distribution from the key node distribution. In the graphical
model the variable nodes have an associated (discrete) distribution. Thus it
seems natural to look for a suitable distance metric in relation to (discrete)
distributions.

We determine the marginal distribution of the key node say K, given the dis-
tribution of the other nodes: we thus determine μ(K) =

∑
Xi

Pr(K,X1,X2, . . .)
where Xi is the random variable corresponding to the variable node in the factor
graph. In the AES factor graph these nodes correspond to the different interme-
diate variables e.g. k1, t1 etc in Fig. 3. In the following paragraph we will refer
to a node by the associated random variable.
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For a (randomly) fixed unknown key and a fixed plaintext the value of the
intermediate variable at the node Xi is also fixed. Suppose we have a perfect
leakage corresponding to the different values of the intermediate variable at Xi.
This can be described by fixing a value of the random variable Xi = x and
Pr(Xi = x) = 1 whereas Pr(Xi �= x) = 0. For the correct value of Xi, the
distribution μx(K) =

∑
Xj

Pr(K,X1,X2, . . . , Xi = x,Xi+1, . . .) is expected to
be “closer” to μ compared to the distribution obtained by fixing an incorrect
value of Xi. For defining this notion of distance between two distribution we use
Hellinger distance. The Hellinger distance is a well known measure to quantify
the similarity of two distributions. In contrast to other (similar) measures it is
directly related to the Euclidean distance metric (in the discrete case) and thus
is an actual distance metric.

Definition 1. The importance of a node X is defined as

I(X) = {D(μ(K), μX=x(K))}

where D(·, ·) is the Hellinger distance between the distributions.

Note that I(X) is a set of “distances” for different values x of X.

Definition 2. (Hellinger Distance) For two discrete distributions {pi} and
{qi} the Hellinger distance is defined as

D(p, q) =
1√
2

√∑

i

(
√

pi − √
qi)2. (1)

Because we are in a profiled scenario, we know all the necessary distributions
to compute this distance metric for any node in the graph.

4.2 AES Factor Graphs

We now detail the graphs that we study. They range from a “full graph”, includ-
ing nodes for intermediates across all ten AES rounds, to a very sparse graph,
including only a few intermediates from the first round. The larger the graph is,
the more memory it requires. The memory requirements can be derived based
on the number of nodes and edges. All variable nodes store an initial distribu-
tion, and each edge has two probability distributions, corresponding to incoming
and outgoing messages from the connected variable node. Because AES FURIOUS
essentially is byte oriented implementation of AES, all distributions in our graph
are represented by 256 floating point values. The exact memory requirements are
thus dependent on the specific implementation/use of a float. In the following
description we assume the use of a C style floating point data type (four bytes).

G : corresponds to the full AES encryption algorithm. It requires ≈ 6.6 MB
of memory per trace.
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G1 : corresponds to the first encryption round only, excluding the key sched-
ule. We provide (part of) this graph in Fig. 3, which shows the first column
of the first round. It requires ≈ 0.7 MB of memory per trace. Several factor
nodes are drawn in red in this graph. Removing them leads to GA

1 .
G2 : corresponds to G1, with the addition of the Add Round Key step and

the SubBytes output of the second round. It requires ≈ 0.9 MB of memory
per trace.

GA
1 : corresponds to an acyclic factor graph of the first encryption round,

as shown by removing the red nodes in Fig. 3. It requires ≈ 0.54 MB of
memory per trace.

GKS
1 : corresponds to G1, with the addition of the key schedule variables. It

requires ≈ 0.84 MB of memory per trace.

As an example, to mount a 200 trace BPA attack against graph G, one would
require ≈ 1.3 GB memory. To mount an attack using the graphs G1 and GA

1 one
would only need ≈ 140 MB and ≈ 108 MB memory respectively.

Considerations Regarding Node Removal for GA
1 . To convert the one

round AES factor graph G1 into an acyclic graph GA
1 we choose to remove a

set of factor nodes which are marked in red in Fig. 3. One obvious reason to
choose this set of nodes is that in the AES algorithm these nodes are part of the
diffusion layer. Since the diffusion layer causes the cyclic structure of the AES
factor graph, removal of these nodes leaves the factor graph acyclic. Removal of
any node naturally is followed by the removal of the edges to that node, along
with any leaf nodes (which would otherwise be disconnected from the rest of the
graph and thus not contributing any messages).

4.3 Combining AES Factor Graphs

In many real world settings adversaries may gain access to several leakage traces.
These traces may correspond to different inputs for instance. In any case so far
we have only discussed factor graphs that take input (e.g. the plaintext) and
thus we now look at ways in which we can process multiple inputs.

Large Factor Graph (LFG) Method. In [14] they approach the problem of
combining graphs from different inputs by associating each input with a ded-
icated graph, and then they produce a “large factor graph” by connecting all
factor graphs through some common nodes. In the particular case of AES (the
same would apply to other algorithms too), the nodes representing the key bytes
are common (because all traces would be for the same unknown secret key). We
call this method the LFG Method.

The potential advantage of this method is that information from one trace can
propagate through the common nodes into the “adjacent’ graph, which may (pos-
itively) affect the attack outcome. However, the clear downside to this method
is that it potentially incurs a large memory overhead (unless one swaps “sub-
graphs” in and out of memory but this clearly implies a performance penalty
and potentially some limitations on the message passing). It is also difficult to
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apply our ground truth check in this case because our intuition of “discarding”
traces is made challenging due to all traces being interconnected; as information
can propagate from one trace to another, it is not possible to pinpoint which
trace affected the plaintext bytes. Finally there are a large number of cycles in
such a graph, which means that it is impossible to make any statements about
convergence or any meaningful outcome.

Independent Factor Graph (IFG) Method. In contrast to assembling one
large graph, we could also treat each leakage trace independently and only have
one copy of the graph in memory. Each trace then produces a set of distributions
for the unknown key bytes, which can be combined using Bayes theorem.

The advantage for this method is that it can be executed in parallel (dis-
tributed over different cores) or sequential, allowing an easy speed-memory trade-
off. Also, no further cycles are added, thus for our acyclic graphs we can be
assured of convergence even in a multiple trace setting. The disadvantage may
be that information cannot propagate from one leakage trace (associated graph)
to another. It is possible to use the ground truth check here.

Sequential Factor Graph (SFG) Method. An easy tweak to the IFG method
that enables information to “propagate” from one graph to another, would be
to use the key distribution that is derived from the i − 1th leakage trace as
prior distribution for the graph with the i−th leakage trace. This turns the IFG
method into a strictly sequential method (thus SFG); it thus retains IFG’s mem-
ory efficiency, convergence for acyclic graphs, and the possibility to implement
a ground truth check.

5 Studying the Effect of Reduced Graphs in a Single
Trace Setting

In the remainder of this paper we discuss experiments that aim to determine
the impact of our tweaks to the BP algorithm, the variations of graphs and
graph combination methods. We start in a single trace setting, and first consider
the effects of nodes in later rounds, then we examine the effectiveness of our
improvements on the BP algorithm, followed by an enquiry into the impact of
using reduced graphs (in particular G1 and GA

1 ) on the attack outcomes.

5.1 Effect of Nodes in Later Rounds

We previously defined a metric that enables us to judge the effect that a node in
the graphical model has on the key bytes. To use this metric practically we set
up an experiment on the full graph G in which we supply simulated, HW based
leaks with minimal noise (SNR = 2) and we let the BP algorithm run for the
full tmax = 50. As implied by the definition, we first let BP run and produce a
key distribution. Then we fix the input for the node that we are computing the
effect of and fix this to a value (running through all input values of this node
one by one), which enables us to compute the effect as defined in Sect. 4.1.
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Fig. 1. Hellinger distance of k1 to different fixed value s nodes

Our findings are that variable nodes from later rounds have no effect on the
key distribution. To provide some evidence for this, we include one graph that
is representative for all results. Figure 1 visualises the result from the variable
node s (which corresponds to the Sbox output) in different rounds of AES to
key byte k1. Recall that our definition is based on the Hellinger distance metric:
any number that is close to zero indicates that a node has no effect. Figure 1
demonstrates then that this particular node as a great effect in round one, and
some small effect in round two, but thereafter it has no effect on this key byte.
Other variable nodes show the same behaviour: first round nodes have an effect,
second round nodes have a very small effect, and from round three onwards our
metric indicates that they have no effect.

5.2 Effectiveness of Our Improvements to the BP Algorithm

We investigated the effect of our epsilon exhaustion technique on by running
repeat experiments using ELMO simulations. These showed that in cases of high
and low noise, the information can be exhausted before reaching tmax iterations
(nearly all experiments terminated via the epsilon exhaustion rather than tmax).
Interestingly having more noise does not mean that the algorithm is more likely
to run up to tmax iterations. In fact often the epsilon exhaustion was considerably
earlier, e.g. in for SNR = 21 on average around 20 Belief Propagation iterations
are required before reaching a stable point.

We also investigated how often the ground truth check kicks in. We configured
our criterion to reject only “extreme outliers”. Unsurprisingly, we found that it
is much harder to detect such cases in high noise settings, where the information
from a single trace is insufficient for any meaningful result. We note that in such
cases, where one would require multiple traces anyway, the ground truth check
could be applied to consecutive traces and we noticed in our implementation
that if there are two “bad” traces fed into BP consecutively, then our ground
truth method would pick this up. The experiments also indicate that cycles
in the graph may “amplify” unhelpful information, because in the experiments
on graphs without cycles our ground truth check criterion was never met; the
ground truth method spotted erroneous traces after BP had iterated for more
than 15 rounds, but as the acyclic graph is run for a maximum of 8 iterations,
these erroneous messages did not appear.
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5.3 Impact of Graphs on Attack Success

As measures for the success of attacks we look at the (first-order) success rate,
as well as the lowest (i.e. best) rank for the key. For the specific purpose of
this experiment, we elected not to invoke our termination criterion for the cyclic
graphs and instead allow BP to run up to 50 iterations (for G we did experi-
mentally verify that increasing tmax did not lead to better success). We did this
for a range of SNR’s. In both settings, the high signal and the high noise, the
performance of the attack using G1 is nearly identical to the performance of the
attack using the whole AES graph, or when including the key schedule, or when
looking at two rounds, whereas there is a clear gap to the performance when
using GA

1 . This shouldn’t come as a huge surprise: we know from works such as
[1,8] on SPA attacks on block ciphers, that the information from either the key
schedule or just the encryption round goes a long way to recovering the key.

With such little difference in performance between the whole graph and G1, it
seems reasonable to utilise only the first round. This has not only the advantage
of dealing with much smaller graphs, crucially it implies that also less profiling
effort is necessary, which could be a practical advantage. For instance, if traces
become increasingly misaligned (e.g. because the clock frequency of the proces-
sor is changeable), having to only profile the beginning (or end) round of an
implementation could be more feasible than having to profile across the entire
trace. With respect to GA

1 , although we see a large performance gap in the suc-
cess rate (when compared to the whole graph and G1), the ‘Best Rank’ results
show that the GA

1 method is still effective as an attack. The advantage GA
1 has

in this attack scenario is that convergence is guaranteed after 8 BP iterations.
Our results also showed, surprisingly, that better SNRs do not imply that

fewer BP iterations are required. We observed that for SNR = 21, we needed 20
BP iterations; but for SNR = 2−3 we needed fewer iterations, namely 15. We also
noticed that, for SNR = 21 in the case of G, there was a success rate drop when
using 50 iterations over 25. We speculate that this is due to the large number
of cycles in the graph. From these results clear that there is no simple way of
choose tmax optimally. However, by using our Epsilon Exhaustion improvement
(see Sect. 3.1) we can terminate BP when the information updating the key has
reached a stable equilibrium.

6 Studying the Effect of Different Graph Combination
Methods

Having established that attack results based on using the whole graph or just
G1 are nearly identical in a single trace setting, we now turn our attention to
attacks that utilise multiple leakage traces. We now compare the performance
of the G1 and the GA

1 graphs specifically to see if the performance difference
between them persists across different trace combination methods.

We ran simulations ranging from high signal to high noise scenarios. In the
high signal scenarios there were no differences between the graphs w.r.t different
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combination methods. Only in noisy scenarios did we observe differences. For
our discussion we include two particularly striking sets of results in Figs. 4 and
5 in the appendix. In the high noise scenario we provided more traces than in
the high signal case. The figure shows attack outcomes for the different graph
combination methods as applied to different graphs.

In the case of SNR of 2−1 we see, surprisingly, that the acyclic graph GA
1 can

outperform G1 across different combination methods, and that LFG for GA
1 isn’t

strictly the best method. When we use ten or more traces, GA
1 has a constant

success rate, compared to G1 when using IFG and SFG for the same number of
traces. We saw the same results for an SNR of 2−3. Only when decreasing the
SNR to 2−6, G1 performed better than GA

1 and LFG is the best combination for
G1. The IFG method with G1 only starts to succeed after 45 traces, when the
LFG method has over a 90% success rate. We also observe here that although IFG
is favoured over SFG when the SNR is high (2−1), SFG becomes more effective
when the SNR is lower, needing around 70 traces to have an 80% success rate.
When using GA

1 in a low noise scenario, the graph connecting method seems to
have little effect on the results, and we see no signs of success until we use 60 or
more traces. We hypothesise that in a low SNR setting having more dependent
variables helps to compensate for the noise, an observation that has been made
elsewhere in the same context [5]. However it would appear that in the context of
a relatively large graph that takes into account “sufficient” leakage from the first
round, extra information from later rounds is not as important. These results
show that neither more rounds nor more intermediates or more connected graphs
necessarily make for a more effective attack overall.

7 Studying the Effect of Reduced Graphs in a Multiple
Traces Setting

As a final experiment we simulated multiple trace attacks (with IFG) using
reduced graphs. We studied different noise levels (low, medium, and high), and
provide Fig. 6 in the appendix. In short, only when moving to high noise settings
the larger graphs proved to be slightly advantageous (in line with the observa-
tions in the previous section) in terms of first-order success rate. However, if we
consider the median ranks of the experiments, we see the effectiveness of the
acyclic methods is still comparable to the cyclic methods; when using 90 traces,
the acyclic graphs ranked the correct key with the second highest probability.

For confirmation purposes we also ran these attacks on our real trace set. We
determined the SNR on those traces and reran the simulations with a matching
SNR (=2−5). Figure 2 shows the outcomes of these experiments. In the left pane
we visualise the comparison based on using G1 between real and simulated traces.
The right pane shows the same comparison using GA

1 . Clearly the simulation
results are a very good match with the real traces. We can also see that the
performance of GA

1 is again nearly identical to G1.
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Fig. 2. Comparison of a BP attack on real trace data against simulated data (SNR
2−5), using graphs G1 and GA

1 .

8 Conclusions and Recommendations for Practical Use

The approach of using a belief propagation algorithm on a factor graph that
describes an implementation under attack leads to a very powerful attack strat-
egy. However there are many options to concretely instantiate this idea, and
these options are expected to have an impact on the performance of concrete
attacks. So far there exist very few publications about this important attack
vector and none of them has drilled into the details related to building a graph
for a specific implementation.

Our submission makes the first step into developing an understanding how
choices in instantiating this attack vector impact on the resulting attacks. We
specialise our investigation to AES FURIOUS, and look at the attack performance
when reducing elements from the graph as it would “immediately” follow from
the AES FURIOUS implementation. Alongside our experiments we provide a new
metric to capture the effect of a variable node, and introduce two improvements
to the (loopy) Belief Propagation algorithm that are useful specifically in the
context of side channel analysis.

Our findings show that assumptions that might have been made in previous
work, and that seem to naturally follow from the intuition about the working
principle of Belief Propagation on factor graphs are not always met in practice.
E.g. including more leakage does not always make a significant difference (our
findings show that only in very noisy settings there is a slight advantage for our
full factor graph). Combining multiple traces into a large factor graph is also
not necessarily the best option. In fact our experiments suggest that the best
option (except for the noisiest of settings) is to use an acyclic graph (which is
guaranteed to converge to a correct result) in either the independent or sequential
combination method because this will guarantee attack success at the expense of
marginally more traces (in medium noise settings the approach works in fact as
well as the best other approach). This is particularly interesting for the potential
use of such a method in an evaluation setting: as a configuration is possible
that guarantees convergence, and we have theoretical understanding about the
necessary number of Belief Propagation iterations, we can avoid the attack failing
with no explanation.
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Our results, although derived by focussing on one algorithm/implementation
are, to the best of our understanding, transferrable to other implementations of
block ciphers. For the vast majority of popular block ciphers the cyclic attribute
(typically related to a diffusion layer) of the algorithm leads to having to use
loopy belief propagation. The nodes that cause the cycles are often related to
simple transformations on variables that do not leak any “new” key information.
Therefore they do not truly add “new” information into the graph, and thus we
suggest to remove them and thereby remove the cycles and run the attack on a
reduced graph. To not solely rely on intuition, we have introduced the Hellinger
Distance metric to measure the ‘importance’ of each node in the graph. Therefore
one approach in practice would be to derive the importance of candidate nodes
for removal (either via some initial attacks or simulations). The user can then
carefully select the desired factor graph for the implementation. Upon finding
the optimal structure of the graph, the user then has a choice for the graph
connection method. The graph connection method is largely independent of the
structure of the graphs to be connected. We propose using the Independent
Graph connection method, as it does not incur a large memory overhead when
dealing with multiple traces (the noisier the trace set, the more traces will be
required for the attack phase). However, if the user has access to a large amount
of memory and computational power, they may instead opt to use the Large
Factor Graph method, as we show in our results it performs marginally better
over other graph connection methods.
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Fig. 4. Graph combination methods using graphs G1 and GA
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Abstract. The profiled side-channel analysis represents the most pow-
erful category of side-channel attacks. In this context, the security eval-
uator (i.e., attacker) gains access to a profiling device to build a precise
model which is used to attack another device in the attacking phase.
Mostly, it is assumed that the attacker has significant capabilities in the
profiling phase, whereas the attacking phase is very restricted. We step
away from this assumption and consider an attacker restricted in the
profiling phase, while the attacking phase is less limited. We propose
the concept of semi-supervised learning for side-channel analysis, where
the attacker uses a small number of labeled measurements from the pro-
filing phase as well as the unlabeled measurements from the attacking
phase to build a more reliable model. Our results show that the semi-
supervised concept significantly helps the template attack (TA) and its
pooled version (TAp). More specifically, for low noise scenario, the results
for machine learning techniques and TA are often improved when only a
small number of measurements is available in the profiling phase, while
there is no significant difference in scenarios where the supervised set is
large enough for reliable classification. For high noise scenario, TAp and
multilayer perceptron results are improved for the majority of inspected
dataset sizes, while for high noise scenario with added countermeasures,
we show a small improvement for TAp, Naive Bayes and multilayer per-
ceptron approaches for most inspected dataset sizes. Current results go in
favor of using semi-supervised learning, especially self-training approach,
in side-channel attacks.

1 Introduction

Side-channel analysis (SCA) consists of extracting secret data from (noisy) mea-
surements. It is made up of a collection of miscellaneous techniques, combined
in order to maximize the probability of success, for a low number of trace mea-
surements, and as low computation complexity as possible. The most powerful
attacks currently known are based on a profiling phase, where the link between
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the leakage and the secret is learned under the assumption that the attacker
knows the secret on a profiling device.

This knowledge is subsequently exploited to extract another secret using
fresh measurements from a different device. In order to run such an attack,
one has a plethora of techniques and options to choose from, where the two
main types of attacks are based on (1) template attack (relying on probability
estimation), and (2) machine learning (ML) techniques. When working with the
typical assumption for profiled SCA that the profiling phase is not bounded,
the situation actually becomes rather simple if neglecting computational costs.
If the attacker is able to acquire an unlimited (or, in real-world very large)
amount of traces, the template attack (TA) is proven to be optimal from an
information theoretic point of view (see e.g., [1,2]). In that context of unbounded
and unrestricted profiling phase, ML techniques seem not needed.

Stepping away from the assumption of an unbounded number of traces, the
situation becomes much more interesting and of practical relevance. A number
of results in recent years showed that in those cases, machine learning tech-
niques can actually significantly outperform template attack (see e.g., [3–5]).
Still, the aforesaid attacks work under the assumption that the attacker has a
large amount of traces from which a model is learned. The opposite case would
be to learn a model without any labeled examples. Machine learning approaches
(mostly based on clustering) have been proposed, for instance, for public key
encryption schemes where only two possible classes are present – 0 and 1 – and
where the key is guessed using only a single-trace (see e.g., [6]). In the case of
differential attacks (using more than one encryption) and using more than two
classes, to the best of our knowledge, unsupervised machine learning techniques
have not been studied yet.

In this paper, we aim to address a scenario positioned between supervised and
unsupervised learning, the so-called semi-supervised learning in the context of
SCA. Figure 1 illustrates the different approaches of supervised (on the left) and
semi-supervised learning (on the right). Supervised learning assumes that the
security evaluator first possesses a device similar to the one under attack. Having
this additional device, he is then able to build a precise profiling model using a set
of measurement traces and knowing the plaintext/ciphertext and the secret key
of this device. In the second step, the attacker uses the obtained profiling model
to reveal the secret key of the device under attack. For this, he measures a new,
additional set of traces, but as the key is secret, he has no further information
about the intermediate processed data and thus builds hypotheses. Accordingly,
the only information which the attacker transfers between the profiling phase and
the attacking phase is the profiling model he builds. We note there is a number
of papers considering supervised machine learning in SCA, see e.g., [7–9].

In realistic settings, the attacker is not obliged to view the profiling phase
independently from the attacking phase. He can rather combine all available
resources to make the attack as effective as possible. In particular, he has at hand
a set of traces for which he precisely knows the intermediate processed states
(i.e., labeled data) and another set of traces with a secret unknown key and thus
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no information about the intermediate variable (i.e., unlabeled data). To take
advantage of both sets at once, we propose a new strategy of conducting profiled
side-channel analysis to build a more reliable model (see Fig. 1 on the right). This
new view is of particular interest when the number of profiling traces is (very)
low, and thus any additional data is helpful to improve the model estimation.

Fig. 1. Profiling side-channel scenario: traditional (left), semi-supervised (right).

To show the efficiency and applicability of semi-supervised learning for SCA,
we conduct extensive experiments where semi-supervised learning outperforms
supervised learning if certain assumptions are satisfied. More precisely, the
results show a number of scenarios where guessing entropy on the test set is
significantly lower when semi-supervised learning is used (when compared to
the “classical” supervised approach). We start with the scenario that we call
“extreme profiling”, where the attacker has only a very limited number of traces
to learn the model. From there, we increase the number of available traces, mak-
ing the attacker more powerful, until we reach a setting where there is no more
need for semi-supervised learning. Still, even when the supervised learning works
good (i.e., succeeds in breaking an implementation), we can observe a number
of scenarios where semi-supervised learning can still improve the results or at
least not deteriorate them.

To the best of our knowledge, the only work up till now implementing a semi-
supervised analysis in SCA is [10], where the authors conclude that the semi-
supervised setting cannot compete with a supervised setting. Unfortunately, the
assumed scenario is hard to justify and consequently their results are expected
(but without much implication for SCA). More precisely, the authors compared
the supervised attack that has more available measurements (and corresponding
labels) than the semi-supervised attack. On the basis of such experiments, they
concluded that the supervised attack is better, which is intuitive and straight-
forward. A proper comparison would be between the supervised attack that has
at most the same number of labeled measurements as the semi-supervised one.
Additionally, our analysis is not restricted to only one labeled class in the learn-
ing phase.

Note, we primarily focus on improving the results if the profiling phase is lim-
ited. Since we are considering extremely difficult scenarios, the improvements one
can realistically expect are often not too big. Still, we consider any improvement
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to be relevant since it makes the attack easier, while not requiring any additional
knowledge or measurements.

2 Semi-supervised Learning Types and Notation

Semi-supervised learning (denoted as SSL in the rest of the paper) is positioned
in the middle between supervised and unsupervised learning. There, the basic
idea is to take advantage of a large quantity of unlabeled data during a super-
vised learning procedure [11]. This approach assumes that the attacker is able to
possess a device to conduct a profiling phase but has limited capacities. This may
reflect a more realistic scenario in some practical applications, as the attacker
may be limited by time, resources, and also face implemented countermeasures
which prevent him from taking an arbitrarily large amount of side-channel mea-
surements, while knowing the secret key of the device.

Let x = (x1, . . . , xn) be a set of n samples where each sample xi is assumed
to be drawn i.i.d. from a common distribution X with probability P (x). This
set x can be divided into three parts: the points x l = (x1, . . . , xl) for which
we know the labels y l = (y1, . . . , yl) and the points xu = (xl+1, . . . , xl+u) for
which we do not know the labels. Additionally, the third part is the test set
x t = (xl+u+1, . . . , xn) for which labels are also not known. We see that differing
from the supervised case, where we also do not know labels in the test phase, here
unknown labels appear already in the training phase. As for supervised learning,
its goal is to predict a class for each sample in the test set x t = (xl+u+1, . . . , xn).
For SSL, two learning paradigms can be discussed: transductive and inductive
learning [12]. In transductive learning (which is a natural setting for some SSL
algorithms), predictions are performed only for the unlabeled data on a known
test set. The goal is to optimize the classification performance. More formally,
the algorithm makes predictions y t = (yl+u+1, . . . , yn) on x t = (xl+u+1, . . . , xn).
In inductive learning, the goal is to find a prediction function defined on the
complete space X , i.e., to find a function f : X → Y. This function is then
used to make predictions f(xi) for each sample xi in the test set. Obviously,
transductive learning is easier, since no general rule needs to be inferred, and,
consequently, we opt to conduct it. From the algorithm class perspective, we will
use two approaches in order to achieve successful SSL, namely: self-training [12]
(Sect. 2.1) and graph-based algorithms [12,13] (Sect. 2.2).

On an intuitive level, semi-supervised learning sounds like an extremely pow-
erful paradigm (after all, humans learn through SSL), the results show that it is
not always the case. More precisely, when comparing SSL with supervised learn-
ing, it is not always possible to obtain more accurate predictions. Consequently,
we are interested in the cases where SSL can outperform supervised learning. In
order for that to be possible, the following needs to hold: the knowledge on p(x)
one gains through unlabeled data has to carry useful information for inference of
p(y|x). In the case where this is not true, SSL will not be better than supervised
learning and can even lead to worse results. To assume a structure about the
underlying distribution of data and to have useful information in the process of
inference, we use two assumptions which should hold when conducting SSL [12].
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Smoothness Assumption. If two points x1 and x2 are close, then their correspond-
ing labels y1 and y2 are close. The smoothness assumption can be generalized in
order to be useful for SSL: if two points x1 and x2 in a high density region are
close, then so should the corresponding labels y1 and y2 be.

Intuitively, this assumption tells us that if two samples (measurements)
belong to the same cluster, then their labels (e.g., their Hamming weight or
intermediate value) should be close. Note that, this assumption also implies
that, if two points are separated by a low-density region, then their labels need
not be close. The smoothness assumption should generally hold for SCA, as the
power consumption (or electromagnetic emanation) is related to the activity of
the device. For example, a low Hamming weight or a low intermediate value
should result in a low side-channel measurement.

Manifold Assumption. The high-dimensional data lie on or close to a low-
dimensional manifold. If the data really lie on a low-dimensional manifold, then
the classifier can operate in a space of the corresponding (low) dimension. Intu-
itively, the manifold assumption tells us that a set of samples is connected in
some way: e.g., all measurements with the Hamming weight 4 lie on their own
manifold, while all measurements with the Hamming weight 5 lie on a different,
but nearby, manifold. Then, we can try to develop representations for each of
these manifolds using just the unlabeled data, while assuming that the different
manifolds will be represented using different learned features of the data.

2.1 Self-training

In self-training (or self-learning), any classification method is selected and the
classifier is trained with the labeled data. Afterward, the classifier is used to
classify the unlabeled data. From the obtained predictions, one selects only those
instances with the highest output probabilities (i.e., where the output probability
is higher than a given threshold σ) and then adds them to the labeled data. This
procedure is repeated k times.

Self-training is a well-known semi-supervised technique and one that is prob-
ably the most natural choice to start with [12]. The biggest drawback with this
technique is that it depends on the choice of the underlying classifier and that
possible mistakes reinforce themselves as the number of repeats increase. Natu-
rally, one expects that the first step of self-learning will introduce errors (wrongly
predicted classes). It is therefore important to retain only those instances for
which the prediction probability of the class is high. Unfortunately, a very high
class prediction probability (even 100%) does not guarantee that the actual class
is correctly predicted. Additionally, we use adaptive threshold σ for predicted
class probability, as explained in Sect. 4.

2.2 Graph-Based Learning

In graph-based learning, the data are represented as nodes in graphs, where a
node is both labeled and unlabeled example. The edges are labeled with the
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pairwise distance of incident nodes. If an edge is not labeled, it corresponds to
the infinite distance. Most of the graph-based learning methods depend on the
manifold assumption and refer to the graph by utilizing the graph Laplacian. Let
G = (E, V ) be a graph with edge weights given by w : E → R. The weight w(e)
of an edge e corresponds to the similarity of the incident nodes and a missing
edge means no similarity. The similarity matrix W of graph G is defined as:

Wij =

{
w(e) if e = (i, j) ∈ E

0 if e = (i, j) /∈ E
(1)

The diagonal matrix called the degree matrix Dii is defined as Dii =
∑

j Wij .
To define the graph Laplacian two well-known ways are to use:

– normalized graph Laplacian L = I − D−1/2WD−1/2,
– unnormalized graph Laplacian L = D − W .

We use graph-based learning technique called label spreading that is based
on normalized graph Laplacian. In this algorithm, node’s labels propagate to
neighbor nodes according to their proximity. Since the edges between the nodes
have certain weights, some labels propagate easier. Consequently, nodes that are
close (in the Euclidean distance) are more likely to have the same labels.

3 Experimental Setting

3.1 Classification Algorithms

In supervised learning, we use template attack (TA) and its pooled version
(TAp), random forest (RF), multilayer perceptron (MLP), and Naive Bayes (NB)
algorithms. In the graph-based SSL, we use k-nearest neighbors (k-NN) (i.e., the
method to assign labels) since it produces a sparse matrix that can be calculated
very quickly. For self-training, we use Naive Bayes. In all the experiments, we
use Python [14].

Template Attack. The template attack (TA) relies on the Bayes theorem such
that the posterior probability of each class value y, given the vector of N observed
attribute values x:

p(Y = y|X = x ) =
p(Y = y)p(X = x |Y = y)

p(X = x )
, (2)

where X = x represents the event that X 1 = x 1 ∧ X 2 = x2 ∧ . . . ∧ XN = xN .
When used as a classifier, p(X = x ) in Eq. (2) can be dropped as it does

not depend on the class y. Accordingly, the attacker estimates in the profiling
phase p(Y = y) and p(X = x |Y = y) which are used in the attacking phase to
predict p(Y = y|X = x ) [15]. Note that the class variable Y is discrete while the
measurement X is continuous. So, the discrete probability p(Y = y) is equal to
its sample frequency where p(Xi = xi|Y = y) displays a density function. Mostly
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in the state of the art, TA is based on a multivariate normal distribution of the
noise and thus the probability density function used to compute p(X = x |Y = y)
equals:

p(X = x |Y = y) =
1√

(2π)D|Σy|
e− 1

2 (x−µy)T Σ−1
y (x−µy), (3)

where µy is the mean over X for 1, . . . , D and Σy the covariance matrix for each
class y. The authors of [16] propose to use only one pooled covariance matrix to
cope with statistical difficulties that result into low efficiency. We will use both
versions of the template attack, where we denote pooled TA attack as TAp.

Naive Bayes. The Naive Bayes (NB) classifier [17] is also based on the Bayesian
rule but is labeled “Naive” as it works under a simplifying assumption that
the predictor features (measurements) are mutually independent among the D
features, given the class value. The existence of highly-correlated features in a
dataset can influence the learning process and reduce the number of successful
predictions. Also, NB assumes a normal distribution for predictor features. NB
classifier outputs posterior probabilities as a result of the classification proce-
dure [17]. The Bayes’ formula is used to compute the posterior probability of
each class value y given the vector of N observed feature values x.

Multilayer Perceptron. The multilayer perceptron (MLP) classifier is a feed-
forward artificial neural network. MLP consists of multiple layers (at least three)
of nodes in a directed graph, where each layer is fully connected to the next one
and training of the network is done with the backpropagation algorithm [18].

Random Forest. Random forest (RF) is a well-known ensemble decision tree
learner [19]. Decision trees choose their splitting attributes from a random sub-
set of k attributes at each internal node. The best split is taken among these
randomly chosen attributes and the trees are built without pruning. RF is a
parametric algorithm with respect to the number of trees in the forest. It is
also a stochastic algorithm, because of its two sources of randomness: bootstrap
sampling and attribute selection at node splitting.

k-NN. k-nearest neighbors is the basic non-parametric instance-based learning
method. The classifier has no training phase; it just stores the training set sam-
ples. In the test phase, the classifier assigns a class to an instance by determining
the k instances that are the closest to it, with respect to Euclidean distance met-
ric: d(xi, xj) =

√∑n
r=1(ar(xi) − ar(xj))2. Here, ar is the r -th attribute of an

instance x. The class is assigned as the most commonly occurring one among the
k -nearest neighbors of the test instance. This procedure is repeated for all test
set instances.

3.2 Datasets

We use three datasets in our experiments. To test across various settings,
we target (1) high-SNR unprotected implementation on a smartcard [20],
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(2) low-SNR unprotected implementation on FPGA, and (3) low-SNR imple-
mentation on a smartcard protected with the randomized delay countermeasure.

We do not consider the variations in the number of available points of interest
(features) since in such a case, the number of scenarios would become quite large.
We select 50 points of interests with the highest correlation between the class
value and data set for all the analyzed data sets and investigate scenarios with
a different number of classes – 9 classes and 256 classes.

Calligraphic letters (e.g., X ) denote sets, capital letters (e.g., X) denote ran-
dom variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. Let k∗ be the fixed secret cryptographic key
(byte) and the random variable T the plaintext or ciphertext of the cryptographic
algorithm which is uniformly chosen. The measured leakage is denoted as X and
we are particularly interested in multivariate leakage X = X1, . . . , XD, where
D is the number of time samples or features (attributes) in ML terminology.

Considering a powerful attacker who has a device with knowledge about the
secret key implemented, a set of N profiling traces X 1, . . . ,XN is used in order
to estimate the leakage model beforehand. Note that this set is multi-dimensional
(i.e., it has a dimension equal to D × N). In the attack phase, the attacker then
measures additional traces X 1, . . . ,XQ from the device under attack in order
to break the unknown secret key k∗.

DPAcontest v4. The dataset provides measurements of a masked AES software
implementation [20]. As the mask is known, one can easily turn it into an unpro-
tected scenario. Though, as it is a software implementation, the most leaking
operation is not the register writing, but the processing of the S-box operation
and we attack the first round. Accordingly, the leakage model changes to

Y (k∗) = Sbox[Pb1 ⊕ k∗] ⊕ M︸︷︷︸
known mask

, (4)

where Pb1 is a plaintext byte and we choose b1 = 1. Again we consider the
scenario of 256 classes and 9 classes (considering HW (Y (k∗))). Compared to
the measurements from version 2, the model-based SNR is much higher and lies
between 0.1188 and 5.8577.

Unprotected AES-128 on FPGA. This dataset targets an unprotected imple-
mentation of AES-128. AES-128 core was written in VHDL in a round based
architecture, which takes 11 clock cycles for each encryption. The AES-128 core
is wrapped around by a UART module to enable external communication. It is
designed to allow accelerated measurements to avoid any DC shift due to envi-
ronmental variation over prolonged measurements. The design was implemented
on Xilinx Virtex-5 FPGA of a SASEBO GII evaluation board. Side-channel
traces were measured using a high sensitivity near-field EM probe, placed over
a decoupling capacitor on the power line. Measurements were sampled on the
Teledyne LeCroy Waverunner 610zi oscilloscope and the trace set is publicly
available at https://github.com/AESHD/AES HD Dataset. Although the full

https://github.com/AESHD/AES_HD_Dataset
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dataset consists of 1 250 features, here we use only the 50 most important fea-
tures, as selected with the Pearson correlation. A suitable and commonly used
(HD) leakage model when attacking the last round of an unprotected hardware
implementation is the register writing in the last round [20] These measurements
are relatively noisy and the resulting model-based SNR (signal-to-noise ratio)
has a maximum value of 0.0096. As this implementation leaks in HD model, we
denote this implementation as AES HD.

Random Delay Countermeasure Dataset. The third dataset uses a protected (i.e.,
with a countermeasure) software implementation of AES. The target smartcard
is an 8-bit Atmel AVR microcontroller. The protection uses random delay coun-
termeasure as described by Coron and Kizhvatov. The trace set is publicly avail-
able at https://github.com/ikizhvatov/randomdelays-traces [21]. Adding ran-
dom delays to the normal operation of a cryptographic algorithm has an effect
on the misalignment of important features, which in turns makes the attack more
difficult. As a result, the overall SNR is reduced. We mounted our attacks in the
Hamming weight power consumption model against the first AES key byte, tar-
geting the first S-box operation. The dataset consists of 50 000 traces of 3 500
features each. The best 50 features were selected using Pearson correlation. For
this dataset, the SNR has a maximum value of 0.0556. In the rest of the paper,
we denote this dataset as the AES RD.

3.3 Dataset Preparation

We experiment with randomly selected 50 000 measurements (profiled traces)
from all three datasets. The datasets are standardized by removing the mean and
scaling to unit variance. For supervised learning scenarios, the measurements are
randomly divided into 1:1 ratio for training and test sets (e.g., 25 000 for training
and 25 000 for testing). The training datasets are divided into 5 stratified folds
and evaluated by 5-fold cross-validation procedure for appropriate parameter
tuning. For semi-supervised learning scenarios, we divide the training dataset
into a labeled set of size l and unlabeled set of size u, as follows:

– (100 + 24.9k): l = 100, u = 24900 → 0.4% vs 99.6%
– (500 + 24.5k): l = 500, u = 24500 → 2% vs 98%
– (1k + 24k): l = 1000, u = 24000 → 4% vs 96%
– (10k + 15k): l = 10000, u = 15000 → 40% vs 60%
– (20k + 5k): l = 20000, u = 5000 → 80% vs 20%

4 Experimental Results

In side-channel analysis, an adversary is not only interested in predicting the
labels y(·, k∗

a) in the attacking phase but he also aims at revealing the secret
key k∗

a. A common measure in SCA is the guessing entropy (GE) metric. In
particular, let us assume, given Q amount of samples in the attacking phase, an

https://github.com/ikizhvatov/randomdelays-traces
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attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in a decreasing order
of probability with |K| being the size of the keyspace. So, g1 is the most likely
and g|K| the least likely key candidate. The GE is the average position of k∗

a in
g. As SCA metric, we report the number of traces needed to reach a guessing
entropy of 5. We use ‘–’ in case this threshold is not reached within the test set.

In supervised learning, the classifiers are built on the labeled training sets
and estimated on the unlabeled test set. When considering SSL, we first learn the
classifiers on the labeled sets. Then, we learn with the labeled set and unlabeled
set in a number of steps, where in each step, we augment the labeled set with
the most confident predictions from the unlabeled set. Finally, we conduct the
estimation phase on a different unlabeled set (test set).

For machine learning techniques that have parameters to be tuned, we con-
ducted a tuning phase on the labeled sets and use such tuned parameters in
consequent experimental phases. The best obtained tuning parameters, with
respect to the accuracy of the classifiers, are: for k-NN with label spreading, we
select k to be equal to 7, for random forest we use 200 trees, while for MLP,
we use 4 hidden layers where the number of neurons per layer is 50, 30, 20, 50,
the ‘adam’ solver and the ‘relu’ activation function. For Naive Bayes, template
attack, and its pooled version, there are no parameters to tune.

As already mentioned, for self-training, we use an adaptive threshold denoted
σ. In the beginning, σ is set to the value of 0.99. The threshold value remains
unchanged as long as there exists any instance in the unlabeled examples for
which the probability of assignment to any class is higher than 0.99. When there
are no such instances left, the σ value is decreased in the next iteration by
20% (i.e., to 79.2%) and the procedure is repeated for the remaining unlabeled
examples for which a successful classification has not yet been made. The whole
process is repeated 5 times, each time reducing the parameter by 20%. There-
after, all the remaining instances are attributed to the class having the highest
probability.

In Tables 1, 2 and 3, we give results on the number of traces needed to reach
guessing entropy of 5 for the DPAcontest v4, AES HD, and AES RD datasets,
respectively, for all methods and dataset sizes. In all scenarios where SSL gives
better results than the supervised approach, we denote such results in bold
formatting. Due to the lack of space, we do not give accuracy results but we
note that, where SSL shows improvements, the accuracy increases up to 15%.

4.1 DPAcontest v4 Dataset Results

The results for DPAcontest v4, HW model, in Table 1 and in Fig. 2a clearly show
the superiority of SSL approaches compared to supervised learning for a small
number of traces (i.e., 100 and 500) in the training set. The only classifier not
showing improvement with the introduction of SSL approaches is RF. The best
results in terms of lowest GE are achieved with the MLP classifier. Another
interesting observation is that TA does not reach GE = 5 for the majority of
training dataset sizes for supervised learning (see also Fig. 2b), while it always
reaches the goal with label spreading (LS) approach. Both for the HW model
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(a) DPAcontest v4, HW model, MLP (b) DPAcontest v4, HW model, TA

(c) AES HD, HW model, MLP (d) AES HD, HW model, TA pooled

(e) AES RD, HW model, MLP (f) AES RD, Value model, MLP

Fig. 2. Guessing entropy results.

(9 classes) and for the intermediate value model (256 classes), LS method appears
to provide better results in the majority of cases when compared to the self-
training (ST) method. The NB classifier gives stable and favorable results both
for HW and value models, comparable to MLP and TAp.
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Table 1. Test set results, supervised learning vs. semi-supervised learning approaches,
DPAcontest v4, number of traces to reach GE = 5 (– if not reached).

Size TA TAp MLP NB RF

9 classes, supervised learning/SSL:self-training/SSL:label spreading

100 + 24.9k –/–/72 9/9/7 –/9/9 14/8/7 17/936/47

500 + 24.5k –/86/40 4/4/4 28/5/4 5/6/4 11/207/16

1k + 24k –/37/– 4/5/4 4/6/4 4/7/5 13/375/13

10k + 15k –/6/5 3/4/3 3/4/3 5/5/4 13/37/12

20k + 5k 5/4/4 3/3/3 3/3/3 4/4/4 12/17/12

25k 5 3 3 5 11

256 classes, supervised learning/SSL:self-training/SSL:label spreading

100 + 24.9k –/–/– –/–/– –/152/75 –/313/72 –/–/–

500 + 24.5k –/–/– 28/–/55 –/10/17 143/76/30 –/–/–

1k + 24k –/–/– 5/–/11 –/4/7 30/21/10 –/–/–

10k + 15k –/–/973 2/–/2 2/2/2 2/3/2 –/–/–

20k + 5k –/–/8 2/–/2 1/1/1 2/2/2 –/–/–

25k 5 2 1 2 –

4.2 AES HD Dataset Results

AES HD dataset results, given in Table 2, demonstrate a highly increased num-
ber of traces needed to reach GE = 5, when compared to DPAcontest v4 dataset
from Table 1. This is expected, since AES HD contains more noise. Still, MLP,
NB, and TAp reach the designated threshold in many cases, both for HW and
value models. Even when GE = 5 is not reached, from Fig. 2c, it can be seen
that SSL methods are quite superior to supervised learning for the majority of

Table 2. Test set results, supervised learning vs. semi-supervised learning approaches,
AES HD, number of traces to reach GE = 5 (– if not reached).

Size TA TAp MLP NB RF

9 classes, supervised learning/SSL:self-training/SSL:label spreading

100 + 24.9k –/–/– –/–/– –/5756/– 12777/6091/– 23077/–/–

500 + 24.5k –/–/– –/–/– –/12286/– 5126/8710/22868 –/–/–

1k + 24k –/–/– 18568/2952/7015 –/4207/16070 1913/3437/15308 15896/21812/–

10k + 15k –/6242/– 2148/2397/1615 –/4918/– 1111/3010/1315 –/16705/–

20k + 5k –/5688/– 1183/962/963 15775/4947/14094 893/1953/1034 –/10689/–

25k – 1099 14693 952 –

256 classes, supervised learning/SSL:self-training/SSL:label spreading

100 + 24.9k –/–/– –/–/– –/–/– –/–/– –/–/–

500 + 24.5k –/–/– –/–/– –/–/– –/–/– –/–/–

1k + 24k –/–/– –/–/– –/–/– –/–/– –/–/–

10k + 15k –/–/– –/21470/17896 –/12385/14937 6872/9270/7844 –/–/–

20k + 5k –/–/– –/–/19951 19887/9860/8745 4330/5663/4601 –/–/–

25k – – – 18104 4001
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input dataset sizes. This is especially pronounced for the ST approach, for which
all input dataset sizes surpass even the best results for supervised learning. The
results for the pooled version of TA are interesting (Fig. 2d), as they show a clear
superiority of ST semi-supervised approach in all cases, and superiority of LS
for larger dataset sizes in HW model. Intermediate value model results, given
in the lower part of Table 2 show that it is difficult to reach the GE threshold
in most cases and for most classifiers. Still, SSL methods give better results for
the MLP and TAp classifiers and slightly worse results on larger dataset sizes
for the NB classifier.

4.3 AES RD Dataset Results

AES RD dataset is the most difficult dataset, considering its low signal-to-noise
ratio and presence of a countermeasure. The results depicted in Table 3 point to
an even higher number of traces needed to reach GE = 5, when compared to the
AES HD dataset. The benefit of using SSL methods for this dataset still exists,
but less so when compared to the other two datasets. For example, NB classifier
reaches the threshold for the dataset size of 1000 instances only for ST, then, for
10k instances, the best results are achieved with supervised learning, while for
20k instances, again ST is superior to both LS and supervised learning. From
Fig. 2e, it can be seen that, in most cases, SSL methods using MLP are better
than their supervised counterparts. Also, ST method for the larger number of
traces appears to be superior to the other approaches. For the intermediate
value model on this dataset (Table 3 below and Fig. 2f), the only clear benefit of
using SSL approaches is for large dataset sizes (especially 20k for ST approach),
which suggests that too much noise does not allow for efficient modeling (either
for supervised or for SSL approaches), when the sample sizes are low.

Table 3. Test set results, supervised learning vs. semi-supervised learning approaches,
AES RD, number of traces to reach GE = 5 (– if not reached).

Size TA TAp MLP NB RF

9 classes, supervised learning/SSL:self-training/SSL:label spreading

100 + 24.9k –/–/– –/–/– –/–/– –/–/– –/–/–

500 + 24.5k –/–/– –/–/– –/–/– –/–/– –/–/–

1k + 24k –/–/– –/–/– –/–/– –/18484/– –/–/–

10k + 15k –/–/– 16918/–/20325 –/–/– 14329/–/21356 –/–/–

20k + 5k –/–/– 11735/10846/11475 –/–/– 15266/12785/15504 15539/20943/17944

25k – 11139 – 15231 19734

256 classes, supervised learning/SSL:self-training/SSL:label spreading

100 + 24.9k –/–/– –/–/– –/–/– –/–/– –/–/–

500 + 24.5k –/–/– –/–/– –/–/– –/–/– –/–/–

1k + 24k –/–/– –/–/– –/–/– –/–/– –/–/–

10k + 15k –/–/– –/–/– –/–/– –/–/– –/–/–

20k + 5k –/–/– –/–/– –/10210/– 15560/13387/18230 –/–/–

25k – – – 14860 –
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5 Conclusions and Future Work

Previously, in the SCA community, profiled side-channel analysis has been con-
sidered as a strict two-step process, where only the profiled model is transferred
between the two phases. Here, we explore the scenario where the attacker is
more restricted in the profiling phase but can use additional available informa-
tion given from the attacking measurements to build the profiled model. Two
approaches to SSL have been studied in scenarios with low noise/high noise/high
noise with countermeasures, 9/256 classes for prediction, and a different num-
ber of measurements in the profiling phase. As side-channel attack techniques,
we use three ML methods (multilayer perceptron with four hidden layers, Naive
Bayes, and random forest), template attack, and its pooled version. The obtained
results show that SSL is able to help in many scenarios. Significant improvements
are achieved for almost all classifiers, including template attack in the low noise
scenario for the small number of samples in the learning dataset. Also, template
attack was improved for the majority of dataset sizes using SSL methods. It is
shown that the higher the number of samples in the profiling phase, the less
influential are the added unlabeled samples from the attacking phase. When the
noise level is higher, SSL methods still show superiority over supervised learning
approaches for the majority of dataset sizes and when using most classifiers. The
improvements are smaller since those scenarios are, in general, much more diffi-
cult to attack. For the AES RD dataset, which has a significant amount of noise
and a random delay countermeasure, a clear benefit of using SSL methods may
be established only for 9-classes HW model, while for 256 classes model, both
supervised learning and SSL methods perform similarly. In general, when aver-
aged over all considered scenarios, MLP classifier demonstrates the best results,
followed by TAp, and NB. Regarding the SSL method of choice, it appears that
self-training is better in the majority of cases when compared to label spreading.
Still, for the low noise dataset scenario, label spreading may be used instead.

As a future work, we will concentrate on datasets with countermeasures since
that setting seems to be the most problematic for SSL. A second research direc-
tion would be to consider not only those measurements with the highest prob-
abilities but also to use the distribution of probabilities from the SSL learning.
Finally, in a real-world scenario, two different devices should be considered, which
may result in (slightly) different distributions (see e.g., [22,23]).
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Abstract. As one of the most prevalent SCA countermeasures, masking
schemes are designed to defeat a broad range of side channel attacks. An
attack vector that is suitable for low-order masking schemes is to try and
directly determine the mask(s) (for each trace) by utilising the fact that
often an attacker has access to several leakage points of the respectively
used mask(s). Good examples for implementations of low-order masking
schemes include the table re-computation schemes as well as the mask-
ing scheme in DPAContest V4.2. We propose a novel approach based on
Independent Component Analysis (ICA) to efficiently utilise the infor-
mation from several leakage points to reconstruct the respective masks
(for each trace) and show it is a competitive attack vector in practice.

Keywords: Side channel analysis · Masking ·
Independent Component Analysis

1 Introduction

Over the past decade, Side Channel Attacks (SCAs) have become a major threat
for various cryptographic devices. Depending on the specific attacker model,
most SCAs can be divided into two categories: profiled attacks and non-profiled
attacks. In a profiled attack, the attacker (a priori) creates direct approximations
of the device’s leakage function, and uses these in an attack. This typically results
in very efficient attacks but with the strong assumptions about the capabilities
of the attacker. Non-profiled attacks only require a proportional (or weaker)
approximation of the device’s leakage model. The canonical example of such
an attack is to approximate the device leakage with the Hamming weight of
intermediate values, and utilise correlation as a distinguisher. Attacks in both
categories often proceed via a divide and conquer strategy, which requires (in the
divide step) to explicitly guess partial keys. Consequently (in a known plaintext
setting) such attacks are limited to first and last rounds of typical block cipher
constructions.

In 2017, Gao et al. proposed a new non-profiled SCA based on Indepen-
dent Component Analysis (ICA) [1]. Assuming the observed leakages follow
c© Springer Nature Switzerland AG 2019
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the weighted Hamming weight model, the ICA based attack recovers the inter-
mediate states without making any explicit key guesses. In their paper, the
authors demonstrate several applications of this approach, including a new key-
distinguisher, attacking the middle encryption rounds as well as reverse engi-
neering. However, all previous discussions about ICA-based SCA focus on unpro-
tected implementations. We are hence interested in investigating if ICA-based
SCA can be useful to attack protected implementations.

For ICA-based SCA to work it is imperative to have access to several leakage
points for some (targeted) intermediate value. In masked implementations, one
can often observe leakages related to the manipulation of masks in the processor.
Hence, ICA-based SCA could be a powerful tool for mask recovery in masked
implementations, in particular optimised low-order masking schemes.

Our Contribution. In this paper, we explore the potential of ICA to compro-
mise implementations of some (low order) masking schemes. Specifically, in table
re-computation schemes, the multiple XORs in the re-computation process nat-
urally provide multiple leakage observations for ICA. Compared with previous
attacks, our ICA-based mask recovery finds the n-bit random masks with only
n leakage points, whereas previous attacks take 2n points. Experiments con-
firm that for smaller Sboxes (n = 4), ICA-based attack outperforms horizontal
attacks on smart card implementations. For the Rotating Sbox Masking (RSM)
scheme, which is used in the DPAContest V4, our analysis proves that if the
attacker chooses the leakages wisely, the random masks can be recovered as an
approximate ICA problem. Although the mask recovery becomes less accurate,
the following key recovery is hardly affected.

Paper Organization. In Sect. 2, we briefly review the targeted masking schemes
as well as our primary tool—ICA. Section 3 analyzes the leakage behaviour of
table re-computation schemes in details. As the XORs naturally provide multiple
leakage observations, ICA enables the attacker to determine both the random
masks and the secret key. We present another masking scheme—the masking
scheme in DPAContest V4.2—in Sect. 4. Although this scheme computes the
masked tables offline, the relevant random indexes in each round provide con-
siderable leakages for ICA-based SCA. Impacts of this approach and conclusions
are further presented in Sect. 5.

2 Preliminaries

2.1 Masking Schemes

To date, masking is one of the most prevalent countermeasures for software
implementations. In general, a masking scheme conceals the cryptographic
intermediate states with random values. As a result, the data-dependent leak-
age no longer relates to the secret key. Previous studies proposed a variety
of masking schemes, such as affine masking [2], polynomial masking [3] and
inner product masking [4]. In this paper, we focus on Boolean masking, the
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most frequently implemented approach. In a Boolean masking scheme with d-
shares, an intermediate state x is split into d shares

(
x(1), x(2), ..., x(d)

)
where

x(1) ⊕ x(2) ⊕ ... ⊕ x(d) = x. As each leakage point only depends on one x(i), the
attacker cannot learn any useful information, unless they combine the leakages
of all d shares.

For linear components P , implementing a Boolean masking is quite straight-
forward: as P (x(1) ⊕ x(2) ⊕ ... ⊕ x(d)) = P (x(1)) ⊕ P (x(2)) ⊕ ... ⊕ P (x(d)), simply
applying P to all d shares gives the expected outputs. For non-linear components
(Sboxes), things become tricker. In order to ensure the output shares satisfy
S(x(1) ⊕ x(2) ⊕ ... ⊕ x(d)) = S1(x(1)) ⊕ S2(x(2)) ⊕ ... ⊕ Sd(x(d)), at least one of
the masked Sbox Si must be related to multiple input shares. Three proposals
exist in previous studies [5]:

– Compute the Sbox arithmetically. In 2003, Ishai, Sahai and Wagner
proposed a provably secure higher-order masking scheme for bit-wise AND [6].
Alternatively, the whole Sbox can be computed as a bunch of masked ANDs
and masked NOTs. Compared with the unprotected implementations, this
construction significantly increases the computation cost.

– Table Re-computation. In many look-up table schemes, the masked Sbox
is computed as a look-up table [7–9]. In the first step, these schemes often
generate a masked table using all the shares from x(1) to x(d−1). Then, the
output shares

(
y(1), y(2), ..., y(d)

)
can be found by simply looking up x(d)

in the masked table. The major drawback of this approach, is that the re-
computation stage is not only costly, but also exploitable. For an n-bit Sbox,
this procedure provides 2n leakage points for each data share x(i). Thus, the
attacker can collect all leakage points on the trace (“horizontally”) and use a
standard DPA style attack to recover x(i). For n = 8, this horizontal attack
is actually quite efficient for software implementations [10,11].

– Global look-up tables. Alternatively, the masked table can also be com-
puted offline [8]. In this case, a masked table is generated for each possible
mask and stored in the data RAM/ROM. Considering the enormous memory
cost, this approach is more suitable for smaller Sboxes (eg. 4-bit Sbox)1. For
larger Sboxes, it often applies in Low-Entropy Masking Schemes (LEMS),
such as the Rotating Sbox Masking (RSM) [13]. Instead of random masks,
LEMS usually uses a precomputed set of constant masks, which significantly
reduces the memory cost [13]. As a lightweight SCA countermeasure, it is
LEMS’s design philosophy to resist not all but a selection of important and
powerful attacks [13]. Results from DPA Contest v4 and v4.2 are consistent
with such statement: in the profiling case, the secret key can be found with
only one trace [14].

2.2 Independent Component Analysis

Independent Component Analysis (ICA) [15] belongs to a class of problems
called Blind Source Separation (BSS), which requires to separate a set of mixed
1 For specific processors, such implementation is not necessarily secure [12].
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signals, without the aid of information about the source signals or the mixing
process. A common example is the cocktail party problem in which the challenge
of a partygoer is to pick out a single conversation when in a noisy room.

Suppose we have n simultaneous conversations (sources) S = {s1, s2, ..., sn}
going on in the party room. Microphones are placed in different positions,
recording m mixtures (observations) of the original sources Y = {y1, y2, ..., ym}.
Assuming the observation yj is a linear mixture of all sources, we have

yj = aj,0 + aj,1s1 + aj,2s2 + ... + aj,nsn

where aj,i stands for the real-valued coefficient. The overall mixing procedure
can be written as

Y = AS

where A is called the mixing matrix. In signal processing, such statistical model
is called Independent Component Analysis [15]. With additional multivariate
Gaussian noise N, the noisy ICA model is defined as

Y = AS + N

The goal of ICA, is to recover the unknown sources S from the observation
Y, without knowing the mixing matrix A or the Gaussian noise N in advance.

2.3 ICA in Side Channel Analysis

Assuming the target device’s leakage function is linear (in the bits of the inter-
mediate values), recovering the secret intermediate values in SCA is quite similar
to an ICA problem [1]. Specifically, when operating an n-bit intermediate state
x, the data-dependent leakage can be written as

L(x) = α0 + α1x1 + α2x2 + ... + αnxn, αi ∈ R (1)

Here xi represents the i-th bit2 of x and L is a linear leakage function. This
leakage function has the same form as one ICA observation (i.e. yj in Sect. 2.2).

However, for ICA we need more than a single observation. Suppose that the
device not only computes x but also computes some other intermediate state
x′ = x ⊕ c (c is a constant) at some point. Then, the attacker can also learn the
leakage of L(x′)3. Take c = 00...01 as an example, we have:

L(x′) = L(x ⊕ 00...01)
= α0 + α1x1 + α2x2 + ... + αn(xn ⊕ 1)
= α0 + α1x1 + α2x2 + ... + αn(1 − xn)
= (α0 + αn) + α1x1 + α2x2 + ... − αnxn

2 Throughout this paper, we always use subscript i as the i-th bit. Unlike traditional
SCA, the intermediate state x here represents the random mask, which is not depen-
dent on a key guess k.

3 For simplicity, we assume all leakage share the same leakage function L. However,
ICA does work with different L-s, as long as they are all linear combinations of x.
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It is not hard to see that such leakage can be regarded as the leakage from the
same intermediate state x, but with a different linear leakage function L′. Thus,
if the targeted implementation has some operand like x⊕ c, the attacker may be
able to manipulate c to get multiple “observations” for the intermediate state x.
Assuming the attacker can get enough observations (the number of observations
m ≥ n), in theory, he (or she) can solve the intermediate state x as a noisy ICA
problem.

In practice, considering side channel leakage usually contains high level of
noise, the authors also proposed a specific ICA algorithm for SCA. Due to the
space limit, we omit further details: interested readers can find this part in [1].

Unlike other traditional SCAs, recovering x with ICA does not involve any
key guess. As a consequence, ICA-based SCA serves as a perfect tool for SCA
in the middle rounds or SCA-based reverse engineering [1]. Indeed, the authors
already provide realistic experiments to verify their results on certain software
implementations. On the other hand, as stated in [1], in many realistic circum-
stances, finding such XOR constant c might not be an easy task. For this reason,
to date, the applications of ICA-based SCA are restricted to unprotected cryp-
tographic implementations.

3 ICA-Based Attack on a Table Re-computation Scheme

In this section, we analyse the potential application of ICA on a few masking
schemes. Perhaps surprisingly, for some masking schemes, constructing multi-
ple observations becomes much easier. The following two sections present two
case studies: for each case study, we will review its mask computation, analyze
its leakage and show how ICA-based SCA enables the recovery of the random
masks. Comparison with previous attacks and experimental verifications are also
provided in each case. We begin by studying a table re-computation scheme.

3.1 Table Re-computation Schemes

Considering the memory cost, masking schemes with global look-up table can
hardly be applied to larger Sboxes (eg. the Sbox in AES). Thus, many masking
schemes choose to generate the masked table online. In a d-shares table re-
computation scheme, (x(1),x(2),...,x(d−1)) is taken to the computation to create
a masked table T . In the last step, the implementation simply looks up x(d)

in T and returns T (x(d)) as the output shares. To ensure its security against
SCA, designers may also add some other procedures, such as refreshing T with
fresh randomness after each table look-up [9]. Meanwhile, most masked table
re-computations are rather similar: for clarity, we present a d-shares table re-
computation procedure in Algorithm 1.

3.2 Previous Attacks

Note that in Algorithm 1, line 3 always produces 2n leakages for each share. More
specifically, assuming the leakage function is L, the attacker learns the leakages
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Algorithm 1. A d-shares table re-computation for an n-bit Sbox
Input: x(1),...,x(d) such that x = x(1) ⊕ x(2) ⊕ ... ⊕ x(d)

Shared table T such that ⊕
i

T (u)(i) = S(u)

Output: Shared table T such that ⊕
i

T
(
x(d)

)(i)

= S(x)

1: for i = 1 to d − 1 do
2: for all u ∈ {0, 1}n do

3: T ′(u) = T
(
u ⊕ x(i)

)

4: end for
5: T = T ′

6: end for

of (L(x(i)), L(x(i) ⊕1), ..., L(x(i) ⊕ (2n −1))). As all these leakages depend on the
same share x(i), the attacker can take a guess about x(i) and verify this guess with
Correlation Power Analysis (CPA) [16]. Unlike traditional CPA which utilises a
specific leakage point across many traces (i.e. a “vertical” attack), this attack
utilizes all the 2n leakages on the same trace (i.e. it is a “horizontal” attack).
Having recovered the masks, key recovery is trivial: since all d − 1 input shares
(random masks) are already known, a traditional vertical CPA on the leakage
of x(d) reveals the secret key. Previous studies proved that, for 8-bit Sboxes
(n = 8), such “horizontal” attack is a serious threat for table re-computation
schemes [10].

A common countermeasure for the horizontal attacks is to randomly shuffle
the constant u in line 3. Since the computation follows some random order
(ϕ(0),ϕ(1),...,ϕ(2n − 1)), x(i) alone can no longer determine all the 2n leakages.
However, for many smart card applications, generating and storing an n-bit
random permutation ϕ in memory is far too expensive. Instead, they prefer to
use some pseudo-random function ϕ that can be computed online. However,
the computation of ϕ provides new leakages for the attacker. Tunstall et al.
showed that the attacker can easily explore such leakages and recover the entire
permutation ϕ [11]. Moreover, Bruneau et al. proposed a multi-variate attack
which combines all 2n leakages on one trace into a statistic that depends on
x(i) [5]. As the combination is unordered, random shuffling does not affect the
final statistic. Although x(i) cannot be recovered, the attacker finds the secret
key through higher-order attacks, with the leakage of x(i) as well as this statistic.

3.3 ICA-Based Attack

Mask Recovery. The leakages that occur in table re-computation schemes are
a perfect match for ICA. Specifically, each bit of the intermediate state x now
becomes an independent binary source. Assuming the leakage function is linear,
the attacker can always use the leakage of x as one observation for ICA. As
stated previously, the leakage of L(x ⊕ c) can also be regarded as the leakages
of x with a different leakage function. In other words, for table re-computation
schemes, the attacker can always find 2n independent observations through 2n
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XOR constants. In fact, ICA only needs n observations for a successful recovery.
Taking noise into consideration, the formal model can be written as:

l = L(x(i)) + N

where N represents the random noise. As stated in Sect. 2.3, ICA-based SCA
helps to recover the secret share x(i).

Key Recovery. Since all d − 1 secret shares are already recovered, the following
key recovery becomes trivial. Take the last round attack of AES for instance,
assuming the corresponding ciphertext byte is c and related round key byte is
k, we have

x(d) = S−1(c ⊕ k) ⊕ x(1) ⊕ x(2) ⊕ ... ⊕ x(d−1)

Since the attacker has the leakage of x(d), traditional CPA helps to determine
the correct key guess for k, as long as the value of x(1) ⊕ x(2) ⊕ ... ⊕ x(d−1) is
given.

Comparison with Previous Attacks. Compared with horizontal CPAs, our ICA-
based mask recovery uses only n leakage samples. Since horizontal CPA takes
guesses about x(i), it only applies to one certain trace. In other words, the sample
size for horizontal CPA on table re-computation schemes is always 2n. Previous
studies showed that for n = 8, horizontal CPA works quite well with software
implementations [10,11]. However, for smaller Sboxes (eg. n = 4), horizontal
CPA becomes less effective [11]. This is not surprising though: as a non-profiled
attack, CPA requires several traces to achieve a stable recovery. For our ICA-
based mask recovery, smaller Sbox is hardly a problem. Since our approach
uses only n leakage points, it works well even if n = 2. Meanwhile, the mask
recovery in horizontal CPA is basically a one-dimensional attack: since each
trace has different input shares (random masks), horizontal CPA only works on
the horizontal axis. The following key recovery, on the other hand, only collects
information on the vertical axis. In Bruneau et al.’s work [5], since the horizontal
leakages are packed into one statistic, their attack mainly works on the vertical
axis. On the contrary, our approach is essentially a two-dimensional attack. Both
the multiple leakages on one trace (“horizontal”) and the leakage model shared
by all traces (“vertical”) are taken into consideration. In some cases, this two-
dimensional property becomes a limitation: if the target implementation uses
random shuffling as a countermeasure, the frequently changing random order ϕ
completely defeats our attack. Since the 2n horizontal leakages in our attack are
not packed together (like Bruneau et al.’s attack), this random order prevents
our attack to explore the vertical information. However, such protection only
works if the designers use a new ϕ for each encryption. If the random ϕ is fixed,
our attack works exactly the same way: as ICA does not require to know the
mixing matrix, we can recover x(i) without knowing ϕ. For easy comparison, we
list the attacks mentioned above with 2-shares table re-computation schemes in
Table 14.
4 A v-variate attack means it takes v leakage samples in total.
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Table 1. Comparison of attacks with 2-shares table re-computation schemes

Variate Fix shuffle Random shuffle

horizontal CPA 2n + 1

Bruneau’s attack 2n+1 + 1 � �
Our approach n + 1 �

3.4 Experimental Validation

To show that our ICA-based attack works, we have implemented a 2-shares
version of Coron’s masking scheme [9] on an IC card with 8-bit microprocessor
(Atmega163). The power consumption was measured with a PicoScope 3206D
oscilloscope at a sampling rate of 1 GSa/s. The target cipher uses the 4-bit Sbox
of PRESENT [17]. Since the previous studies already proved that horizontal
CPA works well with 8-bit Sboxes, here we aim to test whether it still gives
satisfying recovery with smaller Sboxes. Our entire trace set contains 200 traces,
with 2 000 000 samples covering the Sbox computation in the last round. Results
from both horizontal CPA and our ICA-based attack are presented in Fig. 1.
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Fig. 1. Mask and key recovery: horizontal CPA v.s. ICA

Clearly the small 4-bit Sbox is an issue for horizontal CPA: as there are only
16 leakage samples on each trace, mask recovery becomes less reliable. In our
experiments, only 30% of the random masks are successfully recovered. As most
recovered masks are incorrect, further key recovery becomes less effective. On
the other hand, our ICA-based mask recovery finds over 90% of the random
masks correctly with only 40 traces. Figure 1 shows such attack is quite efficient:
the key recovery becomes stable after only 20 traces.

4 ICA-Based Attack on DPAContest v4.2

As table re-computation schemes produce the leakages of (x(i), x(i) ⊕ 1, ..., x(i) ⊕
2n − 1), recovering the random masks with ICA seems quite straightforward.
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In the following, let us consider a more subtle example: the masking scheme in
DPAContest v4.2.

4.1 The Rotating Sbox Masking Scheme

Unlike typical table re-computation schemes, the masking scheme in DPAContest
v4 uses global look-up tables, where the masked tables are pre-computed offline.
As stated previously, for larger Sboxes (like AES), storing all possible masked
tables is impossible for many commonly used encryption devices. Instead, DPA-
Contest v4 uses Rotating Sbox Masking (RSM) [13], which uses a set of constant
masks rather than completely random masks. More specifically, in the latest ver-
sion (DPAContest v4.2) [18], the implementation uses the following mask set:

M [0 : 15] = {0x03, 0x0c, 0x35, 0x3a, 0x50, 0x5f, 0x66, 0x69,

0x96, 0x99, 0xa0, 0xaf, 0xc5, 0xca, 0xf3, 0xfc}

Before any encryption, 16 masked tables (MSi) are pre-computed and stored
in memory:

MSi (x) = S(x ⊕ M [i]) ⊕ M [(i + 1) mod 16]

In each encryption, the encryption device randomly picks a 16 elements offset
array O[0:15], where each O[i] is a 4-bit random offset. According to the mask
set, the initial 128 bit mask is

Mask(0) = {M [O[0]],M [O[1]], ...,M [O[15]]}

At the end of one encryption round, each mask byte is “rotated” right for one
position in the masking set. Thus, in the (r + 1)-th round, the input mask is:

Mask(r) = {M [(O[0] + r)mod16], M [(O[1] + r)mod16], ..., M [(O[15] + r)mod16]}

Algorithm 2 describes the masked round function of AES-128 in detail.

Algorithm 2. Masked round function of AES-128 in DPAContest v4.2
Input: masked input state X = {X[0], X[1], ..., X[15]}

random mask index array O = {O[0], O[1], ..., O[15]}
subkey RK = {RK[0], RK[1], ..., RK[15]}
masked output state X = {X[0], X[1], ..., X[15]}

1: X = X ⊕ RK � AddRoundKey
2: for i = 0 to 15 do
3: Xi = MS(O[i]+r)mod 16 (X[i]) � Masked Sbox
4: end for
5: X = ShiftRow(X)
6: X = MixColumn(X)
7: X = X ⊕ MixColumn (ShiftRow (Mask(r + 1))) ⊕ Mask(r + 1) �

Mask Compensation
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In addition, considering the threat of higher-order SCA, random shuffling is
applied to the first/last round. Since the Sbox computation order is not given,
the attacker can hardly combine leakages from multiple traces and learn the
secret key from conventional vertical SCA.

4.2 Previous Attacks

Although there are many attacks in the hall of fame of DPAContest V4.2, fewer
participants give detailed descriptions of their attacks. As a result, we can only
present a brief overview of the current results. Apparently, profiling attacks work
well with DPAContest v4.2. Most profiling attack recovers the secret key with a
few traces, whereas the best one works with only one trace. On the other hand,
most non-profiled attacks use much more traces. To date, the best non-profiled
attack existed is due to Zeyi Liu et al. [14]. According to the hall of fame, their
attack takes only 14 traces, whereas all other non-profiled attacks need a few
hundred traces.

In theory, horizontal CPA still works for this scheme. Denote the 4-bit O[0]
as x, in each Sbox computation, the processor needs x to decide which masked
table should be used. Algorithm 3 presents the assembly codes of the Sbox
computation in DPAContest v4.2.

Algorithm 3. ASM codes of the masked Sbox computation in DPAContest v4.2
1: ldi YH,hi8( offset ) � point to the offset array location
2: ldi YL,0x00
3: ld offset, Y � load offset x
4: ldi ZH, hi8(aes sbox0)
5: add offset,I2 � x = x + r
6: andi offset,0x0F � x = x mod 16
7: add ZH, offset � Determine the masked table
8: clr ZL
9: mov ZL, ST11 � Table look up

10: clr ST11
11: lpm ST11, Z

As we can see in line 5–6, in the table look-up procedure, the attacker finds
the leakage of (x + r) mod 16. Although the first/last round Sbox computa-
tion is shuffled, the rest 8 rounds in the middle still provide exploitable leak-
ages. Specifically, the data-dependant leakages for round 2–9 can be written as
{L ((x + 1) mod 16) , L ((x + 2) mod 16) , ..., L ((x + 8) mod 16)}. In this case,
the attacker can guess x and verify his guess with horizontal CPA. Nonetheless,
considering there are only 8 leakage samples available, recovering the random
masks with horizontal CPA seems to be a difficult task.
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4.3 ICA-Based Attack

Apparently, applying ICA in this scheme is not as straightforward as table re-
computation schemes. Following the previous construction, the random mask
index x can be regarded as 4-bit binary sources. However, as the leakages here
depend on (x + r) mod 16, the “XOR-constant” method [1] no longer provides
multiple observations. Nonetheless, in round 9, we have

(x + 8) mod 16 = x ⊕ 8

As a result, the leakage of round 9 forms a valid ICA observation. Similarly, the
Boolean function of y = (x + 4) mod 16 can be written as:

y1 = x1 ⊕ x2

y2 = x2 ⊕ 1
y3 = x3

y4 = x4

Clearly, the least significant 3 bits have the same expressions as x ⊕ 4. The
only difference lies in the most significant bit y1. Since ICA is a linear5 procedure,
the linear mixture of x can never express x1 ⊕x2. As a consequence, in ICA, the
leakage of y1 can be regarded as random noise. More specifically, in round 5,

l = L (y) + N

= α0 + α1y1 + α2y2 + α3y3 + α4y4 + N

= α0 + α2 − α2x2 + α3x3 + α4x4 + N + α1 (x1 ⊕ x2)
= L′ (x) + N′

In other words, the leakages in round 5 can be regarded as a noisier obser-
vation of x with an equivalent leakage function where α1 = 0. Similar property
holds for the leakages of (x + 2) mod 16 and (x + 1) mod 16, although the signal-
to-noise-ratio (SNR) will be further reduced. As a result, attackers can recover
the offset O[0] with the leakages from round (2, 3, 5, 9). With the random masks
recovered, the following key recovery becomes much easier. Unlike the Sbox, the
MixColumn computations in the first round are not shuffled. Therefore, attack-
ers can explore the leakages of MixColumn and learn the secret key through
conventional vertical SCA.

4.4 Experimental Validation

We show how our ICA-based attack can be applied here with the EM traces
provided by DPAContest [14]. In our experiments, the leakage of offset O[0]
appears not only in the Sbox computations, but also in the MixColumn compu-
tations. For better recovery, in each round, our ICA-based analysis takes both

5 Here linear means linear on real values, rather than GF2n .
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observations as its inputs. As a result, in the mask recovery stage, our analysis
uses 8 observations to retrieve 4 sources. Even with these extra leakages, our
mask recovery is not as good as the previous section. As we can see in Fig. 2,
the success rate for our ICA-based mask recovery is around 80%. Nonetheless,
the following key-recovery proves that 80% accuracy is still good enough for key
recovery: the correct key is almost determined after only 30 traces. On the other
hand, in our experiment, 8 leakages can hardly support a horizontal CPA: only
10% of the recovered masks are correct and thus key recovery becomes infeasible.
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Fig. 2. Mask and key recovery: horizontal CPA v.s. ICA

5 Conclusion

In 2017, Gao et al. have proposed a novel side channel analysis based on inde-
pendent component analysis (ICA) [1]. As this ICA-based SCA does not take
a “guess-and-determine” procedure, this approach is quite useful for attacking
the middle rounds or reverse engineering. However, previous work only studied
unprotected implementations.

In this paper, we demonstrated the potential of ICA to defeat some masking
schemes: table re-computation and the RSM masking scheme in DPAContest
V4.2. Our analysis shows that, assuming the attacker can choose the leakage
samples wisely, the random masks in both schemes can be effectively recovered.
Compared with the previous attacks, our mask recovery requires fewer leakages.
For masking scheme designers, our attack is another warning: horizontal attacks
are indeed serious practical threats. If the same (or relevant) mask appears mul-
tiple times during the computation, the attacker may learn considerable infor-
mation about the mask, even if it never mixes with any masked intermediate
state.
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Abstract. The Test Vector Leakage Assessment (TVLA) methodology
is a qualitative tool relying on Welch’s T-test to assess the security
of cryptographic implementations against side-channel attacks. Despite
known limitations (e.g., risks of false negatives and positives), it is some-
times considered as a pass-fail test to determine whether such imple-
mentations are “safe” or not (without clear definition of what is “safe”).
In this note, we clarify the limited quantitative meaning of this test
when used as a standalone tool. For this purpose, we first show that
the straightforward application of this approach to assess the security
of a masked implementation is not sufficient. More precisely, we show
that even in a simple (more precisely, univariate) case study that seems
best suited for the TVLA methodology, detection (or lack thereof) with
Welch’s T-test can be totally disconnected from the actual security level
of an implementation. For this purpose, we put forward the case of a
realistic masking scheme that looks very safe from the TVLA point-
of-view and is nevertheless easy to break. We then discuss this result
in more general terms and argue that this limitation is shared by all
“moment-based” security evaluations. We conclude the note positively,
by describing how to use moment-based analyses as a useful ingredient
of side-channel security evaluations, to determine a “security order”.

1 Introduction

Leakage detection tests have recently emerged as a convenient solution to per-
form preliminary (black box) evaluations of resistance against side-channel anal-
ysis. Cryptography Research (CRI)’s non-specific (fixed vs. random) T-test is
a popular example of this trend [8,13]. It works by comparing the leakages of
a cryptographic (e.g., block cipher) implementation with fixed plaintexts (and
key) to the leakages of the same implementation with random plaintexts (and
fixed key)1, thanks to Welch’s T-test [31]. Besides its conceptual simplicity, the
main advantage of such a test, that was carefully discussed in [11,19,27], is its

1 The Test Vector Leakage Assessment methodology in [8,13] includes other options
such as non-specific semi-fixed vs. random tests and specific tests – we focus on the
non-specific fixed vs. random test that is the most popular in the literature.
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low sampling complexity. That is, by comparing only two (fixed vs. random)
classes of leakages, one reduces the detection problem to a simpler estimation
task. And since these tests are generally applied independently to many leakage
samples (e.g., corresponding to a full block cipher execution), they generally take
advantage of the larger signal (i.e., the larger difference of means between the
fixed and random classes) that occur for some samples with high probability.

Limitations and Improvements. The counterpart to this lower sampling com-
plexity is a risk of false negatives and positives. Regarding false negatives, it
may for example happen that for some informative samples, the mean values
of the fixed and random classes are identical (resp., very similar), which makes
detection impossible (resp., measurement-intensive). Yet, by applying the TVLA
methodology to large enough traces (possibly with a few different fixed classes),
the risk that significant leakages remain unnoticed for a complete (e.g., block
cipher) implementation is usually expected to remain negligible. Regarding false
positives, they rather relate to the fact that a (non-specific) T-test spots informa-
tive samples independent of their exploitability with standard Differential Power
Analysis (DPA) attacks [18]. For example, the latter attacks typically target an
enumerable part of the key that is manipulated in the first block cipher rounds,
while the real and random classes differ in all the cipher rounds. More spe-
cific (and informative) detections can however be obtained by computing more
specific metrics (i.e., targeting specific computations of the implementation), at
the cost of a more expensive estimation. So in summary, the state-of-the-art
typically views the TVLA methodology as a tradeoff between the sampling com-
plexity and the informativeness of the leakage detection. Note that as discussed
in [11], the sampling complexity of non-specific T-tests can be further reduced
by considering two fixed classes (rather than a fixed and a random one).

A Tempting Shortcoming. In view of these advantages and limitations, it
is sometimes considered that the TVLA methodology is “a pass-fail test which
determines whether the crypto implementation is safe or not” [26]. But this
naturally raises the question of what is precisely meant by “safe”. For example, it
is tempting (and as will be shown, incorrect) to expect that a device successively
passing a non-specific T-test with Q traces is secure against side-channel attacks
with up to Q traces. Clearly, this cannot hold in general. Indeed, and even
assuming that the aforementioned false positives and negatives do not occur,
another limitation of the original TVLA methodology is that it is inherently
univariate. This implies that whenever multivariate attacks are more powerful
than univariate ones, a leaking device can pass a non-specific T-test despite being
weak in the general sense (i.e., breakable with less traces than used by the TVLA
methodology). Concrete examples of this situation include the exploitation of
static leakages [20,24], and serial implementations of masking schemes for which
the number of exploitable leakage samples grows quadratically in the number
of shares, which implies that univariate attacks become less and less relevant to
evaluate their security level as this number of shares increases [3]. Note that the
work of Schneider and Moradi in [27] mitigates this limitation by integrating the
possibility to estimate mixed statistical moments in their leakage detection. Yet,
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even in that case the resulting evaluation remains insufficient since corresponding
to the exploitation of one tuple of leaking samples, while the optimal attack
should take advantage of all the informative tuples in the leakage traces [14].

Note also that this kind of limitation was already mentioned from the intro-
duction of the TVLA methodology. In particular, [16] (Section 5) clearly points
out that blinded RSA implementations suffering from SPA leakages (which are
one more example of highly multivariate attacks) may pass the T-test despite
being vulnerable to other attacks, and therefore require additional analyses.

The Case of Parallel Masked (e.g., Threshold) Implementations. In
practice, non-specific T-tests have been the method of choice for the security
evaluation of higher-order threshold implementations manipulating their shares
in parallel, such as discussed in [4,6,7]. Based on this state-of-the-art, our goal
in this note is to further clarify what is learned (and what is missed) by the
standalone application of the TVLA methodology in this case. Admittedly, our
results do not contradict the published literature. (Precisely: the previous papers
did not claim that the application of this methodology was correlated with a
quantitative security level). We only recall that performing univariate T-tests
is only an ingredient of a sound side-channel security evaluation that has to be
combined with other ones, and that the gap between the standalone application
of this methodology and a sound security evaluation increases with the security
levels. More precisely, in the case of masking the TVLA methodology is good to
detect a “security order” (i.e., the lowest key-dependent statistical moment of
the leakage distribution). But in general a high security order is not sufficient to
guarantee a high security level (e.g., number of traces for key recovery): one also
needs to ensure a sufficient noise. So in order to claim quantitative results for
masked/threshold implementations, the TVLA methodology has to be combined
with a noise analysis and/or information theoretic evaluation.

In order to make our discussion concrete, we next consider side-channel
attacks exploiting a single leakage sample corresponding to the parallel manip-
ulation of several shares in a masked/threshold implementation. Based on this
example, we compare the number of samples needed to detect fixed and random
(or fixed) classes with a non-specific T-test and the DPA security of the imple-
mentation. None of our conclusions are new from the theoretical point-of-view.
We only use this example to make explicit that even ignoring the issue of highly
multivariate attacks, the standalone application of the TVLA methodology can
be highly misleading regarding the actual security level of an implementation
(i.e., the number of traces needed for key recovery). In this respect, the main
concern of this note is not the use of the TVLA methodology for research pur-
poses, but its potential misuse in the security evaluation of real products.

Cautionary Remarks. Despite the goal of this note is to prevent the misuse of
the TVLA methodology when evaluating real products, we are not claiming that
it is currently misused by any evaluation laboratory. We wrote it as a complement
to several informal discussions that we had over the last months with researchers
and engineers unconvinced that applying the TVLA methodology is not sufficient
to state quantitative conclusions on the physical security of a cryptographic
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implementation, which is now clarified by the next example. Conceptually, this
example in fact falls under the general (and known) observation that the TVLA
methodology is unable to detect SPA leakages (e.g., mentioned in [16]). So it
should be viewed as a reminder that such SPA leakages can happen even in
the case of univariate attacks against parallel masking schemes. In this respect,
the note is also of (mostly) prospective nature, since the limitation it points
out relates to (very) high order masking schemes, while the TVLA methodology
has mostly been used for low order masked implementations so far. Besides,
and as will be clear in Sect. 3, our results do not contradict the value of the
TVLA methodology, as an ingredient to detect the security order of a masked
implementation, or as a useful first step before more advanced analyses.

2 Case Study: How Not to Use the T-Test

2.1 Setup and Metrics

Our following discussions will be based on the parallel implementation of a simple
masking scheme such as described in [2]. More precisely, we will consider the
simplest example where all the shares are in GF(2) (generalizations to larger
fields follow naturally). In this setting, we have a sensitive variable x that is split
into m shares such that x = x1⊕x2⊕. . .⊕xm, with ⊕ the bitwise XOR. The first
m − 1 shares are picked up uniformly at random: (x1, x2, . . . , xm−1)

R← {0, 1},
and the last one is computed as xm = x ⊕ x1 ⊕ x2 ⊕ . . . ⊕ xm−1.

Denoting the vector of shares (x1, x2, . . . , xm) as x̄, we will consider an adver-
sary who observes a single leakage sample corresponding to the parallel manip-
ulation of these shares. A simple model for this setting is to assume this sample
to be a linear combination of the shares, namely:

L1(x̄) =

(
m∑
i=1

αi · xi

)
+ N,

where +, · are the addition and multiplication in R, the αi’s are coefficients in
R and N is a noise random variable that we will assume Gaussian distributed
with variance σ2

n. The case with all αi’s equal to one corresponds to the popular
Hamming weight leakage function. A slightly more sophisticated model would
additionally consider quadratic terms, leading to:

L2(x̄) =

(
m∑
i=1

αi · xi

)
+

⎛
⎝ m∑

i,j=1

βi,j · (xi ∧ xj)

⎞
⎠ + N,

with ∧ the bitwise AND. The algebraic degree of this function can be extended
similarly up to d ≤ m, capturing increasingly complex leakages.

A standard (worst-case) metric to capture the informativeness of these leak-
ages is the mutual information [29] that can be computed as follows:

MI(X; Ld(X̄)) = H[X] +
∑
x∈X

Pr[x] ·
∑
l∈L

f(l|x) · log2 Pr[x|l].
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In this equation, f(l|x) is the conditional Probability Density Function (PDF) of
the leakages L(X̄) given the secret X, which (assuming Gaussian noise) can be
written as the following Gaussian mixture model:

f(l|x) =
∑

x̄∈Xd−1

N (
l|(x, x̄), σ2

n

)
,

and the conditional probability Pr[x|l] is computed thanks to Bayes’ theorem as:

Pr[x|l] =
f(l|x)∑

x∗∈X f(l|x∗)
·

We recall that this mutual information metric is correlated with the measurement
complexity of a worst-case template attack, as demonstrated in [10], which we
next use as a relevant (quantitative) metric to capture side-channel security.

In our simple (single-bit secret) case, the TVLA methodology works by col-
lecting Q0 (resp. Q1) traces corresponding to the secret value X = 0 (resp.
X = 1) and stores them in vectors L̄0 (resp. L̄1). In order to capture higher-
order security, and following what was done in [4,6,7,27], we then process these
vectors by removing their mean (so that we next estimate central moments) and
raise them to a power o, that we will denote as the attack order. This leads to
vectors L̄′

0 (resp. L̄′
1) of which the samples equal (e.g., for L̄′

0):

L̄′
0(i) =

(
L̄0(i) − Ê(L̄0)

)o

,

with Ê the sample mean operator and for 1 ≤ i ≤ Q0. Based on these leakage
vectors, the TVLA methodology computes Welch’s T statistic as follows:

Δ =
Ê(L̄′

0) − Ê(L̄′
1)√

v̂ar(L̄′
0)

Q0
+ v̂ar(L̄′

1)
Q1

,

with v̂ar the sample variance operator. The side-channel literature usually
assumes this T statistic to be significant when a threshold of 5 is passed.2

2.2 Experimental Results

Based on the setup in the previous section, we started by performing an informa-
tion theoretic evaluation of our parallel implementation of a Boolean encoding,
which is reported in Fig. 1. In order to allow an easier interpretation of the
results, we use the Signal-to-Noise Ratio (SNR) as X axis, defined as the vari-
ance of the noise-free traces (e.g., m/4 for a Hamming weight model) divided
by the variance of the noise. It better reflects the fact that the impact of the
noise depends on the scaling of the signal. The figure carries the usual intuitions:

2 In general, this threshold has to be set in function of the number of samples in the
traces, to reflect the probability that a high Δ is observed by chance [9].
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Boolean masking provides limited security for low noise levels; the slope of the IT
curve reveals the security order of the implementation (i.e., relates to the small-
est key-dependent moment of the leakage distribution) for high noise levels; and
a leakage function mixing the shares in a non-linear manner (e.g., a quadratic
one for the dotted curve) reduces the security order according to its algebraic
degree.3 For our discussions, it is mostly the first observation that matters.
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Fig. 1. Information theoretic evaluation of the (parallel) Boolean encoding. (Color
figure online)

Note that in the case of the degree 1 leakage function with all αi’s equal to 1, it
is easy to see that the high information observed for low noise levels corresponds
to a powerful and concrete attack. Namely, without noise the adversary just has
to check whether the leakage sample he obtains is odd or even.

As a complement to this information theoretic evaluation, we launched the
TVLA methodology. For this purpose, we started with the case of an m = 4-
share masking, leaking according to a linear leakage function (i.e., d = 1) and
for a very low noise level (σ2

n = 10−2). It corresponds to the rightmost point
of the plain blue curve of Fig. 1 and therefore to an insecure implementation.
Since the security order in this 4-share case study is expected to be four, we
carried out Welch’s T-test with traces raised to powers o = 3 and o = 4 and
reported the results of ten independent experiments in Fig. 2. As expected, the
third-order test does not succeed while the fourth-order one does. However, it
already requires a couple of hundreds traces to detect with confidence, which
seems a lot compared to the (large) information leaked by this sample.

3 A higher-degree leakage function manipulating shares in parallel is in fact the natural
mathematical model to capture the independence issues discussed in [2], which can
be caused in practice by glitches, transition-based leakages or couplings.
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Fig. 2. Results of the TVLA methodology for 4-share (parallel) masking.

In order to confirm this first impression, we then launched the TVLA method-
ology for the cases of of an m = 8-share and m = 12-share masking (same leakage
function, same noise level). As expected again, the lowest successful detection
orders were respectively 8 and 12. But as reported in Fig. 3, the complexity of
the detection task increases significantly (in fact, exponentially) with the num-
ber of shares, which clearly contradicts the information theoretic analysis of the
Boolean encoding for low noise levels. Hence, this case study highlights an issue
with the (tempting shortcoming of the) TVLA methodology, since the number
of traces needed to detect with it can be made arbitrarily larger than the one
needed to recover the secret (by increasing the number of shares m).

number of traces
102 104 106

-10

-5

0

5

10

15

20

25
m=8, d=1, o=8, SNR=100

number of traces
102 104 106 108

-10

-5

0

5

10

15

20

25
m=12, d=1, o=12, SNR=100

Fig. 3. Results of the TVLA methodology for 8- and 12-share parallel masking.

2.3 Interpretation

What Went Wrong? In short, the main issue of TVLA methodology as applied
in the previous subsection is that it assumes an adversarial strategy, which relies
on estimating the statistical moments of the leakage distribution. In theory this
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is a risky approach since security arguments generally aim at being independent
of the adversarial strategy. Our example shows that even in practice, estimating
statistical moments is in fact not the best strategy to attack a masked imple-
mentation with low noise levels (which naturally follows from the hypotheses
in masking proofs [10]). Furthermore, the gap between this strategy and the
optimal one increases with the security order. Note that our previous examples
focus on parallel implementations (which are a more natural target for the appli-
cation of Welch’s T-test since mitigating the dimensionality issue discussed in
introduction), but the same observation holds for serial implementations.4

An Analogy. A similar situation was observed in [15,17] when comparing the
Gaussian mixture and Gaussian adversaries: the latter one does in fact exactly
the same “mistake” as the TVLA methodology since “summarizing” a mixture
into a statistical moment, namely the (co)variance. So for low noise levels, the
Gaussian adversary will generally overstate the security level of a protected
implementation, by interpreting mask (or supply voltage) variations as a single
Gaussian with larger (co)variance. As in our previous example, this amounts to
implicitly assume the existence of a large enough noise without testing it.

Impact for Threshold Implementations. These results illustrate that test-
ing a masked/threshold implementation with the TVLA methodology only is not
sufficient to gain accurate insights on its security level, especially as the security
order increases. However, our observations do not contradict the results in [4,6,7]
where the authors only claimed a security order (which is exactly what the TVLA
methodology is good for – see next). Reading these papers, it is also clear that
their authors are well aware that noise is needed for their countermeasure to pro-
vide security. So concretely, the only limitation of these works is that they are
not quantitative. In this respect, our results come with the important cautionary
remark that a quantitative approach is increasingly needed when masking secu-
rity orders increase, since the gap between the number of traces needed to detect
fixed and random (or fixed) classes with the TVLA methodology and the actual
(worst-case) security level of an implementation also increases in this context.
In order to avoid this caveat, the TVLA methodology has to be combined with
an analysis of the noise (and ideally, an information theoretic evaluation of the
leakages), which then enables a quantified implementation security assessment.
As mentioned in introduction, we again insist that the main concern in this note
is not the use of the TVLA methodology for research purposes (where claiming
a security order and assuming noise to be a security parameter is acceptable),
but its potential misuse in the security evaluation of real products for which the
noise is fixed (i.e., not a security parameter) and the most relevant metric is the
number of traces needed to perform a successful key recovery.

We note also that we would obtain similar conclusions with more complex
(i.e., not only linear) leakages since noise is in general a necessary condition for
the security of the masking countermeasure. Yet, trivial examples (e.g., checking

4 In a trivial manner: an adversary getting d noise-free leakages corresponding to the
d shares of a secret x will not estimate moments but simply XOR them together.
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whether the leakage is odd or even in the parallel case and XORing leakage
samples in the serial cas) would not work anymore in this case.

Impact for Other Security Evaluation Tools. Quite naturally, the TVLA
methodology is not the only side-channel distinguisher focusing on the estimation
of statistical moments. In fact, the higher-order DPAs described in [25,30] or
higher-order variations of the Correlation Power Analysis (CPA) described in [21]
suffer from the same drawback. Namely, they are only indicative of the actual
security level of an implementation if the best adversarial strategy is to estimate
statistical moments of the leakage distribution. Yet, not sufficient does not mean
not necessary. In the next section, we will show that moment-based evaluations
remain a useful ingredient for sound side-channel security evaluations.

3 Clarification: How to Use the T-Test

3.1 Separation of Duties

First recall that the only thing our previous experiments showed is that launch-
ing a T-test cannot be sufficient for the side-channel security evaluation of a
masked/threshold implementation (even in univariate case studies that seem
the most suitable context for such tests). In fact, this observation again derives
from masking security proofs (e.g., in [10]) where it is explicitly mentioned that
such a countermeasure provides security under two hypotheses: sufficient noise
and independence. So recast positively from this more theoretical viewpoint, the
take home message of this note becomes that the TVLA methodology is useful
to determine the security order of an implementation, and that the noise level
(which also depends on the number of exploitable leakage samples [14]) has to
be tested independently. Interestingly, looking back at the information theoretic
plot of Fig. 1 allows putting these observations together, since it shows that when
the noise is sufficiently large, the slope of the IT curves reflects the security order,
suggesting that the best adversarial strategy is indeed to estimate higher-order
statistical moments in this case (e.g., as discussed in [10,21]).

3.2 Beyond the TVLA Methodology

Given that we restrict the goal of the TVLA methodology to the detection of the
security order of a masked/threshold implementation, the remaining question is
to know whether it is an efficient solution for this purpose. In this respect, one
can notice that the main drawback of the processing described in Sect. 2.1 is
that it directly raises the leakage samples to a certain power o. This implies
that as the noise increases, the number of samples needed to detect will increase
exponentially with the number of shares (because the noise is amplified), just
as expected from secure masking. But this also implies that this approach is
inherently limited if one wants to claim very high security levels. So as for other
security evaluation tasks (e.g., key enumeration vs. rank estimation [23]), one
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can wonder whether an evaluator can benefit from some shortcut to determine
the security order, thanks to additional knowledge he may have access to?

A natural option for this purpose is to take advantage of mask knowledge (if
available). That is, say the evaluator has access to the shares’ vector x̄ for each of
his leakage samples. Then, he will be able to identify repeated samples for each
of the 2m−1 possible sharings of the sensitive variable x. Further say that the
number of samples per sharing is Na for simplicity, then the evaluator can pre-
process his leakage samples by averaging them (for each sharing). As a result of
this pre-processing, the vectors L̄0 and L̄1 of Sect. 2.1 now have Q̃0 = Q̃1 = 2m−1

values (rather than Na ·2m−1 ones without this pre-processing). But the noise of
these pre-processed samples has been reduced before raising them to the power o,
which mitigates the “noise amplification” of the masking scheme. Concretely, it
then remains to determine the averaging parameter Na which naturally depends
on the SNR. Typically, one can choose it so that SNR · Na = 10 (which means
that the pre-processed measurements have SNR = 10).

number of traces
102 104 106 108

-10

-5

0

5

10

15

20

25
m=4, d=1, o=4, SNR=0.1

no averaging
avg. 100 times

number of traces
102 104 106 108

-10

-5

0

5

10

15

20

25
m=8, d=1, o=8, SNR=0.1

no averaging
avg. 100 times

Fig. 4. Comparison between the TVLA and TVLA2 methodologies.

For illustration, the results of such a “TVLA + averaging” methodology
(next denoted as TVLA2) for a smaller SNR of 0.1, with m = 4 and m = 8
shares, are represented in Fig. 4. Note that the value of the X axis corresponds
to Q0 +Q1 for the standard TVLA methodology, and to Na · 2m for the TVLA2

one. In other words, it represents the total number of leakage samples used to
detect in both cases (which explains why the TVLA2 curves are shifted by a
factor Na). Several interesting observations can be highlighted. First, the TVLA
methodology starts detecting with confidence after 107 leakage samples for the
m = 4 case. This value is nicely related to the MI value of Fig. 1 for the same
case (m = 4, SNR = 10−1), which is worth ≈10−6 and implies that the number
of samples to perform a key recovery should be larger than 106 [10]. Similarly, we
see that the TVLA methodology does not detect anything for the m = 8 case,
which is expected since the the MI is then below 10−10 for a SNR = 10−1. Second,
the average pre-processing of the TVLA2 methodology significantly improves the
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complexity of the detection task. This is due to the previously mentioned noise
reduction before amplification. In order to make this gain more explicit, Fig. 5
additionally compares the results of the TVLA2 methodology for SNRs of 10−1

and 10−2. It confirms that the reduction of the SNR by a factor 10 causes an
increase of the number of traces needed to detect by a similar factor 10 (and not
a factor 10m as would be observed with the TVLA methodology).

Note that when applying the TVLA2 methodology, the number of traces
needed to detect is even less correlated with the security level of the target
implementation than with the TVLA methodology (since concrete adversaries
do not know mask values and are not able to perform an average pre-processing).
Yet, in view of the limited quantitative meaning of the TVLA methodology in
general, and if the TVLA2 methodology is only used to detect a security order,
this drawback is not very critical (when mask knowledge is accessible!).

Eventually, and more negatively, we see from Fig. 4 that the complexity of
the TVLA2 detection still (inevitably) increases exponentially in the number
of shares m (since the left and right plots of the have the same SNR). This is
in fact exactly the cause of our negative examples in Sect. 2.2. So the average
pre-processing is only useful to mitigate the exponential increase of the noise.
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Fig. 5. Results of the TVLA2 methodology for different noise levels.

Quite naturally, the improvement in this last section can be combined simi-
larly with other statistical tools such as the previously mentioned higher-order
DPAs (in [25,30]) or higher-order variations of the CPA (in [21]). In those cases as
well, the trick is to take advantage of the masks knowledge in order to pre-process
the traces by averaging before estimating higher-order statistical moments. And
of course, there as well, the effectiveness of the distinguisher will then only reflect
the security order, and be uncorrelated with the attack complexity.
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4 Conclusions

Evaluating the security of a leaking device is a challenging problem (see [28] for
a recent survey). For the masking countermeasure, it implies to test whether the
hypotheses required to deliver its security promises are fulfilled.

The first hypothesis is that the leakage of the shares are independent of each
other. Concretely this can be tested by computing a security order, which is
the lowest statistical moment of the leakage PDF that depends on the target
secret. The TVLA methodology is good for this purpose. Yet, as the security
order increases, the exponential amplification of the noise provided by masking
renders the sampling complexity of such an approach unreachable. In case the
evaluator can access the masks during a profiling phase, it is possible to mitigate
this noise amplification, by averaging the leakage traces before computing the
security order (i.e., before raising the samples to some power).

Independent of the security order, the second hypothesis is that the leakages
are sufficiently noisy. In this respect, the main observation of this note is that
launching the TVLA methodology does not allow to guarantee a sufficient noise
(since it in fact only tests the security order). This implies that claiming concrete
security levels for masked/threshold implementations requires an additional step
such as a noise analysis or an information theoretic evaluation with worst-case
profiling – an approach that is not yet systematically followed. While it is not
a big issue for research works, where claiming a security order is sufficient to
indicate that the countermeasure has a potential for noise amplification, it may
be a serious limitation for the concrete security evaluations of real products, of
which the goal eventually is to determine the number of measurements needed
for key recovery (which is a function of the security order and noise level).

In general, our results provide a nice illustration of the separation given in [2].
Namely, “bounded moment security” is a strictly weaker notion than “noisy
leakage security”, and can only imply it under the necessary condition that the
leakages are noisy. More concretely, they also recall that as cryptographic imple-
mentations become more and more protected, the gap between (cost-efficient)
“conformance/validation-style” testing and (more expensive) “evaluation-style”
testing is likely to increase. In this respect, combining conformance/validation-
style testing for checking simple properties that implementations have to fulfill
“locally” (e.g., a security order and a noise level in the case of masking, or their
combination via an information theoretic metric) with more formal approaches
to analyze security “globally”, such as proposed in [1], seems promising.

As a closing note, we mention that the detection of a security order discussed
in this paper is based on univariate statistics. While one may (intuitively) expect
that reductions of the security order via glitches, transitions or coupling (as men-
tioned in Footnote 2) happen mostly at this univariate level, and that increasing
the number of dimensions exploited by the adversary will be more prejudicial to
the noise level of the implementations, this is certainly something that requires
further practical investigations (e.g., by analyzing security order reductions via
mixed statistical moments for serial masked implementations – a task for which
the tools of Schneider and Moradi in [27] are a good starting point). In this
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respect, it is worth observing that most tools used to extend the T-test to mul-
tiple samples rely on an independence assumption. Investigating the impact of
this assumption is yet another interesting open problem.
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Abstract. Evaluation of security margins after a side-channel attack
is an important step of side-channel resistance evaluation. The security
margin indicates the brute force effort needed to recover the key given the
leakages. In the recent years, several solutions for key rank estimation
algorithms have been proposed. All these solutions give an interesting
trade-off between the tightness of the result and the time complexity for
symmetric key. Unfortunately, none of them has a linear complexity in
the number of subkeys, hence these solutions are slow for large (asym-
metric) keys. In this paper, we present a solution to obtain a key rank
estimation algorithm with a reasonable trade-off between the efficiency
and the tightness that is suitable for large keys. Moreover, by applying
backtracking we obtain a parallel key enumeration algorithm.

1 Introduction

Side-channel attacks are powerful attacks against cryptographic implementa-
tions. To perform a side-channel attack, an attacker needs to be able to measure
some physical properties (e.g. power consumption, electromagnetic radiation) of
the device while it computes some key dependent operations. With this addi-
tional information, some attacks can be performed against cryptographic imple-
mentations. Hence, cryptographic algorithms required secure implementations.

To evaluate the security margin, evaluation labs generally launch some pop-
ular attacks to evaluate if an adversary can break an implementation by per-
forming, for example, a key recovery attack. This approach is adapted since
the leakage of an implementation dependents on the device. Thus, the security
obtained by an implementation is highly dependent on the underlying device.

Most of state of the art side-channel attacks follow a divide-and-conquer
strategy, where the master key is split into several pieces, called subkeys. The
attacker/evaluator mounts an independent attack for each of these subkeys. He
then needs to combine the different results of the attacks. A security evaluation
only based on a success or failure of a key recovery attack is limited by the
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computational power of the evaluator. To get rid of this limitation a solution is
to compute the rank of the key instead of performing a key recovery attack. The
rank corresponds to the number of keys needed to be tested before recovering
the actual key. Recently, several papers studied how to evaluate the security by
evaluating the computational power required after a side-channel attack [1,8,
11,15]. These papers compute an estimation of the rank of the key after a side-
channel attack, without being limited by the evaluator computational power.
All these papers focus on symmetric key size. In [8] the authors managed to
evaluate ranks for 1024-bit keys, but for larger keys, this solution could have
some limitations.

Our Contributions. We study the cost of the solution of Glowacz et al. for large
keys. Next, we present a variation of this key rank estimation algorithm. This
variation allows us to obtain a linear complexity of the algorithm in the number
of subkeys. We then derive some tighter bound for our construction. These tight
bounds allow us to have an efficient and tight solution for key rank estimation
for large keys (size greater than 1024 bits). Finally, by applying a similar idea
as Poussier et al. [13], we propose a new key enumeration algorithm.

2 Background

2.1 Side-Channel Attacks and Notations

For the rank estimation/key enumeration problems, the details on the divide-
and-conquer attack are not necessary. We just need to specify the output of
the attack. Let us assume that the attacker targets a η-bit master key. An
adversary using a divide-and-conquer strategy will split this key into ν sub-
keys of (for simplicity equally sized) κ bits of subkey. For each subkey ki

the attacker will obtain a list of probability for each possible value of the key
Li = {Pr[ki = 0|SCI], . . . ,Pr[ki = 2κ − 1|SCI]}, where SCI stands for the side-
channel information the adversary obtained. Divide-and-conquer strategy is use-
ful as ν × 2κ is smaller than 2η. Note that if the adversary scores instead of
probability he could either use a Bayesian extension [14] or use direct results [4].

2.2 Key Enumeration Algorithms

From the result of an attack, either all the correct subkeys have the highest
probability of the list of the candidate subkeys or the attacker need to test the
most likely keys. Some solution exists to recombine this information in a smart
way [2,6,10,11,13,14]. All these algorithms have been tested in a symmetric key
setting and provide efficient solution.

The algorithms proposed in [2,11,13] can be separate in two phases: a con-
struction phase (that is similar to key rank estimation) and a backtracking part
that enumerates the keys. For symmetric keys setting, the first part (construc-
tion) is negligible in comparison to the second (backtracking).
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2.3 Rank Estimation Algorithms

A rank estimation algorithm is a tool that allows an evaluator to estimate the
brute force an attacker need to perform a successful attack, i.e. how many keys
the attacker needs to test in the recombination phase before she recovers the
actual key (the key is known by the evaluator). As we want to evaluate security
against a smart adversary we should assume that she can enumerate the keys
from the most probable one to the least probable one (but still in its computa-
tional power limits).

Definition 1 (Rank of the key). The rank of the key k after a side-channel
attack is defined as the number of keys that have a higher probability than k.

rank(k) = #{k∗|Pr[k∗|SCI] ≥ Pr[k|SCI]}.

Where # stands for the cardinality of the set.

Definition 2 (Tightness). The tightness of an estimation is the logarithm of

the ratio between the upper and lower bound log2

(
rank upper bound

rank lower bound

)
.

In the rest of this paper, the probability of a key is equal to the product of
the probabilities of its subkeys. Hence, we suppose that the subkeys probabilities
are independent, and so the different attacks.

The main advantage of using a key rank estimation algorithm is that an
evaluator does not need to perform the brute force search to estimate the costs
of such a search. In the past few years, several solutions have been proposed
to solve this problem [1,8,11,15]. Efficient rank estimation algorithms [1,8,11]
share the same step that introduces error: they map the probabilities to integers
(see [12] for a discussion on the errors introduced by algorithms that calculate
security margins). Using this simplification they can estimate the rank of the
key quite efficiently, with bounded error due to some truncation that appears
during the conversion from real (float) to integer. Hence, these algorithms can-
not compute the rank, but an upper bound (rank upper bound) and a lower
bound (rank lower bound) of the rank. These rank estimation algorithms are
based on samples, i.e.they use result of an attack and calculate bounds on the
rank. To obtain some indication of the security level of the device several exper-
iments attacks are launched and results could be displayed in a security graph
as proposed in [15].

Some other solutions exist to evaluate the security of a device that can be
faster and adaptable for large keys [7,16]. These solutions are based on metrics,
i.e. do not use directly result of an attack, but use results of several attacks to
compute a metric e.g. the success rate. However, solutions based on metric could
misestimate the actual computational power of an attack, as pointed out in [12].

2.4 The Histogram Solution

Since our solution is based on the Glowacz et al. solution [8], we give some more
highlight on this solution. In the rest of the paper, we refer to this solution as
FSE’15. The different steps of this algorithm can be summarized as follow:
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1. from multiplicative relation to additive relation: since the subkeys are indepen-
dent we have Pr[k1, k2|SCI] = Pr[k1|SCI]×Pr[k2|SCI]. By using logarithm,
we have log(Pr[k1, k2|SCI]) = log(Pr[k1|SCI]) + log(Pr[k2|SCI]).

2. from reals to integers: in the FSE’15 solution, this step is done by casting
the results of the side-channel attacks into histograms. For each subkey a his-
togram is built, the histograms should have the same bin size. The bin height
corresponds to the number of candidate subkeys that have a log probability
included between the limits of the bin.

3. convolution of histograms: the convolution of histograms gives us the dis-
tribution of the combination of the probabilities of different combination of
subkeys. Remark the height of i-th bin of H3 that is the result of the convo-
lution of H1 and H2 is H3(i) =

∑
j H1(j) × H2(i − j). This is the number of

couples of subkey candidates that have the sum of the estimated sum of log
probabilities that correspond to the center of the bin i.

4. calculate bound : This is done by summing the bins that represent a higher
log probability than the bin of the key’s log probability (± the error bounds).
Hence, having tight error bounds allow obtaining tighter results.

In Listing 1 we give a simplified version of the code of the two last steps.

Listing 1. Matlab implementation of FSE’15 solution.

1f unc t i on [ mini , maxi ] = rank ( hi , b )

2% Inputs :

3%hi : l i s t o f histogram sco r e f o r each subkey ( h i ( subkey , : ) )

4%b : bin index o f the l og p r obab i l i t y o f the ac tua l key

5%Outputs Mini the minimum rank o f the key

6% Maxi the maximum rank o f the key

7[ dim ,˜ ]= s i z e ( h i ) ;

8H=conv ( h i ( 1 , : ) , h i ( 2 , : ) ) ;

9f o r i =3:dim

10H=conv (H, h i ( i , : ) ) ;

11end

12mini=sum(H(b+(dim/2)+1: l ength (H) ) ) ;

13maxi=sum(H(b−dim/2 : l ength (H) ) ) ;

14end

Since the histograms put every log probabilities in the bin center some error
could appear. In [8] the authors show that the maximum distance in numbers
of bin between a bin of a sum of log probabilities and the bin where the FSE
algorithm could put it is

ν

2
. That is why the minimum and maximum are shifted

by such a value.

Example 1. Let us assume we have two subkeys k1, k2 of 3 bits. With the prob-
abilities given in Table 1. As our histograms will use the logarithm of the proba-
bilities (to have an additive relation), we also provide the logarithm values and
also the key candidates’ bin.

We construct the histograms as follows. The bin 1 corresponds to the number
of keys with logarithm probabilities between −16 and −12, the bin 2 corresponds
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to the number of keys with logarithm probabilities between −12 and −8, the bin
3 corresponds to the number of keys with logarithm probabilities between −8 and
−4 and the bin 4 corresponds to the number of key with logarithm probabilities
between −4 and 0. The histograms are displayed in Fig. 1. H1 is the histogram
for the subkey candidates of k1. The sum of the bins gives us 8 that is the number
of subkey candidates. H2 is the histogram for the subkey candidates of k2.

Then by performing the convolution we have the distribution of all possible
couple for the subkeys (k1, k2). In the histogram of Fig. 1, the bin 1 should cor-
respond to the number of couples of candidate keys with logarithm probabilities
between −30 and −26, since we only look at the center of the bin some error
could appear here.

Table 1. Probabilities of subkeys candidates and their logarithm and bin values.

Candidate k1 k2

Pr log bin Pr log bin

0 0.6643 −0.5901 1 0.0012 −9.7027 3

1 0.2588 −1.9501 1 0.0011 −9.8283 3

2 0.0313 −4.9977 2 0.3588 −1.4787 1

3 0.0412 −4.6012 2 0.0713 −3.8100 1

4 0.0001 −13.2877 4 0.5643 −0.8255 1

5 0.0020 −8.9658 3 0.0012 −9.7027 3

6 0.0013 −9.5873 3 0.00005 −14.2877 4

7 0.0010 −9.9658 3 0.00205 −8.9302 3
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Fig. 1. The histograms for the two subkeys and the convolution result.

Part 3 (for loop line 9 in Listing 1) of such an algorithm is the most expensive
part. We need to perform nb subkeys − 1 convolution, each convolution having
a cost in nlog(n) when FFT is used. Remark this n is the size of the outputted
histogram (and thus on the number of convolutions already performed), that
means the cost of convolution became more and more expensive as the size of
the histogram H grows. It comes out that the cost of the rank estimation of
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Glowacz et al. grows not linearly with the number of subkeys. This observation
is validated by experiments in Sect. 4.

During the computation, we need to use large numbers (a bin can contain a
number between 0 and 2η). Hence, to avoid precision error due to large number
we need to use large integer library and/or the Chinese remainder theorem as
proposed in Appendix B of [8].

Another limitation for large keys is the size of the histogram that will grow
linearly in the number of subkeys. After the convolution i-th the size of the
histogram H is of size (i − 1) × dim, the value stored in that table could go
up to 2η. This could be expensive for large key and high precision. The FSE’15
solution needs to store the last histogram.

Example 2. That means for histograms with 216 bins and for a key of 256 sub-
keys, we need to store a table of � 224 values. These values are integers of at
most 2048 bits (if subkeys are bytes). That means around 4 GB.

If the size of the key doubles the memory required double. Remark for the
enumeration all intermediate histograms need to be stored to apply the back-
tracking solution this could require some large amount of memory.

3 Scalable Rank Estimation Algorithm

The main idea of our solution is to keep histogram with a constant number of
bins. This is achieved by batching two by two the bins of the convolution’s result
histograms (line 15 in Listing 2).

Listing 2. Matlab implementation of our solution.

1f unc t i on [ mini , maxi ] = rank ( hi , b )
2% Inputs /output same as L i s t i n g 1
3[ dim ,˜ ]= s i z e ( h i ) ;
4H2=c e l l ( l og2 (dim) ,dim/2) ;
5f o r i =2:2 : dim
6H=conv ( h i ( i −1 , : ) , h i ( i , : ) ) ;
7H2{1 , i /2}=[H( 2 : 2 : l ength (H) ) ,0]+H( 1 : 2 : l ength (H) ) ;
8end
9dim=dim/2 ;
10j =1;
11whi le dim>1
12j=j +1;
13f o r i =2:2 : dim
14H=conv (H2{ j −1, i −1} ,H2{ j −1, i }) ;
15H2{ j , i /2}=[H( 2 : 2 : l ength (H) ) ,0]+H( 1 : 2 : l ength (H) ) ;
16end
17dim=dim/2 ;
18end
19mini=sum(H2{ j , 1} ( b+e r r o r (dim) +1: l ength (H2{ j , 1} ) ) ) ;
20maxi=sum(H2{ j , 1} ( b+e r r o r (dim) : l ength (H2{ j , 1} ) ) ) ;
21end
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Where the error function is a function that gives the approximation error
due to our casting and batching. This function and the values outputted are
discussed in Subsect. 3.3.

As for the FSE’15 solution we perform convolution on histograms and obtain
the histogram H, but after this step we batch bins in pairs and obtain the
histogram H2. The i-th bin of H2 is equal to the sum of the 2i-th and the 2i+1-
th bins of H, H2(i) = H(2i) + H(2i + 1). Doing so H2 has the same number of
bins as the initial histogram. But then the bin size of the histogram after the
batching is twice as large as the bin size of the loop input histograms.

For rank estimation, we need to perform convolution between histogram with
equally sized bins. By performing the batching we increase the width of the
bins. To solve the problem we use a recursive approach, we do convolutions of
histograms two by two, batch and start a new level of convolutions. Hence we
perform convolution in a tree like structure, see the right part of Fig. 2. The tree
like structure can be used without batching to have similar result as FSE’15.

h1

h2

convolution convolution convolution

H1

h3

H2

h4

H3

H2

H

H2

H

h4h3

conv.

batching

H2

H

h2h1

conv.

batching

convolution

batching

Fig. 2. Representation of the FSE’15 solution (left) and ours (right).

Example 3. In our Example 1, the batching step outputs the histogram in Fig. 3.
The batching step merge bin 2 by 2. That means the first bin in the new his-
togram corresponds to the sum of the bins 1 and 2 from the result of the convo-
lution histogram of Fig. 1.

3.1 On the Time Complexity

Our algorithm performs the same number of convolutions as FSE’15. But in our
solution, the size (i.e. the number of bins) of the histogram stays the same, the
bin size increase.

While for the FSE’15 solution the size of Hi histograms grows, size(Hi) =
((i + 1) × nb bin init) − i, the size of the H2 histograms in our solution stay
the same as the initial histograms, i.e. size(H2) = nb bin init. That means
that convolution in level 1 of the tree (right part of Fig. 2) should require similar
computation as the convolution in the last level. Thus, we expect for our solution
to have a time that grows linearly with the number of subkeys. This is verified
by experiments in Subsect. 4.1.



Scalable Key Rank Estimation (and Key Enumeration) Algorithm 87

1 2 3 4
0

10

20

30

bin number
#

ke
ys

batching(conv(h1, h2))

Fig. 3. The batched result.

3.2 On Memory Complexity

As we can see on the Fig. 2 our method is a tree exploration. That means we
can explore it in breadth first or in depth first search.

In the case of a breadth first search, the most expensive step we have to store
is the batched histograms after the first step of convolutions, in that case, we
need to store

ν

2
tables of nb bin init values. If the size of the key doubles the

memory required double.

Example 4. For the same values as Example 2, 216 bins and 256 subkeys, we
need to store 223 values. That is around 2 GB.

In the case of depth first search, we need to store at most one batched his-
togram per level (log2 ν). If the size of the key doubles the memory required
increase by one histogram.

Example 5. For the same values as Example 2, we need to store 219 values. That
is around 128 MB.

For simplicity we describe in Listing 2 the breadth first search. Both breadth
and deep first technique have similar time, the choice of one over the other is
then based on memory available.

3.3 Bounded Error

The tight bounds we obtain for our method lead to efficient tight results. The
error is introduced when we cast real numbers into integers as for FSE’15. Our
solution also introduces error when the batching step is performed.

For the rounding error that appears when we transform real numbers into
integers. For every log probability of a subkey candidate k = i and for histogram
of bin width 2ε there exist a bin bi of center ci such that ci − ε ≤ log(Pr[k =
i]) ≤ ci + ε.
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If we look at the combined candidate (k1 = i, k2 = j) we know that for the
initial histogram we have:

ci − ε ≤ log(Pr[k1 = i]) ≤ ci + ε

cj − ε ≤ log(Pr[k2 = j]) ≤ cj + ε.

By summing the inequalities we obtain:

ci + cj − 2ε ≤ log(Pr[k1 = i]) + log(Pr[k2 = j]) ≤ ci + cj + 2ε.

The convolution will consider that the couple (k1 = i, k2 = j) has log prob-
ability ci + cj . Hence the distance between the real log probability and the log
probability considered by the convolution is 2ε. If we add ν of such inequalities
the distance between the real log probability and its bin is bounded by νε. That
is the bound of the FSE’15 method.

In our case we have also to consider the batching step. Remark when we batch

the bins of width w center ci, ci+1 (resp. ci−1, ci), the new center is
ci + ci+1

2
=

ci +
w

2
(resp.

ci−1 + ci

2
= ci − +

w

2
). That means we have the inequality:

ci − w

2
≤ batch(ci) ≤ ci − w

2
.

Putting the two errors for each level in our tree we double the error of the
histograms inputs and add an error of half bin width of histogram inputs. For
the first level, we will have:

batch(ci + cj) − 3ε ≤ ci + cj − 2ε ≤ log(Pr[k1 = i]) + log(Pr[k2 = j])
≤ ci + cj + 2ε ≤ batch(ci + cj) + 3ε.

By iterating the error propagation we obtain error for our method. Remark
the error can be, more efficiently, computed by the following formula if the input
histograms at the first level have bin width 2ε:

error = νε + �log2(ν)�ν

2
ε.

Remark that the final histogram has bin width of 2ν+1ε
In FSE’15 the error was given as a number of bin, in our case doing so we

will have overestimated margins. Calculate the lower and upper bins from the
log probability of the key ± error give tighter margins.

As for FSE’15 if we double the number of bins we reduce by two the error.

3.4 Non Power of 2 Cases

If the number of subkeys is not a power of two our first convolution step (line 5
in Listing 2) should be adapted.
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During the first step of convolutions, we perform a reduced number of con-
volutions such that at the end of this step the number of histograms is a power
of 2. To keep the histograms with the same bin size we need to perform batching
on all histograms, even the ones that do not go to the first convolution loop. We
refer to longer version of this paper for more details.1

4 Experiments

We compare the efficiency of different approaches of key ranking based on his-
tograms (i.e. FSE’15 and our method) in terms of time efficiency and precision.

In all our experiment we consider simulations. We target the memory loading
of the key (or subkeys). The memory load target seems to fit the assumption of
independence of subkeys for large keys. Note that such attacks have been used
for attacks against AVR XMEGA [5]. These attacks do not use the structure of
the cipher so can be adapted to asymmetric key implementations at a cost of
more computation (linear in the key size). We assume that the attacker was able
to perfectly recovered the leakage function.

For our experiments, we have a set of parameters that we modify that we
detailed hereafter.

– The number of subkeys. The number of subkeys is the principal parameters
we want to compare.

– The precision. The precision is an important point of comparison for rank
estimation algorithms. In our case, we compare histogram based solution the
precision is the number of bins.

– The leakage function. As we target the memory load of a subkey we can
observe only one output of the leakage function L. The only observation we get
is L(k)+N , where k is the subkey and N is some noise. If we perform several
measurements for the same subkey we will observe the same deterministic part
of the leakage. Hence, if L(k1) = L(k2), we will obtain the same probability
for k1 and k2. Such a property will impact the tightness result of any key
rank algorithm that targets such values.

– The noise. We consider white Gaussian noise with different variance noise.
– The size of the subkeys. For our experiments, we target 8-bit subkeys.

4.1 Same Precision

We compare in term of efficiency our method versus the FSE method. In this
experiment we look at the tightness and time of our method with 216 bins per
histogram at the beginning, FSE’15 with the same amount of bins and FSE’15

with less bins
(

216

ν

)
such that the final histogram have a similar amount of

bins as our method. The choice of 216 bins per histogram at the beginning is
motivated by the fact this gives quite tight bound in an efficient manner for
FSE’15 [8].
1 https://eprint.iacr.org/2018/175.

https://eprint.iacr.org/2018/175
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Fig. 4. Execution time (left) and tightness of the bound (right) of Matlab implemen-
tations of the FSE’15 solution and ours for different sizes of keys (16 bits of precision)
and an SNR of 8.

On the graph, we can see that the FSE’15 solution with a constant number
of bins (216) have an execution time that grows faster than linearly, but it is
the solution that offers the tightest bound. However, if we use FSE’15 with the
same number of bins for the final histogram the solution is quite efficient but
the tightness explodes for large keys. Our method seems to have a linear time
complexity and a linear increase of the tightness in the size of the key.

4.2 Similar Tightness

We compare our method to the FSE’15 method to obtain similar tightness. We
look at two levels of tightness 1 bit and 0.3 bit. To obtain similar tightness when
the size of the key increase we need to increase the number of bins of the initial
histograms. The results are plotted in Fig. 5.

The first observation we can make is that the tighter we want the rank
estimation, the smallest is the ratio between the time gap between our method
and FSE’15. Secondly, since we need to increase the number of bins of the initial
histograms the time complexity grows faster than linearly even for our method.
However, for a large number of subkeys our solution more efficient than the
FSE’15 solution.

4.3 NTL Implementation

Matlab implementation of the solution has some limitations mainly due to the
fact that large integers are stored in doubles. That means that bins cannot be
higher than 21024. Thus for large keys (>1024-bit), the implementation could
lead to an incorrect result. To solve this problem Glowacz et al. [8] suggest to
use Chinese remainder theorem.
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Fig. 5. Execution time (left) and tightness of the bound (right) of Matlab implemen-
tations of the FSE’15 solution and ours for similar tightness.

To override these issues we implement our solution using a big integer library:
the NTL library. We look at histograms starting with 212 and perform the convo-
lution of: 16, 32, 64, 128, 256, 512 and 1024 histograms. For the classical FSE’15
method for the 128 convolutions and an initial number of bins 212 we get an
error message saying that histograms where too large (the number of bins) to
perform the convolution. Our C implementation allows to obtain rank for very
large keys (up to 1024 subkeys in less than 15 s).

4.4 Comparison with CHES 2017

At CHES 2017 Choudary and Popescu present an “impressively fast, scalable
and tight security evaluation tools” [3]. Note that their tool does not calculate
the rank of the key but the expected value of the rank. As pointed out in [9] it
is not clear how to evaluate the power computation required to recover the key
from the expected value of the rank. This is mainly due to the distribution of the
rank that is not easy to model. However, we want to compare our method, the
FSE’15 method and the CHES 2017 method in terms of efficiency/tightness. As
the CHES 2017 do not offer parameters to tighten the bounds we play with the
number of bins for FSE and our method to have similar tightness. The results
are plotted in Fig. 6.

We can see that indeed the CHES’17 solution is quite efficient. In the same
time, for such a tightness all solutions run in less than 100 ms for 128 subkeys.
For such bounds, it seems that the rank computation’s time is not the bottleneck
of an evaluation.
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Fig. 6. Execution time (left) and tightness of the bound (right) of Matlab implemen-
tations of the FSE’15 solution and ours for similar tightness as CHES’17.

5 Key Enumeration

We can apply similar idea as the backtracking used in [13]. Our technique speed
up the construction phase of a solution like [13]. In general, this step is negligible
for key enumeration algorithm. We refer to longer version of this paper for more
details.2 However, our enumeration algorithm has an advantage when memory
needed to store histograms is too large.

6 Conclusion

We present a trick to reduce the cost of rank estimation for a large number
of subkeys based on the rank estimation of [8]. It can be applied to evaluate
security against side-channel of cryptographic implementation that uses large
keys. Our solution has the advantage to have a linear complexity in the number
of subkeys. Our method allows to estimate efficiently rank of the key thanks to
the tight bounds we manage to evaluate. Finally, our algorithm could be used as a
construction phase for an enumeration algorithm. This algorithm could be useful
when the number of subkeys if large and thus classical enumeration algorithm
required a large amount of memory. Finally, our error bound estimation could be
applied to other cases, in particular we can look at not equally sized histograms.

Acknowledgments. I thank the anonymous reviewers and Mathieu Carbone, Romain
Poussier and François-Xavier Standaert for the improvements pointed out.
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Abstract. Round5 is a Public Key Encryption and Key Encapsulation
Mechanism (KEM) based on General Learning with Rounding (GLWR),
a lattice problem. We argue that the ring variant of GLWR is bet-
ter suited for embedded targets than the more common RLWE (Ring
Learning With Errors) due to significantly shorter keys and messages.
Round5 incorporates GLWR with error correction, building on design
features from NIST Post-Quantum Standardization candidates Round2
and Hila5. The proposal avoids Number Theoretic Transforms (NTT),
allowing more flexibility in parameter selection and making it simpler to
implement. We discuss implementation techniques of Round5 ring vari-
ants and compare them to other NIST PQC candidates on lightweight
Cortex M4 platform. We show that the current development version
of Round5 offers not only the shortest key and ciphertext sizes among
Lattice-based candidates, but also has leading performance and imple-
mentation size characteristics.

Keywords: Post-Quantum Cryptography · Lattice cryptography ·
GLWR · Embedded implementation · Cortex M4

1 Introduction

There is well-founded speculation that the estimated time required for develop-
ment of quantum computers capable of breaking RSA and Elliptic Curve Cryp-
tography (ECC) [25,30] is shorter than the long term confidentiality require-
ments of some current highly sensitive communications and data. Such risk anal-
ysis prompted the National Security Agency (NSA) to revise its cryptographic
algorithm recommendations in 2015 and to announce a “transition period” until
quantum resistant replacement algorithms can be fielded [6,23].
c© Springer Nature Switzerland AG 2019
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The algorithm identification and standardization task fell largely to National
Institute of Standards and Technology (NIST), who specified evaluation criteria
and organized a public call for Post-Quantum Cryptography (PQC) algorithms
in 2016 [20,21]. A total of 69 public key encryption, key encapsulation, and digital
signature algorithm submissions were made by the November 2017 deadline [22].

The new proposals rely on a wide variety of quantum-resistant hard problems
from areas such as lattices, coding theory, isogenies of supersingular curves, and
multivariate equations. A set of selected PQC algorithms is expected to eventu-
ally fulfill all of the tasks that have up to now been assigned to classically secure
(RSA and ECC) public key algorithm standards. This includes cryptography in
lightweight embedded applications and smart cards.

2 Round5 Ring-Switching Variants R5ND “b”

Round5 is an amalgam of two lattice-based first-round candidates in the NIST
Post-Quantum cryptography project, Round2 [14] and Hila5 [29]. Like its two
parent proposals, Round5 can be used for both public key encryption and key
encapsulation, and it inherits the use of a rounding problem from Round2
(GLWR, Sect. 2.1) and error correction from Hila5 (XEf, Sect. 3.1).

The use of a rounding problem together with error correction lends Round5
unique bandwidth efficiency properties. A full description of Round5, its design,
classical and quantum security analysis, and parameter selection can be found
in [5] and our upcoming NIST submission documents. Details of that analysis
are outside the scope of this work but we note that the new parameter selection
addresses the potential issues regarding classical attack bounds in the origi-
nal Round2 submission. This work offers a technically simpler but functionally
equivalent description of the algorithm when compared to those specifications.

We further note that the Round5 “b” parameter sets discussed in this paper
are not final or “official” since both the NIST standardization effort and Round5
algorithm development are still ongoing at the time of writing.

2.1 Generalized Learning with Rounding

There is a relatively large set of interrelated hard problems used in lattice cryp-
tography. One of the most common ones is Learning With Errors (LWE), which
has a security reduction to worst-case quantum hardness of shortest vector prob-
lems GapSVP and SIVP [26,27]. Learning With Rounding (LWR) was intro-
duced in [3], where it was shown to have a security reduction from LWE. Round2
utilizes a version called General Learning With Rounding (GLWR).

A key feature of Round5 is the use of rounding in the form of a lossy com-
pression function, Round. It maps x ∈ Za to Zb with rounding constant h:

Rounda→b(x, h) =
⌊

b

a
· x + h

⌋
mod b. (1)
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This is equivalent to rounding of bx/a to closest integer when h = 1/2. Each
coefficient is operated on separately when Round or modular reduction (“ mod ”)
is applied to polynomials, vectors, or matrices.

Definition 1 (General LWR (GLWR)). Let d, n, p, q be positive integers
such that q ≥ p ≥ 2, and n ∈ { 1, d }. Let Rn,q be a polynomial ring, and let Ds

be a probability distribution on Rd/n
n .

– The search version of the GLWR problem sGLWRd,n,m,q,p(Ds) is as follows:
given m samples of the form (ai, bi = Roundq→p(aTi s mod q, 1/2)) with ai ∈
Rd/n

n,q and a fixed s ← Ds, recover s.
– The decision version of the GLWR problem dGLWRd,n,m,q,p(Ds) is to distin-

guish between the uniform distribution on Rd/n
n,q × Rn,p and the distribution

(ai, bi = Roundq→p(aTi si mod q, 1/2)) with ai ← Rd/n
n,q and a fixed s ← Ds.

2.2 Highly Flexible Parameters: Embedded Use Case

The n = 1 case of GLWR corresponds to the original LWR problem of [3]. In
this work we restrict ourselves to the n = d case, which corresponds to the Ring-
LWR (RLWR) problem and offers shorter public keys and ciphertext messages.
See [5] for a full list of parameter sets.

Round5 has both chosen ciphertext (CCA) and chosen plaintext (CPA)
secure versions. The CPA versions are faster and are configured to have smaller
keys at the price of a slightly higher failure rate, making them better suited
for ephemeral key establishment. On the other hand, parameter selection lead-
ing to a negligible error rate and the added security of CCA Fujisaki-Okamoto
Transform [13,15] is needed in public key encryption applications, where mes-
sages and public keys have long lifetimes. Therefore the CCA variant is referred
to as “Round5.PKE”, while the CPA version is called “Round5.KEM”. They
both internally rely on the same building lock, an IND-CPA encryption scheme.
Since both key establishment and public key encryption use cases are relevant
to embedded applications, we consider them both.

In addition to the LWR/RLWR and CCA/CPA distinctions, Round5 defines
parameter sets for each NIST encryption security category NIST1, NIST3, and
NIST5. These correspond to the security level of AES with 128, 192, and 256 -
bit key length, respectively, against a quantum or classical adversary [21].

However all applications clearly don’t need to implement all variants. We
adopt the strategy taken in NSA’s Commercial National Security Algorithm
(CNSA) suite [23] which standardizes only a single set of parameters and algo-
rithms at 192-bit (classical) security level. This facilitates interoperability and
parameter-specific implementation optimizations, leading to smaller implemen-
tation footprint. CNSA is approved up to TOP SECRET in United States.

Round5 Designators. This work focuses on variants with designators R5ND_3KEMb
and R5ND_3PKEb. One can read the designators aloud as “Round 5” (R5),“ring
variant” (ND for n = d), “post-quantum security category 3” (3), “CPA security
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for ephemeral keys” (KEM) or “CCA security for public key encryption” (PKE).
The last lower case letter signifies the chronological order in which the particular
parameter set was investigated. Letter “b” simply means that we are discussing
the second publicly proposed variant of Round5. A higher letter does not neces-
sarily indicate that the particular parameter set ends up being the best one.

Table 1. Internal parameters and external attributes for the R5ND 3 “b” variants of
Round5 discussed in this paper. The security estimates are made with very conservative
assumptions and correspond to NIST3 security level. See also Tables 4 and 5.

Parameter R5ND 3KEMb R5ND 3PKEb

Dimension n = 756 n = 756

Degree (n = d for ring variants) d = 756 d = 756

Nonzero elements in ternary secrets h = 242 h = 242

Large (main) modulus q = 212 q = 212

Rounding modulus p = 28 p = 28

Compression modulus t = 22 t = 23

Encrypted secret size (bits) |K| = 192 |K| = 192

Error correction code size (bits) l = 103 l = 103

Transmitted secret (bits μ = |K| + l) μ = 295 μ = 295

Random bit flips corrected (by XEf) f = 3 f = 3

Public key size (bytes) 780 810

Secret key size (bytes) 24 828

Ciphertext expansion (bytes) 830 891

Shared secret size (bytes) 24 24

Quantum security 2176 2176

Classical security 2193 2193

Decryption failure rate 2−78 2−171

2.3 High-Level Algorithm Overview

Table 1 summarizes the internal and external parameters of our implementation.
Round5 uses two polynomial rings1; xn+1−1, with n+1 prime, and its subring

Φn+1 = (xn+1 − 1)/(x − 1) = xn + · · · + x + 1. We observe that xn mod Φn+1 =
−∑n−1

0 xi. Therefore one can utilize a trick for reducing modulo Φn+1, first
reducing a result modulo cyclic xn+1−1 where xi+n+1 ≡ xi, and then subtracting
the xn coefficient from the rest of coefficients (and itself).

1 Originally only one ring was used. As pointed out by Mike Hamburg, use of two
rings yields better error analysis, and works much better with error correction.
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The small-norm secrets have special structure: sparse ternary polynomial set
D ⊂ {−1, 0, 1}n has h

2 coefficients set to +1, h
2 coefficients set to −1, and n − h

coefficients being zero.

Algorithm 1. KeyGenCPA(σ, γ): Key generation for CPA case.
Input: Random seeds σ, γ.

1: a
$σ← Z

n
q Uniform polynomial, seed σ.

2: s
$γ← D Sparse ternary polynomial, seed γ.

3: b ← Roundq→p(a ∗ s mod Φn+1, 1/2) Compress product to range 0 ≤ bi < p.
4: sk = s s: Random seed γ is sufficient.
5: pk = (a,b) a: Random seed σ, b: n log2 p bits.

Output: Public key pk = (a,b) and secret key sk = s.

Ignoring a lot of detail, the basic key generation procedure KeyGenCPA() is
given by Algorithm 1 while Algorithms 2 and 3 describe the basic encryption
and decryption operations EncryptCPA() and DecryptCPA(), respectively. The
function Sampleµ takes μ lowest-order coefficients of input. Note that the round-
ing constant for Round is actually not always 1/2 – we refer to the submission
documents and [5] for a full technical definition of Round5.

Algorithm 2. EncryptCPA(m, pk, ρ): Public key encryption (CPA).
Input: Message m = {0, 1}m, public key pk = (a,b), random seed ρ.

1: r
$ρ← D Sparse ternary polynomial, seed ρ

2: u ← Roundq→p(a ∗ r mod Φn+1, 1/2) Compress product to range 0 ≤ ui < p.
3: t ← Sampleµ(b ∗ r mod xn+1 − 1) Noisy shared secret, truncate to Z

µ
p .

4: v ← Roundp→t(t + p
2
m, 1/2) Add message + error correction m ∈ Z

µ
2 .

5: ct = (u,v) u: n log2 p bits, v: μ log2 t bits.

Output: Ciphertext ct = (u,v).

Algorithm 3. DecryptCPA(ct, sk): Decryption (CPA).
Input: Ciphertext ct = (u,v), secret key sk = s.

1: t′ ← Sampleµ(u ∗ s mod xn+1 − 1) Noisy shared secret, truncate to Z
µ
p .

2: m ← Roundp→2(
p
t
v − t′, 1/2) Remove noise, correct errors in m ∈ Z

µ
2 .

Output: Plaintext pt = m.

To see why the algorithm works, note that the shared secrets in Algorithms 2
and 3 satisfy approximately t ≈ t′ ≈ a∗s∗r. Even though the two multiplications
are in a different rings, the second ring is a subring of the first. Since s and r are
“balanced”, their coefficients sum to zero and they are divisible by (x−1). High
bits of t are used as a “one time pad” to transport the message payload.
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CPA-KEM. The chosen-plaintext secure (IND-CPA) key encapsulation mode
is constructed from EncryptCPA() and DecryptCPA() in straightforward fashion
by randomizing seed ρ and composing the message m ∈ {0, 1}µ from random

key k $← {0, 1}|K| and an error correction code (Sect. 3.1). Both parties compute
the shared secret as ss = h(k, ct) (after error correction in decapsulation.)

CCA-KEM. The CPA scheme is transformed into a chosen ciphertext (IND-
CCA2) secure one (in R5ND_3PKEb) using theFujisaki-OkamotoTransform [13,15]:

0 1,000 2,000 3,000 4,000

SIKEp503

R5ND 1KEMb

R5ND 1PKEb

SIKEp751

R5ND 3KEMb

R5ND 3PKEb

Saber
Kyber-768

sntrup4591761

NTRU-HRSS17
NewHope1024-CCA

Bytes Transmitted

Public Key
Ciphertext

Fig. 1. Bandwidth usage in key establishment. In addition to other relatively
bandwidth-efficient lattice schemes, we include SIKEp503 (Category 1) and SIKEp751
(Category 3), which are the only candidates with shorter messages. However their
performance is several orders of magnitude slower than that of Round5 – see Table 2.

– Key generation requires storing secret coins z $← {0, 1}|K| and the public
key from KeyGenCPA with the secret key: CCAsk = (sk, z, pk).

– Encapsulation. We hash m ∈ {0, 1}µ consisting of a random message and
error correction with the public key to create a triplet of |K|-bit quantities
(l,g, ρ) = h(m, pk). Then compute c = (EncryptCPA(m, pk, ρ) and set cipher-
text as ct = (c,g). The shared secret is ss = h(l, ct).

– Decapsulation computes m′ = DecryptCPA(c, sk) from the first part of
ciphertext and uses that to create its version of triplet (l′,g′, ρ′) = h(m′, pk).
This is then used in simulated encryption c′ = EncryptCPA(m′, pk, ρ′). If
there is a match ct = (c′,g′), we set ss = h(l′, ct). In case of mismatch
ct 	= (c′,g′) we use our stored coins z for deterministic output ss = h(z, ct).
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KEMs and Public Key Encryption. While R5ND_3KEMb (CPA) is sufficient
for purely ephemeral key establishment, we suggest R5ND_3PKEb (CCA) for pub-
lic key encryption [7]. One of course needs to further define a Data Encapsulation
Mechanism (DEM) in order to transmit actual messages rather than just keys.

3 Implementation Tweaks and Optimizations

The operation of Round5 in a ring is analogous to “LP11” [19] encryption, but
using rounding instead of synthetic random error. Our lightweight implementa-
tion in particular shares some similarity with “half-truncated” lightweight Ring-
LWE scheme TRUNC8 [28], but uses a sparse ternary vector instead of a binary
secret. Here we highlight some key factors the embedded implementation to be
faster and more compact than the reference implementation (and Round2).

Simplifications. There are a number of practical simplifications related to our
specific parameter choices. Since p and q are powers of two, there is a lot of
masking by p − 1 and q − 1. However much of this is unnecessary since carry
bits do not flow from higher bits towards lower bits in addition and subtraction.
Therefore all intermediate values can be kept at full word length. Most of the
arithmetic operates internally on 16-bit words, well suited for lightweight targets.

SHAKE-256. We use SHAKE-256 [11] consistently for hashing and random
byte sequence generation. Round2 used SHA3-512 for “short-output hashing”,
usually truncating the result to 32 bytes. SHA3-512 with its 1024-bit inter-
nal state and slow speed is clearly an overkill. Round2 furthermore specified a
“DRBG” based on AES-256 [10] in counter mode [9]. SHAKE-256 is designed
as a extendable output function (XOF) and takes over the functions of DRBG.

There were instances of double hashing within the algorithm, such as hashing
input to get a fixed-length DRBG seed – which is of course unnecessary in case
of an arbitrary-input XOF. Another case was the three-output G function which
was previously implemented with three iterations of hashing rather than cutting
a longer XOF output into three shorter pieces.

Faster Generation of Sparse Ternary Vectors. We use a rejection sampling
method rather than the sorting method originally used in Round2. This faster
method allows us to store a random seed instead of a full ternary vector as the
secret key. See Sect. 3.3 and Algorithm 4 for more details. The original method
was chosen to have constant time execution (even though it didn’t always have
that in practice). We note that even though rejection sampling has variable
execution time, it does not leak secrets if the distribution is not secret, the
original secret values are statistically independent, and a non-rejected result
itself does not cause a timing variation (e.g. via memory accesses).
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3.1 Error Correcting Code XEf

A 3-error correcting block code is used to decrease the failure rate. The code is
built using the same strategy as codes used by TRUNC8 [28] (2-bit correction)
and HILA5 [29] (5-bit correction).

Our linear parity code consists of 2f = 6 “registers” Ri of size |Ri| = li. We
view the payload block m as a binary polynomial m|K|−1x

|K|−1+ · · ·+m1x+m0

of length equivalent to shared secret K. Registers are defined via cyclic reduction

Ri = m mod xli − 1, (2)

or equivalently by
r(i,j) =

∑
k≡j mod li

mk (3)

where r(i,j) is bit j of register Ri. A transmitted message consists of the payload
m concatenated with register set r (a total of |K| +

∑
li bits).

Upon receiving a message (m′ | r) one computes code r′ corresponding to m′

and compares it to the received code r – that may also have errors. Errors are
in coefficients m′

j where there is parity disagreements r(i,j mod li) 	= r′
(i,j mod li)

for multitude of registers Ri. We use a majority rule and flip bit m′
j if

2f∑
i=1

((
r(i,j mod li) − r′

(i,j mod li)

)
mod 2

)
≥ f + 1 (4)

where the sum is taken as the number of disagreeing register parity bits at j.
It is easy to show that if all length pairs satisfy lcm(li, lj) ≥ |K| when i 	= j

then this code always corrects at least f errors. Typically one chooses coprime
lengths l1 < l2 < · · · < l2f so that l1l2 ≥ |K|.

Our R5ND 3 variants have f = 3 and (l1, l2, · · · , l6) = (13, 15, 16, 17, 19, 23).
The code adds

∑
i li = l = 103 bits to the message, bringing the total to 192 +

103 = 295 bits. We have verified that our implementation always fixes 3 bit flips
anywhere in the 295-bit block and 4 bit flips with P = 44785504/309177995 ≈
14.5%. Its main advantage over other error-correcting codes is that it can be
implemented without table look-ups and conditional cases and it is therefore
resistant to timing attacks. See Tables 1 and 3 for overall failure rate estimates.

3.2 Arithmetic of Sparse Ternary Polynomials

Unlike many other fast lattice-based schemes, our R5ND 3 variants do not use the
(Nussbaumer) Number Theoretic Transform (NTT) for its ring arithmetic [24].
This allows more flexibility for selection of n and greater variance in implemen-
tation techniques leading to substantial reduction in implementation footprint.

Multiplication of a ring element with {−1, 0,+1} coefficients requires only
additions and subtractions. Furthermore the use of power-of-2 moduli q, p, t
means that no modular reduction is required. This greatly simplifies implemen-
tation, especially on hardware targets, but also on microcontrollers without a
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multiplier (where performance gains are likely to be more significant than on
Cortex M).

Implementation of sparse ternary multiplication required special attention
as that is the workhorse of Round2 and a large portion of its execution time is
spent performing this operation. Clearly its complexity is O(hn) but even though
this is asymptotically worse than O(n log n) of NTT, our findings indicate that
it is significantly better in practice with the parameters of R5ND_3KEMb and
R5ND_3PKEb.

The lowest level loops in multiplication are simple vector additions and sub-
tractions. Since there is an equivalent number (h/2) of +1 and −1 terms in
the ternary polynomials, the computation is organized in a way that allows an
addition and an subtraction to be paired in a each loop.

Similar techniques are highly effective on SIMD targets such as AVX2 as
well, but require special cache attack countermeasures. Cache attacks are not a
concern with Cortex M SoCs (since all memory is internal to the chip and there
is no RAM cache2) We note that our cache-resistant portable implementation
runs at about half of the speed of normal version.

Algorithm 4. SparseTernary(s): A ternary vector with weight h from seed s.
Input: Seed value s, dimension and degree n, scaling factor k = �216/n�.
1: z ← SHAKE256(s) Absorb the seed s into Keccak state.
2: v ← 0n Initialize as zero.
3: for i = 0, 1, . . . h − 1 do
4: repeat
5: repeat
6: t′ ← two bytes from z z represents the (endless) output of XOF.
7: until t′ < kn Rejection step with the unscaled value.
8: t ← �t′/k� Remove the integer scaling factor k.
9: until vt = 0 Another rejection. Vector is sparse.

10: vt ← (−1)i Alternating +1, −1, +1, · · · .
11: end for

Output: A vector v which has h
2

elements set to +1, h
2

set to -1 and n − h zeros.

3.3 Sparse Ternary Vector Generation

Algorithm 4 describes our deterministic method for creating sparse ternary vec-
tors of weight h. It uses rejection sampling to obtain uniformly random index
0 ≤ t < n. This is clearly not a constant time operation – however we can see
that a rejection sampler does not leak information about t since bytes in z are
statistically independent. This has caused some false positives when automated
tools are used to detect timing leaks.

2 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0321a.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0321a
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Even though Algorithm 4 produces correct results, in practice the vector v
is only used to store only an “occupancy table” of free slots, while the actual
indices t are stored in two lists of +1 and −1 coefficient offsets (which correspond
to coefficient of degree n+1− t in ring polynomial representation). These lists of
length h/2 are used in multiplication rather than scanning v. There is no reason
to sort the lists – a randomized pattern may even work as a free cache attack
countermeasure on targets where that may be a problem.

The use of scaling factor k greatly lowers the rejection rate of the inner
sampler. With R5ND_3KEMb and R5ND_3PKEb we have n = 756 and k = �216/n� =
86, leading to rejection rate of just 1 − kn/216 = 0.007935.

There is a secondary rejection when finding non-empty slots in the v vector,
which might make an algorithm of this sort run in essentially quadratic time if
h is close to n. However in our case the density is bound by h/n ≤ 1/3.

A simple implementation of secondary rejection should be timing attack resis-
tant on the Cortex M4, which has no data cache. However we also have a “coun-
termeasure” version that stores the occupancy of vi in list of a dozen 64-bit
words (the sign doesn’t matter, so a single bit is enough). This version scans the
entire list with constant-time Boolean logic for every probe.

Table 2. Communication parameters and cycle count breakdown of the optimized C
implementation on Cortex-M4 for some NIST PQC candidate KEMs. First columns
give the size of public key, secret key, and ciphertext in bytes. The following columns
give the number of cycles required for key generation, encapsulation, and decapsulation.

Algorithm Size in Bytes Cycles (k = 1000, M = 106)

PK SK CT KeyGen Encaps Decaps

R5ND 1KEMb 445 16 539 527 k 758 k 294 k

R5ND 3KEMb 780 24 830 1,029 k 1,429 k 492 k

R5ND 5KEMb 972 32 1082 2,037 k 2,798 k 924 k

R5ND 1PKEb 538 570 621 658 k 984 k 1,265 k

R5ND 3PKEb 780 828 891 1,032 k 1,510 k 1,913 k

R5ND 5PKEb 972 1036 1161 2,003 k 2,849 k 3,639 k

Kyber-768 [2] 1088 2400 1152 1,333 k 1,765 k 1,935 k

NewHope1024CCA [1] 1824 3680 2208 1,505 k 2,326 k 2,493 k

Saber (Assembler) [8] 992 2304 1088 7,156 k 9,492 k 11,612 k

sntrup4591761 [4] 1218 1600 1047 166,215 k 11,274 k 31,733 k

NTRU-HRSS17 [16] 1138 1418 1278 187,525 k 5,429 k 15,405 k

SIKEp751 [17] 564 644 596 3,775 M 6,114 M 6,572 M
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4 Performance on Cortex M4

We benchmarked a group of comparable NIST First Round KEM and PKE pro-
posals on Cortex-M4. A NIST Category 3 variant (“192 quantum bit security”)
was used if available. We used an optimized C version in our tests, linked with
an efficient assembler-language SHA3 implementation (excluded from code size).
Our results are summarized in Table 2 and Figs. 1 and 2. We are also including
assembler optimized Cortex M4 numbers for Saber from [18] for completeness.
Source code is available at https://github.com/mjosaarinen/r5nd tiny.

Test Setup. We wanted a fair comparison that eliminates bias caused by poor
testing setup. For example the initial NIST tests of Hila5 indicated poor perfor-
mance, but this was caused by extremely poor implementation of randombytes()
in the NIST test suite. This function (i.e. the test suite itself) was consuming
80 % of cycles. Some other submitters were aware of this pitfall and created a
faster layer of random number generation inside their implementation. Our test
code consistently uses a fast implementation of SHAKE for random numbers.

Gnu C compiler arm-none-eabi-gcc was used with optimization flags set
to -Ofast -mthumb. Our testing was performed on NXP MK20DX256 Micro-
controller on a Teensy3 board, which we ran at 24 MHz. Cycle counts at higher
speeds are slightly less accurate due to interference by the memory controller.

0 1 2 3 4 5 6 7 8

R5ND 1KEMb, C

R5ND 1PKEb, C

R5ND 3KEMb, C

R5ND 3PKEb, C

Saber, Asm [18]

Kyber-768, Asm

Kyber-768, C

NewHope1024CCA, Asm

NewHope1024CCA, C

Saber, Ref C

Million Cycles

KeyGen()
Encaps()
Decaps()

Fig. 2. Visualization of relative speed of key establishment, including assembler ver-
sions from [18] and PQM4. We have excluded algorithms that require more than 200
M cycles (several seconds). Round5 implementations are in written in C, yet highly
competitive in terms of speed.

3 Teensy 3.2 is an inexpensive (under $20) miniature (18 × 36 mm or 0.7 × 1.4”)
Cortex-M4 development board: https://www.pjrc.com/store/teensy32.html.

https://github.com/mjosaarinen/r5nd_tiny
https://www.pjrc.com/store/teensy32.html
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For comparison, a highly optimized X25519 scalar multiplication requires 907
k cycles on Cortex M4 [12] – but has only 128-bit classical security. Four scalar
multiplications are needed for Diffie-Hellman, so our plain C implementations of
R5ND 1KEMb, R5ND 1PKEb, and even higher-security R5ND 3KEMb are faster.

Table 3. Engineering and security comparison for key establishment use case with Cor-
tex M4 at NIST Security Level 3. Xfer: Total data transferred (public key + ciphertext).
Time: Time required for KeyGen() + Encaps() + Decaps() on Cortex-M4 at 24 MHz.
Code: Size of implementation in bytes, excluding hash function and other common
parts. Fail: Decryption failure bound. PQ Sec: Claimed quantum complexity. Classic:
Claimed classical complexity.

Algorithm Xfer Time Code Fail PQ Sec Classic

R5ND 3KEMb 1610 0.123s 4464 2−78 2176 2193

R5ND 3PKEb 1671 0.185s 5232 2−171 2176 2193

Saber (Assembler) [8,18] 2080 0.172s ? 2−136 2180 2198

Kyber-768 [2] 2240 0.210s 7016 2−142 2161 2178

sntrup4591761 [4] 2265 8.718s 71024 0 ? 2248

NTRU-HRSS17 [16] 2416 7.814s 11956 0 2123 2136

NewHope1024-CCA [1] 4032 0.264s 12912 2−216 2233 ?

SIKEp751 [17] 1160 685.9s 19112 0 2124 2186

Table 4. Round5 “b” ring variant parameter sets for key establishment.

Parameters CPA NIST1 CPA NIST3 CPA NIST5

Round5.KEM d, n, h 490, 490, 162 756, 756, 242 940, 940, 414

q, p, t 210, 27, 24 212, 28, 22 212, 28, 23

B, n̄, m̄, f 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3

μ 128 + 91 192 + 103 256 + 121

Public key 445 B 780 B 972 B

Ciphertext 539 B 830 B 1082 B

PQ Security 2118 2176 2232

Classical 2128 2193 2256

Failure rate 2−78 2−78 2−95

Version (f
(0)
d,d) R5ND 1KEMb R5ND 3KEMb R5ND 5KEMb

Dominance of Hashing in KEM Speed Measurement. Our measure-
ment results on other candidates are consistent with those produced by the
PQCRYPTO group in “PQM4: Post-quantum crypto library for the ARM
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Table 5. Round5 “b” ring variant parameter sets for public key encryption.

Parameters CCA NIST1 CCA NIST3 CCA NIST5

Round5.PKE d, n, h 522, 522, 208 756, 756, 242 940, 940, 406

q, p, t 213, 28, 23 212, 28, 23 212, 28, 24

B, n̄, m̄, f 1, 1, 1, 3 1, 1, 1, 3 1, 1, 1, 3

μ 128 + 91 192 + 103 256 + 121

Public key 538 B 780 B 972 B

Ciphertext 621 B 891 B 1161 B

PQ Security 2117 2176 2232

Classical 2128 2193 2256

Failure rate 2−202 2−171 2−131

Version (f
(0)
d,d) R5ND 1PKEb R5ND 3PKEb R5ND 5PKEb

Cortex-M4” project4. However we didn’t use their testing script system as it
is targeted to a board using different flashing and communication mechanisms.

The reason for initial performance measurement divergence was that PQM4
experiments used a hand-crafted assembler implementation of the SHA3 core.
This optimized permutation takes 11,785 cycles, while its optimized C language
equivalent takes 32,639 cycles. This emphasizes the fact that benchmarks of fast
lattice KEMs are also benchmarks of symmetric primitive implementations used.

5 Conclusions

In this work we have examined the suitability of Round5 post-quantum key
establishment and public key encryption algorithm for embedded and other
limited-resource use cases. We focused on R5ND_3KEMb and R5ND_3PKEb vari-
ants on Cortex M4 platform and compared them to some other compact NIST
PQC proposals at the same security level.

Round5 combines the design features of two candidates in the NIST Post-
Quantum Cryptography project, Round2 and Hila5. Round5 has new parameter
selection, addressing various NIST PQC security levels and use cases. Optimiza-
tion of parameters was performed primarily for bandwidth at given security level;
the public key and ciphertext sizes of the new variant are smaller than those of
other lattice candidates and second smallest only to SIKE (which is not practical
on embedded targets due to its very high computational requirements).

Round5 relies on an error correcting code (based on that of Hila5) to further
reduce failure probability, and thus allow parameters to be adjusted for even
better bandwidth efficiency. There are many other new features and changes in
relation to Round2, such as use of SHAKE-256 for deterministic pseudorandom
sequence generation, and a new method for creating sparse ternary polynomials.

4 PQM4 source code and results are available at https://github.com/mupq/pqm4.

https://github.com/mupq/pqm4
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The avoidance of Number Theoretic Transform in multiplication helps to
bring the implementation size down, but has raised questions about performance.
We benchmarked the Round5 ring variants on a Cortex M4 microcontroller and
found them to have equivalent, or significantly better performance characteristics
than other comparable candidates. Table 3 offers an “engineering” comparison
for a key establishment use case at NIST Category 3 security level, and shows
why we see Round5 as a leading candidate, at least on embedded targets.
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Abstract. It is well known that Canright’s tower field construction
leads to a very small, unprotected AES S-box circuit by recursively
embedding Galois Field operations into smaller fields. The current size
record for the AES S-box by Boyar, Matthews and Peralta improves the
original design with optimal subcomponents, while maintaining the over-
all tower-field structure. Similarly, all small state-of-the-art first-order
SCA-secure AES S-box constructions are based on a tower field structure.

We demonstrate that a smaller first-order secure AES S-box is achiev-
able by representing the field inversion as a multiplication chain of length
4. Based on this representation, we showcase a very compact S-box cir-
cuit with only one GF(28)-multiplier instance. Thereby, we introduce a
new high-level representation of the AES S-box and set a new record for
the smallest first-order secure implementation.

1 Introduction

The increasing pervasiveness of electronics leads to ever smaller devices in
demand of strong cryptography and resistance against side-channel analysis
(SCA). Hence, the need to find area-optimal implementations of SCA-protected
implementations of strong cryptographic primitives persists. The Advanced
Encryption Standard (AES) is a cryptographically sound primitive that is noto-
riously difficult to protect against side-channels with low area-overhead due to
the high algebraic degree of its S-box. While the size for unprotected implemen-
tations of the AES S-box has steadily decreased from 195 gates for Canright’s
S-box [4] to 115 gates for the S-box of Boyar et al. [3], masked implementa-
tions do not exhibit such a clear trend. Instead, they provide some trade-off
between area, latency and fresh randomness. Interestingly, most current state-
of-the-art first-order secure implementations follow the tower-field construction
[2,6,10,17]. In contrast, our aim is to achieve the lowest possible circuit size by
extending our former approach [18] and decomposing the S-box even further into
multiplications in GF(28).

Our Contribution. We present two designs for a first-order secure AES S-box
based on a multiplication chain with four multiplications in GF(28) to realize the
c© Springer Nature Switzerland AG 2019
B. Bilgin and J.-B. Fischer (Eds.): CARDIS 2018, LNCS 11389, pp. 111–124, 2019.
https://doi.org/10.1007/978-3-030-15462-2_8
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inversion: First, we achieve a new size record for the AES S-box and demonstrate
the suitability of our design for low-area and low-power applications. Second, we
show an area-latency trade-off that is practical whenever the implementation
speed is limited by the number of random bits per cycle.

Outline. In Sect. 2 we introduce the underlying concepts of our contribution and
define our notation for the rest of the paper. In Sect. 3 we present our main
contribution. We compare implementation results in Sect. 4 and provide a side-
channel evaluation in Sect. 5.

2 Preliminaries

In the following we introduce an exponentiation based representation of the AES
S-box, the concept of multiplication chains and Domain-oriented Masking.

2.1 AES S-Box Representations

The AES S-box consists of an inversion in GF(28) followed by an affine mapping.
While the affine part is simple to mask, the inversion has algebraic degree seven
and can be represented in many different ways. Here, we represent inversion as
exponentiation according to the relation

x−1 = x254

in GF(28). Given only this representation it is unclear how many multiplica-
tions are necessary to obtain the end result. An upper bound can be determined
by considering the exponent’s binary representation (11111110)b. Its Hamming
weight minus one describes the number of multiplications in a square-and-
multiply algorithm. Hence, The inversion can be computed with six multipli-
cations and several squaring operations. Note that minimizing the number of
squaring operations is of little interest as it is a linear operation over GF(28)
and hence easy to mask with a low area overhead.

2.2 Multiplication and Addition Chains

Given a monomial xn over GF(28), we aim to find a program that, starting from
the identity function x1 over GF(28), computes xn with the fewest multiplica-
tions and an arbitrary number of squaring operations. This can be formalized as
finding a sequence of monomials (v0, . . . , vs) with the following conditions

v0(x) = x1,

vi(x) = v2
e1

j (x) ◦ v2
e2

k (x), j, k < i, e1, e2 ∈ N

vs(x) = xn
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and minimal length. As there is a straightforward homomorphism between the
group of natural numbers and exponentiation in a finite field

φ : N → F(GF(28)), φ(k) = xk

we can transform the problem into the realm of natural numbers:
Let n be a natural number, we call v = (v0, . . . , vs) an addition chain for n

of length s, if the below expression holds.

v0 = 1,

vi = vj · 2e1 + vk · 2e2 , j, k < i, e1, e2 ∈ N

vs = n

From this representation it is straightforward to implement an exhaustive search
algorithm to find the smallest length s for a given number n.

2.3 Domain-Oriented Masking

In 2016 Gross et al. [10] introduced Domain-oriented Masking (DOM), a mask-
ing scheme for multiplications over finite fields that extends classical Threshold
Implementations by applying the non-completeness property to each input-bit
individually, thereby enabling d-th order secure designs with only d + 1 input
shares. In the following, we recall the construction of a first-order secure DOM-
indep GF(2n)-multiplier.

To achieve first-order security of a multiplication operation Z = X ·Y , inputs
are independently separated into two domains XA, YA and XB , YB with Boolean
masking, such that X = XA ⊕ XB and Y = YA ⊕ YB hold. The multiplication
itself can then be executed with four insecure GF(2n)-multipliers, which may not
combine both domains of the same input variable (cf. Fig. 1). Further, the cross
domain products XAYB and XBYA are refreshed with n-bits of randomness
(R) before being reintroduced to either domain. To prevent the propagation
of glitches a register stage is placed directly after the multipliers, respectively
after the refreshing stage. Finally, each share of Z can be computed with an
XOR-operation between the two registers in each domain. The correctness Z =
ZA ⊕ ZB is easy to verify.

While a generalization of DOM for arbitrary non-linear blocks exists [15], we
do not introduce it here, as our focus remains a GF(28)-multiplier forming the
core element of our secure implementation.

3 Implementation

In this section we describe our methodology to derive a mathematical description
of the AES S-box based on GF(28)-multiplication and subsequently present two
variations of circuits based on it.
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Fig. 1. Domain-oriented Masking: First-order secure DOM-indep GF(2n)-multiplier

3.1 Methodology

Our aim is to realize the AES S-box based on GF(28)-multiplications in the small-
est possible hardware area. As the inversion x−1 in GF(28) can be represented as
an exponentiation x254 the challenge is to find a shortest multiplication chain. As
shown in Sect. 2.2 this corresponds to finding a minimal addition chain for 254.

Chain Length. As noted in [11,14,18] the inversion in GF(28) can be decomposed
into two cubic functions (xk, xl) with Hamming weights wt(k) = wt(l) = 3.
This directly yields a realization with four multiplications as each function xk,
wt(k) = m can be implemented with m−1 multiplications, e.g., naively with the
square-and-multiply algorithm. Further, exhaustive computations to determine
a length three addition chain for 254 do not yield a result. Hence, we chose to
realize the inversion with four multiplications in GF(28).

As a secondary goal for circuit minimization, we aim to reduce the overhead
in linear operations and delay registers to facilitate the multiplication-based
architecture.

Minimal Overhead. Multiplication chains of length four may still differ in their
overhead for linear operations (x2k) and for delay registers which are necessary
when an intermediate result is not directly processed, which occurs in a multi-
plication chain whenever vi depends on vj with j < i − 1. To determine which
multiplication chain leads to the smallest area, we determine the size of lin-
ear components based on squaring x2k alone and in composition with the AES
affine function Aff. Further, we determine the size reduction through integra-
tion of multiple exponentiations into one hardware circuit. More specifically, we
synthesized each 8-to-8-bit component

x2k , k = 1, . . . 7

Aff ◦ x2k , k = 1, . . . 7

and the pairs
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(x2k , x2l), k, l = 1, . . . 7

as 8-to-16-bit components to determine their sizes in the UMC 0.18µm library
(cf. Table 1).

Table 1. Size of all linear functions x2i and Aff ◦ x2i individually (left) and combined
in pairs (right).

Given the area information for each component, we can iterate through all
possible combinations for the linear operations op1, . . . , op4 (as illustrated in
Fig. 2) to implement the following three subcircuits with minimal total area:

– the function (x13)2
k1 with two multiplications

– the function (x19)2
k2 with two multiplications

– the function Aff ◦ x2k3

Our minimization search is subject to the additional restriction k1 +k2 +k3 = 5
to ensure that the circuit actually computes the AES S-box. The optimal solution
given our weights only uses the linear functions x4, x8 and a delay register. It
corresponds to the choice:

op1(x) = x, op2(x) = x8, op3(x) = x4, op4(x) = x
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∘ 2

28 Mult

Fig. 2. Basic structure for our search algorithm.

and yields the optimal parameters k1 = 0, k2 = 4, k3 = 1. More formally,
the circuit can be expressed algebraically as the interleaved application of the
following four linear functions and a multiplier

f1(x) : GF(28) → GF(28) × GF(28)
x �→ (x8, x4), mem := x

f2(x) : GF(28) → GF(28) × GF(28)
x �→ (mem, x)

f3(x) : GF(28) → GF(28) × GF(28)
x �→ (x8, x4), mem := x

f4(x) : GF(28) × GF(28) → GF(28)
x �→ (mem, x4)

where mem denotes the last element that was stored in the delay register. The
output Y is determined by applying a fifth affine function

f5(x) : GF(28) → GF(28)
x �→ Aff(x2).

The ANFs for all linear functions involved can be seen in Appendix A.
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3.2 Domain-Oriented Masking

The mathematical description above can be turned into a first-order secure
implementation with domain-oriented masking (cf. Fig. 3). To minimize area
consumption our circuit is serialized along the multiplication.

Our circuit realizes x4 · x8 = x12 with the first multiplication. Subsequently,
x · x12 = x13 =: x̂ is computed by utilizing the delay register. The third multi-
plication implements x̂4 · x̂8 = x̂12. Finally, the circuit yields (x̂12)4 · x̂ = x̂49.
The subsequent application of Aff ◦ x2 gives the correct result for the S-box
output, as the equation ((x13)49)2 = x−1 holds. To ensure the SCA resistance
of our design, a total of sixteen bits of randomness have to be injected into the
computation of the cross-domain terms, denoted as R1 and R2 in Fig. 3.

Further, as we re-introduce intermediate values into the same circuit, com-
posability issues [8] have to be addressed:

Transitional Leakage. To prevent transitional leakage in any of the registers
involved, we reset them to zero in between each “round-operation”. This can
easily achieved in the control FSM without introducing additional latency as at
any point in time either the upper (Regi,·) or lower registers (Rego,·) in Fig. 3 are
occupied with our intermediate results while the contents of the other registers
can be discarded.

Independent Sharing. As both shared inputs to the multiplier are functions
depending on x, we need to re-fresh one shared input with a total of eight bits
of randomness (R1), before feeding it into the multiplier.

Note that the circuit shown in Fig. 3 is generic in the type of multiplier used.
In the following, we demonstrate two designs based on serial-parallel multiplica-
tion to achieve a very low area and a fully-parallel multiplication to achieve an
interesting trade-off.

3.3 Smallest Masked AES-Sbox

To obtain the smallest implementation of the AES S-box we realize the GF(28)-
multiplication in eight cycles with a serial-parallel multiplier (cf. Fig. 4). It func-
tions by applying all bits of operand a and successively shifting in one bit at a
time of operand b starting with the MSB. Thereby, it computes the product of
a and b in 8 cycles. The modulo reduction is based on the polynomial (11b)x.

While it is clearly necessary to re-mask one input operand to use the DOM-
DOM-indep multiplier with 8-bits of fresh randomness, this can be done at
the rate of one bit per cycle by integrating the refreshing with R1 into the
shift registers Regi,1 and Regi,2. Similarly, it is required to re-mask the output
of the multiplier with 8-bits of fresh randomness, which can be done during
the computation of the product, one bit at a time (input wire R2 in Fig. 4).
Even though the serial-parallel multiplier contains a shift register internally,
an additional register stage Rego,1, Rego,2 (cf. Fig. 3) is necessary to prevent
a cross-domain term to re-enter a domain without being previously re-masked
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Fig. 3. First-order secure AES S-box circuit based on a GF(28) multiplication chain. It
computes two shares of x12, x13, (x13)12 and (x13)49 in the lower registers and contains
a final application of Aff◦ x2 to determine the shared value of the S-box output. Aff ′

denotes the affine function without constant terms.

with the entire 8 bits of entropy. The additional register does not incur a latency
overhead as we use by-passing in cycle eight to write the multiplication result
directly to the following register. This leads to a design that computes the linear
functions in one cycle and the multiplication in eight additional cycles. This
“round-operation” with a latency of nine cycles is executed four times. In total,
our design computes an AES S-box in 36 cycles.

3.4 A Latency-Trade-Off

In the above design we can achieve a far lower latency by implementing the
GF(28)-multiplication in one cycle with a fully-parallel multiplier. This straight-
forward design takes two cycles to compute each “round-operation”. Hence, the
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Fig. 4. Circuit of a serial-parallel GF(28) multiplier.

total latency amounts to eight cycles. The alternate usage of R1 and R2 allows
us to connect both wires to the same source of entropy generating eight random
bits per cycle.

4 Results

In this section we present area and latency results for our design and interpret
them in the context of other first-order secure designs.

Comparison. We compare our design to state-of-the-art implementations of
first-order secure S-boxes. More precisely, area and latency numbers for the
TI(nimble) design of Bilgin et al. [2], the CMS design of Cnudde et al. [6], the
multiplicative masking design of De Meyer et al. [7], the DOM design of Gross
et al. [10], the CMS design of Ueno et al. [17] and our former TI(with guards)
design [18]. It is directly apparent that our design #1 is a new area record of
first-order secure S-boxes of AES. In fact, with 1378 GE we improve upon the
previous record by Ueno et al. [17] (1656 GE) by several hundred gate equiva-
lents. This record undoubtedly comes at the cost of huge increase in latency and
does not aim to provide a beneficial area-latency trade-off. Yet, we achieved a
practical solution in very special scenarios.

Our design #2 requires only eight random bits per cycle (as R1 and R2 are
injected in alternating cycles) while its size of 2321 GE is comparable to other
state-of-the-art implementations.

Practical Application. Note that our designs provide a benefit over other state-
of-the-art constructions whenever the following two conditions hold: First, if the
device can dedicate only a very small area to cryptographic operations our design
#1 can be considered. Second, in the case of a limited peak power consumption
design #1 is suitable due to its light non-linear part of only four parallel GF(28)-
multiplications. Further, if a trade-off between latency and randomness is the
deciding factor, our design #2 might be suitable.
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Unprotected Comparison. Interestingly, an unprotected version of our S-box
design with one parallel-serial multiplier occupies 520 GE, more than twice the
size of the current unprotected area record by Boyar et al. [3] (cf. Table 3).
Thereby, we demonstrated that area optimality is not necessarily maintained
throughout the masking process (Table 2).

5 Side-Channel Evaluation

Measurement Setup. We evaluated our hardware design on a Sakura-G
side-channel evaluation board [1]. It is a well-established measurement platform
that incorporates two Spartan-6 FPGAs separating control and target circuit
to achieve a beneficial signal-to-noise ratio. We ran our implementation at a
frequency of 6 MHz and sampled at a rate of 625 MS/s. Additionally, we utilized
the ZFL-1000LN+ amplifier from Mini-Circuits (Fig. 5).

Table 2. Comparison of first-order secure S-boxes. IR: initial randomness, Lat: latency,
RT: reciprocal throughput, R/C: rand. per cycle

Design Shares Lat
(cyc)

crit. path
(ns)

RT
(cyc)

R/C
(bits)

Size
(GE)

Bilgin et al. [2] 3 3 N/A 1 16 2224

Cnudde et al. [6] 2 6 N/A 1 46 1872

De Meyer et al. [7] 2 2 + 3 N/A 1 19 1685

Gross et al. [10] 2 8 N/A 1 18 2600

Ueno et al. a [17] 2 5 1.5 1 56 1656

Wegener et al. [18] 4 16 3.3 16 0 4200

This work

(#1) 2 36 1.5 36 2 1378

(#2) 2 8 1.6 8 8 2321
aUeno et al. reported 1389 GE in the TSMC 65 library. We obtained their
design and synthesized it ourselves in the UMC 0.18µm library.

Table 3. Comparison of unprotected AES S-box implementations

Design Lat
(cyc)

crit. path
(ns)

RT
(cyc)

Size
(GE)

Boyar et al. [3] a 1 5.6 1 205

This work

unprotected 32 1.5 32 520
aWe converted the equations given in their paper into VHDL
and synthesized it ourselves in the UMC 0.18µm library.
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Fig. 5. Mean trace over 100 traces: parallel (left), serial (right)

Fig. 6. Fully-parallel multiplier: MC-DPA in the first and second order with 10 million
traces.

Evaluation. As recently shown by De Cnudde et al. [5] the common evaluation
methodology of the non-specific t-test [9,16] is very sensitive to effects originat-
ing from the power distribution network if a masked implementation with only
two shares is being evaluated. Hence, we deviated from the evaluation strategy
based on the non-specific t-test and instead performed an evaluation based on

Fig. 7. Serial-parallel multiplier: MC-DPA in the first and second order with 10 million
traces.
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Moments-Correlating-DPA (MC-DPA) [13]. More precisely, our target consists
of two sequential invocations of the S-box with several idle cycles between them
to minimize both algorithmic noise and the memory effect due to amplification
[12]. We performed 10 million measurements with each design and found no
leakage in the first-order MC-DPA, while leakage in the second order is clearly
visible (cf. Figs. 6 and 7).

6 Conclusion

First, we presented a new record for the smallest first-order SCA secure AES S-
box implementation in hardware. Compared to the previous record our achieve-
ment comes at the cost of an increased latency. Yet, our design is applicable
whenever small area and low power are of paramount importance. As opposed
to implementing the masked inversion in one cycle, our design performs at most
four serial-parallel multiplications in each clock cycle enabling a very low-power
design. Second, we introduce a trade-off that achieves a lower latency than our
first design and consumes only eight bits of randomness per cycle.

Finally, our contribution demonstrates that a design methodology to achieve
the smallest area for unprotected implementations does not necessarily translate
into a recipe for area-optimal SCA protected implementations.

Acknowledgments. The work described in this paper has been supported in part by
the German Federal Ministry of Education and Research BMBF (grant nr. 16KIS0666
SysKit HW).

A ANFs for Linear and Affine Functions in our Design

To enhance the reproducibility of our results, we provide the algebraic normal
form for all linear/affine functions used in our design.

ANF of power-map x4 in GF(28):

y4
0 = x0 + x2 + x3 + x5 + x6 + x7

y4
1 = x2 + x3 + x4 + x5 + x6

y4
2 = x4 + x5 + x7

y4
3 = x2 + x3 + x4

y4
4 = x1 + x2 + x4 + x5 + x6

y4
5 = x3 + x6

y4
6 = x4 + x7

y4
7 = x3 + x5 + x6 + x7
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ANF of power-map x8 in GF(28):

y8
0 = x0 + x1 + x3

y8
1 = x1 + x2 + x3

y8
2 = x2 + x4 + x5

y8
3 = x1 + x2 + x6

y8
4 = x1 + x2 + x3 + x5

y8
5 = x3 + x4 + x6 + x7

y8
6 = x2 + x4 + x6

y8
7 = x3 + x4 + x5 + x6

ANF of function Aff ◦ x2 in GF(28):

y2aff
0 = 1 + x0 + x2 + x3 + x6

y2aff
1 = 1 + x0 + x3

y2aff
2 = x0 + x1 + x3 + x6

y2aff
3 = x0 + x1 + x4 + x7

y2aff
4 = x0 + x1 + x2 + x6 + x7

y2aff
5 = 1 + x1 + x2 + x4 + x5 + x6 + x7

y2aff
6 = 1 + x1 + x2 + x3

y2aff
7 = x2 + x3 + x5 + x6 + x7
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Abstract. Ring oscillator-based true random number generators (RO-
based TRNGs) are widely used to provide unpredictable random num-
bers for cryptographic systems. The unpredictability of the output num-
bers, which can be measured by entropy, is extracted from the jitter
of the oscillatory signal. To quantitatively evaluate the entropy, several
stochastic models have been proposed, all of which take the jitter as a
key input parameter. So it is crucial to accurately estimate the jitter
in the process of entropy evaluation. However, several previous methods
have estimated the jitter with non-negligible error, which would cause
the overestimation of the entropy. In this paper, we propose a jitter esti-
mation method with high accuracy. Our method aims at eliminating the
quantization error in previous counter-based jitter estimation methods
and finally can estimate the jitter with the error smaller than 1%. Fur-
thermore, for the first time, we give a theoretical error bound for our
jitter estimation. The error bound confirms the 1% error level of our
method. As a consequence, our method will significantly help to evalu-
ate the entropy of RO-based TRNGs accurately. Finally, we present the
application of our jitter estimation method on a practical FPGA device
and provide a circuit module diagram for on-chip implementation.

Keywords: TRNG · Ring oscillator · Jitter · Estimation · Entropy

1 Introduction

Ring oscillator-based true random number generator (RO-based TRNG) is a
widely used kind of TRNGs for its simple implementation on logic devices such
as FPGAs and smart cards. The elementary structure of RO-based TRNG is
shown by Fig. 1. A slow clock signal (Ss) samples a fast oscillatory clock signal
(So) generated by an oscillator composed of an odd number of inverters. Under
the effect of correlated random noise (mainly low-frequency flicker noise) and
uncorrelated random noise (mainly thermal noise) on the logic devices [6], the
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Fig. 1. Elementary structure of RO-based TRNG

periods of the oscillatory signal will vary randomly. The deviation of the periods
is usually defined as the period jitter. So the jitter is mainly composed of thermal
jitter and flicker jitter which are respectively contributed by the thermal noise
and the flicker noise. Then the jitter is exploited by the TRNG to extract random
numbers.

The randomness of a TRNG is mainly about the unpredictability of the gen-
erated random numbers. The unpredictability can be quantitatively measured
by the entropy rate of the random numbers. Unfortunately, the traditional sta-
tistical test suites such as NIST SP800-22 [10], DIEHARD [9] merely evaluate
the statistical properties of the output numbers, but can not answer whether
the numbers to be tested hold enough entropy. In order to evaluate the entropy
of RO-based TRNGs, several stochastic models have recently been proposed
[1,4,7,8], all of which show that jitter is the key parameter that directly affects
the entropy rate. Consequently, it is crucial to precisely estimate the jitter.

Up to now, several jitter estimation methods have been proposed. It is quite
inaccurate to estimate the jitter outside the device with measuring equipments
such as oscilloscopes [13], since additional jitter would be introduced by the
Input/Output circuits and pins [14]. To estimate the jitter internally, Valtchanov
et al. [14] designed an embedded circuit to count the rising edges of the oscil-
latory signal in equal-length time intervals and took the standard deviation of
the counting results as an approximate measure of the accumulated jitter in
the interval. Since the counting results can only be integers, this method will
introduce in quantization error when estimating the jitter. Ma et al. [7] improved
Valtchanov et al.’s counter-based method by counting both the rising and falling
edges of the oscillatory signal. Such improvement actually reduces the quantiza-
tion step size by half, thus can decrease the quantization error. Nevertheless, the
quantization error is still not eliminated. Fischer et al. [2] proposed a different
method based on Monte Carlo approach, which could estimate the jitter with the
error smaller than 5%. Note that all the above mentioned methods are actually
to estimate the total jitter containing both thermal jitter and flicker jitter. Nev-
ertheless, most of the stochastic models for entropy evaluation are based on the
common assumption that the periods of the oscillatory are independently and
identically distributed (i.i.d.) under the effect of thermal noise. This requires
only the jitter contributed by the thermal noise to be used to calculate the
entropy. It is known that the thermal jitter is difficult to be estimated directly.
Recently, Haddad et al. [3] proposed an approach to separate the thermal jitter
from the total jitter and gain the ratio of the thermal jitter in the total jitter.
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Nevertheless, the estimation of the total jitter in their work is also based on a
counter-based method. So quantization error will inevitably be brought in, but
was not considered as well.

In this paper, we provide a highly accurate jitter estimation method for RO-
based TRNGs. Our method aims at eliminating the error that exists in the
previous counter-based methods. Compared to the previous ones, our method
can estimate the total jitter with much lower error level, which is also confirmed
by theoretical analysis.

In summary, our contributions include:

– We propose a jitter estimation method with high accuracy for RO-
based TRNGs. As we investigated, non-negligible quantization error is
introduced in the previous counter-based jitter estimation methods. After
eliminating the quantization error, in the meanwhile taking the waiting time
in the sampling process into account, we provide a new, more accurate esti-
mation for the jitter with the error level below 1%, which is much lower than
the previous methods. This will significantly help to evaluate the entropy of
a RO-based TRNG accurately.

– For the first time, we give a theoretical error bound for the jitter
estimation. We adopt quantization error analysis approaches and present
a formal upper error bound for our jitter estimation. This error bound has
confirmed the 1% error level of our method in theory.

– With our method, we provide a practical jitter estimation on FPGA
device. We demonstrate that combined with the jitter separation approach
in [3], our method can be used to estimate the thermal jitter on practical
hardware platforms. We also provide a circuit module diagram of our method
for on-chip implementation.

The organization of this paper is as follows: In Sect. 2, we introduce the
preliminaries about signal model, entropy evaluation and jitter estimation. In
Sect. 3, we analyze the error of the previous counter-based jitter estimation
method given by [7] and propose our jitter estimation method. In Sect. 4, we
give the theoretical error analysis of our method. In Sect. 5, we conduct a prac-
tical jitter estimation on an FPGA device with our method, and we present the
circuit module diagram of our method for on-chip implementation. In Sect. 6,
we compare our method with the previous ones and give the conclusion.

2 Preliminaries: Signal Model, Entropy Evaluation
and Jitter Estimation

In this section, we first present the signal model of an elementary RO-based
TRNG, where we define symbols to describe the signals. Then we introduce the
entropy evaluation methods of RO-based TRNGs. The methods take the jitter
as an important parameter to calculate the entropy. As a consequence, jitter
estimation is crucial and will determine the accuracy of the entropy evaluation.
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2.1 Signal Model

For the RO-based TRNGs, the sampling process can be approximately treated
as a stationary process, so we just consider two successive samplings. Here we
define symbols to describe the oscillatory signal (So) and the sampling signal
(Ss) by Definition 1 and Fig. 2(a).

Definition 1. The time interval between two successive samplings SPi and
SPi+1 is denoted by Ts. Within Ts, the edge intervals of So are denoted by
To1· · ·Toj · · ·Tok. The standard deviation of Toj is defined as the half period jitter
of So and denoted by σo. (σo)s will be accumulated in Ts. The mean value of Toj

is the half mean period of So and denoted by μo. The waiting time W is defined
as the time interval between SPi and the following closest edge of So. According
to [4,7], W approximately follows the uniform distribution within [0, μo] because
of σo � μo, and it is independent from the Ts in the current sampling interval.

The μo can be measured from the frequency of So. For brevity, we normalize
all the time variables with μo, that is Ts → ts = Ts

μo
, Toj → toj = Toj

μo
, σo →

σ = σo

μo
, μo → 1 and W → w = W

μo
∼ U(0, 1). The normalized variables can be

transformed back to time variables by multiplying by μo.
Since the jitter is relative between the two signals, an equivalent model can

be presented by treating So as stable while Ss has period jitter. The equivalent
model is illustrated by Definition 2 and Fig. 2(b).

Definition 2. The edge intervals of So are to1 = · · · = toj = · · · = 1. The sam-
pling interval ts is a random variable with mean value μs and standard deviation
σs. σs is defined as the total jitter accumulated in the interval ts. The jitters
from thermal noise and flicker noise are respectively denoted by σth

s , σfl
s . Since

the two kinds of noise are mutually independent, there is σ2
s = (σth

s )2 + (σfl
s )2.

Besides, we still have w ∼ U(0, 1) and it is independent from the current ts.

Fig. 2. Signal model of RO-based TRNG
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2.2 Entropy Evaluation

Previous articles such as [1,7] have given the methods to evaluate the entropy of
RO-based TRNGs. In order to mathematically characterize the RO signals, the
articles only take the uncorrelated thermal noise into consideration. Then under
the affection of thermal noise, the edge intervals To1 · · · Toj · · · Tok will be i.i.d.
with Gaussian distribution N(μo, σ

2
o). Correspondingly in the equivalent model,

there is ts ∼ N(μs, (σth
s )2). Under the above assumption, according to [1], the

min-entropy can be calculated by (1)1.

Hmin = 1 − 4
π2 ln(2)

e−π2(σth
s )2 . (1)

The calculated entropy is actually contributed by the thermal noise and it can
be a conservative estimation for the min-entropy of RO-based TRNGs.

We can see the min-entropy is determined by the σth
s in the sampling interval

ts. Hence, it is crucial to estimate σth
s precisely for entropy evaluation.

2.3 Jitter Estimation

For a practical RO-based TRNG, if the sampling frequency is high, the accu-
mulated jitter in ts may be too small to be estimated accurately. So we usually
estimate the accumulated jitter in a larger measuring interval. Here we denote
the measuring interval by tm (= Tm

μo
, Tm is time variable) with mean value μm

and standard deviation σm. σm represents the total jitter accumulated in tm.
The thermal jitter is “sqrt” accumulated with the time interval [1,3,6]. So after
estimating the total jitter σm and separating the thermal jitter σth

m from σm,
we can calculate the needed thermal jitter σth

s accumulated in the sampling
interval ts by

σth
s =

√
ts
tm

σth
m . (2)

When the measuring interval is short enough so that the thermal jitter dom-
inates over the flicker jitter, there is σth

m ≈ σm, and the σth
s can also be esti-

mated by

σth
s ≈

√
ts
tm

σm. (3)

Anyway, it is necessary to estimate the total accumulated jitter σm first and
we focus on the estimation of σm as well.

3 Our Proposed Jitter Estimation Method

We present our jitter estimation method in this section. Firstly, we investigate
the error of the previous counter-based jitter estimation method introduced by
Ma et al. in [7]. Results show that non-negligible error exists in Ma’s method.
Our proposed method gives a new estimation for the total jitter and is able to
achieve a much lower error level than the previous one.
1 (σth

s )2/4 is equivalent to the quality factor Q defined in [1].
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3.1 Error Investigation of Previous Counter-Based Jitter
Estimation Method

We primarily investigate the previous, typical counter-based method proposed
by Ma et al. [7]. Under the equivalent signal model, this method actually counts
both the rising and falling edges of So in series of interval tms and approximates
the variance of the counting result X to the variance of tm:

Var(tm) ≈ Var(X). (4)

Then the jitter σm is estimated by

σm =
√

Var(tm) ≈
√

Var(X). (5)

The approximation between Var(tm) and Var(X) is critical in this counter-based
method, since X is measurable on the chip by edging counting.

According to Fig. 2(b) in Sect. 2, the edge-counting result X in the interval
tm is actually the flooring quantized value of (tm −w +1) with the quantization
size q = 1, that is

X = �tm − w + 1�q=1. (6)

Therefore, the waiting time factor of (−w+1) and the flooring quantization will
definitely introduce error in Ma’s method.

We investigate the error of Ma’s method by Matlab simulation. The absolute
error (ea) and relative error (er) of the approximation (4) can be calculated with

ea = Var(X) − Var(tm), er =
|ea|

Var(tm)
. (7)

According to (5), the estimation error of σm (denoted by em) is equal to 1
2er.

em can be a measure of the error level of the jitter estimation method. With
Matlab, we generate the instances of tm ∼ N(μm, σ2

m) with different size of σm

and corresponding instances of X. Here the flicker noise is not considered, since
to our knowledge, it is infeasible to be generated with simulation by now. Then
we evaluate the ea and em of Ma’s method. The results are shown in Fig. 3.
It can be seen that a 1

6 absolute error always exists in the approximation (4)
when σm > 0.4. While σm < 0.4, the absolute error ea would be even larger and
related with the fractional part of μm (denoted by fμm

)2. The error em of this
method is larger than 10% until σm > 0.92.

On one aspect, the error level of this method is certainly not low (10%),
and non-negligible absolute error inherently exists in their estimation. Conse-
quently, once adopted in entropy evaluation, this method will overestimate the
jitter, and the entropy of RO-based TRNGs will be overestimated as well. On
another aspect, this method requires σm > 0.92 to gain the 10% error level. For
a practical RO, since the jitter can only be more accumulated by increasing the
measuring interval, this method needs a large measuring interval to accumulate
enough jitter for its accuracy.
2 Different fµms are indicated by different colors as well as in following figures.
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Fig. 3. Errors evaluation of Ma’s method by Matlab

3.2 New Estimation for the Jitter

In order to correct the error in Ma’s method, we take a close look into the
relationship between Var(tm) and Var(X). Then we eliminate the quantization
error and the effect of the waiting time factor to give an improved approximation
for Var(tm). Based on this approximation, we present our new, more accurate
estimation for the jitter.

Firstly, we introduce the “Sheppard’s correction” in quantization theory.

Sheppard’s correction [11]: For a random variable v with continuous distri-
bution, its rounding quantized value with quantization step q can be denoted
by vq = [v]q. When the variance of v is large enough, the quantization error
eq = v −vq will approximately follow uniform distribution in (−q/2, q/2) and be
independent from v. The first-order and second-order moments of v and vq have
the following relationships [11]:

E(v) = E(vq),E(v2) ≈ E(v2
q ) − q2/12. (8)

In the jitter estimation case, we know that the edge-counting result in the
interval tm is

X = �tm − w + 1�q=1 = [tm − w + 0.5]q=1. (9)

So according to the “Sheppard correction”, when Var(tm − w + 0.5) is large
enough, the quantization error in the jitter estimation is

eq = (tm − w + 0.5 − X) ∼ U(−0.5, 0.5) (10)

and eq will be independent from (tm − w + 0.5). Besides, the equivalent signal
model in Sect. 2 has indicated that w ∼ U(0, 1) and it is independent from the
current measuring interval tm, so we have

Var(X) = Var(tm − w + 0.5 − eq) ≈ Var(tm) + Var(w) + Var(eq). (11)
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From (11) we can see the deviation between Var(tm) and Var(X) is indeed
caused by the quantization error eq and waiting time w. Consequently, we give
the new approximation for Var(tm):

Var(tm) ≈ Var(X) − Var(w) − Var(eq) ≈ Var(X) − 1/6. (12)

Based on the approximation (12), we present our new, more accurate esti-
mation of σm by

σm ≈
√

Var(X) − 1/6. (13)

In the same way, the absolute and relative errors of approximation (12) can
be calculated by

ea = Var(X) − 1/6 − Var(tm), er =
|ea|

Var(tm)
, (14)

and the error level em of our method is also equal to 1
2er. By Matlab simulation,

we evaluate the errors (ea and em) and show them in Fig. 4. We can see our
estimation has successfully eliminate ea when σm > 0.4. Correspondingly, the
error level (em) of our method gets down to lower than 1% as long as σm > 0.4.
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Fig. 4. Errors evaluation of our method by Matlab

This is an obvious improvement over Ma’s method. Firstly, our estimation
can achieve much lower error level (1%) than Ma’s method (10%). Secondly,
our method can eliminate the absolute error which inherently exists in Ma’s
method. This will avoid overestimating the jitter. Moreover, our method needs
much shorter measuring time interval, which can speed up the jitter estimation
process.
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3.3 An Efficient Calculation of the Variance of X

Jitter estimation should be fast for some application scenarios such as online
health test. Considering that the calculation of Var(X) is the most time-
consuming in counter-based jitter estimation method, we present an efficient
approach to do this calculation.

As we know, if the samples of the counting result X are x1, · · · , xN , then the
ordinary variance calculating formula can be presented by

Var(X) =

∑N
j=1 x2

j

N
−

(∑N
j=1 xj

N

)2

, (15)

which needs N + 1 multiplications. N is the sample size.
In view of modern logic devices, the jitter accumulated in the time interval

tm is usually very small, and the edge-counting results will vary slightly around

the mean value x =
∑N

j=1 xj

N . That is, the sample space of X is small too and
we denote it by SX = {pi|pi = �x� − I + i; 1 ≤ i ≤ 2I; 5 ≤ I � N}. Here
we recommend 5 ≤ I so that SX can cover most of the counting results. Our
approach is to count the number of X’s samples on each sample point pi, and
the results are denoted by c1, . . . , c2I . Then Var(X) can be calculated by

Var(X) =
∑2I

i=1 ci · (pi − x)2

N
. (16)

Only 4I (� N + 1) multiplications are needed in (16). Evidently, the efficiency
of the jitter estimation is improved.

We present the corresponding Algorithm1 for this approach.

Algorithm 1. Algorithm for the calculation of Var(X).
Input: The counting result x1, · · · , xN . Parameters N and I.
Output: Var(X).

1: Calculating the mean value of x1, · · · , xN : x ←
∑N

j=1 xj

N

2: Calculating the sample points of X:
for i = 1, · · · , 2I do
pi = �x� − I + i;
end for;

3: Counting x1, · · · , xN on p1, · · · , p2I :
Set c1, · · · , c2I = 0;
for j = 1, · · · , N do

for i = 1, · · · , 2I do
if (xj = pi) ci = ci + 1; end if;

end for;
end for;

4: Calculating Var(X): Var(X) ←
∑2I

i=1 ci·(pi−x)2

N

5: return Var(X);
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4 Theoretical Error Analysis

In this section, we theoretically analyze our method and give a formal error
bound, which confirms the 1% error level of our method in theory.

The error ea is affected by tm and w. So we expand ea in complex Fourier
series based on the characteristic functions of tm and w, then we formally express
ea and give the upper bound of the error em with the following steps.

Step 1. Definition of Equivalent Variable v. Firstly, we define v, its quan-
tized value vq (q = 1) and the quantization error eq respectively by

v = tm − w + 0.5 − �μm�, vq = [v] = X − �μm�, eq = v − vq. (17)

Step 2. Expression of ea with v and vq. The absolute error ea in our esti-
mation can be presented by

ea = Var(X) − q2

12
− Var(w) − Var(tm) = Var(vq) − Var(v) − q2

12
. (18)

According to the “Sheppard’s correction” on the first-order moment (8), mean
value E(vq) equals to E(v), so we have

ea = E(v2
q ) − E(v2) − q2

12
= 2E(veq) + E(e2q) − q2

12
. (19)

Step 3. Expression of ea in Fourier series with Wv(α). The characteristic
function of v is

Wv(α) =
∫ ∞

−∞
f(v)ejαvdv. (20)

Here we define v0 = v−μv, where μv = E(v), then its characteristic function is

Wv0(α) = e−jαμvWv(α). (21)

According to [5,12], the E(veq) and E(e2q) in (19) can be expressed in the
form of complex Fourier series based on Wv0(α) and its derivation Ẇv0(α):

E(veq) =
q

π

∞∑
k=1

cos
(2πk

q
μv

)
Ẇv0

(2πk

q

) (−1)k+1

k

+
q

π

∞∑
k=1

sin
(2πk

q
μv

)
μvWv0

(2πk

q

) (−1)k

k
,

(22)

E(e2q) =
q2

12
+

q2

π2

∞∑
k �=0

cos
(2πk

q
μv

)
Wv0

(2πk

q

) (−1)k

k2
. (23)

Step 4. Deduction of Wv(α). For jitter estimation, according to (17), we have

μv = E(v) = E(tm − w + 0.5 − �μm�) = μm − �μm� = fμm
. (24)
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Then when only considering the thermal noise, there is tm ∼ N(μm, (σm)2) and
w ∼ U(0, 1). Their characteristic functions respectively are

Wtm(α) = ejαμme−((σm)2α2/2),Ww(α) = ejα/2 sin(α/2)/(α/2). (25)

According to (17) and (25), we have

Wv(α) =
2 sin(α/2)

α
e−((σm)2α2/2) · ejαfµm , (26)

Wv0(α) = e−jαμvWv(α) =
2 sin(α/2)

α
e−((σm)2α2/2) (27)

and

Ẇv0(α) =
(cos(α/2)

α
− 2 sin(α/2)

α2
− 2 sin(α/2)

α
(σm)2α

)
e−((σm)2α2/2). (28)

Step 5. Formal Expression of ea. Wv0(α) and Ẇv0(α) in Step 4 will go to
zero quickly when |α| > 2π

q because of their exponent parts [5]. For example,
when q = 1, considering the cases of α = 2π and α = 4π, we have

e−((σm)2(4π)2)/2 < 10−25 · e−((σm)2(2π)2)/2. (29)

So we just consider the terms with k = ±1 in the sums of (22), (23). By setting
q = 1 and combining with (18), (19), (22), (23), (27), (28), we can gain the
formal expression of ea:

ea ≈ − 1
π2

cos(2πfμm
) · e−2π2σ2

m . (30)

ea will reach to its maximum when fμm
= 0.5:

(ea)max ≈ 1
π2

e−2π2σ2
m . (31)

Figure 5(a) shows the comparison between (ea)max and the evaluation results
of ea got from the Matlab simulation in Fig. 4(a). Obviously, (ea)max is a rea-
sonable upper bound of ea.

Step 6. Upper bound of em. According to the above theoretical analysis,
upper bound of em in our jitter estimation method can be formally expressed by:

(em)max =
1
2
(er)max =

1
2

· |(ea)max|
σ2

m

≈ 1
2π2σ2

m

e−2π2σ2
m . (32)

As we present in Fig. 5(b), the theoretical error bound is lower than 1% as
long as σm > 0.4141. This is in accord with the Matlab simulation results shown
in Fig. 4(b). In theory, the low error level of our method has been confirmed.
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Fig. 5. Theoretical error analysis of our method

5 Jitter Estimation on FPGA Device

In this section, we conduct a whole jitter estimation on a practical FPGA device.
We adopt our method to estimate the total jitter of a RO-based TRNG and
combine with the jitter separation approach in [3] to gain the part of the thermal
jitter in the total jitter.

The oscillator is implemented on an Altera Cyclone IV FPGA. It is composed
of 3 inverters and has about 305 MHz frequency. Firstly, we use our method to
estimate the total accumulated jitter (σm) in different measuring intervals (Tms),
and then the results are quadratically fitted by σ2

m = aT 2
m + bTm. According to

[3], the first-order term (bTm) is the part contributed by the thermal jitter.
Specifically, we use a counter to count the edges of the oscillatory signal in

multiple measuring intervals (Tm = 0.8µs, 1.0µs, 1.2µs, 1.4µs, 1.6µs, 1.8µs,
2.2µs, 2.6µs, 3.0 µs, 4.2µs, 5.4µs). For each measuring interval, we calculate
Var(X) from the edge-counting results Xs and estimate the corresponding σ2

m

by Equation (13). Then Tm and σ2
m is fitted by σ2

m = 0.0732T 2
m+0.087Tm, shown

in Fig. 6(a). For a chosen measuring interval Tm(μs), the ratio of the thermal
jitter in the total jitter will be

rth =

√
0.087Tm

0.0732T 2
m + 0.087Tm

=
√

0.087
0.087 + 0.0732Tm

, (33)

and the thermal jitter can be estimated by

σth
m = rthσm. (34)

We show the estimated results of (σth
m )2 in different measuring intervals by

Fig. 6(b). It can be seen that the thermal jitter (σth
m )2 increases at a near-linear

trend with the growth of the measuring interval. This is consistent with the fact
that thermal noise is a kind of uncorrelated noise.
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Fig. 6. Experiment results of our jitter estimation on FPGA

For some other applications such as online health test of the entropy source,
jitter estimation method on the chip should always estimate the thermal jitter
in a fixed time interval. In this situation, the above multi-intervals estimation
and fitting work can be regarded as a pre-calculation before implementing the
online health test. Based on the pre-calculation, a ratio of the thermal jitter
will be obtained and set in the implementation of the online test. During the
execution phase, the online test just need to estimate the total jitter in the fixed
measuring interval with our method and then extract the thermal part from the
total jitter according to the ratio. For example, if the measuring interval is set
fixed as 1.2µs, then the ratio of the thermal jitter pre-calculated from (33) is
rth = 0.706. σm is the real-time total jitter estimated by our method on the
chip. Then the thermal jitter can be simply calculated by σth

m = 0.706σm.
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Fig. 7. Circuit module diagram for jitter estimation (the symbol ∗ represents the input
of the module)

We provide the circuit module diagram of our method for on-chip imple-
mentation in Fig. 7. The sampling signal is processed by a frequency divider to
generate the signal Sm which contains a series of measuring interval Tms. Then
the circuit conducts edge counting and calculates the total accumulated jitter
σm. After multiplying σm by the ratio rth, the circuit finally outputs the thermal
jitter σth

m .
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6 Discussion and Conclusion

We compare different jitter estimation methods in Table 1. The error levels of
Ma’s [7] and our method are gained from our analysis. The error level of Fischer’s
method was evaluated from their simulation results [2]. Note that the error
levels presented in this table are given in the same condition that the flicker
noise is not taken into account, but can still reflect the accuracy of different
methods. In all of the methods, ours can achieve the lowest error level (1%),
which is confirmed by theoretical analysis. For the methods in [2,7], there was
no theoretical error analysis provided. Besides, compared to the method in [7],
our method has reduced the requirement for the jitter σm, which can shorten
the measuring time interval and speed up the estimation process. Taking this
advantage, when our method is applied for online health test, the test can quickly
assess the state of the entropy source.

Table 1. Comparisons of different methods

Methods Error level Theoretically confirmed Requirement for σm

Ma’s [7] 10% No 0.92

Fischer’s [2] 5% No Undefined

Our method 1% Yes 0.4141

In conclusion, we propose a high-accurate method to estimate the jitter of
RO-based TRNGs. The error level of our method can reach to 1%, which is
much lower than previous jitter estimation methods. For the first time, we give
a theoretical error bound for our method, and the bound confirms the low error
level. Additional advantage of our method is that it requires shorter measuring
time interval, which can speed up the process of jitter estimation. Our method
is to estimate the total jitter in RO-based TRNGs. When combined with the
jitter separation approach in [3], our method is able to be used to estimate
the thermal jitter on practical logic devices, as we presented by an experiment
on FPGA. Consequently, our method will significantly help to precisely and
efficiently evaluate the entropy of RO-based TRNGs.
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Abstract. Electromagnetic Near Field Scanning has formerly been pro-
posed to guide side channel and fault injection attacks. However very few
studies support its use for reverse-engineering. This absence could be
explained by difficulties linked to the diffusion of currents in the power
supply network, which are the root of EM radiations. This diffusion has
for consequence that a local electrical activity in an IC can be observed
quite far from its origin point, thus limiting the interest of EM near field
scans for reverse engineering. This paper proposes a solution to this prob-
lem by describing a method to extract the source areas of an IC where
electrical activity is occurring from EM near field scans. Experimental
results are given for an ARM based microcontroller designed in a 90 nm
process.

1 Introduction

Electromagnetic (EM) side channel [11] and fault injection attacks [2] are major
concerns in hardware security. However, within the context of security evalua-
tions limited in time, one practical problem of these attacks is to place at the
right coordinate tiny EM probes. To avoid time consuming exhaustive searches
of hotspots, EM Near Field Scans of ICs [10] have been proposed in the last
decade as a way of guiding Side Channel Attacks (SCA) [3] or fault injection
attacks [7].

The scanning process is usually performed in the following manner: an EM
probe (usually a copper coil) connected to an oscilloscope through a low noise
amplifier is used to scan a grid of points over the surface of an IC using a
motorized XY stage. At each position of this XY grid Nexecutions traces of a
same IC processing are acquired with a Digital Sampling Oscilloscope. Each
acquired trace, composed of Nsamples time samples, is an EM view of the IC
processing perceived from a (X,Y ) position. Of course, the perception of the
computation performed by the IC varies from one coordinate to another because
of the locality of EM measurements but also because of the vectorial nature of
the magnetic field. These measurements are then used to draw maps using a
criterion (an image contrast) chosen according to the target purpose.

c© Springer Nature Switzerland AG 2019
B. Bilgin and J.-B. Fischer (Eds.): CARDIS 2018, LNCS 11389, pp. 140–155, 2019.
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Among the advantage of EM near field scanning, one can identify:

– its low cost: the required equipment is the same as for performing EM attacks,
– its non invasivity: EM scans can be non-invasive (i.e. done without removing

the IC package) or semi-invasively (done after removal of the package) to get
a higher spatial resolution.

While many papers have been published on the subject, most focus on
improving the tools used to perform the scans [6,8] or on post processing meth-
ods to find Points of Interest (PoI) for SCA [3,12,13]. However, and despite
the obvious advantages of EM near field scans, only one paper (to the best of
our knowledge) focuses on a reverse-engineering technique [9] and does so by
introducing a different technique based on injecting low amplitude EM pulses
and measuring the variations induced on the power network of the chip instead
of passive EM measurements. In addition none of the former works discuss or
consider the diffusion of the currents in the power/ground network, diffusion
impeding the usage of EM scans for reversal engineering or for guiding side-
channel and fault injection attacks.

Other related works use EM side-channel as a method of reverse engineering,
however they focus on single point measurements instead of full chip scans. Their
applications include code disassembly [5] or reverse engineering of cryptographic
algorithms [1]. Finally a comparable technique to EM near field scans is photonic
analysis [14]. While extremely precise, this technique is also more expensive, and
requires long exposure times.

The rest of the paper is organized as follows. Section 2 first elaborates on the
limitations of EM near field scans for reverse engineering or for attacks guidance.
A special attention is paid to the diffusion of currents in the power/ground
networks and its effects on the interpretation of EM near field scans. Then a
criterion is introduced in Sect. 3. It allows deciding if the EM field acquired with
a probe at a given coordinate is effectively due to an electrical activity located
below the probe or is due to an electrical activity source located further away. In
the latter case, the observed magnetic field is due to the passing of the current
consumed by this distant source below the probe position. Section 3 ends by
the proposal of an algorithm, derived from the proposed criterion, allowing to
detect real electrical activity areas. This algorithm is derived from the criterion.
A textbook example is used to illustrate both the criterion and the algorithm all
along this section. Section 4 gives a concrete application example: the detection
of electrical activity spots during the execution of piece of code by a 90 nm
microcontroller. Finally a conclusion and perspectives are given in Sect. 5.

2 Limitations of EM Near Field Scans

EM near field scanning has a few characteristics, that are not necessarily prob-
lematic when used for optimizing SCA (the objective being to find out probe
positions yielding a high Signal to Noise Ratio (SNR), the signal being in this
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case the leakage [4]), but can be misleading for functional or physical reverse-
engineering purposes. Among these characteristics one can cite:

– The non uniformity of the EM coupling between the EM probe and the IC
which varies with the EM probe position above the its surface because the
routing and the integration density are not uniform. This is especially true
while performing EM scans above the IC front side. This non uniformity
could for instance affects the EM perception of a same electrical activity
source placed in different areas of an IC and partially explain why a same
hard IP macro integrated in two different ICs radiates differently.

– The heterogeneity of emissions that can alter the interpretation of EM maps.
This unavoidable problem is due to the heterogeneous nature of the blocks
integrated in ICs. For instance, a RAM, an embedded clock generator, a pump
charge and a combinational block do not have the same EM emissivity and
some blocks can hide the emission of other blocks if activated simultaneously.

– The diffusion of currents. This effect is undoubtedly, in conjunction with the
heterogeneity of EM emissions, the most impeding problem for the exploita-
tion of EM scans. It is therefore the topic of next paragraphs.

In order to explain this limitation let us consider that ICs are made up of
several functional blocks, each one emitting EM radiations proportionally to the
derivative of the current they consume.

When one of these blocks is turned on, it starts consuming current. This
power consumption creates a voltage drop and a ground bounce in the close
vicinity of the block. These drops and bounces, which are due to the resistive and
capacitive nature of the internal supply wires, persists the time until a sufficient
amount of current is conveyed to the block by the power/ ground networks. Thus
the power consumed by the block travels from its originating point towards the
power and ground pads and generates EM emissions all along its path.

The EM emissions radiated all along the current paths are of course similar
in nature (and thus statistically linked) to those observed at the originating
point and this despite the damping factor of the power and ground network;
damping factor which is, by design, low to ensure the correct operation of the
IC. As a result, even an electrical activity confined in a tiny area of the IC can
be observed over a large circuit area. This forbids a precise and safe localization
of an electrical activity source by direct analysis of EM near field scans.

Figure 1 gives an illustration. It shows the propagation of the current con-
sumed by an activity source S1 through an hypothetical supply path toward the
power and ground pads. It also shows the related EM radiations all along this
path.

One can argue that in practice the EM emissions observed all along the travel
path of the current are not visually similar. This is often right. Hence the interest
of high spatial resolution EM probe. However, if they do not look like similar,
this is mainly due to two effects that do not suppress the statistical link between
the emissions observed at the originating point and those observed all along the
propagation path.
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Fig. 1. Illustration of the diffusion of the current consumed by an activity source S1
and its related EM emissions.

The first effect is the position of the EM probe relatively to the travel path.
For instance, moving the EM probe from one side of the path to the other side
inverses the shape of the measured signal because of the reversal of the magnetic
field orientation.

The second effect, illustrated Fig. 2, is the merging of current travel paths.
This figure shows two independent activity sources, S1 and S2 sharing part
of their current propagation paths. At the meeting points of the two paths,
the associated currents i1 and i2 pile up and produce an EM radiations with a
different shape which remains however still correlated with those observed above
the two originating points.

This piling up effect is a main concern when interpreting EM cartographies.
Indeed, it can lead to mistaking the meeting points for electrical activity sources.
This can occur (not always the case) if one uses the maximum (or mean) ampli-
tude or the variance of EM emissions as image contrast to localize activity
sources. Hence the need for an improved technique to interpret EM near field
scans for identifying areas where IC computations are done.

Fig. 2. Propagation path for multiple sources of activity
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3 Searching for the Activity Sources

For all aforementioned reasons, EM activity maps may be misleading for reverse
engineering purposes and may not allow one to accurately distinguish the spatial
origin of logical activity in an IC. This section proposes a method (an image
contrast and an algorithm) to limit misinterpretations of EM maps while aiming
at locating the logical activity sources in a circuit. It allows to find areas that are
probably under operation and which are thus responsible for the EM emissions
measured above the all the IC surface.

3.1 Activity Influence Criterion

The image contrast defined below is an influence criterion. It quantifies if EM
emissions measured above a position are likely to be the result (the residue after
propagation) of EM emissions observed at another position.

Let i and j be two positions at which EM measurements are done and Aij

be the influence criterion:

Aij =
|Cov(Xi,Xj)|

V ar(Xi)
(1)

where Xi and Xj are the EM traces acquired during a chosen time window
at the i and j positions, respectively. As one can observe Aij is the coefficient
of the simple linear regression between the measurements at i and j : E(Xj) =
Aij · Xi + aij + ε. It is herein used to evaluate the strength of the link between
two signals, but compared to Pearson’s correlation it has the advantage of not
being symmetric depending on the amplitudes of the signals:

– if Xj and Xi are strongly correlated but Xj has a higher amplitude than
Xi then Aij > 1. This indicates the EM trace measured at position i is a
potential propagation residue of the EM trace measured at position j.

– However if Aij < 1, this does not mean that the EM trace measured at position
i is the source of the EM radiations measured at j, as it can either be the result
of lower variance of Xj or the result of poor correlation between Xi and Xj .

Thus Aij is a measure indicating when the EM traces measured at a given
position are the propagation residue of an activity at another position. Aij is
thus called influence coefficient of j on i in the rest of the paper.

3.2 Influence Matrix

Let us consider a dataset associated to N measurement positions above an IC.
By calculating all influence coefficients associated to each pair of positions, one
obtains a square matrix of N × N which is similar to a covariance matrix. In this
matrix, the ith row represents the influence of the EM measurements done at every
position on the EM measurements done at position i. Similarly the jth column
quantifies the influence of the EM measurements done at j on all other positions.

Since Aii = 1, if the maximum of the ith row is equal to 1 then no position
has a significant influence on i. This means that i is likely to be the position of
an activity source.
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3.3 A Simple Example

In order to illustrate the above definition, this section provides an example on arbi-
trary signals detailed Fig. 3. In this figure, S1, S2 and S7 are positions of activity
sources. S3 and S4 are positions along the propagation paths of current consumed
by sources at S1 and S2, respectively. As such they have EM radiations similar in
shape to those observed at S1 and S2 but with lower amplitudes. S5 is a posi-
tion at which the currents consumed by sources at position S1 and S2 meet. As
such, EM radiations at position S5 are close to be the damped sum of the signal
observed at S3 and S4. Finally, S6 is a position away from all propagation paths.
EM radiations measured at this position consists of small residues of all sources.
Figure 4 shows the same signals with some measurement noise.

Fig. 3. A simple example. Left part: illustrative supply network and positions (S1 to
S7) at which are done EM measurements. Right part: EM signals measured at positions
S1 to S7; only S1, S2 and S7 are positions associated to an electrical activity.

Fig. 4. Examples Signals generated with random noise

All of Aij values computed from the signals reported Fig. 4 are given Table 1.
Values in green (> 1 or � 1) show that EM measurements done at S3 and S4
are propagation residues of S1 and S2, respectively. This table also shows that
EM measurements done at position S5 are influenced by that of S1, S2 and S3.
Finally, as highlighted in red, S3 is not linked to S2, S4 is not impacted by S1
and no signal is impacted by S7 besides itself.



146 M. Lacruche and P. Maurine

Table 1. Influence matrix calculated from generated noisy signals of Fig. 4

3.4 Source Searching Algorithm

In practice, for high resolution scans, the size of the influence matrix can be very
large. Consequently, a way to extract positions corresponding to activity sources
from the matrix is required. Many solutions are possible, we chose to use the
following algorithm for this:

1. Select a starting position i0.
2. Find the point j0 for which Ai0j is maximum. j0 is then considered to be

the position influencing the most EM measurements done at i0, i.e. as the
potential activity source of what is being observed at i0.

3. Find all points for which Aj0j > (1 − ε). These points, together with j0
constitute an activity source area.

4. Find the point i1 that does not belong to a source area and for which
ρ(Xi1 ,Xj0) is minimal, ρ being the Pearson correlation.

5. Go back to the second step using i1 as the new starting position.

The goal of the algorithm is to identify a source by searching the point that
influences the most a given position, and then search for other sources by looking
at points where the activity profile is the least correlated to the previous sources.

For the first step, the initial position i0 does not matter much in practice.
For the results reported in the rest of the paper, this point has been selected by
searching the point for which V ar(Xi0) is minimal, which makes it likely to not
belong to an activity source.

For high resolution scans (displacement step of the probe in the range of the
micrometer), activity sources cannot be pinpointed to a single point of the map.
Thus the goal of the third step is to determine a source area from the source
origin point found at the previous step. This is done by relaxing the constraint
(Aij > 1) for a point to be a source (an influencing point) or be part of a source.
This latter constraint becomes at this step Aij > 1 − ε where ε is a constant
chosen by the user. The greater ε is, the larger the source areas are. In practice
values of ε close to 0.05 worked well, and this value is used in the rest of the
paper.
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The fourth step aims at finding the point the least influenced by the already
found sources, in order to maximize the chances that it is influenced by a undis-
closed source.

When applied to the signals of the example of Fig. 4, the algorithm works as
described below:

1. Start from the measurement with the smallest variance: S6
2. Finding the position influencing the most S6: S2 becomes the first source

origin.
3. No point sufficiently influences S2 to be considered part of the same source

area.
4. Finding the point with the lowest correlation with S2: S7 becomes the next

starting position.
5. Finding the position influencing the most S7: S7, the next source origin.
6. No point sufficiently influences S7 to be considered as part of the same source

area.
7. Finding the point with the lowest correlation with S7: S5 becomes the next

starting position.
8. Finding the position influencing the most S5: S1, becomes the next source

origin.
9. No point sufficiently influences S1 to be considered as part of the same source

area.

At the end of the algorithm execution, S2, S7 and S1 are thus identified as
measurement positions corresponding to an activity source location. The number
of iterations the algorithm must perform to disclose all source areas should be
theoretically be equal to the number of sources sought. However, in practice,
because of the amplitude disparity of sources, new source origins are sometimes
found in the periphery of an already discovered source area. It is thus preferable
to set the number of iterations to a value slightly greater than the number of
expected source areas. Another possibility is to modify the algorithm so that
to ignore newly found origin points which are contiguous and highly correlated
with an already disclosed source.

4 Practical Application

An EM activity mapping of a recent 32-bits 90 nm microcontroller was performed
using a grid of 90 by 110 points with a displacement step of 50µm between each
points (9900 total positions covering a surface of 4.5 × 5.5 mm). For each point
of the grid 100 EM traces were acquired. Each acquired trace corresponds to one
execution by the microcontroller of the following sequence of operations:

1. Generate a 32bits number using the TRNG peripheral and store it in an array
A in RAM four times.

2. Copy the array A into an array B at another address in RAM,
3. Load the 128 bits of the array A into the input FIFO of the hardware AES,
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4. Encrypt the 128 bits using the hardware AES,
5. Overwrite the array B with the ciphered text provided by the AES.

For each execution an EM trace was recorded using a custom hand-made
single coil probe and an oscilloscope. The diameter of the coil is approximately
400µm. The measurement was done through the backside of the chip after
removal of the package and thinning of the substrate down to 140µm.

4.1 Traces and Code Execution Timing

An EM trace acquired during the scanning process is shown Fig. 5. One can
observe that not much can be identified regarding the timings of operations
besides the AES execution towards the end of the trace (around samples 31000–
32000).
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Fig. 5. A sample EM trace obtained

In order to get a better idea of when each part of the code is performed
along the EM trace, a correlation EM analysis has been performed between the
measurements and the hamming weight of the generated 32-bits random values
and ciphered texts so that to disclose the timings of the different operations. The
correlation traces giving the timings are given Fig. 6. The operations correspond-
ing to each correlation spike are annotated on this figure as well as three clock
periods (between the pairs of vertical red lines); these three windows of time
being used as testcases for the proposed source searching algorithm. Among all
clock periods of the EM trace, period (a) corresponds to a period during which
the fourth random number is generated, period b corresponds to the writing of
this number in the RAM and finally during period c the hardware AES is under
operation.

4.2 Micocontroller Floorplan

Finally, to help reading the maps in the following sections, Fig. 7 outlines the
few informations about the floorplan of the microcontroller at our disposal: two
flash memory blocks are located at the top of the die, with the flash controller
in between, the analog part with voltage regulators and clock PLLs are in the
bottom right and the RAM is in the bottom left. The rest is mostly filled with
logic, including the hardware AES in the corner between the bottom of the flash
and the left edge of the chip.
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Fig. 6. CPA traces obtained during the timing analysis. Spikes are likely to correspond
to the end of each executed operation; the three clock periods (a), (b) and (c) high-
lighted as there are used as examples in the rest of this section. (Color figure online)

Fig. 7. Microcontroller floorplan informations (Color figure online)

5 Results

5.1 Activity Propagation

The EM radiations generated above the IC surface during the operation of
the hardware AES provide a good illustration of the current propagation effect
described in Sect. 3. Indeed, Fig. 8 shows traces acquired at different positions
(including positions close to the four corners of the IC) above the IC surface
during the course of this block. As one can observe, the operation of the AES is
clearly visible at the end of these traces. However, on the last trace, measured
over the lower middle of the chip (35,95), the activity is barely visible despite
the distance to the hardware AES being shorter than for the top right (80,10)
and bottom left (15,100) measurements.

Fig. 8. Traces measured over different positions of the IC surface, with the activity of
the hardware AES highlighted.



150 M. Lacruche and P. Maurine

5.2 Influence Matrices Computation

To calculate the influence matrices associated to all clock periods, the mean
trace (40000 samples) of the 100 measurements acquired at each position has
been first computed to reduce the noise. According to the SNR of traces, this
step is not mandatory. The resulting traces have been divided in 481 segments
(of 83 samples) corresponding each to a clock period (120 MHz clock frequency,
10 GS/s sampling rate). The 481 influence matrices of associated to the 481
segments, featuring each 9900 × 9900 coefficients, were then computed. Then
the proposed source searching algorithm was applied to these matrices.

As an example, Fig. 9 shows the maps of the Aij values for the point i0
indicated by a cross. The left map shows the value of the ith0 row (Ai0j) which
corresponds to the influence of the other points on i0, and the right map shows
the values of the ith0 column (Aji0) which corresponds to the influence of i0 on
the other points. These maps illustrate why the rows of the matrix (influence
towards i0) will be the focus of the rest of the paper: since the columns depend
on V ar(Xj), the values in a column can’t really be compared with one another
and tend to mostly highlight the positions where V ar(Xj) is small (ie. where
signal amplitude is low).

Fig. 9. Maps of a row (influence on i0) and a column (influence of i0) corresponding
to a same position (Color figure online)

5.3 Algorithm Progression

Figure 10 displays the results of the first eight iterations of the search algorithm
for clock period c. On each map, the source origin (point jn in the algorithm
description) is indicated by a cross. The first iteration found a source origi-
nating in the flash memory, and the second iteration found the cryptographic-
accelerator. The high amplitude of the EM activity measured in these two
locations then caused the algorithm to bounce between them for a few itera-
tions, until iteration 7 during which the dedicated memory of the cryptographic-
accelerator has been detected. Finally, iteration 8 detects a source in the analog
block of the circuit, this block appears to be a source on nearly every clock
period of the acquisitions and is likely to be the on-chip voltage regulator or
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Fig. 10. Activity areas found at the end of the first 8 iterations of the source searching
algorithm for period c (AES under operation) (Color figure online)

the clock generator. The following iterations (up to 20) did not highlight more
activity sources and continue to expand the already found ones.

6 Overlapped Sources Maps

This section shows maps for the clock periods (a), (b) and (c). For each figure,
the left map shows the values of V ar(Xw) with Xw the samples for the selected
clock period w (since EM traces have a mean equal to zero, variance is equivalent
to the mean EM power over that window).

The middle map shows V ar(Xw)/V ar(Xtrace) with Xtrace the samples for
the whole acquisition. These middle maps are thus visualizations of the mean
EM power over time period w normalized by the mean EM power of the whole
acquisition. Thus they highlight points at which there is during the time window
w more activity than usual.

Finally, the third map corresponds to the results of the searching algorithm
introduced in Sect. 3. To obtain these maps, 20 algorithm iterations were per-
formed and the 20 recovered areas were superimposed. Yellow points are points
that were selected during two or more iterations and green points were selected
by the algorithm during a single iteration.

Figure 11 shows the maps for clock period a, the highlighted areas correspond
to the Flash B block, and a part of the analog block that is almost always active,
as well as two unknown areas in the left and top left of the die. This pattern of
sources is typical of the RNG activity periods, unfortunately as no information
on the location of the TRNG on the chip is available, it is difficult to reach
further conclusions.
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Fig. 11. Results for clock period a, from left to right: V ar(Xw), V ar(Xw)/V ar(Xtrace),
and the activity sources found by the algorithm (Color figure online)

Fig. 12. Results for clock period b, from left to right: V ar(Xw), V ar(Xw)/V ar(Xtrace),
and the activity sources found by the algorithm (Color figure online)

Fig. 13. Results for clock period c, from left to right: V ar(Xw), V ar(Xw)/V ar(Xtrace),
and the activity sources found by the algorithm (Color figure online)

Figure 12 shows the maps for clock period b. The same analog block appears
again and the source in the center is active during each clock period that coin-
cides with a correlation spike on the CPA trace at the end of each code part
where the RAM is read or written, as such it can be suspected to be a RAM bus
or controller.

Figure 13 shows the maps for clock period c, for which the first algorithm
iterations were detailed previously. As discussed above, two source areas near
the cryptographic hardware accelerator appear, as well as the flash and the
usual analog block area which is the expected result.
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6.1 Current Propagation Paths

Another possible use of the influence matrix is to draw the current propagation
path from one point to the influencing source. To do so, starting from a point
on the circuit, one can draw a path by selecting the point with the maximum
influence on it among its direct neighbors and then doing the same with this new
point. With the restriction that a point can’t be selected twice (no backtracking
or looping). The path stops when it either becomes trapped (all the neighbors
are already part of the path) or hits an edge of the map.

The paths displayed in Fig. 14a and b are drawn for clock period c, starting
from the point indicated by a cross. On both figures, the left map is drawn using
the influence coefficient to guide the propagation path, while the right map uses
Pearson correlation for comparison. The difference between the obtained maps
is important.

The first path, on Fig. 14a, goes from the starting point to the cryptographic-
accelerator following first a vertical and then an horizontal line that may be a
result of the power supply grid. Meanwhile, the path drawn by the correlation
coefficient goes towards the analog block following a chaotic path.

Similarly, on Fig. 14b, the path drawn from the influence matrix goes to the
cryptographic-accelerator memory, then towards the cryptographic-accelerator
itself following horizontal and vertical lines.

Fig. 14. Propagation path examples for clock period c (Color figure online)

7 Conclusion

In this paper we have proposed a method for finding the electrical activity sources
of the EM emissions measured when performing EM near field scans and pre-
sented experimental results obtained on a microcontroller. To do so an EM
activity influence coefficient has been introduced. This coefficient is based on
simple linear regression used to evaluate how much the electrical activity in one
point of a circuit contributes to the EM measurements performed at another
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position. While the results presented are interesting, there is room for improve-
ment in many directions to make EM near field scans a better tool for reverse
engineering of ICs. A particular improvement would be a version of the coeffi-
cient less sensitive to the synchronization of signals. Another step will be to test
this method on FPGAs, where we will have a better knowledge of the positions
of each function of the circuit for better validation of the results.
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Abstract. Laser fault injection is a complex, physical process with
many parameters that influence the success of the injection. Some para-
meters are difficult to control. While many works have established that
focused laser light can inject seemingly random faults in electronic
devices such as microcontrollers, FPGAs and ASICs, only few works
explain precisely why a specific fault can be observed. We narrow this gap
and characterize in detail the effects of laser pulses on an 8-bit microcon-
troller in a black-box fashion, with access to only public documentation.
With our setup and settings we can inject faults only in the read-out
circuitry for the on-chip flash memory. As result of our analysis we are
able to inject bit-reset faults in individual bits of opcodes and data words
stored in flash with 100% accuracy and repeatability. This allows us to
easily demonstrate well known attacks on cryptographic software, e.g.
manipulation of a block cipher implementation’s number of rounds. At
the same time our study informs the targeted development of counter-
measures.

Keywords: Laser fault injection · Microcontroller ·
Black-box characterization · Flash memory

1 Introduction

After the publication of the first fault attack by Boneh et al. [6] a vast body
of work has been accumulated regarding fault attacks, countermeasures and
fault injection methods. A fault attack aims to inject a fault during a device’s
nominal operation, and to analyze the faulty output, in order to retrieve secret
information stored on the device. The most common fault analysis methods are
Differential Fault Analysis (DFA) [4], Collision Fault Analysis (CFA) [14] and
Ineffective Fault Analysis (IFA) [5,11]. Each of these attacks requires the fault
c© Springer Nature Switzerland AG 2019
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introduced into the device to have certain properties, the introduced faults need
to behave according to a desired fault model. To counter these fault attacks
countermeasures usually rely on some form of redundancy [3] or on sensors [16].

To achieve the required fault model different fault injection methods can be
employed. These fault injection methods are often classified according to their
invasiveness. Common fault injection methods include voltage glitching [15],
clock glitching [2], electromagnetic pulses [19] and laser fault injection [21]. Of
these injection methods, laser fault injection is the most invasive since it requires
the exposure of the bare die. However, laser fault injection is also very precise
and can target a specific area of an integrated circuit (IC) and introduce faults
controlled both in time and space.

Laser fault injection is a powerful method to disrupt an IC’s operation. Laser
light, with the correct wavelength, can penetrate an IC’s substrate and reach the
transistor layer. The coherent light produced by the laser source is directed at
the IC’s circuitry and causes transistors to toggle. Due to the small spot size,
the area illuminated by the laser light, very precise faults can be introduced
into the circuit. The spot size can be in the µm range and depends on the used
wavelength, the quality of the laser source and the optics. For this reason laser
fault injection was used first to simulate the effect of single event upsets [13] on
ICs and later to perform fault attacks on cryptographic implementations [21].

With shrinking technologies it is no longer possible to target a single tran-
sistor. Instead clusters of transistors are illuminated by the laser light, making
the outcome of a laser fault harder to predict. A multitude of parameters can
be varied all of which can influence the outcome of a laser fault injection.

Laser fault injection can be applied to every platform ranging from ASICs
or FPGAs to microcontrollers (µCs). In this paper we will focus on laser fault
attacks on µCs. Previous works have already demonstrated the vulnerability of
µCs to laser fault attacks. The first laser fault attack on a µC was published
by Skorobogatov et al. [21]. They managed to set bits in SRAM using a laser
pointer and some optics. Later a more in-depth study into faulting the SRAM
of µCs was done by Agoyan et al. [1]. Courbon et al. demonstrated that besides
SRAM the registers of a µC are also vulnerable to laser fault injection [12]. Note
that these results were not obtained on the µC that we use in our study.

We chose the ATmega328P as our target µC. The susceptibility of the
ATmega328P to laser fault injection was already demonstrated by Breier
et al. [8,9]. In their work the authors demonstrate that meaningful faults, i.e.
program flow or data is corrupted but the chip does not reset, can be intro-
duced into the ATmega328P. The region on chip where they achieved these
faults corresponds to one of the regions also found sensitive to laser pulses in
our experiments. For our experiments we use a setup similar to the one used by
Breier et al.

In their experiments they achieved three types of faults: instruction skip
faults, register disturbance faults and address change faults. Under register dis-
turbance faults they understand faults that influence the values stored in regis-
ters. Address change faults are faults where data from a different register than
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intended is written to memory. Breier et al. describe the type of faults they
observe but give no explanation for the underlying mechanism.

Contribution. We characterize in detail the effects of laser fault injection on
the 8-bit µC ATmega328P while it reads from program memory. This includes
the pre-loading of operations in the fetch stage and the loading of data in the
execute stage. We not only locate the regions sensitive to laser fault injection,
but also describe the physical effects causing the fault model. The different fault
types observed by Breier et al. can be unified under the fault model resulting
from our characterization. As result of our analysis we are able to inject bit-reset
faults in individual bits of opcodes and data words stored in flash with 100%
accuracy and repeatability.

2 Experimental Design

In this section we describe our experimental setup for fault injection as well as
our methodology to characterize and understand the injected fault.

2.1 Target Device

In this work we target an 8-bit AVR microcontroller, the Atmel ATmega328P
[17]. It has 32 kB of flash memory, 1 kB of EEPROM and 2 kB of RAM. It oper-
ates on a two stage pipeline with fetch and execution stages: the next instruc-
tion is fetched during execution of the current instruction. In our experiments
the target device (DUT) runs at 4 MHz. The ATmega328P was chosen for sev-
eral reasons. The fault sensitivity of the µC has already been demonstrated, but
not described in depth, in previous works. The ATmega328P is also used in the
Arduino UNO platform, making it easy to program and interface with the target
device. Another important advantage of the ATmega328P is its availability in
DIP packages. This allows to easily decapsulate the target device and should the
device be damaged by the laser fault injection it can easily be replaced.

Laser fault injection is a semi-invasive attack where the adversary needs line-
of-sight to the bare die. Therefore the backside of the chip’s package together
with the copper paddle was removed using a cheap hobbyist mill. After remov-
ing the thermal paste with acetone the bare die is exposed. Our characterization
is performed from the backside. Thus the laser first has to penetrate the chips
substrate before it reaches the transistor layer. The backside of the IC is chosen
as a target since the topside holds the metal routing wires. These are not trans-
parent to light and would therefore block or hinder the laser light from reaching
the transistor layer.

The DUT is mounted on a modified Arduino UNO board. Since the laser
fault injection is performed through the backside of the DUT a DIP socket
was soldered to the Arduino UNO PCB, such that the exposed die is pointing
“upwards” towards the microscopic lens of the laser fault injection setup.
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In order to better understand which part of the µC was faulted, we took a
through substrate image of an ATmega328P using a near infrared (NIR) camera
(Fig. 1). The original substrate thickness of the chip is around 500µm making
it impossible to make a clear image due to the high absorption coefficient of Si
for NIR light. Therefore the substrate of the µC was thinned down mechanically
to 50µm. After thinning a complete image of the 3 by 3 mm die was taken. No
thinning was done on the chip used for our characterization experiments.

Fig. 1. Through substrate image of an ATmega328P.

2.2 Laser Fault Injection Setup

The laser fault injection setup used to perform the characterization employs a
diode pumped laser source with a 1064 nm wavelength. The laser source has
a maximal output power of 2 W and a minimal pulse width of 1 ns. The laser
beam is focused using a 50X microscope objective. The microscope objective
is mounted on a XYZ stepper table that has a minimum step size of 0.1µm.
A NIR camera in combination with NIR LEDs is used to focus the laser source
on the target µC.

With the stepper table we control the position of the laser relative to the
DUT. The trigger for the laser fault injection setup is generated by the DUT on
one of its output pins. Communication with the DUT is done through a serial
interface. All the components of the setup (steppers, communication, etc.) are
controlled with a PC.
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2.3 Methdology

Our black-box analysis follows the methodology of Balasch et al. [2]. Before
injecting a laser pulse, the device is reset and initialized in order to bring it to
a fully known state. Under a known state we understand that all registers and
memories contain the same values before every pulse injection. After resetting
the device, the target code is executed, a fault is injected and the content of all
working registers is read back over the serial port. This process is repeated for
every target location on the µC.

After collecting the data for every target location we examine the difference
between the expected register values and the ones received after laser pulse
injection. The goal is to reverse-engineer what instruction was executed instead
of the target instruction, which in turn reveals which bits of the opcode have
changed, and how. This manual process is extremely time consuming and at the
heart of our study.

By carefully selecting the target instructions and analyzing the different
faults we obtain for each of them we can get an understanding of the under-
lying cause for the obtained faults.

To ensure that the fault injection affects only a single instruction and hence
to simplify our task, we surround the target instruction with several nop instruc-
tions. Our test code is shown in Table 1.

Table 1. Test code.

Cycle Instruction

1 sbi 0X0B, 7 // trigger

2 nop

3 nop

4 target

5 nop

6 nop

2.4 Locating Sensitive Regions

In a first step we scanned the entire chip area for regions that are sensitive
to laser fault injection. We applied laser pulses with large pulse width, twice
the clock period, while executing different target instructions such as brne and
ldd. We used a relatively large step size of 20µm for these scans. During these
initial scans we only checked if the program was correctly executed or not, by
comparing the content of the registers after normal and faulted execution.

The initial scans revealed that only laser pulses directed at flash memory
caused meaningful faults in the program’s execution. This region will therefore
be the focus of the characterization.
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3 Faulting the Flash Memory

The initial scanning of the chip to find sensitive regions showed that flash mem-
ory was the only region that demonstrated meaningful faults during the program
execution. Note that no permanent faults were introduced. The content of the
flash memory cells remained the same before and after the laser fault injection.
This observation suggests that we inject faults in the read-out circuitry. Flash
memory has different components that can be faulted. The flash found in the
ATmega328P most likely has a NOR-type structure where flash memory cells
can be accessed individually. Each memory cell can be addressed separately by
enabling its word-line and bit-line as can be seen in Fig. 2. Some control logic is
required to enable the correct word-line drivers and select the correct bit-line.
The content of the addressed memory cell is read out by one or several sense
amplifier(s). There are also analog components to generate the high voltages
needed to program the flash cells, to generate reference voltages for the sense
amplifiers, etc. Each of these components might be sensitive to laser pulses. The
fact that flash memory can be faulted by laser fault injection has been demon-
strated by Skorobogatov [20].

The characterization is done in a black-box setting thus we can never be
completely sure about the effects the laser pulses have on the targeted circuit.
Our initial scan of the chip showed that the entire flash region was sensitive
to laser pulses. Besides the flash memory cells themselves another region in the
bottom left corner proved to be sensitive to laser pulses. Based on the image
taken through the chips substrate we can observe that this is most likely an
analog component.

In the next sections the effects of laser pulses on the ATmega328P’s flash
memory will be discussed in more detail.

Fig. 2. Flash memory structure.

3.1 Effect of Laser Pulses on Program Flow

In order to analyze the effects of laser pulses on program flow, we set our target
instruction to be muls r23, r27 (Multiply Signed). Figure 3a illustrates the sen-
sitive regions in flash memory that are vulnerable to laser fault injection for our
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Fig. 3. muls r23, r27. (Color figure online)

target instruction. The heat map consists of 11 different fault sensitive regions,
enumerated in Fig. 3a, and in each of these regions, our target instruction is
replaced with the execution of a different instruction. The instructions executed
in place of our target instruction are shown in Fig. 3b. The sensitive regions are
colour-coded in the heat map in order to distinguish them from each other.
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Based on the instructions that replace the target instruction in Fig. 3b, we
could observe that the fault segments are correlated with the opcode of muls
r23, r27 and the opcode of all the erroneous instructions differ from our target
instruction by only one or two consecutive bit resets. Let us represent the bits
of the opcode as b15b14 · · · b0. As we traverse the memory from top to bottom in
Fig. 3a, we can notice a gradual advancement in the bit positions that are reset.
Fault injection in Segment 1 resets the bit b0 and in Segment 11 resets the bit b9.
And the segments that reset two bits of the opcode are formed from the overlap
of the segments immediately above and below them. It is also interesting to
note that the relative positions of the fault segments in Fig. 3a resemble the bit
positions in the target instruction’s opcode. For instance, Segments 3 and 4 are
separated from each other by a fault free-region as they represent non-adjacent
bits b1 and b3. Note that these two bits are equal to 1 in our target instruction
whereas the bit between them, b2 is equal to zero in our target instruction. From
this, we can be certain that the fault model is bit-reset and not bit-flip.

We repeated our experiments on more instructions such as ldd(Load Indirect
from data space), breq(Branch if Equal),mov(Copy Register) etc. and observed
very similar results. Figure 4 illustrates the results we obtained on targeting the
instruction ldd r11,z +0x1c.

Flash memory in ATmega328P is organized as 16-bit words. Every instruc-
tion in AVR assembly language has a unique 16-bit opcode (Operation code)
representing it. On programming the chip, all the instructions of our program
are stored in the flash memory as 16-bit operation codes. In the pre-fetching
phase, the opcode of the instruction pointed to by the Program Counter (PC)
is loaded through the 16-bit Program Bus. Hence injecting a laser pulse dur-
ing fetch disturbs the opcode, thereby replacing the target instruction with a
different instruction.

Overlapping of fault segments does indeed create specific regions near the left
margin of the memory that can even reset more than 2 bits in the instruction
opcode. But these regions are hard to generalize for all instructions as the level
of overlap would depend on many parameters such as the pulse width, laser
intensity and the instruction’s opcode. The size of the regions influenced by the
laser pulses depends on the settings of the laser source. For our experiments we
used a pulse width of 150 ns and a laser power of 0.6 W. Relatively high laser
power is required since there was no thinning of the IC’s 500µm thick substrate.
An increase in laser power or pulse width will up to a point increase the size
of the sensitive regions as can be seen in Fig. 5. This suggests that a certain
amount of energy is required to inject a fault into flash memory. Furthermore,
the regions are obviously much larger than any single flash memory cell. This
supports our assumption that we are injecting faults into the read-out circuitry.
More precisely, we seem to affect a part that is shared for many bits.

At the bottom-left corner of flash memory, there exist some fault sensitive
regions as depicted in Fig. 6. These regions form concentric rings, and in each of
these regions the target instruction is always replaced with a fixed instruction
irrespective of the target instruction. Based on the through substrate image we
can observe that this region most likely contains analog circuitery. One possible
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Fig. 4. ldd r11, z + 0x1c.

explanation for this behaviour would be that injecting faults in these locations
produce stuck-at faults during opcode fetch. The instructions executed instead
of our target instruction in some of these regions are:

– nop (Opcode : 0000 0000 0000 0000)
– muls r16, r16 (Opcode : 0000 0010 0000 0000)
– and r0, r16 (Opcode : 0010 0010 0000 0000)
– or r0, r18 (Opcode : 0010 1010 0000 0010)
– or r0, r16 (Opcode : 0010 1010 0000 0000)
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Fig. 5. Influence of the laser parameters on the size of the sensitive regions.

Fig. 6. Concentric fault sensitive rings.
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Fig. 7. Faults in the data flow

4 Effects of Laser Pulses on Data Flow

From the observations we have made on the effects of laser fault injection on
program flow, we can be fairly certain that fault injection does indeed disturb
the 16 bits of opcode fetched from flash memory. In this section, we demonstrate
how fault injection can also affect the execution stage of target instructions that
read values from program memory, thereby inducing data faults.

As discussed, Program Memory in the DUT is organized and accessed as 16-
bit words. However, the lpm (Load from Program Memory) instruction uses a
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byte address pointer (Z) to load a single byte to the destination register. Selecting
between low or high byte of the 16-bit word is most likely determined by the
least significant bit of the Z pointer. This characteristic enables the following
experiment. We store a table of 8-bit constants with the value 0xff in program
memory. We use the command lpm r9,z as our test instruction, to load an
element from the table. The constants being 8-bit wide, two adjacent elements
of the table are stored together as a 16-bit word in Program Memory. To verify
this assumption, we load two constants stored at consecutive memory locations
using lpm instructions. If our assumption is right, one constant should be a low
byte and the other a high byte. We perform a step-wise scan throughout flash
memory and monitor if the value getting stored in Register r9 matches the
expected value (0xff). Figure 7b and a show the heat maps for the cases when
the least significant bit of Z is 0 and 1 respectively. The fault pattern in both
Figs. 7b and a are identical, as depicted in Fig. 7c, indicating every bit of the
16-bit word can be reset. In other words, there exists a dedicated region on flash
memory that can be targeted to reset a particular bit of the 16-bit word.

Additionally one can notice that fault sensitive regions for both cases are
present in only one half of flash memory. This observation implies that the low
byte of the 16-bit word from which the constant 0xff was fetched is present in
the top half of the flash memory and the high byte in the bottom half. We can
now conclude that the bits of flash memory word are arranged in flash memory
cells in a vertical arrangement, with the least significant bit placed near the top
margin of flash memory and the most significant bit near the bottom margin.
The fault sensitive region for a certain bit of a target instruction or data, e.g.
the least significant bit, comprises that bit of all words in flash memory, e.g. all
LSBs. This suggests that (part of) the read-out logic is shared among all bits
that have the same position in a word.

5 Application

In this section, with the knowledge we have acquired so far, we demonstrate a
couple of threats laser fault injection could pose to an implementation of AES on
our platform. Figure 8a illustrates a snippet of AES-128 encryption, where rcon
indicates the round counter. Now suppose we target the Branch If Not Equal
(brne) instruction in this snippet and inject a laser fault in the location shown
in the Fig. 8, highlighted in red. The opcode bit b10 of brne RoundFunction
would be reset changing the instruction type of the target instruction from
Branch if Not Equal (brne)(Opcode : 1111 01kk kkkk k001) to Branch if Equal
(breq)(Opcode : 1111 00kk kkkk k001). If brne were to be replaced with breq in
the encryption algorithm, it would prevent the control from branching and would
drastically reduce the number of rounds executed during encryption, thereby
enabling key-recovery through simple cryptanalytic attacks [10].

Additionally, look-up tables such as the S-box would likely be stored as con-
stants in flash memory and frequently accessed during encryption (resp. decryp-
tion). As this would require the usage of the lpm (Load from Program Memory)
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instruction, an adversary could target this instruction in order to inject faults
in the data flow. This would allow to mount classical DFA attacks such as Piret
and Quisquater [18].

When countermeasures or tools [7] are developed to defend against fault
attacks, particularly DFA, the assumption is often that only the operands are
vulnerable to fault injection. Or if an attacker manages to fault an instruction
it will only lead to an instruction skip. These assumptions might hold for most
devices, but as demonstrated in this paper, they do not hold for all of them.
Therefore, when developing countermeasures, it is safer to assume a fault model
where an attacker is able to manipulate the opcode bits up to a certain degree.

Fig. 8. Faulting AES round counter. (Color figure online)

6 Conclusion

In this work we described the effects of laser pulses on the flash memory of an
8-bit microcontroller, the ATmega328P. We target the read out of data from
flash memory and are able to reset one or multiple bits of the fetched data or
opcode to zero. We have full control over which of the 16 bits is reset. Being able
to reset arbitrary bits in the opcode is a very powerful fault model which allows
us to perform any of the many well known published attacks. For instance, the
opcode of instructions can be faulted such that the program flow is altered, or
data read from memory is faulted in order to enable a classical DFA attack. The
acquired fault model is supported by the physical layout of the flash memory.

Understanding the underlying cause for a fault model does not only allow us
to mount powerful attacks, it also helps us in understanding which countermea-
sures need to be taken in order prevent these attacks. In order to detect faults
in the flash memory, error detecting codes that detect at least two bit resets
can for instance be added. However, to detect the faults that we observed in our
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experiments, it may not be necessary to protect the memory itself, but only the
readout circuitry.
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Abstract. In this paper, we systematically review and categorize differ-
ent hardware-based firmware extraction techniques, using 24 examples
of real, wide-spread products, e.g. smart voice assistants (in particular
Amazon Echo devices), alarm and access control systems, as well as home
automation devices. We show that in over 45% of the cases, an exposed
UART interface is sufficient to obtain a firmware dump, while in other
cases, more complicated, yet still low-cost methods (e.g. JTAG or eMMC
readout) are needed. In this regard, we perform an in-depth investiga-
tion of the security concept of the Amazon Echo Plus, which contains
significant protection methods against hardware-level attacks. Based on
the results of our study, we give recommendations for countermeasures
to mitigate the respective methods.

1 Introduction

Extracting the firmware from IoT devices is a crucial first step when analysing
the security of such systems. From a designer’s point of view, preventing the
firmware from falling into the hands of an adversary is often desirable: for
instance, to protect cryptographic keys that identify a device and to impede
product counterfeit or IP theft. The large variety of IoT devices results in dif-
ferent approaches to firmware extraction, depending on the device in question.

Past work has looked at the state of security of IoT devices, e.g. [1–3]. Past
work on the analysis of IoT firmware has found a wide range of vulnerabilities
[4–6], and such vulnerabilities have been widely exploited [7]. Much of this work
looks at firmware downloaded from the Internet, rather than taken from a device.

In contrast, not so much attention has been given to the hardware security
of these devices. Having access to an embedded device’s firmware can provide
valuable insight into how the device operates and potential vulnerabilities it
might have. Sensitive information, such as passwords and static keys can often
be found in a firmware, which is indicative of insecure design and bad overall
security. Besides, vectors used for firmware extraction also give write access to
the device, enabling firmware modification as well.

Firmware extraction is not an exact science. The market is filled with a variety
of IoT devices, each using one of the many embedded processors, with their own
c© Springer Nature Switzerland AG 2019
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settings and software stacks, making each device unique in its own way. Because of
this, there is no one-glove-fits-all scenario when it comes to firmware extraction of
IoT devices. At DEFCON 25, techniques to extract firmware from a range of IoT
devices were presented [8], while Etemadieh et al. focused on the use of the eMMC
interface (cf. Sect. 3.2). This work culminated into the Exploitee.rs project [9].
We include certain devices from [9] as part of our survey (cf. Sect. 4), but would
like to note that we are not affiliated with that project.

The topic has only received relatively limited academic attention, with a first
step towards a more systematic approach given by Schwartz et al. [10]. However,
the authors of [10] focus on a relatively narrow class of low-cost devices (IP/baby
cameras and doorbells). In this paper, we consider a significantly wider range
of device types as well as extraction methods. Our case studies include popular
smart voice assistants like the Amazon Echo product range and other extremely
wide-spread IoT devices. Out of the devices included in the survey, our research
suggests that UART is currently the most common and exploitable debugging
interface found in IoT devices, with over 45% of the considered devices being
vulnerable to firmware extraction via UART. However, direct access to flash
memories (e.g. eMMC) is also becoming important for modern devices. Notably,
in almost all cases where a hardware method is available for firmware extraction,
the method also enables firmware modification and hence “rooting” of the device.

Contrary to the common opinion that security in the IoT is a lost cause, we also
observed positive developments, with newer high-profile devices like the Amazon
Echo offering a better level of protection compared to most other vendors.

The remainder of this paper is structured as follows: in Sect. 2, we present
background information about the technologies and debugging interfaces in use
in embedded systems. In Sect. 3, we present methodologies for firmware extrac-
tion using different techniques and interfaces. Then, in Sect. 4 we present case
studies for the described methods. Particularly, in Sect. 4.4, we describe various
measures implemented in new Amazon Echo devices, that—while they do not
prevent firmware extraction—significantly raise the bar for malicious firmware
modifications. Based on the case study, we recommend countermeasures for
securing devices against firmware extraction and modification in Sect. 5, before
concluding in Sect. 6.

2 Technical Background

Unlike the PC market, embedded systems are very diverse, each suited for
particular applications of these devices. Such devices usually employ microcon-
trollers, that consist of one or more CPUs, along with their own memory and
I/O peripherals. Common microcontroller architectures for IoT devices include
ARM, MIPS, Freescale and Texas Instruments TI MSP.

Firmware. In the context of embedded IoT devices, the firmware usually refers
to the entire OS image that incorporates the kernel and file system, together
with different binaries and scripts running together, making up the device’s
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functionality. On very low-end devices, such as TV remotes for example, the
firmware can be a single binary handling the entire functionality of the device,
from booting to transmitting RF signals. A full firmware image usually consists of
bootloader(s) (2nd/3rd stage, often U-Boot), the kernel, and one or multiple file
system images (e.g. SquashFS, JFFS2, UbiFS, etc.) containing custom binaries
and scripts. While there are many custom operating systems made for specific
devices, by far the most common is embedded Linux. There are many different
distributions of embedded Linux currently used in embedded devices, but they
are all very similar in functionality. Another notable commonly found OS in
embedded devices is Android (cf. Sect. 4.4). There are also new operating systems
specifically made to address the security and performance requirements of the
IoT devices of today. These include Windows IoT Core, Kaspersky OS and
Google Brillo OS (Android Things).

Bootloaders. The bootloader is the first piece of software that runs on a system.
The bootloader initializes hardware components such as RAM, flash storage,
and I/O, and loads the kernel into memory for execution. In embedded systems,
the boot process can be set up in one, two, or three stages, each stage having
a different role during boot. In a three-stage process, the initial bootloader,
which is usually located in ROM and is microcontroller-specific, handles the basic
initialization of hardware components, and loads the second stage bootloader.
The second stage bootloader, which typically resides on flash storage and is
board-specific, handles the initialization of board-specific hardware. After the
initialization, it loads the final bootloader, which copies the kernel into main
memory, loads device drivers for the found hardware components, and runs the
kernel code. One of the most widely used bootloader for embedded systems is
U-Boot [11], which is used as a second stage bootloader. Aside from the booting
process, U-Boot also has a command line interface.

Debug Interfaces. Most microcontrollers offer on-chip debugging functions, usu-
ally used for IC fault-testing, direct memory access, and for programming inte-
grated flash chips. Common interfaces include UART, JTAG, Serial Wire Debug
(SWD) for ARM processors, as well as Background Debug Mode (BDM) in auto-
motive processors. Other serial interfaces include SPI and I2C.

3 Firmware Extraction Techniques

Firmware extraction presents a couple of challenges for IoT device manufactur-
ers. First, there is a risk of potential IP loss. More importantly however, firmware
extraction can often lead to the discovery of new vulnerabilities in such devices.
In some cases, this can have an effect not only on the analyzed device, but on
all devices belonging to the manufacturer, due to critical vulnerabilities being
discovered. We classify firmware extraction methods into three main categories:

– Leveraging debug interfaces to get local shell access or read memory contents;
– Performing a flash chip hardware memory dump;
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– Using software methods to gain access to firmware (e.g. firmware updates,
network services, etc.).

The execution of these methods usually varies from one device to another, adapt-
ing to the particularities of each device. Apart from the aforementioned methods,
there is also a hardware method called bus snooping. This method inspects in-
transit data between caches and controllers on a bus. A well-known example
of this is the original XBox hack [12], which used hypertransport bus snoop-
ing to extract the firmware decryption key of the XBox. Aside from the hard-
ware extraction methods, there are also software methods that can be leveraged
for firmware extraction. One example are code execution vulnerabilities, which
can be exploited to get shell access on the device. As most software runs as
root on embedded devices, a successful exploit results in a root shell. In most
cases where firmware extraction is possible, firmware modification can also be
achieved using the same methodology [13]. In some cases, this can be even more
harmful than firmware extraction [14]. Even if no vulnerabilities are found, an
attacker might still implant a backdoor on a device such as the Amazon Echo
and sell it online. An unsuspecting buyer would get a backdoored device, capa-
ble of spying via the microphone, or using the linked Amazon account to make
fraudulent purchases. Besides, firmware modification is useful when dynamically
analysing the firmware’s behaviour, for instance by enabling live debug capabil-
ities (e.g. through a disabled UART or adb interface).

3.1 Debug Interfaces

UART Firmware Extraction. UART is often a straightforward way (see
also [10]) of gaining access to an embedded device’s firmware. An unrestricted
root shell can often be found by simply connecting to UART. On Android-based
devices, a root shell is sometimes accessible via the Android debug interface
adb. Another method is to utilize the shell of a bootloader to enable root access
or obtain a firmware image in cases where a root shell is not present during
operation or is password-protected. With root access, one way to dump the
firmware is to perform a live internal dump of the entire filesystem, with all
files bundled together in a tar or zip archive, or to dump the block devices
available on the device using dd or cat. However, dumping block devices can
cause problems since embedded systems use different types of flash storage with
different filesystems. In general, we recommend to follow the following steps
when performing UART firmware extraction:

1. Identify the UART interface through visual inspection, oscilloscope probing,
and trial-and-error;

2. If an unprotected shell is available, image the device or download all files.
Files can be downloaded using netcat (or similar tools) and a PC connected
on the same network;

3. If the shell is password-protected, try common username/password pairs from
a list (e.g. root/root etc.). If no shell is available or the credentials cannot be
determined, attempt to interrupt the boot process and enter bootloader shell;
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4. If the bootloader shell cannot be entered, try to temporarily disturb the flash
interface (e.g. by grounding a data or clock pin) when the bootloader loads
the kernel in order to fallback to the bootloader’s shell. Image the device
from the bootloader shell (e.g. using nand dump or nand read and md under
U-Boot).

JTAG Firmware Extraction. The JTAG port used during manufacturing
for loading firmware can in some cases be used for reading the full memory of
the chip. Reading the memory of a device via a JTAG port requires a suitable
programmer that can receive the memory dump and transmit it to a computer.
Some manufacturers lock the device from being read or reprogrammed after
manufacturing. Leaving the JTAG interface connected and unlocked exposes
the device to firmware extraction and firmware injection attacks. The general
process of JTAG firmware extraction is:

1. Visually identify possible JTAG/SWD (and other) debug interfaces. SWD
requires only two pins, while JTAG has a variety of different pin arrangements,
ranging from 8 pins to 20. As a general rule, two rows of four or more pins
are likely candidates for JTAG;

2. As with UART, first identify the ground pin using a multimeter;
3. To identify the pinout, the data sheet for the particular microcontroller is

needed. If the data sheet is not available, use a tool like the JTAGulator [15]
to identify possible pinouts;

4. After identifying all pins, a suitable JTAG/SWD programmer can be used to
dump the internal memory if no readout protection is enabled.

Due to the large variety of different pinouts and proprietary pins, as well as
different JTAG debuggers for different microprocessors and architecture types,
firmware extraction via JTAG requires more effort than UART, as specialized
hardware and software and information gathering are required.

3.2 Raw Flash Dump

The third and final hardware-based firmware extraction method considered in
this paper is directly reading the flash storage. Reading older flash chips with
parallel interfaces requires many connections to the target device, as well as a
specialized programmer. Newer technologies such as eMMC however, require less
connections and can be read with a standard SD card reader. Alternatively, spe-
cialised tools like easyJTAG Plus1 or RiffBox2 can be used. A deeper description
of eMMC extraction can be e.g. found in [16]. The general steps for performing
flash dumps are:

1. Identify the flash chip (by label, package type, number of connections to
processor) and obtain a data sheet if possible;

1 http://easy-jtag.com/.
2 http://www.riffbox.org/.

http://easy-jtag.com/
http://www.riffbox.org/
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2. Identify the pins, either by data sheet or oscilloscope. eMMC uses DAT0,
CMD and CLK pins, as well as power and ground. CLK is a repetitive signal,
while the CMD line has short data bursts, generally preceding data read-
s/writes on the DAT0 pin.

3. For eMMC: Disable access to eMMC from the processor, and connect pins to
a generic SD card and use an SD reader to interface with it;

4. For other flash chips: Use a suitable adapter and programmer to read the chip
contents, e.g. the MiniPro TL8663;

5. If in-circuit dump is not possible, de-solder the flash chip and perform the
dump with a suitable reader.

For in-circuit dumps, it is required to prevent accesses from the board’s CPU
while reading the memory. This can e.g. be achieved by temporarily cutting the
clock line and re-connecting after the dump is completed. Sometimes, simply
connecting an eMMC interface (e.g. easyJTAG Plus) prevents the CPU from
booting, cf. Sect. 4.4. Alternatively, one can attempt to keep the processor in
reset through the respective pin.

3.3 Software Methods

Software methods are a form of firmware extraction that does not require phys-
ical access to the device in some cases. Examples include:

1. Check the device manufacturer website for publicly available firmware;
2. Follow direct download links to firmware updates, analyzing the device’s net-

work traffic;
3. Intercept network traffic for firmware updates. If TLS is used, attempt to

perform a man-in-the-middle attack using self-signed certificates to decrypt
the traffic;

4. Identifying and using running services on the device, and exploiting known
vulnerabilities in such software (e.g. default credentials).

Often, firmware update services provide packages containing only modified
files. Therefore, this results in an incomplete image. There are however cases
where firmware updates consist of full firmware images, making this method
a simple and effective firmware extraction solution. In addition, it should be
noted that in many cases, firmware images are packed or encrypted, sometimes
in proprietary formats. Unpacking or decrypting such images is a challenge on
its own.

4 Case Studies

Table 1 summarizes the results of the case studies presented in this paper
together with other devices we analyzed (that are not described here for the

3 http://minipro.txt.si/.

http://minipro.txt.si/
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Table 1. Survey of firmware extraction and modification techniques

Device Reference Debug Interfaces HW Dump
SW

Methods
Root

achieved
UART JTAG Other

Accu-Chek Insulin Pump [17], this paper ?
Amazon Echo [18,19], this paper SD+UART

Amazon Echo Dot [19,20], this paper ?
Amazon Echo Plus this paper ?
DroiBOX MXG this paper

Hive Nano V2 Hub this paper
Infotainment ECU this paper

KONX Video Doorbell this paper
Phillips Hue Lights [21], this paper

Samsung SHS-5230 Lock this paper ?
Smart-I Doorbell this paper

Smart Rear View Mirror this paper adb
Swann OneTouch Hub this paper
WD My Cloud NAS this paper

Yale Alarm this paper ?

Amazon Fire TV Stick [9]
Amazon Fire TV [9]
Amazon Tap [9]
Asus OnHub [9]
Google Nest [9]

Google Chromecast [9]
Google OnHub [9] USB

LG Smart Refrigerator [9]
Samsung Allshare Cast [9]

Total # 24 11 3 3 7 5 18
Total % 45.83% 12.50% 12.50% 29.16% 20.83% 75%

sake of space) and devices from other sources as indicated. We also indicated
whether obtaining root access via a hardware method is possible, or if this has
not been tested but should be possible (marked as “?”). These devices were not
tested due to various reasons, as some devices are running monolithic firmware
without an OS, or running Windows CE. The Amazon Echo Dot is very similar
to the Amazon Echo Plus, so results from the Plus should transfer to the Dot.

For the devices from [9], we list a selection of popular devices where (i)
a hardware method can be used to extract the firmware and (ii) where it is
clear that a firmware binary was actually obtained. We chose devices from the
following major manufacturers: Google, Samsung, LG, Asus, and Amazon.

4.1 Custom Debug Interface: Amazon Echo

On the bottom of the device, a group of test points is exposed for debugging
purposes. The pinout of the debug port has been documented in [18].

The Echo pinout shows the device has a UART interface and an MMC inter-
face, which allows an external SD card to be connected. Connecting to the UART
interface and booting up the device, we observe that the Echo uses a three-stage
booting process. In the first stage, X-Loader tries to locate U-Boot in the boot
partition of the internal memory card. Once U-Boot is loaded, it starts the
final bootloader, found in the storage partition under the /boot directory. In
the case of the Echo, the booting process cannot be stopped by sending UART
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characters, and any input after booting has finished is ignored. Since firmware
extraction purely via UART is not possible, the debug interface is marked as
“other” (combination of SD and UART) in Table 1.

The initial bootloader tries to boot from the external mmc-0 (which fails)
and then boots from mmc-1, the internal memory. As detailed in [18] and also
explained in [22], it is possible to build a bootable SD card that can be connected
to mmc-0. Then, the device can be configured to boot into a root shell, and
imaged with cat /dev/mmcblk1 > image.img. Alternatively, we found that it
is also possible to create an SD card that only contains U-Boot (but does not
attempt to boot the kernel). This was also reported by independent research
in [23]. From this card, we can drop into a U-Boot shell, from where the device
can be imaged or configured to enable root access (by injecting an SSH service
and running it on boot).

4.2 UART: Smart-I Doorbell

The Smart-I WiFi Doorbell is a WiFi-enabled unit that is installed outside the
front door of a house. It has a camera, which is activated when a visitor presses
the button, and can also be equipped with an optional door release. Using an
Android/iOS app, the user can see and speak to the visitor and open the door
remotely (Fig. 1).

Fig. 1. Smart-I PCB with UART interface attached

Opening up the device, a UART port can be easily found, to which we can
connect. Using the UART interface of the device (baud rate of 38400), we iden-
tified the presence of U-Boot as bootloader, and found an enabled root shell as
well. Furthermore, U-Boot has the bootdelay left at the default value of 3, which
allows us to interrupt the booting process and drop to the U-Boot shell. The
firmware can be extracted via the live filesystem using the root shell or via the
U-Boot shell. For this device, the latter approach was used. The flash dump can
be obtained with the commands in Listing 1.1:
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Listing 1.1. Dumping Smart-I SPI flash from U-Boot
=> sf probe 0:0; sf read 0x8000000 0x0 0x800000; md.b 0x8000000 0x800000
#SF: Got idcode ef 40 17
8192 KiB W25Q64CV at 0:0 is now current device
#########################
08000000: 47 4d 38 31 32 36 00 00 GM8126..

00 60 00 00 00 60 00 00 .‘...‘..
08000010: 00 60 0a 00 00 00 0e 00 . ‘......

00 00 00 00 00 00 00 00 ...........

In order to save and process the dump, the serial output needs to be saved to
a file. A simple Python script can then be used to convert the dump into a
binary file. Further analysis with Binwalk [24] revealed that the image is LZMA-
compressed. Decompression using Easylzma [25] results in a readable firmware
image.

4.3 JTAG: Yale Easy Fit Smartphone Alarm

The Yale Easy Fit Smartphone Alarm is a wireless home alarm system that can
be fully controlled from a mobile app. The alarm kit consists of motion sensors,
wireless cameras, a keypad, a wireless remote, a central unit and a siren. We
focused on the central unit as depicted in Fig. 2.

Fig. 2. Yale Easy Fit central unit PCB with UART and JTAG (Color figure online)

Inspecting the disassembled device, we observe that the board employs an
ARM Freescale MK60 CPU. The board has both UART and JTAG interfaces,
highlighted in blue and red, respectively, in Fig. 2. A UART interface was enabled
on the device (baud rate 115200) but did not respond to user input. Its only
purpose appears to be to output proprietary debug data. As user input was
disabled, the bootloader could also not be bypassed. A standard JTAG header
was found on the board, so further pinout reverse engineering was not needed. As
the JTAG interface was not locked or disabled, the J-Link [26] programmer could
be used to extract the complete firmware image using the J-Link proprietary
software.
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4.4 eMMC: Amazon Echo Plus

The new Echo Plus is similar to the second generation Echo Dot, as it runs
an Android system, compared to the previous Amazon Echo, which runs a cus-
tom embedded Linux system (Sect. 4.1). We selected the Echo Plus as the most
extensive case study in this paper, as it (in contrast to most other devices)
employs a variety of rather effective security measures and is an example for
best practices in the IoT. As with the previous Echo, debug pins are available
on the bottom of the device. A UART interface is available, but only used for
diagnostic output during the boot process, instead of giving shell access on the
device. There are two different levels of debugging output, a lower level for the
first stage ROM bootloader with a baud rate of 115200, as well as output for the
following bootloaders with a baud rate of 912000. Booting from a custom SD
card image is no longer possible for the Echo Plus. Besides, we also could not find
an adb shell on the device, consistent with the findings of [20]. However, in [19],
the eMMC interface of the Echo Dot is documented. With minor modifications,
we could connect to this interface using the easyJTAG Plus programmer. The
pinout and the necessary connections are shown in Fig. 3. It is noteworthy that
the easyJTAG, when connected, prevents the Echo Plus from booting.

DAT0 CMD

CLK
VCCq

GND

Fig. 3. eMMC pinout of Echo Plus. VCC is not connected to the easyJTAG; the eMMC
chip is powered via the normal power supply of the board.

Therefore, we used an interface board (plugged into the easyJTAG), to which
thin wires to the eMMC pads are soldered. The interface board can stay perma-
nently connected; to boot the Echo Plus, the board is simply unplugged from
the easyJTAG—yielding the ability to repeatedly read and write the firmware
without (re-)soldering wires. Extracting the firmware via eMMC results in 16
separate partitions (following the Android standard layout). The Echo Plus has
two separate _a and _b partitions each for the Little Kernel (LK), the actual
kernel, and the system partition. The reason for having redundant partitions
is the software update: the device e.g. boots from the *_a partitions, but then
updates the *_b ones and switches to those when fully updated.
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Secure Boot. The boot process on the Echo Plus consists of three stages. The
Boot ROM (BROM) embedded in the MT8163 processor boots the first stage
bootloader. The preloader is present in the bootloader rom2.bin partition. In
the second stage, the preloader loads the LK, which resides in the lk a and
lk b partitions. LK is the standard Android bootloader, which loads the kernel
(version 3.18.19+) in the final stage. The kernel, which is present on the boot a
and boot b partitions, loads the file system and initializes all system services.
The kernel image holds all Android startup scripts, SELinux domain definitions,
service definitions, kernel boot parameters and all other system configuration
files. As evident from the boot log, the Echo Plus employs a secure boot process,
where each bootloader verifies the subsequent stage. Furthermore, SELinux is
enabled in enforcing mode [27]. To enable dynamic analysis of the running device
(as achieved for the previous generation, see Sect. 4.1), we attempted to obtain
shell access with full root privileges.

Our first attempt was to modify the kernel image to implant our own startup
service with full root access. However, the Echo Plus employs a trusted boot
chain, where each bootloader verifies a signature of the next boot stage. This
means that we were unable to boot the device when changing the kernel image,
LK, or preloader on the eMMC. The first stage (BROM) is stored in ROM and
hence unchangeable.

Modifying the System Partition. In contrast to the boot process, the system
partition is not signed, and we did not find evidence for the use of crypto-
graphic verification methods like dm-verity4. Having write access to the system
partition, we first attempted to start a reverse shell from one of the several
scripts (in the system partition) that get executed at boot time. For this, we
added an ARM netcat binary in the /system/bin partition, as well as adding
debug commands in each .sh file found, outputting different files to the /cache
partition so we could identify which script files are executed on boot. After
identifying the startup scripts, we found that SELinux was preventing us from
running the netcat binary. The reason for this is that shell scripts on boot run
in the restricted init shell SELinux context. We are currently exploring further
methods to run a binary with full admin privileges (SELinux context su_exec).
Work on this subject has recently been published at DEFCON 26 [28], where
researchers have been able to successfully root the Echo Plus. We will examine
this research in order to obtain root access on the Echo Plus.

5 Countermeasures

Based on the findings from our survey, we propose a set of countermeasures
against firmware extraction (and sometimes modification). These measures
increase the cost to an adversary per device analyzed to prevent wide-reaching,
low-cost attacks. Although increasing the cost to an adversary might stop low-
level attackers, the model of “security by obscurity” is never an adequate defense
4 https://source.android.com/security/verifiedboot/dm-verity.

https://source.android.com/security/verifiedboot/dm-verity
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strategy against well-resourced attackers. As pointed out by Dullien [29], remov-
ing “inspectability” usually does not deter malicious adversaries, while creating
obstacles for benign security researches and defenders. On the other hand, when
physical access to a device is part of the threat model, leaving debug interfaces
open may allow straightforward extraction of secrets and user data as well as
malicious modifications. It is an open problem to balance these two aspects. A
potential solution might be to provide device-specific debugging credentials to
the device owner, or to implement an auditable mechanism (e.g. using write-once
fuse bits) to put the device into a debugging mode.

UART, Bootloader, and Software Methods. Debug interfaces can be disabled or
protected post-production. For UART, the bootloader and kernel can be config-
ured to disable the console to prevent access (as e.g. implemented in the Echo
Plus). If a UART shell or remote SSH/Telnet access is required post-production,
it should be password-protected, with a password unique for each device. This
password could be made available in a secure way to the device owner to pro-
vide inspectability. All network communication with back-end services should
be encrypted using TLS or a similar protocol, especially for firmware updates.

JTAG and Other Debug Interfaces. On most microcontrollers, JTAG (and other
interfaces) can be either permanently disabled or protected with a password
(if JTAG is not to be fully disabled for debugging or fault analysis). While
these protections have been repeatedly shown to be vulnerable to fault injection
(e.g. voltage and clock glitching) and similar physical attacks as well as logical
attacks [30–36], simple read-out with an off-the-shelf programmer is prevented.
Again, in case of password use, this password could be made available to the
device owner.

Raw Flash Dump. It is hard to prevent the direct dump of external flash memory,
especially eMMC, which only requires a few connections and a low-cost SD
card reader. Some processors provide means to encrypt the firmware stored in
external flash, e.g. the ESP32 [37]. If such features are available, they should
be activated. Otherwise, it may be at least possible to mitigate straightforward
in-circuit dumps by routing all flash connections on inner layers of the PCB
(without test pads) when BGA packages are used. Alternatively, the entire PCB
can be covered in epoxy or other materials to prevent access to the flash chip as
shown in Fig. 4. This thwarts direct access, but can still be removed with more
effort using heat or chemicals.

Secure Boot and SELinux. The Echo Plus is an example of an IoT device with
stronger security measures compared to most other devices. Through the use of
Android, trusted boot and SELinux, even though the firmware can be extracted,
obtaining root access is difficult compared to other devices. It appears that
SELinux, which is often considered hard to properly configure for a desktop
system, might be suitable for IoT devices, which usually only provide limited and
defined functionality. This is especially in light of the worrying practice to run all
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Fig. 4. Covered PCB of an industrial IoT device

services with root permissions, which we encountered on many IoT devices. In
addition, techniques to cryptographically verify the filesystem (e.g. dm-verity)
or possibly also firmware encryption (if supported by the underlying processor,
see e.g. [37]) should be considered for future IoT devices.

6 Conclusion

As shown in this paper, extracting firmware from IoT devices is possible through
a variety of low-cost methods, with over 45% of the considered devices vulnerable
to extraction through a simple UART connection. This problem exists through-
out the industry, affecting high-profile devices like the first generation Echo as
well as home hubs and alarm systems with significant security and privacy impli-
cations. Further details of all analyzed devices (notes, photographs, boot logs,
etc.) are available at https://github.com/david-oswald/iot-fw-extraction.

We considered whether our work requires responsible disclosure to the
affected manufacturers. However, our survey did not focus on the discovery of
vulnerabilities in the considered devices. Furthermore, in some cases, a similar
technique had already been disclosed by a third party (e.g. [19,21,23]). Therefore,
we decided not to engage in a formal disclosure process. We plan to widen our
survey, analysing additional devices and developing new methods for firmware
extraction where necessary. An interesting approach in this regard is to anal-
yse the low-level bootloaders integrated in the ROM of most modern processors
w.r.t. to undocumented functions or implementation errors. Besides, it would
also be interesting to better understand the susceptibility of firmware encryp-
tion mechanisms to physical attacks, e.g. side-channel analysis.

https://github.com/david-oswald/iot-fw-extraction
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Abstract. This paper presents a novel style of attack which compro-
mises the applet isolation implemented by modern smart cards built on
the Java Card platform. System calls (APIs) implemented by all cards
tested during our research – from several different manufacturers – fail to
perform (sufficient) checks on the ownership of the objects provided by
applets, compromising the security of the applet firewall. The practical
impact of these vulnerabilities is platform-specific; we show that disclo-
sure of critical private data including secure channel protocol keys is
possible on some cards, and that even Secure Elements – with dedicated
hardware support for memory isolation – fail to prevent memory disclo-
sure of objects owned by the Java Card Runtime Environment, despite
preventing all other known state-of-the-art logical attacks. We demon-
strate that physical attacks can also be used to exploit this vulnerability
on some smart cards, removing the need for an attacker to first install
an applet on the card. Finally, we propose a potential countermeasure
for preventing these classes of attacks.

Keywords: Java Card · Logical attacks · Physical attacks ·
Secure element · Memory isolation · Fault injection

1 Introduction

Being the most widespread smart card platform, Java Card has been a target of
numerous studies aimed at the security of all aspects of the platform including
logical robustness of the platform and resilience to physical attacks.

One of the distinctive features of the Java Card platform is the support
for multiple applets on a single card and an availability of post-issuance of the
applets. This feature makes it possible for an attacker, who has the ability to
load malicious code on a card, to compromise the security of the platform if
logical vulnerabilities are present.

Logical attacks, being extremely cheap to exploit in a scalable fashion, are
not simple to apply in the field. In most cases, an attacker does not have card
management keys to load malicious code and execute it. Nevertheless, logical
attacks can reveal a lot about the architecture of the platform and internal
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B. Bilgin and J.-B. Fischer (Eds.): CARDIS 2018, LNCS 11389, pp. 186–199, 2019.
https://doi.org/10.1007/978-3-030-15462-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15462-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-15462-2_13


Exploiting JCVM Using Forged References in the API Calls 187

design, which can be used by an attacker in order to find weak spots of the
platform and combine it with other techniques in a successful attack.

Physical attacks, on the other hand, do not require an attacker to be able
to load and execute malicious code which makes such attacks much more dan-
gerous. There were a number of papers proposing physical attacks on Java Card
platforms [1,10,11] showing their effectiveness, but the limiting factor of physical
attacks is the price of the equipment and scalability of the attack [12]. Although
the price of physical attacks is traditionally much higher than logical attacks,
in recent years availability and price of basic equipment for physical attacks
decreased significantly.

Section 2 presents state-of-the-art logical and physical attacks on the Java
Card platform. Section 3 discusses the applet firewall and additional counter-
measures used to ensure applet isolation on a card as well as common attack
techniques used to break applet isolation and its limitations. Section 3.3 intro-
duces a logical attack which uses forged references to break applet isolation using
API calls provided by the platform. Section 3.4 reveals results of the evaluation of
the logical attack on five different cards from multiple manufacturers. Section 4
presents a physical attack based on a single electromagnetic fault injection allow-
ing an attacker to corrupt code on the card to break applet isolation and read the
memory of other applets. Finally, Sect. 5 discusses some of the countermeasures
presumably implemented on some of the cards and proposes a few improvements
which could make the Java Card platform more secure.

2 Related Work

Various attacks on Java Card platform were published in recent years presenting
a number of different ways to perform logical, physical and combined attacks.

The main focus of logical attacks is to break applet isolation assuming that
an attacker has or can load malicious code on a card.

The paper of Mostowski and Poll presents a number of logical attacks on
the Java Card platform which use ill-formed applets [9]. The authors proposed
to break applet isolation by means of type confusion between arrays of different
types, arrays and objects and the use of pointer arithmetic to create references
to create fake array metadata.

Faugeron proposed a novel attack on an operand stack implementation of a
Java Card platform and in particular insufficient checks of dup x instruction,
which allows an attacker to copy a number of bytes under the stack bottom
which might lead to the disclosure of data belonging to a different context [4]. The
proposed attack allowing to read 8 bytes of the stack under the stack bottom was
limited to Java Card virtual machine implementation which supports optional
in Java Card specification int type.

Bouffard and Lanet proposed a number of attacks to break applet isolation
and get a memory dump containing code and data of other applets and the
runtime environment and even the native code [2]. First proposed technique
abuses the getstatic b instruction provided by the virtual machine which lacks
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checks on the index to the constant pool. The second attack abused the metadata
of a transient array object which had a pointer to the physical memory which
could be corrupted in order to read other parts of memory.

Finally, Farhadi and Lanet present an attack which allows reversing inter-
nal representation of multiple data structures provided by Java Card virtual
machine, key objects in particular, by providing a reference to them in the
Java Card API call arrayCopyNonAtomic [3]. Authors proposed the use of the
API calls to reverse object internal representation but did not attempt to break
applet isolation. An attack on applet firewall using API calls is described later
in Sect. 3.3.

There were a number of publications discussing physical and combined
attacks on the Java Card platform [1,10,11]. The combined attacks on the Java
Card platform are used to bypass bytecode verifier present on some of the cards
by using a fault injection [1] to corrupt loaded applet or its execution to make it
malicious. Physical attacks designed to corrupt the execution flow of an applet
[7]. The physical attack described Sect. 4 does not require an attacker to load
any code on a card since it relies on a weakness of the platform implementation
itself.

With regard to the logical attack approach, there are a number of publications
presenting how similar attack method can be applied to a Trusted Execution
Environment (TEE). Machiry et al. presented an attack allowing an attacker in
control of a user application in Rich Execution Environment to abuse the fact
that there are not sufficient checks on the TEE side to leverage the privileged
rights of the TEE to escalate privileges in the REE side. As a result, so called
confused deputy attack allowed an attacker to break memory isolation.

3 Logical Attack

This section introduces a novel logical attack allowing an attacker to break applet
isolation enforced by the firewall. The proposed attack is successful even on some
of the most modern and protected Java Card platforms such as Secure Elements
which have a memory protection unit for memory isolation. Section 3.1 describes
memory allocation and management on most of the modern implementations of
Java Card platform. Section 3.2 will discuss some of the published state-of-the-
art attacks and countermeasures present on modern cards preventing the attacks.
Section 3.3 will present a novel attack which uses Java Card and Global Platform
API calls with forged references in order to bypass applet firewall. In this section
only the logical attack, which requires an attacker to be able to load and execute
code on a Java Card using a set of card management keys, will be discussed.
Section 4 will introduce a physical attack which does not require an attacker
to be able to execute arbitrary code on a card to read some parts of memory
belonging to other applets or the Java Card Runtime Environment.
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3.1 Java Card Applet Isolation

Due to the limited resources of typical Java Card cards, applets installed on a
card are running in a single Java Card Virtual Machine and share the EEPROM
or flash memory for storing data and code. A dedicated feature defined in the
Java Card specification, the applet firewall, is required to ensure that an applet
cannot access an object owned by another applet. The firewall is designed to
ensure that no malicious or erroneous applet can compromise separation between
applets and the Java Card virtual machine and get read or write access to other
parts of memory.

In order to be able to learn more about the way a Java Card platform is
implemented on a card a simple ill-formed applet, as shown in the code fragment
below, can be used to get a value of a reference. Such a code cannot be compiled
due to type mismatch, but it can be created by manipulating bytecodes of a
CAP file.

public static short addr( byte[] ptr ) {
return (short) ptr;

}

Such a malicious applet is effective and works on most available Java Card
implementations since the operand stack is untyped, and there is no cost-effective
way to detect malicious code execution at runtime. The code may be prevented
from being loaded onto a card if a full bytecode verifier has been provided on
the card. However, this is not the case for most of the implementations on the
market.

Execution of the malicious code on a card can reveal information about the
way the references are created and handled internally by the virtual machine.
Most of the old implementations of Java Card virtual machines have a reference
value equal to the physical address in memory where the object is stored. In
contrast, most of the modern cards implement a table where the reference value
is an index to the table which stores a physical address and, optionally, metadata
of an object. The use of an index table allows preventing a lot of attacks published
before, such as the creation of fake metadata using pointer arithmetic [2,9,12].
The actual location of the index table in memory and internals depends on the
implementation and is not required for the attacks described in this paper.

Despite the fact that it is possible on most of the cards to get the value of
a reference and convert it back from short to reference using ill-formed code
described below, any use of such a reference will fail with a security exception
or with a card mute.

public static byte[] ptr( short addr ) {
return addr; \\ ill-formed, patched after compilation

}

byte[] p1 = ptr(0x0001); \\ no exception
p1[0] += 1; \\ security exception or a mute
len = p1.length; \\ security exception or a mute
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When access to a content of a reference is attempted, the applet firewall
performs checks of the ownership of the object and makes a decision to deny
access or not.

3.2 Limitations of State-of-the-Art Attacks

The logical attacks published so far, which rely on type confusion, were mostly
focused on type confusion between byte arrays and short arrays owned by the
applet [2,9,12]. Such an attack can allow an attacker to break memory isolation
by reading twice as many bytes due to the fact that a lot of old implementations
would not check an array type and resolve memory address based on the access
operation, namely load byte or load short, and an index. Then metadata of the
following in memory objects of the applet can be corrupted, leading to reading
out or writing to big parts of EEPROM memory, including code and data of
other applets. Although this attack was quite successful in the past on older
implementations of Java Card virtual machine, modern virtual machines often
implement some additional runtime checks which prevent this attack from a
successful memory isolation break. There are a number of different ways in which
such a countermeasure can be implemented in a virtual machine, for example,
checks of a type of an array stored in metadata of an object and the instruction
used to access it. A different address resolution of array elements and/or storage
of bytes and short array elements using two bytes of memory for each can make
the attack useless and in fact, most of the modern solutions implement some
of them and as a result, classical type confusion logical attacks do not work
anymore.

Another state-of-the-art attack uses lack of checks on getstatic <t> com-
mon for a lot of old Java Card virtual machines, which allows an attacker to
execute a malicious code with getstatic <t> and incorrect index to the con-
stant pool and read the memory of other applets and JCRE [2]. Such an attack
is easy to prevent since a simple runtime check can be added which performs a
check of the index to be within constant pool index range.

As it can be seen from modern Java Card implementations, card manufactur-
ers have improved virtual machine implementations and made them more robust
against logical attacks. Additionally, there is an increasing number of Java Card
platforms which have hardware support of memory isolation, such as Secure Ele-
ments with memory protection units. These units, if configured correctly, mean
that any logical attack cannot break memory isolation since access to memory is
controlled by the hardware. In this section, we will introduce a new logical attack
which uses a different approach to break memory isolation of Java Card applets
even when additional runtime checks or memory isolation hardware support are
present.

3.3 Attack Based on API Calls

The Java Card runtime environment specification states that the Java Card
runtime environment is executed as a privileged process which should have
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unrestricted access to all the memory of the virtual machine. A common way
to exploit a system with kernel and user space separation is to use system calls
provided by the kernel which do not have enough checks on the parameters of
the system call [6]. This exploitation technique, despite being widely used on
traditional systems, has not been applied to Java Card platforms in the research
published so far. The implementation of such an attack will be discussed in this
section in detail.

There are over one hundred API calls defined in the Java Card API and
Global Platform API, and they are fully or partially supported by most smart
cards [5,8]. There are API calls providing cryptographic operations, commu-
nication, exception support, card management and more. Depending on the
parameters and returned types there are different types of API calls. Some
API calls do not take references as parameters and they are not vulnerable
to the attack proposed in this paper. Some other API calls take a reference
or a number of them to applet objects as a parameter and return a data as
a result of an operation over the provided data. As an example, the objects
of type javacardx.crypto.Cipher have a method doFinal with the following
signature:

doFinal(byte[] inBuff, short inOffset, short inLength,
byte[] outBuff, short outOffset)

The API call has two references in the parameters, namely inBuff and
outBuff, pointing to byte arrays with input and output data. Finally, there
are some API calls which take a reference as a parameter and change a state
of the virtual machine or perform some kind of operation. For example, an API
call sendBytesLong takes a reference and the virtual machine sends the data at
the byte array to the terminal.

It is expected that a reference given as a parameter to an API call is to an
object owned by the applet or to a global buffer, but in fact, as it was shown
above a simple ill-formed method can be used to create a reference which would
point to any record in the index table. Some ill-formed code which can be used
to read out the memory of other applications is presented in the following listing:

public static byte[] getRefBA( short addr ) {
return addr; // ill-formed code, patched after compilation

}
...
case INS_API_TEST_1:

bufPtr = Util.getShort(buffer, ISO7816.OFFSET_P1);
len = Util.getShort(buffer, ISO7816.OFFSET_CDATA);
apdu.sendBytesLong(getRefBA(bufPtr), (short) 0, len);
break;

The ill-formed code above allows an attacker to request the Java Card virtual
machine to send an APDU response with data referenced by getRefBA(bufPtr)
and offset and length controlled by an attacker. The Java Card virtual machine
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has to check that the type of the object is as expected by the API call and
that the object at the reference is owned by the applet. In case the check is not
present or not complete the content of a byte array owned by another applet or
JCRE is returned in the APDU response.

In a similar way, a number of API calls can be used to write to the objects
which belong to other contexts. For example, the same API call doFinal,
exploited to read memory by providing a forged reference of the source buffer,
can be used to write to them by using the forged reference for the destination
buffer parameter. Since the key used by the method doFinal is controlled by
the caller an arbitrary write can be achieved by encrypting a buffer and then
decrypting the ciphertext to the buffer at the forged reference. Additional, not
only Java Card API calls can be used to bypass the applet isolation, for example,
most of the Java Cards also support Global Platform specification and there are
a number of API calls which can be invoked by an applet, given the privileges,
such as setATRHistBytes which takes a reference to a byte array, offset and
length and sets historical bytes returned as part of the card’s ATR.

It is important to note that the proposed attack in this paper, unlike pre-
viously published attacks, will work even in the case that there is a memory
protection unit on a card. The Java Card runtime environment is supposed to
have access to all of the memory regions, including the memory which belongs
to JCRE and all the applets, and so insufficient checks of the parameters of the
API calls will result in the hardware protection being useless.

3.4 Evaluation

In order to evaluate the applicability and scalability of the attack, it was executed
on multiple cards from different manufacturers and the results were analyzed.
The Java Card specification does not require a virtual machine to be imple-
mented in a specific way and every manufacturer is free to decide how it needs
to work internally and what additional countermeasures are in place. As a result,
the applicability of an attack may differ a lot depending on the internals of a
virtual machine. The cards used in the evaluation are listed in Table 1.

Table 1. Specification of the cards

Card Global Platform Java Card

card a 1 GP 2.1.1 JC 2.2.1

card a 2 GP 2.1.1 JC 2.2.1

card b 1 GP 2.2.1 JC 3.0.4

card b 2 GP 2.1.1 JC 2.2.1

card c 1 GP 2.1.1 JC 2.2.1

The letter in the card name identifies a unique manufacturer, and the number
distinguishes between different cards made by the same manufacturer. The cards
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with the same letter in the name are made by the same manufacturer – for
instance, card a 1 and card a 2, may have similar internal implementations
since they are produced by the same manufacturer, but are not identical.

Three different API calls of different kinds were used for the evaluation of
the attack. First, apdu.sendBytesLong() method was tested as a Java Card
defined call commonly used in the real-life applets and one of the easiest for an
attacker to exploit. Second, cipher.doFinal() API call which normally uses
a crypto-engine to perform the operation. And finally, an API call defined in
the Global Platform specification, GPSystem.setATRHistBytes(), which takes
a reference to an object and sets the historical bytes sent with an ATR of the
card.

The values of references in the Java Card virtual machine implementation
grow incrementally from 0x0000. In our evaluation, the values of all references
which are lower than the first object of our test applet (between 0 and the
reference of this first object) were tested with the API calls described above. In
Table 2 the first number in a cell is a number of successful calls, meaning that
the card did not mute or give an exception and returned an expected result. The
second number in a cell is the total number of reference tested. Since the goal of
the attack is to break isolation of applets, the total number of references tested
is different on different cards, since the number of references belonging to other
applets is JCRE-specific.

Table 2. The results of the attacks on the cards

Attack Card

card a 1 card a 2 card b 1 card b 2 card c 1

apdu.sendBytesLong() 40/139 2/181 38/183 37/125 3/195

cipher.doFinal() 40/139 4/181 34/183 37/125 3/195

GPSystem.setATRHistBytes() 82/139 136/181 151/183 ✗ 137/195

SCP keys identified ✓ ✓ ✓ ✗ ✓

As can be seen from Table 2, the number of successful calls of
apdu.sendBytesLong() and cipher.doFinal() is close but not identical. This
might be explained by similar but not identical checks of the objects provided
at the references. In particular, it can be seen that there are some type checks
and references to short arrays result in a fail when provided to both calls.

The results for Global Platform API calls differ a lot from the tested Java
Card API calls. On one of the cards, namely card b 2, a Global platform API call
GPSystem.setATRHistBytes() failed for all references including legal values,
which indicates rather a functional issue with the API call. For all other cards it
was possible to call GPSystem.setATRHistBytes() for bigger number of objects
in the index table which might be explained by the fact that the checks of the
Global Platform calls is implemented in a different way and there are less or no
checks on the type and ownership of the object provided.
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For all of the cards but one, it was possible to identify the default Secure
Channel Protocol keys stored in one of the objects in plain text.

In order to confirm that the objects found on card a 1 correspond to the
Issuer Security Domain keys and not just a data with the same content, a new
key with value 1011...1E1F was added to the Issuer Security Domain using put
key command and the following data was identified at object reference 0x0099:

0x81 0x31 0x80 0x45 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17
0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

It is worth noting that the key send to the card has to be encrypted using
the key encryption key to prevent man-in-the-middle attacks as required by the
Global Platform specification, but it is stored in plain text in the card.

Applet Class Object

A large number of objects in memory are of substantial length, and so an attacker
can read significant parts of the memory of the card containing code and data.
It was identified during tests that there is an object preceding the test applet
class objects which points to the beginning to the applet instance and contains
data objects with metadata and code. An example of such an object of length
0xB0 on the card card a 1 is given below:

0x01 0x00 0x00 0x88 0x20 0x00 0x00 0x01 0x08 0x00 0x00 0x09
0x00 0x89 0x07 0x08 0x80 0x82 0x00 0x08 0x01 0x02 0x03 0x04
0x05 0x06 0x07 0x08 0x80 0x82 0x00 0x08 0x01 0x02 0x03 0x04
0x05 0x06 0x07 0x08 0xA0 0x82 0x00 0x10 0x00 0x00 0x00 0x11
0x00 0x00 0x00 0x22 0x00 0x00 0x00 0x33 0x00 0x00 0x00 0x44
0x00 0x00 0x00 0x55 0x00 0x00 0x00 0x66 0x00 0x00 0x00 0x77
0x00 0x00 0xFF 0x88 0x80 0x82 ...

The test applet code corresponding to the obtained memory dump starts
with the following declarations of class variables:

static byte[] in = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};
static byte[] out = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};
static short[] sbuf = {0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88};

There are a number of class objects at the beginning of the memory chunk
and it is clear to see that, apart from the data itself, there is metadata of the
objects as well. An attacker can use these objects as the first step for corrupting
the metadata of the objects of a malicious, or benevolent, applet. This allows
them to read large parts of the memory following the object, as described in
previous work [9,12].
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4 Physical Attack

The logical attack above successfully breaks applet isolation on multiple modern
cards from various manufacturers, despite the presence of software and hard-
ware countermeasures. An attacker with ability to execute arbitrary code on the
platform can get read and write access to the objects of other applets and Java
Card runtime environment. However, in many cases, an attacker has no means
of installing arbitrary code on cards in the field, which means that the logical
attack described above is not possible. In this section, we propose a physical
attack which relies on the logical weakness of all of the observed Java Card vir-
tual machine implementations, namely insufficient checks of the ownership of
objects passed as a parameter to an API call provided by the virtual machine,
such as sendBytesLong() or setATRHistBytes() as described in Sect. 3. This
physical attack removes the requirement for an attacker to be able to execute
arbitrary code on a card. All the attacker needs is to know – or be able to guess –
which command is executing on a card.

For our proof-of-concept example of this physical attack, a reference assign-
ment was chosen as a target for a fault injection. In practice, there are many
more places where a successful glitch can result in a corruption of a reference
value. Below, we provide an example of the type of code which could be targeted
by this attack:

byte[] ref1;
byte[] ref2 = {...}
...
ref1 = ref2; //<- GLITCH HERE to corrupt a reference assignment

res = anyApiCall(ref1);
send(res);

Code which can be targeted using this physical attack needs to have an
operation on a reference – an assignment in this case – which can be corrupted
using fault injection, and an API call of Java Card or Global Platform which
uses the reference. Such code is standard for a Java Card implementation and
can be found in virtually all applets.

Evaluation
We performed an evaluation of the effectiveness of this attack on card a 1.
We used electro-magnetic fault injection, since the card has a voltage sensor.
The card was not decapped, which increases the probability of an attack being
successful because it is less likely to damage the card while decapping.
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The code which we used for the evaluation of the physical attack is shown in
the listing below:

byte[] ref1;
byte[] ref2 = {}

ref1 = ref2;
ref2 = ref1;
<200 times to ease timing> // <- GLITCH HERE

ref1 = ref2;
ref2 = ref1;

apdu.setOutgoing();
apdu.setOutgoingLength(len);
apdu.sendBytesLong(ref2, offs, (byte) len);

An attacker performing fault injection attack has little control over the value
of a reference after a fault introduced in the assignment and in most cases the
reference value will be arbitrary and the API call sendBytesLong() returns the
content at the reference back in the APDU.

We performed a fine-grained scan of the chip. In total, we attempted the
attack two million times, with a success rate of around 1%. The results of this
scan, with the successful glitches marked as red dots, are shown in Fig. 1.

Fig. 1. EMFI results on card a 1 (Color figure online)
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The initial value of the reference before corruption was equal to 0x0091. As
a result of the test, the reference was corrupted to 13 unique values, providing
a different delay, location, and length of the glitch. The obtained values of the
reference are shown below:

0x0000, 0x0001, 0x0002, 0x0004, 0x0006, 0x0014, 0x0018,
0x0019, 0x001A, 0x0089, 0x0094, 0x009C, 0x00A0

Obviously, not all these corruptions could be used by an attacker to get
access to other objects in memory of a card. For example, the most common
fault injection corruption outcome is 0x0000 which will result in Null Pointer
Exception when passed to the API call. On the other hand, some of the values
correspond to the objects of other applets and JCRE itself.

As shown in Table 2 for card a 1 and setOutgingAndSend() API call, there
were 40 unique references which could be used with this API call on this card.
This means that if the value of a reference is corrupted to any of these identified
values, an attacker can break applet firewall isolation and read data of another
applet on the card with a single glitch and no malicious code running on the
card. In fact, one of the values of the corrupted reference is equal to 0x001A
which corresponds to an object of length 184 bytes apparently containing an
applet AID along with both code and data. This physical attack allowed us to
successfully obtain the contents of this object, with potentially serious impact
since the RID of an applet belongs to a bank.

The physical attack introduced in this section serves as a proof-of-concept of
an attack which relies on a logical weakness in the way modern Java Card virtual
machines are handling and checking the parameters provided in the API calls.
This physical attack shows how an attacker can exploit the vulnerability of a
virtual machine using single fault injection to break applet isolation. Although it
is difficult to control the address of a pointer after a successful glitch, a number of
attempts can allow an attacker to read memory of other applets and Java Card
Runtime environment and in some cases, if the corrupted value corresponds
to the Secure Channel Protocol keys as it was shown for the logical attack,
potentially, can reveal the key values and get full control over a card. Although
the fine-grained scan above was performed using two million attempts, a real-
world attacker would be able to choose optimized parameters and obtain success
with far fewer attempts.

5 Conclusions

In the past years, the security of Java Card implementations has greatly
improved. Many vulnerabilities allowing logical attacks have been fixed, and
and as a result, there are a number of Java Card virtual machine implemen-
tations which are not vulnerable to type confusion attacks. The usage of index
tables was one of the countermeasures which lead to a number of logical attacks
becoming impossible.
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The novel attack proposed in this paper introduces a way to exploit the
API calls provided by the platform. The evaluation of the attack on multiple
cards from different manufacturers revealed that all of them are vulnerable to
some extent to this attack, including the most protected implementations with
hardware support for memory isolation.

Additionally, the evaluation of the attack with different API calls showed
that the way parameters are checked is not consistent and in most cases the
checks on the parameters in the Global Platform API is much less strict and a
bigger number of objects of other applets can be read and modified. On all but
one card it was possible to identify the objects containing the Secure Channel
Protocol keys stored in plain text. Finally, one of the objects identified contains
the beginning of the test applet class file with data and metadata of class owned
objects which allow an attacker to corrupt metadata of objects of the malicious
applet and read and modify most of the card memory.

Logical attacks prove to be useful to identify weaknesses of the platform, but
they are difficult to use in real life because in many cases an attacker has no
means of loading and executing malicious code on a card. The physical attack
proposed in this paper shows a way an attacker can exploit a weakness in the
platform using single fault injection to corrupt a reference value used in an API
call and as a result bypass the applet firewall.

The Java Card virtual machine specification requires the applet firewall to
perform checks of the objects when access to the objects is performed using one
of the virtual machine memory access bytecodes, meaning that all of the Java
Card virtual machines already have ownership checks implemented and all of
the objects in a virtual machine already have to have labels indicating an owner
of the object which makes implementation of the countermeasures a trivial task.
Having consistent checks of the reference parameters provided in the API calls
would solve the issue and make it impossible for attackers to bypass applet
firewall using such an attack.
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