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 Understanding Ageing

Finding a way to stop the damaging effects that 
ageing has on the human body has been a long- 
standing ambition for mankind. Numerous leg-
ends tell of searches for the fountains of youth 
and other mythical sources of immortality, but 
until the raise of modern biology there has been 
no real opportunity to interfere with the inevita-
ble degradation that time imposes onto organ-
isms. Over the past decades, we have acquired 
substantial information about the molecular 
physiology of ageing, but current interventions 
are limited at those of cosmetic nature. More 
research has to be conducted before the first true 
drug that modulates ageing reaches the market.

Despite the fact that we still lack a proper ther-
apy that has a biological effect on the mecha-
nisms involved in ageing, millions of dollars are 
currently spent annually on chemicals sold as 
anti-ageing drugs. This is mainly due to the fact 
that current laws in many countries allow com-
pounds to be labelled as “supplements” or “cos-
metics” instead of “medicines”, which would 

force them to undergo more severe assessments 
of their efficacy. This loophole has allowed this 
market to bloom and underscores the immense 
interest on these products at consumer level.

The key to designing interventions that would 
indeed slow down or revert the effects of ageing 
lies on our ability to characterize the molecular 
pathways involved in the changes that can be 
observed at the cellular level. Thus, carefully 
studying cell ageing (also known as senescence) 
is likely to provide the insights necessary to 
design the first strategies aimed at modifying 
organismal ageing. The combination of new 
genetic techniques and the recent advances in 
biochemistry are bringing us closer to under-
standing how the processes that contribute to the 
ageing phenotype are determined. The first con-
sequence of these advances is that modulation of 
ageing in the lab is already possible. Fly, worms, 
mice and other animals that age faster than usual 
or that survive for more than the normal amount 
of time can be generated through chemical treat-
ments and genetic manipulation. This is a proof 
of principle that ageing is not an irreversible and 
uncontrollable mechanism, as once thought, and 
that, like every biological process, it can be sub-
jected to manipulation once it has been properly 
characterized.

Our knowledge of the ageing process in 
humans is still far from complete. Nevertheless, 
it has already been hypothesized that our lifespan 
and, more importantly, health span could be 
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extended by a chemical intervention that inter-
rupted the signalling pathways that determine 
senescence, as we will discuss later. The limits of 
such interventions and the impact that they may 
have in society are still being debated.

 Ageing Is a Result of the Cellular 
Responses to Damage

Different theories have been proposed over the 
years to explain the molecular basis of cell age-
ing. These include the accumulation of toxic resi-
dues inside and outside the cells, the shortening 
of telomeres or the accumulation of damage in 
the mitochondria that limits the amount of energy 
they can produce [1]. All of them relate in one 
way or another to the chronic induction of dam-
age signalling pathways that push the cell towards 
the process known as senescence. This, which 
could also enhance the progressive loss of 
potency of the adult stem cell niche involved in 
regenerative processes, could explain the impact 
of time on tissue physiology. Thus, ageing could 
be seen as an excessive accumulation of damaged 
cells that adopt a senescent (or “old”) phenotype. 
It has also been proposed that the side effects of 
certain processes necessary for organismal sur-
vival can accelerate the processes that trigger 
ageing. For instance, the mechanisms that protect 
cells against cancer can induce senescence as 
well and contribute to this accumulation [2].

Within the framework of the “ageing as a 
result of damage” hypothesis, it is important to 
consider that the oxygen needed to sustain life 
causes important disruption to several of the 
components of cells, which then contributes to 
the progressive deterioration that will eventually 
lead to cell senescence. This is due to the fact that 
the breakdown products of oxygen, known as 
reactive oxygen species (ROS), produce small 
but measurable damage to the DNA and other 
macromolecules [3]. The steady accumulation of 
these lesions has indeed been shown to trigger 
cellular ageing [4]. This forms the central core of 
the classic oxidative theory of ageing, which is 
now part of a wider framework that aims to 
explain all the changes involved in the phenotypi-

cal changes observed in ageing [1]. Consistent 
with oxidation not being the sole cause of cellular 
senescence, it has been observed that antioxi-
dants have only limited effects on the ageing of 
organisms, while they can actually increase other 
pathologies [5].

In the following pages, we will summarize our 
understanding of the main factors currently 
known to be involved in the molecular physiol-
ogy of cellular ageing, and based on this, we will 
explore the interventions that could be part of the 
regenerative medicine tools in the future, mostly 
by preventing a build-up of senescent cells.

 The Physiological Importance 
of Senescence

 Ageing Cells as a Way to Prevent 
Cancer

Senescence is a well-known cellular mechanism 
with a critical role not only in ageing but also in 
cancer, as a tumour suppressor mechanism [6]. 
Senescence is usually defined as a permanent cell 
cycle arrest in which cells remain metabolically 
active and adopt characteristic phenotypic changes 
[7]. Senescent cells appear multinucleated, large 
and extended, and exhibit spindle and vacuoliza-
tion features [8]. The onset of this phenotype is 
believed to be triggered by different types of dam-
age, either as a result of telomere shortening after a 
number of cell divisions (replicative senescence, 
related to the actual age of the cell, as determined 
by the length of the telomeres) or as a response to a 
range of stress stimuli (stress-induced premature 
senescence, SIPS) [8, 9]. Expression of oncogenes, 
such as Ras, cyclin E, E2F3 and Raf can also trig-
ger senescence in  vitro, which underscores its 
tumour suppressing properties [10–12]. Indeed, the 
presence of senescent cells in vivo is often observed 
in the premalignant stages of a tumour, after which 
they gradually disappear.

In view of this, senescence has been consid-
ered one of the two main processes that prevent 
the emergence of transformed cells, together with 
apoptosis [13]. Since senescence stops the 
 progression of cancer in vivo [7] and it is known 
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to be increased in response to many therapies [6], 
the presence of senescent cells in tumours could 
be considered an indication of a controlled or less 
advanced disease. Thus, the percentage of senes-
cent cells in tumours could have a utility as a 
prognostic tool in cancer [14].

 Other Functions of Senescence

Although the antineoplastic effects of senescence 
are the most well-known and studied, recently it 
has also been reported that it contributes to 
wound healing, fibrosis and embryonic develop-
ment [15, 16]. Senescent fibroblasts appear and 
aggregate as part of normal wound healing and 
tissue repair [17]. Senescent myofibroblasts in 
mice liver are able to control fibrosis formation, 
while mice without senescence effectors (such as 
p53 and p16) suffered from extreme fibrosis and 
delay in wound healing [15]. Accumulation of 
myofibroblasts after liver injury leads to exces-
sive extracellular matrix (ECM) secretion, liver 
fibrosis and, finally, cirrhosis [15]. All these 
observations can be explained by the ability of 
senescent cells to secrete proteins that degrade 
ECM and thus prevent fibrosis and enhance 
wound healing.

The involvement of senescence in normal tis-
sue development is just beginning to emerge. For 
instance, it has been found that megakaryocytes 
undergo senescence as part of the maturation pro-
cess that leads to the production of platelets [18]. 
In addition, senescence also was observed during 
the normal maturation of syncytiotrophoblasts 
[19]. Finally, senescent cells are found through-
out the embryo, including the apical ectodermal 
ridge and the neural roof plate, two known sig-
nalling centres in embryonic patterning, suggest-
ing that senescence is a mechanism essential for 
development [16].

 The Impact of Senescence 
on Organismal Ageing

It has been observed that the percentage of senes-
cent cells in tissues in vivo increases over time 

[20, 21]. All data obtained in rodents and pri-
mates suggest that the augment in cell senescence 
must play a role in age-dependent organismal 
changes [22–24]. Indeed, accumulation of senes-
cent cells has actually been shown to contribute 
to the functional impairment of different organs 
[25]. This has led to the hypothesis that senes-
cence is an antagonistically pleiotropic process, 
with beneficial effects in the early decades of life, 
mostly as a tumour suppressor, but detrimental to 
fitness and survival in later stages as senescent 
cells become more prevalent, due to its contribu-
tion to the tissue disruption that leads to age- 
related pathologies [26].

Because of this, senescent cells are currently 
thought to be at the core of the physiological 
changes observed in an organism during the pro-
cess of ageing. Being able to prevent senescent 
cell accumulation, or perhaps finding a way to 
clear them from tissues once they become pres-
ent, could be an effective strategy to regenerate 
tissues and maintain their functionality. Such 
interventions are already being considered, but 
they would first require a proper understanding of 
the molecular mechanisms that define the senes-
cent phenotype.

 The Molecular Mechanisms 
of Cellular Ageing

Despite the considerable knowledge accumulated 
in the 50 years since Leonard Hayflick first 
described the phenomenon of cell senescence 
[27], the pathways involved in this process have 
not been yet fully characterized [28]. One of the 
well-known features of both replicative senes-
cence and SIPS is the participation of the p53- 
p21 and/or p16-Rb axis in triggering and 
maintaining the phenotype. Although in  vivo 
suppression of p53 and/or its upstream regulator 
ARF is enough to prevent senescence in some 
models [29], other cell types rely primarily on 
p16 for its induction [30]. p21, a p53 target gene, 
has often been considered critical for establishing 
senescence, whereas p16 could be more involved 
in the maintenance of the phenotype [31]. This 
effect would be reinforced by an increase in intra-
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cellular ROS [32, 33], thus linking senescence 
with the classic hypothesis of oxidative stress and 
ageing. Although p21 is the main cell cycle 
inhibitor of the p53 pathway, it can also be acti-
vated in a p53-independent manner, for example, 
in response to retinoic acid, IFN and TGFβ [34].

 Replicative Versus Stress-Induced 
Senescence

The two main routes of inducing senescence 
(replicative or stress-induced) have many com-
mon features but diverge in the mechanisms 
involved in triggering the response. The main dif-
ference is that the former features a shortening of 
the telomeres, while the latter happens in the 
presence of telomeres of normal length [35–37].

Telomeres are structures located at the end of 
each chromosome, composed of a repeat of the 
TTAGGG sequence and the proteins that associ-
ate with them [38]. Consistent proliferative prop-
agation of cells leads to shortening of telomeres 
[39], which causes a proliferative arrest mediated 
by the induction of senescence [8]. Reduction in 
the length of telomeres is a hallmark of tissue 
ageing [1]. Once telomere length reaches a limit, 
this triggers a DNA damage response that leads 
to the activation of the p53-p21 and p16-Rb path-
ways, similar to what is observed in SIPS [40].

Telomerase is an enzyme that adds TTAGG 
repeats to these sites, thus maintaining telomere 
length and allowing cells to continue dividing 
[41]. Telomerase is not expressed in most normal 
cells, but limited to stem cells that need to main-
tain their proliferative capacity. Telomerase 
expression can bypass senescence and this is a 
mechanism that many cancer cells use to avoid a 
permanent growth arrest [41].

 The p53-p21 Pathway in Senescence

The main role of the tumour suppressor p53 is to 
mediate cellular responses to DNA damage [42]. 
p53 is a transcription factor that, among other 
functions, prevents the transformation of cells by 
triggering protective mechanisms such as cell 

cycle arrest, senescence or apoptosis [43, 44]. 
p53 is mainly regulated posttranslationally 
through many different modifications, including 
phosphorylation, methylation and acetylation 
[44–48]. Specifically, its N-terminal region has 
an important role in its stability because the E3 
ligase MDM2 binds to it and ubiquitinates p53, 
which is then targeted for proteasomal degrada-
tion [49]. Different stresses lead to phosphoryla-
tion of residues of the N-terminal region by 
damage-dependent kinases such as ATM and 
ATR, including serine 15, which disrupts the 
MDM2-p53 interaction and thus increases the 
half-life of p53 [50, 51].

Although p53 can trigger the onset of either 
apoptosis [51, 52] or arrest/senescence [27, 34], 
the mechanisms involved in the decision between 
these cellular responses are not well understood. 
Cell type, presence of growth factors or onco-
genes, the intensity of the stress signal and the 
cellular level of p53 have been cited as important 
factors in determining a specific p53-induced 
response [7, 12, 52, 53]. Posttranslational modi-
fications of p53 also have been reported to influ-
ence the response observed. For example, p53 
phosphorylation by different kinases in response 
to stress can select for arrest or apoptosis, sug-
gesting the involvement of upstream modifiers in 
cell fate decisions [29]. Moreover, p53 mutants 
that can induce growth arrest but not apoptosis, 
or vice versa, have been identified [12, 49, 54], 
consistent with the concept that certain p53 
mutations may cause selective loss of the ability 
to transactivate certain p53-responsive promot-
ers [35].

Several p53 target genes have been reported to 
be specifically involved in apoptosis. These 
include KILLER/DR5 [55], Bax [39], IGF-BP3 
[6], PIG3 [45], PAG608 [24], PERP [1], Noxa 
[43], PIDD [33], p53AIP1 [44], APAF-1 [46], 
FDXR [23] and PUMA [41, 56]. Some of these 
genes, like PIG3 and FDXR, are involved in 
ROS-related pathways [45]. In fact, apoptosis 
triggered by p53 has been reported to be depen-
dent on an increase of ROS and the release of 
apoptotic factors resulting from mitochondrial 
damage [25]. Despite all the data accumulated in 
relation to the pro-apoptotic functions of p53, the 
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p53 target genes involved in senescence have not 
been properly characterized, although it is 
believed that p21 is its main effector.

p21 is a necessary mediator of p53-induced 
cell cycle arrest, as indicated by the fact that p53 
cannot induce arrest after DNA damage in p21- 
null mice [53]. p21 is a member of a family of cell 
cycle inhibitors that includes p27 and p57, and it 
is capable of inhibiting cyclin-dependent kinases 
(CDKs) [57], key regulators of the cell cycle. It 
also acts to block DNA replication by binding to 
proliferating cell nuclear antigen (PCNA) [58]. 
p21 expression has been observed in cultured 
human fibroblasts after prolonged passage, during 
which such cells undergo senescence [55]. 
Moreover, p21 has been shown to be capable of 
inducing permanent growth arrest/senescence in a 
p53-independent manner [33, 56].

 The p16-Rb Pathway in Senescence

Rb is a tumour suppressor protein that regulates 
the transition phase between G1 and S phases and 
can thus induce an arrest phenotype that can even-
tually evolve into senescence [59]. The main role 
of Rb is to inhibit the E2F family of transcription 
factors, which is crucial for DNA replication and 
cell cycle progression [60]. Rb can be inactivated 
by oncogenes that are encoded by viruses, such as 
SV40 and E1A, resulting in the release of E2F 
and senescence bypass [60]. Overexpression of 
cyclin-dependant kinases (CDKs), which is com-
mon in many cancer cells, can also repress Rb and 
suppress senescence [60]. The CDK inhibitor p16 
can maintain Rbin an active state by decreasing 
CDK4/6 activity [28]. The p16-Rb pathway can 
be induced by DNA damage signals, which leads 
to senescence induction in association with the 
p53-p21 axis [60].

 Other Modulators of the Senescence

There are many regulators that directly or indi-
rectly affect the induction of senescence, mainly 
through their effects on the p53 and Rb pathways. 
For instance, PML has an essential role in tumour 

suppression through modulation of the activity of 
both p53 and Rb, by sequestering inhibitory pro-
teins to the nuclear bodies [54]. As a result, cells 
that lack PML exhibit impairment in senescence 
induction by the p53-dependent pathway [61]. 
On the other hand, PML upregulates histone 
deacetylases that increase Rb functions [62]. 
PPP1CA is another effector of senescence that 
responds to oncogene activation. In the absence 
of PPP1CA, Ras is unable to induce senescence 
[63]. SMURF2 is an E3 ubiquitin ligase that, 
when activated, can induce senescence in fibro-
blasts independently of p21 [64]. During replica-
tive senescence, the expression of SMURF2 is 
high and correlates to telomere attrition and p16 
upregulation.

BTK is a non-receptor tyrosine kinase that is 
mutated in the inherited immunodeficiency dis-
ease X-linked agammaglobulinaemia [65]. It is 
expressed in myeloid and lymphoid cells but not 
in T cells and it is a member of the highly con-
served Tec family of kinases, which play an 
important role in B cell receptor (BCR) signal-
ling [66, 67]. In B cells, BTK is activated after an 
antigen binds to the BCR, which leads to its 
phosphorylation at tyrosine 551 by SRC family 
kinases and its autophosphorylation at tyrosine 
223 [68]. Although BTK is mainly located at the 
cell membrane, it can also be found in the nucleus 
[69]. A pathological BTK upregulation has been 
shown in different B cell malignancies, such as 
chronic lymphocytic leukaemia, mantle cell lym-
phoma and multiple myeloma [70–72]. Because 
of this, several small molecule inhibitors of BTK 
have been developed to treat these diseases [73]. 
BTK was found to be induced in senescent cells 
and shown to be involved in the p53 pathway as a 
novel modulator of p53 activity through its 
 phosphorylation [74]. In the absence of BTK, 
p53- induced senescence was abrogated, showing 
the importance of BTK in this pathway.

 The Importance of Oxidation 
in Senescence

As we have discussed, increases in intracellular 
levels of ROS have been implicated at many levels 
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in the pathways of cellular senescence [10]. 
Senescent cells have higher levels of ROS than 
normal cells [20], and oncogenic Ras, p21 and p53 
induce senescence in association with increased 
intracellular ROS [30, 32, 36, 75, 76]. It has also 
been reported that oxidative stress caused by sub-
lethal doses of H2O2 [11] or hyperoxia [58] can 
force human fibroblasts to arrest in a senescent-
like fashion [9]. Moreover, cells can be subjected 
to oxidative stress due to the effects of many can-
cer therapeutics, which could increase the pres-
ence of senescent cells in tissues [3, 77, 78].

ROS are generated by normal oxidative pro-
cesses related to cell metabolism [79–81]. They 
are produced initially by the reduction of singlet 
O2 to superoxide anion and then H2O2 that, if not 
eliminated, generates highly reactive hydroxyl 
free radical that causes DNA damage [3, 82]. 
Increased levels of ROS can be induced by inflam-
matory responses, certain pathological processes 
and exposure to agents such as ionizing radiation 
[83, 84]. Depending on the level of oxidative 
stress and the extent of the induced DNA damage, 
cell fate can vary from temporary arrest to death 
[84, 85]. For instance, exposure to H2O2 has been 
shown to induce apoptosis or necrosis depending 
on concentrations and cellular context [85–88], 
whereas low concentrations of oxidants can force 
normal human fibroblasts to permanently arrest in 
a senescent-like state [4, 86, 89–93].

When proliferating cells are subjected to oxi-
dative stress, the cell cycle temporarily pauses 
either at the G1, S or G2 phases. Arrest at these 
checkpoints prevents DNA replication and mito-
sis in the presence of DNA damage and presum-
ably allows time for DNA repair to occur. The 
proportion of cells that arrest in each phase after 
oxidative damage depends on cell type, growth 
conditions, type of damage and the checkpoints 
operative in the cells. The G1 checkpoint depends 
on activation of the tumour suppressor p53, which 
through p21 induction inhibits cyclin- CDK com-
plexes [94, 95]. Since p53 functions are lost in 
most neoplasias [96, 97], cancer cells often have a 
defective G1 checkpoint response to oxidants. 
Arrest at the G2 checkpoint results primarily from 
activation of the Chk1 protein kinase, which 
maintains mitotic cyclin B/Cdc2 complexes in an 

inactive state [98, 99]. Consistent with this, per-
oxides such as H2O2 or tert-butyl hydroperoxide 
(tBH) have been shown to induce both a 
p53-dependent G1 checkpoint arrest, which can 
be attenuated by using antioxidants [100, 101], 
and a G2 checkpoint response [101, 102].

The biochemical responses of normal cells to 
oxidative stress have been investigated in detail 
with respect to p53 functions. Oxidants have been 
shown to promote phosphorylation of p53 at ser-
ine 15, which can be blocked by antioxidants 
[103], and to induce an increase in p53 levels 
accompanied by elevation of p21 [89]. Although 
the activation of the p53 pathway in response to 
oxidative damage contributes importantly to the 
resulting arrest or cell death responses observed 
[84], there have been several studies on responses 
to oxidative stress in cells lacking intact p53 func-
tions [104]. It has been proposed that genotoxic 
stresses can induce senescence in p53-null as well 
as wild type p53-containing cancer cells [105] 
and that this response plays a role in the suppres-
sion of tumour growth by chemo- and radiother-
apy. However, other studies have indicated that 
cancer cell lines without functional p53 pathways 
do not undergo senescence in response to a vari-
ety of chemotherapeutic agents [106–108].

The fact that oxidative stress triggers a p53 
response through DNA damage signals could be 
a common trigger of senescence and may play an 
important role in ageing. p53 overexpression has 
also been shown to cause the accumulation of 
ROS, presumably mediated by p53 transcrip-
tional influence on pro-oxidant genes [32, 109]. 
Conversely, overexpression of antioxidant genes 
like superoxide dismutase or catalase causes 
extension of lifespan in Drosophila [79]. This 
can also be observed in cell cultures maintained 
in low oxygen environments [110]. All of these 
findings point to a strong relationship between 
oxidative damage, senescence and ageing.

 The Senescence-Associated Secretory 
Phenotype

Cellular senescence results in the secretion of 
growth factors, chemokines and cytokines, collec-
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tively known as the senescence-associated secre-
tory phenotype (SASP). It has been found that 
SASP may have a positive effect on cell prolifera-
tion and angiogenesis, as well as a role in promot-
ing ageing and tumourigenesis [111, 112]. It can 
also promote migration of leukocytes and tumour 
cells, which in turn may induce tumour metastasis 
[113]. Thus, the presence of SASP could explain 
many of the negative consequences of senescent 
cell accumulation, including the pro-ageing 
effects, and could be a target for regenerative ther-
apies, as we will discuss in more detail later.

 Common Markers of Senescent Cells

In order to prevent or stop the accumulation of 
senescent cells, a limiting factor is the ability to 
selectively detect them in vivo. Several features 
have been proposed as being shared by most 
senescent cells, although none of the currently 
available markers are sufficient on their own for 
conclusively identifying senescent cells in  vivo 
or in vitro. This underscores the need for better 
characterization tools [114].

During cell cycle arrest, many genes that are 
involved in cell division are supressed, for example, 
PCNA, E2F or cyclins, and this could be used as an 
indication of senescence, although it is not specific. 
Similarly, increased expression of intracellular and/
or secreted proteins, such as p21, p16, macroH2A, 
IL-6, phosphorylated p38 MAPK, PPP1A, 
SMURF2 or PGM, has been used as surrogate 
markers of senescence [29, 63, 64, 114–116].

Senescent cells display different modifications 
in the organization of chromatin that can help 
identify them as well. In normal cells, DNA stain-
ing reveals completely uniform colour outlines, 
whereas senescent cells usually show dot- like pat-
terns, known as senescence-associated heterochro-
matic foci (SAHF), that appear due to intensive 
remodelling in the chromatin and a lower suscep-
tibility for digestion by nucleases [117, 118]. 
SAHF development is not necessary for the estab-
lishment of senescence and its presence depends 
on cell type and the triggering stimuli [119].

Apart from these factors, the most distinc-
tive measurable feature of senescent cells is the 

presence of a specific β-galactosidase enzymatic 
activity at pH  6.0, different from the normally 
observed at pH  4.0 within lysosomes [120]. 
This has been named senescence-associated 
β-galactosidase (SA-β-Gal), and it is thought to 
be a consequence of the enlargement in the struc-
tures of lysosome in senescent cells, and it does 
not have a known role in the establishment or 
maintenance of the phenotype [121]. Although it 
is currently the standard for detecting senescent 
cells in the laboratory, several conditions, such as 
high cell confluence or treatment with hydrogen 
peroxide, can also independently stimulate SA-β- 
Gal activity, leading to many false positives [122].

Recently, a series of membrane markers 
highly expressed in senescent cells have been 
identified [14]. This knowledge could contribute 
to define the interactions of aged cells with the 
microenvironment and help explain how the 
mechanisms of senescent cell clearance work 
normally and stop working with time [123, 124]. 
Also, specific cell membrane proteins with extra-
cellular epitopes could be useful to rapidly detect 
senescent cells in vitro and in vivo [125].

Some of these membrane markers, like EBP50 
and STX4, are preferentially induced by the p53- 
p21 pathway, while others, such as DEP1, NTAL 
and ARMCX3, are dependent on p16-Rb [14]. 
Thus, they could be used to distinguish between dif-
ferent triggers of senescence. Many of the new 
markers (such as DEP1, NTAL, ARMCX3, 
LANCL1, B2MG, PLD3 and VPS26A) have extra-
cellular epitopes, which could be useful in the future 
to design strategies that could specifically deliver a 
toxic payload into senescent cells, thus providing a 
mechanism for clearing them. Of note, many of 
these proteins play a role in vesicle trafficking 
(including STX4, VAMP3, VPS26A and PLD3) 
[126–131], which underscores the importance of 
protein secretion in the senescent phenotype.

 The Role of Cell Senescence in Age- 
Associated Symptoms and Illnesses

It is widely accepted that senescent cells accumu-
late in vivo in different tissues with time [132]. In 
addition, there are many age-associated diseases 
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in which it has been shown that accumulation of 
senescent cells contribute to the onset or mainte-
nance of the symptoms, such as lung and liver 
fibrosis, neurodegenerative diseases or arthritis 
[133]. In atherosclerosis, for instance, there is 
evidence of a link to increased senescence of 
endothelial and vascular smooth muscle cells 
[134]. Cell senescence is also induced in myocar-
dial ischemia and hypoxia [135]. In this context, 
senescent fibroblasts could be a source of fibrosis 
and collagen accumulation after myocardial 
infarction. Accumulation of senescent cells has 
been associated with ocular disorders as well, 
such as glaucoma and cataracts [123, 136].

In addition, senescence has been shown to be 
involved in type 2 diabetes, through a p53- 
dependent increase in insulin resistance in adi-
pose tissue [137]. SA-β-gal activity and p53 and 
p21 levels are higher in visceral fat from diabetic 
patients compared to non-diabetic individuals 
[137]. Similarly, ageing muscle stem cells 
become senescent with age and the ability to 
delay senescence increases the potential of their 
regeneration [138]. In kidney transplantation, the 
presence of cell senescence in grafted organs 
associates with poor prognosis [139]. Finally, 
senescent chondrocytes accumulate in the articu-
lar cartilage of people with osteoarthritis [140]. 
These data together suggest that amelioration of 
all these diseases could be achieved by prevent-
ing the increase of senescent cells in tissues.

 How the SASP May Define 
the Biological Effects of Ageing

The mechanisms by which senescent cells con-
tribute to the symptoms related to ageing are not 
fully understood. A likely explanation is that 
impairment of organ function is due to the fact 
that senescent cells cannot perform their normal 
roles [123, 136]. However, it has recently been 
proposed that the paracrine impact of SASP on 
surrounding cells may be even more relevant for 
the negative effects of senescent cells, due to its 
ability to trigger a chronic inflammatory 
response and facilitate neoplastic transforma-
tion [141, 142].

Several of the changes in gene expression 
observed in senescence are associated with 
growth factors, chemokines and cytokines 
that, when secreted, are collectively known as 
SASP [111, 112]. The SASP likely evolved to 
create an immune response against senescent 
cells aimed at their clearance from tissues by 
phagocytosis. However, this seems to be 
impaired with time, for reasons that are not 
known. The SASP from precancerous senes-
cent hepatocytes attract CD4+ cells and are 
cleared by specific Th1, showing that senes-
cence surveillance is mediated by an adaptive 
immune clearance [124].

Although the SASP was first described in rep-
licative senescent fibroblasts, it is now known 
that different cell types have different secretomes 
[143]. Secretion of inflammatory cytokines trig-
gers proliferation and can also promote migration 
of leukocytes and tumour cells, which in turn 
may induce tumour metastasis [113]. Inhibition 
of the SASP could be an effective way of reduc-
ing the impact of senescent cells on tissue physi-
ology [144, 145].

 Regenerative Medicine Strategies 
Aimed at Preventing Ageing

A series of essential hallmarks of ageing have 
recently been proposed [1]. It is implied that 
the elimination of each of them should lead to 
the amelioration of the symptoms associated 
with ageing. Within this context, the induction 
of cellular senescence is the endpoint of many 
of the stimuli associated with ageing. As we 
have mentioned, the genes involved in trigger-
ing senescence belong to tumour suppressor 
pathways, which suggests that ageing could be, 
at least in part, a consequence of the natural 
antineoplastic defences of an organism. Thus, 
inactivation of these genes can result in 
increased risk of death from cancer at early 
ages. Since interfering with the induction of 
senescence in  vivo may prove problematic, a 
safer approach for regenerative medicine could 
be to eliminate the senescent cells after they are 
being formed.
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 Identifying and Clearing Senescent 
Cells

The first in vivo proof that accumulation of senes-
cent cells contributes to the deleterious effects of 
ageing was provided recently using two mouse 
models in which senescent cells were driven to 
apoptosis as they started expressing p16 [123, 
136]. The absence of senescent cells in tissues 
importantly delayed the onset of age-associated 
changes, thus increasing lifespan and health span. 
These results were reproduced in both fast- ageing 
and normal mice and confirm that senescent cells 
could be a target for anti-ageing and regenerative 
therapies in humans. Moreover, this supports the 
hypothesis that senescent cell targeting could 
ameliorate age-related diseases such as cataracts, 
diabetes and atherosclerosis.

However, performing senescent cell clearance 
in humans is challenging. The use of anti- 
senescence drugs, also called senolytics (such as 
rapamycin, quercetin, dasatinib or navitoclax), 
could delay senescent cell accumulation in human 
tissue, but it might contribute to malignant trans-
formation [114]. An alternative would be to use 
methods to selectively deliver apoptotic drugs to 
senescent cells using some of the previously 
described markers of senescence [14]. One possi-
ble way would be to use antibody-drug conjugates 
(ADCs), which have been previously proven to be 
effective in targeting cancer cells [146, 147]. 
ADCs are specific monoclonal antibodies bound 
to a toxic payload by a linker. Once the antibody 
recognizes an epitope, for instance, in the extra-
cellular domain of a plasma membrane protein, it 
binds to it and is internalized. The toxin is then 
released inside the cell by cleavage of the linker. 
ADCs against markers of senescence are an alter-
native for designing a regenerative therapy that is 
currently being investigated.

 Other Potential Approaches

Impairment in protein homeostasis (or proteosta-
sis) has also been associated with ageing disor-
ders, especially conditions such as Alzheimer’s 
and Parkinson’s diseases or muscle atrophy 

[148]. These are usually the result from impair-
ment in the protein folding mechanisms and reg-
ulators of proteostasis normally act through 
repairing or eliminating misfolded proteins. They 
could potentially be used as drugs to prevent the 
protein damage that can contribute to the induc-
tion of senescence.

Reducing caloric intake (up to as much as 
60%) has been associated with the induction of 
longevity and healthy life in different animal 
models, including non-human primates [149]. In 
fact, it is currently one of the most effective ways 
to slow down ageing in an experimental context. 
However, it is difficult to design a trial to assess 
its relevance in human unless proper markers of 
tissue ageing are established first. The delay in 
ageing phenotypes through caloric restriction is 
thought to be mediated by nutrient signalling 
mechanisms such as the growth hormone, insulin 
receptor, IGF-1 and mTOR pathways, and 
decreases in these factors have been shown to 
increase in lifespan in vivo [150]. Interestingly, 
the level of IGF-1 and growth hormone is low in 
old age and premature ageing syndromes [151].

Consistent with this, pharmacological inhibition 
of mTOR by rapamycin, a drug produced by 
Streptomyces hygroscopicus, can delay ageing in 
mice models [152]. However, it is also a strong 
immunosuppressant [153], which makes it an 
unlikely choice for an anti-ageing drug. Resveratrol, 
a compound found in grapes and other fruits, has 
been proposed as an alternative. Its effects on age-
ing seem more complex than was initially antici-
pated and its mechanism of action is still being 
discussed, although it seems to be based on the 
activation of the sirtuin family of deacetylases 
[154]. Resveratrol may not increase the lifespan of 
healthy lab animals [155], although it has an impor-
tant effect on mice being fed a high-fat diet [156].

Finally, the other promising anti-ageing drug 
being studied intensively is metformin, currently 
being used to control mild diabetes. Due to its 
effects on metabolism, metformin has already 
demonstrated protection against age-related dis-
eases in humans and has been shown to amelio-
rate ageing in diabetic populations [157]. Its 
effects on healthy individuals are still being 
characterized.
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 Conclusions

Ageing could be seen as a series of symptoms 
caused by tissues that have stop working prop-
erly. Finding a way to restore their function could 
not only prevent a considerable number of dis-
eases but even prolong lifespan. There are several 
approaches that could achieve the regeneration of 
tissues needed to delay ageing and extend quality 
of life. Here, we have focused on potential strate-
gies to prevent the accumulation of senescent 
cells, which is thought to be one of the main trig-
gers of organismal ageing.

Anti-ageing drugs need to be highly specific 
while having virtually no side effects, since they 
would need to be taken chronically by a popula-
tion of largely healthy individuals. Current clini-
cal trials with metformin, the first putative 
anti-ageing drug to reach this stage, will be 
highly informative and will set the template for 
future avenues to be tested [157].

Our knowledge of the molecular and cellular 
physiology of ageing has allowed us for the first 
time to propose strategies that may have a biologi-
cal effect on lifespan and health span. It is possible 
that we will see one or more succeed in the near 
future, and then regenerative medicine approaches 
based on chemically mediated lifespan and health 
span extension will finally become a reality.
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