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Abstract. Neural networks become extremely popular in artificial intelligence.
In this paper we show how they aid in automatically translating fashion item
descriptions and how they use fashion images to generate the translations. More
specifically, we propose a multimodal neural machine translation model in
which the decoder that generates the translation attends to visually grounded
representations that capture both the semantics of the fashion words in the
source language and regions in the fashion image. We introduce this novel
neural architecture in the context of fashion e-commerce, where product
descriptions need to be available in multiple languages. We report state-of-the-
art multimodal translation results on a real-world fashion e-commerce dataset.
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1 Introduction

Internationalisation is considered as a big trend in e-commerce. There is an increasing
interest by e-commerce businesses to expand to other countries. Language is here an
important barrier. E-retailers struggle to efficiently translate their product descriptions
and websites in a variety of languages. Currently, this is still done manually. However,
consumers prefer to read product descriptions in their native language to get an optimal
understanding of the product specifications and to be able to compare products.

Neural machine translation (NMT) is an approach to machine translation which
uses an artificial neural network to predict a sequence of words in the target language
given a sequence of words in the source language. In multimodal neural machine
translation (MNMT), the source sequence is paired with an image and the target
sequence is generated aided by the information in the image. The fashion e-commerce
domain, where product descriptions reference to fine-grained product attributes
somewhere in the image (e.g., V-neck, floral print), is a challenging but interesting
domain for MNMT which requires to efficiently integrate the visual and textual
information. State-of-the-art NMT systems are sequence-to-sequence networks with an
attention-based encoder-decoder architecture. The encoder encodes each source word
with a vector representation which captures the word’s semantics. At each timestep, the
decoder outputs the most likely target word by looking at the source word represen-
tations and the target words generated in previous timesteps. In this work, we propose a
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MNMT model which jointly learns to align semantically related source words, target
words and image regions and to translate. Hence, it infers a multimodal, multilingual
space where a source word, target word and image region that refer to the same fashion
attribute have vector representations which are close together. This way the source
word representations become visually contextualised or visually grounded, which
informs the decoder about the visual context in an efficient way.

The main contributions of our paper are:

• We infer a multimodal, multilingual space in which we embed an image region,
source word and target word that refer to the same fashion attribute close together.
In this space, they are aligned through an attention-based alignment model which
uses cosine similarity to measure semantic relatedness. Next, the decoder attends to
the inferred visually grounded representations of our source words.

• We propose a new, natural setting for multimodal translation, that is fashion e-
commerce, which is challenging because of its references to fine-grained fashion
attributes and the limited amount of training data.

• We show state-of-the art multimodal translation results on a real-world fashion e-
commerce dataset.

The remainder of this paper is structured as follows. In Sect. 2 we review other
work related to the subject of this paper. Next, we elaborate our model architecture in
Sect. 3. In Sect. 4 we describe our experimental setup. The results of the conducted
experiments can be found in Sect. 5. Finally, we present our conclusions and provide
directions for future work in Sect. 6.

2 Related Work

Unimodal machine translation models are trained with pairs of sentences, where the
target language sentence is the translation of the source language sentence. Currently,
neural machine translation is the most popular and successful technique. The neural
networks are in the form of sequence-to-sequence networks with an attention-based
encoder-decoder architecture. [2] were the first to introduce an attention mechanism in
the decoder. The intuition behind it is to compute the expected alignment of every
source word with the next target word and to jointly translate. The pure text-based
model of [2] will serve as our unimodal neural machine translation (UNMT) baseline.

There is a current interest in MNMT and more specifically in using additional
visual information to aid the translation [3–5, 7, 9, 19]. Although these works achieve
promising results, they indicate that further exploration to what is the best way to
benefit from the visual context is needed. One approach in MNMT is to use a double
attention mechanism, one over the source words and another over different regions of
the image [3, 5]. However, this approach neglects to exploit the semantic relatedness
between the image regions, source words and target words which is an important
indicator for the relevance of the visual information. Our approach makes use of an
additional alignment model to align the image regions, source words and target words
to infer visually grounded source word representations. This is different from [9] who
project the visual features to the space of source word embeddings and append these
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visual words to the head/tail of the source sentence. The encoder then encodes both
these visual words and the source words. In contrast to our work, they do not use an
alignment model to infer their multimodal space and do not attempt to include the
target language in this space. Most closely related to our work is the work of [19] where
the visual context is grounded into the encoder through the joint learning of a multi-
modal space and of a translation model. More precisely, they embed images close to
their attended source sentence representations in a multimodal shared space. Addi-
tionally, they initialise the decoder hidden state in such a way that the source words
closest related to the visual context have more influence during decoding. In contrast,
we do not embed full images and sentences in our shared space, but instead work at a
finer level to find the latent alignment of image regions and words, which proves to be
valuable especially for fashion data. Moreover, we also include the target language to
obtain a space which is both multimodal and multilingual [19] report the state-of-the-art
results for MNMT and therefore we use their model as our MNMT baseline.

In order to find the semantic correspondences between the image regions, source
words and target words we make use of an alignment model. Alignment models have
already proven to be useful for other tasks that require to jointly reason over vision and
language, such as image captioning [10], visual question answering [1, 17], multimodal
search [11] and image-text matching [12, 18].

Neural networks and deep learning models have become an essential item in the
toolbox of fashion-related businesses (e.g., in apparel recognition, fashion search,
product recommendation and outfit combination). Closer to this work is the work of
[13] who generate persuasive textual descriptions of fashion items given a number of
key terms that describe the item in order to encourage an online buyer towards a
successful purchase. However, their neural architecture ignores the image when gen-
erating the persuasive descriptions. The neural architecture proposed in this paper could
expand the work of [13] in multimodal and multilingual settings.

3 Methodology

First, we describe the baseline models for UNMT and MNMT in respectively
Sects. 3.1 and 3.2. Next, we elaborate our proposed MNMT architecture which aligns
the image regions, source words and target words with stacked cross-attention in
Sect. 3.2. In all formulas, matrices are written with capital letters and vectors are
bolded. We use letters W and b to refer to respectively the weights and bias in linear
and non-linear transformations.

During the training phase, all models learn from a training set of examples of paired
descriptions in source and target language. The MNMT models also have access to a
corresponding image. During the testing phase, the models only have access to the
source sentence and image.
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3.1 UNMT Baseline

In UNMT the goal is to translate a source sentence X ¼ x1; x2; . . .; xMð Þ consisting ofM
words into the correct target sentence Y ¼ y1; y2; . . .; yNð Þ consisting of N words.
Our UNMT baseline is the attention-based encoder-decoder architecture of [2]. For
more details, the reader is referred to [2].

3.2 MNMT Baseline

In MNMT, a source sentence X ¼ x1; x2; . . .; xMð Þ is translated into a target sentence
Y ¼ y1; y2; . . .; yNð Þ aided by the visual information in image I paired with source
sentence X. Our MNMT baseline is the model of [19]. The model obtains visually
grounded source word representations by sharing the encoder between the translation
task and a multimodal space inference task.

Encoder. The encoder is a bidirectional recurrent neural network (BRNN) [15] with
gated recurrent units (GRUs) [6]. It produces a source word representation sj 2 R

2dx for
each word xj of source sentence X by concatenating the forward and backward hidden
states.

Shared Space Inference Task. The objective is to infer a shared space for images and
source sentences which captures the semantic meaning across the two modalities. Each
image is represented with vector v 2 R

2048 obtained from the pool5 layer of the con-
volutional neural network ResNet50 [8] pre-trained on ImageNet [14]. The represen-
tation of the source sentence satt is obtained by applying attention to each source word
representation sj with image representation v. This produces attention scores zj which
measure how well the source word at position j corresponds with the image. Next, the
attention scores zj are normalized with the softmax function and used to weight the
source words sj. This way, the words which are more related to the image content get a
higher weight in the generated source sentence representation:

zj ¼ tanh Wssj
� �

: tanh Wvvð Þ ð1Þ

satt ¼
XM
j¼1

bjsj;with bj ¼ softmax z1; z2; . . .; zM½ �ð Þj ð2Þ

Next, image v and source sentence satt are projected to their representations bv and bs
in the multimodal space:

bv ¼ tanh Wvembvþ bv embð Þ ð3Þ

bs ¼ tanh Wsembsatt þ bs embð Þ ð4Þ
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with bv;bs 2 R
d . The projection to the multimodal space is learned by minimizing a

triplet loss which enforces that a corresponding image-sentence pair should be closer
than a non-corresponding pair:

Ltriplet1 ¼
XE
e

XE
e0 6¼e

max 0;m� f bve;bseð Þþ f bve;bse0ð Þð Þ

þ
XE
e

XE
e0 6¼e

max 0;m� f bve;bseð Þþ f bve0 ;bseð Þð Þ
ð5Þ

where index e ranges over the number of training examples and m is the margin. In the

multimodal space, cosine similarity f x; yð Þ ¼ xT :y
xj jj j: yj jj j measures semantic relatedness.

Translation Task. The visually grounded source word representations sj are used by
the decoder, which is a conditional GRU [16] consisting of two stacked GRUs. At each
timestep t; the decoder produces the next target word yt starting from the previously
emitted word yt�1, the previous decoder hidden state ht�1 and the source context
vector cattt :

ot ¼ tanh Eyyt�1 þWhht þWccattt

� � ð6Þ

P ytjyt�1; ht; cattt

� � ¼ softmax Woutotð Þ ð7Þ

where Eyyt�1 2 R
dy is the vector representation of the previously emitted word and

context vector cattt is acquired by applying Bahdanau’s attention [2] on the source word

representations sj based on the decoder hidden state proposal h
0
t from the first GRU. At

timestep t ¼ 0 the decoder hidden state h0 is initialized such that the source words most
closely related to the image have a bigger influence during translation decoding. More
precisely, h0 is computed as a weighed sum of the attended source sentence repre-
sentation satt and the mean of the source word representations sj:

h0 ¼ tanh Winit ksatt þ 1� kð Þ 1
M

XM
j¼1

sj

 ! !
ð8Þ

with weight k a hyperparameter. During training, we quantify the quality of the
translation with the cross entropy loss:

Lcross�entropy ¼ �
XE
e

XT
t

yet: log yetð Þ ð9Þ

where indices e and t range over respectively the number of training examples and
number of timesteps, yet is the one-hot encoded ground truth vector for training
example e at timestep t, and yet is the vector of predicted probabilities as outputted by
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the softmax layer for training example e at timestep t. Therefore, the complete loss
function for the MNMT baseline is:

L ¼ aLcross�entropy þ 1� að ÞLtriplet1 ð10Þ

where a determines the contribution of the translation loss versus the visual grounding
loss.

3.3 MNMT with Alignment Model Based on Stacked Cross-Attention

Similar to the MNMT baseline, our model learns a shared space jointly with the
translation task to obtain visually grounded source word representations. In this shared
space, we align source words, target words and image regions which refer to the same
fashion attribute. Hence in contrast with the MNMT baseline, our space is both mul-
timodal and multilingual and our alignment is finer, resulting in a space which captures
fine-grained semantics across the visual and textual modalities. Note that the alignment
at the region and word level is latent: we know which sentence corresponds with which
image, but which words and image regions correspond is unknown. Therefore, we use
an alignment model to learn these correspondences from frequent combinations of
words and visual patterns in our training set. The alignment model is based on stacked
cross-attention [12]. We will further refer to our model as the MNMT SCA model.

Encoder. The encoder is identical to the one of the MNMT baseline in Sect. 3.2.

Shared Space Inference Task. We obtain image regions by representing the image
with the res4f-features vk 2 R

1024 k ¼ 1::196ð Þ of ResNet50 [8] pre-trained on Ima-
geNet [14]. The image regions vk , source words sj and target words Eyyt are projected
to bvk, bsj and byt in the multimodal, multilingual space:

bvk ¼ Wvkembvk þ bvkemb ð11Þ

bsj ¼ Wsjembsj þ bsjemb ð12Þ

byt ¼ WytembEyyt þ bytemb ð13Þ

with bvk;bsj;byt 2 R
d . The projections to the multimodal, multilingual space are learned

by minimizing a triplet loss which enforces that corresponding image regions, source
words and target words should be closer than non-corresponding ones:

Ltriplet2 ¼
‘ bV ; bS� �

þ ‘ bV ; bT� �
þ ‘ bS; bT� �

3
ð14Þ

with bV ¼ bv1; . . .;bv196f g; bS ¼ bs1; . . .;bsMf g; bT ¼ by1; . . .;byTf g
‘ Q;Kð Þ ¼ max 0;m� SCA Q;Kð Þþ SCA Q;Khardð Þð Þ ð15Þ

þ max 0;m� SCA Q;Kð Þþ SCA Qhard;Kð Þð Þ ð16Þ
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where m is the margin and SCA Q;Kð Þ is the similarity score of two sets of features Q
and K. Note that we use hard negative sampling here, i.e., Qhard and Khard are the
hardest negatives for the corresponding feature sets Q;Kð Þ and are given by Qhard ¼
argmaxQ0 6¼QSCA Q0;Kð Þ and Khard ¼ argmaxK 0 6¼KSCA Q;K 0ð Þ. Similarity score
SCA Q;Kð Þ of feature set Q ¼ q1; q2; . . .; qQtot

� �
; qi 2 R

d and feature set K ¼ k1;f
k2; . . .; kKtotg; ki 2 R

d is computed with stacked cross-attention. Stacked cross-attention
works in two stages of attention. In the first stage, we compute the cosine similarities
f ðqi; kjÞ of all pairs of qi and kj. These cosine similarities are thresholded at zero and
normalized to get attention scores cij for each qi and kj:

cij ¼
max 0; f qi; kj

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQtot

i¼1 max 0; f qi; kj
� �� �2q ð17Þ

Next a context vector catti is computed for each qi as a weighted combination of
the kj:

catti ¼
XKtot

j¼1

cijkj;with cij ¼ softmax gci1; gci2; . . .; gciKtot½ �ð Þj ð18Þ

with g a hyperparameter. If qi corresponds with some kj, then catti will be highly
correlated with this kj. Otherwise, catti will not be correlated with any of the kj. In the
second stage, the similarity score of the two feature sets is calculated as the average
cosine similarity f between feature qi and its context vector catti :

SCA Q;Kð Þ ¼
PQtot

i¼1 f qi; c
att
i

� �
Qtot

ð19Þ

Translation Task. Aligning the image regions, source words and target words in the
multimodal, multilingual space makes that the source word representations bsj become
visually grounded. Therefore, we feed these bsj to the decoder (instead of the sj) to let
the decoder benefit from the visual context. The decoder hidden state is initialized with
Eq. 8 but with satt computed as:

zj ¼ maxð0;max
k

f bsj;bvk� �� � ð20Þ

satt ¼
XM
j¼1

bjbsj;with bj ¼ softmax z1; z2; . . .; zM½ �ð Þj ð21Þ

with f the cosine similarity. The complete loss function for our MNMT SCA model is
the same as in Eq. 10, but with the triplet loss Ltriplet2 of Eq. 14 instead.

52 K. Laenen and M.-F. Moens



4 Experimental Setup

4.1 Dataset

For this task we acquired a new, real-world e-commerce dataset from the company e5
mode, with product descriptions in English, French and Dutch and images of fashion
products. The product descriptions describe the main features of a product, but do not
provide an exhaustive description. Moreover, not all described product features are
visible in the image, e.g., they might apply to the back of the product. The English and
Dutch descriptions are sentence-aligned, i.e., they are exact parallel translations. The
English and French descriptions have comparable content, i.e., they have similar
content but are not translations of each other. The product descriptions are associated
with one image that displays the fashion product on a clear, white background.
A fashion product can either be a clothing item such as a dress, blouse, pants or
underwear, or a clothing accessory like a necklace, belt, scarf or tie. The dataset
consists of 3082 product images with associated descriptions in the three languages.
The amount of products in this dataset is a realistic size for most e-retailers. Of the total
amount of products, 2460 (*80%) are used for training, 314 (*10%) for testing and
308 (*10%) for validation. The validation set is used for hyperparameter tuning
during training.

4.2 Experiments and Evaluation

We train the UNMT baseline, MNMT baseline and our MNMT SCA model on the e5
fashion dataset for English!Dutch and English!French. We evaluate the translation
quality of the resulting models with the BLEU score. The BLEU score has a high
correlation with human judgements of translation quality and is one of the most popular
metrics to evaluate translation systems. It computes the number of matching N-grams
(with N ¼ 1::4) between the generated translation and the ground truth reference
translation. We use beam search with a beam size of 12 for translation decoding.

4.3 Training Details

All hyperparameters are set based on our validation set. For models trained with both
the cross entropy loss and triplet loss, a factor a of 0.99 and a margin m of 0.1 were
found to work well. The dimensions dx and dy of the source and target word repre-
sentations are set to 256. The dimension d of the shared spaces is set to 512. The
hidden state of the decoder is 512-dimensional. The decoder initialization weight k is
set to 0.5 and the inversed temperature of the softmax function g to 4. We stop the
training phase if there is no improvement in BLEU score on the validation set for 10
consecutive evaluation steps.
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5 Results

Table 1 shows the BLEU scores obtained by all models on the e5 fashion dataset.
These results indicate that our MNMT SCA model outperforms the MNMT baseline on
both language pairs. Hence, a multimodal, multilingual space which aligns images and
sentences at the level of regions and words is best for visually contextualizing the
source word representations. Figure 1 compares some of the translations generated by
our MNMT SCA model with those of the MNMT baseline. In the first example, the
MNMT baseline incorrectly interprets loosely as referring to the shape of the pullover,
while it refers to the knit. Both the MNMT baseline and our MNMT SCA model
generate a wrong translation for flattering, but while the word rounded (afgeronde)
generated by our MNMT SCA model also applies to the neckline, the word yellow
(geel) generated by the MNMT baseline does not.

Table 1. Translation results for English!Dutch and English!French in terms of BLEU score
on the e5 fashion test set.

Method English!Dutch English!French

MNMT baseline [19] 69.47 44.57
MNMT SCA model 74.06 45.62

Table 2. Percentage of test examples where the model outperforms the UNMT baseline for
English!Dutch and English!French in terms of BLEU score.

Method English!Dutch English!French

MNMT baseline [19] 20.38 31.53
MNMT SCA model 34.08 34.71

Source: A light pink, loosely knitted pullover. The flattering boatneck and 
short bat sleeves give a very soft and feminine profile. The fabric contains 
20% wool.
MNMT baseline: Een lichtroze, losse pull. De gele boothals en korte 
vleermuismouwen geven de pull een heel zacht en vrouwelijk profiel. De 
stof bestaat uit 20% wol.
MNMT SCA: Een lichtroze, losjes gebreide pull. De afgeronde boothals en 
korte vleermuismouwen geven een heel zacht en vrouwelijk profiel. Het 
stofje bestaat uit 20% wol.

Source: Elegant printed short skirt. Ultra-soft and lightweight A-line 
model. Closes with a concealed zipper at the back. Fitted with a petticoat.
MNMT baseline: Elegant kort mouwloos kleedje. Elegant zacht en 
makkelijk te combineren. Sluit met een lichtbruin - rits achteraan. Voorzien 
van een onderrok.
MNMT SCA: Elegante bedrukte korte rok. Sober en licht A-lijn model.
Sluit met een blinde rits aan de achterzijde. Voorzien van een onderrok.

Fig. 1. Comparison of translations generated by the MNMT baseline and our MNMT SCA
model for English!Dutch (best viewed in color).
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In the second example, the MNMT baseline generates a description of a sleeveless
dress (mouwloos kleedje) instead of a printed skirt. Moreover it misidentifies the shape
as being easy to combine (makkelijk te combineren) and the zipper as being light brown
(lichtbruin). These mistakes are not made by our MNMT SCA model.

As also confirmed in previous works [3, 4], the MNMT models are still surpassed
by the pure text-based UNMT baseline, which achieves a BLEU score of 74.38 for
English!Dutch and of 48.05 for English!French. This is because the signal coming
from the text in a MNMT model is stronger than the one coming from the vision side,
and distilling the relevant fine-grained details from an image is a difficult task. However
even if the UNMT baseline performs better overall, we can also compare the BLEU
scores of the individual test examples. Table 2 reports the percentage of test examples
where the associated image helps generate a better translation. These results show that
in a third of the test examples, supplying an image with the source sentence results in
an improved translation when using our MNMT SCA model. One of the test examples
for English!Dutch for which this is the case is shown in Fig. 2.

While the BLEU score is a good metric to determine translation quality, it has some
disadvantages. For instance, a translation which is significantly different from the
reference translation will get a low BLEU score, even if it is still valid and acceptable to
the human reader. Moreover, a translation which does not sound that smooth or con-
tains a rather unexpected word may not get penalised as much by BLEU if it still
closely resembles the reference translation. For a human though it will be clear that
such a translation was generated by a machine. However, e-retailers might prefer
having consumers find and buy desired products through machine-generated transla-
tions instead of not at all, or through human translations which are much more
expensive to obtain.

6 Conclusion

In this paper, we have proposed a novel neural architecture for MNMT, which learns a
multimodal, multilingual space jointly with a translation model to obtain visually
grounded source word representations. By attending to the visually grounded source
word representations we can jointly reason over vision and language in a way that is
effective to produce the translation in the target language. We introduced this model in

Source: A navy scarf with white-blue squares. With fringes. 30 cm on 160 
cm.
UNMT baseline: Een navy sjaal met zwart-blauwe blokjes. Met franjes. 30 
cm op 160 cm.
MNMT SCA: Een navy sjaal met wit-blauwe blokjes. Met franjes. 30 cm 
op 160 cm.

Fig. 2. Example for which our MNMT SCA model outperforms the UNMT baseline for
English!Dutch (best viewed in color).
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the context of fashion e-commerce, where the product descriptions describe fine-
grained product attributes somewhere in the associated image. Moreover, we have
improved state-of-the-art multimodal translation results on a real-word fashion e-
commerce dataset.

As future work and to further improve the results, we would like to expand our
model by integrating multiple languages and to investigate neural architectures that still
better recognise fine-grained fashion attributes in images. We would also like to further
explore the possibility to train on comparable data as this forms a realistic setting when
dealing with product descriptions in different languages. Finally, the model proposed in
this paper offers opportunities to automatically generate different types of fashion item
descriptions (in one or multiple languages) that are adapted to its users, to the targeted
country or culture, or to marketing strategies, which will take into account images of
the fashion item.
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