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A Global Optimization Algorithm
for Sparse Mixed Membership Matrix
Factorization

Fan Zhang, Chuangqi Wang, Andrew C. Trapp, and Patrick Flaherty

7.1 Introduction

Mixed membership matrix factorization (MMMF) has been used in document
topic modeling (Blei et al. 2003), collaborative filtering (Mackey et al. 2010),
population genetics (Pritchard et al. 2000), and social network analysis (Airoldi
et al. 2008). The underlying assumption is that an observed feature for a given
sample is a mixture of shared, underlying groups. These groups are called topics
in document modeling, subpopulations in population genetics, and communities
in social network analysis; in bioinformatics applications the groups are called
subtypes and we adopt that terminology here. MMMF simultaneously identifies
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both the underlying subtypes and the distribution over those subtypes for each
individual sample.

7.1.1 Mixed Membership Models

The MMMF problem can be viewed as inference in a particular statistical
model (Singh and Gordon 2008). The model typically has a latent Dirichlet random
variable that allows each sample to have its own distribution over subtypes and a
latent variable for the feature weights that describe each subtype. The inferential
goal is to estimate the joint posterior distribution over these latent variables and
thus obtain the distribution over subtypes for each sample and the feature vector
for each subtype. Non-negative matrix factorization techniques have been used
in image analysis and collaborative filtering applications (Lee and Seung 1999;
Mackey et al. 2010). Topic models for document clustering have also been cast as a
matrix factorization problem (Xu et al. 2003).

The basic mixed membership model structure has been extended in various
interesting ways. A hierarchical Dirichlet prior allows one to obtain a posterior
distribution over the number of subtypes (Teh et al. 2005). A prior on the subtype
variables allows one to impose specific sparsity constraints on the subtypes (Kabán
2007; MacKay 1992; Taddy 2013). Correlated information may be incorporated to
improve the coherence of the subtypes (Blei and Lafferty 2006). Gaussian-Laplace-
Dirichlet Model (GLAD) is hierarchical model that performs mixed membership
matrix factorization with sparsity inducing Laplace prior on feature weights (Sad-
diki et al. 2015).

Sampling or variational inference methods are commonly used to estimate the
posterior distribution of interest for mixed membership models, but these only
provide local or approximate estimates. A mean-field variational algorithm (Blei
et al. 2003) and a collapsed Gibbs sampling algorithm have been developed for
Latent Dirichlet Allocation (Xiao and Stibor 2010). However, Gibbs sampling is
approximate for finite chain lengths and variational inference is only guaranteed to
converge to a local optimum (Blei et al. 2017).

7.1.2 Benders’ Decomposition and Global OPtimization (GOP)

In many applications it is important to obtain a globally optimal solution rather
than a local or approximate solution. Recently, there have been significant advances
in deterministic optimization methods for general biconvex optimization prob-
lems (Floudas and Gounaris 2008; Horst and Tuy 2013). Here, we show that mixed
membership matrix factorization can be cast as a biconvex optimization problem and
the ε-global optimum can be obtained by these deterministic optimization methods.
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Benders’ decomposition exploits the idea that in a given optimization problem
there are often complicating variables—variables that when held fixed yield a much
simpler problem over the remaining variables (Benders 1962). Benders developed
a cutting plane method for solving mixed integer optimization problems that can
be so decomposed. Geoffrion later extended Benders’ decomposition to situations
where the primal problem (parametrized by fixed complicating variable values) no
longer needs to be a linear program (Geoffrion 1972). The Global OPtimization
(GOP) approach is an adaptation of the original Benders’ decomposition that can
handle a more general class of problems that includes mixed-integer biconvex
optimization problems (Floudas 2013). Here, we exploit the GOP approach for
solving a particular mixed membership matrix factorization problem.

7.1.3 Contributions

Our contribution is bringing the Global OPtimization (GOP) algorithm into contact
with the mixed membership matrix factorization problem, computational improve-
ments to the branch-and-bound GOP algorithm, and experimental results. Our
discussion of the GOP algorithm here is necessarily brief. The details of problem
conditions, convergence properties, and a full outline of the algorithm steps for the
branch-and-bound version of the algorithm are found elsewhere (Floudas 2013).

We outline the general sparse mixed membership matrix factorization problem
in Sect. 7.2. In Sect. 7.3, we use GOP to obtain an ε-global optimum solution for
the mixed membership matrix factorization problem. In Sect. 7.4, we develop an
A-star search algorithm that significantly improves the computational efficiency of
our method. In Sect. 7.5, we show empirical accuracy and convergence time results
on a synthetic data set. We also explore the performance of our algorithm on a small
gene expression data set. Finally, we discuss further computational and statistical
issues in Sect. 7.6.

7.2 Problem Formulation

The problem data is a matrix y ∈ R
M×N , where an element yji is an observation

of feature j in sample i. We would like to represent each sample as a convex
combination of K subtype vectors, yi = xθi , where x ∈ R

M×K is a matrix of
K subtype vectors and θi is the mixing proportion of each subtype. We would like x

to be sparse because doing so makes interpreting the subtypes easier and often x is
believed to be sparse a priori for many interesting problems. In the specific case of
cancer subtyping, yji may be a normalized gene expression measurement for gene
j in sample i. We write this matrix factorization problem as
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minimize
θ,x

‖yi − xθi‖2
2

subjectto ‖x‖1 ≤ P

θi ∈ �K−1 ∀i,

(7.1)

where �K−1 is a K-dimensional simplex.
Optimization problem (7.1) can be recast with a biconvex objective and a convex

domain as

minimize
θ, x, z

‖y − xθ‖2
2

subject to
M∑

j=1

K∑

k=1

zjk ≤ P,

−zjk ≤ xjk ≤ zjk ∀(j, k),

θi ∈ �K−1 ∀i,

zjk ≥ 0 ∀(j, k)

(7.2)

If either x or θ is fixed then (7.2) reduces to a convex optimization problem. Indeed,
if x is fixed, the optimization problem is a form of constrained linear regression. If
θ is fixed, we have a form of LASSO regression. We prove that (7.1) is a biconvex
problem in Appendix 2. Since both problems are computationally simple, we could
take either x or θ to be the complicating variables in Benders’ decomposition and
we choose θ .

A common approach for solving an optimization problem with a nonconvex
objective function is to alternate between fixing one variable and optimizing over the
other. However, this approach only provides a local optimum (Gorski et al. 2007). A
key to the GOP algorithm is the Benders’-based idea that feasibility and optimality
information is shared between the primal problems in the form of constraints.

7.3 Algorithm

The Global OPtimization (GOP) algorithm, which we describe here, solves for
ε-global optimum values of x and θ (Floudas and Visweswaran 1990; Floudas
2000, 2013). The algorithm proceeds by first partitioning the optimization problem
decision variables into complicating and non-complicating variables. Then, the GOP
algorithm alternates between solving a primal problem over θ for fixed x, and
solving a relaxed dual problem over x for fixed θ . The primal problem provides
an upper bound on the original optimization problem because it contains more
constraints than the original problem (x is fixed). The relaxed dual problem contains
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fewer constraints and forms a valid global lower bound. The algorithm iteratively
tightens the upper and lower bounds on the global optimum by alternating between
the primal and relaxed dual problem.

7.3.1 Initialization

The algorithm starts by partitioning the problem into a relaxed dual problem and a
primal problem. The solution of the relaxed dual problem is an optimal x for fixed
values of the complicating variables θ and the solution of the primal problem is an
optimal θ . An iteration counter T = 1 is initialized.

For each iteration, the relaxed dual problem is solved by forming a partition of
the domain of x and solving a relaxed dual subproblem for each subset. A branch-
and-bound tree data structure is used to store the solution of each of these relaxed
dual subproblems and we initialize the root node n(0) where T = 0. The parents
of n(T ) is denoted par(n(T )), the set of ancestors of n(T ) is denoted anc(n(T )),
and the set of children of n(T ) is denoted ch(n(T )). The root node is formed by
initializing x at a random feasible point, xn(0), and storing it in n(0).

7.3.2 Solve Primal Problem and Update Upper Bound

The primal problem (7.2) is constrained to a fixed value of x at n(T ), x(n(T )),

Primal problem
(x fixed)

minimize
θ

‖y − xθ‖2
2

subject to θT
i 1K = 1 for all i,

θki ≥ 0 for all k, i

(7.3)

Since the primal problem is more constrained than (7.2), the solution, S(n(T )),
is a global upper bound. The value of the upper bound is PUBD ←
min{PUBD, S(n(T ))}, so PUBD holds the tightest upper bound across iterations.

7.3.3 Solve the Relaxed Dual Problem and Update Lower
Bound

The relaxed dual problem is a relaxed version of (7.2) in that it contains fewer
constraints than the original problem. Initially, at the root node, n(0), the domain
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of the relaxed dual problem is the entire domain of x, X . Each node stores a set
of linear constraints (cuts) such that when all of the constraints are satisfied, they
define a region in X . Sibling nodes form a partition of parent’s region and a node
deeper in the tree defines a smaller region than shallower nodes when incorporating
the constraints of the node and all of its ancestors. These partitioning constraints
are called qualifying constraints. Since the objective function is convex in θ for a
fixed value of x, a Taylor series approximation of the Lagrangian with respect to θ

provides a valid lower bound on the objective function. Since the objective function
is convex in θ , the Taylor approximation is linear and the optimal objective is at a
bound of θ . The GOP algorithm as outlined in (Floudas and Gounaris 2008) makes
these ideas rigorous.

The relaxed dual problem for the mixed membership matrix factorization
problem (7.2) for a node n(T ) is below.

Relaxed Dual Problem
(θ fixed)

minimize
Q, x, z

Q

subject to
M∑

j=1

K∑

k=1

zjk ≤ P,

−zjk ≤ xjk ≤ zjk, zjk ≥ 0,

L(x, θB(t), y, λt , μt )
∣∣lin
xt ,θ t ≤ Q for t ∈ {anc(n(T )),n(T )},

gt
ki

∣∣lin
xt (x) ≤ 0 if θB(t)ki = 1,

gt
ki

∣∣lin
xt (x) ≥ 0 if θB(t)ki = 0

(7.4)

The function L(x, θB(t), y, λt , μt )
∣∣lin
xt ,θ t is the linearized Lagrangian of (7.2),

gt
ki

∣∣lin
xt (x) is the ki-th qualifying constraint, and θB(t) is the value of θ at the bound

such that the linearized Lagrangian is a valid lower bound in the region defined by
the qualifying constraints at node t . We have taken a second Taylor approximation
with respect to x to ensure the qualifying constraints are linear in x and thus valid
cuts as recommended in (Floudas and Gounaris 2008).

The algorithm for solving the relaxed dual problem comprises five steps:

1. Construct a child node in the branch-and-bound tree
2. Populate the child node with the linearized Lagrange function and qualifying

constraints
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3. Solve the relaxed dual subproblem at the child nodes
4. Update the lower bound
5. Check convergence

7.3.3.1 Construct a Child Node in the Branch-and-Bound Tree

Recall, a unique region in X for the leaf node ch(n(T )) is defined by the t-th row
of θB derived from the primal problem at node n(T ). This region can be expressed
as the qualifying constraint set,

g
ch(n(T ))
ki

∣∣lin
xn(T ) (x) ≤ 0 if θB

ki(t) = 1,

g
ch(n(T ))
ki

∣∣lin
xn(T ) (x) ≥ 0 if θB

ki(t) = 0.

To generate the t th child node of n(T ) and populate it with this constraint set and
θB(t) which will be used in the construction of the Lagrange function lower bound
in the relaxed dual problem.

7.3.3.2 Populate the Child Node with the Linearized Lagrange Function
and Qualifying Constraints

The qualifying constraint sets contained in each node along the path in the branch-
and-bound tree from ch(n(T )) to the root, inclusively, are added to the relaxed
dual subproblem at the newly constructed child node. For example, the qualifying
constraint set for a node n′ along the path is

gn
′

ki

∣∣lin
xn

′ (x) ≤ 0 if θB(n′)ki = 1

gn
′

ki

∣∣lin
xn

′ (x) ≥ 0 if θB(n′)ki = 0,

where gn
′

ki is the node’s kith qualifying constraint, xn
′

is the node’s relaxed dual
problem optimizer, and θB(n′) is a 0-1 vector defining the unique region for node
n′ since θki ∈ [0, 1].

Then, the Lagrangian function lower bound constraints from each node along the
path in the branch-and-bound tree from ch(n(T )) to the root, inclusively, are added
to the relaxed dual subproblem. For example the linearized Lagrange function for
node n′,

L(x, θB(n′), y, λ(n′), μ(n′))
∣∣lin
x(n′),θ(n′) .
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The Lagrangian function for the primal problem is

L(x, θ, λ, μ) =
N∑

i=1

L(x, θi, λi, μi)

=
N∑

i=1

(yi − xθi)
	(yi − xθi)

− λi(θ
	
i 1K − 1) − μ	

i θi

=
N∑

i=1

y	
i yi − 2y	

i xθi + θ	
i x	xθi

− λi(θ
	
i 1K − 1) − μ	

i θi

(7.5)

with Lagrange multipliers μ ∈ R
K×N+ and λ ∈ R

N .
The relaxed dual problem makes use of this Lagrangian function linearized about

θ(t) which we obtain through a Taylor series approximation,

L(x, θi, λi, μi)
∣∣lin
θ(t) � L

(
x, θ

(t)
i , λ

(t)
i , μ

(t)
i

)

+
K∑

k=1

g
(t)
ki (x) ·

(
θki − θ

(t)
ki

)
,

(7.6)

where the qualifying constraint function is

g
(t)
i (x) �∇θi

L
(
θi, x, λ

(t)
i , μ

(t)
i

) ∣∣
θ

(t)
i

= −2y	
i x + 2θ

(t)	
i x	x

− 1	
Kλ

(k)
i − μ

(k)	
i .

(7.7)

The qualifying constraint g
(t)
i (x) is quadratic in x. However, the qualifying

constraints must be linear in x to yield a convex domain whether g
(t)
i (x) ≥ 0 or

g
(t)
i (x) ≤ 0. So, the Lagrangian is linearized first with respect to x about x(t) then

about θi at θ
(t)
i . While the linearized Lagrangian is not a lower bound everywhere in

x, it is a valid lower bound in the region bound by the qualifying constraints with θi

set at the corresponding bounds in the Lagrangian function.
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The Lagrangian function linearized about x(t) is

L(yi, θi, x, λi, μi)

∣∣∣∣
lin

x(t)

�yT
i yi − θ	

i x(t)	x(t)θi

− 2y	
i xθi + 2θ	

i x(t)	xθi

− λi(θ
	
i 1K − 1) − μ	

i θi .

(7.8)

Subsequently, the Lagrangian function linearized about (x(t), θ
(t)
i ) is

L(yi, θi, x, λi, μi)

∣∣∣∣
lin

x(t),θ
(t)
i

� y	
i yi + θ

(t)	
i x(t)	x(t)θ

(t)
i

− 2θ
(t)	
i x(t)	x(t)θi

− λi

(
1	
Kθi − 1

)
− μ	

i θi

− 2θ
(t)	
i x	x(t)θ

(t)	
i − 2y	

i xθi

+ 2θ
(t)	
i

(
x(t)	x + x	x(t)

)
θi

, (7.9)

and the gradient used in the qualifying constraint is

g
(t)
i

∣∣lin
x(t) (x) � ∇θi

[
L(yi, θi, x, λi, μi)

∣∣∣∣
lin

x0

] ∣∣∣∣
θ

(t)
i

= −2x(t)	x(t)θ
(t)
i − 2x	yi

+ 2(x(t)	x + x	x(t))θ
(t)
i − λi1K − μi.

(7.10)

The qualifying constraints, Lagrange function constraints, and Lagrangian comprise
the relaxed dual subproblem at child node ch(n(T )).

7.3.3.3 Solve the Relaxed Dual Subproblem at the Child Node

Once the valid constraints from the previous t = 1, . . . , T − 1 iterations have been
identified and incorporated, the constraint for the current T th iteration is

Q ≥ L(x, θBT , y, λ(t), μ(t))
∣∣lin
x(t),θ(t)

g
(T )
ki

∣∣lin
x(t) (x) ≤ 0 if θ

BT

ki = 1

g
(T )
ki

∣∣lin
x(t) (x) ≥ 0 if θ

BT

ki = 0.
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The resulting relaxed dual problem is a linear program and can be solved
efficiently using the off-the-shelf LP solver Gurobi (Gurobi Optimization, Inc.
2018). We store the optimal objective function value and the optimizing decision
variables in the node.

7.3.3.4 Update the Lower Bound

The global lower bound, RLBD, is provided by the lowest lower bound across all
the leaf nodes in the branch-and-bound tree. Operationally, a hash table maintains
a value that is a pointer to a branch-and-bound tree node whose key is the optimal
value of the relaxed dual problem at that leaf node. Using this dictionary, branch-
and-bound selects the smallest key and bounds to the node of the tree indicated by
the value. This element is eliminated from the dictionary since at the end of the next
iteration, it will be an interior node and not available for consideration. The iteration
count is incremented, T ← T + 1, and the global lower bound is updated with the
optimal value of the relaxed dual problem at the new node.

7.3.3.5 Check Convergence

Since RLBD maintains the lowest lower bound provided by the relaxed dual
problem, the lower bound is non-decreasing. If the convergence criteria PUBD −
RLBD ≤ ε has been met, then the algorithm is exited and the optimal θ from the
node’s primal problem and the optimal x from the node’s relaxed dual problem
is reported. Finite ε-convergence and ε-global optimality proofs can be found
elsewhere (Floudas 2000).

7.4 Computational Improvements

In the relaxed dual problem branch-and-bound tree, a leaf node below the current
node n(T ) is constructed for each unique region defined by the hyperplane
arrangement. In the GOP framework, there are KN hyperplanes, one for each
connected variable and all of the KN elements of θ are connected variables. So,
an upper bound on the number of regions defined by KN cuts is 2KN because
each region may be found by selecting a side of each cut. Thus we have the
computationally complex situation of needing to solve a relaxed dual problem for
each of the 2KN possible regions.

Let an arrangement A denote a set of hyperplanes and r(A ) denote the set of
unique regions defined by A . In our particular situation, all of the hyperplanes pass
through the unique point x(n(T )), so all of the regions are unbounded except by
the constraints provided in X . A recursive algorithm for counting the number of
regions |r(A )| known as Zaslavsky’s Theorem, is outlined in (Zaslavsky 1975).
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Indeed, |r(A )| is often much less that 2|A |. Due to its recursive nature, computing
the number of hyperplanes using Zaslavsky’s theorem can be computationally slow,
though it can also be much better than the original 2KN number of subproblems.

7.4.1 Cell Enumeration Algorithm

To address the computational complexity we have developed an A-star search
algorithm for cell enumeration to simultaneously identify and count the set of unique
regions defined by arrangement A with sign vectors. The algorithm proceeds as
follows. First, preprocess the arrangement A to eliminate trivial and redundant
hyperplanes. Next, eliminate a hyperplane from A if the coefficients are all zero and
eliminate duplicate hyperplanes in A (see Appendix 3). What is left is a reduced
arrangement, A ′.

Here, we define two concepts, strict hyperplane and adjacent region. A strict
hyperplane is defined as non-redundant bounding hyperplane in a single region.
If two regions exist that have sign vectors differing in only one hyperplane, then
this hyperplane is a strict hyperplane. We define an adjacent region of region r

as a neighbor region of r if they are separated by exactly one strict hyperplane.
The general idea of the A-star algorithm uses ideas from partial order sets. We first
initialize a root region using an interior point method and then determine all of its
adjacent regions by identifying the set of strict hyperplanes. This process guarantees
that we can enumerate all unique regions.

We define θB ∈ {0, 1}|r(A ′)|×KN . The rows are regions and there are KN

columns. Each element of this matrix is either 0 or 1. The bth region in r(A ′) is
uniquely identified by the zero-one vector in the bth row of θB . If the bth element
of the kith row of θB is +1, then gki ≤ 0. Similarly, if the bth element of the
kith row of θB is 0, then gki ≥ 0. The A-star search algorithm completes the θB

matrix for the current node n(T ) and a leaf node is generated for each row of θB .
Thus each unique region defined by the qualifying constraint cuts provided by the
Lagrange dual of the primal problem at the current node. The details of the A-star
search algorithm are covered in Appendix 3.

7.4.2 Theoretical Time Complexity

The GOP algorithm has four main components: primal problem, preprocessing,
unique region identification, and relaxed dual problems. We analyze the compu-
tational complexity of each in turn.
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7.4.2.1 Primal Problem

The primal problem is a convex quadratic program with KN decision variables.
The time complexity for the primal problem solving is then O(K3N3) (Boyd and
Vandenberghe 2004).

7.4.2.2 Preprocessing

We address the cases of overlapping qualifying constraint cuts by sorting the
rows of the KN · M qualifying constraint coefficient matrix and comparing the
coefficients of adjacent rows. We first sort the KN rows of the qualifying constraint
coefficient matrix using heapsort which takes O(KN · log(KN)) time on average.
The algorithm subsequently passes through the rows of the matrix to identify all-
zero coefficients and duplicate cuts; each pass takes O(KN) time. We define |A ′|
as the number of unique qualifying constraints.

7.4.2.3 Unique Region Identification

The interior point method that we used in the A-star search algorithm is a linear
program of size |A ′| · MK with the time complexity of O(|A ′| · MK). The time
complexity for enumerating the set of unique regions is O(|A ′| · (|A ′| · MK)),
which exhibits polynomial behavior. The time complexity of the partial order A-
star algorithm is polynomial in the best case and exponential in the worst case,
depending on the heuristic. We define |r(A ′)| as the number of identified unique
regions.

7.4.2.4 Relaxed Dual Problems

There are 2MK + 1 decision variables for each relaxed dual problem, so the time
complexity for each is O(M3K3). The total time for solving the relaxed dual
problems is O(|r(A ′)| · M3K3), which depends on the number of relaxed dual
problems.

7.5 Experiments

In this section, we present our experiments on synthetic data sets and show
accuracy and convergence speed. Computational complexity is evaluated by both
the theoretical and empirical time complexity.



7 A Global Optimization Algorithm for Sparse Mixed Membership Matrix. . . 141

7.5.1 Illustrative Example

We use a simple data set to show the operation of the algorithm in detail and
facilitate visualization of the cut sets. The data set, y, and true decision variable
values, (x∗, θ∗), are

x∗ = [
0, −1

]
, θ∗ =

[
1, 0, 0.5
0, 1, 0.5

]
,

y = [
0, −1, −0.5

]
.

We ran the GOP algorithm with sparsity constraint variable P = 1 and
convergence tolerance ε = 0.01. There are KN = 6 connected variables, so
we solve at most 2KN = 64 relaxed dual problems at each iteration. These
relaxed dual problems are independent and can be distributed to different com-
putational threads or cores. The primal problem is a single optimization problem
and will not be distributed. The optimal decision variables after 72 iterations are

x̂ = x(72) = [
0.080, −0.920

]
, θ̂ = θ(72) =

[
1.00, 0.080, 0.580
0.00, 0.920, 0.420

]
, (7.11)

and the Lagrange multipliers are λ̂ = [−0.147, 0, 0] and μ̂ = [0, 0, 0; 0.160, 0, 0].
Figure 7.1a shows the convergence of the upper and lower bounds by iteration.

The upper bound converges quickly and the majority of the time in the algorithm
is spent proving optimality. With each iteration regions of the solution space
are tested until the lower bound is tightened sufficiently to meet the stopping
criterion. Figure 7.1b shows the first ten x values considered by the algorithm with
isoclines of the objective function with θ∗ fixed. It is evident that the algorithm
is not performing hill-climbing or any other gradient ascent algorithm during its
search for the global optimum. Instead, the algorithm explores a region bound by
the qualifying constraints to construct a lower bound on the objective function.
We run it using 20 random initial values and the optimal objective functions
for all random initializations are all 0, which shows that the GOP algorithm
found the globally optimal solutions of this small instance. Furthermore, the
algorithm does not search nested regions, but considers previously explored cut sets
(Fig. 7.1b).
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Fig. 7.1 (a) GOP optimal upper and lower bounds, (b) GOP optimal relaxed dual problem
decision variables

Figure 7.2a and b shows the branch-and-bound tree and corresponding x-space
region with the sequence of cut sets for the first three iterations of the algorithm.
One cut in Fig. 7.2c–f is obtained for each of the KN qualifying constraints. We
initialize the algorithm at x(0).

7.5.2 Accuracy and Convergence Speed

We ran our GOP algorithm using 64 processors on a synthetic data set which is
randomly generated on the scale of one feature (M = 1), two subtyes (K = 2) and
ten samples (N = 10). Figure 7.3a shows that our GOP algorithm converges very
quickly to −0.17 duality gap (PUBD − RLBD) in the first 89 iterations in 120 s.
The optimal x (x1, x2) and θ (θ1, θ2) of each iteration are shown with a range of
colors to represent corresponding RLBD in Fig. 7.3b,c. The dark blue represents
low RLBD and the dark red represents high RLBD. The RLBD of the initial x,
x(0), is −59.87; The RLBD of iteration 89, x(89), is −0.17. It demonstrates that
the GOP algorithm can change modes very easily without getting stuck in local
optima.
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Fig. 7.2 (a) Branch-and-bound tree at iteration 1, (b) x-space region at iteration 1, (c) Branch-and-
bound tree at iteration 2, (d) x-space region at iteration 2, (e) Branch-and-bound tree at iteration 3,
(f) x-space region at iteration 3
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Fig. 7.3 (a) Duality gap through the first 120 s, (b) Optimal x of each iteration. The true x is
(0,−1), (c) Optimal θ of each iteration. The true θ is (0.22, 0.78)

7.5.3 Computational Complexity

We compare our theoretical complexity analysis with empirical measurements of
the time complexity on simulated data sets.

We constructed 12 synthetic data sets in a full-factorial arrangement with M ∈
{20, 40, 60, 80}, K ∈ {2}, and N ∈ {4, 5, 6} and measured CPU time for each
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component of one iteration. For each arrangement, each element of the true x∗ is:

x∗
mk =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 ≤ m < M/4, k = 0
−1 if M/4 ≤ m < M/2, k = 1

N (0, 0.52) if M/2 ≤ m < M,∀k

0 otherwise

Here N (0, 0.52) is the sample from a Normal distribution by its mean 0 and
standard deviation 0.5. For the true θ∗, θ∗

kn for k = 0 are n evenly spaced samples
over the interval of [0, 1]; θ∗

kn for k = 1 are n evenly spaced samples over the
interval of [1, 0].

Table 7.1 Timing profile (in seconds) of each component of the GOP algorithm for one iteration
varying problem size

N M Primal problem Preprocessing Unique region ID Relaxed dual problems Total

4

20 0.10 1.69 1.29 1.54 (33%) 4.62

40 0.12 1.91 1.72 1.69 (31%) 5.44

60 0.12 2.03 1.11 1.77 (35%) 5.03

80 0.13 2.39 2.05 3.70 (45%) 8.27

5

20 0.11 1.99 1.31 11.26 (77%) 14.67

40 0.11 2.07 1.37 11.45 (76%) 15.00

60 0.11 1.86 1.41 12.33 (78%) 15.71

80 0.12 2.23 1.26 17.96 (83%) 21.57

6

20 0.14 2.21 2.50 65.71 (93%) 70.56

40 0.13 2.83 2.49 67.08 (92%) 72.53

60 0.12 3.45 2.80 69.00 (92%) 75.37

80 0.12 3.15 2.80 77.62 (93%) 83.69

Table 7.1 shows that the time per iteration increases linearly with M when K

and N are fixed. The time for solving all the relaxed dual problems increases as the
number of samples increases. Even though the step of solving all the relaxed dual
problems takes more than 90% of the total time per iteration when the number of
samples is 6, our algorithm is easily parallelized to solve the relaxed dual problems,
allowing the algorithm to scale nearly linearly with the size of the data set.

7.5.4 Real Data Analysis

To explore the performance of our algorithm on real data, we performed experiments
on the TCGA pancancer high throughput DNA sequencing data set (Weinstein et al.
2013; Dheeru and Karra Taniskidou 2017). The original data was subsetted to the
top two most variable genes and the top ten most variable samples by standard
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deviation. Then it was log transformed and centered across genes. The number of
clusters was set to K = 2, the sparsity constraint was set to P = 1.

At early iterations, the optimal θ is a nearly 0–1 matrix, so we report the samples
associated with each of the K = 2 subtypes. Samples 1, 4, 5, and 7 were assigned
to subtype A and samples 2, 3, 6, 8, 9 and 10 were assigned to subtype B; subtypes
are labeled arbitrarily with letters. The optimal x values were xA = [−0.204, 0] and
xB = [0.561, 0.234]. The inference algorithm enforced the L1 penalty—the sum of
the absolute values of x are at P = 1. And, the L1 penalty clearly enforced sparsity
in that one of the elements is exactly equal to zero.

The data set provides the anatomical regions associated with each of the cancer
samples, and we explored those assignments to see if there is an association between
the subtypes and the anatomical site of the cancer. Subtype A contains three colon
adenocarcinomas and one prostate adenocarcinomas; subtype B contains four breast
invasive carcinomas, one lung adenocarcinoma, and one kidney adenocarcinoma.
Clearly, the algorithm is effectively clustering colon adenocarcinomas and cancers
that are genomically more like that type from breast adenocarcinomas and cancers
that are genomically more like that type.

At later iterations, when the duality gap had narrowed to 3.65, the optimal θ

is more mixed. Still, the majority of the colorectal adenocarcinomas had subtype
A as their largest component, and the majority of breast invasive carcinomas had
subtype B as their largest component. These results indicate that this globally
optimal inference algorithm performs well on a real data set. Since the algorithm
provides both upper and lower bounds, a proof of ε-optimality is provided. Within
this tolerance, the algorithm provides confidence that the provided estimates are
globally optimal and not merely an artifact of local convergence.

7.6 Discussion

We have presented a global optimization algorithm for a mixed membership matrix
factorization problem. Our algorithm brings ideas from the global optimization
community (Benders’ decomposition and the GOP method) into contact with
statistical inference problems for the first time. The naïve computational cost of
the global optimal solution is the need to solve a number of linear programs that
grows exponentially in the number of connected variables in the worst case—in this
case the KN elements of θ . Many of these linear programs are redundant or yield
optimal solutions that are greater than the current upper bound and thus not useful. A
branch-and-bound framework (Floudas 2000) reduces the need to solve all possible
relaxed dual problems by fathoming parts of the solution space We further mitigate
this cost by developing an search algorithm for identifying and enumerating the true
number of unique linear programs.

Finally, we have derived an algorithm for particular loss functions for the sparsity
constraint and objective function. The GOP framework can handle integer variables
and thus may be used with an �0 counting “norm” rather than the �1 norm to induce
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sparsity. This would give us a mixed-integer biconvex program, but the conditions
for the framework. Structured sparsity constraints can also be defined as is done for
elastic-net extensions of LASSO regression. It may be useful to consider other loss
functions for the objective function depending on the application.

We are exploring the connections between GOP and the other alternating opti-
mization algorithms such as the expectation maximization (EM) and variational EM
algorithm. Since the complexity of GOP only depends on the connected variables,
the graphical model structure connecting the complicating and non-complicating
variables may be used to identify the worst-case complexity of the algorithm prior
to running the algorithm. A factorized graph structure may provide an approximate,
but computationally efficient algorithm based on GOP. Additionally, because the
Lagrangian function factorizes into the sum of Lagrangian functions for each sample
in the data set, we may be able to update the parameters based on GOP for a selected
subset of the data in an iterative or sequential algorithm. We are exploring the
statistical consistency properties of such an update procedure.

Acknowledgements We acknowledge Hachem Saddiki for valuable discussions and comments
on the manuscript.

Appendix 1: Derivation of Relaxed Dual Problem Constraints

The Lagrange function is the sum of the Lagrange functions for each sample,

L(y, θ, x, λ) =
n∑

i=1

L(yi, θi, x, λi, μi), (7.12)

and the Lagrange function for a single sample is

L(yi, θi, x, λi, μi) = yT
i yi − 2yT

i xθi + θT
i xT xθi − λi(θ

T
i 1K − 1) − μT

i θi . (7.13)

We see that the Lagrange function is biconvex in x and θi . We develop the
constraints for a single sample for the remainder.

Linearized Lagrange Function with Respect to x

Casting x as a vector and rewriting the Lagrange function gives

L(yi, θi, x̄, λi, μi) = ai − 2bT
i x̄ + x̄T Ci x̄ − λi(θ

T
i 1K − 1) − μT

i θi, (7.14)
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where x̄ is formed by stacking the columns of x in order. The coefficients are formed
such that

a = yT
i yi,

bT
i x̄ = yT

i xθi,

x̄T Ci x̄ = θT
i xT xθi .

The linear coefficient matrix is the KM × 1 vector,

bi = [yiθ1i , · · · , yiθKi]

The quadratic coefficient is the KM × KM and block matrix

Ci =
⎡

⎢⎣
θ2

1iIM · · · θ1iθKiIM

...
. . .

...

θKiθ1iIM · · · θ2
KiIM

⎤

⎥⎦

The Taylor series approximation about x0 is

L(yi, θi, x̄, λi, μi)

∣∣∣∣
lin

x̄0

= L(yi, x0, θi , λi, μi) + (∇xL|x0)
T (x − x0). (7.15)

The gradient with respect to x is

∇xL(yi, θi, x̄, λi, μi) = −2bi + 2Cix̄. (7.16)

Plugging the gradient into the Taylor series approximation gives

L(yi, θi , x̄, λi)

∣∣∣∣
lin

x̄0

=ai − 2bT
i x̄0 + x̄T

0 Cix̄0 − λi

(
θT
i 1K − 1

)
− μT

i θi + (−2bi + 2Cix̄0)
T (x̄ − x̄0).

(7.17)

Simplifying the linearized Lagrange function gives

L(yi, θi , x̄, λi , μi)

∣∣∣∣
lin

x̄0

=
(
yT
i yi − x̄T

0 Cix̄0 − λi

(
θT
i 1K − 1

)
− μT

i θi

)
− 2bT

i x̄ + 2x̄T
0 Cix̄

(7.18)

Finally, we write the linearized Lagrangian using the matrix form of x0,

L(yi, θi , x, λi , μi)

∣∣∣∣
lin

x0

= yT
i yT

i − θT
i xT

0 x0θi − 2yT
i xθi + 2θT

i xT
0 xθi − λi

(
θT
i 1K − 1

)
− μT

i θi

(7.19)



7 A Global Optimization Algorithm for Sparse Mixed Membership Matrix. . . 149

While the original Lagrange function is convex in θi for a fixed x, the linearized
Lagrange function is not necessarily convex in θi . This can be seen by collecting the
quadratic, linear and constant terms with respect to θi ,

L(yi, θi , x, λi , μi)

∣∣∣∣
lin

x0

=
(
yT
i yT

i + λi

)
+

(
−2yT

i x − λi1
T
K − μT

i

)
θi + θT

i

(
2xT

0 x − xT
0 x0

)
θi .

(7.20)

Now, if and only if 2xT
0 x − xT

0 x0 � 0 is positive semidefinite, then

L(yi, θi, x, λi, μi)

∣∣∣∣
lin

x0

is convex. The condition is satisfied at x = x0 but may

be violated at some other value of x.

Linearized Lagrange Function with Respect to θi

Now, we linearize (7.18) with respect to θi . Using the Taylor series approximation
with respect to θ0i gives

L(yi , θi , x, λi , μi)

∣∣∣∣
lin

x0,θ0i

= L(yi, θ0i , x, λi , μi)

∣∣∣∣
lin

x0

+
(

∇θi
L(yi , θi , x, λi , μi)

∣∣∣∣
lin

x0

∣∣∣∣
θ0i

)T

(θi − θ0i )

(7.21)

The gradient for this Taylor series approximation is

gi(x) � ∇θi
L(yi , θi , x, λi , μi)

∣∣∣∣
lin

x0

∣∣∣∣
θ0i

= −2xT
0 x0θ0i − 2xT yi + 2

(
xT

0 x + xT x0

)
θ0i − λi1K − μi,

(7.22)

where gi(x) is the vector of K qualifying constraints associated with the Lagrange
function. The qualifying constraint is linear in x. Plugging the gradient into the
approximation gives

L(yi, θi , x, λi , μi)

∣∣∣∣
lin

x0,θ0i

= yT
i yT

i − θT
0ix

T
0 x0θ0i − 2yT

i xθ0i + 2θT
0ix

T
0 xθ0i − λi

(
θT

0i1K − 1
)

−μT
i θ0i +

(
−2xT

0 x0θ0i − 2xT yi + 2(xT
0 x + xT x0)θ0i − λi1K − μi

)T

(θi − θ0i )

(7.23)
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The linearized Lagrange function is bi-linear in x and θi . Finally, simplifying the
linearized Lagrange function gives

L(yi, θi , x, λi , μi)

∣∣∣∣
lin

x0,θ0i

= yT
i yT

i + θT
0ix

T
0 x0θ0i − 2θT

0ix
T
0 x0θi − λi(1

T
Kθi − 1) − μT

i θi

− 2θT
0ix

T x0θ0i − 2yT
i xθi + 2θT

0i (x
T
0 x + xT x0)θi

(7.24)

Appendix 2: Proof of Biconvexity

To prove the optimization problem is biconvex, first we show the feasible region
over which we are optimizing is biconvex. Then, we show the objective function is
biconvex by fixing θ and showing convexity with respect to x, and then vice versa.

The Constraints Form a Biconvex Feasible Region

Our constraints can be written as

||x||1 � P (7.25)

K∑

k=1

θki = 1 ∀i (7.26)

0 � θki � 1 ∀(k, i). (7.27)

The inequality constraint (7.25) is convex if either x or θ is fixed, because any norm
is convex. The equality constraints (7.26) is an affine combination that is still affine
if either x or θ is fixed. Every affine set is convex. The inequality constraint (7.27)
is convex if either x or θ is fixed, because θ is a linear function.

The Objective Is Convex with Respect to θ

We prove the objective is a biconvex function using the following two theorems.

Theorem 1 Let A ⊆ R
n be a convex open set and let f : A → R be twice

differentiable. Write H(x) for the Hessian matrix of f at x ∈ A. If H(x) is positive
semidefinite for all x ∈ A, then f is convex (Boyd and Vandenberghe 2004).
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Theorem 2 A symmetric matrix A is positive semidefinite (PSD) if and only if there
exists B such that A = BT B (Lancaster et al. 1985).

The objective of our problem is,

f (y, x, θ) = ||y − xθ ||22 = (y − xθ)T (y − xθ) (7.28)

= (yT − θT xT )(y − xθ) (7.29)

= yT y − yT xθ − θT xT y + θT xT xθ. (7.30)

The objective function is the sum of the objective functions for each sample.

f (y, x, θ) =
N∑

i=1

f (yi, x, θi) (7.31)

=
N∑

i=1

yT
i yi − 2yT

i xθi + θT
i xT xθi . (7.32)

The gradient with respect to θi ,

∇θi
f (yi, x, θi) = −2yT

i x +
(

xT x +
(
xT x

)T
)

θi (7.33)

= −2xT yi + 2xT xθi . (7.34)

Take second derivative with respect to θi to get Hessian matrix,

∇2
θi
f (yi, x, θi) = �θi

(
−2xT yi + 2xT xθi

)
(7.35)

= 2�θi

(
xT xθi

)
(7.36)

= 2
(
xT x

)T

(7.37)

= 2xT x. (7.38)

The Hessian matrix ∇2
θi
f (yi, x, θi) is positive semidefinite based on Theorem 2.

Then, we have f (yi, x, θi) is convex in θi based on Theorem 1. The objective
f (y, x, θ) is convex with respect to θ , because the sum of convex functions,∑N

i=1 f (yi, x, θi), is still a convex function.



152 F. Zhang et. al.

The Objective Is Convex with Respect to x

The objective function for sample i is

f (yi, x, θi) = yT
i yi − 2yT

i xθi + θT
i xT xθi . (7.39)

We cast x as a vector x̄, which is formed by stacking the columns of x in order. We
rewrite the objective function as

f (yi, x̄, θi) = ai − 2bT
i x̄ + x̄T Ci x̄. (7.40)

The coefficients are formed such that

a = yT
i yi, (7.41)

bT
i x̄ = yT

i xθi, (7.42)

x̄T Ci x̄ = θT
i xT xθi . (7.43)

The linear coefficient matrix is the KM × 1 vector

bi = [yiθ1i , . . . , yiθKi] (7.44)

The quadratic coefficient is the KM × KM and block matrix

Ci =
⎡

⎢⎣
θ2

1iIM · · · θ1iθKiIM

...
. . .

...

θKiθ1iIM · · · θ2
KiIM

⎤

⎥⎦ (7.45)

The gradient with respect to x̄

∇x̄f (yi, x̄, θi) = −2bi + 2Cix̄. (7.46)

Take second derivative to get Hessian matrix,

∇x̄2f (yi, x̄, θi) = 2CT
i (7.47)

= 2
(
θiθ

T
i

)T

(7.48)

= 2
(
θT
i

)T (
θT
i

)
. (7.49)
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The Hessian matrix ∇2
x̄ f (yi, x̄, θi) is positive semidefinite based on Theorem 2.

Then, we have f (yi, x̄, θi) is convex in x̄ based on Theorem 1. The objective
f (y, x, θ) is convex with respect to x, because the sum of convex functions,∑N

i=1 f (yi, x, θi), is still a convex function.
The objective is biconvex with respect to both x and θ . Thus, we have a biconvex

optimization problem based on the proof of biconvexity of the constraints and the
objective.

Appendix 3: A-Star Search Algorithm

In this procedure, first we remove all the duplicate and all-zero coefficients
hyperplanes to get unique hyperplanes. Then we start from a specific region r and
put it into a open set. Open set is used to maintain a region list which need to be
explored. Each time we pick one region from the open set to find adjacent regions.
Once finishing the step of finding adjacent regions, region r will be moved into a
closed set. Closed set is used to maintain a region list which already be explored.
Also, if the adjacent region is a newly found one, it also need to be put into the open
set for exploring. Finally, once the open set is empty, regions in the closed set are all
the unique regions, and the number of the unique regions is the length of the closed
set. This procedure begins from one region and expands to all the neighbors until no
new neighbor is existed.

The overview of the A-star search algorithm to identify unique regions is shown
in Algorithm 1.

Algorithm 1 A-star Search Algorithm
1: Sort the rows of the KN x M qualifying constraint coefficient matrix.
2: Compare adjacent rows of the qualifying constraint coefficient matrix and eliminate duplicate

rows.
3: Eliminate rows of the qualifying constraint coefficient matrix with all-zero coefficients.
4: Determine the list of unique qualifying constraints by pairwise test.
5: Set S and |A ′| to the set of unique, non-trivial qualifying constraints and the number of them.
6: Initialize a region root using an interior point method (Component 1).
7: Put region root into the open set.
8: if open set is not empty then
9: Get a region R from the open set.

10: Calculate the adjacent regions set Radj (Component 2).
11: Put region R into the closed set.
12: for each region r in Radj do
13: if r is not in the open set and not in the closed set then
14: Put region r into the open set.
15: Reflect the sign of the regions in the close set.
16: Get all the regions represented by string of 0 and 1.
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Hyperplane Filtering

Assuming there are two different hyperplanes Hi and Hj represented by Ai ={
ai,0, . . . , ai,MK

}
and Aj = {

aj,0, . . . , aj,MK

}
. We take these two hyperplanes

duplicated when

ai,0

aj,0
= ai,1

aj,1
= . . . = ai,MK

aj,MK

=
∑MK

l=0 ai,l∑MK
l=0 aj,l

, aj,l ! = 0 (7.50)

This can be converted to

∣∣∣∣∣

MK∑

l=0

ai,l · aj,n −
MK∑

l=0

aj,l · ai,n

∣∣∣∣∣ ≤ τ,∀ nε[0,MK] (7.51)

where threshold τ is a very small positive value.
We eliminate a hyperplane Hi represented by Ai = {

ai,0, . . . , ai,MK

}
from

hyperplane arrangement A if the coefficients of Ai are all zero,

|ai,j | � τ forall ai,j ∈ Ai and j ∈ [0,MK]

The arrangement A ′ is the reduced arrangement and A′x = b are the equations of
unique hyperplanes.

Interior Point Method

An interior point is found by solving the following optimization problem:

maximize z

subject to −A′
ix + z ≤ bi if θB

i = 0,

A′
ix + z ≤ −bi if θB

i = 1,

z > 0

(7.52)
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Algorithm 2 Interior Point Method (Component 1)

1: Generate 2|A ′ | different strings using 0 and 1.
2: for each s in the strings do
3: Solve an optimization problem to get an interior point.
4: if Get a interior point then
5: Get the root region represented by 0 and 1.

Algorithm 3 Get Adjacent Regions (Component 2)
1: Initialize an empty set SH for strict hyperplanes.
2: Initialize an adjacent region set ADJ .
3: # Find out all the strict hyperplanes for region R.
4: for each hyperplane H of |A ′| hyperplanes do
5: Pick one hyperplane H from all the hyperplanes defining region R.
6: Flip the sign of H to get ¬H .
7: Form a new hyperplane arrangement ¬A ′ with ¬H .
8: Solve the problem to get an interior point constrained by ¬A ′.
9: if the interior point is not Non then

10: H is a strict hyperplane and put into set SH .
11: else
12: H is a redundant hyperplane.
13: # Find out all the adjacent regions for region R.
14: for each strict hyperplane sh in set SH do
15: Take the opposite sign ¬sh of sh.
16: Form a adjacent region adj based on ¬sh and all the else hyperplanes.
17: Put adj into set ADJ .
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