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14.1 Introduction

In the era of precision medicine, especially in the oncology and hematology areas,
there have been explosions in knowledge of the molecular profile of disease. With
the genomic sequencing becoming more affordable, many tumors can now be
classified from a molecular biology perspective, with different treatment options
and tailored strategies for patients based on their tumor biomarker status. Under
the drug development setting, new generation trials have emerged to target patient
selection within any given tumor type based on specific underlying molecular and
biologic characteristics: e.g. (1) ‘Basket trials’ usually are focused only on specific
molecular aberrations, in several tumor types. (2) ‘Umbrella (or Platform) trials’
focus on drug development targeting several molecular subtypes in one tumor type.
(3) ‘Adaptive enrichment strategies’ offer the potential to enrich for patients with
a particular molecular feature that is predictive of benefit for the test treatment
based on accumulating evidence from the trial. Among them, umbrella, basket
and platform trials constitute a new generation of clinical trial design defined as
master protocol, which allow for the study of multiple drugs, multiple diseases
indications, or both within a single trial. These innovative approaches to clinical
drug development have resulted in rapidly revolutionized methodologies, including
adaptive randomization (Lin et al. 2016a, b, c), to conduct clinical trials in the setting
of biomarkers and targeted therapies, whereas the traditional paradigm of treating
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a very large number of unselected patients is increasingly less efficient, lacks cost
effectiveness and is ethically challenging.

In the past few years, there have been a variety of thought-provoking next
generation master protocols conducted multi-institutionally in oncology: specific
recognized examples include I-SPY2, BATTLE, NCI MATCH, LUNG-MAP,
ALCHEMIST and FOCUS4 (Renfro et al. 2016). As a change from traditional
clinical trial design paradigms, statisticians have partnered with clinicians to become
fully integrated in these clinical trials and make critical contributions for advancing
therapeutic development in this era of molecular medicine. Meanwhile, the new
development of immunotherapeutic agents and implementation of next-generation
sequencing (NGS) also brings many new and exciting opportunities in the design of
biomarker driven trials. From a clinical trial operational perspective, there are some
logistical challenges to implementing these innovative designs, e.g. central assay
testing, drug supply, multiple institutional collaboration, real time data collection
and integrations. However, these additional efforts are all worthwhile given the
substantial improvement of efficient medicine development, and most importantly,
the benefit of the patients.

In general, the goals of randomized clinical trials are to effectively treat patients
and differentiate treatment effects efficiently. On one hand, a clinical trial tries to
discriminate the effects of different treatments quickly, so that patients outside of
the trial will sooner benefit from the more efficacious treatment. For this purpose,
patients’ allocation should be (nearly) balanced across the comparative arms. On the
other hand, each trial participant should be given the most effective treatment, and
patients themselves also hope that they would be assigned to the arm that performs
better. This often leads to an unbalanced allocation through adaptive randomization
by equipping a better arm with a higher allocation probability (Berry et al. 2010).
Therefore, randomized clinical trials need to strike a balance between individual and
collective ethics.

During the study planning stage, key components of the protocol such as primary
endpoint, key secondary endpoints, clinically meaningful treatment effect differ-
ence, and treatment effect variability are pre-specified. Participating investigators
and sponsors then collect all data in electronic data capture (EDC) system and
perform statistical analyses. The success of the study depends on the accuracy of
the original design assumptions or sample size calculation. Adaptive Designs are
a way to address uncertainty about design parameters assumptions made during
the study planning stage. Adaptive Designs allow a review of accumulating data
or patient information during a trial to possibly modify trial characteristics and to
promote multiple experimental objectives, while protecting the study from bias and
preserving inferential validity of the results. The flexibility can translate into a more
efficient drug development process by reducing the number of patients enrolled.
This flexibility also increases the probability of success of the trial answering the
question of scientific interest (finding a significant treatment effect if one exists or
stopping the study as early as possible if no treatment effect exists).

Adaptive Designs have received a great deal of attention in the statistical,
pharmaceutical, and regulatory fields. The US Food and Drug Administration (FDA)
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released a draft version of the “Guidance for Industry: Adaptive Design Clinical
Trials for Drugs and Biologics” in 2010 (U.S. Food and Drug Administration 2010).
The guidance defined an adaptive design as ‘a study that includes a prospectively
planned opportunity for modification of one or more specified aspects of the study
design and hypotheses based on analysis of data (usually interim data) from subjects
in the study.’ The most common adaptive designs used in clinical trials include, but
are not limited to, the following types: adaptive randomization design, seamless
adaptive phase II/III design, adaptive dose-response design, biomarker adaptive
design, adaptive treatment switching design, adaptive-hypothesis design, multiple
arm adaptive design, group sequential design, sample size re-estimation design, et
al (Kairalla et al. 2012).

14.2 Why Is Adaptive Randomization Important?

The design of any clinical trial starts with formulation of the study objectives.
Most clinical trials are naturally multi-objective, and some of these objectives may
compete. For example, one objective is to have sufficient power to test the primary
study hypothesis, and consequently have sufficient sample size. However, cost
considerations may preclude a large sample size, so the twin objectives of maximum
power and minimum sample size directly compete. Other objectives may include
minimizing exposure of patients to potentially toxic or ineffective treatments, which
may compete with having sufficient numbers of patients on each treatment arm to
conduct convincing treatment group comparisons. In the case of K > 2 treatments,
where (K − 1) experimental treatments are to be compared with the placebo group
with respect to some primary outcome measure, the primary objective of the trial
may be testing an overall hypothesis of homogeneity among the treatment effects,
and a secondary objective may be performing all pairwise comparisons among
the (K − 1) experimental treatments versus placebo. Investigators may have an
unequal interest in such comparisons. In addition to statistical aspects of a clinical
trial design, there may be a strong desire to minimize exposure of patients to the
less successful (or more harmful) treatment arms. Clearly, in these examples it
is very difficult to find a single design criterion that would adequately describe
all the objectives. Many of these objectives depend on model parameters that are
unknown at the beginning of the trial. It is useful, and indeed sometimes imperative,
to use accruing data during the trial to adaptively redesign the trial to achieve these
objectives. These design considerations must be achieved without sacrificing the
hallmark of the carefully conducted clinical trials—randomization—which protects
the study from bias.

Once the study objectives are formally quantified and ranked in the order of their
importance, the experimental design problem is to find a design that accommodates
several selected design criteria. Frequently, the treatment allocations are unbalanced
across treatment groups, and they depend on model parameters that are unknown
a priori and must be calibrated through simulation. Adaptive randomization uses
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accruing information in the trial to update randomization probabilities to target the
allocation criteria. Hu and Rosenberger (2006) classify adaptive randomization into
four major types:

• Restricted randomization: a randomization procedure that uses past treatment
assignments to select the probability of future treatment assignments, with the
objective to balance numbers of subjects across treatment groups.

• Covariate-adaptive randomization: a randomization procedure that uses past
treatment assignments and patient covariate values to select the probability of
future treatment assignments, with the objective to balance treatment assign-
ments within covariate profiles.

• Response-adaptive randomization: a randomization procedure that uses past
treatment assignments and patient responses to select the probability of future
treatment assignments, with the objective to maximize power or minimize
expected treatment failures.

• Covariate-adjusted response adaptive (CARA) randomization: a combination of
covariate-adaptive and response-adaptive randomization procedures.

A typical example of master protocol to screen three experimental treatments,
A, B and C simultaneously is illustrated in Fig. 14.1. All patients recruited for the
first stage of the trial are randomized to the treatment arms with equal probability.
At each interim analysis, we update the Bayesian model used for setting the
randomization probabilities. The proportion of patients that are randomized to better
performing arms increases, and decreases to arms that are performing poorly.

14.3 Frequentist and Bayesian Approaches for Adaptive
Randomization

The commonly used statistical approach to design and analyze clinical trials
and other medical experiments is frequentist, while a Bayesian method provides
an alternative approach. The Bayesian approach can be applied separately from
frequentist methodology, as a supplement to it, or as a tool for designing efficient
clinical trials that have good frequentist properties. The two approaches have
rather different philosophies, although both use probability and deal with empirical
evidence. Practitioners exposed to traditional, frequentist statistical methods appear
to have been drawn to Bayesian approaches for three reasons (Ning and Huang
2010; Rosenberger et al. 2012; Thall and Wathen 2007; Yin et al. 2012; Yin 2013).
One is that Bayesian approaches implemented with the majority of their informative
content coming from the current available data, and not prior information, typically
have good frequentist properties (e.g., low mean squared error (MSE) in repeated
use). Second, these methods as now easily implemented in WINBUGS, OpenBUGS
and other available MCMC software packages. These offer a convenient approach to
hierarchical or random effect modeling, as regularly used in longitudinal data, frailty
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Fig. 14.1 Overview of
adaptive randomization
design

model, spatial data, time series data, and a wide variety of other settings featuring
interdependent data. Third, practitioners are attracted to the increased levels of
flexibility and adaptivity offered by the Bayesian approach which allows for early
stopping for efficacy, toxicity, and futility, as well as facilitates a straightforward
solution to a great many other advanced problems such as dosing selection, adaptive
randomization, equivalence testing, and others.

Flexibility is the major difference between Bayesian and frequentist methods,
in both design and analysis. In the Bayesian approach, experiments can be altered
midcourse, disparate sources of information can be combined, and expert opinion
can play a role in inferences. An important property of Bayesian design is that it
can utilize prior information and Bayesian updating while still maintaining good
frequentist properties (power and Type I error). Another major difference is that
the Bayesian approach can be decision-oriented, with experimental designs tailored
to maximize objective functions, such as company profits or overall public health
benefit. Overall, designing a clinical trial is a decision problem, such as therapy
selection, resource allocation, early stop etc., which involves costs and benefits
consideration. In the Bayesian approach, these costs and benefits can be well
assessed for all possible scenarios of future observations. However, frequentism
fits naturally with the regulatory “gate-keeping” role, through its insistence on
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procedures that perform well in the long run regardless of the true state of nature.
And indeed, frequentist operating characteristics (Type I and II error, power) are
still very important to the FDA and other regulators.

14.4 Response-Adaptive Randomization

Response-adaptive randomization is one of the most important adaptive trial
designs, in which the randomization ratio of patients assigned to the experimental
treatment arm versus the control treatment arm changes overtime from 1:1 to a
higher proportion of patients assigned to the arm that is performing better (Yuan
et al. 2011). It is very attractive when ethical considerations or concerns make
it potentially undesirable to have an equal number of patients assigned to each
treatment arm. For the purpose of simplicity, suppose the trial objective is to
compare treatments A and B. Patients are enrolled in sequential groups of size
{Nj}, j =1, . . . , J, where Nj is the sample size of group j. When planning the
trial, researchers typically have limited prior information regarding the superiority
or effectiveness of the experimental treatment arms. Therefore, at the beginning
stage of the trial, for the first j groups, e.g. j’ = 1, patients are equally allocated to
two treatments. The responses observed from these patients are utilized to update
the allocation probability for subsequent groups of patients.

Let pA be the response rate of treatment A and pB be the response rate of
treatment B. We set N to be the maximum sample size allowed for the trial and NA
(NB) to be the maximum number of patient assigned to treatment A (B). We assign
the first N1 patients equally to two treatments (A, B) and observe the response Yk

(k = A, B). Assign pk a noninformative prior of beta(αk, βk). If among nk subjects
treated in arm k, we observe yk responses, then

Yk ∼ binomial (nk, pk) (14.1)

and the posterior distribution of pk is

pk | data ∼ beta (αk + xk, βk + nk − xk) (14.2)

During the trial, we could continuously update the Bayesian posterior distribution
of pk, and allocate the next Nj patients to the kth treatment arm according to the
posterior probability that treatment k is superior to all other treatment arms

πk = Pr (pk = max {pl , 1 ≤ l ≤ K} |data) (14.3)

One of the advantages of a Bayesian approach to inference is the increased flex-
ibility to include sequential stopping compared to the more restrictive requirements
of a classical group sequential approach in terms of number of interim analysis,
stopping rules, etc. Noninformative stopping rules are irrelevant for Bayesian
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inference. In other words, posterior inference remains unchanged regardless of why
the trial was stopped. Several designs make use of this feature of Bayesian inference
to introduce early stopping for futility and/or for efficacy.

• Futility: if Pr (pk < p.min|data) > θu, where p.min denotes the clinical minimum
response rate, that is, there is strong evidence that treatment k is inferior to the
clinical minimum response rate, we drop treatment arm k.

• Superiority: if Pr (pk > p.target|data) > θ l, where p.target denotes the target
response rate, that is, there is strong evidence that treatment k is superior to
prespecified response rate, we terminate the trial early and claim the treatment
k is promise.

At the end of the trial, if Pr (pk > p.min|data) > θ t, then treatment k is selected
as the superior treatment. Otherwise, the trial is inconclusive. To achieve desirable
operating characteristics (type 1 error and power), we use simulations to calibrate
the pre-specified cut-off points θu, θ l, and θ t.

We conducted simulations to show the procedure for design parameters cal-
ibration. The patient allocation probability is determined by algorithm (14.3).
The minimum allocation probability is 10% to ensure a reasonable probability of
randomizing patients to each arm. The minimum clinical response rate (p.min) is 0.2
and the target response rate (p.target) is 0.4. In this trial, we set maximum sample
sizes of 90 and maximum sample size of 30 per treatment arm. We equally assigned
the first 15 patients to three treatments (A, B, or C) and started using the adaptive
randomization at the 16th patient. The sequential group size is set as 10, so that
the early stopping rule and allocation probability updating will act after 10 new
patient’s responses cumulated. Although the design allows continuous monitoring
after every patient’s response outcome becomes available, from the operational and
computational point of view, it’s more convenient to monitor the trial for early
termination with a cohort size of 10. A total of 5,000 independent simulations were
performed for each configuration.

In the first stage, we set θu = θ l = 1, so that the trial would not be terminated
early, to determine the threshold values of θ t. we performed a series of simulation
studies with different values of θ t and compared the corresponding type 1 error rates
and powers. Table 14.1 shows the simulation results. Similarly, we can obtain a set
of values of θ t that reached the desired power. The value of θ t with type 1 error
(defined as the selection probability of Arm A) close to 5% and a desired power
(defined as the selection probability of Arms B or C) will be selected for the next
stage selection.

Table 14.1 Type 1 error rates and power, without early termination

θ t

Arm (response rate) 0.9 0.91 0.92 0.93

A (0.2) 0.07 0.065 0.056 0.049
B (0.4) 0.842 0.838 0.832 0.825
C (0.6) 0.998 0.994 0.992 0.989
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Table 14.2 Type 1 error rates and power, with early termination

θ l

θu Arm 0.92 0.93 0.94 0.95

0.85 A 0.073 0.071 0.064 0.066
B 0.828 0.819 0.84 0.817
C 0.991 0.996 0.989 0.992

0.86 A 0.082 0.071 0.065 0.057
B 0.821 0.824 0.814 0.839
C 0.993 0.99 0.989 0.986

0.87 A 0.08 0.07 0.067 0.057
B 0.822 0.819 0.838 0.845
C 0.996 0.994 0.994 0.993

0.88 A 0.078 0.07 0.069 0.053
B 0.843 0.847 0.82 0.801
C 0.996 0.993 0.995 0.996

0.89 A 0.079 0.072 0.069 0.048
B 0.852 0.832 0.845 0.819
C 0.991 0.994 0.997 0.994

0.9 A 0.069 0.063 0.062 0.048
B 0.831 0.83 0.821 0.826
C 0.997 0.989 0.992 0.994

In the second stage, fixing θ t = 0.92, we followed the similar procedure to
calibrate (θu, θ l), which determine the early termination of a trial due to equivalence
or superiority respectively. Note that θ l has to be greater or equal to θ t because the
decision criteria must be tighter during the trial than at the end of trial. Our goal is
still to maintain a treatment-wise type 1 error rate of 5% or lower and to achieve
desired power when the trial can terminate early (Table 14.2).

Alternatively, we can set θ t = θ l which means that we will not relax the decision
criteria at the end of the trial. Extensive simulation for various scenarios should
be carried out to ensure controlled type 1 error and satisfied power for all possible
situations in real trial (Table 14.3).

Suppose the trial require 0.1 type 1 error and at least 0.85 power for treatment B
and 0.99 power for treatment C, we chose the design parameters as θ t = θ l = 0.89
and θu = 0.9. The operation characteristics is list in Table 14.4.

14.5 Response-Adaptive Randomization for Survival
Outcomes

The response-adaptive randomization design with binary outcomes is commonly
used in clinical trial where “success” is defined as the desired (or undesired)
event occurring within (or beyond) a clinically relevant time. Given that patients
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Table 14.3 Type 1 error rates and power with θ t = θ l

θu

θ t = θ l Arm 0.8 0.82 0.84 0.86 0.88 0.9

0.85 A 0.142 0.127 0.127 0.126 0.115 0.105
B 0.871 0.869 0.866 0.864 0.857 0.857
C 0.992 0.994 0.991 0.995 0.993 0.994

0.87 A 0.121 0.121 0.117 0.108 0.1 0.085
B 0.876 0.877 0.87 0.87 0.869 0.852
C 0.996 0.994 0.992 0.994 0.996 0.986

0.89 A 0.109 0.102 0.093 0.091 0.071 0.075
B 0.855 0.861 0.849 0.861 0.847 0.857
C 0.992 0.994 0.995 0.988 0.996 0.995

0.91 A 0.097 0.082 0.08 0.078 0.075 0.077
B 0.83 0.848 0.848 0.84 0.849 0.825
C 0.993 0.994 0.996 0.987 0.989 0.988

0.93 A 0.095 0.074 0.071 0.071 0.064 0.06
B 0.797 0.809 0.835 0.833 0.817 0.799
C 0.994 0.99 0.991 0.996 0.99 0.992

0.95 A 0.065 0.042 0.039 0.039 0.036 0.025
B 0.784 0.792 0.775 0.764 0.79 0.778
C 0.988 0.995 0.989 0.989 0.986 0.994

Table 14.4 Operation characteristics with θ t = θ l = 0.89 and θu = 0.9

Arm Response rate Pr (selected early) Pr (stopped early) # patients (2.5%, 97.5%)

A 0.2 0.012 0.386 24.15 (6, 35)
B 0.4 0.496 0.077 27.72 (6, 37)
C 0.6 0.827 0.005 16.45 (7, 32)

enter a trial sequentially, only a fraction of patients will have sufficient follow-
up during interim analysis. This results in a loss of information as it is unclear
how patients without sufficient follow-up should be handled. Adaptive designs for
survival trials have been proposed for this type of trial. However, current practice
generally assumes the event times follow a pre-specified parametric distribution. In
this section, we adopt a nonparametric model of survival outcome which is robust
to model event time distribution, and then apply it to response-adaptive design. The
operating characteristics of the proposed design along with parametric design are
compared by simulation studies, including their robustness properties with respect
to model misspecifications.

Patients are enrolled in sequential groups of size {Nj}, j = 1, . . . , J, where Nj
is the sample size of the sequential group j. Typically, before conducting the trial,
researchers have little prior information regarding the superiority of the treatment
arms. Therefore, initially, for the first j’ groups, e.g. j’ = 1, patients are allocated to
K treatment arms with an equal probability 1/K. As patients accrue, the number of
current patients increases. Let Ti be the event time for patient i, τ be the clinically
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relevant time and θ = Pr (T > τ ) be the probability of interest. For example, a trial is
conducted to assess the progression-free survival probability at 9 months. Let N(s)
denote the current number of patients who have been accrued and treated at a given
time s during the trial. Without censoring, θ can be modeled by binomial model
where the likelihood function evaluated at time s is

L (data|θ) =
N(s)∏

i=1

θI(Ti>τ)(1 − θ)I(Ti≤τ) (14.4)

However, censoring is unavoidable in clinical practice. As patients enter into
the trial sequentially, the follow-up time for certain patients may be less than
τ when we evaluate θ at any calendar time s. Other reasons for censoring may
include patient dropout, failure to measure the outcome of interest, etc. If we ignore
the censored patients, substantial information will be lost. Cheung and Chappell
(2000) introduced a simple model for dose-finding trial. Later, Cheung and Thall
(2002) adopted this model to continuous monitoring for phase II clinical trials. With
censoring, the likelihood function (14.4) can be rewritten as

L (data|θ) =
N(s)∏

i=1

Pr {Ti ≤ min (xi, τ)}Y(xi) Pr {Ti > min (xi, τ)}1−Y(xi) (14.5)

where xi = min (ci, ti) is the observed event time, ci is the censoring time, and
Y(xi) = I{Ti ≤ min (xi, τ )} is the censoring indicator function.

Furthermore, the parameter θ will be plugged into the likelihood function through
probability transformation. Let t = min (xi, τ ),

Pr (Ti ≤ t) = Pr (Ti ≤ t, Ti ≤ τ) + Pr (Ti ≤ t, Ti > τ)

= Pr (Ti ≤ t|Ti ≤ τ) Pr (Ti ≤ τ) + Pr (Ti ≤ t|Ti > τ) Pr (Ti > τ)

= w(t) (1 − θ)

(14.6)

where w(t) = Pr (Ti ≤ t| Ti ≤ τ ), is a weight function
Finally, we can obtain a working likelihood with unbiased estimation of w(t).

L (data|θ) =
N(t)∏

i=1

∼
w (xi) (1 − θ)Y(xi)

{
1 − ∼

w (xi) (1 − θ)
}1−Y(xi)

(14.7)

Theorem if
∼
w (xi) converges almost surely to w(xi) for all i as N(s) →∞, then

θ̂ = argmaxL (data|θ) is strongly consistent for true survival probability θ .

Cheung and Chappell (2000) assumed the nuisance parameter
∼
w (xi) as a linear

function
∼
w (xi) = xi/τ . Ji and Bekele (2009) show that these estimated weights

are based on strong assumption of linearity and independence, and may lead to
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biased results when the assumptions are violated. We propose to estimate
∼
w (xi)

with Kaplan–Meier (KM) estimation of
∼
S (xi), where

∼
w (xi) = 1 − ∼

S (xi)

1 − ∼
S (τ)

It’s easy to show that
∼
w (xi) is an unbiased estimation of w(xi).

Assign a noninformative prior of beta (α, β), we can obtain posterior distribution
of θ . However, the posterior distribution is not available in closed form and standard
integral approximations can perform poorly. Without knowing the exact posterior
distribution, we can easily draw random MCMC samples and obtain posterior
estimation using standard MCMC software packages.

Under model (14.7), the survival probability evaluated at time τ is used as a
conventional measure of treatment efficacy. However, such a survival probability at
time τ ignores the entire path of survival curve. One of the interests in a clinical trial
is the estimation of the difference between survival probability for the treatment
groups at several points in time. As shown in Fig. 14.2, the survival curve under
treatment B declines faster than that under treatment A, although both treatments
have the same survival probability at time τ. In a renal cancer trial, this indicates
that patients under treatment B would experience disease progression much faster
than those under treatment A. Because delayed disease progression typically leads
to a better quality of life, treatment A would be preferred in this situation (Ning
and Huang 2010). Another example is showed in Fig. 14.3. The survival curves are
almost identical between two treatments before time 20. If we compare the survival
probability between two treatments at the time before 20, the treatment effect is
inconclusive. To provide a comprehensive measure of efficacy by accounting for the
shape of the survival curve, we propose to evaluate survival probability at several
points in time. Let θkj be the survival probability at time τj for treatment k where
j=1, . . . , J. The treatment allocation probability for treatment k is defined as,

πk =
J∑

j=1

wj Pr
(
θkj = max

{
θlj, 1 ≤ l ≤ J

} |data
)

where wj is the prespecified weight. Currently, we use equal weight with wj = 1/J.
During the trial, we continuously monitor posterior probability of πk. When the

efficacy of πk is lower than the prespecified lower limit pl, then the treatment arm
k will be terminated early due to futility. When πk is higher than pu, the treatment
arm k will be selected as promising treatment. At the end of the trial, if πk is higher
than pt, then treatment k is selected as the superior treatment. Otherwise, the trial
is inconclusive. In practice, the values of pl, pu, and pt are chosen by simulation
studies to achieve desirable operating characteristics for the trial.
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Fig. 14.2 Survival curves of the time to disease progression, where the two survival curves have
the same survival probability at the follow-up time τ = 70 weeks, but different areas under the
survival curves until τ

Fig. 14.3 Survival curves of the time to disease progression, where the two survival curves have
the similar survival probability before week 20, but gradually show difference as time increase
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We simulate a single arm trial where the event times follow a Weibull distribution
with α = 2 and λ = 50, where α is the shape parameter and λ is the scale parameter
of the distribution. Patients enter the trial sequentially with accrual rate of one per
week. At week 50, we stop enrolling the patients and continue to follow the trial for
additional 30 weeks. The parameter of interest is θ = Pr (T > 40).

The purpose of this simulation study is to compare the performance of estimation
with different methods and to show whether the estimation at different trial
monitoring time is consistent. Four estimation methods will be evaluated, including
the proposed method, the true parametric method (estimate S(xi) by Weibull
distribution), the misspecified parametric method (estimate S(xi) by exponential
distribution), and the original method (

∼
w (xi) = xi/τ ). Trial monitoring starts at

week 40 and continues until the end of study. Figure 14.4 shows the estimated
θ at different monitoring times. The results show that both the true parametric
method and proposed method provide unbiased estimation over monitoring time
while the original method and misspecified parametric method give large bias. It
should be noted that the original method gives small bias at the end of trial because
the number of censored observations (e.g. due to treatment ongoing) decreased as
follow-up time increased. In Fig. 14.5, we present the coverage probability along the
monitoring times. The figure shows that the proposed method and true parametric
method provide constant coverage probability over the monitoring time which is
close to the nominal value of 95%. In contrast, the original method and misspecified
parametric method both give low coverage probability.

Fig. 14.4 Estimated θ with different methods
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Fig. 14.5 Coverage probability of θ with different methods

We conducted a second set of simulations to evaluate the performance of the
proposed adaptive randomization design under various clinical scenarios (1000
simulations per scenario). For the simulations, we set the accrual rate to two patients
per week. The maximum number of patients is 120. After the initial 60 weeks of
enrollment time, there is an additional follow-up period of 40 weeks. The event
times are simulated from a Weibull distribution with α = 1 in scenario I and α = 0.5
in scenario II. We assigned the first 30 patients equally to two arms (A or B) and
started using the adaptive randomization at the 31st patient. The randomization
probability was evaluated every 5 weeks. The proposed design will be compared
with different estimation methods for the weight function w(t): proposed method,
parametric method (estimate S(xi) by exponential distribution), and original method
(
∼
w (xi) = xi/τ ).

Table 14.5 shows the simulation results from scenario I, without early termina-
tion (pu = 1, pl = 0). For each method, we list the average number of patients (with
percentage of total patients in the trial) assigned to each treatment arm, and the
chance of a treatment being selected as promising. When comparing the parametric
method, the proposed method provides comparable operational characteristic where
both designs assign more patients to more promising treatment (69% for proposed
design and 70.3% for parametric design) and both designs provide the sample level
of power (0.978 for proposed design and 0.979 for parametric design). The original
method achieves lower power than both the proposed method and parametric
method.
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Table 14.5 Simulation result for scenario I

Proposed method Exponential method Original method

(pt = 0.955) (pt = 0.99) (pt = 0.995)
Arm λ # of patients Pr (select) # of patients Pr (select) # of patients Pr (select)

A 40 26.3 (31%) 0.005 24.72 (29.6%) 0.003 36.5 (36.1%) 0.003
B 100 58.6 (69%) 0.978 61.36 (70.3%) 0.979 64.5 (63.9%) 0.749

84.9 90.08 101.0

Table 14.6 shows simulation results for scenario II, without early termination
(pu = 1, pl = 0). In the presence of event time distribution misspecification,
the parametric method provides lower power than the proposed method (0.836
vs 0.647). In addition, the proposed method assigns more patients to the more
promising treatment. Once again, the original method has lower power than the
other two methods.

Table 14.6 Simulation result for scenario II

Proposed method Exponential method Original method

(pt = 0.965) (pt = 0.995) (pt = 0.995)
Arm λ # of patients Pr (select) # of patients Pr (select) # of patients Pr (select)

A 50 27.8 (28.5%) 0.005 32.48 (32.2%) 0.0003 35.6 (33.8%) 0.001
B 200 69.6 (71.5%) 0.836 68.34 (67.8%) 0.647 69.8 (66.2%) 0.51

97.4 100.82 105.4

14.6 Case Studies

14.6.1 Investigation of Serial Studies to Predict Therapeutic
Response with Imaging and Molecular Analysis 2
(I-SPY 2)

I-SPY 2 is an adaptive phase II clinical trial that pairs oncologic therapies with
biomarkers for women with advanced breast cancer. The goal is to identify
improved treatment regimens for patient’s subsets based on molecular character-
istics (biomarkers) of their disease (Barker et al. 2009).

The trial (Fig. 14.6) is initialized with two standard-of-care arms, and five treat-
ment arms. Each treatment is tested on a minimum of 20 patients, and a maximum
of 120 patients. Patient’s biomarkers are determined at enrollment, and patients
are randomized to treatment arms based on their biomarker signature. Bayesian
methods of adaptive randomization are used to achieve a higher probability of
efficacy. Thus, treatments that perform well within a biomarker subgroup will have
an increased probability of being assigned to patients with that biomarker.
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Treatments will be dropped for futility if they show a low Bayesian predictive
probability of being more effective than the standard of care with any biomarker.
Treatment regimens that show a high Bayesian predictive probability of being more
effective than the standard of care will stop for efficacy at interim time-points. These
treatments will advance (with their corresponding biomarkers) to phase III trials.
Depending on the patient accrual rate, new drugs can be added to the trial as other
drugs are discontinued for either futility or efficacy.

Fig. 14.6 I-SPY 2 trial

As of March 2017, 12 experimental treatment arms have been explored. Five
agents, after showing promise within their biomarker groups, advanced to further
studies and others are in queue for entry. A new I-SPY 3 master protocol is
under planning to provide further evidence of effectiveness for agents successfully
graduating from I-SPY2.

14.6.2 Gastric Cancer Umbrella Design for an Investigational
Agent

This is an open-label, multicenter, phase 1b study of an investigational agent in
combination with regimen A, regimen B, paclitaxel, or docetaxel in adult patients
with locally advanced and metastatic gastric or gastroesophageal adenocarcinoma
(Fig. 14.7). The study consists of a dose escalation phase (Part 1) and a dose expan-
sion phase (Part 2). In Part 2, this study uses equal and adaptive randomization.

Any patient who enters Part 2 of the study is screened to determine whether
their tumor tissue is positive for EBV (approximately 9% of patients with gastric
cancer). An estimated 28 patients who are EBV-positive are assigned to treatment
with regimen A in combination with the investigational agent (Cohort A). Patients
who are EBV-negative initially are randomized equally to 1 of the other treatment
cohorts, 5 patients per group: investigational agent + egimen B (Cohort B),
investigational agent + paclitaxel (Cohort C), or investigational agent + docetaxel
(Cohort D). These patients’ data are assessed using a proportional weighted clinical
utility function (allocating specific weights for complete response [CR], partial
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response [PR], stable disease [SD], and progressive disease [PD]). New patients are
then randomized to treatment according to an adaptive randomization algorithm,
which incorporates a weighted clinical utility function. The resulting probability is
continually updated per accumulating data on the associations between the response
rate and Bayesian stopping rules.

Adaptive randomization increases the opportunity for each patient to receive the
most effective experimental treatment possible based on posterior probabilities. Up
to an additional 25 patients may be enrolled in each treatment regimen. Based on
simulation results, the sample size for Part 2 (umbrella portion) of the study may be
between 61 and 90 patients.

Overall response rate is used as the efficacy benchmark. Target effect size of
25% (0.25) and an undesirable effect size of 10% (0.1) are chosen based on clinical
judgment. Early stopping rules are prespecified if there is a clear signal of efficacy
or lack of efficacy. The stopping rules are as follows:

1. achieve maximum sample size of each arm (30 patients);
2. stop an arm if posterior probability Pr (response rate [RR] > 0.25/Data) >80%

and Pr (RR > 0.10)/Data) >90%;
3. suspend accrual to an arm if Pr (RR ≤ 0.10/Data) >80%.

The treatment arm(s) is/are chosen in relation to the efficacy bar prespecified
(target and undesirable); therefore, it is possible to select multiple treatment arms
per this study design.

EBV Screening Equal Randomization

Adaptive Randomization

Cohort BCohort A

N=5N=25

Up to addI N=25

(w/ Regimen B)(w/ Regimen A) (w/ Docetaxel) (w/ Paclitaxel)

(Efficacy-Based & Repeated)

Up to addI N=25 Up to addI N=25

N=5 N=5

Cohort C Cohort D

Cohort B

Pick the winner (s)

Cohort C Cohort D

9% GC

Re-allocation of patients
based on early efficacy signals

Repeated adaptation based 
cumulative and evolving data

Early stopping of clear loser(s)
and crossover to clear
winner(s) allowed

Winner(s) as relevant to the
prespecified efficacy bar
(target=25% [0.25] and
undesirable=10% [0.1])

Retrospective biomarker studies
to identify drug/marker pairs

Combo w/ SOC could be
used as the comparator for
other combo choices

EBV+
EBV-

Fig. 14.7 Gastric cancer umbrella design
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14.7 Discussion

With the closer collaborations between government, academia and industry, as well
as the need to increase the probability of success of drug development across
varied therapeutic areas, there are significant growing uses of innovative adaptive
designs in master protocols, including the umbrella or platform trials, to screen
multiple drugs simultaneously (Woodcock and LaVange 2017). Though different
master protocols come with different sizes and settings, they share many common
features, e.g. additional planning from the beginning of trial design, coordination
between different stakeholders and increasingly sophisticated infrastructures for
the research effects. Adaptive randomization is becoming a critical component and
statistical methodology under these settings. While response-adaptive randomiza-
tion procedures are not appropriate in clinical trials with a limited recruitment
period and/or outcomes that occur after a long follow up, there is no reason why
response-adaptive randomization cannot be used in clinical trials with moderately
delayed response. Sequential estimates and allocation probabilities can be updated
as data become available. For ease of implementation, updates can also be made
after groups of patients have responded, rather that individually. From a practical
perspective, there is no logistical difficulty in incorporating delayed responses into
the response-adaptive randomization procedure, provided some responses become
available during the recruitment and randomization period.

We have developed a Bayesian response-adaptive randomization design for
survival trial. A nonparametric survival model is applied to estimate the survival
probability at a clinical relevant time. The proposed design provides comparable
operational characteristics as true parametric design. When the event time distri-
bution is misspecified, the proposed design performs better than parametric one.
The proposed design can be extended to Response-Adaptive Covariate-Adjusted
Randomization (RACA) design when we need to control important prognostics
among treatment arms (Lin et al. 2016a, b, c). Another potential approach of
updating treatment allocation probability could be based on the restricted mean
survival time. The benefits of adaptive randomization for survival trial depend on the
distributions of event times and patient accrual rate as well as on the adaptive design
under consideration (Case and Morgan 2003). If there are short-term response that
are quickly available and predictive of long-term survival, we can use those short-
term response to “speed up” adaptive randomization for survival trial (Huang et al.
2009).

A major criticism of response-adaptive randomization is that, despite strin-
gent eligibility criteria, there may be a drift in patient characteristics over time.
Using covariate-adjusted response-adaptive randomization can be a solution to
this problem if the underlying covariates causing the heterogeneity are known in
advance. This may not cause issues with large sample sizes since the randomization
automatically balances prognostic factors among treatment groups asymptotically.
For clinical trials with small or moderate sample sizes, the impact from the
imbalance of the prognostic factors can be substantial when using response-
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adaptive randomization designs, and thus causes difficulties to the interpretation
after randomization. Thus, it is encouraged to have a randomization procedure that
could also actively balance the covariate across treatment arms. Consequently, such
design can help balance patient characteristics between different treatment arms,
and thereby control the inflated type I error rates that occur in response-adaptive
randomization (Lin et al. 2016a, b, c; Lin and Bunn 2017).
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