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Preface

This book is a collection of the most significant research papers presented at the 26th
ICSA Applied Statistics Symposium. Held on June 25–28, 2017, at Hilton Chicago
Downtown, this symposium attracted more than 800 statisticians in academia,
government, and industry around the world. With the theme Statistics for a new
generation: challenges and opportunities, the symposium also attracted hundreds
of students. One hundred and fifty-nine invited, topic contributed, and contributed
sessions covered the broadest variety of topics across the full spectrum of all
statistical theoretical fronts and applications. After the symposium, speakers were
invited to contribute to this book. From all submissions, the editors selected 18
chapters after rigorous peer-reviewed and subsequent revisions.

The book is organized into two balanced parts: Part I, Biostatistical Methodology,
which includes nine chapters that present the most recent theoretical breakthrough
in experimental design, modelling, and analysis, and Part II, Biopharmaceutical
Applications, which consists of nine chapters that depict various statistical applica-
tions in the biopharmaceutical industry. Each chapter is self-contained with relevant
references provided at the end of the chapter. The following is a quick glimpse of
each chapter:

Part I. In Chap. 1, Mao developed an EM algorithm to estimate tumor onset
time in carcinogenicity studies under the condition that cause of death is unknown
in a subset of animals. Log-rank test was used to compare treatment groups against
controls. The proposed new method was shown to outperform the available methods
by simulation. In Chap. 2, Pan and Jiang addressed the high-dimensional variable
selection problem for associating the microbial compositions with a phenotype.
They employed a log contrast model to bypass the usual step for normalization and
developed a new method to identify phenotype-associated species using penalized
regression and stability selection. In Chap. 3, Wei proposed the use of contemporary
aggregation as a dimension reduction method in high-dimensional multivariate
time series and showed that this natural and simple method had forecast accuracy
superior to existing methods. In Chap. 4, Wu developed PC-ABT, a novel principal
component-based adaptive-weight burden test for gene-based association mapping
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of quantitative traits. This method efficiently accounted for correlation in multiple
genotypic variants and was showed to be more powerful than other multiple variant
tests that allowed related individuals. In Chap. 5, Wang et al. proposed an adaptive
dynamic Bayesian network model that provided an unprecedented tool to elucidate
a comprehensive picture of gene regulatory networks. In particular, an unevenly
spaced gene expression record can be accommodated. By analyzing real data sets
from a surgical study and through extensive simulation studies, the new model was
demonstrated for its usefulness and utility. In Chap. 6, Alghamdi et al. focused
on ultrafast functional brain imaging studies and proposed an efficient approach
for obtaining high-quality stimulus sequences by taking the uncertainty of the
autocorrelation of the response into account. The performance of their proposed
approach was demonstrated via case studies. In Chap. 7, Zhang et al. derived a
global optimization algorithm that provided a guaranteed ε-global optimum for a
sparse mixed membership matrix factorization problem. The algorithm was tested
on simulated data and small real gene expression data set and found to always
bound the global optimum across random initializations and explore multiple modes
efficiently. In Chap. 8, Chuang and Yang proposed a nonnegative robust linear model
(NRLM) approach that yielded robust, yet interpretable, mixing rate estimates. In
a simulation study, NRLM showed a robust performance for finding the relative
abundance of specified components when a large amount of noise was present. More
importantly, the approach accurately estimated the absolute level of the specified
components in the presence of unspecified ones. Finally, it showed a superior
performance when applied to deep deconvolution of blood samples. In Chap. 9,
O’Brien and Silcox explored optimal experimental designs for parallelism testing in
potency bioassays. They derived theoretical optimal designs and proposed several
extensions that took practicality into account. One of the designs, reflection design,
was demonstrated to be the most efficient and easy to implement since the researcher
could merely sketch the drug/compound logistic curves and read off design at some
cutoff lines.

Part II. In Chap. 10, Zhang et al. proposed an optimized two-stage phase III
clinical trial design that combined three adaptive techniques to offer the opportunity
of dose selection and sample size determination based on the first-stage data with
strict type I error rate control and robust power across an effect size interval. In
Chap. 11, Gou and Chen proposed a generalized framework for critical boundary
refinement when conducting hierarchical hypothesis test in a clinical trial involving
multiple interim stages with an improvement on the secondary boundary. The
framework had a particular advantage when the primary endpoint data can be
assessed earlier than the secondary endpoint data. The framework was also extended
to include an adaptive update on the refined boundary when the attained sample
sizes were different from what they were originally planned. In Chap. 12, Liu et
al. proposed an escalation with overdose control design for phase I oncology trials
using dose-limiting toxicity (DLT) with two components, one for immediate toxicity
in a binary model and the other for late-onset toxicity in a time to event model. They
demonstrated that the proposed dose escalation design can incorporate historical
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knowledge, protect patients from being assigned to toxic doses, and consider early-
and late-onset toxicity while maintaining the escalation timeline. In Chap. 13, Yang
et al. proposed a new approach via adding a companion constancy test to the non-
inferiority test that consequently protected the validity of a non-inferiority trial
under Bayesian framework. In addition, historical data of the active control was
borrowed in the analysis with two different approaches. In Chap. 14, Lin et al.
introduced a nonparametric model which was robust to event time distribution in
response-adaptive designs for survival trials. The operating characteristics of the
proposed design and the parametric design were compared by simulation studies,
including their robustness properties, with respect to model misspecifications. Both
advantages and disadvantages of adaptive randomization were discussed in the
summary from a practical perspective of clinical trials as well as illustrations by
master protocol case studies. In Chap. 15, Lu et al. provided valuable considerations
of the design and analysis of the non-randomized studies using the propensity score
methodology. Statistical and regulatory perspectives were highlighted. In Chap. 16,
Jiang et al. reviewed key methodological and statistical implications of pragmatic
clinical trials (PCTs) in the context of drug development and reimbursement,
with emphasis on study design and analyses to maximize external validity. The
principles of PCTs challenged some well-established guidelines in randomized
clinical trials (RCTs), as open-label and treatment switch in intention-to-treat (ITT)
population being the most pronounced ones. They provided valuable suggestions on
handling these issues. In Chap. 17, Lipkovich et al. enhanced existing SIDES and
SIDEScreen methods for biomarker discovery by incorporating stochastic elements
in computing the variable importance, expected treatment effect, and replicability
index. The improvement was particularly useful when dealing with relatively small
data sets, so as to properly account for the uncertainty of the subgroup selection
process. The operating characteristics of the Stochastic SIDEScreen were demon-
strated to be improved compared with the corresponding deterministic procedure
through simulation. Last, but not the least, in Chap. 18, Pantoja-Galicia and Gene
Pennello discussed the implicit or explicit trade-offs between false-positive and
false-negative test errors provided by the information from the receiver operating
characteristic (ROC) curve. They demonstrated how it can impact the evaluation of
the performance of a new medical diagnostic test in comparison with an already
established test. They illustrated the idea with the comparability of a new test N
with respect to a standard test S in terms of the seriousness of a false-positive error
relative to a false-negative error using the information from the ROC curve.

The editors are grateful to many people who contributed to the publication of
this book. First, we would like to thank the authors of all chapters for their original
research and dedication to share through this book. Second, our sincere appreci-
ations go to all the reviewers for their valuable time and excellent review, which
significantly improved the presentations and quality of the book. Third, our gratitude
goes to the leadership of the executive committee, organization committees, and
numerous volunteers of the 26th ICSA Applied Statistics Symposium. This book
would not be possible without such a successful symposium. Last, but not least,
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Chapter 1
Nonparametric Inference on Tumor
Incidence with Partially Identified
Cause-of-Death Data

Lu Mao

1.1 Introduction

In drug development, the new product must be evaluated for its safety before being
applied to humans in a clinical setting. For ethical considerations, such assessment
is usually conducted on animals as a surrogate for human testing. Animal studies
thus constitute an indispensable component in the pre-clinical development of novel
pharmaceutical agents (Chow and Liu 1998).

Of primary concern about the potential hazards of a new drug is its carcino-
genicity, i.e., the ability to induce tumor in the recipient. Carcinogenicity studies
are typically carried out in the form of the so-called survival-sacrifice experiments
with certain strains of mice or rats. Specifically, healthy rodents are randomized to
control or treatment groups and are followed until they die naturally or meet the pre-
scheduled time for sacrifice. Following death, the animal is necropsied to determine
if a tumor is present. If the tumor under investigation is of a lethal kind, i.e., causing
death immediately after formation, then the time to tumor onset is observed insofar
as it occurs during study. The resulting data can thus be analyzed using standard
survival analysis methods such as Kaplan–Meier curves and logrank tests (Fleming
and Harrington 1991). If the tumor is completely non-lethal, so much so that it does
not affect the chance for the animal’s survival at all, then the time to death can be

L. Mao (�)
Department of Biostatistics and Medical Informatics, School of Medicine and Public Health,
University of Wisconsin-Madison, Madison, WI, USA
e-mail: lmao@biostat.wisc.edu

© Springer Nature Switzerland AG 2019
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4 L. Mao

considered as a random check-up time for tumor status. This setting gives rise to the
standard current-status (or case 1 interval-censored) data (see, e.g., Groeneboom
and Wellner 1992; Huang 1996; Jewell and van der Laan 2003). However, most
tumors reside in between the two extremes, that is, they tend to expedite death of the
host, but not in a none-or-all fashion. This ambiguity presents a unique challenge
for statistical analysis of the data, as the precise time for the event (tumor onset)
is unobserved and the check-up (necropsy) time is correlated with the event in an
unknown way.

It is intuitively understandable that one can hope to gain unbiased information
about the prevalence of tumor only at time points where necropsy is “objective”,
i.e., not influenced by the underlying tumor onset time (for more formal discussions
on statistical identifiability with survival-sacrifice data, see Clifford (1977), Dewanji
and Kalbfleisch (1986), and Malani and Van Ryzin (1988), among others). The
role of such “objective” necropsies is structurally fulfilled by pre-planned sacrifices.
Consequently, if one wishes to identify tumor prevalence along a continuum of time,
one must plan to conduct frequent serial sacrifices over the target time window. This
necessitates a large cohort of animals and considerable manpower. To save cost, it
was recommended that the cause of natural death be ascertained by a pathologist
(Peto 1974; Peto et al. 1980; Archer and Ryan 1989), so that if a death is not caused
by the tumor, it can be treated as “accidental” and thus serve in the same role as a
planned sacrifice.

Given known cause of death, proper analysis of tumor incidence must factor in
the contribution of tumor-caused death because it is correlated with the underlying
tumor onset time. This is in contrast with the analysis of the standard current-
status data under independent check-ups, in which the distribution of check-up time
plays no inferential role. There is a vast literature on statistical methodology for
survival-sacrifice data with known cause of death. Most of the existing methods,
however, either make parametric assumptions or rely on partitioning continuous
time into a small number of intervals under multi-state illness-death models (see
an excellent review of various such methods by Ahn and Kodell (1998)). In the
nonparametric setting, Kodell et al. (1982) derived readily computable estimators
for the marginal distributions of tumor onset and tumor-caused death, under the
assumption that tumor prevalence among the surviving animals is monotonic over
time. As pointed out by later authors, this assumption need not hold. Dinse
and Lagakos (1982) proposed unrestricted nonparametric estimators by iteratively
maximizing the likelihood with respect to the two distribution functions. Turnbull
and Mitchell (1984) used an EM algorithm to compute the nonparametric maximum
likelihood estimators. This type of algorithm is applicable in a wide range of
settings (Turnbull 1976) but is known to be very slow due to a large number of
unknown parameters (Groeneboom and Jongbloed 2014). A computational efficient
approach was suggested by van der Laan et al. (1997), who used the Kaplan–Meier
estimator for the distribution of tumor-caused death and a weighted least squares
estimator for the distribution of tumor onset. An alternative strategy was employed
by Gomes (2001), who proposed to estimate the distribution function for tumor
onset by maximizing a pseudo-likelihood with plug-in Kaplan–Meier estimator for
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the distribution of tumor-caused death. The maximum pseudo-likelihood estimator
(MPLE) was computed using a modified iterative convex minorant (ICM; see
Groeneboom and Wellner 1992) algorithm, and the validity of the MPLE was proved
rigorously later (Gomes 2008).

In practice, however, the pathologist may not be able to adjudicate the causes for
all deaths with absolute certainty (Peto et al. 1984). As a result, some cases may be
associated with equivocal or unknown causes. To account for the partially missing
information on cause of death, Kodell and Chen (1987) proposed an EM algorithm
by treating the unknown causes as missing data. However, their method is built upon
the approach of Kodell et al. (1982) and may thus yield misleading results when the
monotonicity assumption of the latter fails. In addition, as pointed out by Dinse
(1987), their E step is improper in that it is not conditioned upon all the information
available and may thus result in biased inference.

In this article, we propose fully nonparametric inference procedures for survival-
sacrifice data when the cause-of-death information is only partially available. The
rest of the paper is organized as follows. In Sect. 1.2, we develop an EM-type
algorithm to estimate the marginal distributions of tumor onset and tumor-caused
death. The E step consists in properly estimating the conditional probabilities
for the cause of death (in closed forms) and the M step amounts to weighted
Kaplan–Meier estimators for death and a weighted version of the MPLE for
tumor onset (Gomes 2001). We also propose a class of logrank-type tests for
comparing tumor incidence across treatment arms. In Sect. 1.3, we conduct sim-
ulations to assess the finite-sample performance of the proposed methods. A
real survival-sacrifice study on pituitary tumor in rats is analyzed using the
proposed methods in Sect. 1.4. We conclude the paper by some discussions in
Sect. 1.5.

1.2 Methods

1.2.1 Data Structure

Let T and D denote times to tumor onset and to tumor-caused death, respectively.
Note that we always have T ≤ D. Use DC to denote time to death from a
competing cause, which is assumed to be independent of (T ,D). In addition to
the natural deaths, the experimental animals are subject to serial and/or terminal
sacrifice. Let U∗ denote time to sacrifice that is independent of (T ,D,DC). We
use a composite notation U = DC ∧ U∗ to denote time to “accidental” death,
i.e., sacrificial death or one from a competing cause, where a ∧ b = min(a, b).
Clearly, we have that U ⊥ (T ,D) so that accidental death amounts to a random
check-up.

The observed data consist of time to death X = D ∧ U along with the
label for the type of death and tumor status at death. In a study where the cause
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of death is fully ascertained, one observes Δ1 = I (Death from tumor), Δ2 =
I (Accidental death with tumor), and Δ3 = I (Accidental death without tumor),
where I (·) is the indicator function. In the literature, a tumor resulting in death
is called a fatal tumor and a tumor found at accidental death is called an incidental
tumor (Peto et al. 1980). Clearly, we have that

∑3
k=1 Δk = 1. When the cause

of death is only partially ascertained, it is worth noting that uncertainty can only
arise between fatal and incidental tumors, i.e., death in the absence of tumor must
not be caused by it and thus must be accidental. To formalize the set-up, let
R = I (Cause of death is ascertained) so that one observes Δ1 and Δ2 if R = 1
and observes Δ12 = Δ1 +Δ2 if R = 0. Define R = 1 if Δ3 = 1. Throughout, we
make the important assumption that missingness in the cause of death depends only
on the death time and not on the underlying (unobserved) cause. That is, we assume
that

pr(R = 1 | Δ12 = 1,Δ1, X) = pr(R = 1 | Δ12 = 1, X) =: π(X). (1.1)

In missing data literature, (1.1) is essentially a standard missing at random
(MAR) assumption. Denote a random sample of (X,Δ1,Δ2,Δ3, R) by
(Xi,Δ1i , Δ2i , Δ3i , Ri) (i = 1, . . . , n), where n is the sample size. Then, the
observed data can be represented as

(RiΔ1i , RiΔ2i , Ri,Xi), i = 1, . . . , n. (1.2)

The (hypothetical) full data, where the cause-of-death information is available on
all animals, are

(Δ1i , Δ2i , Xi), i = 1, . . . , n. (1.3)

Denote the distribution function for tumor onset time by FT (t) = pr(T ≤ t),
which is our main target of inference. Of secondary interest is the distribution of
time to death caused by tumor, denoted by FD(t) = pr(D ≤ t). A nuisance quantity
that is dispensed with in the case of full data (Gomes 2001) but that will play a role
in our case is the distribution function for accidental death FU(t) = pr(U ≤ t).
While FT and FD can be realistically assumed to be continuous over [0, τ ], with
τ denoting the study termination time, the situation for FU depends on the study
design. The distribution of U∗ may be discrete in the case of infrequent sacrifices or
even degenerate at τ in the case of a sole terminal sacrifice. However, if deaths from
competing causes are frequent enough to warrant treatment of DC as continuous
(see real examples in e.g., Kodell and Nelson 1980; Peto et al. 1984), then FU will
at least have a continuous component on [0, τ ]. If that is true, FT will be identifiable
over [0, τ ] and the results to be established later will be applicable regardless of the
sacrifice plan.
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Under the MAR assumption (1.1), the likelihood for (1.2) is proportional to

Ln(FT , FD, FU ) =
n∏

i=1

[
F ′

D(Xi){1 − FU(Xi)}
]RiΔ1i

[
F ′

U (Xi) {FT (Xi)− FD(Xi)}
]RiΔ2i

× [F ′
D(Xi){1 − FU(Xi)} + F ′

U (Xi) {FT (Xi)− FD(Xi)}
]1−Ri

× [F ′
U (Xi){1 − FT (Xi)}

]
, (1.4)

where f ′(x) = df (x)/dx for any function f . Note that Δ3i = Ri −RiΔ1i −RiΔ2i

is always observed.

1.2.2 Nonparametric Estimation

Due to the entanglement of the three functional parameters, direct maximization
of (1.4) is hard even with state-of-the-art tools of order-constrained optimization
(Groeneboom and Jongbloed 2014). Instead, we borrow the idea of the MPLE
for the full data (Gomes 2001). The MPLE works as follows. The distribution
function FD is first estimated using the Kaplan–Meier estimator based on (Δ1i , Xi)

(i = 1, . . . , n), and is then inserted into the likelihood to form a pseudo-likelihood.
Next, FT is estimated using the ICM algorithm on the pseudo-likelihood. In
our case, one might be tempted to imitate this strategy by first estimating FD

based on the reduced data (Ri, RiΔ1i , Xi) (i = 1, . . . , n), possibly using an
EM algorithm. However, this approach is not valid because the cause-of-death
information is not MAR given the reduced data. Intuitively, because the information
is always known on a subset of accidental deaths (namely, those with tumor absent),
tumor-caused deaths are over-represented in those of unknown causes. Thus, the
true mixing proportions, i.e., the fractions of tumor-caused and accidental deaths
among the equivocal cases, depend on the other parameter FT also. Consequently,
FD cannot be properly estimated alone in the presence of unidentified cause of
death.

To circumvent this problem, we devise another kind of EM-type algorithm,
whose E step estimates the mixing proportions using the current iterates of FT ,
FD , and FU jointly and whose M step updates (FD, FU) and FT separately, in a
similar way to the MPLE for the full data. Note that the log-likelihood for the full
data (1.3) is

ln,F(FT , FD, FU ) =
n∑

i=1

[
Δ1i log F ′

D(Xi){1 − FU(Xi)} + (1 −Δ1i ) log F ′
U (Xi)

+Δ2i log{FT (Xi)− FD(Xi)} +Δ3i log{1 − FT (Xi)}
]
.
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Denote the j th iterate of the parameters (FT , FD, FU) by θ(j) = (F
(j)
T , F

(j)
D , F

(j)
U ).

Then, the E step at the (j + 1)th iteration computes

Qn(FT , FD, FU | θ(j)) = E
{
ln,F(FT , FD, FU ) | Observed data; θ(j)

}

=
n∑

i=1

[
w

(j)
i

log F ′
D(Xi){1 − FU(Xi)} + (1 − w

(j)
i

) log F ′
U (Xi)

+ (1−w
(j)
i

) log{FT (Xi)−FD(Xi)} +Δ3i log{1−FT (Xi)}
]
,

where

w
(j)
i = RiΔ1i + (1 − Ri)E(Δi1 | Δ1i +Δ2i = 1, Xi; θ(j))

= RiΔ1i + (1 − Ri)F
(j)
D

′
(Xi){1 − F

(j)
U (Xi)}

F
(j)
D

′
(Xi){1 − F

(j)
U (Xi)} + F

(j)′
U (Xi){F (j)

T (Xi)− F
(j)
D (Xi)}

.

(1.5)

The second term on the far right hand side of (1.5) estimates the mixing probability

of tumor-caused death given an unknown cause. The computation of F
(j)
D

′
and F

(j)
U

′

in (1.5) is a delicate issue, which we shall remark upon later.
Direct maximization of Qn(FT , FD, FU | θ(j)), a weighted version of the full-

data log-likelihood, is still not easy because of the entanglement of FD and FT in
the term log{FT (Xi) − FD(Xi)}. It is now that we adopt the idea of the two-step
procedure of the MPLE for the full data. First, F

(j+1)
D and F

(j+1)
U are obtained

through maximizing the conditional expectation of the log-likelihood for (Δ1i , Xi)

(i = 1, . . . , n) given the observed data (1.2) and θ(j). One can easily show that this
leads to the weighted Kaplan–Meier estimators

F
(j+1)
D (t) = 1 −

∏

0≤s≤t

{

1 −
∑n

i=1 w
(j)
i I (Xi = s)

∑n
i=1 I (Xi ≥ s)

}

,

F
(j+1)
U (t) = 1 −

∏

0≤s≤t

{

1 −
∑n

i=1(1 − w
(j)
i )I (Xi = s)

∑n
i=1 I (Xi ≥ s)

}

.

So, the functions F
(j)
D and F

(j)
U used in the E step (1.5) are step functions taking

jumps on certain subsets of the Xi . Write F {t} = F(t) − F(t−) for F = FD,FU .
Then, we can estimate the F (j)′ in (1.5) by

F (j)′(t) = avg{F (j){Xi} : |Xi − t | ≤ κn, i = 1, . . . , n}, (1.6)
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where avg(A) is the average of the elements in set A and κn > 0 is a pre-set bin
width.

Remark 1.1 One might question the need for aggregating neighboring points in the
estimation of F (j)′(Xi) instead of using F (j)′{Xi} itself. The latter is the strategy
adopted in the EM algorithms for certain regression models for competing risks
data with unknown failure causes (e.g., Mao and Lin 2017; Mao et al. 2017).
The peculiarity here is that, in a fully nonparametric setting such as ours, if
there is no tie at Xi and the cause information is missing, estimating the mixing
probability is essentially the same as estimating the success probability based on
an unobserved outcome of a single Bernoulli trial. It is clear that the latter setting
offers no hope of getting a consistent estimate for the parameter of interest. In
a regression setting, on the other hand, the mixing probabilities are intrinsically
constrained by the model and thus do not have this singularity problem. The
strategy taken in (1.6) overcomes the difficulty in the nonparametric setting under
the mild condition that the true mixing proportions are reasonably smooth over
time.

Next, we insert FD = F
(j+1)
D back into Qn(FT , FD, FU | θ(j)), and, shedding

all terms unrelated to FT , obtain an objective function for FT :

Q1n(FT | F(j+1)
D

, θ(j)) =
∑

RiΔ1i=0

[
(1 − w

(j)
i

) log{FT (Xi)− F
(j+1)
D

(Xi)}+Δ3i log{1−FT (Xi)}
]
.

So, we compute

F
(j)
T = arg max

FT

Q1n(FT | F (j+1)
D , θ(j)). (1.7)

The function Q1n(FT | F
(j+1)
D , θ(j)) takes the form of a weighted log-pseudo-

likelihood of the full data. Therefore, the optimization problem (1.7) can be tackled
by the ICM algorithm developed by Gomes (2001) for that purpose. Specifically,
Q1n is maximized subject to the (natural) constraints that FT is a distribution
function and that FT (t) ≥ FD(t) for all t ∈ [0, τ ]. The ICM is an order-constrained
analog of the Newton-Raphson algorithm and converges at a similar (quadratic) rate
(see, e.g., Groeneboom and Jongbloed 2014). Because the outer loop of the EM,
with its linear convergence rate, moves on much slower than does the inner loop of
the ICM, it is advisable to replace the full maximization of (1.7) in the M step with
a single-step update in the interest of computational efficiency.

Thus, we iterate the E and M steps until the difference between two successive
iterates becomes very small, i.e.,

n∑

i=1

|F(j+1)
T

(Xi)−F
(j)
T

(Xi)|+ |F(j+1)
D

(Xi)−F
(j)
D

(Xi)|+ |F(j+1)
U

(Xi)−F
(j)
U

(Xi)| < ε0,
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where ε0 > 0 is a very small number. Denote the final state of (FT , FD)

at convergence by (F̂T , F̂D). With suitable regularity conditions on the joint
distribution of (T ,D) and with a positivity condition such as π(X) ≥ δ almost
surely for some δ > 0, one may expect that the proposed estimators are con-
sistent, with F̂D converging to the truth at the n−1/2 rate and F̂T at the n−1/3

rate. That F̂T converges slower than the standard n−1/2 rate is due to the fact
that, unlike D, the information about T is always incomplete as in standard
interval censoring problems (Groeneboom and Wellner 1992; Huang and Wellner
1997).

1.2.3 A Class of K-Sample Logrank-Type Tests

In practice, it is often of interest to compare different treatment arms (e.g., control vs
varying dosages of a drug) on the tumor incidence. We propose a class of K-sample
tests that is based on the estimated FT for each sample.

Use FT k to denote the cumulative distribution function of T for the kth
sample (k = 1, . . . , K). Then, we estimate FT k using the methods described
in Sect. 1.2.2 based on the data in the kth sample. Denote the estimate by F̂T k .
Likewise, we construct an estimate F̂T 0 for FT 0, the cumulative distribution function
for T under the null hypothesis of no treatment effect, based on the pooled
sample. Then, the corresponding estimates for the cumulative hazard functions
are

	̂k(t) =
∫ t

0

dF̂T k(s)

1 − F̂T k(s−)
, k = 0, 1, . . . , K − 1.

Using the idea of Gray (1988) in mimicking the logrank test for standard right-
censored data (Fleming and Harrington 1991, Ch 3), we construct test statistics of
the form

zk =
∫ τ

0
Wk(s){d	̂k(t)− d	̂0(t)}, k = 1, . . . , K − 1, (1.8)

where Wk(s) is a properly chosen weight function. We assume that Wk → wk ,
where wk is a continuous function. A popular choice for the weight functions is the
Harrington-Fleming class (1982)

Wk(s) = {1 − F̂T 0(s)}ρ, ρ ≥ 0, (1.9)

where ρ controls the amount of emphasis placed on early tumorigenesis.
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Write z = (z1, . . . , zK−1)
T. Although the 	̂k(t) have non-standard convergence

rates, z is expected to be asymptotically multivariate normal (with mean zero under
the null hypothesis) because its components are smooth functionals of the 	̂k(t)

(see, e.g., Groeneboom and Wellner 1992, Ch I.3). Thus, the test statistic S2
n =

||z||2 should be asymptotically distributed as a multiple of the chi-square with K −
1 degrees of freedom. In practice, the null distribution of S2

n may be assessed by
permutation, and an asymptotic level-α test can be constructed by rejecting the null
if the observed S2

n is greater than the 100(1 − α)th percentile of its permutation
distribution.

Let λk(t) denote the hazard function of T for the kth sample. Following the
reasoning of Fleming and Harrington (1991, Ch 3) and Gray (1988), it can be
shown that, under suitable regularity conditions, the tests are consistent against the
following class of hazard-order alternatives: there exist k and k′ ∈ {1, . . . , K} such
that

λk(t) ≤ λk′(t), for all t ∈ [0, τ ],

with strict inequality for some t .

1.3 Simulation Studies

We performed simulation studies to assess the finite-sample performance of the
proposed methods. Let T follow a Weibull distribution with cumulative hazard
function 	T (t) = t1.25. Let D − T be an independently and identically distributed
random variable as T . Let U = DC ∧ τ , where DC ∼ Expn(0.5) and τ = 4.
We used the following logistic regression model to generate missing cause of death
data:

pr(R = 0 | Δ1, X,Δ12 = 1) = exp(0.1Z − 1)

exp(0.1Z − 1)+ 1
.

Under this set-up, about 40% of the subjects are known to experience fatal tumor
(Δ1 = 1), about 15% are known to experience incidental tumor (Δ2 = 1), about
20% die with tumor from unknown causes (Δ12 = 1), and the remaining about 25%
die tumor-free. Thus, among those that die with tumor, information on the cause of
death is missing on about 26.7% of them.

We set the sample size to be n = 400, 800, and used the bin widths κn =
τn−1/2 = 0.2, 0.14, respectively. The convergence criterion was ε0 = 10−4. For
each simulated dataset, we used the proposed method to estimate FT and FD . We
compared the estimates to those from three ad hoc approaches based on the naive
use of MPLE of Gomes (2001) for full data after removal or imputation of the
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missing data. The first is the complete-case analysis, where analysis is restricted
to observations with known causes of death. The second is to impute all the
unknown causes to tumor-caused. The third is to impute all the unknown causes
to accidental. For each sample size, we calculated the average of the estimates
based on 1000 replicates and plotted the results along with the corresponding true
values.

Figure 1.1 displays the true and estimated curves for FT . The curves computed
by the proposed method agree with the true values quite well. There is slight
under-estimation near time zero, but the problem seems to be mitigated by
increasing the sample size. On the other hand, all the ad hoc methods exhibit
severe biases. We examine and explain the direction of bias for each method one
by one. Understandably, the complete case analysis under-estimates the tumor
incidence because the discarded cases are all tumor-bearing ones. The two impu-
tation methods have opposite directions of bias, over-estimation for imputing
as accidental and under-estimation for imputing as tumor-caused. This can be
explained as follows. Naturally, time to tumor-caused death is correlated with
time to tumor onset. As a result, tumor onset is expected to have occurred closer
to the death time if death is tumor-caused than if it is accidental (one may
think of the extreme case of a lethal tumor). Thus, fatal and incidental tumors
contribute differently to the estimated tumor incidence. Another angle to look at
the relative contribution is through the likelihood function. An incidental tumor
contributes FT − FD to the likelihood, while a fatal tumor contributes only F ′

D

and thus has an impact on FT only through the inequality FT ≥ FD . In a
word, an incidental tumor contributes more to tumor incidence than does a fatal
tumor.

The survival curves for tumor-caused death, i.e., 1 − FD , are plotted in Fig. 1.2.
Again, the agreement between estimates by the proposed method and the true
values are satisfactory, even somewhat better than the estimation of FT . This is not
surprising because we expect a faster rate of convergence for F̂D (see Sect. 1.2.2).
Interestingly, the complete-case analysis does not appear to incur much bias. After
all, the discarded observations are a mix of the two causes, so that no categorical
preference is given to one or the other. The naive imputation methods still lead
to substantial biases, the directions of which are in this case straightforward to
explain.

Next, we assessed the impact of the choice for the bin width κn on the estimation
of FT . We used the same setting as the first set of simulations and varied κn

over τn−1/5, τn−1/3, τn−1/2, and τn−2/3. We evaluated the estimates by the
proposed method for FT at different time points under each scenario based on 1000
replications. The results are summarized in Table 1.1. The bias and standard error
for all values of κn look fairly similar, suggesting a certain degree of robustness
of the aggregation approach with regard to the choice of the bin width in the E
step.
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Fig. 1.1 True and estimated cumulative distribution functions for tumor-onset time using the
proposed method, complete-case analysis, imputation to accidental death, and imputation to tumor-
caused death. Each scenario is replicated 1000 times

1.4 A Pituitary Tumor Study

A large-scale animal study was conducted by the British Industrial Biological
Research Association to evaluate the carcinogenic effects of nitrosamine in drinking
water (Peto et al. 1984). The experiments involved 5000 rodents and assessed
different nitrosamines in different dosages. Here we consider a subset of the study
data. The data consist of observations on 384 inbred Colworth rats. Among them,
half were randomized to the control group, whose drinking water contained no
added substances; the other half were randomized to the treatment group, where
different daily doses (0.033, 0.066, or 0.132 ppm) of N -nitrosodimethylamine
(NDMA) were administered to the drinking water. Death time, status about onset
of pituitary tumor, and the (possibly unknown) cause of death were recorded. There
were 10 rats whose tumor status was not ascertained and are thus excluded. The final
dataset contains n = 374 rats, with 185 in the control group and 189 in the treatment
group. The maximum length of follow-up is τ = 1234 days. The dataset contains
281 unique time points for death. So, the traditional approach of grouping the data
into a small number of time intervals (e.g., Kodell et al. 1994) could potentially lose
a lot of information.

As a first step, we provide some descriptive statistics, along the lines of Peto
et al. (1980), about the cause of death and tumor status by treatment in Table 1.2.
In the columns of the table, “Fatal” indicates fatal tumor, i.e., one that results in
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Fig. 1.2 True and estimated survival curves for tumor-caused death (in the absence of accidental
death) using the proposed method, complete-case analysis, imputation to accidental death, and
imputation to tumor-caused death. Each scenario is replicated 1000 times

Table 1.1 Estimation of FT (t) based on different choices of κn

FT (0.5) = 0.343 FT (1.0) = 0.632 FT (1.5) = 0.810 FT (2.0) = 0.907

n κn Bias (SE) Bias (SE) Bias (SE) Bias (SE)

400 1.20 −0.018 (0.108) 0.012 (0.084) 0.014 (0.057) 0.004 (0.039)

0.54 −0.029 (0.113) 0.011 (0.085) 0.013 (0.057) 0.003 (0.039)

0.20 −0.025 (0.111) 0.010 (0.084) 0.014 (0.059) 0.004 (0.039)

0.07 −0.022 (0.116) 0.006 (0.085) 0.012 (0.058) 0.006 (0.039)

800 1.05 −0.012 (0.081) 0.008 (0.065) 0.006 (0.046) 0.005 (0.029)

0.43 −0.008 (0.085) 0.009 (0.066) 0.008 (0.045) 0.004 (0.031)

0.14 −0.009 (0.083) 0.010 (0.070) 0.006 (0.044) 0.006 (0.030)

0.05 −0.011 (0.085) 0.007 (0.067) 0.007 (0.046) 0.003 (0.031)

Note: Bias and SE are the empirical bias and standard error, respectively, of the estimator. Each
scenario is replicated 1000 times

a tumor-caused death; “Incidental” indicates incidental tumor, i.e., one found at
accidental death; “Unknown” indicates unknown cause of death with tumor; “No
tumor” indicates no tumor found. By inspection of the crude numbers, we do not
find material difference between the two groups in terms of tumor incidence or
death rate.
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Table 1.2 Descriptive statistics for the pituitary tumor dataset

Fatal Incidental Unknown No tumor Total

Control 25 23 2 135 185

Treatment 28 24 3 134 189

Overall 53 47 5 269 374

We provide a more formal analysis by plotting the group-specific nonparametric
estimates for the cumulative incidence of pituitary tumor and the survival rate for
tumor-caused death using the proposed methods with κn = τn−1/2 = 63.8 and
ε0 = 10−4. The graphs are shown in Fig. 1.3. Again, neither function shows clear
advantage or disadvantage of the treatment compared with the control. Next, we
use the Harrington-Fleming logrank-type test described in Sect. 1.2.3 with ρ = 1
to test the group difference in tumor incidence. The test statistic is calculated to be
S2

n = 0.040 with a p-value of 0.22 with reference to a null distribution based on
1000 permutations. Thus, we conclude that there is no significant tumor-inducing
effect of NDMA on the experimental rats. This conclusion is in agreement with the
analysis results based on the totality of the data using various discrete-time methods
(see, e.g., Gart 1986, Ch 5).

1.5 Concluding Remarks

We have extended the nonparametric estimation procedure of Gomes (2001) to
accommodate missing information on the cause of death. It is worth noting that
missingness can only occur with tumor-bearing animals. This implies that the
missing mechanism is never completely at random. Consequently, a naive complete-
case analysis is bound to incur bias, as demonstrated in our numerical studies. In this
sense, our methods provide the much needed tools for proper analysis of such data
in practice.

The proposed estimation procedure makes use of the ICM algorithm of Gomes
(2001) in the M step and thus avoids treating all incomplete observations of tumor
onset time as missing data. Therefore, our method is likely to be computationally
much more efficient than any adaptation of the EM algorithm of Turnbull and
Mitchell (1984). Our approach also improves upon the EM algorithm of Kodell and
Chen (1987) in the following ways. First, we remove the unnecessary (and fallible)
assumption that {1−FT (t)}/{1−FD(t)} is monotone in t ; second, we compute the
mixing proportion properly in the E step by conditioning on all the observed data
(see a detailed critique by Dinse (1987)).

Testing for difference in tumor incidence across treatment groups is presumably
the main goal for a carcinogenicity study. Most testing procedures proposed in
the literature require discretizing time into a few intervals so as to maintain
the nominal type I error rate (Kodell et al. 1994). In addition to loss of infor-
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Fig. 1.3 Analysis of the pituitary tumor study. Left, estimated cumulative distribution functions
for pituitary tumor onset; right, estimated survival functions for tumor-caused death. Solid,
treatment; dashed, control

mation, the choice of the time intervals introduces subjectivity in the analysis.
Our proposed class of logrank-type tests is superior to the traditional methods
in that it makes fuller use of the data and is a completely automated proce-
dure.

Using our approach for studies where a sizable portion (say >60%) of nat-
ural deaths have unknown causes is not recommended. For one thing, a large
number of unknown mixing probabilities slow down the EM algorithm consid-
erably. More importantly, as observed by Kodell and Chen (1987), it is impru-
dent to rely on a small number of known cases to infer the status of others.
In such scenarios, methods designed for data without cause-of-death informa-
tion (e.g., McKnight and Crowley 1984; Dewanji and Kalbfleisch 1986) would
apply.

Supplementary Materials

An R package implementing the proposed methodology is posted on the author’s
website https://biostat.wisc.edu/~lmao/.

https://biostat.wisc.edu/~lmao/
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Chapter 2
Variable Selection for High Dimensional
Metagenomic Data

Pan Wang and Hongmei Jiang

2.1 Introduction

The advent of next-generation sequencing technologies has greatly promoted the
development of metagenomics in the past 10 years. Different from traditional
and classical genomics which studies one individual organism in pure culture,
metagenomics studies the genetic material recovered directly from the environment
such as soil, water, and human gut. Therefore metagenomics is also referred as
environmental genomics and community genomics. Using direct sequencing of the
genetic materials collected from an environmental sample, metagenomics allows
researchers to study the collection of multiple microorganisms, especially species
that are difficult or even impossible to culture in the laboratory.

Metagenomics has been widely used in different fields including biological and
medical research. Numerous pieces of evidence have shown that microbes living on
and inside our body are associated with the occurrence and progression of different
diseases such as inflammatory bowel disease, obesity, and various types of cancer
(Furnari et al. 2012, Ley et al. 2006, Qin et al. 2012, Turnbaugh et al. 2009, to
name a few examples). Recent studies have also linked strong evidence that gut
microbiota modulates the efficacy and effects of treatments such as therapeutics and
diets (Krautkramer et al. 2016; Liu et al. 2017; Matson et al. 2018; Yu et al. 2017).
Therefore, comprehensive characterization of the microbes, and their interactions
with each other, the host, and the environmental factors, will help develop strategies
for diagnosis, treatment, and even prevention of some diseases.

Depending on the sequencing technology, thousands or millions of sequence
reads are generated in each metagenomic sample. Sequence reads are mapped and
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assigned to reference genomes or grouped into operational taxonomic units (OTU)
or taxa in the taxonomy tree. After taxonomic assignment, we get the number
of reads assigned to each taxon or OTU. Because the samples are usually taken
from the natural environment, and there are noises from library preparation and
sequencing, it would be impossible to make sure that the total number of sequencing
reads is the same across different samples in one study. In fact, real data shows that
the total number of sequencing reads varies significantly across samples. So it would
be inappropriate to use the count data directly in a standard regression analysis. In
general, rarefying or normalization has to be done before performing a downstream
analysis.

In this chapter, we develop statistical methods to identify OTUs associated
with a phenotype such as body mass index and disease status. We employ a log
contrast model for metagenomic count data bypassing the need for rarefying or
normalization. We propose a new method to identify phenotype associated species
or OTUs using penalized regression and stability selection. In the log contrast
model, one of the OTUs will serve as the reference OTU. We propose an averaging
approach to avoid finding a particular reference OTU. The proposed method can
also be applied to variable selection for regression analysis with compositional
covariates. In fact, the log contrast model for count data is equivalent to the model
for scaling-based normalized data. We present the proposed method in details in
Sect. 2.2 and perform simulation studies to compare the performance of different
approaches in Sect. 2.3 and apply them to real data in Sect. 2.4. We present some
conclusions and discussions in Sect. 2.5.

2.2 Methods

2.2.1 Metagenomic Data

In the general process of metagenomic sequencing studies, a sample is usually taken
from a natural community such as soil and seawater, or a host-associated community
such as the human gut. All or partial DNA is extracted directly from the microbes
contained in the sample, and then sequenced by sequencers (such as Sanger, Roche
454 or Illumina Sequencing). The resulted dataset contains thousands or millions
of mixed sequence reads from the multiple genomes. Although there is a reduced
cost for next-generation sequencing technologies, targeted sequencing such as 16S
ribosomal RNA (rRNA) sequencing has been widely used to identify and quantify
microbes present in a sample. Based on the data from high-throughput sequencing
of marker genes, assignment of the sequencing reads to taxonomy can be conducted
using some pipelines, for example, QIIME (Caporaso et al. 2010). After taxonomic
assignment, we get the OTU count table with rows representing OTUs and columns
representing samples and entries being the number of reads assigned to an OTU in
a given example. Several factors have a significant impact on the estimated count of
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each taxon in the experimental process, for example, the sequencing depth or library
size, the copy number of the genome, and the possible biases from the step of DNA
extraction (Bragg and Tyson 2014).

With the different total number of reads per sample which could vary from
thousands to tens of thousands, applying the traditional and classical statistics
methods directly on the count data is not appropriate. Normalization or rarefying
is usually conducted for the OTU count data before performing a downstream
statistical analysis. Rarefying is a commonly used method by microbial biologists
by drawing without replacement from each sample such that all samples in one
study have the same total number of reads or counts. Samples with a total number
of reads below the chosen threshold will be excluded from downstream analysis.
One popularly used normalization method is to compute the relative abundance
(or proportion) by dividing the OTU count by the total number of reads in the
corresponding sample. For the OTU relative abundance data, the sum of each sample
(column) is equal to 1 which can be considered as compositional data. It is well
known that many traditional and classical statistical methods cannot be applied
to the compositional data directly (Aitchison 1986). Other normalization methods
include 75th percentile and cumulative sum scaling (Paulson et al. 2013). Some
normalization methods developed for RNA sequencing have also been applied to
metagenomic data. For a summary of different normalization methods, please refer
to Weiss et al. (2017). However, there is no clear consensus on what is the best
normalization method for metagenomic data.

2.2.2 Linear Log-Contrast Model

Here we focus on regression analysis with microbial covariates. As mentioned ear-
lier, the OTU counts data cannot be directly used. For the normalized compositional
covariates, traditional methods are not appropriate either. When we explain the
meaning of one regression coefficient, we usually say that it is the average change
of the response variable when the corresponding explanatory variable increases by
one unit while holding other explanatory variables as constant. However, for com-
positional covariates, because of the sum being one we cannot make one component
change while holding other components constant. Therefore, transformations such
as log-ratio transformation usually are applied to the compositional data. We will use
the linear log-contrast model proposed by Aitchison (1982) for regression analysis.
It can be used to both raw OTU counts and relative abundance data after scaling
normalization. The linear log-contrast model was proposed by Aitchison (1982) for
compositional data analysis with application in geology where chemical, mineral
and fossil compositions of rock and sediment specimens are studied. Metagenomic
data is different from geological data due to its large number of OTUs or species and
a small number of samples. That is, we are facing a “large p and small n” problem.
We would like to identify some phenotype associated OTUs.
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Suppose there are p OTUs. Let x = (x1, x2, . . . .xp)T ∈ Sp be a vector of
OTU counts. Using additive log-ratio transformation we first choose one variable
as the reference, and all the other variables are transferred to the log-ratio with
respect to the reference (Aitchison 1982). For example, if xp is selected as
the reference variable, the additive log-ratio transformed x is defined as zp =
(log(x1/xp), log(x2/xp), . . . , log(xp−1/xp))T . The additive log-ratio transforma-
tion, although easy to conduct, has an apparent problem that the choice of reference
variable will strongly influence the result of statistical analysis. For instance, if we
permute the original sequence of [x1, x2, . . . .xp] and choose xr with r �= p as the
reference variable, we may get a new model that varies a lot from the original one.
To address this drawback, Aitchison (1982) discussed another transformation model
called the centered log-ratio transformation by replacing the reference variable
with the geometric mean. However, when doing the variable selection, the selected
variables are a combination of (x1, x2, . . . , xp). This issue would be harmful to both
the reduction of dimension and explanation of statistical results. So the additive log-
ratio transformation would be a better choice for this purpose.

Suppose there are n samples in the p-dimensional space, and define each sample
i as Xi = (xi1, xi2, . . . , xip)T . Suppose the rth OTU is used as the reference
variable where r ∈ {1, 2, . . . , p}. Then the linear regression model is

yi = Σ
p

j=1,j �=r log(
xij

xir

)βjr + εi, (M1)

where xij represents the (relative) abundance of OTU j in sample i, yi is the
response for sample i, βjr is the regression coefficient for additive log-ratio
transferred variable j using the rth variable as reference. This model (M1) can be
converted into an equivalent version of linear regression model that

yi = Σ
p

j=1log(xij )βj + εi, Σ
p

j=1βj = 0. (M2)

It is evident that (M2) does not contain a reference variable, and there is no
bias in choosing the reference variable if (M2) can be developed directly. Lin et al.
(2014) studied the estimation of (M2), where they applied a Lagrangian method to
deal with the restriction of the sum of coefficients, and applied Lasso (Tibshirani
1996) penalization function for variable selection. Although this method has its
advantage, there still exists limitation that people need to derive new algorithm
using the coordinate descent method with various penalization function, and it might
be difficult when dealing with more complicated penalization term, for example,
the minimax concave penalty (MCP) (Zhang 2012). With the constraint on the
coefficients, people are not able to apply the current existing fast speed computing
packages directly. To overcome this, one can study (M1) directly. One advantage
of this model (M1) is that it is more straightforward to conduct and one can
reduce the computing time by applying fast speed variable selection algorithms
and computing packages which have been developed. Another advantage is that
model (M1) is equivalent for OTU counts data and scaling-based normalized data.
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It will produce the same results even if different scaling normalization method
is used because

xij

xir
= xij /si

xir /si
where si is the scaling factor which is the total

number of reads in sample i if relative proportion is desired for normalization, or a
flexible sample distribution-dependent threshold if cumulative sum scaling is used
for normalization.

It is clear that the result from (M1) mainly depends on the choice of the reference
variable. If an OTU unassociated with the response is selected as the reference,
it may increase the number of falsely selected OTUs. We propose an averaging
approach to reduce the chance of choosing a non-related OTU as the reference
variable. Currently, in our study, we applied the Elastic Net (Zou and Hastie 2005)
for both linear and logistic regression. However, our proposed method is a general
framework that can be extended to many different penalization functions.

2.2.3 Proposed Method

We examine the association between a response variable and a set of microbial
covariates and propose an easy-to-implement approach for the high dimensional
variable selection problem. Our method uses the additive log-ratio linear contrast
model and tries to get rid of the influence of the reference variable. Our design has
no requirement on the penalization terms, which means that we can implement any
fast computing software for this model. The primary challenge of directly applying
existing high dimensional variable selection techniques is that the sparse model we
get depends mainly on which variable is chosen as the reference variable. To reduce
this effect, in our stated method, for each variable, we take the average of estimated
selection probability using different reference variable xr . Our new approach has
the advantage that we can get rid of the notorious problem of choosing a proper
reference variable while being able to control the number of selected essential
features by adjusting the threshold probability.

The idea of stability selection is also applied to gain accuracy. It is a general
subsampling technique proposed by Meinshausen and Bühlmann (2010). In stability
selection, we apply our favorite algorithm of variable selection to a large number of
half samples of the original dataset and choose the variables with high selection
frequency on the subsamples. In our proposed method we apply a complementary
pairs stability selection (CPSS) model introduced in Shah and Samworth (2013).

The following shows the details of the procedure.

(1) Fix one OTU, xr ∈ {x1, . . . , xp} and consider it as the reference variable
for log-ratio transformation. Then we construct the following linear regression
model

yi = Σ
p

j=1,j �=r log(
xij

xir

)βjr + εi .
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(2) For each OTU variable xj , based on the model in step (1), we compute its
selection probability. This can be done in two different ways.

(a) For the first approach, we apply penalized regression for variable selection.
Define L as the cost function under different penalization term,

L(β, λ) = 1

2n
Σn

i=1[yi − (Σ
p

j=1,j �=r log(
xij

xir

)βjr )]2 + λP (β−r ).

where λ > 0 is considered as the tuning parameter and β−r =
(β1r , β2r , . . . , βpr ) is the p − 1 dimensional vector containing the
regression coefficients. The penalty function P(·) could be Σ

p
j �=r |βjr |

as specified in LASSO (Tibshirani 1996), or λ1Σj �=r |βjr | + λ2Σj �=rβ
2
jr

for Elastic Net, or any other penalty functions such as minimax concave
penalty. After applying the penalized regression, we assign the selection
probability for variable xk with xr being the reference variable as

π̃r (xk) := 1 if β̂kr �= 0,

π̃r (xk) := 0 if β̂kr = 0.

Since xr is the reference variable, we always assign π̃r (xr ) = 1.
(b) For the second approach, the performance of conventional variable selec-

tion algorithm can be further improved by the stability selection. Here
we use the CPSS approach proposed in Shah and Samworth (2013). We
randomly divide the whole sample into two parts of equal size for B times,
and get a set of subsample pairs, {(Ar

2t−1, A
r
2t ) : t = 1, . . . , B, Ar

2t−1 ∩
Ar

2t = φ}. For each sample of Ar
2t−1 and Ar

2t , apply a variable selection

procedure separately and get Ŝ(Ar
2t−1) and Ŝ(Ar

2t ) which contain the index
of variables which have been selected as associated with the response
variable. The selection probability of each variable can then be estimated by

π̃r (xk) := 1/(2B)

B∑

t=1

(
I{k∈Ŝ(Ar

2t−1)} + I{k∈Ŝ(Ar
2t )}
)
.

We also assign π̃r (xr ) = 1 when xr is used as the reference variable.

(3) Repeat steps 1 and 2 for each r ∈ {1, 2, · · · , p}, and compute π̃r (xk), the
estimation of the selection probability for variable xk with respect to the
reference variable xr (Table 2.1). Then we calculate the selection probability
of variable xk(k = 1, 2, · · · , p) by taking the average, that is,

π̄(k) = 1

p

p∑

r=1

π̃r (xk).



2 Variable Selection for High Dimensional Metagenomic Data 25

(4) The selected signal index set is

Ŝτ = {k : π̄(k) ≥ τ }

Here, τ is the cutoff probability considered as a tuning parameter. According
to Meinshausen and Bühlmann (2010), the results should not be sensitive to the
choice of τ when τ ∈ [0.6, 0.9]. However, this property does not keep as we
take the step of averaging. We set τ = 0.5 so that the variables with selection
probability better than random guessing is accepted.

Table 2.1 Variable selection probability π̃r (xk) for variable xk using xr

as the reference variable, and the average selection probability π̄(k) for
variable xk

Reference variable Average

x1 x2 . . . xp

x1 π̃1(x1) π̃2(x1) . . . π̃p(x1) π̄(1) := 1
p

∑p

r=1 π̃r (x1)

x2 π̃1(x2) π̃2(x2) . . . π̃p(x2) π̄(2) := 1
p

∑p

r=1 π̃r (x2)

. . . . . . . . . . . . . . . . . .

xp π̃1(xp) π̃2(xp) . . . π̃p(xp) π̄(p) := 1
p

∑p

r=1 π̃r (xp)

2.3 Simulation Studies

2.3.1 Simulation Setting for Linear Regression Model

To evaluate the performance of the proposed method, we perform comprehensive
simulation studies. Suppose the sample size is n, and the number of variables is p,
we generate the independent variable and the response variable with the following
steps.

(1) Generate a n×p matrix W = (wij ), which is concerned as the logarithm of the
original count data. W follows a multivariate normal distribution Np(θ,Σ). Let
θ = (θj ), where θj = log(0.5p) for j = 1, . . . , 5 and θj = 0 otherwise. Let
Σ = (ρ|iρ−jρ |) with ρ = 0.5, and iρ and jρ are the row and column number of
each element in Σ , respectively.

(2) Compute the proportion or percentage of each composition in sample i. Define
a proportion matrix X = (xij )n×p, where xij is the percentage of the j th OTU
taken in sample i, and is calculated by xij = exp(wij )/

∑p

k=1 exp(wik).
(3) Define a matrix Z = log(X) = (log(xij ))n×p to contain the log proportions.
(4) Let βp = (1,−0.8, 0.6, 0, 0,−1.5,−1.5, 2.2, 0, . . . , 0)T . Note βp is a p-

dimensional coefficient vector that only the first eight elements contain
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non-zero values. People can readily calculate that the constraint that
∑p

j=1 βj =
0, and this property holds with different dimensions. Combining the value of
vector β with the setting in (1), it is obvious that only half of the significant
variables have θj > 0 while the rest of the half have θj = 0. Therefore in this
simulation setting, only half of the important variables are highly abundant, and
that adds more generality of our simulation results.

(5) Generate a n-dimensional vector ε = (ε1, ε2, . . . , εn)
T , where the ε′i s are

independent and identically distributed as N(0, σ 2) with σ = 0.5. ε is
considered as the random error in linear regression model. When generating
the response variable for logistic regression model, we gain randomness from
Bernoulli distribution.

(6) Generate a n-dimensional vector Y = (y1, y2, . . . , yn)
T . With linear model, let

yi = Σ
p

j=1βj log(xij )+ εi .

In the case of logistic regression, let

logit (P (yi = 1|Xi)) = Σ
p

j=1βj log(xij ),

and generate each yi following Bernoulli distribution B(1, P (yi = 1|Xi)).

2.3.2 Simulation Results

There are two essential parts of our proposed method, using stability selection
strategy to estimate selection probability and taking an average of different reference
variables. So in the simulation study, we compare our proposed approach to those
taking out one or two parts. All the simulation results are based on variable selection
using Elastic Net penalty. To be specific, the four options we compare are: (1) “SS
avg”: stability selection is used to estimate the selection probability for regularized
regression using each of the p variables as the reference variable. Average selection
probability is taken as the variable’s selection probability. (2) “SS xp”: Stability
selection is used to estimate the selection probability for regularized regression
with xp as the reference variable. (3) “avg”: For each reference variable, using the
regularization method without stability selection to select important variables. Then
for each variable, average selection probability is taken as the variable’s selection
probability. (4) “xp”: Variable xp is used as the reference variable, and directly
applying the regularization method we chose for variable selection without stability
selection or averaging.

We compare the above four approaches on the simulated datasets, and examine
the performance of each method by the following criteria:

• #FP : number of variables which are not important but are falsely selected.
• #FN : Number of variables which are important but are falsely dropped.
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• True positive rate (TPR):

T PR = #T P

#P
= #T P

#T P + #FN

where #P is the total number of important variables, #TP is the number of truly
important variables detected.

• True negative rate (TNR):

T NR = #T N

#N
= #T N

#T N + #FP

where #N is the total number of variables with zero coefficients, #TN is the
number of truly non-important variables dropped.

• l2 PE: Σn
i=1(ỹi − ŷi )

2, the prediction error for linear regression model based on
testing data set generated with the same sample size and dimension as the training
set. Here, ỹ is the value of response in the testing set and ŷi is the predicted
response value based on the estimated model from the training set.

• PE: Σn
i=1|ỹi − ŷi |, the prediction error for logistic regression model based on

testing data set generated with the same sample size and dimension as the training
set. The testing set is generated using the same simulation setting as the training
set but using different seeds.

From Table 2.2, it can be seen that taking an average of selection probability will
sharply reduce the number of falsely selected variables and slightly mitigate the
amount of incorrectly dropped variables, for both the cases with stability selection
and without stability selection. It means that taking an average can help us reduce
the effect of choosing a reference variable in the additive log-ratio transformation.
We find that the idea of sub-sampling like stability selection works well to control
the number of falsely selected variables. There is a noticeable improvement in the
new method observed in this simulation setting. Regarding the l2 prediction error,
in most cases, taking average can help improve the prediction accuracy. We also
observe that in most cases, the prediction error is lower without stability selection.
One of the possible reasons is the conservativeness of the stability selection which
is likely to give a probability smaller than one compared to the methods without this
procedure.

From Table 2.3, for most cases of the logistic regression model, the number of
variables falsely selected is reduced with the proposed averaging approach, and
sharply reduced with stability selection. False negative rates are almost the same
with or without taking an average and will increase with the application of stability
selection strategy. For most of the combinations of n and p, the prediction error from
our proposed method is not worse than others. An unusual case from the simulated
table of logistic regression is when n = 100 and p = 30, that we fail to observe
a drop in the false positive rate with stability selection compared to other cases. So
in the logistic regression model, when the sample size is large enough compared to
the dimension of the dataset, our proposed plan might fail to give a benefit over the
conventional techniques.
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Table 2.2 Comparisons of four variable selection methods for linear
regression model with metagenomic covariates: “SS avg” uses both
stability selection and proposed averaging approach, “SS xp” uses
stability selection and xp as the reference variable, “avg” uses the
proposed averaging approach without stability selection, “xp” uses xp

as the reference variable without stability selection

n p #P #N #FP #FN TPR TNR l2 PE

SS avg 50 30 6 24 1.84 0.39 0.94 0.92 0.61

SS xp 50 30 6 24 3.11 0.46 0.92 0.87 0.65

avg 50 30 6 24 4.59 0.12 0.98 0.81 0.42

xp 50 30 6 24 6.55 0.12 0.98 0.73 0.41

SS avg 50 60 6 54 1.28 1.4 0.77 0.98 1.60

SS xp 50 60 6 54 2.51 1.61 0.73 0.95 1.85

avg 50 60 6 54 7.01 0.24 0.96 0.87 0.52

xp 50 60 6 54 8.76 0.24 0.96 0.84 0.59

SS avg 50 100 6 94 0.68 2.87 0.52 0.99 3.56

SS xp 50 100 6 94 1.93 3.04 0.49 0.98 3.73

avg 50 100 6 94 7.80 0.52 0.91 0.92 0.86

xp 50 100 6 94 10.51 0.58 0.90 0.89 1.02

SS avg 50 200 6 194 0.38 4.09 0.32 1.00 5.59

SS xp 50 200 6 194 1.49 4.16 0.31 0.99 5.68

avg 50 200 6 194 9.74 1.12 0.81 0.95 1.94

xp 50 200 6 194 13.08 1.16 0.81 0.93 2.11

SS avg 100 30 6 24 2.04 0 1.00 0.92 0.27

SS xp 100 30 6 24 2.98 0 1.00 0.88 0.27

avg 100 30 6 24 4.55 0 1.00 0.81 0.30

xp 100 30 6 24 6.81 0 1.00 0.72 0.30

SS avg 100 60 6 54 1.17 0.08 0.99 0.98 0.32

SS xp 100 60 6 54 2.44 0.10 0.98 0.95 0.35

avg 100 60 6 54 4.21 0.03 1.00 0.92 0.32

xp 100 60 6 54 6.61 0.01 1.00 0.88 0.32

SS avg 100 100 6 94 0.89 0.16 0.97 0.99 0.36

SS xp 100 100 6 94 2.18 0.23 0.96 0.98 0.42

avg 100 100 6 94 3.71 0.02 1.00 0.96 0.30

xp 100 100 6 94 5.97 0.03 1.00 0.94 0.31

SS avg 100 200 6 194 0.89 0.72 0.88 1.00 0.89

SS xp 100 200 6 194 2.01 0.76 0.87 0.99 0.89

avg 100 200 6 194 4.28 0.16 0.97 0.98 0.42

xp 100 200 6 194 6.26 0.16 0.97 0.97 0.44

Here, n is the sample size, p is the total number of variables, #P is the
total number of true positives (variables with non-zero coefficients),
#N is the total number of true negatives (variables with zero coeffi-
cients), #FP is the number of false positives, #FN is the number of
false positives, TPR is the true positive rate, TNR is the true negative
rate, and l2 PE is the prediction error
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Table 2.3 Simulation results for logistic regression with metage-
nomic covariates (the notations are the same as in Table 2.2)

n p #P #N #FP #FN TPR TNR PE

SS avg 50 30 6 24 3.70 2.02 0.66 0.85 0.33

SS xp 50 30 6 24 5.00 2.30 0.62 0.79 0.34

avg 50 30 6 24 14.52 0.76 0.87 0.39 0.34

xp 50 30 6 24 15.42 0.92 0.85 0.36 0.35

SS avg 50 60 6 54 1.81 3.67 0.39 0.97 0.39

SS xp 50 60 6 54 3.23 3.66 0.39 0.94 0.40

avg 50 60 6 54 14.71 1.68 0.72 0.72 0.37

xp 50 60 6 54 18.27 1.70 0.72 0.66 0.38

SS avg 50 100 6 94 1.49 4.33 0.28 0.98 0.42

SS xp 50 100 6 94 2.75 4.22 0.30 0.97 0.41

avg 50 100 6 94 17.69 2.33 0.61 0.81 0.40

xp 50 100 6 94 22.78 2.33 0.61 0.76 0.43

SS avg 50 200 6 194 0.97 4.83 0.20 1.00 0.43

SS xp 50 200 6 194 2.45 4.81 0.20 0.99 0.44

avg 50 200 6 194 20.25 3.04 0.49 0.90 0.42

xp 50 200 6 194 22.74 3.14 0.48 0.88 0.44

SS avg 100 30 6 24 18.77 0.14 0.98 0.22 0.27

SS xp 100 30 6 24 18.12 0.20 0.97 0.24 0.28

avg 100 30 6 24 13.70 0.25 0.96 0.42 0.27

xp 100 30 6 24 15.44 0.38 0.94 0.36 0.27

SS avg 100 60 6 54 5.96 1.27 0.79 0.89 0.28

SS xp 100 60 6 54 7.70 1.39 0.77 0.86 0.28

avg 100 60 6 54 21.47 0.56 0.91 0.59 0.30

xp 100 60 6 54 23.89 0.73 0.88 0.56 0.32

SS avg 100 100 6 94 4.31 2.02 0.66 0.95 0.30

SS xp 100 100 6 94 5.86 2.07 0.66 0.94 0.30

avg 100 100 6 94 24.54 0.84 0.86 0.74 0.33

xp 100 100 6 94 26.18 1.06 0.82 0.72 0.32

SS avg 100 200 6 194 2.44 3.20 0.47 0.99 0.35

SS xp 100 200 6 194 3.79 3.25 0.46 0.98 0.35

avg 100 200 6 194 25.09 1.45 0.76 0.87 0.36

xp 100 200 6 194 36.82 1.37 0.77 0.81 0.37

2.4 Real Data Analysis

We apply our proposed model to identify the significant features among the OTUs in
a mouse skin study from Srinivas et al. (2013) as an example of logistic regression
analysis. In their research, they studied the host gene-microbiota interactions
contributing to disease risk in a mouse model of epidermolysis bullosa acquisita
and treat bacterial species abundances as covariates with the disease. The dataset
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includes a total of 183 immunized and 78 non-immunized mice. In the group of
vaccinated mice, there are two disease status, immunized-healthy (Healthy) and
immunized-diseased (EBA) groups. In this part, we focus on the two groups of
immunized mice and compare the performance of different methods in finding the
association between disease status and OTUs. There are 131 core OTUs in total, and
the sample size is 183. To get an estimation of prediction error, let the size of the
training set be 120, and that of the testing set be 63.

In Table 2.4, the result of real data analysis shows that taking average will not
increase the prediction error. However, the methods without stability selection give
better prediction accuracy at the expense of the much more selected variables.
This finding coincides with our discovery in the simulation study that taking the
average of selection probability will not increase the prediction error, however,
sometimes the conservativeness of stability selection might harm the detection of
actual significant variables. Especially when there are zeros in the sample, stability
selection may be too conservative due to splitting the whole data into two half
samples.

Table 2.4 Real data analysis
for mouse skin data #Selected OTUs PE

SS avg 3.02 0.37

SS xp 4.16 0.37

avg 13.91 0.35

xp 15.12 0.35

2.5 Discussion and Future Work

We propose a general framework for the problem of variable selection for the high
dimensional microbiome data associated with a phenotype such as body mass index
or disease status. Since the metagenomic count data carries the relative information
of the OTUs in samples with different total number of reads, the additive log-ratio
transformation can be used. Although the log contrast model is originally proposed
for compositional data, it can be applied to the count data too. However, regarding
the variable selection, it suffers from the bias of choosing a single reference variable.
Our proposed method provides a general framework to let people apply the existing
and fast speed algorithm and computing packages directly and reduces the effect
of reference variable by the idea of taking the average selection probability. The
possible bias of the algorithm can be further reduced by a sub-sampling based
method call stability selection. We consider the variable selection problem of both
binary and continuous response model and evaluate their performance with different
sample size and dimension through the simulation study and real data analysis.

We observe in the simulation study that when the sample size is comparably
small and when the number of species or OTUs increases dramatically, the estimated
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selection probability of each variable may suffer from a severe drop to a value
far below our inclusion criteria. In this case, taking the average without stability
selection might be a better choice. In the simulation study, we only compare our
proposed method with the cases that there is no prior information on which variable
being truly important. If a substantially important variable is used as the reference
variable, one might get similar results compared to our proposed method and the
computing time will be largely reduced. However, currently, to our knowledge, there
is no reliable strategy to identify a truly important variable. Our proposed method
provides an easy-to-implement approach.

It is well known that the metagenomic data is not only high dimensional but
also sparse with excess zeros. With zero counts, we cannot take the log-ratio
transformation. For the real data analysis, we use the core OTUs which have been
observed in the majority samples, and zero counts are replaced with 1/10 of the
smallest non-zero value in the dataset. Stability selection may be too conservative
when there are excess zeros. The sensitivity of variable selection to the replacement
of zeros with a relatively small number needs to be further studied. We will also
consider other strategies, for example estimating the missing values based on the
information from other samples.

The models and methods we propose can be readily applied to the analysis of
sub-compositions in the study of metagenomics to find the OTUs in each unit of a
high taxonomic rank that associate with the phenotype of interest. To identify the
significant OTUs in the sub-composition analysis, we may apply a greedy search
algorithm considering each unit of the higher rank taxa as a whole group to be
accepted or rejected, and study the importance of sub-composition within each unit
separately.
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Chapter 3
Dimension Reduction in High
Dimensional Multivariate Time Series
Analysis

William W. S. Wei

3.1 Introduction

Multivariate time series are of interest in many fields such as economics, finance,
epidemiology, physical science, geoscience, and many others. When modeling
multivariate time series, the vector autoregressive (VAR) and vector autoregressive
moving average (VARMA) models are possibly the most widely used models,
because of their capability to represent the dynamic relationships among variables in
a system and their usefulness in forecasting unknown future values. These models
are described in many time series textbooks including Hannan (1970), Hamilton
(1994), Reinsel (1997), Wei (2006), Lütkepohl (2007), Tsay (2013), Box et al.
(2015), and many others.

Let Zt = [Z1, t, Z2, t, · · · , Zm, t]
′
, t = 0, ± 1, ± 2, . . . , be a m-dimensional jointly

stationary real-valued vector process so that E(Zi, t) = μi is constant for each i = 1,
2, . . . , m and the cross-covariance between Zi, t and Zj, s for all i = 1, 2, . . . , m
and j = 1, 2, . . . , m, are functions only of the time difference (s − t). A useful class
of vector time series models is the following vector autoregressive moving average
model of order p and q, shorten as VARMA(p, q),

�p(B)Zt = �q(B)at , (3.1)

where we assume the series is mean adjusted for simplicity, �p(B) = �0 − �1
B − · · · − �pBp and �q(B) = �0 − �1B − · · · − �qBq are autoregressive and
moving average matrix polynomials of order p and q, respectively, �i and �j are
nonsingular m × m matrices, and at is a sequence of m-dimensional white noise
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processes with mean zero vector and positive definite variance-covariance matrix
�. Since one can always invert �0 and �0, and combine them into �, with no loss
of generality, we will assume in the following discussion that �0 = �0 = I, the
m × m identity matrix. Since any VARMA model can be approximated by a vector
AR model, in practice, one often use the following vector autoregressive model of
order p, shorten as VAR(p),

(
I −�1B − · · · −�pBp

)
Zt = at ,

or
Zt = �1Zt−1 − · · · −�pZt−p + at

(3.2)

where the zeros of |I − �1B − · · · − �pBp| lie outside of the unit circle or,
equivalently, the roots of |λpI − λp − 1�1 − · · · −�p| = 0 are all inside of the unit
circle. In the following discussion, we will use VAR(p) model for our illustrations.

With the development of computer and internet, we have data exploration. For
a m-dimensional multivariate time series, m being hundred and thousand is very
common. Simply consider m = 100, a simple VAR(2) model has 2(100 × 100)
= 20,000 parameters. For observations obtained yearly, we cannot estimate the
model parameters even with a hundred-year data.

To solve the problem, after introducing some existing methods, we will suggest
the use of aggregation as a dimension reduction method, which is very natural and
simple to use. We will compare our proposed method with other existing methods
in terms of forecast accuracy through both simulations and empirical examples. The
presentation is organized as follows. Section 3.2 introduces and discusses several
existing methods to handle high-dimensional time series. The proposed procedure
is introduced in Sect. 3.3. Monte Carlo simulations and empirical data analysis are
presented in Sects. 3.4 and 3.5, respectively. Lastly, concluding remarks are given
in Sect. 3.6.

3.2 Existing Methods

In this section, we briefly review the existing methods that handle time series
modeling in high-dimensional setting, including various regularization methods
(Sect. 3.2.1), the space-time AR model if the data ate collected from different
locations (Sect. 3.2.2), model-based clustering (Sect. 3.2.3), and factor model (Sect.
3.2.4).

3.2.1 Regularization Methods

Let Zt = [Z1, t, Z2, t, · · · , Zm, t]
′
, t = 1, 2, . . . , N, be a m-dimensional time series

with N observations. It is well known that the least squares method can be used to
fit the VAR(p) model by minimizing
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N∑

t=1

∥
∥
∥
∥
∥

Zt −
p∑

k=1

�kZt−k

∥
∥
∥
∥
∥

2

, (3.3)

where ‖‖2 is Euclidean (L2) norm of a vector. More compactly, in practice, with
data Zt = [Z1, t, Z2, t, · · · , Zm, t]

′
, t = 1, 2, . . . , N, we can present the VAR(p) model

in Eq. (3.2) in the matrix form,

Y
N×m

= X
(N×mp)

�
(mp×m)

+ ξ
(N×m)

, (3.4)

where

Y =

⎡

⎢
⎢
⎢
⎣

Z′
1

Z′
2
...

Z′
N

⎤

⎥
⎥
⎥
⎦

, X =

⎡

⎢
⎢
⎢
⎣

X′
1

X′
2
...

X′
N

⎤

⎥
⎥
⎥
⎦

,� =

⎡

⎢
⎢
⎢
⎣

�′
1

�′
2
...

�′
p

⎤

⎥
⎥
⎥
⎦

, ξ =

⎡

⎢
⎢
⎢
⎣

a′1
a′2
...

a′N

⎤

⎥
⎥
⎥
⎦

,

X′
t =

[
Z′

t−1, Z′
t−2, · · · , Z′

t−p

]
.

So, minimizing (3.3) is equivalent to

arg min
�

‖Y − X�‖F , (3.5)

where ‖‖F is Frobenius norm of a matrix.
For VAR model in high-dimensional setting, many regularization methods have

been developed, which assume sparse structures on coefficient matrices �k and use
regularization procedure to estimate parameters. These methods include the Lasso
(Least Absolute Shrinkage and Selection Operator) method, the lag-weighted lasso
method, and the hierarchical vector autoregression method, among others.

3.2.1.1 The Lasso Method

One of the most commonly used regularization methods is Lasso method proposed
by Tibshirani (1996) and extended to vector time series setting by Hsu et al. (2008).
Formally, the estimation procedure for the VAR model is through

arg min
�

{‖Y − X�‖F + λ‖vec (�)‖1} , (3.6)

where the second term is the regularization through L1 penalty with λ being its
control parameter. λ can be determined by cross-validation. The lasso method does
not impose any special assumption on the relationship of lag orders and tends to
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over select the lag order p of the VAR model. This leads to the development of some
modified methods.

3.2.1.2 The Lag-Weighted Lasso Method

Song and Bickel (2011) proposed a method that incorporates lag-weighted lasso
(lasso and group lasso structures) approach for the high-dimensional VAR model.
They placed group lasso penalties introduced by Yuan and Lin (2006) on the off-
diagonal terms, �(j,−j) = {φji}i �= j, and lasso penalties on the diagonal terms,
�k(jj). The regularization for �k is

m∑

j=1

‖�k (j,−j) W (−j)‖2 + λ

m∑

j=1

wj | �k(jj) |, (3.7)

where W(−j)= diag (w1, · · · , wj − 1, wj + 1, · · · , wm), a (m− 1)× (m− 1) diagonal
matrix with wj being the positive real-valued weight associated with the jth jvariable
for 1 ≤ j ≤ m, which is chosen to be the standard deviation of Zj, t. λ is the control
parameter that controls the extent to which other lags are less informative than its
own lags. The first term of (3.7) is group lasso penalty, second term is lasso penalty,
and they impose regularization on other lags and its own lags respectively. Let α > 1
and (k)α be the other control parameter for different regularization for different lags,
the estimation procedure is based on

arg min
�1,...,�p

{

‖Y − X�‖F +
p∑

k

kα

[
m∑

j=1
‖�k (j,−j) W (−j)‖2 + λ

m∑

j=1
wj‖�k(jj)‖1

]}

. (3.8)

3.2.1.3 The Hierarchical Vector Autoregression (HVAR) Method

More recently, Nicholson et al. (2018) proposed the hierarchical vector autoregres-
sion method for high-dimensional time series. Particularly, they assume various
predefined sparse assumptions on the coefficient matrices of the VAR model. Let
�k(i) be the ith row of the coefficient matrix �k and �k(ij) be the ijth element of
the coefficient matrix �k. To express their model, we denote

�k:p =
[
�k, · · · ,�p

]′ ∈ Rm(p−k+1)×m,

�k:p(i) = [�k(i), · · · ,�p(i)
]′ ∈ Rm(p−k+1)×1,

and

�k:p(ij) = [�k(ij), · · · ,�p(ij)
]′ ∈ R(p−k+1)×1.
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Consider the m × m matrix of elementwise coefficient lags L as

Lij = max {k : �k(ij) �= 0} , (3.9)

where we let Lij = 0 if �k(ij) = 0 for all k = 1, · · · , p. Thus, each Lij denotes the
maximal coefficient lag for the ijth component, meaning Lij is the smallest k such
that �k + 1 : p(ij) = 0.

The method includes three types of sparse structures for coefficient matrices of
the VAR model. They are (a) the component wise structure, which allows each of
the m marginal equations from Eq. (3.2) to have its own maximal of lag orders, but
it requires all components within each equation must share the same maximal lag
orders, such that Lij = Li for i= 1, · · · , m (b) the own-other structure, which assumes
a series’ own lag are more informative than lags from other series and emphasizes
on the importance of diagonal elements of the coefficient matrices �k, such that
Lij = Lother

i for i �= j and Lii ∈
{
Lother

i , Lother
i + 1

}
, for i = 1, · · · , m, and (c) the

elementwise structure, which places no stipulated relationship.
The parameter estimation is based on a convex optimization algorithm. For the

component wise structure, the parameters are estimated through

arg min
�

{
1

2
‖Y − X�‖F + λ

m∑

i=1

p∑

k=1

∥
∥�k:p(i)

∥
∥

2

}

, (3.10)

where again λ is the control parameter controlling sparsity such that bigger λ means
�̂k:p(i) = 0 for more i and for smaller k. This means that if �̂k:p(i) = 0, then
�̂k′:p(i) = 0, for all k

′
> k. For the own-other structure, the objective function is

arg min
�

{
1

2
‖Y − X�‖F + λ

m∑

i=1

p∑

k=1

[∥
∥�k:p(i)

∥
∥

2 + ‖D‖2
]
}

, (3.11)

where D is a vector concatenating �k(i,−i) = {�k(ij) : j �= i}(m − 1) × 1 and
�(k + 1) : p(i). The additional second penalty allows coefficient matrices to be sparse
such that the influence of component i itself may be nonzero at lag lk even though
the influence of other components is zero at that lag. This indicates that for all k

′
> k,

�̂k(i) = 0 implies �̂k′(i) = 0, and �̂k(ii) = 0 implies �̂k+1 (i,−i) = 0. Finally,
for (c) the elementwise structure, the objective function is given by

arg min
�

⎧
⎨

⎩

1

2
‖Y − X�‖F + λ

m∑

i=1

m∑

j=1

p∑

k=1

∥
∥�k:p(ij)

∥
∥

2

⎫
⎬

⎭
. (3.12)

This structure in (3.12) indicates that each of the components of coefficient
matrix can have its own maximum lags. Thus, this is the most flexible structure
proposed by Nicholson et al. (2018) which would perform well if Lij differs for
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all i and j, however, would be suboptimal if Lij = Li. The Hierarchical Vector
Autoregression Method can be fitted by using R package BigVAR in the CRAN.

3.2.2 The Space-Time AR (STAR) Model

Similar to the regularization methods that control the values of parameters, when
modeling time series associated with spaces or locations, it is very likely that many
elements of �k are not significantly different from zero for pairs of locations that are
spatially far away and uncorrelated given information from other locations. Thus, a
model incorporating spatial information is not only helpful for parameter estimation,
but also for dimension reduction and forecasting.

For a zero-mean stationary spatial time series, the space-time autoregressive
moving average STARMA

(
pa1,...,ap , qm1,...,mq

)
model is defined by

Zt =
p∑

k=1

ak∑

�=0

φk,�W(�)Zt−k + at −
q∑

k=1

mk∑

�=0

θk,�W(�)at−k, (3.13)

where the zeros of det

(

I −
p∑

k=1

ak∑

�=0
φk,�W(l)Bk

)

= 0 lie outside the unit circle, at

is a Gaussian vector white noise process with zero mean vector 0, and covariance
matrix structure

E
[
ata′t+k

] =
{

�, if k = 0,

0, if k �= 0,
(3.14)

and � is a m × m symmetric positive definite matrix. The STARMA(
pa1,...,ap , qm1,...,mq

)
model becomes a space-time autoregressive STAR

(
pa1,...,ap

)

model when q= 0. The STAR models were first introduced by Cliff and Ord (1975)
and further extended to STARMA models by Pfeifer and Deutsch (1980a, b, c).
Since a stationary model can be approximated by an autoregressive model, because
of its easier interpretation, the most widely used STARMA models in practice are
STAR

(
pa1,...,ap

)
models,

Zt =
p∑

k=1

ak∑

�=0

φk,�W(�)Zt−k + at , (3.15)

where Zt is a zero-mean stationary spatial time series or a proper differenced and
transformed series of a nonstationary spatial time series.

The spatial information is introduced to the model by weighting matrices W(�) =[
w

(�)
(i,j)

]
. Suppose that there are total m locations and we let Zt = [Z1, t, Z2, t, · · · ,

Zm, t]
′

be the vector of times series of these m locations. Based the spatial orders,
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with respect to the time series at location i, we will assign weights related to this
location, w

(�)
i,j , such that they are nonzero only when the location j is the �th order

neighbors of location i, and the sum of these weights is equal to 1. In other word,

with respect to location i, we have
m∑

j=1
w

(�)
i,j = 1, where

w
(�)
i,j =

{
(0, 1] , if location j is the �thorder neighbor of location i,

0, otherwise.

Combing these weights, w
(�)
i,j , for all m locations, we have the spatial weight

matrix for the neighborhood, W(�) =
[
w

(�)
(i,j)

]
, which is a m × m matrix with w

(�)
(i,j)

being nonzero if and only if locations i and j are in the same �th order neighbor
and each row summing to 1. The weight can be chosen to reflect physical properties
such as border length or distance of neighboring locations. One can also assign equal
weights to all the locations of the same spatial order. Clearly, W(0) = I, an identity
matrix, because each location is its own zeroth order neighbor.

It should be noted that the space-time autoregressive moving average
(STARMA) model is a special case of VARMA model,

�p(B)Zt = �q(B)at , (3.16)

where �p(B) = I −
p∑

k=1

ak∑

�=0
φk,�W(�)Bk, and �q(B) = I −

q∑

k=1

mk∑

�=0
θk,�W(�)Bk.

3.2.3 Model-Based Clustering

Clustering or cluster analysis has been used by researchers to group data into some
homogeneous groups for a long time. It was possibly originated in anthropology
and psychology. There are many methods in clustering, for example, hierarchical
clustering and k-means algorithm. The earlier works include Tryon (1939), Cattell
(1943), Ward (1963), Macqueen (1967), McLachlan and Basford (1988), and
others. These methods were extended to the model-based cluster approach with an
associated probability distribution by researchers including Banfield and Raftery
(1993), Fraley and Raftery (2002), Wang and Zhou (2008), Scrucca (2010), and
others. More recently, Wang et al. (2013) introduce a robust model-based clustering
method for forecasting high dimensional time series, and in this section, we will use
their approach for an illustration. Let ph be the probability a time series belongs to
cluster h. The method first groups multiple time series into H mutually exclusive
clusters,

∑H
h=1ph = 1, and assumes that each mean adjusted time series in a given

cluster follows the same AR(p) model. Thus, for ith time series that is in cluster h,
we have,
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Zi,t =
p∑

k=1

φ
(h)
k Zi,t−k + σhεi,t , for t = p + 1, . . . , N, (3.17)

where h = 1, 2, . . . , H, the εi, t are i. i. d. N(0, 1) random variables, independent
across time and series.

Let θh =
(
φ

(h)
1 , φ

(h)
2 , . . . , φ

(h)
p , σ (h)

)
be the vector of all parameters in cluster

h, and � = (θ1, · · · , θH , η), where η = (p1, · · · , pH). The estimation procedure is
accomplished through the Bayesian Markov Chain and Monte Carlo method.

3.2.4 Factor Analysis

In previous sections, we mainly have reviewed methods that are based on the VAR
model but with different model constraints and estimation procedures. However,
there exist many other models for multivariate time series analysis, such as transfer
function model (Box et al. 2015), state space model (Kalman 1960), and canonical
correlation analysis (Box and Tiao 1977). More recently, Stock and Watson (2002a,
b) introduced factor model for dimension reduction and forecasting. Matteson and
Tsay (2011) proposed the dynamic orthogonal component analysis. In this review
section, we will concentrate on the factor model.

The factor model is also called diffusion index approach and can be written as

Zt = LFt + εt , (3.18)

where Ft = (F1, t, F2, t, . . . , Fk, t)
′

is a (k × 1) vector of factors at time t, L = [�ij]
is a (m × k) loading matrix, �ij is the loading of the ith variable on the jth factor,
i = 1, 2, . . . , m, j = 1, 2, . . . , k, and εt = (ε1, t, . . . , εm, t)

′
is a (m × 1) vector

of noises with E(εt) = 0, and Cov(εt) = �. Let Zi, t + � be ith component of Zt + �,
once values of factors are obtained, we can build a forecast equation for the �− step
ahead forecast, such that

Zi,t+� = β′Ft + εi,t+�, (3.19)

where β = (β1, . . . , βk)
′

denotes the coefficient vector and εi, t + � is a sequence
of uncorrelated zero-mean random variables. Note that the Eq. (3.19) can be further
extended to:

Zi,t+� = β′Ft + α′Xi,t + εi,t+�, (3.20)

where Xi, t is a m × 1 vector of lagged values of Zi, t + � and/or other observed
variables. We follow the approach proposed by Eq. (3.7) of Bai and Ng (2002) plus
the penalty term k[(m + T)/mT] log [mT/(m + T)] to select the number of factors
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in our simulation studies and empirical examples. Other methods or penalties in Bai
and Ng (2002) can be used. However, this is beyond the scope of this presentation.

3.3 Proposed Method for High Dimension Reduction

In many applications, a large number of individual time series may follow similar
pattern so that we could aggregate them together. By doing so, we can reduce the
dimension of the multivariate time series into a manageable and meaningful size.
Specifically, we will concentrate on the VAR model described in Sect. 3.2, and
propose aggregation as our method of dimension reduction.

Given a vector time series, assume that after model identification, it follows the
VAR(p) model,

Zt =
p∑

k=1

�kZt−k + at , (3.21)

where Zt is mean adjusted stationary m-dimensional original time series. Let

Yt = AZt , (3.22)

where A is a s × m aggregation matrix with s < m, and Yt = [Y1, t, · · · , Ys, t]
′
.

Presently, the elements in A are assumed to be binary, such that its (ij) element
is 1 when Zj, t is included in the aggregate Yi, t, and is 0 otherwise. In other word,
the elements of row i in A construct Yi, t as the sum of designated elements of Zt.
We will call Yt the aggregate series and Zt the non-aggregate series.

It can be shown that the aggregate series Yt will also follow a VAR(p) model.
However, in practice, we normally use the same model identification procedure to
fit a VAR(P) model for some P such that

Yt =
P∑

k=1

�
(a)
k Yt−k + ξt , (3.23)

where �
(a)
k for k = 1, · · · , P are s × s coefficient matrices, and ξt follows s-

dimensional i.i.d. normal distribution with mean zero and covariance �(a). The order
P can be selected by existing methods such as AIC, BIC, and sequential likelihood
ratio test (A detail review of order selection methods can be found in Lütkepohl
(2007)).

By using the aggregation, we reduce the dimension of the time series from
m to s. Suppose we are interested in the � − step ahead forecast Ŷt (�) for the
aggregate variable Yt + �. There are two ways to forecast: (1) forecasting from the
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non-aggregate data first and then aggregating its forecasts. Mathematically, it can be
represented as

Ŷt (�) = AẐt (�) , (3.24)

where Ẑt (�) is the �− step ahead forecasts from the model (3.21); (2) modeling and
forecasting directly from the aggregates from aggregate model (3.23). Our proposed
method takes the second procedure to reduce the dimension when modeling the data.

For the VARMA and VAR models, many results (Rose 1977; Tiao and Guttman
1980; Wei and Abraham 1981; Kohn 1982; Lütkepohl 1984) have shown that it is
preferable to forecast the original time series first and then aggregate the forecasts
(method 1), rather than forecast the aggregate time series directly (method 2). They
also established the conditions for those two methods to be equivalent, which can
be summarized below:

Theorem 3.1 Consider a m-dimensional non-aggregate VARMA(p, q)model, Zt =∑p

i=1�iZt−i + at − ∑q

j=1�j at , and its s–dimensional aggregate, Yt = AZt,

modelled with a VARMA(p, q) model, Yt = ∑p

i=1�
(a)
i Yt−i + ξt −

∑q

j=1�
(a)
j ξt .

The condition for the forecasts of Yt from aggregate model to be equivalent to
the aggregate of forecasts from the non-aggregate model are: A�i = �

(a)
i A, for

i = 1, . . . , p and A�j = �
(a)
j A, for j = 1, . . . , q, where ξt = Aat.

For the STARMA and STAR model, Gehman (2015) proved similar results
that given a non-aggregate data that follows a STARMA model and modeling its
aggregate data as the same order as the non-aggregate data, the mean squared
forecast error is always larger when using aggregate model under the assumption
that parameters are known.

Results shown above are based on the assumptions that all parameters are
known. When parameters are unknown, Lütkepohl (1984) showed that forecasts
from the aggregate data might outperform forecasts from the non-aggregate data,
since parameter estimates could be noisy. This argument is more obvious in the high
dimension setting since so many parameters need to be estimated, which provides a
reasoning that forecasting from the aggregate data could be better in some situations.

3.4 Simulation Studies

In this section, we evaluate the performance of different methods in forecasting
aggregates via Monte Carlo simulations. We consider three scenarios that were all
simulated from the m = 50-dimensional VAR(1) model

Zt = �1Zt−1 + at , (3.25)
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where �1 is coefficient matrix and at is vector white noise, which is simulated from
50–dimensional normal random variable with zero mean and identity covariance
matrix. The number of observation used for in-sample modeling and estimation
are set to be N = 100, 500. Additional 5 out-of-sample observations are used
to compute MSFE. To compare the performances, we simulate 200 realizations for
each scenario. We consider two aggregation schemes. First, two-region aggregation,
indicating that we aggregate first 25 time series and last 25 time series. Thus, the
resulting aggregated time series is bivariate. Second, total aggregate, meaning that
the aggregation matrix A is a row vector with elements all equal to one. We chose
mean squared forecast error (MSFE) as the evaluation metric and define MSFE(�)
as the �-step-ahead forecasts mean squared error of forecasts, such that

MSFE (�) = 1

200s

s∑

k=1

200∑

i=1

[
Y

(i)
k,t+� − Y

(i)
k,t (�)

]2
.

Methods compared in this section include: (1) the VAR model based on non-
aggregate data and estimated through least square; (2) the univariate AR model
for each time series with the lag orders selected by AIC, denoted by AR; (3) the
Lasso method; (4) the lag-weighted Lasso method; (5) the HVAR method with
component wise structure, denoted by HVAR-C; (6) the HVAR method with own-
other structure, denoted by HVAR-OO; (7) the HVAR method with elementwise
structure, denoted by HVAR-E; (8) the factor model with one lag; (9) the model-
based cluster method with maximum four clusters; and (10) the proposed method.

3.4.1 Scenario 1

In scenario 1, we assume �1 to be a diagonal matrix with the diagonal elements
generated from uniform distribution U(0.2, 0.4). This is a very simple case in
which there is no interdependence between each individual time series, and the
AR coefficients for each series are similar. Thus, a simple model based on the
univariate AR model for each time series would possibly produce reasonable fitting
and forecasts.

Table 3.1 displays the MSFEs and corresponding standard deviations of two-
region aggregation. The smallest MSFE in each category are bolded to aid presenta-
tion. It appears that the VAR method has much larger MSFE compared to all other
methods when N = 100. This is due to large parameter estimation errors when N is
relative small. As the sample size N increases to 500, the MSFE of the VAR method
approaches to other methods. Although, all methods except VAR method perform
similarly in terms of MSFE, the proposed method produces the smallest MSFE in
most cases. Further, it seems that all regularization methods produce similar MSFEs.
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Table 3.2 presents the MSFEs and their standard deviations of total aggregation. The
results in Table 3.2 are almost consistent with results in Table 3.1. The proposed
method is still among one of the best method.

3.4.2 Scenario 2

In the scenario 2, the coefficient matrix �1 is generated from “band” matrix pattern
shown in Fig. 3.1 where black points are corresponding to non-zero entries and
white areas are corresponding to zero entries. The non-zero diagonal entries of
�1 are fixed to be 0.3 and the non-zero off-diagonal elements are fixed to be 0.1.
This coefficient structure indicates that each time series depend largely on its own
past, and weakly depend on other series that are close. Tables 3.3 and 3.4 presents
the MSFEs of two different aggregation schemes. Again, the MSFEs and standard
deviations of VAR method are much larger than all other methods when sample
size N = 100. For N = 100, the proposed method outperforms all other methods.
For N = 500, the proposed method outperforms all other methods when � = 1,
and the factor model performs the best when � = 2, 5. Among all regularization
methods, the HVAR-OO produces relative smaller MSFEs when N = 100. This is
because HVAR-OO assumes the diagonal elements to be more informative which
are close to the true coefficient matrix structure. HVAR-E has smaller MSFEs than
other regularization methods when N = 500. This is due to its flexible structure
assumption.

3.4.3 Scenario 3

In the scenario 3, the coefficient matrix �1 is generated from “cluster” matrix
pattern. We set the diagonal elements of �1 to be 0.3. Then, we randomly select 2m
elements from off-diagonal elements of �1 and assign each of them with value 0.1
(see Fig. 3.2). Tables 3.5 and 3.6 show the MSFEs and the corresponding standard
deviations. In this more complicated simulation setting, the AR model and model-
based cluster method have very large MSFEs for both sample sizes we consider.
This is because they largely ignore the interdependences between each time series.
For both N = 100 and 500, the proposed method and the factor model are the top 2
methods in terms of MSFEs.

3.5 Empirical Examples

In this section, two real data examples are considered, including the macroeconomic
time series data and the sexually transmitted disease time series data.
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Fig. 3.1 Pattern of �1 in
scenario 2

3.5.1 The Macroeconomic Time Series

We compare MSFEs of different methods and assess the effectiveness of the
proposed method through the collection of time series of US macroeconomic
indicators. The data is collected from Stock and Watson (2009) and Koop (2013).
The full data list contains 168 quarterly macroeconomic variables from Quarter 1 of
1959 to Quarter 4 of 2007, representing information about many aspects of the U.S.
economy. We retrieve 61 time series from the full dataset, leading to a dataset with
m = 61 and N = 196. Time series are transformed to stationary using the suggestion
of Stock and Watson (2009). Those 61 time series can be aggregated into three main
macroeconomic measures by its nature: gross domestic product (GDP), industrial
production index (IPS), and constant elasticity of substitution (CES). Details of the
dataset is given in the Appendix.

The main interest of this section is on accurately forecasting three aggregate
variables: GDP, IPS, and CES, since they are important measures of the U.S
economy. In this application, we used data from Quarter 1 of 1959 to Quarter 3
of 1992 for model fitting, and then compute the rolling out of sample one-step-
ahead forecasts, starting from Quarter 4 of 1992 to Quarter 4 of 2007. The MSFEs
of univariate AR, VAR, Lasso, Lag-weighted lasso, HVAR-C, HVAR-OO, HVAR-
E, factor model with 20 factors, model-based cluster clustering, and the proposed
method are compared in this application (Table 3.7).

Three regularization methods, including HVAR-C, HVAR-OO, and HVAR-E,
perform the best as their MSFEs are below 0.7. The proposed method performs
close to those three methods and have smaller MSFEs than all other methods. The
benchmark univariate AR method outperforms VAR, factor model, and model-based
cluster clustering, but does not perform as well as the proposed aggregation method.

3.5.2 The Sexually Transmitted Disease Data

In this section, we provide an illustration using a spatial time series. The data
set contains yearly sexually transmitted disease (STD) morbidity rates reported to
National Center for HIV/AIDS, viral Hepatitis, STD, and TB Prevention (NCHH-
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Fig. 3.2 Pattern of �1 in
scenario 3

STP), Center for HIV, and Centers for Disease Control and Prevention (CDC) from
1984 to 2014. The dataset was retrieved from CDC’s website (www.cdc.gov/std/
stats/) and includes 50 states plus D.C. The rates per 100,000 persons are calculated
as the incidence of STD reports, divided by the population, and multiple by 100,000.
For illustration, the time series of individual state are shown in Fig. 3.3. In modeling
sexually transmitted disease data, researchers are interested in forecasting aggregate
data based on nine Morbidity and Mortality Weekly Report (MMWR) regions or
four Sexually Transmitted Disease (STD) regions (see Fig. 3.4).

For the analysis, we standardized each time series and remove data from follow-
ing states, Montana, North Dakota, South Dakota, Vermont, Wyoming, Alaska, and
Hawaii, due to missing data. Hence, the dimension of data is m = 44 and N = 29.
We used the first 24 observations for model fitting, and the rest of observations for
evaluating the forecasting performance. The MSFEs averaged across the lags are
reported. Methods considered include: univariate AR, VAR, Lasso, Lag-weighted
lasso, HVAR-C, HVAR-OO, HVAR-E, factor model with 10 factors, model-based
cluster clustering, and the proposed method. In addition, we also add the STAR
model for comparison in this application, as it is one of most naturally considered
models for spatial time series analysis, which can also be reviewed as a dimension
reduction method.

The MSFEs when forecasting sexual transmitted disease at 9 MMWR regions are
presented in Table 3.8. VAR fails to estimate the parameters. STAR(22, 1) performs
the best in this case, following by factor model, model-based cluster clustering,
proposed method, and univariate AR. All regularization methods have much larger
MSFEs.

Table 3.9 displays the MSFEs when forecasting sexual transmitted disease at 4
STD regions. Again, VAR fails to estimate the parameters due to the number of
parameters to estimate is bigger than the number of observations. The proposed
method performs the best among all methods. STAR(22, 1) model has second
smallest MSFEs. Factor model and Model-based cluster clustering also perform
reasonably well. The MSFE for the univariate AR is in the middle. Again, all
regularization methods do not perform well.

http://www.cdc.gov/std/stats/
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Table 3.7 MSFEs of
forecasting three aggregate
macroeconomics variables
(GDP, IPS, and CES)

MSFE

Univariate AR 0.838
VAR 1.537
Lasso 0.744
Lag-weighted lasso 0.752
HVAR-C 0.683
HVAR-OO 0.667
HVAR-E 0.699
Factor model 0.883
Model-based cluster clustering 1.465
The proposed method 0.715

Fig. 3.3 Yearly sexually transmitted disease (STD) time series for each state

Supplementary Material
Supplementary Material is available and includes details of parameter estimation
results for two empirical data analyses examples in Sect. 3.5.

3.6 Concluding Remarks

Big data and high dimensional problem are all over the place in the time of fast
computer and internet. We propose aggregation as a dimension reduction method. It
is very natural and simple to use, and as supported by both simulation and empirical
examples in term of its performance in forecasting, it is a useful and good method
for dimension reduction.

The aggregation matrix A and its associated s can be in many different spec-
ifications. Even based on practical considerations, we can specify different forms
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Fig. 3.4 Top: U.S. states grouped into 9 MMWR regions; bottom: U.S. states grouped into 4STD
regions

of A and s. By choosing s = 1, A becomes a row vector, and any m-dimensional
multivariate time series Zt will aggregate to become a univariate time series Yt. For
most of time, the result of aggregation is meaningful. For example, in sales data, we
can specify them in terms of regions or kinds (categories). In term of the housing
sales of the 3144 US counties, we can aggregate them into the housing sales of 50
states, into the housing sales of the four regions (East, West, North, and South), and
further into the total housing sales of the whole country. We can also specify A and s
based on data-driven considerations, which we will continue to investigate in future
study.

Acknowledgments The author wants to thank his PhD student, Zeda Li, who helped him develop
software code for the analyses of many data sets in the presentation.
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Table 3.8 MSFEs in
forecasting sexual transmitted
disease rate in the 9 MMWR
regions

MSFE

Univariate AR 4.54
VAR NA
Lasso 5.63
Lag-weighted lasso 5.05
HVAR-C 5.79
HVAR-OO 5.65
HVAR-E 5.56
STAR(22, 1) 3.73
Factor model 4.51
Model-based cluster clustering 3.97
Proposed method 4.53

Table 3.9 MSFEs in
forecasting sexual transmitted
disease rate in the 4 STD
regions

MSFE

Univariate AR 14.10
VAR NA
Lasso 19.10
Lag-weighted lasso 19.27
HVAR-C 19.81
HVAR-OO 19.16
HVAR-E 18.75
STAR(22, 1) 10.91
Factor model 13.96
Model-based cluster clustering 12.56
Proposed method 10.65

A.1 Appendix

The data used in the presentation is a subset of that used in Stock and Watson (2009)
and Koop (2013). Reader who is interested in this data can see further details in
their papers. Variables that are originally at a monthly frequency are transformed
to quarterly by taking average of 3 months in a quarter. Seasonally adjusts are
taken if necessary. All variables are transformed to stationary by differencing. Table
3.10 contains brief description of each variable, and the aggregation group they are
belong to, along with a transformation code, where 1 = first differencing of log of
variables, 2 = second differencing of log of variables.
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Table 3.10 Variables used in Sect. 3.5.1

Variable Description Code Group

GDP252 Real personal consumption exp: quantity index 1 GDP
GDP253 Real personal consumption exp: durable goods 1 GDP
GDP254 Real personal consumption exp: nondurable goods 1 GDP
GDP255 Real personal consumption exp: services 1 GDP
GDP256 Real gross private domestic inv: quantity index 1 GDP
GDP257 Real gross private domestic inv: xed inv 1 GDP
GDP258 Real gross private domestic inv: nonresidential 1 GDP
GDP259 Real gross private domestic inv: nonres structure 1 GDP
GDP260 Real gross private domestic inv: nonres equipment 1 GDP
GDP261 Real gross private domestic inv: residential 1 GDP
GDP266 Real gov consumption exp, gross inv: federal 2 GDP
GDP267 Real gov consumption exp, gross inv: state and local 2 GDP
GDP268 Real final sales of domestic product 2 GDP
GDP269 Real gross domestic purchases 2 GDP
GDP271 Real gross national product 2 GDP
GDP272 Gross domestic product: price index 2 GDP
GDP274 Personal cons exp: durable goods, price index 2 GDP
GDP275 Personal cons exp: nondurable goods, price index 2 GDP
GDP276 Personal cons exp: services, price index 2 GDP
GDP277 Gross private domestic investment, price index 2 GDP
GDP278 Gross priv dom inv: fixed inv, price index 2 GDP
GDP279 Gross priv dom inv: nonresidential, price index 2 GDP
GDP280 Gross priv dom inv: nonres structures, price index 2 GDP
GDP281 Gross priv dom inv: nonres equipment, price index 2 GDP
GDP282 Gross priv dom inv: residential, price index 2 GDP
GDP284 Exports, price index 2 GDP
GDP285 Imports, price index 2 GDP
GDP286 Government cons exp and gross inv, price index 2 GDP
GDP287 Gov cons exp and gross inv: federal, price index 2 GDP
GDP288 Gov cons exp and gross inv: state and local, price index 2 GDP
GDP289 Final sales of domestic product, price index 2 GDP
GDP290 Gross domestic purchases, price index 2 GDP
GDP291 Final sales to domestic purchasers, price index 2 GDP
GDP292 Gross national products, price index 2 GDP
IPS11 Industrial production index: products total 1 IPS
IPS299 Industrial production index: final products 1 IPS
IPS12 Industrial production index: consumer goods 1 IPS
IPS13 Industrial production index: consumer durable 1 IPS
IPS18 Industrial production index: consumer nondurable 1 IPS
IPS25 Industrial production index: business equipment 1 IPS

(continued)
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Table 3.10 (continued)

Variable Description Code Group

IPS32 Industrial production index: materials 1 IPS
IPS34 Industrial production index: durable goods materials 1 IPS
IPS38 Industrial production index: nondurable goods material 1 IPS
IPS43 Industrial production index: manufacturing 1 IPS
IPS307 Industrial production index: residential utilities 1 IPS
IPS306 Industrial production index: consumer fuels 1 IPS
CES275 Avg hrly earnings, prod wrkrs, nonfarm-goods prod 2 CES
CES277 Avg hrly earnings, prod wrkrs, nonfarm-construction 2 CES
CES278 Avg hrly earnings, prod wrkrs, nonfarm-manufacturing 2 CES
CES003 Employees, nonfarm: goods-producing 1 CES
CES006 Employees, nonfarm: mining 1 CES
CES011 Employees, nonfarm: construction 1 CES
CES015 Employees, nonfarm: manufacturing 1 CES
CES017 Employees, nonfarm: durable goods 1 CES
CES033 Employees, nonfarm: nondurable goods 1 CES
CES046 Employees, nonfarm: service providing 1 CES
CES048 Employees, nonfarm: trade, transportation, and utilities 1 CES
CES049 Employees, nonfarm: wholesale trade 1 CES
CES053 Employees, nonfarm: retail trade 1 CES
CES088 Employees, nonfarm: financial activities 1 CES
CES140 Employees, nonfarm: government 1 CES
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Chapter 4
A Powerful Retrospective Multiple
Variant Association Test for Quantitative
Traits by Borrowing Strength from
Complex Genotypic Correlations

Xiaowei Wu

4.1 Introduction

The last decade has seen many successful applications of genome-wide
association studies (GWASs) in identifying susceptibility loci for complex
genetic diseases (Manolio 2010; McCarthy et al. 2008). Various methods for
association testing have been developed to account for different study setups
such as cross-sectional/longitudinal survey, family/population-based design, and
binary/quantitative trait. Despite previous efforts, GWASs typically focus on the
marginal association of trait phenotype with each individual single nucleotide
polymorphism (SNP). Alternatively, assessing the joint effect of multiple variants
in a predefined genomic region, i.e., SNP-set or gene-based association test, is
believed to be more advantageous and will become the natural end point for
association analysis in the post-GWAS era of dense genotyping and fine mapping
(Neale and Sham 2004). This approach, formulated naturally from multiple
regression model, has several appealing features. First, as genes are the functional
unit of the human genome and remain highly consistent across diverse human
populations, shifting from SNP-based to gene-based association analysis leads to
more interpretable and replicable findings in gene function (Li et al. 2011) and
gene-gene interaction (Ma et al. 2013). Second, by aggregating small signals from
each single variant, especially for low-frequency minor alleles (Asimit and Zeggini
2010), gene-based association analysis may achieve improved power. In addition,
the multiple testing problem is much simplified in gene-based analysis (Wu et al.
2010).

X. Wu (�)
Department of Statistics, Virginia Tech, Blacksburg, VA, USA
e-mail: xwwu@vt.edu

© Springer Nature Switzerland AG 2019
L. Zhang et al. (eds.), Contemporary Biostatistics with Biopharmaceutical
Applications, ICSA Book Series in Statistics,
https://doi.org/10.1007/978-3-030-15310-6_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15310-6_4&domain=pdf
mailto:xwwu@vt.edu
https://doi.org/10.1007/978-3-030-15310-6_4


62 X. Wu

A number of multiple variant association tests have been developed by pooling
univariate tests for individual variants. Depending on the form of the resulting
test statistic, linear or quadratic (Derkach et al. 2013), these tests generally fall
under two categories: burden tests and kernel tests. Burden tests group mul-
tiple variants into a single variable called genetic burden score, and perform
univariate association testing based on the collapsed variable. Kernel tests, on
the other hand, assumes random effects for individual variants, and test the
regression coefficients of the variants by a variance-component score test. This
formulation essentially leads to a weighted sum of score statistics for testing
individual variant effects (Chen et al. 2013; Schaid et al. 2013; Schifano et al.
2012; Wang et al. 2014, 2013; Wu et al. 2011). Since these two approaches
aggregate genetic signals at different levels, i.e., one applies linear combination
on individual variants whereas the other on score statistics of individual variants,
their performance depends strongly on the underlying assumptions of the genetic
effects, such as proportions of the causal variants, directions of the associations
(risk, protective or both), as well as variant frequencies (Ladouceur et al. 2012).
In general, burden tests are not as robust as kernel tests. It has been shown
that burden tests are more powerful when most variants to be tested are causal
and have homogeneous effects in the magnitude and direction, whereas kernel
tests are more powerful when the effects of causal variants are in different
directions or a large proportion of neutral variants present (Chen et al. 2013;
Lee et al. 2013; Schaid et al. 2013; Wang et al. 2012; Wu et al. 2011). To
borrow strength from both approaches and avoid power loss in certain scenar-
ios, methods have been developed to combine linear and quadratic statistics,
such as SKAT-O (Lee et al. 2012, 2013) and MONSTER (Jiang and McPeek
2013). In particular, Jiang and McPeek (2013) generalized the SKAT-O method
to allow relatedness among sampled individuals by using a mixed effects model
that accounts for covariates and additive polygenic effects (Jiang and McPeek
2013). Under the assumption that random effects have mean zero and compound
symmetric covariance, the resulted MONSTER fixed-ρ test statistic is shown
to be a convex combination of the famSKAT (Chen et al. 2013; Schaid et al.
2013; Schifano et al. 2012) and famBT statistics (Chen et al. 2013), and the
optimal weight for combination is sought through a grid search as exploited by
SKAT-O.

In this paper, we consider multiple variant association testing for quantitative
traits in a general study design where related individuals (e.g., family trios or
pedigree samples) are allowed in dense genotyping GWASs. Under this setup, the
genotype data exhibit complex correlations caused by both familial relation and
linkage disequilibrium (LD). Borrowing strength from such genotypic correlations
thus becomes the key to improve power for testing. Starting with burden tests,
we note that several methods have been developed for both unrelated (Li and
Leal 2008; Madsen and Browning 2009; Morgenthaler and Thilly 2007; Price
et al. 2010) and related (Chen et al. 2013; Schaid et al. 2013) individuals.
Most of these collapsing methods, however, are based on prospective regression
models which treat genotypes as fixed explanatory variables. Though easy to
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implement, such methods cannot directly incorporate the LD correlations among
variants. Recognizing this limitation, we propose PC-ABT, a novel principal-
component-based adaptive-weight burden test. This method uses a retrospective
score test to incorporate genotypic correlations, and employs “data-driven” weights
to obtain maximized test statistic. In addition, PC-ABT is able to reduce the
degree of freedom (df) of the null distribution to improve power by choosing
major principal components of the genotype data. In what follows, we will start
with development of three sequentially related multiple variant tests: the fixed-
weight burden test, adaptive-weight burden test, and PC-ABT. These tests provide
a step-by-step generalization of the single-variant MASTOR test (Jakobsdottir
and McPeek 2013) for quantitative traits on related individuals. Extensive sim-
ulations are performed to assess the type I error rate of PC-ABT and compare
its empirical power with other tests that allow related individuals. We then apply
the proposed method to the systolic blood pressure data from the NHLBI “Grand
Opportunity” Exome Sequencing Project (GO-ESP) for gene-based association
analysis.

4.2 Methods

Suppose that in an association study, we sample a group of n individuals with
known pedigree information for phenotype, covariate, and genotype data. The
phenotype data consist of a quantitative trait, denoted by a vector Y of length
n. The covariates contain several non-genetic variables such as age and sex. We
include these covariates in an n × k design matrix Z, with the first column being a
vector of ones. To assess SNP-set or gene-based association, we consider a genomic
region of m variants with allele frequencies p1, p2, · · · , pm. Assuming that each
variant is biallelic and the alleles are arbitrarily labeled as “0” and “1”, we write the
genotype data as an n×m matrix G = [G1,G2, · · · ,Gm] with the (i, j)th element
coded as Gij = 1

2 × (number of alleles of type 1 in individual i at variant site j),
for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Under this setting, two kinds of correlations in the genotype data G need to be
taken into account. The correlation across rows describes the Mendelian inheritance
(i.e., relatedness) of the sampled individuals, which can be characterized by a
kinship matrix

Φ =

⎛

⎜
⎜
⎜
⎝

1 + h1 2φ12 · · · 2φ1n

2φ12 1 + h2 · · · 2φ2n

...
...

. . .
...

2φ1n 2φ2n · · · 1 + hn

⎞

⎟
⎟
⎟
⎠

,

where hi is the inbreeding coefficient of individual i, and φij is the kinship
coefficient between individuals i and j, 1 ≤ i, j ≤ n. The correlation across
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columns is caused by the non-random association of alleles at different loci, i.e.,
linkage disequilibrium. We denote the correlation matrix of LD by

R =

⎛

⎜
⎜
⎜
⎝

1 r12 · · · r1m

r12 1 · · · r2m

...
...

. . .
...

r1m r2m · · · 1

⎞

⎟
⎟
⎟
⎠

,

where rij = (p11 − pipj )/
√

pi(1 − pi)pj (1 − pj ) is the correlation coefficient
between variant i and variant j , 1 ≤ i �= j ≤ m. Here, pi, pj are the allele
frequencies of variants i, j respectively, and p11 is the frequency of the haplotype
having allele 1 at both variants.

4.2.1 Retrospective, Fixed-Weight Burden Test

In order to conveniently model genotypic correlations caused by both familial
relation and LD, we treat genotypes as random and conduct a retrospective analysis
based on G|(Y ,Z) (Jakobsdottir and McPeek 2013; Thornton and McPeek 2007) to
derive the fixed-weight burden test (FBT). Following the burden test approach, we
first construct a weighted sum burden score by

X =
m∑

i=1

wiGi = GW , (4.1)

where W = [w1, w2, · · · , wm]T is a prescribed weight vector of length m.
After collapsing G into X, we then apply MASTOR (Jakobsdottir and McPeek
2013), a single-variant, retrospective, quasi-likelihood score test that allows related
individuals, to assess the genetic association between Y and X while adjusting for
Z. For the sake of understanding, a brief description of MASTOR is included in
Appendix 1. Specifically, for the model Y = Zβ0 + ε, ε ∼ N(0,Σ0) under the

null hypothesis that Y is not associated with X, we let V = Σ̂
−1
0 (Y − Zβ̂0)

be the transformed phenotypic residual. Here, the trait covariance matrix Σ0 is
assumed to take form σ 2

e I + σ 2
a Φ, where σ 2

e represents variance due to random
measurement error, I is the identity matrix, and σ 2

a stands for variance attributed
to additive polygenic random effects. Using the known results in Jakobsdottir and
McPeek (2013), we obtain the quasi-likelihood score test statistic

S = (V T X)2

V̂ ar0(V
T X|Y ,Z)

= (V T X)2

V T Σ̂XV
, (4.2)
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where Σ̂X is an estimator of the covariance matrix of X under the null. For any
fixed weight vector W , this test statistic follows a null distribution of χ2

1 . It remains
to derive ΣX and then obtain an appropriate estimator Σ̂X in (4.2).

We write the LD covariance matrix of G as DRD, where D = diag{σj }, 1 ≤
j ≤ m is a diagonal matrix, and the diagonal element σj is the standard
deviation of the j th variant Gj . Let Gc be the vectorized genotype, i.e., Gc =
[GT

1 ,GT
2 , · · · ,GT

m]T , then X = (W T ⊗ I )Gc, where ⊗ denotes the kronecker
product. Assuming the covariance matrix of Gc is separable (Fuentes 2006), i.e.,
ΣGc = (DRD) ⊗ Φ (Zhu and Xiong 2012), it follows that ΣX = (W T ⊗
I )[(DRD)⊗ Φ](W T ⊗ I )T = (W T DRDW )Φ. If we further assume that R and
Φ are known, an appropriate estimator of ΣX would be

Σ̂X = (W T D̂RD̂W )Φ. (4.3)

When Hardy-Weinberg equilibrium (HWE) holds for the genomic region of interest,
the j th diagonal element of D̂ can be estimated by σ̂j = √

p̂j (1 − p̂j )/2, 1 ≤
j ≤ m where p̂j = (1T Φ−11)−11T Φ−1Gj is the best linear unbiased estimator
(BLUE) (McPeek et al. 2004) of the allele frequency pj . Here, 1 denotes a
vector of ones. In practice, another more general and robust estimator σ̂ 2

j =
GT

j UGj /(n − 1) may be used instead (Thornton and McPeek 2010), where U =
Φ−1 −Φ−11(1T Φ−11)−11T Φ−1.

By Eqs. (4.1)–(4.3), we obtain the retrospective FBT statistic

SFBT = [W T GT V V T GW ]
[W T (D̂RD̂)W ][V T ΦV ] , (4.4)

which also has the null distribution of χ2
1 . Clearly, SFBT is invariant to the scale

of W . We note that Eqs. (4.2)–(4.4) can be considered as generalizations of the
MASTOR test to the multiple variant case by replacing the single variant with the
weighted-sum burden score. As a special case, when m = 1, D̂RD̂ in (4.3) reduces
to the variance estimator of a single variant and hence SFBT becomes the MASTOR
statistic.

4.2.2 Adaptive-Weight Burden Test to Maximize Test Statistic

By collapsing multiple genetic variants into a burden score, the fixed-weight burden
test is able to aggregate small signals from each single variant to gain increased
power for association (especially for variants with low minor allele frequencies).
However, because the combining weights are pre-specified and cannot adapt to
data, this test, as well as other burden tests, may experience loss of power in the
presence of both risk (i.e., positively associated) and protective (i.e., negatively
associated) variants. Though several adaptive burden tests (Fang et al. 2014; Han
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and Pan 2010; Lin and Tang 2011; Liu and Leal 2010; Sha et al. 2012; Sha
and Zhang 2014) have been proposed to overcome this deficiency, many of these
weighting strategies cannot take into account the complex correlations caused by
both sample relatedness and LD. Moreover, since the adaptive weights depend on
the genotype data, derivation of the null distribution of the resulting test statistic
becomes non-trivial. Some existing adaptive burden tests rely on permutations to
evaluate the p-value. This severely restricts their applications as permutations are
computationally expensive and not straightforward when related individuals are
included in the sample. It is thus desirable to “let the data speak for themselves” by
constructing data-adaptive weights that make full use of the genotypic information
and lead to a statistic with explicit null distribution.

To fulfill this purpose, we consider maximizing the test statistic (4.4) which is of
a generalized Rayleigh quotient form. Note that in general such an adaptive method
of weight selection on linear statistics will lead to quadratic statistics, as pointed
out by Derkach et al. (2013), Li and Lagakos (2006) among others. In our context,
we will see that applying adaptive weights on the retrospective burden test ends up
with a statistic of the family-based kernel test (famSKAT) (Chen et al. 2013), with
the weight matrix determined by both the LD covariance estimate D̂RD̂ and the
kinship matrix Φ. Let A = D̂RD̂, b = GT V and B = bbT . Assuming D̂RD̂ is
invertible, we can show that the optimal weight vector W ∗ that maximizes the FBT
statistic satisfies

W ∗ ∝ A−1b = (D̂RD̂)−1GT V . (4.5)

Since W ∗ is determined by the data, i.e., genotypes G, trait Y , and covariates Z, we
call the burden test with such data-driven weights the adaptive-weight burden test
(ABT). It follows by plugging (4.5) into (4.4) that the ABT statistic takes the form

SABT = V T G(D̂RD̂)−1GT V

V T ΦV
. (4.6)

Regarding the null distribution of SABT , we observe from (4.6) that in the numer-
ator, G(D̂RD̂)−1/2 may be thought of as a decorrelated and standardized genotype
matrix with cross-column covariance being transformed to identity. Therefore,
SABT can be seen as the summation of m independent MASTOR statistics, hence
follows χ2

m distribution under the null hypothesis. More details on the theoretical
justification of the null distribution can be found in Appendix 1. Using this explicit
null distribution, the p-value calculation of ABT becomes straightforward. This
property makes ABT more favorable to real, whole genome applications than
other permutation-based approaches. It should be noted that this null distribution
is achieved under the assumptions that the covariance matrix ΣGc of the vectorized
genotype is separable, and R is known. In practice, when the separability condition
is not satisfied, an alternative null distribution derived from the family-based kernel
test will be used instead (see details in the following two paragraphs). When R is
not known a priori, one may obtain its estimate from a reference population, e.g.,
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the one provided by The 1000 Genomes Project (2010), or directly estimate the LD
covariance matrix DRD from G in the absence of reference panel.

Two main features of ABT are revealed from the above derivations: (1) the
weights of ABT are adaptive to risk and protective variants, which may be explained
by the W ∗ expression (4.5), and (2) there is a connection between ABT and the
family-based kernel test, which is implied by the ABT statistic (4.6). For elucidation
purpose, let us switch the viewpoint from retrospective to prospective, and consider
such a trait model

Y = Zβ +Gγ + ε, ε ∼ N(0, σ 2
e I + σ 2

a Φ), (4.7)

where β and γ represent the regression coefficients of non-genetic and genetic
variables, respectively. On the one hand, from a fixed-effect perspective of multiple
linear regression, it can be seen that the data-driven weights W ∗ in (4.5) have the
same sign with the GLS estimation γ̂ thus are adaptive to the direction of the true
genetic effects. This result is further confirmed by simulations (see Appendix 2).
This shows that, by maximizing the fixed-weight burden statistic, ABT is able to
accommodate to the direction of individual variant effects through the adaptive
weights. On the other hand, if we treat γ as random effect and assume that its j th
component follows a distribution with mean 0 and variance w2

j τ , 1 ≤ j ≤ m, the
famSKAT (Chen et al. 2013) statistic for testing τ = 0 can be obtained as

Sf amSKAT = V T GWWGT V . (4.8)

Here, W = diag{wj } is a diagonal matrix playing the role of the square root of the
W matrix defined in Chen et al. (2013). Comparing the ABT statistic (4.6) with the
famSKAT statistic (4.8), we find that, although the FBT statistic is directly derived
from burden test where the aggregation is on individual variants, after employing the
data-driven weights W ∗ to SFBT , the resulting ABT statistic is formally equivalent
to the famSKAT statistic where the aggregation is on individual variant statistics.
This finding extends the results of Derkach et al. (2013) and Li and Lagakos
(2006) to pedigree structured data. More details about the relation between the ABT
statistic and the famSKAT statistic are illustrated by simulations (see Appendix 3).

As an important note, famSKAT has been shown to have a null distribution
of a mixture of independent χ2

1 ’s (Chen et al. 2013). Therefore by the similarity
between (4.6) and (4.8), we can obtain another null distribution of ABT as∑m

i=1 λiχ
2
1,i , where λi’s are the eigenvalues of the matrix W #GT PGW # and χ2

1,i’s

are independent χ2
1 random variables. Here, W # = (V T ΦV )−1/2(D̂RD̂)−1/2 is a

weight matrix that recognizes ABT as a special famSKAT test, and P = Σ̂
−1
0 −

Σ̂
−1
0 Z(ZT Σ̂

−1
0 Z)−1ZT Σ̂

−1
0 . We provide simulations using unrelated individuals

and common variants with strong LD (see Scenario S1 and Configuration C3 in
Sects. 4.2.4 and 4.3.1) to validate the two asymptotic null distributions of SABT :
χ2

m and χ2
1 mixture, and compare them with the one obtained from permutation-

based approach. The validation details are in Appendix 4. We found that the two
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null distributions are almost identical when condition (4.3) for deriving FBT and
ABT is satisfied, that is, when the covariance structure in genotype data follows a
kronecker product form, and the LD correlation matrix R is known. However, in
practice if these assumptions are not satisfied (e.g., non-separable covariance, R

unknown and hard to be estimated accurately), the null distribution of χ2
1 mixture is

more preferable in terms of controlling type-I error. We therefore adopt χ2
1 mixture

as the null distribution of ABT in the simulation studies and real data analysis later
on, and use χ2

m for conceptual illustration purpose only.
As a burden test using adaptive weights W ∗ (also a special family-based kernel

test with W #), ABT is expected to outperform other burden tests with fixed weights
in maintaining power when both risk and protective variants exist in the genomic
region of interest. However, maximizing the FBT statistic may not always guarantee
an optimal test since the power also depends on the null distribution. This motivates
us to further enhance power by reducing the df of the null χ2 distribution while
maximizing the FBT statistic.

4.2.3 Principal-Component-Based Adaptive-Weight Burden
Test to Enhance Power

The principal component analysis (PCA) is an orthogonal transformation that
converts possibly correlated variables into linearly uncorrelated variables called
principal components. Applying PCA reveals the internal structure of the data in
a way that best explains the variance in the data. Under our model assumptions,
the genotype data G exhibit correlations from both familial relation and LD, where
the former (i.e., the kinship matrix Φ) is known in most pedigree-based studies
but the latter (i.e., the LD correlation matrix R) is usually assumed unknown.
We notice that, in the numerator of the ABT statistic (4.6), the LD covariance
estimator plays a key role in determining the df of the null χ2 distribution. If
we could find a more efficient representation of G through PCA, which can
be used to approximate the LD covariance matrix such that the df of the null
distribution can be reduced, then the power for association will be improved.
It is worth noting that the principal component (PC) -based approach has been
used to capture LD information within a candidate region and leads to fewer
df, more powerful omnibus tests than genotype- and haplotype-based approaches
(Gauderman et al. 2007). Here, by combining ABT (which maximizes the test
statistic) with PCA (which reduces the df of the null distribution), we expect
this principal-component-based adaptive-weight burden test (PC-ABT) to have
enhanced power.

Previous efforts have been made to estimate parameters for a Kronecker product
covariance structure based on Gaussian assumption (Srivastava et al. 2008). How-
ever, no work has been done with regards to categorical, non-Gaussian data such as
the genotype data under our consideration. Since the kinship matrix Φ is known, a
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natural way to estimate the LD covariance matrix is to use the sample covariance
of the transformed genotype data Φ−1/2G. Suppose such an LD covariance matrix
estimator can be factorized by spectral decomposition

D̂RD = LΛLT =
m∑

i=1

λiLiL
T
i , (4.9)

where L is an m × m orthogonal matrix whose columns Li , 1 ≤ i ≤ m, are
the eigenvectors of D̂RD, and Λ is a diagonal matrix saving the corresponding
eigenvalues λ1, λ2, · · · , λm in descending order. The PC decomposition (without
centering) of Φ−1/2G can be obtained by

T = Φ−1/2GL. (4.10)

By (4.9) and (4.10), the adaptive weight vector (4.5) becomes W ∗ ∝
LΛ−1T T Φ1/2V , and the ABT statistic (4.6) can be rewritten as

SABT = V T Φ1/2T Λ−1T T Φ1/2V

V T ΦV
. (4.11)

Equation (4.11) provides the ABT statistic in the orthogonal, principal component
space, with the LD covariance characterized by the diagonal eigenvalue matrix Λ.

Now suppose the variances along some PCA loading axes are small, i.e., some
diagonal components in the Λ matrix are small. By the dimension reduction
property of PCA, we may approximate the LD covariance estimator D̂RD by
keeping only the first q principal components. Let Lq be an m×q matrix containing
the first q eigenvectors, q < m, and Λq be the corresponding q×q diagonal matrix,
then the truncated PCA transformation

T q = Φ−1/2GLq (4.12)

for dimension reduction leads to the PC-ABT statistic

SPC−ABT = V T Φ1/2T qΛ̂
−1
q T T

q Φ1/2V

V T ΦV
. (4.13)

With the first q “important” principal components retained and the rest “noise”
components discarded, we conclude that SPC−ABT follows a χ2

q distribution
under the null hypothesis. In the presence of strong LD (hence some variants
share commonalities in the direction and magnitude of their genetic effects), the
genotype data can be represented more efficiently in the principal component
space. By omitting the principal component axes along which the genotype
data exhibit small variances, we lose only a commensurately small amount
of information in the calculation of SPC−ABT , but reduce the df of the null
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χ2 distribution from m to q. Therefore, the PC-ABT method is expected
to achieve higher power than ABT. A commonly used strategy for selecting
the number of PCs q is by checking the total percent of variance explained
(PVE) in the genotype data:

∑q

j=1 λj/
∑m

j=1 λj such that it exceeds some
threshold.

We note that, in practice when using the mixture of independent χ2
1 ’s instead of

χ2
m as the null distribution of SABT , the corresponding null distribution of SPC−ABT

will still be
∑m

i=1 λiχ
2
1,i however only the first q λi’s become non-trivial because

the G(D̂RD̂)−1GT term in (4.6) has now been transformed into a more compact

representation GLqΛ̂
−1
q LT

q GT with rank q in (4.13).

4.2.4 Simulation Studies

We perform simulations to assess the type I error rate of PC-ABT and compare its
power to that of FBT, ABT, famSKAT, and MONSTER. The simulation studies are
conducted for the following four scenarios depending on the sample relatedness and
the minor allele frequencies (MAFs) of the variants:

S1 Unrelated individuals and common variants: This scenario considers 1600
unrelated individuals and 50 variants with MAFs sampled independently from
unif(0.1, 0.5).

S2 Unrelated individuals and rare variants: This scenario uses the same setting as
Scenario S1 but the MAFs are sampled from unif(0.005, 0.05).

S3 Related individuals and common variants: Simulations in this scenario are
based on an assumption that the samples are from 100 outbred, 3-generation
families, each containing 16 individuals related as in Fig. 4.1. The MAFs use
the same setting as Scenario S1.

S4 Related individuals and rare variants: This scenario is used to evaluate rare
variant association testing on related individuals. The sample relatedness and
the MAFs are set to be the same as in Scenarios S3 and S2, respectively.

Fig. 4.1 Basic family
structure of 16 members
coming from three
generations, used in
simulation studies to generate
genotype data for related
individuals

In order to simulate LD correlations among variants, we consider a latent multi-
variate normal model MVN(0,Ω) underlying the unrelated or founder individuals
in the sample. By sampling independently from the multivariate normal distribution
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and dichotomizing the latent variables according to the MAFs of the variants,
binary haplotypes of each unrelated or founder individual can be generated and then
added up to form genotypes. When the sample contains individuals from families
(Scenarios S3 and S4), the non-founders’ genotype data can be generated by
Mendelian “gene-dropping” the founders’ haplotypes along generations, assuming
no recombination within haplotypes. Clearly, the LD correlations among variants
are controlled by the latent covariance Ω . Detailed settings of the LD correlations
in type I error assessment and power comparison are described in Sects. 4.3.1
and 4.3.2.

After the genotype data are generated, we simulate the quantitative trait data
according to model (4.7). In this model, we let the design matrix Z include the
intercept and a non-genetic covariate sampled independently from standard normal
distribution, and set the covariate coefficient vector β = (1, 0.6)T . For scenarios
with unrelated individuals (S1 and S2), the variance components are set to be σ 2

e =
6, σ 2

a = 0, and for the other two scenarios, σ 2
e = 4, σ 2

a = 2. In the type I error
simulations, we set the genetic effect vector γ = 0, and in the power simulations,
for each scenario, we consider three different γ ’s under the alternative hypothesis
(see Table 4.2 in Sect. 4.3.2 for details).

4.2.5 The NHLBI GO-ESP Data

The NHLBI Framingham ESP Heart-GO is a sub-study of the Framingham Cohort
(Splansky et al. 2007) for discovering novel genes in coding regions and mecha-
nisms contributing to heart, lung, and blood disorders. This study contains exome
sequence data and harmonized phenotype variables. Our use of this project data
was approved by the Institutional Review Board of Virginia Tech. In the GO-ESP
project (dbGaP Study Accession: phs000401.v12.p10), a total of 499 Framingham
Heart Study (FHS) participants were selected for exome sequencing. Using Q/C
metrics, 458 individuals are represented in the GO-ESP exome sequencing data in
dbGaP, in which 198 are from 75 families and the rest are unrelated individuals.
Repeated measurements were obtained for the sampled individuals at multiple
time points (some individuals are from cohort 2 of the FHS with at most 8
measurements and some are from cohort 3 with at most 2 measurements). For
adult individuals (with age ≥18 at their first measurement), we consider the average
systolic blood pressure (SBP) across multiple time points as the quantitative trait.
The log-transformed variable log(SBP) was adjusted for hypotenstive medication
usage by adding a sensible constant (10 mmHg) if the corresponding patient was on
treatment (Cui et al. 2003; Tobin et al. 2005). Six variables: age, sex, body mass
index (BMI), smoking status, smoking history, and blood glucose were included
as covariates, where smoking status is measured in number of cigarettes per day,
smoking history indicates whether the patient is a current/former smoker or never
smoked up to the first measurement. The raw exome sequencing data contain
approximately 2,283,000 SNP variants on 24,484 genes. Since the primary purpose
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of this work is on gene-based association testing for rare variant analysis, we
focus on genes containing rare variants with MAF<0.05. Given the limited sample
size, we excluded genes with fewer than four rare variants from the analysis, as
these genes provide little information about SBP association. Similar filtration
procedure has been seen in Lee et al. (2012). After removing monomorphic and
duplicated variants, a total of 380,772 SNP variants on 18,864 genes remained for
analysis.

4.3 Results

The analysis results for both simulated and real data are reported in the following
subsections.

4.3.1 Assessment of Type I Error

The type I error assessment is based on 20,000 simulated data replicates for each
of the four genotypic scenarios S1–S4. In addition, we consider the following four
configurations of the LD correlations among variants:

C1 Ω is an identity matrix, indicating negligible LD.
C2 Ω is a compound symmetric covariance matrix, i.e., Ω = (1 − η)I + η11T .

Here we set η = 0.4 to represent moderate LD.
C3 Ω is compound symmetric with η = 0.7, indicating strong LD.
C4 The LD correlations are set based on 50 neighboring SNPs (located on

Chromosome 22, positions 16,990,110 to 17,567,009) in the FHS genotype
data. This configuration is used to mimic LD in real data.

Table 4.1 reports the empirical type I error rates of PC-ABT for the number
of principal components q = 1, 25, and 50. From this table, we observe that, in
all scenarios and LD configurations, the empirical type I error rates of PC-ABT
are not significantly different from the nominals when using different q’s. This
shows that PC-ABT is able to correctly control type I error, despite the number of
principal components selected. Indeed, PC-ABT with q = 1 is similar to FBT (both
collapse m variants to one however one adopts PCA whereas the other uses fixed
weights), and PC-ABT with q = m is equivalent to ABT. More complete type I error
assessment results for five testing methods: FBT, famSKAT, ABT, MONSTER, and
PC-ABT can be found in Appendix 5.
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Table 4.1 Empirical type I error of PC-ABT for the number of principal components q = 1, 25,
and 50

Scenario # of PCs
α = 0.001 α = 0.01

C1 C2 C3 C4 C1 C2 C3 C4

1 0.0007 0.0009 0.00075 0.0008 0.01085 0.00965 0.0088 0.0095

S1 25 0.0012 0.00075 0.0006 0.0009 0.0094 0.00945 0.00995 0.01015

50 0.00075 0.0009 0.00105 0.0009 0.00975 0.00975 0.0094 0.0096

1 0.0011 0.0009 0.00105 0.0007 0.0102 0.01015 0.0096 0.0096

S2 25 0.0011 0.0007 0.00110 0.0007 0.00995 0.00875 0.00925 0.01

50 0.0009 0.0007 0.001 0.0006 0.01025 0.00910 0.0096 0.0091

1 0.0013 0.0007 0.00125 0.001 0.01035 0.00985 0.0107 0.01135

S3 25 0.0011 0.0009 0.00095 0.0009 0.0091 0.00865 0.0092 0.0102

50 0.00095 0.00075 0.0009 0.0008 0.0104 0.00905 0.00875 0.0093

1 0.001 0.0014 0.0013 0.0013 0.01065 0.01105 0.01055 0.01025

S4 25 0.001 0.00115 0.0013 0.0011 0.00875 0.00985 0.01025 0.0109

50 0.0008 0.0007 0.00115 0.001 0.00955 0.00920 0.0088 0.0097

The type I error rate estimates are calculated as the proportion of p-values smaller than nominal
under the null hypothesis based on 20,000 simulated data replicates

4.3.2 Power Comparison to Other Burden Tests

We calculate the empirical power based on 1000 data replicates generated under
the alternative γ �= 0 with three different compositions of risk/protective/neutral
variants: (I) 10%/10%/80%, (II) 20%/20%/60%, and (III) 30%/30%/40%. In these
simulations, we set the LD correlations among causal variants according to configu-
ration C1 in Sect. 4.3.1, whereas for non-causal variants, the LD correlations are set
using different configurations C1–C4. To demonstrate the power of PC-ABT in an
appropriate range, the signal to noise ratio (SNR) has been controlled by adjusting
the magnitude of γ with respect to the prespecified variance component parameters
σ 2

e and σ 2
a . These magnitude settings are listed in Table 4.2.

Table 4.2 Genetic effect settings in power simulation

Scenario
Composition of risk/protective/neutral variants

I: 10%/10%/80% II: 20%/20%/60% III: 30%/30%/40%

S1 unif(0.1, 0.6) unif(0.1, 0.5) unif(0.1, 0.4)

S2 unif(0.1, 1.5) unif(0.1, 1.3) unif(0.1, 1.2)

S3 unif(0.1, 0.6) unif(0.1, 0.5) unif(0.1, 0.4)

S4 unif(0.1, 1.5) unif(0.1, 1.3) unif(0.1, 1.2)

For each scenario, different compositions of risk/protective/neutral variants,
I, II, and III are considered. The magnitude of the genetic effect for causal
variants is sampled from uniform distributions
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When calculating the power of PC-ABT, the appropriate number of principal
components is determined according to the LD configurations in the simulated
neutral variants. Clearly, higher LD among neutral variants leads to more redundant
information in genetic association hence a smaller number of principal components
should be retained. In particular, for LD configurations C1, C2, C3, and C4, we set
the number of principal components to guarantee that the total PVE in the genotype
data >95%, 85%, 80%, and 80%, respectively. The empirical power for all five
methods: FBT, famSKAT, MONSTER, ABT, and PC-ABT at nominals 0.001 and
0.01 are reported in Figs. 4.2 and 4.3.

We observe that, for the simulated data including risk/protective/neutral variants,
FBT always loses power because the genetic effects from causal variants are
cancelled or diluted. In most of the cases, MONSTER performs slightly better
than famSKAT. When the LD correlation among variants is negligible (Config-
uration C1), the four kernel-based methods, famSKAT, MONSTER, ABT, and
PC-ABT perform similarly, whereas in the presence of moderate (Configuration C2)
and strong LD (Configuration C3), ABT outperforms famSKAT and MONSTER
because the latter two use prespecified weights (for MONSTER, referring to W

not ρ) which cannot incorporate the LD correlation information. We also see
that, by retaining appropriate number of principal components, PC-ABT is able
to achieve higher power than ABT in most of the cases. The power difference
is especially highlighted for Configurations C2 and C3 where considerable cor-
relation exists among the variants. This is because the genotype data in these
configurations can be efficiently represented in the principal component space and
hence truncated PCA helps improve power by reducing the df of the null χ2

distribution.

4.3.3 Analysis of Rare Variant Association in GO-ESP Data

We focus on rare variant (defined as MAF < 0.05) association in the GO-ESP Data.
After excluding genes with fewer than four rare variants, we applied five methods:
FBT, famSKAT, ABT, MONSTER, and PC-ABT to identify genes associated with
the average systolic blood pressure. A total of 18,864 genes were analyzed (see
Sect. 4.2). Figure 4.4 presents the quantile-quantile (Q-Q) plot of the p-values
calculated by using the five methods. For FBT, famSKAT, and MONSTER, the
Madsen-Browning weights (Madsen and Browning 2009) were used. For PC-ABT,
we chose the number of principal components to guarantee that the total PVE
in the genotype data >95%. Given the sample size is relatively small, no p-
value achieved the adjusted genome-wide significance of 2.65 × 10−6 based on
Bonferroni correction. We observe that the Q-Q plots of FBT, famSKAT, and PC-
ABT were close to the 45◦ line, suggesting that the these methods worked well and
properly controlled type I error rates. The Q-Q plot of ABT was skewed downward,
indicating the conservativeness of this method, and the Q-Q plot of MONSTER had
a slightly anticonservative pattern.
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Fig. 4.2 Empirical power of FBT, famSKAT, MONSTER, ABT, and PC-ABT, at α = 0.001,
based on 1000 simulated data replicates. S1: unrelated individuals and common variants; S2:
unrelated individuals and rare variants; S3: related individuals and common variants; S4: related
individuals and rare variants; C1: negligible LD; C2: moderate LD; C3: high LD; C4: LD based on
real data; I: 10%/10%/80%; II: 20%/20%/60%; III: 30%/30%/40%

Table 4.3 reports ten top-ranked PC-ABT p-values for testing the association
between systolic blood pressure and gene regions on all 22 chromosomes in the
GO-ESP data. Comparing the p-values obtained from five methods, we see that the
FBT p-values are quite different from those obtained from kernel-based methods:
famSKAT, MONSTER, ABT, and PC-ABT. This indicates that FBT and the other
four methods evaluate different aspects of association patterns. The famSKAT
p-values show remarkable correlations with those obtained from MONSTER
(empirical correlation between − log10 pvalfamSKAT and − log10 pvalMONSTER
calculated from all 18,864 genes is 0.976), indicating that MONSTER, as a
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Fig. 4.3 Empirical power of FBT, famSKAT, MONSTER, ABT, and PC-ABT, at α = 0.01, based
on 1000 simulated data replicates. S1: unrelated individuals and common variants; S2: unrelated
individuals and rare variants; S3: related individuals and common variants; S4: related individuals
and rare variants; C1: negligible LD; C2: moderate LD; C3: high LD; C4: LD based on real data;
I: 10%/10%/80%; II: 20%/20%/60%; III: 30%/30%/40%

unified method formed by combining burden and kernel tests, tends to weight
more on its kernel component rather than burden component. With the number
of principal components chosen according to PVE >95%, there are 17 genes
with p-values <10−3 by PC-ABT but only 3 by ABT. Among the top-ranked
genes, ALOX12 has been found involved in the regulation of key oxylipin
metabolic genes in circulating peripheral blood mononuclear cells (Berthelot
et al. 2015) and in angiotensin-II induced signaling in vascular smooth muscle
cells (VSMCs) (Weisinger et al. 2007). THBS1 (TSP1) is an important regulator
of VSMC physiology. This gene has been found to significantly alter the
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expression of microRNAs in VSMCs, which indicates possible mechanism by
which THBS1 contributes to atherosclerosis and intimal hyperplasia (Maier et al.
2016).

Table 4.3 Analysis of the systolic blood pressure data from GO-ESP using different tests: FBT,
famSKAT, ABT, MONSTER, and PC-ABT

Gene Chr
# of P -value calculated by using

SNPs FBT famSKAT MONSTER ABT PC-ABT

ALOX12 17 30 8.72 × 10−2 3.77 × 10−2 3.61 × 10−2 6.99 × 10−4 1.94 × 10−5

RIPK4 21 37 1.15 × 10−1 1.15 × 10−1 1.25 × 10−1 2.30 × 10−2 1.80 × 10−4

XKR5 8 24 9.61 × 10−4 6.30 × 10−3 6.54 × 10−3 2.26 × 10−2 2.30 × 10−4

JAK3 19 38 2.26 × 10−4 6.03 × 10−6 4.37 × 10−6 6.80 × 10−3 3.56 × 10−4

TSGA13 7 11 7.32 × 10−1 1.75 × 10−3 1.02 × 10−3 2.32 × 10−3 3.58 × 10−4

CARNS1 11 18 1.62 × 10−1 2.56 × 10−2 2.24 × 10−2 1.31 × 10−2 5.18 × 10−4

THBS1 15 36 4.55 × 10−1 7.75 × 10−2 7.62 × 10−2 2.55 × 10−2 5.45 × 10−4

CHODL 21 9 3.26 × 10−1 4.79 × 10−3 4.88 × 10−3 2.04 × 10−2 6.54 × 10−4

SMAP2 1 14 2.88 × 10−1 7.24 × 10−2 7.53 × 10−2 3.57 × 10−3 6.74 × 10−4

OR51E2 11 8 9.74 × 10−1 9.69 × 10−3 8.43 × 10−3 3.43 × 10−3 7.42 × 10−4

Systolic blood pressure was averaged across multiple time points, log-transformed, and adjusted
for age, sex, BMI, smoking status, smoking history, and glucose. For FBT, famSKAT, and
MONSTER, the Madsen-Browning weights were used. For PC-ABT, the number of principal
components was chosen to guarantee that the total percent of variance explained in the genotype
data >95%

4.4 Discussion

Gene-based association testing can be constructed by pooling a set of univariate
tests on individual variants within gene region. A straightforward approach is by
using burden tests which collapse multiple variants into a single genetic burden
score. In order to achieve a powerful gene-based test, two important issues during
collapsing need to be taken into account: (1) The weights should be data-driven
instead of prescribed so as to accommodate the presence of both risk and protective
variants; (2) Since the effective number of tests per gene depends highly on the
LD correlation among variants, it is crucial to appropriately adjust the degree
of freedom of the null distribution in the test to avoid possible power loss. To
address these two issues, we propose PC-ABT, a novel principal-component-based
adaptive-weight burden test, which incorporates the complex genotypic correlations
to improve power. Compared with other multiple variant tests, PC-ABT is advan-
tageous in the following aspects: First, it uses a retrospective model to directly
characterize genotypic correlations caused by both familial relation and LD, thereby
overcoming the deficiency of existing prospective-model-based tests. Moreover,
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Fig. 4.4 Q-Q plots of the observed versus expected p-values for the GO-ESP exome sequence
data. The x axis represents − log10(expected p-values), and the y axis represents − log10(observed
p-values). A total of 18,864 genes with at least four rare variants were tested for associations
with systolic blood pressure using the GO-ESP data, based on five methods: FBT, famSKAT,
MONSTER, ABT, and PC-ABT
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modeling phenotypes as fixed is also theoretically appealing because it makes fewer
assumptions about phenotypic covariance structure (Price et al. 2011) and is more
convenient to incorporate partially missing data in genotypes (Jakobsdottir and
McPeek 2013; McPeek 2012; Thornton and McPeek 2007). Second, by maximizing
the fixed-weight burden statistic, PC-ABT is able to assign weights that are adaptive
to the direction of individual variant effects. Third, PC-ABT represents the LD
covariance matrix by an efficient way through principal component decomposition,
which reduces the df of the null distribution and eventually helps achieve increased
power.

We demonstrate the performance of PC-ABT in terms of type I error and empiri-
cal power through extensive simulations based on different genotypic scenarios and
LD configurations. Our simulation results show that, PC-ABT correctly controls
the type I error, and is generally more powerful than other multiple variant tests
under various simulation settings. We note that since PC-ABT and ABT are based
on burden tests using adaptive weights, they essentially belong to the kernel test
category. This has been shown in Sect. 4.2.2 as a generalization of the result
by Derkach et al. (2013) and Li and Lagakos (2006). Special attention needs to
be paid on the null distributions of ABT and PC-ABT statistics. As clarified in
Sect. 4.2.2, when condition (4.3) for deriving FBT (hence ABT) is satisfied, i.e.,
when the covariance structure in genotype data follows a kronecker product form,
and the LD correlation matrix R is known, the ABT statistic has a null distribution
of χ2

m (see Appendices 1 and 4 for justification), and hence the PC-ABT null
distribution is χ2

q . However, there are cases in real data applications or simulations
where condition (4.3) may not be satisfied (e.g., the correlations caused by LD and
sample relatedness are not separable). Therefore in practice, we suggest to use the
mixture of χ2

1 as the null distribution, which follows by treating ABT as a special
famSKAT test with weights W #. Correspondingly, the null distribution of PC-ABT
statistic is also mixture of χ2

1 with the first q λi’s being non-trivial, as noted in
Sect. 4.2.3.

One critical problem remains in choosing the appropriate number of PCs when
applying PC-ABT. Clearly if we keep all PCs in analysis, then PC-ABT is equivalent
to ABT. In practice the number of PCs can be chosen such that the total percent
of variance explained exceeds some threshold. This threshold may be determined
depending on the (estimated) LD levels in the genotype data: the higher LD, the
smaller threshold would be used.

Appendix 1: Description of MASTOR and Theoretical
Justification of the Null Distribution of SABT

MASTOR (Jakobsdottir and McPeek 2013) is a retrospective, quasi-likelihood score
test for testing single-variant association with a quantitative trait in samples with
related individuals. Considering a biallelic genetic variant X of interest (an example



80 X. Wu

in the general setting described in Sect. 4.2.1 is to let X = Gj , 1 ≤ j ≤ m), the
MASTOR statistic (for complete data) takes the form

SMAS = (V T X)2

(V T ΦV )̂σ 2
X

.

In this expression, V = Σ̂
−1
0 (Y − Zβ̂0) is the transformed phenotypic residual

obtained from the null model Y = Zβ0+ε, ε ∼ N(0,Σ0), where β0 represents the
coefficient of regressing quantitative trait Y on non-genetic covariates Z, and Σ0 is
the trait covariance matrix under the null, usually with a variance component form
σ 2

e I + σ 2
a Φ. The variance of variant X is denoted by σ 2

X. When Hardy-Weinberg
equilibrium is assumed for this variant, σ 2

X can be estimated by σ̂ 2
X = p̂(1 − p̂)/2,

where p̂ = (1T Φ−11)−11T Φ−1X is the best linear unbiased estimator (McPeek
et al. 2004) of the allele frequency p of X, and 1 denotes a vector with every element
equal to 1.

Now in Sect. 4.2.2, we have obtained the ABT statistic

SABT = V T G(D̂RD̂)−1GT V

V T ΦV
.

Let G̃ = G(D̂RD̂)−1/2 be a decorrelated version of the genotype matrix in which
the across-column covariance has been transformed to identity, and let G̃j be the
j th column of G̃. By linear algebra,

SABT =
m∑

j=1

(
V T G̃j

)2

V T ΦV
.

This is essentially the summation of m independent MASTOR statistics (in observ-
ing the uncorrelatedness and joint normality of V T G̃j ), each formulated from a
transformed variant G̃j (note the variance estimate is 1 after transformation). Hence
SABT follows χ2

m distribution under the null hypothesis.

Appendix 2: Additional Simulation Results Show
That the Data-Driven Weights W ∗ Is Adaptive to the Direction
of True Genetic Effects

In order to understand how the data-driven weights W ∗ (defined in Eq. (4.5) of the
main text) help gain power in association testing, we compare the signs of W ∗ to
those of the genetic effects γ using the simulated data sets in the power analysis.
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Figure 4.5, Panels a–d, present boxplots of the weights W ∗ based on 5000 simulated
data replicates in Scenario S2 with genetic effect Setting III, for LD Configurations
C1–C4, respectively. We note that, in this setting, the first 30% components of γ are
set to be positive, the next 30% are negative, and the remaining 40% are zeros. The
boxplots clearly demonstrates that on average, the weights W ∗ is able to track the
direction of true genetic effects, thus result in stronger association on the weighted
sum genetic score.

Appendix 3: Additional Simulation Results Show the Relation
Between the ABT Statistic and the famSKAT Statistic

We show in Fig. 4.6, Panels a–d, the scatter plots of the numerator of the ABT
statistic vs. the famSKAT statistic based on 5000 simulated data replicates
in Scenario S3 with genetic effect Setting II, for LD Configurations C1–C4,
respectively. We observe that, when the LD correlation is negligible (Panel a),
the numerator of the ABT statistic behaves similarly as the famSKAT statistic
because in Eq. (4.6) of the main text, (D̂RD̂)−1 is equivalent to the Madsen-
Browning weights used in calculating the famSKAT statistic. As the LD correlation
increases (Panels b, c, and d), the two statistics become less and less consistent
because in calculating the famSKAT statistic, the Madsen-Browning weights
only depend on individual variants, whereas in calculating the ABT statistic,
the weight of an individual variant statistic is also affected by other variants on
linked sites, as seen from the weight matrix (D̂RD̂)−1 in Eq. (4.6) of the main
text.

Appendix 4: Additional Simulation Results to Validate
the Asymptotic Null Distribution of SPC−ABT via Permutation
Based Approach

We perform 1000 permutations to the simulated data under Scenario S1 (unrelated
individuals and common variants) and configuration C3 (strong LD with η = 0.7).
Figure 4.7 shows the asymptotic null distributions of SPC−ABT for the number of
principal components q = 1, 25, and 50, together with the corresponding empirical
CDFs obtained via permutation. Note that two different asymptotic distributions are
shown in this figure, one is χ2

q , the other is a mixture of χ2
1 distribution, obtained by

applying adaptive weights W # in the famSKAT method. In Fig. 4.8, panels a, b, and
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Fig. 4.5 Boxplot of W ∗ based on 5000 simulated data replicates in Scenario S2 with genetic
effect Setting III. The adaptive weights of risk, protective, and neutral variants are marked with
red, green, and white color, respectively. Panel a: Configuration C1; Panel b: Configuration C2;
Panel c: Configuration C3; Panel d: Configuration C4

c, we compare in log scale the empirical p-values via permutation based approach
against the p-values from the asymptotic distribution (mixture of χ2

1 ) for the number
of principal components q = 1, 25, and 50, respectively. Panel d of Fig. 4.8 further
reports the correlation between − log10(empirical p-values via permutation) and
− log10(p-values based on the asymptotic distribution) for the number of principal
components q = 1, 2, · · · , 50.
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Fig. 4.6 Comparison between Sf amSKAT and the numerator of SABT based on 5000 simulated
data replicates in Scenario S3 with genetic effect Setting II. Panel a: Configuration C1; Panel b:
Configuration C2; Panel c: Configuration C3; Panel d: Configuration C4

Appendix 5: Additional Simulation Results for Type I Error
Evaluation

We provide additional simulation results for type I error evaluation. Table 4.4 lists
the empirical type I error rates of five testing methods: FBT, famSKAT, ABT,
MONSTER, and PC-ABT for the combinations of four scenarios (S1, S2, S3, and
S4) and four LD configurations (C1, C2, C3, and C4), based on 20,000 simulated
data replicates. Figures 4.9, 4.10, 4.11, and 4.12 show the Q-Q plots of the PC-ABT
p-values under the null hypothesis for Scenarios S1, S2, S3, and S4, respectively.
The number of principal components is chosen to guarantee that the total percent
variance explained (PVE) >90%.
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Chapter 5
Inference of Gene Regulatory Network
Through Adaptive Dynamic Bayesian
Network Modeling

Yaqun Wang, Scott A. Berceli, Marc Garbey, and Rongling Wu

5.1 Background

Thousands of genes on the genome encode the products essential for cell division
and differentiation toward the phenotypic formation of organisms. How the prop-
erties of these products, including abundance, mutual interactions, and temporal
pattern, determine the process of life is governed by regulatory networks of genes.
A gene regulatory network (GRN) is formed by a set of genes in a cell which
interact with each other through their RNA and protein products and regulated by
the transcription factors that activate the expression of particular genes (Brazhnik
et al. 2002). Knowledge about the structure and organization of GRN can help us
identify the causal regulations involved in metabolic and physiological processes
within cells. With the availability of high-throughput data, increasing efforts have
been made to reconstruct GRN by developing either model based or machine
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learning based approaches (Barabasi et al. 2011; Zhu et al. 2012; Zhang et al. 2013;
Wang et al. 2013). These approaches have played an important role in referring the
complex regulatory mechanisms that underlie biological functions and phenotypic
characteristics (Gerstein et al. 2012; Hurley et al. 2012; Ortiz-Gutiérrez et al.
2015). To better separate direct regulations from indirect ones among genes within
a GRN, Zhang et al. (2015) proposed a concept of conditional mutual inclusive
information and implemented it into a computer algorithm for quantifying the
mutual information between two genes given a third one.

Given that life is a dynamic process (de Lichtenberg et al. 2005), a considerable
body of modeling studies has begun to reconstruct dynamic GRN from expression
data measured across a time and space scale (Li et al. 2011). The formation of
any biological characteristics activated by developmental signals is contingent on
dynamic changes of gene expression. For example, in flowering plants, embryo-
genesis undergoes three distinct phases, asymmetric cell divisions to establish
apical–basal polarity (early phase), the initiation of major organs and primordia
(intermediate phase) and the mature embryo (late phase) (De Smet et al. 2010).
By genome-wide profiling of gene expression during a complete developmental
process from the zygote to the mature embryo in Arabidopsis thaliana, Xiang et al.
(2011) constructed stage-specific regulatory networks, which provide an important
foundation for understanding the dynamic pattern of pathway interactions during
embryogenesis. The application of stage-specific regulatory networks to study the
genetic underpinnings of trait development has now become a routine approach in
a wide range of biological areas from plant biology to cancer biology (Zhang et al.
2015; Yosef et al. 2013; Kourou et al. 2015).

Approaches for reconstructing dynamic GRN from time course gene expression
data have been well developed, including dynamic Boolean networks and proba-
bilistic Boolean networks (Akutsu et al. 2000; Martin et al. 2007) and dynamic
Bayesian networks (Murphy and Mian 1999; Friedman et al. 2000; Zou and Conzen
2005; Ogami et al. 2012; Godsey 2013; Kim et al. 2003) among others. By
integrating expression data measured at multiple time points, these approaches have
been used to infer the temporal change of the structure and topological features of
multiple interactions within genomic networks during a period of biological process.
However, they may suffer the limitation of being unable to manipulate sparse,
unevenly-spaced expression data which are quite popular in practice. On the other
hand, there has been increasing recognition of using multiple different experiments
to reconstruct a comprehensive GRN, in which data were rarely measured at the
same schedule (Hecker et al. 2009; Greenfield et al. 2010). As a consequence, the
statistical issue of simultaneous use and modeling of irregular data from different
experiments should be addressed.

In this article, we present and validate a computational procedure for dynamic
GRN reconstruction from sparse, irregular gene expression data by interpolating
those missing points in time course measurements. The idea of interpolation
used to model GRN is not new. Wessels et al. (2001) and Bansal et al. (2006)
proposed cubic interpolation for GRN modeling. Yu et al. (2004) devised a linear
interpolation method for dynamic Bayesian network construction. By implementing
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a parametric (such as Fourier series approximation) or nonparametric (such as
Legendre orthogonal polynomials) function whose optimal order is determined
by information criteria, our interpolation approach is adaptive, assuring the best
function to fit a given expression dataset and, thus, capturing dynamic features of
genes precisely. Different from the previous work, we integrate functional clustering
(Wang et al. 2011) into the DBN modeling framework by which to infer GRN
based on functional clusters of genes. Functional clustering classifies gene profiles
into distinct categories according to their similarity, and estimates a functional
nonlinear curve for the mean dynamic expression of genes within the same cluster.
By interpolating missing data based on the functional curve, an evenly-spaced,
regular time course data can be obtained from which DBN is used to infer GRN
among gene clusters. Our approach can handle any dynamic gene expression data,
regardless of its sparsity and irregularity, thereby providing a broader application
in computational biology. In addition, the clustering method jointly model gene
expression from multiple environments and make it possible to compare regulation
effects between genes in distinct conditions. Our model focuses on microarray gene
expression data and has been implemented in R combining with Matlab. The codes
are available on website https://sites.google.com/site/yxw179/software.

5.2 Methods

5.2.1 Dynamic Bayesian Network Modeling

Consider a hypothetical gene network (Fig. 5.1; Brazhnik et al. 2002), in which
three different levels of regulation exist: genes, proteins and metabolites. Here we
assume that genes do not directly affect each other but interact through the action
of their specific products, proteins, metabolites, or protein-metabolite complexes.
Gene 2 is regulated by the protein product of the gene 1 and by the complex 3–4
formed by the products of gene 3 and gene 4. The regulation of gene 4 is made
by the metabolite 2 which in turn is produced by protein 2. Based on these webs of
regulation, we can construct a gene network which describes how one gene interacts
with others (indicated by dashed lines in Fig. 5.1).

A Bayesian network (BN) approach derived from the combination of graph
theory and probability theory can be used to yield topologies or qualitative networks
of interactions between the genes. A BN is considered as a directed acyclic graph
G(X,E), where X is a set of nodes, xi’s, which are random variables representing
genes’ expression, and E is a set of edges which indicate the dependencies between
nodes (Aluru 2005). The nodes follow conditional probability mass function
P(xi|Pa(xi)), where Pa(xi) is the set of parents of node xi. The Markov assumption
is encoded implicitly in a BN; i.e., each node is independent of its non-descendants
given its parents. Therefore, the joint distribution of all nodes can be decomposed
down into the conditional distributions of the nodes as

https://sites.google.com/site/yxw179/software
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Gene Space

Gene 2 Gene 4

Gene 1 Gene 3

Protein Space

Protein 2 Complex 3 4

Protein 1 Protein 3 Protein 4

Metabolic Space

Metabolite 1 Metabolite 2

Fig. 5.1 A hypothetical gene network, modified from Brazhnik et al. (2002). It shows multiple
levels of regulation by genes, proteins and metabolites. Direct interaction is indicated by solid
lines. The dashed lines in the gene level indicate regulation between genes which is an abstraction
of interactions over the three levels

P (x1, x2, · · · , xn) =
n∏

i=1

P (xi |Pa (xi)) . (5.1)

Figure 5.2a shows a sample of BN, under the Markov assumption, we have

P (A,B,C,D,E) = P(A)P (B)P (C|A,B) P (D|B)P (E|C) (5.2)

To handle dynamic gene expression, dynamic Bayesian network (DBN) (Murphy
and Mian 1999; Friedman et al. 1998) is developed by taking into account the time
components, i.e., two copies of the same BN are used to model a state transition of
gene network from time t to time t+1. In a DBN as shown in Fig. 5.2b, the state of
A is affected by B and itself but the state at a previous time.
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Fig. 5.2 A diagrammatical construction of gene regulatory networks. (a) In a Bayesian network,
the Markov assumption is encoded implicitly. For example, Given its parents A and B, C is
independent of D. (b) In a dynamic Bayesian network, the time component is taken into account
such that the state of A is affected by B and itself but the state at a previous time

The DBN approach for reconstruction of GRN based on gene expression data
includes the following steps (Zou and Conzen 2005): (1) Discretizing the expression
levels. The expression levels for all genes are discretized as 1 (down-regulation) or
2 (up-regulation) by using a cut-off value of fold-change comparing with a baseline
expression level. (2) Realigning expression levels for potential regulator and target
genes. Expression levels for a potential regulator and target genes will be realigned
according to the transcriptional time lag which is defined as the difference between
the time when the regulator gene to encode its protein product and the time when
the transcription of the target gene to be affected by this regulator protein. Suppose
we have two hypothetical genes, gene A and its potential target gene B, and their
expression levels are measured at six evenly spaced time points t1–t6, expressed
as At1 , . . . , At6 and Bt1 , . . . , Bt6 , respectively (Fig. 5.3a). If we decide the time
lag is one time unit, then At1 will be aligned with Bt2 , At2 will be aligned with
Bt3 and so on. (3) Determining regulators by calculating conditional probabilities
and marginal likelihood scores. In this step, conditional probabilities (target gene
give potential regulators) and marginal likelihood scores will be calculated using
the realigned expression levels. The potential regulators which have the highest
marginal likelihood score will be selected as regulators.

We follow the three steps of DBN as described above on these two genes to
discretize the expression levels (using onefold as the cut-off), realign them (using
one time unit as the time lag) and calculate the conditional probabilities of gene
B with respect to its potential regulator gene A (Table 5.1). Intuitively, since
P(B = 1|A = 1) = 1 and P(B = 2|A = 2) = 0.67, we would consider gene A
as a regulator of gene B. The basic condition of using DBN is that it requires the
expression levels measured at evenly spaced time points because the time points are
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Fig. 5.3 Time courses of gene expression for two hypothetical genes A and B. (a) Original
expression levels measured at six time points evenly. (b) Expression levels of both genes without
measurements at time t4 and t5. For gene B, the information is misleading since it seems that it has
no up-regulation at all. (c) Estimated expression levels for gene B at time t4 and t5 according to the
trend of time t1–t3

realigned one by one in step 2. If this condition was not satisfied, two issues would
arise.

Suppose we do not measure the expression levels of gene A and B at time t4 and
t5 (Fig. 5.3b). This will lead to two problems as following: (1) Mismatching. In this
situation, we could still align At1 with Bt2 and At2 with Bt3 , but we cannot align At3

with Bt4 because it is missing. We cannot align At3 with Bt6 either since the time
period between them is much different from that between At1 and Bt2 . (2) Losing
information. Since expression levels at time t4 and t5 are missing, the information
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Table 5.1 Three steps for
DBN modeling

(1) Discretized expression levels for Gene A and B
t1 t2 t3 t4 t5 t6

Gene A 1 2 2 2 1 1
Gene B 1 1 1 2 2 1

(2) Realigned expression levels for Gene A and B
t1(2) t2(3) t3(4) t4(5) t5(6)

Gene A 1 2 2 2 1
Gene B 1 1 2 2 1

(3) Conditional probabilities of gene B given gene A
A = 1 A = 2

B = 1 1 0.33
B = 2 0 0.67

of gene B is misleading since it seems that it has no up-regulation at all. If we still
apply DBN, we would only have information from two pairs: At1 with Bt2 and At2

with Bt3 . With conditional probabilities of P(B = 1|A = 1) = 1, P(B = 1|A = 2) = 1
and P(B = 2|A = 2) = 0, it is difficult to decide whether gene A is a regulator of
gene B.

5.2.2 Interpolation by a Parametric or Nonparametric
Function

A natural way to solve the above problems is to restore the information missed at
time t4 and t5. Indeed, this can be done if sufficient data is observed. For example,
for gene B, we would expect that up-regulation should take place between time t3
and t6, as shown in Fig. 5.3c by a dashed line, if the expression level would develop
following the trend of time t1–t3. If this dashed line could be estimated as a function
of time, it is straightforward to interpolate the values of expression levels at time
t4 and t5 (as marked in red in Fig. 5.3c) based on such a function. However, if
this function is estimated from time-dependent observations of a single gene, we
may not eliminate the effect of measurement noises. Since many genes may share
a similar biological function, they could be classified into the same group with an
indistinguishable time course expression pattern. These genes can be put together to
provide a more precise estimation of functional curve.

Functional clustering, aimed to group those genes of similar function, can serve
as a tool to estimate functional curves. Kim et al. (2008, 2010) implemented a
Fourier series approximation to model periodic patterns of gene expression, whereas
nonparametric approaches based on Functional Data Analysis (FNDA) (Song et al.
2007), B-splines (Luan and Li 2003) and Legendre Orthogonal Polynomials (LOP)
(Wang et al. 2011) were developed to characterize time-varying expression levels
when no explicit parametric function can be used. These approaches consider the
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mean of a cluster as a representative gene, thereby providing a more stable and
accurate interpolation of missing points. In this section, we present a procedure for
identifying gene regulatory network based on time course gene expression data in
the four following steps:

• Step 1: Clustering genes into different groups by parametric or nonparametric
functional clustering and estimating the mean function for each cluster;

• Step 2: Interpolating missing values in uneven intervals to obtain evenly spaced
measurements;

• Step 3: Constructing the GRN using the DBN model to identify the effects of
regulation due to interactions between clusters;

• Step 4: Analyzing gene functions by Gene Ontology to explore the biological
relevance of gene clusters in the reconstructed regulatory network.

Step 1. Clustering Genes into Different Groups Consider a high-dimensional
set of genes (say n) measured at multiple time points from different experiments.
Thus, it is possible that different genes are measured with different time schedules.
For a particular process, such as embryogenesis, gene expression levels may be
measured more densely in an early stage than late stage, making the time intervals
of measurement unevenly-spaced. Overall, we have a sparse, irregular time course
gene expression data for GRN reconstruction.

Let yi = (yi(t1), . . . , yi(tTi
)) denote a vector of expression levels for gene i (i= 1,

. . . , n) measured at time points (t1, . . . , tTi
) in a experiment. Note that time points

are gene-specific. We assume that these n genes can be classified into m clusters
because of their similarity and differences. This can be expressed by a mixture
model in which there are m components. Each gene arises from one and only one of
the m possible components. We further assume that yi is a realization of a mixture
of m multivariate normal distributions with the density function specified as

yi ∼ fi

(
yi;ωi ,μi ,�i

) = ω1|if1|i
(
yi;μ1|i ,�i

)+ · · · + ωm|ifm|i
(
yi;μm|i ,�i

)

(5.3)

where ωi = (ω1|i, . . . , ωm|i) is a vector of non-negative proportions for the m
possible clusters that sum to unity and fj|i(yi; μj|i, �i) denotes the density function
for gene cluster j (j = 1, . . . , m), a multivariate normal with mean vector μj|i = (μj|i
(t1), . . . , μj|i (tTi

)) and the common Ti × Ti covariance matrix �i. Let μi = (μ1|i,
. . . , μJ|i) contain the cluster-specific mean vectors for gene i.

Parametric functional clustering implements an explicit mathematical equation
to approximate time-dependent expression. If the genes are periodically regulated
(Rustici et al. 2004), Kim et al. (2008, 2010) used the Fourier series function,
showing adequate power to capture the temporal expression pattern of oscillating
genes. In the case where no explicit mathematical equation is available, Wang et al.
(2011) deployed a flexible approach based on LOP to model gene-specific function
curves for each cluster. Both parametric and nonparametric approaches allow
handling the sparsity of time points in gene expression data. Also, by determining
the best order of Fourier series or LOP by information criteria, both approaches can



5 Inference of Gene Regulatory Network Through Adaptive Dynamic. . . 99

provide an optimal function for modeling time course expression levels for each
cluster from a given dataset.

Increasing power of functional clustering also results from the parsimonious
modeling of the covariance structure by a few parameters. Parametric, nonparamet-
ric or semiparametric approaches have been used to model the covariance matrix
�i, each with specific strengths and weakness. Li et al. (2010) proposed a general
parametric approach for covariance modeling through a general autoregressive
moving-average process of order (p, q), the so-called ARMA(p, q). These authors
derived the EM algorithm to estimate the ARMA parameters that model the
covariance structure within a mixture model framework. The orders p and q of the
ARMA process that provide the best fit are identified by model selection criteria.

To integrate data from multiple expression experiments, the model proposed by
Wang et al. (2011) can be applied. The authors consider gene expression patterns
of multiple experiments jointly and group genes into clusters based on the joint
patterns. Consequently, after clustering, a gene will have the same cluster label for
multiple experiments and the same number of clusters will be obtained for each
experiment. The optimal number of clusters is determined by Bayesian information
criterion (BIC). In Step 3, network inference is conducted on the clustering results
from this model and enables one to compare gene regulation effects in distinct
environments.

Step 2. Interpolating Missing Values in Uneven Intervals For DBN modeling,
we interpolate missing data adaptively to satisfy the requirement of evenly spaced
intervals. The mean vectors for each cluster which can be expressed as a function

Fig. 5.4 Time courses of gene expression for four hypothetical clusters. (a) Originally, Their
expression levels measured at unevenly spaced time points t1, t2, t3 and t6, the information at
t4 and t5 is missing. (b) After interpolation based on LOP, all of these gene clusters have evenly
spaced time course measurements of expression levels
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of time have been obtained from step 1. Here, as an example, we describe step 2 by
using LOP-based nonparametric functional clustering.

Suppose we have four hypothetical gene clusters A, B, C and D whose expression
levels are measured at unevenly spaced time points t1, t2, t3 and t6 (Fig. 5.4a), rather
than six evenly spaced time points t1–t6 as required in Zou and Conzen (2005).
Let uA, . . . , uD denote the base means of these clusters, respectively. According
to Wang et al. (2011), their mean expression vectors μA, . . . , μD are determined
by MuA, . . . , MuD, where M is a (4 × r) matrix constructed by the LOP (with
r being the optimal order of LOP). For example, the mean vector of cluster A is
expressed as

μA =

⎛
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where μA1 , μA2 , μA3 and μA6 are the expression values of cluster A at time points
t1, t2, t3 and t6, respectively; and t∗1, t∗2, t∗3 and t∗6 are the normalized time points
using the formula:

t∗ = −1 + 2 (t − t1)

t6 − t1
(5.5)

To interpolate expression values at t4 and t5, we first calculate the rescaled time
values t∗4 and t∗5 and then insert two rows corresponding to t4 and t5 into matrix M,
obtaining the interpolated μA, denoted as μ̂A, by the following equation:
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Similarly, we can have μ̂B , μ̂C and μ̂D . As shown in Fig. 5.4b, all of these gene
clusters have evenly spaced time course measurement of gene expression.

Step 3. Constructing the GRN Using the DBN Model We follow the improved
DBN approach by Zou and Conzen (2005) to take advantage of its high efficiency
and accuracy. According to these authors, only those genes are considered as
potential regulators when they have either earlier or simultaneous expression
changes (up- or down-regulation) compared to the targets. The up- and down-
regulation are defined as ≥1.2-fold and ≤0.7-fold, relative to the baseline gene
expression. These relatively modest cutoffs are used to avoid missing any genes
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with potentially important changes in gene expression although these changes could
be small. Per these cutoffs, we determine the initial regulation time points of gene
clusters A, . . . , D, after which the regulators of genes that change later in expression
are viewed as those genes that change earlier or simultaneously. As shown in Fig.
5.4b, cluster A has an initial up-regulation at t2 while cluster B is also initially
regulated at t2 but with down-regulation. Cluster C and D initially change expression
at time t3 and t4, respectively. Since cluster A, B and C each have an earlier change in
expression than cluster D, the former is selected as potential regulators of the latter.
Similarly, we can decide potential regulators, cluster A for cluster B and cluster A
and B for cluster C.

Based on the determined initial regulation time points, we could also decide
the transcriptional time lag between regulator and target genes. We calculate the
time difference between the initial regulation time points for a potential regulator
and its target gene, which is considered as a more accurate estimation of the
corresponding transcriptional time lag (Zou and Conzen 2005). In this way the
time lag between cluster D and its potential regulators cluster C is estimated as
one unit. Similarly, the time lags between cluster D and B, D and A are estimated
as two time units. According to the time lags between potential regulators and
its target clusters, potential regulators are grouped into different categories with
regulators in a category of the same time lag in terms of the target clusters. The
reason for this grouping is that different regulators may have different time frames
when interacting with targets. By grouping we analyze regulators separately, with
a possibility to identify co-regulators. As an example, cluster D has two groups of
potential regulators; one group, including cluster A and B, has the time lag of two
time units, and the other group, including cluster C, has the time lag of one time
unit. It is here possible that cluster A and B are the co-regulators of cluster D.

After determining potential regulators for each cluster and calculating the corre-
sponding time lags, the DBN framework developed by Murphy and Mian (1999), is
applied for network inference. Though continuous data can be directly analyzed by
DBN, the assumptions of continuous DBN may not be satisfied in certain domain.
In particular, continuous models assume additive influence of multiple regulators
on a target, but it may not be a case in gene regulation. Discrete network is chosen
for our data set by discretizing continuous gene expression data. Two categories are
used for discretization with onefold as a cutoff, instead of ≥1.2-fold and ≤0.7-fold
since the relative increase or decrease in expression levels is more important than
the absolute expression value during the inference of relationships between potential
regulators and targets. Specifically, “2” is assigned if the expression level is equal to
or higher than onefold; otherwise “1” is assigned. The discretized expression levels
for cluster A, B, C and D are shown in Table 5.2.

Another import step for the DBN algorithm is to align the expression levels for
potential regulators and targets according to the relevant transcriptional time lags
between them. Suppose the time lag between a regulator and its target is �t. Then
the expression level of the regulators at time t1 will be aligned with the expression
level of the target at t1 + �t. In this way, an (R × K) matrix will be constructed
for the regulators and targets, where R is the number of potential regulators with
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Table 5.2 Discretized
expression levels for gene
cluster A, B, C and D

t1 t2 t3 t4 t5 t6
Cluster A 1 2 2 2 2 2
Cluster B 2 1 1 1 2 1
Cluster C 1 2 2 2 2 1
Custer D 1 1 2 2 2 2

the same time lag plus one which represents the target, and K is the number of time
points between t1 + �t and t6. As an example, for cluster D, we have calculated its
time lag with its potential regulator, cluster A, which is two time units. Therefore,
we align the expression level of cluster A at t1 with the expression level of cluster D
at t3, obtaining a (2 × 4) matrix expressed as

(
1 2 2 2
2 2 2 2

)

(5.7)

where the first row is for cluster A and second row for cluster D.
As seen from above, the potential regulators of cluster D have been classified into

two groups according to their time lags: one group of cluster A and B with two time
units as the time lag and another group of cluster C with one time unit as the time
lag. To identify all possible co-regulators of cluster D, all subsets of each group are
generated and the relationships between all subsets of co-regulators are examined.
For the first group, the possible subsets are [cluster A], [cluster B] and [cluster A,
cluster B] and the subset of second group is [cluster C]. For each subset, a matrix
like (5.7) is constructed on the basis of the corresponding time lags and number
of regulators. We then calculate the conditional probabilities of target clusters with
respect to their regulators based on the matrix containing aligned expression levels.
For each target cluster, we calculated marginal likelihood scores for every subset
of potential regulators using their conditional probabilities. The one of the highest
score is selected as the final regulator for this target. The conditional probabilities
of cluster D given cluster A are shown in Table 5.1.

We use the algorithm proposed by Murphy and Mian (1999) to make DBN
inference. The idea of this algorithm is to select the optimal model that maximizes
the following conditional probability,

P (G|D) = P (D|G)P (G)

P (D)
, (5.8)

where G denotes the network structure and D denotes the observed data.

Step 4. Analyzing Gene Functions Genes with a similar profile pattern in each
cluster usually share the common biological functions. Gene ontology (GO) analysis
enable us to figure out what function is shared by genes in a cluster. Therefore,
based on the clustering results in step 1 and regulation network established in
step 2, we perform function analysis in this step. Different from traditional clus-
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tering approaches, Wang et al.’s (2011) functional clustering allows environment-
dependent expression plasticity to be clustered, producing results directly related to
the mechanistic machineries of gene expression induced by environmental signals.
Through GO analysis, we can shed more light on the regulation mechanisms
underlying cellular and physiological processes.

5.3 Results and Discussion

5.3.1 Real Data Analyses

We demonstrated the application of the proposed procedure for GRN reconstruction
by analyzing a real data set of time course gene expression from the surgery study
of a rabbit bilateral vein graft construct (Fernandez et al. 2004; Jiang et al. 2004).
The study involved two different environments, created by two distinct blood flows
(differing by sixfold) in vein grafts for New Zealand White rabbits (weighing 3.0–
3.5 kg) resulting from the treatment of bilateral jugular vein interposition grafting
and unilateral distal carotid artery branch ligation, respectively. With a segment of
the vein retained at the time of implantation for baseline morphometric measure-
ments, vein grafts were harvested at 2 h, 28, 90 and 180 days after implantation.
Expression of 14,958 genes was recorded for each of these time points under both of
treatments, high flow and low flow. By combining the dynamic expression data from
the two treatments, Wang et al. (2011) used the LOP-based functional clustering
model to identify eight gene clusters jointly for both treatments, denoted as A
(0.0116), B (0.1023), C (0.3354), D (0.3831), E (0.1134), F (0.0359), G (0.0100)
and H (0.0083), where the numbers in parentheses are the proportions of genes
belonging to a particular cluster. These clusters each display different patterns of
environment-induced changes in gene expression trajectories. We treated the mean
expression curve for each cluster as a representative profile. Since expression values
were not measured at evenly spaced time intervals, our adaptive DBN model was
used to reconstruct GRN, respectively, for high and low flows.

Figure 5.5 illustrates three different networks of gene expression under high
and low flows and the difference of gene expression between the two flows. It is
interesting to see that the structure of GRN is different dramatically between the
two flows, although with some extent of similarity. Under high flow, cluster A is
regulated jointly by cluster F and G. Meanwhile, cluster F and G are regulated by
cluster H and B respectively (Fig. 5.5a). Under low flow, cluster A is regulated
only by cluster F, whereas the latter is regulated by two clusters, H and G (Fig.
5.5b). Thus, cluster A is regulated directly by cluster G under high flow, but such a
regulation operates through an indirect way under low flow. Under high flow, cluster
B plays a role in regulating cluster G, but this regulation role disappears under low
flow. For cluster C, D and E, since their expression patterns are relatively flat over
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Fig. 5.5 The reconstruction of gene regulatory networks from the first surgical study of rabbits
under high blood flow (a), under low blood flow (b), and for expression plasticity between high
flow and low flow (c)

time in both environments, with no up- or down-regulation (Wang et al. 2011), they
are not regulated by any clusters and also do not regulate other clusters.

We further made an inference of GRN based on the gene expression plasticity
between high and low flows. Gene expression plasticity is defined as the environ-
mentally induced alteration of gene expression, which is a capacity for the organism
to respond to its environment. Let μH

j (t∗) and μL
j (t∗) denote the mean expression

of cluster j at time t∗ under high flow and low flow, respectively. The expression
plasticity of this cluster is defined as

�μj

(
t∗
) = μH

j

(
t∗
)− μL

j

(
t∗
) = Pr

(
t∗
) (

uH
jr − uL

jr

)
. (5.9)

The regulatory network based on expression plasticity data emphasizes the
similarities of gene clusters in terms of their pattern of differential expression over
two different flows (Fig. 5.5c). It was observed that cluster B, C and E which are
not expressed differentially between two flows have no regulation effects. This
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is consistent with Wang et al.’s (2011) finding that their expression difference is
close to zero. On the other hand, the other clusters are heavily involved in the
regulation (Fig. 5.5c) since they have significant differential expression according
to hypothesis tests performed in Wang et al. (2011). It appears that cluster H plays
a multiple role in affecting the structure of GRN by regulating cluster A and F
and by being regulated by cluster D and G. Given this, cluster H links the mutual
relationships between discrete clusters D, A, F and G.

We applied our adaptive DBN model to analyze a different data set for another
surgery study of rabbits. The same grafting procedure was used to obtain two
treatments, high blood flow and low blood flow. Under each treatment, expressions
levels were recorded for each of 9272 genes at time points 2h, 1, 3, 7, 14 and 28 days
after implantation. Wang et al.’s (2011) clustering model was used to classify these
genes into 29 different clusters. Our adaptive DBN model infers three gene networks
for each flow and for expression plasticity between the two flows (Fig. 5.6). There
is much similarity in the structure of GRN between the two flows, although specific
differences exist. For example, cluster 1 links many other clusters through its active
regulation (i.e., it regulates other clusters) or passive regulation (i.e., it is regulated
by other clusters). Following cluster 1, cluster 23 is an important link for overall
network under high flow, but it is replaced by cluster 20 under low flow. It is
observed that the network has a much sparse structure for the expression plasticity
between the two flows, compared to those under each flow. Obviously, by comparing
these differences, one can better understand the regulatory mechanisms underlying
the cellular processes toward environment-induced adaption.

5.4 Computer Simulation

Yu et al. (2004) used simulation studies to investigate the influence of interpolation
on DBN modeling. Their results showed that DBN can benefit from moderate data
interpolation by reducing false positives. Here, we performed computer simulation
to evaluate the performance of our adaptive model by answering the following
questions: Is LOP-based interpolation better than non-interpolation in the case of
missing data? Is LOP interpolation is better than linear-interpolation? What is the
difference between even interpolation and uneven interpolation?

5.4.1 Simulation Process

We generated simulation data of mean vectors for every cluster at every time point
with the process as follows:
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Fig. 5.6 The reconstruction of gene regulatory networks from the second surgical study of rabbits
under high blood flow (a), under low blood flow (b), and for expression plasticity between high
flow and low flow (c)

Yt+1 = Yt + R (Yt − C)+ ε (5.10)

where Yt is a vector of mean expression levels for all clusters in a regulatory network
at time t; R is a design matrix used to define the regulatory relationships between
clusters; C is the vector of constitutive expression values for each cluster (Yu et al.
2004); and ε is the noise drawn from a normal distribution. Let rj1j2 denote the entry
of R at row j1 and column j2. Then the regulatory relationship between cluster j1 and
cluster j2 could be interpreted completely by rj1j2 . If rj1j2 = 0, then cluster j2 has
no regulation upon cluster j1. If rj1j2 > 0, cluster j2 activates cluster j1. Otherwise,
cluster j2 represses cluster j1. Moreover, the strength of regulation is defined by the
magnitude of rj1j2 . Similar to Yu et al. (2004), 0 and 100 are set as the minimum
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and maximum expression values and 50 set as constitutive value for all simulated
clusters. Therefore, a cluster with expression value larger than 50 triggers an effect
on the direction specified in R while a cluster with expression value less than 50 has
an effect on the opposite direction specified in R.

The above procedure was used to generate mean expression values for each
cluster. The expression values for clusters with no regulators (entries of the
corresponding row in R are all zero) could be generated in a different way by
moving these clusters in a random walk according noise term ε. However, we
let the trajectory of expression level for a cluster move along a curve specified
by the LOP. It is assumed that expression values of genes within each cluster
follow a multivariate normal distribution with cluster-specific mean vectors and
covariance matrix. We assumed that the covariance follows an autoregressive
structure described by a correlation and variance (see Wang et al. 2011).

As shown in Wang et al. (2011), LOP-based functional clustering performs very
well in classifying genes into distinct clusters. Here, we focused on the inference of
GRN from our procedure. The interpolation of expression levels was first conducted
for missing data, followed by GRN reconstruction. To evaluate the performance of
our interpolation method, we defined two measurements, positive predictive value
(PPV) and false negative rate (FNR) as follows:

PPV = T P

T P + FP
(5.11)

FNR = FN

T N + FN
(5.12)

where TP denotes the true positive (regulatory relationships exist in both inference
network and true network); FN denotes the false negative (regulatory relationships
exist only in true network); TN denotes the true negative (regulatory relationships
do not exist in either network); and FP denotes the false positive (regulatory
relationships exist only in inference network).

In each of the six randomly simulated networks, we generated 20 genes and about
10 regulatory relationships (Fig. 5.7). For each relationship, we randomly assigned
a possible regulation strength value, 0.05, 0.1, 0.15 or 0.2. For each network, we
generated 100 sets of expressions so that there are a total of 600 simulated networks.
By comparing the inference networks with true ones, PPV and FRN were obtained.

5.4.2 Results

Whether Is LOP Interpolation Helpful for DBN Inference? We first picked
up the simulation expression values at time point 10, 50, 90, . . . , etc. in each
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Fig. 5.7 Networks in simulation studies. (a) A true network is generated with 20 genes and 15
regulation effects. (b) The reconstructed network by our proposed model shows that most edges in
the true network can be identified while several false edges are produced

simulation run. We then interpolated one or three points in each interval with LOP
to generate two more data sets; thus, we had 3 data sets: {Y10, Y50, Y90, · · · },{

Y10, Ŷ30, Y50, · · ·
}

and
{

Y10, Ŷ20, Ŷ30, Ŷ40, Y50, · · ·
}

, where Ŷ denotes the

interpolated values. From the comparison of a recovered network (Fig. 5.7b) with
true one (Fig. 5.7a), it was observed that most edges in the true network could be
identified while several false edges had also been produced.

We evaluated the overall quality of all recovered networks from those simulated
data sets. The results show that interpolation does help to reduce the FNR; the FNR
for the non-interpolated data is 0.59 (0.117), where the number in parentheses is
standard error, while it is 0.41 (0.110) for the data with three interpolation points
for each interval, where the numbers in parentheses are corresponding standard
deviations. Moreover, interpolation also improves the PPV from 0.20 (0.056) to
0.24 (0.048). Therefore, GRN reconstruction can benefit from interpolation with
the LOP.

Whether Is LOP Interpolation Better Than Linear Interpolation? Following
the same scenario above, we interpolated one or three points in each interval with
linear method, which generated two more data sets. The results in Fig. 5.8a, b show
that LOP interpolation has better performance than linear method. The FNR is
reduced by linear interpolation but only from 0.59 (0.117) to 0.50 (0.124), when
there are three points interpolated. Liner interpolation also has less improvement of
PPV, from 0.20 (0.056) to 0.22 (0.045).

What is the Difference Between Even Interpolation and Uneven Interpolation?
We picked up the simulated expression values at time point 10, 20, 30,
. . . , etc. in each simulation run. We randomly dropped 1–3 consecutive
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Fig. 5.8 Power and accuracy of interpolation-based network reconstruction. (a) With interpolation
or 1 or 3 time points by LOP, PPV has been improved and FNR has been reduced. (b) Linear
interpolation is also helpful for network reconstruction but not as good as LOP interpolation. (c)
Unevenly interpolation by LOP is acceptable comparing to originally complete data with slightly
decreased PPV and increased FNR

points, leading to unevenly spaced expression data. Suppose there are
{Y10, Y20, Y40, Y80, Y110, · · · } after dropping. By interpolating the missing points

by LOP, we got
{

Y10, Y20, Ŷ30, Y40, Ŷ50, Ŷ60, · · ·
}

. The quality of the recovered

network from the LOP-interpolated data was compared with the one from the
original data set of {Y10, Y20, Y30, Y40, Y50, · · · } (Fig. 5.8c). It was observed that
the quality of reconstructed network form LOP-interpolated data is not too much
worse than that from true data. The FNR rises from 0.35 (0.105) to 0.44 (0.123),
while the PPV drops from 0.28 (0.042) to 0.24 (0.044).
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5.5 Conclusions

Many biological processes, including plant and animal development, disease patho-
genesis and surgical recovery, are coordinated by cell-to-cell communications under
the regulation of genes. High-throughput measurement techniques have now made it
feasible to identify tens of thousands of genes at a time involved in sensing external
cues. The understanding of the relationships between genes and biological functions
has become one of the hottest and most promising aspects in contemporary biology
(Barabasi et al. 2011; Gerstein et al. 2012). However, the dynamic interplay of genes
is highly complex and cannot be understood by a simple approach (Brazhnik et al.
2002). The reconstruction of gene regulatory networks has proven to be a valuable
tool for identifying the key mechanisms that shape the dynamics of cellular and
transcriptional processes (Zhu et al. 2012; Yosef et al. 2013; Hecker et al. 2009).

Modelling of biological regulatory networks regulated by gene expression using
dynamic Bayesian networks has been popular since Murphy and Mian’s (1999)
pioneering work. However, the requirement of evenly spaced measurements limits
its widespread application. Time course records of gene expression are usually
based on the distinct phases of biological processes (Quint et al. 2012), some of
which receives more dense measurements than the others. Furthermore, increas-
ing computational studies tend to integrate gene expression data from different
experiments, in order to gain a comprehensive regulatory network underlying a
biological phenomenon (Hecker et al. 2009). Because of these, the time course
data of gene expression for GRN reconstruction are generally sparse and irregular.
Despite tremendous efforts to model sparsely measured gene networks (Yu et al.
2004), a systematical procedure for DBN modeling using such imperfect data has
still not been available in the literature.

In this article, we reformed DBN modeling by interpolating missing data points
based on functional clustering (Kim et al. 2008, 2010; Song et al. 2007; Luan and Li
2003; Wang et al. 2011). The new model can handle any dynamic gene expression
data, no matter they are evenly spaced or not, thereby providing a broader tool
in computational biology. The model was used to analyze two time course data
sets of gene expression measured for vein bypass grafts in rabbits that receive two
distinct treatments, high and low blood flow. The similarity and difference in the
structure and organization of genetic networks can be identified under high and low
flow, providing new insights into the mechanisms of how genes regulate each other
to determine final phenotypic formation. We have performed extensive simulation
studies to demonstrate the practical usefulness and utility of the new model. It
should be noted that the functional clustering model we used is under the assumption
of independence among different clusters. A general model that does not rely on this
assumption has been developed by Zhang (2013). The implementation of Zhang’s
(2013) epistatic clustering may glean additional insight into the results of clustering
dynamically differentiated genes and GRN reconstruction.

The past decade has witnessed tremendous milestones in high-throughput
sequencing and large-scale data generation because of improvement in the accuracy
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of these techniques and their cost reduction for the required sample size. These
developments enable researchers to not only dissect genomes but also unravel the
regulatory interactions that allow genomes to regulate cellular structure, function,
and behavior. The new model modified from a commonly used network modelling
approach will find its widespread application given the popularity of collecting and
using high-throughput expression data in human and other model or non-model
systems. The model emphasizes on transcriptional data, but can be refined and
extended to integrate multiple data types, such as mRNA and microRNA (miRNA)
expression data, TF DNA-binding data, and protein interaction data (Bolouri 2014).
Also, the model should be linked to complex phenotypes or diseases within a
causal-effect network framework toward identifying phenotype- or disease-causing
perturbations. The model can be further perfected to readily determine the time of
onset and duration of transcriptional activity and the magnitude of expression of
particular genes. Finally, the nature and topological features of regulatory networks
may vary among different individuals, thus the identification and mapping of
network-controlling quantitative trait loci (nQTLs) would be important for the
prediction of network behavior.
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Chapter 6
Maximin Designs for Ultra-Fast
Functional Brain Imaging

R. Alghamdi, A. Alrumayh, and M.-H. Kao

6.1 Introduction

Functional brain imaging is widely used in various fields such as cognitive
neuroscience, economics, education, medical science, and psychology in studying
functions of the human brain. In many functional neuroimaging studies, a sequence
of mental stimuli (e.g., images or sounds) is presented to the experimental subject
while time series data are collected from the subject’s brain via a brain mapping
technique such as functional magnetic resonance imaging (fMRI) or functional near-
infrared spectroscopy (fNIRS). The collected data are analyzed to make inferences
about the underlying brain activity evoked by the stimuli. For such experiments, a
key first step is to judiciously select a good stimulus sequence to allow the collection
of informative data for making valid statistical inferences. This is an important,
yet challenging experimental design issue. In this study, we are concerned with
this design issue, and present an efficient approach for tackling it. In contrast to
existing works on this research line, we consider experiments where an ultra-fast
brain mapping technique with a high temporal resolution is utilized. We propose
an efficient approach to obtain high-quality designs (stimulus sequences) for such
experiments.

For clarity, we put our focus on the general linear model of the following form:

y = Xh + Sγ + ε, (6.1)

where y = (y1, y2, . . . , yT )T is the response vector, the superscript T denotes
the transpose, h is the parameter vector of interest, γ represents some nuisance
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parameter vector, X is the design matrix determined by the selected design, S is a
pre-specified matrix, and ε is error. This model is widely used in functional brain
imaging studies, and several design approaches have been proposed for obtaining
high-quality designs for a precise estimate of h. For example, Buračas and Boynton
(2002) advocated the use of m-sequence-based designs, Aguirre et al. (2011)
proposed to consider De Bruijn sequences, and Kao (2014) and Cheng and Kao
(2015) showed that designs generated from some Hadamard matrices are optimal
for estimating h under certain conditions. Computer algorithms such as the genetic
algorithms of Wager and Nichols (2003) and Kao et al. (2009), and the exchange
algorithm of Saleh et al. (2017) are also available for obtaining good designs.

A major restriction of the previous works is that they focused only on brain map-
ping techniques having relatively low temporal resolutions; the time to repetition,
τT R , which is the time between the collections of yt and yt+1, is often at least a
couple of seconds (e.g., τT R = 2 s). With new advances in neuroscience, many
recent studies involve the use of pioneering technology that allows a relatively
high temporal resolution with τT R being only tens or hundreds of milliseconds.
As an example, Proulx et al. (2014) considered ultra-fast fMRI, called MR-
Encephalography, with τT R = 100 ms. Several other brain mapping techniques such
as fNIRS can also attain a similar or an even higher temporal resolution; see also
Table 1 of Scholkmann et al. (2014). For these studies, the previously mentioned
design approaches can become clumsy in identifying good designs. This is mainly
due to the greatly enlarged dimension of the design matrix X, which makes it very
difficult, if not infeasible, to compute and compare the statistical efficiencies of the
many competing designs. In addition, the efficiency of the design will depend on
the values of the error correlation parameters, which are almost always uncertain at
the design stage. We thus would like to obtain a design that performs relatively well
across the possible values of these correlation parameters. This, unfortunately, is
notoriously difficult (see also, Kao and Mittelmann 2014), and it makes the present
design issue very challenging.

Here, we propose an efficient approach for tackling this challenging design
issue. After introducing the relevant background information in the next section,
we describe our proposed approach in Sect. 6.3. Case studies for demonstrating
the usefulness of our approach are presented in Sect. 6.4. The conclusion and a
discussion can be found in Sect. 6.5.

6.2 Background

For clarity, we describe our experimental setting by considering an fMRI experiment
where a sequence of mental stimuli of Q different types (e.g., Q different images) is
presented to an experimental subject. Starting at Time 0, each stimulus can possibly
occur every τISI seconds (e.g., τISI = 4 s). The duration of the experiment is
(N − 1)τISI for some integer N . For a typical 5 to 10 min study, N can be tens or
hundreds. We use d = (d1, . . . , dN) to represent a design (i.e. a stimulus sequence),
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where dn ∈ {0, 1, . . . , Q} determines the type of stimulus to be presented at Time
(n − 1)τISI . Specifically, dn = 0 indicates no stimulus presentation, whereas
dn = q > 0 means that a qth-type stimulus will be presented. Throughout the
experiment, an fMRI scanner repeatedly scans each voxel (3D imaging unit) of the
subject’s brain every τT R seconds to collect the blood oxygenation level dependent
(BOLD) signals, y. Note that τT R can be much smaller than τISI , and for simplicity,
we further assume that τT R divides τISI . The collected y is analyzed for studying
the hemodynamic response function (HRF) evoked by each stimulus. Specificially,
the HRF is a function of time describing the (error-free) change over time of the
BOLD signals following a stimulus onset. Its duration τdur is relatively long, and
counting from the onset of the stimulus, it may take τdur = 32 s for the HRF to
completely return to the baseline (Friston et al. 2007). Studying the HRF helps to
understand the effect of each stimulus type to the brain. With Q stimulus types in
the study, we have Q HRFs to estimate.

Model (6.1) is commonly used for analyzing the response y. In particular, we
set h = (hT

1 , . . . , hT
Q)T , where hq = (hq1, . . . , hqK)T is the HRF parameter

vector for the qth-type stimulus; hqk represents the kth height of the HRF evaluated
(k − 1)τT R seconds after the stimulus onset, K = �τdur/τT R� + 1, and �a� is the
integer part of a. By estimating hq , the properties of the HRF of the qth stimulus
type can be investigated. The design matrix X in Model (6.1) is a 0–1 matrix that
can be partitioned as X = [X1, . . . , XQ], where Xq is the design matrix for hq .
The elements of the design matrix Xq are determined by the selected design d
and the pre-specified τT R and τISI ; see Saleh et al. (2017), and Kao et al. (2012).
Specifically, the (t, k)th element of Xq is 1 when hqk contributes to yt , and is 0
otherwise; t = 1, . . . , T , k = 1, . . . , K . The nuisance term Sγ in (6.1) allows for
a drift/trend of y, and it may, for example, be set to represent a polynomial drift;
e.g., Liu (2004). The error term ε in Model (6.1) is commonly assumed to follow a
stationary AR(p) process; see also Worsley et al. (2002).

Following Kiefer (1959), the quality of a design d in estimating h is evaluated by
some function (i.e. optimality criterion) of the information matrix M(d;φ) of h:

M(d;φ) = XT {Σ(φ)−1 −Σ(φ)−1S[ST Σ(φ)−1S]−1ST Σ(φ)−1}X. (6.2)

Here, Σ(φ) = cov(ε) is the variance-covariance matrix of ε; and the vector φ

represents the parameters in Σ(φ). M(d;φ) depends on the design d through the
design matrix X. For a d that makes h estimable, M(d;φ) is the inverse of the
variance-covariance matrix cov(ĥ) of ĥ, the generalized least-squares estimate of h.
We aim at selecting a d that, in some sense, maximizes M(d;φ) so that the estimate
of h is precise. The value of the error variance σ 2 (> 0) is assumed fixed across
designs, and it does not affect the selection of an optimal design. Without loss of
generality, we set σ 2 = 1. Popularly used optimality criteria for design selection
include the A-optimality criterion, F(d;φ) = m/trace[M−1(d;φ)], and the D-
optimality criterion, F(d;φ) = det[M(d;φ)]1/m, where m is the size of M(d;φ).
Here, we formulate these criteria as the larger-the-better criteria, and set the criterion
value to 0 for those designs making the information matrix M(d;φ) singular.
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Maximizing the A-criterion allows us to identify a design that minimizes the average
variance of the parameter estimates, and the D-criterion helps to minimize the
volume of a confidence ellipsoid for h. Several authors consider the A-criterion
for selecting fMRI designs; e.g., Friston et al. (1999), Dale (1999), Buračas and
Boynton (2002), and Liu and Frank (2004). The D-criterion is also not uncommon
(Maus et al. 2010). In our case study, we use the A-optimality criterion, but D- or
other criteria can also be considered.

A design, d∗φ , maximizing the optimality criterion F(d;φ) with a given φ-
value is considered as a locally optimal design (Chernoff 1953). Under the selected
optimality criterion, the design d∗φ is optimal for the given value of φ, but its
statistical efficiency for another φ-value is not guaranteed. When the value of φ

is uncertain, we normally would like to find a design that is rather robust to a mis-
specification of the φ-value. A possible approach for obtaining such a design is
the maximin approach considered in Maus et al. (2010), and Kao et al. (2013). In
particular, this is to obtain a maximin design d∗Mm that maximizes

min
φ∈Ω

RE(d;d∗φ) = min
φ∈Ω

F(d;φ)

F (d∗φ;φ)
, (6.3)

where Ω is the parameter space of φ. Three layers of optimization are involved
in solving this problem. In the innermost layer, a locally optimal design d∗φ that
maximizes F(d;φ) will need to be identified for each of the (many) possible values
of φ. With these d∗φs, we then find minφ∈Ω RE(d;d∗φ) for each candidate design
d in the second layer of optimization. The outermost layer is to achieve a design
yielding the maximal value of minφ∈Ω RE(d;d∗φ). Solving such a maximin design
problem normally requires much computational effort. This is especially true for our
current setting. The main difficulty is that the dimension of the information matrix
M(d;φ) in (6.2) is typically large (e.g., hundreds by hundreds), making it very time
consuming (or even infeasible) to evaluate the F(d;φ)-values for each candidate
design d at each φ-value in both the innermost and outermost layers of optimization.
In the next section, we propose an efficient shortcut method that allows us to achieve
a design yielding a high value of min RE.

6.3 Our Proposed Approach

Our proposed approach for obtaining d∗Mm that maximizes min RE of (6.3) consists
of two components. The first component involves the formulation of an easy-to-
compute surrogate criterion, Fs(d;φ), of F(d;φ). To achieve such a surrogate, we
first judiciously select a subsample of the columns of the design matrix X to allow
for a reduction in the dimension of the information matrix M(d;φ). The selected
columns form a submatrix Xs of X, which in turn gives the following information
matrix of a reduced size.
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Ms(d;φ) = XT
s {Σ(φ)−1 −Σ(φ)−1S[ST Σ(φ)−1S]−1ST Σ(φ)−1}Xs; (6.4)

the notation used here is the same as those in (6.2). The surrogate criterion
Fs(d;φ) is then formulated based on Ms(d;φ). Specifically, Fs(d;φ) =
ms/trace[M−1

s (d;φ)] for the A-criterion, and Fs(d;φ) = det[Ms(d;φ)]1/ms

for the D-criterion; ms is the size of Ms(d;φ). It is noteworthy that Ms(d;φ) is the
information matrix of hs in the following model:

y = Xshs + Sγ + ε,

where hs is a subvector of h of (6.1), and Xs is the corresponding design matrix;
this model is a submodel of (6.1).

The previously mentioned simple idea of subsampling the columns of X turns
out to be effective for solving our problem. We observe that the designs optimizing
Fs(d;φ) tend also to yield very high efficiency under F(d;φ). The key issue in the
implementation of this idea is the selection of Xs . Unfortunately, an imprudently
selected subsampling plan such as a random sampling can give a poor result. With
τT R being a divisor of τISI , we find it useful to consider the following three steps
for obtaining Xs :

Step X-1 Partition X as X = [X1, . . . , XQ] where Xq is the 0–1 design matrix for
stimuli of the qth type.

Step X-2 Set τs = τISI /τT R . Keep Columns 1, (1+ τs), (1+ 2τs), . . . of Xq and
leave out the other columns to form Xsq for q = 1, . . . , Q.

Step X-3. Set Xs = [Xs1, Xs2, . . . , XsQ].
Our experience suggests that some other subsampling plans such as those by
replacing τs with its divisors can also lead to a good surrogate for F(d;φ).
Nevertheless, the previously mentioned procedure gives a greater reduction in the
dimension of the information matrix and is thus recommended.

In addition, we borrow the Kriging method that is widely considered in computer
experiments (Santner et al. 2003) to approximate (the surface of) the RE-values of
each design d over the parameter space Ω . To this end, we first select a (small) set
of b points, φ1, . . . ,φb, from Ω , and obtain the b corresponding locally optimal
designs. This allows us to evaluate the RE-values of a given design d at the b

selected φ-values. By using W(φ) to denote the RE-value at φ, we consider the
following model:

W(φ) = β + Z(φ),

where β is an unknown parameter, and Z(φ) is a Gaussian process with mean 0
and Cov(Z(φ), Z(φ′)) = σ 2

z R(φ,φ′) for all φ,φ′ ∈ Ω , σ 2
z > 0, and R(φ,φ′) =

exp{−θ ||φ − φ′||22}. Let jb be the vector of b ones, w = (W(φ1), . . . ,W(φb))
T ,

R = ((R(φi ,φj ))i,j=1,...,b be the b-by-b correlation matrix of w, and for given
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φ0 ∈ Ω , r0 = (R(φ0,φ1), R(φ0,φ2), . . . , R(φ0,φb))
T . We then approximate the

RE-value W(φ0) by the best linear unbiased predictor (BLUP):

Ŵ (φ0) = β̂ + rT
0 R−1(w − jbβ̂), (6.5)

β̂ = jTb R−1w/(jTb R−1jb).

The θ parameter in R can be estimated by, e.g., the likelihood method; see Sect. 3.3.2
of Santner et al. (2003) for details. In our case study, we set θ = 10, and
find that other values of θ do not lead to a significant improvement in the final
result.

We now are ready to present the steps of our proposed method for obtaining a
maximin design. This method is referred to as Method IA in the next section.

Step 1 For a given b, select φ1, . . . φb from Ω .
Step 2 For a specified optimality criterion F(d;φ), obtain locally optimal designs

d∗s,φi
= argmaxdFs(d;φi ) for i = 1, . . . , b. Here, Fs(d;φ) is calculated

based on the Xs obtained from the previously described Steps X-1 to X-3.
Step 3 Obtain d∗Mm that maximizes minφ REs(d;d∗s,φ) = minφ Fs(d;φ)/

Fs(d∗s,φ;φ). Here, minφ REs(d;d∗φ) for a design d is approximated by
using the following steps:

Step 3-1 Set W(φ) = REs(d;d∗s,φ). Obtain W(φ1), . . . ,W(φb) by
using the d∗s,φi

obtained in Step 2.
Step 3-2 Use the BLUP in (6.5) to predict W(φ) for each φ in, e.g., a

fine grid over Ω .
Step 3-3 Approximate minφ W(φ) with the minimum of the Ŵ (φ)’s

obtained in Step 3-2.

For Step 1, it is often recommended to set b = 10p, where p is the dimension
of Ω , and to consider a space-filling sampling plan for selecting φ1, . . . φb. The
latter suggestion is partly because the surfaces of the RE-value are uncertain,
and a space-filling sampling plan tends to give a representative sample from the
different regions of Ω to facilitate the explorations of these uncertain surfaces. A
sampling plan that possesses the space-filling property is the well-known Sobol
sequence (Niederreiter 1988); we will consider this sampling plan in our case
study (Sect. 6.4). When searching for the locally optimal designs in Step 2 and
the maximin designs in Step 3, we choose to adopt the genetic algorithm of
Kao et al. (2009) which is briefly described in the Appendix. Nevertheless, our
proposed method is not restricted to this search algorithm and can be easily
applied when another algorithm is considered. In the next section, we describe the
implementation of our proposed method and demonstrate its performance with case
studies.
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6.4 Case Study

In this section, we obtain maximin designs by considering three different scenarios
that, respectively, have (Q,N) = (1, 127), (2, 121), and (3, 127). For all three
cases, we set (τISI , τT R) = (4, 0.1); this means that a stimulus can possibly be
presented to the experimental subject every τISI = 4 s, and the response sampling
rate is 10 Hz. The lengths of the response vector y are then T = 5080, 4840, and
5080 for the three scenarios, respectively. Each stimulus is assumed to evoke an
HRF that has a duration of τdur = 32 s. With τT R = 0.1 s, the HRF parameter
vector hq for the qth-type stimulus has a length of 321 (= �τdur/τT R� + 1), and
h = (h1, . . . , hQ) of Model (6.1) has 321Q elements. The term Sγ of Model (6.1)
is set to allow a second-order polynomial drift (Liu 2004), and the error term ε =
((εt ))t=1,...,T is assumed to follow a stationary AR(2) process. In particular, εt =
φ1εt−1+φ2εt−2+zt where zt is white noise, and φ1, and φ2 are unknown parameters
satisfying

φ1 ∈
{
[0, 0.5(1 − φ2)], if φ2 ∈ [0, 1/3];
[0,

√
0.5(1 − 2φ2)(1 − φ2)], if φ2 ∈ (1/3, 0.5]. (6.6)

The parameter space Ω ⊂ [0, 0.5]2 of φ = (φ1, φ2)
T is presented as the unshaded

area in Fig. 6.1. With this Ω , the first- and second-order autocorrelation coefficients
of ε range between 0 and 0.5.

Four methods are considered for obtaining maximin designs. Method IA
is our proposed method described in the previous section. In particular, we
first obtain 27 Sobol points for φ = (φ1, φ2)

T over [0, 0.5]2 by using the
statistics toolbox function Sobolset of MATLAB, and exclude those points
that fall outside Ω . The remaining b = 20 Sobol points, φ1, . . . ,φ20, are
presented in Fig. 6.1. We then adopt the genetic algorithm of Kao et al. (2009)
to obtain a locally optimal design d∗s,φi

that maximizes the A-optimality criterion

Fs(d;φi ) = ms/trace{M−1
s (d;φi )}, where Ms(d;φ) is defined in (6.4), and

ms is the size of Ms(d;φ); i = 1, . . . , 20. As described in Step 3 of our
proposed approach, we then use the 20 d∗s,φi

s to approximate minφ REs(d;d∗s,φ)

for obtaining a maximin design d∗Mm. Specifically, this is done by consider-
ing a set G1 ⊂ Ω with G1 = G̃1 ∩ Ω , and G̃1 = {(φ1, φ2) | φi =
0, 0.04, 0.08, . . . , 0.48, i = 1, 2} forms a grid on [0, 0.5]2. We note that G1
has a total of 124 (grid) points. For each d, the BLUP of (6.5) is then used to
approximate W(φ) = REs(d;d∗s,φ) for all φ ∈ G1, and minφ∈G1 REs(d;d∗s,φ)

is obtained. We again use the genetic algorithm to obtain a d∗Mm that maximizes
minφ∈G1 REs(d;d∗s,φ).

Method IB is similar to Method IA, but we directly use X instead of its
subsampled version Xs . Specifically, we first search for locally optimal designs, d∗φ1

,

. . . , d∗φ20
, for the 20 Sobol points that maximize F(d;φ) = m/trace{M−1(d;φ)},

where M(d;φ) is the information matrix defined in (6.2), and m is its size. With
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these d∗φi
s, we obtain the relative efficiencies RE(d;d∗φi

) = F(d;φi )/F (d∗φi
;φi ),

i = 1, . . . , 20, for given d. By setting W(φ) = RE(d;d∗φi
), we approximate

minφ∈G1 RE(d;d∗φ) by considering the same method as in Method IA. The genetic
algorithm is used to search for a maximin design that maximizes the approximated
minφ∈G1 RE(d;d∗φ). We note that, with our current settings, the size of the
information matrix M(d;φ) is m = 321Q whereas that for the Ms(d;φ) used in
Method IA is ms = 9Q; Q = 1, 2, 3. The computing time for calculating F(d;φ)

in Method IB is expected to be much greater than that for calculating Fs(d;φ) in
Method IA.

For the remaining two methods that we consider, we obtain minφ∈G1 REs(d;
d∗s,φ) and minφ∈G1 RE(d;d∗φ) without resorting to the BLUP of (6.5) used in
Methods IA and IB. In particular, for Method IIA, we first obtain 124 locally
optimal designs maximizing Fs(d;φ) for the 124 grid points of φ in G1. This allows
a direct calculation of minφ∈G1 REs(d;d∗s,φ) for each d. We then use the genetic
algorithm to search for a maximin design maximizing minφ∈G1 REs(d;d∗s,φ).
For Method IIB, we consider the same grid-point method as Method IIA, but
respectively replace Fs(d;φ) and REs(d;d∗s,φ) with F(d;φ) and RE(d;d∗φ);
i.e., Xs is used in Method IIA, whereas the full design matrix X is consid-
ered in Method IIB. We note that a similar grid-point method is considered by
Maus et al. (2010) and Kao and Mittelmann (2014) for obtaining fMRI designs
although both previous works did not consider the use of the subsampled design
matrix Xs .

All the computations in this section are implemented on a desktop computer
of a 3.7GHz Intel Core i7-8700k 6-core processor with 32GB RAM. We consider
all the four methods for obtaining designs with (Q,N) = (1, 127). Table 6.1
summarizes (1) the number of locally optimal designs needed for the four methods,
(2) total computing time spent on obtaining all these locally optimal designs, and
(3) the minimum of RE(d∗s,φ;d∗φ) = F(d∗s,φ,φ)/F (d∗φ,φ) for the locally optimal
designs d∗s,φ obtained by Methods IA and IIA. By using the subsampled design

Fig. 6.1 The parameter
space Ω and 20 Sobol points
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matrix Xs , the computing time needed for Method IA in obtaining locally optimal
designs is about half of that of Method IB; the same is true when we compare the
computing times of Methods IIA and IIB in Table 6.1. Nevertheless, all the d∗s,φ
obtained by Methods IA and IIA still attain very high efficiencies under F(d;φ).
As presented in the last row of Table 6.1, the achieved F(d∗s,φ;φ) is at least 98.7%
of F(d∗φ;φ). This result suggests that finding an optimal design by maximizing
Fs(d;φ) requires a much less computing time than optimizing F(d;φ), but there
is not much difference in the efficiencies of the obtained designs. Fs(d;φ) thus
serves as an efficient surrogate criterion for F(d;φ). We consistently make the same
observations in other case studies that will be reported elsewhere.

Table 6.1 Locally optimal designs (LODs) for the four methods with
(Q,N) = (1, 127)

Method IA IB IIA IIB

(LODs) (d∗s,φ) (d∗φ) (d∗s,φ) (d∗φ)

Number of LODs 20 20 124 124

Total time spent (min.) 30.55 59.13 192.65 392.33

min RE(d∗s,φ; d∗φ) 0.987 – 0.994 –

In Table 6.2, we compare the performance of the four methods in obtaining
maximin designs, d∗Mm, for (Q,N) = (1, 127). For comparison purposes, the
reported computing time in the first row of that table does not include the time
needed for obtaining the locally optimal designs, which can be found in Table 6.1.
We note that the total times needed for obtaining d∗Mm are 1.01, 1.73, 6.19 and
10.94 h for Methods IA, IB, IIA, and IIB, respectively. Our proposed approach
(Method IA) is the most efficient while the times needed for Methods IIA and IIB
are intimidating. For evaluating the performance of the obtained d∗Mm, we consider
the set G2 = G̃2 ∩ Ω , where G̃2 = {(φ1, φ2) | φi = 0, 0.02, 0.04, . . . , 0.5, i =
1, 2} is a grid on [0, 0.5]2 that is finer than G̃1. A total of 464 grid points in
G̃2 fall inside Ω , and G2 contains these 464 different values of φ. We obtain a
locally optimal design d∗s,φ for each of these φ ∈ G2, and use these d∗s,φs to
calculate minφ∈G2 RE(d∗Mm;d∗s,φ) = minφ∈G2 F(d∗Mm;φ)/F (d∗s,φ;φ) for the d∗Mm

obtained from each of the four methods. Note that minφ∈G2 RE(d∗Mm;d∗s,φ) is an
approximation of minφ∈G2 RE(d∗Mm;d∗φ) since the former is calculated based on
d∗s,φ instead of d∗φ . Obtaining 464 d∗s,φs already requires much computing time,
and the time needed for obtaining d∗φ is even more time consuming; see also the
comparisons of Methods IA and IIA versus Methods IB and IIB in Table 6.1.
For comparison purposes, we also use the genetic algorithm to search for these
464 d∗φ for (Q,N) = (1, 127), and obtain minφ∈G2 RE(d∗Mm;d∗φ) as reported in
the last row of Table 6.2. We see that minφ∈G2 RE(d∗Mm;d∗s,φ) provides a good
approximation of minφ∈G2 RE(d∗Mm;d∗φ). As also shown in Table 6.2, the d∗Mms
obtained by the four methods have similar performances, and they all achieve at least
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99% relative efficiency over G2. These results indicate that our proposed Method IA
can efficiently obtain a good maximin design.

Table 6.2 Maximin designs d∗Mm from the four methods with
Q = 1

Method IA IB IIA IIB

Time spent (min.) 30.26 44.53 178.52 263.80

minφ∈G2 RE(d∗Mm; d∗s,φ) 0.997 0.995 0.994 0.997

minφ∈G2 RE(d∗Mm; d∗φ) 0.994 0.992 0.991 0.994

For Q = 2 and Q = 3, the size of the full information matrix M(d;φ) becomes
large; specifically, m = 642 for Q = 2, and m = 963 for Q = 3. By considering
the full information matrix, Methods IB and IIB quickly become computationally
very difficult. We thus consider only Methods IA and IIA and obtain locally optimal
designs d∗s,φ and maximin designs d∗Mm with Ms(d;φ) (and thus Xs). In Table 6.3,
we present the total computing time (i.e. the sum of the time spent on obtaining d∗s,φs
and that on obtaining d∗Mm) for the two methods. The minimum relative efficiency
RE(d∗Mm;d∗s,φ) of the obtained d∗Mm over G2 is also reported there. Again, our
proposed Method IA is more efficient than the grid method (Method IIA), and it
achieves a maximin design that has a very high relative efficiency over G2.

Table 6.3 Performance of methods IA and IIA for Q = 2 and Q = 3

Q = 2 Q = 3

Method IA IIA IA IIA

Total time (hr.) 1.44 8.37 2.46 14.87

minφ∈G2 RE(d∗Mm; d∗s,φ) 0.998 0.996 0.992 0.994

Table 6.4 minφ∈G2 RE(·; d∗s,φ) of d∗Mm from Method IA versus some
traditional designs

Q = 1 Q = 2 Q = 3

d∗Mm 0.997 0.998 0.992

m-sequence-based design 0.916 0.886 0.938

Ten random designs 0.794–0.923 0.705–0.879 0.662–0.785

In Table 6.4, we compare the performance of the d∗Mm obtained by Method IA
with some traditional designs that are widely used in functional brain imaging
studies. These traditional designs include an m-sequence-based design, and ten
randomly generated designs. An m-sequence (or maximum length sift-register
sequence) of length N = (Q + 1)r − 1 exists for some integer r when Q + 1 is
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a prime power. It can be generated by, e.g., a primitive polynomial over the Galois
field GF(Q + 1); see, Kao and Stufken (2015) for details. These sequences are
advocated by Buračas and Boynton (2002) as efficient designs for estimating the
HRF in fMRI studies (i.e. for estimating h of Model (6.1)). For (Q,N) = (1, 127),
an m-sequence exists with r = 7. As for (Q,N) = (2, 121) and (3, 127), we follow
Liu and Frank (2004) to concatenate two identical m-sequences of a shorter length,
and leave out the excessive elements in the tail of the concatenated sequence to
generate m-sequence-based designs of length N . As shown in Table 6.4, these m-
sequence-based designs yield relatively high minφ∈G2 RE(·;d∗s,φ). However, they
do not perform as well as the d∗Mm obtained from Method IA. We also randomly
generate ten design sequences for each of the three scenarios that we consider.
The range of the minφ∈G2 RE(·;d∗s,φ) of these random designs are also reported in
Table 6.4. Again, they do not perform as well as the maximin design obtained from
our proposed method. In Fig. 6.2, we provide these maximin designs by presenting
the value of the nth element dn of d∗Mm versus n for n = 1, . . . , N .

1 10 20 30 40 50 60 70 80 90 100 110 120 127
0

1
(Q, N)=(1, 127)

1 10 20 30 40 50 60 70 80 90 100 110 120
0

1

2
(Q, N)=(2, 121)

1 10 20 30 40 50 60 70 80 90 100 110 120 127
0

1

2

3
(Q, N)=(3, 127)

Fig. 6.2 The maximin designs d∗Mm = (d1, . . . , dN ) obtained from Method IA; the y-axis is the
value of dn, and the x-axis is n
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6.5 Conclusion and a Discussions

In this work, we propose an efficient approach for obtaining maximin designs for
functional brain imaging studies where a pioneering brain mapping technology with
high temporal resolution is utilized. Our proposed approach (Method IA) involves
two components: (1) an easy-to-calculate surrogate criterion Fs(d;φ) formed by
the information matrix of a reduced size, and (2) a Kriging approximation of the
minimum relative efficiency of each candidate design over the parameter space of
the error correlation parameters.

In our case studies, we consider experiments of 8–9 min with Q = 1, 2, and
3 stimulus types. These settings are not uncommon in practice, and our approach
can easily be applied for a different setting. For comparison purposes, we consider
three other methods as well as some existing designs. Specifically, Method IIB is
essentially a direct application of the hitherto method used by Maus et al. (2010),
and Kao and Mittelmann (2014). Although it tends to give good results in the
traditional studies, this method quickly becomes infeasible in the present settings.
The other two competing methods (IB and IIA) allow us to assess the improvement
achieved by each of the two components of our approach. As presented in our
case studies, both components are useful, and their combination gives the greatest
improvement. Moreover, to our knowledge, a systematic study on the selection of
designs for the present setting is previously unavailable. Many researchers tend to
adopt existing designs such as m-sequence-based designs or random designs that
are known to perform well in some traditional settings. However, these designs do
not perform as well as the designs obtained by our proposed method.

For obtaining the surrogate criterion Fs(d;φ), we select a subsample of the
columns of the design matrix X. Our experience suggests that the quality of the
surrogate criterion, and thus the obtained designs, greatly depends on the columns
that we select. A random subsample of the columns often leads to a poor result, and
in the extreme case, the obtained design can have zero efficiency in estimating the
HRF parameters. A judicious selection of the columns is thus crucial. In all the cases
that we considered, the procedure that we propose in Sect. 6.3 consistently gives
good outcomes. Deriving a theory to support and provide insights into our proposed
procedure is a future research of interest. In addition, when obtaining the Kriging
approximation of min RE, we adopt the settings that are popular in the computer
experiments literature, and they tend to give good maximin designs for our study. A
future research of interest includes the consideration of other approximations, and
an extension of our approach by relaxing the assumption that τISI /τT R is an integer.
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Appendix

Here, we present the steps of the genetic algorithm of Kao et al. (2009) for searching
for an optimal design (i.e. optimal stimulus sequence of Q stimulus types).

Step GA-1 Generate 2G initial designs as the first generation, which include m-
sequence-based designs, random designs, block designs of various
block sizes, and mixed (block and random) designs. The fitness of
these 2G designs is then evaluated by the objective function (e.g., the
selected optimality criterion).

Step GA-2 With probability proportional to the fitness, G pairs of distinct designs
are randomly selected with replacement from the current generation.
Use the crossover operator to generate a pair of offspring designs from
each selected paired design; i.e. to select a random cut-point and then
generate offsprings by exchanging the corresponding subsequences
before the cut-point of the selected paired designs.

Step GA-3 Randomly select q% of the elements of the 2G offspring designs,
and replace each selected element by an integer randomly generated
from the discrete uniform distribution over 0, 1, 2, . . . ,Q. Obtain the
fitness of the resulting 2G designs.

Step GA-4 Generate I immigrant designs from random designs, block designs,
and their combinations. Obtain the fitness of these I immigrants.

Step GA-5 In the current pool of the parent, offspring and immigrant designs,
select the best 2G designs to form the next generation.

Step GA-6 Repeat Steps GA-2 to GA-5 until a stopping rule is met.

In this work, we set G = 10, q% = 1%, and I = 4 as suggested by Kao et al.
(2009). The second stopping rule presented in Kao (2009) is considered, and thus
the search is terminated when no significant improvement can be expected in the
next iterations. Specifically, the improvement in the objective function is evaluated
every 200 generations. The algorithm stops when the current 200 generations result
in an improvement that is no more than 10−7 of that of the first 200 generations.
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Chapter 7
A Global Optimization Algorithm
for Sparse Mixed Membership Matrix
Factorization

Fan Zhang, Chuangqi Wang, Andrew C. Trapp, and Patrick Flaherty

7.1 Introduction

Mixed membership matrix factorization (MMMF) has been used in document
topic modeling (Blei et al. 2003), collaborative filtering (Mackey et al. 2010),
population genetics (Pritchard et al. 2000), and social network analysis (Airoldi
et al. 2008). The underlying assumption is that an observed feature for a given
sample is a mixture of shared, underlying groups. These groups are called topics
in document modeling, subpopulations in population genetics, and communities
in social network analysis; in bioinformatics applications the groups are called
subtypes and we adopt that terminology here. MMMF simultaneously identifies
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both the underlying subtypes and the distribution over those subtypes for each
individual sample.

7.1.1 Mixed Membership Models

The MMMF problem can be viewed as inference in a particular statistical
model (Singh and Gordon 2008). The model typically has a latent Dirichlet random
variable that allows each sample to have its own distribution over subtypes and a
latent variable for the feature weights that describe each subtype. The inferential
goal is to estimate the joint posterior distribution over these latent variables and
thus obtain the distribution over subtypes for each sample and the feature vector
for each subtype. Non-negative matrix factorization techniques have been used
in image analysis and collaborative filtering applications (Lee and Seung 1999;
Mackey et al. 2010). Topic models for document clustering have also been cast as a
matrix factorization problem (Xu et al. 2003).

The basic mixed membership model structure has been extended in various
interesting ways. A hierarchical Dirichlet prior allows one to obtain a posterior
distribution over the number of subtypes (Teh et al. 2005). A prior on the subtype
variables allows one to impose specific sparsity constraints on the subtypes (Kabán
2007; MacKay 1992; Taddy 2013). Correlated information may be incorporated to
improve the coherence of the subtypes (Blei and Lafferty 2006). Gaussian-Laplace-
Dirichlet Model (GLAD) is hierarchical model that performs mixed membership
matrix factorization with sparsity inducing Laplace prior on feature weights (Sad-
diki et al. 2015).

Sampling or variational inference methods are commonly used to estimate the
posterior distribution of interest for mixed membership models, but these only
provide local or approximate estimates. A mean-field variational algorithm (Blei
et al. 2003) and a collapsed Gibbs sampling algorithm have been developed for
Latent Dirichlet Allocation (Xiao and Stibor 2010). However, Gibbs sampling is
approximate for finite chain lengths and variational inference is only guaranteed to
converge to a local optimum (Blei et al. 2017).

7.1.2 Benders’ Decomposition and Global OPtimization (GOP)

In many applications it is important to obtain a globally optimal solution rather
than a local or approximate solution. Recently, there have been significant advances
in deterministic optimization methods for general biconvex optimization prob-
lems (Floudas and Gounaris 2008; Horst and Tuy 2013). Here, we show that mixed
membership matrix factorization can be cast as a biconvex optimization problem and
the ε-global optimum can be obtained by these deterministic optimization methods.
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Benders’ decomposition exploits the idea that in a given optimization problem
there are often complicating variables—variables that when held fixed yield a much
simpler problem over the remaining variables (Benders 1962). Benders developed
a cutting plane method for solving mixed integer optimization problems that can
be so decomposed. Geoffrion later extended Benders’ decomposition to situations
where the primal problem (parametrized by fixed complicating variable values) no
longer needs to be a linear program (Geoffrion 1972). The Global OPtimization
(GOP) approach is an adaptation of the original Benders’ decomposition that can
handle a more general class of problems that includes mixed-integer biconvex
optimization problems (Floudas 2013). Here, we exploit the GOP approach for
solving a particular mixed membership matrix factorization problem.

7.1.3 Contributions

Our contribution is bringing the Global OPtimization (GOP) algorithm into contact
with the mixed membership matrix factorization problem, computational improve-
ments to the branch-and-bound GOP algorithm, and experimental results. Our
discussion of the GOP algorithm here is necessarily brief. The details of problem
conditions, convergence properties, and a full outline of the algorithm steps for the
branch-and-bound version of the algorithm are found elsewhere (Floudas 2013).

We outline the general sparse mixed membership matrix factorization problem
in Sect. 7.2. In Sect. 7.3, we use GOP to obtain an ε-global optimum solution for
the mixed membership matrix factorization problem. In Sect. 7.4, we develop an
A-star search algorithm that significantly improves the computational efficiency of
our method. In Sect. 7.5, we show empirical accuracy and convergence time results
on a synthetic data set. We also explore the performance of our algorithm on a small
gene expression data set. Finally, we discuss further computational and statistical
issues in Sect. 7.6.

7.2 Problem Formulation

The problem data is a matrix y ∈ R
M×N , where an element yji is an observation

of feature j in sample i. We would like to represent each sample as a convex
combination of K subtype vectors, yi = xθi , where x ∈ R

M×K is a matrix of
K subtype vectors and θi is the mixing proportion of each subtype. We would like x

to be sparse because doing so makes interpreting the subtypes easier and often x is
believed to be sparse a priori for many interesting problems. In the specific case of
cancer subtyping, yji may be a normalized gene expression measurement for gene
j in sample i. We write this matrix factorization problem as
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minimize
θ,x

‖yi − xθi‖2
2

subjectto ‖x‖1 ≤ P

θi ∈ �K−1 ∀i,
(7.1)

where �K−1 is a K-dimensional simplex.
Optimization problem (7.1) can be recast with a biconvex objective and a convex

domain as

minimize
θ, x, z

‖y − xθ‖2
2

subject to
M∑

j=1

K∑

k=1

zjk ≤ P,

−zjk ≤ xjk ≤ zjk ∀(j, k),

θi ∈ �K−1 ∀i,
zjk ≥ 0 ∀(j, k)

(7.2)

If either x or θ is fixed then (7.2) reduces to a convex optimization problem. Indeed,
if x is fixed, the optimization problem is a form of constrained linear regression. If
θ is fixed, we have a form of LASSO regression. We prove that (7.1) is a biconvex
problem in Appendix 2. Since both problems are computationally simple, we could
take either x or θ to be the complicating variables in Benders’ decomposition and
we choose θ .

A common approach for solving an optimization problem with a nonconvex
objective function is to alternate between fixing one variable and optimizing over the
other. However, this approach only provides a local optimum (Gorski et al. 2007). A
key to the GOP algorithm is the Benders’-based idea that feasibility and optimality
information is shared between the primal problems in the form of constraints.

7.3 Algorithm

The Global OPtimization (GOP) algorithm, which we describe here, solves for
ε-global optimum values of x and θ (Floudas and Visweswaran 1990; Floudas
2000, 2013). The algorithm proceeds by first partitioning the optimization problem
decision variables into complicating and non-complicating variables. Then, the GOP
algorithm alternates between solving a primal problem over θ for fixed x, and
solving a relaxed dual problem over x for fixed θ . The primal problem provides
an upper bound on the original optimization problem because it contains more
constraints than the original problem (x is fixed). The relaxed dual problem contains
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fewer constraints and forms a valid global lower bound. The algorithm iteratively
tightens the upper and lower bounds on the global optimum by alternating between
the primal and relaxed dual problem.

7.3.1 Initialization

The algorithm starts by partitioning the problem into a relaxed dual problem and a
primal problem. The solution of the relaxed dual problem is an optimal x for fixed
values of the complicating variables θ and the solution of the primal problem is an
optimal θ . An iteration counter T = 1 is initialized.

For each iteration, the relaxed dual problem is solved by forming a partition of
the domain of x and solving a relaxed dual subproblem for each subset. A branch-
and-bound tree data structure is used to store the solution of each of these relaxed
dual subproblems and we initialize the root node n(0) where T = 0. The parents
of n(T ) is denoted par(n(T )), the set of ancestors of n(T ) is denoted anc(n(T )),
and the set of children of n(T ) is denoted ch(n(T )). The root node is formed by
initializing x at a random feasible point, xn(0), and storing it in n(0).

7.3.2 Solve Primal Problem and Update Upper Bound

The primal problem (7.2) is constrained to a fixed value of x at n(T ), x(n(T )),

Primal problem
(x fixed)

minimize
θ

‖y − xθ‖2
2

subject to θT
i 1K = 1 for all i,

θki ≥ 0 for all k, i

(7.3)

Since the primal problem is more constrained than (7.2), the solution, S(n(T )),
is a global upper bound. The value of the upper bound is PUBD ←
min{PUBD, S(n(T ))}, so PUBD holds the tightest upper bound across iterations.

7.3.3 Solve the Relaxed Dual Problem and Update Lower
Bound

The relaxed dual problem is a relaxed version of (7.2) in that it contains fewer
constraints than the original problem. Initially, at the root node, n(0), the domain
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of the relaxed dual problem is the entire domain of x, X . Each node stores a set
of linear constraints (cuts) such that when all of the constraints are satisfied, they
define a region in X . Sibling nodes form a partition of parent’s region and a node
deeper in the tree defines a smaller region than shallower nodes when incorporating
the constraints of the node and all of its ancestors. These partitioning constraints
are called qualifying constraints. Since the objective function is convex in θ for a
fixed value of x, a Taylor series approximation of the Lagrangian with respect to θ

provides a valid lower bound on the objective function. Since the objective function
is convex in θ , the Taylor approximation is linear and the optimal objective is at a
bound of θ . The GOP algorithm as outlined in (Floudas and Gounaris 2008) makes
these ideas rigorous.

The relaxed dual problem for the mixed membership matrix factorization
problem (7.2) for a node n(T ) is below.

Relaxed Dual Problem
(θ fixed)

minimize
Q, x, z

Q

subject to
M∑

j=1

K∑

k=1

zjk ≤ P,

−zjk ≤ xjk ≤ zjk, zjk ≥ 0,

L(x, θB(t), y, λt , μt )
∣
∣lin
xt ,θ t ≤ Q for t ∈ {anc(n(T )),n(T )},

gt
ki

∣
∣lin
xt (x) ≤ 0 if θB(t)ki = 1,

gt
ki

∣
∣lin
xt (x) ≥ 0 if θB(t)ki = 0

(7.4)

The function L(x, θB(t), y, λt , μt )
∣
∣lin
xt ,θ t is the linearized Lagrangian of (7.2),

gt
ki

∣
∣lin
xt (x) is the ki-th qualifying constraint, and θB(t) is the value of θ at the bound

such that the linearized Lagrangian is a valid lower bound in the region defined by
the qualifying constraints at node t . We have taken a second Taylor approximation
with respect to x to ensure the qualifying constraints are linear in x and thus valid
cuts as recommended in (Floudas and Gounaris 2008).

The algorithm for solving the relaxed dual problem comprises five steps:

1. Construct a child node in the branch-and-bound tree
2. Populate the child node with the linearized Lagrange function and qualifying

constraints
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3. Solve the relaxed dual subproblem at the child nodes
4. Update the lower bound
5. Check convergence

7.3.3.1 Construct a Child Node in the Branch-and-Bound Tree

Recall, a unique region in X for the leaf node ch(n(T )) is defined by the t-th row
of θB derived from the primal problem at node n(T ). This region can be expressed
as the qualifying constraint set,

g
ch(n(T ))
ki

∣
∣lin
xn(T ) (x) ≤ 0 if θB

ki(t) = 1,

g
ch(n(T ))
ki

∣
∣lin
xn(T ) (x) ≥ 0 if θB

ki(t) = 0.

To generate the t th child node of n(T ) and populate it with this constraint set and
θB(t) which will be used in the construction of the Lagrange function lower bound
in the relaxed dual problem.

7.3.3.2 Populate the Child Node with the Linearized Lagrange Function
and Qualifying Constraints

The qualifying constraint sets contained in each node along the path in the branch-
and-bound tree from ch(n(T )) to the root, inclusively, are added to the relaxed
dual subproblem at the newly constructed child node. For example, the qualifying
constraint set for a node n′ along the path is

gn
′

ki

∣
∣lin
xn

′ (x) ≤ 0 if θB(n′)ki = 1

gn
′

ki

∣
∣lin
xn

′ (x) ≥ 0 if θB(n′)ki = 0,

where gn
′

ki is the node’s kith qualifying constraint, xn
′

is the node’s relaxed dual
problem optimizer, and θB(n′) is a 0-1 vector defining the unique region for node
n′ since θki ∈ [0, 1].

Then, the Lagrangian function lower bound constraints from each node along the
path in the branch-and-bound tree from ch(n(T )) to the root, inclusively, are added
to the relaxed dual subproblem. For example the linearized Lagrange function for
node n′,

L(x, θB(n′), y, λ(n′), μ(n′))
∣
∣lin
x(n′),θ(n′) .



136 F. Zhang et. al.

The Lagrangian function for the primal problem is

L(x, θ, λ, μ) =
N∑

i=1

L(x, θi, λi, μi)

=
N∑

i=1

(yi − xθi)
�(yi − xθi)

− λi(θ
�
i 1K − 1)− μ�

i θi

=
N∑

i=1

y�i yi − 2y�i xθi + θ�i x�xθi

− λi(θ
�
i 1K − 1)− μ�

i θi

(7.5)

with Lagrange multipliers μ ∈ R
K×N+ and λ ∈ R

N .
The relaxed dual problem makes use of this Lagrangian function linearized about

θ(t) which we obtain through a Taylor series approximation,

L(x, θi, λi, μi)
∣
∣lin
θ(t) � L

(
x, θ

(t)
i , λ

(t)
i , μ

(t)
i

)

+
K∑

k=1

g
(t)
ki (x) ·

(
θki − θ

(t)
ki

)
,

(7.6)

where the qualifying constraint function is

g
(t)
i (x) �∇θi

L
(
θi, x, λ

(t)
i , μ

(t)
i

) ∣
∣
θ

(t)
i

= −2y�i x + 2θ
(t)�
i x�x

− 1�Kλ
(k)
i − μ

(k)�
i .

(7.7)

The qualifying constraint g
(t)
i (x) is quadratic in x. However, the qualifying

constraints must be linear in x to yield a convex domain whether g
(t)
i (x) ≥ 0 or

g
(t)
i (x) ≤ 0. So, the Lagrangian is linearized first with respect to x about x(t) then

about θi at θ
(t)
i . While the linearized Lagrangian is not a lower bound everywhere in

x, it is a valid lower bound in the region bound by the qualifying constraints with θi

set at the corresponding bounds in the Lagrangian function.
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The Lagrangian function linearized about x(t) is

L(yi, θi, x, λi, μi)

∣
∣
∣
∣

lin

x(t)

�yT
i yi − θ�i x(t)�x(t)θi

− 2y�i xθi + 2θ�i x(t)�xθi

− λi(θ
�
i 1K − 1)− μ�

i θi .

(7.8)

Subsequently, the Lagrangian function linearized about (x(t), θ
(t)
i ) is

L(yi, θi, x, λi, μi)

∣
∣
∣
∣

lin

x(t),θ
(t)
i

� y�i yi + θ
(t)�
i x(t)�x(t)θ

(t)
i

− 2θ
(t)�
i x(t)�x(t)θi

− λi

(
1�Kθi − 1

)
− μ�

i θi

− 2θ
(t)�
i x�x(t)θ

(t)�
i − 2y�i xθi

+ 2θ
(t)�
i

(
x(t)�x + x�x(t)

)
θi

, (7.9)

and the gradient used in the qualifying constraint is

g
(t)
i

∣
∣lin
x(t) (x) � ∇θi

[

L(yi, θi, x, λi, μi)

∣
∣
∣
∣

lin

x0

] ∣
∣
∣
∣
θ

(t)
i

= −2x(t)�x(t)θ
(t)
i − 2x�yi

+ 2(x(t)�x + x�x(t))θ
(t)
i − λi1K − μi.

(7.10)

The qualifying constraints, Lagrange function constraints, and Lagrangian comprise
the relaxed dual subproblem at child node ch(n(T )).

7.3.3.3 Solve the Relaxed Dual Subproblem at the Child Node

Once the valid constraints from the previous t = 1, . . . , T − 1 iterations have been
identified and incorporated, the constraint for the current T th iteration is

Q ≥ L(x, θBT , y, λ(t), μ(t))
∣
∣lin
x(t),θ(t)

g
(T )
ki

∣
∣lin
x(t) (x) ≤ 0 if θ

BT

ki = 1

g
(T )
ki

∣
∣lin
x(t) (x) ≥ 0 if θ

BT

ki = 0.
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The resulting relaxed dual problem is a linear program and can be solved
efficiently using the off-the-shelf LP solver Gurobi (Gurobi Optimization, Inc.
2018). We store the optimal objective function value and the optimizing decision
variables in the node.

7.3.3.4 Update the Lower Bound

The global lower bound, RLBD, is provided by the lowest lower bound across all
the leaf nodes in the branch-and-bound tree. Operationally, a hash table maintains
a value that is a pointer to a branch-and-bound tree node whose key is the optimal
value of the relaxed dual problem at that leaf node. Using this dictionary, branch-
and-bound selects the smallest key and bounds to the node of the tree indicated by
the value. This element is eliminated from the dictionary since at the end of the next
iteration, it will be an interior node and not available for consideration. The iteration
count is incremented, T ← T + 1, and the global lower bound is updated with the
optimal value of the relaxed dual problem at the new node.

7.3.3.5 Check Convergence

Since RLBD maintains the lowest lower bound provided by the relaxed dual
problem, the lower bound is non-decreasing. If the convergence criteria PUBD −
RLBD ≤ ε has been met, then the algorithm is exited and the optimal θ from the
node’s primal problem and the optimal x from the node’s relaxed dual problem
is reported. Finite ε-convergence and ε-global optimality proofs can be found
elsewhere (Floudas 2000).

7.4 Computational Improvements

In the relaxed dual problem branch-and-bound tree, a leaf node below the current
node n(T ) is constructed for each unique region defined by the hyperplane
arrangement. In the GOP framework, there are KN hyperplanes, one for each
connected variable and all of the KN elements of θ are connected variables. So,
an upper bound on the number of regions defined by KN cuts is 2KN because
each region may be found by selecting a side of each cut. Thus we have the
computationally complex situation of needing to solve a relaxed dual problem for
each of the 2KN possible regions.

Let an arrangement A denote a set of hyperplanes and r(A ) denote the set of
unique regions defined by A . In our particular situation, all of the hyperplanes pass
through the unique point x(n(T )), so all of the regions are unbounded except by
the constraints provided in X . A recursive algorithm for counting the number of
regions |r(A )| known as Zaslavsky’s Theorem, is outlined in (Zaslavsky 1975).
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Indeed, |r(A )| is often much less that 2|A |. Due to its recursive nature, computing
the number of hyperplanes using Zaslavsky’s theorem can be computationally slow,
though it can also be much better than the original 2KN number of subproblems.

7.4.1 Cell Enumeration Algorithm

To address the computational complexity we have developed an A-star search
algorithm for cell enumeration to simultaneously identify and count the set of unique
regions defined by arrangement A with sign vectors. The algorithm proceeds as
follows. First, preprocess the arrangement A to eliminate trivial and redundant
hyperplanes. Next, eliminate a hyperplane from A if the coefficients are all zero and
eliminate duplicate hyperplanes in A (see Appendix 3). What is left is a reduced
arrangement, A ′.

Here, we define two concepts, strict hyperplane and adjacent region. A strict
hyperplane is defined as non-redundant bounding hyperplane in a single region.
If two regions exist that have sign vectors differing in only one hyperplane, then
this hyperplane is a strict hyperplane. We define an adjacent region of region r

as a neighbor region of r if they are separated by exactly one strict hyperplane.
The general idea of the A-star algorithm uses ideas from partial order sets. We first
initialize a root region using an interior point method and then determine all of its
adjacent regions by identifying the set of strict hyperplanes. This process guarantees
that we can enumerate all unique regions.

We define θB ∈ {0, 1}|r(A ′)|×KN . The rows are regions and there are KN

columns. Each element of this matrix is either 0 or 1. The bth region in r(A ′) is
uniquely identified by the zero-one vector in the bth row of θB . If the bth element
of the kith row of θB is +1, then gki ≤ 0. Similarly, if the bth element of the
kith row of θB is 0, then gki ≥ 0. The A-star search algorithm completes the θB

matrix for the current node n(T ) and a leaf node is generated for each row of θB .
Thus each unique region defined by the qualifying constraint cuts provided by the
Lagrange dual of the primal problem at the current node. The details of the A-star
search algorithm are covered in Appendix 3.

7.4.2 Theoretical Time Complexity

The GOP algorithm has four main components: primal problem, preprocessing,
unique region identification, and relaxed dual problems. We analyze the compu-
tational complexity of each in turn.



140 F. Zhang et. al.

7.4.2.1 Primal Problem

The primal problem is a convex quadratic program with KN decision variables.
The time complexity for the primal problem solving is then O(K3N3) (Boyd and
Vandenberghe 2004).

7.4.2.2 Preprocessing

We address the cases of overlapping qualifying constraint cuts by sorting the
rows of the KN · M qualifying constraint coefficient matrix and comparing the
coefficients of adjacent rows. We first sort the KN rows of the qualifying constraint
coefficient matrix using heapsort which takes O(KN · log(KN)) time on average.
The algorithm subsequently passes through the rows of the matrix to identify all-
zero coefficients and duplicate cuts; each pass takes O(KN) time. We define |A ′|
as the number of unique qualifying constraints.

7.4.2.3 Unique Region Identification

The interior point method that we used in the A-star search algorithm is a linear
program of size |A ′| · MK with the time complexity of O(|A ′| · MK). The time
complexity for enumerating the set of unique regions is O(|A ′| · (|A ′| · MK)),
which exhibits polynomial behavior. The time complexity of the partial order A-
star algorithm is polynomial in the best case and exponential in the worst case,
depending on the heuristic. We define |r(A ′)| as the number of identified unique
regions.

7.4.2.4 Relaxed Dual Problems

There are 2MK + 1 decision variables for each relaxed dual problem, so the time
complexity for each is O(M3K3). The total time for solving the relaxed dual
problems is O(|r(A ′)| · M3K3), which depends on the number of relaxed dual
problems.

7.5 Experiments

In this section, we present our experiments on synthetic data sets and show
accuracy and convergence speed. Computational complexity is evaluated by both
the theoretical and empirical time complexity.
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7.5.1 Illustrative Example

We use a simple data set to show the operation of the algorithm in detail and
facilitate visualization of the cut sets. The data set, y, and true decision variable
values, (x∗, θ∗), are

x∗ = [0, −1
]
, θ∗ =

[
1, 0, 0.5
0, 1, 0.5

]

,

y = [0, −1, −0.5
]
.

We ran the GOP algorithm with sparsity constraint variable P = 1 and
convergence tolerance ε = 0.01. There are KN = 6 connected variables, so
we solve at most 2KN = 64 relaxed dual problems at each iteration. These
relaxed dual problems are independent and can be distributed to different com-
putational threads or cores. The primal problem is a single optimization problem
and will not be distributed. The optimal decision variables after 72 iterations are

x̂ = x(72) = [0.080, −0.920
]
, θ̂ = θ(72) =

[
1.00, 0.080, 0.580
0.00, 0.920, 0.420

]

, (7.11)

and the Lagrange multipliers are λ̂ = [−0.147, 0, 0] and μ̂ = [0, 0, 0; 0.160, 0, 0].
Figure 7.1a shows the convergence of the upper and lower bounds by iteration.

The upper bound converges quickly and the majority of the time in the algorithm
is spent proving optimality. With each iteration regions of the solution space
are tested until the lower bound is tightened sufficiently to meet the stopping
criterion. Figure 7.1b shows the first ten x values considered by the algorithm with
isoclines of the objective function with θ∗ fixed. It is evident that the algorithm
is not performing hill-climbing or any other gradient ascent algorithm during its
search for the global optimum. Instead, the algorithm explores a region bound by
the qualifying constraints to construct a lower bound on the objective function.
We run it using 20 random initial values and the optimal objective functions
for all random initializations are all 0, which shows that the GOP algorithm
found the globally optimal solutions of this small instance. Furthermore, the
algorithm does not search nested regions, but considers previously explored cut sets
(Fig. 7.1b).
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Fig. 7.1 (a) GOP optimal upper and lower bounds, (b) GOP optimal relaxed dual problem
decision variables

Figure 7.2a and b shows the branch-and-bound tree and corresponding x-space
region with the sequence of cut sets for the first three iterations of the algorithm.
One cut in Fig. 7.2c–f is obtained for each of the KN qualifying constraints. We
initialize the algorithm at x(0).

7.5.2 Accuracy and Convergence Speed

We ran our GOP algorithm using 64 processors on a synthetic data set which is
randomly generated on the scale of one feature (M = 1), two subtyes (K = 2) and
ten samples (N = 10). Figure 7.3a shows that our GOP algorithm converges very
quickly to −0.17 duality gap (PUBD − RLBD) in the first 89 iterations in 120 s.
The optimal x (x1, x2) and θ (θ1, θ2) of each iteration are shown with a range of
colors to represent corresponding RLBD in Fig. 7.3b,c. The dark blue represents
low RLBD and the dark red represents high RLBD. The RLBD of the initial x,
x(0), is −59.87; The RLBD of iteration 89, x(89), is −0.17. It demonstrates that
the GOP algorithm can change modes very easily without getting stuck in local
optima.
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Fig. 7.2 (a) Branch-and-bound tree at iteration 1, (b) x-space region at iteration 1, (c) Branch-and-
bound tree at iteration 2, (d) x-space region at iteration 2, (e) Branch-and-bound tree at iteration 3,
(f) x-space region at iteration 3



144 F. Zhang et. al.

Fig. 7.3 (a) Duality gap through the first 120 s, (b) Optimal x of each iteration. The true x is
(0,−1), (c) Optimal θ of each iteration. The true θ is (0.22, 0.78)

7.5.3 Computational Complexity

We compare our theoretical complexity analysis with empirical measurements of
the time complexity on simulated data sets.

We constructed 12 synthetic data sets in a full-factorial arrangement with M ∈
{20, 40, 60, 80}, K ∈ {2}, and N ∈ {4, 5, 6} and measured CPU time for each
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component of one iteration. For each arrangement, each element of the true x∗ is:

x∗mk =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 ≤ m < M/4, k = 0
−1 if M/4 ≤ m < M/2, k = 1

N (0, 0.52) if M/2 ≤ m < M,∀k
0 otherwise

Here N (0, 0.52) is the sample from a Normal distribution by its mean 0 and
standard deviation 0.5. For the true θ∗, θ∗kn for k = 0 are n evenly spaced samples
over the interval of [0, 1]; θ∗kn for k = 1 are n evenly spaced samples over the
interval of [1, 0].

Table 7.1 Timing profile (in seconds) of each component of the GOP algorithm for one iteration
varying problem size

N M Primal problem Preprocessing Unique region ID Relaxed dual problems Total

4

20 0.10 1.69 1.29 1.54 (33%) 4.62

40 0.12 1.91 1.72 1.69 (31%) 5.44

60 0.12 2.03 1.11 1.77 (35%) 5.03

80 0.13 2.39 2.05 3.70 (45%) 8.27

5

20 0.11 1.99 1.31 11.26 (77%) 14.67

40 0.11 2.07 1.37 11.45 (76%) 15.00

60 0.11 1.86 1.41 12.33 (78%) 15.71

80 0.12 2.23 1.26 17.96 (83%) 21.57

6

20 0.14 2.21 2.50 65.71 (93%) 70.56

40 0.13 2.83 2.49 67.08 (92%) 72.53

60 0.12 3.45 2.80 69.00 (92%) 75.37

80 0.12 3.15 2.80 77.62 (93%) 83.69

Table 7.1 shows that the time per iteration increases linearly with M when K

and N are fixed. The time for solving all the relaxed dual problems increases as the
number of samples increases. Even though the step of solving all the relaxed dual
problems takes more than 90% of the total time per iteration when the number of
samples is 6, our algorithm is easily parallelized to solve the relaxed dual problems,
allowing the algorithm to scale nearly linearly with the size of the data set.

7.5.4 Real Data Analysis

To explore the performance of our algorithm on real data, we performed experiments
on the TCGA pancancer high throughput DNA sequencing data set (Weinstein et al.
2013; Dheeru and Karra Taniskidou 2017). The original data was subsetted to the
top two most variable genes and the top ten most variable samples by standard
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deviation. Then it was log transformed and centered across genes. The number of
clusters was set to K = 2, the sparsity constraint was set to P = 1.

At early iterations, the optimal θ is a nearly 0–1 matrix, so we report the samples
associated with each of the K = 2 subtypes. Samples 1, 4, 5, and 7 were assigned
to subtype A and samples 2, 3, 6, 8, 9 and 10 were assigned to subtype B; subtypes
are labeled arbitrarily with letters. The optimal x values were xA = [−0.204, 0] and
xB = [0.561, 0.234]. The inference algorithm enforced the L1 penalty—the sum of
the absolute values of x are at P = 1. And, the L1 penalty clearly enforced sparsity
in that one of the elements is exactly equal to zero.

The data set provides the anatomical regions associated with each of the cancer
samples, and we explored those assignments to see if there is an association between
the subtypes and the anatomical site of the cancer. Subtype A contains three colon
adenocarcinomas and one prostate adenocarcinomas; subtype B contains four breast
invasive carcinomas, one lung adenocarcinoma, and one kidney adenocarcinoma.
Clearly, the algorithm is effectively clustering colon adenocarcinomas and cancers
that are genomically more like that type from breast adenocarcinomas and cancers
that are genomically more like that type.

At later iterations, when the duality gap had narrowed to 3.65, the optimal θ

is more mixed. Still, the majority of the colorectal adenocarcinomas had subtype
A as their largest component, and the majority of breast invasive carcinomas had
subtype B as their largest component. These results indicate that this globally
optimal inference algorithm performs well on a real data set. Since the algorithm
provides both upper and lower bounds, a proof of ε-optimality is provided. Within
this tolerance, the algorithm provides confidence that the provided estimates are
globally optimal and not merely an artifact of local convergence.

7.6 Discussion

We have presented a global optimization algorithm for a mixed membership matrix
factorization problem. Our algorithm brings ideas from the global optimization
community (Benders’ decomposition and the GOP method) into contact with
statistical inference problems for the first time. The naïve computational cost of
the global optimal solution is the need to solve a number of linear programs that
grows exponentially in the number of connected variables in the worst case—in this
case the KN elements of θ . Many of these linear programs are redundant or yield
optimal solutions that are greater than the current upper bound and thus not useful. A
branch-and-bound framework (Floudas 2000) reduces the need to solve all possible
relaxed dual problems by fathoming parts of the solution space We further mitigate
this cost by developing an search algorithm for identifying and enumerating the true
number of unique linear programs.

Finally, we have derived an algorithm for particular loss functions for the sparsity
constraint and objective function. The GOP framework can handle integer variables
and thus may be used with an �0 counting “norm” rather than the �1 norm to induce
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sparsity. This would give us a mixed-integer biconvex program, but the conditions
for the framework. Structured sparsity constraints can also be defined as is done for
elastic-net extensions of LASSO regression. It may be useful to consider other loss
functions for the objective function depending on the application.

We are exploring the connections between GOP and the other alternating opti-
mization algorithms such as the expectation maximization (EM) and variational EM
algorithm. Since the complexity of GOP only depends on the connected variables,
the graphical model structure connecting the complicating and non-complicating
variables may be used to identify the worst-case complexity of the algorithm prior
to running the algorithm. A factorized graph structure may provide an approximate,
but computationally efficient algorithm based on GOP. Additionally, because the
Lagrangian function factorizes into the sum of Lagrangian functions for each sample
in the data set, we may be able to update the parameters based on GOP for a selected
subset of the data in an iterative or sequential algorithm. We are exploring the
statistical consistency properties of such an update procedure.

Acknowledgements We acknowledge Hachem Saddiki for valuable discussions and comments
on the manuscript.

Appendix 1: Derivation of Relaxed Dual Problem Constraints

The Lagrange function is the sum of the Lagrange functions for each sample,

L(y, θ, x, λ) =
n∑

i=1

L(yi, θi, x, λi, μi), (7.12)

and the Lagrange function for a single sample is

L(yi, θi, x, λi, μi) = yT
i yi − 2yT

i xθi + θT
i xT xθi − λi(θ

T
i 1K − 1)−μT

i θi . (7.13)

We see that the Lagrange function is biconvex in x and θi . We develop the
constraints for a single sample for the remainder.

Linearized Lagrange Function with Respect to x

Casting x as a vector and rewriting the Lagrange function gives

L(yi, θi, x̄, λi, μi) = ai − 2bT
i x̄ + x̄T Ci x̄ − λi(θ

T
i 1K − 1)− μT

i θi, (7.14)
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where x̄ is formed by stacking the columns of x in order. The coefficients are formed
such that

a = yT
i yi,

bT
i x̄ = yT

i xθi,

x̄T Ci x̄ = θT
i xT xθi .

The linear coefficient matrix is the KM × 1 vector,

bi = [yiθ1i , · · · , yiθKi]

The quadratic coefficient is the KM ×KM and block matrix

Ci =
⎡

⎢
⎣

θ2
1iIM · · · θ1iθKiIM

...
. . .

...

θKiθ1iIM · · · θ2
KiIM

⎤

⎥
⎦

The Taylor series approximation about x0 is

L(yi, θi, x̄, λi, μi)

∣
∣
∣
∣

lin

x̄0

= L(yi, x0, θi , λi, μi)+ (∇xL|x0)
T (x − x0). (7.15)

The gradient with respect to x is

∇xL(yi, θi, x̄, λi, μi) = −2bi + 2Cix̄. (7.16)

Plugging the gradient into the Taylor series approximation gives

L(yi, θi , x̄, λi)

∣
∣
∣
∣

lin

x̄0

=ai − 2bT
i x̄0 + x̄T

0 Cix̄0 − λi

(
θT
i 1K − 1

)
− μT

i θi + (−2bi + 2Cix̄0)
T (x̄ − x̄0).

(7.17)

Simplifying the linearized Lagrange function gives

L(yi, θi , x̄, λi , μi)

∣
∣
∣
∣

lin

x̄0

=
(
yT
i yi − x̄T

0 Cix̄0 − λi

(
θT
i 1K − 1

)
− μT

i θi

)
− 2bT

i x̄ + 2x̄T
0 Cix̄

(7.18)

Finally, we write the linearized Lagrangian using the matrix form of x0,

L(yi, θi , x, λi , μi)

∣
∣
∣
∣

lin

x0

= yT
i yT

i − θT
i xT

0 x0θi − 2yT
i xθi + 2θT

i xT
0 xθi − λi

(
θT
i 1K − 1

)
− μT

i θi

(7.19)
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While the original Lagrange function is convex in θi for a fixed x, the linearized
Lagrange function is not necessarily convex in θi . This can be seen by collecting the
quadratic, linear and constant terms with respect to θi ,

L(yi, θi , x, λi , μi)

∣
∣
∣
∣

lin

x0

=
(
yT
i yT

i + λi

)
+
(
−2yT

i x − λi1
T
K − μT

i

)
θi + θT

i

(
2xT

0 x − xT
0 x0

)
θi .

(7.20)

Now, if and only if 2xT
0 x − xT

0 x0 � 0 is positive semidefinite, then

L(yi, θi, x, λi, μi)

∣
∣
∣
∣

lin

x0

is convex. The condition is satisfied at x = x0 but may

be violated at some other value of x.

Linearized Lagrange Function with Respect to θi

Now, we linearize (7.18) with respect to θi . Using the Taylor series approximation
with respect to θ0i gives

L(yi , θi , x, λi , μi)

∣
∣
∣
∣

lin

x0,θ0i

= L(yi, θ0i , x, λi , μi)

∣
∣
∣
∣

lin

x0

+
(

∇θi
L(yi , θi , x, λi , μi)

∣
∣
∣
∣

lin

x0

∣
∣
∣
∣
θ0i

)T

(θi − θ0i )

(7.21)

The gradient for this Taylor series approximation is

gi(x) � ∇θi
L(yi , θi , x, λi , μi)

∣
∣
∣
∣

lin

x0

∣
∣
∣
∣
θ0i

= −2xT
0 x0θ0i − 2xT yi + 2

(
xT

0 x + xT x0

)
θ0i − λi1K − μi,

(7.22)

where gi(x) is the vector of K qualifying constraints associated with the Lagrange
function. The qualifying constraint is linear in x. Plugging the gradient into the
approximation gives

L(yi, θi , x, λi , μi)

∣
∣
∣
∣

lin

x0,θ0i

= yT
i yT

i − θT
0ix

T
0 x0θ0i − 2yT

i xθ0i + 2θT
0ix

T
0 xθ0i − λi

(
θT

0i1K − 1
)

−μT
i θ0i +

(
−2xT

0 x0θ0i − 2xT yi + 2(xT
0 x + xT x0)θ0i − λi1K − μi

)T

(θi − θ0i )

(7.23)
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The linearized Lagrange function is bi-linear in x and θi . Finally, simplifying the
linearized Lagrange function gives

L(yi, θi , x, λi , μi)

∣
∣
∣
∣

lin

x0,θ0i

= yT
i yT

i + θT
0ix

T
0 x0θ0i − 2θT

0ix
T
0 x0θi − λi(1

T
Kθi − 1)− μT

i θi

− 2θT
0ix

T x0θ0i − 2yT
i xθi + 2θT

0i (x
T
0 x + xT x0)θi

(7.24)

Appendix 2: Proof of Biconvexity

To prove the optimization problem is biconvex, first we show the feasible region
over which we are optimizing is biconvex. Then, we show the objective function is
biconvex by fixing θ and showing convexity with respect to x, and then vice versa.

The Constraints Form a Biconvex Feasible Region

Our constraints can be written as

||x||1 � P (7.25)

K∑

k=1

θki = 1 ∀i (7.26)

0 � θki � 1 ∀(k, i). (7.27)

The inequality constraint (7.25) is convex if either x or θ is fixed, because any norm
is convex. The equality constraints (7.26) is an affine combination that is still affine
if either x or θ is fixed. Every affine set is convex. The inequality constraint (7.27)
is convex if either x or θ is fixed, because θ is a linear function.

The Objective Is Convex with Respect to θ

We prove the objective is a biconvex function using the following two theorems.

Theorem 1 Let A ⊆ R
n be a convex open set and let f : A → R be twice

differentiable. Write H(x) for the Hessian matrix of f at x ∈ A. If H(x) is positive
semidefinite for all x ∈ A, then f is convex (Boyd and Vandenberghe 2004).
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Theorem 2 A symmetric matrix A is positive semidefinite (PSD) if and only if there
exists B such that A = BT B (Lancaster et al. 1985).

The objective of our problem is,

f (y, x, θ) = ||y − xθ ||22 = (y − xθ)T (y − xθ) (7.28)

= (yT − θT xT )(y − xθ) (7.29)

= yT y − yT xθ − θT xT y + θT xT xθ. (7.30)

The objective function is the sum of the objective functions for each sample.

f (y, x, θ) =
N∑

i=1

f (yi, x, θi) (7.31)

=
N∑

i=1

yT
i yi − 2yT

i xθi + θT
i xT xθi . (7.32)

The gradient with respect to θi ,

∇θi
f (yi, x, θi) = −2yT

i x +
(

xT x +
(
xT x

)T
)

θi (7.33)

= −2xT yi + 2xT xθi . (7.34)

Take second derivative with respect to θi to get Hessian matrix,

∇2
θi
f (yi, x, θi) = �θi

(
−2xT yi + 2xT xθi

)
(7.35)

= 2�θi

(
xT xθi

)
(7.36)

= 2
(
xT x

)T

(7.37)

= 2xT x. (7.38)

The Hessian matrix ∇2
θi
f (yi, x, θi) is positive semidefinite based on Theorem 2.

Then, we have f (yi, x, θi) is convex in θi based on Theorem 1. The objective
f (y, x, θ) is convex with respect to θ , because the sum of convex functions,∑N

i=1 f (yi, x, θi), is still a convex function.
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The Objective Is Convex with Respect to x

The objective function for sample i is

f (yi, x, θi) = yT
i yi − 2yT

i xθi + θT
i xT xθi . (7.39)

We cast x as a vector x̄, which is formed by stacking the columns of x in order. We
rewrite the objective function as

f (yi, x̄, θi) = ai − 2bT
i x̄ + x̄T Ci x̄. (7.40)

The coefficients are formed such that

a = yT
i yi, (7.41)

bT
i x̄ = yT

i xθi, (7.42)

x̄T Ci x̄ = θT
i xT xθi . (7.43)

The linear coefficient matrix is the KM × 1 vector

bi = [yiθ1i , . . . , yiθKi] (7.44)

The quadratic coefficient is the KM ×KM and block matrix

Ci =
⎡

⎢
⎣

θ2
1iIM · · · θ1iθKiIM

...
. . .

...

θKiθ1iIM · · · θ2
KiIM

⎤

⎥
⎦ (7.45)

The gradient with respect to x̄

∇x̄f (yi, x̄, θi) = −2bi + 2Cix̄. (7.46)

Take second derivative to get Hessian matrix,

∇x̄2f (yi, x̄, θi) = 2CT
i (7.47)

= 2
(
θiθ

T
i

)T

(7.48)

= 2
(
θT
i

)T (
θT
i

)
. (7.49)
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The Hessian matrix ∇2
x̄ f (yi, x̄, θi) is positive semidefinite based on Theorem 2.

Then, we have f (yi, x̄, θi) is convex in x̄ based on Theorem 1. The objective
f (y, x, θ) is convex with respect to x, because the sum of convex functions,∑N

i=1 f (yi, x, θi), is still a convex function.
The objective is biconvex with respect to both x and θ . Thus, we have a biconvex

optimization problem based on the proof of biconvexity of the constraints and the
objective.

Appendix 3: A-Star Search Algorithm

In this procedure, first we remove all the duplicate and all-zero coefficients
hyperplanes to get unique hyperplanes. Then we start from a specific region r and
put it into a open set. Open set is used to maintain a region list which need to be
explored. Each time we pick one region from the open set to find adjacent regions.
Once finishing the step of finding adjacent regions, region r will be moved into a
closed set. Closed set is used to maintain a region list which already be explored.
Also, if the adjacent region is a newly found one, it also need to be put into the open
set for exploring. Finally, once the open set is empty, regions in the closed set are all
the unique regions, and the number of the unique regions is the length of the closed
set. This procedure begins from one region and expands to all the neighbors until no
new neighbor is existed.

The overview of the A-star search algorithm to identify unique regions is shown
in Algorithm 1.

Algorithm 1 A-star Search Algorithm
1: Sort the rows of the KN x M qualifying constraint coefficient matrix.
2: Compare adjacent rows of the qualifying constraint coefficient matrix and eliminate duplicate

rows.
3: Eliminate rows of the qualifying constraint coefficient matrix with all-zero coefficients.
4: Determine the list of unique qualifying constraints by pairwise test.
5: Set S and |A ′| to the set of unique, non-trivial qualifying constraints and the number of them.
6: Initialize a region root using an interior point method (Component 1).
7: Put region root into the open set.
8: if open set is not empty then
9: Get a region R from the open set.

10: Calculate the adjacent regions set Radj (Component 2).
11: Put region R into the closed set.
12: for each region r in Radj do
13: if r is not in the open set and not in the closed set then
14: Put region r into the open set.
15: Reflect the sign of the regions in the close set.
16: Get all the regions represented by string of 0 and 1.



154 F. Zhang et. al.

Hyperplane Filtering

Assuming there are two different hyperplanes Hi and Hj represented by Ai ={
ai,0, . . . , ai,MK

}
and Aj = {

aj,0, . . . , aj,MK

}
. We take these two hyperplanes

duplicated when

ai,0

aj,0
= ai,1

aj,1
= . . . = ai,MK

aj,MK

=
∑MK

l=0 ai,l
∑MK

l=0 aj,l

, aj,l ! = 0 (7.50)

This can be converted to

∣
∣
∣
∣
∣

MK∑

l=0

ai,l · aj,n −
MK∑

l=0

aj,l · ai,n

∣
∣
∣
∣
∣
≤ τ,∀ nε[0,MK] (7.51)

where threshold τ is a very small positive value.
We eliminate a hyperplane Hi represented by Ai = {

ai,0, . . . , ai,MK

}
from

hyperplane arrangement A if the coefficients of Ai are all zero,

|ai,j | � τ forall ai,j ∈ Ai and j ∈ [0,MK]

The arrangement A ′ is the reduced arrangement and A′x = b are the equations of
unique hyperplanes.

Interior Point Method

An interior point is found by solving the following optimization problem:

maximize z

subject to −A′
ix + z ≤ bi if θB

i = 0,

A′
ix + z ≤ −bi if θB

i = 1,

z > 0

(7.52)
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Algorithm 2 Interior Point Method (Component 1)

1: Generate 2|A
′ | different strings using 0 and 1.

2: for each s in the strings do
3: Solve an optimization problem to get an interior point.
4: if Get a interior point then
5: Get the root region represented by 0 and 1.

Algorithm 3 Get Adjacent Regions (Component 2)
1: Initialize an empty set SH for strict hyperplanes.
2: Initialize an adjacent region set ADJ .
3: # Find out all the strict hyperplanes for region R.
4: for each hyperplane H of |A ′| hyperplanes do
5: Pick one hyperplane H from all the hyperplanes defining region R.
6: Flip the sign of H to get ¬H .
7: Form a new hyperplane arrangement ¬A ′ with ¬H .
8: Solve the problem to get an interior point constrained by ¬A ′.
9: if the interior point is not Non then

10: H is a strict hyperplane and put into set SH .
11: else
12: H is a redundant hyperplane.
13: # Find out all the adjacent regions for region R.
14: for each strict hyperplane sh in set SH do
15: Take the opposite sign ¬sh of sh.
16: Form a adjacent region adj based on ¬sh and all the else hyperplanes.
17: Put adj into set ADJ .
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Chapter 8
A Nonnegative Robust Linear Model
for Deconvolution of Proportions

Hyonho Chun and Hyuna Yang

8.1 Introduction

There have been many linear deconvolution methods that estimate mixing rates
of diverse cell types from gene expression measurements. With given set of gene
expression measurements from pure cells, Abbas et al. (2009) formulated this
deconvolution problem as a least squares problem. The approach was then extended
to a quadratic programming (QP) method by imposing non-negativity constraints
(Gong et al. 2011). Next, Qiao et al. (2012) proposed the PERT method that extends
latent Dirichlet allocation (LDA). They took into account the non-Gaussian nature
of expression data while performing linear deconvolution by using a Multinomial
mixture model to gene expression data. However, the model is over-parametrized,
and hence needs a strong prior specification to be an identifiable model.

Recently, CIBERSORT (Newman et al. 2015) was proposed and applied to
estimate immune cell infiltration in tumor samples. The role of immune cells in
tumor samples is not yet clearly understood. Yet, accurately finding the presence of
immune cells is an important scientific question. CIBERSORT estimated the mixing
ratios robustly by using support vector regression (SVR). The SVR was advocated
due to the non-Gaussian nature of gene expression data that is manifested by the too
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high or too small expression values. Despite the excellent performance, it produces
only relative abundance estimates conditional on the given cell types. Hence the
absolute level of abundances in the presence of other unknown cell types or noises
is hard to be gauged. It was also reported that spurious negative correlations are
observed among estimated mixing ratios (Li et al. 2017). Also, CIBERSORT does
not impose non-negativity constraints and thus requires post-processing of making
negatives to zeros. Due to these problems, Li et al. (2017) used QP with non-
negativity constraints in estimating immune infiltration from tumor samples. Li et al.
(2017) needed careful selection of genes because their QP estimates were heavily
influenced by high values of gene expression.

For this reason, we propose a non-negative robust linear regression (NRLM)
approach for a linear deconvolution problem. Our approach adopts ε-insensitive
loss function with non-negativity constraints as well as L1 norm constraint to
handle non-Gaussian nature of expression while producing interpretable mixing
ratio estimates. Details of our approach are in the next section.

8.2 Method

Unlike other regression-based approaches, we model the proportions, rather than
gene expression values. We assume that the observed proportion is in part the
mixture of specified cell profiles (e.g., immune cell profiles). The other part of
proportion is related to noise or other non-specified cell contents (e.g., tumors).
Given a signature proportion matrix of N genes and K specified cell types (AN×K ),
we assume that the observed proportion p is decomposed into p = Aw + v where
v captures noise or non-specified cells proportions, and w is K dimensional vector
describing the mixing ratios of the specified cell types.

Under this model, our parameter of interest is w. We propose to estimate w by
minimizing the following ε-insensitive loss function.

min
w

N∑

i=1

max(|pi − Ai·w| − ε, 0)

such that 0 ≤ wi ≤ 1 and
∑

wi ≤ 1. Here ε > 0 is a fixed constant and Ai·
is the ith row of the matrix. The ε-insensitive loss function is used in SVR to
promote the robustness of estimates. The difference between SVR and our NRLM
is in the use of different regularization on w. SVR uses L2 regularization to resolve
an ill-posedness problem due to correlated predictors in a linear model or over-
parametrization in a highly non-linear model. However, the given deconvolution
problem is inherently linear and it becomes less crucial to use L2 regularization as
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long as the features are not highly correlated. Instead, NRLM uses L1 regularization
with non-negativity constraints to make the estimate interpretable. In addition, we
do not use the intercept term to keep the probabilistic interpretation of cell mixtures.

By introducing non-negative slack variables ξ+i and ξ−i , the objective function is
written as min

∑
(ξ+i + ξ−i ) s.t. −ξ−i − ε ≤ pi −∑j Ai,jwj ≤ ξ+i + ε;

∑
wi ≤ 1;

ξ+i > 0; ξ−i > 0; and wi > 0. This linear programming (LP) problem is solved by
using the LPSolve package in R. The only tuning parameter is ε and is selected from
(10, 25, 50, 75, 90)% percentiles of the entire observed proportions that minimizes
L1 norm of |p − Aw|.

8.3 Results

8.3.1 Simulation Studies

8.3.1.1 No Unwanted Negative Correlations

We perform a simulation study that is similar to as in Li et al. (2017). Using the
example, they illustrated the unwanted negative correlations among mixing rate
estimates from CIBERSORT. We show that our NLRM gives accurate estimates
without any unwanted correlations using two simulated datasets. The first data is
generated from two unrelated cell types CD8 T cells (X1) and neutrophils (X2) of
the LM22 matrix (Newman et al. 2015). The second data is using two highly related
cell types, naive (X1) and memory B-cells (X2).

The mixing proportions f i
1 and f i

2 are simulated from Uniform(0, 0.5). ṽi are
random proportion vectors from Dirichlet(1, (0.1, . . . , 0.1)) after multiplication of
the total expression of CD8 T cells. The model is written as Yi = f i

1 X1+f i
2 X2+ṽi ,

where i = 1, . . . , 500.
The model is re-written with proportions as follows:

pi = f i
1
|X1|
|Yi |A1 + f i

2
|X2|
|Yi |A2 + 1

|Yi | ṽ
i

= wi
1A1 + wi

2A2 + vi ,

where |X| represents L1 the norm of the vector X. Our approach yields the estimates

of wi
j . We convert wi

j to f i
j by adjusting with totals as follows: f i

j = wi
j
|Yi |
|Xj | . As

seen in Fig. 8.1, our proposed approach estimates the true proportions accurately and
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Fig. 8.1 Proportion estimations from cells mixture. Left: Simulation Scenario 1 (independent cell
mixture), Right: Simulation Scenario 2 (dependent cell mixture). Solid black dots and circles
represent the true and estimates, respectively

the estimates from our method do not expose any unwanted negative correlations in
both related (the first simulation) and unrelated (the second simulation) signatures.

8.3.1.2 Deconvolution of In-Vitro Cell Mixtures

In this subsection, we present the performance of our deconvolution methods from
in-vitro mixtures. Four pure cell types (Jurkat, IM9, Raji, and THP1) were mixed
in-vitro and true mixing ratios were computed by using flow cytometry by Abbas
et al. (2009). We download datasets from CIBERSORT’s website.

Since our model uses proportions, the gene selection affects the estimates. For a
selected gene set S, let pS be the sub-vector of p and AS bs the sub-row matrix of
A. The model can be written as

pi
S

|pi
S |
= αi

1
AS,1

|AS,1| + . . .+ αi
K

AS,1

|AS,1| +
vi
S

|pi
S |

= f i
1

|Xj |
|pi

S ||Yi |AS,1 + . . .+ f i
1

|Xj |
|pi

S ||Yi |AS,1 ++ vi
S

|pi
S |

.

Hence, we recover f i
j = |Yi |

|Xj |
|pi

S ||AS,j |α
i
j = |Yi

S ||XS,j |α
i
j .

The estimated and true proportions are presented in Fig. 8.2. The correlation
between true and estimates of our NRLM is 0.91 which is close to 0.92 from
CIBERSORT. We notice that the bias of each cell type estimate has the same
direction and suggests that the discrepancy may come from the inaccuracy of total
estimates due to microarray normalization.
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Fig. 8.2 The estimated and true proportions. The correlation between true and estimate is 0.91

8.3.1.3 Performance Comparison Cell with Tumor Contents or Noises

In this subsection, we compare the performance of our NRLM to CIBERSORT
and robust linear model (RLM) by adding tumor contents and noises to the 12 in-
vitro mixture data of Abbas et al. (2009). We remark that Newman et al. (2015)
reported the superior performance of CIBERSORT to other methods such as QP
and PERT. Hence, we do not include QP or PERT in the simulation. We add RLM
because the proportion based RLM has not been compared in the previous study.
We also remark that RLM uses the Huber loss function and hence it produces robust
estimates. However, it does not impose non-negative constraints.

We download the tumor contents from the colon cancer cell line (HCT116)
and use the mean value reported in Newman et al. (2015) as the mean of two
datasets (GSM269529 and GSM269530). The MAS5 and quantile normalization are
used. The noise is simulated by using log normal model with mean 0 and standard
deviation f ·σ where σ = 11.4 and f varies as 0, 0.3, 0.6, and 0.9. We compare the
correlation between estimates and the truth. As seen in Fig. 8.3, our NRLM yields
the highest correlation and performs much better when a large amount of noise is
added.

8.3.1.4 Estimating Actual Mixing Rates

As an added advantage, our NLRM estimates the absolute amount of a specific
cell content. We follow the spike-in in-silico simulation of Newman et al. (2015).
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Fig. 8.3 For each combination of tumor content and noise, correlation between true and estimated
proportions are presented with colors
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Fig. 8.4 Accuracy of absolute content estimates in in-silico Jurkat spike-in experiment

We mix a varying proportion of Jurkat cells from Abbas et al. (2009) to other
five different type of mixture cells consisting of the other three cells. We then add
tumor cells that are described in the previous subsection with varying total amount.
When compared to the truth, we find that the estimate is almost identical to the
truth (Fig. 8.4) when there is no tumor content. But, with tumor contents, the Jurkat
content is slightly over-estimated although the difference is less than 0.016.
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Fig. 8.5 Performance comparison in deep deconvolution of PBMC samples

8.3.2 Real Data Analysis

We compare the performance of CIBERSORT, RLM, and NRLM with a deep
convolution problem discussed in Newman et al. (2015). In their study, peripheral
blood mononuclear cells (PBMCs) were collected from 20 adults of varying ages.
Gene expression levels were measured by using Illumina BeadChip arrays. To find
ground truths, they used flow cytometry and computed the relative abundance of
nine immune cell subsets.

The data is obtained from CIBERSORT’s website. Here we do not apply any
total/marker correction to the RLM and NRLM estimates because only marker gene
expression data is downloaded. As seen in Fig. 8.5, our NRLM performance is
comparable to the other methods. We remark that, in this example, some of the
estimates from CIBERSORT or RLM are negative and these negative coefficients
are modified to zeros. Since these estimates are conditional on the negative
estimates, care must be taken when the coefficients are interpreted. We also present
the estimated relative abundance compared with the truth at Fig. 8.6. Although
NRLM performs better than other methods and shows clear positive correlations,
it appears that the estimates from NRLM are not so accurate. In fact, the absolute
level of proportions explained by this LM22 matrix is 0.48 from our method. Hence,
these blood samples still have a large component that cannot be explained by the
signature matrix. When we check the histogram of proportions from randomly
selected subjects, their frequency distributions are very different from the frequency
distributions of the LM22 matrix (Fig. 8.7). This suggests that we may still need a
better signature matrix for deep deconvolution.
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Fig. 8.6 NRLM estimates vs true proportion from flow cytometry by using PBMC samples

8.4 Discussion

The most important factor in estimating mixing rates of given cell types is the choice
of the signature matrix. If the signature matrix A is not accurate, no method would
perform well. In this regard, we highly appreciate the importance of the LM22
matrix (Newman et al. 2015) in estimating immune content. Our contribution is to
provide interpretable estimates of mixing ratios robustly. To promote the robustness,
we adopted the ε- insensitive loss function just like SVR. However, we imposed
non-negativity as well as the L1 constraint for interpretability. Also, we normalized
each column of data to have the sum of one and did not use the intercept term
to keep the probabilistic interpretation. From these changes, our method showed
a great performance in estimating mixing rates. However, the current method
only produced point estimates without uncertainty quantification. Our future work
includes deriving a large sample property and producing interval estimates.
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Chapter 9
Practical Design Approaches
for Assessing Parallelism in Dose
Response Modelling

Timothy E. O’Brien and Jack Silcox

9.1 Introduction

Scientific researchers in biomedicine, pharmaceutical science and toxicology often
face situations in which binary logistic regression model fits are used to compare
two drugs or substances, often by means of comparisons of median doses or
concentrations (EC50 or LD50). Applications are given in works spanning early
bioassay findings of Finney (1971, 1978) to more recent results in Rich (2013) and
Gupta and Vale (2017). Furthermore, Wheeler et al. (2006) underscores the caution
that instead of examining for overlap in separate EC50 confidence intervals, testing
is best based on estimation and confidence intervals associated with the relative
potency parameter. Notably, before fitting such curves and testing for differing
potencies, an important requirement is that these dose response curves be parallel.
As such, various works have introduced meaningful means to assess parallelism in
logistic regression settings, including Gottschalk and Dunn (2005), Jonkman and
Sidak (2009), Novick et al. (2012), Yang and Zhang (2012), Yang et al. (2012),
Fleetwood et al. (2015) and Sidak and Jonkman (2016).

So as to efficiently test for common slopes of drug curves, our focus here is on
developing robust, efficient and practical design strategies in the assessment of dose
response curve parallelism.
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Overviews of optimal design theory and applications are given in O’Brien and
Funk (2003) and Atkinson et al. (2007). Additionally, classical experimental design
strategies for binary logistic regression models are given in Abdelbasit and Plackett
(1983), Minkin (1987) and Kalish (1990), and model-robust design approaches are
given and explored in Atkinson (1972), O’Brien (2005), O’Brien (2016), O’Brien
(2018), O’Brien and Rawlings (1996), O’Brien and Lim (2018), O’Brien et al.
(2009) and O’Brien et al. (2010).

9.2 Assessing Parallelism in Dose Response

In situations where the outcome variable is a percentage derived from binary
outcomes—such as percentage mortality in a microbiology or toxicology
experiment—the two-parameter (binomial, logit-link) logistic model is often used
to model the dose-response data. This generalized nonlinear model is written

log

(
π

1 − π

)

= η = β (x − γ ) (9.1)

Here, π is the probability of outcome (e.g., mortality), β is the slope, x is the
concentration or dose of the drug or compound, and γ is the EC50/LD50 parameter
so that x = γ coincides with π = 1

2 (or 50% chance of death). Equivalent to (9.1)

is the expression π = eβ(x−γ )

1+eβ(x−γ ) . This model can be extended to simultaneously
model two curves (such as corresponding to two viruses or drugs, labelled “A”
and “B”), as graphed in Fig. 9.1, by modifying the right-hand side in (9.1) to
be

η =
{

β (x − γA) , drug A

(β + δ) (x − γB) , drug B
(9.2)

In (9.2), β is the slope of the drug A curve, (β + δ) is the slope of the
drug B curve, and the respective EC50’s are γ A and γ B for drugs A and B.
Our goal in fitting this model is to fit the respective curves with particular
focus on the difference-of-slopes parameter δ. Both curves can be written in a
single model as π = eη

1+eη with η here given in (9.2). It is important to point
out that both curves are fit—and indeed designed—simultaneously since they
share the joint parameter β. These curves are plotted in Fig. 9.1—where π is
the percent response—using parameter values β = 0.30, δ = 0, γ A = 11.0,
γ B = 14.5.
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Fig. 9.1 Plot of parallel (δ = 0) binary logistic curves with vertical axis corresponding to
probability of outcome or mortality, slope β = 0.30 and EC50’s γ A = 11.0 (left curve) and
γ B = 14.5 (right curve); here, relative potency is then estimated to be 14.5/11.0 = 1.32. Solid
squares indicate EC50’s as points where the respective curves cross cut-line, π = 1/2

9.3 Optimal Design Background

Approximate designs, denoted ξ , are written

ξ =
{

x1 x2 . . . xn

ω1 ω2 . . . ωn

}

(9.3)

The ωi are non-negative design weights which sum to one, and the xi are
design points (i.e., concentrations) that belong to the design space and are not
necessarily distinct. Further, the p model parameters are stacked into the p-vector
θT = (β, γ A, γ B, δ). In the constant-variance Normal/Gaussian setting with linear
or nonlinear normal model function η(x, θ ), the n × p Jacobian matrix is V = ∂η

∂θ

and with � = diag {ω1, ω2, . . . , ωn}, the p × p (Fisher) information matrix is
written

M (ξ, θ) = V T �V (9.4)
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Atkinson et al. (2007) demonstrates that for binomial logistic models in general,
the information matrix for the relative-potency logistic model considered here has
the same form as in (9.4) with a modification of the weight matrix �. Specifically,
� in this case is a diagonal matrix with ith diagonal element ωiπ i(1 − π i),
where π i is the success probability. In regression settings, since the (asymptotic)
variance of the maximum-likelihood estimator θ̂MLE is proportional to M−1(ξ , θ),
designs are often chosen to minimize some (convex) function of M−1(ξ , θ ). For
example, designs which minimize the determinant of M−1—and equivalently which
maximize the determinant of M—are called D-optimal.

Since our focus is on the difference-of-slopes parameter (δ) more so than the
other parameters, we partition the Fisher information matrix as

M =
[

M11 M12

M21 M22

]

(9.5)

Each sub-matrix Mij is of dimension pi × pj for i, j = 1, 2, and p1 + p2 = p.

The parameter vector is also partitioned, θ =
(

θ1

θ2

)

with θ1 (the so-called nuisance

parameters) of dimension p1 × 1 and θ2 (the parameter of interest) of dimension
p2 × 1. In the current situation, θT

1 = (β, γA, γB) so p1 = 3 and θ2 = δ so p2 = 1.
As outlined in Atkinson et al. (2007), Ds(θ2) subset designs maximize

∣
∣
∣M22 −M21M

−1
11 M12

∣
∣
∣ = |M|

|M11| (9.6)

Because of problems associated with subset designs, some authors suggest

combining the subset and full parameter criteria so that for a given α ∈
[

p2
p

, 1
]
,

designs be chosen to maximize the compound objective function (see O’Brien
(2005) and Atkinson et al. (2007)),

�α (ξ, θ) = 1 − α

p1
log |M11| + α

p2
log
∣
∣
∣M22 −M21M

−1
11 M12

∣
∣
∣ (9.7)

A generalized inverse is used in (9.7) when M11 is not invertible. This objective
function ranges from the D-optimal criterion for α = p2

p
to the subset design

criterion (for δ) in (9.6) for α = 1. For a given choice of α ∈
[

p2
p

, 1
]
, we call

designs that maximize (9.7) Dα-optimal designs.
Extending the results given in O’Brien (2016), our results here for the two-

logistic situation in (9.2) and Fig. 9.1 validate that the optimal values of s = eη

for Dα-optimal designs satisfy the expression,

(1 + s)+ A (1 − s) log(s) = 0 (9.8)
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In (9.8), A = αp1+3(1−α)p2
2(αp1+(1−α)p2)

. The s-values which solve this expression are
observed to be reciprocals, and this has been demonstrated to be the case in other
situations when working with logistic regression (see O’Brien (2016), O’Brien and
Lim (2018), and O’Brien et al. (2009)). As in these other situations, Eq. (9.8)

has exactly two roots for α ∈
[

p2
p

, 1
]
. For example, for α = p2

p
= 0.25 (i.e.,

the D-optimality criterion), A = 1 and solution of (9.8) gives s1 = 0.2137 (and
π1 = s1

1+s1
= 0.1760) and s2 = 4.6805 (and π2 = 0.8240). As α approaches unity

(i.e., the Ds(δ) subset design), we obtain A = 1
2 , s1 = 0.0908 (and π1 = 0.0832)

and s2 = 11.0161 (and π2 = 0.9168). Since the s values here are reciprocals, the
corresponding values of π necessarily sum to one.

Figure 9.2 shows the D-optimal design points along with the corresponding cut-
lines at π1 = 0.1760 and π2 = 0.8240. The values of the design support points are
obtained using the relations x = γA ± 1

β
log (s1) for drug A (left curve in Fig. 9.2)

and x = γB ± 1
(β+δ)

log (s1) for drug B (right curve in Fig. 9.2). Thus, for the
specific parameter values used here, the support points are x = 5.8554,16.1447 for
drug A (left curve) and x = 9.3554,19.6447 for drug B (right curve).

Fig. 9.2 Plot of parallel (δ = 0) binary logistic curves with vertical axis corresponding to
probability of outcome/mortality, slope β = 0.30 and EC50’s γ A = 11.0 (left curve) and γ B = 14.5
(right curve), along with respective D-optimal design points (circles on respective curves). Cut-
lines at π1 = 0.1760 and π2 = 0.8240 demonstrate D-optimality of these design support points



172 T. E. O’Brien and J. Silcox

A measure of the distance between an arbitrary design ξ and a D-optimal

design ξ∗D is the D-efficiency (DEFF) given by the expression
( |M(ξ)|
|M(ξ∗D)|

)1/p

(see O’Brien and Funk (2003) and Atkinson et al. (2007)). A similar D-
efficiency expression (DEFFs) can be given for subset efficiency in (9.6) but

using
∣
∣
∣M22 −M21M

−1
11 M12

∣
∣
∣ in place of |M| in both numerator and denominator

and raised to the power (1/p2) instead of (1/p). For the current situation, full and
subset efficiencies of the D-optimal and the Ds(δ) subset design are given in Table
9.1. Note that as one shifts from the D-optimal to the Ds(δ) subset design (i.e.,
as α increases from 0.25 to 1.0), the design support points spread out away from
the EC50s since the proportion cut lines (see Fig. 9.2) drop from π = 0.1760 to
π = 0.0832 and increase from π = 0.8240 to π = 0.9168. Also, as we shift from
the D-optimal to the subset design, as expected we note the decrease in the variance
term (diagonal term in M−1) associated with δ of over 20% (from 1.0419 to 0.8196)
but also the approximately 90% increase in the variance terms associated with the γ

(EC50) terms (from 153.2 to 291.3). Finally, in noting the efficiency values of these
two designs, one readily sees the trade-off nature in that as one efficiency increases,
the other decreases, and vice versa.

Table 9.1 D- and Ds(δ)-optimal designs in the parallel logistic setting: design support points and
corresponding proportions, associated variance estimates for parameter values, and D- and subset-
efficiencies

α Design
Drug A
support
points

Drug B
support
points

Proportion
values

Diagonal elements
of M−1

corresponding to
θT = (β, γ A, γ B, δ)

DEFF DEFFs

0.25 D-optimal
x1 = 5.8554
x2 = 16.1447

x1 = 9.3554
x2 = 19.6447

π1 = 0.1760
π2 = 0.8240

0.5210, 153.2,
153.2, 1.0419

1.00 0.787

1.0

Ds(δ)
subset-
optimal

x1 = 3.0024
x2 = 18.9977

x1 = 6.5019
x2 = 22.4977

π1 = 0.0832
π2 = 0.9168

0.4098, 291.3,
291.3, 0.8196

0.818 1.00

Translating efficiencies into sample size requirements, note that an efficiency of
0.80 of a given design relative to an optimal design translates to 1/0.80 = 1.25. So,
a sample size 25% higher for the less-efficient design is needed (compared with the
optimal design) to yield equivalent information.

The above advantages in terms of efficiency notwithstanding, optimal designs
are often only used as a starting point since they often have shortcomings. In
most practical situations, optimal designs for p-parameter model functions comprise
only p support points; this is observed here since the D-optimal designs for the
two-parameter logistic curves graphed in Fig. 9.2 have only two support points
for each curve/drug. As such, these designs provide little or no ability to test
for lack of fit of the assumed model. As a result, researchers often desire near-
optimal, so-called “robust”, designs which have extra support points that can then
be used to test for model adequacy. Another important disadvantage of the optimal
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designs plotted in Fig. 9.2 is that practitioners typically wish to use the same
concentration values for both drugs. In the next section, we introduce and explore
very useful strategies to obtain near-optimal, robust designs which address these
shortcomings.

9.4 Robust Design Approaches

In this section, we propose practical experimental design strategies addressing the
lack-of-fit and same-concentration considerations raised in the previous section.
The requirement that the same concentrations be used for both dose-response
curves leads us to consider finding the corresponding same-concentration-restricted
D- and Ds(δ)-optimal designs, and this is done in the following section. In
the subsequent sections, we introduce and examine so-called reflection designs
based upon the original optimal designs, as well as geometric and uniform
designs.

9.4.1 Same-Concentration Designs

In the current illustration—as well as in other situations with the two-drug logistic
model in (9.2)—the same-concentration-restricted D-optimal design comprises two
support points (for both drugs), and this is demonstrated in Fig. 9.3 and Table
9.2. As demonstrated in Fig. 9.3, the optimal proportions of π1A = 0.2583 and
π2A = 0.8914 for drug A and π1B = 0.1086 and π2B = 0.7417 for drug B are such
that (1) the lower proportions (π1A and π1B) straddle the cut-line of π = 0.176
from Fig. 9.2 and the upper proportions (π2A and π2B) straddle the cut-line of
π = 0.824 from Fig. 9.2, and (2) are reciprocally related via π2A = 1 − π1B and
π2B = 1 − π1A.

In examining the first row of Table 9.2 (i.e. for α = 0.25, i.e., the D-optimal
design), note that the same-concentration D-optimal design yields a D-efficiency
(relative to the best design plotted in Fig. 9.2) of 96.1%; with a modest 3.9%
information loss, this design is thus deemed to be highly efficient. Table 9.2 also
gives analogous results for the Ds(δ)-optimal (α = 1) situation, where it is noted that
in shifting to subset optimality, the design support points and optimal proportions
again shift outward away from the EC50s. The subset efficiency of this subset
design is 89.3%. Our findings bear out that the patterns and observations noted here
generalize to other parameter choices.
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Fig. 9.3 Plot of parallel (δ = 0) binary logistic curves with vertical axis corresponding to
probability of outcome/mortality, slope β = 0.30 and EC50’s γ A = 11.0 (left curve) and γ B = 14.5
(right curve), along with same-concentration D-optimal design points (circles on the respective
curves). Cut-lines at π1 = 0.1760 and π2 = 0.8240 correspond to unrestricted D-optimal design
points represented in Fig. 9.2

Table 9.2 Same-concentration-restricted D- and Ds(δ) designs in the parallel logistic setting:
design support points and corresponding proportions, associated variance estimates for parameter
values, and D- and subset-efficiencies

α Design

Drug A and
B support

points

Drug A
proportion

values

Drug B
proportion

values

Diagonal elements
of M−1

corresponding to
θT = (β, γ A, γ B, δ)

DEFF DEFFs

0.25 D-optimal
x1 = 7.4844
x2 = 18.0156

π1 = 0.2583
π2 = 0.8914

π1 = 0.1086
π2 = 0.7417

0.5607, 154.1,
154.1, 1.1214

0.961 0.731

1.0
Ds(δ)

subset-
optimal

x1 = 4.8600
x2 = 20.6404

π1 = 0.1368
π2 = 0.9475

π1 = 0.0526
π2 = 0.8632

0.4587, 275.6,
275.6, 0.9173 0.811 0.893
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A major disadvantage of the same-concentration restriction is that the resulting
near-optimal designs are observed to comprise only two support points, and thus
provide no ability to check for model misspecification. As such, we now consider
the following robust modification of the original unrestricted D-optimal design
approach illustrated in Fig. 9.2 and Table 9.1.

9.4.2 Reflection Designs

One means of obtaining robust near-optimal designs (i.e., designs with reasonably
high efficiency and additional support points) in the two-logistic situation of (9.2)
is to simply use for both drugs each of the four distinct concentrations in Fig. 9.2—
that is, the four concentrations where—for at least one of the curves—π = 0.1760
and π = 0.8240. We call such designs reflection designs. For the parameter values
used here, this situation is illustrated in Fig. 9.4. The additional reflection π values
use ex = eβ(γB−γA), π1 = s1

1+s1
= π7, π2 = s2

1+s2
= 1 − π1 = π8 and the

relations for all such parallel-curve (i.e., δ = 0) reflection design situations are as
follows:

π3 = ex s1
1+ex s1

; π4 = ex s2
1+ex s2

; π5 = s1
ex+s1

= 1 − π4; π6 = s2
ex+s2

= 1 − π3

(9.9)

For the parameter values used here, we obtain s1 = 0.2137, s2 = 4.6805,
ex = 2.858, π1 = π7 = 0.1760, π2 = π8 = 0.8240, π3 = 0.3791, π4 = 0.9304,
π5 = 0.0696, π6 = 0.6209.

For the chosen parameter values, designs, support points, proportion values
and summary statistics are given in Table 9.3 for reflection designs for α val-
ues in Eq. (9.7) of α = 0.25 (i.e. D-optimality), α = 0.87 (equal-efficiency),
and α = 1.0 (i.e., Ds(δ)-optimality); note that the equal-efficiency design has
been chosen so the two efficiency values, DEFF and DEFFs, are approximately
equal. It is important to note that, with a D-efficiency of 93.2%, the D-optimal
reflection design is observed to be highly efficient—i.e., with an efficiency loss
of less than 7%. This design is also robust in that it provides additional sup-
port points to test for model lack-of-fit, and it is very practical to use in that
scientific researchers merely need to sketch the anticipated dose-response curves
for the two drugs/substances, and obtain design support points resulting from
the cut lines at π1 = 0.1760 and π2 = 0.8240 (or thereabouts). The subset
efficiency of this design is 67.1%; should a researcher desire higher subset
efficiency, the value of α could be increased to meet the researcher’s objec-
tives. For example, the equal-efficiency design (α = 0.87) results in efficiencies
for the full parameter vector and for the δ (difference of slopes) parameter
of about 84%; in this case, the proportion cut values, at π1 = 0.0951 and
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Fig. 9.4 Plot of parallel (δ = 0) binary logistic curves with vertical axis corresponding to
probability of outcome/mortality, slope β = 0.30 and EC50’s γ A = 11.0 (left curve) and γ B = 14.5
(right curve), cut-lines at π1 = 0.1760 and π2 = 0.8240 correspond to unrestricted D-optimal
design points, and reflection design points (four circles for each of the drugs)

π2 = 0.9049—or very nearly π1 = 0.10 and π2 = 0.90—are also very practical
to implement by researchers. As has been observed above for unconstrained
and same-concentration designs, as α values are increased in (9.7) to empha-
size efficient estimation of the difference-in-slopes parameter (δ), the design
support points shift out (i.e., away from the EC50’s). As noted in Table 9.3,
one down-side of this shift is that the variability associated with these EC50
values increase here by 56% (from 151.2 to 235.7) for α = 0.87 and by 74%
(from 151.2 to 263.8) for α = 1.0. We discuss implications of these results in
terms of design performance, as well as overall recommendations, in Sects. 9.5
and 9.6.
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Table 9.3 Reflection D-optimal, equal-efficiencies, and Ds(δ) designs in the parallel logistic
setting with parameter values given above: design support points and corresponding proportions,
associated variance estimates for parameter values, and D- and subset-efficiencies

α Design
Drug A and
B support

points

Drug A
proportion

values

Drug B
proportion

values

Diagonal elements
of M−1

corresponding to
θT = (β, γ A, γ B, δ)

DEFF DEFFs

0.25 D-optimal

x1 = 5.8554
x2 = 9.3554
x3 = 16.1447
x4 = 19.6447

π1 = 0.1760
π2 = 0.3791
π3 = 0.8240
π4 = 0.9304

π1 = 0.0696
π2 = 0.1760
π3 = 0.6209
π4 = 0.8240

0.6106, 151.2,
151.2, 1.2212

0.932 0.671

0.87
Equal

efficiency

x1 = 3.4889
x2 = 6.9888
x3 = 18.5111
x4 = 22.0111

π1 = 0.0951
π2 = 0.2309
π3 = 0.9049
π4 = 0.9645

π1 = 0.0355
π2 = 0.0951
π3 = 0.7691
π4 = 0.9049

0.4873, 235.7,
235.7, 0.9746

0.841 0.841

1.0
Ds(δ)

subset-
optimal

x1 = 3.0021
x2 = 6.5023
x3 = 18.9977
x4 = 22.4980

π1 = 0.0832
π2 = 0.2060
π3 = 0.9168
π4 = 0.9692

π1 = 0.0308
π2 = 0.0832
π3 = 0.7940
π4 = 0.9168

0.4828, 263.8,
263.8, 0.9657

0.802 0.849

9.4.3 Geometric and Uniform Designs

Noting the common-usage of geometric and uniform designs in practical settings,
O’Brien (2016) and O’Brien et al. (2009) combined the D-optimality criterion with
the geometric design structure of the form x = a, ab, ab2 . . . abK and the uniform
design structure of the form x = A, A + B, A + 2B . . . A + KB, where K is an
adjustment value chosen by the researcher to provide a sufficient number of design
support points. We adopt a similar approach here for the two-logistic model and,
using the chosen parameter values, focus here only on the D-optimality criterion
(α = 0.25). (Nonetheless, these results generalize to other choices of α as well.)
Results are given in Table 9.4 for the optimal geometric and uniform designs for
K = 3; this choice of K makes these designs comparable with the 4-support-point
designs given above.

As noted in Table 9.4, the geometric design yields slightly lower efficiencies
compared with the uniform design, as well as diverse proportions (i.e., values
of π ) and unequal variance terms for the two EC50 values. The uniform
design, on the other hand, results in a recognizable pattern of proportions (viz,
π1A + π4B = π2A + π3B = π3A + π2B = π4A + π1B = 1), and somewhat lower
variance values. Both of these designs, however, perform slightly worse than the
D-optimal (α = 0.25) reflection design in the previous section in terms of the
efficiency measures. These designs are further examined using simulations in the
following section.
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Table 9.4 Optimal geometric and uniform D-optimal designs in the parallel logistic setting with
parameter values given above: design support points and corresponding proportions, associated
variance estimates for parameter values, and D- and subset-efficiencies

α Design
Drug A and
B support

points

Drug A
proportion

values

Drug B
proportion

values

Diagonal elements
of M−1

corresponding to
θT = (β, γ A, γ B, δ)

DEFF DEFFs

0.25

D-optimal
geometric
a = 6.216
b = 1.471

x1 = 6.2162
x2 = 9.1428
x3 = 13.4473
x4 = 19.7783

π1 = 0.1923
π2 = 0.3642
π3 = 0.6757
π4 = 0.9330

π1 = 0.0769
π2 = 0.1670
π3 = 0.4217
π4 = 0.8297

0.7640, 133.1,
164.4, 1.4377

0.889 0.570

0.25

D-optimal
uniform
A = 5.575
B = 4.783

x1 = 5.5755
x2 = 10.3585
x3 = 15.1415
x4 = 19.9245

π1 = 0.1642
π2 = 0.4520
π3 = 0.7760
π4 = 0.9357

π1 = 0.0643
π2 = 0.2240
π3 = 0.5480
π4 = 0.8358

0.6830, 146.1,
146.1, 1.3660

0.902 0.600

9.5 Simulation Results

The highlighted designs from the previous sections—and listed below for ease
of comparison—were each evaluated using simulation methods with S=5000
simulations to assess their performance in practice and using key measures dis-
cussed below.

Table 9.5 Designs examined in simulations: each design comprised 4n observations for both
drugs

Design Description Text table Replicates Support points

1
Reflection design: α = 0.87
(equal efficiency)

3
n observations for each
drug and each support point

x = 3.4889, 6.9888
18.5111, 22.0111

2
Reflection design: α = 0.25
(D-optimal)

3
n observations for each
drug and each support point

x = 5.8554, 9.3554
16.1447, 19.6447

3
Geometric design: α = 0.25
(D-optimal)

4
n observations for each
drug and each support point

x = 6.2162, 9.1428
13.4473, 19.7783

4
Uniform design: α = 0.25
(D-optimal)

4
n observations for each
drug and each support point

x = 5.5755, 10.3585
15.1415, 19.9245

5
Same-concentration design:
α = 0.25 (D-optimal)

2
2n observations for each
drug and each support point

x = 7.4844, 18.0156

6
Same-concentration design:
α = 1.0 (D-subset)

2
2n observations for each
drug and each support point

x = 4.8600, 20.6404

Case I (small-to-moderate size) with n = 15 (i.e., 60 observations for both drugs) and Case II (moderate-
to-large size) with n = 30 (i.e., 120 observations for both drugs)
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As noted in Table 9.5, our first simulation, called “Case I: 15/30”, involved
the small-to-moderate-sample situation of 15 replicates of each of the 4-point
designs (designs 1–4) and 30 replicates of each of the 2-point designs (designs 5
and 6) for each drug—so total sample size of 60. This process was subsequently
repeated for the moderate-to-large sample case, called “Case II: 30/60”, which
entailed 30 replicates of each of the 4-point designs and 60 replicates of each
of the 2-point designs for each drug—i.e., total sample size of 120. In each
case, independent binary data were generated from the two-logistic situation in
(9.2) using parameter values used above, viz, β = 0.30, δ = 0, γ A = 11.0,
γ B = 14.5. Simulation results for Cases I and II are given in Tables 9.6 and 9.7
respectively.

Table 9.6 Simulations results for Case I (15/30 study), i.e., with n = 15 in Table 9.5

Design
Average of δ̂

estimates
Variance of δ̂

estimates

Proportion of simulations

with
∣
∣
∣δ̂
∣
∣
∣ > 1

Proportion of simulations
with abs-value of |M−1| > 1

1 0.0317 2.3625 0.0548(≈274/5000) 0.0557(≈278/5000)

2 0.0058 0.0940 0.0014(≈7/5000) 0.0014(≈7/5000)

3 0.0014 0.0251 0.0002(≈1/5000) 0.0002(≈1/5000)

4 −0.0013 0.0435 0.0012(≈6/5000) 0.0012(≈6/5000)

5 −0.0040 0.2951 0.0510(≈255/5000) 0.0500(≈250/5000)

6 0.0435 0.8514 0.3325(≈1662/5000) 0.3564(≈1782/5000)

The results in Table 9.6 confirm—as do additional unreported findings—that as
α is chosen other than the D-optimal case (α = 0.25), estimation of the difference-
of-slopes parameter δ becomes unstable; this is clearly demonstrated by Designs
1 and 6 in Table 9.6. As noted above, in these cases, the design support points
move away from the EC50 values, and thus estimation of the full parameter vector
is also unstable; this is demonstrated above in large values of the generalized
variance, |M−1|. An important empirical result observed here is that although our
ultimate focus is on assessing the difference-of-slopes parameter, designs must be
chosen to estimate all model parameters in order to be viable. Also, given the weak
performance of the same-concentration D-optimal (two-support point) design in
Design 5, this design is also dismissed. As such, reasonable contenders include
only the reflection, geometric and uniform D-optimal designs: i.e., Designs 2, 3
and 4. As samples sizes are doubled for the Case II “30/60” (i.e., Table 9.7), the
situation improves as expected for all designs, but clearly the most viable robust
design approaches are seen to be the reflection, geometric and uniform D-optimal
designs.
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Table 9.7 Simulations results for Case II (30/60 study), i.e., with n = 30 in Table 9.5

Design
Average of δ̂

estimates
Variance of δ̂

estimates

Proportion of simulations

with
∣
∣
∣δ̂
∣
∣
∣ > 1

Proportion of simulations
with abs-value of |M−1| > 1

1 −0.0033 0.0733 0.0016(≈8/5000) 0.0016(≈8/5000)

2 0.0011 0.0059 0.0000(≈0/5000) 0.0000(≈0/5000)

3 3.6e−06 0.0069 0.0000(≈0/5000) 0.0000(≈0/5000)

4 −0.0014 0.0069 0.0000(≈0/5000) 0.0000(≈0/5000)

5 0.0020 0.0186 0.0022(≈11/5000) 0.0020(≈10/5000)

6 0.0033 0.0186 0.0762(≈381/5000) 0.0770(≈385/5000)

9.6 Discussion

The theoretical results in Sect. 9.4 as well as the empirical results in Sect. 9.5
lead us to advocate for the reflection, geometric and uniform designs introduced
and illustrated in Sect. 9.4 in designing for the assessment of parallelism for
the two-logistic model in (9.2). In terms of efficiencies, reflection designs are
preferred. Furthermore, in terms of straightforward ease-of-implementation, these
same reflection designs are highly favorable since as noted above the researcher
merely sketches the drug/compound logistic curves and reads off design support
points at the intersections with cut lines at π1 = 0.1760 and π2 = 0.8240.
(Geometric and uniform designs generally require optimal design software.) The
above simulation results confirm the favorable performance of these reflection
designs even in small-to-moderate sample size situations as described above in Table
9.6. The addition of design support points when using the reflection design over the
theoretical two-point D-optimal designs in Fig. 9.2 cannot be overstressed since
researchers typically wish to both efficiently estimate model parameters and check
for model adequacy.
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Chapter 10
Optimal Adaptive Phase III Design
with Interim Sample Size and Dose
Determination

Lanju Zhang, Lu Cui, and Yaoyao Xu

10.1 Introduction

Randomized and controlled clinical trials (RCT) are the gold standard method
for confirmatory studies (phase III trials) in drug developments. Traditionally,
fixed sample size designs are employed with the sample size, doses, and other
parameters determined at the planning stage. The trial is then executed without
major modifications. Therefore the probability of success of the trial heavily
depends on the accuracy of the projection of the assumed relevant parameters,
such as the effect size of treatment. Often, these assumptions are based on limited
data from phase II studies or literature, and can be of significant variability (Liu
et al. 2008). For example, Gan et al. (2012) reviewed 253 phase III oncology
trials and found that “Investigators consistently make overly optimistic assumptions
regarding treatment benefits when designing RCTs.” Inaccurate specification of
these parameters often leads to an under-powered or over-powered study, thus
failure of a potentially successful program or a waste of time and resources.

To remedy, adaptive designs have been proposed to modify the study design
and improve the probability of the success based on available interim data of the
same trial. A vast literature exists for sample size adapted trial designs allowing the
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sample size determination using interim data with strict type I error rate control (e.g.,
Cui et al. 1997, 1999; Lehmacher and Wassmer 1999; Muller and Schafer 2001;
Bauer and Köhne 1994; Proschan and Hunsberger 1995; Denne 2001; Posch et al.
2011). A recent comprehensive review is conducted by Bauer et al. (2016). These
designs were discussed in the FDA guidance (FDA 2010) and increasingly used
and adopted by the pharmaceutical industry and regulatory agencies. Another way
to improve the trial efficiency is to allow dropping ineffective doses or treatments
using interim data (Thall et al. 1988; Stallard and Todd 2003, 2011). This approach,
sometimes in the context of a seamless phases II/III trial design, is a variation of
interim analysis for futility. The latter results in the termination of entire study
while the former terminates a few arms. All data collected before and after the
interim treatment selection in the remaining treatment arms will be used in the final
analysis. Examples with dose selections include INHANCE trial (Lawrence et al.
2014; Lawrence and Bretz 2014) and ADVENT trial (Chaturvedi et al. 2014).

In this paper, we consider a two-stage adaptive phase III trial design with both
dose selection AND sample size determination using the first stage data, which has
not been addressed in the literature. By doing this we can not only avoid unnecessary
patient enrollment to a worse performing arm, but also determine an accurate final
sample size based on in-trial data. We further optimize the trial design with respect
to the timing of the interim analysis and the weights in combining two stages data.
Optimization with respect to these parameters has been demonstrated to be able to
increase robustness of the study power against treatment effect size misspecification
at the design stage (Liu et al. 2008; Bretz et al. 2009; Zhang et al. 2016).

In summary, we present an optimized two-stage adaptive phase III clinical trial
design with final sample size determination and dose selection based on the first
stage data. Strict type I error rate control is achieved using a weighted test statistic
(Cui et al. 1997, 1999), adjusting for potential inflation from multiple treatment
arms and sample size determination based on interim data. We provide explicit
formulae so that optimization can be conducted in an economical manner without
time-consuming simulation. The rest of the paper is organized as follows. Section
10.2 describes statistical methodology for the trial design and formulae for design
performance measurements such as power, type I error rate, and average sample
size. Section 10.3 discusses how to optimize the design using method in Sect.
10.2. Section 10.4 presents a real example. We conclude with a discussion in
Sect. 10.5.

10.2 Methodology

We consider a two-stage phase III trial including two treatment arms and a control
arm. These two treatments can be two doses of the same compound, or two
compounds for the same disease. The trial will include an interim analysis with
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the purpose to determine a better performing treatment arm that will advance to the
second stage and determine the total sample size for the selected treatment arm and
control arm based on the interim data. No testing is conducted at the interim. The
final analysis uses stage 1 and stage 2 data of the selected treatment arm and control
arm.

Suppose responses of two treatment arms are X1, X2 and that of control is X0 and
Xi∼N(μi, σ 2). We assume σ 2 is known. Otherwise, it can be estimated from data
and all our following discussions should hold asymptotically. Let �1 = μ1 − μ0,
�2 = μ2 − μ0 be the treatment effect of treatments 1 and 2 compared to control
group 0. The hypotheses of interest are,

H0 : �1 = �2 = 0 vs H1 : any �i > 0. (10.1)

More discussions on null hypothesis configurations are in Sect. 10.2.4 and
Appendix 4. Suppose at the interim with n subjects per treatment group, we have
data of a random sample {Xij, i = 0, 1, 2, j = 1, . . . , n} from each group and define

Y
(n)
i = ∑n

j=1

(
Xij −X0j

)
/n, i = 1, 2. Then Y

(n)
i is an estimate of �i. Let A

be an event generated by Y
(n)
1 and Y

(n)
2 . Event A occurs if treatment 1 is selected

and otherwise if treatment 2 is selected. Let I1 = IA be the indicator of selecting
treatment 1 and I2 = 1− IA. At the interim, if treatment i is selected, the total sample
size per arm is determined to be Mi based on its observed treatment effect, thus Mi

is a random variable depending on Y
(n)
i . Let w1, w2 > 0 such that w2

1 + w2
2 = 1.

At the final analysis, the test statistic (Cui et al. 1997, 1999) for treatment effect of
treatment i (i = 1, 2) is defined as,

Zi = w1
Y

(n)
i

σ
√

2/n
+ w2

Y
(Mi−n)
i

σ
√

2/ (Mi − n)
, (10.2)

where Y
(Mi−n)
i is defined similarly as Y

(n)
i using the second stage data only. Since

only one treatment is selected to move to the second stage, the final test statistic
should be,

TS = Z1I1 + Z2I2, (10.3)

based on the selected treatment. In the following, we considered the property of this
test statistic.

10.2.1 Conditional Power

At the interim, the observed treatment effect is Y
(n)
i for treatment i. Conditional on

Y
(n)
i , i = 1, 2, Ii and Mi are fixed, and the random quantity in the definition of Zi

is Y
(Mi−n)
i . So the conditional power is determined as (Appendix 1),
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P
(
Zi > C|Y (n)

i

)
= 1 −�

(
1

w2

(

C − w1Y
(n)
i

σ
√

2/n

)

− �i

√
Mi − n√
2σ

)

,

where C is the critical value for final test statistic to control the type I error rate,
to be determined in a later section. In practice, �i, i = 1, 2, can be replaced
with their estimates based on interim data or other values deemed appropriate. In
this paper, we use conditional power to determine the total sample size based on
the first stage data. Other methods for total sample size determination can also be
used.

10.2.2 Total Sample Size Mi

Now we consider the total sample size Mi which can be determined such that
the conditional power based on the observed effect size of the selected treat-
ment is at least (1 − β). Using the formula in the last section, and replac-
ing �i’s with their estimates based on interim data, we can find Mi to be
(Appendix 2),

Mi = n+ 2σ 2

w2
2

(
C + w2zβ

Y
(n)
i

− nw1√
2nσ

)2

. (10.4)

Mi is not a continuous function of Y
(n)
i and can approach infinity if Y

(n)
i is close to

zero. In practice, an upper limit is used to cap the sample size increase (Mehta and
Pocock 2011). Another method to avoid this is to use a futility criterion, eg, stopping
the trial if both Y

(n)
1 and Y

(n)
2 are less than the minimal clinically meaningful

effect.

10.2.3 Absolute Power

Now we consider the absolute power, taking into account the variability of Y
(n)
1 ,

Y
(n)
2 and the fact that Mi depends on Y

(n)
i . We assume the treatment with the

larger estimated effect difference will be selected at the interim. A closed formula
involving integration can be derived (Appendix 3),
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(10.5)

where ρ is the correlation coefficient between Y
(n)
1 and Y

(n)
2 because they share the

same control group data. In our setting, ρ=1/2, but we will use ρ to make our
formulae general. When the equation is evaluated under the alternative hypothesis
in (10.1), it gives the power of the final test statistic, which depends on both �1 and
�2. When it is evaluated under null hypothesis, it gives the type I error rate, to be
considered in the next section. This formula is appropriate when Mi is determined
based on condition power according to Eq. (10.4). However, similar formula can be
obtained if Mi is determined based on other methods.

10.2.4 Type I Error Rate

When �1 = �2 = 0, the formula in Sect. 10.2.3 for the type I error rate reduces to,

P (TS > C) = 1 −
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(10.6)
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which doesn’t depend on n; however, it depends on w1, just as in group sequential
designs in which the type I error rate depends on the information fraction corre-
sponding to the interim analyses (Mehta and Pocock 2011). Since ρ=1/2 in our
setting, letting (10.6) equal α, we can determine the corresponding critical value
C, for any given w1. Table 10.1 gives critical values for one-sided type I error rate
α = 0.025 with different weights w1. All critical values are larger than 1.96 and
increases as w1 increases.

A few observations are in order. First, there are other null hypothesis configura-
tions. For example, �1 = 0, �2 > 0. A type I error would occur if treatment 1 is
selected and rejected. But the type I error rate in this case would be much smaller
than that when �1 = �2 = 0. For details, refer to Appendix 4. Secondly, when
w1 = 0 (so w2 = 1), which means we choose one treatment arm at the beginning of
the trial, Eq. (10.6) reduces to (Appendix 4),

1 − 2

∞∫

−∞
�(C)�

(
(1 − ρ) v
√

1 − ρ2

)

ø(v)dv = 1 −�(C).

If C = 1.96, the type I error rate is exactly 0.025. In this case, we only use the
second stage data with one comparison, so there is no need of adjustment of the type
I error rate.

Thirdly, when w1 = 1 (so w2 = 0), which means two treatment arms are carried
forward to the end of the trial, and Eq. (10.6) reduces to

1 − 2

∞∫

−∞
�

(
1

w2
(C−w1v)

)

�

(
(1 − ρ) v
√
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)

ø(v)dv

= 1 − 2

C∫

−∞
�

(
(1 − ρ) v
√

1 − ρ2

)

ø(v)dv.

The type I error rate is controlled with a more conservative critical value
C = 2.211.

Finally, in Appendix 4, we point out that there are more than one configuration of
null hypotheses (e.g., �1 = �2 = 0; �1 = 0, �2 > 0; �1 > 0, �2 = 0), leading to
more than one type I error, but the type I error rate is dominated by the hypothesis
�1 = �2 = 0. Figure 10.1 depicts type I error rates under different hypothesis
configurations and confirms this dominance. For the purpose of validating the
formula, we run a simulation under the null hypothesis �1 = �2 = 0 with critical
values C determined as in Table 10.1 and plot the results in Fig. 10.2, which
demonstrates that type I error rate is well controlled and agrees with our formula.
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10.2.5 Average Sample Size

Since the final sample size is a random quantity, it is interesting to know the average
sample size, which is determined by the following formula,
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A
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where L is the upper limit for sample size increase.

10.2.6 Probability to Select a Treatment Arm

The probability to select treatment arm 1 is,

∫∫

A

1dFn (y1, y2) =
∞∫

−∞
�

⎛

⎝
(1 − ρ) v1 − n(�2−�1)√

2nσ√
1 − ρ2

⎞

⎠ ø (v1) dv1 (10.8)

10.3 Design Evaluation

With the proposed Dose and Sample size Adaptive (DSA) design and the formulae
obtained, the design evaluation and optimization become possible. The goal here
is to find a better DSA design which can select the right treatment with a high
probability, achieve a stable and satisfactory statistical power, and attain a small
average final sample size. This goal can be achieved by varying n, the sample size
of the interim analysis, and w1 , the weight for the first stage data, to generate a set
of candidate designs. Each of the candidate design corresponding to a pair of values
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of n and w1 is evaluated based on the power and average total sample size against the
configuration of the underlying true treatment differences �1 and �2. The overall
winner from the comparisons is the one achieving good balance between stable high
statistical power and low average total sample size. This optimally chosen design is
to be implemented in the trial.

The following computational examples are used to illustrate this process.
In the examples, we target a statistical power of 1 − β = 0.9 at one-sided

significance level α= 0.025. The total sample size of the trial is capped by L= 2000.
We further assume σ = 1 and ρ = 1/2 by the design. To evaluate individual designs,
the average total sample size can be calculated as 2μM+n using (10.7) and the
design power can be obtained using (10.5).

10.3.1 Simple Configuration of Δ1 and Δ2

In this example, we consider simple pointwise configuration of �1 and �2 of
�1 = 0.2 and �2 = 0.4. A set of 792 candidate designs are generated by varying n
from 40 to 320 by 40 and w1 from 0.01 to 0.99 by 0.01. For each design the average
total sample size and design power are calculated. The results are plotted (Fig. 10.3)
for each given n and varying w1 from 0.01 to 0.99. As shown in Fig. 10.3, the
design with n = 120 achieves the smallest average total sample size. This optimal
design is corresponding to w1 = 0.8. It has about 93.9% of chance to correctly select
treatment arm 2 to move forward. The average total sample size of this design is 544
and its statistical power is about 0.94.

Consider a traditional program with a three-arm phase 2 trial to choose a better
treatment to move forward in a subsequent two-arm phase 3 trial. In the phase 2
part, with a maximum effect size 0.4, two-sided α = 0.025 after adjustment of
multiplicity, 80% power, the required sample size is 121 per arm, totaling 363 for
phase 2. After phase 2, there is 94% chance to select the arm of better effect size
0.4 and 6% to select the arm of effect size 0.2. The former requires 133 per arm
and latter 527 per arm for two-sided α = 0.05 and 90% power in phase 3. So on
average, phase 3 requires 313 patients. Combining phase 2 and phase 3, 676 patients
are required. The advantage of the proposed adaptive design with 544 subjects and
94% of statistical power is obvious.

10.3.2 Complex Configuration of Δ1 and Δ2

This example considers a complex but more realistic configuration of �1 and �2
with �1 unknown but believed to be within the range, say, from 0.1 to 0.3, and
�2 =�1 + 0.2. Practically, the range of �1 can be obtained as a confidence interval
of the parameter and the treatment difference of the two active treatment arms can
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be projected as its point estimate from historical data or based on dose response
relationship.

In this case, a set of 1980 candidate designs is generated by varying n from 40 to
800 by 40 and w1from 0.01 to 0.99 by 0.01. For each design with a fixed n and w1 the
total average sample size and statistical power of the design are calculated against
the aforementioned two-dimensional configuration of the underlying parameters
�1 and �2 with �1 moving from 0.1 to 0.3 by 0.01. Denote this power as
Power(n, w1, �1). The total power deviation from the targeted 0.9 is defined as

d (n,w1) =
0.3∫

0.1
| Power (n,w1,�1) − 0.9|d�1 and calculated numerically. The

values of d(n, w1) are grouped by n with w1 ranging from 0.01 to 0.09 and displayed
in Fig. 10.4. The designs with (n, w1)= (80,0.7), (120,0.56), (160, 0.47), (200,0.39),
(240, 0.34), (280, 0.3) achieve small power deviation and average total sample size.
The power and average total sample size of these designs are further plotted against
�1 in Fig. 10.5. It can be seen that the design with n = 120 and w1 = 0.56 achieves
a stable power around 90%.

Again compare to a traditional program with a three-arm phase 2 trial to choose
a better treatment to move forward in a subsequent two-arm phase 3 trial. In the
ideal case, if we know the effect size and do similar calculation as in Sect. 10.3.1,
a total of 1184 patients are needed for two phases using effect size 0.1 and 0.3 for
two treatment arms, and a total of 439 patients using effect size 0.3 and 0.5 for two
treatment arms, both resulting in larger sample sizes than the design we chose with
n = 120 and w1 = 0.56. So the optimized design takes into account the uncertainty
of effect size and provides robust power with average sample size even smaller than
those achieved if effect sizes are assumed to be known.

More general configuration of �1 and �2 is when we know a range for �1 and
another range for�2. The design optimization in this case can be done in a similar
way via global search the best design from all candidate designs.

10.4 An Example

In this section, we consider a real application of the proposed method to designing
a clinical study of a new drug treatment of rheumatoid arthritis (RA). Assume
that two doses of the new drug are of interest. The primary efficacy measurement
is change from baseline in DAS28 at Week 26, which is commonly used in RA
studies. Assume that the primary outcome in each treatment arm follow a normal
distribution: N(−1.9, 1.362) for placebo (PBO), N(−2.5, 1.362) for low dose, and
N(−2.9, 1.362) for high dose. The assumptions are based on Lee et al. (2014).
We apply our two-stage design with dose selection and sample size determination
using the first stage data. Taking variability into account, with our notation, assume
�1 ∈ [−0.8,−0.4], �2 = �1 − 0.4,and σ = 1.36. A fixed sample size trial
comparing two groups with treatment effect -0.4 and -0.8 requires 61 and 243 per
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arm, respectively. Following the optimization process in Sect. 10.3.2, we search
candidate designs with n from 20 to 320 by 20 and w1 from 0.01 to 0.99 by 0.01.
A design with n=100, w1 = 0.68 results in a trial with almost 90% power over the
whole interesting region for �1with a reasonable mean final sample size.

10.5 Conclusion and Discussions

Adaptive designs have provided abundant opportunities to improve the chance of
success and likely the efficiency of conducting clinical trials. Their value has been
increasingly recognized by regulatory agencies and industry. Such designs can be
used to select a treatment arm using interim data followed with a confirmatory
stage in seamless phase II/III designs or phase III designs (Stallard and Todd
2003; Lawrence and Bretz 2014) or to determine a final sample size based on
interim data (Cui et al. 1997, 1999). It is recognized that the timing of interim
analysis is important (Chaturvedi et al. 2014) and optimization can further improve
the robustness of such designs when there is uncertainty in treatment effect size
assumption at trial planning stage (Zhang et al. 2016). In this paper, we combine
these three design techniques to provide an efficient and robust trial design for
phase III clinical trials, which offers a strict type I error rate control, an opportunity
to select a better performing treatment arm, and robust power over an effect size
window through optimization. All relevant formulae and their derivation have been
provided in the appendices, which help to facilitate readers to design and optimize
their trials without time-consuming simulation.

During the interim, one can also apply some futility rule to stop the whole
trial if neither treatment arm is promising. This should not change our design and
optimization process. This same design can be also used in seamless phase II/phase
III trials. In that situation, there might be more than two treatment (dose) groups.
Our design can be readily generalized to more than two treatment groups, e.g.,
selecting the treatment arm with the largest observed effect size, as in Stallard and
Todd (2003, 2011), but computation may rely on statistical simulations.

We optimize the trials with respect to interim sample size n and w1, which take
values independently. We discard the concept of “planned total sample size” and
therefore there is no “sample size re-estimation.” Instead, the total sample size is
determined based on interim data.

In sample size determination at interim based on conditional power, we use the
observed treatment difference to replace the expected mean difference in conditional
power. Some, e.g., (Glimm 2012), point out that this may be suboptimal due to
the variability in the observed treatment difference. It should be noted that other
estimates can be used in estimating conditional power and the formula can be
changed accordingly. In addition, we use a criterion of better efficacy for interim
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treatment selection. This is commonly used in the phase III setting where the doses
under study are considered generally safe and a selection criterion needs to be
spelled out clearly a priori for the data monitoring committee to conduct the dose
selection.

Disclosure The support of this publication was provided by AbbVie. AbbVie participated in the
review and approval of the content. Lanju Zhang and Lu Cui are employees of AbbVie, Inc. Yaoyao
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Appendices

Appendix1: Conditional Power

From the definition of Zi,
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Appendix 2: Total Sample Size

We make the last formula in Appendix 1 at least (1 − β), so
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where zβ is the upper quantile of standard normal distribution. So,
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Using observed effect size to replace �i, i.e., �̂i = Y
(n)
i , then total sample size

should be,

Mi = n+ 2σ 2

w2
2

(
C + w2zβ

Y
(n)
i

− nw1√
2nσ

)2

To apply a limit L, we use M′
i=min(Mi, L) in practice.

Appendix 3: Absolute Power

To find the absolute power, we need to integrate the conditional power in Appendix
1 with respect to the joint density of Y

(n)
1 and Y

(n)
2 . Recall A is the event that occurs

when treatment 1 is selected at the interim.

P (TS > C) = P (Z1 > C,A)+ P
(
Z2 > C,A′)

= 1 −
∫∫

A

�

(
1

w2

(

C − w1Y
(n)
1

σ
√

2/n

)

− �1
√

M1 − n√
2σ

)

dFn (y1, y2)

−
∫∫

A′
�

(
1

w2

(

C − w1Y
(n)
2

σ
√

2/n

)

− �2
√

M2−n√
2σ

)

dFn (y1, y2)

Treatment selection at interim can use many different criteria, so event A can
be defined in many ways. Here we consider selecting the treatment with the larger
effect at interim. In other words, A occurs or treatment 1 is selected whenY

(n)
1 >

Y
(n)
2 . First, plugging in Mi,

P (TS > C) = 1 −
∫∫

y1>y2

�

(
1

w2

(

C − w1Y
(n)
1

σ
√

2/n

)

−�1

w2

∣
∣
∣
∣
C + w2zβ

y1
− nw1

σ
√

2n

∣
∣
∣
∣

)

dFn (y1, y2)

−
∫∫

y1<y2

�

(
1

w2

(

C − w1Y
(n)
2

σ
√

2/n

)

−�2

w2

∣
∣
∣
∣
C + w2zβ

y2
− nw1

σ
√

2n

∣
∣
∣
∣

)

dFn (y1, y2)
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where Fn(y1, y2) is the joint distribution function of Y
(n)
1 and Y

(n)
2 . Letting vi =

yi−�i√
2/nσ

,

= 1 −
∫∫

v1>v2+ n(�2−�1)
σ
√

2n

�

(
1

w2

(

C − w1

(

v1 + n�1

σ
√

2n

))

− �1

w2

∣
∣
∣
∣

C + w2zβ

�1 +√
2/nσv1

− nw1

σ
√

2n

∣
∣
∣
∣

)

dF (v1, v2)

−
∫∫

v1<v2+ n(�2−�1)
σ
√

2n

�

(
1

w2

(

C − w1

(

v2 + n�2

σ
√

2n

))

− �2

w2

∣
∣
∣
∣

C + w2zβ

�2 +√
2/nσv2

− nw1

σ
√

2n

∣
∣
∣
∣

)

dF (v1, v2)

= 1 −
∫∫

v1>v2+ n(�2−�1)√
2nσ

�

(
1

w2

(

C − w1

(

v1 + n�1√
2nσ

))

− �1

w2

∣
∣
∣
∣

C + w2zβ

�1 +√
2/nσv1

− nw1

σ
√

2n

∣
∣
∣
∣

)

f (v2|v1) ø (v1) dv2dv1

−
∫∫

v1<v2+ n(�2−�1)√
2nσ

�

(
1

w2

(

C − w1

(

v2 + n�2√
2nσ

))

− �2

w2

∣
∣
∣
∣

C + w2zβ

�2 +√
2/nσv2

− nw1

σ
√

2n

∣
∣
∣
∣

)

f (v1|v2) ø (v2) dv1dv2

= 1 −
∞∫

−∞

v1− n(�2−�1)√
2nσ∫

−∞
�

(
1

w2

(

C − w1

(

v1 + n�1√
2nσ

))

− �1

w2

∣
∣
∣
∣

C + w2zβ

�1 +√
2/nσv1

− nw1

σ
√

2n

∣
∣
∣
∣

)

f (v2|v1) ø (v1) dv2dv1

−
∞∫

−∞

v2+ n(�2−�1)√
2nσ∫

−∞
�

(
1

w2

(

C − w1

(

v2 + n�2√
2nσ

))

−�2

w2

∣
∣
∣
∣

C + w2zβ

�2 +√
2/nσv2

− nw1

σ
√

2n

∣
∣
∣
∣

)

f (v1|v2) ø (v2) dv1dv2

Note 2|v1∼N(ρv1, (1 − ρ2)), v2|v1∼N(ρv2, (1 − ρ2)), ρ = 1/2
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= 1 −
∞∫

−∞
�

(
1

w2

(

C − w1

(

v1 + n�1√
2nσ

))

−�1

w2

∣
∣
∣
∣
∣

n
(
C + w2zβ

)

n�1 +
√

2nσv1
− nw1√

2nσ

∣
∣
∣
∣
∣

)

�

⎛

⎝
(1 − ρ) v1 − n(�2−�1)√

2nσ√
1 − ρ2

⎞

⎠ ø (v1) dv1

−
∞∫

−∞
�

(
1

w2

(

C − w1

(

v2 + n�2√
2nσ

))

−�2

w2

∣
∣
∣
∣
∣

n
(
C + w2zβ

)

n�2 +
√

2nσv2
− nw1√

2nσ

∣
∣
∣
∣
∣

)

�

⎛

⎝
(1 − ρ) v2 + n(�2−�1)√

2nσ√
1 − ρ2

⎞

⎠ ø (v2) dv2

Since we need to use M′
i = min (Mi, L), the above fourmula should be modified

to,

1 −
∞∫

−∞
�

(
1

w2

(

C − w1

(

v1 + n�1√
2nσ

))

−�1

w2
min

(∣
∣
∣
∣
∣

n
(
C + w2zβ

)

n�1 +
√

2nσv1
− nw1√

2nσ

∣
∣
∣
∣
∣
,

w2
√

L− n

σ
√

2

))

�

×
⎛

⎝
(1 − ρ) v1 − n(�2−�1)√

2nσ√
1 − ρ2

⎞

⎠ ø (v1) dv1

−
∞∫

−∞
�

(
1

w2

(

C − w1

(

v2 + n�2√
2nσ

))

−�2

w2
min

(∣
∣
∣
∣
∣

n
(
C + w2zβ

)

n�2 +
√

2nσv2
− nw1√

2nσ

∣
∣
∣
∣
∣
,

w2
√

L− n

σ
√

2

))

�

×
⎛

⎝
(1 − ρ) v2 + n(�2−�1)√

2nσ√
1 − ρ2

⎞

⎠ ø (v2) dv2

If total sample size is planned at the beginning of the study, say, M, we can
replace M1 and M2 with M, and the above derivation still follows. In this case, if
we choose w2

1 = n
M

, then the design accommodates dose selection with sample
size adaption, similar to Stallard and Todd (2003). In other words, our design is
generalized. Function “integrate” in R is often used to evaluate an integral like this.
However, it doesn’t work well for this truncated integrand. Instead, the function
“adaptIntegrate” in package “cubature” should be used.
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Appendix 4: Type I Error Rate

There are two other type I error configurations, in addition to that in (10.1). One is
when Δ1 = 0, Δ2 > 0, treatment arm 1 is selected and rejected. The other is when
Δ1 > 0, Δ2 = 0, treatment arm 2 is selected and rejected. We first show that these
two cases are dominated by the case in (10.1). Let Ti, i = 1, 2, be the test statistics
at the end of the trial with random final sample size.

Under Δ1 = 0, Δ2 > 0,the type I error rate is

P�1=0,�2>0

(
T1 > C, Y

(n)
1 > Y

(n)
2 ).

Under Δ1 = 0, Δ2 = 0 the type I error rate is

P�1=0,�2=0

(
T1 > C, Y

(n)
1 > Y

(n)
2

)
+ P�1=0,�2=0

(
T2 > C, Y

(n)
1 < Y

(n)
2 )

≥ P�1=0,�2=0

(
T1 > C, Y

(n)
1 > Y

(n)
2

)
≥ P�1=0,�2>0

(
T1 > C, Y

(n)
1 > Y

(n)
2

)
.

It is similar for the other case. So in the following we only consider the case of
(10.1).

When �1 = �2 = 0, the absolute power formula gives the type I error rate.

P (TS > C) = 1 −
∞∫

−∞
�

(
1

w2
(C − w1v1)

)

�

(
(1 − ρ) v1
√

1 − ρ2

)

ø (v1) dv1

−
∞∫

−∞
�

(
1

w2
(C − w1v2)

)

�

(
(1 − ρ) v2
√

1 − ρ2

)

ø (v2) dv2

= 1 − 2

∞∫

−∞
�

(
1

w2
(C − w1v2)

)

�

(
(1 − ρ) v2
√

1 − ρ2

)

ø (v2) dv2

As noted in Appendix 3, this is the type I error rate for fixed sample size designs
with treatment selection if w2

1 = n
M

. Next we show when w1 = 0, the above result
is equal to

1 − 2

∞∫

−∞
�(C)�

(
(1 − ρ) v
√

1 − ρ2

)

ø(v)dv = 1 −�(C).

To that end, we let

g(k) =
∞∫

−∞
�(kv)ø(v)dv
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Then, g′(k) = −
∞∫
−∞

vø(kv)ø(v)dv = 0 since ø(.) is an even function. So g(k) is

a constant with respect to k. Taking k = 0, we got g(0) = 0.5.

Table 10.1 Critical values for different weight w1

w1 C w1 C w1 C

0.05 1.98 0.35 2.081 0.7 2.166
0.1 1.998 0.4 2.095 0.75 2.176
0.15 2.016 0.45 2.109 0.8 2.184
0.2 2.034 0.5 2.122 0.85 2.192
0.25 2.05 0.55 2.134 0.9 2.2
0.26 2.053 0.6 2.145 0.95 2.206
0.3 2.066 0.65 2.156 0.99 2.211

Fig. 10.1 Type I error rate with �1 = 0. When �2 = 0, the type I error rate is the probability to
show the selected treatment to be significant; when �2 > 0, the type I error rate is the probability
to select treatment 1 and conclude it is significant
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Fig. 10.2 Type I error rate simulation with 100,000 replications with �1 = �2 = 0 and critical
values corresponding to w1

Fig. 10.3 Design optimization against interim sample size and weight with �1 = 0.2 and
�2 = 0.4. For every value of n, w1varies from 0.01 to 0.99
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Fig. 10.4 Power deviation for all candidate designs

Fig. 10.5 Mean total sample size and power of selected designs over the effect size interval of Δ1
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Chapter 11
Critical Boundary Refinement in a Group
Sequential Trial When the Primary
Endpoint Data Accumulate Faster
Than the Secondary Endpoint

Jiangtao Gou and Oliver Y. Chén

11.1 Introduction

In classical clinical trial studies, a clinical endpoint is defined as the time point at
which a disease or symptom occurs. An individual reaching an endpoint during a
clinical trial indicates either the conclusion of the trial, or there is strong evidence
rendering the subject withdraws from the trial. To allow for early diagnosis,
personalized treatment, and timely drug development, modern clinical trials are
designed with customized endpoints. Consequently, the assessment time available to
statistical analysis for each endpoint varies. For example, in oncology clinical trials,
depending on the centering focus, the endpoints can be categorized into patient-
centered endpoints and tumor-centered endpoints. An example of a patient-centered
endpoint is the overall survival (OS), defined as the cumulative days a patient has
lived, counting beginning from the date on which the disease is diagnosed or the
date on which treatment is initiated; an example of a tumor-centered endpoint is
progression-free survival (PFS), defined as cumulative days a patient has lived
with cancer since the treatment and that the disease has not progressed (Fiteni
et al. 2014). While OS is more reliable (since it covers a longer period) than PFS,
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the latter is usually used in practice as a surrogate for OS, when an accelerated
evaluation is demanded, for example, during a drug test. However, we cannot at
present ascribe such a replacement to any well-defined statistical theory, owning, in
part, to the genuine differences between the two types of endpoints, and, in part, to
the intellectual discovery of only modest correlation between PFS and OS (Amir
et al. 2012; Michiels et al. 2017). By probing into the hierarchical basis of these two
types of endpoints, statistical science can help us uncover the utility underlying each
endpoint in addressing problems in clinical trials and improve statistical power. A
beginning in this direction can be made by considering a hierarchical test embedded
in a group sequentially design (Hung et al. 2007).

A group sequential design is a framework that allows statistical analysis during
longitudinally ordered stages, defined as interim stages followed by a final stage
(Jennison and Turnbull 2000). During each interim stage, a statistic (e.g. the
estimated logarithm of the hazard ratio) is computed on data hitherto collected
to determine whether or not to reject a null hypothesis (e.g. whether or not a
treatment is more effective than the standard treatment), based upon a stopping
criterion (called a critical boundary). Specifically, if the statistic exceeds the critical
boundary, the null hypothesis is rejected, and the trial is subsequently terminated
prior to the next interim stage. If a trial reaches the final stage, all data are utilized
to test the null hypothesis.

Chief to a group sequential design is the critical boundary for early stopping.
Pocock (1977) and O’Brien and Fleming (1979) individually proposed two now
widely used critical boundaries for group sequential trials. Attributing to their
contribution, these boundaries are commonly referred to as the Pocock (POC)
boundary and the O’Brein-Fleming (OBF) boundary today, respectively. However,
the POC and OBF boundaries require that the total number of decision times
specified in advance. When this condition is not met, Lan and DeMets (1983)
utilized a family of error spending functions to approximate the POC and the OBF
boundaries. All of these approaches consider group sequential trials with a single
primary endpoint. To address issues in group sequential trials involving multiple
primary endpoints, Jennison and Turnbull (1993), Tang and Geller (1999), Maurer
and Bretz (2013), Ye et al. (2013) and Xi and Tamhane (2015) provided various
suggestions.

To raise any clinical finding related to an endpoint to the rank of science, one
has to construct statistical hypotheses test for each endpoint. In a randomized trial
consisting multiple endpoints, the endpoints often present a hierarchical structure.
Statistical testing can be conducted serially for each ordered endpoint, or in parallel
for all endpoints by applying the gatekeeping procedure (Dmitrienko and Tamhane
2007; Dmitrienko et al. 2009). A more flexible framework is the graph-theoretic-
based procedure introduced by Bretz et al. (2009) and Burman et al. (2009), wherein
nodes are used to represent hypothesis tests, coupled by directed and weighted
edges indicating multiple test procedures. The above approaches were initially
employed in single-stage designs with neither interim analysis nor trial extension.
To extend these methods to multi-stage designs, Hung et al. (2007) first considered
hierarchically testing multiple endpoints in a group sequential design.
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The theoretical basis of group sequential designs involving multiple endpoints
with complex hierarchical structure, one of the common practice in modern clinical
trials, however, is not as-of-yet well-charted in statistical science. For instance, in an
oncology trial, when the primary endpoint is PFS and the secondary endpoint is OS
with the partially hierarchical design, can we improve upon the simple Bonferroni-
based split between the primary and the secondary endpoint (which is the current
practice), in a group sequential design? Prior work has built a reliable and useful
repertoire that has offered us much insight, with which we build our theory. For
example, Hung et al. (2007), Tamhane et al. (2010), Glimm et al. (2010), and
Tamhane et al. (2018) considered the group sequential procedures for a primary
and a secondary hypothesis with the same information fractions at interim analyses.
In the light of their knowledge, in this article we attempt to address a few core issues
in clinical trails when multiple objectives with hierarchical structures are present in
group sequential designs.

11.2 Preliminaries

Consider a trial on a primary and a secondary endpoint hierarchically using a
group sequential design with two stages. In the following, we use X to denote
parameters and statistics that are related to the primary endpoint, and Y to denote
parameters and statistics for the secondary endpoint. The number of interim looks
at the secondary endpoint is permitted to be greater than the number of looks at the
primary, if it takes longer to collect the secondary endpoint data than the primary
endpoint data. We first consider a two-stage group sequential design that is applied
to the primary endpoint, and a K-stage design that is used for the secondary endpoint
(K ≥ 2). For simplicity, we call it [2|K]-stage design. As a natural extension, we
introduce the procedure with a KX-stage design for the primary hypothesis and a
KY -stage design for the secondary hypothesis. We denote this as a [KX|KY ]-stage
design.

In a [2|K]-stage design, let n1,X and n2,X be the sample sizes for the two stages
of the primary endpoint HX, and n1,Y , n2,Y , . . . , nK,Y for the K stages of the
secondary endpoint HY . The total sample size is N , where N = n1,X + n2,X =
∑K

i=1 ni,Y . The information time of the primary endpoint at the interim analysis
is denoted as tX = n1,X/N . For the secondary endpoint, there are K − 1 interim
analyses, and the information times are ti,Y = ∑i

j=1 nj,Y /N , i = 1, · · · ,K − 1.
The information time or information fraction is the proportion of subjects or
events already observed (Lan and DeMets 1989). The correlation between the two
endpoints is denoted as ρ.

Let (X1, X2) and (Y1, Y2, . . . , YK) denote the standardized sample mean test
statistics for the two endpoints at different stages, specified by a numeric subscript.
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The normal theory applies asymptotically in this case. The correlations between the
test statistics are shown as follows.

corr (X1, X2) = λ, corr
(
Yi, Yj

) = γi/γj (i < j),

corr (X1, YK) = λρ, corr (X2, YK) = ρ,

corr (X1, Yi) = min {λ/γi, γi/λ} · ρ, corr (X2, Yi) = γiρ,

where λ = √
tX, γi = √

ti,Y for i = 1, . . . , K − 1 and γK = 1.
Let

(
�1,X,�2,X

)
and

(
�1,Y ,�2,Y , . . . ,�K,Y

)
denote the standardized treat-

ment effects of the primary and the secondary endpoints at each stage. Noting that
�1,X = λ�2,X and �i,Y = γi�K,Y , we therefore simplify the notations by letting
�X = �2,X and �Y = �K,Y .

Denote HX and HY as the primary and the secondary null hypotheses. Let
(c1, c2) and (d1, d2, . . . , dK) denote the primary boundary and the secondary
boundary, respectively, in a group sequential procedure. Here, (c1, c2) correspond
to (X1, X2) and

(
�1,X,�2,X

)
; (d1, d2, . . . , dK) are with respect to (Y1, Y2, . . . , Yk)

and
(
�1,Y ,�2,Y , . . . ,�K,Y

)
. Examples of common boundaries are discussed in

Pocock (1977), O’Brien and Fleming (1979), and Lan and DeMets (1983).
In this article, we investigate three types of hierarchical testing scenarios:

stage-wise hierarchical, overall hierarchical, and partially hierarchical scenarios.
To conduct hypothesis testing with respect to each scenario, a scenario-specific
decision rule needs to be defined a priori. Following Glimm et al. (2010), these
decision rules are specified as below. Here, we define αS

Y , αO
Y , and αP

Y , as the type
I errors for a stagewise (S), an overall (O), and a partially (P) hierarchical rule,
respectively, under the null hypothesis HY .

• Stagewise hierarchical rule PS . The primary hypothesis is tested sequentially.
The secondary hypothesis will be automatically accepted if the primary hypothe-
sis is not rejected. If the primary hypothesis is rejected, the secondary hypothesis
will be tested only once at the same stage. The associated type I error is

αS
Y = Pr (X1 > c1, Y1 > d1)+ Pr (X1 ≤ c1, X2 > c2, Y2 > d2) .

• Overall hierarchical rule PO . Besides PS , the secondary hypothesis can be tested
until its final stage if the primary hypothesis is rejected. The associated type I
error is

αO
Y = αS

Y +
K−1∑

i=1

Pr (X1 > c1, Y1 ≤ d1, · · · , Yi ≤ di, Yi+1 > di+1)

+
K−1∑

i=2

Pr (X1 ≤ c1, X2 > c2, Y2 ≤ d2, · · · , Yi ≤ di, Yi+1 > di+1) .
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• Partially hierarchical rule PP . Besides PO , the secondary hypothesis can be
tested from stage 2 to stage K if the primary hypothesis is failed to be rejected at
its interim and final stage. The associated type I error is

αP
Y = αO

Y + Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2)

+
K−1∑

i=2

Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , Yi ≤ di, Yi+1 > di+1) .

Glimm et al. (2010) also listed another hierarchical rule called the coequal rule PC ,
where the primary and the secondary hypotheses are tested independently without
any hierarchical structure. For a trial design using the coequal hierarchical rule,
Bonferroni-type methods have been well developed, such as Maurer and Bretz
(2013)’s method based on the graphical approach (Bretz et al. 2009, 2011), and
Ye et al. (2013)’s method based on the Holm (1979) procedure. Other distribution-
based or p-value-based tests can also be applied in trial designs using the coequal
hierarchical rule, such as the Dunnett and Tamhane (1992) test, the Simes (1986)
test, the generalized Simes test (Sarkar 2008; Gou and Tamhane 2014, 2018b), and
their corresponding multiple testing procedures, such as Hommel (1988), Hochberg
(1988), Rom (1990), and the hybrid Hochberg–Hommel procedure (Gou et al. 2014;
Gou and Tamhane 2018a; Tamhane and Gou 2018). Since the endpoints under
the coequal hierarchical rule are co-primary endpoints without a real hierarchical
structure, we focus on the stagewise (S), the overall (O), and the partially (P)
hierarchical rule in this article.

In a [KX|KY ]-stage design, we use terminologies and notations similar to those
of a [2|K]-stage design. The sample sizes for HX and HY in each stage are denoted
as n1,X, . . . , nKX,X and n1,Y , . . . , nKY ,Y respectively, and the total sample size
N = ∑KX

i=1 ni,X = ∑KY

i=1 ni,Y . The cumulative sample sizes at stage i for HX

and HY are Ni,X = ∑i
j=1 nj,X and Ni,Y = ∑i

j=1 nj,Y . The information times
are calculated accordingly as ti,X = Ni,X/N and ti,Y = Ni,Y /N , where tKX,X =
tKY ,Y = 1. Let λi = √

ti,X, γi = √
ti,Y , and the correlation between XKX

and YKY

be ρ. The correlations between the standardized test statistics (X1, · · · , XKX
) and

(Y1, · · · , XKX
) are

corr
(
Xi,Xj

) = λi/λj (i < j), corr
(
Yi, Yj

) = γi/γj (i < j),

corr
(
Xi, Yj

) = min
{
λi/γj , γj /λi

} · ρ, corr
(
XKX

, YKY

) = ρ.

The standardized effects for HX and HY at the final stage are denoted as �X and
�Y , so the effects at interim stage i are λi�X and γi�Y , respectively. The critical
boundaries for standardized test statistics of HX and HY are (c1, · · · , cKX

) and
(d1, · · · , dKY

). When KX = KY , Tamhane et al. (2018) gave the expressions of
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type I error rates under HY for PS , PO , and PP . In a more general setting when
KX �= KY , the corresponding type I error rates under HY are

PS : αS
Y =

KX∧KY∑

i=1

Pr (X1 ≤ c1, . . . , Xi−1 ≤ ci−1, Xi > ci, Yi > di) ,

PO : αO
Y = αS

Y +
KX∧{KY−1}∑

i=1

KY∑

j=i+1

Pr
(
X1 ≤ c1, · · · , Xi−1 ≤ ci−1, Xi > ci,

Yi ≤ di, · · · , Yj−1 ≤ dj−1, Yj > dj

)
,

PP : αP
Y =

⎧
⎪⎪⎨

⎪⎪⎩

αO
Y + Pr

(
X1 ≤ c1, · · · , XKX

≤ cKX
, YKY

> dKY

)
, ifKX ≥ KY ,

αO
Y +∑KY

i=KX
Pr
(
X1 ≤ c1, · · · , XKX

≤ cKX
, YKX

≤ dKX
, . . . ,

Yi−1 ≤ di−1, Yi > di) , ifKX < KY ,

where KX ∧KY = min{KX,KY }.
Note that for a test on a primary and a secondary endpoint in a group sequential

design, the control of familywise error rate (FWER) (Hochberg and Tamhane
1987; Tamhane et al. 2010; Zhang and Gou 2019a) requires that FWER =
Pr (Reject at least one true H ∈ {HX,HY }) ≤ α. Following the closure principle
(Marcus et al. 1976), the control of type I error under primary hypothesis HX,
the control under secondary hypothesis HY and the control under their intersection
HX ∩HY are all at level α, leading to the control of the FWER at level α.

11.3 Stagewise Hierarchical Rule

The stagewise hierarchical rule PS and the overall hierarchical rule PO satisfy
the gatekeeping condition, In other words, the secondary endpoint is tested only
if the primary endpoint is significant (Dmitrienko and Tamhane 2007; Dmitrienko
et al. 2009). Under this condition, the event RY = {Reject HY } is a subset of the
event RX = {Reject HX}. It follows that Pr (RX ∪ RY |HX ∩HY ) = Pr (RX|HX).
This indicates that once the primary endpoint is tested using an α-level boundary,
then Pr (RX ∪ RY |HX ∩HY ) ≤ α (Tamhane et al. 2010). Consequently, for testing
procedures using the stagewise hierarchical rule PS or the overall hierarchical rule
PO , in order to control FWER at level α, the only requirement of type I error
control for the secondary hypothesis is Pr (RY |HY ) ≤ α, or more specifically,
Pr
(
RY |HX ∩HY

) ≤ α.
In a [2|K]-stage design, the primary hypothesis HX can be tested flexibly using

any α-level group sequential boundary (c1, c2). For example, the critical boundary
(c1, c2) satisfies αX = 1 − Pr (X1 ≤ c1, X2 ≤ c2) ≤ α. The marginal significance
level of the secondary hypothesis HY is defined as αY = 1 − Pr

(∩K
i=1 {Yi ≤ di}

)
.
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We consider using a more liberal secondary boundary (d1, . . . , dK) where αY can
be greater than α with the control of FWER at level α.

Assume that the test statistics follow the multivariate normal distribution, which
applies asymptotically to a wide range of test statistics. Namely,

⎛

⎜
⎜
⎝

X1

Y1

X2

Y2

⎞

⎟
⎟
⎠ ∼ N

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎝

λ�X

γ1�Y

�X

γ2�Y

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎜
⎝

1 min{λ,γ1}
max{λ,γ1}ρ λ

min{λ,γ2}
max{λ,γ2}ρ

min{λ,γ1}
max{λ,γ1}ρ 1 γ1ρ γ1/γ2

λ γ1ρ 1 γ2ρ
min{λ,γ2}
max{λ,γ2}ρ γ1/γ2 γ2ρ 1

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

. (11.1)

In the following, Theorem 1 gives an upper bound of type I error of stagewise
hierarchical rule PS . Unlike the results where the primary and the secondary
endpoint have the same information fractions (Tamhane et al. 2010; Glimm et al.
2010; Tamhane et al. 2018) or the results with only one interim analysis for the
secondary hypothesis HY where γ2 = 1 (Gou and Xi 2019), the upper bound we
provided for multiple interim stages with different information fractions is not sharp.
In other words, the following theorem guarantees a more liberal secondary boundary
unconditionally.

Theorem 1 (Upper Bound for Type I Error) When using a stagewise hierarchi-
cal rule PS under HY , the type I error αS

Y is bounded from above by

αS
Y < 1 − Pr (Y1 ≤ d1, Y2 ≤ d2) .

When 0 < γ1 < γ2 < 1, this upper bound cannot be achieved.

Specifically, when the primary hypothesis data are obtained earlier than the
secondary hypothesis data, at stage 1 we have n1,X > n1,Y . It follows that
the information fraction of the primary hypothesis at stage 1 is greater than the
corresponding information fraction of the secondary hypothesis. Starting from
Theorem 1 along with the assumption that tX > t1,Y and the correlation ρ between
X2 and YK is positive, we show in Theorem 2 below that the type I error rate for a
stagewise hierarchical test under the secondary hypothesis HY , or αS

Y , is uniformly
monotonous.

Theorem 2 (Uniform Monotonicity of Type I Error) Consider two group
sequential designs using PS , one with the square roots of information fractions
(λ, γ ′1, γ2) and boundaries (c1, c2, d

′
1, d

′
2), and the other with (λ, γ ′′1 , γ2) and

(c1, c2, d
′′
1 , d ′′2 ). Denote the corresponding type I errors under HY by αS

Y

′
and

αS
Y

′′
, respectively. Suppose that these two designs share the same boundary for

the primary hypothesis (c1, c2), and the same information fraction tX = λ2 at the
interim analysis of the primary hypothesis and the information fraction t2,Y = γ 2

2
at the second stage of the secondary hypothesis. If γ ′1 ≤ γ ′′1 ≤ λ, d ′1 ≥ d ′′1 and



212 J. Gou and O. Y. Chén

d ′2 ≥ d ′′2 , then for any ρ ∈ [0, 1] and for any �X,

αS
Y

′ ≤ αS
Y

′′
.

In order to apply Theorem 2 to the OBF-POC design, where an OBF boundary
is used for the primary endpoint and a POC boundary is used for the secondary
endpoint, we need the following result. The OBF-POC design in the stagewise
hierarchical rule is recommended by Tamhane et al. (2010, 2018) and Zhang and
Gou (2019b).

Lemma 1 Consider two trials that use the Pocock test with two stages under the
same significance level. In one trial, the interim analysis is performed at information
time t ′, and the corresponding Pocock boundary is d ′. In the other trial, the interim
analysis is performed at t ′′ with Pocock boundary d ′′. If t ′ < t ′′, then d ′ > d ′′.

An immediate consequence of Theorem 2 and Lemma 1 is that, when the
information fraction of the secondary hypothesis at the interim analysis is small
compared to the information fraction of the primary hypothesis, the statistical
power of group sequential design using the stagewise hierarchical rule will benefit
greatly from the secondary boundary refinement. Formally, this means that the OBF-
POC design with unrefined boundaries becomes more conservative for testing the
secondary hypothesis HY when the information time at the first stage t1,Y becomes
smaller.

Figure 11.1 shows that the error rate αS
Y under HY of an OBF-POC design,

where the α-level boundaries (c1, c2) and (d1, d2) are used, say, α = 1 −
Pr (X1 ≤ c1, X2 ≤ c2) = 1−Pr (Y1 ≤ d1, Y2 ≤ d2). Figure 11.1 confirms the result
in Theorem 1 that the error rate αS

Y is strictly less than α. It also confirms that the
uniform monotonicity of αS

Y as a function of t1,Y in Theorem 2. The error rate αS
Y

of an OBF-OBF design, where both primary and secondary boundary are OBF, is
also bounded by α, and is uniformly monotonic of t1,Y , as shown in Fig. 11.2. The
boundary values (d1, d2) can be refined to allow αS

Y to achieve α.
The secondary boundary can be refined without knowing the correlation ρ

between two hypotheses by assuming the least favorable situation where ρ = 1. If
ρ is known or can be estimated (Tamhane et al. 2012a,b), we can further refine the
boundary for the secondary hypothesis. Table 11.1 gives an example of the refined
boundary (d ′1, d ′2) of the secondary hypothesis using OBF-POC and OBF-OBF
designs, where ρ = 1, 0.8, 0.5. The error rate αS

Y equals the level of significance
α exactly with the boundary refinement of the secondary hypothesis.

Since lim�X→+∞ αS
Y (ρ,�X) = Pr (Y1 > d1), for any ρ, λ, γ1 and γ2, the

refined secondary boundary d1 in an OBF-POC design is at least zα , where zα is the
upper α critical point of the standard normal distribution. Note that the naïve strategy
in Hung et al. (2007), where the secondary boundary d1 = d2 = zα , has been
shown to be liberal when the information fractions for the primary and the secondary
endpoint are the same. Gou and Xi (2019) first observed that the naïve strategy in
Hung et al. (2007) actually control the FWER when the primary and the secondary
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Fig. 11.1 FWER plot for O’Brien-Fleming primary and Pocock secondary boundary under PS

with tX = 0.6, marginal level of significance α = 1 − Pr (X1 ≤ c1, X2 ≤ c2) = 1 −
Pr (Y1 ≤ d1, Y2 ≤ d2) = 0.025. Correlation ρ = 1 (top panels), ρ = 0.8 (bottom panels),
t2,Y = 0.9 (left panels), t2,Y = 0.7 (right panels)

hypothesis have different information fractions, but without further discussion. A
natural question here to ask is, when will the FWER inflation of the naïve strategy
in Hung et al. (2007) not happen? Under an OBF-POC design, where an α-size
OBF boundary (c1, c2) is chosen for the primary endpoint, and the boundary for
the secondary endpoint is d1 = d2 = zα , Fig. 11.3 shows the admissible region of
(t1,Y , t2,Y ) for controlling the FWER of the naïve strategy in Hung et al. (2007) for
different choices of the information fractions at the interim analysis of the primary
hypothesis. The feasible region of (t1,Y , t2,Y ) becomes larger when tX increases.
Generally speaking, when (t1,Y , t2,Y ) are small enough compared with tX, the naïve
strategy controls the FWER. For example, in a phase III trial in Baselga et al. (2012),
the primary endpoint is PFS with information fraction tX = (0.6, 1), and the key
secondary endpoint is OS with tY = (0.21, 0.44). If this trial follows the stagewise
hierarchical strategy to control the FWER at level α = 0.025 and uses an α-level
OBF boundary for the PFS endpoint, then the boundary d1 = d2 = zα = 1.960 for
the OS can be used since t1,Y = 0.21 and t2,Y = 0.44 fall into the admissible region
when tX = 0.6. This is shown in Fig. 11.3.

A simple empirical rule for properly using the naïve strategy in Hung et al. (2007)
is followed: when t2

1,Y ≤ tX, a group sequential design with an 0.025-level OBF
boundary for the primary hypothesis can directly apply d1 = d2 = z0.025 as its
boundary for the secondary hypothesis HY .
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Fig. 11.2 FWER plot for O’Brien-Fleming primary and O’Brien-Fleming secondary boundary
under PS with tX = 0.6, marginal level of significance α = 1 − Pr (X1 ≤ c1, X2 ≤ c2) = 1 −
Pr (Y1 ≤ d1, Y2 ≤ d2) = 0.025. Correlation ρ = 1 (top panels), ρ = 0.8 (bottom panels), t2,Y =
0.9 (left panels), t2,Y = 0.7 (right panels)

Table 11.1 Refined secondary boundaries for given correlation ρ under the
stagewise hierarchical rule

OBF-POC α-level boundary Refined boundary

ρ d1 d2 d ′1 d ′2 Marginal error of HY

1 2.169 2.169 2.032 2.032 0.0345

0.8 2.169 2.169 1.996 1.996 0.0375

0.5 2.169 2.169 1.973 1.973 0.0394

OBF-OBF α-level boundary Refined boundary

ρ d1 d2 d ′1 d ′2 Marginal error of HY

1 2.664 1.985 2.511 1.872 0.0328

0.8 2.664 1.985 2.386 1.778 0.0408

0.5 2.664 1.985 2.308 1.721 0.0465

tX = 0.6, t1,Y = 0.5, t2,Y = 0.9, the OBF boundary for the primary
hypothesis is c1 = 2.572, c2 = 1.992 at α = 0.025. The marginal error
rate of HY is 1 − Pr

(
Y1 ≤ d ′1, Y2 ≤ d ′2

)

In a [KX|KY ]-stage design following the stagewise hierarchical rule, similar
conclusions on type I error rate can be achieved. The type I error rate αS

Y is bounded
from above by 1 − Pr

(
Y1 ≤ d1, . . . , YKX∧KY

≤ dKX∧KY

)
, and this upper bound is
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Fig. 11.3 Feasible region of (t1,Y , t2,Y ) of the naïve strategy in Hung et al. (2007)

not sharp when KX �= KY . Under some conditions, the power gain for the secondary
hypothesis HY by using the boundary refinement is significant when the information
times of HY are less than the information times of the primary hypothesis HX at
interim stages.

11.4 Overall Hierarchical Rule

Compared with the stagewise hierarchical rule PS , a trial design using the overall
hierarchical rule PO allows testing the secondary hypothesis HY more than
once if the primary hypothesis HX is rejected. Following a similar argument in
Tamhane et al. (2018), one cannot refine the secondary boundary unless there
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Fig. 11.4 FWER plot of an OBF-POC design using the overall hierarchical rule PO with α-level
boundary of the primary and the secondary hypothesis

is some prior information on �X and ρ, since the difference between 1 −
Pr (Y1 ≤ d1, · · · , YK ≤ dK) and αO

Y , which equals to

Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2)+ Pr (X1 ≤ c1, Y1 > c1, Y2 ≤ d2, · · · , YK ≤ dK)

+
K−1∑

i=2

Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , Yi ≤ di, Yi+1 > di+1) ,

in a [2|K]-stage design, goes to 0 when �X goes to positive infinity. Similarly, a
[KX|KY ]-stage design using the overall hierarchical rule cannot be refined without
information on �X and ρ.

Figure 11.4 shows the type I error under HY of an OBF-POC design with α =
0.025. Refinement of the secondary boundary is possible only when an upper bound
on �X is known. If a reliable estimate of �X is available, the refinement of the
boundary of the secondary hypothesis will be relatively noticeable when the time
fraction of the secondary hypothesis tY is small or when the correlation ρ is small.

11.5 Partially Hierarchical Rule

The partially hierarchical rule PP allows continued testing of the secondary
hypothesis when the primary hypothesis has been confirmed to be non-significant.
Thus, besides controlling of type I error under HY , one needs to also control the type
I error under HX ∩ HY . Since Pr (RX|HX) ≤ Pr (RX ∪ RY |HX ∩HY ), in general
we cannot use an α-level significance for the primary endpoint in a design under the
partially hierarchical rule.

A Bonferroni-based design splits the significance level α for HX and HY

whereby α = αX + αY , where αX = 1 − Pr (X1 ≤ c1, X2 ≤ c2) and αY =
1 − Pr (Y1 ≤ d1, · · · , YK ≤ dK) in a [2|K]-stage design. This design controls the
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FWER. When the correlation ρ is known or can be estimated, the boundary for the
secondary hypothesis can be refined. The following theorem provides a refinement
when ρ is known to be non-negative.

Theorem 3 (Improved Boundary in a [2|K]-Stage Design) Consider a group
sequential design using the partially hierarchical rule PP , where αX =
Pr (RX|HX) < α. A necessary and sufficient condition for Pr (RX ∪ RY |HX ∩HY ) ≤
α for any non-negative ρ is that Pr

(∩K
i=2 {Yi ≤ di}

) ≥ (1 − α)/(1 − αX).

Based on Theorem 3, a simple design is followed when ρ ≥ 0 is satisfied, where
the boundary of the secondary hypothesis is refined.

1. αX = 1 − Pr (X1 ≤ c1, X2 ≤ c2) ≤ α,
2. αY = 1 − Pr (Y1 ≤ d1, · · · , YK ≤ dK) ≤ α,
3. 1 − Pr

(∩K
i=2 {Yi ≤ di}

) ≤ α−αX

1−αX
.

Denote α
(−1)
Y = 1 − Pr

(∩K
i=2 {Yi ≤ di}

)
, which is the type I error of (K − 1)-stage

group sequential design for HY . Comparing the original K-stage group sequential
design for HY , this (K − 1)-stage design skips the first stage. Therefore, the
conditions can be rewritten as

αX ≤ α, αY ≤ α, α
(−1)
Y ≤ α − αX

1 − αX

.

Theorem 3 can be easily generalized to a [KX|KY ]-stage design where the trial
of the primary endpoint has more than two stages. The refined method maintains the
FWER control across both endpoints.

Corollary 1 (Improved Boundary in a [KX|KY ]-Stage Design) Consider a group
sequential design with KX stages for the primary hypothesis and KY stages
for the secondary hypothesis, using the partially hierarchical rule PP , where

KX ≤ KY . Let α
(−(KX−1))
Y = 1 − Pr

(
∩KY

i=KX
{Yi ≤ di}

)
be the type I error of a

(KY −KX + 1)-stage group sequential design for HY . This procedure controls the
FWER for arbitrary ρ ≥ 0 if and only if: αX ≤ α, αY ≤ α, and α

(−(KX−1))
Y ≤

(α − αX)/(1 − αX).

The Lan-DeMets error spending function is widely used in clinical trials to
approximate OBF and POC boundary (Lan and DeMets 1983). Using the Lan-
DeMets boundaries, Table 11.2 shows the refined boundary for the secondary
hypothesis under various values of ρ compared with the boundary based on
Bonferroni split. The refined boundary for ρ = 0 can be used for any ρ ≥ 0, based
on Theorem 3. Even without the knowledge of the sign of ρ, the refined boundary
for ρ = 0 is still approximately valid for endpoints with any correlation ρ, as shown
in Table 11.2.
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Table 11.2 Refined Lan-DeMets boundaries for the secondary hypothesis for given correla-
tion ρ under the partially hierarchical rule PP , α = 0.025, αX = 0.0125, tX = (0.6, 1), tY =
(0.5, 0.9, 1), Lan-DeMets OBF boundary for the primary hypothesis (c1, c2) = (3.021, 2.254)

Lan-DeMets POC for the secondary Lan-DeMets OBF for the secondary

ρ d1 d2 d3 αY d1 d2 d3 αY

1 2.157 2.242 2.373 0.0250 2.963 2.105 2.057 0.0250

0.5 2.184 2.270 2.402 0.0234 3.237 2.313 2.249 0.0153

0 2.230 2.319 2.452 0.0208 3.304 2.363 2.295 0.0135

−0.5 2.235 2.324 2.457 0.0205 3.310 2.368 2.299 0.0133

Bonferroni 2.420 2.530 2.656 0.0125 3.345 2.394 2.323 0.0125

11.6 Power Analysis

In order to evaluate the performance of boundary refinement for the secondary
hypothesis, we compare the secondary power Pr

(
RY |HY

)
under the partially

hierarchical rule PP between the OBF-POC design and OBF-OBF design. Here,
we only consider the O’Brien-Fleming boundary for the primary endpoint, since it
is more powerful than the POC boundary for the primary hypothesis (Tamhane et al.
2018). For the power analysis, the assumption of multivariate normal distribution
is satisfied asymptotically, so we incorporate the distribution information into the
analysis. In general, if the distribution information is unknown, the power analysis
models based on the Dirac function (Finner et al. 2009) or the step function (Zhang
and Gou 2016) can be considered.

Table 11.3 displays the power comparisons between two designs (OBF-POC and
OBF-OBF) and between two boundaries (refined boundary for ρ ≥ 0 and unrefined
boundary based on Bonferroni split). We assume the significance level α = 0.025,
and the primary hypothesis is tested with a 0.0125-level Lan-DeMets OBF boundary
(c1, c2) = (3.021, 2.254), where the information fraction at the interim analysis
is 0.6. For the secondary hypothesis, we include the Lan-DeMets OBF and the
Lan-DeMets POC boundary. Two choices of information fractions of the secondary
endpoint show the impact of a fast data accumulation (tY = (0.5, 0.9, 1)) and slow
accumulation (tY = (0.2, 0.4, 1)) for the secondary hypothesis. We assume the true
correlation between the primary and the secondary hypothesis is 0.5. Note that we
do not need to know this correlation for boundary refinement. The standardized
treatment effect for the primary hypothesis �X is 3, and it ranges from 2 to 4 for the
secondary hypothesis.

From Table 11.3, we observe that the OBF-OBF design is better than the OBF-
POC design in a group sequential trial using the partially hierarchical rule PP . Note
that for a trial using the stagewise hierarchical rule PS , Tamhane et al. (2010),
Tamhane et al. (2018) and Gou and Xi (2019) have shown that the OBF-POC is
the better choice. For the OBF-OBF design using PP , the power gain over the
Bonferroni split method increases when the information fractions of the secondary
hypothesis become smaller.
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Table 11.3 Power (%) comparison between the refined the unrefined bound-
ary under the partially hierarchical rule

tX = (0.6, 1) Lan-DeMets OBF-POC Lan-DeMets OBF-OBF

tY �Y Refined Unrefined Refined Unrefined

2 39.1 31.7 40.7 39.5

(0.5, 0.9, 1) 3 75.4 68.6 77.5 76.6

4 95.2 92.8 96.0 95.7

2 38.5 34.1 44.8 40.4

(0.2, 0.4, 1) 3 75.5 71.7 80.7 77.6

4 95.4 94.1 96.9 96.1

11.7 Example and Extension

In practice, it is common that the attained sample sizes and the planned sample
sizes are different. Using the error spending function, we can update the boundaries
at each stage by considering the exact information fractions. The refined boundary
can be updated in a similar manner adaptively.

Consider a phase III placebo-controlled two-arm clinical trial evaluating the
efficacy of a treatment in patients with lymphoma. The primary objective is to
evaluate the efficacy with respect to the progression-free survival (PFS). The
secondary objective is to evaluate the efficacy with respect to the overall survival
(OS). Table 11.4 shows a 0.025-level test using the partially hierarchical rule with
a Lan-DeMets error spending function OBF-OBF design. The trial design includes
one interim analysis for the primary endpoint PFS, and two interim analyses for the
secondary endpoint OS. At stage 0, all sample sizes are planned. The sample size
per arm is planned to be 400. The planned cumulative sample size for the primary
objective is 240 at stage 1, and 400 at stage 2. For the secondary objective, the
planned cumulative sample size is 200 at stage 1320 at stage 2, and 400 at stage
3. The critical boundaries for the primary and the secondary hypothesis can be
calculated. At stage 1, n1,X and n1,Y are obtained, and the planned sample sizes
for other stages are modified accordingly. The observed sample sizes at stage 1 for
the primary and the secondary endpoint are 264 and 168, and the planned cumulative
sample sizes at stage 2 and 3 remain the same. The critical boundary (c1, c2) and
(d1, d2, d3) are recalculated, and c1 and d1 are compared with the test statistics to
make decisions. We further observe n2,X and n2,Y at stage 2, update the information
times by using the observed cumulative sample sizes, and calculate the boundary
c2, c3 and (d2, d3) by fixing the value of c1 and c2 in stage 1. Finally, n3,Y is
observed at stage 3, and the total sample size for OS is updated, and the boundary
d3 is recalculated based on updated information times. In this example, initially the
planned sample size is (n1,X, n2,X, n1,Y , n2,Y , n3,Y ) = (240, 160, 200, 120, 80).
At the final stage, the attained sample size becomes (n1,X, n2,X, n1,Y , n2,Y , n3,Y ) =
(264, 168, 168, 132, 108).
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Table 11.4 Boundary updates among stages in an OBF-OBF design using PP : a comparison
between the unrefined boundary (d1, d2, d3) and the refined boundary (d ′1, d ′2, d ′3)

Stage n1,X n2,X n1,Y n2,Y n3,Y c1 c2 d1 d2 d3 d ′1 d ′2 d ′3
0 240 160 200 120 80 3.0205 2.2543 3.3446 2.5694 2.2938 3.2314 2.4794 2.2148

1 264 136 168 152 80 2.8614 2.2625 3.6810 2.5629 2.2928 3.5651 2.4770 2.2180

2 264 168 168 132 100 2.8614 2.2672 3.6810 2.6625 2.2835 3.5651 2.6529 2.2754

3 264 168 168 132 108 2.8614 2.2672 3.6810 2.6625 2.3170 3.5651 2.6529 2.3136
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Appendix

Proof of Theorem 1 Note that 1−Pr (Y1 ≤ d1, Y2 ≤ d2)−αS
Y = Pr(X1 > c1, Y1 ≤

d1, Y2 > d2)+ Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2)+ Pr (X1 ≤ c1, Y1 > d1, Y2 ≤ d2).
All three terms on the right hand side are strictly positive when ρ < 1. When ρ = 1,
the probability Pr (X1 > c1, Y1 ≤ d1, Y2 > d2) and Pr (X1 ≤ c1, Y1 > d1, Y2 ≤ d2)

can be 0 if λ = γ1, and the probability Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2) can be 0 if
λ = γ2. Since γ1 < γ2, these three terms cannot be 0 at the same time. It follows
that 1 − Pr (Y1 ≤ d1, Y2 ≤ d2) is strictly greater than αS

Y .  "
Proof of Theorem 2 Under HX ∩HY , the standardized treatment effects at the final
stage for the secondary endpoint is zero, namely, �Y = 0. For simplicity, we denote
the non-centrality parameters for the primary endpoint by � = �X under H 1 ∩H2.
The type I error rate with smaller information fraction at stage 1 of the secondary
hypothesis is

αS
Y

′ = Pr
(
X1 > c1, Y

′
1 > d1

)+ Pr
(
X1 ≤ c1, X2 > c2, Y

′
2 > d2

)

= Pr
(
X1 − λ� > c1 − λ�, Y ′

1 > d1
)

+ Pr
(
X1 − λ� ≤ c1 − λ�,X2 −� > c2 −�,Y ′

2 > d2
)
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For the first term, note that corr (X1, Y1) = γ1ρ/λ. Since γ ′1 < γ ′′1 and ρ ≥ 0, we
have corr

(
X1, Y

′
1

) ≤ corr
(
X1, Y

′′
1

)
. By Slepian’s inequality (Plackett 1954; Slepian

1962) and d ′1 > d ′′1 , it follows that

Pr
(
X1 − λ� > c1 − λ�, Y ′

1 > d ′1
) ≤ Pr

(
X1 − λ� > c1 − λ�, Y ′′

1 > d ′′1
)
.

For the second term, note that corr (X1, X2) = λ, corr (X2, Y2) = γ2ρ,
corr (X1, Y2) = ρ ·min{λ, γ2}/ max{λ, γ2}, which are the same for the two designs.
Since d ′2 ≥ d ′′2 , we get

Pr
(
X1 − λ� ≤ c1 − λ�,X2 −� > c2 −�,Y2 > d ′2

)

≤ Pr
(
X1 − λ� ≤ c1 − λ�,X2 −� > c2 −�,Y2 > d ′′2

)
.

Thus αS
Y

′ ≤ αS
Y

′′
, for any 0 ≤ ρ ≤ 1.  "

Proof of Lemma 1 Suppose that
(
Y ′

1, Y
′
2

)
and

(
Y ′′

1 , Y ′′
2

)
are the bivariate normal

distributed test statistics under the null hypothesis. The correlation between Y ′
1 and

Y ′
2 is

√
t ′, and the correlation between Y ′′

1 and Y ′′
2 is

√
t ′′. Since two trials have the

same significance level α, we have

Pr
(
Y ′

1 ≤ d ′, Y ′
2 ≤ d ′

) = 1 − α = Pr
(
Y ′′

1 ≤ d ′′, Y ′′
2 ≤ d ′′

)
.

Since
√

t ′ <
√

t ′′, by Slepian’s inequality, we get

Pr
(
Y ′

1 ≤ d ′, Y ′
2 ≤ d ′

)
< Pr

(
Y ′′

1 ≤ d ′, Y ′′
2 ≤ d ′

)
.

It follows that

Pr
(
Y ′′

1 ≤ d ′, Y ′′
2 ≤ d ′

)
> Pr

(
Y ′′

1 ≤ d ′′, Y ′′
2 ≤ d ′′

)
.

Clearly, we have

d ′ > d ′′.

 "
Proof of Theorem 3 For a design using the partially hierarchical rule PP , the error
rate
Pr (RX ∪ RY |HX ∩HY ) is greater than Pr (RX|HX). The difference is bounded by

Pr (RX ∪ RY |HX ∩HY )− Pr (RX|HX)

= Pr (X1 ≤ c1, X2 ≤ c2, Y2 > d2)
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+
K−1∑

i=2

Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , Yi ≤ di, Yi+1 > di+1)

= Pr (X1 ≤ c1, X2 ≤ c2)− Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , YK ≤ dK)

≤ Pr (X1 ≤ c1, X2 ≤ c2)− Pr (X1 ≤ c1, X2 ≤ c2) Pr
(
∩K

i=2 {Yi ≤ di}
)

,

where Pr (X1 ≤ c1, X2 ≤ c2, Y2 ≤ d2, · · · , YK ≤ dK) ≥ Pr (X1 ≤ c1, X2 ≤ c2)

Pr
(∩K

i=2 {Yi ≤ di}
)

holds for any non-negative ρ, and two sides are equal when
ρ = 0. It follows that

Pr (RX ∪ RY |HX ∩HY )− αX ≤ (1 − αX)
(

1 − Pr
(
∩K

i=2 {Yi ≤ di}
))

.

Also note that if

(1 − αX)
(

1 − Pr
(
∩K

i=2 {Yi ≤ di}
))

≤ α − αX

the error rate control under intersection hypothesis, which is Pr (RX ∪ RY |
HX ∩HY ) ≤ α, is guaranteed. Thus, if

Pr
(
∩K

i=2 {Yi ≤ di}
)
≥ 1 − α

1 − αX

,

then Pr (RX ∪ RY |HX ∩HY ) ≤ α for any ρ ≥ 0.  "
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Chapter 12
Bayesian Dose Escalation Study Design
with Consideration of Both Early
and Late Onset Toxicity

Li Liu, Lei Gao, and Glen Laird

12.1 Introduction

In phase I oncology clinical trials, the goal is to identify safe doses that will be
investigated in further clinical trials. The safety profile is normally measurable by
rate of dose limiting toxicity (DLT), which is “traditionally defined by grade 3/4
non-hematological or grade 4 hematological toxicity at least possibly related to
the treatment, occurring during the first cycle of treatment” with some adjustments
(Paoletti et al. 2014). To conduct a dose finding study, an algorithm can be used
to guide dose escalation and patient allocation until the maximum tolerated dose
(MTD) with predefined DLT rate is observed. Common algorithms include rule
based designs such as 3 + 3 designs, and model based designs such as continual
reassessment method (CRM) designs (Berry et al. 2010; O’Quigley et al. 1990).

Given the changing landscape in oncology drug development, there may be
several problems with the traditional designs for dose finding studies. The concept
of DLT was initially introduced in the landscape of cytotoxic therapies, which could
induce “irreversible lethal cellular damage following short-term exposure” (EMA
2017). However, these toxicity properties are not applicable to targeted therapy, for
which toxic effects are likely mild and reversible. In particular, targeted therapies
could cause late onset toxicities due to prolonged use (EMA 2017). Furthermore,
it is operationally infeasible to wait for a long period to allow late onset toxicity
to occur before making a dose escalation decision with newly enrolled patients.
To account for this, many authors have considered using a time to event model
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to guide dose finding algorithms by censoring patients without late onset toxicity
at the time of dose escalation decision (Braun 2006; Cheung and Chappell 2000;
etc). Regarding the CRM, it has been observed that the CRM method tends to
overshoot the MTD (Goodman et al. 1995), and thus measures have been introduced
to escalate with over dose control (EWOC). For binary toxicity, EWOC has been
implemented by Babb et al. (1998) and a Bayesian logistic regression model
(BLRM) by Neuenschwander et al. (2008). For time to event toxicity, models are
available by Mauguen et al. 2011 and Tighiouart et al. 2014.

It is possible that both early and late onset toxicities are relevant to a targeted
therapy, and knowledge of these toxic effects is useful to optimize the safety of the
therapy (Varricchi et al. 2017). However, according to our knowledge, there is no
readily available approach to handle dose finding studies with both early and late
onset toxicity. In this paper, we address this problem by proposing to define DLT
with two components, one for more immediate toxicity in a binary model, and the
other for late onset toxicity in a time to event model. Note that the types of the early
toxicity and late onset toxicity are different. In addition, we use Bayesian EWOC
methods on both endpoints to calculate the toxicity probability without waiting
for the final late onset toxicity, while providing protection to the patients from
overdosing. This approach is simple and can address the aforementioned problems
simultaneously.

The paper is organized as follows: in Sect. 12.2, we introduce the notation and
methodology of the proposed method. Then we conduct simulation in Sect. 12.3 to
examine the operating characteristics. Discussion is provided in Sect. 12.4.

12.2 Methods

12.2.1 Escalation with Overdose Control (EWOC)

The dose finding design using escalation with overdose control is a Bayesian
adaptive design (Babb et al. 1998). It is based on the Bayesian logistic model,
and aims to minimize the number of patients receiving doses higher than MTD by
controlling the probability of overdosing.

Let MTD γ be defined as the dose (x) at which a proportion θ (say 33%) of
patients exhibit DLT, i.e.

P (DLT |x = y) = θ,

Babb et al. considered a two-parameter logistic model for the dose-toxicity
relationship:

P (Y = 1|Dose = x) = exp (β0 + β1x)

1 + exp (β0 + β1x)
, (12.1)
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where it is assumed that β1 > 0 so that the probability of DLT is a monotonically
increasing function of dose.

Based on the Bayesian logistic model, the posterior probability of the DLT rate
at each dose can be estimated. The dose for each subsequent patient will be selected
so that the posterior probability that it exceeds the MTD is equal to 25% (a pre-
specified feasibility bound as used in Babb et al). At the end of the trial, after
including a fixed number of patients n, MTD can be defined based upon the posterior
probability density function of the MTD.

Neuenschwander et al. (2008) also applied a Bayesian logistic regression model,
but the dose escalation decision is based on the entire posterior distribution.
Desirable and undesirable regions of toxicity are defined, such as under dosing,
target dosing, overdosing and unacceptable overdosing. By limiting the intervals
for overdosing and unacceptable overdosing, the probability of overdose can be
controlled. This interval probability approach is used in our method. See Sect. 12.2.3
for details.

12.2.2 Escalation with Overdose Control Using Proportional
Hazards Model (EWOC-PH)

To account for the late onset toxicity, Tighiouart et al. (2014) proposed the escalation
with overdose control with time to event endpoint using the proportional hazards
model (EWOC-PH).

Let MTD γ be defined as the dose at which a proportion θ of patients exhibit
DLT during the observation window [0, τ ], i.e.,

P (T ≤ τ |x = γ ) = θ

The value chosen for the target probability θ depends on the nature and clinical
manageability of the DLT. It can be high when the DLT is a transient, correctable
or non-fatal condition; and it can be low when the DLT is lethal or life-threatening.
Also the length of the observation window could be a factor in the specification of θ.

The risk of DLT given dose is modeled using a Cox proportional hazards model
by assuming that patients given different doses of an agent have proportional risks
of DLT.

h (t |x) = h0 (t, u) exp (β (x −Xmin)) , (12.2)

where Xmin is the lowest dose administered in the study, h0(t, u) is the baseline
hazard function corresponding to the risk of DLT for a patient given dose Xmin and
u is a vector of parameters associated with the parametric baseline hazard.
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Let Dn = {(Yi, xi, δi), i= 1, . . . , n} be the observed data, where Yi = min (Ti, τ ),
Ti is the time to DLT for patient i, xi is the dose for patient i, and δi = I(Ti ≤ τ ) After
n patients have been enrolled in the trial, the likelihood function for the parameters is

L (β,μ|Dn) =
n∏

i=1

h(Yi |xi)
δi exp

{

−
∫ Yi

0
h (s|xi) ds

}

.

The model can be reparameterized in terms of γ = MTD and ρ0 = probability of
a DLT for a patient given dose x = Xmin. The estimated γ and ρ0 can then be given
by:

γ = 1

β

{

βXmin + log

[
log (1 − θ)

−H0 (τ ;μ)

]}

ρ0 = 1 − exp {−H0 (τ ;μ)} ,

where H0 (t;μ) = ∫ t

0h0 (u;μ) du is the cumulative baseline hazard function.
Assuming that the baseline hazard function h0(t, μ) = μ, we have

μ = −1

τ
log (1 − ρ0)

β = 1

γ −Xmin

log

[
log (1 − θ)

log (1 − ρ0)

]

,

and the likelihood function can be written as

L (β,μ|Dn) =
n∏

i=1

[
μ exp (β (xi −Xmin))

]δi exp {−μYi exp (β (xi −Xmin))} .

The likelihood of the reparameterized model L(ρ0, γ |Dn) can be easily derived
based on the above equations. Let g(ρ0,γ ) be a prior distribution for ρ0 and γ .
The posterior distribution of the model parameters based on the Bayes rule is
proportional to the product of the prior distribution and the likelihood. That is,

π (ρ0, γ |Dn) ∝ g
(
ρ0,γ

)× L (ρ0, γ |Dn) .

The posterior distribution is approximated using a Markov chain Monte Carlo
(MCMC) method, which is implemented in JAGS version 3.4.
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Any existing information about γ (MTD) and ρ0 (P(DLT|x = Xmin)) can be
reflected in the choice of their prior distributions. The existing information could
come from other clinical trials, published data, preclinical results, etc. It is re-
parameterized to this convenient parameterization since any existing information
is likely to be most related to lower doses. In the absence of prior information about
the MTD (γ) and probability of DLT at Xmin (ρ0), independent vague priors can
be selected for ρ0 and γ. For example, ρ0 ∼ Unif(0, θ) and γ ∼ Unif(Xmin, Xmax).
Note these priors assume that the MTD must be between Xmin and Xmax and that the
probability of DLT at Xmin is no more than θ. Probability of DLT will be estimated
at 100% at Xmax regardless of what any data will later say. So we need to make sure
Xmax is higher than the highest dose that will ever be considered. If we are not sure
whether the dose will be below Xmax, we can choose a different prior that allows the
support of the MTD to extend beyond Xmax (Tighiouart et al. 2005).

The first patient will receive the minimum dose Xmin. The subsequent k-th patient
receives the dose xk where xk is the dose at which the current posterior probability
of exceeding the MTD is equal to the feasibility bound α (say, 25%). This is the
overdose protection property of EWOC.

When the k-th patient enters the trial at time tk, we calculate the posterior
probability. The time to event Yi is the time to DLT, if the patient experienced DLT;
or the time since patient i was given dose xi (up to a maximum of τ ) if this patient
is still at risk by this time (censored). MTD can be defined based upon the posterior
probability density function of the MTD, such as median of posterior probability
density function of the MTD. If a patient is withdrawn from the study due to disease
progression before time τ , it will be censored at the time of disease progression.
Note that here we assume non-informative censoring.

12.2.3 Proposed EWOC Method Incorporating the Two
Components (EWOC-2C)

We propose to incorporate both EWOC and EWOC-PH to model the short term
toxicity and the long term toxicity, and use the posterior interval probability to
provide the dose recommendations. The Bayesian model based on EWOC using
the binary endpoint is used to estimate the probability of the short term toxicity, and
the Bayesian model based on EWOC-PH is used to estimate the probability of the
long term toxicity.

For the short term toxicity using the binary endpoint, a non-informative prior
can be used (Neuenschwander et al. 2008). The bivariate normal prior distribution
η = (μ1, μ2, σ 1, σ 2, ρ) for (β0, β1) can be estimated by comparing the quantiles
of the bivariate normal distribution and the quantiles for the probabilities of toxicity
derived from the minimally informative Beta distributions at the lowest dose and
the highest dose. The two beta distributions at the lowest/highest dose levels can be
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obtained based on the anticipated DLT distribution at the lowest/highest dose levels.
Note that generally we can use the lowest/highest dose, but a different pair of a
lower dose and a higher dose (such as the anticipated MTD) will also allow us to
get the estimate.

For the long term toxicity using the time to event endpoint, independent vague
priors can be selected for the probability of DLT at Xmin ρ0 and MTD γ. For
example, ρ0 ∼ Unif(0, θ) and γ ∼ Unif(Xmin, Xmax). There are also other options
for priors (Tighiouart et al. 2005).

The posterior distributions of the probability of the short term toxicity, πθ(d) can
be classified into several categories (Neuenschwander et al. 2008). Here, we divide
into three categories:

Under-target: πθ(d) ∈(0,0.16]
Targeted toxicity: πθ(d) ∈(0.16,0.33]
Above target: πθ(d) ∈(0.33,1.00]

After each patient cohort, the posterior probability of the short term toxicity
and the probability of the long term toxicity are estimated for each dose level.
The posterior distributions of short term toxicity can be summarized by the three
categories: under-target, target, above target, and the posterior probability of the
above target long term toxicity can also be calculated. The dose may be selected if
the posterior probability of short term toxicity (such as DLT) has more mass in the
targeted interval 16–33% than any other dose and; the overdosing risk is controlled.
That is, the risk of a DLT above 33% should not exceed a predefined threshold (for
example, 25%); the risk of the long term toxicity above the predefined toxicity level
(for example, 25%) should not exceed a predefined threshold (for example, 50%).
The exact cutoffs for each toxicity interval and the thresholds can be adjusted based
on the study objectives and the type of toxicities.

We propose to test the patients in cohorts of at least three patients for a set of
pre-defined dose levels. This approach has been applied to a phase 1 study and was
well received by the clinical colleagues as the setting is quite similar to the 3 + 3
design except that the decision rules are based on the Bayesian models with control
of overdosing for both short term and long term toxicity without holding up the
escalation process.

The recommended dose for the next cohort is decided when a minimum of three
patients in the current cohort have been followed up for the short term toxicity
observation period. At the time of dose recommendation, the first patient in the
cohort may have been followed for longer; patients from previous cohorts also
continue to be followed; and there is no need to wait for the long term toxicity time
window to be completely observed to enroll new patients, which can potentially
reduce the trial length significantly.

The Bayesian model based on EWOC-PH will incorporate the available infor-
mation on the long term toxicity. The risk of the long term toxicity above the pre-
specified toxicity level will be estimated. Dose levels with estimated probabilities of
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long term toxicity not greater than the pre-specified toxicity level (i.e. which meet
the EWOC criteria) can be considered. It is acceptable not to choose the highest
allowable dose. In practice, we can choose not to skip any predefined dose levels,
and escalate to the next dose level even if a higher dose may also meet the criteria
for both EWOC and EWOC-PH. The trial can be stopped if a dose has been tested in
two cohorts with at least three patients in each cohort, and it is recommended again.
Different stopping rules with more criteria can be used. Our simulations suggested
that the proposed simple stopping rule performs well.

12.3 Simulation

Simulation studies were conducted to study the operating characteristics of the
proposed methods with two components, and compared with the traditional 3 + 3
design. A number of scenarios with different dose toxicity relationships were
considered, where the time window for the short term toxicity is 4 weeks, and
the time window for the long term toxicity is 8 weeks. See Table 12.1. For each

Table 12.1 Different dose toxicity relationships for the short term and the long term toxicity in
simulations

Dose level 1 2 3 4 5 6 7 8 9 10
Dose 5 10 20 30 40 60 80 100 120 150
Scenarios Probability of toxicity

S1 Short term 0.02 0.03 0.04 0.04 0.06 0.10 0.13 0.18 0.25 0.31
Long term 0.05 0.06 0.07 0.08 0.09 0.11 0.13 0.16 0.25 0.39

S2 Short term 0.02 0.02 0.02 0.02 0.11 0.20 0.30 0.40 0.47 0.54
Long term 0.05 0.06 0.07 0.08 0.09 0.11 0.13 0.16 0.25 0.39

S3 Short term 0.02 0.03 0.03 0.04 0.05 0.06 0.08 0.10 0.12 0.15
Long term 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.10 0.12 0.15

S4 Short term 0.02 0.03 0.04 0.05 0.07 0.10 0.17 0.19 0.27 0.37
Long term 0.05 0.06 0.06 0.07 0.08 0.10 0.12 0.15 0.18 0.25

S5 Short term 0.03 0.04 0.05 0.07 0.10 0.14 0.19 0.27 0.39 0.47
Long term 0.05 0.06 0.07 0.09 0.11 0.17 0.25 0.36 0.50 0.73

S6 Short term 0.02 0.03 0.04 0.04 0.06 0.10 0.13 0.18 0.25 0.31
Long term 0.05 0.06 0.06 0.07 0.08 0.10 0.12 0.15 0.18 0.25

S7 Short term 0.02 0.03 0.04 0.05 0.26 0.36 0.45 0.50 0.54 0.58
Long term 0.05 0.06 0.07 0.08 0.09 0.11 0.13 0.16 0.25 0.39

S8 Short term 0.03 0.04 0.05 0.07 0.10 0.14 0.19 0.27 0.39 0.47
Long term 0.05 0.06 0.06 0.07 0.08 0.10 0.12 0.15 0.18 0.25

S9 Short term 0.02 0.03 0.04 0.05 0.07 0.10 0.17 0.23 0.29 0.37
Long term 0.03 0.04 0.05 0.06 0.07 0.11 0.17 0.24 0.36 0.59

S10 Short term 0.02 0.02 0.02 0.11 0.20 0.25 0.30 0.40 0.47 0.54
Long term 0.06 0.06 0.09 0.11 0.15 0.25 0.40 0.60 0.81 0.98

The target doses are in bold
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scenario, 500 trials were simulated. For the first two low dose levels, accelerated
escalation is assumed with one patient per cohort. Starting from dose level 3, at
least 3 patients are enrolled at each cohort. The probability of selection of a dose
as MTD, the probability that a dose is tested, the probability of MTD selection by
true category of toxicity and the average number of patients were summarized. The
dose toxicity curve and the simulation results for scenarios 1 and 2 are presented
graphically in Figs. 12.1, 12.2, 12.3, and 12.4, Tables 12.2, 12.3, 12.4, and 12.5.
The key simulation results for all the scenarios were presented in Table 12.6.

Take scenario 1 as an example. The dose toxicity curve for the short term and
long term toxicity are presented in Fig. 12.1. The target dose should be 100 or 120,
which has probability of DLT between 0.16 and 0.33. As we can see, the probability
of selecting one of the target doses based on EWOC-2C is 59% (44% for 120, and
15% for 100); while the probability of selecting one of the target doses based on
3 + 3 is 45% (25% for 120 and 20% for 100). The probability of selecting a dose
higher than MTD is 7% based on EWOC-2C, while it is 24% based on the 3 + 3
design. Also the probability of testing a dose higher than MTD is 26%, while it is
46% based on 3 + 3 design. The mean number of sample size for EWOC-2C is
slightly higher than the sample size for 3 + 3, but quite close. See Tables 12.2 and
12.3.

As we can see, compared to a traditional 3 + 3 design, the proposed EWOC
design with two components has more favorable operating characteristics with
higher chance of selecting a dose within the target toxicity interval, and lower or
similar chance of testing a dose above the target. Considerable improvements can

Fig. 12.1 Results based on the proposed methods with two components (EWOC-2C) for sce-
nario 1
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Fig. 12.2 Results based on traditional 3 + 3 design for scenario 1

Fig. 12.3 Results based on the proposed methods with two components (EWOC-2C) for sce-
nario 2
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Fig. 12.4 Results based on traditional 3 + 3 design for scenario 2

Table 12.2 Summary of simulation results based on EWOC-2C for scenario 1

Dose

True short
term Tox
rate

True long
term Tox
rate

Mean # of
short term
Tox

Mean # of
long term
Tox

% Selected
as MTD

Mean
number of
patients

5 0.02 0.05 0 0 0 1
10 0.03 0.06 0 0.006 0 1.102
20 0.04 0.07 0.116 0.242 0.014 3.306
30 0.04 0.08 0 0 0 3
40 0.06 0.09 0.191 0.345 0.042 3.675
60 0.10 0.11 0.381 0.345 0.046 4.058
80 0.13 0.13 0.623 0.571 0.238 4.842

100 0.18 0.16 0.810 0.652 0.152 4.929
120 0.25 0.25 1.317 1.293 0.440 5.589
150 0.31 0.39 1.392 1.615 0.068 4.523
Total 2.676 2.876 1 22.13

be achieved if the long term toxicity is important (S1, S5, S9, S10). Simulations
using EWOC with binary endpoint for short term toxicity only were also performed,
which showed that the proposed EWOC-2C has better performance if the long term
toxicity is of concern. For example, in scenario 10, the above target probability
based on EWOC with binary endpoint is 0.330, while it is 0.218 for EWOC-2C;
the on target probability based on EWOC with binary endpoint is 0.608, while it is
0.708 for EWOC-2C.
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Table 12.3 Summary of simulation results based on 3 + 3 for scenario 1

Dose

True short
term Tox
rate

True long
term Tox
rate

Mean # of
short term
Tox

Mean # of
long term
Tox

% Selected
as MTD

Mean
number of
patients

5 0.02 0.05 0 0 0 1

10 0.03 0.06 0 0 0.028 1

20 0.04 0.07 0.17 0.236 0 3.384

30 0.04 0.08 0.114 0.243 0.032 3.343

40 0.06 0.09 0.218 0.309 0.032 3.531

60 0.10 0.11 0.454 0.338 0.092 3.762

80 0.13 0.13 0.504 0.530 0.124 3.899

100 0.18 0.16 0.745 0.558 0.200 4.010

120 0.25 0.25 1.040 1.066 0.254 4.241

150 0.31 0.39 1.259 1.168 0.238 4.203

Total 2.662 2.728 1 20.696

Table 12.4 Summary of simulation results based on EWOC-2C for scenario 2

Dose

True short
term Tox
rate

True long
term Tox
rate

Mean # of
short term
Tox

Mean # of
long term
Tox

% Selected
as MTD

Mean
number of
patients

5 0.02 0.05 0 0 0 1

10 0.02 0.06 0 0 0 1.048

20 0.02 0.07 0.060 0.25 0.010 3.282

30 0.02 0.08 0 0.147 0.004 3.088

40 0.11 0.09 0.550 0.401 0.218 4.821

60 0.20 0.11 0.804 0.404 0.184 4.332

80 0.30 0.13 1.615 0.599 0.440 5.272

100 0.40 0.16 1.788 0.602 0.072 4.460

120 0.47 0.25 2.058 0.860 0.068 4.343

150 0.54 0.39 2.444 1.111 0.004 4

Total 3.552 1.830 1 19.520

Table 12.5 Summary of simulation results based on 3 + 3 for scenario 2

Dose

True short
term Tox
rate

True long
term Tox
rate

Mean # of
short term
Tox

Mean # of
long term
Tox

% Selected
as MTD

Mean
number of
patients

5 0.02 0.05 0 0 0 1

10 0.02 0.06 0 0 0.006 1

20 0.02 0.07 0.078 0.240 0 3.210

30 0.02 0.08 0.062 0.162 0.098 3.188

40 0.11 0.09 0.386 0.318 0.156 3.724

60 0.20 0.11 0.796 0.336 0.290 4.106

80 0.30 0.13 1.356 0.504 0.290 4.468

100 0.40 0.16 1.726 0.480 0.096 4.217

120 0.47 0.25 2.104 0.963 0.060 4.344

150 0.54 0.39 2.333 1.400 0.004 4.200

Total 3.480 1.756 1 18.578
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Table 12.6 Probability of selection as MTD by true category of toxicity for EWOC-2C, 3 + 3,
and EWOC with binary endpoint in various simulation scenarios

Scenario Method Below Target Target Toxicity Above Target

S1 3 + 3 0.308 0.454 0.238
EWOC 0.358 0.362 0.280
EWOC-2C 0.340 0.592 0.068

S2 3 + 3 0.260 0.580 0.160
EWOC 0.238 0.636 0.126
EWOC-2C 0.232 0.624 0.144

S3 3 + 3 1 0 0
EWOC 1 0 0
EWOC-2C 1 0 0

S4 3 + 3 0.220 0.664 0.116
EWOC 0.140 0.638 0.194
EWOC-2C 0.148 0.762 0.090

S5 3 + 3 0.368 0.222 0.410
EWOC 0.318 0.390 0.292
EWOC-2C 0.378 0.434 0.188

S6 3 + 3 0.312 0.688 0
EWOC 0.358 0.642 0
EWOC-2C 0.294 0.706 0

S7 3 + 3 0.404 0.310 0.286
EWOC 0.062 0.688 0.25
EWOC-2C 0.122 0.660 0.218

S8 3 + 3 0.378 0.426 0.196
EWOC 0.318 0.518 0.164
EWOC-2C 0.248 0.524 0.228

S9 3 + 3 0.298 0.366 0.336
EWOC 0.110 0.430 0.460
EWOC-2C 0.182 0.588 0.230

S10 3 + 3 0.270 0.382 0.348
EWOC 0.062 0.608 0.330
EWOC-2C 0.074 0.708 0.218

12.4 Discussion

Simulation studies demonstrated the favorable operating characteristics of the pro-
posed EWOC design with two components (EWOC-2C) compared to a traditional
3 + 3 design and EWOC using the binary endpoint. The short term toxicity is
modeled using a binary endpoint, and can control the probability of overdosing.
The late onset toxicity is modeled using EWOC-PH using a time to event endpoint,
and can capture toxicity beyond the initial observation window while not requiring
waiting beyond the initial window. Trial length can be potentially cut considerably
versus holding dose escalation until full observation of long term toxicities, given
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the importance of the late onset adverse event. The patients are enrolled in a
set of predefined dose levels with cohort size of at least three patients. When at
least three patients are evaluable for the short term toxicities, the dose escalation
recommendation is made based on the posterior probability of underdosing, target
dosing and overdosing. This design has been implemented in a phase 1 dose
escalation study with both short term DLT and long term AESI, which allowed
the study team to consider both the short term DLT and long term AESI while
maintaining the escalation timeline.

Whether to consider the correlation between the two endpoints is an important
question. In light of the over-parameterizations problem in dose finding studies
(Iasonos et al. 2016), it is recommended to use parsimonious models in dose finding
studies with small sample size, as “increasing the dimension of parameter space,
in the context of adaptive dose-finding studies, is usually counter productive”.
In particular, Cunanan and Koopmeiners (2014) explored copula models with
joint distribution of toxicity and efficacy, and found that the model assuming
independence performs as well as models with correlation. Therefore we model
early and late onset toxicity separately without considering their correlation.

There are a few limitations with our work. First, efficacy is an important
component for dose finding studies with targeted therapies (EMA 2017). Many
authors have considered joint modeling of toxicity and efficacy in dose finding
studies (see a survey in Sverdlov and Gao (2017)). Efficacy can be incorporated
in our framework by introducing a dose-efficacy model. Second, one can consider
to model time to first toxicity regardless if it is early (such as DLT) or late onset
(such as adverse event of special interest) toxicity, and the univariate time to event
dose finding algorithm (e.g. Cheung and Chappell 2000) can be applied. The benefit
of such an approach is that it can avoid the competing risk problem: i.e. patient
could drop off after early onset toxicity, and thus late onset toxicity becomes
unobservable. As a future work, we will compare the two approaches to assess
operating characteristics and estimation bias. Third, a time to event model can be
used to model the short term toxicity. With this approach, we can enroll patients
continuously without waiting patient to complete the DLT observation period (i.e.
4 weeks). As a future work, we can explore the statistical property of such an
approach. Last, it is useful to consider a broad spectrum of data in dose finding
studies, such as PK/PD, and/or biomarker guided dose finding studies (Kummar
et al. 2006). To expand our work, it is possible to model the dose, exposure and
response by considering the association among the PK/PD, biomarker, early and late
onset toxicity. Due to small sample sizes of dose finding studies, one needs to weigh
the benefit of the introduced information against the uncertainties in parameter
estimation. Alternatively, one could consider non-parametric methods such as tree
based learning (e.g. Ma et al. 2016).
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Chapter 13
A Bayesian Constancy-Enforced
Non-Inferiority Design in Medical Device
Trials with a Binary Endpoint

Ying Yang, Yunling Xu, Nelson T. Lu, and Ram C. Tiwari

13.1 Introduction

Noninferiority clinical trials have been commonly used for the evaluation of drugs,
devices, biologics, and other medical treatments. Treatment with placebo control in
a study may not be ethical when an effective treatment has already been established.
Although some new treatments offer greater efficacy, others may promise greater
safety or convenience, or maybe less expensive, while providing similar efficacy.
Non-inferiority (NI) clinical trial aims to demonstrate that a new treatment is no
worse than the active control treatment by an acceptably small amount (called a
non-inferiority margin), with a given degree of confidence. The null hypothesis in
a noninferiority study states that the primary effect for the experimental treatment
is worse than that for the active control treatment by a prespecified margin, and
rejection of the null hypothesis at a prespecified level of statistical significance is
used to support a claim (that is, alternative hypothesis) that permits a conclusion
of noninferiority. Although non-inferiority trials have been accepted for Premarket
Approvals (PMAs) in the Center of Devices and Radiological Health, some
challenging issues remain in a regulatory setting.

FDA’s non-inferiority guidance (FDA 2016) says that “FDA regulations have
recognized since 1985 the critical need to know, for an NI trial to be interpretable,
that the active control had its expected effect in the trial”. When the effectiveness
endpoint is the primary endpoint, no subjects will be exposed to the placebo in a
two-arm non-inferiority trial. The effect of the active control is not measured in
the study but must be assumed. Therefore, one of the most challenging issues in a
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regulatory setting is that the design of the new trial should preserve the condition
of the trial in which the active control was shown to be effective, this is called the
“constancy assumption”. In other words, the constancy assumption requires that
the measurable effect of the active control stays unchanged in the current active
controlled trial and the historical trial. Any violation of the constancy assumption
would put the conclusion of the non-inferiority trial in jeopardy. See, for example,
Wang and Hung (2003), Hung et al. (2003), D’Agostino et al. (2003) and Fleming
(2008) for a detailed discussion on the impact of constancy assumption on the non-
inferiority study conclusion.

There are various factors that could cause violation of the constancy assumption,
including rapid changes in medical practice and standard of care, differences
in study population and trial conduct, etc. Some researchers have proposed a
few approaches to address this problem. For example, violation of the constancy
assumption could be minimized through a good trial conduct. To account for
violations of the constancy assumption in non-inferiority clinical trials, Odem-Davis
and Fleming (2013) develop a bias-adjusted noninferiority margin that accounts for
both bias and uncertainty in the historical treatment effect of the active control.
Liu et al. (2015) developed a robust range that allows investigators to estimate
the degree to which the noninferiority margin is robust to bias in the historical
estimate of the treatment effect of the active control. Nie and Soon (2010) proposed
a covariate-adjustment generalized linear regression model approach to assess the
new treatment effect when population difference causes constancy assumption
violation. Koopmeiners and Hobbs (2018) proposed a Bayesian adaptive approach
for detecting and accounting for violation of the constancy assumption in non-
inferiority clinical trials. However, there are still cases where constancy assumption
is still not satisfied even though the trial has been conducted according to the
guideline for good clinical practice to minimize the inter-trial heterogeneity and/or
analyses have been performed to adjust observed covariates that could cause
violation of the constancy assumption. This violation of the constancy assumption
may be caused by factors that could not be controlled or pinpointed out on the
validity of the non-inferiority trial.

In this paper, we propose an approach to ensure the validity of a non-inferiority
trial upfront to a desirable extent through devising a companion constancy test to
enforce the non-inferiority test. A binary endpoint is considered for the proposed
approach. The application of the proposed approach to other types of endpoints will
be discussed elsewhere. The paper is organized as follows. In Sect. 13.2, we present
the motivating example. It is followed by a detailed description of our proposed
constancy-enforced non-inferiority design in Sect. 13.3. In Sect. 13.4, we discuss
two Bayesian approaches to borrow historical data. In Sect. 13.5, we demonstrate
its operating characteristics when this approach is applied to medical device studies
presented in Sect. 13.2. Finally, in Sect. 13.6, we conclude with a discussion.
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13.2 The Motivating Example

Consider a second-generation radio frequency (RF) ablation catheter for treating
atrial fibrillation (AF). The first-generation RF ablation catheter was compared to
the optimal medical management (OMM) in a randomized superiority trial, and
the device was approved in a PMA. When a better treatment exists, the use of
OMM as an active control raises ethical concerns and causes difficulties in patient
recruiting. Therefore, it is impractical to use OMM as an active control for the
second-generation RF ablation catheter study. In this situation, the sponsor proposes
an alternative where a non-inferiority trial is considered to compare the second-
generation RF to the first-generation RF ablation catheter. Since OMM is not part
of the non-inferiority trial, the effectiveness of the second-generation RF ablation
catheter with respect to OMM can only be addressed indirectly. The indirect way
of determining effectiveness of the second-generation RF ablation catheter imposes
challenges in the design, implementation, and analysis of non-inferiority trial for the
sponsors and regulators (D’Agostino et al. 2003). In what follows, below we show
how the non-inferiority margin is chosen for this study. In the historical trial, the
observed chronic effectiveness success rate for OMM group was about 30%, and
for the first-generation RF ablation catheter (the success rate) was about 60%. From
an engineering perspective, the second-generation RF ablation catheter is expected,
and should be, at least as good as the first generation. From a clinical perspective, the
first-generation RF ablation catheter should not perform too inferior compared to its
performance in the historical trial, and the chronic effectiveness success rate should
be reasonably higher than 45% (also called performance goal (PG)). A performance
goal is a numerical number considered sufficient by FDA for use as a comparison
for an effectiveness endpoint (FDA 2013). Trying to show the second-generation
RF ablation to be at least better than OMM for approval, a non-inferiority margin of
10% was chosen for the current study to evaluate the second-generation RF ablation
catheter against the first-generation RF ablation catheter. Therefore, there is an
explicit clinical requirement for constancy of the effectiveness of active control (i.e.,
the first-generation AF ablation catheter) to a specified extent. In the next section,
we present a statistical approach addressing this requirement.

13.3 A Reinforced Non-Inferiority Design

Without loss of generality, we continue with the motivating example, and consider
the non-inferiority study in which the second-generation of RF ablation catheter
(referred as the investigational device) is compared to the first-generation of
RF ablation catheter (referred as the active control device) regarding chronic
effectiveness success. The non-inferiority (NI) hypotheses are commonly stated as:

H0 : πi − πc ≤ −M vs.Ha : πi − πc > −M
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where π i and πc represent the expected success rate for the investigational and the
active control device, respectively. M (>0) is the pre-specified NI margin, which is
10% in the motivating example.

In the motivating example, there is a specific clinical requirement that the active
control device preserves the treatment effect shown in the historical trial. In other
words, to satisfy the constancy assumption, the success rate for the active control
device in the current study needs to be at least 45% (i.e., performance goal).

To meet this clinical requirement, one way is to compare the observed success
rate of the control device with the performance goal of 45%. Since the observed
success rate is sample dependent, direct comparison is not statistically appropriate.
A better way is to make this comparison an essential part of the statistical design and
analysis so that the performance of the active control device and the overall study
design can formally be evaluated. Specifically, we propose a companion hypotheses
test to address the constancy issue. The companion hypotheses are then written as:

H0
com : πc < PG vs.Ha

com : πc ≥ PG,

where, as mentioned before, πc is the expected success rate for the active control
device, and PG is the pre-specified performance goal for constancy/clinical require-
ment, which in the motivating example is equal to 45%.

Now, we have two sets of hypotheses: the main one is for the non-inferiority
and the companion one is for the constancy assumption. We further specify that the
investigational device is claimed to be non-inferior to the active control device if
the null hypothesis for the non-inferiority and the null hypothesis for the constancy
assumption are rejected. Since the success rule depends on winning on both Ha and
Ha

com, there are no concerns regarding the multiplicity issue.
Following the usual inference, the rejection of the null hypotheses is based on

whether (1) the lower bound of 100(1 − α)% confidence interval of the difference
(π i − πc) is greater than −M, and (2) the lower bound of 100(1 − α)% confidence
interval of πc is greater than PG.

13.4 Bayesian Approaches of Borrowing from Historical
Data

While Lu et al. (2019) proposed a Frequentist method to tackle this problem, in
this paper we approach it under Bayesian framework (FDA 2010). As the active
control device data from the previous randomized trial is available at the design
stage of this new non-inferiority trial, it is appealing in using (i.e., ‘borrowing’) this
information when testing the main non-inferiority hypotheses. More trial resources
can be devoted to the investigational device while retaining accurate estimates of the
current control device parameters. This can result in more accurate point estimates,
increased power, and reduce the false probability of claiming study success in a



13 A Bayesian Constancy-Enforced Non-Inferiority Design in Medical. . . 243

clinical trial, provided that the historical information is sufficiently similar to the
current control data.

In this section, we incorporate the historical data for the active control device into
the analyses using different approaches. The Bayesian decision criteria is defined
through the following:

1. The investigational device is non-inferior to the active control if the posterior
probability of the effect size, (π i − πc), in the current non-inferiority trial
exceeding the non-inferiority margin is larger than some pre-specified level λ1,
and

2. The posterior probability of πc greater than the performance goal (PG) is larger
than a pre-specified level λ2.

Since the focus of the study is to test the non-inferiority, λ2 is set smaller than
λ1 for the least burdensome for the study sponsor. Meanwhile, since the companion
hypothesis test is devised to determine whether the active control treatment effect in
the current non-inferiority study is the same as its effect presented in the historical
study, no historical information should be borrowed when testing HCOM

0 .
Let Xi and Xc denote the random variables corresponding to the investigational

device and the active control in the current trial, respectively. Suppose these random
variables are independent and that their distributions are Xl ∼ Bin(nl, π l) with π l

being unknown, where l ∈ (i, c), i = investigational, c = active control.

13.4.1 Power Prior

Let Xc0 denote the random variable corresponding to the active control response in
historical trials, and let its distribution be Xc0 ∼ Bin

(
nc0 , πc

)
with πc unknown.

The “power prior” discussed by Ibrahim and Chen (2000) is a powerful tool, as an
informative prior, for incorporation of historical data. The power prior distribution
is constructed by raising the likelihood function of the historical data to a power
a0, where 0 ≤ a0 ≤ 1. a0 is a parameter. f0(πc) is the initial prior for πc, before
the historical data was observed. Let L(πc|Xc, nc) and L

(
πc|Xc0, nc0

)
denote the

likelihood functions for the active control in the current trial and historical trial,
respectively. The basic formulation of the power prior is written as

f
(
πc|Xc0, nc0 , a0

) ∝ L
(
πc|Xc0, nc0

)a0f0 (πc) (13.1)

Using the power prior in (13.1), the corresponding posterior distribution of πc in
the current study is given by

f
(
πc|Xc, nc,Xc0 , nc0 , a0

) ∝ L (πc|Xc, nc) L
(
πc|Xc0, nc0

)a0f0 (πc) (13.2)

It is noted from (13.2) that a0 quantifies the heterogeneity between the current
data and the historical data. It controls the influence of the historical data on
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L(πc|Xc, nc) and is also interpreted as the amount of the borrowing from the
historical data. When a0 = 1; that is when the historical and current data are
fully exchangeable, there is full borrowing from the historical data, and (13.1)
corresponds to the posterior distribution of πc based on the historical data. When
a0 = 0, the prior distribution of πc does not depend on the historical data, which
is equivalent to a prior with no borrowing from historical data. Since we consider
a binary outcome in this manuscript, a vague conjugate Beta prior is placed on
πc, i.e.,f0 (πc) ∼ Beta

(
αc0, βc0

)
in the historical trial. After the historical data is

observed, the power prior is updated to be

πc | Xc0 , nc0 ∼ Beta
(
αc0 + a0Xc0 , a0

(
nc0 − Xc0

)+ βc0

)
. (13.3)

Therefore, the historical data was down weighted by a0. We then use this
posterior as an informative prior for the current active control.

For the current trial, we assume a non-informative Beta prior for π i given by
f (π i) ∼ Beta(αi, β i). After observing Xi responses on the investigational device and
Xc responses on the active control device, combined with the power prior for πc

and a non-informative prior for π i, the posterior distributions of π i and πc could be
written as

πi | Xi ∼ Beta (αi + Xi , ni + βi − Xi )

πc | Xc, Xc0 ∼ Beta
(
αc0 + a0Xc0 + Xc, a0

(
nc0 − Xc0

)+ βc0 + nc − Xc

)

(13.4)

In this paper, we consider the weight a0 assigned to the historical data as fixed
regardless of the current data. Some researchers have applied power prior in the non-
inferiority setting. For example, Gamalo et al. (2013) considered a0 as random and
different a0’s for different historical studies to provide more flexibility in borrowing
the historical information.

13.4.2 Hierarchical Model

Let π1, π2, . . . , πH be the true success rates for the active control in the
historical studies (here, the number of historical studies, H, could be 1). Define
γ c be the logit of true active control success rate in the current trial, i.e.,
γ c = log it(πc) = log (πc/(1 − πc)). Define γ 1, γ 2, . . . , γ H be the logit
of true success rates in the H historical studies. Assume that γ c, γ 1, γ 2, . . . ,
γ H ∼ N(μ, τ 2). Thus, μ represents the overall mean and τ represents between-
study standard deviation. τ is the borrowing parameter, determining the degree of
borrowing. Small τ implies that all γ values are similar and thus more borrowing
would be appropriate. Large τ implies that true active control success rates are
different in the different studies and thus minimal borrowing is recommended. Chen
and Ibrahim (2006) described the asymptotic relationships between the power prior
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and hierarchical modeling for non-normal models such as generalized linear models.
Under some specific conditions, the approximate power prior and the hierarchical
model are identical. They also provided a formal methodology for eliciting a guide
value for the power parameter a0 via hierarchical models.

In general, μ and τ are unknown. We place priors on μ and τ , which conse-
quently creates a hierarchical structure. Here, we consider priors μ ∼ N

(
μ0, τ

2
0

)

and τ 2 ∼ IG(α, β), an inverse gamma distribution with shape parameter α and
scale parameter β. In this manuscript, we assign a N(0, 100) prior for μ (non-
informative on the logit scale) and IG(1, 0.1) prior for τ 2 to allow a mild degree
of prior information. There are other choices of priors of τ 2 as suggested in Gelman
(2006); see also Hsu et al. (2019).

For the analysis, we assume γ i = logit(π i) = γ c + θ , where θ is the log odds
treatment effect, on which a non-informative prior θ ∼ N(0, 100) is assigned. All the
conditional posterior distributions will be obtained via Markov Chain Monte Carlo
(MCMC) techniques.

13.5 Simulation and Application

In this section, we assess the performance of the proposed approach using simula-
tions.

13.5.1 Simulation Procedure

The steps for the simulations using power priors are outlined below.

1. Simulate a dataset from the binomial distribution with parameters nc and πc

for the active control device and parameters ni and π i = πc − M for the
investigational device independently. Under this scenario, the investigational
device is inferior to the control device. Compute the number of successes Xc

and Xi and the proportion of successes π̂c and π̂i .
2. Assume a non-informative Beta

(
αc0 , βc0

)
prior with αc0 = βc0 = 1 for the

historical control treatment success rate πc and specify the power parameter
a0, then generate the posterior distribution of πc with N (e.g., 10,000) MCMC
iterations from (13.4).

3. Assume a non-informative Beta(αi, β i) prior for the investigational treatment
success rate π i and generate the posterior distribution of π i by simulating N
MCMC iterations from (13.4).

4. Compute the posterior differences π i − πc for each of the N iterations.
5. Calculate the posterior probabilities P(π i − πc ≥ − M|Xi, Xc) by counting the

number of iterations for which π i − πc ≥ − M then dividing the total by N.
6. As we mention in Sect. 13.4, no historical information is borrowed for the

companion hypothesis HCOM
a . So the posterior probability P(πc ≥ PG|Xc)

is the proportion of πc ≥ PG among N πc’s that are sampled from
Beta(1 + Xc, 1 + nc − Xc). Here a Beta(1, 1) prior is used for πc.
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7. Repeat steps 1–6, K (e.g., 1000) times, each time simulating a different
dataset with the same parameters and obtaining the posterior probabilities
P(π i − πc ≥ − M|Xi, Xc) and P(πc ≥ PG|Xc).

8. Count the number of datasets for which the posterior probability P(π i − πc ≥ −
M|Xi, Xc) > λ1 and P(πc ≥ PG|Xc) > λ2, then divide the total by K to obtain the
probability of falsely claiming study success when the investigational device is
inferior to the control.

To evaluate the probability of correctly claiming study success when the inves-
tigational device is not inferior to the control device, data for the investigational
device are simulated by setting π i = πc.

There is no close form for the posterior distribution for π i and πc when
hierarchical model is used. The prior distributions for μ and τ described in Sect.
13.4.2 are used in the simulation. Draws from the posterior distributions can be
obtained using MCMC sampling implemented in R2WinBUGS (2015).

13.5.2 Simulation Results

To evaluate the operating characteristics, the following scenarios are considered:
πc = 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, ni = nc = 300. The power

parameter a0 = 0, 0.35, 0.75, 1.00 are considered. N = 10,000 MCMC samples were
generated for each dataset. K = 2000 datasets were generated for each scenario.
A non-informative Beta(1,1) prior was considered for the investigational device
Beta(αi, β i) and the historical control Beta

(
αc0, βc0

)
for all scenarios.

Assuming the true success rates for the investigational and active control devices
to be 0.6, a sample size of 300 per treatment group would demonstrate the non-
inferiority of the investigational device by a non-inferiority margin (M) of 0.1 with
80% power at a 5% significance level based on pooled Z-test. In a historical study,
45 out of 75 (60%) subjects treated with the active control device achieved success.
To ensure the effect of the active control in the non-inferiority trial to be consistent
with the effect observed in the historical trial, the performance goal is set at 0.45.

For success criteria, λ1 is set at 0.95 for the non-inferiority test so that it mimics
the Type I error rate when the non-inferiority hypothesis was considered only. λ2 is
set at 0.85 for constancy requirement since it is a companion test and we would not
set the criterion to be too strict.

Table 13.1 provides the posterior probability of falsely claiming study success
when the investigational device is inferior to the control device, that is πi = πc −M.
Notice that study success will not be claimed if the investigational device is
inferior to the active control device or the constancy assumption is not met (i.e.,
πc < 0.45). With no surprise, it is difficult to claim study success when the constancy
assumption is not met regardless of amount of borrowing using power prior. Similar
conclusion is observed with the hierarchical model.

When the constancy assumption is met, e.g., πc = 0.50, 0.55, the posterior
probability of falsely claiming study success is under controlled (i.e., <0.05) for
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both power prior and hierarchical model. However, when the true success rate for the
active control arm in the current trial is higher than the observed success rate in the
historical study (i.e., πc = 0.65), the posterior probability of falsely claiming study
success is higher than 0.05 and increases as more information was borrowed from
the historical data. Depending on the practical/clinical need, λ1 can be adjusted to
achieve a desirable level of false study success. On the other hand, it is also noticed
that the posterior probability of falsely claiming study success becomes smaller as
power parameter a0 becomes larger when the true success rate for the active control
arm in the current trial is lower than the observed success rate in the historical study.

Table 13.1 Posterior probability of claiming study success when the investigational device is
inferior to the control device (πi = πc − M)

πc

Posterior prob. of
P(π i − πc ≥ − M|
Xi, Xc) > λ1

Posterior prob. of
P(π i − πc ≥ −M|Xi, Xc) > λ1
and P(πc ≥ PG|Xc) > λ2

(Non-inferiority only) Power parameter a0 Hierarchical model
0 0.35 0.75 1

0.35 0.0415 0 0 0 0 0
0.4 0.0460 0 0 0 0 0
0.45 0.0505 0 0 0 0 0
0.5 0.0510 0.0095 0.0055 0.0025 0.0005 0.0010
0.55 0.0505 0.0485 0.0320 0.0220 0.0185 0.0190
0.6 0.0515 0.0515 0.0475 0.0455 0.0460 0.0505
0.65 0.0510 0.0510 0.0585 0.0656 0.0740 0.0735

Table 13.2 summarizes the posterior probability of claiming study success when
the investigational device and active control device perform equally in terms of
the success rate, that is πi = πc. Note that when the non-inferiority hypothesis is
only considered, there is at least 80% chance to claim non-inferiority even when
the success rate for the active control device in the current trial is much lower
than that in the historical study (i.e., πc = 0.35, 0.40). In other words, there is
high probability to claim non-inferiority when constancy assumption is not met.
However, after incorporating constancy assumption hypotheses, that probability
becomes extremely low as expected. Moreover, when the success rate for the control
group in the current trial is consistent with the success rate in the historical study
(i.e., πc = 0.60), there is at least 80% chance to claim study success. It implies
that incorporating constancy hypotheses test does not impair the chance of claiming
the study success when the device truly works from the statistical perspective.
Meanwhile the posterior probability of claiming study success increases as the
power parameter a0 increases. It is also noticed that there is still fairly high chance
to claim study success when the success rate for the control group in the current
trial is slightly lower than the success rate in the historical study but still meets the
constancy requirement (for example, πc = 0.55).
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Table 13.2 Posterior probability of claiming study success when the investigational device is not
inferior to the control device (πi = πc)

πc

Posterior prob. of
P(π i − πc ≥ − M|
Xi, Xc) > λ1

Posterior prob. of
P(π i − πc ≥ −M|Xi, Xc) > λ1and
P(πc ≥ PG|Xc) > λ2

(Non-inferiority only) Power parameter a0 Hierarchical model
0 0.35 0.75 1

0.35 0.8275 0 0 0 0 0
0.4 0.8075 0.0010 0.0010 0.0010 0.0010 0
0.45 0.7940 0.0575 0.0430 0.0340 0.0310 0.0325
0.5 0.8005 0.5565 0.5185 0.4770 0.4485 0.4620
0.55 0.7975 0.7935 0.7805 0.7705 0.7650 0.7585
0.6 0.8140 0.8140 0.8310 0.8495 0.8585 0.8505
0.65 0.8230 0.8230 0.8705 0.9040 0.9235 0.9210

13.6 Discussion

In this article, we have developed a Bayesian methodology which is particularly
suitable for designing and analyzing non-inferiority clinical trial to address violation
of constancy assumption. For non-inferiority studies, constancy assumption requires
that the active control device in the current study should have at least the effect that it
was expected to have. If the assumption does not hold and the active control device
does not have such an effect in the current non-inferiority trial, a conclusion that
an ineffective device works can be erroneously made. In this paper, we proposed
to incorporate a companion hypothesis test to ensure that the performance of the
active control device in the non-inferiority study is as good as expected, with respect
to historical trial. Consequently, the study becomes much harder to falsely claim
study success when the constancy assumption is not met. On the other hand, it does
not impose any difficulty to claim study success when the constancy assumption
is met. Furthermore, if pre-planned, a superiority claim can be pursued after the
non-inferiority claim is made as in the usual non-inferiority studies.

We also demonstrated how to incorporate historical data for the control device
when the constancy assumption holds with a Bayesian approach. In this paper, we
discussed two types of priors, namely, the power prior and the hierarchical prior
to incorporate historical data. Similar operating characteristics were observed with
the Bayesian approaches. After the companion test shows constancy, borrowing
historical active control data usually would increase the power of the non-inferiority
study. Please note that in cases where the current active control behaves quite
different from its performance in the historical study, the probability of falsely
claiming study success and the probability of correctly claiming study success
can increase or decrease from the nominal level depending on the direction of
the difference. To address this problem, a dynamic borrowing approach may be
worthwhile to be explored, and it can serve as a future research topic.
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As borrowing historical active control data usually increase the power, to obtain
the same level of power, the sample size based on our proposed Bayesian approach
may be lower than that derived based on a fixed design. In a future study, one may
investigate the amount of sample size that can be saved by our proposed method
comparing to the fixed design.
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Chapter 14
Adaptive Randomization for Master
Protocols in Precision Medicine

Jianchang Lin, Li An Lin, Veronica Bunn, and Rachael Liu

14.1 Introduction

In the era of precision medicine, especially in the oncology and hematology areas,
there have been explosions in knowledge of the molecular profile of disease. With
the genomic sequencing becoming more affordable, many tumors can now be
classified from a molecular biology perspective, with different treatment options
and tailored strategies for patients based on their tumor biomarker status. Under
the drug development setting, new generation trials have emerged to target patient
selection within any given tumor type based on specific underlying molecular and
biologic characteristics: e.g. (1) ‘Basket trials’ usually are focused only on specific
molecular aberrations, in several tumor types. (2) ‘Umbrella (or Platform) trials’
focus on drug development targeting several molecular subtypes in one tumor type.
(3) ‘Adaptive enrichment strategies’ offer the potential to enrich for patients with
a particular molecular feature that is predictive of benefit for the test treatment
based on accumulating evidence from the trial. Among them, umbrella, basket
and platform trials constitute a new generation of clinical trial design defined as
master protocol, which allow for the study of multiple drugs, multiple diseases
indications, or both within a single trial. These innovative approaches to clinical
drug development have resulted in rapidly revolutionized methodologies, including
adaptive randomization (Lin et al. 2016a, b, c), to conduct clinical trials in the setting
of biomarkers and targeted therapies, whereas the traditional paradigm of treating
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a very large number of unselected patients is increasingly less efficient, lacks cost
effectiveness and is ethically challenging.

In the past few years, there have been a variety of thought-provoking next
generation master protocols conducted multi-institutionally in oncology: specific
recognized examples include I-SPY2, BATTLE, NCI MATCH, LUNG-MAP,
ALCHEMIST and FOCUS4 (Renfro et al. 2016). As a change from traditional
clinical trial design paradigms, statisticians have partnered with clinicians to become
fully integrated in these clinical trials and make critical contributions for advancing
therapeutic development in this era of molecular medicine. Meanwhile, the new
development of immunotherapeutic agents and implementation of next-generation
sequencing (NGS) also brings many new and exciting opportunities in the design of
biomarker driven trials. From a clinical trial operational perspective, there are some
logistical challenges to implementing these innovative designs, e.g. central assay
testing, drug supply, multiple institutional collaboration, real time data collection
and integrations. However, these additional efforts are all worthwhile given the
substantial improvement of efficient medicine development, and most importantly,
the benefit of the patients.

In general, the goals of randomized clinical trials are to effectively treat patients
and differentiate treatment effects efficiently. On one hand, a clinical trial tries to
discriminate the effects of different treatments quickly, so that patients outside of
the trial will sooner benefit from the more efficacious treatment. For this purpose,
patients’ allocation should be (nearly) balanced across the comparative arms. On the
other hand, each trial participant should be given the most effective treatment, and
patients themselves also hope that they would be assigned to the arm that performs
better. This often leads to an unbalanced allocation through adaptive randomization
by equipping a better arm with a higher allocation probability (Berry et al. 2010).
Therefore, randomized clinical trials need to strike a balance between individual and
collective ethics.

During the study planning stage, key components of the protocol such as primary
endpoint, key secondary endpoints, clinically meaningful treatment effect differ-
ence, and treatment effect variability are pre-specified. Participating investigators
and sponsors then collect all data in electronic data capture (EDC) system and
perform statistical analyses. The success of the study depends on the accuracy of
the original design assumptions or sample size calculation. Adaptive Designs are
a way to address uncertainty about design parameters assumptions made during
the study planning stage. Adaptive Designs allow a review of accumulating data
or patient information during a trial to possibly modify trial characteristics and to
promote multiple experimental objectives, while protecting the study from bias and
preserving inferential validity of the results. The flexibility can translate into a more
efficient drug development process by reducing the number of patients enrolled.
This flexibility also increases the probability of success of the trial answering the
question of scientific interest (finding a significant treatment effect if one exists or
stopping the study as early as possible if no treatment effect exists).

Adaptive Designs have received a great deal of attention in the statistical,
pharmaceutical, and regulatory fields. The US Food and Drug Administration (FDA)
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released a draft version of the “Guidance for Industry: Adaptive Design Clinical
Trials for Drugs and Biologics” in 2010 (U.S. Food and Drug Administration 2010).
The guidance defined an adaptive design as ‘a study that includes a prospectively
planned opportunity for modification of one or more specified aspects of the study
design and hypotheses based on analysis of data (usually interim data) from subjects
in the study.’ The most common adaptive designs used in clinical trials include, but
are not limited to, the following types: adaptive randomization design, seamless
adaptive phase II/III design, adaptive dose-response design, biomarker adaptive
design, adaptive treatment switching design, adaptive-hypothesis design, multiple
arm adaptive design, group sequential design, sample size re-estimation design, et
al (Kairalla et al. 2012).

14.2 Why Is Adaptive Randomization Important?

The design of any clinical trial starts with formulation of the study objectives.
Most clinical trials are naturally multi-objective, and some of these objectives may
compete. For example, one objective is to have sufficient power to test the primary
study hypothesis, and consequently have sufficient sample size. However, cost
considerations may preclude a large sample size, so the twin objectives of maximum
power and minimum sample size directly compete. Other objectives may include
minimizing exposure of patients to potentially toxic or ineffective treatments, which
may compete with having sufficient numbers of patients on each treatment arm to
conduct convincing treatment group comparisons. In the case of K > 2 treatments,
where (K − 1) experimental treatments are to be compared with the placebo group
with respect to some primary outcome measure, the primary objective of the trial
may be testing an overall hypothesis of homogeneity among the treatment effects,
and a secondary objective may be performing all pairwise comparisons among
the (K − 1) experimental treatments versus placebo. Investigators may have an
unequal interest in such comparisons. In addition to statistical aspects of a clinical
trial design, there may be a strong desire to minimize exposure of patients to the
less successful (or more harmful) treatment arms. Clearly, in these examples it
is very difficult to find a single design criterion that would adequately describe
all the objectives. Many of these objectives depend on model parameters that are
unknown at the beginning of the trial. It is useful, and indeed sometimes imperative,
to use accruing data during the trial to adaptively redesign the trial to achieve these
objectives. These design considerations must be achieved without sacrificing the
hallmark of the carefully conducted clinical trials—randomization—which protects
the study from bias.

Once the study objectives are formally quantified and ranked in the order of their
importance, the experimental design problem is to find a design that accommodates
several selected design criteria. Frequently, the treatment allocations are unbalanced
across treatment groups, and they depend on model parameters that are unknown
a priori and must be calibrated through simulation. Adaptive randomization uses
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accruing information in the trial to update randomization probabilities to target the
allocation criteria. Hu and Rosenberger (2006) classify adaptive randomization into
four major types:

• Restricted randomization: a randomization procedure that uses past treatment
assignments to select the probability of future treatment assignments, with the
objective to balance numbers of subjects across treatment groups.

• Covariate-adaptive randomization: a randomization procedure that uses past
treatment assignments and patient covariate values to select the probability of
future treatment assignments, with the objective to balance treatment assign-
ments within covariate profiles.

• Response-adaptive randomization: a randomization procedure that uses past
treatment assignments and patient responses to select the probability of future
treatment assignments, with the objective to maximize power or minimize
expected treatment failures.

• Covariate-adjusted response adaptive (CARA) randomization: a combination of
covariate-adaptive and response-adaptive randomization procedures.

A typical example of master protocol to screen three experimental treatments,
A, B and C simultaneously is illustrated in Fig. 14.1. All patients recruited for the
first stage of the trial are randomized to the treatment arms with equal probability.
At each interim analysis, we update the Bayesian model used for setting the
randomization probabilities. The proportion of patients that are randomized to better
performing arms increases, and decreases to arms that are performing poorly.

14.3 Frequentist and Bayesian Approaches for Adaptive
Randomization

The commonly used statistical approach to design and analyze clinical trials
and other medical experiments is frequentist, while a Bayesian method provides
an alternative approach. The Bayesian approach can be applied separately from
frequentist methodology, as a supplement to it, or as a tool for designing efficient
clinical trials that have good frequentist properties. The two approaches have
rather different philosophies, although both use probability and deal with empirical
evidence. Practitioners exposed to traditional, frequentist statistical methods appear
to have been drawn to Bayesian approaches for three reasons (Ning and Huang
2010; Rosenberger et al. 2012; Thall and Wathen 2007; Yin et al. 2012; Yin 2013).
One is that Bayesian approaches implemented with the majority of their informative
content coming from the current available data, and not prior information, typically
have good frequentist properties (e.g., low mean squared error (MSE) in repeated
use). Second, these methods as now easily implemented in WINBUGS, OpenBUGS
and other available MCMC software packages. These offer a convenient approach to
hierarchical or random effect modeling, as regularly used in longitudinal data, frailty
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Fig. 14.1 Overview of
adaptive randomization
design

model, spatial data, time series data, and a wide variety of other settings featuring
interdependent data. Third, practitioners are attracted to the increased levels of
flexibility and adaptivity offered by the Bayesian approach which allows for early
stopping for efficacy, toxicity, and futility, as well as facilitates a straightforward
solution to a great many other advanced problems such as dosing selection, adaptive
randomization, equivalence testing, and others.

Flexibility is the major difference between Bayesian and frequentist methods,
in both design and analysis. In the Bayesian approach, experiments can be altered
midcourse, disparate sources of information can be combined, and expert opinion
can play a role in inferences. An important property of Bayesian design is that it
can utilize prior information and Bayesian updating while still maintaining good
frequentist properties (power and Type I error). Another major difference is that
the Bayesian approach can be decision-oriented, with experimental designs tailored
to maximize objective functions, such as company profits or overall public health
benefit. Overall, designing a clinical trial is a decision problem, such as therapy
selection, resource allocation, early stop etc., which involves costs and benefits
consideration. In the Bayesian approach, these costs and benefits can be well
assessed for all possible scenarios of future observations. However, frequentism
fits naturally with the regulatory “gate-keeping” role, through its insistence on
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procedures that perform well in the long run regardless of the true state of nature.
And indeed, frequentist operating characteristics (Type I and II error, power) are
still very important to the FDA and other regulators.

14.4 Response-Adaptive Randomization

Response-adaptive randomization is one of the most important adaptive trial
designs, in which the randomization ratio of patients assigned to the experimental
treatment arm versus the control treatment arm changes overtime from 1:1 to a
higher proportion of patients assigned to the arm that is performing better (Yuan
et al. 2011). It is very attractive when ethical considerations or concerns make
it potentially undesirable to have an equal number of patients assigned to each
treatment arm. For the purpose of simplicity, suppose the trial objective is to
compare treatments A and B. Patients are enrolled in sequential groups of size
{Nj}, j =1, . . . , J, where Nj is the sample size of group j. When planning the
trial, researchers typically have limited prior information regarding the superiority
or effectiveness of the experimental treatment arms. Therefore, at the beginning
stage of the trial, for the first j groups, e.g. j’ = 1, patients are equally allocated to
two treatments. The responses observed from these patients are utilized to update
the allocation probability for subsequent groups of patients.

Let pA be the response rate of treatment A and pB be the response rate of
treatment B. We set N to be the maximum sample size allowed for the trial and NA
(NB) to be the maximum number of patient assigned to treatment A (B). We assign
the first N1 patients equally to two treatments (A, B) and observe the response Yk

(k = A, B). Assign pk a noninformative prior of beta(αk, βk). If among nk subjects
treated in arm k, we observe yk responses, then

Yk ∼ binomial (nk, pk) (14.1)

and the posterior distribution of pk is

pk | data ∼ beta (αk + xk, βk + nk − xk) (14.2)

During the trial, we could continuously update the Bayesian posterior distribution
of pk, and allocate the next Nj patients to the kth treatment arm according to the
posterior probability that treatment k is superior to all other treatment arms

πk = Pr (pk = max {pl , 1 ≤ l ≤ K} |data) (14.3)

One of the advantages of a Bayesian approach to inference is the increased flex-
ibility to include sequential stopping compared to the more restrictive requirements
of a classical group sequential approach in terms of number of interim analysis,
stopping rules, etc. Noninformative stopping rules are irrelevant for Bayesian



14 Adaptive Randomization for Master Protocols in Precision Medicine 257

inference. In other words, posterior inference remains unchanged regardless of why
the trial was stopped. Several designs make use of this feature of Bayesian inference
to introduce early stopping for futility and/or for efficacy.

• Futility: if Pr (pk < p.min|data) > θu, where p.min denotes the clinical minimum
response rate, that is, there is strong evidence that treatment k is inferior to the
clinical minimum response rate, we drop treatment arm k.

• Superiority: if Pr (pk > p.target|data) > θ l, where p.target denotes the target
response rate, that is, there is strong evidence that treatment k is superior to
prespecified response rate, we terminate the trial early and claim the treatment
k is promise.

At the end of the trial, if Pr (pk > p.min|data) > θ t, then treatment k is selected
as the superior treatment. Otherwise, the trial is inconclusive. To achieve desirable
operating characteristics (type 1 error and power), we use simulations to calibrate
the pre-specified cut-off points θu, θ l, and θ t.

We conducted simulations to show the procedure for design parameters cal-
ibration. The patient allocation probability is determined by algorithm (14.3).
The minimum allocation probability is 10% to ensure a reasonable probability of
randomizing patients to each arm. The minimum clinical response rate (p.min) is 0.2
and the target response rate (p.target) is 0.4. In this trial, we set maximum sample
sizes of 90 and maximum sample size of 30 per treatment arm. We equally assigned
the first 15 patients to three treatments (A, B, or C) and started using the adaptive
randomization at the 16th patient. The sequential group size is set as 10, so that
the early stopping rule and allocation probability updating will act after 10 new
patient’s responses cumulated. Although the design allows continuous monitoring
after every patient’s response outcome becomes available, from the operational and
computational point of view, it’s more convenient to monitor the trial for early
termination with a cohort size of 10. A total of 5,000 independent simulations were
performed for each configuration.

In the first stage, we set θu = θ l = 1, so that the trial would not be terminated
early, to determine the threshold values of θ t. we performed a series of simulation
studies with different values of θ t and compared the corresponding type 1 error rates
and powers. Table 14.1 shows the simulation results. Similarly, we can obtain a set
of values of θ t that reached the desired power. The value of θ t with type 1 error
(defined as the selection probability of Arm A) close to 5% and a desired power
(defined as the selection probability of Arms B or C) will be selected for the next
stage selection.

Table 14.1 Type 1 error rates and power, without early termination

θ t

Arm (response rate) 0.9 0.91 0.92 0.93

A (0.2) 0.07 0.065 0.056 0.049
B (0.4) 0.842 0.838 0.832 0.825
C (0.6) 0.998 0.994 0.992 0.989
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Table 14.2 Type 1 error rates and power, with early termination

θ l

θu Arm 0.92 0.93 0.94 0.95

0.85 A 0.073 0.071 0.064 0.066
B 0.828 0.819 0.84 0.817
C 0.991 0.996 0.989 0.992

0.86 A 0.082 0.071 0.065 0.057
B 0.821 0.824 0.814 0.839
C 0.993 0.99 0.989 0.986

0.87 A 0.08 0.07 0.067 0.057
B 0.822 0.819 0.838 0.845
C 0.996 0.994 0.994 0.993

0.88 A 0.078 0.07 0.069 0.053
B 0.843 0.847 0.82 0.801
C 0.996 0.993 0.995 0.996

0.89 A 0.079 0.072 0.069 0.048
B 0.852 0.832 0.845 0.819
C 0.991 0.994 0.997 0.994

0.9 A 0.069 0.063 0.062 0.048
B 0.831 0.83 0.821 0.826
C 0.997 0.989 0.992 0.994

In the second stage, fixing θ t = 0.92, we followed the similar procedure to
calibrate (θu, θ l), which determine the early termination of a trial due to equivalence
or superiority respectively. Note that θ l has to be greater or equal to θ t because the
decision criteria must be tighter during the trial than at the end of trial. Our goal is
still to maintain a treatment-wise type 1 error rate of 5% or lower and to achieve
desired power when the trial can terminate early (Table 14.2).

Alternatively, we can set θ t = θ l which means that we will not relax the decision
criteria at the end of the trial. Extensive simulation for various scenarios should
be carried out to ensure controlled type 1 error and satisfied power for all possible
situations in real trial (Table 14.3).

Suppose the trial require 0.1 type 1 error and at least 0.85 power for treatment B
and 0.99 power for treatment C, we chose the design parameters as θ t = θ l = 0.89
and θu = 0.9. The operation characteristics is list in Table 14.4.

14.5 Response-Adaptive Randomization for Survival
Outcomes

The response-adaptive randomization design with binary outcomes is commonly
used in clinical trial where “success” is defined as the desired (or undesired)
event occurring within (or beyond) a clinically relevant time. Given that patients
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Table 14.3 Type 1 error rates and power with θ t = θ l

θu

θ t = θ l Arm 0.8 0.82 0.84 0.86 0.88 0.9

0.85 A 0.142 0.127 0.127 0.126 0.115 0.105
B 0.871 0.869 0.866 0.864 0.857 0.857
C 0.992 0.994 0.991 0.995 0.993 0.994

0.87 A 0.121 0.121 0.117 0.108 0.1 0.085
B 0.876 0.877 0.87 0.87 0.869 0.852
C 0.996 0.994 0.992 0.994 0.996 0.986

0.89 A 0.109 0.102 0.093 0.091 0.071 0.075
B 0.855 0.861 0.849 0.861 0.847 0.857
C 0.992 0.994 0.995 0.988 0.996 0.995

0.91 A 0.097 0.082 0.08 0.078 0.075 0.077
B 0.83 0.848 0.848 0.84 0.849 0.825
C 0.993 0.994 0.996 0.987 0.989 0.988

0.93 A 0.095 0.074 0.071 0.071 0.064 0.06
B 0.797 0.809 0.835 0.833 0.817 0.799
C 0.994 0.99 0.991 0.996 0.99 0.992

0.95 A 0.065 0.042 0.039 0.039 0.036 0.025
B 0.784 0.792 0.775 0.764 0.79 0.778
C 0.988 0.995 0.989 0.989 0.986 0.994

Table 14.4 Operation characteristics with θ t = θ l = 0.89 and θu = 0.9

Arm Response rate Pr (selected early) Pr (stopped early) # patients (2.5%, 97.5%)

A 0.2 0.012 0.386 24.15 (6, 35)
B 0.4 0.496 0.077 27.72 (6, 37)
C 0.6 0.827 0.005 16.45 (7, 32)

enter a trial sequentially, only a fraction of patients will have sufficient follow-
up during interim analysis. This results in a loss of information as it is unclear
how patients without sufficient follow-up should be handled. Adaptive designs for
survival trials have been proposed for this type of trial. However, current practice
generally assumes the event times follow a pre-specified parametric distribution. In
this section, we adopt a nonparametric model of survival outcome which is robust
to model event time distribution, and then apply it to response-adaptive design. The
operating characteristics of the proposed design along with parametric design are
compared by simulation studies, including their robustness properties with respect
to model misspecifications.

Patients are enrolled in sequential groups of size {Nj}, j = 1, . . . , J, where Nj
is the sample size of the sequential group j. Typically, before conducting the trial,
researchers have little prior information regarding the superiority of the treatment
arms. Therefore, initially, for the first j’ groups, e.g. j’ = 1, patients are allocated to
K treatment arms with an equal probability 1/K. As patients accrue, the number of
current patients increases. Let Ti be the event time for patient i, τ be the clinically
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relevant time and θ = Pr (T > τ ) be the probability of interest. For example, a trial is
conducted to assess the progression-free survival probability at 9 months. Let N(s)
denote the current number of patients who have been accrued and treated at a given
time s during the trial. Without censoring, θ can be modeled by binomial model
where the likelihood function evaluated at time s is

L (data|θ) =
N(s)∏

i=1

θI(Ti>τ)(1 − θ)I(Ti≤τ) (14.4)

However, censoring is unavoidable in clinical practice. As patients enter into
the trial sequentially, the follow-up time for certain patients may be less than
τ when we evaluate θ at any calendar time s. Other reasons for censoring may
include patient dropout, failure to measure the outcome of interest, etc. If we ignore
the censored patients, substantial information will be lost. Cheung and Chappell
(2000) introduced a simple model for dose-finding trial. Later, Cheung and Thall
(2002) adopted this model to continuous monitoring for phase II clinical trials. With
censoring, the likelihood function (14.4) can be rewritten as

L (data|θ) =
N(s)∏

i=1

Pr {Ti ≤ min (xi, τ)}Y(xi) Pr {Ti > min (xi, τ)}1−Y(xi) (14.5)

where xi = min (ci, ti) is the observed event time, ci is the censoring time, and
Y(xi) = I{Ti ≤ min (xi, τ )} is the censoring indicator function.

Furthermore, the parameter θ will be plugged into the likelihood function through
probability transformation. Let t = min (xi, τ ),

Pr (Ti ≤ t) = Pr (Ti ≤ t, Ti ≤ τ)+ Pr (Ti ≤ t, Ti > τ)

= Pr (Ti ≤ t|Ti ≤ τ) Pr (Ti ≤ τ)+ Pr (Ti ≤ t|Ti > τ) Pr (Ti > τ)

= w(t) (1 − θ)

(14.6)

where w(t) = Pr (Ti ≤ t|Ti ≤ τ ), is a weight function
Finally, we can obtain a working likelihood with unbiased estimation of w(t).

L (data|θ) =
N(t)∏

i=1

∼
w (xi) (1 − θ)Y(xi)

{
1 − ∼

w (xi) (1 − θ)
}1−Y(xi)

(14.7)

Theorem if
∼
w (xi) converges almost surely to w(xi) for all i as N(s) →∞, then

θ̂ = argmaxL (data|θ) is strongly consistent for true survival probability θ .

Cheung and Chappell (2000) assumed the nuisance parameter
∼
w (xi) as a linear

function
∼
w (xi) = xi/τ . Ji and Bekele (2009) show that these estimated weights

are based on strong assumption of linearity and independence, and may lead to
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biased results when the assumptions are violated. We propose to estimate
∼
w (xi)

with Kaplan–Meier (KM) estimation of
∼
S (xi), where

∼
w (xi) = 1 − ∼

S (xi)

1 − ∼
S (τ)

It’s easy to show that
∼
w (xi) is an unbiased estimation of w(xi).

Assign a noninformative prior of beta (α, β), we can obtain posterior distribution
of θ . However, the posterior distribution is not available in closed form and standard
integral approximations can perform poorly. Without knowing the exact posterior
distribution, we can easily draw random MCMC samples and obtain posterior
estimation using standard MCMC software packages.

Under model (14.7), the survival probability evaluated at time τ is used as a
conventional measure of treatment efficacy. However, such a survival probability at
time τ ignores the entire path of survival curve. One of the interests in a clinical trial
is the estimation of the difference between survival probability for the treatment
groups at several points in time. As shown in Fig. 14.2, the survival curve under
treatment B declines faster than that under treatment A, although both treatments
have the same survival probability at time τ. In a renal cancer trial, this indicates
that patients under treatment B would experience disease progression much faster
than those under treatment A. Because delayed disease progression typically leads
to a better quality of life, treatment A would be preferred in this situation (Ning
and Huang 2010). Another example is showed in Fig. 14.3. The survival curves are
almost identical between two treatments before time 20. If we compare the survival
probability between two treatments at the time before 20, the treatment effect is
inconclusive. To provide a comprehensive measure of efficacy by accounting for the
shape of the survival curve, we propose to evaluate survival probability at several
points in time. Let θkj be the survival probability at time τj for treatment k where
j=1, . . . , J. The treatment allocation probability for treatment k is defined as,

πk =
J∑

j=1

wj Pr
(
θkj = max

{
θlj, 1 ≤ l ≤ J

} |data
)

where wj is the prespecified weight. Currently, we use equal weight with wj = 1/J.
During the trial, we continuously monitor posterior probability of πk. When the

efficacy of πk is lower than the prespecified lower limit pl, then the treatment arm
k will be terminated early due to futility. When πk is higher than pu, the treatment
arm k will be selected as promising treatment. At the end of the trial, if πk is higher
than pt, then treatment k is selected as the superior treatment. Otherwise, the trial
is inconclusive. In practice, the values of pl, pu, and pt are chosen by simulation
studies to achieve desirable operating characteristics for the trial.
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Fig. 14.2 Survival curves of the time to disease progression, where the two survival curves have
the same survival probability at the follow-up time τ = 70 weeks, but different areas under the
survival curves until τ

Fig. 14.3 Survival curves of the time to disease progression, where the two survival curves have
the similar survival probability before week 20, but gradually show difference as time increase
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We simulate a single arm trial where the event times follow a Weibull distribution
with α = 2 and λ = 50, where α is the shape parameter and λ is the scale parameter
of the distribution. Patients enter the trial sequentially with accrual rate of one per
week. At week 50, we stop enrolling the patients and continue to follow the trial for
additional 30 weeks. The parameter of interest is θ = Pr (T > 40).

The purpose of this simulation study is to compare the performance of estimation
with different methods and to show whether the estimation at different trial
monitoring time is consistent. Four estimation methods will be evaluated, including
the proposed method, the true parametric method (estimate S(xi) by Weibull
distribution), the misspecified parametric method (estimate S(xi) by exponential
distribution), and the original method (

∼
w (xi) = xi/τ ). Trial monitoring starts at

week 40 and continues until the end of study. Figure 14.4 shows the estimated
θ at different monitoring times. The results show that both the true parametric
method and proposed method provide unbiased estimation over monitoring time
while the original method and misspecified parametric method give large bias. It
should be noted that the original method gives small bias at the end of trial because
the number of censored observations (e.g. due to treatment ongoing) decreased as
follow-up time increased. In Fig. 14.5, we present the coverage probability along the
monitoring times. The figure shows that the proposed method and true parametric
method provide constant coverage probability over the monitoring time which is
close to the nominal value of 95%. In contrast, the original method and misspecified
parametric method both give low coverage probability.

Fig. 14.4 Estimated θ with different methods
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Fig. 14.5 Coverage probability of θ with different methods

We conducted a second set of simulations to evaluate the performance of the
proposed adaptive randomization design under various clinical scenarios (1000
simulations per scenario). For the simulations, we set the accrual rate to two patients
per week. The maximum number of patients is 120. After the initial 60 weeks of
enrollment time, there is an additional follow-up period of 40 weeks. The event
times are simulated from a Weibull distribution with α= 1 in scenario I and α= 0.5
in scenario II. We assigned the first 30 patients equally to two arms (A or B) and
started using the adaptive randomization at the 31st patient. The randomization
probability was evaluated every 5 weeks. The proposed design will be compared
with different estimation methods for the weight function w(t): proposed method,
parametric method (estimate S(xi) by exponential distribution), and original method
(
∼
w (xi) = xi/τ ).

Table 14.5 shows the simulation results from scenario I, without early termina-
tion (pu = 1, pl = 0). For each method, we list the average number of patients (with
percentage of total patients in the trial) assigned to each treatment arm, and the
chance of a treatment being selected as promising. When comparing the parametric
method, the proposed method provides comparable operational characteristic where
both designs assign more patients to more promising treatment (69% for proposed
design and 70.3% for parametric design) and both designs provide the sample level
of power (0.978 for proposed design and 0.979 for parametric design). The original
method achieves lower power than both the proposed method and parametric
method.
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Table 14.5 Simulation result for scenario I

Proposed method Exponential method Original method

(pt = 0.955) (pt = 0.99) (pt = 0.995)
Arm λ # of patients Pr (select) # of patients Pr (select) # of patients Pr (select)

A 40 26.3 (31%) 0.005 24.72 (29.6%) 0.003 36.5 (36.1%) 0.003
B 100 58.6 (69%) 0.978 61.36 (70.3%) 0.979 64.5 (63.9%) 0.749

84.9 90.08 101.0

Table 14.6 shows simulation results for scenario II, without early termination
(pu = 1, pl = 0). In the presence of event time distribution misspecification,
the parametric method provides lower power than the proposed method (0.836
vs 0.647). In addition, the proposed method assigns more patients to the more
promising treatment. Once again, the original method has lower power than the
other two methods.

Table 14.6 Simulation result for scenario II

Proposed method Exponential method Original method

(pt = 0.965) (pt = 0.995) (pt = 0.995)
Arm λ # of patients Pr (select) # of patients Pr (select) # of patients Pr (select)

A 50 27.8 (28.5%) 0.005 32.48 (32.2%) 0.0003 35.6 (33.8%) 0.001
B 200 69.6 (71.5%) 0.836 68.34 (67.8%) 0.647 69.8 (66.2%) 0.51

97.4 100.82 105.4

14.6 Case Studies

14.6.1 Investigation of Serial Studies to Predict Therapeutic
Response with Imaging and Molecular Analysis 2
(I-SPY 2)

I-SPY 2 is an adaptive phase II clinical trial that pairs oncologic therapies with
biomarkers for women with advanced breast cancer. The goal is to identify
improved treatment regimens for patient’s subsets based on molecular character-
istics (biomarkers) of their disease (Barker et al. 2009).

The trial (Fig. 14.6) is initialized with two standard-of-care arms, and five treat-
ment arms. Each treatment is tested on a minimum of 20 patients, and a maximum
of 120 patients. Patient’s biomarkers are determined at enrollment, and patients
are randomized to treatment arms based on their biomarker signature. Bayesian
methods of adaptive randomization are used to achieve a higher probability of
efficacy. Thus, treatments that perform well within a biomarker subgroup will have
an increased probability of being assigned to patients with that biomarker.
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Treatments will be dropped for futility if they show a low Bayesian predictive
probability of being more effective than the standard of care with any biomarker.
Treatment regimens that show a high Bayesian predictive probability of being more
effective than the standard of care will stop for efficacy at interim time-points. These
treatments will advance (with their corresponding biomarkers) to phase III trials.
Depending on the patient accrual rate, new drugs can be added to the trial as other
drugs are discontinued for either futility or efficacy.

Fig. 14.6 I-SPY 2 trial

As of March 2017, 12 experimental treatment arms have been explored. Five
agents, after showing promise within their biomarker groups, advanced to further
studies and others are in queue for entry. A new I-SPY 3 master protocol is
under planning to provide further evidence of effectiveness for agents successfully
graduating from I-SPY2.

14.6.2 Gastric Cancer Umbrella Design for an Investigational
Agent

This is an open-label, multicenter, phase 1b study of an investigational agent in
combination with regimen A, regimen B, paclitaxel, or docetaxel in adult patients
with locally advanced and metastatic gastric or gastroesophageal adenocarcinoma
(Fig. 14.7). The study consists of a dose escalation phase (Part 1) and a dose expan-
sion phase (Part 2). In Part 2, this study uses equal and adaptive randomization.

Any patient who enters Part 2 of the study is screened to determine whether
their tumor tissue is positive for EBV (approximately 9% of patients with gastric
cancer). An estimated 28 patients who are EBV-positive are assigned to treatment
with regimen A in combination with the investigational agent (Cohort A). Patients
who are EBV-negative initially are randomized equally to 1 of the other treatment
cohorts, 5 patients per group: investigational agent + egimen B (Cohort B),
investigational agent + paclitaxel (Cohort C), or investigational agent + docetaxel
(Cohort D). These patients’ data are assessed using a proportional weighted clinical
utility function (allocating specific weights for complete response [CR], partial
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response [PR], stable disease [SD], and progressive disease [PD]). New patients are
then randomized to treatment according to an adaptive randomization algorithm,
which incorporates a weighted clinical utility function. The resulting probability is
continually updated per accumulating data on the associations between the response
rate and Bayesian stopping rules.

Adaptive randomization increases the opportunity for each patient to receive the
most effective experimental treatment possible based on posterior probabilities. Up
to an additional 25 patients may be enrolled in each treatment regimen. Based on
simulation results, the sample size for Part 2 (umbrella portion) of the study may be
between 61 and 90 patients.

Overall response rate is used as the efficacy benchmark. Target effect size of
25% (0.25) and an undesirable effect size of 10% (0.1) are chosen based on clinical
judgment. Early stopping rules are prespecified if there is a clear signal of efficacy
or lack of efficacy. The stopping rules are as follows:

1. achieve maximum sample size of each arm (30 patients);
2. stop an arm if posterior probability Pr (response rate [RR] > 0.25/Data) >80%

and Pr (RR > 0.10)/Data) >90%;
3. suspend accrual to an arm if Pr (RR ≤ 0.10/Data) >80%.

The treatment arm(s) is/are chosen in relation to the efficacy bar prespecified
(target and undesirable); therefore, it is possible to select multiple treatment arms
per this study design.

EBV Screening Equal Randomization

Adaptive Randomization

Cohort BCohort A

N=5N=25

Up to addI N=25

(w/ Regimen B)(w/ Regimen A) (w/ Docetaxel) (w/ Paclitaxel)

(Efficacy-Based & Repeated)

Up to addI N=25 Up to addI N=25

N=5 N=5

Cohort C Cohort D

Cohort B

Pick the winner (s)

Cohort C Cohort D

9% GC

Re-allocation of patients
based on early efficacy signals

Repeated adaptation based 
cumulative and evolving data

Early stopping of clear loser(s)
and crossover to clear
winner(s) allowed

Winner(s) as relevant to the
prespecified efficacy bar
(target=25% [0.25] and
undesirable=10% [0.1])

Retrospective biomarker studies
to identify drug/marker pairs

Combo w/ SOC could be
used as the comparator for
other combo choices

EBV+
EBV-

Fig. 14.7 Gastric cancer umbrella design



268 J. Lin et al.

14.7 Discussion

With the closer collaborations between government, academia and industry, as well
as the need to increase the probability of success of drug development across
varied therapeutic areas, there are significant growing uses of innovative adaptive
designs in master protocols, including the umbrella or platform trials, to screen
multiple drugs simultaneously (Woodcock and LaVange 2017). Though different
master protocols come with different sizes and settings, they share many common
features, e.g. additional planning from the beginning of trial design, coordination
between different stakeholders and increasingly sophisticated infrastructures for
the research effects. Adaptive randomization is becoming a critical component and
statistical methodology under these settings. While response-adaptive randomiza-
tion procedures are not appropriate in clinical trials with a limited recruitment
period and/or outcomes that occur after a long follow up, there is no reason why
response-adaptive randomization cannot be used in clinical trials with moderately
delayed response. Sequential estimates and allocation probabilities can be updated
as data become available. For ease of implementation, updates can also be made
after groups of patients have responded, rather that individually. From a practical
perspective, there is no logistical difficulty in incorporating delayed responses into
the response-adaptive randomization procedure, provided some responses become
available during the recruitment and randomization period.

We have developed a Bayesian response-adaptive randomization design for
survival trial. A nonparametric survival model is applied to estimate the survival
probability at a clinical relevant time. The proposed design provides comparable
operational characteristics as true parametric design. When the event time distri-
bution is misspecified, the proposed design performs better than parametric one.
The proposed design can be extended to Response-Adaptive Covariate-Adjusted
Randomization (RACA) design when we need to control important prognostics
among treatment arms (Lin et al. 2016a, b, c). Another potential approach of
updating treatment allocation probability could be based on the restricted mean
survival time. The benefits of adaptive randomization for survival trial depend on the
distributions of event times and patient accrual rate as well as on the adaptive design
under consideration (Case and Morgan 2003). If there are short-term response that
are quickly available and predictive of long-term survival, we can use those short-
term response to “speed up” adaptive randomization for survival trial (Huang et al.
2009).

A major criticism of response-adaptive randomization is that, despite strin-
gent eligibility criteria, there may be a drift in patient characteristics over time.
Using covariate-adjusted response-adaptive randomization can be a solution to
this problem if the underlying covariates causing the heterogeneity are known in
advance. This may not cause issues with large sample sizes since the randomization
automatically balances prognostic factors among treatment groups asymptotically.
For clinical trials with small or moderate sample sizes, the impact from the
imbalance of the prognostic factors can be substantial when using response-
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adaptive randomization designs, and thus causes difficulties to the interpretation
after randomization. Thus, it is encouraged to have a randomization procedure that
could also actively balance the covariate across treatment arms. Consequently, such
design can help balance patient characteristics between different treatment arms,
and thereby control the inflated type I error rates that occur in response-adaptive
randomization (Lin et al. 2016a, b, c; Lin and Bunn 2017).
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Chapter 15
Some Statistical Considerations in Design
and Analysis for Nonrandomized
Comparative Studies Using Existing Data
as Controls for Medical Device
Premarket Evaluation

Nelson Lu, Yunling Xu, and Lilly Q. Yue

15.1 Introduction

It is not uncommon that non-randomized studies are utilized to provide primary
evidence in medical device pre-market evaluation. In the safety and effectiveness
evaluation of medical products, although well-controlled and well-conducted ran-
domized clinical trials (RCT) are considered to be the designs to produce the
highest level of evidence and thus are viewed as a gold standard, there may be
some constraints and limitations associated with them. Sometimes, conducting a
RCT may not be feasible due to ethical or practical reasons. Greater expense and
span of time are generally required in running a RCT. Therefore, when seeking for a
comparative claim, sometimes a non-randomized study is adopted as it is considered
a less burdensome approach. This is acceptable if such a study provides sufficient,
valid scientific evidence for a pre-market application (21CFR860.7 2012).

A typical case in medical device arena is to compare the results of a one-arm
clinical study such as an investigational device exemption (IDE) study to the results
of a control extracted from other data sources. Traditionally in medical device
applications, the control group are generally formed from the data of an earlier IDE
study. Started recently, there have been more and more studies in which the control
subjects are selected from a patient or device registry of sufficient quality. This trend
may be a result of the greater public and regulatory interest in utilizing the real-
world data (RWD). For example, U.S. Food and Drug Administration (FDA) Center
for Device Evaluation and Radiological Health (CDRH) issued the guidance “Use
of real-world evidence to support regulatory decision making for medical devices”
(US FDA 2017) in year 2017. As a control, the data from the registry could be

N. Lu (�) · Y. Xu · L. Q. Yue
CDRH, U.S. Food and Drug Administration, Silver Spring, MD, USA
e-mail: Nelson.Lu@fda.hhs.gov

© Springer Nature Switzerland AG 2019
L. Zhang et al. (eds.), Contemporary Biostatistics with Biopharmaceutical
Applications, ICSA Book Series in Statistics,
https://doi.org/10.1007/978-3-030-15310-6_15

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15310-6_15&domain=pdf
mailto:Nelson.Lu@fda.hhs.gov
https://doi.org/10.1007/978-3-030-15310-6_15


272 N. Lu et al.

prospectively or retrospectively collected, or concurrent or non-concurrent, with
respect to the (IDE) clinical study.

When conducting a non-randomized study, additional sources of bias can be
introduced as opposed to a RCT. Special attentions are needed to ensure the validity
of study design and interpretability of study results. It is paramount to mitigate such
potential bias with proper design and analysis. In Sect. 15.2, a brief discussion on
the estimands associated with a non-randomized study is presented. Issues regarding
the design utilizing the propensity score methodology are described in Sect. 15.3.
Some analysis issues are addressed in Sect. 15.4. Concluding remarks are included
in Sect. 15.5.

15.2 Estimands

The importance of selecting an appropriate estimand in conducting a clinical study
has recently received great recognition and emphasis. It is one of the focal topics in
the currently developing addendum to the International Conference on Harmoniza-
tion E9 guideline. As pointed out in the final concept paper of ICH E9(R1) (2014),
the incorrect choice of estimand and unclear definitions for estimands may lead to
“problems in relation to design, conduct and analysis and introduce potential for
inconsistencies in inference and decision making”.

Upon the formulation of the scientific questions of interest or the study objective,
the endpoint is determined, and a proper estimand of the treatment effect based
on this question needs to be selected. Common factors to define and describe an
estimand include outcome measure, treatment received, analysis population, time
period of interest, and treatment adherence status (final concept paper, page 2).
Study design and analysis then are planned accordingly. One key message presented
in Mehrotra et al. (2016) is that “the importance of clearly articulating, in order,
the trial objectives, endpoint, estimand, design, and analysis.” They further point
out that “confusion in regulatory submissions has arisen, in part, due to this order
being essentially reversed in practice, with the estimand being implicitly defined as
a consequence of the trial design and statistical analysis methodology.”

Although the principles presented in the aforementioned development mainly
target the RCT, many of them still apply to non-randomized comparative clinical
studies. In the context of such studies, for the purpose of pre-market medical device
evaluation, the study objective is to determine how the clinical outcomes of the
investigational device compare with what would have been occurred to the same
subjects under the control treatment. The appropriate estimand should be formulated
right after the determination of study objective and study endpoint(s) and ideally
before the study design phase.

One special consideration in determining the estimand for a non-randomized
comparative study is due to patient populations from two treatment groups coming
from different data sources. Two commonly adopted estimands are the average
treatment effect (ATE) and the average treatment effect on the treated (ATT).
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Under the potential outcomes framework (Rubin 1974), two potential outcomes
for a subject are denoted as Y(T = 0) and Y(T = 1), where T = 1 represents that the
subject is treated with investigational device and T = 0 with control. ATE, which
can be expressed as E[Y(1) − Y(0)], represents the average effect, at the population
level, of moving an entire population from control to treatment (investigational
device). ATT, which can be expressed as E[Y(1) − Y(0) | T = 1], represents the
average effect of treatment on those subjects who ultimately received the treatment
(Austin 2011a).

When treatment effects vary among patients with different baseline character-
istics, ATT and ATE do not necessarily coincide, since the distribution of patient
population for subjects treated with investigational device may not be the same
as that of the overall population in practice. For example, between the options
of medical management and implanting a certain device requiring an invasive
operation, older patients may more likely choose the medical management over the
device. Therefore, the age of patient population for the users of this device tends to
be younger than the overall intended population.

In many medical device pre-market applications, the study objective is to
compare an investigational device to a similar device (control), which may be
a competitor’s marketed device or the previous generation device. A common
question of interest for these cases is: “What is the treatment effect on outcomes if
all patients (eligible for receiving both devices) are only offered the investigational
device?” (Yue et al. 2016) The ATE may be used in this type of situation. From
our experience, oftentimes the patient populations of the two treatment groups, as
manifested from their associated data sources, are relatively comparable, if there is
no great time lag between the collection of the two data sources.

When the study objective is to assess the performance of the investigational
device compared to that of a control such as surgical operation, medical manage-
ment, or a dissimilar type of device, etc., the patient populations may be different
between the two treatment groups. The question of interest is often like “What is the
treatment effect on outcomes in patients who receive the investigational device?”
(Yue et al. 2016) In this situation, the ATT may be better suited for answering the
question. The type of estimands usually determines how subjects are selected into
the analysis set and the analysis methods. This is further discussed in Sects. 15.3.3
and 15.4.1.

15.3 Design

15.3.1 Bias

One important consideration when designing a study is to mitigate potential
bias. Per Merriam-Webster dictionary, bias is a systematic error introduced into
sampling or testing by selecting or encouraging one outcome or answer over others.
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Bias may be introduced at any phase of a study, including study design, subject
selection, study conduct, data collection, data analysis procedures, interpretation,
and reporting/publication. Bias may cause erroneous results and thus sabotage the
validity of the conclusion drawn from a study. Therefore, it is crucial to identify
flaws that may cause the bias and take actions to eliminate these flaws so that the
bias can be reduced.

Comparing to RCTs, non-randomized studies utilizing external control are prone
to many more factors that may cause bias. As the external data often coming from
another clinical study or real world data that reflect real world practice, some factors
such as timeframe, space, study conduct, measurements, evaluation of the outcome,
etc., may not be similar to those of the current IDE study. Treatment differences
in study outcomes may be confounded with aspects such as distinct protocols (or
lack thereof), medical practice, health policy, facilities, physician skills, rigor of
data monitoring, data quality, etc., between studies. In addition, the distributions
of patient baseline characteristics between two treatment groups are likely to be
dissimilar. If data are analyzed without recognizing these factors, the estimated
treatment effect may be greatly biased.

Clinical judgment is essential in determining whether there would be any
significant bias in the estimated treatment effect based on the differences in the
study level factors. Bias related to the differences in patient characteristics may be
addressed using the statistical methodology discussed next.

15.3.2 Propensity Score Methodology

For the bias that may be caused by the differences in patient characteristics, it
is possible to mitigate such bias via appropriate statistical methods. Propensity
score methodology (Rosenbaum and Rubin 1983) has been widely applied in the
premarket medical device applications (Yue et al. 2014, 2016).

Propensity score is the probability of receiving the treatment given the observed
baseline covariates. It can be viewed as a one-dimensional summary of observed
covariates. While the true propensity scores for subjects are never known, they
usually are estimated by a logistic regression model in which the treatment is the
response variable and the observed baseline covariates are the predictors. After
the estimated propensity scores are obtained, the matching design is performed in
which subjects from both treatment groups are matched based on the closeness of
their estimated propensity scores. One nice theoretical property is that the baseline
covariate distributions between two treatment groups are expected to be comparable
based on the resulting propensity score design. The data analysis will then be
performed based on the propensity score design. The tutorial on the propensity
score methodology can be found in literature such as D’Agostino (1998) and Austin
(2011b).
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The analysis population is defined after the design is finalized. Oftentimes not
all subjects initially used in building the propensity score estimation model are
retained in the analysis population. For example, subjects may be discarded if their
propensity score are far away from the propensity scores in the other group. In the
pre-market medical device applications, it is important to note that all subjects in
the investigational device group are recommended to be included in the analysis set.
Throwing away any subjects in the investigational device group would inevitably
alter the intended population and thus cause difficulty in defining the intended
population in the labeling (Li et al. 2016; Yue et al. 2014, 2016).

Two main types of the propensity score design used in pre-market medical device
applications are one-to-one (or 1:1) matching and stratification. The following gives
some brief discussions of the two.

15.3.2.1 1:1 Matching

In the 1:1 matching technique, matched pairs (1 subject in the control group
and 1 in the investigational device group) of subjects are formed if they share a
similar value of the estimated propensity score. The matching can be done without
replacement and with replacement (Rosenbaum 2002). When matching with the
replacement is performed, the associated analysis method in variance estimation is
more complicated as it needs to account for the dependence structure, and it may be
more challenging in assessing whether the covariates reach the reasonable balance.
Therefore, to have better interpretability in the pre-market medical device evaluation
applications, it is suggested that the matching be performed without replacement.
That is, each subject is included in at most one matched pair.

To obtain better matches, researchers often apply the criteria on the distance
measure in the estimated propensity scores of the subjects in the matched pair. A
pair is formed only when the distance measure of the estimated propensity scores of
the two subjects is within a specified caliper. Under this scheme, a subject is thrown
away if there are no available subjects (in another group) whose propensity score
fall within the caliper of his/her estimated propensity score. Such a scheme may be
redundant in the pre-market medical device applications due to the constraint that
all subjects in the investigational device group are better to remain in the analysis
set.

The 1:1 matching design is not encouraged as, based on our experience, it does
not usually work well. The main reason is that the size of the pool for the control is
usually relatively limited. As a result, some subjects in the investigational device
group may be forced to match up with control subjects with faraway estimated
propensity scores. However, with the possibility of huge data sets from the real
world setting with reasonable quality, there may be more cases utilizing the one-to-
one matching, or even many-to-one matching, design in the future.
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15.3.2.2 Stratification

Stratification is the most commonly adopted approach in the pre-market medical
device applications. In performing this design, all subjects from both groups are
ranked based on their estimated propensity scores, and then grouped into several
strata with roughly equal size accordingly. A common approach is to place subjects
into five groups using the quintiles of the estimated propensity score. By doing so,
approximately 90% of the bias due to measured confounders may be eliminated,
when the linear treatment effect is estimated (Rosenbaum and Rubin 1984).

15.3.3 Two-Stage Design

As a RCT is designed before the outcomes are available, naturally the design
and analysis are separated. This may not be the case for a non-randomized study
without careful planning and execution. If the propensity score design and analysis
are performed simultaneously, data dredging exercise may take place, and the
integrity and the objectivity of the study may be suffered. To avoid such a situation,
the design needs to be carried out without the access to the outcome data. This
practice enhances the consistency, transparency, predictability, and effectiveness of
regulatory decision making (Rubin 2008; Yue 2012).

Two-stage design process, proposed and discussed in (Li et al. 2016; Yue
et al. 2014, 2016) can be implemented to fulfill the principle of the separation of
design and analysis under the regulatory requirements. During the design process,
the outcome data need to be entirely blinded.

The two-stage design is briefly discussed in the following.

15.3.3.1 First Stage

First stage design occurs before the start of the investigational study, similar to any
typical pivotal clinical studies aimed for the medical device pre-market approval.
The data source for the control group is identified.

One of the main tasks is to plan the sample size of the investigational device
study. If the control data are collected concurrently (most likely from an ongoing
registry), the sample size for the control group may be unknown at this stage. For
the purpose of the sample size estimation, the propensity score design and statistical
analysis methods may need to be specified. When the pool of the control group is
expected to be large and thus a one-to-one matching is planned, the sample size
estimation is straightforward. However, if the stratification technique is planned, the
sample size estimation may be trickier as the comparability of the distributions of the
patients’ baseline characteristics is unknown in this stage. As poorer comparability
would result in a larger sample size in order to achieve the same level of power,
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our recommendation is to take a more conservative approach by assuming that the
treatment and control groups are less comparable.

Covariates to be used in building the propensity score model and to be checked
for balance to validate the propensity score design are specified at this stage based
on the clinical judgment. These covariates need to be collected in the investigational
study and the external data source. It is recommended that all covariates related to
the clinical outcomes and the treatment assignments be included in the propensity
score model in order to better fulfill the ignorable treatment assignment assumption
required in the propensity score methodology (Hill et al. 2004; Rubin and Thomas
1996). As reducing bias may be more important than obtaining better statistical
efficiency from the regulatory perspective, it is recommended to include as many
covariates as possible (Yue et al. 2014).

Some actions can be taken to ensure that the study is designed prospectively. For
example, the propensity score design is better to be implemented by an independent
statistician who is blinded to the outcome data. This is to reduce the possibility
of data dredging practice. It is recommended that such a person is identified at
this stage. Masking schemes such as building a firewall to the clinical outcome is
suggested to be in place.

15.3.3.2 Second Stage

The second stage design can be started right after data on covariates for all subjects
is available. The independent statistician identified in the first-stage design works
on the propensity score estimation and design.

The primary goal in this stage is to obtain a propensity score design in which
the covariate distributions between the groups is balanced. After a propensity score
design is built based on the estimated propensity scores that are derived from a
propensity score model, the covariate balance may need to be evaluated. If the
covariate distribution is not balanced, the propensity scores may be re-estimated.
Therefore, it may involve an iterative procedure between the propensity score
estimation and matching/grouping design until the covariate balance is satisfactorily
reached. Note that the evaluation of the covariate balance is based on the particular
propensity score design and planned analysis (Stuart 2010). Examples regarding the
covariate balance diagnostic based on the stratification design can be found in Yue
et al. (2014, 2016) and Li et al. (2016). For covariate balance diagnostic based on
one-to-one matching designs, the reader is referred to Austin (2009).

In the process to finalize the design, the subjects included in the design and
analysis set need to be identified. While all subjects treated with investigational
device need to be included as mentioned above, sometimes in practice some control
subjects are left out to obtain better covariate balance. Whether it is reasonable to
throw away control subjects may depend on the estimand being used. For ATE,
if the remaining subjects, after discarding part of control subject, do not well
represent the population of the control, the combined subjects may consequently
not well represent the overall population. As a result, the estimated ATE based on
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this sample may not be the intended estimand. On the other hand, ATT can always
be legitimately estimated as long as the patient set enrolled into the investigational
device study well represent the population.

Once the propensity score design is agreed upon among the stakeholders, the
analysis population is defined, and the statistical analysis methods are finalized in
this stage. The study power can be re-calculated. If the sample size was underes-
timated in the first stage design due to a false expectation of good comparability
of patient characteristics, it is possible that the study is found underpowered at this
stage. This would put the investigator in an awkward situation.

If the patient distribution of the control subjects is deemed to be so different that
they do not provide good matches to the subjects in the investigational device group,
“additional” control subjects may need to be obtained from other data sources. If no
proper control data are available, the comparative claim cannot be assessed. In this
situation, the results of the investigational device group may be compared with a
performance goal, if such a plan has been proposed in the first stage. Note that this
approach is valid only if the outcome data are not accessed in the entire design stage.

Example 1
Results from a one-arm study with subjects using a new device were proposed
to be compared with control group (medical management) data formed from a
registry, and the treatment effect was to be estimated using the estimand ATT. The
primary endpoint is the 12-month event rate, and it was proposed to be evaluated
using Kaplan-Meier method. Based on the sponsor’s original proposal regarding
the selection of the control subjects from the registry a subject is selected if (1)
s/he meets the same inclusion/exclusion criteria of the investigational study, and
(2) a primary endpoint event occurs to the subject before 12 months or the subject
completes the 12-month evaluation. Note that, a lost-to-follow-up (LTF) registry
patient is not a candidate for the control group.

The proposal of excluding LTF subjects from the registry data appears to be
problematic as it may introduce bias. The control subjects should be selected
solely based on their baseline characteristics, not the clinical outcome or follow-
up information. Registry subjects with comparable baseline characteristics to the
subjects in the treatment group should be included even if no complete clinical
outcome is available. The missing clinical outcome data for such subjects should
be addressed by censoring or some other missing data analysis methods, but not by
excluding them from the data analysis.

Example 2
The performance of a new device was evaluated by comparing the clinical outcomes
with a control group, which was selected from a registry database. The primary
endpoint is 30-day adverse event rate. Based on the protocol submitted in the
IDE, a single arm study of 250 subjects treated with the investigational device was
proposed.

A total of 500 control subjects from the registry were selected based on the
same inclusion/exclusion criteria used in the IDE study. After the single-arm IDE
study was finished, the 250 subjects were matched with 500 control subjects using
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the 1:1 matching method (without replacement) based on the logit of estimated
propensity scores. The matching was performed with different caliper sizes. The
sponsor proposed to use a caliper size of a 0.4 of the standard deviation of the logit
of the estimated propensity scores. It resulted in 200 matched pairs. By doing so,
a total of 50 treated subjects and 300 control subjects were discarded based on this
proposal. It appears that the control group does not provide good matches.

At least two concerns were raised. First, there were no plans to establish a firewall
to mask outcome, and no independent statistician was identified. As it was unknown
whether the matching was performed with outcome data in sight, the objectivity of
the study was in doubt. Second, it is problematic to discard subjects in the treatment
group. Thereby it would be difficult to identify the intended population. On a related
note, it was unclear what the estimand was to be estimated based on the 200 matched
pairs.

Example 3
A sponsor intended to conduct a one-arm investigational study to assess the non-
inferiority regarding the primary endpoint of a cardiovascular device to a control
where the control group was extracted from a national registry. The primary
endpoint is the treatment success rate at 12 months.

In the first design stage, the sponsor anticipated that 400 control subjects would
be available. The sponsor expected that the success rate for both treatments would
be 80%. With the 10% non-inferiority margin using a one-sided α of 0.025 of the
Wald test, the sponsor proposed 300 subjects for the IDE study. This was derived
by treating the study design as if it was a randomized controlled trial with a power
of 90% in attempt to compensate the potential imbalance in sample size distribution
among strata.

After the enrollment of the study was completed and all baseline covariates
were collected, an independent statistician who had no access to the outcome
data performed the propensity score modeling and design. The final agreed study
design was based on the stratification method. The sample size distribution of
the design is displayed in Table 15.1. It can be observed that sample sizes are
relatively unbalanced across strata. As a result, the re-calculated power based on
this distribution became 74%, which was less than the desired level of 80%. This
relatively awkward situation may be prevented if the sample size was calculated
more conservatively in the first design stage.

Table 15.1 Sample size
distribution among strata
(quintiles) for Example 3

Quintile (k)
1 2 3 4 5 Total

Nt(k) 20 38 55 78 109 300
Nc(k) 120 102 85 62 31 400
Total 140 140 140 140 140 700
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15.4 Analysis

15.4.1 Analysis Based on the Type of the Design

15.4.1.1 1:1 Matching

When each subject in the treatment group is matched with K subjects from the
control group in the propensity score design, the data can be analyzed in two
different ways: One way is to account for the feature of the matched-pair data, and
the other is to treat the matched samples as if they were collected from a RCT.

Some researchers such as Imbens (2004) and Austin (2011a) and practitioners
believe that the correlation should be accounted for in the matched-pair data.
Subjects within a pair have similar propensity scores, and their observed baseline
covariates come from the same multivariate distribution. In the presence of con-
founding, baseline covariates are related to outcomes, and thus matched subjects
are more likely to have similar outcomes. Others have a different perspective.
They point out that the theory of propensity scores only indicates that covariate
distributions of the subjects with the same propensity scores between two treatment
groups are similar. Subjects with the same propensity score may have very different
values in the baseline covariates. In addition, there may be no reasons that the
outcomes of matched subjects are correlated in any way (Schafer and Kang 2008).
Additional discussions can be found in Stuart (2008, 2010).

Whichever approach an applicant intends to use needs to be clearly specified
in the design stage. For either approach, note that, as each of the subjects in the
investigational device arm is matched with one control subject and some of the
control subjects are likely thrown out, only ATT may be estimated.

15.4.1.2 Stratification

With the stratification design, the treatment effect is estimated within each stratum
and then all estimated effects are aggregated across strata (Rosenbaum and Rubin
1984). To obtain the estimate of the ATT, the estimates of strata are weighted by
the number of subjects in the investigational device group within the associated
stratum. To obtain the estimate of the ATE, the estimates of strata are weighted
equally. ATT can be always estimated since all subjects in the investigational device
group are retained in the analysis set. However, if some subjects in the control group
are thrown away, the ATE may not be able to be estimated as the overall patient
population may be altered by discarding subjects.

Example 4
An applicant proposed to conduct a one-arm study to study the investigational
device that was intended to treat patients with de novo and non-stented restenotic
lesions in superficial femoral and proximal popliteal arteries. The primary end-
point was the primary patency within 12 months. To support the claim that the
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investigational device was non-inferior to a similar device that had already been
approved on the market, the applicant proposed to design a non-randomized
comparative study. The control subjects were to be selected from a national registry
with satisfactory data quality.

The primary patency rate is expected to vary greatly among patients with
different characteristics. For example, it is believed that the primary patency rate
would decrease with the increased length of the lesion to be treated.

The applicant proposed to apply the propensity score methodology to mitigate
the bias introduced by the potential differences in patient baseline characteristics.
Subjects were to be grouped into quintiles based on their estimated propensity
scores. A Z test was proposed to test the non-inferiority hypothesis. In doing so,
the stratum-specific estimates of difference in 12-month primary patency rates were
proposed to be weighted by

wi =
(

1

Nc(k)

+ 1

Nt(k)

)−1

/
∑

i

(
1

Nc(k)

+ 1

Nt(k)

)−1

,

where k is kth quintile (K = 5); Nt(k) and Nc(k) are the associated sample size in the
treatment and control arm in the kth quintile, respectively.

The likely rationale for this proposal was that the estimate with such weights has
better statistical efficiency. To see this, first note that the variance of the estimate of
difference in 12-month primary patency rates in strata k is proportional to

1

Nc(k)

+ 1

Nt(k)

.

It can be observed that, since Nc(k) + Nt(k) are roughly the same for all k, the
less balanced the sample size between two groups within a stratum, the higher the
variance is. With the proposed weights wi, the impact of the strata with less balanced
sample size distribution is reduced.

The proposed estimator is a valid estimator for the average treatment effect of
the target population only if the treatment effects across the propensity score strata
are the same. As there was no evidence or plausible explanation to suggest that
the treatment effects between two devices would stay constant across strata, it was
unclear what estimand was to be estimated based on the proposed weights.

15.4.2 Missing Data

Because there may be differences in the treatment intervention and data collection
mechanisms between the two groups, missing rates and missing patterns may be
different. For example, higher missing rate may be observed in real-world data
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sources as opposed to the closely-monitored, well conducted clinical studies. This
may need to be considered when handling the missing data in the analysis.

Multiple imputation is a popular method adopted to handle missing data in
medical device pre-market evaluation. Due to the nature described in the previous
paragraph, the missing values may be imputed based on separate model built from
data of each treatment group. In a propensity score stratification design, as missing
data may reside in different strata, issue regarding how to account for the strata in
the imputation need some considerations.

15.4.3 Subgroup Analysis

15.4.3.1 1:1 Matching

When the analyses are performed by treating the samples as if the samples were
collected from a RCT, considerations and methods involved in conducting the
subgroup analyses based on RCT design also apply.

However, if the data are analyzed to account for the nature of the matched-pair
data, it may not be possible to conduct a subgroup analysis in align with the primary
analysis. Subjects within a pair may belong to different subgroups for some matched
pairs.

15.4.3.2 Stratification

In this type of design, each stratum may be viewed as a quasi-RCT. Therefore, the
subgroup analyses may be conducted within each stratum. Sometimes a statistical
test is desired to evaluate the similarity of outcomes among subgroups. For example,
a test such as Breslow-Day test may be used for evaluating binary endpoint.

15.5 Conclusions

The observational, nonrandomized comparative studies have been utilized in medi-
cal device premarket evaluation. This type of studies is gaining momentum recently
as there has been great interest in employing real world data of acceptable quality
in the premarket applications.

Proper practice can enhance the validity of the nonrandomized study. It is
suggested that the type of the estimands be identified as soon as possible, ideally
in the early phase of the study design. The propensity score methodology has
widely been used to design and analyze such studies. Appropriate implementation
is essential in obtaining a valid conclusion drawn from the study. In particular,
the two-stage design, which ensures the separation of design and analysis, can be
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adopted under the regulatory framework to mitigate bias. Careful considerations
are needed in analyzing the data to better assess the evidence. We envision that,
through proper and careful study design and analysis, the integrity of the study can
be maintained, and the interpretability of study results can be enhanced.
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Chapter 16
Review of Statistical Issues in Pragmatic
Clinical Trials in Current Drug
Development Environment

Dingfeng Jiang, Kun Chen, Saurabh Mukhopadhyay, Nareen Katta,
and Lanju Zhang

16.1 Background of the Review

Traditionally, regulatory decisions have been based on evidence from randomized
controlled trials (RCTs), which have long been the fundamental tool for benefits-
risks assessment when studying the efficacy and safety of a new intervention in
healthcare (FDA guidance 1998). Common practices of RCTS such as well-defined
inclusion and exclusion criteria, blinding, randomization and well-controlled envi-
ronment, however, limit RCTs’ external validity, i.e. the ability to generalize
conclusions in an extended population and daily clinical settings (Ware and Hamel
2011). On the other hand, downstream decision makers constantly struggle for the
lack of real-world evidence (RWE) of effectiveness and safety in daily practice,
where patients are heterogeneous and not well-compliant. Those requests from
stakeholders drive the recent rise of ‘pragmatism’ in clinical trials (Patsopoulos
2011). Both the United States Food and Drug Administration (FDA) and European
Medicines Agency (EMA) have spoken publicly about the potential of RWE
to inform regulatory decisions. Featured by minimum exclusion, close-to-normal
practice environment, open-label and ability to switch, pragmatic clinical trials
(PCTs) bridge RCTs and observational studies and are capable of generating high
quality RWE of effectiveness and safety.

Although abundant literatures describe applications of PCTs, the methodological
and statistical implications of pragmatism are not well discussed; especially when
the treatment is an investigational drug or trial results are for regulatory approval.
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This review outlines some well-established statistical principles in RCTs that need
to be re-examined to account for the uniqueness of PCTs, together with an example
study, the Salford Lung Study. Hopefully this would be the initial step to spark the
interest of developing best practice guidelines for PCTs.

The review organizes as follows, Sect. 16.1 provides background, characteristics
and definition, and applications of PCTs. Section 16.2 discusses PCTs from design
perspective including study population, enrollment, endpoints/outcomes, random-
ization, blinding, sample size, power and multiplicity. Section 16.3 investigates
analysis issues such as analysis population, missing data, heterogeneity of treatment
effect and subgroup analysis, etc. The Salford lung study is discussed in Sect. 16.4 as
an example of PCT prior to approval. Section 16.5 offers discussion and conclusion
to close the review.

16.1.1 History, Characteristics, and Definition of PCTs

The original concept of PCTs dates back to the 1960s when two French statis-
ticians, Schwartz and Lellouch tried to differentiate two types of trials, one to
confirm a causal relationship between an administrated intervention and pre-
defined outcomes/endpoints (‘explanatory’), and the other one to inform clinical and
health policy decisions where two or more interventions are involved (‘pragmatic’)
(Schwartz and Lellouch 1967). More recently, a growing number of authors seem
to agree that there is a continuum between explanatory RCTs and PCTs rather
than a dichotomy between them. PCTs were given a strong boost in the late 2008
and 2009 when a 22-item checklist (Zwarenstein et al. 2008) and the Pragmatic-
Explanatory Continuum Indicator Summary (PRECIS) tool were published to help
design pragmatic trials (Thorpe et al. 2009). The PRECIS tool and it’s improved and
validated version PRECIS-2 (Loudon et al. 2015) provided a global visualization
tool for assessing a trial’s pragmatism.

Tunis et al (Tunis et al. 2003) argued that pragmatism includes four important
elements (1) comparison among clinically relevant interventions, (2) a diverse study
population, (3) heterogeneous practice environment, and (4) a wide range of health
outcomes. Califf et al (Califf and Sugarman 2015) proposed three key attributes of
PCTs “(1) an intent to inform decision-makers (patients, clinicians, administrators,
and policy-makers), as opposed to elucidating a biological or social mechanism; (2)
an intent to enroll a population relevant to the decision in practice and representative
of the patients or population and clinical settings for whom the decision is relevant;
(3) either an intent to (a) streamline procedures and data collection so that the
trial can focus on adequate power for informing the clinical and policy decisions
targeted by the trial or (b) measure a broad range of outcomes.” They further offered
the definition of PCT as a trial “designed for the primary purpose of informing
decision-makers regarding the comparative balance of benefits, burdens, and risks
of a biomedical or behavioral health intervention at the individual or population
level.” The definition of PCTs will keep evolving, but the aspects of broader patient
population, near-to-normal practice environment, and clinical relevant comparator
seems to be well agreed upon.
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16.1.2 Applications of PCTs

Early applications of PCTs include “large and simple” trials in the cardiovascular
(DIG group 1996) and diabetes areas (DREAM study group 2004). Comparative
effectiveness research (CER) is traditionally an important area for PCTs. Both
Mullins (Mullins et al. 2010) and Chalkidou (Chalkidou et al. 2012) discussed
challenges and solutions of using PCTs in CER. PCTs are also popular tools for
post-approval safety study after a new drug becomes widely prescribed. Reynolds
(Reynolds et al. 2011) evaluated PCT study designs over other designs in this
setting.

Recent interest in PCTs emerges from their potentials for regulatory approval.
The twenty-first Century Cures Act requires the FDA to evaluate RWE for support-
ing approval of a new indication for an already approved drug and for post-approval
studies (FDA PDUFA 2016; FDA guidance 2017; Berger et al. 2017). Under this
legislation, a draft framework for the evaluation of RWE will be established by
the end of 2018 and draft guidance will be issued by the end of 2021. The Adaptive
Pathway by EMA (EMA guidance 2016) supports the use of PCTs to generate RWE
of effectiveness and safety for approval. Another emerging area is to demonstrate
real-world effectiveness to reimbursement agencies or payors. A spotlight example
is the GSK’s Salford Lung Study (New et al. 2014; Bakerly et al. 2015), the world’s
first phase 3 PCT to evaluate the effectiveness and safety of an investigational
medication prior to regulatory approval and to provide real-world effectiveness for
Health Technology Assessment (HTA) agencies. Regardless of the purpose, the real-
world effectiveness and safety are the key elements stakeholders seeking from PCTs.

It should be noted that the rising pragmatism should not undermine the impor-
tance of RCTs, which is the only source for high-quality efficacy and safety evidence
with strong internal validity. PCTs provide a complementary platform for real-world
effectiveness and safety with external validity in a broader population (Treweek and
Zwarenstein 2009). Both study types are important for evidence generation in drug
development and lifecycle management.

16.2 PCTs Design Considerations

Accurate estimation of treatment effectiveness in real-world clinical setting requires
many components, addressing confounding and bias being on the top lists. At
very least, investigators need to consider the choice of control group and types of
design at design stage. Comparing to RCTs, the standard of care (SOC) instead of
placebo is more frequently used as a control in PCTs. Non-inferiority, superiority
and equivalent study designs are still applicable in PCTs. Other key design issues in
a PCT include: (1) a population reflecting patients who currently receive medication
in daily care; (2) recruiting and practice environment; (3) clinical meaningful
outcomes; (4) blinding; (5) randomization; (6) power, sample size, and multiplicity.
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16.2.1 Patient Population: Inclusion and Exclusion Criteria

A common critique of RCTs, particularly on those designed for regulatory approval,
is their strict eligibility criteria (Williams et al. 2015), which often seek a homo-
geneous patient population to prove clinical efficacy. This leads to the exclusion
of many patients in need of such care, making it unclear whether the conclusion
applies to these excluded patient populations. The reported screen failure rate varies
greatly across disease areas. A 20–30% failure rate was reported in prostate and
kidney cancer studies (Wong et al. 2016). In other areas, the proportion of excluded
patients is substantial. In Alzheimer’s diseases, it was suggested that only 10–13%
are eligible for clinical trials (Grill and Karlawish 2010). In COPD and asthma,
the number could be as low as 3–7% (New et al. 2014). It has been estimated
that only about 2–5% of the screened patients were enrolled in early percutaneous
transluminal coronary angioplasty (PTCA) vs. coronary artery bypass graft (CABG)
studies (Black 1996; Hannan 2008).

On the other hand, how to manage diverse and heterogeneous patient popula-
tion with limited resource is a common challenge for most healthcare systems.
With increasing aging populations in most developed countries, elderly patients,
patients with multiple comorbidities and multiple concomitant medications, are
very common in practice. However, these patients are often under-represented or
even excluded from RCTs (Konrat 2012). Women and ethnic minorities are also
under-represented in RCTs (Hoel 2009). Obviously, there is evidence gap for the
under-represented populations even for efficacy, not to mention effectiveness.

A PCT is targeted to maximize the generalizability of study findings by enrolling
patient cohort that is representative of the real-world patient population. Such effort
leads to the minimum exclusion criteria in most PCTs to have a well-represented
cohort (Patsopoulos 2011). The exclusion criteria based on ethical and safety
considerations, however, should be held up to the same standard as RCTs. It must
be noted that broader patient groups will create a larger degree of heterogeneity, an
increased variation and a diluted treatment effect.

16.2.2 Recruitment and Practice Environment

For most RCTs, recruitment starts when patients with the study disease seek
healthcare service. However, once patients consent, they will be closely monitored
with frequent visits. The intensive monitoring plan ensures compliance and good
follow-up. However, protocol-driven care often leads to exaggerated treatment effect
in RCTs since in real-life practice such protocol-driven care rarely exists (Guisasola
2008). The discrepancy between efficacy and effectiveness, at least to a certain level,
is attributed to such practice difference.

PCTs are targeted to estimate effectiveness in real-life practice. Hence reducing
intensity of monitoring and/or frequency of visit is a key element for maintaining
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least intervention to avoid protocol-driven care. However, minimum infrastructure is
absolutely needed for a successful study. Hence, balancing close-to-normal practice
environment and study logistic necessities becomes an operational challenge in
PCTs. Another important factor to consider is the reimbursement of concomitant
medication. The principle of PCTs generally requires the study to follow general
practice coverage without additional incentives.

In multicenter RCTs, study sites may have very different healthcare systems
and SOCs. If the focus of a PCT is to understand the effectiveness and economic
implication of a new drug in a particular healthcare system of interest, it is generally
challenge to do a multicenter PCTs. Salford Lung Study was done in one city—
Salford, England (New et al. 2014; Bakerly et al. 2015). The study fully utilized
the existing infrastructure for data capture and patient monitoring. This does not
only reduce resource burden of study sponsor but also generates results applicable
to real-life practice in that health care system.

16.2.3 Endpoints and Outcomes

Most endpoints in late phase RCTs are clinically focused to quantify efficacy,
safety, and quality of life (QoL). In some therapeutic areas, validated surrogate
endpoints might be used, e.g. progression-free-survival (PFS) being a surrogate
for overall survival (OS) (Saad et al. 2010) in oncology. PCTs target broader
stakeholders, besides regulators, often including downstream stakeholders such as
health technology assessment agencies (HTA), national/regional or private payers,
practitioners or patient advocacy groups. Additional endpoints are desirable to meet
their needs. Patient-reported outcomes (PROs) are heavily used in PCTs to bring in
patients’ perspective. Health resource utilization endpoints are important for payors.
For PCTs designed to meet post-market safety surveillance commitment, a broad
spectrum of safety endpoints should be collected. Early involvement of stakeholders
and incorporation of their input are vital to have a full panel of endpoints. It should
be noted that the lack of blinding in most PCTs advocates ‘objective endpoints’
that is less prone to measurement error and/or subjectivity of study personnel who
conduct the assessment.

16.2.4 Blinding

Blinding is intended to reduce known or unknown bias in the conduct and inter-
pretation of a clinical trial due to the knowledge of treatment. For RCTs assessing
efficacy, blinding is strongly recommended if ethically and/or operationally feasible
(Schulz and Grimes 2002). However, open-label status reflects practice of normal
care. From this aspect, open-label is preferred in PCTs, which may explain why
most PCTs are open-label in order to estimate real-world effectiveness. On the
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other hand, in an open-label study, the awareness of treatment assignment is
likely to affect patient selection, psychological or physical responses of patients,
and assessment of endpoints (Beyer-Westendorf and Buller 2011). Depending on
patients and/or physicians’ perception, the patients assigned to a new treatment may
have a favorable expectation or increased apprehension; those assigned to standard
treatment, however, may feel deprived or relieved. So selecting endpoints less prone
to subjectivity is a key way to reduce bias introduced by open-label status. In
general, reducing bias in an open-label environment remains a challenge task for
researchers.

16.2.5 Randomization

A key feature of RCTs is randomization, which allows RCTs to minimize group
difference prior to treatment to minimize selection bias. Statistically, randomization
permits probability theory to construct a likelihood function so that any differences
in outcomes can be primarily attributed to treatment assignment (Bulpitt 1996). For
the same reason, randomization is also highly recommended for PCTs. However,
special consideration is needed for open label PCTs. At operation level, a centralized
randomization process is preferred as the center can control the realization of
randomization at subject level per each investigator. New randomization methods
such as the cluster randomization (Schulz et al. 2010; Hotopf 2002), and the
stepped wedge randomization (Hussey and Hughes 2007; Hemming et al. 2015)
may be helpful too. Stratified randomization is preferred when there are signals
suggesting different responses among subgroups or subpopulation analysis is of
interest. For example, when studying the effectiveness of cardiovascular disease
(CVD) preventing agents, it is common to randomize with stratification by gender,
since the risk of CVD between male and female are different (Mosca et al. 2011).

16.2.6 Power, Sample Size, and Multiplicity

As mentioned before, PCTs target to enroll diverse patients in real-life clinical
practice with minimum monitoring. Hence increased heterogeneity, decreased
compliance and increased loss to follow-up will inevitably lead to diluted treatment
effect and inflated variance. Statistically speaking, either of the two components
(reduced treatment effect and inflated variance) will require a larger sample size to
maintain the study power. Under such scenario, the common requirement for RCTs
(e.g. 90% of power, 2-sided 5% type I error) will need to be revisited. Can the
study power be decreased? Can an inflated type I error rate more than 5% be used
in PCTs? Will a smaller effect size be considered clinically meaningful? Whether
multiplicity should be addressed to the same level of pivotal RCTs, in which the
family-wise type I error rate is strictly controlled for the primary endpoint(s) and the
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key secondary endpoints. These are relevant questions for the investigator, sponsors,
and stakeholders. It is reasonable to expect the same requirement for PCTs, if the
results are part of a submission package for regulatory approval. In other cases, input
from stakeholders on these issues need to be fully addressed in design stage. In our
opinion, PCTs should be adequately powered. Unfortunately, literature reveals that
many PCTs are not properly powered, often leading to an inconclusive result and
thus a waste of resources.

16.3 PCTs Analysis Considerations

As mentioned above, a continuum exists between RCTs and PCTs. Therefore, the
principles of analyzing RCTs are often applicable in PCTs. Special considerations
are needed to reflect the uniqueness of PCTs. These analysis considerations should
be fully accounted for at the designing stage to increase the chance of a conclusive
study.

16.3.1 Analysis Population

Intention-to-treat (ITT) population has long been regarded as the preferred principle
to estimate treatment effect (Gupta 2011). ITT analysis is still an important tool
in PCTs to assess comparative effectiveness. The ITT principle, however, varies
considerably across trials with different levels of adherence to study protocols.
Treatment adherence is well managed in most RCTs due to the tight monitoring
plan. Nevertheless, in PCTs, patients can switch to any alternative treatments after
randomization in order to mimic real-world practice. The classical ITT approach
compares patients based on randomized assignment without adjusting for switching.
When switching rate is high in PCTs, the validity of ITT principle can be severely
compromised. This could contaminate the estimation of true treatment effectiveness.
The Per-Protocol (PP) principle, which excludes switched patients from analysis or
treat them as censored at the point of the switch, however, may increase selection
bias and disrupt covariate balance between treatment groups by randomization.

How to accurately estimate the effectiveness under treatment switch remains
the most challenging statistical issue in PCTs. No consensus guidelines currently
exist. Fortunately, PCORI (Patient-Centered Outcomes Research Institute) funded
projects are in progress to develop such guidelines (PCORI 2018). Some advanced
methods are also proposed, including the Inverse probability of censoring weights
(IPCW) method (Hernan et al. 2001), the two-stage method (Latimer et al. 2014), the
rank preserving structural failure time model (RPSFTM) (Robins and Tsiatis 1991;
Mark and Robins 1993), and the iterative parameter estimation (IPE) algorithm
(Branson and Whitehead 2002). However, adoptions of these new methods in PCTs
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are rare (Latimer et al. 2018). An operationally easy approach is to conduct multiple
sensitivity analyses using different analysis populations.

16.3.2 Missing Data

Preventing and planning for missing data and describing the methods to address
them in a study protocol is an important component of any good research. More
planning is needed for PCTs because patients are more likely to drop out as
no intensive monitoring planning exists in general. Informing patients about the
implications of missing data may help. Tracking all patients and recording not only
dropout itself but also the reasons of dropout should be considered as a routine
requirement. Other factors such as the censored/diluted/contaminated assessments
due to use of recue medications, switch practitioners, and poor treatment compliance
only add more complexity to the problem in PCTs. The extent and pattern of missing
data must be reported so that the implications are clear to anyone who might make
a decision on the results.

All current missing data handling methods rely on missing mechanisms, three
common ones being MCAR (missing completely at random), MAR (missing at ran-
dom), MNAR (missing not at random, also known as non-ignorable nonresponse).
To reduce the risk of data-driven selection of approach that could adversely affect
either the validity or the relevance of the results, researchers—before seeing the
data—should determine how to address them. Multiple imputations (MI) has the
potential to produce less biased results than using a single value (such as LOCF
or Last Observation Carried Forward) method when missing at random assumption
seems reasonable. For MNAR, new approaches such as selection model or pattern
mixture model have been adopted. In light of ICH E9 Addendum on estimand, the
principles of defining a valid estimand may be more critical for PCTs.

16.3.3 Heterogeneity of Treatment Effect and Subgroup
Analysis

Compared to RCTs, PCTs face more heterogeneous population, leading to poten-
tially different responses across subgroups to the intervention of interest. Thus how
to assess treatment effectiveness in subgroups becomes more challenging in PCTs.
To avoid data-driven approach of multiple post-hoc subgroup analysis, which is
prone to false positive, it is recommended that the subgroups need to be pre-specified
to ensure valid estimation of stratified treatment effects for testing a limited number
of subgroups (with large enough sample sizes).
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16.3.4 Analysis of Economic and Humanistic Endpoints

Health economic evaluations are commonly included in PCTs because it is often
important to assess cost and cost-effectiveness as well as clinical outcomes to
inform policy decisions (Fayers and Hand 1997). Healthcare planners may need
information about the total annual budget required to provide a treatment at a
particular hospital. An estimate of total cost is often obtained from data in a trial by
multiplying the cost in a particular treatment group by the total number of patients
to be treated. Such information is not always available in RCTs as the study drug
is largely provided by sponsors. In such analysis, the distribution of cost data is
frequently skewed because a few patients can produce large costs. For example,
some patients receiving the investigational drug can develop rare but costly adverse
effects. This can lead to a skewed distribution with a right-tailed skewness generated
by the few patients having adverse effects. The difference in the mean costs,
therefore, may be inappropriate. Proper data transformation before analysis may
be required (Thompson and Barber 2000). Distribution-free approaches, such as the
bootstrap method, in particular, may be more appropriate alternatives (Desgagné et
al. 1998).

Humanistic endpoints or patient-reported outcomes (PROs) are also frequently
used in PCTs, as well as RCTs. It brings patient perspectives into the drug
development and is vital to understand the impact on patients’ quality of life.
The choice of particular PRO instruments needs to be well balanced between
stakeholders’ need and study feasibility.

16.4 An Example: Salford Lung Study

Concerning patients’ representativeness in RCTs, the Salford Lung Study (SLS) is
the world’s first pragmatic randomized clinical trial of an investigational medication
prior to the drug approval (New et al. 2014; Bakerly et al. 2015). It was designed
to evaluate the effectiveness and safety of the once-daily combination of inhaled
corticosteroids (ICS) fluticasone furoate (FF) and the novel long-acting beta2-
agonist (LABA) in a dry powder inhaler (DPI) compared with existing maintenance
therapy in a real-world population of patients with asthma, and patients with Chronic
Obstructive Pulmonary Disease (COPD) in normal care. The primary outcome of
COPD is the rate of moderate and/or severe exacerbations, and an improvement in
asthma control (Asthma Control Test) in the asthma study. The first patients were
enrolled in the COPD study in April 2012 and the asthma study in December 2012.

The SLS COPD is a 12-month, open-label study, with 1:1 randomization to the
intervention or the ‘usual’ care for 12 months by patient’s own general practitioner
(GP), practice nurse and community pharmacist. The study GPs and pharmacy were
instructed to maintain usual normal practice for the study participants in order to
preserve the real-world nature. Similarly, the SLS employed minimal exclusion
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criteria to only exclude patients with an exacerbation within the previous weeks
or having chronic oral corticosteroid use. During the conduct of the study, it also
maintained a minimum monitoring schedule, with visit 1 for informed consent,
visit 2 for randomization, phone contact during visit 3, 4 and 5, and visit 6
for a final assessment of outcomes. Multiple secondary endpoints were used for
COPD study, including those of the interest of downstream stakeholders such as
health technology assessment agencies and payers. The secondary endpoints include
time to first exacerbation and health resource utilization such as COPD-related
primary and secondary care contacts. Other endpoints include hospitalization, use of
rescue medication, EuroQol-5 Dimensions (EQ-5D) questionnaire. Safety endpoints
include death, pneumonia, frequency, and types of serious adverse events (SAEs).
Randomization was stratified by the baseline maintenance therapy and by the history
of COPD exacerbation in the previous 12 months to ensure treatment balance among
subgroups. During the design stage, the SLS intended to achieve 80% power to
detect a relative reduction of 12% in the primary endpoint with two-sided 5%
significance level. To account for the heterogeneous population, the sample size
calculation was based on a negative binomial regression with dispersion rate of 0.7.
The primary endpoint was analyzed by the ITT principle. Subgroup analyses were
planned using baseline medication, lung function, comorbidity and other factors for
the definition of subgroups.

The study was conducted in and around Salford, UK, where a high prevalence
of COPD in a community was served by a single hospital. Salford established
electronic medical record (EMR) for both primary and secondary care before
initiation of SLS, which allowed the study to capture effectiveness and safety data in
real time on study participants. A pilot study was conducted to quantify the burden
of asthma and COPD, evaluated the outcomes used in the SLS. The SLS’s challenge
comes from the enrollment of the study participant as a large number of patients
needs to be enrolled through GPs and practice nurses, the majority of which had
little pre-license clinical research. Hence extensive training in good clinical practice
was offered to nurses, pharmacists and GPs in Salford in 2012, as well as a public
education campaign in parallel. The existing integrated EMR system that connected
the hospital and surrounding primary care practices in real time facilitated the
collection of study data; although additional data feed was added to capture access
to out-of-hours services, access to health services outside of Salford and deaths.

The results of the SLS COPD study were published in the New England Journal
of Medicine in September 2016 (Vestbo et al. 2016). The primary effectiveness
analysis population (N = 2269, defined as those who was randomized and have
one or more moderate or severe exacerbations in the year before the trial) showed an
8.4% (95% confidence interval 1.1–15.2) lower rate in the FF group compared to the
standard of care (p = 0.02). This finding was confirmed in the entire trial population
(N = 2799, defined as those who were randomized, and took trail medicine if in the
treatment group), with 8.4% reduction in the FF group (95% CI 1.4–14.9, p= 0.02).
The incidence of SAE during the treatment was similar in both groups. Although
the SLS COPD study meets the primary endpoint, some of the reviewers criticized
the study as it did not consider patients’ smoking history and spirometric values
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as subgroup analyses. Rates of serious pneumonia among patients receiving FF as
compared with the rate among those who received usual care was also questioned
by the reviewers from safety perspectives. Another major concern was the value of
pre-specified ITT population as 22% of the patients in the FF group switched back
to their previous drugs over the first 3 months (Correspondence 2016).

16.5 Discussion and Conclusion

PCTs are the type of studies bridging RCTs and observational studies and are
important sources of RWE for regulatory decision making. How to balance the cost
of statistical rigorousness for the gain of PCTs in terms of diversity and pragmatism
is a highly individualized choice depending on the nature of the scientific question
and stakeholders’ need for evidence. FDA is in the process of building infrastructure
for PCTs under the twenty-first Century Cures Act and Prescription Drug User Fee
Act (PDUFA) VI. Emerging roles of PCTs in drug approval and reimbursement
for effectiveness assessment have triggered a new wave of interest to generate
high-quality evidence to meet the need of broad stakeholders including patients,
clinicians, payers, and policymakers. Potential bias due to open label and treatment
switch remains the greatest challenges to PCTs as illustrated in the SLS study. In
addition, PCTs face operational hurdles, especially on data collection. PCTs are
generally large in scale and involve heterogeneous (realistic) practice sites. This
increases the number of data sources and the volume of data that needs to be
pulled and standardized for downstream analysis. Once relevant data sources are
identified, formats and frequency of data transfers need to be sufficiently evaluated
by considering internal infrastructure and scalability. This requires the sponsors of
PCTs conduct a careful feasibility analysis beforehand for the potential investment.

To date, limited statistical guidelines exist for investigators as to how to properly
design and analyze PCTs. Much of the current practices in PCTs are mimicking
those of RCTs. Although the continuum of the explanatory and pragmatic aspects
of in RCTs and PCTs makes it reasonable to borrow much of the practice from
RCTs, which has long been tested and validated; some unique aspects of PCTs,
however, call for new methodology and guidance (Califf 2016). The current review
works toward this goal. Many reviewed issues are up for discussion and will be
evolving as more exploration is done in this direction. The consensus from industry,
academic institutions, and government agencies on the above issues will definitely
help to guide the development of PCTs for the benefits of healthcare providers,
policymakers and ultimately patients.
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Chapter 17
Evaluating Potential Subpopulations
Using Stochastic SIDEScreen
in a Cross-Over Trial

Ilya Lipkovich, Bohdana Ratitch, Bridget Martell, Herman Weiss,
and Alex Dmitrienko

17.1 Introduction

The continuing developments in the biomedical technology, statistics, and machine
learning are leading not only to a growing recognition of the presence of hetero-
geneity of treatment effects in many clinical conditions but also to the ability of
researchers to identify patient characteristics responsible for such heterogeneity.
Once established, this knowledge can be used to improve patient outcomes through
the practice of precision medicine (also known as personalized medicine) where
therapies can be tailored to characteristics of the patients as well as to their environ-
ment and lifestyle (Ashley 2015). Recent breakthroughs and decreases in the cost of
genome sequencing led to advances in identifying genetic traits that are responsible
for variations in disease susceptibility and response to treatments. Such variations
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can often be attributed to phenotypic and clinical characteristics of patients (often
broadly referred to as “biomarkers”) that do not require genetic testing. While in
some cases heterogeneity of treatment effects may be suspected or even obvious
based on biological considerations, in general, identifying characteristics reliably
describing patient profiles with the most beneficial treatment effect or a favorable
benefit-risk balance is a challenging task. It often requires advanced analytical
approaches which fortunately enjoyed much research and progress in recent years
(see, e.g., a review of recent approaches to evaluating treatment effect heterogeneity
in clinical trials in Lipkovich et al. 2017a).

There are multiple stakeholders who would benefit from identification of sub-
groups with enhanced treatment benefits in the patient population. Obviously,
patients and their physicians can make use of such knowledge to improve their
decision-making and choose the best individualized course of treatment. Clinical
study sponsors may face scenarios where a promising therapy fails in the overall
study population, yet there is a subgroup of patients with a clinically meaningful
treatment effect. In such cases, the sponsors may be able to salvage the experimental
treatment by refining the target population and testing the treatment again in a new
population. Even when a trial shows a significant effect based on the overall study
population, additional analyses may reveal that the observed treatment effect is in
fact driven largely by a subset of patients (see, e.g., Basile 2009). In such situations,
more targeted indication labeling can lead to considerable health benefits and cost
savings.

Numerous advances in statistical methods for subgroup and biomarker identifi-
cation have been made in the last 10 years by researchers from diverse communities
including machine learning, causal inference, and multiple testing (see recent
reviews in Lipkovich et al. 2017a, Lamont et al. 2016).

One important distinction can be made between parametric and non-parametric
methods. The former typically seek biomarker signatures as smooth functions
of biomarkers (e.g. linear combinations that are further thresholded to define
meaningful subgroups of patients who may get more benefit from the experimental
treatment, control, or none). Non-parametric methods often utilize methods of
recursive partitioning to construct biomarker signatures as nodes of regression tree
models. Examples include interaction trees (Su et al. 2009) and methods proposed
within the GUIDE platform (Loh et al. 2015).

Another group of methods termed local subgroup modeling (Lipkovich et al.
2017a) develops biomarker signatures by direct search rather than by estimating a
single model on the entire covariate space. Some methods within this group borrow
ideas from PRIM (patient rule indication method a.k.a. Bump Hunting, Friedman
and Fisher 1999). Examples include (Kehl and Ulm 2006; Chen et al. 2015).

SIDES (Lipkovich et al. 2011) and SIDEScreen methods (Lipkovich and
Dmitrienko 2014) also belong in this category. Similarly to the tree-based
methods, they construct subgroups by recursive partitioning; however, unlike trees,
they generate a collection of overlapping subgroups (“branches”) rather than a
partitioning on the entire covariate space. Each subgroup is formed by consequent
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splits of a parent node into two child groups and retaining only one of the two as a
candidate for a possible subsequent split.

Methods based on recursive partitioning are notoriously unstable and it is not
surprising that various proposals incorporating stochastic elements in subgroup
search (e.g. via resampling) were made. For example, Virtual Twins (Foster et
al. 2011) uses random forests to obtain a reliable estimate of individual treatment
effects; TSDD method (Shen et al. 2015) employs bootstrap for subgroup generation
and obtaining reliable estimates of treatment effect; (Huang et al. 2017) use
resampling at several stages of biomarker signature development.

Challenges of subgroup identification are accentuated in small data sets (such
as the case study presented in this paper). It is well known that small sample
size aggravates the instability of methods based on recursive partitioning, so that
small changes in the data can lead to important changes in the results. This issue
can impact the subgroup search as well as evaluating the magnitude of treatment
effects in the identified subgroup, leading to an increased difficulty of replicating
and confirming the results in future studies.

In this paper we propose and evaluate an approach for mitigating this issue by
combining SIDES with resampling applied at different stages of subgroup search.
Resampling is used to help screen out unimportant biomarkers, to reduce the
“optimism bias” in the estimated treatment effect in subgroups, and to obtain an
indicator of the replicability of the identified subgroup.

This paper describes an application of the SIDES methodology that adapt to
specifics of the case study while employing novel strategies described above. The
analysis aims at evaluation of potential heterogeneity of treatment effects given
available biomarkers while protecting from spurious “findings” which are likely to
occur in small data sets.

The paper is organized as follows. In Sect. 17.2 we present an overview of SIDES
methodology, show how it can be applied to a cross-over study, and describe several
methods for evaluating the predictive ability of candidate biomarkers (variable
importance) using resampling techniques that may be especially relevant for small
data sets. In Sect. 17.3 we present a Phase 2 cross-over study in females with
dysmenorrhea. Section 17.4 presents a simulation study evaluating operating char-
acteristics of two different methods for biomarker selection via variable importance
using simulated data that closely mimic our case study. In Sect. 17.5 we analyze
the case study from Sect. 17.3 using several SIDES-based methods. Section 17.6
contains some discussion and conclusions.

17.2 Overview of SIDES Methodology

SIDES (Lipkovich et al. 2011), SIDESreen (Lipkovich and Dmitrienko 2014), and
Stochastic SIDEScreen (Lipkovich et al. 2017b) are recursive partitioning methods
that aim at identifying predictive biomarkers and associated subgroups which
are defined in terms of biomarker signatures. The SIDES methodology identifies
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subgroups with enhanced treatment effect as compared to that in the overall study
population. It also provides a significance test for the treatment difference which is
adjusted for the number of subgroups that have been investigated, thereby providing
a (weak) control of the Type I error rate for all the hypothesis tests potentially
conducted as part of subgroup search (based on a single efficacy variable).

Our case study employed a cross-over treatment design. The original SIDES
method was developed for randomized studies with parallel design. Nevertheless,
as we argue in the following section, subpopulations with enhanced treatment effect
can be identified from a cross-over study by applying SIDES to appropriately re-
defined outcome and treatment variables.

17.2.1 Applying SIDES Methodology to a Cross-Over Study

The SIDES method was originally developed for use in independent groups of
patients receiving different treatments, e.g., in trials with a parallel-arm design.
In this paper we adapt the SIDES methodology to a case study with a cross-over
design in which each patient receives both treatments, the difference in outcomes
for each patient under the two treatment conditions will be analyzed as the outcome
of interest. Details of this approach follow.

Let the outcome efficacy variable be a continuous measure Y with larger values
indicating poorer clinical outcome; the treatment variable T assumes values “0” for
placebo and “1” for experimental treatment. We consider a cross-over trial with
two treatment sequences: A = “01” where patients first receive T = 0, followed
by a period when they receive T = 1, and A = “10” where they first receive the
active treatment followed by the control. Let U be a derived outcome defined as
the difference between the outcome at the end of the second period and the first,
U = Y2 − Y1. The subgroups with a large treatment effect can be identified by
applying the SIDES methodology to the outcome variable U.

Let μ01 = E(U|A = “01”) and μ10 = E(U|A = “10”) be the expected means of
U for the subpopulations defined by treatment sequences A = “01” and A = “10”,
respectively. We will argue that a larger treatment contrast μ10 − μ01 can be
attributed to a larger differential between the active treatment and placebo in the
absence of cross-over effect and other possible biases, where μ10 − μ01 > 0 favors
the active treatment and μ10 − μ01 < 0 favors placebo.

Let Y(1) and Y(0) denote potential outcomes defined as outcomes for a randomly
selected patient if treated with T=1 and T=0, respectively. The goal in this clinical
trial is to evaluate the true treatment difference E{Y(0) − Y(1)} = �,where � > 0
indicates that the experimental treatment is superior to placebo. Now,

μ10 − μ01 = E
(
U |A = "10")− E

(
U |A = "01")

= E
(
Y2 − Y1|A = "10")− E

(
Y2 − Y1|A = "01")

= E {Y (0)− Y (1)− [Y (1)− Y (0)]} = 2E {Y (0)− Y (1)} = 2�
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Therefore, the estimand associated with the estimated differences in outcome U
between sequences A = “10” and A = “01” is twice the true treatment effect. This
argument also applies to binary outcomes.

17.2.2 The Base SIDES Method

Let X1, X2, . . . , Xp be candidate biomarkers that can be continuous or categorical.
A biomarker signature is defined as a union of elementary subgroups, each defined
based on a single biomarker: a range {X ≤ x0} or {X > x0} if X is continuous (or
ordinal), and X ∈ S(X), where S(X) is a subset of m levels L1, . . . , Lm associated
with a categorical X.

The SIDES method essentially is a tool for generating (harvesting) multiple
promising subgroups by recursively applying to a current parent set the following
subgroup generation process.

For each candidate biomarker, the best split is determined by considering all
possible splits. A split for a continuous biomarker X forms two child subgroups
{X ≤ x0} versus {X > x0}, where x0 is one of values of X observed in the analysis
data set. For a categorical (nominal) biomarker X, splits are formed by dividing
the m levels of the biomarker into two mutually exclusive and exhaustive groups.
For a categorical variable with m categories, one can form (2m − 1 − 1) non-trivial
splits and the best is selected by evaluating a differential effect splitting criterion as
defined below. For example, for a variable with 3 categories L1, L2, L3, the following
3 distinct splits can be formed: L1 vs. (L2 or L3), L2 vs. (L1 or L3), L3vs. (L1 or L2).

The best split for a biomarker X is the one that optimizes the differential effect
splitting criterion D (Lipkovich et al. 2011) defined as follows:

D = 2 (1 −�(t)) , t = |Z1 − Z2|√
2

,

where Z1 and Z2 are the standardized treatment effect statistics for the two child
subgroups resulting from splitting on the biomarker X.

Z = U10 − U01

s

√
n−1

10 + n−1
01

,

where U01 and U10 are the mean values of the outcome U and n10 and n01 are the
number of patients in the two treatment sequence groups within the subset, and s is
the pooled standard deviation in the subset.

Let D*(X) be the value of the criterion for a biomarker X associated with the
best split. For example, for a continuous biomarker, the value of the criterion is
associated with the cutoff value x∗0 resulting in the best (smallest) value of D among
all other candidate cutoffs. When optimizing the splitting criterion over all possible
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splits, selection bias occurs favoring covariates with a larger number of candidate
splits. Since splitting criterion D*(X) is in the form of the p-value associated with
the differential test statistic, this problem is addressed by computing a multiplicity-
adjusted p-value associated with the best candidate split, D̃∗(X). The multiplicity
adjustment is based on a version of the Šidák test, which accounts for the correlation
among the D-values associated with different cut-offs for a given covariate (for
details, see Lipkovich et al. 2011).

The biomarkers are ordered from best to worst so that

D̃∗(Xi1) ≤ D̃∗(Xi2) ≤ · · · ≤ D̃∗(Xip ),

where ij, j = 1, . . . , p is a permutation of indices {1, . . . , p} corresponding to the
ordered values of D̃∗criterion, and the first M biomarkers are retained. Parameter M
is called width.

For each biomarker, two child groups based on the optimal split are formed
and the biomarker-positive group is selected as the one that produces the larger
(positive) value of the standardized treatment effect statistic, Z. As a result, M
potential candidate subgroups are generated from a parent group.

The same process is applied recursively to each of the generated M subsets
resulting in M2 terminal subgroups. The recursion is repeated L times resulting in
ML terminal promising subgroups. Typically, L is a small number, L = 2 in our
example.

The SIDES method includes several tuning parameters, some of which have
already been introduced. Here we list them for completeness

• the width (M), the number of covariates to retain as promising at a given splitting
level,

• the depth (L), the number of splitting levels (i.e. 1st, 2nd, 3rd) at which the
algorithm is to terminate, and

• the complexity parameter (γ ) that quantifies the amount of relative improvement
in the treatment effect in the child subgroup relative to the parent group required
to identify this subgroup as promising.

The relative improvement γ is defined as the ratio of the p-value for the Z statistic
(here, testing of U10 versus U01) in the child node (i.e. at splitting level l) versus its
parent node (i.e. at splitting level l − 1). Smaller values of γ impose more stringent
conditions for splitting and result in a fewer generated subgroups (more pruning).

The SIDES method controls the Type I error rate associated with the identifica-
tion of a promising subset by accounting for 3 important sources of multiplicity: (1)
multiple candidate covariates, (2) multiple candidate binary splits per covariate, and
(3) multiple splitting levels during the recursive search.

Because of the high dimensionality of the subgroup space, the distribution of
the “maximally selected” test statistic under the null hypothesis is approximated
by using resampling methods. The “null” reference distribution is generated by
randomly permuting the treatment labels of patients to create many “null” datasets
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that retain the relationships among covariates, and relationships between covariates
and outcomes, but effectively remove the effects of treatment and treatment-by-
covariate interactions. These null datasets are then analyzed using the SIDES
method to establish an empirical null distribution of p-values for promising subsets
formed by candidate covariates and their associated binary splitting rules. The
multiplicity adjusted p-value for each promising subgroup is then computed as the
proportion of p-values for the best subgroups from the null sets which are smaller
than the observed p-value for the promising subset.

17.2.3 The Adaptive SIDEScreen Method

The Adaptive SIDEScreen method is an extension of base SIDES. It is a 3-stage
procedure. At the first stage, base SIDES method is used to generate a large number
of subgroups, and a variable importance score VI(X) is computed for each biomarker
(as described below). At the second (screening) stage, a subset of biomarkers is
selected by applying to VI(X) a variable importance threshold computed from
the reference (null) distribution. Finally, at the third stage, base SIDES method is
applied only to a subset of biomarkers (if any) that passed the screening stage.

The VI score associated with a biomarker X is a measure of its predictive
ability, VI(X), computed as the average contribution of that biomarker across all
promising subgroups. Contribution of a biomarker X is set to zero for all subgroups
where it is not involved, and as the negative logarithm of the splitting criterion,
D̃∗(X), if the biomarker was involved in forming the subgroup.

More formally, V I (X) = K−1∑K
i=1νi , νi = − log D̃∗

i (X), if the ith subgroup
contains biomarker X (in its signature), and νi = 0 otherwise. Here, K is the number
of identified subgroups, D̃∗

i (X) is the splitting criterion evaluated for the biomarker
X at the selected (optimal) split and adjusted for multiple splits using the modified
Šidák adjustment.

At the screening stage of the Adaptive SIDEScreen method, biomarkers are
selected based on a screening rule:

V I (X) > Ê0 + k

√

V̂0,

where Ê0and V̂0 are the mean and variance of the maximal (over all biomarkers)
VI score under the null distribution obtained by permuting the treatment labels.
These mean and variance are estimated from a large number of such samples. The
multiplier k is a free parameter that is often calibrated so that k = �−1(1 − κ),
where κ is interpreted as the probability of selecting at least one noise biomarker in
the absence of any predictive biomarkers in the data set.

At the last stage, the base SIDES method is applied only to biomarkers which
pass the screening. The final adjusted p-values are computed by replicating the



306 I. Lipkovich et al.

entire thee-stage procedure (i.e., initial subgroup generation, biomarker screening,
and final subgroup identification) on a large number of additional null sets. Note
that the same screening threshold is applied to each null set, therefore, regardless of
the value of the multiplier, the overall Type I error rate of the final subgroup(s) can
be controlled at any desired level.

17.2.4 The Stochastic SIDEScreen Method

The key enhancement made in the Stochastic SIDEScreen procedure (Lipkovich et
al. 2017b) is that the VI score for a biomarker is computed not from the subgroups
“harvested” from the original data but rather from subgroups generated by applying
the base SIDES method to multiple (say, B = 1000) bootstrap samples from the
original data. Each bootstrap sample

{
Y ∗

b , A∗
b,X

∗
b

}
, b = 1, . . . , B, of the same

size (N) as the observed data set is obtained by sampling individual records with
replacement N times and is comprised of the outcome variable, treatment indicator
(or treatment sequence, as in the setting of our cross-over trial, A = “01” or
A = “10”), and a collection of biomarkers. To ensure that bootstrap samples contain
the same proportion of patients in each treatment group as in the original data,
sampling can be stratified by treatment group, that is, carried out separately for
A = “10” and A = “01” and the two samples combined in a single data set. Then
the VI scores VIb(X) for biomarkers Xi, i = 1, . . . , p, are computed from each
bootstrap sample by running the base SIDES method on the bootstrap data in the
same way that VI(X) is computed by running SIDES on the original data, {Y, A, X}.
The bootstrap distribution of VI scores is generated for each candidate biomarker. It
contains useful information that can be utilized in several ways as described below.

The final VI scores are computed by averaging the VI scores from bootstrap
samples. Note that the VI scores from the observed data already implement the
idea of model averaging, as they are based on the biomarker’s contribution to
multiple identified subgroups (“models”). In this sense, they are smoothed measures
of each biomarker’s contribution (the degree of smoothness depends on the scope
of the subgroup search controlled by the width and depth parameters). Stochastic
SIDEScreen makes a further improvement in this direction and adds a random
component to averaging, the same way as it is done in the bagging method (Breiman
1996). It is expected that a greater degree of noise reduction will be achieved
by averaging over relatively “independent” VI scores from multiple bootstrap
samples. The idea is that strong predictors of treatment effect would consistently
manifest themselves across the majority of the bootstrap samples. By contrast,
non-informative biomarkers would emerge only in a smaller number of different
samples, which will result in cancelation of their importance when averaging over a
large ensemble of bootstrap samples.
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The VI scores computed from the original data may be fairly unstable when
dealing with small sample sizes and/or biomarkers with a large number of potential
splits. A bootstrap-based confidence interval of the mean VI score provides an
insight into this inherent instability of VI scores. Consequently, this confidence
interval can serve as a more reliable tool for biomarker screening compared to the
standard VI score computed from the original data, as in the Adaptive SIDEScreen
method. This approach provides the foundation for the Stochastic SIDEScreen
procedure. The fundamental idea is to construct a more robust biomarker selection
rule based on the bootstrap distribution of the VI scores along with the null
distribution of the scores.

One approach is to select a candidate biomarker X if Lα(X) > Ê0(X), where
Lα(X) is the lower limit of the 100 × (1 − α)% (say, 80%) bootstrap confidence
interval of the VI score associated with the biomarker X, and Ê0(X) is the mean
of the VI score associated with biomarker X under the null distribution obtained
by permuting the treatment labels, similarly to how it is done in the Adaptive
SIDEScreen method. Several biomarker selection procedures based on different
methods of computing Lα(X) can be considered:

1. Percentile method, Lα(X) = qα
2

[V Ib(X), b = 1, . . . , B].

2. Normal approximation method with Lα(X) = V̂ I (X) − z1−α/2 ×
√

V̂B(X),

where V̂ I (X) is the variable importance score obtained from the original data
set, and V̂B(X) is the bootstrap estimate of the variance of V̂ I (X).

3. Normal approximation method with Lα(X) = V IB(X) − z1−α/2 ×
√

V̂IJ (X),

where V IB(X) is the bagging estimator V IB(X) = B−1∑V Ib(X)and V̂IJ (X)

is the variance of the bagging estimator V IB(X), computed using the Infinitesi-
mal Jackknife estimator (Efron 2014) or its bias-corrected version (Wager et al.
2014).

Practical implementation of the thresholding method 3 (bagging estimator of
VI) would require computing the “smooth” mean of the null distribution Ê0(X),
as the benchmark for variable importance associated with biomarker X which
would seem to require performing additional bootstrap resampling for each null
set, and computing Ê0(X) by first averaging variable importance scores V I

(b)
0,m(X)

associated with each predictor X over B0 samples within the mth null set (m =
1, . . . ,M

)
, followed by averaging over the M sets (we use B0 so as not to confuse

with B samples applied to the observed data).
That is, first V I 0,m(X) = B−1

0

∑B0
b=1 V I

(b)
0,m(X) will be computed Then the final

average estimate of VI is found by averaging the M smoothed scores into a single
threshold value Ê0(X) = M−1∑M

m=1 V I 0,m(X). However, because smoothing is
achieved naturally by averaging over M null sets, it seems that the smoothing over
B0 samples may be redundant, or B0 can be taken as a fairly small number, say
B0 = 10.
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Another approach is to mimic the selection procedure of the Adaptive
SIDEScreen but replace the quantities with the counterparts from the bootstrap
distribution.

4. Select a biomarker X, if its bagging estimator V IB(X)exceeds the threshold
based on the null distribution of the bagging estimator, V IB(X) > Ê0,B +
k

√

V̂0,B , where Ê0,B and V̂0,B are the null mean and the variance of the
maximum of the bagging estimator computed across all p biomarkers in the data
set, respectively. Specifically, for each of the M null data sets, bagging estimators
of null VI scores are obtained by averaging across bootstrap samples obtained
from each null dataset, V I

m

0,B (Xi) , i = 1, . . . , p;m = 1, . . . ,M. Then the

maximal null VI scores are computed as V I
m

0,B = maxi=1,..,p

{
V I

m

0,B (Xi)
}

for each m = 1, . . . ,M. The Ê0,B and V̂0,Bare the mean and variance of
V I

m

0,B,m = 1, . . . ,M, across M null sets, respectively.

Similarly to the Adaptive SIDEScreen method, the final set of subgroups Sj,
j = 1, . . . , s, is then identified by applying the base SIDES method only to the
biomarkers in the original data set that passed the screening.

Like with the Adaptive SIDEScreen, the multiplier k in the procedure 4 can be
selected so as to ensure a desired probability of selecting at least one biomarker
when no true biomarkers exist in the data set. Note that for the Stochastic
SIDEScreen procedures 1–3, we could also control this operating characteristic by
calibrating the significance level α at which the confidence limit is computed, e.g.,
by using a conservative Bonferroni type procedure α∗ = α/p and applying Lα∗(X)or
using a less conservative approach that takes into account the correlation among the
biomarkers and associated VI scores.

The proposed bootstrap-based rule for biomarker selection can be contrasted with
the rule used in the Adaptive SIDEScreen procedure: select the biomarker X if

V I (X) > Ê0 + k

√

V̂0

where k is calibrated to ensure 100α% Type I error rate (to match the rule
based on the 100 × (1 − α)% bootstrap confidence interval), and Ê0 and V̂0
are the expectation and variance of the maximal VI score estimated from the null
distribution by randomly permuting treatment labels from the original data.

In the remainder of the paper, we will focus on methods 3 and 4, as more relevant
for this small data set (see also Lipkovich et al. 2017b).
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17.2.5 Obtaining Bias-Corrected Estimates of Treatment Effect
in Identified Subgroups

To obtain estimates of treatment effect in each of the identified subgroups Sj,
j= 1, . . . , s, that correct for over-optimism inherent in the subgroup search process,
we can use bootstrap again.

1. For each bootstrap sample b = 1, . . . , B:

(a) Select the best subgroup, S∗b , by applying a simplified version of
SIDEScreen:

• Compute variable importance scores VIb(X) for each variable and apply

the rule: V Ib(X) − k

√

V̂IJ (X) > Ê0(X) <=> V Ib(X) > Ê0(X) +
k

√

V̂IJ (X), where VIb(X) is the variable importance from the bth sample

and V̂IJ (X) and Ê0(X) are “borrowed” from the variable screening stage
(described in the previous section).

• Apply base SIDES to only those biomarkers that pass the screening rule
• The best subgroup S∗b is selected as the one having the smallest (unad-

justed) p-value.

(b) Compute a bias-corrected treatment effect estimate for the best subgroup,
�̂BC

(
S∗b
)

using the Efron’s “0.632 estimator” that combines the in-bag and
out-of-bag estimate of treatment effect:

�̂BC

(
S∗b
) = 0.632 �̂OOB

(
S∗b
)+ 0.368�̂INB

(
S∗b
)
,

where �̂OOB
(
S∗b
)

is an estimate of treatment effect based on “out-of-bag”

data (data not selected for a given bootstrap sample b) and �̂INB
(
S∗b
)

is an
estimate of treatment effect based on data included in the bootstrap sample
b (“in-bag” data).

2. For each patient i in the experimental treatment arm (in the initial data set),
compute patient’s expected treatment effect:

�i = B−1
∑B

b=1

[
�̂BC

(
S∗b
)
I
(
i ∈ S∗b

)+ �̂OV I
(
i /∈ S∗b

)]
,

where �̂OV is the overall treatment effect from all observed data (not a
specific bootstrap sample). Therefore, the bias-adjusted patient-specific estimate
of treatment effect is shrunk towards the overall effect when the patient is not
present in a given bootstrap-based subgroup.

3. For each subgroup S identified from the original data set, compute the expected
treatment effect concentrated in this subgroup:
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�̂BC(S) = N1(S)−1
N∑

i=1

�iI(i ∈ S) I(Ai = a) ,

where N is the total sample size, N1(S) is the number of treated patients in
subgroup S, and Ai is the treatment indicator, and a designates the experimental
treatment arm (in our example of a cross-over design, Ai is the treatment
sequence and a = “10”).

As an alternative method for computing bias-corrected estimates of treatment
effect in the best subgroup, k-fold cross-validation can be used as follows (see a
similar approach in Simon et al. 2011). The data is randomly divided into k = 10
sets stratified by the treatment sequence. Then while keeping each set as a test group,
Adaptive SIDEScreen is applied to the k− 1= 9 remaining training sets and the best
subgroup identified. Based on the descriptor of the best subgroup, patients in the test
set are classified as biomarker-positive or negative. After repeating this process for
each of the k = 10 test sets, all biomarker-positive patients are combined across the
k test sets in a single group—mimicking a subgroup that would have been identified
in “future data.” If the Adaptive SIDEScreen procedure returns no subgroup on any
given training set, then all patients in the test set are considered as “biomarker-
positive” (the subgroup is considered to be the same as the overall population).

17.2.6 Obtaining Replicability Measures for Identified
Subgroups

The same bootstrap samples that were used for obtaining bias-corrected estimates
of the treatment effect are also used to obtain replicability indices for each of the
subgroups Sj, j = 1, . . . , s identified in the original set.

The replicability is computed as an average over coefficients of similarity
(agreement) for a given subgroup S from the original data set and all best subgroups
S∗b from the bootstrap samples. That is r(S) = B−1∑B

b=1 agree
(
S, S∗b

)
.

The similarity between any two subgroups can be evaluated by a variety of
measures agree(S1, S2), defined for 2 by 2 contingency tables. For example, a
popular Jaccard similarly index between the subgroups S1, S2 is computed as

J (S1, S2) = | S1 ∩ S2 |
| S1 ∪ S2|

,

where |S| is the subgroup size.
We used a simple agreement coefficient that is the proportion of patients on the

main diagonal of the cross-tabulation:
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A(S1, S2) = | S1 ∩ S2 | + | S1 ∩ S2 |
N

,

where S is the complement of S, and N is the total sample size. In other words, this
measure represents a proportion of patients for which the classifications by the two
subgroups S1 and S2 agree (either they are included in both subgroups, or excluded
from both subgroups). This measure is preferred over the Jaccard coefficient because
it is well defined even when the compared subgroups are both empty. In this case,
the index returns a “perfect agreement,” which indicates the lack of any subgroups
in the data. To make the coefficient more informative, we also computed an adjusted
(or standardized) agreement coefficient defined as

Aadj = A− E(A)

max(A)− E(A)
,

where E(A) is the expected value of the index under “independence” between the
rows and columns of the contingency table defined by S1 and S2 (assuming the sizes
of the subgroups S1, S2 are fixed at observed values), i.e., an agreement expected by
chance. The value max(A) is the maximal value of the index, again assuming fixed
margins of the contingency table. It is easy to see that

E(A(S1, S2)) = | S1
∥
∥S2 | + | S1

∥
∥ S2 |

N2
,

max(A (S1, S2)) = | S1 ∩ S2
∣
∣+|S1 ∩ S2

∣
∣+ 2 min

(|S1 ∩ S2
∣
∣, |S1 ∩ S2

∣
∣
)

N
.

The adjusted agreement coefficient is very similar to a familiar Cohen’s kappa
coefficient, except in the denominator we have max(A) − E(A) instead of 1 − E(A).

17.3 Case Study

Primary dysmenorrhea is usually described as cramping pain in the lower abdomen
occurring at or near the onset of menstruation in the absence of any other
identifiable pelvic pathology. Occurring in more than 50% of menstruating women,
dysmenorrhea is by far the most common gynecologic problem reported in this
population. It is a significant cause of absenteeism from work or school and loss
of productivity in the workplace. Painful menstrual cramping typically occurs 1–
2 days each month with greatest pain intensity typically experienced during the first
24–36 h after menses commences (Dawood 2006).

The pain of primary dysmenorrhea is thought to be caused by intense uterine
muscle contractions resulting in transient ischemia. Prostaglandins and possibly
vasopressin appear to not only initiate these muscle contractions that lead to
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ischemia but also sensitize nerve endings. Prostaglandin concentrations increase
in the myometrium during menses and appear to reach their highest plasma
concentrations during the first 2 days of menses (Dawood 2006; Coco 1999).

Nonsteroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen and
naproxen, are commonly used to treat primary dysmenorrhea. The current
therapeutic approach to dysmenorrhea is treatment rather than prevention.
Although there is no recognized preventive treatment for the cramping episodes
of dysmenorrhea, a drug capable of blocking or attenuating the intense uterine
contractility associated with dysmenorrhea would be expected to be effective in
preventing the pain. Lidocaine affords potential as an effective treatment to prevent
or alleviate uterine contractions and dysmenorrhea. Lidocaine has been in use for
over 60 years as a local anesthetic and intravenously as a modulator of certain
cardiac arrhythmias. Lidocaine alters signal conduction in neurons by blocking the
fast voltage-gated Na+ channels in the neuronal cell membrane responsible for
signal propagation. With sufficient blockage, the membrane of the postsynaptic
neuron will not depolarize and will thus fail to transmit an action potential and
hence muscle contractility.

A Phase II, multicenter, randomized, placebo-controlled, double-blind cross-over
study to assess the efficacy and safety of 10% (150 mg) lidocaine vaginal gel in
women (age 18–40 years) with recurrent dysmenorrhea was conducted. Patients
were randomized in a 1:1 ratio to one of two sequences and treated with 10%
(150 mg) lidocaine vaginal gel (or placebo), once daily for 4 days, immediately prior
to and during menstruation. Patients were treated over the course of two menstrual
cycles. The data set for the primary efficacy analysis had n = 70 patients with
n0 = 34 patients randomized to “10% LIDOCAINE GEL–PLACEBO” (sequence
1) and n1 = 36 to “PLACEBO–10% LIDOCAINE GEL” (sequence 2). Primary
efficacy endpoint was time-weighted average pain intensity (TWAPI) collected via
a 4-point scale and assessed using an analysis of covariance (ANCOVA) model.
The sample size was computed so as to ensure about 85% power with a 2-sided
significance level of 0.05, based on the assumption that the standardized treatment
difference (effect size) δ = μ10−μ01

σ
= 2�

σ
= 0.74, which corresponds to the

absolute treatment difference parameter, � = 0.74
2 σ = 0.167 (assuming the error

standard deviation σ = 0.45). The primary analysis was based on an ANOVA model
for a cross-over design, including terms for treatment sequence, subject within
sequence, treatment, treatment cycle and pooled study center.

The set of candidate biomarkers includes 13 biomarkers (see Table 17.3 in
the Appendix). These biomarkers are labeled in the analysis data set as AGE,
BMI, ALB, ALKPH, CDCO2, BILTOT, EOSIN, HEMOG, LAC_DEH, LYMPH,
NEU_ABS, BMI_cat, RACE. The candidate biomarkers were chosen based on what
clinical and phenotypic characteristics were known to be associated with recurrent
dysmenorrhea and widely discussed in the published literature. We stress that pre-
selection of biomarkers should be done prior to study unblinding, so as to prevent
selection bias. Eliminating irrelevant biomarkers based on clinical considerations
is important as including them in the analysis set would automatically expand the
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“search space” resulting in a larger multiplicity burden. Including a larger number
of irrelevant variables obviously makes detection of true predictive biomarkers
problematic, which is especially true for Phase 2 studies with relatively small data
sets.

For the primary efficacy variable, TWAPI over the 4 treatment days using the 4-
point categorical scale in the ITT Analysis Set, mean [SD] values were 0.91 [0.635]
and 0.92 [0.552], with the 10% lidocaine bioadhesive gel treatment and the placebo
gel treatment, respectively. The least squares (LS) mean difference between the two
groups was not statistically significant (p = 0.905). Analysis of this data by the
SIDES methodology will be reported in Sect. 17.5.

17.4 Simulation Study

The simulation study aimed at assessing potential benefits of variable screening
using Stochastic SIDEScreen compared to Adaptive SIDEScreen when applied to a
small data set that is very similar to our case study. The simulated data sets mimic
the real study in the following features

• The same 13 covariates as in the original set of 70 patients were included in
each data set resampled with replacement so that each generated data set inherits
similar covariates with their correlations

• The outcome variable was generated by a version of parametric bootstrap based
on a very general non-parametric regression model, Random forest (Breiman
2001) fitted to the original data where the outcome was replaced with residuals
from the treatment arm means. Therefore, the simulated data by construction
exhibit no predictive biomarkers (as treatment variable was not used in the regres-
sion model), while retaining correlations among covariates and dependency of
outcome on covariates.

• An overall treatment effect of the same size as observed in the original data was
added to the data.

A subgroup effect was added to the data for a specific subgroup based on the
covariate Age: S = {Age ≤ 33}. This subgroup had the size ns = 52 in the original
data. Formally, the simulation can be described as follows.

1. Fit a random forest to study data
{
Ỹ ,X

}
, where Ỹ is the outcome variable,

expressed as a deviation from the treatment mean (here, the mean for the
treatment sequence of a given patient, see Sect. 17.3) and X is the matrix
with columns corresponding to 13 continuous biomarkers in the original data
set measured on 70 patients. Obtain estimated function ĝRF (X) and associated
residual error variance, σ̂ 2

RF

2. Simulate K sets as follows. For j = 1, . . . , K,

(a) obtain a random permutation of rows of X∗
j = perm(X)
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(b) generate patient-level outcomes (i = 1, . . . , 70) using random forest from
step 1, Y ∗

ij = ĝRF (X∗
ij ) + μOV × Ai + μSU × Ai × I

(
agei ≤ 33

) + eij ,

eij ∼ N
(
0, σ̂ 2

RF

)
, where μOV and μSU are the overall and subgroup effects,

respectively, and the sequence indicator Ai = {+1,−1} for sequences ‘10’
and ‘01’, respectively.

In this simulation, we used μOV = 0.0089, and μSU was set to 0, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45. Because of the computational burden of Stochastic SIDEScreen,
only K = 500 data sets were analyzed.

The goal of the simulation was to evaluate the two methods, Adaptive
SIDEScreen and Stochastic SIDEScreen, for their ability to detect the correct
biomarker (Age) in this very simple setting with a single predictive covariate. We
used Adaptive SIDEScreen with multiplier k = �−1(0.9) = 1.28. To make the
two algorithms comparable we use the approach 4 from Sect. 17.2 with the same
k. The null mean and variance for variable importance in Adaptive SIDEsreen
was assessed using 100 permutations. For Stochastic SIDEScreen we performed
B = 100 bootstrap samples to compute the bagging estimator on the simulated
data. For each simulated data set, we evaluated the null distribution using M = 100
permutations and within each permutation performed 10 bootstrap re-samples.
The parameters of the base SIDES procedure used to generate subgroups in both
procedures were

• min_subgroup_size = 20
• criterion_type = “differential effect”
• depth = 2
• width = 5
• γ = 1 (at both levels 1 and 2)

For each method we evaluated the proportion of simulated sets when (1) only
incorrect biomarkers passed the threshold and (2) for scenarios with μSU > 0,the
proportion of times when the correct biomarker “Age” was included in the set of
biomarkers that passed the threshold. The estimated probabilities (1) and (2) are
plotted in Fig. 17.1 against each subgroup’s effect size, i.e., the mean treatment
difference divided by the standard deviation of outcome, which was computed as the
square root of the pooled within-treatment variance across K = 1000 sets, σ̂ = 0.45.

Several observations can be made from the simulation results:

• For μSU = 0 (null scenario), both procedures control the nominal probability of
0.1 of falsely classifying at least one biomarker as predictive.

• For μSU > 0 (alternative scenarios), both methods select the correct biomarker
(Age) with the same probability (the two dashed lines in Fig. 17.1).

• Stochastic SIDEScreen, on the other hand, has a better ability to filter out
irrelevant biomarkers compared with the Adaptive SIDEScreen. For example,
when the subgroup effect is 0.8 and “Age” is not selected, there is about 18.5%
chance that a noise biomarker will be selected by the Stochastic SIDEScreen,
while for Adaptive SIDEScreen this probability is 26%.
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Fig. 17.1 The dashed lines represent the proportion of simulation runs when only incorrect
biomarker(s) were falsely identified as predictive by Adaptive SIDEScreen (open circles) and
Stochastic SIDEScreen (triangles). The solid lines represent the proportion of times the correct
marker (age) was among those that passed the variable importance cutoff: The horizontal dotted
line is drawn at α = 0.1

We note that the power for such a small data set is fairly low and the probability
of detecting correct biomarkers becomes meaningful only for effect sizes >0.8.

Clearly, conducting such simulation studies would be beneficial at the design
stage of confirmatory Phase 3 trials, when some information on biomarkers and
their relationship with outcomes has been collected from earlier Phase 2 studies.
The outcomes can be simulated under various scenarios and the simulations can
help obtain estimates of the power for effect sizes that may be clinically relevant
and plausible.

17.5 Analysis of the Case Study Using SIDES and Related
Methods

In order to examine the performance of the Adaptive and Stochastic SIDEScreen
methods using the data from the case study, we first start by generating candidate
subgroups using base SIDES with the following parameters:

• min_subgroup_size = 10
• criterion_type = “differential effect”
• depth = 2
• width = 5
• gamma = 1 at both levels 1 and 2, γ = (1, 1)
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Table 17.1 Subgroups identified using base SIDES method

Subgroup Size
Splitting
criterion

Apparent
treatment
effect

Treatment
effect
P-value

Multiplicity
adjusted
P-value

Overall population 70 NA 0.0089 0.452 NA
Using γ = (1, 1)

BILTOT > 0.6 10 3.01 0.52 0.0005 0.55
AGE > 20 59 2.85 0.05 0.2803 1.00
AGE > 20 and ALB > 4.5 25 3.30 0.34 0.0006 0.57
AGE > 20 and HEMOG > 13.8 24 3.02 0.32 0.0009 0.62
AGE > 20 and LYMPH ≤ 27 13 2.95 0.52 0.0004 0.51
AGE > 20 and EOSIN ≤ 2.4 32 2.36 0.22 0.0222 0.95
ALB > 4.5 31 2.56 0.22 0.0171 0.94
ALB > 4.5 and BMI_cat > 2 11 2.94 0.71 <0.00001 0.13
ALB > 4.5 and NEU_ABS > 4.02 21 2.08 0.34 0.0027 0.77
ALB > 4.5 and LAC_DEH > 139 20 1.56 0.27 0.0047 0.83
ALB > 4.5 and LYMPH ≤ 26.1 10 1.54 0.53 0.0021 0.74
LYMPH ≤ 27 15 2.77 0.41 0.0032 0.79
ALKPH > 70 16 2.31 0.32 0.0088 0.89
Using more stringent γ = (0.1, 0.1)

BILTOT > 0.6 10 3.01 0.52 0.0005 0.54
ALB > 4.5 31 2.56 0.22 0.0171 0.83
ALB > 4.5 and BMI_cat > 2 11 2.94 0.71 <0.00001 0.28
LYMPH ≤ 27 15 2.77 0.41 0.0032 0.69
ALKPH > 70 16 2.31 0.32 0.0088 0.77

The subgroups reported by base SIDES are given in Table 17.1. For comparison
we also included the results of base SIDES with the complexity parameter (γ) set to
a more stringent value of 0.1 at both levels (i.e. requiring that a child subgroup’s p-
value is at least 0.1 times the p-value for the parent group), resulting in much smaller
set of subgroups. The multiplicity-adjusted p-values in the last column reflect the
proportion of null sets (10,000) where the smallest subgroup p-value was more
significant than the p-value from the original data (base SIDES was applied with
the same parameters to the null data sets, obtained by permutation of the treatment
sequence variable). As we can see, none of the p-values remain significant after the
multiplicity adjustment was applied. Clearly, we cannot rely on unadjusted p-values
or on apparent treatment effects in the subgroups.

To better evaluate potentially predictive biomarkers we then used more powerful
procedures based on variable importance screening. First, we used Adaptive
SIDEScreen with multiplier k = 0.5 and 1.0 (Table 17.2). With the Adaptive
SIDEScreen, we obtained much smaller multiplicity adjusted p-values compared
to those for the base SIDES.

This decrease in multiplicity adjusted p-values is expected and reflects the
trade-off between the complexity of the search space and the multiplicity burden
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associated with the search. By effectively reducing the search space via variable
importance screening, Adaptive SIDEScreen reduces the need for multiplicity
adjustment after subgroup identification while gaining more power because of
filtering out noise covariates. For example, when using a multiplier equal to 0.5,
the adjusted p-value for subgroup S = {ALB > 4.5} was 0.1148, versus a p-value of
0.94 when using base SIDES with a liberal setting γ= (1, 1). Using a more stringent
setting γ = (0.1, 0.1) of course pruned out many subgroups, however did not have a
substantial effect on the adjusted p-values.

With a more stringent multiplier k = 1, Adaptive SIDEScreen returned a single
subgroup, S = {ALB > 4.5} with a smaller p-value of 0.068. We can see that while
for the base SIDES, the ratio of the adjusted to unadjusted p-value for this subgroup
was 0.94/0.0171 = 55, for the Adaptive SIDEScreen the ratio was much smaller,
0.0668/0.0171 = 3.9.

Although a reduced multiplicity adjustment burden with the Adaptive
SIDEScreen is expected, the procedure does not guarantee an “improved”
significance over the base SIDES method. For example, in the fairly common case
when no biomarker would have passed the pre-specified threshold (no subgroup
selected), there will simply be no p-value to adjust. Hence, there is no free lunch.

The graphical representation of screening in Adaptive SIDEScreen is shown in
the left panel of Fig. 17.2. The dashed line corresponds to the multiplier of 0.5 and
the dotted line to the multiplier of 1.0 (meaning one standard deviation above the
noise level). Clearly, the variable importance scores barely reach both levels of the
threshold and the results do not appear very robust.

As mentioned earlier, one concern with the Adaptive SIDEScreen procedure may
be that it relies on variable importance measures which may be highly variable in
a data set of such a small size. To evaluate the robustness of findings under data
resampling, we applied the strategies from the Stochastic SIDEScreen procedure
(Lipkovich et al. 2017b) and extended them further so that to achieve the following
3 objectives (via bootstrapping):

• Screening biomarkers using bagged estimates of variable importance
• Evaluating treatment effect in the identified subgroups
• Assessing replicability of identified subgroups

Biomarker screening was performed by comparing the lower limits of the
bootstrap 80% confidence intervals using the percentile method (shown with solid
circles) and, typically less conservative, Efron’s formula for the variance of the
bagging estimator (shown with open circles) with variable-specific thresholds. The
thresholds are obtained as the means of the null distribution for each respective
biomarker. The results are such that none of the lower limits exceeded the threshold.

For subgroups identified by the Adaptive SIDEScreen, the bootstrap-based
estimates of treatment effect are shown in Table 17.2. Using a tenfold cross-
validation, estimates of treatment effect were much less optimistic (negative values):
TE(CV) = −0.029 when using a threshold based on the multiplier = 0.5, and
TE(CV) = −0.035 when using a threshold based on the multiplier = 1.0.
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Fig. 17.2 The left panel shows the variable importance generated by base SIDES. The dashed
line indicates the threshold based on E0 + 0.5

√
V0 and the dotted line is for E0 + 1.0

√
V0.

The right panel illustrates identifying biomarkers using Stochastic SIDEScreen method. The solid
circles represent the tenth percentiles of bootstrap distribution of variable importance, and the open
circles—based on Efron’s variance estimator. The horizontal dotted lines extend to the means of
null distributions for each variable. To pass the screening, the circles must be on the right-hand
side of the null means

The cross-validation estimates are more conservative than the bootstrap estimates
which could be explained by the fact that they target somewhat different estimands
and mimic “future” samples using different resampling mechanisms. The perfor-
mance of these methods could be evaluated using simulation studies under different
scenarios. Note, however, that converting treatment differences into effect sizes
(dividing by the standard deviation of σ̂ = 0.45) results in rather small positive
effects based on the bootstrap procedure, all of them are less than 0.1.

The assessment of replicability using the adjusted agreement Aadj (in the last
column of Table 17.2) suggests that the small subgroups listed in this table are
unlikely to be replicated in future trials. For example, the replicability of the
subgroup {ALB > 4.5 and AGE > 29} with only 10 patients is negative. This agrees
with zero treatment effect from the bootstrap estimates.

17.6 Discussion and Conclusions

In this paper we provide a compressive analysis of a data set from a failed Phase
2 cross-over study using SIDES methodology. We showed that the machinery of
SIDES can be extended to a cross-over design, by using the treatment sequence
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as a new “treatment” variable and the difference between outcomes of the two
treatment periods as a new outcome variable. We emphasize the need to account
for uncertainty associated with subgroup search when evaluating the subgroup
identification findings, especially from a small trial.

Extensions of base SIDES, namely the 3-stage procedures based on the Adap-
tive biomarker screening allow us, first of all, to identify potentially important
biomarkers. This may be more relevant for small studies than determination of exact
biomarker signatures. The adaptive screening can be enhanced by bootstrapping
which takes into account the uncertainty in the subgroup search as reflected in
variable importance scores.

Additionally, bootstrap can be used to obtain more realistic estimates of treatment
effects in subgroups identified from the original data. We found that for our
case study, these estimates did not agree with those based on the cross-validation
procedure (a conservative benchmark). Although this result is expected, more
research is needed to understand the properties of various approaches to constructing
bias-adjusted estimates of treatment effect (for example, see Foster et al. 2011,
Simon et al. 2011, Huang et al. 2017).

Simulation studies mimicking empirical associations in a real data set (e.g., using
random forest or other “black box” methods to simulate potential outcomes) is a
useful tool to realistically evaluate the probability of discovering a true subgroup
that the sponsors should use in the design of Phase 3 studies where subgroups are
planned to be evaluated.

The SIDES methodology was applied to a case study in recurrent Dysmenorrhea
with somewhat ambiguous results. There is a weak evidence, as suggested by
evaluating observed variable importance scores with Adaptive SIDEScreen that
patients with albumin over 4.5 g/d and age over 20 years may have greatest treatment
benefit from lidocaine bioadhesive gel as a treatment for pain associated with
primary dysmenorrhea. This hypothesis may have some clinical merit, given that
increasing age is inversely correlated to disease severity and higher albumin produc-
tion is inversely correlated with proinflammatory disease, thus suggesting that the
lidocaine bioadhesive gel may be primarily effective in patients with a less severe
or a less proinflammatory disease. However, when taking into account sampling
variability of variable importance via the Stochastic SIDEScreen method, these
results appear spurious. While, as is always the case, additional studies would be an
ultimate test for the validity of the hypotheses generated from Phase 2 data, sponsors
need to carefully weigh in various risks when deciding on conducting future studies
tailoring subpopulation, especially with a rather weak support from the data.

When evaluating results of a Phase 2 study, the sponsor is often tempted to
ignore the issues of multiplicity altogether, arguing that these analyses are “merely
for internal decision making/signal detection.” We emphasize that, when evaluating
predictive biomarkers from a Phase 2 study, control of the overall type I error rate
(or the false discovery rate, FDR) is still critical to prevent incorrectly “detecting”
a noise biomarker for the signal and carrying it further into a Phase 3 program
(as is often the case in drug development practice). However, one obviously does
not have to adhere to the proverbial 5% error rate, but rather aim at a reasonable
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balance between the Type I and II errors rates. An attractive option when choosing
biomarkers based on Variable Importance may be to control the proportion of
selected noise biomarkers (FDR) rather than the probability of selecting at least one
noise biomarker. This will be explored in the context of the SIDEScreen method in
future work.
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A.1 Appendix

Table 17.3 List of candidate covariates and potential confounders

Covariate
Label in
data set

Variable type;
pre-specified
cut-offs

Mean(SD) [min,
max] or % for
categorical

Age (years) AGE continuous 64.3%, 35.7%
Race RACE “White

Non-Hispanic” (59)
vs “All others” (11)

84.3%, 15.7%

Body mass index (kg/m2) BMI,
BMI_CAT

Continuous and
ordinal variable
with levels: ≤20;
(20–25); >25

8.6%, 48.6%, 42.7%

ALBUMIN ALB Continuous 4.5 (0.25) [3.8–5.0]
ALKALINE_PHOSPHATASE ALKPH Continuous 61.5 (14.2) [39–102]
CARBON_DIOXIDE_CO2 CDCO2 Continuous 23.1 (1.96) [18–28]
BILIRUBIN_TOTAL BILTOT Continuous 0.47 (0.21) [0.2–1.3]
EOSINOPHILS EOSIN Continuous 2.4 (1.8) [0.3–11.2]
HEMOGLOBIN HEMOG Continuous 13.6 (0.92) [11.2–15]
LACTIC_DEHYDROGENASE LAC_DEH Continuous 147.4 (23.6) [99–212]
LYMPHOCYTES LYMPH Continuous 31.5 (7.7) [6.2–54.2]
NEUTROPHILS_ABSOLUTE NEU_ABS Continuous 4.3 (1.5) [2.1–10.9]
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Chapter 18
What Is the Right Comparison? ROC
Curve and Trade-Off Between Key
Diagnostic Test Errors (ROCKE)

Norberto Pantoja-Galicia and Gene Pennello

18.1 Introduction

Diagnostic tests can help to establish clinical management of the patient, support the
use of therapeutic products, and guide therapy selection with the aim to maximize
good outcomes or benefits and minimize adverse outcomes or risks (Pennello et
al. 2016). In the evaluation of the performance of a new diagnostic test, errors and
consequences can be more easily assessed if the new diagnostic test is compared
with an already established alternative. Different errors have different consequences
(Evans et al. 2016). The ROC curve provides key information regarding the implicit
and/or explicit trade-off between false positive (FP) and false negative (FN) test
errors that can be employed to establish adequate comparison between the new test
and the established alternative.

18.2 Test Performance and Diagnostic Errors

We present the ideas and concepts in the context of assuming a new screening
diagnostic test (N) for the detection of colorectal cancer. The test provides a
binary outcome and a positive result may indicate the presence of colorectal
cancer and should be followed by colonoscopy. Different errors carry different
consequences, for example a FP result can lead to unnecessary diagnostic follow-
up or treatment with its associated risks, suboptimal allocation of resources (for

N. Pantoja-Galicia (�) · G. Pennello
U.S. Food and Drug Administration/Center for Devices and Radiological Health, Silver Spring,
MD, USA
e-mail: Norberto.Pantoja-Galicia@fda.hhs.gov

© Springer Nature Switzerland AG 2019
L. Zhang et al. (eds.), Contemporary Biostatistics with Biopharmaceutical
Applications, ICSA Book Series in Statistics,
https://doi.org/10.1007/978-3-030-15310-6_18

323

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15310-6_18&domain=pdf
mailto:Norberto.Pantoja-Galicia@fda.hhs.gov
https://doi.org/10.1007/978-3-030-15310-6_18


324 N. Pantoja-Galicia and G. Pennello

example, colonoscopy for patients who do not need it), and unnecessary stress. On
the other hand, a patient with a FN result might not receive the necessary treatment
and the disease may progress unattended.

Sensitivity (or true positive fraction) and specificity (true negative fraction or
1 − the false positive fraction) are metrics that are commonly used to assess
performance of a diagnostic test. Let N be a new test which is to be compared
to a standard test (S). A non-inferiority criterion implies that N should be better
than merely adding a random test to an approved test in a believe-the-positive or
believe-the-negative combination of the results (a believe-the-positive (negative)
combination means that if test 1 OR (AND) test 2 are positive, then the result
of the combination is considered positive. See Pepe 2003, p. 268). This non-
inferiority criterion implies that the relative change in true positive fraction (ratio of
sensitivities) between test N and an approved test is greater than the relative change
in false positive fraction (ratio of 1 − specificities), or that the relative change
in false negative fraction (1 − sensitivity) is less than the relative change in true
negative fraction. See Biggerstaff (2000). Please note that the Biggerstaff diagram
below (Fig. 18.1) plots the true and false positive rate coordinates (sensitivity,
1 − specificity) for theoretical tests N and S. In this case, compared to the Test S
coordinate, performance of Test N may be unacceptable because neither Positive
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Predictive Value (PPV) or Negative Predictive Value (NPV) is better for N. In
general, a test is inferior to Test S if its coordinate falls in the region that is below
the solid black and dotted blue lines passing through the test S coordinate, as these
lines have slopes equal to the positive and negative likelihood ratios (PLR, NLR),
respectively.

18.3 ROC Curve Information

Let us assume that each test, S and N, has an underlying numeric result with a
corresponding cutoff that defines the positivity threshold for the respective binary
outcome. Nonparametric ROC curves can then be estimated by plotting sensitivity
vs. specificity for all possible positivity thresholds or cutoffs c. These are shown in
Fig. 18.2 respectively for tests S (blue) and N (red).

For a diagnostic test, let CFP denote the seriousness or cost (not necessarily
financial cost, but it could be cost to public health, for example) associated with
making a False Positive (FP) error and CFN is that for a False Negative (FN) error.
At a given operating point, the slope m of the tangent line to the ROC plot confers the
implicit trade-off between FP and FN diagnostic test errors that is being made. This
slope is m = (CFP/CFN)(1 − ρ)/ρ, where ρ = prevalence. This derivation follows
the results of Zweig and Campbell (1993), and Pepe (2003, p.72, Result 4.5) and is
summarized in the Appendix.

In Fig. 18.2, the slope of the tangent line at the operating point of S is shown
in blue and is steeper compared to that of N shown in red. This implies that the
seriousness of a FP error relative to a FN error is implied to be greater for S at its
operating point than for N at its operating point. N and S are operating at points that
attribute a different trade-off between FP and FN errors, even though the screening
population is the same.

If S were to operate at the same implied trade-off as N, the slope of the tangent
line would be the same (at a different operating point S∗ along the ROC curve. See
Fig. 18.3). From the ROC plots in Fig. 18.3, S∗ would have a better PPV (greater
PLR) than N, with better NPV (lower NLR).

In addition, if N were to operate at the same implied trade-off as S, the slope of
the tangent line would be the same (at a different operating point N∗ along the ROC
curve towards the origin). Then, N∗ would have worse PPV (lower PLR) than S, and
worse NPV (greater NLR).
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18.4 Discussion

At its operating point, a new test N may not be comparable with a standard test S
because the corresponding slopes, i.e., the seriousness or importance of a FP error
relative to a FN error, are different. If N were to operate at the same implied trade-off
between FP and FN errors as S, the slope of the tangent line would be the same and
it would correspond to a different operating point N∗ in the ROC curve that would
make the slopes comparable. In our example, the new test Test N does not seem to be
comparable with test S at their corresponding operating points. Conversely, If S were
to operate at the same implied trade-off between FP and FN errors as N, the slope of
the tangent line would be the same and it would correspond to a different operating
point S∗ in the ROC curve that would make the slopes comparable and a comparison
using the Biggerstaff plot could be conducted as in Fig. 18.4. This comparison
would render test N as inferior since it has worse PPV and NPV compared to a
test with an operating point at the coordinate S∗.
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Fig. 18.4 Biggerstaff comparison of the tests at operating points N and S∗
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A.1 Appendix

Cost may be expressed as: cost = CFN (1 − sensitivity) ρ + CFP (1 − sensitivity)
(1 − ρ).

Therefore, when operating the test at False Positive Fraction or (1 − speci-
ficity) = t, the cost is

cost(t) = CFN (1 − ROC(t)) ρ + CFP (t) (1 − ρ).
Solving ∂cost(t)/∂t = 0 provides the result for the slope m = ∂ROC(t)/∂t = (CFP

/CFN)(1 − ρ)/ρ.
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