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Abstract
Citrus is one of the top fruit crops worldwide.
Citrus production facesmany challenges such as
diseases, insects, and abiotic stresses. Genetic
improvement of citrus using conventional
breeding is a lengthy, costly, and time-consum-
ing process. Biotechnological approaches such
as Agrobacterium-mediated transgenic expres-
sion, Citrus tristeza virus (CTV)-mediated tran-
sient expression and CRISPR-based genome
editing have shown tremendous potential to
improve citrus against different diseases. Here,
we summarize the progress in generating
disease-resistant/tolerant citrus plants via
biotechnological approaches.

Citrus is an economically important fruit crop
grown in tropical and subtropical regions of the
world. In recent years, citrus industry has been
under immense pressure to develop new germ-

plasm to overcome barriers to production from
diseases, insects, and abiotic stresses. Especially,
citrus Huanglongbing caused by Candidatus
Liberibacter presents an unprecedented challenge
to citrus productionworldwide (Wang et al. 2017).
Genetic improvement of citrus using conventional
breeding is a lengthy and challenging process
due to the complex reproductive biology of
citrus including sexual incompatibility, highly
heterozygous nature, nucellar seedlings, male or
female sterility, and the long juvenile phase
(Omura and Shimada 2016). Biotechnological
approaches provide a promising alternative to
engineer citrus plants that can resist the many
abiotic and biotic stresses. The biotechnological
approaches include the commonly used
Agrobacterium-mediated transgenic expression,
citrus tristeza virus (CTV)-mediated transient
expression, and the forthcoming CRISPR-based
genome editing. Here, we summarize the progress
in generating disease-resistant/tolerant citrus
plants via biotechnological approaches.

14.1 Agrobacterium-Mediated
Transgenic Expression

The advent of genetic transformation technolo-
gies has facilitated the rapid germplasm
improvement of citrus. Agrobacterium-mediated
transformation, protoplast transformation, and
particle bombardment methods have been suc-
cessfully applied in various crop plants (Hansen
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and Wright 1999). These techniques allow us to
introduce the gene(s) of interest into the genome
of cultivars, modify, or silence selected genes of
a cultivar.

Citrus tissues can be transformed by several
methods. The Agrobacterium-mediated transfor-
mation process is the most commonly used
technique. This process utilizes different explants
as source tissues for transformation by the
Agrobacterium. Among them, juvenile in vitro
epicotyl segments (Dutt and Grosser 2009;
Moore et al. 1992; Luth and Moore 1999) and
many others, mature internode segments
obtained from greenhouse-grown plants (Cervera
et al. 1998; Almeida et al. 2003), or embryogenic
callus obtained from unfertilized ovules (Dutt
and Grosser 2010; Li et al. 2002) are the com-
monly used source tissues. Direct incorporation
of DNA into protoplasts using electroporation
(Niedz et al. 2003), biolistics (Wu et al. 2016), or
PEG mediated (Olivares‐Fuster et al. 2002; Guo
et al. 2005; Omar et al. 2007; Fleming et al.
2000) have also been utilized.

Enhanced Biotic and Abiotic Stress Man-
agement Using a Transgenic Approach
Huanglongbing (HLB) caused by the phloem
limited Candidatus Liberibacter asiaticus (CLas)
(Jagoueix et al. 1996) has become a major issue
globally, especially in citrus growing regions of
the United States, China, and Brazil (da Graça
et al. 2016). Several transgenic solutions have
been devised to combat this disease. Mirkov and
Gonzalez-Ramos (2013) claimed that constitu-
tive overexpression of a spinach defensin gene
resulted in enhanced HLB tolerance. Both con-
stitutive overexpression and phloem targeted
expression of the Arabidopsis NPR1 in the sweet
orange cultivars Hamlin and Valencia (Dutt et al.
2015) resulted in the production of HLB tolerant
transgenic sweet oranges. This was the first sci-
entific report on transgene mediated resistance to
HLB and its overexpression resulted in signifi-
cantly lower HLB incidence when compared to
non-transformed plants. Antimicrobial peptides
have demonstrated promise against combating

HLB. Dutt et al. (2008) overexpressed several
antimicrobial peptides in the sweet oranges
Hamlin and Valencia. Stover et al. (2013)
screened several antimicrobial peptides in vitro
for use in developing transgenic citrus resistant to
HLB. A modified thionin peptide gene was
observed to reduce the Liberibacter asiaticus
(Las) titer in roots and scion of transgenic Car-
rizo rootstock, 12 months after graft inoculation
(Hao et al. 2016). Similarly, phloem targeted
expression of the cecropin B gene resulted in
decreased susceptibility to HLB in sweet orange
(Zou et al. 2017).

Antimicrobial peptides have been more
extensively evaluated for citrus canker tolerance.
Citrus canker caused by Xanthomonas citri ssp.
citri is also a global problem resulting in leaf-
spotting and fruit rind blemishing and can result
in fruit drop and unmarketable fresh fruit
(Brunings and Gabriel 2003). Expression of a
dermaseptin gene in sweet orange plants reduced
citrus canker symptoms (Furman et al. 2013)
while the sarcotoxin IA gene reduced canker
symptoms in transgenic sweet orange (Kobaya-
shi et al. 2017). Introduction of the Attacin A
(attA) gene into sweet orange cultivars Hamlin
and Valencia reduced the canker disease symp-
toms (Cardoso et al. 2010; Boscariol et al. 2006).
Transgenic plants regenerated via Agrobacterium
transformation of mature axillary buds with
antibacterial peptide genes Shiva A and Cecropin
B showed enhanced resistance to canker (He
et al. 2011). More recently, transgenic Carrizo
plants expressing D2A21 peptide were devel-
oped which showed significant resistance to
canker but not HLB (Hao et al. 2017). In addition
to antimicrobial peptides, pathogen-related genes
responsible for systemic acquired resistance such
as hrpN or the AtNPR1 were used with
Agrobacterium transformation experiments to
develop canker-resistant plants (Barbosa-Mendes
et al. 2009; Zhang et al. 2010). Also, the rice
derived Xa21 gene was introduced into citrus via
Agrobacterium (Mendes et al. 2010) and proto-
plast transformation systems (Omar et al. 2007)
for citrus canker resistance. Recently, canker
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tolerance was also demonstrated in transgenic
W. Murcott plants overexpressing Xa21 under
greenhouse conditions (Omar et al. 2018).
Reduced susceptibility to citrus canker was also
observed in transgenic sweet orange plants
overexpressing the MdSPDS1 gene responsible
for polyamine biosynthesis (Fu et al. 2011a).

In addition to HLB and citrus canker resis-
tance, transgenic strategies have also been uti-
lized for resistance against CTV (Febres et al.
2003; Dominguez et al. 2000; Ghorbel et al.
2000; Gutierrez et al. 1997), Citrus psorosis
virus (Zanek et al. 2008), Phytophthora spp
(Fagoaga et al. 2001; Azevedo et al. 2006) and
other biotic stresses. A commercially important
Rio Red grapefruit was transformed with CTV
untranslatable coat protein gene (uncp) and plant-
derived insecticidal Galanthus nivalis agglutinin
(gna) gene with an aim to protect the plants from
CTV and aphids that transmit this virus (Yang
et al. 2000). In addition to coat protein, trans-
genic plants developed by introduction of anti-
sense constructs of CTV RdRp gene into epicotyl
segments of grapefruit also exhibited enhanced
resistance to CTV infection (Cevik et al. 2006).
Fruit aroma chemistry has also been modified to
improve resistance to pathogens and insect pests
by introducing antisense constructs of genes
responsible for terpene biosynthesis that down-
regulate the production of terpenes in fruit peels
(Rodriguez et al. 2011).

Apart from biotic stresses, transgenic
approaches have been utilized for reducing chil-
ling injury in Carrizo citrange and Poncirus tri-
foliata by suppressing the ethylene production
with the introduction of ACC synthase antisense
transgene CS-ACS1 (Wong et al. 2001). Drought
tolerance and osmotic adjustment were enhanced
in rootstock Carrizo citrange by incorporating
proline synthesis p5cs gene (Molinari et al.
2004). Being a commercially important root-
stock, halotolerance gene HAL2 extracted from
Saccharomyces yeast was introduced into Car-
rizo citrange via Agrobacterium method for
improving the performance of this rootstock in
saline conditions (Cervera et al. 2000). Salt tol-
erance was also enhanced in trifoliate orange

rootstock with the incorporation of betaine
aldehyde dehydrogenase (BADH) gene which
leads to synthesis of the osmoprotectant glycine
betaine (GB) (Fu et al. 2011b).

14.2 CTV-Mediated Expression

The effect of HLB on the citrus industry is dev-
astating and a quick solution is necessary to
maintain it in Florida. As the causal bacterium is
not cultured yet, direct in vitro screening is not
possible. CTV and Las co-localize to the phloem
tissue of their citrus host where the Asian citrus
psyllid (ACP) feeds. Thus, CTV-based expres-
sion and/or RNAi vectors are being used as a
screening tool to identify potential therapeutic
products. Furthermore, due to its unusual stabil-
ity and because it can be deployed rapidly, it is
being considered as an interim control measure
until transgenic or CRISPR/Cas9 plants can
become available.

CTV was first reported in Argentina causing
quick decline on the sour orange rootstock (Bar-
Joseph et al. 2010). CTV is endemic to Florida.
Some isolates of CTV in other parts of the world
are extremely virulent and prevent profitable
production of citrus. Most Florida isolates cause
mild symptoms in most citrus genotypes. One
exception is T36 that causes decline and death of
trees on the sour orange rootstock. The decline
has been avoided in Florida simply by using
other rootstocks. On other rootstocks T36 iso-
lates cause even milder symptoms than other
isolates. Currently, a T36-based CTV vector is
being used to overexpress genes or induce RNA
interference (RNAi).

CTV, a positive-sense 19.3 kb single-stranded
RNA virus, is a member of the closteroviridae.
The RNA genome is organized into 12 open
reading frames (ORFs), which are expressed via
three different strategies (Karasev et al. 1995).
The first strategy is a poly-protein strategy with
post-translational processing. The second strat-
egy is a +1 ribosomal frameshift that allows
continued translation beyond a stop codon. Both
strategies are used to express ORF1a and 1b,
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which are involved in RNA replication. The 3’
half of the genome is organized into 10 ORFs.
Hsp70 homologue, p61, CPm, CP, and p20
ORFs are involved in virion formation (Pere-
myslov et al. 2004; Satyanarayana et al. 2000).
CP, p20, and p23 are silencing suppressors with
different modes of action (Lu et al. 2004). P6 is a
potential movement protein. All these genes are
essential for the systemic infection of all citrus
plants. P33, p18, and p13 are host range deter-
minants not necessary for the infection of some
citrus hosts (Tatineni et al. 2008). The 10 ORFs
are expressed via a nested set of 3’coterminal
sub-genomic RNAs (Hilf et al. 1995). The tran-
scription of each ORF is driven by a sub-
genomic controller element upstream of the
coding sequence (Gowda et al. 2001). The 3’ half
of the genome was explored for expression of
foreign sequences via different strategies to
develop CTV-based expression/RNAi vectors
(Folimonov et al. 2007; El Mohtar 2011; EL
Mohtar and Dawson 2014; Hajeri et al. 2014).

CTV as an Expression/RNAi Vector
The first CTV vector had an extra gene inserted
between the minor and major coat protein ORFs
(Folimonov et al. 2007). Further studies identi-
fied three new locations within CTV that can
differentially express genes of different lengths
(El Mohtar 2011; EL Mohtar and Dawson 2014).
The first two positions had the extra gene added
between p13 and p20 or between p23 and 3’ non-
translated region (NTR). In addition, the substi-
tution of the p13 ORF and its controller element
was successful. The different positions could be
combined to express multiple foreign genes from
the same vector. Using green fluorescent protein
(GFP) as a reporter gene, CTV vectors have been
shown to be exceptionally stable. There are trees
infected with CTV vectors that are still express-
ing GFP almost 15 years after inoculation. In
2012, the vector was used to efficiently induce
silencing of the phytoene desaturase (PDS) citrus
gene via RNAi (Hajeri et al. 2014). The plants
are still showing the bleaching phenotype char-
acteristic of PDS silencing 6 years after
inoculation.

CTV-Mediated Expression of Antimicrobial
Peptides and Proteins
CTV is being used to transiently express small
antimicrobial peptides (AMPs, 10-70 amino
acids) to either directly target Las or to help the
plant tolerate the infection. Targeting the bacteria
directly is based on expressing small antimicro-
bial peptides that kill or reduce Las titer in the
plant. More than 100 AMPs with different modes
of action have been or are being screened for
activity against Las. Furthermore, potential
PAMPs peptides of Las are being expressed
through CTV-based expression vectors to trigger
the citrus plant defenses. CTV vectors are also
being used to express lytic phage proteins that
are directed against the bacterial cell wall causing
its disintegration and killing the bacteria. Two
proteins from the Las prophage have been
selected for CTV-mediated expression.

Use of CTV RNAi Vectors Against Psyllids
A major goal is the deployment of CTV RNAi
vectors against the psyllid. The idea is to intro-
duce truncated sequence of psyllid genes into the
CTV vector. The plant will load these genes into
its silencing machinery producing abundant
amounts of siRNA in phloem cells. Upon feeding
on the citrus phloem, the ACP insect acquires the
siRNA, which silences the psyllid gene and
prevents reproduction of the next generation of
psyllids. More than 20 ACP genes are being
targeted for silencing. For example, it has been
used to transiently express truncated abnormal
wing disc (Awd) gene of Diaphorina citri, the
insect vector of Las. Consequently, feeding
D. citri nymphs led to altered Awd expression
and malformed-wing phenotype in adults and
increased adult mortality (Hajeri et al. 2014).

Prescreening for CRISPR-Cas9 Genome
Editing Genes
Many researchers believe that CRISPR-Cas9
could be used to successfully engineer
resistance/tolerance to HLB in citrus by editing
either susceptibility genes or negative regulators
of plant defense. However, CRISPR-Cas9 is a
difficult technique to employ in citrus on a list of
potential target genes. Thus, CTV is being used to
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induce RNAi against citrus genes to prescreen
potential genes for targetting using the CRISPR/
Cas9 technique. Around 40 plant genes are being
targeted for silencing by CTV RNAi vectors. The
major advantage of using the CTV vector to
silence genes is speed. Although nothing is fast in
citrus, silencing a potential gene using the CTV
vector is much quicker and easier than directly
using CRISPR/Cas9 modification. Using CTV
also has additional advantages. One is that several
different vectors with potential targets can be
examined in parallel. Most of the potential targets
will be examined in the first screening run. Also,
more than one target gene sequences can be
inserted into the same vector to silence more than
one plant gene. Thus, if more than one gene was
predicted to be modified by CRISPR to provide
tolerance, these genes could be silenced simulta-
neously by the CTV vector. Perhaps more
importantly, the CTV vector can be graft trans-
mitted to mature plants, allowing the determina-
tion of the effect of the silenced gene on mature
characteristics such as fruit development and juice
flavor. Finally, if silencing a target gene using the
CTV vector results in HLB resistance or tolerance,
this in itself could be used as a short-term man-
agement possibility for HLB in the field.

14.3 CRISPR Technology in Citrus
Disease Management

The CRISPR/Cas modules are adaptive immune
systems of prokaryotes against invading phages
and plasmids by cleaving the foreign DNA, or, in
some cases, RNA, in a sequence-dependent
manner (Jinek et al. 2012; Barrangou et al.
2007). Approximately 84% of archaea and 48%
of bacteria genomes contain CRISPR-Cas sys-
tems (Marraffini 2013). A CRISPR locus consists
of a CRISPR array and diverse cas genes.
The CRISPR array comprises short direct repeats
interspaced by variable DNA spacer sequences
which are acquired from virus and plasmid
genes. The spacers enable the recognition and
cleavage of the invasive viruses and plasmids
(Barrangou et al. 2007). CRISPR/Cas-mediated

adaptive immunity consists of three stages:
adaptation, expression, and interference (van der
Oost et al. 2009; Wiedenheft et al. 2012; Bar-
rangou and Marraffini 2014; Marraffini 2015).
During the adaptation stage, short pieces of for-
eign DNA (called protospacers) from invading
viruses or plasmids are processed and incorpo-
rated into the CRISPR loci (Barrangou et al.
2007; Garneau et al. 2010). In the expression
stage, the CRISPR array is transcribed, which is
further processed into mature CRISPR RNAs
(crRNAs). The pre-crRNA binds to either Cas9
or to a multisubunit complex, forming the
crRNA-effector complex after further processing
involving bacterial RNase III and transactivating
CRISPR RNA (tracrRNA) (Deltcheva et al.
2011) or by an endonuclease subunit of the
multisubunit effector complex. The interference
stage involves crRNA-directed cleavage of
invading cognate virus or plasmid nucleic acids
by Cas nucleases.

The continuous arms race between prokary-
otes and invading viruses and plasmids have
driven rapid evolution of highly diverse CRISPR-
Cas systems (Takeuchi et al. 2012; Koonin and
Wolf 2015). Based on the repertoire of cas genes,
the sequence similarity between Cas proteins and
the locus architecture, the CRISPR-Cas systems
have been classified into two classes that are
subdivided into six types (Makarova and Koonin
2015; Shmakov et al. 2015). The Class 1 systems
are present in bacteria and archaea and include the
most common and diversified type I, type III that
is mainly presented in archaea, as well as the rare
type IV (Koonin et al. 2017). Class 1 systems
encompass effector complexes composed of four
to seven Cas protein subunits. The Class 2 sys-
tems (types II, V, and VI) are less common and
are mostly restricted to bacteria. Class 2 effector
complex consists of a single multidomain protein
represented by Cas9 and Cpf1 (Makarova et al.
2015). The ability to easily program sequence-
specific DNA targeting and cleavage by CRISPR-
Cas components render them a very useful tool
for genetic engineering in a wide range of
eukaryotes including various plant species and
prokaryotes (Mohanraju et al. 2016).
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CRISPR-Cas9 mediated genome editing of citrus
has been successfully conducted previously (Jia
and Wang 2014a; Jia et al. 2016b; LeBlanc et al.
2017; Peng et al. 2017; Zhang et al. 2017; Jia
et al. 2017b).

Major Tasks in the Application of CRISPR
Technology for Genome Editing of Citrus
There are multiple tasks or challenges facing the
application of CRISPR technology for gene
editing of crops especially citrus: identification of
critical traits for targeting, foreign DNA free in
modified plants, off-target issue, expanding the
toolbox of genome editing, and optimizing the
procedure and improving the efficacy.

Critical traits for targeting. Genome editing
can be used to improve many different aspects of
citrus such as color, nutrition, metabolic engi-
neering, quality, yield, seedlessness, and stress
resistance (both biotic and abiotic stress).
CRISPR-mediated genome editing has been
successfully used to generate disease-resistant
citrus varieties against bacterial canker disease
caused by Xanthomonas citri (Jia and Wang
2014a; Jia et al. 2017b; Peng et al. 2017).
Specifically, Cas9/sgRNA has been utilized to
modify the PthA4 effector binding elements
(EBEs) in the promoter region as well as the
coding region of the CsLOB1 (Citrus sinensis
Lateral Organ Boundaries) gene (Jia et al. 2016a,
b). CsLOB1 is a susceptibility gene for citrus
canker, which is induced by the pathogenicity
factor PthA4 via its binding of the EBEPthA4-
CsLOBP (Hu et al. 2014). Genome editing of the
coding region of the disease susceptibility gene
CsLOB1 in citrus leads to the development of
canker resistant plants (Jia et al. 2016a, b).
Deletion of the entire EBEPthA4 sequence from
both CsLOB1 alleles confers a high degree of
resistance to citrus canker (Peng et al. 2017).

Foreign DNA free in genome-modified
plants. To avoid all the headaches of deregula-
tions related to transgenic and GMO (genome-
modified organisms) plants (Hartung and Schie-
mann 2014), it is critical that the genome-
modified plants do not contain foreign DNAs
originating from pathogens or other organisms
that are not naturally associated with plant

chromosomes during evolution, traditional
crossing, conventional mutagenesis, or sexually
compatible species. Plants modified by the
CRISPR technology have potentials to be free of
foreign DNAs and to be indistinguishable from
plants generated by conventional breeding or
mutagenesis. Plants stably transformed with
CRISPR/Cas may contain unwanted insertions of
plasmid DNA at both on-target and off-target
sites (Woo et al. 2015). Even though the foreign
DNA may in principle be removed by genetic
segregation, this is not feasible in plants that
reproduce asexually. Specifically, the crossing
approach for citrus is laborious and time-
consuming, particularly considering the long
juvenile period for citrus. Backcrossing of citrus
will lead to loss of traits of the parental cultivars.
Additionally, constant expression of
Cas9/sgRNA in transgenic plants may lead to
accumulation of off-target effects. Transient
expression of either Cas9-sgRNA ribonucleo-
proteins, Cas9/sgRNA DNA or RNA has been
used successfully to generate non-transgenic
genome-modified plants (Zhang et al. 2016;
Liang et al. 2017; Svitashev et al. 2016; Woo
et al. 2015). Recently, Cas9/sgRNA DNA and
Cas9-sgRNA ribonucleoproteins have been used
successfully to edit the genes of protoplast cells
of citrus in the Wang lab.

Expanding the toolbox of genome editing.
The specificity of CRISPR/Cas9 mediated gene
editing is determined by both the sgRNA and
PAM, which, on the other hand, also limits the
repertoire of sequences that it can target. For
Cas9/sgRNA based on Streptococcus pyogenes,
the PAM sequence of 5’-NGG-3’ is required
(Cong et al. 2013). Multiple Cas9 orthologs from
type II CRISPR-Cas systems, which recognize
different PAMs, have been characterized and
engineered for genome editing. For example,
SaCas9 of Staphylococcus aureus recognizes
NNGRRT or NNGRR(N) (Kleinstiver et al.
2015a; Ran et al. 2015), the PAM sequence for
StCas9 of Streptococcus thermophiles is NNA-
GAAW (Deveau et al. 2008), and the PAM for
NmCas9 of Neisseria meningitides is
NNNNGATT (Hou et al. 2013). Interestingly,
Cpf1 is the effector protein for type V CRISPR-
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Cas system which recognizes a PAM sequence of
5’-TTN-3’ (Zetsche et al. 2015). The different
PAM sequences recognized by Cas9 orthologs
have significantly increased the repertoire of
sequences that are suitable for site-directed
mutagenesis. In addition, modification of the
PAM-binding domain of Cas9 can change the
PAM specificities (Kleinstiver et al. 2015b),
which further expanded the use of genome edit-
ing. Both SpCas9/sgRNA and SaCas9/sgRNA
have been successfully used to conduct genome
editing of citrus (Jia and Wang 2014a; Jia et al.
2017a).

Optimization of the CRISPR-Cas9 medi-
ated genome editing of citrus. Optimization of
CRISPR-Cas9 mediated genome editing of citrus
includes optimization of delivery of genome
engineering reagents and improving the design of
Cas9-sgRNA. Here, we summarize the current
progress in the relevant areas in citrus
biotechnology.

Delivery of genome editing reagents into
citrus cells is the major barrier for successful
genome modification. The delivery methods
include plasmid transformation by biological
organisms such as Agrobacterium and viruses
(e.g., CTV) as well as reagents delivery via
protoplast transfection and microprojectile bom-
bardment. Previously, it has been difficult to
conduct agroinfiltration-mediated transient
expression in citrus leaves. Pretreatment of citrus
leaves with Xanthomonas citri significantly
enhanced transient protein expression in citrus
leaves and delivery of Cas9/sgRNA (Jia and
Wang 2014a, b). This has been suggested to be
due to the excessive cell division caused by X.
citri infection, which mimics the fast dividing
epicotyl segment suitable for Agrobacterium-
mediated transformation.

Optimization of expression of Cas9-sgRNA
has been used to improve the efficacy of genome
editing in plants. Cas9 has been traditionally
driven by 35S promoter whereas sgRNA has
been driven by U3 or U6 promoter. sgRNA is a
small non-coding RNA and requires an accurate
5’-end to keep its target-specific sequence.
Transcripts from U3 and U6 promoters start with
the nucleotides “A” and “G”, respectively, thus

restricting the targeting range and potentially the
efficiency of Cas9. RNA processing systems
have been engineered for sgRNA processing:
tRNA processing system (Xie et al. 2015), self-
cleaving ribozyme (Gao and Zhao 2014), and the
ribonuclease Csy4 (Nissim et al. 2014). Both 35S
and U3/U6 have been used to drive expression of
sgRNA in citrus (Jia and Wang 2014a; Jia et al.
2017b; Peng et al. 2017; Zhang et al. 2017). 35S
promoter is an RNA polymerase II promoter
which synthesizes precursors of mRNAs and
most snRNA, whereas U6 or U3 are polymerase
III promoters, which synthesize tRNAs, rRNA
5S, and other small RNAs. In most studies,
sgRNAs are driven by U6 or U3 promoters (Kim
et al. 2016; Wei et al. 2017). It seems 35S, U6,
and U3 promoters all work in promoting the
transcription of sgRNA (Kim et al. 2016; Jia and
Wang 2014a). However, U6 or U3 might be
more efficient than 35s for driving the tran-
scription of sgRNA since Pol II created RNA
will be capped and poly-A-tailed, so the half-life
of the RNA in the nucleus will be shorter than
that synthesized by RNA polymerase III.

The 35S promoter is the most commonly used
to drive the expression of Cas9. However,
Cas9/sgRNA gene editing efficacy has been
improved by driving the expression of Cas9
using different promoters including the dividing
cell-specific INCURVATA2 promoter (Hyun
et al. 2015); the cell division-specific YAO pro-
moter (Yan et al. 2015), and the germ-line-
specific SPOROCYTELESS promoter (Mao
et al. 2016) in Arabidopsis. Besides 35S pro-
moter, the YAO promoter has been successfully
used to drive the expression of Cas9 in citrus
(Zhang et al. 2017).

Codon-optimization of Cas9 has also been
used to maximize Cas9 activity in plants (Bortesi
and Fischer 2015). Plant codon-optimized
SpCas9 gene has been used in citrus previously
(Peng et al. 2017). Codon-optimization of other
Cas9 orthologs is also recommended.

In addition, heat stress has also been shown to
increase the efficacy of gene editing by
CRISPR/Cas9. LeBlanc et al. (2018) demon-
strated that Arabidopsis and citrus plants sub-
jected to temperature at 37 °C showed

14 Biotechnological Approaches for the Resistance to Citrus Diseases 251



significantly higher frequencies of CRISPR-
mediated mutations compared to plants grown
at 22 °C. This seems to have resulted from that
SpCas9 is more active in creating double-strand
DNA breaks at 37 °C than at 22 °C.

Off-target Issue
Besides their target sites, Cas9 protein and
orthologs can also create unwanted cleavages at
off-target sites with high sequence similarity to
target sequence, thus causing off-targeting
mutations. For example, SpCas9 not only rec-
ognizes 5’-NGG-3’ as the PAM sequence, but
also can cleave sites with a 5’-NGA-3’ or 5’-
NAG-3’ PAM sequence at lower efficacy (Hsu
et al. 2013). In addition, mismatches in the PAM-
distal sequence at the 5’ terminus are tolerated,
whereas mismatches in the seed region, the 10-12
nucleotides right upstream of PAM are not tol-
erated. Off-targets can cause negative effect
which must be monitored carefully and avoided
as much as possible (Koo et al. 2015).

Multiple approaches have been reported to
reduce off-target issue associated with Cas9-
sgRNA mediated genome editing. First, opti-
mization of sgRNA by selecting unique target
sequences which differ from other sequences by
at least 2 or 3 nucleotides reduces off-target
effects (Cho et al. 2014). Second, application of
D10 mutant nickase version of Cas9 pairing with
two sgRNAs that each cleaves only one strand
decreases off-target effect (Ran et al. 2013). This
approach extends the target sequence from 23 bp
to 2 � 23 bp. Third, fusing dead SpCas9
(dCas9, which results from mutations of both
cleavage domains of SpCas9, i.e., D10A for
RuvC and H840A for HNH) with the FokI
nuclease domain at the N-terminus also reduces
off-target problem (FokI-dCas9) (Tsai et al.
2014). In addition, nontransgenic genome editing
approaches as described above have the potential
to reduce off-targets.

Overall, Agrobacterium-mediated transgenic
expression, CTV-mediated expression, and
CRISPR-based genome editing have shown
tremendous potential to improve citrus against
different diseases. However, their applications

remain at the early stage. The scientific commu-
nity needs to further optimize the tools, rigorously
test the end products to avoid negative effects, and
appropriately address the public concerns regard-
ing crops containing those elements.
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