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Abstract Models for describing separate large-scale fractal structures of the Uni-
verse are proposed. The relationships between the parameters of gravitational waves,
relic photons and the Higgs boson are established. Estimates of these parameters are
given on examples of: merging two black holes, binary neutron stars; “Cold relict
spot” (supervoid). The behavior of deformation fields on the fractal index for a num-
ber of quantum model systems with variable parameters is investigated. It is shown
that the presence of nonlinear oscillations is characteristic for a fractal layer without
a quantum dot. Stochastic behavior for the boundaries of the quantum dots cores is
observed, an anisotropy effect is possible.

Keywords Fractal structures of the Universe · Higgs boson · Gravitational
waves · Relic photons · Binary black holes and neutron stars

1 Introduction

The hypothesis of the presence of dark matter, dark energy in the Universe can be
examined on the basis of direct gravitational effects, waves [1]. Electromagnetic
radiation (photons) does not carry this direct information. For the creation of a gravi-
tational wave detector and experimental proof of their existence, R.Weiss, K. Thorne
and B. Barrish were awarded the Nobel Prize in Physics in 2017. A binary black hole
merger with the energy release in the form of gravitational waves (GW)was recorded
by the LIGO interferometers in Livingston and Hanford [2]. These signals represent
the gravitational wave amplitude dependencies on time, and was recorded by the
detectors LD (Livingston Detector) and HD (Hanford Detector). The appearance of
GW from a binary neutron stars was recorded onAugust 17, 2017 [3]. These achieve-
ments in cosmology give impulse to the development of new theoretical models of
the fractal structures of the Universe: Galaxies, superclusters of Galaxies, walls, fila-
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ments, voids [4], supervoid or the CMB Cold Spot [5], black holes, neutron stars [6].
The hypothesis of the hierarchical structure of the Universe makes it possible to use
models of fractal dislocations, quantum dots with variable parameters to describe
individual elements of the fractal structures of the Universe [7].

When describing various nonlinear physical models, singular points (attractors),
lines, surfaces, special volumetric structures (strange attractors) arise.Many physical
properties near the above features are stochastic in nature, it becomes necessary to
model stochastic processes [8]. In [9–12] attractors and deformation field, mutual
influence of attractors and stochastic processes in the coupled fractal multilayer
nanosystems were investigated. In [11] the fractal oscillator model based on the
theory of fractional calculus was proposed. In [12] transient processes in a mul-
tilayer fractal nanosystem with a nonlinear fractal oscillator were investigated. In
the presence of variable parameters, features arise in the behavior of such fractal
nanosystems.

The aimof the paper is to describe anisotropy, transient signals frombinary objects
(black holes, neutron stars); modelling of the deformation field of an individual layer
in a multilayer fractal nanosystem (with variable parameters), investigation of the
influence of a fractal index.

2 Anisotropic Model for Binary Black Holes

For the split energy branches 2ε02, 2ε01 in [7, 13, 14] therewere expressions obtained,
relating the rest energy of the Higgs boson EH0 = 125.03238GeV and the order
parameter for the Higgs field �′

0 = 21.93272771GeV

ε02 = [
E2

H0 − (�′
0)

2]1/2; ε01 = [
E2

H0 + (�′
0)

2]1/2;
�′

0 = ψ ′
0EH0;ψ ′

0 = δN ′
0/N

′
0; (ξ ′

0)
2 = N ′

01/N
′
02;

N ′
02 = [

(N ′
0)

2 − (δN ′
0)

2
]1/2; N ′

01 = [
(N ′

0)
2 + (δN ′

0)
2
]1/2

. (1)

Parameters describing the presence of a Bose condensate taking into account the
Higgs field are: N ′

0 = 3.7384680×105, N ′
01 = 3.7955502×105, N ′

02 = 3.6805005×
105, (ξ ′

0)
2 = 1.031259246, ψ ′

0 = 0.175416382; energies 2ε01 = 253.8829698GeV,
2ε02 = 246.1873393GeV. Next, a quasi-one-dimensional lattice with two atoms in
a unit cell (such as an effective atom and a Higgs boson with rest masses mH and
MH0) was introduced. The basic relations between parameter |ξ0H |2 with the rest
masses mH and MH0 are following

|ξ0H |2 = mH/MH0 = MH/mH0 = EH/EH0 = RH/RH0; MHa = NaMH ;
M ′

H0 = NamH0; RH = 2GMHa/c
2
0; RH0 = 2GM ′

H0/c
2
0. (2)
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Here MH = NamH = 24.41158758 g and mH0 = NaMH0 = 134.2770693 g are
molar masses of the effective atom and the Higgs boson; EH = 22.73090194GeV is
rest energy of an effective atom; RH = 21.84067257μm, RH0 = 120.1356321μm
allow us the interpretation of Schwarzschild radii of black holes with masses MHa ,
M ′

H0; G = 6.672 × 10−8 cm3 g−1 s−2 is Newton’s gravitational constant; Avogadro
number is Na = 6.025438 × 1023; c0 is the speed of light in a vacuum. Taking
into account the value |ξ0H |2 = 0.181800122, the main parameters of the theory∣∣S′

01

∣∣ = 0.039541282, S′
02 = 0.03409, S′

03 = 0.460458718, S′
04 = 0.53409 were

obtained. On the basis of energies 2ε01, 2ε02 from (1) and parameters S′
0x (x =

1, 2, 3, 4) we obtain energy spectra εsx = 2ε01S′
0x , ε′

sx = 2ε02S′
0x . These spectra

make it possible (taking into account the Higgs field) to obtain the energy values
εs3 + ε′

s2 = 125.2951532GeV and εs3 + ε′
s1 = 126.6371898GeV for the Higgs

boson, which agree with the values of the energies 125.3 and 126.5 GeV, obtained
at the LHC [15]. Based on the parameters (ξ ′

0)
2, |ξ0H |2 and the molar mass MH , we

introduce the susceptibility components

χ11 = |ξ0H |2;χ21 = χ02 = [(ξ ′
0)

2 − 1]/χ11;χ31 = −χ01; nF + n′
F = 1;

nF = M02/MH = χ02/χ11; n′
F = M01/MH = −χ01/χ11. (3)

Taking into account (3), we find numerical values: χ11 = 0.181800122, χ02 =
0.171942932, χ01 = −0.00985719, nF = 0.945780069, n′

F = 0.054219931,
M01 = 1.323594585 g, M02 = 23.087993 g.

On the basis of (3) and EH0 we find the characteristic energies

E1ν = −χ01EH0 = n′
F EH ; E2ν = χ02EH0 = nF EH ; EH = χ11EH0.

E1ν = M01c
2
0 = 1.232467935GeV; E2ν = M02c

2
0 = 21.49843401GeV. (4)

Next, we introduce a row-vector χ̂1 = (χ11, χ21, χ31) and a column-vector χ̂+
1 .

We find the effective susceptibility |χe f |, molar mass Mef from the conditions

χ̂1χ̂
+
1 = ∣∣χe f

∣∣2 = |χ01|2 + |χ02|2 + |ξ0H |4 = M2
e f m

−2
H0;

M2
e f = M2

01 + M2
02 + M2

H . (5)

The numerical values are
∣∣χe f

∣∣ = 0.250425279, Mef = 33.62637256 g.
To take into account the nonlinear dependences of the effective displacements

uμ = F(ϕμ; kμ) (F is the incomplete elliptic integral of the first kind) on the angle
ϕμ, the modulus kμ of elliptic functions, we use the fractal oscillator model [11, 12].
In this model, a matrix T̂e f with elements ti j is introduced

t11 = k ′
μ; t12 = −kμ; t21 = kμcn(uμ; kμ); t22 = k ′

μcn(uμ; kμ);
t23 = −sn(uμ; kμ); t13 = 0; t31 = kμsn(uμ; kμ);
t32 = k ′

μsn(uμ; kμ); t33 = cn(uμ; kμ); i, j = 1, 2, 3. (6)
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The action T̂e f on
∣∣χe f

∣∣ leads to a matrix
∣∣χ̂e f

∣∣ = T̂e f
∣∣χe f

∣∣ with elements χi j

χ11 = k ′
μ

∣∣χe f

∣∣;χ21 = kμ

∣∣χe f

∣∣cn(uμ; kμ); χ31 = kμ

∣∣χe f

∣∣sn(uμ; kμ);
χ12 = −kμ

∣∣χe f

∣∣; χ22 = χ11 cosϕμ; χ32 = χ11 sin ϕμ;χ23 = −∣∣χe f

∣∣ sin ϕμ;
χ13 = 0; χ33 = ∣∣χe f

∣∣ cosϕμ; k ′
μ = χ11/

∣∣χe f

∣∣; (k ′
μ)2 + k2μ = 1. (7)

The numerical values are χ12 = −0.172225247, χ22 = 0.181502111, χ32 =
0.010405201, χ23 = −0.014332913, χ33 = 0.250014775, k ′

μ = 0.725965539,
sin ϕμ = 0.057234291. The characteristic angles ϕμ = 3.2810763◦, ϕ∗

μ = π/2 +
2ϕμ, ϕ′

μ = π/2 − ϕμ = 86.7189237◦ can be determined from the presence of
peaks in X-ray structural spectra. From (1) at ψ ′

0 = 0 we obtain the order parameter
�′

0 = 0 and the equality of the energies 2ε02 = 2ε01 = 2EH0 of the branches of
the spectrum. Then from (3) follows (ξ ′

0)
2 = 1, χ21 = 0, and from (7) we obtain the

condition kμ

∣∣χe f

∣∣cn(uμ; kμ) = 0. This condition can be fulfilled either at kμ = 0 or
at cn(uμ; kμ) = 0. Then χi j will take numerical values different from those given
above. If the parameter �′

0 �= 0, then from (7) follows the need to analyze other
row-vectors χ̂2 = (χ12, χ22, χ32), χ̂3 = (χ13, χ23, χ33) and the column-vectors χ̂+

2 ,
χ̂+
3 the susceptibility tensor χ̂e f .
On the basis QH6 = 1.537746366 from [13] and the susceptibility components

χi j , we write for the black hole spin tensor n̂hs the elements in the form ni j =
2/(2QH6−zi j ), where zi j = χi j/2. For diagonal elements we find n11 = 0.6701082,
n22 = 0.6700747, n33 = 0.6778548. After the binary black holes (BBH) merger in
[2] the final value of the black hole spin of 0.67 and the value of the red shift zs = 0.09
are determined. Our calculated values n22 and z22 = 0.090751056 are close to these
data. This indicates the tensor nature of the source of the black hole spin n̂hs and
redshift zi j , which are related to the susceptibility χi j . The main parameter nA0

determines the spectrum for the occupation numbers nAx = nA0S′
0x of black holes.

The number of quanta nh1 = Mh1/Ms , nh2 = Mh2/Ms BBH before merger, and the
number of black hole quanta 2nA4 = MA4/Ms after merger are determined through
the cosmological redshift z′

μ, the parameter QH2 and nA0 from expressions

sin2 ϕ′
μλ = 2zQ/(3zQ + 1); cos2 ϕ′

μλ = (zQ + 1)/(3zQ + 1); zQ = 1/(2nA0 − 1);
nA0 = (z′

μλ)
2 − 1 = (z′

μ + 3/2)(z′
μ − 1/2); z′

μλ = z′
μ + 1/2; 1/z′

μλ = sin ϕ′
μλ;

n′
A0 = (z′

μλ)
2; n′

A0 − nA0 = 1; z′
Q − zQ = 1; ϕ′

μλ = ϕaQH2. (8)

HereMh1,Mh2 aremasses of first, second black holes beforemerger;MA4 is black
holemass aftermerger;Ms is mass of the Sun. Using the values of parameters QH2 =
1/3, z′

μ = 7.184181 [13, 14], we find sin ϕ′
μλ = 0.130137486, nA0 = 58.04663887.

The angle ϕa = 22.43261159◦ can be determined from the peak position on an
amorphous substrate in the X-ray structural spectrum. Based on the spectrum nAx ,
we find the number of black hole quanta 2nA4 = 62.0042587 that formed after the
merger of two black holes. Number of quanta of the second black hole before merger
is nh2 = nA0/2 = nA4 − nA2 = nA3 + nA1 = 29.02331944. As a result of the
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merger of these BBH, the number of quanta nG = 1/QH2 = 3 is carried away
by gravitational waves. The number of quanta of the first black hole before merger
nh1 = 35.98093926 we obtain from equation (nh1 + nh2) − 2nA4 = nG .

In [13, 14], by describing the anisotropy of the CMB, connections temperatures
TA = Tr/Nra = 2.61739852mK, T ′

A = Tr/z′
A2 = 2.635582153mK with the relict

radiation temperature Tr = 2.72548K were obtained, where z′
A2 = 1034.109294 is

the usual redshift, Nra = z′
A2 + z′

μ = 1041.293475. The temperature deviation
δTA = T ′

A − TA = 18.183633μK agrees with the experimental average value
18μK of temperature fluctuations in the relict background in the fractal model of
the Universe. On the other hand, in our model the supervoid is determined by the
temperature T ∗

A , the number of quanta N ∗
ra , the parameter z∗

μ

T ∗
A = Tr/N

∗
ra; N ∗

ra = z′
A2 + z∗

μ; z∗
μ = 2nA4 + (nA1 − nA2). (9)

The parameter z∗
μ = 62.3206873 allow us an interpretation as the effective cos-

mological shift at the early stages of the formation of the structure of the Universe
after the Big Bang, and is related with numbers of black hole quanta 2nA4, nA1,
nA2. Numerical values are N ∗

ra = 1096.429981, T ∗
A = 2.4857766mK. The tem-

perature deviation δT ∗
A = T ∗

A − T ′
A = −149.8055448μK agrees with the deviation

(−150μK) from [5]. The sign “−” indicates that the area of the supervoid is colder
than the neighboring areas.

3 Description of Transient Signals from Binary Objects

Busts of supernovae of type la, processes of BBH, binary neutron stars (BNS)merger
can be considered as separate impulse sources in the Universe. In this case, transient
gravitational-wave signals, relict radiation of photons arise. To describe the charac-
teristic parameters and transient signals of the GW radiation from the BBH or BNS
merger, we use the semiclassical superradiance model Dicke [16] and the quantum
statistical theory of superradiance [17, 18]. For the radiation intensity J we have [16]

J = J0[(a20 − a2m) + (a0 + am)] = J0(a0 + am)[(a0 − am) + 1]. (10)

Here J0 is the initial radiation intensity; parameters a0, am generally depend on
the time, frequency and amplitude of the GW, the characteristics of the BBH or BNS.
If J = Jm , where Jm is the maximum radiation intensity, then from (10) we obtain
expressions for the critical density ρc ratio of the GW signal amplitude to the noise
amplitude

ρ2
c = (z′

A2 − 1)/2 + Jm/(2J0); a20 = a2m + z′
μ(z′

μ + 2)/4; am = (z′
A2)

1/2. (11)
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The numerical values of the parameters are am = 32.1575698, a0 = 32.4130298,
Jm/J0 = 81.0658042. The value ρc = 23.602701 is close to the critical value of
23.6 for BBH from [2]. The parameter a0 is close to the ratio of the signal amplitude
to the noise amplitude of 32.4 for BNS [3].

On the basis of model I from [13, 14] we write the expressions for the Hubble
constant H0, velocity υ0 in the model of a flat cosmology

H0 = H01/�t H = υ0/L0; υ0 = υ01/�t H ; �t H = QH0 + ∣∣S′
01

∣∣. (12)

Taking into account the values of Hubble constant H01 = 73.2 km s−1 Mpc−1, the
velocity υ01 = 7.32 × 106 cm s−1 (which describe the accelerated expansion of the
Universe), QH0 = 1.039541282, L0 = 0.30857 × 1025 cm [12, 13], from (12) we
obtain H0 = 67.83540245 km s−1 Mpc−1, υ0 = 6.783540245 × 106 cm s−1.

In [13, 14], the values for themaximum νr1 = 160.3988698GHz and shifted νr2 =
142.8161605GHz frequencies of relict radiation photons were obtained. According
to the relict radiation, taking into account ξq = νr1 − νr2, in [7] the value of the
gap 2|λ|N 1/2 = 8.396945157GHz in the spectrum and density of cold dark matter
�′

c1 = 4|λ|2N/|ξq |2 = 0.228071512 are obtained.
To calculate the wavelength λγb from the source for BNS, we use the energy

spectra εμx = 2ε′
01S

′
0x , ε

′
μx = 2ε′

02S
′
0x , which are written in analogy with (1) on the

basis of the energy of the Higgs boson and the order parameter δμ

2ε′
01 = 2[E2

H0 + (δμ)2]1/2; 2ε′
02 = 2[E2

H0 − (δμ)2]1/2;
δμ = EH0 sin ϕμ/QH6; λγb = RH0

∣
∣χe f

∣
∣(εμ4 + εμ2)/(2EH0). (13)

We note that the order parameter δμ (describes the Bose-condensate) depends on
the angle ϕμ, parameter QH6, as follows from (7) and (8). The numerical values
are δμ = 4.6536541GeV, 2ε′

01 = 250.2379072GeV, 2ε′
02 = 249.8914929GeV,

λγb = 17081.85081 nm. Based on the calculated wavelength λγb from the source
for BNS, we find the characteristic parameters

νγb = υ0/λγb;�′
c2 = ν2

γb/(4|λ|2N );υ2
γb = υ2

0/�′
c2;�01 = υ2

01/υ
2
γb. (14)

Here νγb = 3.974973236GHz is frequency, �′
c2 = 0.224091707 is density of

cold dark matter, υγb = 14.34353643 × 106 cm s−1 is the effective Fermi-velocity
associatedwith neutron stars;�01 = 0.260441196. Taking into account (3), relations
n′
Fν = (n′

F )2, nFν = nF (1 + n′
F ) we find estimates of the densities of neutrinos

�0ν = n′
Fν = 0.0029398, cold dark matter �c1 = �′

c2 + �0ν = 0.2270315 (close
to the estimate of the density of cold dark matter 0.227, obtained by other authors
[1]). The wavelength λγh associated with the source from black holes is determined
by expressions

λγh = λγb/ηbh; ηbh = (1 + �01/2)[1 + (n′
F )2/2]. (15)
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Parameter is ηbh = 1.13188191 and wavelength is λγh = 15091.54856 nm. The
calculated valuesλγh ,λγb are close to the values ofwavelengths 15091.4, 17081.7 nm
for the sources from the BBH [2], BNS [3], respectively. From (1), (13) and (15) the
relationships between Bose-condensates for black holes and neutron stars through
energy EH0 follow. The value zQ = 0.008688605 from (8) is close to the redshift of
0.009 of the source for BNS [3].

We find the spectrum for the occupation numbers ncx (based on nch) and the total
number of quanta ntot after the BNS merger from the expressions

ncx = nch S
′
0x = Mcx/Ms; nch = 1/(ψch − 1); ψ∗

ch = z′
Qψch; ψch = 1 + S′

02/χ11;
ntot = Mtot/Ms = 2nc4 − n1c = 2n3c + (2n2c + n1c); n′

tot = 2nc4 − 2(nc1 − nc2).
(16)

Numerical values are nch = 5.332945778; ψch = Mch/Ms = 1.187513626;
ψ∗

ch = M∗
ch/Ms = 1.197831463; Mcx and Mtot are effective molar masses before

and after merger. The calculated valuesψch andψ∗
ch are close to 1.188 and 1.1977 for

effective molar masses Mch and M∗
ch within the GW detector from the BNS source

[3]; ntot = 2.742837254 and n′
tot = 2.81920162 are close to 2.74 and 2.82 (low-spin

and high-spin approximation) [3].
For the characteristic frequency νGW of the gravitational wave, we have

νGW = 4νλ0 = Nraνγ0; νλ0 = 1/(N ′
0 − N ′

02)τs0; τs0 = 2(|S′
01| + S′

02)/|λν0|;
τs0 = τλ2/N

′
02 = τ ′

λ2/N
′
0; τ ′

λ2 − τλ2 = τλ0 = 1/νλ0; ν0 = 2z′
μνλ0/(2z

′
μ + 1).

(17)

The parameter |λν0| = 130.5593846 kHz is related to parameter δμ from (13),
describing the presence of a Bose-condensate for neutron stars. At |λν0| = 0 from
(17) follows, that the frequencies of the soft modes are νλ0 = 0 and νGW = 0.
Further from (17), we find τs0 = 1.127935494μs, νλ0 = 152.9437161Hz,
νGW = 611.7748643Hz, ν0 = 142.9918607Hz, τλ0 = 6.538352972ms, τλ2 =
0.415136712 s, τ ′

λ2 = 0.421675065 s.
The time of appearance of γ-radiation after the merger of neutron stars τγ0 is

determined by the difference in the coalescence times τ ′
c0, τc0

τγ0 = τ ′
c0 − τc0 = 1/νγ0; τ ′

c0 = τγ0n
′
A0; τc0 = 1/νc0 = τγ0nA0;

τ0 = 1/ν0 = τλ0(1 + 1/2z′
μ); νγ0 = νc0nA0 = ν ′

c0n
′
A0; ν ′

c0 = 1/τ ′
c0. (18)

Numerical values are τγ0 = 1.7020861 s, τc0 = 98.800376 s, τ ′
c0 = 100.502462 s,

νγ0 = 0.5875144Hz, νc0 = 0.0101214Hz, ν ′
c0 = 0.00995Hz. The delay time GW

between the detectors LDandHD τ0 = 6.993405ms from (18) is determined through
the time τλ0 from (17) and the cosmological redshift z′

μ.
We write the spectra νr x = 2νra S′

0x and ν ′
zx = 2ν ′

zμS
′
0x on basis νra and ν ′

zμ
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νra = �raνλ0 = �raνGW/4; ν ′
zμ = νraz

′
μ; �ra = Nra�

′
c1/z

′
A2;

νra = νr3 + νr1 = νr4 − νr2; ν ′
zμ = ν ′

z3 + ν ′
z1 = ν ′

z4 − ν ′
z2;

ν∗
zμ = ν ′

z3 + ν ′
z2 = ν ′

z4 − ν ′
z1. (19)

Numerical values are �ra = 0.229656, νra = 35.124438Hz, ν ′
zμ =

252.340321Hz, ν∗
zμ = 249.589164Hz. If z′

μ = 1, then from (19) follows, that
the spectrum ν ′

zμ goes to spectrum νra . When the black holes merger, the LD and HD
detectors recorded the signals as a series of pulses, the frequency of which increased
from 35 to 250 Hz. At the same time, the amplitude of the signals increased to the
maximum value, and then dropped sharply to the noise level. Our calculated fre-
quencies νra , ν ′

zμ, ν
∗
zμ agree with the data on the detection of GW during of the BBH

merger [2].
Next, we write the spectrum νWx = νGW S′

0x on the basis of frequency νGW .
The value of the frequency νW1 = 24.190362Hz is consistent with the value of the
frequency 24Hz, that theLDdetector starts detecting in theGWdetection experiment
during BNS merger [3].

Let hmL , hmH be maximum values of amplitudes of signals GW, registered by
detectors LD, HD; hξL , hξH are noise level after passing the GW. The GW signal
on the HD detector appears later on a delay time τ0, than on the LD detector. Taking
into account (10) and (11), we write the relations for the amplitudes of the signals
GW arising from the black holes merger

2hmH/hmL = (1 + am/a0)[1 + (a0 − am)]; hmHhξL = hmLhξH ;
2hξH/(2hmH + hξH ) = 2hξL/(2hmL + hξL) = |ξ0H |2. (20)

On the basis of (20), we obtain the numerical values hmL = 0.9168936 × 10−21,
hmH = 1.146587 × 10−21, hξL = 0.1833588 × 10−21, hξH = 0.2292923 × 10−21.

The maximum amplitude h′
mL of the GW signal, the noise level GW before and

after the neutron stars merger h∗
ξL and h′

ξL (recorded by the LD detector) are deter-
mined by the formulas

h′
mL = 2a0/n�2 = 2a0hmH ; h∗

ξL = 2am/nJ0 = 2amhξH ; 1/nJ0 = hξH ;
h′

ξL = 2h′
mL |ξ0H |2/(2 − |ξ0H |2); 1/n�2 = hmH = |ξq |2EG/(4|λ|2NraEH0N

′
02).

(21)

Values are h′
mL = 7.4328715 × 10−20, h∗

ξL = 1.4746969 × 10−20, h′
ξL =

1.4864119×10−20, EG = 12.11753067μeV, h′
mL/h

∗
ξL = 5.0402707. The obtained

estimates from (20) and (21) agree with the data from [2, 3].
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4 Description of an Individual Layer with Variable
Parameters

The hypothesis of the hierarchical structure of the Universe allows us to use models
of fractal nanosystems (dislocations, quantum dots) to describe separate elements of
large-scale fractal structures. When modelling the nonlinear effective displacements
uμ = F(ϕμ; kμ) from (6), the main parameter is b0 = 1−2sn2(uμ; kμ). Expressions
for the four branches of effective displacements uμi (i = 1, 2, 3, 4) have the form
[12]

2uμ1(z, α) = g1 − g2 + g4; 2uμ2(z, α) = g1 − g2 − g4; (22)

2uμ3(z, α) = −g1 − g2 + g5; 2uμ4(z, α) = −g1 − g2 − g5. (23)

The functions g1, g2, g3, g4, g5 depend on the coordinate z, the fractal index α

along the axis Oz, and are modelled by expressions

g2(z, α) = g20|z − zc|−α; g3(z, α) = g30|z − zc|−2α; (24)

g20(α) = 2−2α33α−1/2�(α + 1/3)�(α + 2/3)/
√

π �(α + 1/2); (25)

g30(α) = 2 · 33α−1/2 �(α + 1/3)�(α + 2/3)/π; g′
30(α) = 1/g30(α); (26)

g4(z, α) = [
(g1 + g2)

2 − g3
]1/2; g5(z, α) = [

(−g1 + g2)
2 − g3

]1/2
. (27)

Here � is the gamma function; g20, g30, g′
30 are nonlinear discontinuous functions

of the fractal index α (Fig. 1). The functions g2, g3 from (24) also become nonlinear
on the background of power dependencies.

The function g20(α) has zeros at α = −(nα + 1/2), where nα = 0, 1, 2 . . .. The
function g′

30(α) has zeros at α = −(nα + 1/3), α = −(nα + 2/3). The nonlinear
function g1 depends on uμ, α and indices n, m, j lattice nodes

Fig. 1. Behavior of functions g20, g30, g′
30 on α
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g1(uμ, α; n,m, j) = k2α(1 − 2sn2(uμ − u0; kμ)); k2α = (1 − α)/Q; (28)

Q = p0α − b1(n − n0)
2/n2c − b2(m − m0)

2/m2
c; p0α = p0 − b3( j − j0)

2/j2c .

(29)

Here u0 is constant displacement; p0, b1, b2, b3, n0, nc, m0, mc, j0, jc are char-
acteristic parameters. The function kα depends on α, indices n, m, j lattice nodes
N1 × N2 × N3. In our model, this function determines the behavior of the module
kμ = sn(u0α, kα), where u0α = F(ϕ0α, kα); ϕ0α is the polar angle. As a result kμ

(implicitly depends on n, m, j) and four branches uμi from (22) and (23) become
random functions. In numerical simulation, for forward z = z1 and backward z = z2
waves it was assumed that z1 = 0.053 + hz( jz + 33); z2 = 6.653 − hz( jz + 33),
hz = 0.1; jz = 5; n = 1, 30; m = 1, 40; u0 = 29.537; u0α = π/5.2; p0 = 1.0123.
The solution of Eqs. (22) and (23) for branches u = uμi is carried out by the iteration
method on the variable m.

Consider the state of a layer without quantum dot (b1 = b2 = b3 = 0, Q = p0).
The behavior branches of the displacement function of the backward wave on α is
given in Fig. 2.

For the backward wave (Fig. 2a), in addition to the regular behavior of the 1,
2, 3 branches, the stochastic behavior of the 4 branch is observed, the 3 branch
is characterized by the presence of the second harmonic. At α = −1.5 (Fig. 2b)
oscillationswith increased amplitudes are observed for branches 1 and 4, and damped
oscillations with amplitudes of order for branches 3 and 2 are observed. At α = −2.5
(Fig. 2c), singularities appear in comparison with Fig. 2b: for branch 1 is change in
shape, amplitude of oscillations; for branch 4 is doubling of the period of oscillations;
for branches 3 and 2 are damped oscillations with reduced amplitudes of order ±2×
10−10. At α = −3.5 (Fig. 2d) branches 3 and 2 demonstrate nonlinear oscillations:
on separate peaks of 3 branches there are features such as a local minimum between
two humps; branches 1, 4 take zero values. With a further change α, the character of
the behavior of all four branches practically does not change (similar to the behavior
of Fig. 2b with the order of the branches 3, 1, 4, 2), which indicates the presence of a
critical value α ≈ αc = −4.5. This is due to the nonlinear behavior of discontinuous

Fig. 2. Dependencies of the projections u on the plane mOu for the backward wave on m for
various α: 1—uμ1, 2—uμ2, 3—uμ3, 4—uμ4
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functions g20, g30 from (25) and (26) on α. With a change α the behavior of the
forward wave branches qualitatively coincides with that for the backward wave.

Next, we consider the state of the layer with a quantum dot (Fig. 3). Main param-
eters are b1 = b2 = b3 = 1; n0 = 14.3267; nc = 9.4793; m0 = 19.1471; mc =
14.7295; j0 = 31.5279; jc = 11.8247. From (29) at p0α = −3.457 × 10−11 we find
the averaged values for the layer number j: j1 = 19.63070035, j2 = 43.42509965.
At iterations it was accepted j = j1. In this case, the module kμ implicitly depends
on n, m, and becomes a random function.

The behavior of the displacement functions of all four branches for the forward
(Fig. 3a–c) and the backward (Fig. 3d–f) waves is different. The 1 branch of the
forward (Fig. 3a) and the backward (Fig. 3d) have peaks with large amplitudes, that
confirms the state of the layer with the quantum dot. The behavior of the core of
such quantum dot differs from the behavior of the cores of quantum dots from [14].
Instead of regular wave behavior [14], the cores boundaries become stochastic. Inside
the cores, there are features of the type of islands, jumpers, narrowings, wells. For
the 2 branch of the forward wave, the core has a convex form (Fig. 3b), and for the
backward wave the core approaches to a flat form (Fig. 3e). For the 3 branch of the
forward wave, the core has a concave form of the well type (Fig. 3c), and for the
backward wave (Fig. 3f) the core has a flat bottom. At the boundaries of these cores
there are peaks with small amplitudes (features such as additional wells, saddles,

(a) (b) (c)

(d) (e) (f)

Fig. 3. Dependencies u on n, m at α = −0.5 for different branches of the forward (a, b, c) and the
backward (d, e, f) waves
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valleys are formed). These features of the deformation field behavior indicate the
appearance of an effective multi-well potential in a layer with a quantum dot.

A further change α leads to a change in the stochastic behavior of the core bound-
aries (Fig. 4). For the 2 branch of the backward wave, at α = −2.5 (Fig. 4a), a
stochastic peak down is observed on a stochastic background with a practically con-
stant amplitude. At α = −4.5 the stochastic peak disappears, and the stochastic
background remains (Fig. 4b). At α = −8.5 (Fig. 4c), in the stochastic background
the formation of a failure near m = m0 is observed.

When the values of the semi-axes nc,mc (Fig. 5) of quantum dot are changing, the
behavior of the deformation field of the core and its boundary changes. For the first
branch uμ1 the effect of pronounced anisotropy is observed. A periodic fine structure
appears on the boundaries for the forward wave (Fig. 5a), and for the backward wave
there is a structure with fine wells (Fig. 5c).

(a) (b) (c)

Fig. 4. Dependencies of the projections u = uμ2 on the plane mOu for backward wave on m for
different α

(a) (b) (c)

Fig. 5. Cross-sections uμ1 ∈ [0; 1.5] (top view) for forward (a, b) and backward (c) waves for
different semi-axes, nc, mc at α = −0.5
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5 Conclusions

An anisotropic model is proposed for describing the main parameters of the BBH,
BNS, the nature of the spin source of which has a tensor character. Taking into
account the Higgs field, estimates are made of the energies of the Higgs boson, relict
photons, and the temperature deviation of the relict background. It is shown that the
nature of the supervoid or the “Cold relict spot” is associated with the presence of
a black hole and its influence on relict photons. To describe the transition signals
(gravitational waves, relict radiation), it is proposed to use the superradiance model
R. H. Dicke and the quantum statistical theory of superradiance.

Based on the hypothesis of the hierarchical structure of the Universe, modelling
of the deformation field of separate structures it is proposed to use of quantummodel
systems with variable parameters. It is shown that for a layer without a quantum
dot, the presence of nonlinear oscillations is characteristic, which depend on the
fractal index α. The structure of the quantum dots cores in the layer has a convex,
concave, and flat form with a stochastic boundary. The formation of stochastic peak
and the appearance of failure on stochastic background is possible. The change in
the semi-axes of the quantum dot leads to the anisotropy effect.
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