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Preface

11th Chaotic Modeling and Simulation International
Conference (5–8 June 2018, Rome, Italy)

It is our pleasure to thank the guests, participants and contributors to the 11th
International Conference (CHAOS2018) on Chaotic Modeling, Simulation and
Applications. We support the study of nonlinear systems and dynamics in an
interdisciplinary research field and very interesting applications where presented.
We provide a widely selected forum to exchange ideas, methods and techniques in
the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General
Science and in Engineering Sciences.

The principal aim of CHAOS2018 International Conference is to expand the
development of the theories of the applied nonlinear field, the methods and the
empirical data and computer techniques, and the best theoretical achievements of
chaotic theory as well.

Chaotic Modeling and Simulation Conferences continue to grow considerably
from year to year thus making a well-established platform to present and dissem-
inate new scientific findings and interesting applications. We thank all the con-
tributors to the success of this conference and especially the authors of this
Proceedings Volume of CHAOS 2018.

Special thanks to the Plenary, Keynote and Invited Presentations, the Scientific
Committee, the ISAST Committee and Yiannis Dimotikalis, the Conference
Secretary Mary Karadima and all the members of the Secretariat.

Chania, Crete, Greece Christos H. Skiadas
Aizuwakamatsu, Fukushima, Japan Ihor Lubashevsky
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Gravitational Waves, Relic Photons
and Higgs Boson in a Fractal Models
of the Universe

Valeriy S. Abramov

Abstract Models for describing separate large-scale fractal structures of the Uni-
verse are proposed. The relationships between the parameters of gravitational waves,
relic photons and the Higgs boson are established. Estimates of these parameters are
given on examples of: merging two black holes, binary neutron stars; “Cold relict
spot” (supervoid). The behavior of deformation fields on the fractal index for a num-
ber of quantum model systems with variable parameters is investigated. It is shown
that the presence of nonlinear oscillations is characteristic for a fractal layer without
a quantum dot. Stochastic behavior for the boundaries of the quantum dots cores is
observed, an anisotropy effect is possible.

Keywords Fractal structures of the Universe · Higgs boson · Gravitational
waves · Relic photons · Binary black holes and neutron stars

1 Introduction

The hypothesis of the presence of dark matter, dark energy in the Universe can be
examined on the basis of direct gravitational effects, waves [1]. Electromagnetic
radiation (photons) does not carry this direct information. For the creation of a gravi-
tational wave detector and experimental proof of their existence, R.Weiss, K. Thorne
and B. Barrish were awarded the Nobel Prize in Physics in 2017. A binary black hole
merger with the energy release in the form of gravitational waves (GW)was recorded
by the LIGO interferometers in Livingston and Hanford [2]. These signals represent
the gravitational wave amplitude dependencies on time, and was recorded by the
detectors LD (Livingston Detector) and HD (Hanford Detector). The appearance of
GW from a binary neutron stars was recorded onAugust 17, 2017 [3]. These achieve-
ments in cosmology give impulse to the development of new theoretical models of
the fractal structures of the Universe: Galaxies, superclusters of Galaxies, walls, fila-

V. S. Abramov (B)
Donetsk Institute for Physics and Engineering named after A.A. Galkin, Donetsk, Ukraine
e-mail: vsabramov@mail.ru

© Springer Nature Switzerland AG 2019
C. H. Skiadas and I. Lubashevsky (eds.), 11th Chaotic Modeling
and Simulation International Conference, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-030-15297-0_1
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2 V. S. Abramov

ments, voids [4], supervoid or the CMB Cold Spot [5], black holes, neutron stars [6].
The hypothesis of the hierarchical structure of the Universe makes it possible to use
models of fractal dislocations, quantum dots with variable parameters to describe
individual elements of the fractal structures of the Universe [7].

When describing various nonlinear physical models, singular points (attractors),
lines, surfaces, special volumetric structures (strange attractors) arise.Many physical
properties near the above features are stochastic in nature, it becomes necessary to
model stochastic processes [8]. In [9–12] attractors and deformation field, mutual
influence of attractors and stochastic processes in the coupled fractal multilayer
nanosystems were investigated. In [11] the fractal oscillator model based on the
theory of fractional calculus was proposed. In [12] transient processes in a mul-
tilayer fractal nanosystem with a nonlinear fractal oscillator were investigated. In
the presence of variable parameters, features arise in the behavior of such fractal
nanosystems.

The aimof the paper is to describe anisotropy, transient signals frombinary objects
(black holes, neutron stars); modelling of the deformation field of an individual layer
in a multilayer fractal nanosystem (with variable parameters), investigation of the
influence of a fractal index.

2 Anisotropic Model for Binary Black Holes

For the split energy branches 2ε02, 2ε01 in [7, 13, 14] therewere expressions obtained,
relating the rest energy of the Higgs boson EH0 = 125.03238GeV and the order
parameter for the Higgs field �′

0 = 21.93272771GeV

ε02 = [
E2

H0 − (�′
0)

2]1/2; ε01 = [
E2

H0 + (�′
0)

2]1/2;
�′

0 = ψ ′
0EH0;ψ ′

0 = δN ′
0/N

′
0; (ξ ′

0)
2 = N ′

01/N
′
02;

N ′
02 = [

(N ′
0)

2 − (δN ′
0)

2
]1/2; N ′

01 = [
(N ′

0)
2 + (δN ′

0)
2
]1/2

. (1)

Parameters describing the presence of a Bose condensate taking into account the
Higgs field are: N ′

0 = 3.7384680×105, N ′
01 = 3.7955502×105, N ′

02 = 3.6805005×
105, (ξ ′

0)
2 = 1.031259246, ψ ′

0 = 0.175416382; energies 2ε01 = 253.8829698GeV,
2ε02 = 246.1873393GeV. Next, a quasi-one-dimensional lattice with two atoms in
a unit cell (such as an effective atom and a Higgs boson with rest masses mH and
MH0) was introduced. The basic relations between parameter |ξ0H |2 with the rest
masses mH and MH0 are following

|ξ0H |2 = mH/MH0 = MH/mH0 = EH/EH0 = RH/RH0; MHa = NaMH ;
M ′

H0 = NamH0; RH = 2GMHa/c
2
0; RH0 = 2GM ′

H0/c
2
0. (2)
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Here MH = NamH = 24.41158758 g and mH0 = NaMH0 = 134.2770693 g are
molar masses of the effective atom and the Higgs boson; EH = 22.73090194GeV is
rest energy of an effective atom; RH = 21.84067257μm, RH0 = 120.1356321μm
allow us the interpretation of Schwarzschild radii of black holes with masses MHa ,
M ′

H0; G = 6.672 × 10−8 cm3 g−1 s−2 is Newton’s gravitational constant; Avogadro
number is Na = 6.025438 × 1023; c0 is the speed of light in a vacuum. Taking
into account the value |ξ0H |2 = 0.181800122, the main parameters of the theory∣∣S′

01

∣∣ = 0.039541282, S′
02 = 0.03409, S′

03 = 0.460458718, S′
04 = 0.53409 were

obtained. On the basis of energies 2ε01, 2ε02 from (1) and parameters S′
0x (x =

1, 2, 3, 4) we obtain energy spectra εsx = 2ε01S′
0x , ε′

sx = 2ε02S′
0x . These spectra

make it possible (taking into account the Higgs field) to obtain the energy values
εs3 + ε′

s2 = 125.2951532GeV and εs3 + ε′
s1 = 126.6371898GeV for the Higgs

boson, which agree with the values of the energies 125.3 and 126.5 GeV, obtained
at the LHC [15]. Based on the parameters (ξ ′

0)
2, |ξ0H |2 and the molar mass MH , we

introduce the susceptibility components

χ11 = |ξ0H |2;χ21 = χ02 = [(ξ ′
0)

2 − 1]/χ11;χ31 = −χ01; nF + n′
F = 1;

nF = M02/MH = χ02/χ11; n′
F = M01/MH = −χ01/χ11. (3)

Taking into account (3), we find numerical values: χ11 = 0.181800122, χ02 =
0.171942932, χ01 = −0.00985719, nF = 0.945780069, n′

F = 0.054219931,
M01 = 1.323594585 g, M02 = 23.087993 g.

On the basis of (3) and EH0 we find the characteristic energies

E1ν = −χ01EH0 = n′
F EH ; E2ν = χ02EH0 = nF EH ; EH = χ11EH0.

E1ν = M01c
2
0 = 1.232467935GeV; E2ν = M02c

2
0 = 21.49843401GeV. (4)

Next, we introduce a row-vector χ̂1 = (χ11, χ21, χ31) and a column-vector χ̂+
1 .

We find the effective susceptibility |χe f |, molar mass Mef from the conditions

χ̂1χ̂
+
1 = ∣∣χe f

∣∣2 = |χ01|2 + |χ02|2 + |ξ0H |4 = M2
e f m

−2
H0;

M2
e f = M2

01 + M2
02 + M2

H . (5)

The numerical values are
∣∣χe f

∣∣ = 0.250425279, Mef = 33.62637256 g.
To take into account the nonlinear dependences of the effective displacements

uμ = F(ϕμ; kμ) (F is the incomplete elliptic integral of the first kind) on the angle
ϕμ, the modulus kμ of elliptic functions, we use the fractal oscillator model [11, 12].
In this model, a matrix T̂e f with elements ti j is introduced

t11 = k ′
μ; t12 = −kμ; t21 = kμcn(uμ; kμ); t22 = k ′

μcn(uμ; kμ);
t23 = −sn(uμ; kμ); t13 = 0; t31 = kμsn(uμ; kμ);
t32 = k ′

μsn(uμ; kμ); t33 = cn(uμ; kμ); i, j = 1, 2, 3. (6)
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The action T̂e f on
∣∣χe f

∣∣ leads to a matrix
∣∣χ̂e f

∣∣ = T̂e f
∣∣χe f

∣∣ with elements χi j

χ11 = k ′
μ

∣∣χe f

∣∣;χ21 = kμ

∣∣χe f

∣∣cn(uμ; kμ); χ31 = kμ

∣∣χe f

∣∣sn(uμ; kμ);
χ12 = −kμ

∣∣χe f

∣∣; χ22 = χ11 cosϕμ; χ32 = χ11 sin ϕμ;χ23 = −∣∣χe f

∣∣ sin ϕμ;
χ13 = 0; χ33 = ∣∣χe f

∣∣ cosϕμ; k ′
μ = χ11/

∣∣χe f

∣∣; (k ′
μ)2 + k2μ = 1. (7)

The numerical values are χ12 = −0.172225247, χ22 = 0.181502111, χ32 =
0.010405201, χ23 = −0.014332913, χ33 = 0.250014775, k ′

μ = 0.725965539,
sin ϕμ = 0.057234291. The characteristic angles ϕμ = 3.2810763◦, ϕ∗

μ = π/2 +
2ϕμ, ϕ′

μ = π/2 − ϕμ = 86.7189237◦ can be determined from the presence of
peaks in X-ray structural spectra. From (1) at ψ ′

0 = 0 we obtain the order parameter
�′

0 = 0 and the equality of the energies 2ε02 = 2ε01 = 2EH0 of the branches of
the spectrum. Then from (3) follows (ξ ′

0)
2 = 1, χ21 = 0, and from (7) we obtain the

condition kμ

∣∣χe f

∣∣cn(uμ; kμ) = 0. This condition can be fulfilled either at kμ = 0 or
at cn(uμ; kμ) = 0. Then χi j will take numerical values different from those given
above. If the parameter �′

0 �= 0, then from (7) follows the need to analyze other
row-vectors χ̂2 = (χ12, χ22, χ32), χ̂3 = (χ13, χ23, χ33) and the column-vectors χ̂+

2 ,
χ̂+
3 the susceptibility tensor χ̂e f .
On the basis QH6 = 1.537746366 from [13] and the susceptibility components

χi j , we write for the black hole spin tensor n̂hs the elements in the form ni j =
2/(2QH6−zi j ), where zi j = χi j/2. For diagonal elements we find n11 = 0.6701082,
n22 = 0.6700747, n33 = 0.6778548. After the binary black holes (BBH) merger in
[2] the final value of the black hole spin of 0.67 and the value of the red shift zs = 0.09
are determined. Our calculated values n22 and z22 = 0.090751056 are close to these
data. This indicates the tensor nature of the source of the black hole spin n̂hs and
redshift zi j , which are related to the susceptibility χi j . The main parameter nA0

determines the spectrum for the occupation numbers nAx = nA0S′
0x of black holes.

The number of quanta nh1 = Mh1/Ms , nh2 = Mh2/Ms BBH before merger, and the
number of black hole quanta 2nA4 = MA4/Ms after merger are determined through
the cosmological redshift z′

μ, the parameter QH2 and nA0 from expressions

sin2 ϕ′
μλ = 2zQ/(3zQ + 1); cos2 ϕ′

μλ = (zQ + 1)/(3zQ + 1); zQ = 1/(2nA0 − 1);
nA0 = (z′

μλ)
2 − 1 = (z′

μ + 3/2)(z′
μ − 1/2); z′

μλ = z′
μ + 1/2; 1/z′

μλ = sin ϕ′
μλ;

n′
A0 = (z′

μλ)
2; n′

A0 − nA0 = 1; z′
Q − zQ = 1; ϕ′

μλ = ϕaQH2. (8)

HereMh1,Mh2 aremasses of first, second black holes beforemerger;MA4 is black
holemass aftermerger;Ms is mass of the Sun. Using the values of parameters QH2 =
1/3, z′

μ = 7.184181 [13, 14], we find sin ϕ′
μλ = 0.130137486, nA0 = 58.04663887.

The angle ϕa = 22.43261159◦ can be determined from the peak position on an
amorphous substrate in the X-ray structural spectrum. Based on the spectrum nAx ,
we find the number of black hole quanta 2nA4 = 62.0042587 that formed after the
merger of two black holes. Number of quanta of the second black hole before merger
is nh2 = nA0/2 = nA4 − nA2 = nA3 + nA1 = 29.02331944. As a result of the
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merger of these BBH, the number of quanta nG = 1/QH2 = 3 is carried away
by gravitational waves. The number of quanta of the first black hole before merger
nh1 = 35.98093926 we obtain from equation (nh1 + nh2) − 2nA4 = nG .

In [13, 14], by describing the anisotropy of the CMB, connections temperatures
TA = Tr/Nra = 2.61739852mK, T ′

A = Tr/z′
A2 = 2.635582153mK with the relict

radiation temperature Tr = 2.72548K were obtained, where z′
A2 = 1034.109294 is

the usual redshift, Nra = z′
A2 + z′

μ = 1041.293475. The temperature deviation
δTA = T ′

A − TA = 18.183633μK agrees with the experimental average value
18μK of temperature fluctuations in the relict background in the fractal model of
the Universe. On the other hand, in our model the supervoid is determined by the
temperature T ∗

A , the number of quanta N ∗
ra , the parameter z∗

μ

T ∗
A = Tr/N

∗
ra; N ∗

ra = z′
A2 + z∗

μ; z∗
μ = 2nA4 + (nA1 − nA2). (9)

The parameter z∗
μ = 62.3206873 allow us an interpretation as the effective cos-

mological shift at the early stages of the formation of the structure of the Universe
after the Big Bang, and is related with numbers of black hole quanta 2nA4, nA1,
nA2. Numerical values are N ∗

ra = 1096.429981, T ∗
A = 2.4857766mK. The tem-

perature deviation δT ∗
A = T ∗

A − T ′
A = −149.8055448μK agrees with the deviation

(−150μK) from [5]. The sign “−” indicates that the area of the supervoid is colder
than the neighboring areas.

3 Description of Transient Signals from Binary Objects

Busts of supernovae of type la, processes of BBH, binary neutron stars (BNS)merger
can be considered as separate impulse sources in the Universe. In this case, transient
gravitational-wave signals, relict radiation of photons arise. To describe the charac-
teristic parameters and transient signals of the GW radiation from the BBH or BNS
merger, we use the semiclassical superradiance model Dicke [16] and the quantum
statistical theory of superradiance [17, 18]. For the radiation intensity J we have [16]

J = J0[(a20 − a2m) + (a0 + am)] = J0(a0 + am)[(a0 − am) + 1]. (10)

Here J0 is the initial radiation intensity; parameters a0, am generally depend on
the time, frequency and amplitude of the GW, the characteristics of the BBH or BNS.
If J = Jm , where Jm is the maximum radiation intensity, then from (10) we obtain
expressions for the critical density ρc ratio of the GW signal amplitude to the noise
amplitude

ρ2
c = (z′

A2 − 1)/2 + Jm/(2J0); a20 = a2m + z′
μ(z′

μ + 2)/4; am = (z′
A2)

1/2. (11)



6 V. S. Abramov

The numerical values of the parameters are am = 32.1575698, a0 = 32.4130298,
Jm/J0 = 81.0658042. The value ρc = 23.602701 is close to the critical value of
23.6 for BBH from [2]. The parameter a0 is close to the ratio of the signal amplitude
to the noise amplitude of 32.4 for BNS [3].

On the basis of model I from [13, 14] we write the expressions for the Hubble
constant H0, velocity υ0 in the model of a flat cosmology

H0 = H01/�t H = υ0/L0; υ0 = υ01/�t H ; �t H = QH0 + ∣∣S′
01

∣∣. (12)

Taking into account the values of Hubble constant H01 = 73.2 km s−1 Mpc−1, the
velocity υ01 = 7.32 × 106 cm s−1 (which describe the accelerated expansion of the
Universe), QH0 = 1.039541282, L0 = 0.30857 × 1025 cm [12, 13], from (12) we
obtain H0 = 67.83540245 km s−1 Mpc−1, υ0 = 6.783540245 × 106 cm s−1.

In [13, 14], the values for themaximum νr1 = 160.3988698GHz and shifted νr2 =
142.8161605GHz frequencies of relict radiation photons were obtained. According
to the relict radiation, taking into account ξq = νr1 − νr2, in [7] the value of the
gap 2|λ|N 1/2 = 8.396945157GHz in the spectrum and density of cold dark matter
�′

c1 = 4|λ|2N/|ξq |2 = 0.228071512 are obtained.
To calculate the wavelength λγb from the source for BNS, we use the energy

spectra εμx = 2ε′
01S

′
0x , ε

′
μx = 2ε′

02S
′
0x , which are written in analogy with (1) on the

basis of the energy of the Higgs boson and the order parameter δμ

2ε′
01 = 2[E2

H0 + (δμ)2]1/2; 2ε′
02 = 2[E2

H0 − (δμ)2]1/2;
δμ = EH0 sin ϕμ/QH6; λγb = RH0

∣
∣χe f

∣
∣(εμ4 + εμ2)/(2EH0). (13)

We note that the order parameter δμ (describes the Bose-condensate) depends on
the angle ϕμ, parameter QH6, as follows from (7) and (8). The numerical values
are δμ = 4.6536541GeV, 2ε′

01 = 250.2379072GeV, 2ε′
02 = 249.8914929GeV,

λγb = 17081.85081 nm. Based on the calculated wavelength λγb from the source
for BNS, we find the characteristic parameters

νγb = υ0/λγb;�′
c2 = ν2

γb/(4|λ|2N );υ2
γb = υ2

0/�′
c2;�01 = υ2

01/υ
2
γb. (14)

Here νγb = 3.974973236GHz is frequency, �′
c2 = 0.224091707 is density of

cold dark matter, υγb = 14.34353643 × 106 cm s−1 is the effective Fermi-velocity
associatedwith neutron stars;�01 = 0.260441196. Taking into account (3), relations
n′
Fν = (n′

F )2, nFν = nF (1 + n′
F ) we find estimates of the densities of neutrinos

�0ν = n′
Fν = 0.0029398, cold dark matter �c1 = �′

c2 + �0ν = 0.2270315 (close
to the estimate of the density of cold dark matter 0.227, obtained by other authors
[1]). The wavelength λγh associated with the source from black holes is determined
by expressions

λγh = λγb/ηbh; ηbh = (1 + �01/2)[1 + (n′
F )2/2]. (15)
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Parameter is ηbh = 1.13188191 and wavelength is λγh = 15091.54856 nm. The
calculated valuesλγh ,λγb are close to the values ofwavelengths 15091.4, 17081.7 nm
for the sources from the BBH [2], BNS [3], respectively. From (1), (13) and (15) the
relationships between Bose-condensates for black holes and neutron stars through
energy EH0 follow. The value zQ = 0.008688605 from (8) is close to the redshift of
0.009 of the source for BNS [3].

We find the spectrum for the occupation numbers ncx (based on nch) and the total
number of quanta ntot after the BNS merger from the expressions

ncx = nch S
′
0x = Mcx/Ms; nch = 1/(ψch − 1); ψ∗

ch = z′
Qψch; ψch = 1 + S′

02/χ11;
ntot = Mtot/Ms = 2nc4 − n1c = 2n3c + (2n2c + n1c); n′

tot = 2nc4 − 2(nc1 − nc2).
(16)

Numerical values are nch = 5.332945778; ψch = Mch/Ms = 1.187513626;
ψ∗

ch = M∗
ch/Ms = 1.197831463; Mcx and Mtot are effective molar masses before

and after merger. The calculated valuesψch andψ∗
ch are close to 1.188 and 1.1977 for

effective molar masses Mch and M∗
ch within the GW detector from the BNS source

[3]; ntot = 2.742837254 and n′
tot = 2.81920162 are close to 2.74 and 2.82 (low-spin

and high-spin approximation) [3].
For the characteristic frequency νGW of the gravitational wave, we have

νGW = 4νλ0 = Nraνγ0; νλ0 = 1/(N ′
0 − N ′

02)τs0; τs0 = 2(|S′
01| + S′

02)/|λν0|;
τs0 = τλ2/N

′
02 = τ ′

λ2/N
′
0; τ ′

λ2 − τλ2 = τλ0 = 1/νλ0; ν0 = 2z′
μνλ0/(2z

′
μ + 1).

(17)

The parameter |λν0| = 130.5593846 kHz is related to parameter δμ from (13),
describing the presence of a Bose-condensate for neutron stars. At |λν0| = 0 from
(17) follows, that the frequencies of the soft modes are νλ0 = 0 and νGW = 0.
Further from (17), we find τs0 = 1.127935494μs, νλ0 = 152.9437161Hz,
νGW = 611.7748643Hz, ν0 = 142.9918607Hz, τλ0 = 6.538352972ms, τλ2 =
0.415136712 s, τ ′

λ2 = 0.421675065 s.
The time of appearance of γ-radiation after the merger of neutron stars τγ0 is

determined by the difference in the coalescence times τ ′
c0, τc0

τγ0 = τ ′
c0 − τc0 = 1/νγ0; τ ′

c0 = τγ0n
′
A0; τc0 = 1/νc0 = τγ0nA0;

τ0 = 1/ν0 = τλ0(1 + 1/2z′
μ); νγ0 = νc0nA0 = ν ′

c0n
′
A0; ν ′

c0 = 1/τ ′
c0. (18)

Numerical values are τγ0 = 1.7020861 s, τc0 = 98.800376 s, τ ′
c0 = 100.502462 s,

νγ0 = 0.5875144Hz, νc0 = 0.0101214Hz, ν ′
c0 = 0.00995Hz. The delay time GW

between the detectors LDandHD τ0 = 6.993405ms from (18) is determined through
the time τλ0 from (17) and the cosmological redshift z′

μ.
We write the spectra νr x = 2νra S′

0x and ν ′
zx = 2ν ′

zμS
′
0x on basis νra and ν ′

zμ
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νra = �raνλ0 = �raνGW/4; ν ′
zμ = νraz

′
μ; �ra = Nra�

′
c1/z

′
A2;

νra = νr3 + νr1 = νr4 − νr2; ν ′
zμ = ν ′

z3 + ν ′
z1 = ν ′

z4 − ν ′
z2;

ν∗
zμ = ν ′

z3 + ν ′
z2 = ν ′

z4 − ν ′
z1. (19)

Numerical values are �ra = 0.229656, νra = 35.124438Hz, ν ′
zμ =

252.340321Hz, ν∗
zμ = 249.589164Hz. If z′

μ = 1, then from (19) follows, that
the spectrum ν ′

zμ goes to spectrum νra . When the black holes merger, the LD and HD
detectors recorded the signals as a series of pulses, the frequency of which increased
from 35 to 250 Hz. At the same time, the amplitude of the signals increased to the
maximum value, and then dropped sharply to the noise level. Our calculated fre-
quencies νra , ν ′

zμ, ν
∗
zμ agree with the data on the detection of GW during of the BBH

merger [2].
Next, we write the spectrum νWx = νGW S′

0x on the basis of frequency νGW .
The value of the frequency νW1 = 24.190362Hz is consistent with the value of the
frequency 24Hz, that theLDdetector starts detecting in theGWdetection experiment
during BNS merger [3].

Let hmL , hmH be maximum values of amplitudes of signals GW, registered by
detectors LD, HD; hξL , hξH are noise level after passing the GW. The GW signal
on the HD detector appears later on a delay time τ0, than on the LD detector. Taking
into account (10) and (11), we write the relations for the amplitudes of the signals
GW arising from the black holes merger

2hmH/hmL = (1 + am/a0)[1 + (a0 − am)]; hmHhξL = hmLhξH ;
2hξH/(2hmH + hξH ) = 2hξL/(2hmL + hξL) = |ξ0H |2. (20)

On the basis of (20), we obtain the numerical values hmL = 0.9168936 × 10−21,
hmH = 1.146587 × 10−21, hξL = 0.1833588 × 10−21, hξH = 0.2292923 × 10−21.

The maximum amplitude h′
mL of the GW signal, the noise level GW before and

after the neutron stars merger h∗
ξL and h′

ξL (recorded by the LD detector) are deter-
mined by the formulas

h′
mL = 2a0/n�2 = 2a0hmH ; h∗

ξL = 2am/nJ0 = 2amhξH ; 1/nJ0 = hξH ;
h′

ξL = 2h′
mL |ξ0H |2/(2 − |ξ0H |2); 1/n�2 = hmH = |ξq |2EG/(4|λ|2NraEH0N

′
02).

(21)

Values are h′
mL = 7.4328715 × 10−20, h∗

ξL = 1.4746969 × 10−20, h′
ξL =

1.4864119×10−20, EG = 12.11753067μeV, h′
mL/h

∗
ξL = 5.0402707. The obtained

estimates from (20) and (21) agree with the data from [2, 3].
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4 Description of an Individual Layer with Variable
Parameters

The hypothesis of the hierarchical structure of the Universe allows us to use models
of fractal nanosystems (dislocations, quantum dots) to describe separate elements of
large-scale fractal structures. When modelling the nonlinear effective displacements
uμ = F(ϕμ; kμ) from (6), the main parameter is b0 = 1−2sn2(uμ; kμ). Expressions
for the four branches of effective displacements uμi (i = 1, 2, 3, 4) have the form
[12]

2uμ1(z, α) = g1 − g2 + g4; 2uμ2(z, α) = g1 − g2 − g4; (22)

2uμ3(z, α) = −g1 − g2 + g5; 2uμ4(z, α) = −g1 − g2 − g5. (23)

The functions g1, g2, g3, g4, g5 depend on the coordinate z, the fractal index α

along the axis Oz, and are modelled by expressions

g2(z, α) = g20|z − zc|−α; g3(z, α) = g30|z − zc|−2α; (24)

g20(α) = 2−2α33α−1/2�(α + 1/3)�(α + 2/3)/
√

π �(α + 1/2); (25)

g30(α) = 2 · 33α−1/2 �(α + 1/3)�(α + 2/3)/π; g′
30(α) = 1/g30(α); (26)

g4(z, α) = [
(g1 + g2)

2 − g3
]1/2; g5(z, α) = [

(−g1 + g2)
2 − g3

]1/2
. (27)

Here � is the gamma function; g20, g30, g′
30 are nonlinear discontinuous functions

of the fractal index α (Fig. 1). The functions g2, g3 from (24) also become nonlinear
on the background of power dependencies.

The function g20(α) has zeros at α = −(nα + 1/2), where nα = 0, 1, 2 . . .. The
function g′

30(α) has zeros at α = −(nα + 1/3), α = −(nα + 2/3). The nonlinear
function g1 depends on uμ, α and indices n, m, j lattice nodes

Fig. 1. Behavior of functions g20, g30, g′
30 on α
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g1(uμ, α; n,m, j) = k2α(1 − 2sn2(uμ − u0; kμ)); k2α = (1 − α)/Q; (28)

Q = p0α − b1(n − n0)
2/n2c − b2(m − m0)

2/m2
c; p0α = p0 − b3( j − j0)

2/j2c .

(29)

Here u0 is constant displacement; p0, b1, b2, b3, n0, nc, m0, mc, j0, jc are char-
acteristic parameters. The function kα depends on α, indices n, m, j lattice nodes
N1 × N2 × N3. In our model, this function determines the behavior of the module
kμ = sn(u0α, kα), where u0α = F(ϕ0α, kα); ϕ0α is the polar angle. As a result kμ

(implicitly depends on n, m, j) and four branches uμi from (22) and (23) become
random functions. In numerical simulation, for forward z = z1 and backward z = z2
waves it was assumed that z1 = 0.053 + hz( jz + 33); z2 = 6.653 − hz( jz + 33),
hz = 0.1; jz = 5; n = 1, 30; m = 1, 40; u0 = 29.537; u0α = π/5.2; p0 = 1.0123.
The solution of Eqs. (22) and (23) for branches u = uμi is carried out by the iteration
method on the variable m.

Consider the state of a layer without quantum dot (b1 = b2 = b3 = 0, Q = p0).
The behavior branches of the displacement function of the backward wave on α is
given in Fig. 2.

For the backward wave (Fig. 2a), in addition to the regular behavior of the 1,
2, 3 branches, the stochastic behavior of the 4 branch is observed, the 3 branch
is characterized by the presence of the second harmonic. At α = −1.5 (Fig. 2b)
oscillationswith increased amplitudes are observed for branches 1 and 4, and damped
oscillations with amplitudes of order for branches 3 and 2 are observed. At α = −2.5
(Fig. 2c), singularities appear in comparison with Fig. 2b: for branch 1 is change in
shape, amplitude of oscillations; for branch 4 is doubling of the period of oscillations;
for branches 3 and 2 are damped oscillations with reduced amplitudes of order ±2×
10−10. At α = −3.5 (Fig. 2d) branches 3 and 2 demonstrate nonlinear oscillations:
on separate peaks of 3 branches there are features such as a local minimum between
two humps; branches 1, 4 take zero values. With a further change α, the character of
the behavior of all four branches practically does not change (similar to the behavior
of Fig. 2b with the order of the branches 3, 1, 4, 2), which indicates the presence of a
critical value α ≈ αc = −4.5. This is due to the nonlinear behavior of discontinuous

Fig. 2. Dependencies of the projections u on the plane mOu for the backward wave on m for
various α: 1—uμ1, 2—uμ2, 3—uμ3, 4—uμ4
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functions g20, g30 from (25) and (26) on α. With a change α the behavior of the
forward wave branches qualitatively coincides with that for the backward wave.

Next, we consider the state of the layer with a quantum dot (Fig. 3). Main param-
eters are b1 = b2 = b3 = 1; n0 = 14.3267; nc = 9.4793; m0 = 19.1471; mc =
14.7295; j0 = 31.5279; jc = 11.8247. From (29) at p0α = −3.457 × 10−11 we find
the averaged values for the layer number j: j1 = 19.63070035, j2 = 43.42509965.
At iterations it was accepted j = j1. In this case, the module kμ implicitly depends
on n, m, and becomes a random function.

The behavior of the displacement functions of all four branches for the forward
(Fig. 3a–c) and the backward (Fig. 3d–f) waves is different. The 1 branch of the
forward (Fig. 3a) and the backward (Fig. 3d) have peaks with large amplitudes, that
confirms the state of the layer with the quantum dot. The behavior of the core of
such quantum dot differs from the behavior of the cores of quantum dots from [14].
Instead of regular wave behavior [14], the cores boundaries become stochastic. Inside
the cores, there are features of the type of islands, jumpers, narrowings, wells. For
the 2 branch of the forward wave, the core has a convex form (Fig. 3b), and for the
backward wave the core approaches to a flat form (Fig. 3e). For the 3 branch of the
forward wave, the core has a concave form of the well type (Fig. 3c), and for the
backward wave (Fig. 3f) the core has a flat bottom. At the boundaries of these cores
there are peaks with small amplitudes (features such as additional wells, saddles,

(a) (b) (c)

(d) (e) (f)

Fig. 3. Dependencies u on n, m at α = −0.5 for different branches of the forward (a, b, c) and the
backward (d, e, f) waves
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valleys are formed). These features of the deformation field behavior indicate the
appearance of an effective multi-well potential in a layer with a quantum dot.

A further change α leads to a change in the stochastic behavior of the core bound-
aries (Fig. 4). For the 2 branch of the backward wave, at α = −2.5 (Fig. 4a), a
stochastic peak down is observed on a stochastic background with a practically con-
stant amplitude. At α = −4.5 the stochastic peak disappears, and the stochastic
background remains (Fig. 4b). At α = −8.5 (Fig. 4c), in the stochastic background
the formation of a failure near m = m0 is observed.

When the values of the semi-axes nc,mc (Fig. 5) of quantum dot are changing, the
behavior of the deformation field of the core and its boundary changes. For the first
branch uμ1 the effect of pronounced anisotropy is observed. A periodic fine structure
appears on the boundaries for the forward wave (Fig. 5a), and for the backward wave
there is a structure with fine wells (Fig. 5c).

(a) (b) (c)

Fig. 4. Dependencies of the projections u = uμ2 on the plane mOu for backward wave on m for
different α

(a) (b) (c)

Fig. 5. Cross-sections uμ1 ∈ [0; 1.5] (top view) for forward (a, b) and backward (c) waves for
different semi-axes, nc, mc at α = −0.5
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5 Conclusions

An anisotropic model is proposed for describing the main parameters of the BBH,
BNS, the nature of the spin source of which has a tensor character. Taking into
account the Higgs field, estimates are made of the energies of the Higgs boson, relict
photons, and the temperature deviation of the relict background. It is shown that the
nature of the supervoid or the “Cold relict spot” is associated with the presence of
a black hole and its influence on relict photons. To describe the transition signals
(gravitational waves, relict radiation), it is proposed to use the superradiance model
R. H. Dicke and the quantum statistical theory of superradiance.

Based on the hypothesis of the hierarchical structure of the Universe, modelling
of the deformation field of separate structures it is proposed to use of quantummodel
systems with variable parameters. It is shown that for a layer without a quantum
dot, the presence of nonlinear oscillations is characteristic, which depend on the
fractal index α. The structure of the quantum dots cores in the layer has a convex,
concave, and flat form with a stochastic boundary. The formation of stochastic peak
and the appearance of failure on stochastic background is possible. The change in
the semi-axes of the quantum dot leads to the anisotropy effect.
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Effect of Ordering of Displacement Fields
Operators of Separate Quantum Dots,
Elliptical Cylinders on the Deformation
Field of Coupled Fractal Structures

Olga P. Abramova and Andrii V. Abramov

Abstract By the numerical modelling method the behavior of the deformation field
of the coupled fractal structure with quantum dots and elliptical cylinders was inves-
tigated. It is shown that the resulting deformation field of the structure with a number
of quantum dots larger than two essentially depends on the ordering of the displace-
ment fields operators for separate quantum dots. The coupled fractal structure with
elliptical cylinders is characterized by the presence of a complex deformation field.
Using zero operators for pairs of quantum dots makes it possible to obtain informa-
tion about separate quantum dots. Transposition of pairs of operators allows us to
transfer part of the information from one quantum dot to another.

Keywords Coupled fractal structures · Quantum dots · Elliptical cylinders ·
Deformation field · Ordering of operators · Numerical modelling

1 Introduction

Quantum processing of information, quantum computation requires the use of the
laws of quantum mechanics [1]. In this case, there is a need for theoretical and
experimental modelling of the phenomena of quantum entanglement, quantum tele-
portation, decoherence of quantum states of active objects [2]. Classical computers
encode information in bits that can be in one of two states, 0 or 1. Quantum comput-
ers encode information in qubits, which can be in superposition states [3–5]. In this
case, the phenomenon of entanglement of states arises [3–6]. The physical systems
that realise qubits can be any objects having two quantum states: polarisation states
of photons; electronic states of atoms or ions, separate atoms, spin states of atomic
nuclei in traps; quantum dots. Separate objects placed in traps can exhibit stochastic
properties, which complicates the practical realisation of qubits for quantum com-
puters.
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Also, nanostructures,metamaterials [7], various fractal structures can be chosen as
active objects [8–11]. When creating quantum computers (which take into account
the phenomena of quantum superposition and entanglement for the transmission,
processing, storage of information data), it becomes necessary to theoretically and
experimentally research the various physical properties of such nanostructures and
metamaterials [7]. In [8, 9], the peculiarities of the stochastic state of the deforma-
tion field of coupled fractal multilayer nanosystems, nanotraps, and quantum dots
taking into account the variation of the variable parameters were studied. The mutual
influence of separate structures, attractors, stochastic processes on each other in the
coupled fractal structure have been investigated in articles [10, 11]. From the point
of view of the experimental realisation of a quantum computer, it is actual to study
various fractal structures with quantum dots.

The aim of this paper is to investigate the effect of the ordering of displacement
fields operators of separate fractal quantum dots and fractal elliptical cylinders onto
the deformation field of a coupled fractal structure.

2 Ordering of the Displacement Fields Operators
of Separate Quantum Dots

In [9] eight model nonlinear equations for the dimensionless displacement function
u to describe the stochastic state of the deformation field of a multilayer nanosystem
were obtained. The appearance of eight equations is due to the presence of different
branches for variable modules ±ku ,±k ′

u of an elliptic sine functions from an implic-
itly defined equation k2u + (k ′

u)
2 = 1. Variable modules ku are functions of indices

n, m, j nodes of the bulk discrete lattice with dimensions N1 × N2 × N3.
As the initial equation for the dimensionless displacement function u, we consider

the second branch from [9], whose equation has the form

u = u2 = k2u
(
1 − 2sn2(u2 − u0, k

′
u)

); k2u = (1 − α)/Q, (1)

where u0 is the constant (critical) displacement; α is the fractal dimension of the
deformation field u along the axis Oz (α ∈ [0, 1]); Q determines the form of the
fractal structure, the type of attractors and takes into account the interaction of the
nodes of both in the main plane of the discrete rectangular lattice N1 × N2 as well
as interplane interactions. Consider a coupled fractal structure consisting of four
(i= 1, 2, 3, 4) separate fractal quantum dots (FQD). Taking into account (1), the
nonlinear equations for the dimensionless displacement function u = u2 of such
coupled fractal structure have the form

u = u2 =
4∑

i=1

uRi ; uRi = Rik
2
ui

(
1 − 2sn2(u2 − u0i , k

′
ui )

); (2)
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k2ui = (1 − αi )/Qi ; k ′
ui = (1 − k2ui )

1/2; (3)

Qi = p0i − b1i (n − n0i )
2/n2ci − b2i (m − m0i )

2/m2
ci − b3i ( j − j0i )

2/j2ci . (4)

Here parameters p0i , b1i , b2i , b3i , n0i , nci , m0i , mci , j0i , jci characterise different
fractal structures; Ri determine the orientation of the deformation fields of separate
structures in the coupled system. In general case these parameters may depend on
the layer index j and the dimensionless time t. Nonlinear Eqs. (2)–(4) can be solved
by iteration method on any of indices n, m, j. If one of these indices is considered
fixed, then the result of the iteration will be the displacement function, which is
a stochastic surface, depending on the other two indices. The explicit form of the
resulting stochastic surface essentially depends on the order of the separate terms
in the sum (2) for the deformation field u2, which can be interpreted as separate
operators describing the total stochastic process. The appearance of stochasticity is
associated with the presence of variable modules kui , k ′

ui in (2) and (3).
In this work the iterative procedure on index n simulates a stochastic process on

a rectangular lattice with sizes N1 × N2: N1 = 240, N2 = 180. The equations of
surfaces of the considered structures do not depend on index j, thus the parameters
b3i = 0. The main parameters are chosen to be the same for all four FQD: αi = 0.5,
u0i = 29.537, p0i = −3.457×10−11, b1i = b2i = 1, nci = 24.4793,mci = 15.7295.
The parameters Ri characterise the mutual orientation of the FQD. The parame-
ters n0i , m0i determine the positions of the centres of gravity FQD. Quantum dots
with opposite orientation of deformation fields FQD1 (i = 1, R1 = 1) and FQD4
(i = 4, R4 = −1) are located at the same point with coordinates n0i = 111.1471,
m0i = 79.3267. Quantum dots with opposite orientation of deformation fields FQD2
(i = 2, R2 = −1) and FQD3 (i = 3, R3 = 1) are also located at the same point, but
with different coordinates n0i = 131.1471, m0i = 99.3267. When modelling the
behavior of the total deformation field of a coupled fractal structure with quan-
tum dots, we first consider four variants with pairs of two different quantum dots
with shifted centers of gravity: (FQD1, FQD3), (FQD1, FQD2), (FQD4, FQD2)
and (FQD4, FQD3). For these pairs Fig. 1 gives dependence of the total defor-
mation field of the coupled structure on the indices (n, m) of the lattice nodes. In
this case, in expressions (2) pair (FQD1, FQD3) corresponds to the ordered opera-
tor u2 = uR1 + uR3, which is a superposition of separate operators uR1, uR3; pair
(FQD1, FQD2) corresponds to the operator u2 = uR1 + uR2; pair (FQD4, FQD2)
corresponds to the operator u2 = uR4 + uR2; pair (FQD4, FQD3) corresponds to the
operator u2 = uR4 + uR3. For the pairs (FQD1, FQD3) and (FQD4, FQD2) peaks
down (Fig. 1a, b) and peaks up (Fig. 1g, h) are localized near FQD1, FQD3 and
FQD4, FQD2 with the same orientation. In the cross-sections (Fig. 1c, i), two fractal
holes are observed which are localised near the core of these quantum dots. These
holes are characterised by the stochastic behavior of the deformation field. A wave
behavior with a regular structure of elliptic type is observed far from the region of
cores localisation. As you approach the core, this regular structure changes: features
such as inflection points, breaks, narrowings, additional fine structure appear.
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Fig. 1 The behavior of the displacement function u = u2 × 10−2 for different pairs of quantum
dots with shifted centres of gravity: a, d, g, j are the projections onto the plane nOu; b, e, h, k are
the projections onto the plane mOu; c, f, i, l are cross-sections u2 ∈ [−0.1; 0.1] (top view)
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For pairs of quantum dots with the opposite orientation (FQD1, FQD2) and
(FQD4, FQD3), peaks are observed (Fig. 1d, e and Fig. 1j, k) localized near FQD1,
FQD2 and FQD4, FQD3. Two fractal holes localised near cores of these quantum
dots are also observed in the cross-sections (Fig. 1f and Fig. 1l). However, near cores
there is a characteristic effect of the shift of wave behavior (in comparison with
Fig. 1c, i), there are features such as wells, steps, saddles.

Transpositions of displacement field operators for separate quantum dots with
shifted centers of gravity in pairs, for example, (FQD1, FQD3), (FQD3, FQD1) lead
to deviation δu2 = (uR1+uR3)−(uR3+uR1) of the deformation field of the coupled
fractal structure within 10−10.

For pairs of quantumdotswith the same centres of gravity (FQD1, FQD4), (FQD2,
FQD3) displacement fields u2 are identically equal to zero, that follows from the
results of modeling iterative processes.

Thus, the pair (FQD1, FQD4) corresponds to an ordered zero operator u2 =
0 = uR1 + uR4; the pair (FQD2, FQD3) corresponds to an ordered zero operator
u2 = 0 = uR2 + uR3.

The possibility of using such zero operators based on pairs (FQD2, FQD3) and
(FQD1, FQD4) allows us to restore information about separate FQD1, FQD4, FQD2,
FQD3 on the basis of information from structures of three quantum dots (FQD2,
FQD3, FQD1), (FQD2, FQD3, FQD4), (FQD1, FQD4, FQD2), (FQD1, FQD4,
FQD3), respectively (Fig. 2).

In this case, in the expressions (2) the structure (FQD2, FQD3, FQD1) corresponds
to the ordered operator u2 = uR2 + uR3 + uR1 = uR1; the structure (FQD2, FQD3,
FQD4) corresponds to the ordered operator u2 = uR2 + uR3 + uR4 = uR4; the
structure (FQD1, FQD4, FQD2) corresponds to the ordered operator u2 = uR1 +
uR4 + uR2 = uR2; the structure (FQD1, FQD4, FQD3) corresponds to the ordered
operator u2 = uR1 + uR4 + uR3 = uR3.

The position of the peaks and amplitudes (Fig. 2a, b), (Fig. 2d, e), (Fig. 2g, h),
(Fig. 2j, k) correspond to the position of the peaks and amplitudes of separate FQD1,
FQD4, FQD2, FQD3. The structure of cores (Fig. 2c), (Fig. 2f), (Fig. 2i), (Fig. 2l)
completely coincides with the structure of the cores of separate FQD1, FQD4, FQD2,
FQD3.

Next, consider the coupled fractal structure,which consists of four separate FQD1,
FQD2, FQD3, FQD4 (Fig. 3). Thus, for example, the sequence (FQD1, FQD2, FQD3,
FQD4) (Fig. 3a–d) corresponds to the ordered operator u2 = uR1+uR2+uR3+uR4;
the sequence (FQD1, FQD3, FQD2, FQD4) (Fig. 3e) corresponds to the ordered
operator u2 = uR1 + uR3 + uR2 + uR4; the sequence (FQD3, FQD4, FQD1, FQD2)
(Fig. 3f) corresponds to the ordered operator u2 = uR3 + uR4 + uR1 + uR2. For
the sequence (FQD1, FQD2, FQD3, FQD4) near FQD3, a peak down an essentially
small amplitude (Fig. 3a, b) is observed in comparisonwith the amplitude of the itself
FQD3. The behavior of the deformation field near the core (Fig. 3c) of the coupled
structure differs significantly from the behavior of the itself FQD3 core (Fig. 2l):
stochastic wave behavior appear (instead of regular rings appear stochastic rings,
which are elliptic fractal dislocations, anisotropy effect is observed).
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(a) ( (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2 The behavior of the displacement function u = u2×10−2 for different structures from three
quantum dots: a, d, g, j are the projections onto the plane nOu; b, e, h, k are the projections onto
the plane mOu; c, f, i, l are cross-sections u2 ∈ [−0.1; 0.1] (top view)
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(a) (b) (c)

(d) (e) (f)

Fig. 3 The behavior of the displacement function for sequences (FQD1, FQD2, FQD3, FQD4)
(a–d); (FQD1, FQD3, FQD2, FQD4) (e); (FQD3, FQD4, FQD1, FQD2) (f): a, b are projections
u = u2 × 107 onto the planes nOu, mOu; cross-sections (d, e) u = u2 × 1010 ∈ [−1; 1]; (c,
f) u = u2 ∈ [−10−10; 10−10

]
(top view)

Transposition of the order of the separate internal operators of the iterative process
(2) uR2 and uR3 in the sequence (FQD1, FQD2, FQD3, FQD4) leads to the sequence
(FQD1, FQD3, FQD2, FQD4) (Fig. 3e). In this case, all the main features of the
regular behavior of the deformation field of the coupled structure are preserved, but
stochastic behavior near the core changes (Fig. 3e) in comparison with Fig. 3d.

Transposition of the order of pairs of operators of the iterative process (2) (uR1 +
uR2) and (uR3 + uR4) in the sequence (FQD1, FQD2, FQD3, FQD4) leads to the
sequence (FQD3, FQD4, FQD1, FQD2) (Fig. 3f). In this case, the peak down is
observed near FQD1, the anisotropy direction is reversed (Fig. 3f) in comparisonwith
Fig. 3c. The operator pair transposition operation allows us to transfer information
(for example, about the direction of the peak down) from FQD3 to FQD1.

For another coupled fractal structure consisting of four separate FQD4, FQD3,
FQD2, FQD1, the behavior of the deformation field is given in Fig. 4. In this case,
the sequence (FQD4, FQD3, FQD2, FQD1) (Fig. 4a–d) corresponds to the ordered
operator u2 = uR4 + uR3 + uR2 + uR1; the sequences (FQD4, FQD2, FQD3, FQD1)
(Fig. 4e) corresponds to the ordered operator u2 = uR4 + uR2 + uR3 + uR1; the
sequence (FQD2, FQD1, FQD4, FQD3) (Fig. 4f) corresponds to the ordered operator
u2 = uR2 + uR1 + uR4 + uR3. For the sequence (FQD4, FQD3, FQD2, FQD1) near
FQD2, a peak of an essentially small amplitude (Fig. 4a, b) is observed in comparison
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(a) (b) (c)

(d) (e) (f)

Fig. 4 The behavior of the displacement function for sequences (FQD4, FQD3, FQD2, FQD1)
(a–d); (FQD4, FQD2, FQD3, FQD1) (e); (FQD2, FQD1, FQD4, FQD3) (f): a, b are projections
u = u2 × 107 onto the planes nOu, mOu; cross-sections (d, e) u = u2 × 1010 ∈ [−1; 1]; (c,
f) u = u2 ∈ [−10−10; 10−10

]
(top view)

with the amplitude of the itself FQD2. The behavior of the deformation field near the
core (Fig. 4c) of the coupled structure differs significantly from the behavior of the
itself FQD2 core (Fig. 2i): stochastic wave behavior appear (instead of regular rings
appear stochastic rings, which are elliptic fractal dislocations, anisotropy effect is
observed). Transposition of the order of the separate internal operators of the iterative
process (2) uR3 and uR2 in the sequence (FQD4, FQD3, FQD2, FQD1) leads to the
sequence (FQD4, FQD2, FQD3, FQD1) (Fig. 4e). In this case, all the main features
of the regular behavior of the deformation field of the coupled structure are preserved,
but stochastic behavior near the core changes (Fig. 4e) in comparison with Fig. 4d.

Transposition of the order of pairs of operators of the iterative process (2)
(uR4 + uR3) and (uR2 + uR1) in the sequence (FQD4, FQD3, FQD2, FQD1) leads
to the sequence (FQD2, FQD1, FQD4, FQD3) (Fig. 4f). In this case, the peak up is
observed near FQD4, the anisotropy direction is reversed (Fig. 4f) in comparisonwith
Fig. 4c. The operator pair transposition operation allows us to transfer information
(for example, about the direction of the peak up) from FQD2 to FQD4. The mutual
transposition of pairs with zero operators (uR1 + uR4), (uR2 + uR3), for example, in
sequences (FQD1, FQD4, FQD2, FQD3), (FQD2, FQD3, FQD1, FQD4) from four
quantum dots also leads to zero operators
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u2 = 0 = (uR1 + uR4) + (uR2 + uR3) = (uR2 + uR3) + (uR1 + uR4).

The deformation field for such coupled fractal structure is identically zero.

3 Coupled Fractal Structure: Quantum Dots and Elliptical
Cylinders

In order to further study the effect of the ordering of displacement fields operators,
we consider a coupled fractal structure consisting of two fractal quantum dots FQD1,
FQD2 (i = 1, 2) and two fractal elliptic cylinders FEC3, FEC4 (i = 3, 4). Quantum
dots have imaginary attractors, and elliptic cylinders have real attractors [4, 5]. The
nonlinear equations for the dimensionless displacement function of such a coupled
structure u = u2 have the form similar to Eqs. (2)–(4), however, the parameters of
the structures are different

u = u2 =
4∑

i=1

uRi ; uRi = Rik
2
ui

(
1 − 2sn2(u2 − u0i , k

′
ui )

); (5)

k2ui = (1 − αi )/Qi ; k ′
ui = (1 − k2ui )

1/2; (6)

Qi = p0i − b1i (n − n0i )
2/n2ci − b2i (m − m0i )

2/m2
ci − b3i ( j − j0i )

2/j2ci . (7)

FQD1 (R1 = −1) and FQD2 (R2 = 1) with opposite orientation of deforma-
tion fields have the same basic parameters: αi = 0.5, p0i = −3.457 × 10−11,
u0i = 29.537, b1i = b2i = 1, nci = 24.4793, mci = 15.7295, n0i = 111.1471,
m0i = 79.3267. FEC3 (R3 = 1) and FEC4 (R4 = −1) with opposite orientation
of deformation fields have the same basic parameters: αi = 0.5, u0i = 29.537,
p0i = 1.0423, b1i = b2i = 1, b3i = 0, nci = 57.4327, mci = 35.2153,
n0i = 121.1471, m0i = 89.3267. By analogy with Paragraph 2, the displacement
fields for separate pairs of quantum dots (FQD1, FQD2) and (FQD2, FQD1) are
identically equal to zero, that follows from the results of modelling of iterative
processes. Thus, the pair (FQD1, FQD2) corresponds to an ordered zero opera-
tor u2 = 0 = uR1 + uR2; the pair (FQD2, FQD1) corresponds to an ordered zero
operator u2 = 0 = uR2 + uR1. The behavior of the deformation field of an separate
elliptical cylinder FEC3 (R3 = 1), which is described by the operator uR3, is given in
Fig. 5. In this case FQD1, FQD2, FEC4 are absent, R1 = R2 = R4 = 0. Unlike the
displacement fields of FQD (Figs. 1, 2, 3 and 4), the deformation field of the FEC3 is
complex. For Reu2 = ReuR3 the stochastic behavior of the core boundary is charac-
teristic (Fig. 5a–c); thewavebehavior inside andoutside the core is observed (Fig. 5c),
that is due to the presence of a variable module ku3 in the nonlinear Eqs. (5)–(7). The
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(a) (b) (c)

(d) (e) (f)

Fig. 5 The behavior of the displacement function of the FEC3: a, b, d, e of the projection on the
planes nOu, mOu; c, f cross-sections (top view)

amplitudes of separate peaks on the dependences Imu2 = ImuR3 on n, m (Fig. 5d,
e) are an order larger than the peaks amplitudes Reu2 = ReuR3 (Fig. 5a, b). The
effective damping (Imu2 = ImuR3) is localized in the region of the stochastic core
boundary (Fig. 5f).

The displacement fields for separate pairs of elliptical cylinders (FEC3, FEC4) and
(FEC4, FEC3) are identically zero, which also follows from the modelling results of
the iterative processes. Thus, a complex ordered zero operator u2 = 0 = uR3 + uR4

corresponds to the pair (FEC3, FEC4), and the complex zero operator u2 = 0 =
uR4+uR3 corresponds to the pair (FEC4, FEC3). In this case, for these zero operators
the following conditions Reu2 = 0 and Imu2 = 0 are carried out. The structure of
these complex zero operators differs from the structure of the zero operators for
quantum dots. The possibility of using such zero operators based on pairs (FEC3,
FEC4) and (FEC4, FEC3) allows us to restore information about separate FEC on
the basis of information from structures of three FEC, for example (FEC3, FEC4,
FEC3). In this case, information is extracted both on Reu2 and about Imu2 the
FEC3, which is exactly coincident with Fig. 5. In this case, for the structure (FEC3,
FEC4, FEC3), the ordered operator has the form u2 = uR3 + uR4 + uR3 = uR3.
However, the use of zero operators based on pairs of quantum dots, for example
(FQD1, FQD2), does not allow us to completely reconstruct information about a
separate FEC3 on the basis of information on the structure of three elements (FQD1,
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(a) (b) (c)

(d) (e) (f)

Fig. 6 The behavior of the difference of displacement function δu2: a, b, d, e projections on the
planes nOu, mOu; c, f cross-sections (top view)

FQD2, FEC3). For structure (FQD1, FQD2, FEC3) the ordered operator has the
form u2 = uR1 + uR2 + uR3. In Fig. 6 shows the behavior of the difference of
the displacement functions δu2 = (uR1 + uR2 + uR3) − uR3 on the indices (n, m)
of the lattice nodes. In this case, Reδu2 �= 0 and Imδu2 �= 0, that is explained
by the phenomenon of entanglement of the eigenvalues of the operator u2 �= uR3.
Similar conclusions were obtained for other structures of three elements: (FQD2,
FQD1, FEC3), (FEC3, FQD1, FQD2), (FEC3, FQD2, FQD1). For structures (FQD1,
FEC3, FQD2) and (FQD2, FEC3, FQD1) the deformation fields also do not coincide.
The type of ordering of fractal dots influences to the behavior of the displacement
functions of the coupled fractal structures.

4 Conclusions

For separate FQD pairs (superpositions of two FQD with shifted centers of gravity)
and a separate FEC, the behavior of the deformation field is investigated. The defor-
mation field of FQD pairs is real. Near the FQD cores two fractal holes are observed;
far from the region of cores localization wave behavior with a regular structure of
elliptic type is observed. As we approach to the core, the regular structure changes:
features such as inflection points, breaks, narrowings, wells, steps, saddles appear.
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The deformation field of the FEC is complex: stochastic behavior of the core bound-
ary for Reu2 is characteristic, inside and outside the core wave behavior is observed;
effective damping (Imu2) is localized in the region of the stochastic boundary of
the core. The stochastic surface of the deformation field u2 of the coupled fractal
structure with the number of quantum dots larger than two depends essentially on
the order of the separate terms uRi . This is due to the presence of variable modules
of elliptic functions in nonlinear equations for the deformation field. On the basis
of pairs of FQD and pairs of FEC with the same centres of gravity and the opposite
orientation of the deformation fields, zero operators are introduced. The possibility
of using zero operators on the basis of pairs of FQD (pairs of FEC) allows us to
restore information about separate FQD (FEC) on the basis of sequence information
from structures of three elements FQD (FEC). However, the use of zero operators
based on FQD pairs does not allow to completely restore information on a separate
FEC based on the information on the structure of the three elements (FQD1, FQD2,
FEC3). This is explained by the phenomenon of entanglement of the eigenvalues of
the operator uR1+uR2+uR3 �= uR3. The operation of transposition pairs of operators
in a sequence of four quantum dots allows us to transfer part of the information from
one quantum dot to another.

The obtained results can be used in quantumalgorithms formodelling the quantum
superposition and entanglement phenomena for the transmission, processing, storage
of information data, in quantum mechanics.
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Percolation Process in the Presence
of Velocity Fluctuations: Two-Loop
Approximation

Šarlota Birnšteinová, Michal Hnatič, Tomáš Lučivjanský and Lukáš Mižišin

Abstract Critical behaviour of directed bond percolation is studied in presence of
turbulent mixing. The turbulent advecting velocity field is assumed to be incom-
pressible and generated by the Kraichnan model. The model is studied by means of
field-theoretic approach. The renormalization group (RG) method is used in order
to analyze asymptotic large-scale behavior of the model near its critical point. The
renormalization procedure is performed to the next-to-leading order of the perturba-
tion theory. Partial results of full two-loop calculation are given.

Keywords Directed bond percolation process · Kraichnan model · Perturbative
renormalization group

1 Introduction

Second order phase transitions of non-equilibrium processes represent an interesting
problem not only in physics but also in other areas, such as ecology, medicine and
even sociology [1]. An example that belongs to this category is a spreading process.
Depending on the certain conditions spreading agent can either spread through entire
population or stops after some amount of time. The first case drives a system to an
active state, whereas the second one causes a system to arrive to an inactive state
[2, 3]. As in the case of the static critical phenomena, non-equilibrium systems with
differentmicroscopic properties and identicalmacroscopic properties can be grouped
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together into the universal classes [4, 5]. Our aim here is to study the directed bond
percolation model which belongs to the directed percolation universality class.

There are two approaches how to construct a mathematical model of directed
percolation. A simpler case begins with the phenomenological Langevin equation
and neglects terms that are irrelevant in the critical regime. The second one is to
consider directed percolation as a reaction-diffusion process, for which a well known
field-theoretic apparatus has been invented [6]. Both approaches turn out to yield the
same field-theoretic model.

Properly constructed continuous model (usually in a form of certain stochastic
differential equation) allows us to use methods of field-theoretic renormalization
group (RG) for calculation of universal scaling laws. In the case of non-equilibrium
phase transitions an ideal condition of a “pure” stationary critical state is hardly
achievable in real systems [7]. It is believed that these inconsistencies might be
caused by a strong influence of some external factor on the directed percolation
processes.

In this paper, we focus on the directed bond percolation process in the presence of
advective velocity fluctuations. Velocity field is assumed to be a Gaussian ensemble
with prescribed statistics by the Kraichnan model [8]. Advection is assumed as
passive, therefore no feedback on the velocity field is taken into consideration.

The rest of the paper is as follows. In Sect. 2 the field-theoretic action for the
directed bond percolation process and advection velocity field is introduced [6].
Section 3 includes and the Feynman diagrammatic technique is applied. In Sect. 4
we treat the problemof large-scale ultraviolet (UV) divergenceswith renormalization
group approach. In Sect. 5 main conclusions are summarized.

2 The Model

Time evolution of spreading percolating agents is effectively captured by stochastic
differential equation in a following form

∂tψ = D0{(−τ0 + ∇2)ψ − λ0ψ
2/2} + ζ

√
ψ, (1)

whereψ corresponds to the density of percolating agents, ∂t = ∂/∂t is a time deriva-
tive, ∇2 is the Laplace operator, D0 is diffusive constant, λ0 is a coupling constant
and τ0 is the deviation from the threshold value of the infected probability. Gaus-
sian random noise ζ = ζ(t, x) with zero average is specified by the pair correlation
function

〈ζ(t, x)ζ(t ′, x′)〉 = D0λ0δ(t − t ′)δd(x − x′). (2)

Our aim is to investigate the spreading of the non-conserved agent in a turbulent
medium and study the effect of the turbulent mixing and stirring on the critical
behaviour near the phase transition between the absorbing and the active phases.
Introducing the velocity field into model is realized by the replacement
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∂t → ∇t = ∂t + (v · ∇), (3)

where∇t is known as Lagrange or convective derivative in the literature. This form of
replacement is due to the assumed incompressibility of the flow. The velocity field,
therefore, satisfies the condition∇ · v = 0. Velocity field,modelled by theKraichnan
ensemble [2], obeys a Gaussian distribution with zero mean value and correlator

〈vi (t, x)v j (t
′, x′)〉 = δ(t − t ′)

∫
ddk

(2π)d
Di j (k) exp{ik · (x − x′)}, (4)

and kernel function Di j is of the form

Di j (k) = Pi j (k)D0g0k
−d−ξ, (5)

where the Pi j (k) = δi j − ki k j/k2 is transversal projector, g0 is a coupling constant
and 0 < ξ < 2 is a free parameter with the most realistic value, Kolmogorov value
ξ = 4/3 [2, 9]. Let us note that our problem corresponds to a passive model of
advection-diffusion problem. This means that there is no feedback on the velocity
field, only other fields are affected by the velocity field.

The problem of directed bond percolation process in the presence of advecting
velocity field is equivalent to afield-theoreticmodel of the threefieldsΦ = {ψ,ψ†, v}
with the action functional consisting of the following parts:

• diffusive part

Sdiff(ψ,ψ†) =
∫

dt
∫

dd xψ†(−∂t + D0∂
2 − D0τ0)ψ, (6)

• interaction part

Sint(ψ,ψ†, v) =
∫

dt
∫

dd x

{
ψ†(v · ∇)ψ + D0λ0

2
[(ψ†)2ψ − ψ†ψ2]

}
, (7)

• quadratic term for velocity field

Svel(v) = −1

2

∫
dt

∫
dd x

∫
dd x ′ vi (t, x)D−1

i j (x − x′)v j (t, x′), (8)

where D−1
i j (x − x′) is the inverse of the kernel function (5). The total action func-

tional of this problem is given by a sum of three terms

S = Sdiff + Sint + Svel. (9)

The partition function has the following form
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Z(A) = N
∫

Dφ exp{−S(φ) + Aφ}, (10)

where A stands for the sets of source fields, which correspond to Φ and
∫ Dφ

represents integration over all possible composition of fields φ from set Φ. Our
aim is to determine the form of connected correlation functions Gφ...φ. Generating
functional W for connected correlation functions is defined as [5]

W[A] = lnZ[A], Gφ...φ = δW
δφ . . . φ

|A=0. (11)

To this end we employ the renormalization group technique in the vicinity of its
upper critical dimension dc = 4.

3 Feynman Diagrammatic Technique

Field-theoretic action (9) yields to the standard Feynman diagrammatic technique [5]
with two propagators 〈ψ†ψ〉0 and 〈viv j 〉0 and three triple vertices ∼ (ψ†)2ψ, ψ†ψ2

and ψ†ψv. In time-momentum and frequency-momentum representation the propa-
gators read

〈ψψ†〉0(t, k) = θ(t) exp{−D0(k
2 + τ0)t},

〈ψψ†〉0(ω, k) = 〈ψ†ψ〉∗0(ω, k) = 1

−iω + D0(k2 + τ0)
,

〈viv j 〉(k) = Pi j (k)g0D0k
−d−ξ .

(12)

The function θ in Eq. (12) is the Heaviside step function. The propagator 〈ψψ†〉0 is
retarded and this fact is used in further analysis while constructing Green function.
Functions built up only with the fields ψ or ψ† vanish as they contain closed circuits
of retarded propagators [5]. Vanishing of functions 〈ψ . . . ψ〉 can be viewed as a
consequence of the symmetry arisen from the transformations

ψ(t, x) → −ψ†(−t, x), ψ†(t, x) → −ψ(−t, x), λ0 → −λ0. (13)

whereas absence of the function 〈ψ† . . . ψ†〉 is caused by causality, which is fulfilled
for any stochastic model [5].

It can be shown, that an actual expansion parameter for this model is λ2
0 rather

than λ0. Therefore is convenient to introduce new charge u0 as follows

u0 ≡ λ2
0. (14)
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Fig. 1 Diagrammatic representation of the propagators and the percolation vertices

An interaction part of the action (7) is responsible for a description of the fluctuation
effect of the percolation process and its interactionwith advection field.Vertex factors
have the following form [5]

Vm(t1, x1 . . . tm, xm;φ) = δmSint

δφ(t1, x1) . . . δφ(tm, xm)
, (15)

where φ can be an arbitrary field of the model. Vertex factors of the model are

Vψ†ψψ = −Vψ†ψ†ψ = D0λ0, Vψ†ψv = −ik j , (16)

where k j is themomentum of the fieldψ†. A diagrammatic form of the propagators of
the model is depicted at the top part of Fig. 1. The bottom section of Fig. 1 shows the
vertices in their graphical representation for the percolation process and the vertex
responsible for the interaction with velocity fluctuations.

4 UV Renormalization

An analysis of ultraviolet (UV) divergences (x → 0 and t → 0) is based on the
analysis of the canonical dimensions [5, 10]. Dynamical models exhibit two scale
dependencies, with respect to space scale, and time scale, respectively. Canonical
dimensions of some quantity F are derived from the requirement that all terms in
action (9) are dimensionless with respect to frequency and momentum separately
and from the normalization conditions

dω
ω = −dω

t = 1, dkk = −dkx = 1, dω
k = dkω = 0, (17)

A total canonical dimension of quantity F is given by dF = dk
F + 2dω

F , where d
k
F is

the momentum canonical dimension and dω
F is the frequency canonical dimension

of some quantity F . Dimensions of the model (9) are given in Table1.
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Parameters without a subscript “0” represent renormalized parameters, which
are introduced later. From Table1 one can see that the model is logarithmic, both
coupling constants u0 and g0 are dimensionless at d = 4 and ξ = 0. This means that
UV divergences appear as poles in ε = d − 4 and ξ or their linear combinations,
since the minimal subtraction scheme is used.

A total canonical dimension of an 1-irreducible Green function Γ is given by a
following expression

dkΓ = d − NΦd
k
Φ , dω

Γ = 1 − NΦd
ω
Φ , dΓ = dkΓ + 2dω

Γ = d + 2 − NΦdΦ , (18)

where NΦ = {Nψ, Nψ† , Nv} are numbers of fields in a given 1-irreducible Green
function Γ and summation runs over all types of entering fields. The total canonical
dimension δΓ in case of the logarithmic theory (d = 4 and ξ = 0) is used as an index
of the UV divergence δΓ = dΓ |ε=ξ=0. In order to remove UV divergences adding
counterterms into action is needed for those function Γ , whose values of δΓ are
nonnegative integer. Using relation (18) and data from Table1 canonical dimension
δΓ takes the form

δΓ = 6 − 2Nψ − 2Nψ† − Nv. (19)

With the restriction listed in Sect. 3 and Eq. (19), UV divergent structures are cal-
culated and listed in Table2. Permissible counterterms that correspond to potential
UV divergent part of Γψψ† 1-irreducible Green function take the form

ψ†∂tψ, ψ†∂2ψ, ψ†ψ. (20)

A possible form of counterterms for Γψ†ψv 1-irreducible Green function is in the
following form

ψ†(v · ∇)ψ, ψ(v · ∇)ψ†, (21)

Table 1 Canonical dimensions of the fields and parameters of the model for d dimensional space

F ψ ψ† v D0 τ0 m, μ λ2
0, u0 g0 λ, u, g

dkF d/2 d/2 −1 −2 2 1 4 − d ξ 0

dω
F 0 0 1 1 0 0 0 0 0

dF d/2 d/2 1 0 2 1 4 − d ξ 0

Table 2 Canonical dimensions for the (1PI) divergent Green functions of the model

Γ1−ir Γψψ† Γψ†ψψ Γψ†ψ†ψ Γψ†ψv

dΓ 2 ε/2 ε/2 1

δΓ 2 0 0 1
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which are antisymmetric due to transversality of the velocity field. All of the coun-
terterms, that are mentioned here, are present in Eq. (9), so the model described by
action (9) is multiplicatively renormalizable [2].

UV divergences might also appear in in the function 〈ψ†ψvv〉 with the canonical
dimension δ = 0, but the possible counterterm ψ†ψv2 is forbidden by Galilean sym-
metry [2]. It was shown in [11] that argument of Galilean symmetry for construction
the counterterms is applicable also for synthetic velocity field modelled as Gaussian
ensemble with vanishing correlation time, not only for the usual application for the
velocity field governed by the Navier-Stokes equation.

Elimination of UV divergences and following addition of the counterterms leads
to the renormalization of original fields

ψ → Zψψ, ψ† → Zψ†ψ†, v → Zvv (22)

and parameters of the model

D0 = DZD, g0 = gμξZg, τ0 = τ Zτ ,

λ0 = λZλμ
ε/2, u0 = uZuμ

ε,
(23)

where μ is the renormalization mass in the minimal subtraction scheme [5], Ze

are renormalization constants and the subscript e denotes the set of the renormal-
ized parameters e = { D, τ , g, λ, u}. In a similar manner e0 represents the set of
bare parameters e0 = { D0, τ0, g0, λ0, u0}. After replacing e0 by their renormalized
equivalents in the original action (9) one get the form of the renormalization action

SR =
∫

dt
∫

dd x

{
ψ†[−Z1∇t + Z2D∂2 − Z3Dτ ]ψ

+ Z4
Dλ

2
[(ψ†)2ψ − ψ†ψ2]

}
+

∫
dt

∫
dd x

∫
dd x ′ vDi jv

2
.

(24)

Renormalization constants in action (24) together with Eqs. (22) and (23) yield

Z1 = ZψZψ† = ZψZψ† Zv,

Z2 = ZψZψ† ZD,

Z3 = ZψZψ† ZDZτ ,

Z4 = ZψZ
2
ψ† ZDZλ = Z2

ψZψ† ZDZλ.

(25)

The renormalization constants from Eqs. (22) and (23) are easily derived in the
following form

Zψ = Zψ† = Z1/2
1 , Zv = 1, Zτ = Z3Z

−1
2 ,

ZD = Z−1
g = Z2Z

−1
1 , Zλ = Z4Z

−1
2 Z−1/2

1 .
(26)

Due to the introduction of new coupling constants (14) the following relation holds
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Z2
λ = Zu . (27)

The form of the renormalization constants listed in Eq. (25) can be found from the
requirement that they absorb UV divergences at ε → 0 and simultaneously ξ → 0
in the Green functions presented in Table2 [5, 9]. Found poles are in the following
form 1/ε, 1/ξ and linear combination 1/(ε + ξ).

In Eqs. (28) and (29) there are the examples of two of the 1-irreducible Green
function from Table2 to the next-to-leading order in perturbation theory.

(28)

(29)
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Symmetry factors are included in diagrams. The renormalization constants are inde-
pendent on the choice of the IR regularization. From the calculation viewpoints, it is
more convenient to set τ = 0 in propagator (12) and cut off the momentum integrals
at k = m since from dimensional analysis τ ∼ m2 [12].

The partial two-loop results for the renormalization constants are

Z1 = 1 + u

4ε
+ u2

ε

(
7

32ε
+ 3

32
− 9

64
ln

4

3

)
+ ug

ξ

3

4

(
1

ε
+ 1

4
+ 1

2
c

)

+ ug

ε + ξ
C1,

Z2 = 1 + u

8ε
− 3g

4ξ
+ u2

8ε

(
13

16ε
− 31

64
+ 35

32
ln

4

3

)
− ug

ξ

1

16

(
− 3

ε
+ 1

4

)

+ ug

ε + ξ
C2,

Z3 = 1 + u

2ε
+ u2

ε

(
1

2ε
− 5

32

)
+ ug

ξ

3

2

(
1

ε
+ 1

4
+ 1

2
c

)
+ ug

ε + ξ
C3,

Z4 = 1 + u

ε
+ u2

ε

(
7

4ε
− 7

8

)
+ ug

ξ

3

4

(
1

ε
+ 1

4
+ 1

2
c

)
+ ug

ε + ξ
C4.

(30)

where c = ψ0(3/2) − ψ0(5/2),ψn(z) = dn+1/dzn+1 lnΓ (z) and Γ (z) is the gamma
function. Finite constants C1, C2, C3 are corresponding contributions from diagram

, whereas constant C4 represents finite contribution from diagrams

, and . Calculation of these four integrals containing
propagator 〈viv j 〉 are in process.

5 Conclusion

Effects of the turbulent mixing and stirring on the reaction-diffusion model has
been studied. This process can be viewed as an example of critical behaviour in
a non-equilibrium system near transition between the active and absorbing phase.
The field-theoretic model was constructed as a combination of the directed bond
percolation process and advecting turbulent velocity field modelled as Kraichnan
ensemble. This advecting field is considered a Gaussian variable with prescribed
statistical properties. The multiplicative renormalizability of the model has been
proven. Partial two-loop results for renormalization constants has been shown. We
were able to compare the results for the renormalization constants in the limit of pure
directed percolation process in the two-loop approximation [13, 14]. The next steps
involve calculation of the Feynman diagrams containing the velocity field propagator,
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which has not been finished yet. It will be then possible to obtain fixed points and
stable regimes to the next-to-leading order in the perturbation theory.
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Phase Transition in Incompressible
Active Fluid: Effect of Long-Range
Interactions

Šarlota Birnšteinova, Juha Honkonen, Tomáš Lučivjanský
and Viktor Škultéty

Abstract Phase transitions in active fluids attracted a significant attention in the
last two decades. In the recent work (Chen et al in New J Phys 17:042002, 2015 [1])
authors showed that an order-disorder phase transition in incompressible active fluids
belongs to a new universality class and suggested a potential experimental realization
to be systems with long-range (LR) repulsive interactions. In this work, we study the
effect of LR interactions by introducing non-local shear stress into the microscopic
description of the model. Using methods of field-theoretic renormalization group we
investigate the large-scale properties in critical region. We have found that the effect
of LR interactions can change the universality class to the Model A class with LR
interactions or destroy the relevance of the non-linearities completely which leads to
the mean-field values for critical exponents.

Keywords Active fluid · Phase transitions · Renormalization group · Long-range
interactions
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1 Introduction

Nonequilibrium physics constitutes fascinating research topic to which considerable
effort has been devoted in last decades. Typical problems are notoriously known
for their complexity and unreliability of perturbation approaches. However, a great
simplification is permissible in a vicinity of critical region, where new symmetry
related to scale invariance emerges. An immediate hallmark of it is divergence of the
correlation length, which results in strong fluctuations on all length and times scales.
The system then effectively forgets about microscopic details and can be effectively
described by a few collective coarse-grained quantities.

Investigationof the phase transition in the activefluidbeganmore than twodecades
ago with Viscek’s numerical work on the order-disorder phase transition in the col-
lective movement of the bird-like objects [2]. About the same time, a continuum
Toner-Tu model [3] was derived for the theoretical investigation of this type of
transition. Their model represents a very elegant hydrodynamic description for com-
pressible active fluid with violated Galilean invariance, which is a crucial property
for the existence of the phase transition.

Since then most of the attention has been attracted by the phase transition in the
compressible active fluids [3–6]. In the recent work, the existence of the order-phase
transition in the incompressible active fluid was shown using perturbative renor-
malization group [1], where authors considered the incompressible version of the
previously proposed Toner-Tu model. One of the proposed experimental realizations
was the model with long-range repulsive interactions. In such scenario for example,
active particles (say birds) can perceive through the entire flock, hence the repulsive
energy per particle scales like the system volume, which force the compressibility
vanish in the thermodynamic limit.

In this work, we study the effect of the long-range interactions on the incom-
pressible active fluid phase transition from a slightly different point of view. Our
aim is to take into account the effect of the non-local stress, which is responsible
for the non-local energy dissipation. This adjustment will lead to a modification of
the propagators of the model and the large scale behaviour will then be investigated
using well known methods of renormalization group.

As in the case of previous works of field-theories with LR interactions, such
as directed percolation [7] or fully developed turbulence [8], the non-locality is
described by means of an analytic regulator. This allow us to calculate the fixed
point values and the corresponding stability in a combined double expansion scheme
of the analytic and dimensional regularization [9].
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2 Microscopic Formulation

Starting from the “Navier-Stokes” equation [2, 10]

∂tvi + vj∂jvi = ∂jEji − ∂ip + Fi, (1)

where ∂t ≡ ∂/∂t is time derivative, ∂j ≡ ∂/∂xj, vi is the velocity field, Eij is the
strain rate tensor, and p is the pressure field. The forceFi is derived from the Landau
potential

Fi = δU [v]
δvi

, U [v] = τ0

2
|v|2 + g10

4! |v|4, (2)

where τ0 and g0 are the microscopic deviation from the criticality and coupling
constant, respectively. Following earlier works [11, 12] we postulate components of
the modified strain rate tensor to be

Eij = ν0εij + S0Qij, (3)

where εij = (∂ivj + ∂jvi) is the classical strain rate tensor and Qij = vivj − δij
d |v|2 is

the active nematic stress tensor [12] and S0 is the microscopic amplitude. General
hydrodynamic arguments [13] imply, that S0 < 0 for push-swimmers like E. coli or
Bacillus subtilis, whereas S0 > 0 for puller type microswimmers such as Chlamy-
domonas algae.

The resulting Toner-Tu model is [1]

∂tvi + λ0vj∂jvi = ν0∂
2vi − ∂i(p + λ′

0|v|2) − (τ0 + g10|v|2/3!)vj + fi, (4)

where λ0 = 1 − S0,λ′
0 = S0/d . The second term on the right hand side also repre-

sents the modified pressure term. Note that in [1] the velocity modification of the
pressure term was not present since in the case of incompressible fluid the pressure
term does not influence the critical properties of the system. In order to mimic the
random movement of active particles we also introduce the random force fi obeying
Gaussian statistics with the two point correlator

〈fi(x, t)fj(x′, t′)〉 = δ(t − t′)
∫
k≥√

τ

ddk Dv
ij(k)e

ik·r, r = x − x′, (5)

Dv
ij(k) = ν0Pij(k), Pij(k) = δij − kikj/k

2. (6)

Since we work with an incompressible active fluid, random force was chosen to be
purely transversal in order to avoid generation of sound modes in a system. Note that
the model (4) is not Galilean invariant and the violation of this symmetry is crucial
for the existence of the phase transition.
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2.1 Effect of Long-Range Interactions

Here we assume that the stress in the active fluid is non-local, i.e. it depends not only
on the nearest neighbouring points, but the effects of the long range correlations play
important role. Generalizing the approach of [14] to the case of an incompressible
active fluid, we further modify the expression for the classical strain rate tensor as
follows

εij(x) → εij(x) +
∫

ddy εij(y)κ(|y − x|). (7)

The first term in the above equation is the classical local term and the second rep-
resents the non-local contributions. The kernel function κ weights the contribution
from long-distance points y on the point x and by assuming isotropicity of the sys-
tem, we expect its decay to be an ordinary power law κ(|r|) ∼ 1/|r|d−2α. Using the
definition of the Riesz fractional integro-differentiation formula (see for example
[15], Chap. 25)

[I2αεij](x) ≡ 1

C2α

∫
ddy

εij(y)
|x − y|d−2α

→ (−∂2
x)

−α, (8)

Cα = 2απd/2 Γ (α/2)

Γ ((d − α)/2)
, (9)

whereΓ (x) is the Gamma function, the Toner-Tumodel with long-range interactions
will then be

∂tvi + λ0vj∂jvi = ν0∂
2vi − w0(−∂2)1−αvi − ∂i(p + λ′

0|v|2)
− (τ0 + g10|v|2/3!)vj + fi, (10)

where w0 is some microscopic amplitude.

3 Field-Theoretic Approach

Following general procedures [16, 17], De Dominicis-Janssen response functional
for the active fluid model with LR interactions is

S[v′, v] = − v′
iD

v
ijv

′
j/2 + v′

i{∂t + ν0(−∂2 + w0(−∂2)1−α + τ0)}vi
+ ν0v

′
i(λ0vj∂j + g10|v|2/3!)vi, (11)

Dv
ij(k) = ν0Pij(k), (12)
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where we have rescaled all parameters with the viscosity due to the dimensional
reasons τ0 → ν0τ0, g10 → ν0g10, λ0 → ν0λ0, w0 → ν0w0. Let us note that the
modified pressure term has disappeared due to the assumed transversality of the
response field v′

i and therefore does not affect the critical properties of the model as
has mentioned before.

The field-theoretic formulation implies, that all the correlation and response func-
tions can be calculated from the following generating functional

Z[A] =
∫

Dv′Dv exp{−S[v′, v] + ϕA}, (13)

ϕ ≡ {v′, v}, (14)

A ≡ {Av′ ,Av}, (15)

by taking the variational derivative with respect to the corresponding source field A.
For example, the linear response function is obtained as

〈vi(x)v′
j(x

′, t′)〉 = δ2Z[A]
δAv(x, t)δAv′(x, t′)

. (16)

Note that last term in exponent of Eq. (13) should be interpreted as scalar product
between corresponding terms, i.e.

ϕA ≡ v · Av + v′ · Av′ .

In general, interacting field-theoretic models such as (13) are not exactly solvable
and one may treat them only within some perturbation method. In order to simplify
the calculation, it is convenient to work with the effective potential Γ , which is
defined as a Legendre transformation of the generating functional Z

Γ [Φ] = lnZ[A] − AΦ, Φ(x, t) = δ lnZ[A]
δA(x, t)

. (17)

The following relation can be shown

Γ [Φ] = −S[Φ] + (loop corrections) (18)

to hold [16–18]. The effective potential is also a generating functional of vertex
functions that can be calculated as

Γ Φ···Φ ′
({xi, ti}) = − δS[Φ]

δΦ(x, t) · · · δΦ ′(x′, t′)
+

(
corrections from

amputated diagrams

)
(19)

The above corrections from amputated diagrams are represented in terms of Feynman
diagrams which are constructed from the Feynman rules of the correspondingmodel.
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Fig. 1 Feynman
correspondence rules for the
incompressible active fluid
model

The propagators are identified from the free (quadratic) part and the vertex factors
from the interaction part. The exact form of propagators and interaction vertices is
the following

〈viv′
j〉0(k,ω) = Pij(k)

−iω + ν0(k2 + w0k2(1−α) + τ0)
, (20)

〈vivj〉0(k,ω) = ν0Pij(k)

ω2 + ν2
0 (k

2 + w0k2(1−α) + τ0)2
, (21)

V (3)
v′
i(p)vjvk

= iλ0ν0(pjδik + pkδij), (22)

V (4)
v′
ivjvkvl

= − 1
3g10ν0(δijδkl + δikδjl + δilδjk), (23)

and their graphical representation can be seen in Fig. 1. It can be easily noticed that
from a formal point of view this model represents a combination of φ4 and ∂φ3

theory.

4 Renormalization Group Analysis

It is well known that the perturbative RG analysis is based on the analysis of the
canonical dimensions of the model [16, 17]. In order to obtain the renormalize the
model, we must eliminate divergences arising in the vertex functions (25) with non-
negative value of UV exponent

δΓ = d + 2 −
∑
Φ

dΦnΦ, (24)

where dΦ and nΦ are the canonical dimension and the total number of the field Φ.
The table of canonical dimensions for the active fluid model is shown in Table1 and
the degree of divergence for this model is then
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Table 1 Canonical dimensions of the bare fields and bare parameters for the active fluid model

Q v v′ √
τ ,μ,Λ ν0, ν g10, g20 =

λ2
0

w0 w,λ, g1, g2

dk
Q

d
2 − 1 d

2 + 1 1 −2 ε 2α 0

dω
Q 0 0 0 1 0 0 0

dQ
d
2 − 1 d

2 + 1 1 0 ε 2α 0

dΓ = d + 2 − Nv

(
d

2
− 1

)
− Nv′

(
d

2
+ 1

)
, (25)

Divergent vertex functions are the following

Γv′v : with counterterms v′∂tv, v′∂2v, τv′v, (26)

Γv′vv : with counterterm v′(v∂)v, (27)

Γv′vvv : with counterterm v′vvv. (28)

In order to eliminate these divergences onemust renormalize parameters of themodel
in the following way

g1 = μεg10Zg1 , g20 = μεg2Zg2 λ = με/2λ0Zλ, (29)

w = μ2αZww0, τ = Zτ τ0, ν = ν0Zν . (30)

with Zx being the renormalization constants. The renormalized response functional
reads

SR[v′, v] = + v′
i{Z1∂t + ν(Z2(−∂2) + wμ2α(−∂2)(1−α) + Z3τ )}vi

+ νv′
i(Z4λμε/2vj∂j + Z5g1μ

ε|v|2/3!)vi − v′
iD

v
ijv

′
j/2 (31)

Dv
ij(k) = Z6νPij(k), (32)

where

Z1 = ZvZv′ , Z2 = ZνZvZv′ , Z3 = ZνZτZvZv′ Z4 = ZλZνZ
2
vZv′ , (33)

Z5 = Zg1ZνZ
3
vZv′ , Z6 = ZνZ

2
v′ , ZwZνZvZv′ = 1. (34)

From above, one can obtain inverse relations between the renormalization constants

Zv = (Z1Z2Z
−1
6 )

1
2 , Zv′ = (Z1Z

−1
2 Z6)

1
2 , Zν = Z2Z

−1
1 , Zτ = Z3Z

−1
2 , (35)

Zλ = (Z−1
1 Z−3

2 Z2
4Z

−1
6 )

1
2 , Zg1 = Z−1

1 Z−2
2 Z5Z6, Zw = Z−1

2 . (36)
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Now one must calculate the loop corrections to the divergent vertex functions, which
in the present case are

Γv′
ivj

= iΩZ1 − νk2Z2 − νwk2(1−α) − ντZ3 + +

+
1
2 (37)

Γv′
i(p)vjvk

= iλνZ4(pjδik + pkδij) + + +

+
1
2

+ + . . .

(38)

Γv′
ivjvkvl

= − g1ν

3
Z5(δijδkl + δikδjl + δilδjk) + 3 +

+
3
2

+ 3 + . . .

Γv′
iv

′
j
= νZ6Pij(k) + . . . (39)

with possible higher order corrections. The corresponding renormalization constants
to one-loop order are

Z1 = 1 (40)

Z2 = 1 − (d − 1)

4(d + 2)

∞∑
k=0

(−2

k

)
g2w

k

ε + 2αk
, (41)

Z3 = 1 + (d − 1)(d + 2)

12d

∞∑
k=0

(−1

k

)
g1w

k

ε + 2αk
, (42)

Z4 = 1 +
(

(d2 − 2)

6d(d + 2)
+ (d − 1)

12(d + 2)

) ∞∑
k=0

(−2

k

)
g1w

k

ε + 2αk
, (43)

Z5 = 1 + (d3 + 9d2 + 2d − 12)

12d(d + 2)

∞∑
k=0

(−2

k

)
g1w

k

ε + 2αk
, (44)

Z6 = 1, (45)
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whereg2 = λ2, andwehaveperformeda substitutiongi S̄d → gi,with S̄d = Sd/(2π)d

and Sd being the surface of d dimensional sphere.

5 Critical Properties

The investigation of large-scale requires analysis of the Green’s functions at different
scales. The relation between renormalized and bare green functions is

G0({ki}, e0) = ZNv′
v′ (g)ZNv

v (g)G({ki}, e,μ) (46)

where e0 ≡ {g10, g20, ν0, τ0} is the set of all bare parameter, e = e(μ) are their
renormalized counter parts at the scale μ and g = g(μ) ≡ {g1, g2} is the set of all
renormalized charges.

We now define operators Dx = x∂x|e and D̃x = x∂x|e0 to be logarithmic differen-
tial operators with respect to the renormalized parameters and bare parameters fixed
respectively. The investigation at different scales requires performing the logarithmic
partial derivative with respect to the μ while holding bare parameters e0 fixed

{Dμ + βg∂g − γνDν − γτDτ + Nvγv + Nv′γv′ }G({ki}, e,μ) = 0 (47)

with

βg = D̃μg, γx = D̃μ ln Zx (48)

being corresponding beta and gamma function. The first one describes the run-
ning coupling constant while the latter represents the anomalous scaling dimension
observable after the coarse-graining process. Gamma functions are calculated from
normalization constants providing the fact, that they must be UV finite. The relation
between anomalous dimensions can be then found from the relation between the
normalization constants and the results are

γv = (γ1 + γ2 − γ6)/2, γv′ = (γ1 − γ2 + γ6)/2, γν = γ2 − γ1, (49)

γλ = (−γ1 − 3γ2 + 2γ4 − γ6)/2, γḡ1 = (−γ1 − 2γ2 + γ5 + γ6), (50)

γτ = γ3 − γ2, γḡ2 = 2γλ, γw = −γ2. (51)



46 Š. Birnšteinova et al.

Beta functions are then found

βg′
1
= − g1

(
ε − 17g1

24(1 + w)2
− g2

4(1 + w)2

)
, (52)

βg′
2
= − g2

(
ε − 5g1

18(1 + w)2
− 3g2

8(1 + w)2

)
, (53)

βw = − w

(
2α − g2

8(1 + w)2

)
, (54)

where βg = 0 at a fixed point. The stability is then determined by the eigenvalues λ
of the matrix

Ωij = ∂giβgj , (55)

where Re[λ] > 0 for a stable fixed point.

5.1 Fixed Points for Finite w

It seems that the actual expansion parameters are g′
i = gi/(1 + w)2 but the transfor-

mation into these new variables is not necessary in order to obtain results for finitew.
The above set of equations, however does not have a fixed point with nonzero value
of w∗. Therefore, all fixed points belong to the universality classes already found in
the model with SR interactions - SR Gaussian, SR Navier-Stokes, SR Model A and
SR Active fluid models.

5.2 Fixed Points for w → ∞

In order to study the limitw → ∞, i.e. to study the true LR limit (TLR), we perform
the following substitution

ṽ′ = v′/w1/2
0 , ṽ = vw

1/2
0 , ν̃0 = ν0w0, τ̃0 = τ0/w0, (56)

g̃10 = g10/w
2
0, λ̃0 = λ0/w

3/2
0 , g̃20 = g20/w

3
0, (57)

where the bare response functional will attain the following form

S[v′, v] = − ṽ′
iD

v
ijṽ

′
j/2 + ṽ′

i{∂t + ν̃0(−∂2/w0 + (−∂2)1−α + τ̃0)}ṽi
+ ν̃0ṽ

′
i(λ̃0ṽj∂j + g̃10|ṽ|2/3!)ṽi, (58)

Dv
ij(k) = ν̃0Pij(k). (59)
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Table 2 Canonical dimensions of the bare fields and bare parameters for AF model. Note that in
this case z = 2(1 − α)

Q ṽ ṽ′ μ,Λ τ̃0, τ̃ ν̃0, ν̃ g̃10 g̃20 =
λ̃20

w w0, λ̃,

g̃1, g̃2

dkQ
d
2 − (1 − α) d

2 + (1 − α) 1 2(1 − α) −2(1 − α) ε − 4α ε − 6α 2α 0

dω
Q 0 0 0 0 1 0 0 0 0

dQ
d
2 − (1 − α) d

2 + (1 − α) 1 0 0 ε − 4α ε − 6α 2α 0

An important point to stress out here is that since the original LR coupling con-
stant scales as w0 ∼ Λ2α, the parameters and fields in the above rescaled response
functional will have different canonical dimensions - see Table2. Note, that for the
rescaled response functional z = 2(1 − α). Another interesting fact is, that param-
eters g̃10 and g̃20 have no longer the same canonical dimensions. Since for α > 0
the coupling constants have dg̃10 > dg̃20 one can in principle expect the absence of
a NS fixed point with long-range interactions. The results below demonstrate these
expectations.

Beta functions for this model can be calculated from the already known gamma
functions in the following way

βg̃1 = Dμ

( g1

w2

)
= −g̃1

(
ε − 4α + γg1 − 2γw

) ∣∣{g1,g2}→{w2 g̃1,w3 g̃1}, (60)

βg̃2 = Dμ

( g2

w3

)
= −g̃1

(
ε − 6α + γg2 − 3γw

) ∣∣{g1,g2}→{w2 g̃1,w3g̃1}, (61)

βw = −w(2α + γw)
∣∣{g1,g2}→{w2 g̃1,w3g̃1}. (62)

The last step is to perform the transformation w = 1/f and study βf in the limit
f → 0 instead the limit w → ∞

βg̃1 = −g̃1

(
ε − 4α − 17

24

g̃1

(1 + f )2

)
, (63)

βg̃2 = −g̃2

(
ε − 6α − 8

15

g̃1

(1 + f )2

)
, (64)

βf = f

(
2α − 3

8

g̃2

f (1 + f )2

)
. (65)

The list of all fixed points is shown in Table3. In this case, we have found only two
new fixed points - TLR Gaussian and TLRModel A fixed point. It is interesting that
in the one loop approximation there is no TLR Active fluid nor TLR Navier-Stokes
fixed point. The physically most interesting is the case ε = 1(d = 3), where for the
small α, the model belongs to the universality class of SR Active fluid. However,
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Table 3 Fixed points with their stability. SR - short-range, TLR - true long-range

FP/g∗
i |λi g∗

1 |g̃∗
1 g∗

2 |g̃∗
2 w∗ λ1 λ2 λ3

FP0 - SR
Gaussian

0 0 0 −ε −ε −2α

FPI - SR
Navier-
Stokes

0 8
3 ε 0 − 1

3 ε ε 1
3 (ε − 6α)

FPII - SR
Model A

24
17 ε 0 0 ε − 31

51 ε −2α

FPIII - SR
Active fluid

72
113 ε 248

113 ε 0 ε 31
113 ε 1

133 (31ε − 226α)

FPIV -
TLR
Gaussian

0 0 ∞ 4α − ε 6α − ε 2α

FPVI -
TLR Model
A

24
17 (ε − 4α) 0 ∞ ε − 4α 1

51 (226α − 31ε) 2α

at α > 31/266 ≈ 0.137 a crossover to the TLR Model A universality occurs and
for α > 0.25 the degree of non-locality is so strong that the relevance of all non-
linearities is destroyed completely and the mean-field approximation is valid.

6 Conclusion

In this work, we have been studying the effect of non-local interactions on the order-
disorder phase transition in the incompressible active fluid. Starting from the Toner-
Tu theory, we have constructed the model by including non-local shear stress to
the hydrodynamic description of the system. Using standard approach, we have
obtained the De Dominicis-Janssen response functional. The renormalization group
procedure was then based on the analysis of the UV divergences of the correspond-
ing formulation. In total, nine Feynman diagrams were calculated and the model was
successfully renormalized. Anomalous dimensions and beta functions were obtained
which allowed us to find six fixed points corresponding to six different universal-
ity classes and investigate their stability. In the case of d = 3, we have found that
although for small values of α the system belongs to the universality class of the
incompressible active fluid, for α � 1.37 there is a crossover to the universality class
of the well known Model A with long range interactions. In addition, for α > 0.25
the magnitude of the LR interactions destroys the relevance of the non-linearities
and the mean-field approximation becomes valid.
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On the Exponential Decay of Solutions
in Dual-Phase-Lag Porous
Thermoelasticity

José R. Fernández, Antonio Magaña and Ramón Quintanilla

Abstract In the last years, a big interest has been developed to understand the time
decay of solutions for the porous thermoelasticitywith different thermalmechanisms.
Weherewant to consider the problemof the one-dimensional porous thermoelasticity
when the heat conduction is given by means of the dual-phase-lag theory.We want to
give suitable conditions in order to guarantee that the decay of solutions is controlled
by a negative exponential. We also want to provide conditions for the slow decay of
the solutions.

Keywords One-dimensional porous thermoelasticity · Time decay ·
Dual-phase-lag · Semi-group arguments · Spectral arguments

1 Introduction and Basic Equations

Experimental observation shows that the classical heat continuum theory cannot
be used to describe satisfactorily some thermal phenomena. At the same time, the
behavior of the thermal waves obtained from the combination of the Fourier lawwith
the equation

cθ̇ = −∇q (1.1)

where θ denotes the temperature, q is the heat flux vector and c is the thermal capac-
ity (c > 0), violates the principle of causality. In order to overcome these difficulties,
several alternative proposals have been stated. In this sense, it is suitable to recall
the damped hyperbolic equation proposed by Cattaneo and Maxwell [2]. This heat
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conduction model has been extended to a couple of thermoelastic theories: one pro-
posed by Lord and Shulman [14] and the other by Green and Lindsay [7]. We can
also recall the theories of Green and Naghdi [8–10] which determine three possible
models named as type I, II and III, respectively. The easier one, the type I, is similar
to the classical theory. The type II is also known as the thermoelasticity without
energy dissipation because in this theory no dissipation for the energy is assumed.
In this setting, a system of conservative hyperbolic equations is proposed. The most
general is the type III, which contains the two previous models as limit cases.

Following this line of alternative proposals, we can recall that in 1995 Tzou [25]
proposed a theory in which the heat flux and the gradient of the temperature have a
delay in the constitutive equations. When this consideration is taken into account, it
is usual to speak about phase-lag theories. In this case, the constitutive equations are
given by

qi (x, t + τ1) = −kθ,i (x, t + τ2) (1.2)

where τ1 and τ2 are the delay parameters, which are assumed to be positive and k is
the thermal conductivity (k > 0).

Unfortunately, if we combine Eqs. (1.1) and (1.2), the problem that arises is ill
posed in the sense of Hadamard [5]. At the same time, as it is pointed out in [6],
this model disagrees with the Second Law of Thermodynamics. In fact, the solutions
have a very explosive behavior and, therefore, the proposed model does not seem
to be a good candidate to describe the heat conduction phenomenon, nor from a
mathematical point of view neither from a thermomechanical perspective. However,
many scientists have been attracted by the theories obtained when some Taylor ap-
proximations are considered in the model. This consideration has deserved a lot of
research [19–24].

In this paper we propose a second-order Taylor approximation for the heat flux
vector and a first-order approximation for the temperature. That is, we take

q(x, t + τ1) ≈ q(x) + τ1q̇(x) + τ 2
1
2 q̈(x),

θ(x, t + τ2) ≈ θ(x) + τ2θ̇ (x).
(1.3)

If we combine these two approximations with the heat equation (1.2) we find

qi (t) + τ1q̇i (t) + τ 2
1

2
q̈(t) = −k

(
θ,i (t) + τ2θ̇,i (t)

)
. (1.4)

On the other hand, Nunziato and Cowin [17] established a theory for the behavior
of porous solids in which the skeletal or matrix material is elastic and the interstices
are voids of the material. The intended applications of this theory are to geological
materials such as rocks and soils or to manufactured porous materials as ceramics or
pressed powders. It is worth recalling that the linear theory of elastic materials with
voids has been established by Cowin and Nunziato [4]. Later, thermal effects were
incorporated to this theory [12].
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Many contributions have been written to analyze the asymptotic behavior (with
respect to the time) of the solutions to the thermo-porous-elasticity problem [1, 15,
16]. This behavior strongly depends on themodel of heat conduction that is assumed.
In this work we also analyze the asymptotic behavior of the solutions for the one-
dimensional model of the dual-phase-lag thermo-porous-elasticity that comes from
Eq. (1.4).

The plan of the paper is the following. In the next section we recall the basic
equations and conditions to the problem. Existence and uniqueness are obtained in
Sect. 3. Sections4 and 5 are devoted to study the asymptotic behavior of the solutions
for two different situations. First we prove that if thermal and porous dissipation are
present in the system, then the solutions are exponentially stable. Later we show that
the thermal dissipation is not strong enough to lead the system to the equilibrium in
an exponential way. We finish the paper by given some conclusions.

2 Preliminaries

In this section we consider the one-dimensional model of the dual-phase-lag thermo-
porous-elasticity. It is worth noting that we can obtain the system in a similar way
as Chandrasekharaiah proposed the system of equations [3]. We have

⎧
⎪⎨

⎪⎩

ρü = μuxx + aθx + bϕx
I ϕ̈ = αϕxx − bux − ξϕ + mθ − εϕ̇

c(θ̇ + τ1θ̈ + τ 21
2
...
θ ) = kθxx + kτ2θ̇xx + a(u̇x + τ1üx + τ 21

2
...
u x ) − m(ϕ̇ + τ1ϕ̈ + τ 21

2
...
ϕ)

(2.1)

Here, u is the displacement, θ is the temperature and ϕ is the volume fraction. As
usual, ρ denotes the mass density and c the thermal capacity, μ is the shear elastic
modulus, a is the coupling tensor between the displacement and the temperature, m
is the coupling between the porosity and the temperature, the meaning of I is also
well known, τ1 and τ2 are the relaxation parameters and k is the thermal conductivity.

We want to study our system in [0, π ] × [0,∞). To have a well posed problem
we need to impose initial and boundary conditions. As initial conditions we assume

u(x, 0) = u0(x), u̇(x, 0) = v0(x), ϕ(x, 0) = ϕ0(x), ϕ̇(x, 0) = φ0(x)
θ(x, 0) = θ0(x), θ̇ (x, 0) = ζ 0(x), θ̈ (x, 0) = ψ0(x) for x ∈ [0, π ]. (2.2)

And we impose homogeneous boundary conditions:

u(0, t) = u(π, t) = ϕx (0, t) = ϕx (π, t) = θx (0, t) = θx (π, t) = 0 for t ≥ 0.
(2.3)

In this paper we assume that:

ρ > 0, μ > 0, I > 0, μξ > b2, c > 0, k > 0, 2τ2 > τ1, ε ≥ 0. (2.4)
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It is well known that the axioms of thermomechanics imply that the thermal
conductivity, k, cannot have negative sign. The meaning of the positivity of ρ, I and
c is clear. The assumptions on μ, ξ, α and b are related to the stability of the system
and the assumption on the delays is usual in the dual-phase-lag heat conduction
which is related to the stability of the heat conduction equation. We do not restrict
the sign of a,m and b, but it will be relevant to assume that a must be different from
zero. Concerning the parameter ε we will assume that it is non-negative to guarantee
that the dissipation is positive. We will prove the exponential stability of our system
when ε is positive and the slow decay of solutions when ε vanishes.

3 Existence of Solutions

In this section we give an existence result for the problem determined by system (2.1)
with initial conditions (2.2) and boundary conditions (2.3) whenever conditions (2.4)
hold. We will use the notation

f̂ = f + τ1 ḟ + τ 2
1

2
f̈ . (3.1)

System (2.1) can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂u = v̂

˙̂v = ρ−1(μûxx + bϕ̂x + a(θx + τ1ζx + τ 2
1
2 ψx )˙̂ϕ = φ̂

˙̂
φ = I−1(αϕ̂xx − bûx − ξϕ − εφ̂ + m(θ + τ1ζ + τ 2

1
2 ψ))

θ̇ = ζ

ζ̇ = ψ

ψ̇ = 2
cτ 2

1
(kθxx + kτ2ζxx ) + 2a

cτ 2
1
v̂x − 2m

cτ 2
1
φ̂ − 2

τ 2
1
ζ − 2

τ1
ψ

(3.2)

Notice that, if we find û, therefore we can also find u by solving a second-order
ordinary differential equation. Hence, we omit the hat in our equations to simplify
the notation. The system becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = v

v̇ = ρ−1(μuxx + bϕx + a(θx + τ1ζx + τ 2
1
2 ψx )

ϕ̇ = φ

φ̇ = I−1(αϕxx − bux − ξϕ − εφ + m(θ + τ1ζ + τ 2
1
2 ψ))

θ̇ = ζ

ζ̇ = ψ

ψ̇ = 2
cτ 2

1
(kθxx + kτ2ζxx ) + 2a

cτ 2
1
vx − 2m

cτ 2
1
φ − 2

τ 2
1
ζ − 2

τ1
ψ

(3.3)
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To prove the existence and uniqueness of solutions to the problem determined
by this system with the initial and boundary conditions that we have imposed we
consider the Hilbert space

H = {(u, v, ϕ, φ, θ, ζ, ψ), u ∈ W 1,2
0 , v ∈ L2, ϕ, θ, ζ ∈ W 1,2

∗ , φ, ψ ∈ L2
∗}

where W 1,2
0 , L2 are the usual Hilbert spaces and

L2
∗ = { f ∈ L2,

∫ π

0
f dx = 0}, W 1,2

∗ = { f ∈ W 1,2,

∫ π

0
f dx = 0}.

In this Hilbert space, we define the inner product

< (u, v, ϕ, φ, θ, ζ, ψ), (u∗, v∗, ϕ∗, φ∗, θ∗, ζ ∗, ψ∗) = 1

2

∫ π

0
Wdx, (3.4)

where
W = ρvv̄∗ + μux ū

∗
x + Iφφ̄∗ + αϕx ϕ̄

∗
x + b(ux ϕ̄

∗ + ū∗
xϕ)

+ c(θ + τ1ζ + τ 2
1

2
ψ)(θ̄∗ + τ1ζ̄

∗ + τ 2
1

2
ψ̄∗)

+ k(τ1 + τ2)θx θ̄
∗
x + kτ 2

1 τ2

2
ζ ζ̄ ∗

x + kτ 2
1

2
(θx ζ̄

∗
x + ζx θ̄

∗
x ),

(3.5)

where the bar means the complex conjugate.
It is worth noting that the norm induced by this inner product is equivalent to the

usual norm inH.
We define the matrix operator

A =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 I d 0 0 0 0 0
μ

ρ
D2 0 b

ρ
D 0 a

ρ
D aτ1

ρ
D aτ 2

1
ρ
D

0 0 0 I d 0 0 0

− b
I D 0 αD2−ξ

I − ε
I

m
I

mτ1
I

mτ 2
1

I
0 0 0 0 0 I d 0
0 0 0 0 0 0 I d
0 2a

cτ 2
1
D 0 − 2m

cτ 2
1

2k
cτ 2

1
D2 2kτ2

cτ 2
1
D2 − 2

τ 2
1

− 2
τ1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

, (3.6)

where I d is the identity operator and D denotes the derivative with respect to x .
We can write our problem as a Cauchy problem in the Hilbert space H as

dU

dt
= AU, U0 = (u0, v0, ϕ0, φ0, θ0, ζ0, ψ0), (3.7)

whereU = (u, v, ϕ, φ, θ, ζ, ψ). In this case the domain of the operatorA,D(A), is
the set ofU ∈ H such thatAU ∈ H. Therefore the domain is a dense subspace ofH
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Lemma 1 The operator A is dissipative. That is

�〈AU,U 〉 ≤ 0, (3.8)

for every U ∈ D(A).

Proof If we take into account the boundary conditions and the evolution equation
we see that

2�〈AU,U 〉 = −ε

∫ π

0
|φ|2dx − k

∫ π

0
|θx |2dx − kτ1

2
(2τ2 − τ1)

∫ π

0
|ζx |2dx .

(3.9)
Since we assume that ε ≥ 0, k > 0 and that 2τ2 > τ1, the lemma is proved. �

Lemma 2 The operator A satisfies that Range (A) = H.

Proof For F = ( f1, f2, f3, f4, f5, f6, f7) ∈ H, the equation AU = F can be seen
as ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v = f1
μuxx + bϕx + a(θx + τ1ζx + τ 2

1
2 ψx ) = ρ f2

φ = f3
αϕxx − bux − ξϕ − εφ + m(θ + τ1ζ + τ 2

1
2 ψ) = I f4

ζ = f5
ψ = f6
kθxx + kτ2ζxx + avx − mφ − cζ − cτ1ψ = cτ 2

1
2 f7

(3.10)

We obtain straightforwardly the values of v, φ, ζ and ψ . Substituting them into the
other equations we obtain the system

⎧
⎪⎨

⎪⎩

μuxx + bϕx = −aθx − aτ1 f5,x − aτ 2
1
2 f6,x + ρ f2

αϕxx − bux − ξϕ = ε f3 − mθ − mτ1 f5 − mτ 2
1

2 f6 + I f4
kθxx = −kτ2 f5,xx − a f1,x + m f5 + c f3 + cτ1 f6 + cτ 2

1
2 f7

(3.11)

Now, we consider

f1 =
∑

n≥1

f n1 sin nx, f2 =
∑

n≥1

f n2 sin nx, f3 =
∑

n≥1

f n3 cos nx, f4 =
∑

n≥1

f n4 cos nx,

f5 =
∑

n≥1

f n5 cos nx, f6 =
∑

n≥1

f n6 cos nx, f7 =
∑

n≥1

f n7 cos nx .

As F ∈ H, we know that the following conditions are satisfied:

∞∑

n=1

n2| f ni |2 < ∞, for i = 1, 3, 5, 6 and
∞∑

n=1

| f nj |2 < ∞, for i = 2, 4, 7.
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We can find solutions for u, ϕ and θ of the form

u =
∑

n≥1

un sin nx, ϕ =
∑

n≥1

ϕn cos nx, θ =
∑

n≥1

θn cos nx,

where un , ϕn and θn must satisfy

∞∑

n=1

n2|un|2 < ∞,

∞∑

n=1

n2|ϕn|2 < ∞ and
∞∑

n=1

|θn|2 < ∞. (3.12)

From the third equation of system (3.11) we can find θ . To be precise, we have
found

θn = −−an f n1 + 1
2cτ

2
1 f n7 + cτ1 f n6 + c f n3 + (kn2τ2 + m) f n5

kn2
.

Therefore we can obtain u and ϕ (we have used Mathematica to find them):

un = −
f n1

(
− a2

(
αn2+ξ

)

k − abm
k

)

n2
(
b2 − μ

(
αn2 + ξ

))

−
f n6

(
acτ1

(
αn2+ξ

)

kn − 1
2anτ21

(
αn2 + ξ

)
+ bcmτ1

kn − 1
2bmnτ21

)

n2
(
b2 − μ

(
αn2 + ξ

))

−
f n7

(
acτ 21

(
αn2+ξ

)

2kn + bcmτ 21
2kn

)

n2
(
b2 − μ

(
αn2 + ξ

)) −
f n3

(
ac

(
αn2+ξ

)

kn + bcm
kn + bnε

)

n2
(
b2 − μ

(
αn2 + ξ

))

−
f n5

(
a
(
αn2+ξ

)(
kn2(τ2−τ1)+m

)

kn + bm
(
kn2τ2+m

)

kn − bmnτ1

)

n2
(
b2 − μ

(
αn2 + ξ

))

− b f n4 J

n
(
b2 − μ

(
αn2 + ξ

)) −
f n2 ρ

(
−αn2 − ξ

)

n2
(
b2 − μ

(
αn2 + ξ

))

ϕn = −
f n7

(
abcτ21 + cμmτ21

)

2kn2
(
μ

(
αn2 + ξ

) − b2
) −

f n6

(
2abcτ1 − abkn2τ21 + 2cμmτ1 − kμmn2τ21

)

2kn2
(
μ

(
αn2 + ξ

) − b2
)

−
f n3

(
abc + cμm + kμn2ε

)

kn2
(
μ

(
αn2 + ξ

) − b2
)

−
f n5

(
2kn2τ2(ab + μm) − 2abkn2τ1 + 2abm − 2kμmn2τ1 + 2μm2

)

2kn2
(
μ

(
αn2 + ξ

) − b2
)

+ a f n1 (ab + μm)

kn
(
μ

(
αn2 + ξ

) − b2
) − f n4 Jμ

μ
(
αn2 + ξ

) − b2
+ b f n2 ρ

n
(
μ

(
αn2 + ξ

) − b2
)
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It is clear that u, ϕ and θ satisfy conditions (3.12). Furthermore: we can see that
‖U‖ ≤ K‖F‖ for some K independent of F .

If we recall the Lumer-Phillips corollary to the Hille-Yosida theorem we obtain
the following result.

Theorem 3 The operator A generates a contractive semigroup, S(t) = {etA}, in
H, and for each U0 ∈ D there exists a unique solution U (t) ∈ C1([0,∞),H) ∩
C0([0,∞),D) to the problem determined by system (2.1) with initial conditions
(2.2) and boundary conditions (2.3).

4 Case ε > 0. Exponential Decay of Solutions

The aim of this section is to prove that when ε is strictly positive the solutions of our
problem are exponentially stable. Therefore, in this section, we assume that ε > 0.
We will use the following characterization, stated in the book of Liu and Zheng, that
ensures the exponential decay (see [11, 13] or [18]).

Theorem 4 Let S(t) = {eAt }t≥0 be a C0-semigroup of contractions on a Hilbert
space. Then S(t) is exponentially stable if and only if the following two conditions
are satisfied:

(i) iR ⊂ ρ(A), (here ρ(A) means the resolvent of A).
(ii) lim|λ|→∞ ‖(iλI − A)−1‖L(H) < ∞.

The main theorem of this section is:

Theorem 5 The operator A defined in (3.6) generates a semigroup which is expo-
nentially stable.

Proof First, we prove the first condition of Theorem4. Following the arguments
given by Liu and Zheng ([13], page 25), the proof consists of the following steps:

(i) Since 0 is in the resolvent ofA, using the contractionmapping theorem,we have
that, for any realλ such that |λ| < ||A−1||−1, the operator iλI − A = A(iλA−1 − I)

is invertible. Moreover, ||(iλI − A)−1|| is a continuous function of λ in the interval
(−||A−1||−1, ||A−1||−1).

(ii) If sup{||(iλI − A)−1||, |λ| < ||A−1||−1} = M < ∞, then by the contraction
theorem, the operator

iλI − A = (iλ0I − A)
(
I + i(λ − λ0)(iλ0I − A)−1

)

is invertible for |λ − λ0| < M−1. It turns out that, by choosingλ0 as close to ||A−1||−1

as we can, the set {λ, |λ| < ||A−1||−1 + M−1} is contained in the resolvent of A
and ||(iλI − A)−1|| is a continuous function of λ in the interval (−||A−1||−1 −
M−1, ||A−1||−1 + M−1).
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(iii) Let us assume that the intersection of the imaginary axis and the spectrum is
not empty, then there exists a real number� with ||A−1||−1 ≤ |� | < ∞ such that the
set {iλ, |λ| < |� |} is in the resolvent of A and sup{||(iλI − A)−1||, |λ| < |� |} =
∞. Therefore, there exist a sequence of real numbers λn with λn → �, |λn| < |� |
and a sequence of vectors Un = (un, vn, ϕn, φn, θn, ζn, ψn) in the domain of the
operator A and with unit norm such that

‖(iλnI − A)Un‖ → 0. (4.1)

If we write (4.1) in components, we obtain the following conditions:

iλnun − vn → 0, in W 1,2 (4.2)

iλnvn − 1

ρ

(
μD2un + bDϕn + a(Dθ + τ1Dζn + τ 21

2
Dψn)

)
→ 0, in L2 (4.3)

iλnϕn − φn → 0, in W 1,2 (4.4)

iλnφn − 1

I

(
αD2ϕ − bDun − ξϕn − εφn + m(θn + τ1ζn + τ 21

2
ψn)

)
→ 0, in L2 (4.5)

iλnθn − ζn → 0, in W 1,2 (4.6)
iλnζn − ψn → 0, in W 1,2 (4.7)

iλnψn − 2

cτ 21

(
kD2θn + kτ2D

2ζn + aDvn − mφn − cζn − τ1ψn

)
→ 0, in L2 (4.8)

If we consider �〈((iλnI − A)Un),Un〉 we see that φn tends to zero in L2 and θn, ζn
tend also to zero in W 1,2. It also implies that λ−1

n ψn tends to zero in W 1,2 and λnϕn

tends to zero in L2. From (4.5) we obtain that λ−1
n (αD2ϕn − bDun) → 0 is bounded

in L2. If we multiply by λnϕn in L2 we see that Dϕn tends to zero.
We now multiply (4.8) by λ−1

n ψn to obtain that

i‖ψn‖2 + 2k

λncτ 2
1

< Dθn, Dψn > + 2kτ2
λncτ 2

1

< Dζn, Dψn >

− 2a

λncτ 2
1

< Dvn, ψn > + 2m

λncτ 2
1

< φn, ψn >

+ 2

λnτ
2
1

< ζn, ψn > + 2

λnτ1
‖ψn‖2 → 0.

But
λ−1
n < Dvn, ψn >∼ −i < vn, Dζn >→ 0.

Therefore we also obtain that ψn tends to zero in L2. Again, from (4.8) we see that

λ−1
n (kD2θn + kτ2D

2ζn + aDvn) → 0 in L2.

We then obtain that
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λ−1
n (kD2θn + kτ2D

2ζn) + aDun → 0 in L2,

and taking the inner product by Dun we see

〈λ−1
n (kD2θn + kτ2D

2ζn), Dun〉 + a‖Dun‖2 → 0.

In view of the boundary conditions this is equivalent to

−〈(kDθn + kτ2Dζn), λ
−1
n D2un〉 + a‖Dun‖2 → 0.

In view of (4.3) we see that λ−1
n D2un is bounded and then we conclude that Dun

tends to zero. Now, if we consider again (4.3) we arrive to

iρ‖vn‖2 + μ〈Dun, λ
−1
n Dvn〉 + aτ 2

1

a
〈λ−1

n Dψn, vn〉 → 0,

and then vn tends to zero in L2, which contradicts the assumption that the sequence
has unit norm and, in consequence, the first condition of Theorem 4 holds.

Now, we will prove the second condition of Theorem 4. Again we use a contra-
diction argument. If this condition is not true, then there exist a sequence λn such
that |λn| → ∞ and a sequence of unit norm vectors in the domain of the operator
such that (4.1) holds. But for this point we can use the same argument we have used
to prove the first condition because the only relevant fact is that the sequence of the
λn does not tend to zero. We see that both conditions of Theorem 4 hold and then
Theorem5 is proved. �

5 Case ε = 0. Slow Decay of Solutions

The aim of this section is to prove that when the parameter ε vanishes the decay of
the solutions of our system cannot be controlled by an exponential. To this end we
are going to use the spectral study of the problem with the help of the Routh-Hurwitz
lemma.

Theorem 6 Let (u, ϕ, θ) be a solution to the problem determined by (2.1), (2.2) and
(2.3). Then (u, ϕ, θ) decays in a slow way.

Proof We will prove that there exists a solution to system (2.1) of the form

u = K1e
ωt sin(nx), ϕ = Keωt cos(nx), θ = K3e

ωt cos(nx)

such that �(ω) > −ε for all positive ε. Hence, a solution ω as close as desired to the
imaginary axis can be found. Imposing that u, ϕ and θ are as above and replacing
them in (2.1) the following homogeneous system in the unknowns K1, K2 and K3 is
obtained:
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B

⎛

⎝
K1

K2

K3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠

where

B =
⎛

⎝
μn2 + ρω2 bn an

−bn −αn2 − Iω2 − ξ m
−anω

(
ω2τ 21 + 2ωτ1 + 2

)
mω

(
ω2τ 21 + 2ωτ1 + 2

)
2k (ωτ2 + 1) n2 + cω

(
ω2τ 21 + 2ωτ1 + 2

)

⎞

⎠.

This system will have non trivial solutions if and only if the determinant of the
coefficients matrix is equal to zero. We denote by p(x) the determinant once ω is
replaced by x . Straight calculations (made using Mathematica) show that p(x) is a
seventh degree polynomial.

To prove that p(x) has roots as close as we want to the complex axis, we will
show that for any ε > 0 there are roots of p(x) located on the right hand side of the
vertical line �(z) = −ε. This fact will be shown if the polynomial p(x − ε) has a
root with positive real part. To prove that, we use the Routh–Hurwitz theorem. It
assesses that, if b0 > 0, then all the roots of polynomial

b0x
7 + b1x

6 + b2x
5 + b3x

4 + b4x
3 + b5x

2 + b6x + b7

have negative real part if and only if all the leading minors of matrix

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

b1 b0 0 0 0 0 0
b3 b2 b1 b0 0 0 0
b5 b4 b3 b2 b1 b0 0
b7 b6 b5 b4 b3 b2 b1
0 0 b7 b6 b5 b4 b3
0 0 0 0 b7 b6 b5
0 0 0 0 0 0 b7

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

are positive. We denote by Li , for i = 1, 2, 3, 4, 5, 6, 7, the leading minors of this
matrix.

Direct computations show that the sixth leading minor, L6, is a eighteenth degree
polynomial on n:

L6 =
(
A + Bε + Cε2

)
εn18 + R(n),

where

A = −8a2αcI k2μτ 21 (τ1 − 2τ2)
2ρ2 (

ατ 21
(
a2 J − αcρ + cIμ

) + 2I kτ2(αρ − Iμ)
) 2

and R(n) is a polynomial onn of degree 16 and A, B andC are constants related to the
constitutive coefficients of the system. For ε small enough, but positive, we see that
A + Bε + Cε2 is negative. Thus, for n large enough, L6 becomes negative. Therefore
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p(x − ε) has infinite roots with positive real part. (We have used Mathematica to
compute L6.)

This argument shows that the solutions to system (2.1) decay in a slow way, or,
in other words, that a uniform rate of decay of exponential type for all the solutions
cannot be obtained. Therefore, Theorem6 is proved. �

6 Conclusions

In this paper we have considered the problem determined by the one dimensional
dual-phase-lag porous thermoelasticity. Two cases has been considered: when the
porous dissipation is present and when it is not. We have proved that the decay of the
solutions can be controlled for an exponential in the first case, but this is not possible
in the second case.
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Dynamical Invariant Calculations
Involving Evolution Equations
with Discontinuities

Avadis Hacınlıyan and Engin Kandıran

Abstract Many models of physical systems involving electronic circuit elements
[6], population dynamics [5] involve evolution equations with discontinuities. The
key to understand such systems is to hope that the discontinuity does not adversely
affect the integration process. There are also three variable chaotic dynamical sys-
tem examples, such as the Sprott systems for deriving jerky dynamics that have also
become of interest [10]. In order to calculate dynamical invariants in chaotic sys-
tems such as characteristic exponents and fractal dimensions we often need to find
the Jacobian; this often requires attempting to differentiate discontinuous functions.
Therefore finding a suitable continuous approximation to the discontinuities becomes
important. In previous communications, two example systems had been used with
two parametrizations for approximating discontinuous functions with continuous
ones, one of which is the same as that used in the literature. In this work, we will
use further examples to optimize the parameters of the continuous approximation to
discontinuities using different examples in order to test the degree of applicability
of this approach. Where possible, the invariants calculated by this method will be
compared to the corresponding invariants calculated from its time series.

Keywords Chaotic systems · Sprott systems · Fractal dimension · Lyapunov
exponents · Simulation · Chaotic simulation
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1 Introduction

Jerky dynamics is an interesting research area for understanding the dynamic be-
havior of 3-D autonomous system with nonlinearity in dynamical system and chaos
theory. It is shown that chaotic dynamical behavior can be observed with three or
more dimensions with nonlinearities [1, 4]. In Newtonian mechanics ẍ and ẋ are
called acceleration and velocity respectively and

...
x is called jerk. A jerk system is

described by a third order differential equation which represents the time evolution
of a single scalar variable x according to the dynamics:

...
x = J (x, ẋ,

...
x ) (1)

Here J (x, ẋ, ẍ) is called the jerk function. This representation of function is used
to find the answer to the question, which simplest dynamical systems with smooth
continuous functions result in chaos. One of the simplest examples of jerk systems
is the Coullet system which can be written as:

...
x + aẍ + ẋ = g(x) (2)

Here g(x) is nonlinear function such as g(x) = b(x2 − 1); a and b are constants.
For the values a = 0.6 and b = 0.58, the Coullet system for the given g(x) displays
chaotic behavior. In addition to this, many well-known dynamical systems such as
Lorenz andRössler systems, can bewritten in jerk form [3]. In [8, 9], C. J. Sprott gives
7 jerk system cases which display chaotic behavior with one positive, one negative
and one zero Lyapunov exponents. In addition this, Eichorn et al. [2] shows that 14 of
theSprott Systems [7] can bewritten as jerk systemof a single variable x. JD0 and JD1
systems [8] are studied in great detail in [2]. Recently, [11], 3-D jerk chaotic systems
with two cubic nonlinearities was studied and it has been shown that the system
displays chaotic behavior. In addition to jerk systems, another class of dynamical
systems are called hyperjerk systems which are in the form dx

dt4 = J (
...
x , ẍ, ẋ, x) [9].

Jerk systems can be written as 3-D autonomous systems as in the following form:

ẋ = y
ẏ = z
ż = J (x, y, z)

(3)

It is important to note that for all jerk systems only the third equation of the system
determines the different behavior of the dynamics.

In this study, we try to analyze the effect of nonlinear terms that are not differ-
entiable in jerk systems (such as ẋsqn(x)), but for this study we change the not
differentiable function with continuous one with comparable behavior: for instance,
instead of sgn(x), we use tanh(x) by using the result of our previous study. (Ref-
erence verelim) In Sect. 2, we analyze the JD3 and JD4 systems. Finally, we apply
adaptive control method for demonstrating a possible stabilization alternative for the
JD3 system.
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2 Jerk Systems

2.1 JD3 System

The JD3 system in general form is:

...
x = aẍ − ẋ + bx2 + x ẋ + c (4)

where a, b, c are constants Equations of JD3 system in 3-D form is:

ẋ = y

ẏ = z

ż = az − y + bx2 + xy − c

(5)

There are two fixed points of the systems: (−√ c
b , 0, 0) and (

√ c
b , 0, 0). For practical

advantages it is necessary to transform the fixed point to the origin by letting:

x̄ = x ±
√
c

b
ȳ = y and z̄ = z (6)

Then the system takes the following form and note we drop the overbar in notation:

ẋ = y

ẏ = z

ż = az − y + bx2 + xy + 2c ± 2b

√
c

b
x ±

√
c

b
y

(7)

To study the stability of the system the Jacobian at the origin is:

J(0,0,0) =
⎡

⎣
0 1 0
0 0 1

2b ± √ c
b −1 + √ c

b a

⎤

⎦

The characteristic equation of the Jacobian matrix is also calculated:

λ3 − aλ2 +
√
c

b
λ + 2b

√
c

b
= 0 (8)

According to criterion of Routh-Hurwitz, the fixed point is stable if the following
conditions are satisfied:

a > 0,

√
c

b
> 0, 2b

√
c

b
> 0 and a

√
c

b
+ 2b

√
c

b
< 0 (9)
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where the first two given conditions and the last expression vanishes (equals to zero)
in Eq.9 is satisfied, a limit cycle arises via Hopf-bifurcation. For a = −0.6, b =
0.9, c = 1.0, the fixed point (0, 0, 0) is stable and the system dynamics displays
chaotic behavior as described in [9] and the trajectory of the system is given in
Fig. 1. The time evolution Lyapunov spectrum of the system is given in Fig. 2. The
Lyapunov exponents of the system are (0.0809, 0,−0.6810).

Fig. 1 Trajectory of JD3 system

Fig. 2 Lyapunov exponents spectrum of JD3 system
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Fig. 3 Trajectory of modified JD3 system

After the analysis of original J D3 system,we have added a nonlinear term ẋ tanh x
to the original jerk function, we have the following jerk form:

...
x = aẍ − ẋ + bx2 + x ẋ + c + ẋ tanh x (10)

Then, the new system is studied numerically. With the same set of initial condi-
tions and parameter values we simulate the new system (see Fig. 3). The maximal
Lyapunov exponents of the system are (0.047,−0.1214, 0.4833) and the Lyapunov
exponent spectrum of modified system is given in Fig. 4.

2.2 JD4 System

The JD4 system in general form is:

...
x = aẍ + bẋ + cx2 + x ẋ + d (11)

where a, b, c, d are constants. This system can be written in 3-D form as:

ẋ = y

ẏ = z

ż = az + by + cx2 + xz + d

(12)

There are two fixed point of the system: (±
√
d
c , 0, 0) which means only possible

choice for the system to have a real fixed point is d ≤ 0. To study the stability of the
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Fig. 4 Lyapunov exponents spectrum of modified JD3 system

system the Jacobian is calculated:

J(0,0,0) =
⎡

⎣
0 1 0
0 0 1

2cx + z y a + x

⎤

⎦

For a = −1, b = −0.7, c = 1 and d = −1, in [7], it is shown that the system displays
chaotic behavior with Lyapunov exponents (0.0734, 0,−1.7769). The trajectory of
the system with the given parameter values is given in Fig. 5. The dynamics of
Lyapunov exponents is given in Fig. 6.

For d=0, the only fixed point of the system is the origin. In that case, Jacobian J
has the following characteristic equation.

λ(λ2 − aλ − b) = 0 (13)

and the eigenvalues of the Jacobian J areλ1 = 0 andλ2,3 = ±√
a2+4b+a
2 . So by looking

at the eigenvalues it is not possible to reach a conclusion about the stability of the
fixed point.

For d < 0 case, the characteristic equation is:

λ3 − aλ2 −
√
d

c
λ − 2c

√
d

c
= 0 (14)
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Fig. 5 Trajectory of JD4 system

Fig. 6 Lyapunov spectrum of JD4

For the following condition:

a < 0,

√
d

c
< 0, 2c

√
d

c
< 0 and (a − 2c)

√
d

c
> 0

the fixed point can be stable. However, for d < 0 the condition given above cannot
be satisfied since the given quantities which involve d are not real numbers. After the
analysis of of original JD4 system,we have added the same nonlinear term ẋ tanh x
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Fig. 7 Trajectory of modified JD4 system

to the original jerk function we have the following jerk form:

ẋ = y

ẏ = z

ż = az + by + cx2 + xz + d + y tanh x

(15)

The new system has the following phase portrait in Fig. 7 for the following values
of parameter a = −1, b = −0.7, c = 1 and d = −1. These parameter values are the
same as the Sprott use in his study and we see that new additional term turn the limit
cycle like structure into the attractor.

The Lyapunov spectrum of the system is plotted in Fig. 8 and the maximal Lya-
punov exponents of the system are (1.2961, 0.4166,−0.4627).

2.3 Adaptive Control of the JD3 System

In this section, we design an adaptive control law for globally stabilizing the chaotic
JD3 systemwhen the parameter values are unknown.Thus,we consider the controlled
JD3 system given by the dynamics:

ẋ = y + u1
ẏ = z + u2
ż = az − y + bx2 + xy − c + u2

(16)

where u1, u2 and u3 are feedback controllers to be designed using the states and
estimates of the unknown parameters of the system.
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Fig. 8 Dynamics of Lyapunov exponents of modified JD4 system

In order to ensure that the controlled system globally converges to the fixed point,
we consider the following adaptive control functions:

u1 = −y − k1x

u2 = −z − k2y

u3 = −āz + y − b̄x2 − xy + c̄ − k3z

(17)

where ā, b̄, c̄ are estimates of the parameters a, b and c, respectively, and ki ’s, (i =
1, 2, 3) are positive constants. Substituting the control law into the JD3 system

ẋ = −k1x

ẏ = −k2y

ż = eaz + ebx
2 − ec − k3z

(18)

where
ea = (a − ā) eb = (b − b̄) ec = (c − c̄) (19)

defines the error. For the derivation of the update law for adjusting the parameter
estimates ā, b̄, c̄, the Lyapunov function V :

V (x, y, z, ea, eb, ec) = 1

2
(x2 + y2 + z2 + e2a + e2b + e2c ) (20)
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which is positive definite in R5. Note also that:

ėa = −ā ėb = −b̄ ėc = −c̄ (21)

Differentiating V along the trajectories:

V̇ = −k1x
2 − k2y

2 − k3z
2 + ea(−z2 − ā) + ec(−z − c̄) + eb(−x2z − b̄) (22)

In view of Eq.21, the estimated parameters are updated by the following law:

ā = z2 + eak4

b̄ = −x2z + ebk5
ż = −z + eck6

(23)

where k4, k5 and k6 are positive constants. So:

V̇ = −k1x
2 − k2y

2 − k3z
2 − k4e

2
a − k6e

2
c − k5e

2
b (24)

is negative definite. According to this calculation, we obtain the following results
about Lyapunov stability: JD3 system with unknown parameters is globally and
exponentially stabilized for all initial conditions (x0, y0, z0) ∈ R

3 by the adaptive
control law, where the update law for the parameters is given by Eq.21 and, ki ,
k = 1 . . . 6, are positive constants.

3 Conclusion

In this study, we try to analyze JD3 and JD4 system systematically and we try to
estimate effect of new nonlinear term on the chaotic dynamics of the systems. We
have demonstrated that both system has an attractor with the addition of new term.
Then we theoretically show that the JD3 system can be controlled so as to lead to
convergence to the fixed points by using an adaptive control method and Lyapunov
stability.

References

1. L.O. Chua, Global unfolding of Chua’s circuits. Technical Report UCB/ERL M93/7, EECS
Department, University of California, Berkeley, 1993

2. R. Eichhorn, S.J. Linz, H. Peter, Simple polynomial classes of chaotic jerky dynamics (2002)
3. S.J. Linz, Nonlinear dynamical models and jerky motion. Am. J. Phys. 65(6), 523–526 (1997)
4. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–148 (1963)



Dynamical Invariant Calculations Involving Evolution … 75

5. S.Motesharrei, J. Rivas, E. Kalnay, Human and nature dynamics (HANDY): modeling inequal-
ity and use of resources in the collapse or sustainability of societies. Ecol. Econ. 101, 90–102
(2014)

6. L. Pecora, T. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)
7. J.C. Sprott, Some simple chaotic flows. Phys. Rev. E 50, R647–R650 (1994)
8. J.C. Sprott, Some simple chaotic jerk functions. Am. J. Phys. 65(6), 537–543 (1997)
9. J.C. Sprott, Elegant Chaos: Algebraically Simple Chaotic Flows (World Scientific Publishing

Company Pte Limited, Singapore, 2010)
10. K. Sun, J.C. Sprott, A simple jerk system with piecewise exponential nonlinearity. Int. J.

Nonlinear Sci. Numer. Simul. 10(11), 1443–1450 (2009)
11. S. Vaidyanathan, A new 3-D jerk chaotic system with two cubic nonlinearities and its adaptive

backstepping control. 27, 1 (2017)



Gröbner Basis Method
in FitzHugh-Nagumo Model

Veronika Hajnová

Abstract The FitzHugh-Nagumo model is a two dimensional system of differential
equationswith polynomial right-hand sides. Themodel describes an excitable system
and explains basic phenomena in dynamics of neuron activity, for example spike
generations in a neuron after stimulation by external current input. The system is
slow-fast, meaning system with different time scales for each state variable. We
analyse bifurcation manifolds of the FitzHugh-Nagumo system in whole parameter
space using algebraic approach based on Gröbner basis.

Keywords FitzHugh-Nagumo model · Gröbner basis · slow-fast system · Hopf
bifurcation · Fold bifurcation

1 Introduction

Whole paper is focused on the well-known two dimensional FitzHugh-Nagumo
model of neuron in form

V ′ = V − 1

3
V 3 − W + i

W ′ = a (Vb − Wc + d) ,

(1)

where state variable V is the membrane potential and W is a recovery variable.
Parameter i is the magnitude of stimulus current. Other parameters a, b, c, d are
set to be constant for specific type of neuron. Bifurcation analysis of this model
was done by Rocsoreanu et al. [5]. In Fig. 1 there is a bifurcation diagram for two
parameters a, i . Model exhibits complicated phenomena near the point where the
Hopf bifurcation curve intersect itself. For example in the neighbourhood of the point
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Fig. 1 Bifurcation diagram of the FitzHugh-Nagumo model for b = 1, c = 1.2, d = 0.7. Bifurca-
tion manifolds: Hopf (red), fold (black), LPC (black dashed), separatrix-saddle loop (grey)

Fig. 2 Phase portraits for b = 1, c = 1.2, d = 0.7, i = c
d and a = 0.44 (left) or a = 0.49 (right).

Stable (black) and unstable (dark blue) invariant sets, direction field (grey), nulclines (red, light
blue)

where the separatrix saddle loop curve intersect itself two topologically different
phase portraits occurs, as you can see in Fig. 2.

The aim of this paper is to describe a different method of finding bifurcation
manifolds in (1) without computing equilibria using the Gröbner basis. To provide
description of the method let us assume a general system of polynomial differential
equations in following form

x′ = dx
dt

= f (x, ε) , (2)
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Table 1 One-parameter bifurcation manifolds. J denotes Jacobi matrix of system (1), In ∈ R
n×n

denotes identity matrix. Symbol � denotes bi-alternate matrix product [3]. For n = 2 Eq. (6) can
be rewritten in form trace J (x, ε) = 0

Bifurcation System

Fold
f (x, ε) = 0 (3)

det (J (x, ε)) = 0. (4)

Hopf
f (x, ε) = 0 (5)

det (2J (x, ε) � In) = 0. (6)

where x ∈ R
n is a vector of state variables, ε ∈ R

k is a vector of parameters and f
is a set of polynomials.

One-parameter bifurcation points lies on manifolds described, in space of both
state variable and parameters, by equations listed in Table1. Besides one-parameter
bifurcation points, degenerated bifurcation points, e.g. pitchfork or transcritical bi-
furcation points, neutral-saddles or two-parameter bifurcation generally lies on those
manifolds [3].

Because f is a set of polynomials systems of Eqs. (3)–(6) are also polynomial, it is
possible to compute a Gröbner basis of set of polynomials given by right-hand sides
of Eqs. (3), (4) or (5), (6) with lexicographic order x1 > · · · > xn > ε1 > · · · > εk .
Polynomials in the basis which contains only parameters ε1, . . . , εk , state variables
x1 . . . xn are eliminated, gives an implicit description of the bifurcation manifolds in
space of parameters.

Similar approach can be use for two-parameter bifurcation manifolds. There are
two ways how two-parameter bifurcation can arise:

• violation of non-degeneracy conditions for one-parameter bifurcation, e.g. cusp
bifurcation

• intersection of one-parameter bifurcation manifolds, e.g. Bogdanov-Takens bifur-
cation.

Therefore it is possible to describe multi-parameter bifurcation, in space of both state
variable and parameters, adding additional conditions to systems listed in Table1.

Niu and Wang [4] already used similar approach to compute Hopf bifurcation
manifold. It is also possible to find bifurcation manifolds for systems of difference
equations using this approach. Similar technique was already use by Kotsireas and
Karamanos [2] to exact computation of the bifurcation point B4 of the logistic map.

2 Results

Using approach described in previous section it was possible to compute bifurcation
manifolds in the model (1). Results are listed in following Tables2, 4 and 5. In top
right cell of Tables2, 4 and 5 implicit description of the bifurcation manifold in
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Table 2 Fold bifurcation manifold

Fold

g1 = V − 1/3 V 3 − W + i

g2 = Vab − Wac + ad

g3 = V 2ac + ab − ac

Gröbner basis

p1 = 9ac3 i2 − 18c2di + 4ab3 − 12cb2a + 12abc2 − 4ac3 + 9acd2

p2 = 6Wac2i − 9ac2i2 − 6Wacd + 12acdi + 4b2a − 8cba + 4ac2 − 3d2a

p3 = 2cbWa − 2Wac2 − 3icba + abd + 2acd

p4 = 6W 2acd − 15Wacdi + 9acdi2 − 4Wab2 + 4Wac2 + 3d2Wa

+6ib2a + 6icba − 3d2ia − 4abd − 8acd

p5 = 4W 2ac2 − 9ac2

p6 = i2 − 8Wacd + 18acdi + 8b2a − 12cba + 4ac2 − 5d2a

p7 = 4W 2ac − 12Waci + 9aci2 + 2daV + 2dWa − 3dia + 4ab − 4ac

p8 = 2caV − 2Wac + 3ica − ad, Vab − Wac + ad

p9 = V 3 − 3V + 3W − 3i

Table 3 Cusp bifurcation manifold

Cusp bifurcation manifold

Implicit description Parametrization

p1 (a, b, c, d, i) = 0 a = t

dp1(a,b,c,d,i)
di = 18ac2(ci − d) = 0

i = d
b

c = b, t ∈ R

space of both state variables V,W and parameters a, b, c, d, i is shown. Bifurcation
manifolds in parameter space are given by the first polynomial, or the first and the
second polynomial in case of Bogdanov-Takens bifurcation, of the Gröbner basis.
In Table3 cusp bifurcation manifold is derived. Figures3, 4 and 5 shows bifurcation
manifolds in space of parameters a, i, c and b = 1, d = 0.7. Figures 6 and 7 depict
two dimensional sections of those three dimensional manifolds.

3 Discussion

Our paper focuses on usage Gröbner basis to find bifurcation manifolds in the
FitzHugh-Nagumo model.

Problem of finding bifurcation manifolds of system of differential equations gen-
erally leads to a system of algebraic equations. Usage of Gröbner basis is possible for
a system of polynomial equations. This requirement is fulfilled, for instance, for sys-
tems of differential equations with polynomial or rational right-hand side. Approach
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Table 4 Hopf bifurcation manifold

Hopf

g1 = V − 1/3 V 3 − W + i

g2 = Vab − Wac + ad

g4 = −V 2 − ac + 1

Gröbner basis

q1 = a4c5 − 6a3c3b+ 3a3c4 + 9a2b2c− 6a2c2b+ 9ac2 i2 − 18acdi
−9b2a + 12cba − 4ac2 + 9d2a

q2 = −a4c4 + 3a3bc2 − 3a3c3 + 9Waci + 3a2bc − 9aci2 − 9dWa + 9dia

−6ab + 4ac

q3 = −a2c2W + a2cd + 3bWa − 2Wac − 3iba + 2ad

q4 = a3c3 + 3a2c2 + 9W 2 − 18Wi + 9i2 − 4

q5 = caV + 2V − 3W + 3i

q6 = a3c3 − 3a2bc + a2c2 + 3daV + 6V i − 9Wi + 3ab − 2ac + 9i2

q7 = Wac2 − acd + 2bV − 3bW + 3bi

q8 = a3c3 − 3a2bc + 3a2c2 + 3daV + 6VW − 9Wi + 3ab + 9i2 − 4

q9 = V 2 + ac − 1

Table 5 Bogdanov-Takens bifurcation manifold

Bogdanov-Takens

g1 = V − 1/3 V 3 − W + i

g2 = Vab − Wac + ad

g3 = V 2ac + ab − ac

g4 = −V 2 − ac + 1

Gröbner basis

r1 = 4a4c5 − 12a3c4 + 12c3a2 + 9ac2 i2 − 18acdi − 4c2a + 9d2a
r2 = −a2c2 + ab

r3 = −8a4c4 + 24a3c3 + 18Wa2cd − 27a2cdi − 24a2c2 + 9a2d2 − 18aci2

−18dWa + 36dia + 8ac

r4 = 2a2c2W − 3a2c2i + a2cd − 2Wac + 2ad

r5 = 4a5c4d + 8a4c4i − 24ic3a3 − 12a3c2d + 9a2cdi2 − 18Wa2d2

+24a2c2i + 9a2d2i + 18

r6 = aci3 + 18Wadi + 8a2cd − 36adi2 − 8ica

r7 = 2a4c4 + 9Waci − 6a2c2 − 9aci2 − 9dWa + 9dia + 4ac

r8 = a3c3 + 3a2c2 + 9W 2 − 18Wi + 9i2 − 4

r9 = 2Wac − 3ica + ad + 4V − 6W + 6i
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Fig. 3 Fold bifurcation
manifold (blue),
two-parameter bifurcation
sub-manifolds (red): cusp,
Bogdanov-Takens in space
of parameters a, i, c and
b = 1, d = 0.7

Fig. 4 Hopf bifurcation
manifold (grey),
two-parameter bifurcation
sub-manifolds:
Bogdanov-Takens (red) in
space of parameters a, i, c
and b = 1, d = 0.7
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Fig. 5 Complete bifurcation
diagram in space of
parameters a, i, c and
b = 1, d = 0.7. Fold
bifurcation manifold (blue),
Hopf bifurcation manifold
(grey), two-parameter
bifurcation sub-manifolds:
Bogdanov-Takens (red)

Fig. 6 Bifurcation diagram
in space of parameters
a, i and b = 1, d = 0.7,
c = 1.225. Fold bifurcation
manifold (black), Hopf
bifurcation manifold (red)
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Fig. 7 Bifurcation diagram
in space of parameters
c, i and b = 1, d = 0.7,
a = 0.25. Fold bifurcation
manifold (black), Hopf
bifurcation manifold (red)

through Gröbner basis allows to compute bifurcation manifolds without computing
equilibria.

As an example of system polynomial differential equations FitzHugh-Nagumo
model was used in this paper. In comparison to original bifurcation analysis, which
was done by Rocsoreanu et al. [5], computations were simplified.
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Digital Signature: Quantum Chaos
Approach and Bell States

Nafiseh Hematpour, Sodeif Ahadpour and Sohrab Behnia

Abstract The quantum mechanics applied by quantum digital signatures (QDSs)
is applied to guarantee the nonrepudiation, unforgeability, and transferability of a
signature. Previously, the security of QDSs schemes only depended on the length of
the signature. Also, they required unreliable security channels and have been written
for one-bit messages. In this paper, quantum digital signature schemes based on bell
states sequence and synchronization of coupled chaotic map is introduced. In our
schemes, using the synchronization of coupled chaoticmapwhen signing up, security
increases against repudiation and forgery. Furthermore, to sign a regular message,
repeating the signature steps is half as much as the previous ones.

Keywords Quantum digital signature · Synchronization of coupled chaotic map ·
Bell states · Repudiation · Forgery

1 Introduction

Cryptography is essential for the security of bankers, shoppers and other Internet
users because attackers are recording, and forging, vast volumes of human com-
munication. A mathematical scheme for demonstrating the authenticity of digital
messages or documents is called a digital signature. First time, Whitfield Diffie and
Martin Hellman described a digital signature scheme in 1976 [1]. And so far used
in software distribution, financial transactions, contract management software, and
so on [2, 3]. The security of such classical digital signature (CDS) schemes, with
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the rapid development of quantum computing, is seriously challenged. Therefore,
Gottesman and Chuang proposed the first Quantum digital signature protocol [4].
Quantum digital signatures (QDSs) apply quantum mechanics, with information-
theoretic security, to the problem of forging and repudiation which types of these
schemes have been developed [5, 6]. These QDS proposals deal with the problem of
sending single bit messages while no-forging and non-repudiation are guaranteed.
These plans need to be further developed to enhance security against attackers and
speed up regular message signatures.

In order to increase the security, the nonlinear dynamical systems generate a kind
of deterministic random-like process, which is called chaos. Chaotic systems have
some the properties such as sensitivity to initial condition [7], system parameter,
ergodicity [8] and mixing [9], random-like behavior, unstable periodic orbits with
long periods and desired diffusion and confusion properties, etc. Chaos bring much
promise application in the cryptography field. Given the distinctions of quantum and
classical spaces, we can use the realities of quantum spaces to increase the key space
and the capabilities of the dynamic systems in cryptography. One of the popular fields
of quantumchaos addresses quantummaps. Furthermore, the iteration process is one-
way. Various chaotic maps were used in Cryptography, Watermarking [10], Random
number generators [11], Complex system [12], Image encryption, Quantum blind
signature [13] and lots of other fields. On the other hand, a big number of researches
have been dedicated to quantum maps as paradigms of quantum chaos [14].

A good encryption scheme should be sensitive to all the secret keys, and the key
space should be large enough to make brute force attacks infeasible. If the key is
small enough, the cryptosystem will be broken and no matter how strong and well
designed the algorithm might be. Key space size is the total number of different keys
that can be used in an encryption algorithm. From the cryptographical point of view,
the key space should not be smaller than 2100 in order to provide a high level of
security [15].

We consider quantum digital signature based on bell states that capability of
the bell states increases the length of the signature than the same ones. Also, this
signature can be used in quantum computer. The dynamically designed system based
on synchronization of coupled chaoticmap and bell states under current attacks called
denial and forgery designed for the safety of the protocol.

The rest of the paper is organized as follows. The model explained in Sect. 2 and
also the bell states presented in Sect. 3. The QDS protocol has been proposed in
Sect. 4, with the results in Sect. 5 and the security analysed in Sect. 6. Finally, the
Conclusion is presented.

2 The Model

The pair-coupled chaotic map can be considered as a two-dimensional dynamical
map defined as:
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φ(x, y) =
{
X = F(x, y)

Y = F(y, x)

Complete synchronization in the coupled chaotic map, means the existence of an
invariant sub-manifold (x = y ⇔ X = Y), synchronization is one of the invariant
manifold of the dynamical systems. The corresponding invariant measure is(a similar
calculation has been presented [16])

μ(X) =
∑

xk∈φ−1(x,y)

μ(xk)∣∣∣ ∂F(x,y)
∂x

∣∣∣x=y+ ∂F(x,y)
∂y

∣∣∣x=y

∣∣∣
=

∑
xk∈φ−1(x,x)

∣∣∣∣∂F(xk, xk)

∂xk

∣∣∣∣
−1

μ(xk) (2)

where xk ∈ φ−1(x, x), i.e., xk is one of the roots of the map.
One can calculate the ks-entropy by considering the invariant measure, which

leads to

hks
(
φsyn

) = lim
n→∞

1

n
ln

∣∣∣∣∣ ∂F(x, y)

∂x

∣∣∣∣
x=y

+∂F(x, y)

∂y

∣∣∣∣
x=y

∣∣∣∣∣
+ lim

n→∞
1

n
ln

∣∣∣∣∣ ∂F(y, x)

∂x

∣∣∣∣
x=y

+∂F(y, x)

∂y

∣∣∣∣
x=y

∣∣∣∣∣ (3)

where “n” is iteration of synchronization of coupled chaotic map.
In the proposed algorithm, synchronization of coupled maps are employed to

achieve the goal of steganography in image. As an example, we may consider the
following a generic symmetric non-linearly coupled chaotic map

φcoupled(x,y) =
⎧⎨
⎩X = [

(1 − ε)( f1(x))
p + ε( f2(y))

p
] 1

v

Y = [
(1 − ε)( f1(y))

p + ε( f2(x))
p
] 2

v

(4)

where in general, “p” is an arbitrary parameter, “ε” the strength of the coupling.
Obviously, by choosing p = 1, we get ordinary linearly coupled chaotic maps. The
functions f1(x) and f2(x) are two arbitrary one-dimensional maps

f1(x) = α24x(1 − x)

1 + (α2 − 1)4x(1 − x)
,

f2(x) = β2(2x − 1)2

4x(1 − x) + β2(2x − 1)2
. (5)

In synchronization state of coupled chaotic map
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Fig. 1 Bifurcation diagram
of dynamical system
[Eq. (4)] for x(1) = 0.0002,
y(1) = 0.0002, α = 3.95, p =
0.98, ε = 0.678

Fig. 2 Curve shows the
variation of Lyapunov
exponent of dynamical
system [Eq. (4)], in terms of
the parameter α

φ
(x,x)
coupled = X = [(1 − ε)( f1(x)) + ε( f2(x))] (6)

The corresponding bifurcation diagram of dynamical system [Eq. (4)] is shown
in Fig. 1. A possible way to describe the key space might be in terms of positive
Lyapunov exponents (see Fig. 2).

3 Bell States

In 1964, Bell presented a theory to resolve quantum mechanics issues. According to
this theory, the two particles can communicate with one another and find each other
without regard to the distance between them. This theory has the potential to give a
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new insight to physicists such as Dr. Eckert, the Bell theory will be able to guarantee
perfectly secure communications even when you have purchased your communica-
tions equipment from your enemies. This paper presents a quantum digital signature
scheme based on bell states.

The following states are called bell states [17, 18]:

∣∣φ+〉 = 1√
2
(|00〉 + |11〉)

∣∣φ−〉 = 1√
2
(|00〉 − |11〉)

∣∣ψ+〉 = 1√
2
(|01〉 + |10〉)

∣∣ψ−〉 = 1√
2
(|01〉 − |10〉)

All of these states are perpendicular to each other and provide a basis for the two
qubit space C2 ⊗ C2. These states can be used in encryption.

4 QDS Scheme

One of the important subjects in quantum cryptography is QDS schemes. In this
section, by considering one signer and two participants, a protocol for QDS scheme
is introduced. Alice signs the message. Given that the roles of Bob and Charlie
are arbitrary, Bob is taken as the first authenticator. He authenticates the message
received from Alice and then forwards it to Charlie. Charlie verifies that the initial
source was Alice. QDS can be explained based on the distribution and the messaging
stage.

Distribution stage

Alice chooses the initial value and control parameter. These are according to the
Lyapunov’s curve and in chaotic interval of dynamical system [Eq. (4)]. Then the
initial keys has been sent to Bob and Charlie. Bob and Charlie create the signature
and exchange the signature elements (Fig. 3). Finally, Bob and Charlie record an
eliminated signature.

Messaging stage

Alice converts the message M into a binary and then encodes into the bell states.
Alice sends the elements of message to Bob together with her corresponding private
key. He controls private key against the key she sent for the message. By considering
the signature length L, Bob checks its mismatches if it is less than a threshold value
saL, He accepts the message.
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Fig. 3 Creating a signature algorithm for
{
A = ∣∣φ+〉

, B = ∣∣φ−〉
,C = ∣∣ψ+〉

, D = ∣∣ψ−〉}
, {a =

α, b = β, e = ε}

Bob forwards the obtained two-bit message m(A, B, C or D) and private key to
Charlie. At the same check by considering the mismatches threshold sbL, Charlie
accepts the forwarded message. The message could be repudiated with a high proba-
bility if the threshold for accepting directly from Alice is similar to the threshold for
accepting a forwarded message. The authentication security threshold a and b can
be determined (0 ≤ sa < sb < 1) [19].

5 Results

Finding the dynamical system’s critical points, dividing the dynamical system respect
to critical points and choosing the alphabet (|A〉, |B〉, |C〉 and |D〉) for each domain
(see Table 1), are necessary for generating the signature.

Initial key is consist of y(0), x(0), the control parameter of dynamical system in
chaotic domain. Alice selects them for one of the element of signature (see Fig. 3).

To utilize the QDS protocol, Alice selects a series of the bell states by iterating
of the dynamical system to the length of the signature L. Each element of message
is signed using a quantum signature
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Table 1 Divided domain for
chaotic regen of Eq. (4)

Bell states Domain

A 0–0.25

B 0.25–0.5

C 0.5–0.75

D 0.75–1

QSm = L⊗
l=1

∣∣ψm
l

〉
,
∣∣ψm

l

〉 ∈ {
A = ∣∣φ+〉

, B = ∣∣φ−〉
,C = ∣∣ψ+〉

, D = ∣∣ψ−〉}
.

She sends a copy of the chosen value to Bob and Charlie. After creating the
digital signature, they exchange the signature elements randomly. To authenticate
the signature, Bob generates an eliminated signature by measuring the states. We
must ensure that Bob expects on average L/2 signature elements from Charlie.

To send a signed message, Alice sends the two-bit message and, y(0), x(0), a,
b, e and p to Bob. He accept message after checking mismatches. Then expressed
values has been forwarded to Charlie. He accepts the message coming from Alice if
mismatches is below his threshold.

6 The Security Analyze

We require security both against message forging by Bob and against repudiation
by Alice. Unforgeability means that a given piece of message indeed comes from
the signer and remains intact during transmission, namely, no one can forge a valid
signature that can be accepted by other honest recipients. Nonrepudiation means that
once the signer signs a message, he or she cannot deny having signed it.

6.1 Security Against Repudiation

In the protocol, by using a chaotic map in the signature process and dependence on
initial value and control parameter, Alice cannot deny declared values. If the initial
values are expressed by a difference of 10−14, the results of the chaotic map vary
considerably. In addition, Table 1 is used to select values of A, B, C and D. Changing
these values also creates another signature and Bob and Charles cannot obtain a joint
sign. It itself increases security against repudiation.
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6.2 Security Against Forging

In the protocol, because Bob sends the initial values and control parameters related
to chaotic map, it cannot change these values. If the initial values are expressed by
a difference of 10−14, the results of the chaotic map vary considerably. This small
change creates a different signature with its signature. That is, Bob and Charlie do
not get the same signature.

7 Conclusions

In this work, by considering the model and probing the chaotic region for selecting
the keys, a QDS scheme is introduced. ProposedQDS scheme based on the bell states
can be used for protection of copy-right. In the protocol, using the chaotic mapmakes
it impossible to deny and forge. This signature can be used in quantum computer.
Quantum computing are developing, and much work and research is needed to reach
the implementation stage.
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Breaking

Michal Hnatič, Georgii Kalagov, Tomáš Lučivjanský and Peter Zalom

Abstract Thefield theoretic renormalization group techniques is applied to an inher-
ently classical problem of a general A model of active scalar advection with A rep-
resenting a continuous real parameter that governs the interaction structure of the
system. The model encompasses the important magnetohydrodynamic scenario as
well as the important A = 0 model and the model of linearized Navier-Stokes equa-
tions. The turbulent environment is modeled in the limit of infinitely large Reynolds
number, i.e., in the regime of fully developed turbulence. Additionally, spatial parity
breaking is incorporated via the continuous parameter ρ.
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equation · Renormalization-group theory
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1 Introduction

Systematic study of matter may roughly be divided into the physics of fundamental
interactions among few particles (as performed in the scope of high energy physics)
and to the study of their macroscopic manifestations in many-body problems. The
advances on the field of fundamental microscopic behavior are connected with the
theoretical development of the Standard model of particle physics and its experimen-
tal verification that proceeds up to nowadays [1]. Problems encompassed within the
many-body physics include a broad variety of systems like, for example, classical
turbulent flows, systems at phase transitions or quantum condensed matter systems
[2]. Seemingly unrelated, a versatile theoretical tool emerging in bothmicroscopic as
well as macroscopic studies is the concept of the renormalization group (RG) as first
developed by Wilson [3]. Here, we discuss its application to the problem of diffu-
sion advection processes in turbulent environments which, basically a phenomenon
of classical nature, still represents an unsolved problem with analytic results on
the field being notoriously difficult to obtain [4–8]. Nevertheless, as shown in the
framework of theKolmogorov’s theory, in turbulent flows scaling invariance emerges
naturally [9]. It is therefore at hand to use the well established tools of RG theory to
obtain results of analytical nature for turbulent flows. Moreover, scaling properties
manifest itself more clearly at higher values of Reynolds number Re [2]. The limit
of Re → ∞ is thus of great importance. Unlike in numerical calculations where
Re → ∞ is difficult to reach, the RG approach allows analytic calculations which in
the end allow to study turbulent phenomena which are independent of microscopic
details of the material as well as of macroscopic flow conditions [10]. RG approach
allows easy incorporation of different scenarios including the advection of various
admixtures [2].

In this respect, we show how fundamental the RG approach is in connection to
an asymmetric scenario with explicitly broken spatial parity as observed usually in
nature [11–13]. The present analysis generalizes the RG approach from the passive
advection problem, see Refs. [14, 15] for example, to the important scenario of
active admixture where the advected agent influences the underlying turbulent flow.
To this end, we study the general A model of active vector admixture. To avoid
confusion, we stress that all of the results in Refs. [14, 15] are restricted to the
passive scenario and that the name of the present model is completely unrelated to
the classification of Halperin and Hohenberg [16]. The generalization to the active
advection is performed by inclusion of a Lorentz-like force term as it appears in
magnetohydrodynamics (MHD) [17, 18] which corresponds to the choice of A = 1
in the general A model defined by Ref. [15] for example. Nevertheless, parameter A
will remain a continuous parameter in complete analogy to passive models discussed
in Refs. [11–13, 15, 19] with detailed definitions given in Sect. 2. The introduction
of a continuous parameter A describes the advection processes of a wide variety of
vector admixture models in a unified manner. In explicit, A is only required to be real
(further restrictions may follow only from the perturbative approach itself, for details
see Ref. [14]) and thus it may take values of A ∈ 1, 0,−1 which correspond to the
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usual MHD model, the A = 0 model and to the so called linearized Navier-Stokes
equations model [15, 19], respectively.

The RG approach to the fully developed turbulence represents a well established
and well developed approach which has been used to successfully analyze a wide
variety of systemswithout admixtures being advected [20–26] aswell as for advection
diffusion processes of several admixtures including passive scalar admixture [13, 27–
32], magnetic admixtures [33–36] and also vector admixtures [11, 12, 15, 37–39].
The one-loop techniques for calculation of the turbulent Prandtl number within the A
model used here are similar to those of Refs. [33, 34]. In this paper, we incorporate
spatial parity breaking into the generalAmodel of vector advection.As shown inRefs.
[33, 34] for a special case of A = 1, violation of spatial parity leads to a wide variety
of new physical phenomena. Most important in this respect is the appearance of the
turbulent dynamo via a well known mechanism of spontaneous symmetry breaking,
which is commonly used in quantum field theory (QFT). However, authors of Ref.
[34] only consider an MHD model which represents a special scenario of A = 1 of
the general A model considered here. Nevertheless, as argued later in the paper, the
same effect also arises for other values of the parameter A with only A = 0 being a
trivial exception andwithA = −1 that is a case of linearized Navier-Stokes equation.
Taking together, although the generalAmodel has attracted a lot of attention recently,
see Refs. [11, 12, 14, 15] for more details, only the case of turbulent environments
with passive admixtures has been analyzed so far and we therefore consider here the
general helical case. The field theoretic formalism employed in the present paper
relies on the mechanism of spontaneous symmetry breaking as first described in Ref.
[33] for non-helical environments. Its extension to the helical environment was then
performed in Ref. [34].

The paper is structured as follows. In Sect. 2 the A model for the case of active
admixture is discussed. The emphasis is laid on the meaning of the parameter A for
the structure of interactions. In Sect. 6 we show that all previously defined mod-
els posses an additional instability in helical environments. We discuss its physical
consequences and show that the appearance of a macroscopic field B represents a
possible mechanism of stabilization of the system at large scales. Inclusion of the
symmetry breaking field B leads then to modifications in the original A model of
active admixture advectionwhich are discussed in Sects. 7 and 8. The obtained results
are then briefly discussed in Sect. 9.

2 Model A of Active Vector Advection with Spatial
Parity Violation

To describe a general active vector admixture b advected in the turbulent environ-
ment of the velocity field v the framework of the general A model is used. The
cross-interaction between b and v is defined via a Lorentz-like force term. Thus, the
corresponding diffusion-advection equations take the form
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∂tb = ν0u0�b − (v · ∇)b + A(b · ∇)v − ∂P, (1)

∂tv = ν0�v − (v · ∇)v + (b · ∇)b − ∂Q + fv, (2)

with ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi , Δ ≡ ∂2, ν0 denoting the bare viscosity coefficient, u0 is
the bare reciprocal Prandtl number, P ≡ P(x) and Q ≡ Q(x) are the pressure fields
and x is a shorthand notation for time and spatial variables, i.e., x ≡ (t, x). We have
explicitly considered stochastic forcing term fv which is discussed below in the detail.
Now, let us stress that A is a real parameter with A = 1, 0,−1 representing notably
important values. For A = 1 the kinematic MHD model is recovered, the A = 0
corresponds to the active advection of a vector field and A = −1 leads towards the
model of the linearized Navier-Stokes equations [15]. The system of Eqs. (1) and
(2) is accompanied in this case also by the condition of incompressibility of v, i.e.,
∇ · v = 0. Magnetic field obeys standard Maxwell equations and is thus transversal,
i.e., ∇ · b = 0.

For further application of QFT formalism we modeled the real flow using the
stochastic forcing termswith fv being the random force per unit mass. The addition of
theLorentz-like termdoes not require additionalmodifications of themodel regarding
the stochasticity of the velocity field and, as discussed for example in Ref. [34],
Eq. (4) does apply for the present model. However, according to Ref. [34], stochastic
forcing from Eq. (1) can now be completely omitted. The transverse random force
per unit mass fv = fv(x) is thus taken to model the injection of kinetic energy into
the turbulent system at large scales. Therefore, its form must be in accord with the
real infrared (IR) energy pumping. We assume it in a power-like form as usual for
fully developed turbulence within the RG approach (for more details see Ref. [2])
via

Dv
ij(x; 0) ≡ 〈f v

i (x)f v
j (0)〉 = δ(t)

∫
ddk

(2π)d
D0k

4−d−2εRij(k)eik·x. (3)

with d being the spatial dimension, k the wave number with k = |k|, ε the formally
small parameter of the present RG calculation, D0 ≡ g0ν

3
0 > 0, and g0 the coupling

constant related to the characteristic ultraviolet (UV) momentum scale Λ by the
relation g0 	 Λ2ε. The term Rij(k) appearing in Eq. (3) encodes the spatial parity
violation of the underlying turbulent environment and is given as

Rij(k) = δij − kikj/k
2 + iρ εijlkl/k. (4)

Here, εijl is the Levi-Civita tensor of rank 3, and the real valued helicity parameter
ρ satisfies |ρ| ≤ 1 due to the requirement of positive definiteness of the correlation
function. Obviously, ρ = 0 corresponds to the fully symmetric (non-helical) case,
whereas ρ = 1 means that spatial parity is fully broken.
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3 Field Theoretic Formulation of the A Model of Active
Admixture Without Symmetry Breaking

To transform the set of the differential equations defining the problem, we apply
the Martin-Siggia-Rose theorem. Consequently, the system of stochastic differential
Eqs. (1) and (2) is equivalent to a field theoretic model of the double set of fields
Φ = {v, b, v′, b′} where primed fields are the auxiliary response fields [2, 40]. Such
model is defined via the corresponding Dominicis-Janssen action functional S(Φ) =
Sfree(Φ) + Svbb′(Φ) + Svvv′(Φ) + Sbbv′(Φ), where:

Sfree(Φ) = −
∫

dx v′
i(∂t − ν0�)vi −

∫
dx b′

i(∂t − ν0u0�)bi

+
∫∫

dx dy
1

2
v′
i(x)D

v
ij(x; y)v′

j(y). (5)

where the required summations over dummy indices i, j ∈ 1, 2, 3 are implicitly
assumed. The auxiliary fields and their original counterparts v, b share the same
tensor properties and are transverse. The interaction part of the action, namely Sint,
is a sum of Svvv′, Svbb′ and a new term Sbbv′ which is responsible for all effects
connected to the active advection. The corresponding interaction terms reads as

S ′
vbb = −

∫
dx b′

ivj ∂j bi + A
∫
dx b′

ibj ∂j vi, (6)

S ′
vvv = −

∫
dx v′

ivj ∂j vi, (7)

S ′
bbv = +

∫
dx v′

ibj ∂j bi. (8)

We note that since a quadratic term composed solely of field b′ is missing, the active
model will not include any 〈bibj〉0 type of a propagator. Thus, in the frequency-
momentum representation the following set of bare propagators is obtained:

〈v′
ivj〉0 = 〈viv′

j〉∗0 = Pij(k)

iω + ν0k2
, (9)

〈vivj〉0 = g0ν
3
0k

4−d−2εRij(k)

| − iω + ν0k2|2 . (10)

The propagators are represented as usual by the dashed and full lines, where the
dashed lines involve the velocity type of fields and full lines represent the vector
admixture type fields. The auxiliary fields are denoted using a slash in the cor-
responding propagators. The general A model also contains three different triple
interaction vertices. In the momentum-frequency representation they correspond to
Vijl = i(kjδil − Aklδij) andWijl = i(klδij + kjδil). In both cases, momentum k is flow-
ing into the vertices via the corresponding prime field, i.e., in the former case via field
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〈vivj〉0 =

〈v′
ivj〉0 =

〈bibj〉0 =

Fig. 1 The A model of active vector admixture contains only three different propagators, namely
〈vivj〉0, 〈v′

ivj〉0 and 〈b′
ibj〉0

Wijk =
v′
i

vj

vk

Vijk =
b′
i

b j

v k

Uijk =
v′
i

bj

bk

Fig. 2 Three interaction vertices Wijk , Vijk and Uijk do appear in the A model of active vector
admixture regardless of the presence of the symmetry breaking mechanism introduced in Sect. 7.
The velocity vertex Wijk as well as the vertex, Uijk which originates in the Lorentz force term, are
both symmetric and read as Wijk = Uijk = i

(
δijkk + δik kj

)
. The vertex Vijk = i

(
δijkk − A δik kj

)
depends on the parameter A

b′, whereas in the latter via v′. A vertex encoding all active admixture effects, namely
Uijk(k) = i

(
δijkk + δikkj

)
is present aswell.We stress out that signs have been chosen

in order to comply with definitions commonly used in the field of field theoretic RG
approach to fully developed turbulence. Consequently, calculating symmetry factors
corresponding to given Feynman diagram, we have to consider multiplicative factor
of +1/2 for each Wijk vertex and a factor of −1/2 forUijk vertex which follow from
Eqs. (7) and (6) respectively. With such definitions, the expansions of eSint in the
perturbative series will produce symmetry factors of either +1 or −1 in one loop
order. Taking together, the theory contains three different interaction vertices and
three different propagators (Figs. 1 and 2).

4 Analysis of Canonical Dimensions

In order to correctly carry out the RG calculation it is required to first perform
the analysis of canonical dimensions which allows to determine all relevant UV
divergences which in turn identifies all objects (graphs) containing the so called
superficial UV divergences. Only such divergences are the relevant ones left for the
subsequent RG analysis, for details, see Ref. [2]. The present model contains two
scales [2]. Consequently, an arbitrary quantity Q possesses canonical dimension of
dQ = dk

Q + 2dω
Q . From now we will temporarily set ρ = 0 but we put forward that

in the helical scenario dk
ρ = dω

ρ = 0 with the other canonical dimensions remaining
unaltered. The analysis starts by assigning canonical dimensions to the basic variables
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Table 1 Canonical dimensions of quantities appearing in the A model of active vector admixture
with or without symmetry breaking as discussed in Sect. 7. The quantity B is present only in the
model with incorporated spontaneously broken symmetry

Q x t k ω v, b, B v′, b′ m, Λ,μ ν0, ν g0 g

dkQ −1 0 1 0 −1 d + 1 1 −2 2ε 0

dω
Q 0 −1 0 1 1 −1 0 1 0 0

dQ −1 −2 1 2 1 d − 1 1 0 2ε 0

x, t, k and ω according to the widely used convention [2]. Applying the condition
of vanishing canonical dimension of the action functional S we obtain the resulting
canonical dimensions in the present model as shown in the Table 1. Remarkably, all
coupling constants posses zero canonical dimensions at ε = 0 which means that the
investigated A model of active vector admixture is logarithmic for ε = 0. In other
words, all UV divergences of the present model are of the form of poles in ε [41]
when the minimal subtraction (MS) scheme is employed. Thus, together with the
results of Table 1 we define the following renormalized coupling constants:

g0 = gμ2εZg. (11)

To establish the multiplicative renormalizability of the models we need to show
that the action functional by definition given in Eq. (11) has all the necessary struc-
tures. We precede that inclusion of the Lorentz-like force term will have profound
consequences and the results differ for passive and active scenario. Therefore, the
analysis has to be split into the two cases as discussed in the next two sections.

5 Renormalization Group Approach to the A Model
of Active Advection

RG approach to the Amodel of active admixture requires us to investigate the canon-
ical dimension of an arbitrary one-irreducible (1-IR) diagram of the present theory
denoted here as Γn(k1, . . . kn), where ki with i ∈ 1, . . . n are n momenta flowing
into the diagram via the external legs. Considering the Table 1 and no further con-
straints, we arrive at the following canonical dimension δ of an arbitrary diagram
with NΦ being the number of external fields corresponding to the given type of
Φ ∈ {v, v′, b, b′}:

δ = d + 2 − (Nv + Nb) − (d − 1)(Nv′ + Nb′). (12)

Nevertheless, the actual degree of superficial UV divergence is lower since all fields
present in our theory are transversal. Consequently, every external leg lowers the
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degree of superficial UV divergence δ by Nv′ + Nb′ . The actual degree of divergence
denoted as δ′ reads therefore:

δ′ = d + 2 − (Nv + Nb) − d (Nv′ + Nb′) ≥ 0. (13)

Since later in this work, helical effects are considered we require the physical dimen-
sion of our theory to be d = 3 and avoid the case of d = 2 where additional diver-
gences as analyzed in Ref. [33] do appear. We may now easily exploit the actual
degree of the superficial UV divergence for diagrams with different number and type
of external legs. Doing so systematically, we arrive at the results presented in Table 2.

As a result of the analysis, we notice that all 1-IR diagrams containing four and
more external legs of any type are superficially UV convergent. Moreover, 1-IR dia-
grams with three external legs are superficially UV divergent only when there is no
more than one external leg of v′ or b′ nature. For d = 3 the same holds also for
diagrams with two external legs. The possible diagrams of the tadpole and bubble
type are more numerous, however these are actually irrelevant in the theory of tur-
bulence from trivial tensorial reasons discussed, for example, in Ref. [2]. At d = 3
we therefore end up with superficial UV divergences contained only in the diagrams
〈v′

ivj〉1−IR, 〈b′
ibj〉1−IR and 〈v′

ibjbk〉1−IR are superficially divergent in d = 3. In the
dimension of d = 2 additional divergences in 〈v′

iv
′
j〉1−IR and 〈b′

ib
′
j〉1−IR diagrams do

appear as already noticed in Ref. [33]. However, we especially concentrate at the
dimension d = 3 where helical effects may be incorporated. We also note that dia-
grams of the types 〈v′

ivj〉1−IR and 〈b′
ibj〉1−IR contain linear divergences in the general

case. However, setting ρ = 0, as done in this section, causes both types of diagram to
contain only logarithmic divergences due to the tensorial reasons. This in turn means
that the model is logarithmically divergent which allows subsequent multiplicative
renormalization by utilizing the ε expansion.

However, such a benign scenario changes dramatically when helicity is incorpo-
rated into the model. Subsequently, diagrams 〈v′

ivj〉1−IR, 〈b′
ibj〉1−IR and 〈v′

ibjbk〉1−IR

contain also linear divergences and self-consistent RG analysis is not possible any-
more as no suitable counterterms are available in the action functional S which is a
scenario discussed in the subsequent sections (Fig. 3).

Table 2 Canonical dimensions of several 1-IR reducible graphs of the A model of active vector
advection. The presented results hold for both, the A model with as well as without the mechanism
of symmetry breaking. Note that bubble diagrams with N = 0, tadpole diagrams with N = 1 and
also diagrams with Nv′ + Nb′ = 0 all vanish due to the tensorial reasons [2]

Nv′ + Nb′ 1 1 1 2 2 2 3 3

Nv + Nb 1 2 3 0 1 2 0 1

N 2 3 4 2 3 4 3 4

δ 2 1 0 3 − d 3 − d 2 − d 5 − 2d 4 − 2d

δ′ 1 0 −1 2 − d 1 − d −d 2 − 2d 1 − 2d
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Γv′v = Γb′b =

Γv′bb = +

Fig. 3 In the A model without the mechanism of symmetry breaking, there are four different 1-IR
diagrams in one-loop order which contain superficial UV divergences as outlined in Sect. 5

6 Helicity Induced Instability

As already discussed in Refs. [14, 34], passing from the non-helical to the general
parity broken Amodel is not straightforward as new type of divergences arises in the
theory and the above conclusions are valid only in the non-helical case. Such linear
divergences posses the form of b′ · (∇ × b) (also referred to as the curl term in the
present paper) and appear thus in the 1-irreducible Green function 〈b′

ibj〉1−ir . As
very well known established, the presence of the curl term for the A = 1 case leads
to an exponential increase of magnetic fluctuations at large scales with subsequent
instabilities emerging in the model [42, 43]. In the steady state, these instabilities
are generally attributed to the generation of large-scale magnetic field via the mech-
anism known as the turbulent dynamo, for details see Refs. [44, 45]. Successful
incorporation of such a mechanism into the field theoretical description was already
performed by authors of Ref. [34] who introduced a mechanism of spontaneous
symmetry breaking into the model. Technically, the original field b, which describes
magnetic fluctuations around zero mean magnetic field 〈b〉 ≡ B = 0 was substituted
by b + B with B allowed to be non-zero. The field B then provided all necessary
means for the elimination of the curl term in the model. However, in Ref. [34] the
authors considered only the MHD model which corresponds to the present general
A model only when A = 1. Nevertheless, the Lorentz term present in the general A
model of active vector admixture gives rise to a new interaction term b′(b · ∇)b in the
action functional. Its presence is then of crucial importance for the application of RG
methods to systematically treat the curl divergences by employing the mechanism
of spontaneous symmetry breaking as described above.

Let us now briefly discuss the extension of the theory valid for A = 1 as proposed
inRef. [34] to the arbitrary values ofA as considered in the present paper. As a starting
point one considers the Lorentz-like term bi∂ibj in the Navier-Stokes equation (2).
The magnitude |B| of the spontaneously generated field (with an arbitrary direction)
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follows then from the condition of cancellation of the curl term. Thus, the field B
depends explicitly on the parameter A in the general case. Moreover, some values of
the parameter A may violate the condition of |B| being positive which may restrict
the interval of admissible values of A. All of these facts are easily demonstrated
by considering the special case of A = −1. Here, no curl terms emerge due to the
appearance of symmetrical vertex in the action functional via a mechanism that
resembles the vanishing of curl terms in the response function 〈v′v〉 (for details,
see Ref. [34]). Taking together, calculation of the field B together with the possible
restrictions on A are clearly feasible and are performed in the following section.

7 Field theoretic Formulation of the A Model
with Symmetry Breaking

As shown in the previous section, Eqs. (5)–(7) lead to an inherently unstable model
due to the 〈v′v〉1−IR and 〈b′b〉1−IR graphs. However, this is only because we have
neglected physical processes that stabilize the advection-diffusion system. To correct
this, we follow the procedure presented in Ref. [34] for the special case of A = 1 and
extend it to arbitrary values of A. To do so, we shift the zero expectation value of the
admixture field b. In other words, b fluctuates around a spontaneously generated non-
zero mean value B ≡ b with magnitude being dependent on the actual underlying
mechanism of symmetry breaking which itself is depended on the parameter A.
Moreover, the response field b′ which corresponds to the admixture type of the field
is assumed to have zeromean value. Technically, to introduce spontaneous symmetry
breaking into the Amodel of active vector admixture, we replace the admixture field
b in Eqs. (5)–(7) by B + b and leave all other fields unaltered. Performing such
substitution, we notice that the free part of the original action functional S remains
the same, while the interacting part contains contributions Svbb′ and Sbbv′ which now
give rise to two additional terms which are however quadratic in the fields v, v′, b, b′.
Therefore, new terms actually belong to the free part of the new action functional S̃
which describes the symmetry broken case. In explicit, the free part of the symmetry
broken action functional reads:

Sfree(Φ) =
∫∫

dx dy
1

2
v′
i(x)D

v
ij(x; y)v′

j(y)

−
∫
dx v′

i(∂t − ν0�)vi −
∫
dx b′

i(∂t − ν0u0�)bi

+ A
∫

dx b′
iBj ∂j vi +

∫
dx v′

iBj ∂j bi. (14)

The last two terms represent the additional quadratic terms. Since the interaction
part of the symmetry broken case posses the same form as Sint of the original action
functional no additional interaction vertices appear in the symmetry broken model.
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However, the free part of the action functional is now much richer than previously
and gives rise to the following set of non-zero propagators:

〈vivj〉0 =β(k)β∗(k)

ξ(k)ξ∗(k)
Dv(k)Rij(k), (15)

〈viv′
j〉0 = 〈v′

ivj〉∗0 = β∗(k)

ξ∗(k)
Pij(k), (16)

〈bibj〉0 = A2 (B · k)2

ξ(k)ξ∗(k)
Dv(k)Rij(k), (17)

〈bib′
j〉0 = 〈b′

ibj〉∗0 = α∗(k)

ξ∗(k)
Pij(k), (18)

〈bivj〉0 = 〈vibj〉∗0 = iA
β(k)(B · k)

ξ(k)ξ∗(k)
Dv(k)Rij(k), (19)

〈vib′
j〉0 = 〈b′

ivj〉∗0 = i
(B · k)

ξ∗(k)
Pij(k), (20)

〈biv′
j〉0 = 〈v′

ibj〉∗0 = iA
(B · k)

ξ∗(k)
Pij(k), (21)

where momenta are always flowing from the first to the second field and the param-
eters α, β, ξ, Dv are given as follows

α(k) = iωk + νk2, β(k) = iωK + uνk2, (22)

ξ(k) = A(B · k)2 + α(k)β(k), Dv(k) = g0ν0k
4−d−2ε. (23)

Graphical depiction of propagators is shown in Fig. 4.

〈vivj〉0 =

〈v′
ivj〉0 =

〈bibj〉0 =

〈b′
ibj〉0 =

〈bivj〉0 =

〈b′
ivj〉0 =

〈v′
ibj〉0 =

Fig. 4 TheAmodel of active vector admixture with incorporation of themechanism of spontaneous
symmetry breaking induced by the macroscopic field B. It contains seven different propagators as
shown in the picture above. The momentum in the propagators on the picture is considered to flow
from left to the right



106 M. Hnatič et al.

Setting the field B to zero, one immediately recovers the free propagators of the
original model. We notice that the A model of active admixture with incorporated
symmetry breaking posses three propagators 〈v′

ivj〉0, 〈vivj〉0, 〈b′
ibj〉0 of the original

theory but they are modified to include the symmetry broken field B in their cor-
responding definitions. Moreover, four principally new propagators 〈bibj〉0, 〈vibj〉0,
〈vib′

j〉0 and 〈v′
ibj〉0 do emerge. All propagators of the spontaneously broken model

depend explicitly on the parameterA. The interaction vertices in the symmetry broken
theory remain completely unaltered.

8 Renormalization Group Analysis of the A Model
with Symmetry Breaking for Helical Environments

Although the A model with incorporated symmetry breaking has different Feynman
rules and its corresponding action functional is significantly different, the analysis
of the canonical dimensions is the same as previously due to B having the same
canonical dimension as the fieldb. Consequently, as before only 〈v′

ivj〉1−IR, 〈b′
bbj〉1−IR

and 〈v′
ibjbk〉1−IR diagrams contain superficial UV divergences. The corresponding

renormalized action functional reads therefore

SR = −
∫
dx v′

i(∂t − Z1ν�)vi −
∫
dx b′

i(∂t − Z2νu�)bi

+
∫∫

dx dy
1

2
v′
i(x)D

v
ij(x; y)v′

j(y) −
∫
dx b′

ivj ∂j bi + A
∫
dx b′

ibj ∂j vi

+ A
∫
dx b′

iBj ∂j vi +
∫
dx v′

iBj ∂j bi +
∫
dx v′

i Z3 bj ∂j bi −
∫
dx v′

ivj ∂j vi,

(24)

where Z1, Z2 and Z3 are the corresponding renormalization constants which are
discussed later in the detail. Let us now rather stress that the renormalization of
the symmetry broken model is nevertheless significantly altered as the instability
problemdiscussed inSect. 6 does not appear here due to the presence of the stabilizing
background field B.

The renormalization constants Zi with i ∈ 1, 2, 3 have the following form in the
MS scheme:

Zi = 1 + g

ε
z(1)
i + higher order, (25)

where the inscription higher order means terms beyond the one loop order and the
subscript of coefficients z(1)

i with i ∈ 1, 2, 3 denotes the corresponding renormal-
ization constant while the superscript denotes the loop order. In Eq. (25) only the
renormalized variables are inserted which leads to a divergence free 1-irreducible
Green’s functions 〈v′

ivj〉1−ir and 〈b′
ibj〉1−ir which are associated to the corresponding
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Γ1 = Γ2 =

Γ3 = Γ4 =

Γ5 = Γ6 =

Γ7 = Γ8 =

Fig. 5 Due to the presence of spontaneous symmetry breaking, the A model of active vector
admixture contains additional diagrams for 〈v′

ivj〉 and 〈b′
ibj〉

self-energy operatorsΣv′v andΣb′b. These in turn are given as the sum of correspond-
ing one loop Feynman diagrams.Writing down the corresponding perturbative series
one obtains the following expressions:

Σv′v =
∑

i∈1,2,3,4
SiΓi, Σb′b =

∑
i∈5,6,7,8

SiΓi, (26)

where the Feynman diagramsΓi are shown in Fig. 5 and the corresponding symmetry
factors Si are obtained by considering the definitions of vertices and a proper perturba-
tive expansions. One obtains S1 = S3 = S5 = S6 = 1 and S2 = S4 = S7 = S8 = −1.
The graphs under the discussion contain terms which are linear as well as quadratic
in p and a complete RG analysis would require thus to determine both types of
divergences. However, in the present paper we are only interested in the value of the
spontaneously generated background fieldBwhich as shown in Ref. [34] is related to
the above discussed linear divergences in ρ. These also turn to be the most dangerous
divergences in the present model as discussed later.

Omitting unnecessary technical details, the isolation of linear divergences in ρ is
quite straightforward to perform in both 〈vivj〉1−IR and 〈bibj〉1−IR graphs. In the
case of 〈vivj〉1−IR graphs, the tensorial structure of the problem ensures that no
such divergences exist at all as already noticed, for example, in Ref. [14] for a
corresponding passive advection limit of the present model. In explicit, one obtains:

Γ
ρ,+
1 = Γ

ρ,+
2 = Γ

ρ,+
3 = Γ

ρ,+
4 = 0, (27)

where the superscript ρ denotes the corresponding parts linear in ρ and the superscript
+was added to remind that A > 0 case is considered. However, the previous result is
also valid for the case of A < 0. As previously, we employ an analogous notation for
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the terms linear in ρ for 〈bibj〉1−IR graphs and limit ourselves to the case A > 0. With
such notation, the results after a straightforward ω integration obtain the following
form:

Σ
ρ
b′b,+ =

∑
i∈5,6,7,8

Si Γ
ρ
i,+ (28)

where i ∈ {5, 6, 7, 8}, Si are the aforementioned symmetry factors and the Γ
ρ
i,+ terms

posses the following integral form:

Γ
ρ
i,+ = iρ pγεγαδ

gμ2ενA(1 + A)

4(1 + u)2(2π)d

Λ∫

m

ddk Fi,+|k|4−d−2εkβkδ, (29)

where α is the corresponding coordinate placed on the field b′ of the outer incoming
legwhileβ corresponds to the coordinate of the field b of the outer outgoing leg of the
〈bibj〉1−IR graph and we stress that summations over dummy indices are implicitly
understood. The functions Fρ,+

i for i ∈ 5, 6, 7, 8 are functions of B̃ and the analytic
structure ofΣρ,+

bb′ allows then a cancellation of the otherwise unrenormalizable linear
divergences in ρ. In explicit, we obtain:

Γ
ρ
5,+ = −A|β|2α

|ξ|2ξ DvkqpjHjs(1 + A), Γ
ρ
6,+ = −A2β∗(Bk)2

|ξ|2ξ DvkqpjHjs(1 + A),

Γ
ρ
7,+ =−A2β(Bk)2

|ξ|2ξ DvpjHsj(1 + A), Γ
ρ
8,+ =A2β(Bk)2

|ξ|2ξ DvpjHsj(1 + A).

Summing all this contributions together, we finally get:

Σ
ρ
b′b,+ = −Aβ∗

|ξ|2 DvkqpjHjs(1 + A) + 2A2 (Bk)2

|ξ|2ξ 2uνk2DvkqpjHjs(1 + A).

Performing the following substitution

B′ =
√ |A|
uν2

B (30)

allows us to further simplify the result to

Σ
ρ
b′b,+ = iρ

A(1 + A)gμ2εν

2(1 + u)

∫
ddk

(2π)d

−k8 + k4(B′k)2

k5(k4 + (B′k)2)2
k4−d−2εkqpjklεjsl .

The momentum integral is then easily expressed as

∫
ddk

−k8 + k4(Bk)2

k5(k4 + (Bk)2)2
k4−d−2εkqkl ≡ F1δql + F2

BqBl

B2
≡ Jql .
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The magnitude of |B|′ follows now from the requirement of the UV divergence
cancellation contained in

F1 ∼ Jqq − B′
qJqlB

′
l/B

′2.

Using d -dimensional spherical coordinates we obtain for ε = 0 (standard approach
to RG calculations):

F1 ∼
Λ∫

m

dk

1∫

0

dt t−1/2(1 − t)d/2−1/2 −k2 + B′2t
(k2 + B′2t)2

k2

=
1∫

0

dt t−1/2(1 − t)d/2−1/2(−Λ + 2B′√t),

from which finally the magnitude of the symmetry breaking field is obtained as

B′ = Λ√
π

Γ (d/2 + 3/2)

Γ (d/2 + 1)
. (31)

The remaining divergences in the presentmodel are linear dependentwith timewhich
is in contrast to the present one which grows exponentially and is thus physically the
dominant one. For the physical dimension d = 3 we obtain

B′ = 8Λ

3π
. (32)

9 Conclusion

In this work, we have discussed the general Amodel of active admixture. As already
shown in Ref. [14], active nature of the admixture is required to consistently renor-
malize the theory in the presence of helical divergences which are linear in ρ. How-
ever, considering just a simple generalization of the general A model to incorporate
active nature of advection is insufficient and one must explicitly consider sponta-
neous generated symmetry breaking. Subsequently, we discussed the aspects of UV
renormalization and show their non-trivial dependence on the magnitude of the field
B which is generated by the mechanism of spontaneous breaking. Mechanism of
spontaneous breaking is thus shown to allow complete renormalization of the gen-
eral A model which is the object of an ongoing work.
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Modeling Turbulence via Numerical
Functional Integration

Ilja Honkonen and Juha Honkonen

Abstract We investigate the possibility of modeling turbulence via numerical func-
tional integration. Our approach is based on the functional integral widely used in
the theory of critical phenomena and stochastic dynamics. A detailed argument for
this choice is given. By transforming the incompressible stochastic Navier-Stokes
equation into a functional integral we are able to calculate equal-time spatial corre-
lation of system variables using standard methods of multidimensional integration.
In contrast to direct numerical simulation, our method allows for simple paralleliza-
tion of the problem as the value of the integral at any point is independent of other
points. Thus the entire problem does not have to fit into available memory of any one
computer but can be distributed even onto several supercomputers and the cloud. We
present the mathematical background of our method and its numerical implementa-
tion. The free and open source implementation is composed of a fast serial program
for evaluating the integral over a given volume and a Python wrapper that divides
the problem into subvolumes and distributes the work among available processes.
We use Monte-Carlo integrators of the GNU Scientific Library for integrating sub-
volumes. We show first results obtained with our method and discuss its pros, cons
and future developments.
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1 Introduction

Understanding turbulence is likely relevant for phenomena of any scale, from particle
collisions in an accelerator [1] and human blood circulation [2] to atmospheric and
oceanic circulation, solar wind [3] and even galaxy clusters [4].Most commonly used
methods for studying turbulence involve solving the Navier-Stokes (NS) equation
for the velocity field v of incompressible fluid

∂tv + v · ∇v = ν∇2v − ∇p + f, ∇ · v = 0, (1)

where v(t, x) is the divergenceless velocity field, ν the kinematic viscosity, p the
pressure and f the external force, which may be fixed or random depending on the
setup of the problem.

In large-eddy simulation (LES) the velocity field is divided into a sum of large-
scale modes u(t, x) and small-scale modes v′(t, x)

v(t, x) = u(t, x) + v′(t, x)

and the latter v′(t, x) are filtered out directly in the NS equation. Filtering out of
small-scale modes gives rise to equations for the large-scale modes u(t, x) con-
taining correlations of the former. These correlations cannot be calculated exactly
and the main modeling problem is how to take into account these correlations. It is
worthmentioning that in the functional-integral approach filtering out the small-scale
modes amounts to integration out of the corresponding variables – an approach that
is easy to formalize and rather popular in field theories of critical phenomena.

Implicit LES methods do not include a term for viscosity in NS equation, but
numerical errors due to finite accuracy of floating point numbers act implicitly as an
artificial viscosity.

Direct numerical simulation (DNS) methods use the full forced NS equation
which allows, in principle, to fully describe turbulent flow. Solution of NS equations
with different initial conditions provides statistical data, from which conclusions
about the unknown probability distribution of the turbulent velocity field are inferred
through calculation of correlation functions of the velocity field. To arrive at true
steady state and accumulate enough data for reliable determination of correlation
functions requires large amounts of numerical data. In practice DNS methods are
computationally very expensive if one is to describe both large and small spatial
scales and their interaction, and require a powerful supercomputer. The problem is
exacerbated by the fact that, for example, doubling the Reynolds number increases
the amount of memory required by at least an order of magnitude [5], making it
currently impossible to model many systems with realistic Reynolds numbers.

We present a different approach for modeling turbulence based on the functional-
integral representation of the generating function of correlation functions of turbulent
velocity field [6]. In principle, the generating function contains all statistical infor-
mation of the stochastic problem which is thus available in an analytical form at the
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outset, contrary to simulations. By transforming the generating function of correla-
tion functions of Burgers’ equation into a functional integral, we calculate equal-time
spatial correlation functions of system variables using standard methods of multidi-
mensional integration. In contrast to direct numerical simulation, our method allows
for simple parallelization of the problem as the value of the integral within any region
can be calculated separately from others. Thus the calculations required for obtaining
one correlation data set can be distributed to several supercomputers and/or the cloud
simultaneously.

2 Functional Integral for the Generating Function

We start from the functional integral used in the perturbative analysis of critical
phenomena and stochastic transport equations (see, e.g., [7–9]). This representation
is based on the solution of the generic Langevin equation with additive noise f :

∂ϕ

∂t
= V (ϕ) + f := −Kϕ + U (ϕ) + f , (2)

with the (white) noise statistics

〈f (t, x)f (t′, x′)〉 = δ(t − t′)D(x − x′), 〈f 〉 = 0 . (3)

Standard procedures [7, 9] give rise to functional representation of the generating
function of correlation functions of the solution of the Langevin equation

G(J ) = 〈exp {ϕ[f ]J }〉 =
∫
Df

∫
Dϕ

∫
Dϕ̃

exp

{
−θ(0)U ′ − 1

2
fD−1f + ϕ̃

[−∂tϕ − Kϕ + U (ϕ) + f
] + ϕJ

}
, (4)

where θ(0) is the (unspecified by this procedure) value of the temporal step function
at the origin arising from the diagonal value of theGreen function of the freeLangevin
equation and U ′ is the functional derivative of the nonlinear term of the right side
of (2). In representation (4) a shorthand notation is used in which integrals over
space an time as well as sums over indices are implied. It should be emphasized
that the perturbation expansion of correlation functions brought about by generating
function (4) is independent of the choice of θ(0). However, when the functional
integral is calculated by other means the effect of the ambiguous value of θ(0) is an
open problem.
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To test the proposed approach, here we study the stochastic problem generated
by Burgers equation for the (one-dimensional) velocity field u:

∂u

∂t
= −u

∂u

∂x
− ν∇2u + f , (5)

where the pressure gradient is included in the random force f . The nonlinear part
of the right side of the stochastic differential equation (5) is a total derivative (cf.
notation (2))

U (u) = −u
∂u

∂x
= −1

2

∂

∂x
u2 .

Therefore, the ambiguous term in the integrand of (4) in detailed representation is of
the form

θ(0)U ′ = θ(0)
∫

dt
∫

dx
∂u(t, x)

∂x

and vanishes as the integral of a derivative over the whole space (or with periodic
boundary conditions). Therefore, we see that the generic ambiguity of the functional
representation (4) is actually absent in the stochastic Burgers problem! This turns
out to be the case in our ultimate goal – the stochastic NS problem of incompressible
fluid – as well, since the nonlinear term in (1) is also a total derivative:

vj∂ivj = ∂i

(
1

2
v2

)
.

The goal is calculation of velocity correlations. Therefore, we integrate out excessive
fields ϕ̃ and f in (4) to obtain the generating function determined by the action
functional S[ϕ] in the form

G(J ) =
∫
Dϕ exp {S[ϕ] + ϕJ }

=
∫
Dϕ exp

{
−1

2
[−∂tϕ − Kϕ + U (ϕ)]D−1 [−∂tϕ − Kϕ + U (ϕ)] + ϕJ

}
.

(6)

The ambiguous term has been omitted here in view of the properties of hydrody-
namic equations discussed above.

It is customary to analyze the statistical properties of the turbulent system in terms
of single-time correlation functions. It should be noted that the generating function
(6) yields temporal and spatial statistical description of the system and the factor
exp {S[ϕ]} in the integrand has the meaning of the probability density function of
fluctuations of the fieldϕ. For the purposes of calculation of the single-time statistical
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properties (6) is excessive and is actually an implicit representation of the probability
density function for the single-time fluctuations. Although expression (6) allows to
write a (functional) differential equation for the generating function of the single-
time correlation functions [9], an explicit closed functional-integral representation
for it is not known, hence we use (6) as the quantity containing the full statistical
description of the random system.

Integral (6) is then calculated on a lattice with periodic boundary conditions with
finite time steps for evolution. The functional-integral representation is devised to
describe steady state, thus we impose periodic BC with respect to time as well
in the discrete integral. To test the numerical implementation we have used the
simplest case of uncorrelated in space random force, i.e. D(x − x′) = Dδ(x − x′).
On one-dimensional lattice with spacing a and evolution time step τ we arrive at the
multidimensional integral determined by the action

S[v] = − a

2Dτ

L∑
l=1

M∑
m=1

(
v(tl+1, xm) − v(tl, xm)

+
{
v(tl, xm)

[
v(tl, xm+1) − v(tl, xm−1)

2a

]

− ν

[
v(tl, xm+1) − 2v(tl, xm) + v(tl, xm−1)

a2

]}
τ

)2

. (7)

The periodic conditions imposed on the velocity field in time and space have
not been written explicitly in (7) for economy of notation. A change of variables to
dimensionless velocity v → v

√
Dτ/a demonstrates that the coupling constant of the

model is
√

Dτa/ν.

3 Numerical Implementation

We use the HDIntegrator program [10] for evaluating the functional integrals in
parallel on the Finnish Meteorological Institute’s Cray XC 40 supercomputer. The
integration volume is subdivided into smaller and smaller subvolumes until one
or more of user-defined criteria for convergence is reached. Convergence of the
solution for each subregion is checked by evaluating the integral twice, where the
second evaluation uses some factor of more samples decided by the user. Currently
the solution is defined as converged when one more of the following criteria are
satisfied: (1) the absolute relative difference between results within a subvolume is
smaller than some factor, or (2) the absolute difference between results is smaller than
some value, or (3) the maximum absolute value of results is less than some value.
Listing 1 shows an example invocation and output of hdintegrator for calculating
(half of) the volume of a unit sphere in 4 dimensions with a 3-dimensional integrand.
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Listing 1 Example invocation and output of the parallel Python wrapper for calculating (half of)
the volume of a unit sphere in 4 dimensions using a 3-dimensional integrand over the interval [−1, 1]

$ mpiexec −n 5 . / h d i n t e g r a t o r . py \
> −−i n t e g r a n d i n t e g r a n d s /N−sphe r e \
> −−dimens ions 3 \
> −−min−e x t e n t −1 \
> −−max−e x t e n t 1
2.465467073965016 0.002690919078211793

We implement the integrand for functional integrals using the Monte Carlo inte-
gration algorithms of the GNU Scientific Library [11]. HDIntegrator communicates
with the integrand via standard input and output in ASCII format. Every line of
input to the integrand consists of the number of samples and the extent of integration
volume in every dimension. Every line of output from the integrand consists of the
result, absolute error and a suggestion in which dimension to split the subvolume
in case convergence is not achieved. Listing 2 shows an example invocation of the
integrand for evaluating an integral and is essentially how the integrand is executed
also by the parallel Python wrapper.

Listing 2 Example invocation and output of a integrand for calculating (half of) the volume of
a unit sphere in 3 dimensions using a 2-dimensional integrand with 107 samples over the interval
[−1, 1]

$ echo 1e7 −1 1 −1 1 | . / i n t e g r a n d s /N−sphe r e
2.093776991699273 e+00 4.355051371078182 e−04 1

4 Single-Time Velocity Correlation of Burgers Equation

The actual multi-dimensional integral to represent the functional integral for the
two-point correlation function is of the form

〈v(ti, xk)v(ti, xn)〉 = C
∫ L∏

l=1

M∏
m=1

dv(tl, xm) v(ti, xk)v(ti, xn)

× exp

[
− 1

2Dτ

L∑
l=1

M∑
m=1

(
v(tl+1, xm) − v(tl, xm)

+
{
v(tl, xm)

[
v(tl, xm+1) − v(tl, xm−1)

2a

]

− ν

[
v(tl, xm+1) − 2v(tl, xm) + v(tl, xm−1)

a2

]}
τ

)2]
, (8)
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where C is the normalization constant. In (8) the lattice constant is a = xn − xn−1 =
1, the time step τ = tl − tl−1 = 1, the (kinematic) viscosity is ν = 1 and the variance
of the random force isD = 1. For economy of notation we have not written explicitly
in (8) the periodic conditions imposed on the velocity field in time and space.

We calculate the single-time velocity correlation of Burgers equation on a lattice
of 10 spatial and 2 temporal points for which L = 2,M = 10 in (8) and transform
the integration range from ±∞ to ±1. We examine the convergence of the result
by calculating the integral using different convergence criteria when the number
of samples within each subvolume is doubled from 106: (1) the absolute relative
difference between results is at most between 2.5 and 8.5 % (1.025 and 1.085). (2)
the absolute difference between results is atmost between 0.5 and 2. (3) themaximum
absolute value of either result is at most between 0.5 and 2.

Figure 1 shows the normalized single-time velocity correlation of Burgers equa-
tion in a 10 × 2 space and time lattice as a function of correlation distance in number
of spatial points. For each correlation distance, two results are shown for different
convergence criteria used. The results with strictest convergence criteria are shown
in cyan. Each value is normalized by calculating the integral with the velocity factors
in (8) in front of the exponential set to 1.

Figure 2 shows a histogram of integration subvolume centres as a function of
distance from origin for an integral of correlation distance of 5. The distances from
origin are normalized by 1/

√
D where D is the number of dimensions. Integration

proceeds to smaller and smaller subvolumes until convergence is reached and one
can see that the largest number of subvolumes, and hence the worst convergence, is
concentrated around a shell at a distance of approximately 0.55 from origin.

Fig. 1 Normalized single-time velocity correlation of Burgers equation as a function of correlation
distance. Results with strictest convergence criteria are shown in cyan
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Fig. 2 Histogram of number
of centres of integration
subvolumes as a function of
normalized distance from
origin. Most subvolumes,
and hence worst
convergence, is concentrated
on a spherical shell at a
distance of approximately
0.55 from origin.

5 Discussion

The smallest computational resources required for obtaining one point in Fig. 1
used approximately 500 core hours of computational time and required a total of
less than 10 GB of memory while the largest resources for one result required on
the order of 104 core hours and 100 GB of memory. The required memory can
most likely be decreased significantly by further optimizing its use in the parallel
Python wrapper as well as switching from a Python implementation to e.g. C++.
Substantial gains in required computational time will probably require a different
integrand from (8). In this regard potential optimizations include switching from
cartesian to spherical coordinates in order to better concentrate resolution where it is
needed (cf. Fig. 2) and/or directly calculating the Fourier spectrum of the single-time
velocity correlation. Utilizing GPUs and/or cloud computing is also an option worth
exploring in the future.

6 Conclusion

We present a method for modelling turbulence via numerical functional integra-
tion. As a first step, we study single-time velocity correlation of Burgers’ equation
by transforming it into a functional integral that we solve with a parallel Python
wrapper over the Monte Carlo integrators of GNU Scientific Library. We have used
the functional integral widely used in the theoretical analysis of dynamic critical
phenomena and stochastic dynamics with the subsequent transformation to discrete
variables with respect to space and time.
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In contrast to direct numerical simulation, our method allows for simple paral-
lelization of the problem as even a single integral can be evaluated independently
over different subvolumes. Here we evaluated each point in Fig. 1 separately but
in parallel using 140–280 Intel Haswell cores and at most our calculation used
1540 cores simultaneously of the Cray XC40 supercomputer installed at the Finnish
Meteorological Institute.

The results show that, as a first step, ourmethod is promising but there still remains
substantial work in developing an optimized approach for integration most suitable
to this particular problem.

Funding The work of IH was funded by the Emil Aaltonen foundation.
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Nonlinear Noise Reduction on TESS
Simulated Data

N. Jevtić, S. Shaffer and P. Stine

Abstract The high quality Kepler Space Telescope light curves have allowed us
to deepen our understanding of nonlinear time series analysis and develop novel
applications. Since simulated data represent the epitome of signal pre-processing,
two simulated TESS stars were analyzed, one with a noisy light curve and one with
a periodic light curve, in order to explore one of the tenets of nonlinear time series
analysis: That pre-processed data do not lend themselves to these tools.

Keywords Nonlinear noise reduction · Kepler Space Telescope · TESS simulated
light curves · Variable stars

1 Introduction

1.1 Nonlinear Time Series Analysis

Time-delay phase space reconstruction is used to analyze stellar light curves. A
one-dimensional string of numbers yields a multi-dimensional representation. This
embedding is a surrogate for the phase-space representation that would be obtained
if we knew the equations governing the behavior at the source. The data itself,
without any a priori assumptions, yields the time delay and the dimension of the
phase space. The time delay is obtained using the information theory counterpart
of the autocorrelation function, average mutual information (AMI). The optimal
time delay is chosen at the first minimum of AMI [2]. The smallest accommodating
dimension of the phase space, which is related to the number of degrees of freedom
of the process, is obtained by the method of false nearest neighbors (FNN) [8]. For
a detailed introduction to the methodology please see Kantz and Schreiber [7] and
Schrebier [10]. For the use of nonlinear time series analysis on stellar data relevant
here please see Jevtić et al. [5, 6].
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1.2 Data Requirements

For the methodology to be successful in identifying chaotic systems the following
are required:

• The observable should couple all the active degrees of freedom (energy, power,
brightness, luminosity)

• Continuous data
• Uniform sampling
• Long data sets
• Fine digitization
• Access to a large dynamic range
• As little additive noise as possible
• No filtering or averaging.

In this paper we explore the validity of the last restriction by examining the pre-
processed simulated astrophysical limited length over-sampled noisy light curves
[4].

2 Kepler Versus TESS as Data Sources

Both of the two NASA planet-hunter space telescopes, the venerable Kepler [1]
and the newly launched Transiting Exoplanet Survey Satellite (TESS) [9] detect
exoplanets using the transit method by small drops in the brightness of a star as the
planet gets between Earth and the star. Both produce continuous, uniformly sampled
light curves. The two telescopes are, however, of very different design and operation.
Kepler is in a heliocentric orbit while TESS utilizes a 2:1 lunar resonant orbit.Kepler
has a mirror objective while TESS has an ingenious set of four lenses. During it’s
nominal mission, Kepler (K1) observed a region in Cygnus-Libra of only 0.28%
of the sky to a depth of 3000 ly. TESS will conduct an all-sky transiting exoplanet
survey of both the southern and northern hemispheres of an area about 400 greater.
It will observe brighter stars to a depth of 300 ly. TESS targets will be observed for
shorter times, many for only 27 days as opposed to theKeplermulti-year light curves.
Kepler has 4 arcsec pixels; TESS’s pixels are much larger covering 21 arcsec. This
results in greater “crowding.”Moreover, the depth of TESS pixels is six times greater.
Therefore, where a cosmic ray in Kepler could impact only a single pixel, in TESS
it will produce a trail which impacts many pixels. The photometric precision for a
10th magnitude star is estimated to be about 200 ppm based on 1 h of data collection,
considerably higher than for Kepler. Thus, the analysis of TESS light curves poses
different challenges.
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3 The Simulated Data

The simulateddata are commondomain and available at https://archive.stsci.edu/tess/
ete-6.html. The datawere processed through theTESS ScienceProcessingOperations
Center pipeline [4].

The data were simulated to allow the stellar community to prepare their own anal-
ysis software and follow-up observation strategies for the TESS Mission in advance
of receiving data now scheduled for the end of 2018 or the beginning of 2019.

Simulated 2-min cadence data consist of 20,610 data points (for many applica-
tions, this is oversampled).

Stellar variability is modeled after the Q10 Kepler data observed for the corre-
sponding KIC ID.

In addition to stellar variability, signals have been injected for transiting planets
and eclipsing binaries.

In principle, shorter light curves are noisier. Since TESS will observe a significant
fraction of stars for only 27 days or two orbits, noisewill be increased. The simulation
length was slightly longer than two orbits which will be referred to as orbits 1 and 2.

Other issues include the fact that the much larger 21 arcsec pixels will result in
more crowding. Since TESS pixels are double theKepler width and six times thicker,
cosmic ray effects will be more significant.

4 The Processing Command-Line Sequence in TISEAN

The analyses reported herewere conducted using theTISEAN(TimeSeriesAnalysis)
package by Hegger, Kantz and Schreiber at the Max-Planck-Institut fur Physics
komplexer Systeme [3].

The analyses consist of the following command-line sequence and strategic deci-
sions at each step:

mutual—used to find the first minimum of AMI for the initial optimal delay
false_nearest—used to find the phase-space dimension
ghkss—used for noise reduction
delay—used to produce a reconstructed phase-space portrait.

We analyze simulated light curves for two stars: one with a noise-like and the
other with a periodic light curve.

https://archive.stsci.edu/tess/ete-6.html
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5 Example I—Nonlinear Analysis of Simulated Data
for a Noise-like Light Curve

The simulated data for TIC 89039049 (TESS input catalog number) were chosen as
an example of a noise-like light curve. From its Data Validation Report Summary
this star has a single planet candidate with a period of 10.707 days. The star has a
radius 10% larger than the Sun and a surface temperature of 6060 K (Fig. 1).

5.1 Choice of Delay and Embedding Dimension

The first minimum of AMI (AverageMutual Information), Fig. 2, is at a delay of 150.
The false nearest neighbors (FNN) curve (Fig. 3) drops slowly, even at a dimensions
of 10 not getting down to zero.

Fig. 1 Orbit 1 TIC
89039049 light curve
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Fig. 3 The significant False
Nearest Neighbor fraction
reflecting the noise-like light
curve
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In view of the false nearest neighbor result, the significant false nearest neighbor
fraction even at a large hyper-dimension of 10, reflecting the noise content of the
curve, noise was reduced in phase-space using the orthogonal nonlinear projective
method from a hyper-dimension of 5 to a phase-space dimension of two. Though
the global minimum is at a delay of 150, the standard delay of one resulted in good
noise reduction. The results are presented for the 6th iteration for a delay of 1.

5.2 Power Spectra and Light Curve

The power spectra for one TIC 89039049 orbit without and with noise reduction are
shown in Fig. 4.

Fig. 4 TIC 89039049 Orbit
1 power spectra of prior to
and after noise reduction for
a delay of 1 of a factor ~100
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Fig. 5 Orbit 1 section of
light curve with transit
without and with noise
reduction for a delay of 1
from 5D to 2D (6th iteration)
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The spectrum prior to noise reduction has a significant white-noise tail. With the
noise reduction, at the highest frequencies, noise has been reduced by a factor of
about 100.

A section of theTESS 89039049 light curvewith a planetary transit in orbit 1, prior
to and after nonlinear projective noise reduction is shown in Fig. 5. A comparison of
the nonlinear projective noise-reduced light curves for the same region for orbits 1
and 2 is shown in Fig. 6 (top). These results are to be compared with simulated data
results (bottom) as published by NASA that show the phased orbit 1 and 2 transits
and average for both.

6 Example II—Nonlinear Analysis of Simulated Data
for a Periodic Light Curve

TIC 18114057 was chosen as an example of a regular, periodic light curve as seen
in Fig. 7. No star or period data is given for this system.

6.1 Choice of Delay and Embedding Dimension

The average mutual information (Fig. 8) forecasts a power spectrum that reflects the
periodic nature of the light curve and forecasts splitting of lines into components.
The false nearest neighbor results imply that a phase-space reconstruction dimension
of 5 is sufficient to accommodate the portrait (Fig. 9).
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Fig. 6 Transit reconstruction after nonlinear noise reduction (top) compared with simulated data
results (bottom) for TIC 89039049 as published by NASA in the respective validation report. The
phased orbit 1 and 2 transits and average are shown for both

Fig. 7 TIC 18114057 Orbit
1 light curve after noise
reduction
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Fig. 8. Average mutual
information TIC 18114057
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6.2 Phase Space Reconstruction

The phase space portrait shown in Fig. 10 in 3D is for a delay of 81. This is the delay
for which the portrait is most unfolded. It results in the most efficient noise reduction
due to the best definition of surfaces that the trajectories lie on. The residuals for the
noise-reduced data are shown in Fig. 11.

6.3 Power Spectra for TIC 18114057

The comparison of power spectra of TIC 18114057 prior to (top) and after nonlinear
noise reduction (bottom) is given in Fig. 12 (left). On the right is a blow-up of the
lower-frequency region. We access twice the frequency range in the noise-reduced
power spectrum.
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Fig. 10 Phase-space portrait for a delay of 81 with noise reduction from a hyper dimension of 6
to a dimension of 2
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Fig. 11 Residuals for noise reduced data

7 Discussion: Choice of Parameters for Nonlinear Analysis
of Tess Simulated Data

To test whether nonlinear time series analysis can yield meaning-full results for
simulatedTESS short, oversampled, noisy light curves,we investigated two simulated
star systems, one whose light curve is noisy and looks random (TIC 89039049) and
onewith a very periodic light curve (TIC 18114057). After nonlinear projective noise
reduction in phase space, we reconstructed their phase-space portraits, obtained their
power spectra, and identified the transit of a planet in the noisy light curve.
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Fig. 12 (left) Comparison of power spectra prior to (top) and after nonlinear noise reduction (bot-
tom). (right) Enlarged lower-frequency region

7.1 Time Delay

For theoretical systems, or slightly noisy but long enough time series, τ, the time
delay for the reconstruction does not matter. Whatever reasonable delay we chose,
the reconstruction retains it’s shape. This delay is found at the first minimum of AMI.
The noise reduction is most efficient if we can identify the surface the trajectory lies
on. Thus a search for the delay for which the trajectories spread out (unfold) most to
yield the most supporting surface is justified. This value is most often on the order
of the 1st minimum of AMI. In the two cases above this gave the most efficient noise
reduction.

7.2 Phase-Space Dimension

The theoretically sufficient embedding dimensionm is not always optimal. For local
projective noise reduction, the redundancy of an embedding with small τ and large
embedding dimensionmmost often allows for better noise reduction. For our exam-
ples this is not the case. Even for TESS 18114057, for which the FFN goes to 0 at a
dimension of 5, a higher phase-space dimension of 6 yielded better results.

8 Conclusion: Even for Pre-processed Data Nonlinear
Noise Reduction Works!

Despite the fact that the data were pre-processed, noise was successfully reduced in
both the examples presented allowing us to conclude that pre-processed data do lend
themselves to nonlinear time series analysis! However, for pre-processed data and
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if the time series are short and noisy, most of the rules for the optimal time delay
and embedding dimension have to be used with care, only as guidelines. Our results
for TIC 89039049 and TIC 18114057, with two totally different light curves, show
this. For the noisy TIC 89039049 light curve, with just the four commands, we were
able to reproduce the planet transit with veracity. For the TIC 18114057 periodic
light curve we were able to gain access to twice the frequency range in it’s power
spectrum. One possibility is that the restriction dates from the early work focused on
detecting chaotic systems, whereas we are now using the toolkit for the more general
and ubiquitous category of nonlinear systems.
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5. N. Jevtić et al., ApJ 635, 527 (2005)
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A Phase-Space Approach
to Non-stationary Nonlinear Systems

Vladimir L. Kalashnikov and Sergey L. Cherkas

Abstract A phase-space formulation of non-stationary nonlinear dynamics
including both Hamiltonian (e.g., quantum-cosmological) and dissipative (e.g., dis-
sipative laser) systems reveals an unexpected affinity between seemly different
branches of physics such as nonlinear dynamics far from equilibrium, statistical
mechanics, thermodynamics, and quantum physics. One of the key insights is a clear
distinction between the “vacuum” and “squeezed” states of a non-stationary system.
For a dissipative system, the “squeezed state” (or the coherent “condensate”) mimics
vacuum one and can be very attractable in praxis, in particular, for energy harvesting
at the ultrashort time scales in a laser or “material laser” physics including quantum
computing. The promising advantage of the phase-space formulation of the dissipa-
tive soliton dynamics is the possibility of direct calculation of statistical (including
quantum) properties of coherent, partially-coherent, and non-coherent dissipative
structure without numerically consuming statistic harvesting.

Keywords Weil-Wigner-Moyal representation of stochastic dynamics · Coherent
and turbulent dissipative structures · The vacuum states of nonlinear systems

1 Introduction

The study of the dynamics of self-organized dissipative systems could bridge the
alas different shores of our knowledge, and it has to be based on an understanding
of a multiscale nature of underlying phenomena. Here, we shall try to demonstrate
as the most general and, nevertheless, outwardly disjoined concepts can contribute
productively to the study of nonlinear dynamics of nonequilibrium nonlinear sys-

V. L. Kalashnikov (B)
Institute of Photonics, Vienna University of Technology, Vienna, Austria
e-mail: vladimir.kalashnikov@tuwien.ac.at

S. L. Cherkas
Institute for Nuclear Problems, Belarus State University, Minsk, Belarus
e-mail: cherkas@inp.bsu.by

© Springer Nature Switzerland AG 2019
C. H. Skiadas and I. Lubashevsky (eds.), 11th Chaotic Modeling
and Simulation International Conference, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-030-15297-0_13

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15297-0_13&domain=pdf
mailto:vladimir.kalashnikov@tuwien.ac.at
mailto:cherkas@inp.bsu.by
https://doi.org/10.1007/978-3-030-15297-0_13


136 V. L. Kalashnikov and S. L. Cherkas

tems. The keystone here is a phase-space formulation of a problem which reveals
the intrinsic affinity between both classical and quantum Hamiltonian as well as
non-Hamiltonian systems. Such affinity promises a breakthrough in the study and
practical mastering of scalable coherent structures in the midst of noisy dissipative
environment. The application area ranges from neurophysiology to quantum com-
puting and high-energy laser physics.

Here, we intend to illustrate theWeyl-Wigner-Moyal approach to the construction
of the phase-space representation of seemly dissimilar systems ranging fromquantum
cosmology to ultrafast laser physics. The statistical mechanics and the theory of
turbulence phenomena are the bearings in this enterprise.

There is a deep and physically relevant analogy between the evolutional laws for
a mixed state of a quantum system (whether “closed” or “open”) and the statistical
mechanics. The Hamiltonian formulation of classical mechanics reveals this elegant
and genuine kinship.

Let us remind the von Neumann law for the density matrix ρ ≡ ∑
i Pi |ψi 〉〈ψi |

evolution [1]:

∂ρ(t)

∂t
= i

�
[ρ(t), H(t)], (1.1)

where H(t) is the time-dependent Hamiltonian of a system, including, in the gen-
eral case, the “environment” (“basin”) and the interactional parts ([∗, ∗] denotes a
commutator). This equation is a direct analog to the famous Liouville equation for
the evolution of a phase-space distribution function ρ in the statistical mechanics:

∂ρ

∂t
= −{ρ(t), H(t)}, (1.2)

({∗, ∗} denotes the Poisson bracket) and to the law of evolution of a dynamical vari-
able A(t)within the frameworks of Hamiltonian formulation of classical mechanics:

dA(t)

dt
= {H(t), A(t)}. (1.3)

However, the conceptual difference is that the phase space in the quantummechanics
is the operator space, and these operators can be noncommitting in the general case.
A study of this space is a mathematically challenging issue, and, we face the interpre-
tation challenges additionally. The instance of such problem, which is relevant to our
work, is the practically useful definition of vacuum state of a time-dependent quan-
tum system (e.g., the time-dependent quantum oscillator) and its distinguish from a
so-called “squeezed state.” The classical definition implying the vacuum state |0〉 as a
“zero space” of annihilation operator â|0〉 = 0 is not practically useful inmany cases.
The important insight of the Hamiltonian minimization 〈0|Ĥ |0〉 is closely related to
the situations, which will be considered below. At last, the asymptotical “uncertainty
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minimization” criterium
〈∣
∣ p̂ − 〈

p̂
〉∣
∣2

∣
∣x̂ − 〈

x̂
〉∣
∣2

〉
= 1

4+σ 2 = 1
4

(
1 + 〈0|x̂ p̂ + p̂x̂ |0〉2)

[2] is relevant to important both quantum and classical problems.

2 A Time-Dependent (Driven) Quantum Oscillator

An issue of time-dependent (driven) oscillator arises naturally in some fields of
the theoretical physics. In particular, it has an application in cosmology and astro-
physics, where the scalar, fermion, gravitational, and other quantum fields evolve
in an expanding Universe. Nevertheless, the definition of the ground (vacuum) state
remains to be obscure. It would be desirable to define vacuum state without appealing
to the adiabatic series or analytical solution that can be impossible in praxis. This
issue is addressed in the suggested method, which allows finding the true vacuum
state numerically if such a state exists.

Let us remind the problem in more detail. The Hamiltonian of a time-dependent
oscillator has the following form:

H = 1

2

(
ẋ2 + ω2(t)x2

)
. (2.1)

The standard commutation relations for the momentum and coordinate operators
are:

[
p̂(t), x̂(t)

] =
[
ẋ
∧

(t), x̂(t)
]

= −i. (2.2)

The mean value of the kinetic and potential energies difference is expressed as

〈0|1
2
p̂2(t) − 1

2
ω(t)x̂2(t)|0〉 = σ̇ (t). (2.3)

Here

σ = 1

2
〈0|x̂(t) p̂(t) + p̂(t)x̂(t)|0〉 (2.4)

has a sense of the additional uncertainty arising in theHeisenberguncertainty relation:

〈∣
∣ p̂ − 〈

p̂
〉∣
∣2

∣
∣x̂ − 〈

x̂
〉∣
∣2

〉
>

1

4
+ σ 2 (2.5)

and 〈 |, | 〉 are arbitrary states. For a family of the squeezed states, including a true
vacuum, the inequality (2.5) becomes equality.

The straightforward computation shows that σ satisfies the nonlinear equation

(
4σω2 + σ̈

)(
4σω3 + σ̈ω − 2σ̇ ω̇

) − ωω̇2
(
4σ 2 + 1

) = 0, (2.6)
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Fig. 1 The examples of the σ 2-function behavior for the in- and the out-vacuum states

for the states belonging to a family of the squeezed vacuum states including the true
vacuum ones. Thus, one has the nonlinear Eq. (2.6) for choosing the true vacuum
state from a family of the squeezed states. The nonlinearity in (2.6) arises from (2.2).
We suggest that a true vacuum state corresponds to the monotonic time-dependence
of σ(t).

Since the criterium of a monotonic behavior of the σ(t)-function within a time
interval {t1, t2} is chosen, one may use the minimization of the functional

Z(r, δ) =
t2∫

t1

(
d

dt
σ(t, r, δ)

)2

dt, (2.7)

where r, δ are the parametrization parameters for the whole family of the squeezed
states. In a non-steady case, the vacuum state is a conditional notion for the in-vacuum
t1 → −∞ and the out-vacuum t2 → ∞ states. As may see, the nonlinear equation
appears even in a linear quantum problem for determining a true vacuum state of the
time-dependent oscillator.

The examples of the σ(t)—behavior for the in- and the out-vacuum states are
shown in Fig. 1.

Other insight bridging the quantum and classical systems could regard to a
decreasing of the dispersion of the dynamical variables mean values. An exam-
ple is the cosmological mini-superspace model. The Hamiltonian in this model is
simultaneously a constraint condition H = 0 which should be satisfied alongside
with the equations of motion.

Let us consider the toy model with a massless scalar field φ and the “by hand”
introduced decrease of the cosmological constant V0 [3]. The Hamiltonian of the
model has the form:

H = − p2a
2a

+ p2φ
2a3

+ V0
a3

1 + βa3
, (2.8)

where pa and pφ are the momentums associated with the Universe scale-factor a and
the scalar field φ, respective, and β is some constant. This Hamiltonian assumes a



A Phase-Space Approach to Non-stationary Nonlinear Systems 139

modification of the gravity theory with a cosmological constant in a sense that this
“constant” V0

a3

1+βa3 is non-zero at the small-scale factors and decreases as ∝ a−3 at
the large scale-factors (i.e., it is a model of the terminating inflation).

The corresponding equations of motion are:

α̈ + 3

2

(
α̇2 + φ̇2

) − 3V0
(
1 + βe3α

)2 = 0, φ̈ + 3α̇φ̇ = 0, (2.9)

where α ≡ ln a.

For quantization, one should consider the Hamiltonian constraint as a condition
for a state vector |�〉: Ĥ |�〉 = 0. As a result, we come to the Wheeler-DeWitt
equation [3, 4]:

(
1

2a2
∂

∂a
a

∂

∂a
− 1

2a3
∂2

∂φ2
+ V0

a3

1 + βa3

)

�(a, φ) = 0. (2.10)

The paradox is that there is no explicit time-variable in this equation, which
manifests the so-called “problem of time” in the quantum cosmology [5]. Formally,
theHamiltonian is the field equation constraint in the general theory of relativity. That
means that the total energy of the gravitational field and thematter vanishes. Thus, all
states form the Hamiltonian “null-space” after canonical quantization [that results in
the Wheeler-DeWitt equation (2.10)]. That is all quantum states are “vacuum states”
(theHamiltonian “annihilates” them).But theHamiltonian provides a time-evolution.
Thus, there is no time-evolution in the quantum cosmology.

However, this is rather a pseudo-problem, since the time-evolution remains in the
equations of motion (2.9) so that one could only write “hats” over α̂ and φ̂ to consider
them as the quasi-Heisenberg operators and Eq. (2.9) as the operator equations [6].
The commutation rules for these operators follow from the Dirac brackets for a
constraint system. They can be evaluated explicitly at the initial moment of time then
the system allows evolving in accordance with the equations of motion. The Hilbert
space for the quasi-Heisenberg operators is built on the basis of an asymptotical
solution of the Wheeler-DeWitt equation (2.10).

The results of the calculation are shown in Fig. 2. One can see that the Uni-
verse becomes “classical” after the inflation end. It means that the sufficiently quick
decrease of the cosmological constant causes suppressing the dispersion of the scale
factor logarithm.

3 The Relation with the Solitonic and Statistical Physics

Herewe invent the connection with the solitonic physics [7] based on the idea that the
classical states are the result of the quantum evolution of a nonlinear system evolving
to the state with the small dispersions of the mean values of observables. Thus, the



140 V. L. Kalashnikov and S. L. Cherkas

Fig. 2 The mean value of
the logarithm of the scale
factor 〈α〉 and its dispersion
σ(α) for the model (2.8)
with the cosmological
constant V0 = 1, β = 0
(dashed curves), and with the
decreasing cosmological
constant V0 = 1, β = 10−8

(solid curves)

nonlinear equations arise in a quantum linear physics when one tries constructing
a vacuum state. On the other hand, one may see that the quantum systems tend to
classics ones in some cases. Thereby, the solitonic physics can be incorporated into
the field of quantum physics including both linear and nonlinear phenomenon.

More specifically, a soliton can be interpreted as a coherent structure formed in
the self-interacting bosonic system, i.e., as a classical analog of the Bose-Einstein
condensate [8–10]. Such a coherent condensate is definedby the two-point correlation

function in themomentum p− space:
〈
Ap(t)A∗

p′(t)
〉
= npδ

(
p − p′),where Ap(t) =

1√
2π

∫
ψ(t, x)e−i pxdx,ψ(t, x) is a field amplitude, and np is a “particle number”

distribution characterizing the soliton “shape.” The “condensation” means a flow of
energy to zero wavenumbers p → 0 that is the increase of long-range correlations
and the suppression of fluctuations in direct analogy with minimization of dispersion
of a quantum system transiting to a classical state (Fig. 2) [11]. Simultaneously, that
results in the minimization of the Hamiltonian H(ψ) defined as

H(ψ) =
∫ (∣

∣
∣
∣
∂ψ

∂x

∣
∣
∣
∣

2

∓ |ψ |4
)

dx (3.1)

for the well-known (1+1)-dimensional cubic nonlinear Schrödinger equation which
describes an evolution of slowly varying wave in a nonlinear medium [9, 12]:

i
∂ψ

∂t
= δH

δψ∗ or i
∂ψ

∂t
+ ∂2ψ

∂x2
± |ψ |2ψ = 0. (3.2)
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Fig. 3 The Langmuir
dispersion relation λ ∝ p2

(black curve) and the
Rayleigh-Jeans equilibrium
distribution for a DS or the
turbulence (red curve). The
condensation in the vicinity
of p = 0 is illustrated by
shading

Such a coherent condensate (i.e., a soliton) minimizing the Hamiltonian and exist-
ing as a steady “ground” state (i.e.,ψ(t, x) = φ(x)e−iλt ) allows treating as an analog
of the vacuum state of the nonlinear system far from the thermodynamic equilibrium.

A soliton (i.e., a coherent “condensate”) has the minimal entropy so that the rest
of entropy concentrates in the small-scale fluctuations with large |ψx |2 outside the
condensate [8, 13]. As a result, the condensate evolves toward the Rayleigh-Jeans
equilibrium distribution [11]:

np ∝ 1

p2 − μ
�

(
p2cut − p2

)
(3.3)

which obeys two correlation scales: a long-range one defined by a negative “chemical
potential” μ, and a short-range one defined by a momentum cut-off at pcut which
is caused by the nonlinear and dissipative effects (� is the Heaviside function, see
Fig. 3).

Thus, a bridge to the statistical mechanics is in the offing, and such invention
is relevant to the description not only coherent solitons but also to the study of the
dissipative solitons (DS) and the turbulent phenomena [11, 14].

4 Phase-Space Representation of Nonlinear Dynamics

As was demonstrated above, the phase-space (Hamiltonian) description of nonlinear
dynamical systems in both quantum and classical mechanics provides with a guide-
line in the solution and interpretation of the complex problems that entwines the
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seemingly disjointed concepts ranging from quantum cosmology to solitonics and
statistical mechanics.

Regarding the quantummechanics operating in a linear operator Hilbert space, we
need associating the operator Â in the x-representation with an appropriate function
in the Weyl’s, Wigner’s, Moyal’s, and Groenewold’s style [15]:

Ã(x, p) =
∫

e−i pq/�

〈
x + q

2

∣
∣
∣ Â

∣
∣
∣x − q

2

〉
dq, (4.1)

and to relate the quantum density with the so-calledWigner functionW (x, p)which
has a direct association with the probability density operator ρ̂ = |ψ〉〈ψ | [16]:

W (x, p) ∝
∫

e−i pq/�ψ
(
x + q

2

)
ψ∗

(
x − q

2

)
dq (4.2)

that provides the measurable expectation value of a Â-operator:

〈A〉 =
¨

W (x, p) Ã(x, p)dxdp. (4.3)

Finally, we have to associate the noncommutativity of operators with some order-
ing rule, e.g., in the Weyl’s style:

p̂2 x̂ → 1

3

(
p̃2 x̃ + p̃x̃ p̃ + x̃ p̃2

)
. (4.4)

Returning to nonlinear optics, the nonlinear Schrödinger Eq. (3.2) with a potential
U (x) allows the phase-space representation through the Wigner transformation

W (x, p) ∝
∫

e−i pqψ
(
x + q

2

)
ψ∗

(
x − q

2

)
dq (4.5)

resulting in [17]:

∂W (x, p)

∂t
+ β

2
p
∂W (x, p)

∂x

+
∞∑

s=0

(−1)s

(2s + 1)!22s
∂2s+1U (x)

∂x2s+1

∂2s+1W (x, p)

∂p2s+1
= 0, (4.6)

where β is a group-delay parameter (“kinetic energy” term), and the self-interaction

potential is U (x) =
√

1
2π

∫
W (x, p)dp.

Two problems are that the resulting Eq. (4.6) contains the infinite expansion
term, and it is the integrodifferential equation in (2+1)-dimensions. Nevertheless, our
calculations demonstrated that the geometrical optics approximation �x�p � 1 is
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Fig. 4 The Wigner function
on (x,p)-plane for the
dimensionless dispersion
β = 1 after the 6
dimensionless nonlinear
propagation lengths t

well-working even for the “true vacuum” (not only “squeezed one,” see below) states
and can be modeled by the Vlasov’s equation [s = 0 in Eq. (4.6)] [18, 19]:

∂W (x, p)

∂t
± p

∂W (x, p)

∂x
+ ∂U (x)

∂x

∂W (x, p)

∂p
= 0, (4.7)

re-interpreting the Wigner function as a probability distribution function:

W (x, p) ∝
∫

e−i pq
〈
ψ

(
x + q

2

)
ψ∗

(
x − q

2

)〉
dq (4.8)

where 〈•〉 denotes a statistical average. Equation (4.7) describes the quasi-particles
statistics in the effective self-consistent potential, and we may interpret a soliton as
a self-organized ensemble of interacting quasi-particles (“internal modes”) and use
the methods of statistical mechanics.

Figures 4, 5, 6 and 7 demonstrate the evolution of a Wigner function in the so-
called anomalous dispersion regime β > 0, where the classical soliton exists [20]:

i
∂ψ

∂t
+ β

2

∂2ψ

∂x2
+ |ψ |2ψ = 0. (4.9)

When the nonlinearity prevails over the dispersion, the initial pulse inevitable col-
lapses (Fig. 4). But a compensation of pulse squeezing due to nonlinearity by disper-
sion results in the soliton formation, which is stable, perfectly localized and coherent
structure (Fig. 5). When the dispersion prevails over nonlinearity, the pulse spreads
in the time domain but with the conservation of its spectral width. It is an example
of squeezing described by the so-called “chirp” parameter θ , that is a slope of the
Wigner function in our case (Figs. 6 and 7).

In the normal dispersion regime (β < 0), the tendency to collapse is arrested, so
that the energy concentration at zero wave-number (carrier frequency) results in a
squeezing state with a huge “chirp” (Fig. 8).
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Fig. 5 The Wigner function
for the dimensionless
dispersion β = 2

Fig. 6 The Wigner function
for the dimensionless
dispersion β = 3

However, this state is not steady. It tends to disappear in the “fluctuation sea.”
One may propose a way out of this problem: let’s make our system dissipative that
could provide an inverse energy cascade outward the zero wave-number but without
the coherency loss. The example of such open system is a laser with the linear and
nonlinear gain, loss (μ, κ), and the spectral dissipation (α).

i
∂ψ

∂t
+ β

2

∂2ψ

∂x2
+ |ψ |2ψ = i

(

μψ + α
∂2ψ

∂x2
+ κ|ψ |2ψ

)

. (4.10)

The combination of these factors provides a right energy redistribution E =
2
(
μ|ψ |2 + κ|ψ |4 − α

∣
∣
∣
∂ψ

∂x

∣
∣
∣
)

+ α
∂2|ψ |2
∂x2 (Fig. 9) that stabilizes the DS coherent struc-

ture.
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Fig. 7 The Wigner function
for the dimensionless
dispersion β = 4

Fig. 8 The Wigner function
for the dimensionless
dispersion β = −4

Here, we deal with a DS with a nontrivial internal structure providing a huge
chirp without spectral squeezing that allows a coherent energy harvesting. This huge
chirp validates the lowest-order term approximation in the Weyl-Wigner Eq. (4.7)
and we reveal with surprise that a dissipative soliton is a self-organized “ensemble”
of self-interacting quasi-particles, somewhat like an elementary “community,” and
themethods of statistical mechanics could allow the description of suchmetaphorical
“community” without a direct statistic gathering of the “individual fates.”



146 V. L. Kalashnikov and S. L. Cherkas

Fig. 9 The energy flow E
inside of a DS

5 Conclusions

Phase-space formulation of non-stationary nonlinear systems reveals an affinity
between seemly different branches of physics such as dynamics of nonlinear systems
far from equilibrium, statistical mechanics, thermodynamics, and quantum physics.
One of the key insights is a clear distinction between the “vacuum” and “squeezed”
states of a system. A soliton can be treated as a “vacuum state” of a closed nonlinear
system, and such low-entropy state minimizes a Hamiltonian so that the second law
of thermodynamics needs an entropy concentration in small-scaled (down to quan-
tum level) fluctuations. The “squeezed states” (or coherent “condensates”) mimic
vacuum ones and can be very attractable in praxis, in particular, for energy harvest-
ing at ultrashort time scales. However, such states are not steady-state in a closed
system. The stabilization of such coherent structure is possible in an open, i.e., dissi-
pative system. That means a DS formation. The phase-space analysis demonstrates
a close analogy between DS and turbulence phenomena in plasma and condensed
media that allows formulating the statistical mechanics and quantum approaches to
the extremely broad diapason of nonlinear phenomena. In particular, the promising
advantage of the phase-space formulation of the DS dynamics is the possibility of
direct calculation of statistical (including quantum) properties coherent, partially-
coherent, and non-coherent dissipative structure without numerically consuming
statistic harvesting.
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Spatial Extent of an Attractor

Avadis Hacınlıyan and Engin Kandıran

Abstract Lyapunov exponents characterize the rate of approach or recession of
nearby trajectories in a dynamical system defined by differential equations or maps.
They are usually taken as indicators of chaotic behavior. The density of orbits in the
state space or equivalently, the Poincare map is usually taken as another such indica-
tor. Although these indicators usually give correct results, there are instances inwhich
they can lead to confusing or misleading information. For instance, a system of three
linear differential equations can have three positive eigenvalues λi leading to a solu-
tion expλit. The Wolf-Benettin algorithm [4] would report three positive Lyapunov
exponents, in spite of the fact that the system is not chaotic. Another example is the
Khomeriki model [1] or even the usual Bloch equations that would report a spectrum
of all negative Lyapunov exponents but produce completely full state space plots, if
the AC field is sufficiently strong. We will consider the class of systems proposed by
Sprott [3] consisting of three-dimensional ODE’s with at most two quadratic non-
linearities as examples. Many of them obey two scenarios one of which is Lorenz
model like behavior where an unstable linearized fixed point is surrounded by two
stable fixed points so that the unstable fixed-point leads to a throw and catch behavior.
The other is Rössler-like behavior whereas the system moves away from a weakly
unstable linearized fixed point, nonlinear terms return it to equilibrium with a spiral
out catch in mechanism. Since the presence of an attractor may involve structural sta-
bility, these two mechanisms are expected to produce different spatial extents for the
attractor. Although Lyapunov exponents indicate time dependent behavior, spatial
extent would complement this as a spatial measure of localization, thus comple-
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menting the Lyapunov exponents that characterize horizon of predictability. Direct
numerical simulation and where feasible, the normal form approach will be used to
investigate selected examples of the three degree of freedom systems.

Keywords Lyapunov exponents · Sprott systems · Poincare map · Normal form ·
Simulation · Chaotic simulation

1 Introduction

In order to determine if a system is chaotic, the usual first step is calculating the
Liapunov spectrum. Since the calculation of largest Liapunov exponent is usually
easier than the calculation of whole spectrum, many studies only take the largest
exponent into consideration. Numerical algorithms can be applied to an arbitrary
dynamical system, but they are limited by some problems:

• Computational stability
• Convergence and truncation errors.

In a dynamical system, a zero Liapunov exponent may serve as an indicator for
conserved quantities, because a conserved quantity could be used to lower the degree
of freedom by one. The normal form expansion and a solution of the normal form
equations is available in the vicinity of equilibrium points. Time and higher powers
of residual terms in radial variable, if available, can be eliminated from the solution
to give an approximately conserved quantity.

It is an attractive idea to replace a system by a locally equivalent, simpler sys-
tem and a polynomial transformation. It is hoped that such a decomposition would
approximate chaos by stretching and folding the solution of the simpler system with
the polynomial transformation. The method of normal forms achieves this by a sys-
tematic procedure. If there are no resonances, the simpler system is linear, if there are
resonances, the nonlinear terms remain, but its truncations can often be integrated or
used to estimate extent of the attractor.

Usually, the three dimensional systems leading to an attractor (Sprott) have the
(+,0,−) or (a ± ib, c) with either a or c positive Lyapunov spectrum. However, there
are at least two different kinds of such systems, the Lorentz system that uses the throw
and catch mechanism (an unstable central fixed point surrounded by two stable fixed
points) and the Rössler system that uses the spiral out, then fall in mechanism. Both
will have comparable Lyapunov spectra but lead to different dynamics.

In this study, we use the normal form approach to find simpler forms of the three
Sprott systems given in [4] and look for extent of the attractors and their conserved
quantities. In Sect. 2, formal description of normal form analysis is given. In the
Sect. 3, three Sportt systems are defined and analyzed using normal form analysis.
Finally, in Sect. 4, a final discussion is given.
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2 Normal Form of a Dynamical System

Normal form expansions give the local properties of chaotic behavior correctly, but
have convergence problem. Aim of the normal form is to reduce the system to a sim-
pler system, whose structure is determined by resonance dictated by the eigenvalues
of the linearized system near an equilibrium point. It may sometimes be desirable to
change the resonant structure of the base system by applying nonpolynomial trans-
formations, or using nonlinear transformations that introduce a manifold over which
the system survives in long time and scales in a way analogous to the center manifold.

Consider an ODE:

ẋ = Ax + F2(x) + F3(x) + · · · + FN (x) + · · · (1)

where x ∈ �n and A is a linear operator in Jordan Canonical Form, Fi, i = 1, . . . ,N .
are homogeneous polynomials of degree N (Note: initial values x(t = 0) are given).
Let λ = (λ1, . . . ,λN ) the eigenvalues of A.

Suppose system (1) is transformed by the near identity transformation:

xi = yi + hi2(yk) + · · · + hiM (yk) + · · · (2)

where yk ∈ �n, hiM (yk) : �n → �n are also homogeneous polynomials of degreeM.
These polynomials can are determined order by order so that Fi are eliminated.
The condition for elimination of ith degree term is:

Dhi(y)Ay − Ahi(y) = Fi(y) (3)

These equations are linear in the over complete space spanned by the eigenvectors
of the linear part × monic monomials of appropriate degree. They can be solved if
the eigenvalues λj of the linearized part do not satisfy the resonance condition:

λj =
∑

k

mkλk (4)

wheremk are positive integers or zero and
∑

k mk sum is called asorderof resonance.
This polynomial normal form expansion fails to converge if the systemdoes not admit
an additional symmetry however nicely illustrates the stretch and fold approach.

We will form A into a special form that will ease our calculation.

λ1 = γ and λ2,3 = α ± iβ (5)
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Let corresponding eigenvectors be v1, v2, v3. Let T be a transformation matrix [2]:

T =

⎡

⎢⎢⎣

...
...

...

v1 v2 v3
...

...
...

⎤

⎥⎥⎦ (6)

which is invertable. Then the transformation matrix is used to transform the linear
part of the system into diagonal or Jordan canonical form:

T−1x = x̃ (7)

3 Analysis of Sprott Systems by Normal Form Approach

In this study, we have studied the nth order normal form of the following systems:

• Sprott D system
• Sprott E system
• Sprott F system.

These systems are examples of possible situations where the size of attractor and
lyapunov exponents can be estimated using normal forms and where this is not
possible.

3.1 Sprott D System

The Sprott D system is defined as:

ẋ1 = −x2 (8a)

ẋ2 = x1 + x3 (8b)

ẋ3 = x1x3 + 3x22 (8c)

The system has only one fixed point which is origin. Since the origin is the fixed
point we can apply the normal form procedure directly where A0.

A0 =
⎡

⎣
0 −1 0
1 0 1
0 0 0

⎤

⎦ (9)
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Fig. 1 Phase portrait in 3-D

Fig. 2 Phase portrait in
x1 − x2 plane

The system shows chaotic behavior with following Liapunov exponents
(0.1027, 0,−1.3198). Phase portrait of the system for initial values (x0, y0, z0) =
(−0.2, 0, 1) is given in Figs. 1 and 2.

Eigenvalues of A0 are λ2,3 = ±i and λ1 = 0. From the eigenvalues, we can under-
stand that the sytem is resonant in every order. The corresponding eigenvectors are:

⎡

⎣
−1
0
1

⎤

⎦ and

⎡

⎣
±i
1
0

⎤

⎦ (10)

The transformation matrix T is:

T =
⎡

⎣
−1 i −i
0 1 0
1 0 1

⎤

⎦ (11)

After applying the transformation to our system we have calculated the normal form
of the system. The normal form expansion through the sixth order in cylindrical
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coordinate is:

ρ̇ = ρu(456753ρ4 + 557072ρ2u2 − 27456ρ2 + 389988u4 − 57024u2 + 13824)

27648
(12a)

θ̇ = (−14261ρ4 − 30698ρ2z2 − 2016ρ2 − 50598u4 + 9504u2 + 6912)

6912
(12b)

u̇ = (−1214543ρ6 − 2973264ρ4u2 + 119808ρ4 + 2660040ρ2u4 − 15552ρ2u2

82944
+ 82944ρ2 − 393840u6 + 207360u4 − 82944u2)

82944
(12c)

Unfortunately, the normal form equations are not trivial to draw a conclusion about
the extent of the attractor. One would need an equilibrium like value for ρ or u.
Although the normal form equations can be set to 0, there is no nontrivial equilibrium
value, ρ̇ and dρ

dθ
are not only functions of θ. Although numerical simulation gives a

bounded region for the attractor, its extent is not independent of the initial conditions.

3.2 Sprott E System

The Sprott E System is given as:

ẋ1 = x2x3 (13a)

ẋ2 = −x21 − x2 (13b)

ẋ3 = 1 − 4x1 (13c)

The system has only one equilibrium point which is at ( 14 ,
1
16 , 0). When this point is

moved to the origin, system takes the following form:

˙̄x1 = x̄3
16

+ x̄2x̄3 (14a)

˙̄x2 = x̄1
2

− x̄2 + x̄1
2 (14b)

˙̄x3 = −4x̄1 (14c)
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The normal form of the Sprott E System has the following form in cylindrical coor-
dinates

ρ̇ = 1

3200
ρ3

(
23 + 4273991

468000
ρ2 − 5732625917801

7008768000000
ρ4

)
(15a)

θ̇ = 1

2
+ 1

9600
ρ2

(
113 − 14470361

1872000
ρ2 − 30250848101177

2336256000000
ρ4

)
(15b)

ẇ = −w − 1

800
ρ2w

(
23 + 5584999

468000
ρ2 − 2063305495801

7008768000000
ρ4

)
(15c)

This system undergoes subcritical Hopf bifurcation. Radius of the chaotic attractor
can be estimated from ρ̇ = 0. This yields ρ = 3.6445. Using averaging over the
attractor it can be estimated that

< λρ − f (ρ) >≈ 0 (16)

where

f (ρ) = dρ

dθ
= (

23

1600
ρ3 − 8041177

1497600000
ρ5 + 6890526323021

11214028800000000
ρ7) + O(ρ9)

(17)
This gives an estimate for λ = 0.0512.

Its order of magnitude agrees with the numerically calculated largest Liapunov
exponent 0.078 with error 0.000085 although this averages the theta and not the time
derivative. At that point we should be averaging over the attractor (Figs. 3 and 4).

3.3 Sprott F System

Governing equations of Sprott F system are:

ẋ1 = x2 + x3 (18a)

ẋ2 = −x1 + ax2 (18b)

ẋ3 = x21 − x3 (18c)

where a is bifurcation parameter. For a = 0.5, Sprott shows that system has no
chaotic behavior. For a = 0.5 eigenvalues of the linearized system are (±i,−1).
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Fig. 3 Phase space of
Sprott E

Fig. 4 The time
development original system
versus the normal form
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The normal form expansion through seventh order:

ρ̇ = − 1850797

88128000
ρ7 − 251

900
ρ5 − 1

20
ρ3 (19a)

θ̇ = 3499

1088000
ρ4 + 1

60
ρ2 + 12692663

440640000
ρ6 + 1 (19b)

ẇ = 44446901

550800000
ρ6w + 497

4500
ρ4 + 1

5
ρ2w − w (19c)

According to these equations ρ andw have a stable equilibrium point at the origin and
system goes super-critical Hopf bifurcation. The Liapunov exponents of the system
are (0, 0,−1.234). By the Descartes sign rule there is no positive root for ρ. Solution
of ρ̇ gives the trivial solution ρ = 0 and the four complex roots with positive real
parts:

ρ2,3 = 0.459095557571 ± 0.52646646306i

ρ4,5 = −0.459095557571 ± 0.52646646306i

Thus the normal form does not estimate the extent of the attractor.

4 Conclusion

Although the linearized form of a dynamical system near its equilibrium point can
give a partial understanding of the Liapunov spectrum and the extent of the attractor,
more powerful techniques than simple scenarios based on the linearized system are
needed. Developing such techniques is a difficult and system specific task. Bench-
mark systems with three variables and quadratic nonlinearities proposed by Sprott
have been studied by the NF technique. Algebraic techniques also require an esti-
mate of the attractor’s extent. Such a criterion would represent a novel criterion to
chaotic behavior, since it would represent a balancing action between the folding and
stretching that produces the attractor.

Algebraic techniques also may furnish an estimate of the attractor’s extent. Such
a criterion would represent a novel criterion to chaotic behavior, since it would
represent a balancing action between the folding and stretching that produces the
attractor. We have illustrated a case where it works, a case where it fails and a case
that requires more study. Furthermore, non uniqueness of the NF transformation, and
clarification of the resonant system in the problemmatic case where the linearized
system has the eigenvalue spectrum (0;i) leading to a more complicated NF merit
further study.
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The FitzHugh-Nagumo Model
and Spatiotemporal Fractal Sets Based
on Time-Dependent Chaos Functions

Shunji Kawamoto

Abstract It is presented firstly that a one-dimensional (1-D) time-dependent
logistic map for population growth is derived from the chaos solution consisting of a
time-dependent chaos function, and the logistic map has the dynamics of coherence
and incoherence in time, which are the so-called chimera states discussed in the field
of complex systems, by introducing the bifurcation diagram and a time-dependent
system parameter for the 1-Dmap as one of non-equilibriumopen systems. Secondly,
the 2-D time-dependent solvable chaos map corresponding to the FitzHugh-Nagumo
model for neural phenomena is obtained on the basis of time-dependent chaos func-
tions, and the 2-D map is shown to have chimera states in time under the assumption
of a time-dependent system parameter, and to find spatiotemporal fractal sets defined
by initial values as the dynamic stability region for neural cells.

Keywords Chaos function · Time-dependent logistic map · Time-dependent
chaos function · Time-dependent system parameter · Non-equilibrium open
system · Chimera states · FitzHugh-Nagumo model · 2-D solvable chaos map ·
Spatiotemporal fractal set · Dynamic stability region

1 Introduction

As is known, there have been many advances in the field of nonlinear dynamics,
such as soliton, chaos and fractals, which appear in physical, biological, chemical,
mechanical and social sciences. After the theory for shallowwater waves, soliton has
been a self-reinforcing solitary wave that maintains the shape during the travel with
constant speed, and arises as the solution to weekly nonlinear dispersive partial dif-
ferential equations for physical system [1]. At the same time, it has been shown that
the one-dimensional (1-D) nonlinear difference equations possess a rich spectrum of
dynamical behavior as chaos in many respects, and a family of shapes and irregular
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patterns called fractals have been proposed for the geometric representation [2, 3].
Recently, the chaos theory has been widely extended to biology, medicine, optics,
pattern recognition and human sciences [4]. Here, it is important to emphasize that
as the nonlinearity makes the nonlinear differential equations difficult to solve ana-
lytically, the personal computer with mathematical software has played an important
role to calculate nonlinear equations and to draw the figures.

On the other hand, the coexistence of coherence and incoherence in non-locally
coupled phase oscillators has been presented and called chimera states which dis-
play remarkable spatiotemporal patterns [5, 6]. After that, the chimera states are
described as chaotic transients forming a self-organized pattern in a population of
non-locally coupled oscillators and coupled chaotic systems, such as the logistic
map, the Rössler system, the Lorenz system and the FitzHugh-Nagumo oscillators
for complex spatiotemporal patterns [7–9]. Moreover, it has been studied numeri-
cally that chimera states can be stable even without taking the continuous limit [10].
In addition, chimera states have been considered to happen in modular neural net-
works [11], and it is investigated if the states can be synchronized across different
interacting networks [12].

In the meantime, 2-D and 3-D chaos maps have been proposed for the analysis of
population growth, mechanical vibration, electrical oscillation, atmospheric convec-
tion and chemical reaction [13]. Moreover, the time-dependent chaos functions have
been introduced and discussed briefly for the application to engineeringwith the non-
linear time series expansion [14]. Then, a 2-D solvable chaos map corresponding to
the FitzHugh-Nagumo (FHN) model [15, 16] is obtained, and the discrete properties
have been considered numerically [17].

This paper is organized as follows: Firstly, a 1-D time-dependent logistic map
for population growth is derived in Sect. 2 from the chaos solution consisting of a
time-dependent chaos function, and the logistic map is shown to have the dynamics
of coherence and incoherence in time, which are the so-called chimera states dis-
cussed in the field of complex systems, by introducing the bifurcation diagram and a
time-dependent system parameter for the 1-D map, as one of non-equilibrium open
systems. In Sect. 3, the forced Van der Pol oscillator [18] is transformed into a 2-D
map which corresponds to the FHN model for neural phenomena, on the basis of
time-dependent chaos functions. Finally, Sect. 4 presents the numerical calculation
of the 2-Dmap with the bifurcation diagram and a time-dependent system parameter
for the chimera states in time, and the spatiotemporal fractal sets defined by initial
values are obtained as the dynamic stability region for neural cells. The last section
is devoted to conclusions.

2 A Time-Dependent Logistic Map

Firstly, we introduce a logistic function;
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Fig. 1 The bifurcation
diagram of the logistic map
(2) with (3)

The first 
bifurcation point

P(t) = a/
(
b + e−ct

)
(1)

with the time t > 0 and real constants {a �= 0, b > 0, c �= 0} for population growth
[19]. By differentiating (1), and by applying the difference method and variable
transformations, we find the well-discussed logistic map;

xn+1 = μxn(1 − xn), (2)

0 ≤ μ ≡ 1 + c(�t) ≤ 4, (3)

which is a 1-D chaoticmap, and is known to have chaotic dynamics, where the system
parameter μ given by (3) consists of the real constant c of (1) and the time step �t
of the difference method. The map (2) with (3) has been known to exhibit stable and
unstable fixed points by bifurcation processes [20]. Then, the processes have been
formulated for a large class of recursion relations exhibiting infinite bifurcation [21],
and the bifurcation diagram has been obtained experimentally for a nonlinear electric
circuit [22]. The diagram for (2) with (3) is shown in Fig. 1, and we find that the
first bifurcation point arises at μ = 3.0, and the chaotic dynamics end at μ = 4.0,
as discussed in [20]. For Fig. 1, we carry out 200 iterations of the map (2) with (3),
and drop the first 150 iterations to illustrate the remaining 50 subsequent values of
xn . Here, it is important to note that if the parameter μ increases in time, then the
solution xn would transit from coherent state into incoherent state in time.

On the other hand, it has been shown recently that from the time-dependent chaos
function given by

xn(t) = sin2(2nt), t �= ±mπ/2l , (4)

the time-dependent chaos map is derived as

xn+1(t) = 4xn(t)(1 − xn(t)), t �= ±mπ/2l , (5)
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where {l, m} are finite positive integers [13, 14], that is, the map (2) with (3) has the
chaos solution (4) at μ = 4.0. We assume here that the system parameter μ of (2)
depends on a change of the environment for population growth in time, such as the
climate and the economy of society, and then we find the time-dependent logistic
map from (2) to (5) and Fig. 1;

xn+1(t) = μ(t)xn(t)(1 − xn(t)), (6)

1 ≤ μ(t) ≤ 4, t �= ±mπ/2l , (7)

where the μ is assumed to be an increasing function of time t, and the map (6) has
the chaos solution (4) at μ(t) = 4.0.

The map (6) and the condition (7) are rewritten for the numerical calculation as

xn+1(ti+1) = μ(ti )xn(ti )(1 − xn(ti )), (8)

1 ≤ μ(ti ) ≤ 4, (9)

where we can choose the discrete time ti satisfying (7) [17]. Under the function
μ = μ(ti ), we introduce the following three cases of μ(ti ) with the time interval
ti=0 ≤ ti ≤ ti=120 as shown in Fig. 2a; Case 1: 1 ≤ μ(ti=0−120) ≤ 4.0 (blue line),
Case 2: 1 ≤ μ(ti=0−120) ≤ 3.6 (red line) and Case 3: 1 ≤ μ(ti=0−120) ≤ 2.8 (black
line). Then, we have the solution xn(ti ) obtained by iterating the map (8) with μ(ti )
in Fig. 2b as the orbit and as the time-dependent sequence of points in Fig. 2c,
which are the chimera states or the chaotic transients considered in [5–12]. Then, it
is found that Cases 1 and 2 (blue and red) show the coexistence of coherent state and
incoherent state in time, and Case 3 (black line) gives a coherent state, because the
first bifurcation point in Fig. 1 does not arise for μ(ti=0−120) < 3.0. The MATLAB
program for Fig. 2 is shown in Appendix.

Moreover, the system parameterμ(ti=0−240) is assumed in Fig. 3a as an increasing
and decreasing function of ti=0−240 for a long time interval ti=0 ≤ ti ≤ ti=240 given
by the following three cases; Case 1: 1 ≤ μ(ti=0−240) ≤ 4.0 (blue line), Case 2:
1 ≤ μ(ti=0−240) ≤ 3.6 (red line) and Case 3: 1 ≤ μ(ti=0−240) ≤ 2.8 (black line).
Then, we obtain the solution xn(ti=0−240) in Fig. 3b, and as the sequence of points in
Fig. 3c, respectively. It is found that Cases 1 and 2 (blue and red) evolve coherently,
incoherently and coherently in time, which are chaotic duringμ(ti=0−240) ≥ 3.0, and
Case 3 (black) presents a coherent state for μ(ti=0−240) < 3.0. Here, it is interesting
to note that the map (8) with (9) has the following two fixed points;

x∗ = 0, (μ(ti ) − 1)/μ(ti ), (10)

where the system parameter is a function of time, and therefore the fixed point is
movable in time.
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Fig. 2 The time-dependent
logistic map (8) for the
interval ti=0 ≤ ti ≤ ti=120;
a three cases (blue, red,
black) of μ(ti=0−120), b the
solution xn(ti=0−120), and
c the sequence of points
{xn(ti=0−120)}

3 The FitzHugh-Nagumo Model and 2-D Time-Dependent
Chaos Map

The forced Van der Pol oscillator is given by

ẍ − ε(1 − x2)ẋ + x = E0 sin(ωt), (11)

which represents a model for a simple vacuum tube oscillator circuit with a nonlinear
damping term, and describes the heart beat as a relaxation oscillation, where ε is the
damping coefficient, and E0 and ω are the strength and the frequency of the periodic
external forcing, respectively [18]. We introduce the Liénard transformation

y ≡ ε(x − 1

3
x3) − ẋ, (12)
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Fig. 3 The time-dependent
logistic map (8) for a long
time interval
ti=0 ≤ ti ≤ ti=240; a three
cases (blue, red, black) of
μ(ti=0−240), b the solution
xn(ti=0−240), and c the
sequence of points
{xn(ti=0−240)}

and find the 2-D model from (11) and (12) as

ẋ = ε

(
x − 1

3
x3

)
− y, (13)

ẏ = x − E0 sin(ωt), (14)

which is known to have chaotic behaviors in the equivalent circuit with sinusoidal
forcing [23]. As is well-discussed, the FitzHugh-Nagumo (FHN) model [15, 16] is
a 2-D simplification of the Hodgkin-Huxley model [24] of spike generation in squid
giant axons, and by adding terms {a, by(t), z(t)}with constants {a, b} and a stimulus
external current z(t) to the model (13) and (14) with E0 = 0, we have the FHNmodel;

ẋ = ε

(
x − 1

3
x3

)
− y + z, (15)

ẏ = x + (a − by), (16)
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which has the coefficient ε of the nonlinear damping term, and it is found that setting
ε = 0 in (11) and (15) gives a linear differential equation, respectively. Here, by a
transformation εy → y in the Liénard transformation y ≡ x − x3/3 − ẋ/ε used in
[15], we find the same coefficient ε of nonlinear term in the 2-Dmodel (13) and (14),
and can regard the ε as the system parameter of the FHN model (15) and (16).

Recently, the following 2-D time-dependent chaos system corresponding to the
FHN model (15) and (16) has been proposed as

xn(t i ) = a1 sin
2
(
2nt i

) + b1(ti ), (17)

yn(ti ) = a2 cos
(
2nti

)
, (18)

1

a1
(xn(ti ) − b1(ti )) + 1

a22
y2n (ti ) = 1, (19)

xn+1(ti+1) = ε

a22
(xn(ti ) − b1(ti ))y

2
n (ti ) + b1(ti ), (20)

yn+1(ti+1) = −
(
2a2
a1

)
xn(ti ) + a2 +

(
2a2
a1

)
b1(ti ), (21)

where (17) and (18) are the time-dependent chaos solutions consisting of chaos
functions with nonzero coefficients {a1, a2} and the external force function b1(ti ) of
discrete time ti . The condition (19) derived from the solutions (17) and (18) gives a
discrete quadratic curve, and plays a key role for the FHN model (20) and (21) on
the xn(ti )− yn(ti ) plane. Therefore, the 2-Dmap (20) and (21) at ε = 4 has the chaos
solutions (17) and (18), and the orbit of neural cells has been discussed numerically
by iterating the chaos solutions (17) and (18) based on chaos functions with initial
values [17].

The bifurcation diagram is illustrated in Fig. 4 with a1 = 1.0, a2 = 1.0 and the
external force term b1(ti ) = 0 in the 2-D map (20) and (21). The first bifurcation
point (x∗, y∗) = (0.15, 0.7) arrises at ε = 2.2, and the chaotic dynamics end at
ε = 4.0. Here, we carry out 200 iterations of the 2-D map, and drop the first 150
iterations to show the remaining 50 subsequent values of {xn, yn}. The orbit and the
sequence of points (collision points) at ε = 0.5, 1.5, 2.5, 3.5 for the 2-D map (20)
and (21) are shown in Fig. 5a1, a2, a3, a4, and in Fig. 5b1, b2, b3, b4, respectively. At
ε = 0.5 and ε = 1.5, the orbit has a coherent state with the interval 0 ≤ ε ≤ 1.0 and
1.0 ≤ ε ≤ 2.2 as shown in Fig. 4, and the orbit converges to the stable fixed point
from the initial point in time as illustrated in Fig. 5a1, b1, a2, b2. However, at ε = 2.5,
the orbit shows an incoherent state in Fig. 5a3 with the interval 2.2 ≤ ε ≤ 4.0 of
Fig. 4. Then, it is found that the sequence of points shows a discrete limit cycle in
Fig. 5b3, and the orbit converges to the limit cycle from the initial point, which is
discussed for the Van der Pol oscillator [25] and the FHN model [26]. Moreover, at
ε = 3.5, which is in the chaotic region of Fig. 4, the orbit is incoherent as shown in
Fig. 5a4, and the sequence of points is illustrated in Fig. 5b4. For ε = 4.0, it has been
presented that the orbit and the sequence of points give chaos solutions (17) and (18),
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Fig. 4 The bifurcation
diagram for the 2-D map
(20) and (21) with
a1 = 1.0, a2 = 1.0 and
b1(ti ) = 0

The first 
bifurcation point

The first 
bifurcation point

(a)

(b)

and the quadratic curve (19) on the xn − yn plane, by the numerical calculation of
(17) and (18) without the accumulation of round-off error caused by the numerical
iteration as discussed in [17].

Here, it is interesting to note that the 2-D map (20) and (21) has the following
three fixed points;

(x∗, y∗) = (0, 1),

(
1

2

(
1 ± 1√

ε

)
,∓ 1√

ε

)
, (22)

where ε is the system parameter. Therefore, it is found that if ε is a function of time,
then the fixed points are movable in time.

4 Spatiotemporal Fractal Sets

As is discussed in Sect. 3, we assume that the ε in the 2-Dmap (20) and (21) depends
on a change of the environment, such as the temperature and the external force of
neural phenomena in time, that is, the ε is a function of time ε(ti ). Then, we have
the following map from the 2-D map (20) and (21) as
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=1.5 (a2) (b2) 

(a1) (b1) 

=2.5 (a3) (b3)

=3.5 (a4) (b4)

Stable fixed point 

Stable fixed point 

Initial point 

Discrete 
limit cycle 

Initial point 

=0.5

Fig. 5 The orbit: a1, a2, a3 and a4, and the sequence of points (collision points): b1, b2, b3 and b4
for the 2-D map (20) and (21) with the initial point (x0, y0) = (0.01, 0.99) at ε = 0.5, 1.5, 2.5, 3.5,
respectively
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xn+1(ti+1) = ε(ti )

a22
(xn(ti ) − b1(ti ))y

2
n (ti ) + b1(ti ), (23)

yn+1(ti+1) = −
(
2a2
a1

)
xn(ti ) + a2 +

(
2a2
a1

)
b1(ti ), (24)

1 ≤ ε(ti ) ≤ 4.0, (25)

here the 2-D chaotic map (23) and (24) is found to have the chaos solutions consisting
of time-dependent chaos functions (17) and (18) at ε(ti ) = 4.0, and the condition
(25) is obtained from the bifurcation diagram Fig. 4 as the interval of ε(ti ).

As the 2-D map (23) and (24) with (25) includes the time-dependent system
parameter ε(ti ) with the first bifurcation point at ε = 2.2, we introduce the fol-
lowing three cases of ε(ti ); Case 1: 1 ≤ ε(ti=0−120) ≤ 4.0 (blue line), Case 2:
1 ≤ ε(ti=0−120) ≤ 3.6 (red line) and Case 3: 1 ≤ ε(ti=0−120) ≤ 2.0 (black line) in
Fig. 6a. Then, we have the solutions xn(ti ) and yn(ti ) obtained by iterating the 2-D
map (23) and (24) with (25) as shown in Fig. 6b, c, respectively, and find chimera
states in time with the exception of Case 3 (black line). In addition, the orbit of col-
lision points (xn(ti ), yn(ti )) are presented on the xn(ti=0−120)− yn(ti=0−120) plane of
Fig. 6d, where it is found that Case 3 (black line) gives a coherent state in the region
0 ≤ xn < 0.15 and 0.7 < yn ≤ 1.0.

Furthermore, in Fig. 7a, the system parameter ε(ti ) of the 2-D map (23) and (24)
with (25) is assumed as a function of ti with a long time interval ti=0 ≤ ti ≤ ti=240

given by the following three cases; Case 1: 1 ≤ ε(ti=0−240) ≤ 4.0 (blue line), Case
2: 1 ≤ ε(ti=0−240) ≤ 3.6 (red line) and Case 3: 1 ≤ ε(ti=0−240) ≤ 2.0 (black
line). Then, we find the solutions xn(ti ) and yn(ti ) obtained by iterating the 2-D map
(23) and (24) with (25) as illustrated in Fig. 7b, c respectively, and have chimera
states in time with the exception of Case 3 (black line). In addition, the orbits for
the solutions xn(ti ) and yn(ti ) are presented on the xn(ti=0−240) − yn(ti=0−240) plane
of Fig. 7d, where it is found that Case 3 (black line) gives a coherent state in the
region 0 ≤ xn < 0.15 and 0.7 < yn ≤ 1.0, which is similar to Fig. 6d. That is, for
the system parameter ε(ti ) with a long time ti=0−240, the solutions xn(ti ) and yn(ti )
evolve coherently, incoherently and coherently in time. It is interesting to note that
the ε(ti ) is symmetric about ti = ti=120 for Cases 1, 2 and 3. However, the solutions
xn(ti ) and yn(ti ) evolve linearly during the coherent states, but are not symmetric
about ti = ti=120 during the incoherent states, as same as the case of μ(ti ) for the
time-dependent logistic map (8) with (9) for population growth.

Moreover, the orbits in Fig. 7d with the initial point (x0, y0) = (0.01, 0.99) for
the three cases of ε(ti=0−240) are illustrated as the time-dependent sequence of points
(blue, red, black) on the xn(ti=0−240) − yn(ti=0−240) plane in Fig. 8a. Then, for the
following five initial points as (x0, y0) = (0.01, 0.99), (0.01, 0.98), (0.01, 0.97),
(0.01, 0.96) and (0.01, 0.95), we have the sequence of points (blue, red, black)
shown in Fig. 8b, respectively. It is found that the boundary curve of blue points is
given by the discrete quadratic curve (19) constructed at ε(ti ) = 4.0 of the 2-D map
(23) and (24), and the region of blue points is numerically obtained from the curve
(19) as
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Fig. 6 The time-dependent
2-D map (23) and (24) for the
interval ti=0 ≤ ti ≤ ti=120;
a three cases of ε(ti=0−120),
b the solution xn(ti=0−120),
c the solution yn(ti=0−120),
and d the orbit of points
(xn(ti=0−120), yn(ti=0−120))

1

a1
xn(ti ) + 1

a22
y2n (ti ) ≤ 1, (26)

which gives a dynamic stability region without the external force b1(ti ) for the fol-
lowing fractal set M defined by initial values {x0, y0} [17, 27];

M = {x0, y0 ∈ R | lim
n→∞ xn, yn < ∞}, (27)

where the ε(ti ) in (23) plays an important role as the system parameter in the
2-D map. It is found that for the region of red points in the Case 2 (red) of
Fig. 8a, b, the red quadratic boundary curve is equivalent to the Case 1 (blue)
under the condition; 1 ≤ ε(ti=0−240) ≤ 4.0 or 1/2 ≤ a2(ti=0−240) ≤ 1.0 in the
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Fig. 7 The time-dependent 2-D map (23) and (24) for a long interval ti=0 ≤ ti ≤ ti=240; a three
cases of ε(ti=0−240), b the solution xn(ti=0−240), c the solution yn(ti=0−240), and d the orbit of
points (xn(ti=0−240), yn(ti=0−240))

2-D map (23) and (24), and the red points give a dynamic stability region with
the same initial values as the blue points. The two regions include black points
corresponding to the Case 3 (black) in Fig. 8. Here, it should be emphasized for
the fractal sets that an initial point (x0, y0) is firstly given, and we have points
{(x1, y1), . . . , (x240, y240)} by iterating the 2-D map, that is, if we start the iteration
with the point (x1, y1) as a new initial point (x̃0, ỹ0), then we find a new sequence of
points {(x̃1, ỹ1) ≡ (x2, y2), . . . , (x̃239, ỹ239) ≡ (x240, y240)}, and so on. Therefore,
the dynamic stability regions consisting of blue points and red points in Fig. 8 can
be regarded as spatiotemporal fractal sets for the 2-D map (23) and (24) with (25).
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Fig. 8 Spatiotemporal fractal sets for three cases (blue, red, black) with a one initial point, and
with b five initial points

5 Conclusions

In this paper, we have obtained firstly the time-dependent logistic map for popula-
tion growth by introducing the time-dependent chaos function, and have presented
numerically the coexistence of coherence and incoherence in time, under the assump-
tion of a time-dependent system parameter caused by the change of environment as
one of non-equilibrium open systems. Secondly, we have considered the 2-D solv-
able chaos map corresponding to the FHN model, and have discussed the coherent
and incoherent dynamics in time, under the assumption of a time-dependent system
parameter. Then, we obtain spatiotemporal fractal sets numerically as the coexistence
of coherent and incoherent states. The result may describe the essential nonlinear
dynamics of the 1-D time-dependent logistic map for population growth and the 2-D
map corresponding to the FHN model for neural phenomena.
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Appendix

% MATLAB program for Fig. 2 by S. Kawamoto 
% initial conditions 
T=zeros(1, 120); 
MYU1=zeros(1, 120); 
MYU2=zeros(1, 120); 
MYU3=zeros(1, 120); 
X1=zeros(120, 120); 
X2=zeros(120, 120); 
X3=zeros(120, 120); 
XX1=zeros(1, 120); 
XX2=zeros(1, 120); 
XX3=zeros(1, 120); 
c=50; 
L=1; 
PR=1223; 
X10=0.01; 
X20=0.01; 
X30=0.01; 
% time-dependent logistic map and system parameter (ti)  
for I=1:120, T(I)=I.*L.*pi./PR; end 
for I=1:120, MYU1(I)=0.999+3.001/(1.0+3000*exp(-c.*T(I))); 
                    MYU2(I)=0.999+2.601/(1.0+2600*exp(-c.*T(I))); 
                    MYU3(I)=0.999+1.801/(1.0+1800*exp(-c.*T(I))); end 
for I=1:120 
      for N=1 
           X1(I, N)=MYU1(I).*X10.*(1.0-X10); 
           X2(I, N)=MYU2(I).*X20.*(1.0-X20); 
           X3(I, N)=MYU3(I).*X30.*(1.0-X30); 
      end  
      for N=2:I 
           X1(I, N)=MYU1(I).*X1(I, N-1).*(1.0-X1(I, N-1)); 
           X2(I, N)=MYU2(I).*X2(I, N-1).*(1.0-X2(I, N-1)); 
           X3(I, N)=MYU3(I).*X3(I, N-1).*(1.0-X3(I, N-1)); 
      end 
end 
for I=1:120 
      XX1(I)=X1(I, I); 
      XX2(I)=X2(I, I); 
      XX3(I)=X3(I, I); 
end 
% figures (a) – (b) 
figure(‘Position’, [100 100 350 100]) 
plot(T, MYU3, ‘-k.’, ‘MarkerFaceColor’, ‘k’, ‘MarkerSize’, 5); hold on 
plot(T, MYU2, ‘-r.’, ‘MarkerFaceColor’, ‘r’, ‘MarkerSize’, 5); hold on 
plot(T, MYU1, ‘-b.’, ‘MarkerFaceColor’, ‘b’, ‘MarkerSize’, 5); hold off 
xlabel(‘ti=0-120’); ylabel(‘MYU(ti)’) 
figure(‘Position’, [100 100 350 200]) 
plot(T, XX3, ‘-k.’, ‘MarkerFaceColor’, ‘k’, ‘MarkerSize’, 5); hold on 
plot(T, XX2, ‘-r.’, ‘MarkerFaceColor’, ‘r’, ‘MarkerSize’, 5); hold on 
plot(T, XX1, ‘-b.’, ‘MarkerFaceColor’, ‘b’, ‘MarkerSize’, 5); hold off 
xlabel(‘ti=0-120’); ylabel(‘xn(ti)’) 
figure(‘Position’, [100 100 350 200]) 
plot(T, XX3, ‘k.’, ‘MarkerFaceColor’, ‘k’, ‘MarkerSize’, 4); hold on 
plot(T, XX2, ‘r.’, ‘MarkerFaceColor’, ‘r’, ‘MarkerSize’,7); hold on 
plot(T, XX1, ‘b.’, ‘MarkerFaceColor’, ‘b’, ‘MarkerSize’, 7); hold off 
xlabel(‘ti=0-120’); ylabel(‘xn(ti)’) 
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Stochastic Navier-Stokes Equation
for a Compressible Fluid: Two-Loop
Approximation
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Lukáš Mižišin and Viktor Škultéty

Abstract A model of fully developed turbulence of a compressible fluid is briefly
reviewed. It is assumed that fluid dynamics is governed by a stochastic version of
Navier-Stokes equation. We show how corresponding field theoretic-model can be
obtained and further analyzed by means of the perturbative renormalization group.
Two fixed points of the RG equations are found. The perturbation theory is con-
structed within formal expansion scheme in parameter y, which describes scaling
behavior of random force fluctuations. Actual calculations for fixed points’ coordi-
nates are performed to two-loop order.
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1 Introduction

Many natural phenomena are concerned with hydrodynamic flows. Ranging from
microscopic up to macroscopic spatial scales fluids can exist in profoundly dif-
ferent states. Especially intrigued behavior is observed in case of turbulent flows.
Such flows are ubiquitous in nature and are more common than generally believed
[1, 2]. Despite a substantial amount of effort that has been put into investigation of
turbulence, the problem itself remains unsolved.

Most of studies are devoted to the case of incompressible fluid. However, partic-
ularly in an astrophysical context we have to deal with a compressible fluid rather
than incompressible one [3]. In recent years there has also been an increased research
activity of compressible turbulence in magnetohydrodynamic context [4–8]. In this
work, our aim is to study compressible turbulence [9, 10], partially motivated by
previous studies [11–14]. In case of a compressible medium, we are in fact exam-
ining system in which sound modes are generated. In fact, any compression leads
to acoustic (sound) waves that are transmitted through the medium and serve as the
prime source for dissipation. So the problem of the energy spectrum (and dissipation
rate) of a compressible fluid is essentially one of stochastic acoustics.

The investigation of such behavior as anomalous scaling requires a lot of thorough
analysis to be carried out. The phenomenon manifests itself in a singular power-like
behavior of some statistical quantities (correlation functions, structure functions,
etc.) in the inertial-convective range in the fully developed turbulence regime [1, 2,
15]. A quantitative parameter that describes intensity of turbulent motion is so-called
Reynolds number Re that represents a ratio between inertial and dissipative forces.
For high enough values of Re � 1 inertial interval is exhibited in which just transfer
of kinetic energy from outer L (input) to microscopic l (dissipative) scales take place.

A very useful and computationally effective approach to the problems with many
interacting degrees of freedom on different scales is the field-theoretic renormaliza-
tion group (RG) approach which can be subsequently accompanied by the operator
product expansion (OPE); see the monographs [16–20]. One of the greatest chal-
lenges is an investigation of the Navier-Stokes equation for a compressible fluid,
and, in particular, a passive scalar field advection by this velocity ensemble. The first
relevant discussion and analysis of passive advection emerged a few decades ago
for the Kraichnan’s velocity ensemble [21–24]. Further studies developed its more
realistic generalizations [25–32]. The RG+OPE technique was also applied to more
complicatedmodels, in particular, to the compressible case [11, 33–45]. Our aim here
is to improve existing (one-loop) results on compressible stochastic Navier-Stokes
equation and determine relevant physical quantities to two-loop order. Note that in
contrast to static phenomena transition from one-loop to two-loop approximation
pose in stochastic dynamics much more demanding task.

The paper is a continuation of previous works [12–14] and it is organized as
follows. In the introductory Sect. 2 we give a brief overview of the model and we
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reformulate stochastic equations into field-theoretical language. Section 3 is devoted
to the renormalization group analysis. In Sect. 4we present the fixed points’ structure,
describe possible scaling regimes and calculate critical dimensions. The concluding
Sect. 5 is devoted to a short discussion and future plans.

2 Model

Let us start with a discussion of a model for compressible velocity fluctuations.
The dynamics of a compressible fluid is governed by the stochastic Navier-Stokes
equation [9] taken in the form

ρ∇tvi = ν0[δik∂2 − ∂i∂k ]vk + μ0∂i∂kvk − ∂ip + f v
i , (1)

where the operator ∇t stands for an expression ∇t = ∂t + vk∂k , also known as a
Lagrangian (or convective) derivative. Further, ρ = ρ(t, x) is a fluid density field,
vi = vi(t, x) is the velocity field, ∂t = ∂/∂t is a time derivative, ∂i = ∂/∂xi is a i-th
component of spatial gradient, ∂2 = ∂i∂i is the Laplace operator, p = p(t, x) is the
pressure field, and f v

i is the external force, which is specified later. In what follows
we employ a condensed notation in which we write x = (t, x), where a spatial vector
variable x equals (x1, x2, . . . , xd ) with d being a dimensionality of space. Although
it is possible to consider d as additional free parameter [14], in this work spatial
dimension d implicitly takes most physically relevant value 3. Two parameters ν0
and μ0 in Eq. (1) are two viscosity coefficients [9]. Summations over repeated vector
indices (Einstein summation convention) are always implied in this work.

Let usmake two important remarks regarding the physical interpretation ofEq. (1).
First, this equation should be regarded as an dynamic equation only for a fluctuating
part of the total velocity field. In other words, it is assumed that the mean (regular)
part of the velocity field has already been subtracted [1, 2]. Second, the random
force f v

i mimics not only an input of energy, but to some extent it is responsible for
neglected interactions between fluctuating part of the velocity field and the mean
part [16, 19]. In reality, the latter interactions are always present and their mutual
interplay generates turbulence [2].

Let us note that stochastic theory of turbulence is similar to a fluctuation theory for
critical phenomena [16, 46]. The main difference is lack of Hamilton-like operator
for turbulence. Nevertheless, it is still possible to take advantage of well-established
theoretical tools borrowed from quantum field theory and employ them on turbulence
[16, 18].

To complete the theoretical set-up of the model, Eq. (1) has to be augmented by
additional two relations. They are a continuity equation and a certain thermodynamic
relation [9]. The former one can be written in the form

∂tρ + ∂i(ρvi) = 0 (2)
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and the latter we choose as follows

δp = c20δρ, (3)

where δp and δρ describe deviations from the equilibrium values of pressure field
and density field, respectively.

Viscous terms in Eq. (1) characterize dissipative processes in the system and
in a turbulent state it is expected their relevance at small length scales. Without a
continuous input of energy, turbulent processes would eventually die out because
of dissipation and the flow would eventually become regular. There are various
possibilities for modeling of energy input [19]. For translationally invariant theories
it is convenient to specify properties of the random force fi in time-momentum
representation

〈fi(x)fj(x′) = δ(t − t′)
(2π)d

∫
k>m

dd k Dv
ij(k)e

ik·(x−x′), (4)

where the delta function in time variable ensures Galilean invariance of the model
[19]. The integral in Eq. (4) is infrared (IR) regularized with a parameter m ∼ L−1

v ,
where Lv denotes outer scale, i.e., scale of the biggest turbulent eddies. More details
can be found in the literature [19, 47]. The kernel function Dv

ij(k) is now assumed in
the following form

Dv
ij(k) = g0ν

3
0k

4−d−y

{
Pij(k) + αQij(k)

}
, (5)

where g0 is a coupling constant, k = |k| is the wave number, y is a suitable scaling
exponent, and α is a free dimensionless parameter. Parameter α basically measures
intensity with which energy flows into a system via longitudinal modes.

Further, the projection operators Pij and Qij in the momentum space read

Pij(k) = δij − kikj
k2

, Qij = kikj
k2

, (6)

and correspond to the transversal and longitudinal projector, respectively.
Due to its functional form with respect to momentum dependence, function (5)

corresponds to a non-local term in ensuing field theoretic action. However, physical
and plausiblemathematical considerations [16] justify this choice. One of the reasons
is a straightforward modeling of a steady input of energy into the system from outer
scales. In what follows we attack the problem with the RG approach. The value of
the scaling exponent y in Eq. (5) describes a deviation from a logarithmic behavior
(that is obtained for y = 0). In the stochastic theory of turbulence the main interest is
in the limit behavior y → 4 that yields an ideal pumping from infinite spatial scales
[19].
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Let us make a brief remark about possible generalization of the model. Although,
we present our results with a general spatial dimension d , we have always implicitly
inmind itsmost realistic value d = 3. However, it would be possible to generalize the
model [14] and consider d as additional small parameter, similar to the well-known
ϕ4−theory in critical statics [18, 20]. Usually the spatial dimension d plays a pas-
sive role and is considered only as an independent parameter. However, Honkonen
and Nalimov [48] showed that in the vicinity of space dimension d = 2 additional
divergences appear in the model of the incompressible Navier-Stokes ensemble and
these divergences have to be properly taken into account. Their procedure also nat-
urally leads into improved perturbation expansion [49, 50]. As can be seen from
the RG discussion in the next section a similar situation occurs for the model (1) in
the vicinity of space dimension d = 4. In this case an additional divergence appears
in the 1-irreducible Green function

〈
v′v′〉

1-ir. Utilizing this feature one can employ
a double expansion scheme, in which the formal expansion parameters are y, and
ε = 4 − d , i.e., a deviation from the space dimension d = 4 [32, 48].

Our main theoretical tool is the renormalization group theory. Its proper applica-
tion requires a proof of a renormalizability of the model, i.e., a proof that only a finite
number of divergent structures exists in a diagrammatic expansion [17, 18]. As was
shown in [51], this requirement can be accomplished by the following procedure:
first the stochastic equation (1) is divided by density field ρ, then fluctuations in vis-
cous terms are neglected, and, finally using the expressions (2) and (3) the problem
is formulated into a system of two coupled differential equations

∇tvi = ν0[δik∂2 − ∂i∂k ]vk+μ0∂i∂kvk −∂iφ+fi, (7)

∇tφ = −c20∂ivi, (8)

where a new field φ = φ(x) has been introduced for convenience. This new field
is related to the density fluctuations via the relation φ = c20 ln(ρ/ρ) [11, 40]. A
parameter c0 denotes the adiabatic speed of sound, ρ is the mean value of density
field ρ, and fi = fi(x) is the external force normalized per unit mass.

According to the general theorem [16, 18], the stochastic problem given by Eqs.
(7) and (8), is tantamount to the field theoretic model with a doubled set of fields
Φ = {

vi, v
′
i,φ,φ′} and given DeDominicis-Janssen action functional. The latter can

be written in a compact form as a sum of two terms

Stotal[Φ] = Svel[Φ] + Sden[Φ], (9)

where the first term describes a velocity part

Svel[Φ] = v′
iD

v
ijv

′
j

2
+ v′

i

[
−∇tvi + ν0(δij∂

2 − ∂i∂j)vj + u0ν0∂i∂jvj − ∂iφ

]
, (10)
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and the second term is given by the expression

Sden[Φ] = φ′[−∇tφ + v0ν0∂
2φ − c20(∂ivi)]. (11)

Here, Dv
ij is the correlation function (5). Note that we have introduced a new dimen-

sionless parameter u0 = μ0/ν0 > 0 and a new term v0ν0φ
′∂2φ with another positive

dimensionless parameter v0, which is needed to ensure multiplicative renormaliz-
ability [16, 40].

Further, we employ a condensed notation, in which integrals over the spatial
variable x and the time variable t, as well as summation over repeated indices, are
not explicitly written, for instance

φ′∂tφ =
∫
dt

∫
dd x φ′(t, x)∂tφ(t, x),

v′
iDikv

′
k =

∑
ik

∫
dt

∫
dd x

∫
dd x′ vi(t, x)Dv

ik(x − x′)vk(t, x′). (12)

In a functional formulation various stochastic quantities (correlation and structure
functions) are calculated as path integrals with weight functional

exp(Stotal[Φ]).

The main benefits of such approach are transparency in a perturbation theory and
potential use of powerful methods of the quantum field theory, such as Feynman
diagrammatic technique and renormalization group procedure [18–20].

3 Renormalization Group Analysis

Ultraviolet renormalizability reveals itself in a presence divergences in Feynman
graphs, which are constructed according to simple laws [16, 20] using a graphical
notation from Fig. 1. From a practical point of view, an analysis of the 1-particle
irreducible Green functions, later referred to as 1-irreducible Green functions fol-
lowing the notation in [16], is of utmost importance. In the case of translationally
invariant models [16, 20] two independent scales have to be introduced: the time
scale T and the length scale L. Thus the canonical dimension of any quantity F (a
field or a parameter) is described by two numbers, the frequency dimension dω

F and
the momentum dimension dk

F , defined such that following normalization holds

dk
k = −dk

x = 1, dω
k = dω

x = 0, dω
ω = −dω

t = 1, dk
ω = dk

t = 0, (13)
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Fig. 1 Graphical representation of elements of the perturbation theory (9)

and the given quantity then scales as

[F] ∼ [T ]−dω
F [L]−dk

F . (14)

The remaining dimensions can be found from the requirement that each term of the
action functional (9) be dimensionless, with respect to both the momentum and the
frequency dimensions separately.

Based on dk
F and dω

F the total canonical dimension dF = dk
F + 2dω

F can be intro-
duced, which in the renormalization theory of dynamic models plays the same role
as the conventional (momentum) dimension does in static problems [16]. Setting
ω ∼ k2 ensures that all the viscosity and diffusion coefficients in the model are
dimensionless. Another option is to set the speed of sound c0 dimensionless and
consequently obtain that ω ∼ k, i.e., dF = dk

F + dω
F . This variant would mean that

we are interested in the asymptotic behavior of the Green functions as ω ∼ k → 0,
in other words, in sound modes in turbulent medium. Even though this problem is
very interesting itself, it is not yet accessible for the RG treatment, so we do not dis-
cuss it here. The choice ω ∼ k2 → 0 is the same as in the models of incompressible
fluid, where it is the only possibility because the speed of sound is infinite. A similar
alternative in dispersion laws exists, for example, within the so-called model H of
equilibrium dynamical critical behavior, see [16, 20].

The canonical dimensions for the model (9) are listed in Table 1. It then directly
follows that the model is logarithmic (the coupling constant g ∼ [L]−y becomes
dimensionless) at y = 0. In this work we use the minimal subtraction (MS) scheme
for the calculation of renormalization constants. In this scheme the UV divergences
in the Green functions manifest themselves as pole in y.

The total canonical dimension of any 1-irreducible Green function Γ is given by
the relation

δΓ = d + 2 −
∑
Φ

NΦdΦ, (15)
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Table 1 Canonical dimensions of the fields and parameters entering velocity part of the total action
(9)

F v′
i vi φ′ φ m, μ, Λ ν0, ν c0, c g10 u0, v0 w0, u,

v, g, α

dk
F d + 1 −1 d + 2 −2 1 −2 −1 y 0

dω
F −1 1 −2 2 0 1 1 0 0

dF d − 1 1 d − 2 2 1 0 1 y 0

where NΦ is the number of the given type of field entering the function Γ , dΦ is the
corresponding total canonical dimension of field Φ, and the summation runs over all
types of the fields Φ in function Γ [16, 18, 20].

Superficial UV divergences whose removal requires counterterms can be present
only in those functions Γ for which the formal index of divergence δΓ is a non-
negative integer. A dimensional analysis should be augmented by the several addi-
tional considerations. They are all explicitly stated in the previous works [11, 14].
Therefore, we do not repeat them here and continue with a simple conclusion that
model with the action (9) is renormalizable.

From a straightforward inspection of RG theory it is clear that for determination
of scaling regimes only two Green functions have to be considered. The reason is
that we study theory with three charges, g, u and v. Once their fixed values are found,
we would be able to study scaling regimes and their stabilities. Thus only graphs that
are needed to be calculated are two-point Green functions 〈vv〉1PI and 〈pp〉1PI. In a
one-loop approximation [11, 14, 40] the calculation is simple as there are only two
Feynman diagrams at this level

. (16)

For two-loop approximation, following graphs have to be computed for the velocity
part

..
(17)

On the other hand, for the pressure part additional eight diagrams are needed
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..
(18)

The remaining diagrams are needed only for determination of anomalous dimension
of fields, which is left for future study.

In contrast to the incompressible case [49] compressible model (9) proved to be
much more demanding from technical point of view. This is caused by three reasons.
First, in compressible case there are six physical quantities (μ0, ν0, v0, g0,α, c0)
instead of just two (ν0 and charge g0) for incompressible fluid. Second, propagators
now contain both transversal and longitudinal parts and last, interaction vertices are
not proportional to the momentum of prime field, what implies that the degree of UV
divergence could not be lowered.

In evaluation of UV divergent parts of Feynman diagrams we have applied
approach suggested in [49]. Using symbolic software [52] we were able to sim-
plify some calculations and to determine divergent parts at least in numerical sense.
Because the details of calculation are rather straightforward and proceed in a standard
fashion [16–18, 20], we refrain from mentioning them here.

4 Scaling Regimes

The relation between the initial and renormalized action functionals S(ϕ, e0) =
SR(Zϕϕ, e,μ) (where e0 is the complete set of bare parameters and e is the set
of their renormalized counterparts) yields the fundamental RG differential equation:

{
DRG + Nϕγϕ + Nϕ′γϕ′

}
GR(e,μ, . . . ) = 0, (19)

where G = 〈ϕ · · · ϕ〉 is a correlation function of the fields ϕ; Nϕ and Nϕ′ are the
counts of normalization-requiring fields ϕ and ϕ′, respectively, which are the inputs
to G; the ellipsis in expression (19) stands for the other arguments of G (spatial and
time variables, etc.).DRG is the operation D̃μ expressed in the renormalized variables
and D̃μ is the differential operation μ∂μ for fixed e0. For the present model it takes
the form

DRG = Dμ + βg∂g + βu∂u + βv∂v − γνDν − γcDc. (20)

Here, we have denoted Dx ≡ x∂x for any variable x. The anomalous dimension γF
of some quantity F (a field or a parameter) is defined as
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γF = Z−1
F D̃μZF = D̃μ ln ZF , (21)

and the β functions for the four dimensionless coupling constants g, u and v, which
we now redefine according to the following rule

g ≡ g1, u ≡ g2, v ≡ g3. (22)

for convenience. β functions express the flows of parameters under the RG transfor-
mation, and are defined through relation βi = D̃μgi. This yields

β1 = g1 (−y − γ1), β2 = −g2γ2, β3 = −3γ3, (23)

γ1 ≡ γg, γ2 ≡ γu, γ3 ≡ γv. (24)

Based on the analysis of the RG equation (19) it follows that the large scale behavior
with respect to spatial and time scales is governed by the IR attractive (“stable”) fixed
points g∗ ≡ {g∗

1 , g
∗
2 , g

∗
3}, whose coordinates are found from the conditions [16–18]:

β1(g
∗) = β2(g

∗) = β3(g
∗) = 0. (25)

Let us consider a set of invariant couplings gi = gi(s, {gi}) with the initial data
gi|s=1 = gi. Here, s = k/μ and IR asymptotic behavior (i.e., behavior at large dis-
tances) corresponds to the limit s → 0. An evolution of invariant couplings is
described by the set of flow equations

Dsgi = βi(gj), (26)

whose solution as s → 0 behaves approximately like

gi(s, g
∗) ∼= g∗

i + const × sωi , (27)

where {ωi} is the set of eigenvalues of the matrix

Ωij = ∂βi/∂gj|g∗ . (28)

The existence of IR attractive solutions of the RG equations leads to the existence
of the scaling behavior of Green functions. From (27) it follows that the type of the
fixed point is determined by the matrix (28): for the IR attractive fixed points the
matrix Ω has to be positive definite.

Altogether two IR attractive fixed points are found, which defines possible scaling
regimes of the system. The fixed point FPI (the trivial or Gaussian point) is stable if
y < 0. This regime is characterized by irrelevance of all his charges, i.e.,

g∗
1 = g∗

2 = g∗
3 = 0. (29)
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On the other hand, the fixed point FPII is fully nontrivial, i.e. all his coordinates
attain nonzero value. We have found the following numerical expressions for them

g∗
1 = 2y + −2.00625α2 − 4.8847α + 4.4206

5α + 12
y2, (30)

g∗
2 = 1 + 0.125797α2 − 0.83854α − 0.188233

5α + 12
y, (31)

g∗
3 = 1 + 0.217295α3 + 1.7247α2 − 1.27116α − 6.9228

(α + 6)(5α + 12)
y. (32)

To one-loop order we have thus obtained same results as has been claimed previously
[11, 40]. The initial analysis reveals that FPII is nontrivial for y > 0 and not very
large values of α.

5 Conclusion

In the present paper the compressible fluid governed by the Navier-Stokes velocity
ensemble has been examined. The fluid was assumed to be compressible and the
space dimension was fixed to d = 3. The problem has been investigated by means
of renormalization group and expansion scheme in y was constructed.

There are two nontrivial IR stable fixed points in this model and, therefore, the
critical behavior in the inertial range demonstrates two different regimes depend-
ing on the the scaling exponent y. Coordinates of nontrivial fixed points have been
obtained for the first time to two-loop precision. This can be considered as a first
step to full two-loop analysis of the model.
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Stability of a Nonlinear Viscoelastic
Problem Governed by Lamé Operator

Meflah Mabrouk and Khoukhi Alae Nore

Abstract In this paper wewill investigated the stability of the nonlinear viscoelastic
problem governed by Lamé operator. When I’ study the existence and uniqueness in
(Meflah in Int J Math Arch 2(5):693–697, 2011 [5]). We denote by � an open subset
of Rn with regular boundary �. Let Q the cylinder Rn

x × Rt with Q = � × ]0,T[;
T fini, � boundary of Q, L designed Lamé system define by μ� + (λ + μ)∇div, f,
u0(x) and u1(x) are functions. We look for the stabilisation of a function u = u(x, t),
x ∈ �, t ∈ ]0, T[, solution of the problem (P).

(P)

⎧
⎪⎪⎨

⎪⎪⎩

∂2u
∂t2 − Lu +

t∫

0
g(t − s)�u(s)ds + |u|pu = f in� × ]0,T[

u = 0 on�

u(x, 0) = u0(x),
∂u(x,t)

∂t |t=0 = u1(x) x ∈ �

.

Keywords Nonlinear · Priori estimate · Stability · Viscoelastic

1 Introduction

Viscoelastic equations arising in many mathematical models, Cavalcanti et al. [1]
studies in bounded domain the problem:

∂2u

∂t2
− �u + t∫

0
g(t − τ)�u(τ )dτ + a(x)

∂u

∂t
+ |u|γ u = 0;

g positive function and γ > 0.
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Messaoudi [6] study the system

⎧
⎪⎪⎨

⎪⎪⎩

∂2u
∂t2 − �u + t∫

0
g(t − τ)�u(τ )dτ + a(x) ∂u

∂t = |u|γ u t > 0

u(x, t) = 0 t ≥ 0
u(x, 0) = u0(x), u′(x, 0) = u1(x) x ∈ �

When g = o. Lions [2] invented some methods of solving boundary nonlinear
problem. The author study [3, 5] a nonlinear problem governed by Lamé operator.

In this work, we needed in the proof of our result, the relaxation function g(t)
satisfied with the conditions (G1) and (G2). The first is necessary to guarantee the
hyperbolicity and the second using for assure the estimate results.

(G1) g: R+ ! R+ is a bounded C1 function satisfying

g(0) > 0, μ −
+∞∫

0

g(s)ds = l > 0

(G2) There exists a positive constant ξ such that

g(t) ≤ −ξgp(t), t ≥ 0; 1 ≤ p ≤ 3/2.

2 The Energy Equation

We multiply the partial diferential equation

∂ˆ2u

∂tˆ2
− Lu + ∫

0
ˆtg(t − s)�u(s)ds + |u|ˆp u = f $$

by ut ,and integrating over � and using green’s formula, then we define the energy
function related with problem (P) is given

E(t) = 1

2

[

‖ut‖22 + (μ −
∫ t

0
g(s)ds)‖�u‖22 + (λ + μ)‖divu‖22(go∇u)(t)

]

+ 1

p + 1
‖�u‖22 > 0

With

(go�u)(t) =
t∫

0

g(t − s)‖u(t) − u(s)‖22(s)ds
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We denote by ‖‖k. The LK-norm over �. In particular, the L2-norm is denoted
‖‖2, and throughout this presentation we assume (u0, u1) ∈ (H1

0(�) ∩ Lp+2(�))n

We define the function

F(t) = E(t) + ε1ϕ(t) + ε2ψ(t)

where

ϕ(t) =
∫

�

u.utdx

And

ψ(t) = −
∫

�

ut

t∫

0

g(t − τ)(u(t) − u(τ ))dτdx

Lemma

α1F(t) ≤ E(t) ≤ α2F(t)

Lemma

ϕ′(t) = ‖ut (t)‖22 − l

2
‖�u‖22 + 1 − l

2l
(go∇u)(t)

Lemma

ψ′(t) = δ + 2δ(1 − l)

⎛

⎝

t∫

0

g(s)ds

⎞

⎠‖�u‖22 +
⎛

⎝δ −
t∫

0

g(s)ds‖ut (t)‖22
⎞

⎠

+ 1

4δ
(go�u)(t) +

(

2 + 1

4δ

) t∫

0

g(s)ds(go∇u)(t)

+ 1

4δ
Cp · (−g′o∇u

)
(t).

Stability
We define the Liaponov function

F(t) = E(t) + ε1ϕ(t) + ε2ψ(t)

F′(t) = E′(t) + ε1ϕ
′(t) + ε2ψ

′(t) ≤ 1

2
(g′o∇u)(t)
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− ı

2
g(t)‖�u‖22 + ε1

[

‖ut (t)‖22 − l

2
‖�u‖22 + 1 − l

2l
(go∇u)(t)

]

+ ε2

⎡

⎢
⎢
⎢
⎢
⎣

δ + 2δ(1 − l)
t∫

0
g(s)ds‖�u‖22 +

(

δ −
t∫

0
g(s)ds

)

‖ut (t)‖22
+ 1

4δ (go�u)(t) + (
2δ + 1

4δ

) t∫

0
g(s)ds)(go∇u)(t)

+ g(0)
4δ Cp · (−g′o∇u

)
(t)

⎤

⎥
⎥
⎥
⎥
⎦

We have

t∫

0

g(s)ds ≥
t=0∫

0

g(s)ds = g(0)

And

∞∫

0

g(s)ds = 1 − l

C2
p

So

F′(t) ≤ [ε2(g0 − δ) − ε1]‖ut (t)‖22 −
[

ε1.l

2
− ε2δ

C2
p

(
(1 − l) + 2

(
1 − l2

))
]

‖�u‖22

+
[

ε1.(1 − l)

2l
+ ε2

c2p

(

2δ + 1

4δ

)

(1 − l)

]

(go∇u)(t) + 1

4δ
(go�u)(t)

+
[
1

2
− g(0)

4δ
Cp

]

(g′o∇u)(t).

We choose δ such that g0 − δ > 1
2g0 And

2δ

lC2
p

(
(1 − l) + 2(1 − l)2

)
<

1

4
g(0)

We find

ε2(g0 − δ) − ε1 >
1

2
g(0)ε2 − ε1 > 0 ⇒ ε1 <

1

2
g(0)ε2

And

ε1 − 2δ

lC2
p

(
(1 − l) + 2(1 − l)2

)
ε2 > ε1 − 1

4
g(0)ε2 > 0 ⇒ ε1 >

1

4
g(0)ε2
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So

1

4
g(0)ε2 < ε1 <

1

2
g(0)ε2

Will make

K1 = ε2
(
g0 − δ

) − ε1 > 0

K2 = ε11

2
− 2δ

lC2
p

(
(1 − l) + 2(1 − l)2

)
> 0

We then pick ε1 and ε2 so small that

α1F(t) ≤ E(t) ≤ α2F(t)

And

1

4
g(0)ε2 < ε1 <

1

2
g(0)ε2

Remain valid and

1

2
− ε2Cp

g(0)

4δ
> 0

Then we find

F′(t) ≤ −K1‖ut (t)‖22 − K2‖�u(t)‖22 + C[(go∇u)(t) + (go�u)(t)];
F′(t) ≤ −βE(t) + C[(go∇u)(t) + (go�u)(t)]; ∀t > t0; ∀ β,C > 0

We multiply (*) by γ (t), we find

γ (t)F′(t) ≤ βγ (t)E(t) + Cγ (t)[(go∇u)(t) + (go�u)(t)]

Then

β

t∫

t0

γ (s)E(s)ds ≤ η

We have

E(t) ≤ E(s), s ≤ t γ(s)E(t) ≤ γ(s)E(s)
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βE(t)

t∫

t0

γ (s)ds =
t∫

t0

βγ (s)E(t)ds ≤
t∫

t0

βγ (s)E(s)ds ≤ η

Then

E(t) = αt/

t∫

0

γ (s)ds ∀t > t0.

3 Conclusions

In this work we have proof that the energy E(t) decay polynomial with respect to
time and it’s easier to show that it’s also decay exponentially. Which it’s give us the
stability of the problem.
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Renormalization Group Approach
of Directed Percolation: Three-Loop
Approximation

L. Ts. Adzhemyan, M. Hnatič, M. V. Kompaniets, T. Lučivjanský
and L. Mižišin

Abstract Directed percolation near its second-order phase transition is investigated
by the means of perturbative renormalization group approach. We study a numerical
calculation of the renormalization group functions in the ε-expansion. Within this
procedure anomalous dimensions are expressed in terms of irreducible renormalized
Feynman diagrams. Numerical calculation of integrals was performed on Hybrilit
cluster using Vegas algorithm from CUBA library.

Keywords Directed percolation · Renormalization group · Numerical calculation

1 Introduction

Directed percolation (DP) process is an important model in statistical physics
[1–3]. It provides a paramount example of non-equilibriumphase transitions between
absorbing (inactive) and active state. In the absorbing state, there are no spreading
particles in the system, whereas in the active state the number of active particles
fluctuates around a certain mean value. This type of transition can be observed, for
instance in model of spreading epidemics [1, 4], forest fires [3], transport in random
media [1, 2] and so on. The quantum field theory of DP is used in order to describe
cross-section of particles at high energies (Reggeon field theory) [5].
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An important method for analysis of the second order phase transition is the renor-
malization group (RG) approach [6] and ε-expansion, where ε is the deviation from
the upper critical dimension dc = 4.Within this method, critical exponents of DP are
known only to the second-order (two-loop approximation) of the perturbation theory
[1, 3]. In this work, the third-order pertubative corrections are calculated numeri-
cally by two distinct methods. In the first case, the null-momentum (NM) subtraction
scheme is used. In this procedure anomalous dimensions γ are expressed in terms of
irreducible renormalized Feynman diagrams and thus the calculation of renormaliza-
tion constants can be entirely skipped [7]. In the second case, theminimal subtraction
(MS) scheme is utilized and contributions to the renormalization constants for each
Feynman diagram are determined. Let us note that universal quantities, in the form
of the ε-expansion, are independent of the choice of renormalization scheme.

The numerical evaluation of contributions Feynman diagrams plays very impor-
tant role in renormalization methods. In this work we choose a multidimensional
integration algorithm: Vegas [8, 9] is a Monte Carlo algorithm with importance
sampling.

2 The Model and Renormalization

A field theoretical formulation of the percolation process [1–3] is based on the fol-
lowing De Dominicis-Janssen action functional

S = ψ†(−∂t + D0∂
2 − D0τ0)ψ + D0λ0

2
[(ψ†)2ψ − ψ†ψ2], (1)

where∂t = ∂/∂t,∂2 is theLaplace operator,ψ is a coarse-grain density of percolating
particles, ψ† is an auxiliary (Martin-Siggia-Rose) response field, D0 is a diffusion
constant, λ0 is a positive coupling constant and τ0 is a deviation from the threshold
value of injected probability (an analog of critical temperature in static models [6]).
The model is studied near its critical dimension 2ε = 4 − d in the region where
τ0 acquires its critical value. The expansion parameter of the perturbation theory
is rather λ2

0 than λ0 as it could be easily seen by a direct calculation of Feynman
diagrams. This motivates introduction of a new charge u as follows u ≡ λ2. Further,
in Eq. (1) and rest of the paper we employ abbreviated notation, in which integrals
over the spatial and time variables are not explicitly written.

The renormalized action functional can be written in the following form

SR = ψ†(−Z1∂t + Z2D∂2 − Z3Dτ )ψ + Z4Dλμε

2
[(ψ†)2ψ − ψ†ψ2], (2)

where μ is renormalization mass [6]. The model (1) exhibits important symmetry
with respect to the following replacement
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ψ(t) ←→ −ψ†(−t). (3)

Immediate consequence of this symmetry is that two triple vertice, i.e. (ψ†)2ψ and
ψ†ψ2, are renormalized by the same renormalized constant [1].

On the other hand, the action functional SR can be derived by the standard proce-
dure of multiplicative renormalization of all the fields and parameters

ψ0 = ψZψ, ψ†
0 = ψ†Zψ† , D0 = DZD, λ0 = λμεZλ, τ0 = τZτ . (4)

and the relations among renormalization constants parameters, fields and Zi, i =
1, 2, 3, 4 can be obtained by a direct comparison.

In this work, we use twomethods for calculation of universal quantities. In the first
method [10], the renormalization scheme at the normalization point (NP), p = 0,ω =
0 and τ = μ2 is considered. The counterterms are then specified at the normalization
point, and for numerical calculation, it is advantageous to express renormalization
constants in terms of normalized Green functions

Γ̄1 = ∂iωΓψ†ψ

∣
∣
p=0,ω=0, Γ̄3 = −Γψ†ψ − Γψ†ψ

∣
∣
τ=0

Dτ

∣
∣
∣
p=0,ω=0

,

Γ̄2 = − 1

2D
∂2
pΓψ†ψ

∣
∣
p=0,ω=0, Γ̄4 = Γψ†ψ†ψ − Γψ†ψψ

Dλμε

∣
∣
∣
p=0,ω=0

. (5)

that satisfy the following conditions

Γ̄i|τ=μ2 = 1, i = 1, 2, 3, 4. (6)

Further, RG equations are determined from the condition that original (bare)
Green function are independent of the momentum scale μ [6], and are the same as
in minimal subtraction scheme

(μ∂μ + βu∂u − τγτ∂τ − DγD∂D)Γ R
i = (nψγψ + nψ†γψ†)Γ R

i , (7)

where μ is a reference mass scale, nψ and nψ† are the numbers of the corresponding
fields entering the Green function under consideration, γx are anomalous dimensions
defined as follows

γx ≡ μ∂μ logZx, (8)

and βu = u(−2ε − γu) is a beta function that describes a flow of the charge u under
the RG transformation [6]. Using these equations we easily find relations for the
normalized functions

(μ∂μ + βu∂u − τγτ∂τ − DγD∂D)Γ̄ R
i = γiΓ̄

R
i , (9)
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which play crucial role in considered procedure. In the renormalized Green function
Γ R, counterterms can be replaced by R operation acting on the Green functions. The
main benefit of these procedure is that R operation is taken at normalization point
and it can be expressed in terms of subtracting operation 1 − Ki, which eliminates
all divergences from Feynman diagrams [6]

RΓ =
∏

i

(1 − Ki)Γ, (10)

where product is taken over all relevant subgraphs of concrete Feynman diagram,
including given diagram as whole.

Taking into account the renormalization scheme, we can express the anomalous
dimension in terms of the renormalized derivatives of the one-particle irreducible
Green function Γ̄i at the normalization point [7]

fi ≡ R[−τ̃ ∂τ̃ Γ̄i(τ̃ )]∣∣
τ̃=1, (11)

where τ̃ = τ/μ2. The redefinition equations for anomalous dimension allows us to
express them in terms of the renormalized derivatives of the one-irreducible Green
function Γ̄i with respect to the normalized point

γi = 2fi
1 + f2

, i = 1, 2, 4. (12)

In the event renormalization scheme are used as subtraction operation for diagrams
at the normalization point and then we get a representation for R operation [7] in the
null-momentum scheme

Rχ =
∏

i

1

ni!
1∫

0

dai(1 − ai)
ni∂ni+1

ai χ({a}), (13)

where product is taken over all one-irreducible subgraphs χi (including diagram χ as
a whole) with canonical dimension ni ≥ 0 and ai - parameter that stretches moments
flowing into i-th subgraph inside this graph.

In the secondmethod, theminimal subtraction (MS) scheme,which is always used
in analytic calculation, it is applied for determination contribution each Feynman
diagram to the renormalization constant Zi. In this case, the divergent part must be
identified in graphs and after extraction of the poles in ε only numerical integration
of the rest of integral is needed. In the final step the anomalous dimension (8) is
calculated.
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3 Numerical Calculation

In percolation problem the numerical calculation was performed up to the third-
order in perturbation theory (three-loop approximation) basically consists of four
main points. They are

(1) Generation of Feynman diagrams without fields – all possible connection be-
tween vertices up to third order perturbation theory (three-loop diagrams) with
two for Γψψ† and three for Γψψψ† arguments.

(2) Construction of Feynman diagrams – The fields ψ and ψ† are attached in dia-
grams and graphs, which do not obey Feynman rules, are discarded.

(3) Symbolic construction of integrand using procedure on selected Feynman dia-
gram in Python 2.7 (library Graphine and GraphState).

(4) The numerical evaluation of integrand based on the Vegas algorithm [9]. The
first method is not suitable for all diagrams (some of them oscillate).

The first step consists in a generation of all relevant one-irreducible Feynman dia-
grams for perturbative calculation. In the Table 1 final numbers of relevant diagrams
are displayed. All of them are needed in order to calculate universal quantities of
DP process up to the third order of perturbation theory. The number of Feynman
diagram can be reduced by taking advantage of symmetry (3), and identification of
pairs of diagrams, which yields same contribution. In graphical representation the
transformation is the only reverse field in diagrams and it is easily checked that it
obeys Feynman rules Fig. 1. If the new diagram is one on the list of DP diagrams
then the number of independent diagrams decrease (Table 1, column – symmetry).

The number of relevant vertex diagrams can also be lowered using self-energy
diagram proportional to external frequency (see Table 1, column – relation). The first
step in calculation of the contribution Feynman diagram is applied to differentiation
with respect to the external frequency ∂ω . In graphical representation, it is equiva-

Table 1 The number of the Feynman diagrams for DP process up to third order
1-loop 2-loop 3-loop → Symmetry → Relation → Model A

〈ψ†ψ〉 1 2 17 → 13 → 13 → 13

〈ψ†ψψ〉 1 11 150 → 98 → 76 → 74

Fig. 1 Interaction vertices
and the propagator of DP
process

ψ†
ψ

ψ

= − = Dλμε

ψ†

ψ†
ψ

ψ ψ†= 〈ψψ†〉
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Fig. 2 Two-loop diagram:
(left) model A, (middle)
model A without external
tails (right) vertex diagram
DP proces

lent to an inclusion of the unit vertex on every internal line with ω. The self-energy
diagram is then replaced by some sum of diagram 〈ψ†ψψ〉 and contribution to quan-
tities f1 or Z1 is replaced by vertex diagram. Further, number of diagrams is reduced
by a comparison of relation corresponding different path with external frequency in
diagram. The calculation can be also avoided for renormalization constant Z3 and
contribution is determined by sum of vertex diagrams.

The vertex diagrams can be reduced using knowledge of the model A of critical
dynamics [6]. The recipe is shown on Fig. 2. The external tails are cut off in diagram
for model A and line 〈ψψ〉 is replaced by propagators 〈ψ†ψ〉〈ψψ†〉 or 〈ψψ†〉〈ψ†ψ〉.
New diagrams have the same contribution and this way they can be found groups of
diagram with same contribution in DP model (Table 1, column - model A).

In the second step symbolic expressions for all independent Feynmandiagrams are
constructed. Final expressions are calculated using time-momentum representation
for vertex diagram (contribution to f4, Z4) and self-energy diagram (contribution
only f2, Z2). Unfortunately, in first method the quantity f3 can not be determined, but
renormalization constant Z3 can be calculated in second method.

The last step consists in a numerical calculation of a integrand by modifiedMonte
Carlo methods, which is created on integration of multidimensional space. The
method was used on integration function after application R operation and inte-
grand of schematic form

I = S
3

∏

i,j
i �=j

1∫

0

dkidϑi{da}J (ki,ϑij)χ(ki,ϑij, {a}), ki · kj = kikj cos(ϑij), (14)

where kj is magnitude of the momentum vector, ϑij is angle between momentum
vectors, {a} is a set of parameters that stretches moments flowing into subgraphs,
J is the Jacobian determinant and S denotes such parameter, which is not a part
of integration. The number of integration variables depends on a given Feynman
diagram.

The main idea of quasi-Monte Carlo methods lies in a replacement of a pseudo-
random numbers by a low-discrepancy sequences. Integration is the same as in case
of Monte Carlo method and that approximation a integrand f (u) by average value
function f in points x1, . . . , xN



Renormalization Group Approach of Directed Percolation … 201

∫

[0,1]d
duf (u) ≈ 1

N

N
∑

n=1

f (xn), (15)

where integration is performed in d -dimensional space and every points xi is d -
dimensional vector. In modified Monte Carlo method the low-discrepancy sequence
was used a Sobolov sequence [11].

On the numerical calculation was used the Vegas algorithm with new implemen-
tation [9]. A detailed description of the Vegas algorithm can be found in paper [8]
and shall not be reproduce here.

The integrand is constructed in such a way that not obtain divergent part and
discontinuities. On the evaluation accuracy of calculation is used standard error for
Monte Carlo integration. In Fig. 3 results of numerical integration for the Feynman
diagram proportional to quadratic term by first method in external momentum are
displayed. Graphs proportional to p2 have one of the most complicated structure. As
can be seen in Fig. 3, results follow Gauss distribution for 100 different initial condi-
tion and 1010 samples. Final evaluation of Feynman diagram can be done as average
from all results and can be viewed as a numerical calculation for 1012 samples. This

(a) (b)

(c) (d)

Fig. 3 The numerical evaluation of a the Feynman diagram to Γ̄2 by the Vegas algorithm in first
method. b Numerical evaluation value (± error) of Feynman diagram with increasing number
of sample (106 points for each point). c Final results of the Feynman diagram generate for 100
different seeds and 1010 integrand evaluations in each seed. d Histogram of final value. The average
value is −0.000 156 882(25) for contribution Feynman diagram calculating form these seeds and
corresponds solid line
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decreases numerical errors1 and better precision for numerical evaluation of contri-
bution to the quantities fi. Final result for fi with included three-loop contributions
of diagrams

f2 = u

(

− 1

32
+ ε

64
− π2ε2

768

)

+ u2
(

0.006280 − 0.009428ε
) − 0.00377u3, (16)

f4 = u

(

−1

4
+ ε

8
− π2ε2

96

)

+ u2
(

0.11718 − 0.18628ε
) − 0.1198u3, (17)

where error is smaller than 10−5. Quantities fi can not be compared with results
from analytic calculation [1]. Then the our attention is focused on the comparison
dynamical critical exponents. The critical exponent η, which is related with survival
probability of cluster, has following approximate expression in two-loop calculation

analytic: η ≈ −ε

6
− 0.06805ε2,

1st method: η = −ε

6
− 0.06807ε2.

The dynamical exponent z, which is associated with mean square radius, have fol-
lowing form

analytic z ≈ 2 − ε

12
− 0.02920ε2, (18)

1st method z = 2 − ε

12
− 0.02921ε2. (19)

Our numerical calculation is in agreement with analytic calculation.
The final contribution is calculated by second method for the same diagram

(Fig. 3a) to Z2 and has following value

−0.005208333373(29)ε−3 − 0.0065160472(23)ε−2 + 0.006946642(19)ε−1,

(20)

where it is not needed to accede to evaluate the diagram in 100 different initial
condition. The final value for renormalization constants have following form

1The number in brackets correspond a numerical error on last digits.
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analytic Z2 →
2loop
∑

= −0.025390625ε−2 + 0.0011110791ε−1,

2nd method Z2 →
2loop
∑

= −0.02539062498(7)ε−2 + 0.0011110783(12)ε−1,

analytic Z4 →
2loop
∑

= −0.3125ε−2 − 0.125ε−1,

2nd method Z4 →
2loop
∑

= −0.3124999998(3)ε−2 − 0.124999972(47)ε−1,

where analytic results are taken from article [1]. The accuracy is better then first
method.

4 Summary

The numerical calculation was carried out for the DP process up to the third order in
perturbation theory by twodifferentmethods. Thefirstmethod yields good agreement
with analytic calculation in two-loop approximation, but in third order we have
encountered problems with several diagrams: oscillation of numerical result, what
brings about smaller precision and problems with extraction of divergence. The
second method achieves better agreement with analytic calculation than previous
method, and full three-loop calculation is still in progress.
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Reduced-Order Modeling
of the Fluidic Pinball

Luc R. Pastur, Nan Deng, Marek Morzyński and Bernd R. Noack

Abstract The fluidic pinball is a geometrically simple wake flow configuration
with three rotating cylinders on the vertex of an equilateral triangle. Yet, it remains
physically rich enough to host a range of interacting frequencies and to allow testing
of control laws within minutes on a laptop. The system has multiple inputs (the
three cylinders can independently rotate around their axis) and multiple outputs
(downstream velocity sensors). Investigating the natural flow dynamics, we found
that the first unsteady transition undergone by the wake flow, when increasing the
Reynolds number, is a Hopf bifurcation leading to the usual time-periodic vortex
shedding phenomenon, typical of cylinder wake flows, in which the mean flow field
preserves axial symmetry. We extract dynamically consistent modes from the flow
data in order to built a reduced-order model (ROM) of this flow regime. We show
that the main dynamical features of the primary Hopf bifurcation can be described
by a non-trivial lowest-order model made of three degrees of freedom.

Keywords Fluid mechanics · Flow control · Reduced-order modeling · Transition
to chaos
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1 Introduction

Machine learning control (MLC) has been recently successfully applied to closed-
loop turbulence control experiments for mixing enhancement [10], reduction of cir-
culation zones [4], separation mitigation of turbulent boundary layers [5, 6], force
control of a carmodel [7] and strongly nonlinear dynamical systems featuring aspects
of turbulence control [2, 3]. In all cases, a simple genetic programming algorithm has
learned the optimal control for the given cost function and out-performed existing
open- and closed-loop approaches after few hundreds to few thousands test runs. Yet,
there are numerous opportunities to reduce the learning time by avoiding the testing
of similar control laws and to improve the performance measure by generalizing the
considered control laws. In addition, running thousands of tests before converging
to the optimal control law can be out-of-reach when dealing with heavy numerical
simulations of the Navier-Stokes equations.

In order to further improveMLC strategies, it is therefore of the utmost importance
to handle numerical simulations of theNavier-Stokes equations inflowconfigurations
that are geometrically simple enough to allow testing of control laws within minutes
on aLaptop,while being physically rich enough to host a range of complex dynamical
flow regimes. With that aim in mind, Noack and Morzynski [8] proposed as an
attractive flowconfiguration the uniformflowaround 3 cylinderswhich can be rotated
around their axis (3 control inputs), with multiple downstream velocity sensors as
multiple outputs. As a standard objective, the control goal could be to stabilize
the wake or reduce the drag. This configuration, proposed as a new benchmark for
multiple inputs-multiple outputs (MIMO) nonlinear flow control, was named as the
fluidic pinball as the rotation speeds allow to change the paths of the incoming fluid
particles like flippers manipulate the ball of a real pinball.

With non-rotating cylinders, the steady base flow looses stability, beyond a critical
value of the Reynolds number, with respect to an oscillatory vortex-shedding insta-
bility. In this flow regime, we show that the reduced order model (ROM) of lowest
dimension, though still able to reproduce the dynamical features of the flow regime,
has three degrees of freedom. Designing a relevant ROM to describe a complex sys-
tem is a first step toward the design of winning control strategies, as ROMs both
allow testing hundreds to thousands of controllers within a minute and are predictive
over a finite time horizon.

2 The Fluidic Pinball

The fluidic pinball ismade of three equal circular cylinders of radius R that are placed
in parallel in a viscous incompressible uniformflowwith speedU∞. The centers of the
cylinders form an equilateral triangle with side-length 3R, symmetrically positioned
with respect to the flow (see Fig. 1). The leftmost triangle vertex points upstream,
while the rightmost side is orthogonal to the oncoming flow. Thus, the transverse
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extend of the three cylinder configuration is given by L = 5R. This flow is described
in a Cartesian coordinate system where the x-axis points in the direction of the flow,
the z-axis is aligned with the cylinder axes, and the y-axis is orthogonal to both. The
origin of this coordinate system coincides with themid-point of the rightmost bottom
and top cylinder. The location is described by x = (x; y; z) = x ex + y ey + z ez ,
where ex;y;z are unit vectors pointing in the direction of the corresponding axes.
Analogously, the velocity reads u = (u; v;w) = u ex + v ey + w ez . The pressure is
denoted by p and time by t . In the following, we assume a two-dimensional flow, i.e.
no dependency of any flow quantity on z and vanishing spanwise velocity w ≡ 0.
The Newtonian fluid is characterized by a constant density ρ and kinematic viscosity
ν. In the following, all quantities are assumed to be non-dimensionalized with the
cylinder diameter D = 2R, velocity U∞ and fluid density ρ. The corresponding
Reynolds number is defined as ReD = U∞D/ν. The Reynolds number based on
the transverse length L = 5D is 2.5 times larger. The computational domain extends
from x = −6 up to x = 20 in the streamwise direction, and from y = −6 up to y = 6
in the crosswise direction. In these units, the cylinder axes are located at

xF = −√
3/2 cos 30, yF = 0,

xB = 0, yB = −√
3/4,

xT = 0, yT = +√
3/4.

Here, and in the following, the subscripts ‘F’, ‘B’ and ‘T’ refer to the front, bottom
and top cylinder.

The dynamics of the flow is governed by the incompressible Navier-Stokes equa-
tions:

∂u
∂t

+ u · ∇u = −∇ p + 1

ReD
Δu, (1)

∇ · u = 0, (2)

Fig. 1 Configuration of the fluidic pinball: the three cylinders are in black, the flow is coming from
the left. The colormap encodes the vorticity field (arbitrary units)
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where ∇ represents the Nabla operator, ∂t and Δ denote the partial derivative and
the Laplace operator. Without forcing, the boundary conditions comprise a no slip-
condition (u = 0) on the cylinder and a free-stream condition (u = ex ) in the far
field. The flow can be forced by rotating the cylinders. In the forthcoming part of the
paper, however, the cylinders are kept fixed.

For more details about the numerical setup and the Navier-Stokes solver, the
interested reader can refer to the technical report and user manual by Noack and
Morzynski [8].

3 Reduced-Order Model of the Vortex Shedding
Flow Regime

The steady solution, shown in Fig. 2 for ReD = 10, is stable up to the critical value
Rec � 18 of the Reynolds number (the critical value would be about 45 in units of
L). Beyond this value, the system undergoes a supercritical Hopf bifurcation char-
acterized in the flow field by the usual vortex shedding phenomenon and generation
of the von Kármán vortex street. The associated mean flow field is shown in Fig. 3
for ReD = 30.

Low-dimensional and yet relevant ROMs must rely on the identification of the
manifold on which the dynamics takes place. As an illustration, we consider the
oscillatory flow regime observed at ReD = 30. The inertial manifold hosts both the
final oscillatory state and the transient dynamics to the final state. Following [9],
we apply a proper orthogonal decomposition (POD) to the data set made of the
fluctuating velocity field, u′(x, y; t) = u(x, y; t) − ū(x, y), where u(x, y; t) is the
velocity flow field and ū(x, y) = limT→∞ 1/T

∫ T
0 u(x, y; t) dt is the time-averaged

mean flow field. The POD modes uk(x, y), k = 1, . . . , N − 1 with N the number of
snapshots u(x, y; t) in the data set, provide a complete basis of orthogonal modes

Fig. 2 Steady base flow at ReD = 10. The colormap encodes the vorticity field
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Fig. 3 Mean flow field at ReD = 30. The colormap encodes the vorticity field

for the decomposition of any flow field in the data set [1]:

u(x, y; t) = ū(x, y) +
N−1∑

k=1

ak(t)uk(x, y)

︸ ︷︷ ︸
u′(x,y;t)

, (3)

where the ak’s are the mode amplitudes of the decomposition. The two leading
POD modes u1,2(x, y) are associated with the vortex shedding phenomenon, as
shown in Fig. 4a, b, together with the power spectral densities of their associated
time coefficients a1(t) and a2(t) in Fig. 5a, b, where a dominant peak is found at
StD = f D/U � 9 × 10−2 (StL = f L/U � 0.22). Modes u1,2(x, y), however, are
associated with the final oscillatory state around the mean flow field ū(x, y). In order
to describe the transient dynamics from the (unstable) steady solution us(x, y) to the
final state, it is necessary to introduce as an additional degree of freedom the so-called
shift mode uΔ(x, y) defined as uΔ(x, y) = ū(x, y) − us(x, y) and orthonormalized
with respect to the leading POD modes [9]. The steady solution us(x, y) is obtained
by a Netwon method and the shift mode uΔ(x, y) is shown in Fig. 4c. Following [9],
let us consider the following truncated flow field:

ũ(x, y; t) = us(x, y) + aΔ(t)uΔ(x, y) + a1(t)u1(x, y) + a2(t)u2(x, y), (4)

The dynamics of a1, a2, aΔ should write:

ȧ1 = (σ − κr aΔ)a1 − (ω + κi aΔ)a2,

ȧ2 = (σ − κr aΔ)a2 + (ω + κi aΔ)a1, (5)

ȧΔ = −λ
(
aΔ − κΔ(a21 + a22)

)
,
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Fig. 4 First two leading PODmodes a u1(x, y),bu2(x, y) and c shiftmodeuΔ(x, y), at ReD = 30.
The colormap encodes the vorticity field
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Fig. 5 Power spectral densities of a a1(t) and b a2(t)

in order to account for the Hopf bifurcation normal form with triadic interaction-
s between the individual modes, as imposed by the quadratic nonlinearities of the
underlying Navier-Stokes equations. Identifying the coefficients of the dynamical
system (5) from the transient and final flow regimes, one gets σ = 4.2 × 10−2,
ω = 0.5, κr = 1.5 × 10−2, κi = 2.2 × 10−2, κΔ = 0.2 and λ 	 1, slaving aΔ to
(a21 + a22).

The dynamics of the ROM from some arbitrary initial condition to the final os-
cillatory state, integrated with a Runge-Kutta 4.5 numerical scheme, is compared
to the dynamics of the fluidic pinball from the same initial condition, see Fig. 6. In
both cases, the final oscillatory states in the phase portraits spanned by (a1, a2) are
two limit cycles of identical amplitude. In the phase portraits spanned by (a1, aΔ),
the parabolic shape of the manifold is identical in the two cases. This means that
the inertial manifold on which the dynamics takes place is correctly identified at
the leading order by our ROM. This also means that the lowest-order model able to
reproduce the dynamics of the fluidic pinball, at ReD = 30, has at least three degrees
of freedom, namely a1, a2, aΔ, the latter being slaved to the two former. Only the
time scales of the transient are not perfectly reproduced, but this should be improved
by introducing for instance few additional degrees of freedom or better calibrating λ.

4 Conclusions

We have considered the fluidic pinball, a newly introduced benchmark configuration
for MIMO nonlinear fluid flow control, beyond its primary instability towards the
vortex-shedding flow regime. We could propose a reduced-order model based on
POD of at least three degrees of freedom which is able to catch the main features of
the manifold on which the dynamics takes place. The degrees of freedom are the two
leading PODmodes, associated with the vortex shedding in the final oscillatory state,
and, slaved to them, the shift mode that account for the steady solution deformation
towards the mean flow field in the final state.
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Fig. 6 Phase portraits of the ROM (top) and the fluidic pinball (bottom) from the initial condition
(red cross in the figures) to the final oscillatory state (larger limit cycle)

TheROMwasderived for non-rotating cylinders and for a givenReynolds number.
Yet, the fluidic pinball can display a much richer spectrum of dynamical behaviors
using the three cylinder rotations as free constant parameters.
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Bifurcations of One-Dimensional
One-Parametric Maps Revisited

Lenka Přibylová

Abstract Aparameter dependent family ofmaps z �→ f (z,α)with a real or complex
variable and parameter is studied.We deal with dynamics and bifurcations of iterates
of this map in dependence on the parameter α and real bifurcations are analysed
in a section of the phase-parameter complex hyperplane. Structure of bifurcation
polynomials of polynomial maps will be presented on a logistic map.

Keywords Bifurcations of maps · Period-doubling · Chaos · Complex dynamics ·
Logistic map

1 Introduction

We consider a family of polynomial one-parameter dependent real maps

x �→ f (x,α), (1)

with parameter α ∈ R and phase variable x ∈ R. In particular, the logistic map

f (x,α) = αx(1 − x) (2)

or topologically equivalent Mandelbrot map f (x,α) = x2 + α as well as other maps
(1) generally exhibit a well-known phenomenon of a period doubling route to chaos.

L. Přibylová (B)
Department of Mathematics and Statistics, Faculty of Science,
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Fold or flip bifurcation points of a cycle x1, x2, . . . , xn of the map (1) can be found
as solutions α = α∗ of a set of equations

f (x1,α) = x2,

f (x2,α) = x3,

...

f (xn,α) = x1,

f ′(xn,α) · . . . · f ′(x1,α) = ±1,

(3)

or equivalently
f (n)(xi,α) = xi,

(f (n))′(xi,α) = ±1

for any i ∈ {1, . . . , n}, with +1 in the fold case and −1 in the flip case. The state
variables xi can be eliminated using for example the Gröbner basis method and
the fold bifurcation points can be expressed as roots of a polynomial Pn(α). The
polynomial Pn(α) is usually denoted as the fold bifurcation polynomial of an n-
cycle in case of +1, since fold bifurcation points of any n-cycle are its roots. In case
that the last equation determines that the n-cycle eigenvalue is −1 instead of +1, we
usually talk about flip bifurcation polynomial of an n-cycle. Not all zeros of Pn(α)
are fold (or flip) bifurcation points of an n-cycle, but later we will see that all the
roots are some bifurcation points, so we will use the notion bifurcation polynomial
for Pn(α). We generally cannot specify the type of bifurcation nor the corresponding
cycle period for a chosen specific root of Pn(α).

It is practically impossible to compute the fold (or flip) bifurcation polynomials
of higher period cycles, since the polynomial degrees grow exponentially with a
cycle period. The last explicitly known bifurcation polynomial for the logistic map
was computed for the 8-cycle flip bifurcation by Kotsireas and Karamanos [7]. First
positive points of the flip bifurcations of a 2k−1-cycle of a real logistic map are usu-
ally denoted as Bk , since exactly kth flip bifurcation occurs in the row of the period
doubling cascade. The mentioned point B4 of the logistic map (8-cycle flip) is an
algebraic number of degree 240. The degree of the polynomial was conjectured al-
ready in Bailey and Broadhurst [1], where authors conjectured also that B4(B4 − 2)
would be a root of a polynomial of degree 120. This was prooved using Gröbner
basis method and long time-consuming computations with results presented in Kot-
sireas and Karamanos [7]. Later, Kotsireas and Karamanos presented more rapid
computation method based on transformation to more natural variables according to
the Gröbner basis elimination method for equations (3). This method implemented
in program Magma computed the 120◦ polynomial approximately 38 min. For the
next bifurcation point B5, they conjectured that B5(B5 − 2) is an algebraic integer of
degree 32640 (see Kotsireas and Karamanos [6]). Other interesting method to deal
with (3) was also suggested in Zhang [8] using cyclic polynomial basis. It is obvious
that this computational problem is still opened and interesting (see Bailey et al. [2]).
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Moreover, the structure of the bifurcation polynomials is related to many parts of
mathematics as complex dynamics or number theory, so still it seems that deeper
insight to this problem is needed and important.

This paper reveals the structure of the polynomial map bifurcation polynomials
Pn(α) together with the particular case of the logistic map bifurcation polynomial-
s structure. We show possibility to compute partial factors of the fold bifurcation
polynomials and possibility to recognize the type of bifurcation for a chosen root.
We rediscover paper Guckenheimer and McGehee [5] that presents a normal form
of the n-fold bifurcation in complex domain. The flip bifurcation in R is the 2-fold
bifurcation in complex domain. This contribution unifies notions of fold and flip bi-
furcations inR (or generally n-fold complex bifurcation referred as Guckenheimer’s
bifurcation) through the concept of transcritical bifurcation inC. Generic transcritical
bifurcation points of one-dimensional one-parameter holomorphicmaps are given by
intersections of two transversal equilibrium branches in C. Consequently the max-
imum modulus principle implies the period doubling cascade in real domain and
tripling or n-tupling in complex domain, so the concept of transcritical bifurcation in
C is an illustrative tool that explains existence of the period doubling route to chaos
and its universality. The stable gaps in the chaotic area are born as intersections of
two n-cycle branches of f in complex domain and on the other hand qualitatively
different case of the n-fold Guckenheimer’s bifurcation is the transcritical bifurca-
tion that arise as the intersection of an n-cycle branch and a fixed point branch in
complex domain. Together with Sharkovsky ordering it explains the complexity of
dynamics in the chaotic domain that is present behind the accumulation point of the
first Feigenbaum period doubling sequence of a fixed point. Moreover, full fractal
structure of the Mandelbrot hyperbolic components distribution is beautifully visi-
ble, since the order of stable bulbs and its roots is given by primitive roots of unity
sequence on all boundaries of hyperbolic components.

2 Transcritical Bifurcation in C

Let’s remind the normal form of the fold bifurcation: ϕfold (x,α) = α + x − x2,

x, α ∈ R. The assumption ∂ϕfold

∂x (0, 0) = 1 of unit eigenvalue is accompanied by

condition ∂ϕfold

∂α
(0, 0) �= 0 that implies existence of an implicitly defined unique equi-

librium branch near the bifurcation point (see Fig. 1). Transcritical bifurcation with
normal form ϕtrans(x,α) = x(1 + α − x), x, α ∈ R, satisfies the same condition
of having unit eigenvalue ∂ϕtrans

∂x (0, 0) = 1, but ∂ϕtrans

∂α
(0, 0) = 0 implies multiplicity

of the equilibria near the bifurcation point (see Fig. 2).
The logisticmap (2) evince both cases. Transcritical bifurcation of equilibriumcan

be found atα = 1 since two equilibria branches x = 0 and x = α−1
α

intersect transver-
sally at this bifurcation point (see Fig. 3). Fold bifurcation of a 3-cycle can be checked
at α∗ = 1 + √

8 (beginning of the stable 3-cycle gap in the chaotic area, see Fig. 4),
since the map f (3)(x,α) = α3x (1 − x)

(
α x2 − α x + 1

) (
α3x4 − 2α3x3 + α3x2+
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Fig. 1 Folding equilibrium
branch ϕfold (x,α) − x = 0

(0, 0)

x

α

Fig. 2 Transcritical
bifurcation - two branches
intersection

(0, 0)

x

α

Fig. 3 Logistic map -
transcritical bifurcation at
α = 1

α2x2 − α2x + 1
)
has one folded equilibrium branch with limit multiple fixed point

(3-cycles of f ) at the bifurcation value α∗. The limit point 3-cycle values are zeros
of

343 x3 +
(
−49

√
2 − 490

)
x2 +

(
112

√
2 + 91

)
x − 41

√
2 + 31.

In the complex plane there is no difference between generic fold and transcritical
bifurcations, since there are two complex branches of equilibria for every α in the
complex neighbourhood of the bifurcation point α∗. Visualisation of this complex
transcritical bifurcation is computed and plotted for the above mentioned 3-cycle
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Fig. 4 Logistic map - fold bifurcation of a 3-cycle

fold of the logistic map at Fig. 5, where the two 3-cycle branches near α∗ = 1 + √
8

are figured in 3D section of the 4D phase-parametric space. The gray real stable
gap in the chaotic area is zoomed. Every real fold of an n-cycle is a transcritical
bifurcation in C, intersection of two different branches of equilibria of f (n) that
are two different n-cycle branches of f . But intersections of equilibria of f (n) can
happen to be intersections of an n-cycle and a fixed point (see Fig. 6). This case is
known as n-fold bifurcation. Its complex normal form was derived and published by
Guckenheimer and McGehee in [5] that has few citations till now. The fixed point
of f (n) can be any d -cycle for d |n (n/d -fold Guckenheimer bifurcation). For n = 2d
it is flip bifurcation of a d -cycle. Any period doubling cascade in real domain is a
sequence of transcritical bifurcations inC, that is a sequence of 2-fold Guckenheimer
bifurcations. They are intersections of two branches of a d -cycle and a 2d -cycle at
bifurcation point α∗ that belong to second primitive root of unity, that is −1 (see
normal form at Guckenheimer and McGehee [5]). Due to the fact that the only real
nth primitive root of unity for n ≥ 2 is −1, only period doubling (flip) bifurcation
appears in real systems (higher order Guckenheimer’s bifurcations happen only in
complex domain) and births of stable real cycles not connected by period doubling
are exclusively real folds with eigenvalue 1 (that is births of stable gaps in the chaotic
area).

Since the d -cycle branch is given by

f d (z,α) − z = 0,

implicit function theorem guaranties local function representation of the d -cycle
branch and its eigenvalue λ(α) near the Guckenheimer’s bifurcation value α = α∗,
since the eigenvalue (f d )′(z(α∗),α∗) �= 1. This is true for any n-foldGuckenheimer’s
bifurcation, n ≥ 2. The function λ(α) is holomorphic near α = α∗ and |λ(α∗)| = 1.
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Fig. 5 Fold bifurcation of a 3-cycle of the logistic map (2) as transcritical bifurcation in C. The
section of the 4D space is at Im α = 0

Fig. 6 3-fold Guckenheimer’s bifurcation of the zero equilibrium of the logistic map (2). The

section of the 4D space is at α∗ = − 1
2 +

√
3
2 i orthogonally to the stable bulb boundary (under the

angle Arg α = 2π
3 )

According to the maximummodulus principle, there have to be nearby valuesα such
that |λ(α)| > 1 and also nearby valuesα such that |λ(α)| < 1 in each neighbourhood
ofα∗. Due to this and due to the proof of theMandelbrot conjecture in Guckenheimer
and McGehee [5] relating the eigenvalue derivatives on the two branches, this bi-
furcation point give birth to a stable d -cycle bulb that is tangent to a stable n-cycle
bulb (hyperbolic component of the Mandelbrot set of the map f ) in case of n/d-fold
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Fig. 7 Period doubling in C

eq. branch of f (2n−1) eq. branch of f (2n)

Transcritical bifurcation of f (2n)

imaginary branch
real branch
stable branch
unstable branch

Period doubling
schema

eq. branch of f (2n−1)eq. branch of f (2n)

bifurcation (where d |n). The ratio between moduli of eigenvalue derivatives in the
n/d-fold bifurcation point is (n/d)2 (see Guckenheimer and McGehee [5]), so it is 4
in case of period doubling. The 2-fold bifurcation points (see Fig. 7) give birth to a
cascade of stable bulbs that are chained along the real axes, so the real flip bifurcation
of any stable real n-cycle branch generally continues in period doubling cascade into
its accumulation point. Intersections of f (k) and f (l) branches in other cases would
give a birth to an isolated n-cycle, n = LCM (k, l). According to provided computa-
tions, there are no such intersections in case of the logistic map, but the proof is not
evident.

3 Structure

Solutions of

f (z1,α) = z2,

f (z2,α) = z3,
...

f (zn,α) = z1,

f ′(zn,α) · . . . · f ′(z1,α) = 1

are n-tupples z1, . . . zn that are
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• n-cycles with eigenvalue 1 (generic fold of an n-cycle)
• k-cycles (k|n) with eigenvalue 1 (fold of a k-cycle)
• n/d-cycleswith eigenvalueλ: λd = 1 (Guckenheimer’sd -fold bifurcation),where

λ is a primitive d th root of unity.

Let’s remind that elimination of the phase value gives the bifurcation polynomial
Pn(α). It is evident that all the roots of the bifurcation polynomial Pn(α) satisfy
necessary conditions for some fold or Guckenheimer’s bifurcation. Moreover, for
Mandelbrot or logistic map, Douady-Hubbard-Sullivan theorem implies that all
Guckenheimer’s bifurcation points are generic (for proof see Guckenheimer and
McGehee [5]). If we want to restrict the problem to find the bifurcation points of
a given d -fold Guckenheimer’s bifurcation, we can use the cyclotomic polynomial
that belong to d th primitive roots of unity. So for example 3-fold bifurcation point
of the zero fixed point from Fig. 6 of the logistic map (2) is a root of the bifurcation
polynomial a2 + a + 1, since the cyclotomic polynomial that belongs to the third
primitive roots of unity is λ2 + λ + 1 and eigenvalue of the trivial equilibrium is
λ = α. Specific bifurcation points that belong to d -fold bifurcation of an n-cycle are
given by a set of equations

f (z1,α) = z2,

f (z2,α) = z3,
...

f (zn,α) = z1,

Cd (f
′(zn,α) · . . . · f ′(z1,α)) = 0,

or equivalently

f (n)(z,α) = z,

Cd ((f
(n))′(z,α)) = 0

where Cd is the d th cyclotomic polynomial. Elimination of z is possible (hypo-
thetically always, but the computation is time-consuming for big n) and we get the
bifurcation polynomial in α.

Due toDouady-Hubbard-Sullivan theorem (see for exampleCarleson [3]Theorem
2.1 page 134), all primitive roots of unity aremapped in order to the boundary of each
hyperbolic component of theMandelbrot set as a given dense sequence of bifurcation
points (see Fig. 8), so the self-similarity of theMandelbrot fractal is beautifully visible
(see Figs. 9 and 10).
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Fig. 8 Primitive roots of unity order sequence of Guckenheimer’s bifurcations

Fig. 9 Mandelbrot set of the logistic map
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Fig. 10 Mandelbrot set self-similarity through primitive roots of unity sequence

Moreover, using Möbius inversion formula, we can find bifurcation points, that
are births exactly of an n-cycle. Let’s introduce the set of equations

f (z1,α) = z2,

f (z2,α) = z3,
...

f (zn,α) = z1,

(f ′(zn,α) · . . . · f ′(z1,α)) = λ,

λd = 1,
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or equivalently

f (n)(z,α) = z,

(f (n))′(z,α) = λ,

λd = 1,

(4)

or equivalently

f (n)(z,α) = z,

((f (n))′(z,α))d = 1.

Since z can be eliminated from the last set of equations by Gröbner basis method, we
can eliminate z from the set of equations (4). Let’s denote the eliminated polynomial
(monic in λ) as χn(α,λ). In case of the logistic map and Mandelbrot map, χn are
polynomials in both variables.

Theorem Births of n-cycles of (1) are exactly at points of vanishing

Mn(α) =
∏

dk=n
d |n

( ∏

j∈R(d)
χk(α, j)

)μ(d)
,

where μ is Möbius function, R(d) is set of all d th root of unity and χk are monic in
λ bifurcation polynomials eliminated from (4).

As an example we reveal the structure of the 6-cycle bifurcation points for Man-
delbrot map Qc(z) = z2 + c. The characteristic polynomials are as follows:

P1(c,λ) = λ2 − 2λ + 4 c

P2(c,λ) = (λ − 4 c − 4)
(
λ2 + 8 cλ − 4λ + 16 c2

)

P3(c,λ) = (
λ2 − 8 cλ − 16λ + 64 c3 + 128 c2 + 64 c + 64

)

(
λ2 + 24 cλ − 8λ + + 64 c3

)

P6(c, 1) = (4 c + 7) (4 c − 1)
(
1099511627776 c20 + 10445360463872 c19+

+ 44873818308608 c18 + 121736553037824 c17 + 245929827368960 c16

+ 399107688497152 c15 + 535883874828288 c14 + 617743938224128 c13

+ 631168647036928 c12 + 576952972869632 c11 + 484537901514752 c10

+ 376633058918400 c9 + 263974525796352 c8 + 173544017002496 c7

+ 104985522188288 c6 + 58905085704192 c5 + 33837528259584 c4

+15555915962496 c3 + 8558772746832 c2 + 1167105374568 c

+3063651608241) (4 c + 3)2
(
16 c2 − 12 c + 3

)2 (
16 c2 + 36 c + 21

)2

· (
16 c2 + 4 c + 7

)2 (
64 c3 + 128 c2 + 72 c + 81

)2
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and it yields that

∏

j∈R(1)
P6(c, j) = P6(c, 1),

∏

j∈R(2)
P3(c, j) = P3(c, 1) · P3(c,−1) = (4 c + 7) (4 c + 3) (4 c − 1)

·
(
16 c2 − 12 c + 3

) (
64 c3 + 128 c2 + 72 c + 81

) (
16 c2 + 4 c + 7

)2
,

∏

j∈R(3)
P2(c, j) = P2(c, 1) · P2(c,−1/2 + i

√
3/2) · P2(c,−1/2 − i

√
3/2)

= − (4 c − 1)
(
16 c2 − 12 c + 3

) (
16 c2 + 36 c + 21

) (
16 c2 + 4 c + 7

)
(4 c + 3)2 ,

∏

j∈R(6)
P1(c, j) = (4 c + 3) (4 c − 1)

(
16 c2 + 4 c + 7

) (
16 c2 − 12 c + 3

)
,

so the bifurcation polynomial of the birth of a 6-cycle is

M6(c) =
∏

j∈R(1) P6(c,j)
∏

j∈R(6) P1(c,j)∏
j∈R(2) P3(c,j)

∏
j∈R(3) P2(c,j)

= (
16 c2 − 12 c + 3

)

· (
16 c2 + 36 c + 21

) (
64 c3 + 128 c2 + 72 c + 81

) (
1099511627776 c20

+ 10445360463872 c19 + 44873818308608 c18 + 121736553037824 c17

+ 245929827368960 c16 + 399107688497152 c15 + 535883874828288 c14

+ 617743938224128 c13 + 631168647036928 c12 + 576952972869632 c11

+ 484537901514752 c10 + 376633058918400 c9 + 263974525796352 c8

+ 173544017002496 c7 + 104985522188288 c6 + 58905085704192 c5

+ 33837528259584 c4 + 15555915962496 c3 + 8558772746832 c2

+1167105374568 c + 3063651608241) ,

where roots are 6-folds of a fixed point, 3-folds of a 2-cycle, 2-fold (flip) of a 3-
cycle and fold of a 6-cycle in the order of factors. The unique homeomorphism
Hc(z) = 1

2 − z
α
for c = 1

4α(2 − α) between the Mandelbrot map and the logistic
map give structured bifurcation polynomials for f (z,α) = αz(1 − z). For example,
the flip of a 3-cycle gives the end point of the 3-cycle stable gap at α

.= 3.841499008
as one of the two real roots of

α6 − 6α5 + 4α4 + 24α3 − 14α2 − 36α − 81 = − (
64 c3 + 128 c2 + 72 c + 81

)

in agreement with Gordon [4].
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Memristor: Modeling and Research
of Information Properties

Volodymyr Rusyn and Sviatoslav Khrapko

Abstract This paper describe about general information and properties of
memristor based on Chua’s scheme. The circuit of connection of the memristor
to obtain I–V characteristics is presented. Practical realization and research of infor-
mation properties are also presented. Memristor scheme is one of the main part in
modern telecommunication systems of transmitting and receiving signals and exper-
imental results can be used for masking and decrypt of information carrier.

Keywords Memristor · Chaos · Chua’s scheme

1 Introduction

Chaos theory has been established since the 1970s due to its applications in many
different research areas, such as electronic circuits [1, 2], secure communication
systems [3–6], magnetism [7], economy [8] etc.

It is known that the memristor-based circuits show different types of oscillations
[9–15]. The properties of the main electric circuits, constructed of three ideal ele-
ments, a resistor, a capacitor, an inductor and an ideal voltage source v(t) are standard
basic radio elements. These circles show a variety of phenomena such as exponen-
tial charge and discharge of the resistor-capacitor (RC) circuit with time constant
τRC = RC , exponential growth and current decay in the circuit of a resistor-inductor
(RL) with a constant time τRL = L/R—not dissipative oscillations in the circuit of
inductance-capacitor (LC) with frequency= 1/

√
LC, as well as resonant oscillations

in the circuit resistor-capacitor-inductor (RCL) induced by an alternating current
source with frequency ω ~ ωLC [16].

A memristor, a capacitive memristor and a memristive inductor are all passive
memory devices that can store information without a power supply. Thanks to their
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unique memory property and dynamic storage capabilities, they can be used in areas
such as non-volatile storage and adaptive and spontaneous behavioral modeling [17,
18]. Much attention was paid to the use of these devices in memory in nonlinear
circuits. Now, as a memory device, the memristor is widely studied in nonvolatile
memory, artificial neural networks and nonlinear circuits, such as chaotic oscillators
[19].

Memristors are passive two-component circuit elements that combine resistance
andmemory. Although in the theory ofmemristors, they are very promising approach
to the manufacture of hardware with adaptive properties, there are only a few imple-
mentations that can reflect its basic properties [20].

Discovered that chaos can be useful in many areas; in particular, the strengthening
of the mechanism of reaction kinetics in the transport of heat /mass transfer is one
of the advantages. Because of the unpredictability resulting from purely determinis-
tic systems and the combination of synchronization, chaos leads to some interesting
communication applications, in particular, in the encoding of private electronic com-
munications). Nevertheless, it has also been established that chaos may be useless
in some cases where regular oscillations are required, such as metal cutting pro-
cesses and power electronics, where chaos can not be avoided to improve system
performance [21].

Successful manufacturing of the memristor by the Hewlett Packard (HP) [22,
23] greatly increased the interest of researchers to the memristor. Many scientists
began to operate a memristor in analog systems and in digital media. Others used
the memristors as resistive memory modules and logical applications. The potential
of using a memristor in neuromorphic applications has also been studied by many
researchers [22].

Modern computational evolution is closely linked to the development of the latest
high-performance and energy-efficient devices of nanoelectronics, such as resistive
random-access memory (RRAM) based on the structures of the memristor [24].

2 Memristor as Nonlinear Element

The concept of a memristor was introduced for the first time in [25] as a two-terminal
element of the circuit, which connects a residual missing pair of four main variables,
namely, flow and charge. It was formally defined as the fourth element of the chain
[12] and named as a memristor in 1971 [10].

The memristor differs from most types of modern semiconductor memory ele-
ments because its properties are not stored as a charge. This is his main advantage,
since he is not afraid of the leakage charge. Another remarkable property of themem-
ristor is that it can accept not two positions of memory—0 and 1, but any other in the
intervals between zero and one, so the commutator can work both in analog and in
digital (discrete) mode. Also, the advantage of the memristor is its energy indepen-
dence. This property ensures that the data stored on the memristor is as much time
as there are materials used in its manufacture.
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We focus our attention in this article on the practical reception of a hysteresis
loop, since the hysteresis loop captures the essence of all mathematical models, as
an ideal memristor as well real memristor.

One of the representative features of the memristor is the programmability of the
resistance with the help of external voltage or current.

In our study, we used the KNOWM memristor BS-AF-W 16DIP series based on
the tungsten substrate.

The connection of the memristor occurred according to the diagram in Fig. 1.
To achieve phase-shift operation, the device is operated under high voltage and

under specified conditions. In order to obtain a device from the phase transitionmode,
pulse, higher return voltage and pulse melting are used. Figure 2 shows the response
of the phase change to a higher applied voltages in the abrasion region.

Figure 3 shows the experimental result of phase change from the value of the
applied voltage.

Practically the following characteristics are obtained, according to the connection
circuit shown in Fig. 1, the memristor on Fig. 4 at the voltage of the source E at the
level 1 V and frequency 30 Hz (Figs. 5, 6, 7, 8 and 9).

3 Chua’s Sceme Based on the Memristor

It is known that a memristor can be used as a nonlinear element in the circuits of
oscillators of chaotic signals. In our research, we used a memristor as a non-linear
element in Chua’s scheme.

Components with the following denominations were used in the scheme of the
oscillator of chaotic oscillations based on Chua circuit:

Fig. 1 The circuit of connection of the memristor to obtain I–V characteristics
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Fig. 2 Reaction of phase change from the value of the applied voltage

Fig. 3 Experimental phase change of the value of the applied voltage

L = 30 mH, C1 = 100 nF, C2 = 10 nF, R1 = 1, 5 kΩ, R2 = 51 kΩ.

The results of the experiment:
Figure 10 shows a chaotic attractor and temporal dependence of the signal at a

voltage of 0.3 V and a frequency of 20 Hz.
We also received spectral characteristics, which are presented in Fig. 11.
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Fig. 4 I–V characteristics of the memristor at a voltage of 1 V and a frequency of 30 Hz

Fig. 5 I–V characteristics of the memristor at a voltage of 1 V and a frequency of 50 Hz
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Fig. 6 I–V characteristics of the memristor at a voltage of 1 V And a frequency of 80 Hz

Fig. 7 Chua’s scheme based on the memristor
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Fig. 8 Attractor appearance in saturation mode

Fig. 9 The appearance of time charts in saturation mode
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Fig. 10 Chaotic attractor and temporal dependence at U = 0.3 V; f = 20 Hz

4 Conclusions

General information and properties of memristor based on Chua’s scheme, the circuit
of connection of the memristor to obtain I–V characteristics is presented. Practical
realization and research of information properties are also presented. Memristor
scheme is one of the main part in modern telecommunication systems of transmitting
and receiving signals and experimental results can be used for masking and decrypt
of information carrier.
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Fig. 11 Spectral characteristic of the non-autonomous oscillator of chaotic signals at the level of
15 kHz
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Coexistence of Chaotic and Non-chaotic
Orbits in a New Nine-Dimensional
Lorenz Model

B.-W. Shen, T. Reyes and S. Faghih-Naini

Abstract In this study, we present a new nine-dimensional Lorenz model (9DLM)
that requires a larger critical value for the Rayleigh parameter (a rc of 679.8) for
the onset of chaos, as compared to a rc of 24.74 for the 3DLM, a rc of 42.9 for the
5DLM, and a rc 116.9 for the 7DLM.Major featureswithin the 9DLM include: (1) the
coexistence of chaotic and non-chaotic orbits with moderate Rayleigh parameters,
and (2) the coexistence of limit cycle/torus orbits and spiral sinks with large Rayleigh
parameters. Version 2 of the 9DLM, referred to as the 9DLM-V2, is derived to show
that: (i) based on a linear stability analysis, two non-trivial critical points are stable
for all Rayleigh parameters greater than one; (ii) under non-dissipative and linear
conditions, the extended nonlinear feedback loop produces four incommensurate
frequencies; and (iii) for a stable orbit, small deviations away from equilibrium (e.g.,
the stable critical point) do not have a significant impact on orbital stability. Based
on our results, we suggest that the entirety of weather is a superset that consists of
both chaotic and non-chaotic processes.

Keywords Lorenz model · Limit cycle · Nonlinear feedback loop · Coexistence ·
Incommensurate frequencies · Aggregated negative feedback

1 Introduction

A view that weather is chaotic was proposed and is recognized based on the pio-
neering work of Prof. Lorenz [6] who first introduced the concept of deterministic
chaos. Chaos is defined as the sensitive dependence of solutions on initial conditions,
also known as the butterfly effect. The appearance of deterministic chaos suggests
finite predictability, in contrast to the Laplacian view of deterministic predictabil-
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ity. After a follow-up study in 1972 [8], the butterfly effect has come to be known
as a metaphor for indicating that a tiny perturbation such as a butterfly’s flap may
ultimately cause a large impact, such as the creation of a tornado. The two studies
discussed above, as well as Lorenz’s 1969 study [7], laid the foundation for chaos
theory that is viewed as one of the three scientific achievements of the 20th century
(e.g., [1, 4]), inspiring numerous studies in multiple fields. Using a comprehensive
literature review (e.g., [16]), we suggested that two kinds of butterfly effects can
be derived from Lorenz’s studies [6–8]. The butterfly effect of the first kind (BE1)
is defined as the sensitive dependence of solutions on initial conditions, while the
butterfly effect of the second kind (BE2) indicates the hypothesized enabling role of
tiny perturbations in producing an organized large-scale system (e.g., a tornado).

The 3DLMand high-dimensional LMs have been extensively studied over the past
fifty years (e.g., [2, 9]). While some high-dimensional LMs have led to a deceas-
ing degree of chaotic responses with better predictability (e.g., [10] and references
therein), others have produced an increasing degree of chaotic responses (e.g., [11]
and references therein). Within the 3DLM or a high-dimensional LM, chaotic solu-
tions display two major features of trajectory divergence and boundedness. While
the linear uncoupled geometric model (e.g., [5]) displays the role of a saddle point
in producing the important feature of divergence, the limiting equations [18] and the
non-dissipative Lorenz model [14] reveal the role of nonlinearity (or the nonlinear
feedback loop, NFL) in producing recurrence that is responsible for the boundedness
of solutions. Recurrent solutions in non-dissipative higher-dimensional LMs may be
more complicated (than in lower-dimensional LMs) as a result of successive exten-
sion of the nonlinear feedback loop that produces more incommensurate frequencies
(e.g., [3, 17]). On the other hand, in dissipative versions, smaller scale modes that
have larger coefficients for the dissipative terms possess stronger dissipations, reduc-
ing the complexities of solutions. For example, as a result of the negative nonlinear
feedback associated with the collective impact of dissipations and nonlinearity, the
critical values (rc) for the onset of chaos for the 5DLMand 7DLMare 42.9 and 116.9,
respectively, as compared to a rc of 24.74 for the 3DLM (e.g., [10, 12]). While neg-
ative nonlinear feedback associated with small scale processes can suppress chaotic
responses (e.g., within the 5DLM of [10]), positive feedback associated with an ad-
ditional heating process may appear to destabilize the system (e.g., within the 6DLM
of [11]). The result suggests the importance of proper selection of new modes for
improving predictability.

The 3DLM produces various types of solutions, including steady-state, chaotic,
and nonlinear oscillatory solutions (i.e., limit cycle solutions) at small, moderate,
and large Rayleigh parameters, respectively (e.g., [17] and references therein). More
importantly, the 3DLM allows the coexistence of chaotic and non-chaotic solutions
over a small range of Rayleigh parameters (i.e., 24.06 < r < 24.74).When two types
of solutions coexistwithin a systemwith the samemodel parameters, their appearance
is solely determined by the corresponding initial conditions. Under the condition of
r < 24.74, a linear stability analysis indicates that two non-trivial critical points
are stable. Therefore, the result may indicate a relationship between the appearance
of stable critical points and the coexistence of chaotic and non-chaotic solutions.
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High-dimensional LMs also produce various types of solutions that appear within
various ranges of parameters in different LMs. However, whether the coexistence
of chaotic and non-chaotic solutions appears within high-dimensional LMs has not
been investigated.

Based on the above, here, we investigate the role of the extended NFL and its
collective impact with dissipations and heating using a nine-dimensional Lorenz
model (9DLM).We examine: (1) the extent towhich successive extension of theNFL
within the 9DLMmayqualitatively change the stability of non-trivial critical points as
compared to those within the low-dimensional LMs, and (2) under which conditions
chaotic and non-chaotic solutions may coexist. The paper is organized as follows. In
Sect. 2, we present a new 9DLM, versions 1 and 2. In Sect. 3.1, we discuss the role of
the NFL in producing incommensurate frequencies and providing a mechanism for
energy transferring across scales. We additionally provide a mathematical analogy
between the non-dissipative linearized 9DLMand a coupled systemwith fourmasses
and four springs. In Sect. 3.2, we discuss stability and aggregated negative feedback
within the 9DLM. In Sect. 3.3, we present numerical results for the coexistence of
chaotic and non-chaotic solutions and the coexistence of limit cycle and steady-state
solutions. In Sect. 3.4, we discuss the dependence of various types of solutions on the
initial conditions. Concluding remarks are provided at the end. Appendix presents
solutions for non-trivial critical points within the 9DLM.

2 A New Nine-Dimensional Lorenz Model (9DLM)

2.1 Governing Equations

Following derivations, the nine equations for the 9DLM are obtained:

dX

dτ
= −σX + σY , (1)

dY

dτ
= −XZ + rX − Y , (2)

dZ

dτ
= XY − XY1 − bZ, (3)

dY1
dτ

= XZ − 2XZ1 − doY1, (4)

dZ1
dτ

= 2XY1 − 2XY2 − 4bZ1, (5)
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dY2
dτ

= 2XZ1 − 3XZ2 − d1Y2, (6)

dZ2
dτ

= 3XY2 − 3XY3 − 9bZ2, (7)

dY3
dτ

= 3XZ2 − 4XZ3 − d2Y3, (8)

dZ3
dτ

= 4XY3 − 16bZ3. (9)

Here, τ , σ, and r represent dimensionless time, the Prandtl number, and the nor-
malized Rayleigh number (or the heating parameter), respectively. More detailed
information may be found in [10]. b = 4/(1 + a2), do = (9 + a2)/(1 + a2), d1 =
(25 + a2)/(1 + a2), and d2 = (49 + a2)/(1 + a2). We referr to (Y ,Z), (Y1,Z1),
(Y2,Z2), and (Y3,Z3) as the primary, secondary, tertiary, and quaternary modes, re-
spectively. The 9DLM is reduced to become the 7DLMwhen (Y3,Z3) are neglected,
the 5DLM when (Y2,Z2,Y3,Z3) are neglected, and the 3DLM when (Y1,Z1,Y2,Z2,
Y3,Z3) are ignored. As discussed below, the 9DLM is also called the 9DLM V1 in
comparison with V2. In the following, unless stated otherwise, while various values
of r may be used, the remaining parameters are kept constant, including σ = 10,
a = 1/

√
2, and b = 8/3.

2.2 The 9DLM Version 2 (9DLM-V2)

Using the critical point solution as the basic state, the total field (A) can be de-
composed into the basic state (Ac) and perturbations (A′), i.e., A = Ac + A′. Here,
A represents each of (X ,Y ,Z,Y1,Z1,Y2,Z2,Y3,Z3). By applying this perturbation
method to Eqs. (1)–(9), we may obtain the following equations:

dX ′

dτ
= −σX ′ + σY ′, (10)

dY ′

dτ
= (r − Zc)X

′ − Y ′ − XcZ
′ − FN (X ′Z ′), (11)

dZ ′

dτ
= (Yc − Y1c)X

′ + XcY
′ − bZ ′ − XcY

′
1 + FN (X ′Y ′ − X ′Y ′

1), (12)

dY ′
1

dτ
= (Zc − 2Z1c)X

′ + XcZ
′ − dY ′

1 − 2XcZ
′
1 + FN (X ′Z ′ − 2X ′Z ′

1), (13)
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dZ ′
1

dτ
= (2Y1c − 2Y2c)X

′ + 2XcY
′
1 − 4bZ ′

1 − 2XcY
′
2 + FN (2X ′Y ′

1 − 2X ′Y ′
2), (14)

dY ′
2

dτ
= (2Z1c − 3Z2c)X

′ + 2XcZ
′
1 − d1Y

′
2 − 3XcZ

′
2 + FN (2X ′Z ′

1 − 3X ′Z ′
2), (15)

dZ ′
2

dτ
= (3Y2c − 3Y3c)X

′ + 3XcY
′
2 − 9bZ ′

2 − 3XcY
′
3 + FN (3X ′Y ′

2 − 3X ′Y ′
3), (16)

dY ′
3

dτ
= (3Z2c − 4Z3c)X

′ + 3XcZ
′
2 − d2Y

′
3 − 4XcZ

′
3 + FN (3X ′Z ′

2 − 4X ′Z ′
3), (17)

dZ ′
3

dτ
= 4Y3cX

′ + 4XcY
′
3 − 16bZ ′

3 + FN (4X ′Y ′
3). (18)

Equations (10)–(18) are referred to as the 9DLM V2. A system with FN = 0,
which is linear with respect to the critical point, is referred to as the linearized
9DLM or the locally linear 9DLM. A system with FN = 1 is fully nonlinear. V2
systems with FN = 0 (or FN = 1) can describe the linear (or nonlinear) evolution of
“perturbations” that depart from a non-trivial critical point. As discussed in Sects. 3.3
and 3.4, the nonlinear V2 is also capable of producing chaotic solutions. As a re-
sult, V2 systems may be used for: (1) performing a linear stability analysis with
FN = 0, (2) revealing incommensurate frequencies of oscillatory components un-
der non-dissipative and linear conditions, (3) illustrating the time evolution of local
(oscillatory) solutions and their transition to another type of solution (e.g., chaotic or
limit cycle solutions), (4) examining the impact of nonlinearity by comparing linear
simulations with nonlinear simulations, and (5) tracing the “destination” of various
orbits (i.e., a strange attractor or point attractor) beginning with initial conditions dis-
tributed over a hypersphere with a center at the non-trivial critical point and various
radii. In this study, using the 9DLM V2, we illustrate (1–2) and (5).

3 Discussion

3.1 Incommensurate Frequencies and Scale Interaction

Previously, the appearance of oscillatory components with commensurate or incom-
mensurate frequencies was illustrated using the 3D and 5D non-dissipative Lorenz
models (NLMs, [3, 14, 17]). These studies indicated that the 3D-NLM with r = 0
is identical to the simplified set of the Lorenz model in [18], who applied the simpli-
fied model in order to reveal the nature of the limit cycle (i.e., oscillatory) solution.
To reveal the role of the extended NFL within the 9DLM in producing additional
incommensurate frequencies and transferring energy across scales, we analyze the
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V2 system (i.e., Eqs. (10)–(18)) under a non-dissipative condition and provide a
mathematical analogy of a coupled system containing four masses and four springs.

The non-dissipative version of the 9DLMV2possesses the following critical point
solution:Yc = 0,Y1c = 0,Y2c = 0,Zc = r,Z1c = r

2 ,Z2c = r
3 ,Z2c = r

4 . Applying the
above critical point solution as the basic state to Eqs. (10)–(18) with FN = 0 leads to
a linearized 9Dnon-dissipativeLM(9D-NLM). FromEqs. (11)–(12) of the linearized
9D-NLM, we can obtain:

d2Y ′

dτ 2
= −Xc

dZ ′

dτ
= −X 2

c (Y
′ − Y ′

1). (19)

Eqs. (12)–(14) lead to:

d2Y ′
1

dτ 2
= Xc

dZ ′

dτ
− 2Xc

dZ ′
1

dτ
= X 2

c (Y
′ − 5Y ′

1 + 4Y ′
2). (20)

Eqs. (14)–(16) yield:

d2Y ′
2

dτ 2
= 2Xc

dZ ′
1

dτ
− 3Xc

dZ ′
2

dτ
= X 2

c (4Y
′
1 − 13Y ′

2 + 9Y ′
3). (21)

and Eqs. (16)–(18) lead to:

d2Y ′
3

dτ 2
= 3Xc

dZ ′
2

dτ
− 4Xc

dZ ′
3

dτ
= X 2

c (9Y
′
2 − 25Y ′

3). (22)

As discussed below, the above system is mathematically identical to a system
containing four springs and fourmasses of the sameweight, vertically connected. For
a coupled system with spring constants k0 − k3 and masses m0 − m3, the uppermost
spring that has a constant k3 is attached to the ceiling on one end and to mass m3

on the other end. Then, the pair of (spring, mass), (k2−i, m2−i) and i ∈ Z : i ∈ [0, 2],
are sequentially attached. The lowest spring whose low end connects mass m0 has a
spring constant k0. In Table1, where xj are displacements of the centers of masses

Table 1 A comparison between the non-dissipative linearized 9DLM and a coupled system con-
taining four masses and four springs. Two systems are mathematically identical when Y ′

j = xj and

kj = (j + 1)2X 2
c and j ∈ Z : j ∈ [0, 3], here Y ′

0 = Y ′

The non-dissipative linearized 9DLM The coupled spring-mass system
d2Y ′
dτ2

= −X 2
c (Y

′ − Y ′
1)

d2x0
dτ2

= −k0(x0 − x1)
d2Y ′

1
dτ2

= −4X 2
c (Y

′
1 − Y ′

2) − X 2
c (Y

′
1 − Y ′) d2x1

dτ2
= −k1(x1 − x2) − k0(x1 − x0)

d2Y ′
2

dτ2
= −9X 2

c (Y
′
2 − Y ′

3) − 4X 2
c (Y

′
2 − Y ′

1)
d2x2
dτ2

= −k2(x2 − x3) − k1(x2 − x1)
d2Y ′

3
dτ2

= −16X 2
c Y

′
3 − 9X 2

c (Y
′
3 − Y ′

2)
d2x3
dτ2

= −k3x3 − k2(x3 − x2)
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from equilibrium, proper selection of the spring constants leads to a coupled spring-
mass system that is identical to the linearized 9D-NLM.

The above analogy indicates the role of the extended NFL in producing incom-
mensurate frequencies and transferring energy across scales. The extended NFL
increases the complexity of solutions through spatial interactions associated with the
inclusion of small-scale modes. By comparison, the linearized system, which still
reserves scale coupling processes associated with spatial basic state-perturbation in-
teractions, does decrease the complexity of solutions in the temporal space. Such
a linearized system, that is mathematically simpler (than its nonlinear version), is
effective for revealing the role of the NFL in transferring energy across scales and in
creating incommensurate frequencies. However, as discussed below, the linearized
system is not suitable for studying chaotic processes that only appear in the full sys-
tem with the collective impact of the extended NFL, dissipative and heating terms.

3.2 Stability and Aggregated Feedback

Here, we briefly present a linear stability analysis near a non-trivial critical point.
As discussed in [10, 12], and Appendix for the time-independent 5DLM, 7DLM,
and 9DLM, respectively, we can obtain the following single equation for the critical
point solution X :

X 2 − XY1 − b(r − 1) = 0, (23a)

Y1 = bXZT1
X 2 + T2

. (23b)

As shown in Table2, the above three systems share the same equations as Eqs. (23a)
and (23b). The only difference among the three systems is the T2 term. The increasing
complexity of T2 in higher-dimensional LMs indicates an aggregated feedback from
smaller-scale modes (see [15] for details). Using Eq. (23), we obtain the critical
solution for X and then the remaining variables, denoted as Xc, Yc, Zc, etc., found in
Appendix. Plugging the critical point solution, as the basic state, into the V2 system
with FN = 0 (e.g., Eqs. (10)–(18)), we perform a linear stability analysis in order to

Table 2 Negative nonlinear feedback within the 5D, 7D, and 9D Lorenz models. The nonlinear
feedback term is represented by the term XY1, which is a function of T1 and T2

3DLM 5DLM 7DLM 9DLM

Y1 N/A
bXZT1
X 2 + T2

as in the 5DLM as in the 5DLM

T1 N/A 1
2X 2 + bd1
X 2 + bd1

3X 4 + 2bX 2(d1 + d2) + b2d1d2
X 4 + (bd2 + 2bd1)X 2 + b2d1d2

T2 N/A bdoT1 as in the 5DLM as in the 5DLM
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(a)

(c)

(b)

Fig. 1 Linear stability analysis near the non-trivial critical points within the 3DLM, 5DLM, 7DLM,
and 9DLM, showing the leading eigenvalue Re(λ) as a function of σ and r. The pink, black, blue,
and orange solid lines indicate a constant contour of Re(λ) = 0 for the linearized 3DLM, 5DLM,
7DLM, and 9DLM, respectively. Panels (a-b) are from [10] and [12], respectively

reveal the stability of the non-trivial critical points. In Fig. 1, the pink, black, blue,
and orange solid lines indicate a constant contour of Re(λ) = 0 for the linearized
3DLM, 5DLM, 7DLM, and 9DLM, respectively. Higher-dimensional LMs require
large values of r for instability (i.e., Re(λ) > 0). More importantly, for a typical
value of σ = 10, the non-trivial critical points of the linearized 3D, 5D, and 7D LMs
are unstable when the Rayleigh parameters exceed critical values of 24.74, 45.94,
and 160.3, respectively (e.g., [12]). The non-trivial critical points of the 9DLM are
stable for all Rayleigh parameters greater than one.

The origin within the abovemodel systems is a saddle point. Therefore, the 9DLM
possesses one unstable critical point (at the origin) and two stable non-trivial critical
points. The feature is similar to that of the 3DLM for 24.06 < r < 24.74. Therefore,
as compared to the 3DLM, the 9DLM also produces chaotic solutions that coexist
with non-chaotic solutions. As shown in Table3, the critical value for the onset of
chaos is 679.8 within the 9DLM. The unique feature for the 9DLM is the coexistence
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Table 3 The characteristics of various Lorenz models. Values for rc are determined based on
analyses of the ensemble Lyapunov exponents. The “Heating terms” column indicates heating
terms within the corresponding LM

Model rc Heating terms References

3DLM 23.7 rX [6]

5DLM 42.9 rX [10]

6DLM 41.1 rX , rX1 [11]

7DLM 116.9 rX [12]

8DLM 103.4 rX , rX1 [13]

9DLM 102.9 rX , rX1, rX2 [13]

9DLM (new) 679.8 rX This study

of chaotic and non-chaotic orbits over a wide range of Rayleigh parameters (e.g.,
[15]). Additionally, the 9DLM displays the coexistence of limit cycle and steady
state solutions. In the following, we discuss the two kinds of attractor coexistence
using numerical solutions.

3.3 Numerical Results for the Coexistence of Two Types
of Orbits

In this section, we present numerical solutions using both the 9DLM V1 and V2 for
the coexistence of two types of solutions. Results obtained from the V1 system are
provided for “verification” of results obtained from the V2 system that is then used to
perform ensemble runs, as discussed in Sect. 3.4. With the exception of the Rayleigh
parameter, the other parameters are constants, including σ = 10 and a = 1/

√
2 and

b = 8/3.While perturbations are computed using the V2 system, the total fields (i.e.,
the sum of the basic state and the perturbation) are plotted.

In Fig. 2, the left and right panels display the coexistence of non-chaotic and
chaotic solutions, respectively, that were obtained using models with r = 680 but
different initial conditions (ICs). The ICs are (X ′,Y ′,Z ′,Y ′

1,Z
′
1,Y

′
2, Z

′
2,Y

′
3,Z

′
3) =

(0, 1, 0, 0, 0, 0, 0, 0, 0) − −→
Xc and (100, 100, 100, 100, 100, 100, 100, 100, 100) −−→

Xc , respectively. Here,
−→
Xc represents a vector at the non-trivial critical point (i.e.,

(Xc,Yc,Zc,Y1c,Z1c,Y2c,Z2c,Y3c,Z3c)). The first set of ICs is near the origin while
the second set of ICs is away from the origin.While (X ,Y ,Z) = (0, 1, 0) that appears
in the first set of ICs has been used to generate a chaotic orbit within the 3DLM, the
first set of ICs leads to a steady solution that moves toward the non-trivial critical
point at (Xc,Yc) = (84.489, 84.489) within the 9DLM, as shown in the left panels.
In the bottom panels, we display the time evolution of solutions from both the 9DLM
V1 and V2. For the steady state solutions, both V1 and V2 produce the same results.
For the chaotic solutions, both produce the same initial results (e.g., τ ∈ [0, 3]) and
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Fig. 2 Solutions of the 9DLM V2 for coexistence of non-chaotic (left panels) and chaotic
(right panels) solutions. The two runs use the same model parameters (e.g., r = 680) but dif-

ferent initial conditions, (X ′,Y ′,Z ′,Y ′
1,Z

′
1,Y

′
2,Z

′
2,Y

′
3,Z

′
3) = (0, 1, 0, 0, 0, 0, 0, 0, 0) − −→

Xc and

(100, 100, 100, 100, 100, 100, 100, 100, 100) − −→
Xc , respectively. Here,

−→
Xc represents the non-

trivial critical point (i.e., (Xc,Yc,Zc,Y1c,Z1c,Y2c,Z2c,Y3c,Z3c)). Bottom panels compare time-
varying solutions of the 9DLM V1 and V2

display diverged solutions (e.g., τ ∈ [3.8, 6.5]), indicating the sensitive dependence
of solutions on “round-off” differences in results between the V1 and V2 systems.
Interestingly, both “chaotic” trajectories become overlapped again at a later time
(e.g., τ ∈ [7, 8]). Based on the above discussions, we suggest that the approach with
V2 is robust for producing the coexistence of chaotic and non-chaotic solutions.
As discussed in [15], such a coexistence appears over a wide range of Rayleigh
parameters within the 9DLM, as compared to a small range of Rayleigh parameters
within the 3DLM.

By comparison, the 9DLM possesses a second kind of coexistence for two types
of solutions that has not been previously documented using Lorenz-like systems.
Within the 9DLMV2with r = 1600, Fig. 3 displays numerical solutions for the coex-
istence of limit cycle (left panels) and steady-state (right panels) solutions. Both runs
have the same model parameters but different ICs, (X ′,Y ′,Z ′,Y ′

1,Z
′
1,Y

′
2,Z

′
2,Y

′
3,Z

′
3)

= (0, 1, 0, 0, 0, 0, 0, 0, 0) − −→
Xc and (100, 100, 1600, 100, 800, 100, 530, 100, 400)

− −→
Xc , respectively. The first set of IC, close to the origin, produces a limit cycle

solution, while the second set of IC, away from the origin, leads to a steady state
solution that moves toward the non-trivial critical point at (130.196, 130.196), as
shown in the right panels. Since both types of solutions are stable, no visual differ-
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Fig. 3 Numerical solutions of the 9DLM V2 for coexistence of the limit cycle (left panels) and
steady-state (right panels) solutions. The two runs use the same model parameters (e.g., r = 1, 600)

but different initial conditions, (X ′,Y ′,Z ′,Y ′
1,Z

′
1,Y

′
2,Z

′
2,Y

′
3,Z

′
3) = (0, 1, 0, 0, 0, 0, 0, 0, 0) − −→

Xc

and (100, 100, 1600, 100, 800, 100, 530, 100, 400) − −→
Xc , respectively.

−→
Xc represents the non-

trivial critical point (i.e., (Xc,Yc,Zc,Y1c,Z1c,Y2c,Z2c,Y3c,Z3c)). Bottom panels compare time-
varying solutions of the 9DLM V2 and V1

ence appears in the solutions that were obtained from the 9DLMV1 and V2 systems
(e.g., the bottom panels). Once again, the above results indicate the robustness of the
V2 system.

3.4 Ensemble Runs

Previously, we illustrated the dependence of two types of solutions on the initial
conditions. Since non-trivial critical points are stable, it is reasonable to hypothesize
that orbits beginning “near” the non-trivial critical points may move toward the
critical point, at least from a statistical perspective. To verify this hypothesis, a
large number of runs with different initial conditions are performed. We first apply
a Gaussian random generator to produce N data points, Vij, within the 9D space.
Here, i ∈ Z : i ∈ [1, 9] indicates each of the nine variables within the phase space,
while j ∈ Z : j ∈ [1,N ] is located within the ensemble space. We then distribute
these points over a hypersphere centered at a non-trivial critical point, as follows:
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Wij = R
Vij

normj
, normj =

√
√
√
√

9
∑

i=1

V 2
ij , (24a)

which yields:

9
∑

i=1

W 2
ij = R2. (24b)

Therefore, W1j,W2j,W3j . . . ,W8j,W9j represent N data points distributed over a
hypersphere with a radius of R. The radius, R, represents the spatial extent of initial
conditions centered at the non-trivial critical point within the phase space. We then
use W1j,W2j,W3j . . . , W8j,W9j as a set of ICs for X ,Y ,Z, . . . ,Y3,Z3, respectively.

Fig. 4 A matrix of scatter plots for 4096 initial conditions distributed over the hypersphere within
the 9D phase space
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Fig. 5 Dependence of numerical simulations for chaotic and non-chaotic orbits on initial conditions
(ICs). a 4096 ICs distributed over a hypersphere with a radius of R = 5; b 4096 ICs with a R = 100;
c 512 ICs with a R = 200; d 128 ICs with a R = 200; e 128 ICs with a R = 300; and f 64 ICs with
a R = 500. τ in [1.25, 10]

Figure4 displays a matrix of scatter plots for 4096 initial conditions distributed over
the hypersphere with R = 1 within the 9D phase space. In the following, we present
numerical solutions for the initial conditions using various radii (i.e., R), as well as
various numbers of ensemble members (i.e., N ).

We begin with a large number of ensemble runs (i.e., a large N ) with various ICs
on a small hypersphere (i.e., a small R) to illustrate steady-state solutions. We then
gradually increase the value of R and decrease the number of ensemble runs to show
the coexistence of steady state and chaotic solutions. Figure5 displays six cases for
various values of (R,N ) using the same Rayleigh parameter, r = 680, and the same
period, τ ∈ [1.25, 10]. In Fig. 5a, all of the orbits obtained from 4096 ICs distributed
over a hypersphere with a radius of R = 5 move toward the non-trivial critical point
at (Xc,Yc) = (84.489, 84.489). As shown in Fig. 5b, similar results can be found
in the case with R = 100 where the spatial scale of 4096 ICs is larger. Therefore,
the domain of the plot is larger. As shown in Fig. 5c, when a larger R (R = 200) is
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used, chaotic orbits coexist with the steady state solutions when smaller ensemble
(N = 512) runs are performed. By further decreasing the ensemble members (i.e.,
N = 128), the case with R = 200 only produces steady state solutions (e.g., Fig. 5d),
while the case containing a larger R (R = 300) possesses both chaotic and stead-
state solutions (e.g., Fig. 5e). As shown in Fig. 5f, when a very large R (R = 500) is
used, 64 ensemble runs contain both types of solutions. Ensemble simulations that
indicate the dependence of chaotic and non-chaotic solutions on initial conditions
suggest that small deviations away from equilibrium (e.g., the stable critical point)
do not have a significant impact on orbital stability for stable orbits.

4 Conclusions

In this study, a new nine-dimensional Lorenz model (9DLM), versions 1 and 2,
is presented to reveal: (1) the coexistence of chaotic and non-chaotic orbits with
moderate Rayleigh parameters and (2) the coexistence of limit cycle orbits and spiral
sinks with large Rayleigh parameters. The 9DLM is derived based on successive
extension of the nonlinear feedback loop (NFL) within the 3D, 5D, and 7DLMs. The
9DLM requires a larger critical value for the Rayleigh parameter (a rc of 679.8) for
the onset of chaos as compared to a rc of 24.74 for the 3DLM, a rc of 42.9 for the
5DLM, and a rc of 116.9 for the 7DLM.

To illustrate the role of the NFL, we apply a perturbationmethod in order to derive
the V2 system for the 9DLM, as well as for the 3D, 5D and 7D LMs. The 9DLM
V2 is used to indicate that: (i) non-trivial critical points are stable in a linear stability
analysis, and (ii) four incommensurate frequencies appear under non-dissipative and
linear conditions. The non-dissipative linearized V2 system is mathematically iden-
tical to a system with four masses and four springs. Within the dissipative 9DLM,
since the negative nonlinear feedback associated with increasing small-scale dissi-
pative processes can be aggregated to stabilize the system, non-trivial critical points
of the 9DLM become stable for Rayleigh parameters greater than one. As compared
to the 3DLM, the appearance of stable critical points is important so that the 9DLM
can possess the coexistence of chaotic and non-chaotic orbits over a wider range of
Rayleigh parameters. The 9DLM additionally displays the coexistence of limit cycle
and steady-state solutions, a phenomenon not previously documented in Lorenz-like
systems.

Applying the full version of the 9DLM V2, we additionally examine the depen-
dence of solutions (i.e., chaotic or non-chaotic) on the spatial extent (R) and the
ensemble member (N ) of initial conditions distributed over a hypersphere with a
center at the non-trivial critical point. As a result of the stable non-trivial critical
point, 4,096 orbits beginning near the critical point (e.g., R = 5 or R = 100) move
toward the critical point, being classified as non-chaotic solutions. By comparison,
the probability for the appearance of chaotic solutions becomes high when initial lo-
cations are placed “away” from the critical point. For example, chaotic orbits appear
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for the cases with (R,N ) = (300, 128) and (500, 64). The former displays a smaller
spatial extent but a larger number of ensemble members for the initial conditions.

As discussed above, the coexistence of chaotic and non-chaotic solutions (as
well as the appearance of various types of solutions) indicates that the entirety of
weather is a superset that consists of both chaotic and non-chaotic processes. The
revised view is contrary to the traditional view that weather is chaotic. Ensemble
simulations suggest that for a stable orbit, small deviations away from equilibrium
(e.g., the stable critical point) do not have a significant impact on orbit stability.

Acknowledgements We are grateful for support from the College of Science at San Diego State
University.

Appendix: Solutions of the Non-trivial Critical Points

The time-independent 9DLM can be reduced as follows:

X 2 − XY1 − bZ = 0, (25)

where,
Z = r − 1, (26)

Y1 = bXZT1
X 2 + T2

, (27)

T1 = 3X 4 + 2bX 2(d1 + d2) + b2d1d2
X 4 + (bd2 + 2bd1)X 2 + b2d1d2

, (28)

and
T2 = bd0T1. (29)

Equation (25) along with Eqs. (26)–(29) represents an equation for a single vari-
able X . Therefore, we can solve Eqs. (25)–(29) for the solution of X and for the solu-
tions of the remaining variables since they can be expressed in terms ofX , as follows:

Y = X , (30)

Z1 = Y1

(
X 5 + bX 3(d2 + 2d1) + b2Xd2d1

6bX 4 + 4b2X 2(d2 + d1) + 2b3d2d1

)

, (31)

Y2 = 2XZ1

(
2bX 2 + b2d2

X 4 + X 2b(d2 + 2d1) + b2d2d1

)

, (32)

Z2 = 3XY2

(
X 2 + bd2

18bX 2 + 9b2d2

)

, (33)
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Y3 = 3bXZ2
X 2 + bd2

, (34)

Z3 = 3Z2
4

− d2Y3
4X

. (35)

References

1. R. Anthes, Turning the tables on chaos: is the atmosphere more predictable than we as-
sume?, UCAR Magazine, spring/summer, available at: https://news.ucar.edu/4505/turning-
tables-chaos-atmosphere-more-predictable-we-assume (Last access: 2 April 2019), 2011

2. J.H. Curry, J.R. Herring, J. Loncaric, S.A. Orszag, Order and disorder in two- and three-
dimensional Benard convection. J. Fluid. Mech. 147, 1–38 (1984)

3. S. Faghih-Naini, B.-W. Shen, Quasi-periodic in the five-dimensional non-dissipative lorenz
model: the role of the extended nonlinear feedback loop. Int. J. Bifurc. Chaos 28(6), 1850072
(20 pages) (2018). https://doi.org/10.1142/S0218127418500724

4. J. Gleick, Chaos: Making a New Science (Penguin, New York, 1987), p. 360
5. J. Guckenheimer, R.F. Williams, Structural stability of lorenz attractors. Publ. Math. IHES. 50,

59 (1979)
6. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
7. E.N. Lorenz, The predictability of a flow which possesses many scales of motion. Tellus, 21,

289–307 (1969)
8. E.N. Lorenz, Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in

Texas?, in American Association for the Advancement of Science, 139thMeeting, 29 December
1972, Boston, Mass., AAAS Section on Environmental Sciences, New Approaches to Global
Weather, GARP. Available at: http://eaps4.mit.edu/research/Lorenz/Butterfly_1972.pdf, Last
access: 14 Dec 2015 (1972)

9. D. Roy and Z.E. Musielak.: Generalized Lorenz models and their routes to chaos, I. Energy-
conserving vertical mode truncations, Chaos Soliton. Fract., 32, 1038–1052 (2007)

10. B.-W. Shen, Nonlinear feedback in a five-dimensional Lorenz model. J. Atmos. Sci. 71, 1701–
1723 (2014). https://doi.org/10.1175/JAS-D-13-0223.1

11. B.-W. Shen, Nonlinear feedback in a six dimensional Lorenz model: impact of an additional
heating term. Nonlin. Processes Geophys. 22, 749–764 (2015). https://doi.org/10.5194/npg-
22-749-2015

12. B.-W. Shen, Hierarchical scale dependence associated with the extension of the nonlinear
feedback loop in a seven-dimensional Lorenz model. Nonlin. Processes Geophys. 23, 189–203
(2016). https://doi.org/10.5194/npg-23-189-2016

13. B.-W. Shen, On an extension of the nonlinear feedback loop in a nine-dimensional Lorenz
model. Chaotic Model. Simul. (CMSIM) 2, 147–157 (2017)

14. B.-W. Shen, On periodic solutions in the non-dissipative lorenz model: the role of the nonlinear
feedback loop. Tellus A 70, 1471912 (2018). https://doi.org/10.1080/16000870.2018.1471912

15. B.-W. Shen, Aggregated Negative Feedback in a Generalized Lorenz Model. Int. J. Bifurc.
Chaos 29(3), 1950037, (20 pages) (2019). https://doi.org/10.1142/S0218127419500378

16. B.-W. Shen, R.A. Pielke Sr., X. Zeng, S. Faghih-Naini, C.-L. Shie, R. Atlas, J.-J. Baik, T. A. L.
Reyes: Butterfly effects of the first and second kinds: new insights revealed by high-dimensional
lorenz models, in The 11th Chaos International Conference (CHAOS2018), Rome, Italy, June
5–8, 2018

https://news.ucar.edu/4505/turning-tables-chaos-atmosphere-more-predictable-we-assume
https://news.ucar.edu/4505/turning-tables-chaos-atmosphere-more-predictable-we-assume
https://doi.org/10.1142/S0218127418500724
http://eaps4.mit.edu/research/Lorenz/Butterfly_1972.pdf
https://doi.org/10.1175/JAS-D-13-0223.1
https://doi.org/10.5194/npg-22-749-2015
https://doi.org/10.5194/npg-22-749-2015
https://doi.org/10.5194/npg-23-189-2016
https://doi.org/10.1080/16000870.2018.1471912
https://doi.org/10.1142/S0218127419500378


Coexistence of Chaotic and Non-chaotic Orbits … 255

17. B.-W. Shen, S. Faghih-Naini, On recurrent solutions within high-dimensional non-dissipative
Lorenz models: the role of the nonlinear feedback loop, in The 10th Chaos Modeling and
Simulation International Conference (CHAOS2017), Barcelona, Spain, 30 May–2 June, 2017

18. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors (Springer,
New York. Appl. Math. Sci., 41, 1982)



Transition to Deterministic Chaos
in Some Electroelastic Systems

Aleksandr Shvets and Serhii Donetskyi

Abstract The electroelastic system “generator-piezoceramic transducer” is consid-
ered, which is nonideal in the sense of Sommerfeld-Kononenko. The presence in the
system of various types of regular and chaotic attractors, namely, equilibrium posi-
tions, limit cycles, invariant tori, chaotic and hyperchaotic attractors, is revealed. An
atypical alternation of cascades of bifurcations of period doubling and intermittency
at transitions to chaos is revealed. The so-called rare attractors are found, which are
located both inside invariant tori and inside chaotic attractors.

Keywords Invariant torus · Chaotic attractor · Rare attractor · Scenario of
transition to chaos

1 Introduction

One of the most important elements of modern navigation equipment are piezoce-
ramic transducers.Different types of such transducers arewidely used in depthmeters,
range finders, devices for scanning underwater space, systems of transmission and
reception of information under water. At recently, as a device for exciting oscilla-
tions piezoceramic transducer was again used electrolamp LC− generators. This is
due to the renaissance of the analog lamp generators that allow significantly higher
metrological characteristics of the output signals in comparison with digital devices.

Any oscillating dynamical system, despite a huge variety of such systems, in fact
consists of two basic elements. The first element is oscillating system itself, which
we will name oscillating loading and second element - the any source of excitation
of oscillations. All variety of existing oscillating dynamical systems can be divided

A. Shvets (B) · S. Donetskyi
National Technical University of Ukraine Kyiv Polytechnic Institute,
37, Prospect Peremohy, Kiev 03056, Ukraine
e-mail: alex.shvets@bigmir.net

S. Donetskyi
e-mail: dsvshka@gmail.com

© Springer Nature Switzerland AG 2019
C. H. Skiadas and I. Lubashevsky (eds.), 11th Chaotic Modeling
and Simulation International Conference, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-030-15297-0_23

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15297-0_23&domain=pdf
mailto:alex.shvets@bigmir.net
mailto:dsvshka@gmail.com
https://doi.org/10.1007/978-3-030-15297-0_23


258 A. Shvets and S. Donetskyi

into two class. Ideal oscillating dynamical systems are understood as such systems,
at which the energy source of oscillations has a power considerably exceeding power
consumed oscillating loading. In turn systems, at which a power consumed by the
oscillating loading is comparable on value with a power of the energy source of
oscillations, are called as nonideal or systems with limited power-supply [1]. At
mathematical modelling of nonideal systems taking into account interactions be-
tween oscillating loading and the energy source of oscillations is obligatory.

Problems of global energy-saving force to minimise maximum power of those or
others sources of excitation of oscillating systems. Therefore now majority of real
oscillating systems in essence should be treated as nonideal.

2 Mathematical Model and Map of Dynamic Regimes

Let us consider a piezoceramic rod transducer, which is loaded on the acoustic
medium and to which electrodes the electrical voltage is affixed, raised by the LC–
generator. Let’s denote through φ(t) the value proportional to electric voltage of grid
lamp of generator and through V (t) – electric potential difference on electrodes of
transducer. As shown in works [2, 3], the mathematical model of system “piezoce-
ramic transducer – generator”, can be describes by following nonlinear system of
differential equations:

φ̈ + ω2
0φ = a1φ̇ + a2φ̇

2 − a3φ̇
3 − a4V (t),

V̈ (t) + ω2
1V (t) = a5φ + a6φ̇ − a7V̇ (t).

(1)

Here a1, . . . , a7,ω0,ω1 – the parameters determined through electromagnetic,
geometrical and deformation properties of generator and transducer [2].

Let’s introduce dimensionless variables:

ξ = φω0

Eg
,

dξ

dτ
= ζ, β = V

Eg
,

dβ

dτ
= γ, τ = ω0t, (2)

After that the system (1) will have the following form:

dξ

dτ
= ζ,

dζ

dτ
= −ξ + α1ζ + α2ζ

2 − α3ζ
3 − α4β,

dβ

dτ
= γ,

dγ

dτ
= −α0β + α5ξ + α6ζ − α7γ,

(3)
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where

α0 = ω2
1

ω2
0

, α1 = a0
ω0

, α2 = a2Eg

ω0
, α3 = a3E2

g

ω0
,

α4 = a4
ω0

, α5 = a5
ω3
0

, α6 = a6
ω2
0

, α7 = a7
ω0

.

As the system (3) is a nonlinear system of differential equations of fourth order
all its researches were carried out by means of various numerical methods. The
technique for such calculations was developed and described in detail in [4–6].

A very clear presentation of the dynamic behavior of the system is given by a map
of dynamic regimes. On such a flat map, the coordinate axes correspond to those
or other parameters of the system and areas corresponding to the different types of
steady-state dynamic regimes, which are plotted on the map by the various colors.
For construction a dynamic regimes map, the plane of any selected parameters of
the system is split using a vertical-horizontal grid into a points with a small grid
step. At each grid point of the map is numerically calculated the spectrum of the
Lyapunov’s characteristic exponents. The type of the dynamic regime of the system
is identified on the basis of the study the signature of the spectrum of Lyapunov’s
characteristic exponents. After identifying the type of dynamic regime in all grid
points of the plane parameters, the corresponding pixel of the computer screen is
assigned a certain color code. As a result, we get a multicolor map on the computer
screen, which gives a visual representation about the type of steady-state dynamic
regimes at changing the parameters of system.

Let the paramemeters of system (3) be equal to α0 = 0.995,α1 = 0.04,α4 =
0.103,α5 = −0.0604,α6 = −0.12,α7 = 0.01. In Fig. 1, a map of the dynamic
regimes of the system for the parameters α3 and α2 is constructed. The regions of the
limit cycles are plotted in black, the invariant toruses are red, the chaotic attractors
are violet, the hyperchaotic attractors are white, and the equilibrium positions are
blue. Signatures of the spectrum of the Lyapunov’s characteristic exponents have the
form 〈0,−,−,−〉 for limit cycles, 〈0, 0,−,−〉 – for invariant toruses, 〈+, 0,−,−〉
for chaotic attractors, and 〈+,+, 0,−〉 for hyperchaotic attractors. We emphasize
that hyperchaotic attractors have two positive Lyapunov’s exponents. The signature
of the spectrum for equilibrium positions has the form 〈−,−,−,−〉. Especially
carefully the identification of the types of the steady-state regimes should be carried
out in the neighborhood of the boundaries of the existence of regimes of various
types. It is necessary in addition to analyze phase portraits, Poincare sections and
Fourier–spectrum of the attractors of the system. As can be seen from this map in the
system “generator–piezoceramic transducer” there are dynamic steady-state regimes
of absolutely all types. Particularly we emphasize that rather large areas on this map
are occupied by chaotic and, in particular, hyperchaotic regimes.
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Fig. 1 Map of dynamic
regimes

3 Atypical Transition to Chaos and Rare Attractors

As is known [7], the main scenarios for the transition to chaos in dynamic systems
are the Feigenbaum’s scenario and the Pomeau–Manneville’s scenario. In the first
scenario, the transition to chaos occurs through a cascade of bifurcations of doubling
the period of limit cycles, and in the second it occurs through intermittency. More-
over, the most typical is situation when at increasing (decreasing) some of the system
parameters, a number of consecutive transitions to chaos are observed through a cas-
cade of bifurcations of periods doubling of limit cycles. Conversely, with decreasing
(increasing) the parameter in this case, a transition to chaos through intermittency is
observed.

Figure2 shows a fragment of the phase-parametric characteristics of the system,
the so-called bifurcation tree. In this figure, splitting of individual “branches” of a tree
is clearly seenwhen going over to chaos through the cascade of bifurcations of period
doubling. Also we can see a hard transition to chaos after one bifurcation through
intermittency. The study of this tree reveals some atypical situation for dynamic
systems. As can be seen from Fig. 2, there is a violation of the strict sequence of
transitions to chaos with increasing (decreasing) bifurcation parameter. There is a
certain symmetry of scenarios of transitions to chaos. In relatively small regions
of variation of the parameter α2, transitions to chaos are observed according to the
Feigenbaum’s scenario both with increasing and decreasing bifurcation parameter.
The same feature is inherent in the transitions to chaos in the Pomeau–Manneville’s
scenario.
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Fig. 2 Fragment of
phase-parametric
characteristic of system

Another interesting feature of the dynamic behavior of system (3) is the presence
in it of so-called rare attractors. Recently, interest in the study of rare, hidden and
self-excited attractors has increased significantly [8, 9].

Under a rare attractor we mean an attractor that:
1. Is located inside the localization area, some other attractor;
2. The phase volume of the basin of attraction of such attractor is much smaller

than the phase volume of basin of attraction of the attractor, in which the rare attractor
is located.

For construct the rare attractors of the system (3), following algorithm can be
proposed. As is known that system (3) has a zero equilibrium position

ξ = 0, ζ = 0, β = 0, γ = 0, (4)

the stability conditions of which are obtained in [2, 3]. In the neighborhood of the
unstable zero equilibrium position, the initial conditions for the trajectories of system
are chosen. Next, for chosen trajectory, the spectrum of Lyapunov’s characteristic
exponents (LCE) is calculated and the signature of this spectrum is determined.On the
basis of the signature of the spectrum, identification of the type of a possible attractor
is made. However, in the system (3) a paradoxical situation is possible, when there
are no zero exponents in the calculated spectrum of the LCE, for trajectories that are
not equilibrium positions. Such situation contradicts the general theory of continuous
dynamical systems [7]. Such a contradiction may indicate the appearance of a rare
attractor, the construction of which requires significantly decreasing the error of the
applied computing scheme. In our calculations we used the Runge–Kutta method of
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the fifth order with a variable step of numerical integration. For selection the step of
numerical integration, the corrective procedure of Prince–Dormand was applied.

In the overwhelmingmajority of cases, the stability of the computation of the LCE
spectrumwas achieved for a sufficiently large local error of orderO(10−4)–O(10−5).
When revealing a paradoxical situation (absent of zero characteristic exponents), it is
required to substantially increase the local accuracy of the computations toO(10−7)–
O(10−8), and also to increase the duration of numerical integration. After increasing
the accuracy of numerical computations, at least one zero characteristic exponent
appears in the LCE spectrum of trajectories. Thus, the contradiction with the general
theory of dynamical systems disappears. Such a paradox can be explained as follows.
Rare attractors have very small basins of attraction in the phase space. Therefore, in
numerical calculations with insufficient accuracy, the trajectory can leave the basins
of attraction of one attractor and enter the basin of attraction of another attractor. And
such transutions of trajectories through the boundary of different basins of attraction
can occur repeatedly. This leads to incorrect results in calculation the LCE spectrum
of attractor. With a significant increase in the accuracy of numerical calculations,
such “jumps” from one basin of attraction to another become impossible.

Let’s illustrate the rare attractors of system (3) in few examples. In Fig. 3 the
projections of phase portraits of two pairs of attractors that exist in the system (3) at
α2 = 7.847 (a) and at α2 = 7.95 (b) are shown. One of the attractor of these pairs is
the invariant torus (black), and the second (red) is the limit cycle. In this case, both
limit cycles are rare attractors. We note, that one limit cycle is located strictly inside
the invariant torus.

The next pairs of attractor that exist in the system are shown in Fig. 4. Here in
Fig. 4a the projections of phase portraits of limit cycles constructed at α2 = 8.625.
One of the limit cycles (black) is a rare attractor. It should be emphasized that a rare
limit cycle has significantly smaller amplitudes of oscillations of time realizations
of phase variables. Accordingly, in Fig. 4b the projections of the phase portraits of

Fig. 3 Projections of phase portrait of invariant torus (black) and rare limit cycle (red) atα2 = 7.847
(a) and α2 = 7.95 (b)
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Fig. 4 Projections of phase portrait of limit cycle (red) and rare limit cycle (black) at α2 = 8.625
(a); chaotic attractor (red) and rare limit cycle (black) at α2 = 8.647 (b)

Fig. 5 Projections of phase portrait of limit cycle (black) and rare limit cycle (red) at α2 = 8.959
(a); chaotic attractor (black) and rare limit cycle (red) at α2 = 8.96 (b)

the chaotic attractor (red) and the rare limit cycle (black) at α2 = 8.647 are shown.
A rare limit cycle lies strictly inside the chaotic attractor and has a much smaller
volume of the localization region in the phase space than the chaotic attractor.

Finally, in Fig. 5 two more pairs of attractors existing in the system (3) are shown.
One pair (Fig. 5a) is two limit cycles at α2 = 8.959, one of which (red) is a rare
attractor. The second pair (Fig. 5b) is a chaotic attractor (black) and a rare limit
cycle (red) at α2 = 8.96. In both cases, the localization region in the phase space
of the rare limit cycles is comparable with the corresponding regions of localization
of “not rare” attractors. However, rare attractors have significantly smaller basins of
attraction.We also emphasize that the chaotic attractor shown in (Fig. 5b) has a much
more complex structure than the chaotic attractor shown in (Fig. 4b).
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4 Conclusion

Thus, for a deterministic dynamical system “generator-piezoceramic transducer”, in
some areas of the space of its parameters, the bistability is typical situation. The
limit sets of trajectories of the system are pairs of attractors. One of these attractors
is a rare attractor, which has a very small basin of attraction. The second of the
attractors is an “ordinary” attractor, which has a large basin of attraction. There are a
variety of combinations of such pairs of attractors, one of which is rare attractor. For
example, “invariant torus, limit cycle”, “limit cycle, limit cycle”, “chaotic attractor,
limit cycle”.

Also in the system, a symmetry is found in the alternation of the cascade of period-
doubling bifurcations and intermittency at the transitions from regular attractors to
chaotic ones.
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Hyperchaos in Oscillating Systems
with Limited Excitation

Aleksandr Shvets and Vasiliy Sirenko

Abstract The oscillating systems of a pendulum type, nonideal in the sense of
Sommerfeld-Kononenko are considered. Such systems are used for modeling oscil-
lations in hydrodynamics, shell theory and other applications. The complex scenario
of transition to the hyperchaos is revealed and described in details. Revealed scenario
begins with symmetric limit cycles and ends with a transition to hyperchaos through
generalized intermittency with two coarse grained laminar phases. This scenario is
illustrated in detail by projections of phase portraits, Poincaré sections and other
characteristics of attractors of the system.

Keywords Limited excitation · Chaotic and hyperchaotic attractor · Poincaré
section · Scenario of transition to chaos

1 Introduction

When studying the occurrence of deterministic chaos in dynamic systems, much
attention is paid to describing scenarios of transitions from regular regimes to chaotic
ones. Despite a huge number of mathematical models of dynamic systems, scenarios
of transition to chaos in such systems can be divided into three groups. To the first
group belongs the Feigenbaum scenario, inwhich a transition to chaos occurs through
an infinite cascade of bifurcations of doubling the periods of limit cycles [1, 2].
The second group includes scenarios of transitions to chaos through intermittency
by Pomeau–Manneville [3, 4]. Finally, scenarios describing the transition to chaos
through the destruction of invariant tori [5–7] belong to the third group.
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Recently scenarios of transitions to chaos have been described, which represent
various generalizations of the Pomeau-Manneville’s scenarios [8–10], as well as
scenarios that includes are both cascades of period doubling bifurcations and differ-
ent types of intermittency [11, 12]. However, many questions concerning possible
scenarios of transitions to chaos remain unclear.

2 Statement of the Problem and Mathematical Model

Any oscillatory system consists of two main subsystems, a source of excitation of
oscillations and the actual vibrational load. If the power of the excitation source is
comparable with the power consumed by the vibrational load, then such a system
is called nonideal by Sommerfeld - Kononenko [13]. If the power of the excitation
source is much higher than the power consumed by the vibrational load, then such
system is called ideal.

The tasks of global energy saving make it necessary to minimize the power of the
applied oscillation sources as much as possible. In connection with this, most of the
realmodern oscillatory systems are imperfect. Atmathematicalmodeling of nonideal
systems, it is necessary to take into account the inverse influence of the vibrational
load on the functioning of the excitation source of oscillations. This leads to the
fact that the differential equations of motion of a nonideal system contain additional
equations in comparison with the ideal case. Note that neglecting the influence of the
vibrational load on the source of excitation can lead to a loss of information about
the real, both regular and chaotic, steady-state oscillation regimes [8, 9].

Consider the following system of differential equations:

dp1
dτ

= αp1 − [β + A

2
(p21 + q21 + p22 + q22)]q1 + B(p1q2 − p2q1)p2;

dq1
dτ

= αq1 + [β + A

2
(p21 + q21 + p22 + q22)]p1 + B(p1q2 − p2q1)q2 + 1;

dβ

dτ
= N3 + N1β − μ1q1;

dp2
dτ

= αp2 − [β + A

2
(p21 + q21 + p22 + q22)]q2 − B(p1q2 − p2q1)p1;

dq2
dτ

= αq2 + [β + A

2
(p21 + q21 + p22 + q22)]p2 − B(p1q2 − p2q1)q1,

(1)

here p1, q1, β, p2, q2 are phase coordinates, τ is a time, A,B, α,N1,N3, μ1 are some
parameters.

As it is established in the works [8, 9, 14–17], the system of equations (1) is
used to describe fluid oscillations in cylindrical tanks, for modeling oscillations of
thin-walled shells, to study pendulum systems with a vibrating suspension point
and a number of other topical problems of nonlinear dynamics. Depending on the
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applied application, the parameters A,B, α,N1,N3, μ1 have different physical or
geometric meaning. The phase variables p1, q1, p2, q2 are generalized coordinates
of the vibrational subsystem, the phase variable β describes the operation of the
oscillation source [8, 9].

3 Symmetric Scenario of Transition to Hyperchaos

Since the system of equations (1) is nonlinear, in the general case, a detailed and
comprehensive study of its dynamics can be carried out only using various numer-
ical and computer methods [6]. The techniques of carrying out such calculations is
developed and described in [6, 7, 9, 18, 19].

Let the parameters of the system (1) have the following values:

A = 1.12,B = −1.531,N3 = −1,N1 = −1, μ1 = 4.024.

As a result of carrying out a large number of numerical computer experiments, it
was possible to detect and describe a rather complex chain of scenarios for transition
from regular attractors to chaotic ones.

It is established that for −0.026 < α < −0.01 in the system there exists single-
cycle limit cycles symmetric with respect to the axis q1 = 0. The projections of phase
portraits of limit cycles of this type are shown in Fig. 1a, b. Each of the limit cycles
exists separately and has its own basin of attraction. At decreasing the value of the
parameter α at α = −0.027, the existing limit cycles lose stability and symmetric
invariant tori arise in the system. In Fig. 1c, d it is shown the projections of phase
portraits of symmetric invariant tori constructed at α = −0.034. Each of the con-
structed invariant tori exists separately, has its own basin of attraction and arises in
the neighborhood of the corresponding limit cycle, the “upper” or “lower” as a result
of the Neimark’s bifurcation [6].

As the parameter decreases further, at α = −0.035, each of the symmetric tori
destroys and symmetric resonance cycles appear on the tori (Fig. 2a, b). Each of the
appearing resonant cycles arises on the corresponding toroidal surface and is charac-
terized by its own basin of attraction. Although already at the valueα = −0.0365, the
resonance symmetric limit cycles disappear and symmetric chaotic attractors appear
in the system (Fig. 2c, d). In the spectrum of Lyapunov’s characteristic exponents
(LCE) of each of the obtained chaotic attractors, there is one positive exponent which
indicates their chaotic nature. The emergence of each of the chaotic attractors occurs
according to the classical Pomeau-Manneville intermittency scenario [3, 4]. Chaotic
attractors have different basins of attraction, which have no common points.

Chaotic attractors (Fig. 2c, d) exist in a sufficiently small interval of variation of
the parameter α, and already at α = −0.0405 in the system occur the bifurcation
“chaos–hyperchaos”, as a result of which each chaotic attractor is destroyed and
the corresponding hyperchaotic attractors appear (Fig. 3a, b). The signature of the
LCE spectrum of each hyperchaotic attractor has the form 〈+,+, 0,−,−〉. The
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Fig. 1 Projections of phase portraits of symmetric limit cycles at α = −0.02 (a, b) and invariant
tori at α = −0.027 (c, d)

projections of the phase portraits (Fig. 3a, b) of the constructedhyperchaotic attractors
visually slightly different from the corresponding chaotic attractors (Fig. 2c, d). But
the essential difference between them is that the LCE spectrum of the hyperchaotic
attractor has twopositiveLyapunov exponents,while theLCEspectrumof the chaotic
attractor has only one positive Lyapunov exponent.

The arising symmetric hyperchaotic attractors also exist in a small interval of
variation of the parameter α and already at the value α = −0.0407 the bifurcation
“hyperchaos–hyperchaos” occurs in the system, as a result of which hyperchaotic
attractors (Fig. 3a, b) disappear and a new type of hyperchaotic attractor appears in the
system. The projection of the phase portrait of such hyperchaotic attractor is shown
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Fig. 2 Projections of phase portraits of symmetric limit cycles on tori for α = −0.035 (a, b) and
chaotic attractors for α = −0.0365 (c, d)

in Fig. 3c. This attractor is a “glueing” of two symmetric hyperchaotic attractors
that disappear after passing the bifurcation point. In Fig. 3d it is shown a fragment
of a central (darker) part of the hyperchaotic attractor (Fig. 3c). This darkened part
corresponds to the regions of localization of the vanished hyperchaotic attractors.

The transition “hyperhaos–hyperhaos” here occurs according to the modified sce-
nario of generalized intermittency. Such intermittency has significant differences
from the generalized intermittency described in [9, 10]. The motion of a typical
trajectory of an attractor consists of three phases. Two of these phases represent
chaotic motions of the trajectory in one of the darkened (upper or lower) regions
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Fig. 3 Projections of phase portraits of symmetric hyperchaotic attractors at α = −0.0405 (a),
b and hyperchaotic attractor at α = −0.0407 (c, d)

of Fig. 3c, d. That is, in the regions of localization of the vanishing hyper-chaotic
attractors (Fig. 3a, b). Such phases of motion called coarse grained laminar. The
third phase of the motion is the departure of the trajectory to the remote regions
of the phase space. This phase of motion is called turbulent. Thus, the trajectory,
having started motion for example in one of the coarse grained laminar phases, at
an unanticipated instant of time transits into the turbulent phase. Then, again at an
unpredictable moment of time it returns to one of the coarse grained laminar phases.
And starting the motion in the upper darkened area of Fig. 3a, b, the trajectory, after
a turbulent spike, can return both to the upper darkened area and go to the lower one.
Note that the “switching” of trajectories between coarse grained laminar phases is
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Fig. 4 Projections of Poincaré section of symmetric “small” hyperchaotic attractors at α =
−0.0405 (a) and “large” hyperchaotic attractor at α = −0.0407 (b)

unpredictable. Such complex character of the change in the phases of the motion of
the trajectory is repeated infinite number of times. Unlike the scenario of general-
ized intermittency described in the [9, 10] scenario, in this case there are two coarse
grained laminar phases of motion. We also note that the hyperchaotic attractor that is
shown in Fig. 3c has amplitudes of oscillations of phase variables that significantly
exceed the amplitudes of oscillations of phase variables of hyperchaotic attractors
from Fig. 3a, b. Next, for brevity, the hyperchaotic attractors shown in Fig. 3a, b will
be called “small”, and the hyperchaotic attractor from Fig.3c will be called “large”.

Similar peculiar properties, that is typical for intermittency, are also observed in
the analysis of the Poincaré sections. In Fig. 4a the projections of Poincaré sections
of symmetric “small” hyperchaotic attractors is shown. Accordingly in Fig. 4b is
shown the projection of Poincaré sections of “large” hyperchaotic attractor. The
plane β = −1.7 was chosen as the secant. The constructed sections are developed
chaotic sets of points. The Poincare section of each of the “small” hyperchaotic
attractors consists of two fragments located respectively in the upper and lower
parts of Fig. 4a. All these four fragments are components of the Poincare section
of the “large” hyperchaotic attractor (Fig. 4b). The two upper fragments correspond
to one of the coarse grained laminar phases. Accordingly, the two lower fragments
correspond to another coarse grained laminar phase. The turbulent phase of the
motion of the trajectories along the attractor corresponds to points that “unite” these
fragments. At the given moment of time, it is impossible to predict the location of
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the Poincare section point of “large” attractor in this or that its part. True, it should
be noted that the trajectories of the attractor are, in average, most of the time in one
of the coarse grained laminar phases.

4 Conclusion

Thus, in a deterministic pendulum system with limited excitation, hyper-chaotic
attractors of various types have been discovered. A transition from a hyperchaotic
attractor of one type to a hyperchaotic attractor of another type through intermittency
with two coarse grained laminar phases and one turbulent phase is described.
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Non-linear Stability Observation Using
Magneto-Controlled Diffraction
with Opto-Fluidics

Adriana P. B. Tufaile, Michael Snyder, Timm A. Vanderelli
and Alberto Tufaile

Abstract We have developed a magneto-optical system which simulates the stabil-
ity of fixed points and the trajectories of orbits present in dynamical systems. The
question of stability is significant because a real-world system is constantly subject
to small perturbations, and these orbits can be observed with a Ferrocell, a device
using ferrofluid, which is a superparamagnetic fluid obtained with a kind of colloid
containing surfactant coated nanometer ferromagnetic particles dispersed in a carrier
liquid, and this device can be used in applications of optical effects. Our magneto-
optical system is based in a Hele-Shaw cell containing ferrofluid, illuminated with
an external light source, such as LED. By injecting a light propagating along the
in-plane direction of the liquid film, the orbits can be observed, in a way that we
can bend the light. The trajectories of the orbits are obtained by the diffracted light,
which consists of light patterns, and these light patterns are related to Faraday effect,
linear dichroism, and linear birefringence. The diffraction pattern is different from
that produced by a wire because there are no fringes in these light patterns, and
the absence of well-defined spacing between the fringes indicates the existence of
multiple diffraction. Under certain circumstances, these light patterns can have the
same properties of the force lines of magnetic fields. The main idea of this work
is to propose a device applied to non-linear systems, based on magneto-photonics.
We present the patterns obtained for different magnetic fields simulating dynamical
systems.

Keywords Non-linear system analysis · Ferrofluids ·Multiple diffraction
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Fig. 1 Ferrocell using illumination of green LEDs with three magnets. The line pattern is formed
due to the presence of magnetic field

1 Introduction

Dynamical systems can be described in the abstract space known as phase space,
which represents the evolution of one system from quantities as a function of time.
In such space, we can explore the aspects of the geometry of the solutions of this
dynamical system and the changes observed when some parameters controlling the
dynamical system are changed. In this space, we can find different types of singular
points, such as node, saddle point, focus, vortex, and so on. The solutions of the
dynamical systems form trajectories around these singular points. For example, the
solutions of a pendulum with two modes of oscillation can be represented in the
surface of a torus, and each one of these solutions is called attractor. The stability
of these attractors is related to the distribution of the singular points around them.
Mechanical stability can be represented by potential energy of one object disturbed by
small displacements, with stable equilibrium, unstable equilibrium, and indifferent
equilibrium, so that we can describe the evolution of this object (Fig. 1).

Inspired by the observation of light patterns in a Ferrocell [1, 2], a Hele-Shaw cell
containing ferrofluid controlled by magnetic fields, we explored some properties of
the stability of dynamical systems. The aim of this work is to develop new insights
for this area of dynamical systems, developing new structures for chaotic attractors
using the Ferrocell device.

Ferrofluid is a colloidal suspension of nanoparticles in a liquid carrier, and this
magnetic fluid has interesting optical properties.
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Fig. 2 Magnetic field of the permanent magnet used in the experiment of Fig. 3, for monopolar and
dipolar configuration: a Magnetic field of monopolar configuration in one dimension, b the same
magnetic field in two dimensions. In c the magnetic field of the dipolar configuration, and in d the
same magnetic field for the two-dimensional plot

2 Magnetism and Diffraction

We have developed a magneto-optical system which simulates the stability of fixed
points and the trajectories of orbits present in dynamical systems. The magnetic field
is a vector field in the three-dimensional space, as it is shown in Figs. 2 and 3. In
order to understand the structure of the magnetic field of a permanent magnet, we
have used a gaussmeter obtaining the plots shown in Fig. 2. This field passes through
the plane delimited by the Ferrocell, and in this way, we just visualize the effects of
the magnetic field projected in this plane, like the two patterns of Fig. 3a, b.

One way to see directly what is happening inside the Ferrocell is obtaining the
polarimetry of the Ferrocell, see Tufaile et al. [2].We have observed that the nanopar-
ticles create a diffracting grating following the orientation of the magnetic field,
forming locally a needlelike structure. The light is diffracted by these structures fol-
lowing perpendicular lines to the nanoparticles array. The origin of the light line is the
light source because each diffracted line is perpendicular to the ferrofluid needlelike
structure.
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Fig. 3 The monopolar and dipolar configurations: two light patterns observed in the Ferrocell and
their relative position for two different perspectives of the magnetic field, placing the source of light
(red LEDs) in a circular array

Using a circular array of red LED (Light Emitting Diodes), and a magnet with the
magnetic field described in Fig. 2, for the monopolar and dipolar configuration, we
have directly observed the effects of themagnetic field in the Ferrocell using different
planes of observation in Fig. 3a, b and the general perspective of the magnetic field
of a single magnet for these two light patterns in Fig. 3c.

In this way, the transmitted light in the Ferrocell changes for different values of the
magnetic field and the orbits can be observed, giving the impression that we can bend
the light. The trajectories of these orbits are obtained by the diffracted light, which
consists of light patterns irradiated from the liquid film, and these light patterns can
be related to some magneto-optical effects, such as Faraday effect, birefringence,
and dichroism. The birefringence is the difference between the refractive indices of
light polarized parallel and light polarized orthogonal to the magnetic field, while
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Fig. 4 a Image of the diffracted curves for a cylindrical magnet with one of its poles facing the
Ferrocell for an array of line of LEDs. b The same magnet placed laterally on the array of blue
LEDs

dichroism is the difference in the extinction of light between the two polarization
directions. One interesting aspect of this type of diffraction is the inexistence of
fringes, as one can see in Fig. 4, indicating the existence of multiple diffraction from
many nanoparticles arrays, in the shape of needles.

For a volume of ferrofluid, we have the combination of wave optics and geometric
optics at same time in this system, with the complex refractive index of the ferrofluid
given by two components, one perpendicular (Nperp) and another parallel (Npara) to
the magnetic film:

N 2
perp = (ηperp + ikperp)

2

N 2
para = (ηpara + ikpara)

2 ,
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where ηperp and ηpara represents refraction, and kperp and kpara represents extinction
in two directions perpendicular and parallel to the magnetic field [3]. For a thin film
of Ferrofluid, we observed these effects of light patterns inside the liquid film plane
and transmitted light [4].

In the presence of an externalmagnetic field, the ferrofluids forms small needlelike
structures, and these structures will align themselves with this magnetic field. When
light passes through the ferrofluid, it undergoes diffraction, producing characteristic
patterns. The main feature of this system is that the ferrofluid inside of the Ferrocell
behaves like a variable diffracting grating, whose shape depends on the magnetic
field. In this way, these line patterns are diffracted rays associated to the magnetic
field.

The magneto-optical properties of these light patterns were extensively studied
by Philip and Laskar [5], summarized by the statement that the formation of curved
light lines can be explained by considering the scattering of light by cylinders, and
evaluating the scattered electromagnetic field from a cylindrical surface. According
to these authors, the reason for the formation of some ring structures on the scattered
pattern can be explained by considering scattering of light by a cylinder. Some curious
aspects of this type of diffraction can be summarizes by the Geometrical Theory of
Diffraction [6].

Considering the ferrofluid as a diffracting grating dependent on themagnetic field,
these light lines are diffracted lines. We can understand these lines algebraically if
we consider the magnetic scalar potential Vm, so that the magnet can be modeled as
two magnetic charges producing a magnetic dipole with [7]:

Vm = μMc

4π

[
1

rn
− 1

rs

]
.

The nanoparticles create the diffracting grating following the orientation of the
magnetic field. The light diffracted by these nanoparticles seemed to follow isopo-
tential lines of this scalar field having the light source as the origin of the light line,
because each diffracted line is perpendicular to the ferrofluid neddlelike structure [7].
Considering the case of a monopolar configuration, with rs tending to infinity, the
representation of equipotential lines surrounding this pole of themagnet is concentric
circles (see Fig. 5). The relationship between the diffracted lines and the magnetic
field is clear when considering a single dimension. In the one-dimensional case,
r = x, so that Vm = constant/x. Hence the vector associated with the light pattern D
and the magnetic scalar potential V is:

D = −dV

dx
.

This relation means that the strength of the diffracted lines at any point in space
is the change rate of the magnetic potential over space. However, the diffracted
line intersects another line from a different light source. The explanation for these
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Fig. 5 Diffracted rays obtained from the experiment in (a). Inb functions representing the diffracted
lineswith their respective orthogonal functions. These orthogonal functions are related to disposition
of the nanoparticles inside the Ferrocell

Fig. 6 The elliptical trajectory of light passing though the light source and around the face of a
pole of the magnet is a limit cycle. We can see that each elliptical line is related to each LED

intersections is the overlapping projection of diffracted lines in the plane of the
Ferrocell. Choosing the correct lightening configuration, these overlaps are canceled,
as it is shown in Figs. 4 and 6.
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Fig. 7 Example of light pattern obtained with the Ferrocell and its respective simulation, for 18
red LEDs

3 Fixed Points and Trajectories

We start comparing the phase space of a pendulum and the diffracted lines, with two
centers and one saddle point. In the Ferrocell system, the attractors are represented
by the set of trajectories of light patterns (Figs. 7 and 8).

In Fig. 9 there is another example of application is the evolution from a limit cycle
in (1), the separatrix is represented by the green line (2), and open trajectories (3)
and (4), placing the magnet in the dipolar configuration.

4 More Attractors

We have explored some magnets configurations and observed some attractors. For
example, the next attractor (Fig. 10) was obtained with three magnets and many light
trajectories.

For three magnets, we have obtained three possible configurations near to the
magnets, as it is shown in Fig. 11.

5 Conclusions

We have explored the possibility of creating some representations of dynamical
systems using magnetic fields and optic fluidics. Our dynamical system is the direct
observation of diffracted lines in the Ferrocell, aHele-Shawcell containing ferrofluid.
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Fig. 8 Comparison between diagram of phase of a pendulum and diffracted lines: Two centers and
a saddle point. We are using two cylindrical magnets with two north poles facing the Ferrocell
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Fig. 9 Diagramof the evolution of a dynamical system, and the evolution of trajectories for different
initial conditions in the Ferrocell, with a limit cycle, separatrix and non-closed trajectories

This device is an interesting tool to visualize directly the abstract phase space, and
it can help the community involved with dynamical systems to explore, teach and
create some types of attractors.
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Fig. 10 Three cylindrical magnets with polarity N-S-N creates the attractor in figure (a). In
b another perspective of the same attractor in the region closer to the magnets. There is a fold-
ing between two saddle points, with a behavior resembling Moebius strip

The Ferrocell presents some curious properties involving scattering of light par-
tially confined in the plane of the ferrofluid, like a plane wave guide, as well as
diffraction for the transmitted and reflected light when this system is subjected to
an external magnetic field, suggesting the use of this device as light modulator or
display.
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Fig. 11 Top view of the diffracted patterns of the previous attractor. The polarity of the magnets
in a is N-S-N, in b N-N-S, and in c N-N-N

Although the comprehensive explanation of these diffracted lines is not something
trivial, and still demands studies of the optical properties of light deflection by the
thin film of nanoparticles, the light patterns obtained with this system is captivating,
and using analogy between different areas, the intellectual intersection of the areas
of dynamical systems and electromagnetism can give us interesting insights.
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Rainbows, Billiards and Chaos

Alberto Tufaile and Adriana P. B. Tufaile

Abstract Starting at the end of last century, Chaos Theory is used to explain since
the dynamics of a dripping faucet to the essence of black holes. The main aspect of
this ubiquity is because chaotic systems involve nonlinear systems, andmost systems
behave linearly only when they are close to equilibrium, far from this region, we can
observe amyriadof behaviors.We studied somephenomena involving rays andwaves
in optics and acoustics, such as rainbows, fogbows, Glory effect, iridescent clouds,
halos and soundwaves in acoustic billiards from the point of view of chaotic systems.
We explore the aspects of ray splitting and their relationship with Chaos Theory,
based on different subjects, such as Random Matrix Theory, Caustics, Interference
and Geometrical Theory of Diffraction. One interesting case in such systems is that
the existence of discontinuities or singularities can lead to wave diffraction, which is
related to additional contributions to the trace formula, with the presence of creeping
orbits and caustics. This approach can be extended to quantum systems, such as
nuclear rainbow. We will present scattering of light in open systems and compare
them to the scattering of particles. We are presenting experimental results of light
scattering in a cylinder and observing the “spiral rainbow” pattern.

Keywords Billiard ·Wave Chaos · RandomMatrix · Ray Optics ·Diffracted Rays

1 Introduction

One of most beautiful atmospheric phenomena observed by many people is the
rainbow, as can be seen in Fig. 1a. The rainbow is a caustic that forms perfect circular
arcs with beautiful colors [1]. Other beautiful phenomenon is the Glory effect [2],
which presents concentric colored halos around the shadow of the observer, as it is
shown in Fig. 1b. These kinds of phenomena inspire myths, poets and physicists to
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Fig. 1 Rainbows (a) and Glory effect (b)

Fig. 2 Light rays in a water drop representing an open billiard system. In a the different class of
rays, and in b multiple ray trajectories

study their properties. According to Nussenzveig, some of the most powerful tools of
mathematical physics were created to solve the questions raised by the observation
of rainbows and with closely related problems, such as the Glory effect.

The Chaos Theory is a tool used to study old problems from a new point of view,
based on two main concepts: deterministic nonlinear systems with few degrees of
freedom and sensitiveness to initial conditions. If we consider the Geometric Optics
of an incident ray of light in a spherical drop of Fig. 2a, we can see these concepts
of chaotic systems present in this system. The nonlinearity is present in the abrupt
change of the refractive index at the border of the drop, with the trajectory of the light
ray changing following just two laws of reflection and refraction in some points:
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θi = θr ;
ni sin θi = nt sin θt .

(1)

The signature of chaotic systems is observed in Fig. 2b, when we try to follow
some trajectories of some light rays in a single drop: the light rays split and bounce
back and forth following the equations (1), making the long-term prediction of the
trajectories of these rays very difficult, as the same as it is observed in systems known
as open billiards.

Inspired by these ideas, we have explored experimentally some open billiards
using light and compared them with some systems involving rays and waves in
acoustic billiards, which can be applied in quantum systems.

2 Spheres and cylinders

The drop of Fig. 2 shows some trajectories of the light rays, such as that rays of class
3 create the brighter rainbows, and the rays of class 4 create secondary rainbows,
with its place higher in the sky than primary bow, reversed order of color due to
the second internal reflection, and fainter than the primary bow due to another ray
splitting. These features will be always present because this is a deterministic system.

However, where is the chaotic behavior for this system? In order to explore the
most obvious result of chaotic system, the “butterfly effect”, we have to obtain a
numerous sequence of reflections and refractions. We have developed a system to
observe multiples reflections and refractions using, instead a sphere, a cylinder of
Fig. 3, and instead of the Sun, diode laser beams. The transversal section of the
sphere and of the cylinder are circles, and in this way we have reduced our study to
a two dimensional system. Even though the Sun is not a laser beam, they share some
properties, for example, the sunlight that reaches us can be considered a plane wave
or parallel rays. And for some peculiar conditions, such as the observed during the
dawn, the Sun light is roughly a monochromatic source, creating the red rainbow of
Fig. 4.

The laser beam is injected obliquely in a glass cylinder (diameter= 1.0 cm) with
a refractive index around 1.4, forming the conical scattering of light of Fig. 3, which
is projected in a screen. Depending on the angle formed between the cylinder axis
and the laser beam, different patterns can be observed in a screen, and recorded in a
picture, as it is shown in Fig. 5.

In Fig. 6 we are presenting the classes of rays obtained in our experiment, each
time the laser beam hits the surface, part of light is reflected and part is refracted.
The label 1 is given for rays partially reflected from the surface of the cylinder. The
remaining light is transmitted into the cylinder, with a change of direction due to
refraction, and those rays transmitted directly through the cylinder are designated
class 2. Rays emerging after one internal reflection are labeled rays of class 3, and
these rays are equivalent to the case of primary rainbow in nature. Rays of class 4
have undergone two internal reflections, and following the analogy with the light
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Fig. 3 A red laser beam inject obliquely in a cylinder forms a conical scattering

Fig. 4 Red rainbow observed in Denver, Colorado, USA, during the dawn

scattering in a sphere, they are associated with the secondary rainbow. The class
5 rays emerge after three internal reflections, and it is that give rise to the tertiary
rainbow for the case of the sphere. The quaternary rainbow is associated with the
rays of class 6. At the next boundary ray is again split into reflected and transmitted
components, and the process is observed multiple times.

In Fig. 7 we have 3 spiral bows made with three laser beams.
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Fig. 5 Image of the pattern obtained in a screen for a diode laser beam scattered in a glass cylinder
obliquely, creating a pattern resembling a “spiral rainbow”

The reduction in size of the successive ray classes is due to the effect of the
reduction of the distance from the emerging ray from the cylinder to the screen. We
also observe the reduction of the light intensity of the successive rays as the effect
of the multiple ray splitting. With this open billiard system, we are able to record
the sequence of seventeen transformations of Eq. (1), given by the Geometric Optics
of reflection and refraction. One interesting fact that this experiment revealed in
Fig. 6b, c is the observation of the folding of a bow, in a process which resemble
the horseshoe transformation, which is a map contracting distances horizontally and
expanding distances vertically. This result resembles the Bakermap or the Horseshoe
map developed by Smale.

Depending on the author, the Glory effect is associated with different concepts,
for example, in Ref. [2], we have the concept of light tunneling, in which most of the
light seen in a Glory is the result of energy “tunneling” into water droplets from light
rays passing close to them. Other authors claim that the light grazing a droplet could
temporarily turn into electromagnetic surface waves. We can grasp these different
perspectives with the experiment of light scattering in a Reuleaux bubble of Fig. 8.

The different explanations of the existence of the Glory effect have in common the
idea of wave optics of light backscattering. In our experiment of the Eye of the Horus
pattern, we can observe the effect of the interference of a curved thin film, projected
into a screen, forming the center of the concentric fringes in a different position of
the incident light ray, which is hitting the screen at the left of the light circle. This
light circle (Fig. 8e) is known as parlaseric circle. Although the light interference
phenomenon separates the colors of the sunlight in the Glory effect, while in our
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Fig. 6 Classes of rays: we can follow the sequence of class ray from 1 to 17 in this system. Pictures
in (b) and (c) are zoom of two parts of the picture in (a)
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Fig. 7 The spiral rainbow using three different diode laser beams, red, green and blue at same time

experiment we have used monochromatic blue light, in Ref. [3] is demonstrated that
these fringes are sensitive to the light wavelength.

These two beautiful phenomena observed in atmospheric optics were used to
stimulate the interest in the abstract concepts which involves the physical systems
of light scattering ranging from Geometric Optics to Wave Optics. One interesting
aspect of the ray splitting in the spiral rainbow is the mechanism of chaotization
involved, because even though the process is completely deterministic, the trajec-
tories change very abruptly due to reflection and refraction of light, different from
the case of smooth separation of trajectories in an exponential evolution. In nature,
ray splitting is very common in optical systems involving some kind of interface,
like drops, bubbles or foams. In this way, the source of Chaos can be found more
in the boundary conditions, than in the intrinsic equations of the system. In other
words, you can have systems described by linear equations, or solvable equations
with uniqueness of solutions, which behaves very wild when they meet an interface.

3 Wave Chaos

Several authors studied many aspects of the rainbow with different tools and tech-
niques, such as Descartes, Newton, Young andAiry, just to cite some of them. In sim-
plified classification, Descartes and Newton studied this atmospheric phenomenon
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Fig. 8 Light scattering in a Reuleaux bubble compared to the Glory effect. This bubble is related
to the Reuleaux triangle, which is the central bubble in (a) of a mathematical model of a four-
bubble planar soap bubble cluster. The three-dimensional version of this triangle is shown in the
real photography in (b). When light grazes this bubble in (c), we have an analog pattern of the Glory
effect in (d), with concentric fringes due to light interference in the light pattern obtained in (e),
known as “The Eye of Horus” explained in more detail in Ref. [3]

using Geometric Optics, Young used the idea of diffracted ray and Airy studied
using Wave Optics. The complete description of the rainbow physics was given by
Mie, using Maxwell’s equations for a plane wave hitting a sphere in a homogeneous
medium. The interesting analogy here is that these multiple studies are bridges con-
necting classical and quantum physics. The Geometric Optics is linked to light rays,
like the trajectories of particles in billiards, and it is based in Classical Physics, the
Young’s method is based in semi-classics, and Wave Theory is related to the Quan-
tum Physics. Each one of these studies is very important from the qualitative and
quantitative aspects, enhancing the comprehension of the complexity of this phe-
nomenon. One interesting point is the change of view of the Huygens principle of
Optics to the Young principle, which inserts the idea of the directionality of the light
wave propagation, considering the ray tracing with wave interference phenomena,
creating the concept of diffracted ray [3]. In broad sense, this approach is the limit
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Fig. 9 Plot of the light
intensity as function of the
angle for the rainbow
phenomena using Geometric
Optics (Descartes),
diffracted rays (Young) and
wave approach (Airy). The
concept of Young is
associated with
semi-classics, the territory of
Quantum Chaos

between classical physical and quantum mechanical descriptions of phenomena, in
the same way as Geometrical Optics is the limit of the electromagnetism, the clas-
sical physics is the limit of quantum physics. In this frontier we found the Quantum
Chaos, the branch of Physics which studies how chaotic classical dynamical sys-
tems can be described in terms of Quantum Theory. The abrupt transition between
light and shadow observed in Geometric Optics presents diffraction effects that are
related to the Quantum Chaos. For example, the dark region described by Descartes
theory of rainbow presents the diffraction aspects of the Airy theory (see Fig. 9). The
optical phenomena of rainbow and Glory have their counterparts in nuclear, atomic
and molecular scattering [2].

The studies of Quantum Chaos are very elusive because they confront two dif-
ferent paradigms in Physics: the nonlinear determinism of classical physics and the
statistics of the quantum states described by the Schrödingerwave equation. To obtain
something consistent with these two descriptions of nature, is necessary to apply the
Correspondence Principle, which states that ClassicalMechanics is the classical limit
of Quantum Mechanics, the KAM theorem (Kolmogorov-Arnold-Moser Theorem),
connecting chaos andHamiltonians, giving conditions underwhich chaos is restricted
in extent, or BGSConjecture (Bohigas-Gianonni-Schimit Conjecture), which reveals
a very strong link that exists betweenChaos andRandomMatrix Theory [4, 5], which
is a model for the statistical description of spectra and wave functions of quantum
systems. For this conjecture, how the spectra distribute themselves in space is an
important aspect of wave systems. For example, a graph of nearest-neighbor spacing
distribution promptly distinguishes among the periodic, random and chaotic systems,
because for periodic spectra, all the spacing are the same or located in set of points.
For the case of spectra with random distribution, the distribution of nearest-neighbor
spacing follows the function e−x, implying that the smallest spacing between levels
is very easy to be found. The chaotic systems follow the Gaussian distribution for
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Fig. 10 Spectra and their statistics. Examples of spectrum lines and nearest-neighbor spacing
distribution P(s) for the periodic, random and chaotic cases

the nearest-neighbor intervals, due to a property known as level repulsion, which is
present in systems formed by “heavy nuclei” in nuclear physics, and chaotic systems
fall in the class of Gaussian Ensembles, according to the jargon of this area, such
as Gaussian Unitary Ensemble (GUE), Gaussian Symplectic Ensemble (GSE), and
Gaussian Orthogonal Ensemble (GOE) [4] (see Fig. 10).
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Fig. 11 Effect of ray
splitting in the fluctuation
statistics of fused quartz
blocks. The curve labeled “8
GOE” corresponds to a
superposition of eight
independent Gaussian
Orthogonal Ensembles, each
one with fluctuation
properties of the Gaussian
distribution family

4 Elastomechanics of Quartz Blocks

The RandomMatrix Theory used for these kinds of spectra, also explains the nearest-
neighbor spacing distribution of the spectra of acoustic billiards, which are analogous
to the quantum systems, because the Helmholtz equation is mathematically equiva-
lent to the time independent Schrödinger equation. Besides the aspects of quantum
systems, this study improves the understanding of the properties of pieces of quartz
and aluminum when they are subjected to mechanical waves. For example, the spec-
tral pattern of the aluminum fuselage of a plane can be recorded and compared with
spectra after many flights, to analyze the integrity of the material without intrusive
techniques. Another advantage of the use of acoustic billiards is the fact that these
kinds of spectra can be obtained with high precision, enabling the analysis of many
aspects of the fluctuation statistics of the resonances, including other important fea-
tures, such as the spectral rigidity, also called �3. The standing waves in this type
of resonator, explained by the branch of Physics known as Elastomechanics, can
be compared to the trajectories of classical particles bouncing inside the profile of
the resonator. Again, we are facing scattering problems of semi-classical physics
discussed previously for the case of the rays in spheres and cylinders.

Using the temperature as a perturbation of the quartz blocks, and measuring the
ultrasound transmission in fused quartz blocks, within the frequencies ranging from
600 to 885 kHz, with low pressure (around 3 mbar), the fluctuation statistics of
fused quartz blocks is compared to the computations of Random Matrix Theory,
and this plot in Fig. 11 shows the existence of 8 Gaussian Orthogonal Ensembles of
symmetrical realmatrices. Themode conversionwhich occurs in thewave reflections
at the block interfaces creates chaotic behavior, even for a regular a system with a
regular shape. This mode conversion is related to the change of the characteristics
of the sound wave which propagates inside the quartz block, and these waves can be
transversal, longitudinal or mixed.
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In other words, the acoustic billiards using quartz blocks also present ray-splitting
with polarized waves in a similar way which occurs for electromagnetic waves. The
vast majority of the resonances are mixtures of transverse and longitudinal motion,
yet a small number of special resonances remain pure, if the temperature of this
system is perturbed [5]. In this way, the multiple reflections in the case of the laser
in the cylinder, and the multiple reflections of quartz blocks are somehow related
with chaotic behavior. In order to explore in detail, the richness and the complexity
of some ideas discussed in this work we encourage the reader to explore the work
of Adam [6] about rainbows and glories, and the study of Legrand and Mortessagne
[7] about wave chaos and the Helmholtz equation. The first work [6] explores the
different approaches involving the study of the optics applied to the case of rainbows
and glories, with an interesting discussion about different kinds of diffracted rays,
while the second work [7] explore the aspects of diffractive orbits. In this paper, the
authors claim that the nearest-neighbor spacing derived fromRandomMatrix Theory
has never totally justified on semi-classical arguments, and in this way non-chaotic
systems can mimic level repulsion, such as billiards with point scatterers, leading to
level repulsion in systems that are not chaotic. Another interesting theoretical paper
exploring quantum, classical and semi-classical chaos is the work of King [8] which
presents beautiful simulations of patterns in the stadium billiard, with the existence
of caustics.

5 Conclusions

Quantum and classical systems present an interesting frontier: semi-classical sys-
tems. The concepts of particles/rays and waves are not enough to understand this
region, and the use of diffracted rays is interesting to improve our comprehension
of physical systems presenting this type of duality, since from rainbows to quantum
chaos, because ray theory breaks down when diffraction is present. Besides diffrac-
tion effects, we observed that the mechanism of ray splitting is one of the main
features of chaotic behavior, because the trajectories diverge in an abrupt fashion,
not only exponentially. This ray splitting introduces another degree of divergence in
each case, and whole system has to be examined all at once, using the different points
of view of classical and quantum systems, probably because ray splitting tends to
destroy invariant tori and stable islands in the phase space, increasing the ergodic
component of the dynamics. During our studies, we have found the interesting case
of “spiral rainbow”, based in the experiment of a laser scattering in a glass cylinder.
In this spiral rainbow, we have observed something similar to the horseshoe map
for the multiples reflections in the cylinder. The mechanism of ray splitting is also
present in the elastomechanics of the fused quartz blocks, involving mode conver-
sion as a symmetry-breaking mechanism that acts to mix transverse and longitudinal
wave motion. The resonances in these quartz blocks are mixtures of transverse and
longitudinal motion. Although numerical simulation shows that the classical rectan-
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gular three-dimensional ray-splitting billiard is not chaotic, the spectral fluctuations
statistics of the measured eigenfrequencies follow superposed GOE spectra.
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Experimental and Numerical
Study of Spectral Properties
of Three-Dimensional Chaotic
Microwave Cavities: The Case
of Missing Levels

Vitalii Yunko, Małgorzata Białous, Szymon Bauch,
Michał Ławniczak and Leszek Sirko

Abstract We present an experimental and numerical study of missing-level statis-
tics of chaotic three-dimensional microwave cavities. The nearest-neighbor spacing
distribution, the spectral rigidity, and the power spectrum of level fluctuations were
investigated. We show that the theoretical approach to a problem of incomplete
spectra does not work well when the incompleteness of the spectra is caused by
unresolved resonances. In such a case the fraction of missing levels can be evaluated
by calculations based on random matrix theory.

Keywords High-dimensional chaos · Quantum chaos · Noise and Brownian
motion · Time series analysis

PACS Numbers 05.40.-a · 05.45.Jn · 05.45.Mt · 05.45.Tp

1 Introduction

Low-dimensional microwave systems are extremely useful for studying quantum
chaos. One-dimensional (1D) microwave networks [1–3] can be used to simulate
quantum graphs due to the equivalence of the telegraph equation describing them
and the Schrodinger equation describing corresponding quantum graphs [1, 4–7]. In
turn, two-dimensional (2D) microwave cavities [8–15] can be used to simulate quan-
tum billiards due to the analogy of theHelmholtz scalar equation and the Schrödinger
equation describing these systems, respectively. In the case of three-dimensional (3D)
microwave cavities, there is no direct analogy between Helmholtz’s vector equation
and the Schrödinger equation. Thus, the cavities cannot simulate quantum systems.
Nevertheless, the spectral statistics of irregular/rough 3D cavities display behavior
characteristic for classically chaotic quantum systems [16–24]. Therefore, the 3D
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microwave cavities are also very interesting objects in the research of the properties
of wave chaos. However, studies of such systems, both theoretical, including prop-
erties of random electromagnetic vector fields [25–28], as well as experimental are
very rare.

In the spectral measurements of any systems the loss of some resonances is
inevitable. It may be caused by low signal-to-noise ratio, by degeneration or overlap
of resonances due to losses (absorption/system openness). In the case of 3D systems
we have an additional obstacle: a large density of states. However, one should men-
tion that in the studies of spectral statistics of acoustic resonances in 3D aluminum
[29] and quartz [30] blocks, characterized by high quality factors Q � 104 − 105,
no missing resonances were reported. In billiard systems, even higher quality factors
were obtained in the experiments with superconducting microwave cavities [17]. In
normal conducting resonators the quality factors are much lower (Q � 103) and the
loss of some modes is either very likely or even inevitable, therefore, in the recent
study of such a chaotic 3Dmicrowave cavity the missing levels were explicitly taken
into account [31].

The determination of the system chaoticity and symmetry class defined in the ran-
dom matrix theory (RMT) using its spectral properties requires knowledge of com-
plete series of eigenvalues, so experimentally it is generally a difficult task [32–35].
The procedures developed for microwave networks with broken [36] and preserved
[37] time reversal symmetries (TRS) show that this is possible provided that several
statistical measures, e.g. a short-range correlation function (the nearest-neighbor
spacing distribution—NNSD), long-range correlation functions (e.g., the spectral
rigidity), and the power spectrum of level fluctuations [38–40] will be analyzed.
Nuclei and molecules [41–44] are examples of the real physical systems for which
such procedures are crucial because in their case one always deals with incomplete
spectra [45–47].

2 Experimental Setup and Measurements

The overall view of the experimental setup is shown in Fig. 1a. The 3D microwave
cavity was made of polished aluminum type EN 5754 and consists of four ele-
ments. The rough semicircular element of height 60 mm (marked by (1) in Fig. 2
and visible in Fig. 1b) is closed by two flat parts: side (labeled by (2) in Fig. 2)
and upper ones, both visible in Fig. 2. The bottom element is a slightly inclined
and convex plate (labeled by (3) in Fig. 2) preventing the appearance of bouncing
balls orbits between the upper and lower walls of the cavity. The radius function
R(θ) = R0 + ∑M

m=2 am sin(mθ + �m), where the mean radius R0 = 10.0cm, M =
20, am and �m are uniformly distributed on [0.084, 0.091] cm and on [0, 2π ], and
0≤ θ < π , described the rough, semicircular element on the plane of the cross-
section (Fig. 2). An aluminum scatterer inside the cavity, mounted on the metallic
axel in its upper wall (see Fig. 1) was used to realize various cavity configurations.
The orientation of the scatterer was changed by turning the axle around in 18 iden-
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Fig. 1 a The 3D microwave cavity connected to the vector network analyzer. The panels b and c
show the cavity without the upper cover and the inner side of the upper cover with the scatterer and
marked holes for the antennas

tical steps, each equal to π/9. Besides the hole for the scatterer in the bottom wall
there are three other holes A1, A2, and A3 for antennas.

AnAgilent E8364B vector network analyzer (VNA)was used to perform two-port
measurements of the four-element scattering matrix Ŝ [31, 48].

Ŝ =
[
S11 S12
S21 S22

]

(1)

The cavitywas connected to theVNAvia two antennas and the flexiblemicrowave
cables HP 85133-616 and HP 85133-617. The measurements were done in the fre-
quency range 6–11 GHz for all three combinations of the antennas positions. The
antennas penetrated 6mm into the cavity with a wire of 0.9mm in diameter. The
“third” empty hole was plugged by brass plug during the measurement. Previous
measurements [23] have shown that the total absorption of the cavity ismainly related
to internal absorption much greater than that associated with antennas/channels.

In Fig. 3 we present the examples of the modules of the reflected |S11|, |S22|, and
transmitted |S12| signals measured in the lowest 6–7GHz and highest 10–11GHz fre-
quency ranges. It should be noted that a full cross-correlation was observed between
S12 and S21, which means that TRS is preserved. The spectra were obtained in the
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Fig. 2 The sketch of the
cavity. The perpendicular
and parallel cross-sections to
the cavity height are shown.
The positions of the scatterer
and the antennas are marked.
See the text for a detailed
description

two-port measurement with the antennas at positions 2 and 3 (Fig. 1c) connected to
the ports 1 and 2 of the VNA, respectively. In the low frequency range, when the
resonances are well separated, comparing the spectra |S11| and |S22|, it is clearly seen
that the number of detected resonances may depend on the position of the antenna.
The transmission signal |S12| can be also used in the search for the resonances, how-
ever, even for this low frequency range not all resonances are separated and visible.
In turn, in the higher frequency range, due to the cubic dependence of the number of
resonances on the frequency, the overlapping resonances have appeared. Therefore,
losing resonances in the measurements is inevitable.

3 Statistical Measures of Experimental Spectra
of Chaotic Systems

In order to analyze experimental data, it is useful to eliminate their dependence on
specific features of the studied system, such as its dimensions, for example. This may
be achieved by the rescaling procedure, which in the case of the 3D chaotic systems
is carried out using the Weyl formula [28, 49–51]:

N (ν) = Aν3 − Bν + C. (2)
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The coefficient A = 8
3

π
c3 V , where c is speed of light in vacuum and V = (7.267 ±

0.012) × 10−4 m3 is the volume of the cavity reduced by the volume of the scatterer.
The dependent on the surface of a cavity, a term proportional to ν2 disappears due
to boundary conditions of the electromagnetic field in the conducting cavity walls
[49]. The coefficient B depends on the surface curvature, internal angles, and the
edge length of the cavity [28]. The constant C is also associated with the shape of the
cavity and in the simple case of the cubic cavity C = 1/2 [50]. The coefficients B
andC are generally difficult to determine exactly, so fitting procedures are necessary
to obtain the cumulative number of levels N (ν) for 3D irregular cavities.

In order to analyze the data we will use the short-range spectral fluctuation
function, the nearest-neighbor spacing distribution, i.e. the distribution of spacings
between adjacent eigenvalues si = εi+1 − εi , where εi = N (νi ) are rescaled eigen-
values obtained by unfolding procedure will be used. Also, the integrated nearest-

Fig. 3 Modules of the elements |S11| |S22| and |S12| of the two-port scatteringmatrix Ŝ (antennas in
holes A2 and A3) of the 3Dmicrowave cavity measured in the frequency range 6–7 and 10–11GHz,
respectively



308 V. Yunko et al.

neighbor spacing distribution I (s), very sensitive to the symmetry class of the system
(preserved or broken time reversal symmetry) will be used. The spectral rigidity of
the spectrum �3(L) which is the least-squares deviation of the integrated resonance
density from the straight line that best fits it in the interval L [52] will be exploit as
the measure of long-range spectral fluctuations. We also will take into account the
power spectrum of the deviation of the qth nearest-neighbor spacing from its mean
value q [42].

ηq =
q∑

i=1

(si− < s >) = εq+1 − ε1 − q (3)

In the systemswith losses, when the problem ofmissing levelsmay be very severe,
the fluctuations of the scattering matrix elements can be useful. The correlation
functions [53, 54], the Wigner’s reaction matrix and the elastic enhancement factor
[2, 7, 48] are sensitive measures of system chaoticity, however don’t provide any
information about missing energy levels.

In the article [47] the authors derived analytical expressions for the spectral rigid-
ity, the number variance, and the nearest-neighbor spacing distribution describing
incomplete spectra. The parameter 0 < ϕ ≤ 1 denotes the fraction of observed levels.
The formula for the spectral rigidity reads as follows:

δ3(L) = (1 − ϕ)
L

15
+ ϕ2�3

(
L

ϕ

)

. (4)

where �3(L) is the expression for the complete spectra.
The NNSD is expressed by the sum of terms of the (n + 1)st nearest-neighbor
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Whenϕ = 1 the above formulas reduces toWigner surmise formula for theNNSD
for P(0, s) and to the NNSD of the symplectic ensemble with 〈s〉 = 2 for P(1, s).
For the higher n = 2, 3, . . . spacing distributions P(n, s

ϕ
), are well approximated by

their Gaussian asymptotic forms, centered at n + 1.
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P(n,
s

ϕ
) = 1

√
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2V 2(n)

]

, (8)

with the variances

V 2(n) � �2(L = n) − 1

6
. (9)

The number variance �2(L) in Eq. (9) is the variance of the number of levels
contained in an interval of length L [52].

The integrated nearest-neighbor spacing distribution I (s), which is very useful for
distinguishing of GOE and GUE (Gaussian unitary ensemble—systems with broken
TRS) due to its high sensitivity from s in the range of small level separations, reads:

I (s) =
∫ s

0
p(s ′)ds ′. (10)

The analytical expression for the power spectrum of level fluctuations for incom-
plete spectra was given in Ref. [38]

〈S(k̃)〉 = ϕ

4π2

⎡

⎣
K

(
ϕk̃

)
− 1

k̃2
+

K
(
ϕ

(
1 − k̃

))
− 1

(1 − k̃)2

⎤

⎦

+ 1

4 sin2(π k̃)
− ϕ2

12
, (11)

where K (τ ) = 2τ − τ log(1 + 2τ) is the spectral form factor for GOE system and
0 ≤ k̃ = k/N ≤ 1.

The < S(k) > is given in terms of the Fourier spectrum transform from “time” q
to k

S(k) = |η̃k |2 (12)

with

η̃k = 1√
N

N−1∑

q=0

ηq exp

(

−2π ikq

N

)

(13)

In Refs. [39, 40] authors showed that for k̃ 	 1 the 〈S(k̃)〉 ∝ (k̃)−α with α equals
2 and 1 for regular and chaotic system, respectively, regardless the system time sym-
metry. The power spectrum and the power law behavior were studied numerically in
[55–58]. The usefulness of the power spectrum in analyzing experimental results was
confirmed in [42]—measurements of molecular resonances and in the investigations
of microwave networks [36, 37, 59], and billiards [60].
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4 Results

In Fig. 4 we present the experimental results obtained in the frequency range 6–
11GHz for 30 realizations of the cavity. The number of the detected resonances
depends on the cavity realization, therefore, from each cavity spectrum a small
number of resonances has been randomly removed to obtain the same number
�Nexp = 208 for all cavity configurations. The NNSD, the integrated NNSD, the
spectral rigidity and the power spectrum are shown in panels (a), (b), (c) and (d),
respectively. The solid (black) line denotes the theoretical predictions for the com-
plete spectraϕ = 1 of theGOE system. Ten terms of Eq. (5)was used in the numerical
calculation of the NNSD. Experimental data are represented by a blue histogram and
blue full diamonds in panels (a), (b) and blue full triangles and circles in panels (c),
(d). Using the equations for the spectral rigidity (4) and the power spectrum (11)
we found that the best agreement between the theoretical predictions for incomplete
spectra (dark cyan dash-dot line) and experimental results occurs for ϕ = 0.85, as
shown in panels (c) and (d) of Fig. 4. In turn, ϕ = 0.85 was inserted into equations
(5) and (10) to calculate the NNSD and the INNSDwhich are shown in panels (a) and
(b). It is easily seen that the spectral rigidity and the power spectrum are much more
sensitive measures of losing states than the nearest-neighbor spacing distribution.
The excellent agreement between the theoretical predictions for incomplete spectra
and the experimental results shows that the investigated system, 3D irregular cavity,
belongs to systems characterized by preserved TRS (GOE) and that the resonances
have been randomly lost.

In order to estimate the theoretical number of resonances �Nw in the fre-
quency range 6–11GHz, which is required for the calculation of ϕ, we found for
nine configurations of the cavity complete spectra in the frequency range 7–9GHz
[31]. This allowed us to make the fits of the experimental staircase functions to
the formula (2) N (ν) = Aν3 − Bν + C with the fixed coefficient A = 8

3
π
c3 V =

(0.2259 ± 0.004) × 10−27s3. The fits gave the average values of the coefficients
B = (1.442 ± 0.174) × 10−9s and C = −66.0 ± 1.4. Then using the formula (2)
we calculated the theoretical number of resonances �Nw = 245 in the frequency
range 6–11GHz.

The fraction of the detected levels ϕ = 0.85 estimated from the missing-level
statistics (Eqs. 4 and 11) can now be compared with the fraction �Nexp/�Nw =
208/245 � 0.849 obtained as a ratio of the experimentally founded eigenfrequencies
and those predicted from the Weyl formula in the frequency range 6–11GHz. The
agreement is excellent.

The discussed above theoretical and experimental results are additionally com-
pared to the numerical results obtained directly by the application of the random
matrix theory. We created 99 realizations of random, real, symmetric matrices of a
size N=295, representing GOE system. 25 eigenvalues of the matrix were removed
from the beginning and the end of each set of eigenvalues, yielding 245 eigenvalues as
for the complete spectrum. Then, 15% of the eigenvalues were randomly removed, so
we finally got 208 eigenvalues as in the experiment, which were rescaled using a fifth
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(a) (b)

(c) (d)

Fig. 4 Short- and long-range spectral correlation functions calculated for the 3Dmicrowave cavity.
Panel a shows the experimental nearest-neighbor spacing distribution NNSD (blue histogram) com-
pared to the NNSD evaluated for eigenvalues of randommatrices for the fraction of observed levels
(ϕ = 0.85) (red doted histogram). Panel b shows the experimental integrated nearest-neighbor spac-
ing distribution INNSD (blue diamonds) compared the INNSD evaluated for eigenvalues of random
matrices for (ϕ = 0.85) (red empty diamonds). Panel c shows the experimental spectral rigidity
(blue triangles) compared to the RMT for (ϕ = 0.85) (red empty triangles). Panel d shows the
experimental average power spectrum of level fluctuations (blue circles) compared to the RMT for
(ϕ = 0.85) (red crosses). The GOE predictions (ϕ = 1) and the missing level statistics predictions
evaluated for the fraction of observed levels (ϕ = 0.85) are shown in all four panels by black solid
and dark cyan dash-dot lines, respectively
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order polynomial. The results for all consideredmeasures are also presented in Fig. 4.
The NNSD is marked by the red dotted histogram, the integrated NNSD by empty
red diamonds, the spectral rigidity by empty red triangles and the power spectrum by
red crosses. Again, the agreement with the experimental results is remarkable, con-
firming that the investigated system, 3D irregular cavity, belongs to the systems with
preserved time reversal symmetry and that the resonances have been randomly lost.

(a) (b)

(c) (d)

Fig. 5 Short- and long-range spectral correlation functions calculated for themodified experimental
spectra. In such spectra “the closest” (see the text for details) resonances were eliminated to get
the fraction of observed levels ϕ = 0.65. Panels a–d show the NNSD (dark green histogram), the
INNSD (dark green diamonds), the spectral rigidity of the spectrum (dark green triangles), and
the average power spectrum of level fluctuations (dark green circles), respectively, for modified
experimental spectra. The results obtained from RMT calculations in panels a–c are marked by
dashed line of vine colors, and in panel d by vine crosses. The GOE predictions (ϕ = 1) and
the missing-levels statistics predictions calculated for the fraction of observed levels ϕ = 0.65 are
shown in all panels by full black and purple broken lines, respectively
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From the experimental point of view it is important to analyze amore complicated
situation when some of the resonances are not randomly lost. Wemodified the exper-
imental spectra, originally with 15% of randomly missing levels, using the following
procedure. In the step by step procedure in an analyzed spectrum we identified the
pair of resonances, the least distant from each other, and eliminated one of them until
we reached ϕ = 0.65. In this way we additionally removed 20% resonances due to
clustering. In Fig. 5 we compare the results for the modified experimental spectra
with the GOE prediction for the complete spectra, predictions for the missing-level
statistics [Eqs. (4), (5), (10), and (11)] calculated for ϕ = 0.65, andwith the results of
RMT calculations. It is clearly seen that the missing-level statistics (purple dashed
line in all panels) fail in description of the spectra in which resonances were not
lost randomly [green full line histogram—(a), green full diamonds—(b), green full
triangles—(c), green dots—(d)]. This is a very important problem because the loss of
energy levels due to their degeneration or overlap caused by absorption or openness
of a system is very common.

The results of RMT calculation [vine doted histogram—(a), vine empty
diamonds—(b), vine empty triangles—(c), vine crosses—(d)] in which the pro-
cedure of eliminating eigenvalues mimic the procedure used for the experimental
data are in good agreement with experimental ones. It should be pointed out that
these numerical calculation are sensitive to the order in which the eigenvalues are
deleted. The results may slightly vary depending whether we start the deletion from
the overlapping resonances or from random ones.

5 Conclusions

We present an experimental and numerical study of the fluctuation properties in
incomplete spectra of the 3D chaotic microwave cavity. We analyzed the two impor-
tant cases: the situation of randomly lost resonances and the situation when an addi-
tional fraction of resonances is omitted due to their clustering (overlapping). In the
case of randomly missing resonances our results are in agreement with the level-
missing statistics. However, in the case of many overlapping resonances direct ran-
dom matrix theory calculations are required to properly simulate the experimental
results.
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7. M. Ławniczak, S. Bauch, L. Sirko, in Handbook of Applications of Chaos Theory, ed. by C.

Skiadas, C. Skiadas (CRC Press, Boca Raton, USA, 2016), p. 559
8. H.J. Stöckmann, J. Stein, Phys. Rev. Lett. 64, 2215 (1990)
9. S. Sridhar, Phys. Rev. Lett. 67, 785 (1991)
10. H. Alt, H.-D. Gräf, H.L. Harner, R. Hofferbert, H. Lengeler, A. Richter, P. Schardt, A. Wei-

denmüller, Phys. Rev. Lett. 74, 62 (1995)
11. P. So, S.M. Anlage, E. Ott, R.N. Oerter, Phys. Rev. Lett. 74, 2662 (1995)
12. U. Stoffregen, J. Stein, H.-J. Stöckmann, M. Kuś, F. Haake, Phys. Rev. Lett. 74, 2666 (1995)
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