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1 Introduction

The Relevance Index (RI) had been originally introduced to identify key
features of the organisation of complex dynamical systems, and it has proven
able to provide useful results in various kinds of models, including e.g. those of
gene regulatory networks and protein-protein interactions. The method can
be applied directly to data and does not need to resort to models, possibly
helping to uncover some non-trivial features of the underlying dynamical
organisation. The RI is based upon Shannon entropies and can be used to
identify groups of variables that change in a coordinated fashion, while they
are less integrated with the rest of the system. These groups of integrated
variables make it possible to provide an aggregate description of the system,
at levels higher than that of the single variables and it can be applied also to
networks, that are widespread in complex biological and social systems. In
previous work, we have found that the RI can also be used to identify critical
states in complex systems (Roli et al. 2017). We showed that the average RI,
computed across random samples of cells of a given size in the Ising lattice,
attains its maximum at the critical temperature.
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In this contribution we present an in-depth analysis of the RI values across
all subset sizes. Results show that a parameter defined as a function of subset
size and RI is strictly correlated to the susceptibility of the system, which in
turn assumes its maximum at the critical temperature. These results provide
further evidence to the hypothesis that the RI is a powerful measure for
capturing criticality and they also suggest that a possible explanation for
this is that larger subsets are more correlated at criticality, as a consequence
of all-range correlations typical of critical points in phase transitions.

After a brief introduction to the RI in Sect. 2 and a summary of previous
results in Sect. 3, we will presents and discuss the new results on the Ising
model in Sect. 4. In Sect. 5 we conclude the contribution and outline lines for
future work.

2 The Relevance Index

The main concepts related to RI had been conceived in the work on biological
neural networks by Tononi et al. (1998), who introduced several measures,
among them the Cluster Index. The RI is an extension of this latter measure,
that can be applied to dynamical systems (Filisetti et al. 2015; Roli et al. 2016;
Villani et al. 2014, 2015). The purpose of the RI is to identify sets of variables
that behave in a coordinated way in a dynamical system; the variables that
belong to the set are integrated with the other variables of the set, much
more than with the others. Since these subsets are possible candidates as
higher-level entities, to be used to describe the system organisation, they will
be called relevant subsets (omitting for brevity the specification that they
are candidates). A quantitative measure, well suited for identifying them, is
defined as follows—the presentation below follows the one given in Villani
et al. (2014).

Let U be a system whose elements are discrete variables that change in
time, and suppose that the time series of their values are known. The Rele-
vance Index r(S) of S ⊂ U is defined as the ratio between the integration of
S and the mutual information between S and the rest of the system:

r(S) =
I(S)

M(S;U \ S) =

∑
x∈S H(x)−H(S)

H(S) +H(S|U \ S) (1)

where H(x) is the Shannon entropy of x and H(S) is joint entropy of the set
of variables in S.

When the RI is applied to identify relevant subsets, it is necessary to
compare sets of different sizes. However, entropies scale with system size, so
this requires considerable ingenuity. Following the original work of Tononi, a
“RI method” has been developed for this purpose, where a statistical index
is computed that allows meaningful comparisons of sets of different sizes:
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Tc(Sk) =
r(Sk)− 〈rh〉

σ(rh)
(2)

where 〈rh〉 and σ(rh) are respectively the average and the standard deviation
of the RI of a sample of subsets of size k extracted from a reference system
Uh randomly generated according to the frequency of each single state in U .
It is worth noting that the aim of the reference system is that of quantify the
finite size effects affecting the information theoretical measures on a random
instance of a system with finite size.

In principle, a list of candidate relevant sets can be obtained by comput-
ing the RI and the of every possible subset of variables in U and ranking
the subsets by Tc values. The subsets occupying the first positions are most
likely to play a relevant role in system dynamics. For large-size systems,
exhaustive enumeration is computationally impractical as it requires to enu-
merate the power set of U . In this case, we resort to sampling or to heuristic
algorithms.

3 RI and Criticality

Criticality usually refers to the existence of two qualitatively different
behaviours that a system can show, depending upon the values of some
parameters and it is then associated to parameter values that separate these
qualitatively different behaviours. However, slightly different meanings of
the word can be found in the literature, two major cases being (a) the one
related to phase transitions and (b) dynamical criticality, sometimes called
the “edge of chaos”. In the former case, the different behaviours refer to
equilibrium states that can be observed by varying the value of a macro-
scopic external parameter. In the latter case, the different behaviours are
characterised by their dynamical properties: the attractors that describe the
asymptotic behaviour of the system can be ordered states, like fixed points
or limit cycles, or chaotic states. These two meanings are related but not
identical.1

In a previous work, we have shown that the RI can be used to locate
critical regions in complex systems (Roli et al. 2017). In our experiments we
considered two different kinds of systems: the Ising model for phase transi-
tions, and the Random Boolean Network model for dynamical criticality. For
both the models, we computed the RI of randomly sampled groups of vari-
ables of varying size. Our main finding is that the RI is able to satisfactorily
locate the critical points in both cases. An excerpt of the results on the Ising
model is shown in Fig. 1.

1 See Roli et al. (to appear) for a detailed review on the subject.
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Fig. 1 Left: plot of RI for 10 × 10 Ising lattice. The median of the average RI values
for groups of size 2 to 10 is plotted against T . The curves shift up with group size. The
peaks of RI correspond to the susceptibility peak, which in turn corresponds to the critical
value of the control parameter. Right: plot of median susceptibility values for 10×10 Ising
lattice. The peak of susceptibility empirically identifies the critical T value

4 RI of the Ising Model

The Ising model is a notable example of a system that can undergo a phase
transition as a function of a control parameter (Binney et al. 1992; Brush
1967; Stanley 1971). Let us consider a d-dimensional lattice of N atoms char-
acterised by a spin, which can be either up (+1) or down (−1). The atoms
exert short-range forces on each other and each atom tends to align its spin
according to the values of its first neighbours. An external field may also
be considered, which biases the orientation of the atoms. The energy of the
system is defined as follows:

E = −1

2

∑

〈i,j〉
J si sj +B

∑

i

si (3)

where si is the spin of atom i, J > 0 is a parameter accounting for the coupling
between atoms, 〈i, j〉 denotes the set of all neighbouring pairs and B is a
parameter playing the role of an external field. The system can be studied by
means of usual statistical mechanics methods and it can be assessed whether
it undergoes a phase transition; Onsager (1944) proved that the d = 2 model
can undergo a phase transition under the hypothesis that B = 0.

In this work, we consider the two-dimensional model, with B = 0. We
performed Monte Carlo simulations at constant temperature T . The Monte
Carlo algorithm used is a classical Metropolis algorithm with Boltzmann
distribution (see Algorithm 1).
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Algorithm 1Monte Carlo simulation of a 2d Ising model. Adapted from Solé
(2011)

while maximum number of iterations not reached do

Choose a random atom si

Compute the energy change ΔE associated to the flip si ← −si

Generate a random number r in [0,1] with uniform distribution

if r < e
− ΔE

kBT then

si ← −si

end if

end while

The temperature is the control parameter, while the order parameter is the
so-called magnetisation:

μ =
1

N

∑

i

si (4)

For low values of T , the steady state of the system will be composed of
atoms mostly frozen at the same spin and the time average of the mag-
netisation 〈μ(T )〉 will be close either to 1 or −1; for high values of T the
spins will randomly flip and it will be 〈μ(T )〉 ≈ 0. For values close to the
critical temperature Tc, a phase transition occurs: the system magnetisation
undergoes a change in its possible steady state values.

In our experiments, we considered Ising lattices of L2 spins, with L ∈
{10, 12}, arranged on a torus. We set kB = 2, hence we expect a phase
transition around the value Tc ≈ 1.13. For each lattice size we run simulations
with values of T spanning the range [1, 2] at steps of 0.05. In finite size
Ising models, the critical value of temperature is expected to deviate from
the theoretical value. Therefore, the actual critical temperature value was
estimated by computing the susceptibility (Christensen and Moloney 2005),
defined as:

χ =
1

TN

(〈μ2〉 − 〈μ〉2) (5)

where T is the temperature, N the number of atoms, μ the magnetisation
of the system at a given time step and angular brackets denote the time
average. The peak of χmay be used to identify the actual critical temperature
value for finite instances. In Fig. 2 the susceptibility is plotted against the
temperature value. As we can observe, the critical values are around T =
1.25 for both the lattice sizes considered, which is slightly higher than the
theoretical one. This discrepancy is due to the finite size of the systems. This
specific value will be taken as the critical one in the Ising models of our
experiments.
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Fig. 2 Plots of susceptibility values vs. temperature
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Fig. 3 Plots of susceptibility values and ρ as a function of T

Simulations were run until the transient was expired and we recorded
104 lattice configurations every L2 steps. We computed RI and Tc for 103

randomly sampled subsets for each size between two and L2 and kept the
best 103, i.e. those with the highest values of Tc.

The most relevant result we observed is that larger clusters with high Tc

seems to be correlated to high susceptibility values. To assess this informal
observation we introduce an index ρ(S) := 〈|S|×Tc(S)〉, where |S| is the size
of the subset, Tc(S) its RI statistical significance and 〈·〉 denotes the average.
The correlation between ρ and χ is striking, as shown in Fig. 3.
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Fig. 4 Diagrams representing the susceptibility (proportional to the radius of the circle)
at coordinates (〈size〉, 〈Tc〉)

A further evidence for supporting this correlation is provided by consid-
ering separately the average size and average Tc of the best 1000 subsets.
In Fig. 4 we show a diagram in which each circle has a centre at coordinates
(〈size〉, 〈Tc〉) and radius proportional to χ. We observe that the largest circles
are characterised by both high size and Tc.

5 Conclusion and Future Work

The results we observed by computing the RI on subsets of atoms of every size
show that the most significant dynamically relevant sets in the Ising lattice
tend to be larger and characterised by higher significance in correspondence
to the critical temperature. Furthermore, an index defined as the product of
size and Tc is shown to be highly correlated to the susceptibility, making it
possible to locate the phase transition.

The relation between Tc and large subsets may be a consequence of the
all-range correlations appearing at criticality in the Ising model. In future
work we plan to further investigate this relation and assess to what extent
the RI method can be used to detect early signals of criticality and dynamical
change in complex systems.
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