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Preface

The book is for graduate and PhD students, researchers in mathematics and applied
sciences, educators, and engineers. It contains research results on several important
aspects of recent developments in interdisciplinary applications of mathematical
analysis and also focuses on the uses and applications of mathematical analysis in
many areas of scientific research. Each chapter aims at enriching the understanding
of the research problems with sufficient material to understand the necessary theo-
ries, methods, and applications. Emphasis is given to present the basic developments
concerning an idea in full detail and the most recent advances made in the area of
study. The book shall also be useful for general readers having interest in recent
developments in interdisciplinary applications of mathematical analysis. There are
23 chapters in the book, and they are organized as follows.

Chapter 1 is devoted to the study of stationary viscous incompressible fluid
flow problems in a bounded domain with a subdifferential boundary condition
of frictional type in the Orlicz spaces. It first investigates non-Newtonian fluid
flow with a nonpolynomial growth of the viscous part of the Cauchy stress tensor
together with a multivalued nonmonotone frictional boundary condition described
by the Clarke subdifferential. Next, a Newtonian fluid flow with a multivalued
nonmonotone boundary condition of a nonpolynomial growth between the normal
velocity and normal stress is studied. In both cases, an abstract result on the
existence and uniqueness of solution to a subdifferential operator inclusion and a
hemivariational inequality in the reflexive Orlicz–Sobolev space is provided. The
results obtained are applied to a hemivariational inequality that arises in the study
of the flow phenomenon with frictional boundary conditions.

In Chap. 2, the classical identities of Jacobi theta functions are obtained from
the multiplicities of the eigenvalues ik, and corresponding eigenvectors of the DFT
φ(n), expressed in terms of theta functions. An extended version of the classical
Watson addition formula and Riemann’s identity on theta functions is also derived.
Watson addition formula and Riemann’s identity are obtained as a particular case.
An extension of some classical identities corresponding to the theta functions
θa,b (x, τ ) with a, b ∈ 1

3Z is also derived.

v
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Chapter 3 used combinatorial tools “color partitions,” “split-color partitions,”
and “signed partitions” notion to define “signed color partitions” that are further
used to derive one hundred Rogers–Ramanujan type identities. The chapter lists
and provides combinatorial argument using signed colored partitions of qidentities
listed in ChuZhang and Slater’s compendium.

Chapter 4 discusses Stepanov-like almost automorphic function in the framework
of impulsive systems. It establishes the existence and uniqueness of solution of
a very general delayed model of impulsive neural network. The coefficients and
forcing term are assumed to be Stepanov-like almost automorphic in nature and
introduce the concept of piecewise continuous Stepanov-like almost automorphic
function. First, some basic and important properties of these functions are estab-
lished and then composition theorem is proved. Further, composition result and
fixed-point theorem are used to investigate the existence, uniqueness, and stability
of solution of the problem considered. A numerical example is given to illustrate the
analytical findings.

Chapter 5 first discusses ideas to improve the speed of convergence of the secant
method by means of iterative processes free of derivatives of the operator in their
algorithms. For this, a previously constructed uniparametric family of secant-like
methods is considered. The semilocal convergence of this uniparametric family of
iterative processes is analyzed by using a technique that consists of a new system of
recurrence relations.

Chapter 6 attempts to find answers to the questions like “Why is the manifold
topology in a spacetime taken for granted?,” “Why do we prefer to use Riemann
open balls as basic-open sets, while there also exists a Lorentz metric?,” “Which
topology is the best candidate for a spacetime: a topology sufficient for the descrip-
tion of spacetime singularities or a topology which incorporates the causal structure?
Or both?,” “Is it more preferable to consider a topology with as many physical
properties as possible, whose description might be complicated and counterintuitive,
or a topology which can be described via a countable basis but misses some
important information?,” etc. The chapter aims to serve as a critical review of similar
questions and contains a survey with remarks, corrections, and open questions.

Chapter 7 studies a generalized BBM equation from the point of view of the
theory of symmetry reductions in partial differential equations. It first obtained the
Lie symmetries and then used the transformation groups to reduce the equations into
ordinary differential equations. Physical interpretation of these reductions and some
exact solutions are also provided. It also derives all low-order conservation laws for
the BBM equation by using the multiplier method.

Chapter 8 studies some Boussinesq equations with damping terms from the point
of view of the Lie theory. It derives the classical Lie symmetries admitted by the
equation as well as the reduced ordinary differential equations. The chapter also
presents some exact solutions. Further, some nontrivial conservation laws for these
equations are constructed by using the multiplier method.

Chapter 9 discusses on the weak solvability of some variable exponent problems
via the critical point theory, which also includes the case of anisotropic exponents.
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The author considers only a few powerful theorems as main tools that can be applied
to all selected problems.

Chapter 10 is concerned with a coupled system of nonlinear viscoelastic wave
equations that models the interaction of two viscoelastic fields. A new general decay
result is established that improves most of the existing results in the literature related
to the system of viscoelastic wave equations. The result of the chapter allows wider
classes of relaxation functions.

Chapter 11 establishes local existence and uniqueness as well as blow-up criteria
for solutions of the Navier–Stokes equations in Sobolev–Gevrey spaces. Precisely,
if the maximal time of existence of solutions for these equations is finite, the chapter
demonstrates the explosion, near this instant, of some limits superior and integrals
involving specific usual Lebesgue spaces, and as a consequence, lower bounds
related to Sobolev–Gevrey spaces are proved.

Chapter 12 deals with a survey and critical analysis focused on a variety of
chemotaxis models in biology, namely the chemotaxis-(Navier)–Stokes system
and its subsequent modifications, which, in several cases, have been developed to
obtain models that prevent the nonphysical blow-up of solutions. First it focuses
on the background of the models which is related to chemotaxis-(Navier)–Stokes
system. Then, the chapter is devoted to the qualitative analysis of the (quasilinear)
Keller–Segel model, the (quasilinear) chemotaxis-haptotaxis model, the (quasilin-
ear) chemotaxis system with consumption of chemoattractant, and the (quasilinear)
Keller–Segel–Navier–Stokes system.

Chapter 13 deals with the optimal control of a class of elliptic quasivariational
inequalities. It started with an existence and uniqueness result for such inequalities.
Then an optimal control problem is stated, the assumptions on the data are
listed, and the existence of optimal pairs is proved. It further proceeds with a
perturbed control problem for which a convergence result is established under
general conditions. A particular case for which these conditions are satisfied is also
presented. The use of the abstract results is illustrated in the study of a mathematical
model which describes the equilibrium of an elastic body in frictional contact
with an obstacle. The process is static and the contact is modeled with normal
compliance and unilateral constraint, associated with the Coulomb’s law of dry
friction. The existence, uniqueness, and convergence results are proved together
with the corresponding mechanical interpretation. These results are also illustrated
in the study of a one-dimensional example.

In Chap. 14, master generalized sampling series expansion is presented for
entire functions coming from a class, members of which satisfy an extended
exponentially boundedness condition. First, estimates are given for the remainder
of Maclaurin series of the functions and consequently derivative sampling results
are obtained and discussed. The results thus obtained are employed in evaluating
the related remainder term of functions which occur in sampling series expansion
of stochastic processes and random fields of which spectral kernel satisfies the
relaxed exponential boundedness. The derived truncation error upper bounds enable
us to obtain mean-square master generalized derivative sampling series expansion
formulae either for harmonizable Piranashvili-type stochastic processes or for
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random fields. Finally, the sampling series convergence rate being exponential,
almost sure P sampling series expansion formulae are inferred.

Chapter 15 describes polygonal hybrid finite element formulation with funda-
mental solution kernels for two-dimensional elasticity in isotropic and homoge-
neous solids. The n-sided polygonal discretization is implemented by the Voronoi
diagram in a given domain. Then, the element formulation is established by
introducing two independent displacements respectively defined within the element
domain and over the element boundary. The element interior fields approximated by
the fundamental solutions of problem can naturally satisfy the governing equations,
and the element frame fields approximated by one-dimensional shape functions are
used to guarantee the conformity of elements. Finally, the present method is verified
by three examples involving the usage of general and special n-sided polygonal
hybrid finite elements.

Chapter 16 studies the existence of solutions for suitable Schrödinger equations
in the whole space by means of variational methods. It considers a fractional version
of the Schrödinger equation in the presence of a potential, which is studied in
two different cases. The first one is when the potential is given a priori and the
second one when the potential is unknown. These equations describe two physical
models. In both cases, existence of multiple solutions is proved depending on some
topological properties involving the set of minima of the potential.

Chapter 17 considers nonlinear elliptic equations driven by a nonhomogeneous
differential operator plus an indefinite potential. The boundary condition is either
Dirichlet or Robin. First it presents the corresponding regularity theory. Then the
nonlinear maximum principle is developed and some nonlinear strong comparison
principles are presented. Subsequently it is shown how these results together with
variational methods, truncation and perturbation techniques, and Morse theory can
be used to analyze different classes of elliptic equations, and special attention is
given to (p, 2)-equations.

Chapter 18 investigates a new definition of convergence of a double sequence and
a double series, which seems to be most suitable in the non-Archimedean context,
and studies some of its properties. Then, a very brief survey of the results pertaining
to the Nörlund, weighted mean, and

(
M,λm,n

)
methods of summability for double

sequences is presented. Further, a Tauberian theorem for the Nörlund method for
double sequences is given.

Chapter 19 aims to develop effective approximate solution methods for the linear
and nonlinear singular integral equations in Banach spaces. This chapter is devoted
to investigating approximate solutions of linear and nonlinear singular integral
equations in Banach spaces using technical methods such as collocation method,
quadrature method, Newton–Kantorovich method, monotonic operator method, and
fixed-point theory depending on the type of the equations. Sufficient conditions for
the convergence of these methods are provided and some relevant properties are
investigated.

In Chap. 20, a new generalized difference double sequence based on integer
orders is defined. An application of the proposed operator, certain new related
difference double sequence spaces have been presented and their corresponding
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topological properties have been discussed. The dual spaces related to the new
difference double sequence spaces have been determined. The idea is also used to
study the derivatives of single variable functions and also the partial derivatives of
double variable functions.

Chapter 21 discusses m-singularity notion for double singular integral operators
and presents several relevant results concerning pointwise convergence of nonlinear
double m-singular integral operators. First, the reasons giving birth to m-singularity
notion are explained and related theoretical background is mentioned. The well-
definiteness of the operators on their domain is shown, and an auxiliary result and
pointwise convergence theorem are proved. Then, the main theorem and Fatou-type
convergence theorem are proved. Further, corresponding rates of convergences are
evaluated.

Chapter 22 considers and surveys multifarious extensions of the p-adic integrals.
q-analogues with diverse extensions of p-adic integrals are also considered such
as the weighted p-adic q-integral on Zp. The two types of the weighted q-
Boole polynomials and numbers are introduced and investigated in detail. Some
generalized and classical q-polynomials and numbers are further obtained from the
aforesaid extensions of p-adic integrals. The importance of these extensions is also
analyzed.

Chapter 23 first discusses the concept of infiniteness and the development of
summability methods. Then, ordinary and statistical versions of Cesàro and deferred
Cesàro summability methods are demonstrated and the deferred Cesàro mean is
applied to prove a Korovkin-type approximation theorem for the set of functions
1, e−x , and e−2x defined on a Banach space C[0,∞). Further, a result for the rate
of statistical deferred Cesàro summability mean with the help of the modulus of
continuity is established, and some examples in support of the results are presented.

The editors are grateful to the contributors for their timely contribution and
patience while the chapters were being processed and reviewed. We are greatly
indebted to reviewers for their generous help and time given to review the chapters.
Finally, the editors must thank the Birkhauser editor and staff for their support in
bringing out this book.

Guwahati, Assam, India Hemen Dutta
Aleksandrovac, Serbia Ljubiša D. R. Kočinac
Victoria, BC, Canada Hari M. Srivastava
January, 2019



Contents

1 Frictional Contact Problems for Steady Flow of Incompressible
Fluids in Orlicz Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Stanisław Migórski and Dariusz Pączka
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Chapter 1
Frictional Contact Problems for Steady
Flow of Incompressible Fluids
in Orlicz Spaces

Stanisław Migórski and Dariusz Pączka

1.1 Introduction

The chapter is devoted to the study of steady-state flow problems of isotropic,
isothermal, inhomogeneous, viscous, and incompressible fluids in a bounded
domain with subdifferential boundary conditions in Orlicz spaces. Two general
cases are investigated. First, we study the non-Newtonian fluid flow with a non-
polynomial growth of the extra (viscous) part of the Cauchy stress tensor together
with multivalued nonmonotone slip boundary conditions of frictional type described
by the Clarke generalized gradient. Second, we analyze the Newtonian fluid flow
with a multivalued nonmonotone leak boundary condition of frictional type which is
governed by the Clarke generalized gradient with a non-polynomial growth between
the normal velocity and normal stress. In both cases, we provide abstract results
on existence and uniqueness of solution to subdifferential operator inclusions with
the Clarke generalized gradient and the Navier–Stokes type operator which are
associated with hemivariational inequalities in the reflexive Orlicz–Sobolev spaces.
Moreover, our study, in both aforementioned cases, is supplemented by similar
results for the Stokes flows where the convective term is negligible. Finally, the
results are applied to examine hemivariational inequalities arising in the study of
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2 S. Migórski and D. Pączka

the flow phenomenon with frictional boundary conditions. The chapter is concluded
with a continuous dependence result and its application to an optimal control
problem for flows of Newtonian fluids under leak boundary condition of frictional
type.

The steady-state generalized Navier–Stokes equation in a bounded regular
domain � ⊂ R

d , d = 2, 3, is of the form

− div S+ (u · ∇)u+∇π = f , div u = 0.

The general growth conditions are assumed for the stress deviator S in terms of the
symmetric part of the velocity gradient D(u) = 1

2 (∇u+ (∇u)�) formulated via an
Orlicz function �. The special case �(t) = tp with 1 < p <∞ leads to the power
law model

S(x,D(u)) = (1+ ‖D(u)‖)p−2D(u) in �

which is quite common to model non-Newtonian fluids. However, we use in this
chapter the framework of Orlicz–Sobolev spaces which provides more flexibility.
The model is supplemented by the nonstandard boundary condition

uν = 0, −Sτ ∈ ∂jτ (uτ )

which is called the slip boundary condition of frictional type, or by the condition

uτ = 0, −σν ∈ ∂jν(uν)

called the leak boundary condition of frictional type. Here uν and uτ denote the
normal and tangential part of the velocity, and σν and Sτ are the normal and
tangential components of the stress tensor and the extra stress tensor, respectively.
The notation ∂jν and ∂jτ stands for the generalized gradient of locally Lipschitz
functions jν and jτ , respectively. We provide results on the solvability and unique
solvability of the hemivariational inequalities which are weak formulations of the
flow problems in the two aforementioned kinds of frictional boundary conditions.

The Orlicz and Orlicz–Sobolev spaces are suitable function spaces to describe
fluid flow problems modeled by systems of nonlinear partial differential equa-
tions with nonlinearities of non-polynomial growth. There are examples of these
nonlinearities in physics, for example models of fluids of Prandtl–Eyring [24],
Powell–Eyring [79], and Sutterby [3]. In order to describe flows of anisotropic
fluids with the rheology more general than power-law-type it is necessary to use the
Musielak–Orlicz space, see [39, 40]. In the framework of Orlicz and Orlicz–Sobolev
spaces, many problems in mechanics of solids and fluids have been considered,
for instance [5, 9, 14, 19, 31, 32, 73]. Examples of N-functions � which generate
reflexive Orlicz and Orlicz–Sobolev spaces are the following �(t) = tp,�(t) =
tp log(1+ tp), �(t) = tp logq(1+ t) and �(t) = tp logq1(1+ t) logq2(log(1+ t))

with p, q, q1, q2 ∈ (1,∞). Nonstandard examples of N-functions � which do
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not generate reflexive Orlicz and Orlicz–Sobolev spaces and occur in mechanics
of solids and fluids are the following �1(t) = tα ln(1 + t) for t ≥ 0 and
1 ≤ α < 2, �2(t) =

∫ t

0 s1−α(arcsinh(s))α ds for t ≥ 0 and 0 < α ≤ 1,
�3(t) = t ln(1+ ln(1+ t)) for t ≥ 0 (see [31, 32] for details).

Our approach is based on a powerful technique on the surjectivity of pseu-
domonotone maps [8], the compactness of a trace operator in the Orlicz–Sobolev
space [22], coercivity and pseudomonotonicity of the Navier–Stokes type operator
[23], and a result on an integral representation of the Clarke subdifferential of
locally Lipschitz integral functionals defined on the Orlicz space [71, 72]. In the
treatment of this topic, we successfully use some techniques from the theory
of hemivariational inequalities in Sobolev spaces of Panagiotopoulos [76, 78],
Naniewicz and Panagiotopoulos [69], and Migórski et al. [67].

The results of this chapter are based on our research papers [65, 66]. In
Sect. 1.5 we consider the constitutive relation which has a non-polynomial growth
with respect to the stress tensor and it is not of explicit form in the context of
the frictional contact law described by Clarke subgradient. The frictional contact
boundary condition is also established for functions of a non-polynomial growth.
Problem 1.5.1 has been studied in [23] in the 2D setting for a particular geometry
of the domain in the context of the lubrication theory and with a polynomial
growth for the stress deviator. Theorem 1.5.6 strengthens the conclusion of [23]
in the 2D setting. In Sect. 1.6, the leak boundary conditions described by the
Clarke subdifferential are considered for functions of a non-polynomial growth,
and, in a consequence, the velocity has a non-polynomial growth. Problem 1.6.1
has been studied in [60] for Newtonian fluids in the Sobolev space W 1,2(�,Rd)

setting. Theorem 1.6.5 enhances the conclusion of [60] to Newtonian fluids with
a non-polynomial growth in the reflexive Orlicz–Sobolev space W 1L�(�,Rd).
Furthermore, using the direct method of the calculus of variations, we deliver a result
on existence of a solution to an optimal control problem for the hemivariational
inequality. To this end, we prove a result on a dependence of the solution set of
the hemivariational inequality on the density of external forces. Note that optimal
control problems for hemivariational inequalities have been studied in several
contributions, see [25, 41, 56–58, 63, 77] and the references therein. Besides, to the
best of our knowledge, there are no results on existence and uniqueness of solution
to hemivariational inequalities in the Orlicz–Sobolev space for contact problems
arising in mechanics, including Newtonian or non-Newtonian fluid flow problems.
Finally, note that the uniqueness of solutions is proved in Sects. 1.5 and 1.6 without
the relaxed monotonicity condition (see Definition 1.2.1) for the superpotential, as
previously required in [67] and other papers.

The frictional contact boundary conditions for steady/unsteady Newtonian or
non-Newtonian fluid flows in Sobolev spaces have been studied, for instance,
in [11–13, 23, 25, 45, 60–62]. Mathematical analysis of non-Newtonian fluids
without friction can be found in [4, 5, 28, 29, 32, 81] in the stationary case and
in [2, 9, 39, 40, 48, 50–53, 82] for the evolutionary case.
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1.2 Preliminaries

In general, lowercase letters (Greek and Latin) are used for scalar quantities, upright
boldface lowercase letters are used for vectors (for example, n), and italic boldface
lowercase letters are used for functions ranging in the multidimensional Euclidean
space (for example, u, ξ ). We denote by a·b =∑n

i=1 aibi the usual scalar product in
R
n and by |a| = (a ·a)1/2 the Euclidean norm. Matrices (tensors) and matrix-valued

functions are represented by upright boldface uppercase letters such as A and S. We
set A : B :=∑n

j,k=1 ajkbjk , if A = (ajk)
n
j,k=1 and B = (bjk)

n
j,k=1. The symbol Sd

stands for the space of symmetric matrices of order d . Let X,Y be a pair of vector
spaces. The inner product on X will be denoted by 〈·, ·〉X , the canonical bilinear
form on X × Y is usually denoted by 〈·, ·〉X×Y (or simply 〈·, ·〉). By X∗ we denote
a topological dual space of a topological vector space X. The notation X ↪→ Y

(resp. X ↪→↪→ Y ) means that X and Y are normed spaces with X continuously
(resp. compactly) embedded in Y . Arrows → and ⇀ are used to denote the strong
and weak convergence, respectively, in the given topology. By Xω (resp. X∗ω,X∗ω∗ )
we denote the space X (resp. X∗) furnished with the weak (resp. weak, weak star)
topology. We will denote by ‖A‖X→Y the norm of a continuous linear operator A
between normed linear spaces X and Y . For a subset U of normed space X, we write
‖U‖X = sup {‖u‖X | u ∈ U}. The symbol BX(x, r) =

{
y ∈ X

∣
∣ ‖y − x‖X ≤ r

}

stands for the closed ball of a real Banach space X centered at x ∈ X and a radius
r > 0, whereas BX(u, r) denotes the corresponding open ball.

1.2.1 Operators of Monotone Type

We recall now some definitions from set-valued (see, e.g., [17, 18]). Given a
Suslin locally convex space S (e.g., S = E or S = E∗ω∗ , where E∗w∗ stands
for the dual space of a separable Banach space E with the weak star topology
w∗ = σ(E∗, E)), we denote by B(S) the σ -algebra of Borel subsets of S. A
set-valued map, or a multifunction F from a set O to S, is a map that associates
with any ω ∈ O a nonempty subset F(ω) of S, and we write F : O � S.
Let (O,A) be a measurable space. The multifunction F is called measurable if
F−(C) := {ω ∈ O |F(ω) ∩ C �= ∅} ∈ A for C ∈ B(S). By a measurable selection
of F we mean a (single-valued) function f such that f (ω) ∈ F(ω) for almost all
ω ∈ O. We will denote by SelF the set of all measurable selections of F. Given a
function u : O → E and F : O × E � E∗ω∗ , define the multivalued superposition
operator NF(u) := SelF(·, u(·)). Let X and Y be metric spaces. A multifunction
F : X � Y is called closed if its graph Gr(F) = {(x, y) ∈ X × Y | y ∈ F(x)} is a
closed subset of X × Y ; upper semicontinuous (or u.s.c.) at x ∈ X if, for any open
set V ⊂ Y with F(x) ⊆ V , one may find an open neighborhood U ⊆ X of x such
that F(x) ⊆ V for all x ∈ U . Now, let Z be a vector metric space. A multifunction
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F : X � Z is called sequentially strongly-weakly closed, if Gr(F) is sequentially
closed in X × Zω, where Zω is endowed with the weak topology ω = σ(Z,Z∗).

Definition 1.2.1 Let V be a reflexive Banach space. A multivalued operator
A : V � V ∗ is called:

(a) bounded, if A maps bounded subsets of V into bounded subsets of V ∗;
(b) relaxed monotone, if there exists a constant m ≥ 0 satisfying the inequality

〈u∗ − v∗, u− v〉V ∗×V ≥ −m ‖u− v‖2
V for all (u, v), (u∗, v∗) ∈ Gr(A).

(c) pseudomonotone, if the following conditions hold:

1) A has values which are closed and convex sets;
2) A is u.s.c. from each finite-dimensional subspace of V to V ∗w;
3) for any sequence (vn, v

∗
n) ⊂ Gr(A) satisfying the conditions vn ⇀ v in

σ(V, V ∗) and lim supn→∞〈v∗n, vn − v〉V ∗×V ≤ 0, it follows that for every
y ∈ V there exists (y, v∗(y)) ∈ Gr(A) such that 〈v∗(y), v − y〉V ∗×V ≤
lim infn→∞〈v∗n, vn − y〉V ∗×V ;

(d) generalized pseudomonotone, if for any sequence (vn, v
∗
n) ⊂ Gr(A) such that

vn ⇀ v in σ(V, V ∗), v∗n ⇀ v∗ in σ(V ∗, V ) and lim supn→∞〈v∗n, vn −
v〉V ∗×V ≤ 0, we have (v, v∗) ∈ Gr(A) and 〈v∗n, vn〉V ∗×V → 〈v∗, v〉V ∗×V ;

(e) coercive, if there exists a function � : (0,∞) → R satisfying the conditions
limt→∞ �(t) = ∞ and 〈w,u〉V ∗×V ≥ �(‖u‖V ) ‖u‖V for all (u,w) ∈ Gr(A).

Definition 1.2.2 Let V be a reflexive Banach space. A single-valued operator
A : V → V ∗ is called:

(a) bounded, if A maps bounded subsets of V into bounded subsets of V ∗;
(b) strongly monotone, if 〈Av1 − Av2, v1 − v2〉V ∗×V ≥ m ‖v1 − v2‖2

V for all
v1, v2 ∈ V with m > 0;

(c) pseudomonotone, if A is bounded and for any sequence (vn) ⊂ V satisfying
the conditions vn ⇀ v in σ(V, V ∗) and lim supn→∞〈Avn, vn − v〉V ∗×V ≤ 0, it
holds 〈Av, v − y〉V ∗×V ≤ lim infn→∞〈Avn, vn − y〉V ∗×V for all y ∈ V ;

(d) (α, ρ)-coercive, if there exist constants α > 0 and ρ ∈ (1,∞) such that
〈Av, v〉V ∗×V ≥ α ‖v‖ρV for all v ∈ V ;

(e) hemicontinuous, if t �→ 〈A(u + tv),w〉V ∗×V is continuous on [0, 1] for all
u, v,w ∈ V ;

(f) weakly sequentially continuous, if vn ⇀ v in σ(V, V ∗) implies Avn ⇀ Av in
σ(V ∗, V ).

Remark 1.2.3 Note that (c) of Definition 1.2.2 is equivalent to the following one:
a single-valued operator A : V → V ∗ is called pseudomonotone, if A is bounded
and for any sequence (vn) ⊂ V satisfying the conditions vn ⇀ v in σ(V, V ∗)
and lim supn→∞〈Avn, vn − v〉V ∗×V ≤ 0, we have Aun → Au in σ(V ∗, V ) and
limn→∞〈Aun, un − u〉 = 0.



6 S. Migórski and D. Pączka

Definition 1.2.4 Let V be a separable and reflexive Banach space. An operator
N : V → V ∗ is called a Navier–Stokes type operator if Nv = Av+B[v], where

(1) A : V → V ∗ is pseudomonotone and (α, ρ)-coercive;
(2) B[v] = B(v, v), where B : V × V → V ∗ is a bilinear continuous operator

with

(2a) 〈B(u, v), v〉V ∗×V = 0 for all u, v ∈ V ;
(2b) B[·] : V → V ∗ is weakly sequentially continuous.

Lemma 1.2.5 ([23, Lemma 10]) The Navier–Stokes type operator N : V → V ∗ is
pseudomonotone and (α, ρ)-coercive.

Proof The coercivity of N is a consequence of conditions (1) and (2a) of Defini-
tion 1.2.4, namely for every v ∈ V , we have

〈Nv, v〉 = 〈Av, v〉 + 〈B(v, v), v〉 ≥ α ‖v‖ρV .

Now, we show thatN is pseudomonotone. First, the boundedness of N follows from
the facts that A is bounded and B is bilinear and continuous. Second, let vn ⇀ v in
σ(V, V ∗) and lim supn→∞〈Avn, vn− v〉V ∗×V ≤ 0, and v ∈ V . By (2a) and (2b) of
Definition 1.2.4, we have

〈B[un],un−v〉−〈B[u],u−v〉= 〈B[un],un〉 − 〈B[un], v〉−〈B[u],u〉+〈B[u], v〉
= 〈B[u], v〉 − 〈B[un], v〉

which implies limn→∞〈B[un],un − v〉 = 〈B[u],u − v〉 for all v ∈ V . Hence, in
particular, we have limn→∞〈B[un],un − u〉 = 0. Thus,

lim sup
n→∞

〈Aun,un − u〉 = lim sup
n→∞

〈Aun,un − u〉 + lim〈B[un],un − u〉

= lim sup
n→∞

〈Nun,un − u〉 ≤ 0.

From the pseudomonotonicity of A, we obtain

〈Au,u− v〉 ≤ lim inf
n→∞ 〈Aun,un − v〉

for all v ∈ V which yields 〈Nu,u − v〉 ≤ lim infn→∞〈Nun,un − v〉 for all
v ∈ V . ��

1.2.2 Orlicz and Orlicz–Sobolev Spaces

We recall definitions of Orlicz and Orlicz–Sobolev spaces and some of their pro-
perties (see [22, 46, 55, 68, 80]). A function � : [0,∞) → [0,∞) is called an
N-function if it is convex and such that �(t) > 0 for t > 0 and �(t)/t → 0
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as t → 0, �(t)/t → ∞ as t → ∞. The complementary function �∗ to an N-
function � is defined by �∗(v) = sup {uv −�(u) |u ≥ 0} for all v ≥ 0. It is also
an N-function. Furthermore, (�∗)∗ = � and the Young inequality satisfies st ≤
�(t)+�∗(s) for s, t ∈ [0,∞). An N-function � is said to satisfy the �2-condition
near infinity denoted by � ∈ �∞2 , if there exists k > 0 such that �(2t) ≤ k �(t) for
all t ≥ t0 > 0. For two N-functions �1 and �2, we say that �2 dominates �1 near
infinity and write �1 ≺ �2, if there exists k > 0 such that �1(t) ≤ �2(kt) for all
t ≥ t0 > 0. The N-functions�1 and �2 are called equivalent near infinity and write
�1 ∼ �2 if each dominates the other near infinity. If limt→∞�1(t)/�2(kt) = 0
for all k > 0, we say that �2 grows essentially faster near infinity than �1 and write
�1Î�2. If �1Î�2, then �1 ≺ �2.

Let (O,A, μ) be a positive finite complete measure space and � be an N-
function. The Orlicz space L�(O,R) is the space of (equivalence classes of)
measurable functions u : O → R which satisfy

∫
O �(λ |u(ω)|) dμ(ω) < ∞ for

some λ > 0. It is a Banach space with the Luxemburg norm

‖u‖L�(O) := inf

{
λ > 0

∣
∣
∣
∣

∫

O
�(|u(ω)| /λ) dμ(ω) ≤ 1

}
.

The space L�(O,R) is reflexive if and only if �,�∗ ∈ �∞2 , and L�(O,R) is
separable if and only if � ∈ �∞2 and μ is nonatomic. Furthermore, (L�(O,R))∗ =
L�∗(O,R) if and only if � ∈ �∞2 . The embedding L�2(O,R) ↪→ L�1(O,R)

holds if and only if �1 ≺ �2 near infinity. It is well known that if �(t) = tp and
p ∈ (1,∞) then L�(O,R) = Lp(O,R). The Hölder inequality in Orlicz spaces
has the form ‖uv‖L1(O,R) ≤ 2 ‖u‖L�(O,R) ‖v‖L�∗(O,R) for u ∈ L�(O,R) and
v ∈ L�∗(O,R).

Given a separable Banach space E and L�(O,R), the Orlicz–Bochner space
L�(O, E) is defined as the normed space of (equivalence classes of) strongly
measurable functions u : O → E such that the function ω ∈ O �→ ‖u(ω)‖E
belongs to L�(O,R) with the norm ‖u‖L�(O,E) := ‖‖u(·)‖E‖L�(O). Recall that
u : O → E is said to be a strongly measurable function if there exists a sequence
(un) of simple functions such that limn→∞ ‖un(ω)− u(ω)‖E = 0 for almost all
ω ∈ O.

Let (�,A, dx) be a measure space with an open bounded set � ⊂ R
n, A = B(�)

(with B(�) being the Borel σ -algebra on �) and the n-dimensional Lebesgue
measure dx on B(�). The Orlicz–Sobolev space W 1L�(�,Rd) is the space of
all u ∈ L�(�,Rd) such that ∇u ∈ L�(�,Rn×d ), where ∇u is a matrix-valued
function whose all components are distributional partial derivatives of u. It is a
Banach space endowed with the norm

‖u‖W 1L�(�,Rd ) = ‖u‖L�(�,Rd) + ‖∇u‖L�(�,Rn×d) .

The symbol C∞c (�,Rd) means the space of all C∞-functions u : � → R
d

with a compact support in �. If � has finite measure and � ∈ �∞2 , then
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W̊ 1L�(�,Rd) is defined as the norm-closure of C∞c (�,Rd) in W 1L�(�,Rd)

and W−1L�(�,Rd) := (W̊ 1L�(�,Rd))∗. Furthermore, if �,�∗ ∈ �∞2 , then the
spaces W 1L�(�,Rd) and W−1L�(�,Rd) are reflexive and separable. It is well
known that if �(t) = tp and p ∈ (1,∞) then W 1L�(�,Rd) = W 1,p(�,Rd).

Let � ⊂ R
d be a Lipschitz domain, that is, a bounded connected open set in R

d

with a Lipschitz boundary ∂� = �. We recall (see [22]) that if an N-function �

satisfies the following conditions

∫ 1

0

�−1(t)

t1+1/d dt <∞,

∫ ∞

1

�−1(t)

t1+1/d dt = ∞,

then the Sobolev conjugate N-function �∗ of � is defined by

�−1∗ (t) =
∫ t

0

�−1(τ )

τ 1+1/d dτ, t ≥ 0.

Since �Î�∗ (cf. [36, Lemma 4.14]), it follows from [15, Theorem 3] that

W 1L�(�,Rm) ↪→↪→ L�(�,Rm). (1.1)

By [22, Theorem 2.3], it follows that as long as � ∈ �∞2 , then the space
C∞(�,Rm) is dense in W 1L�(�,Rm) with respect to the norm convergence.
Hence, by Fougères [27] (see also [37]), there exists a unique linear continuous
operator

γ : W 1L�(�,Rm)→ L�(�,R
m)

such that γu = u|� for all u ∈ C∞(�,Rm) and the kernel of γ is W̊ 1L�(�,Rm).
The function γu is called the trace of the function u on ∂� = � and the operator
γ is called the trace operator. By [22, Theorem 3.8 and Corollary 3.3] we have a
compact embedding for the trace operator, i.e., if �Î(�∗)1−1/d with d > 1 then

W 1L�(�,Rm) ↪→↪→ L�(�,R
m). (1.2)

Theorem 1.2.6 (Korn’s Inequality, [16, Corollary 3.6], [6, Theorem 1.1]) Let
� ⊂ R

d be a bounded domain and � be an N-function. There exists cK > 0 such
that

‖∇u‖L�(�,Rd×d) ≤ cK ‖D(u)‖L�(�,Sd ) , ∀u ∈ W̊ 1L�(�,Rd)

if and only if �,�∗ ∈ �∞2 , where D(u) = 1
2

(∇u+ (∇u)�
)

denotes the symmetric
part of the gradient ∇u.
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Lemma 1.2.7 ([66, Lemma A.5]) Let � ⊂ R
d be a Lipschitz domain. For each

N-function � such that �,�∗ ∈ �∞2 the following inequalities hold:

∫

�

�(|u(x)|) dx ≥ ‖u‖a∞� −αL�(�,R) with ‖u‖L�(�,R) > 1, (1.3)

∫

�

�(|u(x)|) dx ≤ ‖u‖a∞� −αL�(�,R) with ‖u‖L�(�,R) ≤ 1, (1.4)

∫

�

�(|u(x)|) dx ≤ ‖u‖b∞� +μL�(�,R) with ‖u‖L�(�,R) > 1, (1.5)

∫

�

�(|u(x)|) dx ≥ ‖u‖b∞� +μL�(�,R) with ‖u‖L�(�,R) ≤ 1, (1.6)

where a∞� := lim inft→∞ t�′(t)
�(t)

and b∞� := lim supt→∞ t�′(t)
�(t)

satisfy 1 < a∞� ≤
b∞� <∞; μ > 0 and α ∈ (0, a∞� ).

Proof It is known (see [80, Corollary 4, p. 26]) that �,�∗ ∈ �∞2 if and only if

1 < a∞� ≤ b∞� <∞, (1.7)

where the numbers a∞� and b∞� are called the Simonenko indices of the N-function
� (see [54, p. 20]).

Firstly, we prove that (1.3) and (1.4) hold. By the definition of a∞� , there exist
α ∈ (0, a∞� ) and t1 ≥ t0 > 0 such that

t� ′(t)
�(t)

≥ a∞� − α, ∀t ≥ t1. (1.8)

Hence, for σ ∈ (1,∞), we obtain

log
�(σ t)

�(t)
=

∫ σ t

t

� ′(s)
�(s)

ds ≥
∫ σ t

t

a∞� − α

s
ds = (a∞� − α) log

σ t

t
.

Therefore,

�(σ t) ≥ σa∞� −α�(t), ∀t ≥ t1. (1.9)

From (1.9) with ‖u‖L�(�,R) > 1 and [80, Proposition 6, p.77], we have

∫

�

� (|u(x)|) dx =
∫

�

�

(
‖u‖L�(�,R)

|u(x)|
‖u‖L�(�,R)

)
dx

≥ ‖u‖a∞� −αL�(�,R)

∫

�

�

( |u(x)|
‖u‖L�(�,R)

)
dx = ‖u‖a∞� −αL�(�,R) .

(1.10)
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On the other hand, by (1.8) for σ ∈ (0, 1], it follows

log
�(t/σ)

�(t)
=

∫ t/σ

t

� ′(s)
�(s)

ds ≥
∫ t/σ

t

a∞� − α

s
ds = (a∞� − α) log

t/σ

t
.

Therefore,

�(t) ≤ σa∞� −α�(t/σ ), ∀t ≥ t1. (1.11)

By (1.11) for ‖u‖L�(�,R) ≤ 1 and [80, Proposition 6, p.77], we obtain

∫

�

� (|u(x)|) dx ≤ ‖u‖a∞� −αL�(�,R)

∫

�

�

( |u(x)|
‖u‖L�(�,R)

)
dx = ‖u‖a∞� −αL�(�,R) .

(1.12)

By (1.10) and (1.12) the proof is complete.
Secondly, we prove that (1.5) and (1.6) hold. By the definition of b∞� , there exist

μ > 0 and t1 ≥ t0 > 0 such that

t� ′(t)
�(t)

≤ b∞� + μ, ∀t ≥ t1. (1.13)

Hence, for σ ∈ (1,∞), we have

log
�(σ t)

�(t)
=

∫ σ t

t

� ′(s)
�(s)

ds ≤
∫ σ t

t

b∞� + μ

s
ds = (b∞� + μ) log

σ t

t
.

Therefore,

�(σ t) ≤ σb∞� +μ�(t), ∀t ≥ t1. (1.14)

Using (1.14) with ‖u‖L�(�,R) > 1 and [80, Proposition 6, p.77], we obtain

∫

�

� (|u(x)|) dx =
∫

�

�

(
‖u‖L�(�,R)

|u(x)|
‖u‖L�(�,R)

)
dx

≤ ‖u‖b∞� +μL�(�,R)

∫

�

�

( |u(x)|
‖u‖L�(�,R)

)
dx = ‖u‖b∞� +μL�(�,R) .

(1.15)

On the other hand, by (1.13) for σ ∈ (0, 1], we deduce

log
�(t/σ)

�(t)
=

∫ t/σ

t

� ′(s)
�(s)

ds ≤
∫ t/σ

t

b∞� + μ

s
ds = (b∞� + μ) log

t/σ

t
.
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Therefore,

�(t) ≥ σb∞� +μ�(t/σ ), ∀t ≥ t1. (1.16)

By (1.16) for ‖u‖L�(�,R) ≤ 1 and [80, Proposition 6, p.77], we get

∫

�

� (|u(x)|) dx ≥ ‖u‖b∞� +μL�(�,R)

∫

�

�

( |u(x)|
‖u‖L�(�,R)

)
dx = ‖u‖b∞� +μL�(�,R) .

(1.17)

By (1.17) and (1.15) the proof is complete. ��
Corollary 1.2.8 ([66, Corollary A.6]) Let � ⊂ R

d be a Lipschitz domain. For
each N-function � such that �∗ ∈ �∞2 the following inequality holds:

∫

�

�(|u(x)|) dx ≤ c1(1+ ‖u‖ρL�(�,R)
),

for all ρ > 1 and c1 > 0.

Proof By (1.14) with σ = 1+‖u‖L�(�,R) and [80, Proposition 6, p.77], we deduce

∫

�

� (|u(x)|) dx =
∫

�

�

(
(1+ ‖u‖L�(�,R))

|u(x)|
1+ ‖u‖L�(�,R)

)
dx

≤ (1+ ‖u‖L�(�,R))
b∞� +μ

∫

�

�

( |u(x)|
1+ ‖u‖L�(�,R)

)
dx

≤ (1+ ‖u‖L�(�,R))
b∞� +μ

∫

�

�

( |u(x)|
‖u‖L�(�,R)

)
dx

≤ 2b
∞
� +μ−1(1+ ‖u‖b∞� +μL�(�,R)),

where b� > 1 and μ > 0. ��

1.2.3 Generalized Gradient

We recall now some definitions and results from nonsmooth analysis [17].

Definition 1.2.9 (Lipschitz Function) Let U be a subset of a Banach space E. A
function f : U → R is said to be Lipschitz on U , if there exists L > 0 such that

|f (y)− f (z)| ≤ L ‖y − z‖E , ∀y, z ∈ U.

The constant L is called the Lipschitz constant.
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Definition 1.2.10 (Locally Lipschitz Function) Let U be a subset of a Banach
space E. A function f : U → R is said to be locally Lipschitz on U , if for all x ∈ U

there exist a neighborhood N(x) and Lx > 0 such that

|f (y)− f (z)| ≤ Lx ‖y − z‖E , ∀y, z ∈ N(x).

The constant Lx is called the Lipschitz constant.

Definition 1.2.11 (Generalized Directional Derivative) Let U be an open subset
of a Banach space E. If f : U → R is locally Lipschitz, then f has the generalized
directional derivative at the point x ∈ U in the direction v ∈ U , denoted f 0(x; v),
which is defined by

f 0(x; v) = lim sup
y→x,λ→0+

λ−1(f (y + λv)− f (y)).

Definition 1.2.12 (Regular Function) A function f is said to be regular (in the
sense of Clarke) at x if the directional derivative f ′(x; v) of f at x along v exists
and f ′(x; v) = f 0(x, v) for every v ∈ U .

Definition 1.2.13 (Generalized Gradient) The Clarke subdifferential or the gen-
eralized gradient in the sense of Clarke of f at x is the set

∂f (x) =
{
ζ ∈ E∗

∣
∣
∣ 〈ζ, v〉 ≤ f 0(x; v), ∀v ∈ U

}
.

Theorem 1.2.14 (Generalized Gradient) The Clarke subdifferential ∂f (x) is a
nonempty convex compact set in the weak star topology ω∗ = σ(E∗, E). The
multifunction ∂f : U � E∗ω∗ is upper semicontinuous. Furthermore, if f is
continuous (Fréchet) differentiable, i.e., f ∈ C1, then the Clarke subdifferential
∂f (x) reduces to a singleton, namely ∂f (x) = {f ′(x)}. Also, for every v ∈ U we
have f 0(x; v) = max {〈ζ, v〉 | ζ ∈ ∂f (x)}.

Next, we present a result on an integral representation of the Clarke subdifferen-
tial of locally Lipschitz integral functionals defined on the Orlicz–Bochner space.
We adopt the following conditions from [71, Theorem 4.3], [72, Corollary 6.2,
Lemma 6.1].

Hypotheses 1.2.15 Let (O,A, μ) be a positive finite complete measure space and
E be a separable Banach space. Assume that �,�∗ : [0,∞) → [0,∞) are a pair
of complementary N-functions and g : � × E → R is a Carathéodory function
satisfying:

(�1) �,�∗ ∈ �∞2 ;
(�2) g(x, ·) is locally Lipschitz for a.e. x ∈ �;
(�3) For some κ > 0 there exist aκ ∈ L1(�, [0,∞)) and positive constants bκ

and dκ such that �∗ (‖a∗‖E∗ /dκ) ≤ aκ(x) + bκ� (‖a‖E /κ) holds for all
(a, a∗) ∈ Gr(∂g) and a.e. x ∈ �.
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Remark 1.2.16 By hypothesis (�1), the Orlicz spaces L�(�,E) are separable and
reflexive. Hypothesis (�3) is natural for applications. In fact, it implies that the
set-valued superposition operator N∂g : L�(�,E) � L�∗(�,E∗ω∗) is bounded on
BL�(�,E)(0, κ). On the other hand, it follows from [70] that if the measure μ is con-
tinuous, ∂g is Carathéodory multifunction and N∂g : L�(�,E) � L�∗(�,E∗ω∗) is
bounded on BL�(�,E)(0, κ), then hypothesis (�3) is satisfied. Finally, note that each
one of the following conditions implies hypothesis (�3):

(1) For some κ > 0 there exist positive constants bκ, dκ and functions aκ ∈
L1(�, [0,∞)) and hκ : �× [0,∞)→ [0,∞) such that

(a) |g(x, u)− g(x, v)| ≤ hκ(x, ‖u‖E + ‖v‖E) ‖u− v‖E for all u, v ∈ E and
for a.e. x ∈ �;

(b) �∗(hκ(x, α)/dκ ) ≤ aκ(x)+ bκ�(α/κ) for a.e. x ∈ � and α ∈ [0,∞).

(2) For some κ > 0 there exist cκ ∈ L�∗(�, [0,∞)) and a positive constant bκ
such that ‖a∗‖E∗ ≤ cκ (x) + bκ�

′+ (‖a‖E) holds for all (a, a∗) ∈ Gr(∂g) and
a.e. x ∈ �, where �′+ is the right derivative of the N-function �.

where � and g are such as in Hypotheses 1.2.15.

The following result is an integral representation of the Clarke subdifferential of
locally Lipschitz integral functionals defined on the Orlicz space (see [71, Theorem
4.3], [72, Corollary 6.2] and [72, Lemma 6.1]).

Theorem 1.2.17 Under Hypotheses 1.2.15, if the functional

G(u) :=
∫

�

g(x, u(x)) dx for u ∈ L�(�,E),

is finite at least for one ū in BL�(�,E)(0, κ/2), then

(1) G is Lipschitz on BL�(�,E)(0, κ/2);
(2) G0(u; v) ≤ ∫

� g0(x, u(x); v(x)) dx for u ∈ BL�(�,E)(0, κ/2) and v ∈
L�(�,E);

(3) ∂G(u) ⊂ N∂g(u) for all u ∈ BL�(�,E)(0, κ/2), where the multivalued
superposition operator N∂g : L�(�,E) � L�∗(�,E∗ω∗) is bounded, that is,
if ζ ∈ ∂J (u) ⊂ L�∗(�,E∗ω∗), then

〈ζ, v〉 =
∫

�

ξ(x) · v(x) dx

for all v ∈ L�(�,E) and for some ξ ∈ N∂g(y) = Sel ∂g(·, y(·));
(4) if additionally the function g(x, ·) is regular (in Clarke’s sense) at u(x) for a.e.

x ∈ �, then the functional G is regular at u and ∂G(u) = N∂g(u).
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1.3 Subdifferential Operator Inclusions

In this section we prove existence and uniqueness of solution in a reflexive Orlicz–
Sobolev space to a subdifferential operator inclusion with the Clarke subdifferential
operator and the Navier–Stokes type operator.

Problem 1.3.1 Let � ⊂ R
d be a Lipschitz domain, V := W 1L�(�,Rm) and

Y := L�(�,R
m) be reflexive and separable. Assume that V ↪→↪→ Y and f ∈ V ∗.

Find u ∈ V such that

Nu+ γ ∗∂J (γu) � f ,

where N : V → V ∗ is the Navier–Stokes type operator, γ : V → Y is the trace
operator, ∂J : Y � Y ∗ is the set-valued subdifferential operator, and γ ∗ : Y ∗ → V ∗
is the adjoint operator to γ .

We complete the statement of Problem 1.3.1 with the following definition.

Definition 1.3.2 An element u ∈ V is solution to Problem 1.3.1 if and only if there
exists η ∈ V ∗ such that Nu+ η = f and η ∈ γ ∗∂J (γu).

Hypotheses 1.3.3 Let Y := L�(�,R
m) and J : Y → R be a functional such

that:

(I1) J is well-defined and Lipschitz on bounded subsets of Y ;
(I2) ‖∂J (y)‖Y ∗ ≤ c2 + c3 ‖y‖ρ−1

Y for all y ∈ Y with 1 < ρ <∞ and c2, c3 > 0.

The existence and uniqueness result in study of Problem 1.3.1 reads as follows.

Theorem 1.3.4 Under Hypotheses 1.3.3, Problem 1.3.1 has a solution u ∈ V

provided α > c6, and

(i1) the solution satisfies the estimate ‖u‖V ≤ C with C :=
( ‖f ‖V ∗+c5

α−c6

)1/(ρ−1)
;

(i2) the solution is unique if, in addition, the operator A is strongly monotone with
the positive constant mA satisfying the smallness condition:

mA > 2c2 ‖γ ‖2
V→Y + 2c3

‖f ‖V ∗+c5
α−c6

‖γ ‖ρ+1
V→Y + c4

( ‖f ‖V ∗+c5
α−c6

)1/(ρ−1) ;

where ρ ∈ (1,∞), α is the coercivity constant of the operator A, c4 is the continuity
constant of the trilinear form b associated with the operator B, c5 := c2 ‖γ ‖V→Y

and c6 := c3 ‖γ ‖ρV→Y with c2, c3 > 0 from hypothesis (I2).

Proof We apply the surjectivity result for pseudomonotone maps [8, Theorem 3].
To this end, we define a multivalued operator G : V � V ∗ by

G(v) = Nv + F(v), ∀v ∈ V,



1 Frictional Contact Problems for Steady Flow of Fluids 15

where F : V � V ∗ is the multivalued operator given by

F(v) = γ ∗∂J (γ v), ∀v ∈ V. (1.18)

We prove that the multivalued operator G : V � V ∗ is pseudomonotone and
coercive. We divide this proof into Steps 1.3.1 to 1.3.2.

Step 1.3.1 We show that F has convex and weakly compact values. By hypothe-
sis (I1) and [17, Proposition 2.1.2], we obtain that F(v) are nonempty and convex
for all v ∈ V . In order to show that the values of F are weakly compact, let v ∈ V

and (ηn) be a sequence in F(v). Thus ηn = γ ∗ζ n with ζ n ∈ ∂J (γ v). Since ∂J (γ v)

is a weakly compact subset of Y ∗ω∗ , there exists a subsequence ζ nj
and ζ ∈ ∂J (γ v)

such that ζ nj
⇀ ζ in σ(Y ∗, Y ). Since Y is a separable and reflexive Banach space,

it follows that �,�∗ ∈ �∞2 and (L�∗(�,Rm))∗ = (L(�∗)∗(�,Rm)) = L�(�,R
m)

with equivalent norms (see, e.g., [68, Theorem 8.17]). Therefore, ζ nj
⇀ ζ

in σ(Y ∗, (Y ∗)∗). Since V is a separable and reflexive Banach space, from the
continuity of the operator γ ∗ : Y ∗ → V ∗, we infer that ηnj = γ ∗ζ nj

⇀ γ ∗ζ := η

in σ(V ∗, (V ∗)∗). Thus η = γ ∗ζ and ζ ∈ ∂J (γ v). So η ∈ F(v).

Step 1.3.2 We show that F is sequentially strongly-weakly closed. Indeed, let (vn)
and (ηn) be sequences such that ηn ∈ F(vn) together with vn → v ∈ V and
ηn ⇀ v∗ in σ(V ∗, V ). We prove that v∗ ∈ F(v). As ηn ∈ F(vn), we have

ηn = γ ∗ζ n and ζ n ∈ ∂J (γ vn) ⊂ Y ∗. (1.19)

By vn → v ∈ V and γ : V ↪→↪→ Y , we obtain

γ vn → γ v in Y. (1.20)

Hence, (γ ηn) lies in a bounded subset of Y . It follows from (1.19) and hypothe-
sis (I2) that (ζ n) remains in a bounded subset of Y ∗. The Banach–Alaoglu theorem
shows that

ζ nj
⇀ ζ in σ(Y ∗, Y ). (1.21)

Since the set-valued map ∂J is sequentially strongly-weakly closed (see [17,
Propsition 2.1.5]), we infer that ∂J is closed in Y × Y ∗w∗ topology. Hence, by (1.19)
and (1.21) we obtain

ζ nj
⇀ ζ in σ(Y ∗, Y ) and ζ ∈ ∂J (γ v) ⊂ Y ∗, (1.22)

Letting nj →∞ in (1.19), from ηnj ⇀ v∗ in σ(V ∗, V ) along with (1.20) and (1.22)
we obtain v∗ = γ ∗ζ and ζ ∈ ∂J (γ v), which gives v∗ ∈ F(v).

Step 1.3.3 We show that ‖F(v)‖V ∗ ≤ c5+c6 ‖v‖ρ−1
V for all v ∈ V with ρ ∈ (1,∞),

c5 := c2 ‖γ ‖V→Y > 0 and c6 := c3 ‖γ ‖ρV→Y > 0, where c2, c3 are constants in
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hypothesis (I2). Let η ∈ F(v) for v ∈ V . Thus η = γ ∗ζ and ζ ∈ ∂J (γ v). Hence,

|〈η, v〉V ∗×V | =
∣∣〈γ ∗ζ , v〉V ∗×V

∣∣ ≤ ∥∥γ ∗
∥∥
Y ∗→V ∗ ‖ζ‖Y ∗ ‖v‖V , ∀v ∈ V.

(1.23)

By (1.23), hypothesis (I2) and ‖γ ∗‖Y ∗→V ∗ = ‖γ ‖V→Y , we obtain

‖η‖V ∗ =
∥
∥γ ∗ζ

∥
∥
V ∗ ≤

∥
∥γ ∗

∥
∥
Y ∗→V ∗

(
c2 + c3 ‖γ v‖ρ−1

Y

)

≤ ∥
∥γ ∗

∥
∥
Y ∗→V ∗

(
c2 + c3 ‖γ ‖ρ−1

V→Y ‖v‖ρ−1
V

)

= ‖γ ‖V→Y

(
c2 + c3 ‖γ ‖ρ−1

V→Y ‖v‖ρ−1
V

)
≤ c5 + c6 ‖v‖ρ−1

V .

(1.24)

Step 1.3.4 We show that F is a pseudomonotone operator. Because of Step 1.3.1
and the Mazur theorem (see, e.g., [67, Theorem 1.33]), the operator F : V � V ∗
on a reflexive Banach space V has closed and convex values. By [8, Proposition
4], it is enough to prove that F is a generalized pseudomonotone operator. To this
end, let (vn) and (ηn) be sequences such that ηn ∈ F(vn) together with vn ⇀ v in
σ(V, V ∗), ηn ⇀ v∗ in σ(V ∗, V ) and lim supn→∞〈ηn, vn − v〉V ∗×V ≤ 0. We prove
that v∗ ∈ F(v) and 〈ηn, vn〉V ∗×V → 〈v∗, v〉V ∗×V . Since ηn ∈ F(vn), we have

ηn = γ ∗ζ n and ζ n ∈ ∂J (γ vn) ⊂ Y ∗. (1.25)

By vn ⇀ v in σ(V, V ∗) and γ : V ↪→↪→ Y , we obtain

γ vn → γ v in Y. (1.26)

Hence, (γ ηn) is in a bounded subset of Y . It follows from (1.25) and hypothesis (I2)
that (ζ n) lies in a bounded subset of Y ∗. The Banach–Alaoglu theorem shows that

ζ nj
⇀ ζ in σ(Y ∗, Y ). (1.27)

As before, since the map ∂J is sequentially strongly-weakly closed (see [17,
Propsition 2.1.5]), we infer that ∂J is closed in Y×Y ∗w∗ topology. By (1.25) to (1.27),
we obtain

ζ nj
⇀ ζ in σ(Y ∗, Y ) and ζ ∈ ∂J (γ v) ⊂ Y ∗. (1.28)

Letting nj → ∞ in (1.25), from ηnj ⇀ v∗ in σ(V ∗, V ) together with (1.26)
and (1.28) we obtain v∗ = γ ∗ζ and ζ ∈ ∂J (γ v), which gives v∗ ∈ F(v).
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By (1.26) and (1.28), we infer that for each subsequence (ηnj ), (vnj ) of
(ηn), (vn), we have

lim
j→∞〈ηnj , vnj 〉V ∗×V = lim

j→∞〈γ
∗ζ nj

, vnj 〉V ∗×V = lim
j→∞〈ζ nj

, γ vnj 〉Y ∗×Y

= 〈ζ , γ v〉Y ∗×Y = 〈γ ∗ζ , v〉V ∗×V = 〈v∗, v〉V ∗×V ,

which completes the proof of the generalized pseudomonotonicity of F.

Step 1.3.5 We show that the multivalued operator G : V � V ∗ is pseudomonotone
and coercive provided α > c6. Since the class of multivalued pseudomonotone
operators is closed under addition of mappings (see [18, Proposition 6.3.68]), it
follows that G is pseudomonotone due to Lemma 1.2.5 and Step 1.3.4. Furthermore,
Lemma 1.2.5 shows that for all v ∈ V and η ∈ F(v), we have

〈G(v), v〉V ∗×V = 〈N (v), v〉V ∗×V + 〈η, v〉V ∗×V ≥ α ‖v‖2
V + 〈η, v〉V ∗×V .

By Step 1.3.3, we have |〈η, v〉V ∗×V | ≤ (c5 + c6 ‖v‖ρ−1
V ) ‖v‖V for all v ∈ V and

η ∈ F(v). Hence,

〈v∗, v〉V ∗×V ≥ α ‖v‖ρV −
(
c5 + c6 ‖v‖ρ−1

V

)
‖v‖V = �(‖v‖V ) ‖v‖V

for all (v, v∗) ∈ Gr(G), where �(t) := αtρ−1 − c6t
ρ−1 − c5 and limt→∞ �(t) = ∞

if 1 < ρ < ∞ provided α − c6 > 0. Therefore � is the coercivity function of the
operator G, and G is coercive as claimed.

In conclusion, because of [8, Theorem 3], G is surjective, i.e. G(V ) = V ∗.
Hence, for every f ∈ V ∗, there exists u ∈ V such that Nu + F(u) � f .
Furthermore, from the coercivity of the operator G, we have

α ‖u‖ρV − (c6 ‖u‖ρ−1
V + c5) ‖u‖V ≤ ‖f ‖V ∗ ‖u‖V .

Thus, α ‖u‖ρ−1
V ≤ c6 ‖u‖ρ−1

V + c5 + ‖f ‖V ∗ which implies the estimate in (i1).

Step 1.3.6 We show the uniqueness of a solution of Problem 1.3.1. Let u1,u2 ∈ V

be solutions of Problem 1.3.1. By (i1), we have
∥∥uj

∥∥
V
≤ C for j = 1, 2 and C > 0

is the constant as in (i1). Thus, there exist ηj = γ ∗ζ j ∈ V ∗, ζ j ∈ ∂J (γuj ) ⊂ Y ∗
with

∥
∥γuj

∥
∥
Y
≤ ‖γ ‖V→Y

∥
∥uj

∥
∥
V
≤ C ‖γ ‖V→Y for j = 1, 2 such that

Nuj + ηj = f for j = 1, 2.

Subtracting the above two equations, multiplying the result by u1 − u2, and using
the strong monotonicity of the operator A (see (i2)), we have

mA ‖u1 − u2‖2
V + 〈B[u1] −B[u2],u1 − u2〉V ∗×V + 〈η1 − η2,u1 − u2〉V ∗×V ≤ 0.
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In virtue of Definition 1.2.4, we obtain the estimate

|〈B[u1] − B[u2],u1 − u2〉V ∗×V | = |〈B(u1 − u2,u2),u1 − u2〉V ∗×V |
= |b(u1 − u2,u2,u1 − u2)| ≤ c4 ‖u2‖V ‖u1 − u2‖2

V ≤ c4C ‖u1 − u2‖2
V ,

where c4 > 0 is the continuity constant of the trilinear form b associated with the
operator B and C > 0 is the constant such as in (i1). By hypothesis (I2), we have∥
∥ζ j

∥
∥
Y ∗ ≤ c2 + c3C

ρ−1 ‖γ ‖ρ−1
V→Y for ζ j ∈ ∂J (γuj ) and j = 1, 2. Hence,

∣
∣〈η1 − η2,u1 − u2〉V ∗×V

∣
∣ = ∣

∣〈ζ 1 − ζ 2, γu1 − γu2〉Y ∗×Y
∣
∣

≤ ∥
∥ζ 1 − ζ 2

∥
∥
Y ∗ ‖γu1 − γu2‖Y ≤ (

∥
∥ζ 1

∥
∥
Y ∗ +

∥
∥ζ 2

∥
∥
Y ∗) ‖γu1 − γu2‖Y .

Thus, we infer that 〈η1 − η2,u1 − u2〉V ∗×V ≥ −2r ‖γ ‖2
V→Y ‖u1 − u2‖2

V with

r := c2 + c3C
ρ−1 ‖γ ‖ρ−1

V→Y > 0. Therefore,

(mA − c4C − 2r ‖γ ‖2
V→Y ) ‖u1 − u2‖2

V ≤ 0.

This implies ‖u1 − u2‖V = 0 provided mA > c4C + 2r ‖γ ‖2
V→Y . Thus, the

solution to Problem 1.3.1 is unique. ��

1.4 Hemivariational Inequalities

In this section we use the results of Sect. 1.3 to provide existence and uniqueness
results to hemivariational inequalities (1.29) and (1.32) below, which will be applied
to fluid flow problems in Sects. 1.5 and 1.6.

1.4.1 Tangential Superpotential

Problem 1.4.1 Let � ⊂ R
d be a Lipschitz domain, V := W 1L�(�,Rm), Y :=

L�(�,R
m), and f ∈ V ∗. Find u ∈ V such that

〈Nu, v〉V ∗×V +
∫

�

j0
τ (x, (γu)τ ; (γ v)τ ) d� ≥ 〈f , v〉V ∗×V , ∀v ∈ V, (1.29)

where N : V → V ∗, Nv = Av+B[v] is the Navier–Stokes type operator, whereas
(γu)τ ∈ Y and (γ v)τ ∈ Y are tangential components of traces γu ∈ Y and γ v ∈ Y

of functions u and v on boundary ∂� = �, respectively, and j0
τ stands for the

generalized directional derivative of jτ (x, ·) for jτ : � ×R
m → R.
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For the above problem we assume the following hypotheses.

Hypotheses 1.4.2 Let �,�∗ : [0,∞) → [0,∞) be a pair of complementary N-
functions and jτ : � ×R

m → R be a Carathéodory function such that:

(V1) �,�∗ ∈ �∞2 and �Î(�∗)1−1/d with d ≥ 2, where �∗ is the Sobolev
conjugate N-function of �;

(V2) jτ (x, ·) is locally Lipschitz for a.e. x ∈ �;
(V3) For some κ > 0 there exist aκ ∈ L1(�, [0,∞)) and positive constants bκ

and dκ such that �∗ (‖a∗‖Rm /dκ) ≤ aκ(x) + bκ� (‖a‖Rm /κ) holds for all
(a, a∗) ∈ Gr(∂jτ ) and a.e. x ∈ �.

Remark 1.4.3 With hypothesis (V1), the spaces V = W 1L�(�,Rm) and Y =
L�(�,R

m) are separable and reflexive satisfying V ↪→↪→ Y (cf. (1.2)). Hypothe-
ses (V2) and (V3) (cf. Hypotheses 1.2.15) allow to use the results of Sect. 1.3.

In order to establish existence of solutions to Problem 1.4.1, we associate with it,
a subdifferential operator inclusion as in Sect. 1.3. It works owing to Theorem 1.2.17
on an integral representation of the Clarke subdifferential of locally Lipschitz
integral functionals defined on the Orlicz space.

Lemma 1.4.4 Under Hypotheses 1.4.2, if the functional J : Y → R, defined by

J (y) =
∫

�

jτ (x, y(x)) d� for y ∈ Y = L�(�,R
m), (1.30)

is finite at least for one y ∈ BY (0, κ/2), then

(t1) J is Lipschitz continuous on BY (0, κ/2);
(t2) J 0(y; z) ≤ ∫

�
j0
τ (x, y(x); z(x)) d� for all y ∈ BY (0, κ/2) and z ∈ Y ;

(t3) ∂J (y) ⊂ N∂jτ (y) for all y ∈ BY (0, κ/2), where the multivalued superposition
operator N∂jτ : Y � Y ∗ is bounded, that is, if ζ ∈ ∂J (y) ⊂ Y ∗ then

〈ζ , z〉Y ∗×Y =
∫

�

ξ (x) · z(x) d�

for all z ∈ Y and for some ξ ∈ N∂jτ (y) = Sel ∂jτ (·, y(·)).
(t4) ‖∂J (y)‖Y ∗ ≤ c8 + c7 ‖y‖ρ−1

Y for all y ∈ Y with ρ ∈ (1,∞), where c7 :=
bκdκ
κ

> 0 and c8 := 2dκ ‖aκ‖L1(�,R) + c7 > 0.
(t5) If, in addition, either jτ or −jτ is regular (in the sense of Clarke) at y(x) a.e.,

then J or −J is regular (in the sense of Clarke) at y, respectively.
(t6) If, in addition, either jτ or −jτ is regular (in the sense of Clarke) at y(x) a.e.,

then (t2) and (t3) hold with equalities.

Proof We only show that (t4) is satisfied. First, we prove that a superposition
multivalued operator N∂jτ : Y � Y ∗, N∂jτ (y) := Sel ∂jτ (·, y(·)) is bounded, i.e.,
for every κ > 0 there exists r(κ) > 0 such that ‖y‖Y ≤ κ implies ‖ξ‖Y ∗ ≤ r(κ)

for ξ ∈ N∂jτ (y). Indeed, fix y and ξ such that ‖y‖Y ≤ κ and ξ (x) ∈ ∂jτ (x, y(x))
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a.e. x ∈ �. Note that
∫
�
�

(‖y(x)‖Rm /κ
)

d� ≤ 1 due to [47, Lemma 3.8.4]. By
hypothesis (V3), for each ξ ∈ N∂jτ (y), we obtain

∫

�

�∗
(‖ξ (x)‖Rm /dκ

)
d� ≤ ‖aκ‖L1(�,R) + bκ

∫

�

�
(‖y(x)‖Rm /κ

)
d�

≤ ‖aκ‖L1(�,R) + bκ + 1 <∞.

Since �∗ is convex, we have
∫
�
�∗

(‖ξ (x)‖Rm /[dκ(‖aκ‖L1(�,R) + bκ + 1)]) d� <

1. Therefore, ‖ξ‖Y ∗ ≤ r(κ) := dκ(‖aκ‖L1(�,R) + bκ + 1).
Next, observe that for all ζ ∈ ∂J (y) with y ∈ Y , by (t2), Theorem 1.2.14,

Hölder’s inequality, and hypothesis (V3), we obtain

|〈ζ , z〉| ≤
∫

�

∣
∣
∣j 0(x, y(x); z(x))

∣
∣
∣ d� ≤

∫

�

sup
{‖ξ(x)‖Rm ‖z(x)‖Rm

∣
∣ ξ ∈ N∂jτ (y)

}
d�

≤ 2(
∥∥
∥dκ(�∗)−1(aκ )

∥∥
∥
Y ∗
+

∥∥
∥bκdκ(�∗)−1�(‖y(x)‖Rm /κ))

∥∥
∥
Y ∗
) ‖z‖Y

≤ 2(dκ
∥
∥
∥(�∗)−1(aκ )

∥
∥
∥
Y ∗
+ bκdκ

κ

∥
∥
∥(�∗)−1�(‖y(x)‖Rm))

∥
∥
∥
Y ∗
) ‖z‖Y ,

where (�∗)−1 of �∗ is defined by (�∗)−1(s) = sup {t |�∗(t) ≤ s} for s ∈ [0,∞).
Since �∗((�∗)−1(s)) ≤ s, it follows that

∥∥
∥(�∗)−1(aκ)

∥∥
∥
Y ∗
≤ ‖aκ‖L1(�,R) ,

∥∥
∥(�∗)−1�(‖y(x)‖Rm)

∥∥
∥
Y ∗
≤ ‖y‖Y .

By [47, Theorem 3.8.5, Formula 3.6.3.1, p.145], we have ‖y‖Y ≤ 1 +∫
�
�(|y(x)|) d�. Therefore,

‖ζ‖Y ∗ ≤ c8 + c7

∫

�

�(|y(x)|) d�, ∀ζ ∈ ∂J (y)

with c7 := bκdκ
κ

> 0 and c8 := 2dκ ‖aκ‖L1(�,R) + c7 > 0. Hence, by Lemma 1.2.7
(see (1.4)) we obtain

‖ζ‖Y ∗ ≤ c8 + c7 ‖y‖ρ−1
Y , ∀ζ ∈ ∂J (y), 1 < ρ <∞ and c7, c8 > 0. (1.31)

This is our claim (t4). ��
The existence and uniqueness result in study of Problem 1.4.1 is the following.
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Theorem 1.4.5 Under Hypotheses 1.4.2, Problem 1.4.1 has a solution u ∈ V

provided α > c6, and

(v1) the solution satisfies the estimate ‖u‖V ≤ C with C :=
( ‖f ‖V ∗+c5

α−c6

)1/(ρ−1)
;

(v2) the solution is unique if, in addition, the operator A is strongly monotone with
the positive constant mA satisfying the smallness condition:

mA > 2c8 ‖γ ‖2
V→Y + 2c7

‖f ‖V ∗+c5
α−c6

‖γ ‖ρ+1
V→Y + c4

( ‖f ‖V ∗+c5
α−c6

)1/(ρ−1) ;

where ρ ∈ (1,∞), α is the coercivity constant of the operator A, c4 is the continuity
constant of the trilinear form b associated with the operator B, c5 := c8 ‖γ ‖V→Y

and c6 := c7 ‖γ ‖ρV→Y with c7 := 2bκdκ
κ

> 0 and c8 := 2dκ ‖aκ‖L1(�,R) + c7 > 0,
whereas bκ, dκ, aκ such as in hypothesis (V3).

Proof We apply Theorem 1.3.4. By Lemma 1.4.4, we conclude that hypothesis (I1)
and (I2) are satisfied. ��
Lemma 1.4.6 Every solution of Problem 1.3.1 is also a solution of Problem 1.4.1.
Furthermore, if either j or −j is regular (in the sense of Clarke), then the converse
is also true.

Proof Let u ∈ V be a solution of Problem 1.3.1. Hence, there exists η = γ ∗ζ ∈ V ∗
and ζ ∈ ∂J (γu) ⊂ Y ∗ such that Au+ η = f . By [17, Proposition 2.1.5], we have
〈ζ , γ v〉Y ∗×Y ≤ J 0(γu, γ v) for all γ v ∈ Y . Thus

〈f −Au, v〉V ∗×V = 〈η, v〉V ∗×V = 〈γ ∗ζ , v〉V ∗×V = 〈ζ , γ v〉Y ∗×Y
≤ J 0(γu; γ v) ≤

∫

�

j0
τ (x, γu(x); γ v(x)) d�, ∀v ∈ V,

where the last inequality holds due to (t2) (see Lemma 1.4.4). Therefore, u is
also a solution of Problem 1.4.1. Furthermore, we show that if either jτ or −jτ
is regular (in the sense of Clarke), then every solution of Problem 1.4.1 is a
solution of Problem 1.3.1. From the hemivariational inequality (1.29) and (t6) (see
Lemma 1.4.4), we obtain

〈f −Au, v〉V ∗×V ≤
∫

�

j0
τ (x, γu(x); γ v(x)) d� = J 0(γu; γ v).

It follows from [17, Theorem 2.3.10, Corollary p. 47] that

J 0(γu; γ v) = (J ◦ γ )0(u; v) and ∂(J ◦ γ )(u) = γ ∗∂J (γu).

Therefore, 〈f − Au, v〉V ∗×V ≤ (J ◦ γ )0(u; v) and f − Au ∈ ∂(J ◦ γ )(u) =
γ ∗∂J (γu), which implies our assertion. ��
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1.4.2 Normal Superpotential

Problem 1.4.7 Let � ⊂ R
d be a Lipschitz domain, V := W 1L�(�,Rm), Y :=

L�(�,R
m), and f ∈ V ∗. Find u ∈ V such that

〈Nu, v〉V ∗×V +
∫

�

j0
ν (x, (γ u)ν(x); (γ v)ν(x)) d� ≥ 〈f , v〉V ∗×V , ∀v ∈ V,

(1.32)

where N : V → V ∗ is the Navier–Stokes type operator, Nv = Av + B[v] with A
being (α, 2)-coercive, whereas (γ u)ν and (γ v)ν are normal components of traces
γu ∈ Y and γ v ∈ Y of functions u and v on boundary ∂� = �, respectively, and
j0
ν stands for the generalized directional derivative of jν(x, ·) for jν : � × R→ R.

We adopt the following hypotheses on the data.

Hypotheses 1.4.8 Let �,�∗ : [0,∞) → [0,∞) be a pair of complementary N-
functions and let jν : � × R→ R be a Carathéodory function such that

(V4) �,�∗ ∈ �∞2 and �Î(�∗)1−1/d with d ≥ 2, where �∗ is the Sobolev
conjugate N-function of �;

(V5) jν(x, ·) is locally Lipschitz for a.e. x ∈ �;
(V6) For some κ > 0 there exist aκ ∈ L1(�, [0,∞)) and positive constants bκ and

dκ such that �∗ (|a∗| /dκ) ≤ aκ(x) + bκ� (|a| /κ) for all (a, a∗) ∈ Gr(∂jν)
and a.e. x ∈ �.

Remark 1.4.9 By hypothesis (V4), the spaces V = W 1L�(�,Rm) and Y =
L�(�,R

m) are separable and reflexive satisfying V ↪→↪→ Y (cf. (1.2)). Hypothe-
ses (V5) and (V6) follow from [71, 72].

Note that Theorem 1.2.17 on an integral representation of the Clarke subdifferential
of locally Lipschitz integral functionals defined on the Orlicz space allows to relate
Problems 1.3.1 and 1.4.7 (see Lemmata 1.4.10 and 1.4.12). We proved that every
solution of Problem 1.3.1 is also a solution of Problem 1.4.7 (see Lemma 1.4.12).
Finally, Lemma 1.4.10 follows from [75]. However, we give a different proof of (n4)
here.

Lemma 1.4.10 Under Hypotheses 1.4.8, if the functional J : Y → R defined by

J (y) =
∫

�

jν(x, yν(x)) d�, y ∈ Y = L�(�,R
m), (1.33)

is finite at least for one y ∈ BY (0, κ/2), then

(n1) J is Lipschitz on BY (0, κ/2);
(n2) for all y ∈ BY (0, κ/2) and z ∈ Y , the following inequality holds:

J 0(y; z) ≤
∫

�

j0
ν (x, yν(x); zν(x)) d�;
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(n3) ∂J (y) ⊂ N(∂jν)ν(yν) for all y ∈ BY (0, κ/2), where the multivalued
superposition operator N(∂jν)ν : L�(�,R) � Y ∗ is bounded, which means
that if ζ ∈ ∂J (y) ⊂ Y ∗ then

〈ζ , z〉 =
∫

�

ξ (x) · z(x) d�

for all z ∈ Y and for some ξ ∈ N(∂jν)ν(yν) = Sel ∂jν(·, yν(·))ν, such that
ξ (x) = a(x)ν and a ∈ ∂jν(·, yν(·)) ⊂ L�∗(�,R);

(n4) ‖∂J (y)‖Y ∗ ≤ c9 (1 + ‖γu‖ρY ) for all y ∈ Y with 0 < ρ ≤ 1, where c9 :=
max

{
2dκ ‖aκ‖L1(�,R) ,

2bκdκ
κ

, 2ce1dκ ‖aκ‖L1(�,R) , ce1
2bκdκ
κ

}
with bκ, dκ , aκ

such as in hypothesis (V6).
(n5) If, in addition, either jν or−jν is regular (in the sense of Clarke) at yν(x) a.e.,

then J or −J is regular (in the sense of Clarke) at y, respectively.
(n6) If, in addition, either jν or −jν is regular (in the sense of Clarke) at y(x) a.e.,

then (n2) and (n3) hold with equalities.

Proof We apply Theorem 1.2.17. To this end, let j1 : � × R
m → R be a function

defined by

j1(x, a) := jν(x, aν), ∀(x, a) ∈ � × R
m. (1.34)

Observe that L : Rm → R defined by La = aν is a linear continuous operator and
its adjoint operator L∗ : R→ R

m is given by L∗r = rν for r ∈ R. Hence,

j1(x, a) = jν(x, La) = (jν ◦ L)(x, a). (1.35)

By hypothesis (V5), we infer that j1 is a Carathéodory function such that j1(x, ·) is
locally Lipschitz for a.e. x ∈ �. Hence, by [17, Theorem 2.3.10 and Remark 2.3.11]
and (1.35), for a, s ∈ R

m, we obtain

j0
1 (x, a; s) = (jν ◦ L)0(x, a; s) ≤ j0

ν (x, La;Ls) = j0
ν (x, aν; sν), (1.36)

∂j1(x, a) = ∂(jν ◦ L)(x, a) ⊂ L∗∂jν(x, La)ν = ∂jν(x, aν)ν. (1.37)

It follows that for a∗ ∈ ∂j1(x, a), we have a∗ = a∗νν and a∗ν ∈ ∂jν(x, aν). Hence, by
hypothesis (V6) for some κ > 0 and for all a∗ν ∈ ∂jν(x, aν), we obtain

�∗
(∣∣a∗ν

∣∣ /dκ
) ≤ aκ(x)+ bκ� (|aν | /κ) < aκ(x)+ bκ� (‖a‖Rm /κ)

for almost all x ∈ � and for all a ∈ R
m. The latter follows from the fact that � is

strictly increasing and |aν | = ‖a · ν‖Rm ≤ ‖a‖Rm . Thus, for some κ > 0, there exist
bκ, dκ > 0, aκ ∈ L1(�, [0,∞)) such that

�∗
(∥∥a∗

∥
∥
Rm /dκ

) ≤ aκ(x)+ bκ� (‖a‖Rm /κ) , ∀(a, a∗) ∈ Gr ∂j1(x, ·) (1.38)
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for all a ∈ R
m and a.e. x ∈ �. It follows that j1 satisfies the hypotheses of

[71, Theorem 4.3], that is, j1(x, ·) is locally Lipschitz for a.e. x ∈ � and j1
satisfies (1.38).

Next, we consider the functional J1 : L�(�,R
m)→ R defined by

J1(y) :=
∫

�

j1(x, y(x)) d�, y ∈ Y = L�(�,R
m), (1.39)

where j1(x, y(x)) := jν(x, yν(x)) is given by (1.34).
Since j1(x, ·) is locally Lipschitz for a.e. x ∈ �, from [71, Theorem 4.3], we

infer that the functional J1 is Lipschitz on BY (0, κ/2) and (n1) holds. Therefore,

J 0
1 (y; z) ≤

∫

�

j0
1 (x, y(x); z(x)) d� ≤

∫

�

j0
ν (x, yν(x); zν(x)) d� (1.40)

for all y ∈ BY (0, κ/2) and all z ∈ Y due to [71, Theorem 4.3] and (1.36). So, (n2)
holds.

By [71, Theorem 4.3] and (1.37), we infer that

∂J1(y) ⊂ N∂j1(y) ⊂ N(∂jν)ν(yν) (1.41)

for all y ∈ BY (0, κ/2). These inclusions mean that if ζ ∈ ∂J1(y) ⊂ Y ∗ then

〈ζ , z〉Y ∗×Y =
∫

�

ξ (x) · z(x) d�, ∀z ∈ Y

for some ξ ∈ N(∂jν)ν(yν) = Sel ∂jν(·, yν(·))ν, which has the following prop-
erties ξ(x) = a(x)ν and a ∈ ∂jν(·, yν(·)) ⊂ L�∗(�,R). Furthermore, the
multivalued superposition operator N(∂jν)ν : L�(�,R) � Y ∗ is bounded because
N∂jν : L�(�,R) � L�∗(�,R) defined by N∂jν (yν) = Sel ∂jν(·, yν(·)) is bounded,
that is, for every κ > 0 there exists r(κ) > 0 such that ‖yν‖L�(�,R)

≤ κ

implies ‖ξ‖L�∗(�,R) ≤ r(κ) for ξ ∈ N∂jν (yν). Indeed, fix yν and ξ such that
‖yν‖L�(�,R)

≤ κ and ξ(x) ∈ ∂jν(x, yν(x)) a.e. Hypothesis (V6) yields

∫

�

�∗ (|ξ(x)| /dκ) d� ≤ ‖aκ‖L1(�,R) + bκ

∫

�

� (|yν(x)| /κ) d�

≤ ‖aκ‖L1(�,R) + bκ + 1.

The second inequality holds due to
∫
�
� (|yν(x)| /κ) d� ≤ 1 by [47, Lemma 3.8.4].

Since �∗ is convex, we infer that

∫

�

�∗
(|ξ(x)| /[dκ(‖aκ‖L1(�,R) + bκ + 1)]) d� < 1.

Therefore, ‖ξ‖L�∗(�,R) ≤ r(κ) := dκ(‖aκ‖L1(�,R) + bκ + 1). Thus, (n3) holds.
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We prove that (n4) is satisfied. Indeed, for every ζ ∈ ∂J1(y) and y ∈ Y , in view
of (1.40) and Theorem 1.2.14, we infer that

|〈ζ , z〉| ≤
∫

�

∣
∣
∣j0
ν (x, yν(x); zν(x))

∣
∣
∣ d� ≤

∫

�

sup
ξ∈N(∂jν )ν(yν)

‖ξ (x)‖Rd ‖zν(x)‖Rd d�.

The Hölder inequality and hypothesis (V3) lead to

|〈ζ , z〉| ≤ 2 dκ
∥
∥
∥(�∗)−1(aκ)

∥
∥
∥
L�∗ (�,R)

‖zν‖L�(�,R)

+ 2 bκdκ
κ

∥
∥
∥(�∗)−1�(|yν |))

∥
∥
∥
L�∗ (�,R)

‖zν‖L�(�,R) , (1.42)

where (�∗)−1 of �∗ is defined by (�∗)−1(s) = sup {t |�∗(t) ≤ s} for s ∈ [0,∞).
From �∗((�∗)−1(s)) ≤ s, we have

∥
∥
∥(�∗)−1(aκ)

∥
∥
∥
L�∗(�,R)

≤‖aκ‖L1(�,R) ,

∥
∥
∥(�∗)−1�(|yν |))

∥
∥
∥
L�∗(�,R)

≤‖yν‖L�(�,R)
.

Since ‖zν‖L�(�,R) ≤ ‖z‖L�(�,R
m) and ‖yν‖L�(�,R)

≤ ‖y‖L�(�,R
m), for the positive

constant c̄ := max{2dκ ‖aκ‖L1(�,R) ,
2bκdκ
κ
}, we obtain

‖ζ‖Y ∗ ≤ c̄ (1+ ‖y‖Y ), ∀ζ ∈ ∂J (y). (1.43)

It follows from [38, Theorem 7.3] that for all N-functions A and B such that A,B ∈
�∞2 with B ≺ � ≺ A, we obtain L�(�,R

m) = (LB(�,R
m))θ (LA(�,R

m))1−θ
for 0 < θ < 1 with equivalent norms. By [38, Proposition 5.1, Remark 5.1], we
have ‖γu‖LB(�,R

m) ≤ 1 and ‖γu‖LA(�,R
m) ≤ 1. Since Y ↪→ LB(�,R

m) with an
embedding constant ce1 > 0, we have

‖γu‖Y ≤ ‖γu‖θLB(�,Rm) ‖γu‖1−θ
LA(�,Rm) ≤ ‖γu‖θLB(�,Rm) ≤ ce1 ‖γu‖θY , (1.44)

with 0 < θ < 1. From (1.43) and (1.44), we obtain

‖ζ‖Y ∗ ≤ c9 (1+ ‖γu‖ρY ) ∀ζ ∈ ∂J (γu) and 0 < ρ ≤ 1 (1.45)

with c9 := max{c̄, ce1c̄} > 0 and ρ := θ for 0 < θ < 1 or ρ := 1 from (1.43).
Furthermore, if either jν or −jν is regular (in the sense of Clarke) at yν(x)

a.e., we obtain equality in (1.36) due to[17, Theorem 2.3.10] and (1.35). Hence,
j1 and −j1 are regular (in the sense of Clarke) at u(x) a.e. x ∈ �. By Theo-
rem 1.2.17, (1.40) and (1.41) become equalities. Therefore, (n5) and (n6) hold. ��

The existence and uniqueness result in study of Problem 1.4.7 is the following.
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Theorem 1.4.11 Under Hypotheses 1.4.8, Problem 1.4.7 has a solution u ∈ V

provided that α > c10, and

(v3) the solution satisfies the estimate ‖u‖V ≤ C with C :=
( ‖f ‖V ∗+c10

α−c10

)1/ρ
;

(v4) the solution is unique if, in addition, the operator A is strongly monotone with
the constant mA > 0 and the smallness condition is satisfied:

mA > 2c9 ‖γ ‖2
V→Y + 2c9 ‖γ ‖ρ+2

V→Y
‖f ‖V ∗+c10

α−c10
+ c4

( ‖f ‖V ∗+c10
α−c10

)1/ρ

where ρ ∈ (0, 1], α is the coercivity constant of A, c4 is the continuity constant

of the trilinear form b associated with B, c10 := max
{
c9 ‖γ ‖V→Y , c9 ‖γ ‖ρ+1

V→Y

}

with c9 := max
{

2dκ ‖aκ‖L1(�,R) ,
2bκdκ
κ

, 2ce1dκ ‖aκ‖L1(�,R) , ce1
2bκdκ
κ

}
, whereas

bκ, dκ, aκ such as in hypothesis (V6).

Proof The proof is complete by Lemmata 1.4.10 and 1.4.12, and Theorem 1.3.4.
Note that, because of (1.33) and (n4), we have to modify the proof of Theorem 1.3.4.
It is enough to replace Steps 1.3.3, 1.3.5, and 1.3.6 by Steps 1.4.1 to 1.4.3,
respectively:

Step 1.4.1 We show that ‖F(v)‖Y ∗ ≤ c10 (1+‖γ v‖ρV ) for all v ∈ V with 0 < ρ ≤ 1

and c10 := max{c9 ‖γ ‖V→Y , c9 ‖γ ‖ρ+1
V→Y } with c9 such as in (n4). Let η ∈ F(v) for

v ∈ V . Thus

|〈η, v〉V ∗×V | =
∣
∣〈γ ∗ζ , v〉V ∗×V

∣
∣ ≤ ∥

∥γ ∗
∥
∥
Y ∗→V ∗ ‖ζ‖Y ∗ ‖v‖V , ∀v ∈ V

for η = γ ∗ζ and ζ ∈ ∂J (γ v). It follows from (n4) that

‖η‖V ∗ ≤
∥
∥γ ∗

∥
∥
Y ∗→V ∗ c9(1+ ‖γ v‖ρY ) ≤ c10 (1+ ‖v‖ρV ).

Step 1.4.2 We show that the multivalued operator G : V � V ∗ is pseudomonotone
and coercive provided α > c10. Since the class of multivalued pseudomonotone
operators is closed under addition of mappings (see [18, Proposition 6.3.68]), it
follows that G is pseudomonotone due to Lemma 1.2.5 and Step 1.3.4. Furthermore,
Lemma 1.2.5 shows that for all v ∈ V and η ∈ F(v), we have

〈G(v), v〉V ∗×V = 〈N (v), v〉V ∗×V + 〈η, v〉V ∗×V ≥ α ‖v‖2
V + 〈η, v〉V ∗×V .

By Step 1.4.1, we obtain

〈v∗, v〉V ∗×V ≥ α ‖v‖2
V −c10 (1+‖v‖ρV ) ‖v‖V = �(‖v‖V ) ‖v‖V , ∀(v, v∗) ∈ Gr(G),

where �(t) := αt − c10t
ρ − c10 and limt→∞ �(t) = ∞ if 0 < ρ < 1 or

ρ = 1 provided α > c10. Therefore, G is coercive as claimed. In conclusion, by
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[8, Theorem 3], the operator G is surjective. Hence, for every f ∈ V ∗, there exists
u ∈ V such that Nu + F(u) � f . Furthermore, the coercivity of G yields

α ‖u‖2
V − (c10 ‖u‖ρV + c10) ‖u‖V ≤ ‖f ‖V ∗ ‖u‖V .

Thus, α ‖u‖V ≤ c10 ‖u‖ρV + c10+‖f ‖V ∗ implies the estimate ‖u‖V ≤ C provided
α > c10, where

• C :=
( ‖f ‖V ∗+c10

α−c10

)1/ρ
for 0 < ρ < 1 and ‖u‖V ≥ 1;

• C := ‖f ‖V ∗+c10
α−c10

for 0 < ρ < 1 and ‖u‖V < 1;

• C := ‖f ‖V ∗+c10
α−c10

for ρ = 1.

Step 1.4.3 It is enough to modify a part of Step 1.3.6. Let u1,u2 ∈ V be two
solutions of Problem 1.3.1. By (n4), we have

∥
∥ζ j

∥
∥
Y ∗ ≤ c9 (1+

∥
∥γuj

∥
∥ρ
Y
) for ζ j ∈

∂J (γuj ) and j = 1, 2. Thus

〈η1 − η2,u1 − u2〉V ∗×V ≥ −2r ‖γ ‖2
V→Y ‖u1 − u2‖2

V

with r := c9
(
1+ Cρ ‖γ ‖ρV→Y

)
> 0. It implies that the solution to Problem 1.3.1 is

unique provided mA > c4C + 2r ‖γ ‖2
V→Y . ��

Lemma 1.4.12 Every solution of Problem 1.3.1 is also a solution of Problem 1.4.7.
The converse is also true if either j or −j is regular (in the sense of Clarke).

Proof Let u ∈ V be a solution of Problem 1.3.1. Then, there exist η = γ ∗ζ ∈ V ∗
and ζ ∈ ∂J (γu) ⊂ Y ∗ such that Nu+ η = f . By [17, Proposition 2.1.5], we have
〈ζ , γ v〉Y ∗×Y ≤ J 0(γu, γ v) for all v ∈ V . Thus,

〈f −Nu, v〉V ∗×V = 〈η, v〉V ∗×V = 〈γ ∗ζ , v〉V ∗×V = 〈ζ , γ v〉Y ∗×Y
≤ J 0(γu; γ v) ≤

∫

�

j0
ν (x, (γ u)ν(x); (γ v)ν(x)) d�, ∀v ∈ V,

where the last inequality holds due to (n2) of Lemma 1.4.10. Therefore, u is also a
solution of Problem 1.4.7. On the other hand, if either jν or −jν is regular (in the
sense of Clarke), then every solution of Problem 1.4.7 is a solution of Problem 1.3.1.
Indeed, from (1.32) and (n6), we obtain

〈f −Nu, v〉V ∗×V ≤
∫

�

j0
ν (x, (γ u)ν(x); (γ v)ν(x)) d� = J 0(γu; γ v).

It follows from [17, Theorem 2.3.10, Corollary p. 47] that

J 0(γu; γ v) = (J ◦ γ )0(u; v) and ∂(J ◦ γ )(u) = γ ∗∂J (γu).

Therefore, 〈f − Nu, v〉V ∗×V ≤ (J ◦ γ )0(u; v) and f − Nu ∈ ∂(J ◦ γ )(u) =
γ ∗∂J (γu). ��
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1.5 Steady Flows of Non-Newtonian Fluids Under Slip
Boundary Conditions of Frictional Type

1.5.1 Existence and Uniqueness

In this section we apply existence and uniqueness results of Sects. 1.3 and 1.4.1 in
the study of steady-state flows of isotropic, isothermal, inhomogeneous, viscous,
and incompressible non-Newtonian fluids with a multivalued nonmonotone sub-
differential frictional boundary condition. The results of this chapter are based on
our research paper [66].

1.5.1.1 Setting of the Flow Problem

Let � be a bounded simply connected open set in R
d , d = 2, 3, with connected

boundary � of class C2. We consider the following nonlinear system of equations:

− div S+ (u · ∇)u+∇π = f in �, (1.46a)

div u = 0 in �. (1.46b)

The system describes the steady-state flow of an incompressible non-Newtonian
fluid occupying the volume � subjected to given volume forces f . Here u : � →
R
d denotes the velocity field, π : � → R the pressure, f : � → R

d the density
of external forces, and (u · ∇)u = (

∑d
j=1 uj

∂ui
∂xj

)i=1,...,d the convective term. The

symbol S : �→ S
d denotes the extra (viscous) part of the (Cauchy) stress tensor in

the fluid σ = −πI + S, where I is the identity matrix. The extra stress tensor S is
given by a constitutive law S = S(x,D(u)) in �, where D(u) = 1

2 (∇u + (∇u)�)
denotes the symmetric part of the velocity gradient. We underline that the extra
stress tensor S is defined on �, while the constitutive function S = S(x,D(u)) is
defined on � × S

d . The divergence free condition in (1.46b) is the equation for
law of mass conservation and it states the motion is incompressible. The symbol
div denotes the divergence operators for tensor and vector valued functions S and u

defined by div S = (Sij,j ) and div u = (ui,i ), where the index that follows a comma
represents the partial derivative with respect to the corresponding component of x.

The most common nonlinear model among rheologists is the power law model,
corresponding to the choice S(x,A) = ν0(κ0+‖A‖Sd )p−2A for all A ∈ S

d and a.e.
x ∈ �. Here, ν0 ∈ (0,∞) and κ0 ∈ [0,∞) are constants, and p ∈ (0,∞) is an
exponent which needs to be specified via physical experiments. An extensive list of
specific p-values for different fluids can be found in [3].

We complement the system (1.46a) and (1.46b) with boundary conditions. We
denote by ν = (ν1, . . . , νd ) the unit outward normal vector on the boundary �. We
also assume that the boundary � is composed of two sets �0 and �1, with disjoint
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relatively open sets �0 and �1 such that �1 has a positive measure. Our main interest
lies in the contact and slip frictional boundary conditions on the surface �0.

Problem 1.5.1 Find a velocity field u : �→ R
d , an extra stress tensor S : �→ S

d

and a pressure π : �→ R such that

− div S(x,D(u))+ (u · ∇)u+∇π = f in �, (1.47a)

div u = 0 in �, (1.47b)

uν = 0 on �0, (1.47c)

−Sτ ∈ ∂jτ (·,uτ (·)) on �0, (1.47d)

u = 0 on �1. (1.47e)

Conditions (1.47c) and (1.47d) in Problem 1.5.1 are called the slip boundary
conditions of frictional type. On the part �0, the velocity vector is decomposed
into the normal and tangential components defined by uν = u · ν and uτ = u −
uνν, respectively. Similarly, for the stress tensor field S, we define its normal and
tangential components by Sν = (Sν)·ν and Sτ = Sν−Sνν, respectively. We assume
that there is no flux through�0, so that the normal component of the velocity on this
part of the boundary satisfies condition (1.47c). The tangential components of the
extra stress tensor and the velocity are assumed to satisfy the multivalued friction
law (1.47d). In the latter, jτ : �0 × R

d → R is called a superpotential and denotes
the function which is locally Lipschitz in the second variable and ∂jτ denotes the
subdifferential of jτ (x, ·) in the sense of Clarke. On the part �1 of the boundary, it
is supposed that the fluid adheres to the wall, and therefore, we consider, without
loss of generality, the homogeneous Dirichlet condition (1.47e). We underline that
in the slip boundary condition (1.47d), the function jτ is, in general, nonconvex and
nondifferentiable. Therefore, it models the nonmonotone slip boundary condition
and the weak formulation of Problem 1.5.1 leads to a hemivariational inequality. If
the potential jτ which generates the slip condition is a convex function, then the
variational formulation of Problem 1.5.1 is a variational inequality.

We comment on two concrete examples of monotone and nonmonotone slip
boundary conditions of the form (1.47d). First, suppose that u0 ∈ R

d is a given
velocity of the moving part of boundary �0 and g ∈ L∞(�0,R) denotes a
nonnegative function called a modulus of friction. Consider the convex potential
jτ : �0 × R

d → R defined by jτ (x, ξ ) = g(x)‖ξ − u0‖Rd for ξ ∈ R
d , a.e.

x ∈ �0. This choice of jτ leads to a threshold slip condition considered earlier
in [21, 34, 35, 44]. It is easy to see that in this case condition (1.47d) has the
following form:

⎧
⎨

⎩
uτ = u0 �⇒ ‖Sτ‖Rd ≤ g(x),

uτ �= u0 �⇒ −Sτ = g(x) uτ−u0‖uτ−u0‖Rd .
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This condition is the well-known Tresca friction law on �0, cf. [67, Section 6.3] for
a detailed discussion. The interpretation of the above law is the following. In the
case where the velocity of the fluid equals the velocity of the moving boundary, the
tangential stress is below a certain threshold value. If the slip between the velocity
of the fluid and the velocity of boundary occurs, then the friction force is directed
opposite to the slip velocity and its magnitude is determined by the slip rate value
according to the function g.

Second, we give an example of condition (1.47d) which leads to a version of
a nonmonotone threshold condition. Let a ∈ L∞(�0,R) be a prescribed function
such that 0 ≤ a(x) < 1 for a.e. x ∈ �0. Consider the nonconvex potential jτ : �0 ×
R
d → R defined by

jτ (x, ξ ) = (a(x)− 1)e−‖ξ‖Rd + a(x) ‖ξ‖Rd for ξ ∈ R
d, a.e. x ∈ �0. (1.48)

The function jτ in (1.48) is nonconvex in its second argument and its generalized
gradient is given by

∂jτ (x, ξ) =

⎧
⎪⎨

⎪⎩

B(0, 1) if ξ = 0,
(
(1− a(x))e−‖ξ‖Rd + a(x)

) ξ

‖ξ‖Rd

if ξ �= 0

for all ξ ∈ R
d , a.e. x ∈ �0, where B(0, 1) denotes the closed unit ball in R

d . In this
case the condition (1.47d) reduces to the threshold slip law of the form

⎧
⎪⎨

⎪⎩

‖Sτ‖Rd ≤ 1 if uτ = 0,

− Sτ =
(
(1− a(x))e−‖uτ ‖Rd + a(x)

) uτ

‖uτ‖Rd

if uτ �= 0

on �0. We also mention that the multivalued condition (1.47d) incorporates various
nonmonotone multivalued relations which are useful in applications, cf. [67,
Section 3.3], [69, Section 1.2], and [23].

In the study of Problem 1.5.1 we adopt the following hypotheses (hypothe-
ses (E4) and (E5) follow from [9, 14]).

Hypotheses 1.5.2 Let �,�∗ : [0,∞) → [0,∞) be a pair of complementary N-
functions, and jτ : � × R

d → R and S : � × S
d → S

d with S(x, 0) = 0 for a.e.
x ∈ � be Carathéodory functions such that:

(E1) �,�∗ ∈ �∞2 and A ≺ �Î(�∗)1−1/d , with �∗ being the Sobolev conjugate
N-function of � and A(t) = tp for t ∈ [0,∞) with p ≥ 3d

d+2 and d = 2, 3;
(E2) jτ (x, ·) is locally Lipschitz for a.e. x ∈ �;
(E3) for some κ > 0 there exist constants bκ, dκ > 0 and aκ ∈ L1(�, [0,∞)) such

that �∗
(‖a∗‖Rd /dκ

) ≤ aκ(x)+bκ�
(‖a‖Rd /κ

)
for all (a, a∗) ∈ Gr(∂jτ ) and

a.e. x ∈ �;
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(E4) there exists c11 > 0 such that for all A ∈ S
d and a.e. x ∈ �, it holds

S(x,A) : A ≥ c11�(‖A‖Sd )+ c11�
∗(‖S(x,A)‖Sd );

(E5) (S(x,A)− S(x,B)) : (A− B) ≥ 0 for all A,B ∈ S
d and a.e. x ∈ �.

Remark 1.5.3 By hypothesis (E1), the spaces V = W 1L�(�,Rd) and Y =
L�(�,R

d ) are separable and reflexive satisfying V ↪→↪→ Y , see (1.2). Hypoth-
esis (E3) yields the result on an integral representation of the Clarke subdifferential
of locally Lipschitz integral functionals defined on the Orlicz space (see [71, 72]).
This representation is required to establish existence and uniqueness results in the
study of Problems 1.5.1 and 1.5.7 (see Theorem 1.5.6 and 1.5.10). Note that, for
instance, the condition p ≥ 3d

d+2 was introduced by [49], the condition p ≥ 2d
d+1

with d ≥ 2 was introduced by [29] and [81] (in [81] the limiting case p = 2d
d+1

is not included), the condition p > 2d
d+2 with d ≥ 2 was introduced by [28] by

Lipschitz truncation methods; see [28, 1.3 Historical comments] for more details.

Remark 1.5.4 If the extra stress tensor S has convex potential (vanishing at 0), then
it is simple to verify hypothesis (E4). To find N-functions � and �∗ we use the
following relation �(t) +�∗(�′(t)) = t�′(t) for t ∈ [0,∞). It corresponds to the
case when the Young inequality for N-functions becomes the equality. Consider, for
simplicity, the constitutive function of the form S(x,A) = 2μ(‖A‖2

Sd
)A for A ∈ S

d

which appears in modeling of the so-called generalized Newtonian fluids. For this
S, we choose

�(t) =
∫ t2

0
μ(s) ds for t ∈ [0,∞).

Then, we can show that hypothesis (E4) holds with constant c17 = 1. For such
choice of � we only need to verify whether the N-function conditions, i.e. behavior
in/near zero and near infinity, are satisfied. The monotonicity of S follows from the
convexity of the potential.

1.5.1.2 Weak Formulation and Main Result

In order to give the variational formulation of Problem 1.5.1, we introduce some
notation:

W : =
{
w ∈ C∞(�,Rd )

∣
∣
∣ div w = 0 in �,wν = 0 on �0,w = 0 on �1

}
,

V : =W‖·‖
W1L�(�,Rd ) , Y := L�(�,R

d ),

(1.49)
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where V stands for the closure of W in the norm of W 1L�(�,Rd). Note that one
can introduce on V the norm given by

‖v‖V := ‖D(v)‖L�(�,Sd ) for v ∈ V, (1.50)

because in virtue of [36, Lemmata 1.2 and 1.12] and [37, p. 55] together with
�∗ ∈ �∞2 (see hypothesis (E1)), one can admit on V the following norm ‖v‖V =
‖v‖W 1L�(�,Rd) for v ∈ V . Owing to [36, Corollary 5.8], it is equivalent to the
norm ‖v‖

W̊ 1L�(�,Rd )
= ‖∇v‖L�(�,Rd×d) for v ∈ V . Hence, we obtain (1.50) due to

�,�∗ ∈ �∞2 and Korn’s inequality (see Theorem 1.2.6).
Next, multiplying (1.47a) by v ∈ V and applying Green’s formula [37, p. 57],

we obtain
∫

�

S(x,D(u)) : D(v) dx+
∫

�

(u · ∇)u · v dx+
∫

�

∇π · v dx

=
∫

�

f · v dx+
∫

�

S(x,D(u))ν · v d�.

By boundary conditions (1.47c) and (1.47e), as well as the fact that the functions in
V are divergence free, we obtain

∫

�

∇π ·v dx=−
∫

�

π div v dx+
∫

�

(v·ν)π d� =
(∫

�0

vνπ d� +
∫

�1

vνπ d�

)
= 0.

Likewise, by (1.47c) and (1.47e), we infer that

∫

�

S(x,D(u))ν·v d�=
∫

�0∪�1

S(x,D(u))ν·(vτ+vνν) d� =
∫

�0

S(x,D(u))ν·vτ d�.

Therefore,

∫

�

S(x,D(u)) : D(v) dx+
∫

�

(u·∇)u·v dx+
∫

�0

−Sτ (x,D(u))·vτ d� =
∫

�

f ·v dx.

The definition of the Clarke subdifferential and the friction law (1.47d) yield

∫

�0

−Sτ (x,D(u)) · vτ d� ≤
∫

�0

j0
τ (uτ ; vτ ) d�.

Hence, the variational formulation of Problem 1.5.1 has the following form:

∫

�

S(x,D(u)) : D(v) dx+
∫

�

(u · ∇)u · v dx+
∫

�0

j0
τ (uτ ; vτ ) d� ≥

∫

�

f · v dx,

(1.51)
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for all v ∈ V , where S = S(x,D(u)) is the extra stress tensor and j0
τ stands for

the generalized directional derivative of jτ (x, ·) (with jτ : � × R
d → R being a

prescribed function). Introducing the operators A : V → V ∗ and B[·] : V → V ∗
defined by

〈Au, v〉V ∗×V =
∫

�

S(x,D(u)) : D(v) dx, u, v ∈ V, (1.52)

〈B(u, v),w〉V ∗×V =
∫

�

(u · ∇)v · w dx, B[v] = B(v, v), u, v,w ∈ V,

(1.53)

we obtain the following variational formulation of Problem 1.5.1.

Problem 1.5.5 Let� be a bounded simply connected open set in R
d , d = 2, 3, with

connected boundary ∂� = � of class C2, V and Y be Banach spaces as in (1.49),
and f ∈ V ∗. Find u ∈ V such that

〈Au+Bu, v〉V ∗×V +
∫

�

j0
τ (x,uτ (x); vτ (x)) d� ≥ 〈f , v〉V ∗×V , ∀v ∈ V, (1.54)

where the operators A and B are given by (1.52) and (1.53), respectively, and j0
τ

stands for the generalized directional derivative of the superpotential jτ (x, ·).
The existence and uniqueness result in study of Problem 1.5.5 is the following.

Theorem 1.5.6 Under Hypotheses 1.5.2, Problem 1.5.5 has a solution u ∈ V

provided c11 > c6, and

(e1) the solution satisfies the estimate ‖u‖V ≤ C with C :=
( ‖f ‖V ∗+c5

c11−c6

)1/(ρ−1)
;

(e2) the solution is unique if, in addition, there exists c12 > 0 such that:

(E6) (S(x,A) − S(x,B)) : (A − B) ≥ c12�(‖A− B‖Sd ) for all A,B ∈ S
d ,

a.e. x ∈ �;

(E7) c12 > 2c8 ‖γ ‖2
V→Y + 2c7

‖f ‖V ∗+c5
c11−c6

‖γ ‖ρ+1
V→Y + c4

( ‖f ‖V ∗+c5
c11−c6

)1/(ρ−1)
;

where ρ ∈ (1,∞), the constant c11 > 0 follows from hypothesis (S4), and c4
is the continuity constant of the trilinear form b associated with the operator B,
whereas c5 := c8 ‖γ ‖V→Y and c6 := c7 ‖γ ‖ρV→Y with c7 := 2bκdκ

κ
> 0 and

c8 := 2dκ ‖aκ‖L1(�,R) + c7 > 0 for bκ, dκ, aκ from hypothesis (S3).

Proof We apply Theorem 1.4.5. To this end, we prove that A + B is the Navier–
Stokes type operator. The proof is complete by Steps 1.5.1 to 1.5.3.

Step 1.5.1 We show that the operator A given by (1.52) satisfies conditions of
Definition 1.2.4. Firstly, we prove that the operator A pseudomonotone. To this
end, by [67, Theorem 3.69], it suffices to show that A is bounded, monotone, and
hemicontinuous.



34 S. Migórski and D. Pączka

We show that operator A is bounded. By hypothesis (E4), for a constant c13 ∈
(0, 1], we have

c13

2
S(x,D(u)) : 2

c13
D(u) ≥ c11�(‖D(u)‖Sd )+ c11�

∗(‖S(x,D(u))‖Sd )

≥ c11�(‖D(u)‖Sd )+ c13�
∗(‖S(x,D(u))‖Sd ).

Applying Young’s inequality to the left-hand side of the above inequality, we obtain

�∗
(c13

2
‖S(x,D(u))‖Sd

)
+�

(
2

c13
‖D(u)‖Sd

)

≥ c11�(‖D(v)‖Sd )+ c13�
∗(‖S(x,D(u))‖Sd ).

Since �∗ is convex, �(0) = 0 and c13 ∈ (0, 1], it follows that

�

(
2

c13
‖D(u)‖Sd

)
≥ c13�

∗(‖S(x,D(u))‖Sd )−�∗
(c13

2
‖S(x,D(u))‖Sd

)

≥ c13�
∗(‖S(x,D(u))‖Sd )−

c13

2
�∗

(‖S(x,D(u))‖Sd
)

≥ c13

2
�∗(‖S(x,D(u))‖Sd ).

Having � ∈ �∞2 due to hypothesis (E1), it follows from ‖D(u)‖Sd ∈ L�(�,R)

that 2
c13
‖D(u)‖Sd ∈ L�(�,R). Thus

∫

�

�∗(‖S(x,D(u))‖Sd )) dx ≤ 2

c13

∫

�

�

(
2

c13
‖D(u)‖Sd

)
dx <∞. (1.55)

By the Young inequality together with (1.55), we infer that

〈Au, v〉V ∗×V =
∫

�

S(x,D(u)) : D(v) dx

≤
∫

�

�∗(‖S(x,D(u))‖Sd ) dx+
∫

�

�(‖D(v)‖Sd ) dx

≤ 2

c13

∫

�

�

(
2

c13
‖D(u)‖Sd

)
dx+

∫

�

�(‖D(v)‖Sd ) dx.

Because of hypothesis (E1) and Corollary 1.2.8, we obtain

〈Au, v〉V ∗×V ≤ 2c1

(

1+ 2ρ

c
ρ
13

‖D(u)‖ρ
L�(�,Sd )

)

+ c1

(
1+ ‖D(v)‖ρ

L�(�,Sd )

)

≤ c14 + c15(‖u‖ρV + ‖v‖ρV ),
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where c14, c15 > 0. This implies that the operator A : V → V ∗ is well defined and
bounded due to estimate

‖Au‖V ∗ ≤ c16 + c15 ‖u‖ρV , ∀u ∈ V, (1.56)

where c15, c16 > 0 and ρ > 1.
Next, we show that A is continuous, which implies that A is hemicontinuous.

Let vn → v in V . Hence, D(vn) → D(v) in L�(�,Sd). By [43, Theorems IV3.1
and I.6.4], there exists a subsequence vnk of vn such that D(vnk

) → D(v) for a.e.
x ∈ �. Since S is continuous by Hypotheses 1.5.2, we infer that S(x,D(vnk

)) →
S(x,D(v)) for a.e. x ∈ �. Note that S(·,D(vnk

)),S(·,D(v)) ∈ L�∗(�,Sd) due to
hypothesis (E4). Applying the Lebesgue dominated convergence theorem for Orlicz
spaces (see [47, p. 159]), we obtain S(·,D(vnk

)) → S(·,D(v)) in L�∗(�,Sd),
where �∗ ∈ �∞2 by hypothesis (E1). By the Hölder inequality, we obtain

〈Avnk −Av,w〉V ∗×V =
∫

�

(S(x,D(vnk
))− S(x,D(v))) : D(w) dx

≤ 2
∥
∥S(x,D(vnk

))− S(x,D(v))
∥
∥
L�∗(�,Sd )

‖D(w)‖L�(�,Sd)

≤ 2
∥
∥S(x,D(vnk

))− S(x,D(v))
∥
∥
L�∗(�,Sd )

‖w‖V

for all w ∈ V . Therefore,
∥
∥Avnk −Av

∥
∥
V ∗ → 0, as k → ∞ for any subsequence

vnk of vn. Thus, we have Avn → Av in V ∗. This shows that the operator A is
continuous.

Secondly, it is clear that the operator A is monotone due to hypothesis (E5). We
proceed to show that A is (α, ρ)-coercive. Hypothesis (E4) and (1.50) yield

〈Au,u〉V ∗×V =
∫

�

S(x,D(u)) : D(u) dx

≥ c11

∫

�

�(‖D(u)‖Sd ) dx+ c11

∫

�

�∗(‖S(x,D(u))‖Sd ) dx

≥ c11

∫

�

�(‖D(u)‖Sd ) dx ≥ c11 ‖D(u)‖ρ
L�(�,Sd )

= c11 ‖u‖ρV

for all u ∈ V with ρ ∈ (1,∞). The last inequality holds due to (1.3) and (1.6) of
Lemma 1.2.7. So, A is (α, ρ)-coercive with α := c11, which completes the proof.

Step 1.5.2 The operator B given by (1.53) satisfies conditions of Definition 1.2.4.
By hypothesis (E1) and [42, Theorem 2.2], we obtain W 1L�(�,Rd) ↪→
W 1,p(�,Rd) with p ≥ 3d

d+2 and d = 2, 3. In view of (1.50) and the standard
estimate

∫

�

(u · ∇)v · w dx ≤ c ‖u‖W 1,p(�,Rd) ‖v‖W 1,p(�,Rd ) ‖w‖W 1,p(�,Rd)
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with c > 0 for all u, v,w ∈ W 1,p(�,Rd) with p ≥ 3d
d+2 and d = 2, 3, we infer that

〈B(u, v),w〉V ∗×V ≤ c ‖u‖W 1L�(�,Rd) ‖v‖W 1L�(�,Rd) ‖w‖W 1L�(�,Rd)

≤ c ‖u‖V ‖v‖V ‖w‖V
(1.57)

for all u, v,w ∈ V with a positive constant c. Hence, the operator B : V ×V → V ∗
is well defined and continuous.

We are now in position to show that 〈B(u, v), v〉V ∗×V = 0. Applying the Green
formula to (1.53), we obtain

〈B(u, v), v〉V ∗×V =
∫

�

d∑

i,j=1

uj
∂vi

∂xj
vi dx = 1

2

∫

�

d∑

j=1

uj
∂

∂xj

(
d∑

i=1

v2
i

)

dx

= −1

2

∫

�

d∑

j=1

∂uj

∂xj

(
d∑

i=1

v2
i

)

dx+ 1

2

∫

�

d∑

j=1

uj νj

(
d∑

i=1

v2
i

)

d� = 0,

where the last equality holds due to (1.47b) and (1.47c). In consequence

〈B(u, v),w〉V ∗×V = −〈B(u,w), v〉V ∗×V , (1.58)

by 〈B(u, v+w), v+w〉 = 〈B(u, v), v〉+〈B(u, v),w〉+〈B(u,w), v〉+〈B(u,w),w〉.
It remains to prove that B[·] : V → V ∗ is weakly sequentially continuous, that

is, vn ⇀ v in σ(V, V ∗) implies 〈B(vn, vn),w〉 → 〈B(v, v),w〉 for all w ∈ V .
By (1.58), we have to show that

lim
n→∞〈B(vn,w), vn〉V ∗×V = 〈B(v,w), v〉V ∗×V , ∀w ∈ V. (1.59)

Indeed, let w ∈ W and vn ⇀ v in σ(V, V ∗). By (1.1) and (1.49), we infer that
V ⊂ W 1L�(�,Rd) and vn → v in L�(�,Rd). From (1.57) and

|〈B(vn,w), vn〉 − 〈B(v,w), v〉| = |〈B(vn,w), vn − v〉 − 〈B(vn − v,w), v〉|
≤ 2cB(‖vn‖L�(�,Rd) + ‖v‖L�(�,Rd)) ‖vn − v‖L�(�,Rd ) ‖w‖C1(�,Rd) ,

we infer that (1.59) holds for all w ∈ W , and by (1.58) we obtain the desired
conclusion 〈B(vn, vn),w〉 → 〈B(v, v),w〉 for all w ∈W .

Now, for w ∈ V there exists a sequence wk ∈ W such that wk → w, as
k →∞. Since 〈B(vj , vj ),w〉 = 〈B(vj , vj ),wk〉 + 〈B(vj , vj ),w−wk〉, it follows
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from (1.57) that 〈B(vj , vj ),w − wk〉V ∗×V ≤ cB
∥
∥vj

∥
∥
V

∥
∥vj

∥
∥
V
‖w − wk‖V . Thus

lim
k→∞ lim sup

j→∞
∣∣〈B(vj , vj ),w − wk〉V ∗×V

∣∣

≤ lim
k→∞ lim sup

j→∞
cB

∥
∥vj

∥
∥
V

∥
∥vj

∥
∥
V
‖w − wk‖V = 0,

which yields 〈B(vn, vn),w〉 → 〈B(v, v),w〉 for all w ∈ V .

Step 1.5.3 The uniqueness of a solution to Problem 1.5.5. To provide the uniqueness
of a solution to Problem 1.5.5, it suffices to show that A is strongly monotone due
to Theorem 1.4.5. Hypothesis (E6) and Lemma 1.2.7 lead to

〈Au1 −Au2,u1 − u2〉 =
∫

�

(S(x,D(u1))− S(x,D(u2)))(D(u1)− D(u2)) dx

≥ c12

∫

�

�(‖D(u1)− D(u2)‖Sd ) dx

≥ c12 ‖D(u1)− D(u2)‖2
L�(�,Sd)

≥ c12 ‖u1 − u2‖2
V ,

which means that the operator A is strongly monotone with mA := c12 > 0. ��

1.5.2 Slow Flows

In various instances of interest in applications, the convective term (u · ∇)u is
negligible in (1.46a), compared with the other terms appearing in this equation. This
is the case, for example, if the modulus of the velocity is small. Another situation
where the role of the convective term is negligible appears in plastic or pseudo-
plastic fluids. Indeed, the convective term accounts for the inner rotation in the
fluid flow, and for such fluids the impact of this term is very limited. Dropping
the convective term reduces Problem 1.5.1 to the following system. Note that
the following slow steady fluid flow problem without friction has been studied
extensively by variational methods, see, e.g., [7, 20, 33].

Problem 1.5.7 Find a velocity field u : �→ R
d , an extra stress tensor S : �→ S

d

and a pressure π : �→ R such that

− div S(x,D(u))+∇π = f in �,

div u = 0 in �,

uν = 0 on �0,
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−Sτ ∈ ∂jτ (·,uτ (·)) on �0,

u = 0 on �1.

For the above problem we provide a variational formulation.

Problem 1.5.8 Let� be a bounded simply connected open set in R
d , d = 2, 3, with

connected boundary ∂� = � of class C2, V and Y be Banach spaces as in (1.49),
and f ∈ V ∗. Find u ∈ V such that

〈Au, v〉V ∗×V +
∫

�

j0
τ (x,uτ (x); vτ (x)) d� ≥ 〈f , v〉V ∗×V , ∀v ∈ V, (1.60)

where A : V → V ∗ is given by (1.52).

In the study of Problem 1.5.8 we adopt the following hypotheses.

Hypotheses 1.5.9 Let �,�∗ : [0,∞) → [0,∞) be a pair of complementary N-
functions, and jτ : � × R

d → R and S : � × S
d → S

d with S(x, 0) = 0 for a.e.
x ∈ � be Carathéodory functions such that:

(S1) �,�∗ ∈ �∞2 and �Î(�∗)1−1/d , with �∗ being the Sobolev conjugate N-
function of � and d = 2, 3;

(S2) jτ (x, ·) is locally Lipschitz continuous for a.e. x ∈ �;
(S3) for some κ > 0 there exist constants bκ, dκ > 0 and aκ ∈ L1(�, [0,∞)) such

that �∗
(‖a∗‖Rd /dκ

) ≤ aκ(x)+bκ�
(‖a‖Rd /κ

)
for all (a, a∗) ∈ Gr(∂jτ ) and

a.e. x ∈ �;
(S4) there exists c11 > 0 such that for all A ∈ S

d and a.e. x ∈ �, it holds

S(x,A) : A ≥ c11�(‖A‖Sd )+ c11�
∗(‖S(x,A)‖Sd );

(S5) (S(x,A)− S(x,B)) : (A− B) ≥ 0 for all A,B ∈ S
d and a.e. x ∈ �.

The existence and uniqueness result in study of Problem 1.5.8 reads as follows.

Theorem 1.5.10 Under Hypotheses 1.5.9, Problem 1.5.8 has a solution u ∈ V

provided c11 > c6, and

(s1) the solution satisfies the estimate ‖u‖V ≤ C with C :=
( ‖f ‖V ∗+c5

c11−c6

)1/(ρ−1)
;

(s2) the solution is unique if, in addition, there exists c12 > 0 such that:

(S6) (S(x,A) − S(x,B)) : (A − B) ≥ c12�(‖A− B‖Sd ) for all A,B ∈ S
d ,

a.e. x ∈ �;
(S7) c12 > 2c8 ‖γ ‖2

V→Y + 2c7
‖f ‖V ∗+c5
c11−c6

‖γ ‖ρ+1
V→Y ;

where ρ ∈ (1,∞), the constant c11 > 0 follows from hypothesis (S4), whereas
c5 := c8 ‖γ ‖V→Y and c6 := c7 ‖γ ‖ρV→Y with c7 := 2bκdκ

κ
> 0 and c8 :=

2dκ ‖aκ‖L1(�,R) + c7 > 0 for bκ, dκ, aκ from hypothesis (S3).
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Proof The proof is analogous to the one of Theorem 1.5.6 with the operator B ≡ 0.
By Step 1.5.1, the operator A given by (1.52) satisfies conditions of Definition 1.2.4
and Step 1.5.3. ��

1.6 Steady Flows of Newtonian Fluids Under Leak Boundary
Conditions of Frictional Type

1.6.1 Existence and Uniqueness

In this section we apply existence and uniqueness results of Sects. 1.3 and 1.4.2 in
the study of steady-state flows of isotropic, isothermal, inhomogeneous, viscous,
and incompressible Newtonian fluids with a multivalued nonmonotone subdiffer-
ential frictional boundary condition. The results of this chapter are based on our
research paper [65].

1.6.1.1 Setting of the Flow Problem

Let � be a bounded simply connected open set in R
d , d = 2, 3, with connected

boundary � of class C2. We consider the following system of stationary Navier–
Stokes equations:

−cvisc�u+ (u · ∇)u+ ∇π = f in �, (1.61a)

div u = 0 in �. (1.61b)

The system describes the steady-state flow of an inhomogeneous incompressible
viscous fluid occupying the volume � subjected to given volume forces f . Here
u : �→ R

d is the velocity field, π : �→ R is the pressure, cvisc > 0 the kinematic
viscosity of the fluid (cvisc = 1/Re, where Re is the Reynolds number), f : �→ R

d

the density of external forces. Observe that, by the divergence free condition we have
�u = div(D(u)), where D(u) = 1

2 (∇u+(∇u)�). Therefore, we can rewrite (1.61a)
and (1.61b) in an equivalent form

− div S+ (u · ∇)u+∇π = f in �, (1.62a)

S(x,D(u)) = cviscD(u) in �, (1.62b)

div u = 0 in �. (1.62c)

The symbol S : � → S
d denotes the extra (viscous) part of the (Cauchy) stress

tensor in the fluid σ = −πI + S, where I stands for the identity matrix. The
extra stress tensor S is given by a constitutive law S = S(x,D(u)) in �, where
S : � × S

d → S
d and D(u) = 1

2 (∇u + (∇u)�) denotes the symmetric part of the



40 S. Migórski and D. Pączka

velocity gradient. Here, (1.62b) represents the linear Stokes’ law. Incompressible
fluids described by Stokes’ law are called Newtonian fluids. However, only fluids
with a simple molecular structure such as water, oil, and several gases are governed
by this law.

The formulation of the stationary model of the flow of an inhomogeneous,
isotropic, and viscous incompressible Newtonian fluid with a nonlinear boundary
condition reads as follows.

Problem 1.6.1 Find a velocity field u : � → R
d and a pressure π : � → R

satisfying

− div S(x,D(u))+ (u · ∇)u+ ∇π = f in �, (1.63a)

S(x,D(u)) = cviscD(u) in �, (1.63b)

div u = 0 in �, (1.63c)

uτ = 0 on �, (1.63d)

−σν ∈ ∂jν(·, uν(·)) on �. (1.63e)

Conditions (1.63d) and (1.63e) are called the leak boundary condition of fric-
tional type. In these conditions, we suppose that the velocity vector is decomposed
into its normal and tangential components defined by uν = u · ν and uτ = u− uνν,
respectively. Similarly, for the stress tensor field σ , we define its normal and
tangential components by σν = (σν) · ν and σ τ = σν − σνν, respectively. Here,
ν = (ν1, . . . , νd ) is the unit outward normal vector on the boundary �. Condition
(1.63d) is also called the nonslip condition. It states that the tangential component of
the velocity vector is known and without loss of generality we put it equal to zero. As
concerns the boundary condition (1.63e), it represents a multivalued subdifferential
condition between the normal velocity and the normal stress. It is used to model fluid
control problems in which we regulate the normal velocity of the fluid to reduce
the pressure on the boundary. In concrete models, one considers the motion of a
fluid in a tube or a channel. The fluid is pumped into tube and can leave it at the
boundary orifices while a device can change the sizes of the latter, see [26, 60]. The
function jν : �×R→ R is called a superpotential and stands for a locally Lipschitz
function and ∂jν denotes the subdifferential of jν(x, ·) in the sense of Clarke. Since
jν(x, ·) is not assumed to be convex in general, the variational inequality approach
to Problem 1.6.1 is not possible.

We note that when jν(x, ·) is convex, subdifferential boundary conditions were
studied for stationary Navier–Stokes equations in [10, 34] and for the Boussinesq
equations in [12]. The evolution counterparts can be found in [35, 44, 45]. For
problems with nonconvex superpotential jν(x, ·), we refer to [59, 60] for the
stationary problems, and to [26, 61] for the evolution case, and the references
therein.
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We comment on two concrete examples of monotone and nonmonotone leak
boundary conditions of the form (1.63e). Let g ∈ L∞(�,R) be a strictly positive
function. First, consider the convex potential jν : �×R→ R defined by jν(x, r) =
g(x) |r| for r ∈ R, a.e. x ∈ �. This choice of jν leads to a threshold leak condition
considered earlier in [34, 44] and condition (1.63e) has the following equivalent
form:

⎧
⎨

⎩

|σν | ≤ g(x) �⇒ uν = 0,

−σν = g(x)
uν

|uν | �⇒ uν �= 0.

Physically, the function g represents the threshold of the normal stress. If |σν | ≤ g,
then (1.63e) entails uν = 0, that is, no leak occurs. Otherwise, non-trivial leak
takes place. Second, we give an example of a nonconvex function jν(x, ·) in
condition (1.63e) which leads to a version of a nonmonotone threshold condition.
Consider the function

jν(x, r) = g(x)×

⎧
⎪⎪⎨

⎪⎪⎩

0 if r < 0,
1
8r

2 + 2r if 0 ≤ r < 4,
1
8r

2 + 8 if r ≥ 4.

This function generates a law which is nonmonotone and multivalued. Condition
uν > 0 is interpreted as the outflow of the fluid through the boundary. We refer
to [60, 61] for a detailed discussion of a control problem when the pressure is
regulated by a hydraulic control device. For other examples of various nonmonotone
and multivalued relations which are useful in applications, cf. [67, Section 3.3] and
[69, Section 1.2].

In the study of Problem 1.6.1 we adopt the following hypotheses (hypothe-
sis (N4) follows from [9, 14]).

Hypotheses 1.6.2 Let �,�∗ : [0,∞) → [0,∞) be a pair of complementary N-
functions and jν : � × R→ R be a Carathéodory function such that:

(N1) �,�∗ ∈ �∞2 and A ≺ �Î(�∗)1−1/d , with �∗ being the Sobolev conjugate
N-function of � and A(t) = tp for t ∈ [0,∞) with p ≥ 3d

d+2 and d = 2, 3;
(N2) jν(x, ·) is locally Lipschitz continuous for a.e. x ∈ �;
(N3) for some κ > 0 there exist aκ ∈ L1(�, [0,∞)) and positive constants bκ and

dκ such that �∗ (|a∗| /dκ) ≤ aκ(x) + bκ� (|a| /κ) for all (a, a∗) ∈ Gr(∂jν)
and a.e. x ∈ �;

(N4) there exists c17 > 0 such that for all A ∈ S
d and a.e. x ∈ �, it holds

S(x,A) : A ≥ c17�(‖A‖Sd )+ c17�
∗(‖S(x,A)‖Sd )

where S is given by linear Stokes’ law (1.63b).
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Remark 1.6.3 By hypothesis (N1), the spaces V = W 1L�(�,Rd) and Y =
L�(�,R

d ) are separable and reflexive satisfying V ↪→↪→ Y , see (1.2). Hypoth-
esis (S3) yields the result on an integral representation of the Clarke subdifferential
of locally Lipschitz integral functionals defined on the Orlicz space (see [71, 72]).
This representation is required to establish existence and uniqueness results in the
study of Problems 1.6.1 and 1.6.13. Hypothesis (N4) follows from [9, 14].

1.6.1.2 Weak Formulation and Main Result

In order to give the variational formulation of Problem 1.6.1, we introduce some
notation:

W : =
{
w ∈ C∞(�,Rd )

∣
∣
∣ div w = 0 in �,wτ = 0 on �

}
,

V : =W‖·‖
W1L�(�,Rd ) , Y := L�(�,R

d ),

(1.64)

where V stands for the closure of W in the norm of W 1L�(�,Rd). By Korn’s
inequality in Theorem 1.2.6 and [36, Lemmata 1.2 and 1.12], we can introduce on
V the norm given by

‖v‖V := ‖v‖L�(�,Rd ) + ‖D(v)‖L�(�,Sd) for v ∈ V (1.65)

which is equivalent to the norm ‖v‖V := ‖v‖W 1L�(�,Rd) for v ∈ V due to [16, p.
2315]. Now, we derive a variational formulation of Problem 1.6.1. Assume that u

and π are sufficiently smooth functions which satisfy (1.63a) to (1.63e). Multiplying
the equation (1.63a) by v ∈ V and applying Green’s formula [37, p. 57], we obtain

∫

�

S(x,D(u)) : D(v) dx+
∫

�

(u · ∇)u · v dx+
∫

�

∇π · v dx

=
∫

�

f · v dx+
∫

�

S(x,D(u))ν · v d�.

Since the functions in V are divergence free, we have

∫

�

∇π · v dx = −
∫

�

π div v dx+
∫

�

vνπ d� =
∫

�

vνπ d�.

It follows from (1.64) that

∫

�

S(x,D(u))ν ·v d� =
∫

�

S(x,D(u))ν · (vτ +vνν) d� =
∫

�

S(x,D(u))ν ·vνν d�.
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Therefore,

∫

�

S(x,D(u)) : D(v) dx+
∫

�

(u · ∇)u · v dx

=
∫

�

f · v dx+
∫

�

S(x,D(u))ν · vνν − vνπ d�.

Note that S(x,D(u))ν · vνν − vνπ = (S(x,D(u)) |ν|2 − πI)vν = σν · v. Because
of σν · v = (σνν + σ τ ) · (vνν + vτ ) = σνvν + σ τ · vτ (see [67, p. 183]) and (1.64),
we obtain
∫

�

S(x,D(u)) : D(v) dx+
∫

�

(u·∇)u·v dx+
∫

�

−σνvν d� =
∫

�

f ·v dx. (1.66)

The subdifferential boundary condition (1.63e) yields

∫

�

−σνvν d� ≤
∫

�

j0
ν (x, uν(x); vν(x)) d�, (1.67)

where j0
ν (x, a; s) denotes the generalized directional derivative of jν(x, ·) at the

point a ∈ R in the direction s ∈ R. In view of (1.66) and (1.67) we introduce the
operators A : V → V ∗ and B[·] : V → V ∗ defined by

〈Au, v〉V ∗×V = cvisc

∫

�

D(u) : D(v) dx, u, v ∈ V, (1.68)

〈B(u, v),w〉V ∗×V =
∫

�

(u · ∇)v ·w dx, B[v] = B(v, v), u, v,w ∈ V.

(1.69)

Hence, we obtain the following variational formulation of Problem 1.6.1 in the form
of a hemivariational inequality.

Problem 1.6.4 Let � be a bounded simply connected domain in R
d , d = 2, 3, with

connected boundary ∂� = � of class C2, V and Y be Banach spaces as in (1.64),
and f ∈ V ∗. Find u ∈ V such that

〈Au + Bu, v〉V ∗×V +
∫

�

j0
ν (x, uν(x); vν(x)) d� ≥ 〈f , v〉V ∗×V , ∀v ∈ V,

(1.70)

where the operators A and B are given by (1.68) and (1.69), respectively, and j0
ν

stands for the generalized directional derivative of the superpotential jν(x, ·).
The existence and uniqueness result in study of Problem 1.6.4 is the following.
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Theorem 1.6.5 Under Hypotheses 1.6.2, Problem 1.6.4 has a solution u ∈ V

provided that α > c10, and

(a1) the solution satisfies the estimate ‖u‖V ≤ C with C :=
( ‖f ‖V ∗+c10

α−c10

)1/ρ
;

(a2) the solution is unique if, in addition, there exists c18 > 0 such that:

(N5) (S(x,A) − S(x,B)) : (A − B) ≥ c18�(‖A− B‖Sd ) for all A,B ∈ S
d ,

a.e. x ∈ �;

(N6) mA > 2c9 ‖γ ‖2
V→Y + 2c9 ‖γ ‖ρ+2

V→Y

‖f ‖V ∗+c10
α−c10

+ c4

( ‖f ‖V ∗+c10
α−c10

)1/ρ
;

where ρ ∈ (0, 1], α := 1
4 min

{
c17
2 ,

c17c19
2

}
with c17 from hypothesis (N4) and c19 >

0, mA := 1
4 min

{
c18
2 ,

c18c19
2

}
, c4 is the continuity constant of the trilinear form b

associated with the operator B, whereas c10 := max
{
c9 ‖γ ‖V→Y , c9 ‖γ ‖ρ+1

V→Y

}

with c9 := max
{

2dκ ‖aκ‖L1(�,R) ,
2bκdκ
κ

, 2ce1dκ ‖aκ‖L1(�,R) , ce1
2bκdκ
κ

}
and

bκ, dκ, aκ such as in hypothesis (N3).

Proof We apply Theorem 1.4.11. To this end, we show that N : V → V ∗ given by
Nv = Av + Bv for v ∈ V , which appears in the hemivariational inequality (1.70),
is the Navier–Stokes type operator according to Definition 1.2.4.

First, we show that A is coercive. By hypotheses (N1) and (N4), we obtain

〈Au,u〉V ∗×V ≥ c17

∫

�

�(‖D(u)‖Sd ) dx+ c17

∫

�

�∗(cvisc ‖D(u)‖Sd ) dx

≥ c17

∫

�

�(‖D(u)‖Sd ) dx ≥ c17 ‖D(u)‖2
L�(�,Sd )

(1.71)

for all u ∈ V . The last inequality holds due to (1.3) and 1.6 of Lemma 1.2.7. In
view of [16, Proposition 4.2], there exists a positive constant C = C(�) such that
infz∈R ‖u− z‖L�(�,Rd) ≤ C ‖D(u)‖L�(�,Sd) for all u ∈ W 1L�(�,Rd), where
R := {

z : Rd → R
d
∣
∣ z(x) = a+Qx

}
for some a ∈ R

d and Q ∈ S
d with Q =

−Q�. So, there exist c19 > 0 and z ∈ L�(�,Rd) such that for any u ∈ V , we
obtain

〈Au,u〉V ∗×V ≥ c17

2

(
‖D(u)‖2

L�(�,Sd )
+ ‖D(u)‖2

L�(�,Sd)

)

≥ c17

2

(
‖D(u)‖2

L�(�,Sd )
+ c17c19

2
‖u − z‖2

L�(�,Rd )

)

≥ c̃

(
1

2
‖u‖2

V +
∣∣‖u‖L�(�,Rd) − ‖z‖L�(�,Rd )

∣∣2 − ‖u‖2
L�(�,Rd )

)
,

(1.72)
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where c̃ := min
{
c17
2 ,

c17c19
2

}
due to (1.65) and |a + b|2 ≤ 2(|a|2 + |b|2) for a, b ∈

R. Hence,

〈Au,u〉V ∗×V ≥ c̃

⎛

⎝1

2
‖u‖2

V − ‖u‖2
L�(�,Rd )

⎛

⎝1−
∣
∣
∣
∣
∣
1− ‖z‖L�(�,Rd)

‖u‖L�(�,Rd )

∣
∣
∣
∣
∣

2
⎞

⎠

⎞

⎠

≥ c̃

⎛

⎝1

2
‖u‖2

V −
1

4
‖u‖2

V

⎛

⎝1−
∣
∣
∣
∣
∣
1− ‖z‖L�(�,Rd)

‖u‖L�(�,Rd )

∣
∣
∣
∣
∣

2
⎞

⎠

⎞

⎠

= c̃

4
‖u‖2

V

⎛

⎝1+
∣
∣
∣
∣
∣
1− ‖z‖L�(�,Rd)

‖u‖L�(�,Rd)

∣
∣
∣
∣
∣

2
⎞

⎠ ≥ c̃

4
‖u‖2

V , ∀u ∈ V.

(1.73)

Thus, A is (α, 2)-coercive with α = c̃
4 .

Second, by hypotheses (N1) and (N4) together with Step 1.5.1, the operator
A given by (1.68) is bounded, hemicontinuous, and monotone. Thus, A is pseu-
domonotone due to [67, Theorem 3.69]. By Step 1.5.2 and [60, Remark 12], we
infer that the operator B given by (1.69) satisfies conditions of Definition 1.2.4 (cf.
[60, p. 206]).

To provide the uniqueness of a solution to Problem 1.6.4, it suffices to show that
A is strongly monotone due to Theorem 1.4.11. By hypothesis (N5), (1.3), and (1.6)
of Lemma 1.2.7 and the same arguments such as in (1.71) and (1.73), we obtain

〈Au1 −Au2,u1 − u2〉 =
∫

�

(S(x,D(u1))− S(x,D(u2))) : (D(u1)− D(u2)) dx

≥ c18

∫

�

�(‖D(u1)− D(u2)‖Sd ) dx

≥ c18 ‖D(u1 − u2)‖2
L�(�,Sd )

≥ 1
4mA ‖u1 − u2‖2

V

with mA := 1
4 min

{
c18
2 ,

c18c19
2

}
> 0 for all u1,u2 ∈ V , which implies that the

operator A is strongly monotone. ��
Remark 1.6.6 Note that hypothesis (N5) allows to solve the steady Newtonian fluid
flow Problem 1.6.1 in W 1L�(�,Rd) with �  tp and p ≥ 3d

d+2 for d = 2, 3,

including the Sobolev space W 1,p(�,Rd) with the same conditions on p (cf. [60]
for W 1,p(�,Rd) with p ≥ 2). For the steady generalized Newtonian fluid flow
problem with the Dirichlet boundary condition in the context of Orlicz spaces, we
refer to [7, 30], where the authors assumed that �,�∗ ∈ �

glob

2 (i.e., �,�∗ satisfy
the �2-condition for all t ≥ 0) and � ∈ C2 has the lower bound �(t) ≥ 1

2�
′′(0)t2

for t ≥ 0 (i.e., � has the so-called superquadratic growth). Note that the conditions
�,�∗ ∈ �

glob

2 are stronger than �,�∗ ∈ �∞2 . In [7, 30], the superquadratic growth
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of � implies the unique solution in W 1L�(�,Rd) with �  t2 for all t ≥ 0,
including the solution in the Sobolev space W 1,p(�,Rd) with p ≥ 2.

1.6.2 Slow Flows

In this part we comment on a particular form of Problem 1.6.1. Consider the flow
problem under leak boundary conditions of frictional type in which the convective
term (u · ∇)u in (1.61a) is negligible. In this case, Problem 1.6.1 reduces to the
following system.

Problem 1.6.7 Find a velocity field u : � → R
d and a pressure π : � → R

satisfying

− div S(x,D(u))+∇π = f in �,

S(x,D(u)) = cviscD(u) in �,

div u = 0 in �,

uτ = 0 on �,

−σν ∈ ∂jν(·, uν(·)) on �.

The variational formulation of Problem 1.6.7 reads as follows.

Problem 1.6.8 Let � be a bounded simply connected domain in R
d , d = 2, 3, with

connected boundary ∂� = � of class C2, V and Y be Banach spaces as in (1.64),
and f ∈ V ∗. Find u ∈ V such that

〈Au, v〉V ∗×V +
∫

�

j0
ν (x, uν(x); vν(x)) d� ≥ 〈f , v〉V ∗×V , ∀v ∈ V, (1.74)

where the operatorA is given by (1.68), and j0
ν stands for the generalized directional

derivative of the superpotential jν(x, ·).
In the study of Problem 1.6.8 we adopt the following hypotheses.

Hypotheses 1.6.9 Let �,�∗ : [0,∞) → [0,∞) be a pair of complementary N-
functions and jν : � × R→ R be a Carathéodory function such that:

(L1) �,�∗ ∈ �∞2 and �Î(�∗)1−1/d , with �∗ being the Sobolev conjugate N-
function of � and d = 2, 3;

(L2) jν(x, ·) is locally Lipschitz continuous for a.e. x ∈ �;
(L3) for some κ > 0 there exist aκ ∈ L1(�, [0,∞)) and positive constants bκ and

dκ such that �∗ (|a∗| /dκ) ≤ aκ(x) + bκ� (|a| /κ) for all (a, a∗) ∈ Gr(∂jν)
and a.e. x ∈ �;
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(L4) there exists c17 > 0 such that for all A ∈ S
d and a.e. x ∈ �, it holds

S(x,A) : A ≥ c17�(‖A‖Sd )+ c17�
∗(‖S(x,A)‖Sd )

where S is given by linear Stokes’ law (1.63b).

The existence and uniqueness result in study of Problem 1.6.8 is the following.

Theorem 1.6.10 Under Hypotheses 1.6.9, Problem 1.6.8 has a solution u ∈ V

provided that α > c10, and

(l1) the solution satisfies the estimate ‖u‖V ≤ C with C :=
( ‖f ‖V ∗+c10

α−c10

)1/ρ
;

(l2) the solution is unique if, in addition, there exists c18 > 0 such that:

(L5) (S(x,A) − S(x,B)) : (A − B) ≥ c18�(‖A− B‖Sd ) for all A,B ∈ S
d ,

a.e. x ∈ �;
(L6) mA > 2c9 ‖γ ‖2

V→Y + 2c9 ‖γ ‖ρ+2
V→Y

‖f ‖V ∗+c10
α−c10

;

where α := 1
4 min

{
c17
2 ,

c17c19
2

}
with the constants c17 > 0 from hypoth-

esis (N4) and c19 > 0, mA := 1
4 min

{
c18
2 ,

c18c19
2

}
, whereas c10 :=

max
{
c9 ‖γ ‖V→Y , c9 ‖γ ‖ρ+1

V→Y

}
with c9 := max

{
2dκ ‖aκ‖L1(�,R) ,

2bκdκ
κ

, 2ce1dκ

‖aκ‖L1(�,R) , ce1
2bκdκ
κ

}
and bκ, dκ, aκ such as in hypothesis (N3).

Proof The proof is analogous to the one of Theorem 1.6.5 with the operator B ≡ 0.
��

Remark 1.6.11 Owing to hypothesis (L5), we are able to solve Problem 1.6.7 in
the Sobolev space W 1,p(�,Rd) with 1 < p < 2. For the slow steady fluid flow
problem with the Dirichlet boundary condition, we refer to [33, Theorem 3.1.1] in
the Sobolev space setting W 1,p(�,Rd) with p ≥ 2.

1.6.3 Optimal Control Problem

In this section we study the class of optimal control problems for a system described
by the hemivariational inequality (1.70) in Problem 1.6.4.

1.6.3.1 Continuous Dependence on External Forces

In this section we study the upper semicontinuous dependence of the solution set of
Problem 1.6.4 with respect to density of external forces f . The following result is
crucial for the optimal control problem.
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Theorem 1.6.12 Assume that Hypotheses 1.6.2 hold and

(d1) f k,f ∈ V ∗ and f k ⇀ f in σ(V ∗, V );
(d2) 0 < ρ ≤ 1 and α > c10.

If (uk) ⊂ V is a sequence of solutions of Problem 1.6.4 corresponding to f k , then
there exists a subsequence (ukj ) of (uk) such that ukj ⇀ u in σ(V, V ∗) and u ∈ V

is a solution to Problem 1.6.4 corresponding to f .

Proof By Theorem 1.6.5, there exists (uk) ⊂ V such that

〈Auk + Buk, v〉V ∗×V +
∫

�

j0
ν (x, (uk)ν(x); vν(x)) d� ≥ 〈f k, v〉V ∗×V , ∀v ∈ V

and ‖uk‖V ≤ C with C > 0 independent of k ∈ N due to (d2). By Hypotheses 1.6.2
(see (N1)), the sequence (uk) belongs to a bounded subset of the reflexive Banach
space V . Hence, there exists a subsequence (ukj ) of (uk) such that ukj ⇀ u in
σ(V, V ∗) and u ∈ V . Owing to Theorem 1.6.5, the operators A and B given
by (1.68) and (1.69) satisfy conditions of Definition 1.2.4. Therefore,

〈Aukj + Bukj , v〉V ∗×V → 〈Au+ Bu, v〉V ∗×V , ∀v ∈ V.

From Hypotheses 1.6.2 (see (N1)), we deduce that the compactness of the trace
operator γ (see (1.2)) yields γukj → γu in Y and γu ∈ Y . It follows that
(γ ukj )ν = γukj · ν → γu · ν = (γ u)ν in L�(�,R). Owing to [43, Theorems
IV3.1 and I.6.4], there exists a subsequence (ul ) of (ukj ) such that

(γ ul)ν(x)→ (γ u)ν(x) a.e. x ∈ �.

Since the function R × R � (r, s) �→ j0(x, r; s) ∈ R is upper semicontinuous, we
have

lim sup
l→∞

j0
ν (x, (ul)ν(x); vν(x)) ≤ j0

ν (x, uν(x); vν(x)) <∞

for all v ∈ V and a.e. x ∈ �. The last inequality holds due to (n4) of Lemma 1.4.10
(see (1.42)). Using the Fatou lemma, we obtain

lim sup
l→∞

∫

�

j0
ν (x, (ul)ν(x); vν(x)) d� ≤

∫

�

j0
ν (x, uν(x); vν(x)) d�.

From the above and (d1), we infer that

〈f , v〉V ∗×V ≤ 〈Au + Bu, v〉V ∗×V +
∫

�

j0
ν (x, uν(x); vν(x)) d�, ∀v ∈ V.
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Thus, u ∈ V is a solution to hemivariational inequality (1.70) in Problem 1.6.4
corresponding to f , and the proof is complete. ��

1.6.3.2 Optimal Control Problem

We suppose that U := V ∗ represents the space of controls. We will denote by
S(f ) ⊂ V the solution set of Problem 1.6.4 corresponding to f . It is a nonempty
set for all f ∈ U due to Hypotheses 1.6.2 of Theorem 1.6.5. The control problem is
formulated as follows.

Problem 1.6.13 Let Uad ⊂ U be a nonempty set representing the set admissible
controls and F : U × V → R, F = F(f ,u) be an objective functional. Find a
control f ∗ ∈ Uad and a state u∗ ∈ S(f ∗) such that

F(f ∗,u∗) = inf{F(f ,u) | f ∈ Uad,u ∈ S(f )}. (1.75)

A pair which solves (1.75) is called an optimal solution. The existence result for the
optimal control problem Problem 1.6.13 is the following.

Theorem 1.6.14 Assume that Hypotheses 1.6.2 hold and

(o1) Uad is a bounded and weakly closed subset of U ;
(o2) F is lower semicontinuous with respect to U×V endowed with weak topology;
(o3) 0 < ρ ≤ 1 and α > c10.

Then, Problem 1.6.13 has an optimal solution.

Proof Let (f k,uk) be a minimizing sequence for Problem 1.6.13. Hence, f k ∈
Uad , uk ∈ S(f k) and

lim
k→∞F(f k,uk) = inf{F(f ,u) | f ∈ Uad,u ∈ S(f )} =: m.

Since V is separable and reflexive due to Hypotheses 1.6.2 (see (N1)), it follows
from (o1) that there exists a subsequence (f kj

) of (f k) and f ∗ ∈ Uad such that
f kj

⇀ f ∗ in σ(V, V ∗). By Theorem 1.6.12, there exists a subsequence (ukj )

of (uk) such that ukj ⇀ u∗ in σ(V, V ∗) and u∗ ∈ S(f ). Owing to (o2), we
deduce that m ≤ F(f ∗,u∗) ≤ lim infj→∞ F(f kj

,ukj ) = m, and the proof is
complete. ��

1.7 Concluding Remarks

Most of the available results concerning incompressible fluids deal with the
constitutive law S = S(x,D(u)) which describes polynomial dependence between
the extra stress tensor S and the symmetric part of the velocity gradient D(u).
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The assumptions presented in this chapter capture power-law and Carreau-type
models, and more general models of fluids with non-polynomial growth condition
in reflexive Orlicz spaces. Power-law and Carreau-type models are very popular
among rheologists, in chemical engineering, and colloidal mechanics (see [52]
and the references therein). In various instances of interest in applications, results
which may yield the loss of integrability can be achieved in the framework of
non-reflexive Orlicz spaces. They are flexible enough to study fine properties of
measurable functions which are required in models of fluids of Prandtl–Eyring [24],
Powell–Eyring [79], and Sutterby [3]. These models are broadly used in geophysics,
engineering, and medical applications, for instance in models of glacier ice and
blood flow (see, e.g., [1], [53] and the references therein) and many others. For
these reasons, we will continue a study on steady/unsteady flows of fluids which
are described by non-polynomial growth conditions and nonmonotone frictional
boundary conditions, see, e.g., [64, 74].
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72. H.T. Nguyen, D. Pączka, Generalized gradients for locally Lipschitz integral functionals on
non-Lp-type spaces of measurable functions, in Function Spaces VIII. Proceedings of the 8th
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Chapter 2
Discrete Fourier Transform and Theta
Function Identities

R. A. Malekar

Abstract The classical identities of the Jacobi theta functions are obtained from
the multiplicities of the eigenvalues ik and the corresponding eigenvectors of the
DFT �(n) expressed in terms of the theta functions. An extended version of
the classical Watson addition formula and Riemann’s identity on theta functions
is derived. Watson addition formula and Riemann’s identity are obtained as a
particular case. An extensions of some classical identities corresponding to the theta
functions θa,b(x, τ ) with a,b ∈ 1

3Z are also derived.

2.1 Introduction

The discrete Fourier transform (DFT) is a well-known computing tool and it
is also a source of interesting mathematical problems. The work by Auslander
and Tolimeri [1] unified the pure and applied aspects of computing DFT. The
DFT is connected with different number of theoretical problems, for example, the
trace of the DFT matrix is a well-known quadratic Gauss sum, up to trivial
normalization factor. This was used by Schur to present a new method of evaluation
of Gauss sums. Recently, instead of the DFT the expression ‘quantum Fourier trans-
form’(QFTR) has been frequently used starting with seminal work of Shore [16]. In
our work we use more traditional abbreviation DFT for the same object.

DFT is a well-known computing tool, but the eigenfunctions of the DFT were
not well known. The first major step in this direction was taken by Mehta [13].
He had constructed eigenfunctions of the DFT in terms of discrete analogue of the
Hermite functions. Galetti and Marchiolli [4] expressed the eigenfunctions obtained
by Mehta as derivatives of Jacobi theta functions. The properties of Jacobi theta
functions and their derivatives as eigenfunctions of the DFT were further studied by
Ruzzi [15].
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The method of obtaining eigenfunctions of the FT and DFT was generalized
by Matveev [10]. He proved beautiful consequences of the fact that DFT and
FT are the fourth roots of unity. In addition, eigenfunctions of the DFT were
constructed in terms of any absolutely summable series gn. The particular case of
this was eigenfunctions found by Mehta. This was then applied for the case when
series arises as summands of a ν-theta functions with characteristics (a,b) denoted
by θa,b(x, τ, ν). (For ν = 1 this reduces to the usual theta function.)

The study of theta functions is central to mathematics. Theta functions obey a
bewildering number of identities. This has been emphasized by using the DFT to
derive existing classical identities and also new identities of theta functions. This
work will place the DFT as an important object of study to derive identities between
theta functions. The method is different from the usual method in the literature,
which uses the properties of zeros of theta functions and their infinite product
representation.

This work shows that the classical identities of Jacobi theta functions can be
obtained from the multiplicities of the eigenvalues ik and corresponding eigenvec-
tors of the DFT, expressed in terms of theta functions. An extended version of
the classical Watson addition formula and Riemann’s identity on theta functions
is derived. The Watson addition formula and Riemann’s identity are obtained as
a particular case. An extension of classical identities corresponding to the theta
functions θa,b(x, τ ) with a,b ∈ 1

3Z is derived.

2.2 Spectral Theory of Discrete Fourier Transform

The multiplicities of the eigenvalues of the DFT �(n) are closely related to the
trace of the DFT [1]. The spectral theory of the DFT in this section is developed
based on the work of Matveev [10]. He proved a beautiful consequence of the fact
that the DFT �(n) is the fourth root of unity, i.e. it satisfies the �4 = I . The
spectral theorem gives a spectral decomposition in terms of real symmetric spectral
projectors pk . These projectors are related to the eigenvalues of the DFT by mk =
T r pk . The spectral projectors also lead to a formula for generation of eigenvectors
from any vector f . This leads to the construction of eigenfunctions of the DFT in
terms of absolutely summable series.

2.2.1 The Discrete Fourier Transform

The matrix �(n) corresponding to the discrete Fourier transform (DFT) of size n is
defined by the formula

�jk(n) = 1√
n
qjk, j, k = 0, . . . , n− 1 q = e

2πi
n . (2.1)
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Clearly �jk = �kj , Also

(��∗)jk = 1

n

n−1∑

r=0

qjrqrk = 1

n

n−1∑

r=0

q−(j−k)r = δjk.

Thus, � is unitary and symmetric at the same time. Hence inverse of � is obtained
by the complex conjugation.

Definition 2.2.1 For f = (f0, . . . , fn−1)
t ∈ Cn we define the DFT f̃ ∈ Cn by

f̃ = �f = (f̃0, f̃1, . . . , ˜fn−1),where

f̃k = 1√
n

n−1∑

j=0

fj e
2πijk
n . (2.2)

This immediately gives the Parseval’s equality, namely

n−1∑

k=0

|f̃k|2 = ||f̃ ||2 = ||f ||2.

The sequence f̃j is in fact periodic, i.e. ˜fj+n = f̃j . The sequence fj can also be
extended periodically with same period n. We will now onwards consider f and f̃ to
be extended periodically in this manner. Clearly f̃ = �f ⇒ f = �−1f̃ = �∗f
that is

fj = 1√
n

n−1∑

k=0

f̃ke
−2πijk

n or f = �−1f̃ . (2.3)

Also,

(�2)ij = 1

n

n−1∑

k=0

q(i+j)k,

= 1 if i + j ≡ 0 (mod n),

= 0 otherwise.

This shows that

�2 =

⎛

⎜
⎜
⎜⎜
⎜
⎝

1 0 · · · 0 0
0 0 · · · 0 1
0 0 · · · 1 0
...
... · · · 0 0

0 1 0 · · · 0

⎞

⎟
⎟
⎟⎟
⎟
⎠
.
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In other words we find that

�2
jm = �2

mj , (�2f )j = fn−j , �4 = I, �3 = �−1 = �∗. (2.4)

T r �2 takes only two values 1 or 2, according as whether n is odd or even. This can
be summarized as

T r �2 = 3+ (−1)n

2
. (2.5)

The quantity

G(n) = √n T r � =
n−1∑

s=0

qs
2
, (2.6)

is the well-known Gauss sum.
A celebrated result of the Gauss is that

G(n) = 1+ (−i)n
1− i

. (2.7)

There are many proofs of Gauss sum available in the literature [1]. Schur had given
a proof using discrete Fourier transform.

2.2.2 Spectral Decomposition of the Matrix or Operator Roots
of Unity

We will need the following result of Matveev [10], the proof follows by sum of the
nth roots of unity being zero.

Theorem 2.2.2 (Matveev) Let U be any bounded operator in a Hilbert space

satisfying the relation Un = I and let q = e
2πi
n , q is a primitive nth root of unity.

U =
n−1∑

m=0

qmPm, where Pm = 1

n

n−1∑

j=0

q−jmUj . (2.8)

The spectral projectors Pj , forming resolution of identity for U , satisfy the relations

n−1∑

j=0

Pj = I, UPj = qjPj , (2.9)

P 2
j = Pj , PjPm = 0 f or m �= j. (2.10)

If U is unitary operator, then all spectral projectors Pj are self-adjoint operators.
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The multiplicity mj of eigenvalue qj can be computed by

mj = T r Pj = 1

n

n−1∑

k=0

q−kj T r Uk . (2.11)

From (2.11) we can say that the traces of Uk and spectral multiplicities of
eigenvalues of U are connected by the DFT.

The spectral decomposition of � is obtained from Theorem (2.2.2) by tak-
ing n = 4.

� =
3∑

j=0

ijpj , pj = 1

4

∑

k

(−i)jk�k, (2.12)

3∑

j=0

pj = I, pjpk = pjδjk. (2.13)

All the projectors pj are real symmetric matrices. It follows from spectral decom-
position that given any vector f = (f0, f1, . . . , fn−1)

t ∈ Cn, an eigenvector of �
can be found as follows. Let v(k) ∈ Cn be defined by

v(k) = 1

n

[
I + (−i)k�+ (−i)2k�2 + (−i)3k�3

]
f.

In particular, this gives that if

vj (k) = fj + (−i)kf̃j + (−i)2kfn−j + (−i)3k ˜f−j . (2.14)

then

�v(k) = ikv(k) .

Let m0 = m(1), m1 = m(i), m2 = m(−1), m3 = m(−i) be the multiplicities
corresponding to the eigenvalues 1, i,−1,−i of �. We have the formula

mk = T r Pk.

Hence by using (2.11), (2.5) and (2.6) we get for mk the following explicit
expressions.
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In particular

m0 = T r P0 = T r

(
1

4

∑
�k

)
= 1

4
T r

(
I +�+�2 +�3

)
,

However �3 = �−1 = �∗. Thus,

m0 = 1

4
T r

(
I +�+�2 +�∗

)
= 1

4

(
n+ 2Re T r �+ 3+ (−1)n

2

)
.

Using the formula for the Gauss sum G(n) = √
n T r �, this can be simplified. If

n = 4m+ k for 0 ≤ k ≤ 3, then m0 = m+ 1 = [
n
4

]+ 1. Similarly, the expressions
for m1,m2,m3 follows.

m1 = 1
4

(
n+ 2Im T r�(n)− 3+(−1)n

2

)
=

[
n+ 1

4

]
,

m2 = 1
4

(
n− 2Re T r�(n)+ 3+(−1)n

2

)
=

[
n+ 2

4

]
,

m3 = 1
4

(
n− 2Im T r�(n)− 3+(−1)n

2

)
=

[
n+ 3

4

]
− 1.

where [x] is the largest integer ≤ x. In a more detailed form the same formulae can
be written as follows:

n = 4m+ 2 ⇒ m1 = m m2 = m+ 1 m3 = m m0 = m+ 1,
n = 4m ⇒ m1 = m m2 = m m3 = m− 1 m0 = m+ 1,

n = 4m+ 1 ⇒ m1 = m m2 = m m3 = m m0 = m+ 1,
n = 4m+ 3 ⇒ m1 = m+ 1 m2 = m+ 1 m3 = m m0 = m+ 1.

2.2.3 Eigenvectors of �(n)

The explicit formula for the spectral projectors pj provides the complete set
of eigenvectors of �, as pj are orthogonal projections on the ik eigenspace of
�. Since �pk = ikpk , it is clear that each nonzero column of pk is an eigenvector
of �. The columns of pk can be explicitly written down.

Lemma 2.2.3 Let v(k,m) denote the mth column of pk then

4vj (k,m) = δjm + (−1)kδn−j,m + (−i)k q
jm

√
n
+ (−i)3k q

−jm
√
n

(2.15)

for 0 ≤ j ≤ n− 1.
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All these eigenvectors have real-valued components, and giving k the values
0, 1, 2, 3 we get the following detailed version of them:

4vj (0,m) = δjm + δn−j,m + 2√
n

cos

(
2πmj

n

)
,

4vj (1,m) = δjm − δn−j,m + 2√
n

sin

(
2πmj

n

)
,

4vj (2,m) = δjm + δn−j,m − 2√
n

cos

(
2πmj

n

)
,

4vj (3,m) = δjm − δn−j,m − 2√
n

sin

(
2πmj

n

)
.

Proof From the formula for

pk = 1

4

3∑

r=0

(i)−rk�r = 1

4

3∑

r=0

(−i)rk�r,

pk(m, j) = 1

4

3∑

r=0

i−rk[�r ]jm

= 1

4

3∑

r=0

(−i)rk[�r ]jm

= 1

4

[
I + (−i)k�+ (−i)2k�2 + (−i)3k�3

]

jm

= 1

4

[
I + (−1)k�2 + (−i)k�+ (−i)3k�3

]

jm

pk(m, j) = δjm + (−1)kδn−j,m + (−i)k q
jm

√
n
+ (−i)3k q

−jm
√
n

.

This completes the proof. ��
The explicit construction of eigenvectors of the DFT provides the complete set

of eigenvectors given by the following theorem.

Theorem 2.2.4 The vectors

v(0,m), m = 0, 1, 2 . . . , m(1),

v(1,m), m = 1, 2 . . . , m(i)+ 1,
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v(2,m), m = 0, 1, 2 . . . , m(−1),

v(3,m), m = 1, 2 . . . , m(−i)+ 1

form the basis of Cn.

The proof of the above non-trivial fact is given in McClennan and Parks [11] using
the techniques of Chebyshev sets. In terms of spectral projectors we have to take
first m0 columns of p0 and first nontrivial columns m1 of p1, m2 first columns
of p2 and m3 first nontrivial columns of p3 to get it. The completeness follows from
the relation that

∑
pj = I . The projectors pj are real symmetric matrices. We

illustrate the computation of the spectral projectors for values of n ≤ 4.

Case (I) n = 2
For n = 2, q = e

2πi
2 = −1, �2 = I.

� = 1√
2

(
1 1
1 −1

)
,

Eigenvalues of � are 1 and −1, and there are no imaginary eigenvalues. Hence
spectral projectors corresponding to +i and −i, i.e. p1 and p3 are zero. Also using
the formulae for the projectors

p0 + p2 = I +�2

2
= I, p1 + p3 = I −�2

2
= 0,

p0 − p2 = �+ �̄

2
= �, p1 − p3 = �− �̄

2i
= 0 .

Thus p1 = p3 = 0, and

p0 = I +�

2
and p2 = I −�

2
.

Therefore we have

p0 = 1

2
√

2

(√
2+ 1 1
1

√
2− 1

)
.

Similarly

p2 = 1

2
√

2

(√
2− 1 −1
−1

√
2+ 1

)
.
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Case (II) n = 3

� =
⎛

⎜
⎝

1 1 1

1 −1+i√3
2

−1−i√3
2

1 −1−i√3
2

−1+i√3
2

⎞

⎟
⎠ .

The spectral multiplicities of �(3) are m1 = 1 ,m2 = 1, m3 = 0, m0 = 1,
therefore spectral projector p3 = 0. Using the same formulae for p0, p1, p2 we
have

p0 = 1

2
√

3

⎛

⎜
⎝

√
3+ 1 1 1

1
√

3−1
2

√
3−1
2

1
√

3−1
2

√
3−1
2

⎞

⎟
⎠ ,

p1 = 1

2

⎛

⎝
0 0 0
0 1 −1
0 −1 1

⎞

⎠ ,

p2 = 1

2
√

3

⎛

⎜
⎝

√
3− 1 −1 −1

−1
√

3−1
2

√
3−1
2

−1
√

3−1
2

√
3−1
2

⎞

⎟
⎠ .

Case (III) n = 4
In case n = 4 the Fourier matrix � is

� = 1

2

⎛

⎜⎜
⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞

⎟⎟
⎠ .

By the formulae for the spectral multiplicities m1 = 1, m2 = 1, m3 = 0, m0 = 2.
Since m3 = 0 we have spectral projector p3 = 0. Using formulae for the spectral

projectors we have

p0 = 1

4

⎛

⎜
⎜
⎝

3 1 1 1
1 1 −1 1
1 −1 3 −1
1 1 −1 1

⎞

⎟
⎟
⎠ ,



64 R. A. Malekar

p1 = 1

2

⎛

⎜⎜
⎝

0 0 0 0
0 1 0 1
0 0 0 0
0 −1 0 1

⎞

⎟⎟
⎠ ,

p2 = 1

4

⎛

⎜
⎜
⎝

1 −1 −1 −1
−1 1 1 1
−1 1 1 1
−1 1 1 1

⎞

⎟
⎟
⎠ .

The complete construction of real orthogonal matrices diagonalizing DFT for
some particular values of n ≤ 8 using the columns of pk is given in [10]. The
complete solution for diagonalization of the DFT �(n) is given in [18] using
characters on finite abelian group. The importance of diagonalization in digital
signal processing is outlined in [3].

2.2.4 Eigenvectors of the DFT from Any Absolutely Summable
Series

Let

∑

m∈Z
gm

be any given absolutely summable series and q = e
2πi
n . Define g(x), a continuous

periodic function of period n and a periodic sequence fj of period n by

g(x) =
∑

m∈Z
gmq

mx and fj =
∑

m∈Z
gmn+j for 0 ≤ j ≤ n− 1.

Lemma 2.2.5 (Discrete Poisson Summation Formula)

n−1∑

j=0

qjl

(
∑

m∈Z
gnm+j

)

=
∑

k∈Z
gkq

kl = g(l)f or l = 0, 1, 2, . . . , n− 1. (2.16)

∑

m∈Z
gnm+j = 1

n

n−1∑

l=0

g(l)q−lj f or j = 0, 1, . . . , n− 1. (2.17)
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Proof It is clear that (2.17) follows from (2.16). We prove (2.16). Consider the sum

n−1∑

j=0

qjl
∑

m∈Z
gnm+j

Let nm+ j = k and j = k − nm therefore qjl = qkl .
LHS =∑

k q
klgk = g(l) . By applying the inversion of the DFT we get

∑

m∈Z
gnm+j = 1

n

n−1∑

l=0

g(l)q−lj f or j = 0, 1, . . . , n− 1.

��
Theorem 2.2.6 Let gm be any absolutely convergent series. Define for k ∈
(0, 1, 2, 3) the vector v(k) ∈ Cn with components given by

[v(k)]j =
∑

m∈Z
(gnm+j + (−1)kgnm−j ) (2.18)

+ (−i)k√
n

∑

m∈Z
(gm + (−1)kg−m)e

2πimj
n

for j = 0, 1, 2, . . . , n− 1.
v(k) is an eigenvector of � with eigenvalue ik, that is

�(v(k)) = ikv(k) .

All the eigenvectors of the DFT can be constructed by the above formula.

Proof Let fj = ∑
m∈Z gnm+j , and

s2 = (−i)k√
n

∑

m∈Z
(gm + (−1)kg−m)e

2πimj
n .

put m = kn+ r , then

s2 = (−i)k√
n

n−1∑

r=0

fre
2πirj
n + (−i)3k

√
n

n−1∑

r=0

fre
−2πirj

n

= (−i)kf̃j + (−i)3kf̃−j

vj (k) = fj + (−1)kf−j + (−i)kf̃j + (−i)3kf̃−j .
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Therefore from (2.14) vk is an eigenvector for � with eigenvalue ik . In order to
show that above formula generates all eigenvectors of the DFT we take

gm(l) = δlm, l = 0, 1, 2, 3 . . . n− 1.

It is clear that this choice of gm produces complete system of eigenvectors of �. ��
The generation of eigenvectors of the DFT in terms of series gn gives many

options to generate eigenvectors of the DFT by a proper choice of summable
series gn. This has been applied for theta functions by Matveev, this leads to new
way of deriving identities of theta functions.

2.3 DFT �(2) and Jacobi Theta Function Identities

The connection of the eigenvalues of the DFT to the theta functions was discussed
by Auslander and Tolimieri [1]. They related the multiplicity of the eigenvalues
of the DFT to certain algebra of theta functions. The eigenfunctions of the DFT
are expressed as derivatives of theta functions by Galetti and Marchiolli [4]. These
eigenfunctions come from the eigenfunctions constructed by Mehta [13]. Mehta
constructed eigenfunctions in terms of discrete analogue of Hermite functions.
The eigenfunctions of the DFT in terms of ν-theta functions are constructed by
Matveev [10], this reduces to the usual theta functions for ν = 1.

This section is an extension of the work done in [10] where eigenfunctions of
the DFT are expressed in terms of theta functions. This will place the DFT as
an important object to derive various identities between theta functions and other
well-known functions. The well-known fourth order identity between null values
of theta functions is derived. An extended Watson addition formula is derived
whose particular case is the classical Watson addition formula. A famous fourth
order identity of Riemann is derived as a particular case of an extended Riemann’s
identity. All these identities are derived from the properties of multiplicities of
eigenvalue and eigenvectors of the DFT expressed in terms of theta functions. This
is a different approach from the classically used techniques which uses properties of
zeros of theta functions and their infinite product representations. Liu [5] has also
used Fourier series expansion to recover many classical results in theta function
due to Jacobi, Ramanujan and others. The recent paper by Srivastava et al. [17] has
discussed theta function identities related to the Jacobi triple product identity. There
are many well-known and new identities of theta functions discussed in [2, 6]. It
will be interesting to derive these identities using the techniques discussed in this
chapter.
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2.3.1 Jacobi Theta Functions

Theta functions where first studied by Jacobi are central to the theory of elliptic
functions [12]. The four classical Jacobi theta functions are defined by

θ1(x, τ ) = (−i)
∑

m∈Z
(−1)meπi(m+1/2)2τ e2πi(m+1/2)x,

θ2(x, τ ) =
∑

m∈Z
eπi(m+1/2)2τ e2πi(m+1/2)x,

θ3(x, τ ) =
∑

m∈Z
eπim

2τ e2πimx,

θ4(x, τ ) =
∑

m∈Z
(−1)meπim

2τ e2πim(x+1/2).

Here each θi is considered as a function of x, and also depends on the parameter
τ which satisfies "(τ ) > 0. The latter inequality guarantees absolute convergence
of all the infinite series for all finite x. These functions are doubly periodic with
periods 1 and τ . It follows from the definition that θ1(x) is an odd function of x
and θ2(x), θ3(x), θ4(x) are even functions of x. The zeros of theta functions are as
follows:

θ1(x, τ ) = 0 at x = m+ nτ for m , n ∈ Z+

θ2(x, τ ) = 0 at x = 1

2
+m+ nτ

θ3(x, τ ) = 0 at x = 1

2
+ 1

2
τ +m+ nτ

θ4(x, τ ) = 0 at x = 1

2
τ +m+ nτ.

Theta functions with characteristics [a, b] are defined by

θa,b(x, τ ) =
∑

n∈Z
exp[πiτ(n+ a)2 + 2πi(n+ a)(x + b)]. (2.19)

θa,b(x, τ ) is connected with θ3(x, τ ) by (see [20])

θa,b(x, τ ) = θ3(x + aτ + b, τ ) exp[πia2τ + 2πia(x + b)].

We use theta functions θa,b with a,b ∈ 1
2Z to express θi in terms of an exponential

form (see [14]) used in this chapter. The classical Jacobi theta functions correspond
to the discrete lattice 1

2Z × 1
2Z. The extensions and identities of these functions
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Table 2.1 Theta function at
various arguments

x + 1
2 x + τ

2 x + 1
2 + τ

2 x + 1 x + τ

θ1 θ2 iaθ4 aθ3 −θ1 −bθ1

θ2 −θ1 aθ3 −iaθ4 −θ2 bθ2

θ3 θ4 aθ2 iaθ1 θ3 bθ3

θ4 θ3 iaθ1 aθ2 θ4 −bθ4

for θa,b with a,b ∈ 1
3Z are discussed in the next chapter.

θ1(x, τ ) = θ 1
2 ,

1
2
(x, τ ) = (−1)

∑

m∈Z
exp[πiτ(m+ 1/2)2 + 2πi(m+ 1/2)(x + 1/2)],

θ2(x, τ ) = θ 1
2 ,0

(x, τ ) =
∑

m∈Z
exp[πiτ(m+ 1/2)2 + 2πi(m+ 1/2)x],

θ3(x, τ ) = θ0,0(x, τ ) =
∑

m∈Z
exp(πim2τ + 2πimx),

θ4(x, τ ) = θ0, 1
2
(x, τ ) =

∑

m∈Z
exp[πiτm2 + 2πim(x + 1/2)].

The representation of theta functions in exponential form can be used to evaluate
theta functions at the arguments x + 1

2 , x + 1, x + 1
2 + 1

2τ. These results are
summarized in Table 2.1.

In Table 2.1 we have used the notations a = e−πixe− πiτ
4 and b = e−2πixq−πiτ .

2.3.2 DFT and Theta Functions

Matveev [10] has defined generalized ν-theta function given by

θ(x, τ, ν) =
∞∑

m=−∞
eπiτm

2ν+2πimx, ν ∈ Z+, "(τ ) > 0. (2.20)

It is clear that θ(x, τ, ν) is an entire function of x satisfying the relation

θ(x + 1, τ, ν) = θ(x, τ ).

θ(x, τ, ν) reduces to the usual theta functions for ν = 1. The ν-theta function
satisfies the partial differential equation given by

2(2π)2ν−1(−1)ν
∂θ

∂τ
= i

∂2νθ

∂x2ν . (2.21)
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The ν theta function θa,b (x, τ, ν) with characteristics [a,b] is defined by

θa,b (x, τ, ν) =
∑

n∈Z
exp[πiτ(n+ a)2ν + 2πi(n+ a)(x + b)]. (2.22)

We state below the theorem of Matveev which relates θ(x, τ, ν) to the eigenfunc-
tions of the DFT.

Theorem 2.3.1 (Matveev) For any τ with "(τ ) > 0 the vector v(x, τ, ν, k) with
components vj (x, τ, ν, k), j = 0, 1, 2, . . . , n− 1 given by

vj (x, τ, ν, k) = θ j
n
,0(x, τ, ν)+ (−1)kθ− j

n
,0(x, τ, ν)

+ 1√
n

[
(−i)kθ

(
j + x

n
,
τ

n2ν , ν

)
+ (−i)3kθ

(
x − j

n
,
τ

n2ν , ν

)]

(2.23)

is an eigenvector of the DFT �(n) with an eigenvalue ik:

�(n)v(x, τ, ν, k) = ikv(x, τ, ν, k).

Proof The proof follows from Theorem 2.2.6 by choosing the absolutely summable
series gm. Consider

gm = exp

(
πiτm2ν

n2ν + 2πimx

n

)
. (2.24)

Then,

∑

m∈Z
gmn+j =

∑

m∈Z
exp

[

πiτ

(
mn+ j

n

)2ν

+ 2πi

(
mn+ j

n

)
x

)

= θ j
n ,0

(x, τ, ν).

∑

m∈Z
gmn−j = θ− j

n ,0
(x, τ, ν).

∑

m∈Z
(gm + (−1)kg−m)e

2πimj
n =

[
θ

(
j + x

n
,
τ

n2ν
, ν

)
+ (−1)kθ

(
x − j

n
,
τ

n2ν
, ν

)]
.

substituting the above expressions in Theorem (2.2.6) Theorem (2.3.1) follows. ��
The ν-theta functions for ν = 1 correspond to the classical Jacobi theta

functions. It has been suggested in [10] that this may have applications to determine
identities of theta functions. For a given value of n, take eigenvectors of the
form (2.23) corresponding to the eigenvalue ik , with different values of x and τ .



70 R. A. Malekar

At the most mk the multiplicities of the eigenvalue ik of these are linearly
independent. Thus minors of the matrix consisting of the eigenvectors v(x, τ, k)

of order greater than mk vanish. This may lead to new identities among theta
functions. This is explored for the DFT �(2) in the following section to derive
well-known fourth order identity between null values of theta functions. We obtain
an extended Watson addition formula, and its particular case we prove the classical
Watson addition formula. The well-known Riemann’s fourth order identity is proved
using the above technique, and its extension which we call the extended Riemann’s
identity is derived. Some new cubic identities of Jacobi theta functions are derived.

2.3.3 DFT �(2) and Jacobi Theta Function Identities

In the context of Theorem (2.3.1), classical Jacobi theta function occurs as the
components of the eigenvectors of the DFT �(2). We explore this fact to derive
the well-known Landen type transformations and the fourth order identity between
null values of theta functions.

2.3.4 The Identity θ4(0, τ ) − θ4
0, 1

2

(0, τ ) = θ4
1
2 ,0

(0, τ )

The DFT �(2) has only two eigenvalues+1 and−1. The eigenvector corresponding
to eigenvalue+1 is given by

v(x, τ, 0) =
[

2θ(x, τ )+√2θ
(
x
2 ,

τ
4

)

2θ 1
2 ,0

(x, τ )+√2θ
(
x+1

2 , τ4

)
]

. (2.25)

The eigenvector corresponding to eigenvalue−1 is given by

v(x, τ, 2) =
[

2θ(x, τ )−√2θ
(
x
2 ,

τ
4

)

2θ 1
2 ,0

(x, τ )−√2θ
(
x+1

2 , τ4

)
]

. (2.26)

We use these eigenvectors to derive the Landen type transformations.

Lemma 2.3.2 (Landen Transformation)

θ2(x, τ )+ θ2
0, 1

2
(x, τ ) = 2θ(2x, 2τ )θ(0, 2τ ) (2.27)

θ2(0, τ )− θ2
0, 1

2
(0, τ ) = 2θ 1

2 ,0
(2x, 2τ )θ 1

2 ,0
(0, 2τ ). (2.28)
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Proof We have

�(2) [v(x, τ, 0)+ v(x, τ, 2)] = v(x, τ, 0)− v(x, τ, 2).

This gives the following two identities:

θ(x, τ )+ θ 1
2 ,0

(x, τ ) = θ
(x

2
,
τ

22

)
, (2.29)

θ(x, τ )− θ 1
2 ,0

(x, τ ) = θ

(
x + 1

2
,
τ

22

)
. (2.30)

Equations (2.29) and (2.30) are equivalent to

θ(2x, 4τ )+ θ 1
2 ,0

(2x, 4τ ) = θ(x, τ ), (2.31)

θ(2x, 4τ )− θ 1
2 ,0

(2x, 4τ ) = θ0, 1
2
(x, τ ). (2.32)

Using (2.25)

v
(
x + τ

2
, τ, 0

)
=

⎡

⎣
2aθ 1

2 ,0
(x, τ )+ a

√
2θ

(
x
2 ,

τ
4

)

2aθ(x, τ )− a
√

2θ
(
x+1

2 , τ
4

)

⎤

⎦ (2.33)

where a = exp
(−πiτ

4 − πix
)
.

v(x + 1, τ, 0) =
⎡

⎣ 2θ(x, τ )+√2θ
(
x+1

2 , τ
4

)

−2θ 1
2 ,0

(x, τ )+√2θ
(
x
2 ,

τ
4

)

⎤

⎦ . (2.34)

Since v(x + 1, τ, 0), v
(
x + τ

2 , τ, 0
)

are eigenvectors corresponding to the same
eigenvalue 1, which has multiplicity 1 we have

det
(
v(x + 1, τ, 0), v

(
x + τ

2
, τ, 0

))
= 0.

This gives

2θ2(x, τ )+ 2θ2
1
2 ,0

(x, τ ) = θ2
(
x + 1

2
,
τ

4

)
+ θ2

(x
2
,
τ

4

)
. (2.35)

Equation (2.35) is equivalent to

2θ2(2x, 4τ )+ 2θ2
1
2 ,0

(2x, 4τ ) = θ2
0, 1

2
(x, τ )+ θ2(x, τ ). (2.36)
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Now consider

θ(2x, 2τ )θ(0, 2τ ) =
∑

m,n

exp(πi(m2 + n2)2τ + 2πim2x). (2.37)

Let m + n = n1 and m − n = n2, so that n1 and n2 are of the same parity.
Rewriting (2.37) in terms of n1 and n2 we have

θ(2x, 2τ )θ(0, 2τ ) =
∑

n1≡ n2 (mod 2)

exp(πi(n2
1 + n2

2)τ + 2πi(n1 + n2)x).

=
∑

n1,n2 are even

exp(πi(n2
1 + n2

2)τ + 2πi(n1 + n2)x)

+
∑

n1,n2 are odd

exp(πi(n2
1 + n2

2)τ + 2πi(n1 + n2)x).

= θ2(2x, 4τ )+ θ2
1
2 ,0

(2x, 4τ ).

From (2.36) we have

θ2(x, τ )+ θ2
0, 1

2
(x, τ ) = 2θ(2x, 2τ )θ(0, 2τ ).

This derives Landen type (2.27) transformation. We can derive the other Landen
type transformation using a similar method. ��

Now the det(v(x, τ, 0), v(x + 1, τ, 0) = 0. This gives

−4θ(x, τ )θ 1
2 ,0

(x, τ )+ 2
√

2θ(x, τ )θ
(x

2
,
τ

4

)
− 2
√

2θ 1
2 ,0

(x, τ )θ
(x

2
,
τ

4

)

+2θ2
(x

2
,
τ

4

)
− 4θ(x, τ )θ 1

2 ,0
(x, τ )− 2

√
2θ 1

2 ,0
(x, τ )θ

(
x + 1

2
,
τ

4

)

−2
√

2θ(x, τ )θ

(
x + 1

2
,
τ

4

)
− 2θ2

(
x + 1

2
,
τ

4

)
= 0.

Consider the terms with coefficients of 2
√

2,

θ(x, τ )θ
(x

2
,
τ

4

)

= θ(x, τ )θ(y, τ )+ θ(x, τ )θ 1
2 ,0

(x, τ ) = A,

θ 1
2 ,0

(x, τ )θ
(x

2
,
τ

4

)

= θ 1
2 ,0

(x, τ )θ(x, τ )+ θ 1
2 ,0

(x, τ )θ 1
2 ,0

(x, τ ) = B,
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θ 1
2 ,0

(x, τ )θ

(
x + 1

2
,
τ

4

)

= θ 1
2 ,0

(x, τ )θ(x, τ )− θ 1
2 ,0

(x, τ )θ 1
2 ,0

(x, τ ) = C,

θ(x, τ )θ

(
x + 1

2
,
τ

4

)

= θ(x, τ )θ(x, τ )− θ(x, τ )θ 1
2 ,0

(x, τ ) = D.

We observe that A−B−C−D = 0. All the terms with coefficients of 2
√

2 cancel
each other out. This gives

θ2
(x

2
,
τ

4

)
− θ2

(
x + 1

2
,
τ

4

)
= 4θ(x, τ )θ 1

2 ,0
(x, τ ). (2.38)

Equation (2.38) is equivalent to

θ2(x, τ )− θ2
0, 1

2
(x, τ ) = 4θ(2x, 4τ )θ 1

2 ,0
(2x, 4τ ). (2.39)

Applying the same argument as in the derivation of (2.27) we have

2θ(2x, 4τ )θ 1
2 ,0

(2x, 4τ ) = θ 1
2 ,0

(2x, 2τ )θ 1
2 ,0

(0, 2τ ). (2.40)

At x = 0 we have

2θ(0, 4τ )θ 1
2 ,0

(0, 4τ ) = θ2
1
2 ,0

(0, 2τ ). (2.41)

From (2.39) and (2.40) we have

θ2(x, τ )− θ2
0, 1

2
(x, τ ) = 2θ 1

2 ,0
(2x, 2τ )θ 1

2 ,0
(0, 2τ ).

This derives (2.28).

Corollary 2.3.3

θ4(0, τ )− θ4
0, 1

2
(0, τ ) = θ4

1
2 ,0

(0, τ ). (2.42)

Proof From (2.27) at x = 0 we have

θ2(0, τ )+ θ2
0, 1

2
(0, τ ) = 2θ2(0, 2τ ). (2.43)

Similarly from (2.28) at x = 0

θ2(0, τ )− θ2
0, 1

2
(0, τ ) = 2θ2

1
2 ,0

(0, 2τ ). (2.44)
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From (2.43) and (2.44) we have

θ4(0, τ )− θ4
0, 1

2
(0, τ ) = 4θ2(0, 2τ )θ2

1
2 ,0

(0, 2τ ). (2.45)

Using (2.41) we have

θ4(0, τ )− θ4
0, 1

2
(0, τ ) = θ4

1
2 ,0

(0, τ ).

��
This is a well-known Jacobi identity between the null values of theta functions.

Many of the classical identities involving the squares of theta functions (see [19])
can be obtained by the method illustrated above. In the next theorem we illustrate the
technique to extend the classical Watson addition formula for theta functions [12].

2.3.5 Extended Watson Addition Formula

The theta functions obey Watson addition formula [12] involving the argument τ
and 2τ . We give an extended Watson addition formula involving τ and 4τ [8].

Theorem 2.3.4 (Extended Watson Addition Formula)

θ0, 1
2
(x1 + x2, τ )θ(x1 − x2, τ )− θ0, 1

2
(x1 − x2, τ )θ(x1 + x2, τ )

= 2θ(2x1 + 2x2, 4τ )θ 1
2 ,0

(2x1 − 2x2, 4τ )

−2θ(2x1 − 2x2, 4τ )θ 1
2 ,0

(2x1 + 2x2, 4τ ).

(2.46)

Proof Using (2.29), (2.30)

θ

(
x1 ± x2

2
,
τ

2

)
= θ(x1 ± x2, 2τ )+ θ 1

2 ,0
(x1 ± x2, 2τ ). (2.47)

θ

(
x1 ± x2 + 1

2
,
τ

2

)
= θ(x1 ± x2, 2τ )− θ 1

2 ,0
(x1 ± x2, 2τ ). (2.48)

From (2.25) and (2.26), we have

v(x1 + x2, 2τ, 0) =
[

2θ(x1 + x2, 2τ )+√2θ
(
x1+x2

2 , τ2

)

2θ 1
2 ,0

(x1 + x2, 2τ )+√2θ
(
x1+x2+1

2 , τ2

)
]

,

v(x1 − x2, 2τ, 0) =
[

2θ(x1 − x2, 2τ )+√2θ
(
x1−x2

2 , τ
2

)

2θ 1
2 ,0

(x1 − x2, 2τ )+√2θ
(
x1−x2+1

2 , τ2

)
]
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are eigenvectors of �(2) corresponding to eigenvalues +1, which has multiplicity
1. Therefore

det(v(x1 + x2, 2τ, 0), v(x1 − x2, 2τ, 0)) = 0.

This gives

4θ(x1 + x2, 2τ )θ 1
2 ,0

(x1 − x2, 2τ )+ 2
√

2θ(x1 + x2, 2τ )θ

(
x1 − x2 + 1

2
,
τ

2

)

+2
√

2θ 1
2 ,0

(x1 − x2, 2τ )θ

(
x1 + x2

2
,
τ

2

)

+2θ

(
x1 + x2

2
,
τ

2

)
θ

(
x1 − x2 + 1

2
,
τ

2

)

−4θ 1
2 ,0

(x1 + x2, 2τ )θ(x1 − x2, 2τ )

−2
√

2θ 1
2 ,0

(x1 + x2, 2τ )θ

(
x1 − x2

2
,
τ

2

)

−2
√

2θ(x1 − x2, 2τ )θ

(
x1 + x2 + 1

2
,
τ

2

)

−2θ

(
x1 + x2 + 1

2
,
τ

2

)
θ

(
x1 − x2

2
,
τ

2

)
= 0.

(2.49)

In this expression consider the terms with 2
√

2 as coefficient. Using formu-
las (2.47) and (2.48),we have

A = θ(x1 + x2, 2τ )θ

(
x1 − x2 + 1

2
,
τ

2

)

= θ(x1 + x2, 2τ )θ(x1 − x2, 2τ )− θ(x1 + x2, 2τ )θ 1
2 ,0

(x1 − x2, 2τ ),

B = θ 1
2 ,0

(x1 − x2, 2τ )θ

(
x1 + x2

2
,
τ

2

)

= θ 1
2 ,0

(x1 − x2, 2τ )θ(x1 + x2, 2τ )+ θ 1
2 ,0

(x1 + x2, 2τ )θ 1
2 ,0

(x1 − x2, 2τ ),

C = θ 1
2 ,0

(x1 + x2, 2τ )θ

(
x1 − x2

2
,
τ

2

)

= θ 1
2 ,0

(x1 + x2, 2τ )θ(x1 − x2, 2τ )+ θ 1
2 ,0

(x1 + x2, 2τ )θ 1
2 ,0

(x1 − x2, 2τ ),

D = θ(x1 − x2, 2τ )θ

(
x1 + x2 + 1

2
,
τ

2

)

= θ(x1 − x2, 2τ )θ(x1 + x2, 2τ )− θ(x1 − x2, 2τ )θ 1
2 ,0

(x1 + x2, 2τ ).
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It is clear that A+B−C−D = 0. Hence all the terms with coefficients 2
√

2 cancel
each other out. Equation (2.49) becomes

4θ(x1 + x2, 2τ )θ 1
2 ,0

(x1 − x2, 2τ )− 4θ 1
2 ,0

(x1 + x2, 2τ )θ(x1 − x2, 2τ )

= 2θ

(
x1 + x2 + 1

2
,
τ

2

)
θ

(
x1 − x2

2
,
τ

2

)

−2θ

(
x1 − x2 + 1

2
,
τ

2

)
θ

(
x1 + x2

2
,
τ

2

)
.

Replacing x1, x2, τ by 2x1, 2x2, 2τ , respectively, we obtain

2θ(2x1 + 2x2, 4τ )θ 1
2 ,0

(2x1 − 2x2, 4τ )− 2θ 1
2 ,0

(2x1 + 2x2, 4τ )θ(2x1 − 2x2, 4τ )

= θ0, 1
2
(x1 + x2, τ )θ(x1 − x2, τ )

−θ0, 1
2
(x1 − x2, τ )θ(x1 + x2, τ ).

This proves (2.46). ��
We now show that the classical Watson addition formula is a particular case
of (2.46).

Theorem 2.3.5 (Watson Addition Formula)

θ 1
2 ,

1
2
(x1, τ )θ 1

2 ,
1
2
(x2, τ ) = θ(x1 + x2, 2τ )θ 1

2 ,0
(x1 − x2, 2τ )

−θ(x1 − x2, 2τ )θ 1
2 ,0

(x1 + x2, 2τ ). (2.50)

Proof Consider the first term of the left-hand side of (2.46)

θ0, 1
2
(x1 + x2, τ )θ(x1 − x2, τ )

=
∑

exp
[
πi(m2 + n2)τ + 2πi

(
(m+ n)x1 + (m− n)x2 + m

2

)]
.

(2.51)

Let m+n = n1, m−n = n2 where n1 and n2 are of same parity. Rewriting (2.51) in
terms of n1 and n2,

=
∑

n1≡n2 (mod 2)

exp

[

πi

(
n2

1 + n2
2

2

)

τ + 2πi

(
n1x1 + n2x2 + n1 + n2

4

)]

=
∑

n1,n2 are even

exp

[

πi

(
n2

1 + n2
2

2

)

τ + 2πi

(
n1x1 + n2x2 + n1 + n2

4

)]
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+
∑

n1,n2 are odd

exp

[

πi

(
n2

1 + n2
2

2

)

τ + 2πi

(
n1x1 + n2x2 + n1 + n2

4

)]

= θ0, 1
2
(2x1, 2τ )θ0, 1

2
(2x2, 2τ )+ θ 1

2 ,
1
2
(2x1, 2τ )θ 1

2 ,
1
2
(2x2, 2τ ).

Similarly, using the same argument it is easy to show that,

θ0, 1
2
(x1 − x2, τ )θ(x1 + x2, τ ) = θ0, 1

2
(2x1, 2τ )θ0, 1

2
(2x2, 2τ )

−θ 1
2 ,

1
2
(2x1, 2τ )θ 1

2 ,
1
2
(2x2, 2τ ).

By using the above two results in (2.46), we get

θ 1
2 ,

1
2
(2x1, 2τ )θ 1

2 ,
1
2
(2x2, 2τ ) = θ(2x1 + 2x2, 4τ )θ 1

2 ,0
(2x1 − 2x2, 4τ )

−θ(2x1 − 2x2, 4τ )θ 1
2 ,0

(2x1 + 2x2, 4τ ).

Watson addition formula (2.50) is obtained by replacing x1, x2, τ by x1
2 ,

x2
2 ,

τ
2 ,

respectively, in the above equation. ��

2.3.6 Riemann’s Identity

The Riemann’s identity is the well-known fourth order identity of theta func-
tions. The beautiful account of identities derived from Riemann’s identity is given in
Mumford [14]. We give a version of this identity from determinants of eigenvectors
of the DFT �(2) with same eigenvalues [9]. We call it extended Riemann’s identity,
the particular case of this is the classical Riemann’s identity. Liu [7] has given a
beautiful and general extension of Jacobi quartic theta function identity using the
techniques of Residue theorem.

Theorem 2.3.6 (Extended Riemann’s Identity for Theta Functions)

4θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )+ 4θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ(u, τ )θ(v, τ )

+4θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )θ(x, τ )θ(y, τ )+ 4θ(x, τ )θ(y, τ )θ(u, τ )θ(v, τ )

= θ
(x

2
,
τ

4

)
θ
(y

2
,
τ

4

)
θ
(u

2
,
τ

4

)
θ
(v

2
,
τ

4

)

+θ
(
x + 1

2
,
τ

4

)
θ

(
y + 1

2
,
τ

4

)
θ
(u

2
,
τ

4

)
θ
(v

2
,
τ

4

)
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+θ
(x

2
,
τ

4

)
θ
(y

2
,
τ

4

)
θ

(
u+ 1

2
,
τ

4

)
θ

(
v + 1

2
,
τ

4

)

+θ
(
x + 1

2
,
τ

4

)
θ

(
y + 1

2
,
τ

4

)
θ

(
u+ 1

2
,
τ

4

)
θ

(
v + 1

2
,
τ

4

)
.

Proof Consider the eigenvectors (2.25) at the arguments x + τ
2 and y + 1, we have

v
(
x + τ

2
, τ, 0

)
=

⎡

⎣
2aθ 1

2 ,0
(x, τ )+ a

√
2θ

(
x
2 ,

τ
4

)

2aθ(x, τ )− a
√

2θ
(
x+1

2 , τ
4

)

⎤

⎦ (2.52)

where a = exp
(−πiτ

4 − πix
)
.

v(y + 1, τ, 0) =
⎡

⎣ 2θ(y, τ )+√2θ
(
y+1

2 , τ
4

)

−2θ 1
2 ,0

(y, τ )+√2θ
( y

2 ,
τ
4

)

⎤

⎦ . (2.53)

Since v(y + 1, τ, 0), v
(
x + τ

2 , τ, 0
)

are eigenvectors corresponding to the same
eigenvalue 1, which has multiplicity 1 we have

det
(
v
(
x + τ

2
, τ, 0

)
, v(y + 1, τ, 0)

)
= 0.

This gives

−4θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )+ 2
√

2θ 1
2 ,0

(x, τ )θ
(y

2
,
τ

4

)
− 2
√

2θ 1
2 ,0

(y, τ )θ
(x

2
,
τ

4

)

+2θ
(x

2
,
τ

4

)
θ
(y

2
,
τ

4

)
− 4θ(x, τ )θ(y, τ )− 2

√
2θ(x, τ )θ

(
y + 1

2
,
τ

4

)

+2
√

2θ(y, τ )θ

(
x + 1

2
,
τ

4

)
+ 2θ

(
x + 1

2
,
τ

4

)
θ

(
y + 1

2
,
τ

4

)
= 0. (2.54)

Consider in (2.54) the terms with coefficients as 2
√

2, using Eqs. (2.29), (2.30) we
have,

θ 1
2 ,0

(x, τ )θ
(y

2
,
τ

4

)
= θ 1

2 ,0
(x, τ )θ(y, τ )

+θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ ) = A,

θ 1
2 ,0

(y, τ )θ
(x

2
,
τ

4

)
= θ 1

2 ,0
(y, τ )θ(x, τ )

+θ 1
2 ,0

(y, τ )θ 1
2 ,0

(x, τ ) = B,
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θ(x, τ )θ

(
y + 1

2
,
τ

4

)
= θ(x, τ )θ(y, τ )

−θ(x, τ )θ 1
2 ,0

(y, τ ) = C,

θ(y, τ )θ

(
x + 1

2
,
τ

4

)
= θ(y, τ )θ(x, τ )

−θ(y, τ )θ 1
2 ,0

(x, τ ) = D.

Then it is clear that A − B − C + D = 0. Hence all the terms with coeffi-
cients 2

√
2 cancel each other out. Equation (2.54) becomes

2θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )+ 2θ(x, τ )θ(y, τ ) = θ
(x

2
,
τ

4

)
θ
(y

2
,
τ

4

)

+θ
(
x + 1

2
,
τ

4

)
θ

(
y + 1

2
,
τ

4

)

(2.55)

Similarly by changing the variables x,y to u,v we have

2θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )+ 2θ(u, τ )θ(v, τ ) = θ
(u

2
,
τ

4

)
θ
(v

2
,
τ

4

)

+θ
(
u+ 1

2
,
τ

4

)
θ

(
v + 1

2
,
τ

4

)

(2.56)

Multiplying (2.55), (2.56) gives

4θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )+ 4θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ(u, τ )θ(v, τ )

+4θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )θ(x, τ )θ(y, τ )+ 4θ(x, τ )θ(y, τ )θ(u, τ )θ(v, τ )

= θ
(x

2
,
τ

4

)
θ
(y

2
,
τ

4

)
θ
(u

2
,
τ

4

)
θ
(v

2
,
τ

4

)

+θ
(
x + 1

2
,
τ

4

)
θ

(
y + 1

2
,
τ

4

)
θ
(u

2
,
τ

4

)
θ
(v

2
,
τ

4

)

+θ
(x

2
,
τ

4

)
θ
(y

2
,
τ

4

)
θ

(
u+ 1

2
,
τ

4

)
θ

(
v + 1

2
,
τ

4

)

+θ
(
x + 1

2
,
τ

4

)
θ

(
y + 1

2
,
τ

4

)
θ

(
u+ 1

2
,
τ

4

)
θ

(
v + 1

2
,
τ

4

)
(2.57)

This proves Riemann’s extended identity. ��
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We now show that the classical Riemann’s identity follows from Theorem (2.3.6).

Theorem 2.3.7 (Riemann’s Identity)

θ 1
2 ,

1
2
(x, τ )θ 1

2 ,
1
2
(y, τ )θ 1

2 ,
1
2
(u, τ )θ 1

2 ,
1
2
(v, τ )

+θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )

θ0, 1
2
(u, τ )θ0, 1

2
(v, τ )θ0, 1

2
(x, τ )θ0, 1

2
(y, τ )

+θ(x, τ )θ(y, τ )θ(u, τ )θ(v, τ )
= 2

∑

m,n,p,q∈ 1
2Z

exp
[
πi

(
m2 + n2 + p2 + q2

)
τ

+2πi (mx + ny + pu+ qv)] . (2.58)

m, n, p, q are either integers or m, n, p, q are ∈ 1
2 + Z and

∑
m = m + n +

p + q ∈ 2Z.

Proof Consider the right-hand side of (2.57)

=
∑

m,n,p,q∈Z
exp

[
πi

(∑
m2

) τ

4
+ 2πi

(∑
mx

2

)]

+
∑

m,n,p,q∈Z
exp

[
πi(

∑
m2)

τ

4
+ 2πi

(∑
mx

2
+ m+ n

2

)]

+
∑

m,n,p,q∈Z
exp

[
πi(

∑
m2)

τ

4
+ 2πi

(∑
mx

2
+ p + q

2

)]

+
∑

m,n,p,q∈Z
exp

[
πi(

∑
m2)

τ

4
+ 2πi

(∑
mx

2
+

∑
m

2

)]

= 4
∑

m+n,p+q≡0(mod 2)

exp

[
πi

(∑
m2

) τ

4
+ 2πi

(∑
mx

2

)]
. (2.59)

We have from (2.57)

θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )+ θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ(u, τ )θ(v, τ )

θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )θ(x, τ )θ(y, τ )+ θ(x, τ )θ(y, τ )θ(u, τ )θ(v, τ )

=
∑

m+n,p+q≡0(mod 2)

exp

[
πi

(∑
m2

) τ

4
+ 2πi

(∑
mx

2

)]
. (2.60)
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In (2.60) replacing x,y,z,u by x + 1
2 , y + 1

2 , u+ 1
2 , v + 1

2 we get,

θ 1
2 ,

1
2
(x, τ )θ 1

2 ,
1
2
(y, τ )θ 1

2 ,
1
2
(u, τ )θ 1

2 ,
1
2
(v, τ )

+θ 1
2 ,

1
2
(x, τ )θ 1

2 ,
1
2
(y, τ )θ0, 1

2
(u, τ )θ0, 1

2
(v, τ )

θ 1
2 ,

1
2
(u, τ )θ 1

2 ,
1
2
(v, τ )θ0, 1

2
(x, τ )θ0, 1

2
(y, τ )

+θ0, 1
2
(x, τ )θ0, 1

2
(y, τ )θ0, 1

2
(u, τ )θ0, 1

2
(v, τ )

=
∑

m+n,p+q≡0(mod 2)

exp

⎡

⎣πi
(∑

m2
) τ

4
+ 2πi

⎛

⎝

∑
m

(
x + 1

2

)

2

⎞

⎠

⎤

⎦ .

(2.61)

By adding (2.60), (2.61) we get

θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )+ θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ(u, τ )θ(v, τ )

+θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )θ(x, τ )θ(y, τ )+ θ(x, τ )θ(y, τ )θ(u, τ )θ(v, τ )

+θ 1
2 ,

1
2
(x, τ )θ 1

2 ,
1
2
(y, τ )θ 1

2 ,
1
2
(u, τ )θ 1

2 ,
1
2
(v, τ )

+θ0, 1
2
(x, τ )θ0, 1

2
(y, τ )θ 1

2 ,
1
2
(u, τ )θ 1

2 ,
1
2
(v, τ )

+θ 1
2 ,

1
2
(x, τ )θ 1

2 ,
1
2
(y, τ )θ0, 1

2
(u, τ )θ0, 1

2
(v, τ )

+θ0, 1
2
(x, τ )θ0, 1

2
(y, τ )θ0, 1

2
(u, τ )θ0, 1

2
(v, τ )

=
∑

m+n,p+q≡0(mod 2)

exp

[
πi

(∑
m2

) τ

4
+ 2πi

(∑
mx

2

)]

+
∑

m+n,p+q≡0(mod 2)

exp

⎡

⎣πi
(∑

m2
) τ

4
+ 2πi

⎛

⎝

∑
m

(
x + 1

2

)

2

⎞

⎠

⎤

⎦

(2.62)

It is clear that (2.62) for m, n, p, q are either integers or m, n, p, q are ∈ 1
2 +

Z and
∑

m = m+ n+ p + q ∈ 2Z becomes

θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )+ θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ(u, τ )θ(v, τ )

+θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )θ(x, τ )θ(y, τ )+ θ(x, τ )θ(y, τ )θ(u, τ )θ(v, τ )

+θ 1
2 ,

1
2
(x, τ )θ 1

2 ,
1
2
(y, τ )θ 1

2 ,
1
2
(u, τ )θ 1

2 ,
1
2
(v, τ )

+θ0, 1
2
(x, τ )θ0, 1

2
(y, τ )θ 1

2 ,
1
2
(u, τ )θ 1

2 ,
1
2
(v, τ )
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+θ 1
2 ,

1
2
(x, τ )θ 1

2 ,
1
2
(y, τ )θ0, 1

2
(u, τ )θ0, 1

2
(v, τ )

+θ0, 1
2
(x, τ )θ0, 1

2
(y, τ )θ0, 1

2
(u, τ )θ0, 1

2
(v, τ )

= 2
∑

m,n,p,q∈ 1
2Z

exp
[
πi

(∑
m2

)
τ + 2πi

(∑
mx

)]
.

(2.63)

Label the summands on the left-hand side of (2.63) serially as
∑k=8

k=1 Ak. For the
notational convenience we denote m1 = m + 1

2 , n1 = n + 1
2 , p1 = p + 1

2 , q1 =
q + 1

2 , then we have

A2 = θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ(u, τ )θ(v, τ )

=
∑

m,n,p,q

exp
[
πi

(
m2

1 + n2
1 + p2 + q2

)
τ + 2πi (m1x + n1y + pu+ qv)

]
,

A3 = θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )θ(x, τ )θ(y, τ )

=
∑

m,n,p,q

exp
[
πi

(
m2 + n2 + p2

1 + q2
1

)
τ + 2πi (mx + ny + p1u+ q1v)

]
,

A6 = θ0, 1
2
(x, τ )θ0, 1

2
(y, τ )θ 1

2 ,
1
2
(u, τ )θ 1

2 ,f rac12(v, τ ),

=
∑

m,n,p,q

exp
[
πi

(
m2 + n2 + p2

1 + q2
1

)
τ

+2πi

(
mx + ny + p1u+ q1v +

∑
m

2
+ 1

2

)]
,

A7 = θ 1
2 ,

1
2
(x, τ )θ 1

2 ,
1
2
(y, τ )θ0, 1

2
(u, τ )θ0, 1

2
(v, τ ),

=
∑

m,n,p,q

exp
[
πi

(
m2

1 + n2
1 + p2 + q2

)
τ

+2πi

(
m1x + n1y + pu+ qv +

∑
m

2
+ 1

2

)]
, (2.64)

Since
∑

m,n,p,q m ∈ 2Z, we have A2 + A7 = 0 and A3 + A6 = 0. Hence the
Riemann’s identity follows from (2.63) and (2.64) (see [14]). ��
For simplicity if we do a change of the variable as follows:

n1 = 1

2
(n+m+ p + q), x1 = 1

2
(x + y + u+ v),

m1 = 1

2
(n+m− p − q), y1 = 1

2
(x + y − u− v),
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p1 = 1

2
(n−m+ p − q), u1 = 1

2
(x − y + u− v),

q1 = 1

2
(n−m− p + q), v1 = 1

2
(x − y − u+ v).

Then the particular restrictions on parameters n,m,p,q of the summation above
exactly means that the resulting n1,m1, p1, q1 are integers. Also observe that we
have the identities:

∑
n2 =∑

n2
1 and

∑
xn =∑

x1n1. Equation (2.58) becomes

θ 1
2 ,

1
2
(x, τ )θ 1

2 ,
1
2
(y, τ )θ 1

2 ,
1
2
(u, τ )θ 1

2 ,
1
2
(v, τ )

+θ 1
2 ,0

(x, τ )θ 1
2 ,0

(y, τ )θ 1
2 ,0

(u, τ )θ 1
2 ,0

(v, τ )

θ0, 1
2
(u, τ )θ0, 1

2
(v, τ )θ0, 1

2
(x, τ )θ0, 1

2
(y, τ )

+θ(x, τ )θ(y, τ )θ(u, τ )θ(v, τ )
= 2θ(x1, τ )θ(y1, τ )θ(u1, τ )θ(v1, τ ).

The method presented above indicates that all the identities in [14] derived from the
Riemann’s identity can be derived from the techniques illustrated above.

2.4 DFT �(3) and Theta Function Identities

This section explores identities of theta functions corresponding to the DFT �(3).
Theta functions corresponding to this are θa,b for a, b ∈ 1

3Z. These functions
have not been studied extensively in the literature like classical Jacobi theta
functions. This section gives natural extensions of some of the identities obtained in
Sect. 2.3. We give an extension of Watson addition formula (2.46) for the DFT �(3).
The quadratic identity involving theta functions is given. We give a fourth order
extension of Riemann’s identity for theta functions θa,b for a,b ∈ 1

3Z. This leads to
some nontrivial identities of fourth order.

2.4.1 θa,b(x, τ) with a, b ∈ 1
3Z and �(3)

There are nine theta functions θa,b(x, τ ) with a, b ∈ 1
3Z. This can be listed as below

θ 1
3 ,

1
3
(x, τ ) =

∑

m∈Z
exp[πiτ(m+ 1/3)2 + 2πi(m+ 1/3)(x + 1/3)],

θ 1
3 ,0

(x, τ ) =
∑

m∈Z
exp[πiτ(m+ 1/3)2 + 2πi(m+ 1/3)x],
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θ0, 1
3
(x, τ ) =

∑

m∈Z
exp[πim2τ + 2πim(x + 1/3)],

θ 1
3 ,

2
3
(x, τ ) =

∑

m∈Z
exp[πiτ(m+ 1/3)2 + 2πi(m+ 1/3)(x + 2/3)],

θ 2
3 ,

1
3
(x, τ ) =

∑

m∈Z
exp[πiτ(m+ 2/3)2 + 2πi(m+ 2/3)(x + 1/3)],

θ 2
3 ,

2
3
(x, τ ) =

∑

m∈Z
exp[πiτ(m+ 2/3)2 + 2πi(m+ 2/3)(x + 2/3)],

θ 2
3 ,0

(x, τ ) =
∑

m∈Z
exp[πiτ(m+ 2/3)2 + 2πi(m+ 2/3)x],

θ0, 2
3
(x, τ ) =

∑

m∈Z
exp[πiτm2 + 2πim(x + 2/3)],

θ0,0 =
∑

m∈Z
exp[πiτm2 + 2πim2]

The explicit description of zeros of theta functions θa,b with a,b ∈ 1
l
Z is given

in Mumford [14]. In particular the zeros of θa,b with a,b ∈ 1
3Z are at the

points (a +m+ 1
2 )τ + (b + n+ 1

2 ), for m,n ∈ Z and a, b ∈ 1
3Z. The eigenvalues

of the DFT �(3) are +1, −1 and i with multiplicity one (2.2.2). The eigenvector
corresponding to eigenvalue+1 is given by using Theorem (2.3.1).

v(x, τ, 0) =

⎡

⎢
⎢⎢
⎣

2θ(x, τ )+ 2√
3
θ
(
x
3 ,

τ

32

)

θ 1
3 ,0

(x, τ )+ θ 2
3 ,0

(x, τ )+ 1√
3

[
θ
(
x+1

3 , τ
32

)
+ θ

(
x−1

3 , τ
32

)]

θ 1
3 ,0

(x, τ )+ θ 2
3 ,0

(x, τ )+ 1√
3

[
θ
(
x+2

3 , τ
32

)
+ θ

(
x−2

3 , τ
32

)]

⎤

⎥
⎥⎥
⎦
.

The eigenvector corresponding to eigenvalue−1 is given by

v(x, τ, 2) =

⎡

⎢
⎢
⎢
⎣

2θ(x, τ )− 2√
3
θ
(
x
3 ,

τ

32

)

θ 1
3 ,0

(x, τ )+ θ 2
3 ,0

(x, τ )− 1√
3

[
θ
(
x+1

3 , τ
32

)
+ θ

(
x−1

3 , τ
32

)]

θ 1
3 ,0

(x, τ )+ θ 2
3 ,0

(x, τ )− 1√
3

[
θ
(
x+2

3 , τ

32

)
+ θ

(
x−2

3 , τ

32

)]

⎤

⎥
⎥
⎥
⎦
.

Similarly the eigenvector corresponding to eigenvalue i is given by

v(x, τ, 1) =

⎡

⎢
⎢
⎣

0

θ 1
3 ,0

(x, τ )− θ 2
3 ,0

(x, τ )− i√
3

[
θ
(
x+1

3 , τ
32

)
− θ

(
x−1

3 , τ
32

)]

θ 2
3 ,0

(x, τ )− θ 1
3 ,0

(x, τ )− i√
3

[
θ
[
x+2

3 , τ

32

)
− θ

(
x−2

3 , τ

32

)]

⎤

⎥
⎥
⎦ .
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We have,

θ(x + 1, τ ) = θ(x, τ ) , θ 1
3 ,0

(x + 1, τ ) = ωθ 1
3 ,0

(x, τ ) , θ 2
3 ,0

(x + 1, τ )

= ω2θ 2
3 ,0

(x, τ ),

where ω = e
2πi

3 is the cube root of unity.

�(3) [v(x, τ, 0)+ v(x, τ, 1)+ v(x, τ, 2)] = v(x, τ, 0)+ iv(x, τ, 1)− v(x, τ, 2).

By equating the first component we obtain

θ(x, τ )+ θ 1
3 ,0

(x, τ )+ θ 2
3 ,0

(x, τ ) = θ
(x

3
,
τ

32

)
. (2.65)

Replacing x by x + 1 and x + 2 in (2.65) we get the following identities:

θ(x, τ )+ ωθ 1
3 ,0

(x, τ )+ ω2θ 2
3 ,0

(x, τ ) = θ

(
x + 1

3
,
τ

32

)
. (2.66)

θ(x, τ )+ ω2θ 1
3 ,0

(x, τ )+ ωθ 2
3 ,0

(x, τ ) = θ

(
x + 2

3
,
τ

32

)
. (2.67)

The above identities are equivalent to

θ(x, τ ) = θ(3x, 9τ )+ θ 1
3 ,0

(3x, 9τ )+ θ 2
3 ,0

(3x, 9τ ) (2.68)

θ0, 1
3
(x, τ ) = θ(3x, 9τ )+ ωθ 1

3 ,0
(3x, 9τ )+ ω2θ 2

3 ,0
(3x, 9τ ) (2.69)

θ0, 2
3
(x, τ ) = θ(3x, 9τ )+ ω2θ 1

3 ,0
(3x, 9τ )+ ωθ 2

3 ,0
(3x, 9τ ). (2.70)

Identities (2.65)–(2.70) are extensions of the identities (2.29)–(2.32).
The identities (2.65)–(2.67) show the role that DFT plays in this context. The

above identities can be represented as

⎡

⎣
1 1 1
1 ω ω2

1 ω2 ω

⎤

⎦

⎡

⎢
⎣

θ(x, τ )

θ 1
3 ,0

(x, τ )

θ 2
3 ,0

(x, τ )

⎤

⎥
⎦ =

⎡

⎢
⎢
⎣

θ
(
x
3

)

θ
(
x+1

3

)

θ
(
x+1

3

)

⎤

⎥
⎥
⎦ .
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The above representation shows the general fact stated in the following theorem
given in [10, 14]. Theorem 2.4.1 and identity (2.73) have been proved in [10]
for generalized ν-theta functions. We reproduce these results for completion
corresponding to ν = 1.

Theorem 2.4.1 The theta functions θ
(
j+x
n

, τ
n2

)
and θ j

n ,0
(x, τ )k, j = 0, 1, 2, . . . ,

n− 1 are connected by a multiple of the DFT.

θ j
n ,0

(x, τ ) = 1

n

n−1∑

k=0

q−jkθ
(
k + x

n
,
τ

n2

)
(2.71)

θ

(
k + x

n
,
τ

n2

)
=

n−1∑

j=0

qjkθ j
n
,0(x, τ ) . (2.72)

In particular, (2.71) says that if

v =
(
θ 0
n
,0(x, τ ), θ 1

n
,0(x, τ ), . . . , θ n−1

n
,0(x, τ )

)t
,

w =
(
θ
(x
n
,
τ

n2

)
, . . . , θ

(
x + n− 1

n
,
τ

n2

))
.

then
√
n�(v) = w. Thus v = 1√

n
�−1w,

Proof

n−1∑

j=0

qjkθ j
n ,0

(x, τ ) =
n−1∑

j=0

∑

m∈Z
exp

[
πiτ(mn+ j)2

n2

+2πi(mn+ j)x

n
+ 2πik(mn+ j)

n

]
.

Consider r = mn+ j then j = r −mn and

qjk = qrk−mnk = qrk .

The double sum in RHS of the above equality can be written as a single sum, by the
definition of the theta function,

∑

r∈Z
exp

[
πiτ

r2ν

n2
+ 2πir

x + k

n

]
= θ

(
j + x

n
,
τ

n2

)
.

This proves the formula (2.71).
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In particular, taking j = 0 in (2.71) and k = 0 in (2.72) we get the following
formulae:

θ(x, τ ) = 1

n

n−1∑

k=0

θ

(
k + x

n
,
τ

n2 ,

)
,

θ
(x
n
,
τ

n2 ,
)
=

n−1∑

j=0

θ j
n
,0(x, τ ) .

��
Unitarity of the DFT implies the following relations between theta functions

which is Parceval identity,

k=n−1∑

k=0

∣
∣
∣
∣θ

(
x + k

n
,
τ

n2 ,

)∣∣
∣
∣

2

= n

n−1∑

j=0

|θ j
n ,0

(x, τ )|2 . (2.73)

2.4.2 Extended Watson Addition Formula Corresponding
to �(3)

Theorem 2.4.2 (Extended Watson Addition Formula Corresponding to �(3))

3 θ(3x + 3y, 9τ )θ 1
3 ,0

(3x − 3y, 9τ )+ 3θ(3x + 3y, 9τ )θ 2
3 ,0

(3x − 3y, 9τ )

−3θ(3x − 3y, 9τ )θ 1
3 ,0

(3x + 3y, 9τ )− 3θ 2
3 ,0

(3x + 3y, 9τ )θ(3x − 3y, 9τ )

= θ0, 1
3
(x + y, τ )θ(x − y, τ )+ θ0, 2

3
(x + y, τ )θ(x − y, τ )

−θ(x + y, τ )θ0, 1
3
(x − y, τ )− θ(x + y, τ )θ0, 2

3
(x − y, τ ). (2.74)

Proof Consider the eigenvectors v(x + y, 3τ, 0), v(x − y, 3τ, 0).

v(x + y, 3τ, 0)

=

⎡

⎢
⎢
⎣

2θ(x + y, 3τ)+ 2√
3
θ
( x+y

3 , τ
3

)

θ 1
3 ,0

(x + y, 3τ)+ θ 2
3 ,0

(x + y, 3τ)+ 1√
3

[
θ
(
x+y+1

3 , τ3

)
+ θ

(
x+y−1

3 , τ3

)]

θ 1
3 ,0

(x + y, 3τ)+ θ 2
3 ,0

(x + y, 3τ)+ 1√
3

[
θ
(
x+y+2

3 , τ3

)
+ θ

(
x+y−2

3 , τ3

)]

⎤

⎥
⎥
⎦ ,
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v(x − y, 3τ, 0)

=

⎡

⎢
⎢
⎣

2θ(x − y, 3τ)+ 2√
3
θ
( x−y

3 , τ
3

)

θ 1
3 ,0

(x − y, 3τ)+ θ 2
3 ,0

(x − y, 3τ)+ 1√
3

[
θ
(
x−y+1

3 , τ
3

)
+ θ

(
x−y−1

3 , τ
3

)]

θ 1
3 ,0

(x − y, 3τ)+ θ 2
3 ,0

(x − y, 3τ)+ 1√
3

[
θ
(
x−y+2

3 , τ
3

)
+ θ

(
x−y−2

3 , τ
3

)]

⎤

⎥
⎥
⎦ .

These are eigenvectors corresponding to the same eigenvalue 1 which has multiplic-
ity 1. Therefore any 2 × 2 minor of [v(x + y, 3τ, 0), v(x − y, 3τ, 0)] is zero. We
consider the minor formed by the first two components in the eigenvectors v(x +
y, 3τ, 0), v(x − y, 3τ, 0), i.e.

l

∣
∣
∣
∣
v0(x + y, 3τ, 0) v0(x − y, 3τ, 0)
v1(x + y, 3τ, 0) v1(x − y, 3τ, 0)

∣
∣
∣
∣ = 0.

In the following expansion we have used the temporary shorthand notation:

θ j
3 ,0

(x ± y, 3τ ) = θ j
3 ,0

(x ± y), θ

(
x ± y ± j

3
,
τ

3

)

= θ

(
x ± y ± j

3

)
forj = 0, 1, 2.

2θ(x + y)θ 1
3 ,0

(x − y)+ 2θ(x + y)θ 2
3 ,0

(x − y)

+ 2√
3
θ(x + y)θ

(
x − y + 1

3

)
+ 2√

3
θ(x + y)θ

(
x − y − 1

3

)

+ 2√
3
θ

(
x + y

3

)
θ 1

3 ,0
(x − y)+ 2√

3
θ

(
x + y

3

)
θ 2

3 ,0
(x − y)

+2

3
θ

(
x + y

3

)
θ

(
x − y + 1

3

)
+ 2

3
θ

(
x + y

3

)
θ

(
x − y − 1

3

)

−2θ(x − y)θ 1
3 ,0

(x + y)− 2θ(x − y)θ 2
3 ,0

(x + y)

− 2√
3
θ(x − y)θ

(
x + y + 1

3

)
− 2√

3
θ(x − y)θ

(
x + y − 1

3

)

− 2√
3
θ

(
x − y

3

)
θ 1

3 ,0
(x + y)− 2√

3
θ

(
x − y

3

)
θ 2

3 ,0
(x + y)

−2

3
θ

(
x − y

3

)
θ

(
x + y + 1

3

)
− 2

3
θ

(
x − y

3

)
θ

(
x + y − 1

3

)
= 0.

(2.75)
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Label the summands on the left-hand side of (2.75) successively as A1, A2, A3,
. . ., A16. Then

∑16
k=1 Ak = 0. Consider the terms with coefficients 2√

3
. We use

formulas (2.65)–(2.67) in the following formula:

A3 = θ(x + y)θ

(
x − y + 1

3

)

= θ(x + y)
(
θ(x − y)+ ωθ 1

3 ,0
θ(x − y)+ ω2θ 2

3 ,0
(x − y)

)

= θ(x + y)θ(x − y)+ ωθ(x + y)θ 1
3 ,0

(x − y)+ ω2θ(x + y)θ 2
3 ,0

(x − y),

A4 = θ(x + y)θ

(
x − y − 1

3

)

= θ(x + y)
(
θ(x − y)+ ω2θ 1

3 ,0
θ(x − y)+ ωθ 2

3 ,0
(x − y)

)

= θ(x + y)θ(x − y)+ ω2θ(x + y)θ 1
3 ,0

(x − y)+ ωθ(x + y)θ 2
3 ,0

(x − y),

A5 = θ 1
3 ,0

(x − y)θ

(
x + y

3

)

= θ 1
3 ,0

(x − y)θ(x + y)+ θ 1
3 ,0

(x − y)θ 1
3 ,0

(x + y)+ θ 1
3 ,0

(x − y)θ 2
3 ,0

(x + y),

A6 = θ 2
3 ,0

(x − y)θ

(
x + y

3

)

= θ 2
3 ,0

(x − y)θ(x + y)+ θ 2
3 ,0

(x − y)θ 1
3 ,0

(x + y)+ θ 2
3 ,0

(x − y)θ 2
3 ,0

(x + y),

−A11 = −θ(x − y)θ

(
x + y + 1

3

)

= −θ(x − y)θ(x + y)− ωθ(x − y)θ 1
3 ,0

(x + y)− ω2θ(x − y)θ 2
3 ,0

(x + y),

−A12 = θ(x − y)θ

(
x + y − 1

3

)

= −θ(x − y)θ(x + y)− ω2θ(x − y)θ 1
3 ,0

(x + y)− ωθ(x − y)θ 2
3 ,0

(x + y),

−A13 = −θ 1
3 ,0

(x + y)θ

(
x − y

3

)

= −θ 1
3 ,0

(x + y)θ(x − y)− θ 1
3 ,0

(x + y)θ 1
3 ,0

(x − y)

−θ 1
3 ,0

(x + y)θ 2
3 ,0

(x − y)
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−A14 = −θ 2
3 ,0

(x + y)θ

(
x − y

3

)

= −θ 2
3 ,0

(x + y)θ(x − y)− θ 2
3 ,0

(x + y)θ 1
3 ,0

(x − y)

−θ 2
3 ,0

(x + y)θ 2
3 ,0

(x − y)

We have A3+A4+A5+A6+A11+A12+A13+A14 = 0. Equation (2.75) becomes

3θ(x + y)θ 1
3 ,0

(x − y)+ 3θ(x + y)θ 2
3 ,0

(x − y)

−3θ(x − y)θ 1
3 ,0

(x + y)− 3θ(x − y)θ 2
3 ,0

(x + y)

= θ

(
x − y

3

)
θ

(
x + y + 1

3

)
+ θ

(
x − y

3

)
θ

(
x + y + 2

3

)

−θ
(
x + y

3

)
θ

(
x − y + 1

3

)
− θ

(
x + y

3

)
θ

(
x − y + 2

3

)
.

replacing x, y, τ by 3x, 3y, 3τ we get the required formula. ��
Corollary 2.4.3

3 θ(3x, 9τ )θ 1
3 ,0

(0, 9τ )+ 3θ(3x, 9τ )θ 2
3 ,0

(0, 9τ )

−3θ(0, 9τ )θ 1
3 ,0

(3x, 9τ )− 3θ 2
3 ,0

(3x, 9τ )θ(0, 9τ )

= θ0, 1
3
(x, τ )θ(0, τ )+ θ0, 2

3
(x, τ )θ(0, τ )

−θ(x, τ )θ0, 1
3
(0, τ )− θ(x, τ )θ0, 2

3
(0, τ ).

Proof Put y = x in Theorem 2.4.2 and replace x by x
2 to get (2.4.3). ��

Theorem 2.4.4

3θ(x, τ )θ(y, τ )+ 3θ(x, τ )θ 1
3 ,0

(y, τ )− 3θ 1
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )

−3θ 2
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )

= θ

(
x + 1

3
,
τ

9

)
θ
(y

3
,
τ

9

)
+ θ

(
x − 1

3
,
τ

9

)
θ
(y

3
,
τ

9

)

−ωθ
(x

3
,
τ

9

)
θ

(
y + 1

3
,
τ

9

)
− ω2θ

(x
3
,
τ

9

)
θ

(
y − 1

3
,
τ

9

)
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Proof The transformation y → y + 2τ
3 transforms θ 1

3 ,0
(y, τ ) as follows:

(a)

θ 1
3 ,0

(
y + 2τ

3
, τ

)

=
∑

exp

[

πi

(
m+ 1

3

)2

τ + 2πi

(
m+ 1

3

)(
y + 2τ

3

)]

=
∑

exp

[
πi

(
m2 + 2m

3
+ 1

9

)
τ + 2πimy + 4πimτ

3
+ 2πiy

3
+ 4πiτ

9

]

= exp

[−4πiy

3
− 4πiτ

9

]∑
exp

[
πi(m+ 1)2τ + 2πi(m+ 1)y

]

= cd θ(y, τ ).

where c = exp
(−4πiy

3

)
, d = exp

(−4πiτ
9

)
.

(b)

θ 2
3 ,0

(
y + 2τ

3
, τ

)

=
∑

exp

[

πi

(
m+ 2

3

)2

τ + 2πi

(
m+ 2

3

)(
y + 2τ

3

)]

=
∑

exp

[
πi

(
m2 + 4m

3
+ 4

9

)
τ + 2πimy + 4πimτ

3
+ 4πiy

3
+ 8πiτ

9

]

=
∑

exp

[
πi

(
m2 + 8m

3
+ 12

9

)
τ + 2πi

(
m+ 4

3

)
y − 4πiy

3
− 4πiτ

9

]

= cd θ 1
3 ,0

(y, τ ).

(c)

θ

(
y + 1+ 2τ

3

3
,
τ

9

)

=
∑

exp

(
πim2τ

9
+ 2πim

(
y + 1+ 2τ

3

3

))

.

=
∑

exp

(
πim2τ

9
+ 2πimy

3
+ 2πim

3
+ 4πimτ

9

)
.

=
∑

exp

(
πiτ(m2 + 4m+ 4)

9
+ 2πi(m+ 2)(y + 1)

3

)

× exp

(−4πiτ

9
+ −4πiy

3
+ −4πi

3

)
.

= cdωθ

(
y + 1

3
,
τ

9

)
.
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Similarly,
(d)

θ

(
y − 1+ 2τ

3

3
,
τ

9

)

=
∑

exp

(
πim2τ

9
+ 2πim

(
y − 1+ 2τ

3

3

))

.

=
∑

exp

(
πim2τ

9
+ 2πimy

3
− 2πim

3
+ 4πimτ

9

)
.

=
∑

exp

(
πiτ(m2 + 4m+ 4)

9
+ 2πi(m+ 2)(y − 1)

3

)

× exp

(−4πiτ

9
+ −4πiy

3
+ 4πi

3

)
.

= cdω2θ

(
y − 1

3
,
τ

9

)
.

(e)

θ

(
y + 2τ

3
, τ

)

=
∑

exp

(
πim2τ + 2πim

(
y + 2τ

3

))

= cd
∑

exp

(
πiτ

(
m2 + 4m

3
+ 4

9

)
+ 2πi

(
m+ 2

3

))
y

= cdθ 2
3 ,0

(y, τ ).

The eigenvector corresponding to eigenvalue+1 is given by

v(x, τ, 0) =

⎡

⎢⎢
⎢
⎣

2θ(x, τ )+ 2√
3
θ
(
x
3 ,

τ
32

)

θ 1
3 ,0

(x, τ )+ θ 2
3 ,0

(x, τ )+ 1√
3

[
θ
(
x+1

3 , τ
32

)
+ θ

(
x−1

3 , τ
32

)]

θ 1
3 ,0

(x, τ )+ θ 2
3 ,0

(x, τ )+ 1√
3

[
θ
(
x+2

3 , τ
32

)
+ θ

(
x−2

3 , τ
32

)]

⎤

⎥⎥
⎥
⎦
.

Now using the transformation x → y + 2τ
3 and using the identities (a)–(e) we get

v(y + 2τ

3
, τ, 0)

= cd

⎡

⎢
⎢
⎢
⎣

2θ 2
3 ,0

(y, τ )+ 2√
3
θ
(
y
3 ,

τ
32

)

θ(y, τ )+ θ 1
3 ,0

(y, τ )+ 1√
3

[
ωθ

(
y+1

3 , τ
32

)
+ ω2θ

(
y−1

3 , τ
32

)]

θ(y, τ )+ θ 1
3 ,0

(y, τ )+ 1√
3

[
ωθ

(
y+1

3 , τ
32

)
+ ω2θ

(
y−1

3 , τ
32

)]

⎤

⎥
⎥
⎥
⎦
.
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where c = exp
(−4πx

3

)
, d = exp

(−4πτ
9

)
. We have v(x, τ, 0) and v

(
y + 2τ

3 , τ, 0
)

are eigenvectors corresponding to eigenvalue +1 which has multiplicity one.
Therefore any minor of 2 × 2 order vanishes. We consider the minor formed by

the first two components of the eigenvectors v(x, τ, 0),v
(
y + 2τ

3 , τ, 0
)

. This gives

2θ(x, τ )θ(y, τ )+ 2θ(x, τ )θ 1
3 ,0

(y, τ )+ 2ω√
3
θ(x, τ )θ

(
y + 1

3
,
τ

9

)

+2ω2

√
3
θ(x, τ )θ

(
y − 1

3
,
τ

9

)
+ 2√

3
θ
(x

3
,
τ

9

)
θ(y, τ )+ 2√

3
θ
(x

3
,
τ

9

)
θ 1

3 ,0
(y, τ )

+2ω

3
θ
(x

3
,
τ

9

)
θ

(
y + 1

3
,
τ

9

)
+ 2ω2

3
θ
(x

3
,
τ

9

)
θ

(
y − 1

3
,
τ

9

)

−2θ 1
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )− 2√
3
θ 1

3 ,0
(x, τ )θ

(y
3
,
τ

9

)
− 2θ 2

3 ,0
(x, τ )θ 2

3 ,0
(y, τ )

− 2√
3
θ 2

3 ,0
(x, τ )θ

(y
3
,
τ

9

)
− 2√

3
θ 2

3 ,0
(y, τ )θ

(
x + 1

3
,
τ

9

)

−2

3
θ

(
x + 1

3
,
τ

9

)
θ
(y

3
,
τ

9

)

− 2√
3
θ 2

3 ,0
(x, τ )θ

(
x − 1

3
,
τ

9

)
− 2

3
θ

(
x − 1

3
,
τ

9

)
θ
(y

3
,
τ

9

)
= 0

We consider all the terms which are coefficients of 2√
3

in (2.76).

ωθ(x, τ )θ

(
y + 1

3
,
τ

9

)
= ωθ(x, τ )θ(y, τ )+ ω2θ(x, τ )θ 1

3 ,0
(y, τ )

+θ(x, τ )θ 2
3 ,0

(y, τ ) = A,

ω2θ(x, τ )θ

(
y + 2

3
,
τ

9

)
= ω2θ(x, τ )θ(y, τ )+ ωθ(x, τ )θ 1

3 ,0
(y, τ )

+θ(x, τ )θ 2
3 ,0

(y, τ ) = B,

θ
(x

3
,
τ

9

)
θ(y, τ ) = θ(x, τ )θ(y, τ )+ θ 1

3 ,0
(x, τ )θ(y, τ )

+θ 2
3 ,0

(x, τ )θ(y, τ ) = C,

θ
(x

3
,
τ

9

)
θ 1

3 ,0
(y, τ ) = θ(x, τ )θ 1

3 ,0
(y, τ )+ θ 1

3 ,0
(x, τ )θ 1

3 ,0
(y, τ )

+θ 2
3 ,0

(x, τ )θ 1
3 ,0

(y, τ ) = D.

θ 1
3 ,0

(x, τ )θ
(y

3
,
τ

9

)
= θ 1

3 ,0
(x, τ )θ(y, τ )+ θ 1

3 ,0
(x, τ )θ 1

3 ,0
(y, τ )
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+θ 1
3 ,0

(x, τ )θ 2
3 ,0

(y, τ ) = E,

θ 2
3 ,0

(x, τ )θ
(y

3
,
τ

9

)
= θ 2

3 ,0
(x, τ )θ(y, τ )+ θ 2

3 ,0
(x, τ )θ 1

3 ,0
(y, τ )

+θ 2
3 ,0

(x, τ )θ 2
3 ,0

(y, τ ) = F

θ

(
x + 1

3
,
τ

9

)
θ 2

3 ,0
(y, τ ) = θ(x, τ )θ 2

3 ,0
(y, τ )+ ωθ 1

3 ,0
(x, τ )θ 2

3 ,0
(y, τ )

+ω2θ 2
3 ,0

(x, τ )θ 2
3 ,0

(y, τ ) = G

θ

(
x − 1

3
,
τ

9

)
θ 2

3 ,0
(y, τ ) = θ(x, τ )θ 2

3 ,0
(y, τ )+ ω2θ 1

3 ,0
(x, τ )θ 2

3 ,0
(y, τ )

+ωθ 2
3 ,0

(x, τ )θ 2
3 ,0

(y, τ ) = H

Then it is clear that A+B+C+D−E−F −G−H = 0. Hence all the terms with
coefficients of 2√

3
cancel each other out. Thus we obtain the required identity. ��

2.4.3 Extended Riemann’s Identity Corresponding to �(3)

In the following identity we give a fourth order extension of extended Riemann’s
identity for θa,b with a,b ∈ 1

3Z.

Theorem 2.4.5

9θ(x, τ )θ(y, τ )θ(u, τ )θ(v, τ )+ 9θ(x, τ )θ(y, τ )θ(u, τ )θ 1
3 ,0

(v, τ )

−9θ(x, τ )θ(y, τ )θ 1
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )− 9θ(x, τ )θ(y, τ )θ 2
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )

+9θ(x, τ )θ 1
3 ,0

(y, τ )θ(u, τ )θ(v, τ )+ 9θ(x, τ )θ 1
3 ,0

(y, τ )θ(u, τ )θ 1
3 ,0

(v, τ )

−9θ(x, τ )θ 1
3 ,0

(y, τ )θ 1
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )

−9θ(x, τ )θ 1
3 ,0

(y, τ )θ 2
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )

−9θ 1
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )θ(u, τ )θ(v, τ )− 9θ 1
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )θ(u, τ )θ 1
3 ,0

(v, τ )

+9θ 1
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )θ 1
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )

+9θ 1
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )θ 2
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )

−9θ 2
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )θ(u, τ )θ(v, τ )− 9θ 2
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )θ(u, τ )θ 1
3 ,0

(v, τ )

+9θ 2
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )θ 1
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )

+9θ 2
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )θ 2
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )
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=
θ

(
x + 1

3

)
θ
(y

3

)
θ

(
u+ 1

3

)
θ
(v

3

)
+ θ

(
x + 1

3

)
θ
(y

3

)
θ

(
u− 1

3

)
θ
(v

3

)

−ωθ
(
x + 1

3

)
θ
(y

3

)
θ
(u

3

)
θ

(
v + 1

3

)

−ω2θ

(
x + 1

3

)
θ
(y

3

)
θ
(u

3

)
θ

(
v − 1

3

)

+θ
(
x − 1

3

)
θ
(y

3

)
θ

(
u+ 1

3

)
θ
(v

3

)
+ θ

(
x − 1

3

)
θ
(y

3

)
θ

(
u− 1

3

)
θ
(v

3

)

−ωθ
(
x − 1

3

)
θ
(y

3

)
θ
(u

3

)
θ

(
v + 1

3

)

−ω2θ

(
x − 1

3

)
θ
(y

3

)
θ
(u

3

)
θ

(
v − 1

3

)

−ωθ
(x

3

)
θ

(
y + 1

3

)
θ

(
u+ 1

3

)
θ
(v

3

)

−ωθ
(x

3

)
θ

(
y + 1

3

)
θ

(
u− 1

3

)
θ
(v

3

)

+ω2θ
(x

3

)
θ

(
y + 1

3

)
θ
(u

3

)
θ

(
v + 1

3

)

+θ
(x

3

)
θ

(
y + 1

3

)
θ
(u

3

)
θ

(
v − 1

3

)

−ω2θ
(x

3

)
θ

(
y − 1

3

)
θ

(
u+ 1

3

)
θ
(v

3

)

−ω2θ
(x

3

)
θ

(
y − 1

3

)
θ

(
u− 1

3

)
θ
(v

3

)

+θ
(x

3

)
θ

(
y − 1

3

)
θ
(u

3

)
θ

(
v + 1

3

)

+ωθ
(x

3

)
θ

(
y − 1

3

)
θ
(u

3

)
θ

(
v − 1

3

)
. (2.76)

where all theta functions on the right-hand side of (2.76) are at the argument τ
9 .

Proof Theorem (2.4.4) we have

3θ(x, τ )θ(y, τ )+ 3θ(x, τ )θ 1
3 ,0

(y, τ )

−3θ 1
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )− 3θ 2
3 ,0

(x, τ )θ 2
3 ,0

(y, τ )
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= θ

(
x + 1

3
,
τ

9

)
θ
(y

3
,
τ

9

)
+ θ

(
x − 1

3
,
τ

9

)
θ
(y

3
,
τ

9

)

−ωθ
(x

3
,
τ

9

)
θ

(
y + 1

3
,
τ

9

)
− ω2θ

(x
3
,
τ

9

)
θ

(
y − 1

3
,
τ

9

)
(2.77)

replace variables x, y by u, v, respectively, to get

3θ(u, τ )θ(v, τ )+ 3θ(u, τ )θ 1
3 ,0

(v, τ ) − 3θ 1
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )

−3θ 2
3 ,0

(u, τ )θ 2
3 ,0

(v, τ )

= θ

(
u+ 1

3
,
τ

9

)
θ
(v

3
,
τ

9

)
+ θ

(
u− 1

3
,
τ

9

)
θ
(v

3
,
τ

9

)

−ωθ
(u

3
,
τ

9

)
θ

(
v + 1

3
,
τ

9

)
− ω2θ

(u
3
,
τ

9

)
θ

(
v − 1

3
,
τ

9

)
(2.78)

Multiplying (2.77) and (2.78) we get the required identity. ��
Corollary 2.4.6

3θ4(x, τ )+ 6θ3(x, τ )θ 1
3 ,0

(x, τ )− 6θ2(x, τ )θ 1
3 ,0

(x, τ )θ 2
3 ,0

(x, τ )

−6θ2(x, τ )θ2
2
3 ,0

(x, τ )+ 3θ2(x, τ )θ2
1
3 ,0

(x, τ )− 6θ2
1
3 ,0

(x, τ )θ(x, τ )θ 2
3 ,0

(x, τ )

−6θ(x, τ )θ 1
3 ,0

(x, τ )θ2
2
3 ,0

(x, τ )+ 3θ2
1
3 ,0

(x, τ )θ2
2
3 ,0

(x, τ )+ 6θ 1
3 ,0

(x, τ )θ3
2
3 ,0

(x, τ )

+3θ4
2
3 ,0

(x, τ )

= 2θ2
(x

3
,
τ

9

)
θ

(
x + 1

3
,
τ

9

)
θ

(
x + 2

3
,
τ

9

)

−ω2θ2
(x

3
,
τ

9

)
θ2

(
x − 1

3
,
τ

9

)

−ωθ2
(x

3
,
τ

9

)
θ2

(
x + 1

3
,
τ

9

)

Proof The proof follows by substituting y = u = v = x in (2.76)

9θ4(x, τ )+ 9θ3(x, τ )θ 1
3 ,0

(x, τ )− 9θ2(x, τ )θ 1
3 ,0

(x, τ )θ 2
3 ,0

(x, τ )

−9θ2(x, τ )θ2
2
3 ,0

(x, τ )+ 9θ3(x, τ )θ 1
3 ,0

(x, τ )+ 9θ2(x, τ )θ2
1
3 ,0

(x, τ )

−9θ(x, τ )θ 2
3 ,0

(x, τ )θ2
1
3 ,0

(x, τ )− 9θ(x, τ )θ 1
3 ,0

(x, τ )θ2
2
3 ,0

(x, τ )
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−9θ 1
3 ,0

(x, τ )θ 2
3 ,0

(x, τ )θ2(x, τ )− 9θ2
1
3 ,0

(x, τ )θ 2
3 ,0

(x, τ )θ(x, τ )

+9θ2
1
3 ,0

(x, τ )θ2
2
3 ,0

(x, τ )+ 9θ 1
3 ,0

(x, τ )θ3
2
3 ,0

(x, τ )

−9θ2
2
3 ,0

(x, τ )θ2(x, τ )− 9θ2
2
3 ,0

(x, τ )θ(x, τ )θ 1
3 ,0

(x, τ )

+9θ3
2
3 ,0

(x, τ )θ 1
3 ,0

(x, τ )+ 9θ4
2
3 ,0

(x, τ )

= θ2
(
x + 1

3
,
τ

9

)
θ2

(x
3
,
τ

9

)

+θ
(
x + 1

3
,
τ

9

)
θ2

(x
3
,
τ

9

)
θ

(
x + 2

3
,
τ

9

)

−ωθ2
(
x + 1

3
,
τ

9

)
θ2

(x
3
,
τ

9

)

−ω2θ

(
x + 1

3
,
τ

9

)
θ2

(x
3
,
τ

9

)
θ

(
x + 2

3
,
τ

9

)

+θ
(
x + 1

3
,
τ

9

)
θ

(
x + 2

3
,
τ

9

)
θ2

(x
3
,
τ

9

)
+ θ2

(
x + 2

3

)
θ2

(x
3

)

−ωθ
(
x + 2

3

)
θ

(
x + 1

3

)
θ2

(x
3

)
− ω2θ2

(
x + 2

3
,
τ

9

)
θ2

(x
3
,
τ

9

)

−ω2θ2
(x

3

)
θ2

(
x + 2

3

)
− ωθ2

(x
3
,
τ

9

)
θ2

(
x + 1

3
,
τ

9

)

−ωθ2
(x

3
,
τ

9

)
θ

(
x + 1

3
,
τ

9

)
θ

(
x + 2

3
,
τ

9

)

+ω2θ2
(x

3
,
τ

9

)
θ2

(
x + 1

3
,
τ

9

)

θ2
(x

3
,
τ

9

)
θ

(
x + 1

3
,
τ

9

)
θ

(
x + 2

3
,
τ

9

)

−ω2θ2
(x

3
,
τ

9

)
θ

(
x + 2

3
,
τ

9

)
θ

(
x + 1

3
,
τ

9

)

+θ2
(x

3
,
τ

9

)
θ

(
x + 1

3
,
τ

9

)
θ

(
x + 2

3
,
τ

9

)

+ωθ2
(x

3
,
τ

9

)
θ2

(
x + 2

3
,
τ

9

)
. (2.79)
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Collecting the similar terms together in (2.4.3) we get

9θ4(x, τ )+ 18θ3(x, τ )θ 1
3 ,0

(x, τ )− 18θ2(x, τ )θ 1
3 ,0

(x, τ )θ 2
3 ,0

(x, τ )

−18θ2(x, τ )θ2
2
3 ,0

(x, τ )+ 9θ2(x, τ )θ2
1
3 ,0

(x, τ )− 18θ(x, τ )θ 2
3 ,0

(x, τ )θ2
1
3 ,0

(x, τ )

+9θ2
2
3 ,0

(x, τ )θ2
1
3 ,0

(x, τ )+ 18θ 1
3 ,0

(x, τ )θ3
2
3 ,0

(x, τ )+ 9θ4
2
3 ,0

(x, τ )

−18θ 1
3 ,0

(x, τ )θ2
2
3 ,0

(x, τ )θ(x, τ ) = (1− ω − ω + ω2)θ2
(x

3

)
θ2

(
x + 1

3

)

+(1− ω2 + 1− ω − ω + 1− ω2 + 1)θ2
(x

3

)
θ

(
x + 1

3

)
θ

(
x + 2

3

)

+(1− ω2 − ω2 + ω)θ2
(x

3

)
θ2

(
x + 2

3

)
. (2.80)

simplifying the (2.80) we get the required identity. ��
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Chapter 3
On Some Combinatorics
of Rogers–Ramanujan Type Identities
Using Signed Color Partitions

V. Gupta and M. Rana

Abstract In this work we use combinatorial tools “color partitions,” “split color
partitions,” and “signed partitions” notion to define “signed color partitions” that
are further used to derive one hundred Rogers–Ramanujan type identities. The
paper lists and provides combinatorial argument using signed color partitions of
q-identities listed in Chu–Zhang and Slater’s compendium.

Keywords (m+ t)-color partitions · Split partitions · Signed partitions ·
Combinatorial interpretations

3.1 Introduction

Informally, a partition [3] of an integer m is a non-increasing sequence of positive
integers whose sum is m. Let 2 + 1 + 1 is the partition of 4 and it is denoted by
ϑ . The number of parts in the partition ϑ is called the length of the partition and is
denoted by l(ϑ), here l(ϑ) = 3. The sum of all parts of a partition ϑ is called the
weight of the partitions and is denoted by |ϑ|, here |ϑ| = 4. We consider α as the
number of distinct parts in a particular partition, here in the above partition α = 2.
In [1], Agarwal and Andrews introduced (m+ t)-colored partitions in which a part
of the size m can come in (m + t), t ≥ 0, different colors. Note that, zeros are not
allowed to repeat and occur only when t ≥ 1. For t = 0, the colored partitions
corresponding to the above ordinary partitions are 21 + 11 + 11, 22 + 11 + 11, 21 +
11+11+02, 22+11+11+02. The weighted difference (W.D.) of two consecutive
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colored parts ax and by is a−b−x−y. Corresponding to the above colored partitions
the W.D. are−1,−2; −2,−2; −1,−2,−2; −2,−2,−2. In [2], Agarwal and Sood
introduced “split (m+ t)-color partitions” where in the colored partitions the color
x is splitted into two parts “the green part (g)” and “the red part (r)” such that
1 ≤ g ≤ x, 0 ≤ r ≤ x− 1, and x = g+ r. An (m+ t)-color partition in which each
part splits in this manner is called a split (m + t)-color partitions. Also, if r = 0,
then ax = ag+0 = ag. Corresponding to the above color partitions the split color
partitions are 21+11+11, 22+11+11, 21+1+11+11, 21+11+11+02, 21+11+11+
01+1, 22+11+11+02, 21+1+11+11+02, 22+11+11+01+1, 21+1+11+11+01+1.

A signed partition δ in [6] of an integer m is a partition pair (ϑ+, ϑ−) where

m = |ϑ+| − |ϑ−|. (3.1.1)

ϑ+ (resp.ϑ−) the positive (resp. negative) subpartition δ and ϑ+1 , ϑ+2 , · · · , ϑ+
l(ϑ+)

(resp. ϑ−1 , ϑ−2 , · · · , ϑ−
l(ϑ−)) the positive (resp. negative) parts of δ. For example,

ϑ+ = 4+ 2+ 2, ϑ− = 2+ 1+ 1, then δ = (4+ 2+ 2, 2+ 1+ 1) and m = 4+ 2+
2− 2− 1− 1. Now, we define signed color partition δ, where δ = (ϑ+, ϑ−) having
ϑ+ = (ϑ1)

+
β1
, (ϑ2)

+
β2
, · · · , (ϑl(ϑ+))+βl and ϑ+ = (ϑ1)

−
β1
, (ϑ2)

−
β2
, · · · , (ϑl(ϑ−))−βl ,

where (ϑi)
+
βi
, (ϑi)

−
βi

are the colored parts. In the sequel the difference condition of
ordinary partition is converted to W.D. in a colored partition, also the color βi can
further be split in connection with split colored partition. Hence, when βi = 1, then
it is a signed partition and when βi > 1, it is a signed color partition. It is obvious
that there are infinitely many unrestricted signed partitions of any integers. But when
we place restrictions on how parts may appear, then the count of relevant partitions
is finite. Signed partitions also arise naturally in the study of certain q-series, see
[5, 6].

In this paper, we interpret 100 Rogers–Ramanujan type identities(RRTIs) of
Chu–Zhang’s compendium [4] and Slater’s compendium [7] given in Table 3.1
with signed color partition, and the identity no. of each RRTI appearing in [4, 7]
is mentioned in the last column of Table 3.1. In the “sum–product” series given
in [4, 7], the sum-series is written in the second column of Table 3.1, and for the
product-series the reader is referred to [4, 7] for their trivial interpretations. The
generating function corresponding to ϑ+ and ϑ− is written in the third and fifth
column, respectively, and their combinatorial interpretation is given in the fourth
and sixth columns, respectively.
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3.2 Main Proof

In this section, we give details of generating function corresponding to ϑ+ and ϑ−
partitions, respectively, and prove the 43rd and 82nd identities given in the table

Theorem 3.1 For m ≥ 0, let f43(m) denote the number of signed color partitions
δ = (ϑ+, ϑ−) of m, where

(1) ϑ+ denotes the number of m-color partitions of m such that

(a) parts and their subscripts are even and ≥ 6,
(b) the least part ax satisfy a − x ≡ 0(mod 8),
(c) the weighted difference (W.D.) of any two consecutive parts is non-

negative and ≡ 0(mod 8),

(2) ϑ− denotes the number of m-color partitions ofm with first copy such that parts
are odd and distinct < 4α,

where α is the number of distinct parts in ϑ+. Then

f43(m) =
∞∑

m=0

(−q; q)4mq
2m2

(−q4; q4)m(q4; q4)2m
.

Example 3.1 Consider m = 11, then f43(m) = 5, the relevant signed color
partitions are:

1212− 11, 1414− 31, 146 − 31, 186 + 66 − 71 − 51 − 11, 208 + 66 − 71 − 51 − 31.

Proof We have

∞∑

m=0

A43(m)qm =
∞∑

m=0

(−q; q)4mq
2m2

(−q4; q4)m(q4; q4)2m

=
∞∑

m=0

(−q; q2)2mq
2m2

(q8; q8)m(q2; q4)m

=
∞∑

m=0

q2m2

(q8; q8)m(q2; q4)m

2m∏

i=1

(1+ q(2i−1))

=
∞∑

m=0

q6m2

(q8; q8)m(q2; q4)m

2m∏

i=1

(1+ q−(2i−1)). (3.2.1)



3 On Some Combinatorics of Rogers–Ramanujan Type Identities Using. . . 115

In the above,
∑∞

m=0
q6m2

(q8;q8)m(q2;q4)m
and

∏2m
i=1 (1+ q−(2i−1)) correspond to parti-

tions given by ϑ+ and ϑ−, respectively. Now,
2m∏

i=1
(1+ q−(2i−1)) denotes the number

of n-color partition of m such that parts are odd and distinct < 4α with first

copy. Also,
∞∑

m=0

q6m2

(q8;q8)m(q2;q4)m
enumerates the partitions denoted by B43(m). Let

B43(l,m) denote the number of partitions of m enumerated by B43(m) into l parts.
We split the partition into three classes: (i) those do not contain kk as a part, (ii) those
contain 66 as a part, and (iii) those contain kk(k > 6) as a part. With some simple
transformation we get the following recurrence relation for the above q-series:

B43(l,m) = B43(l,m− 8l)+ B43(l − 1,m− 12l + 6)

+B43(l,m− 4l + 2)− B43(l,m− 12l + 2),

where B43(0, 0) = 1 and B43(l,m) = 0 for m < 0. Further using the fact,

h43(z, q) =
∞∑

m=0

∞∑
l=0

B43(l,m)zlqm, where |q| < 1, |zq| < 1. We get the q-

functional equation

h43(z, q) = h43(zq
8, q)+ zq6h43(zq

12, q)+ q−2h43(zq
4, q)− q2h43(zq

12, q).

Setting

h43(z, q) =
∞∑

m=0

ξm(q)z
m take ξ0(q) = 1,

we can easily check

ξm(q) = q6m2

(q8; q8)m(q2; q4)m
,

and

h43(z, q) =
∞∑

m=0

q6m2

(q8; q8)m(q2; q4)m
zm.
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For z = 1, we get

h43(1, q) = h43(q) =
∞∑

m=0

q6m2

(q8; q8)m(q2; q4)m
.

∞∑

m=0

B43(m)qm =
∞∑

m=0

∞∑

l=0

B43(m)qm

= h43(q).

And we get the result. ��
Theorem 3.2 For m ≥ 0, let f82(m) denote the number of signed color partitions
δ = (ϑ+, ϑ−) of m, where

(1) ϑ+ denotes the number of split m-color partitions of m such that

(a) parts and their subscripts have the same parity and the subscript > 1,
(b) the least part ax satisfy a ≡ x(mod 4),
(c) as x = g + r; whenever g is odd, then r = 2, g is even, then r = 0 or 2,
(d) the weighted difference of any two consecutive parts is non-negative and

≡ 0(mod 4).

(2) ϑ− contains the odd, distinct parts less than 2α with g = 1 and r = 0,
where α is the number of distinct parts in ϑ+.

Remark 3.1 The conditions (a), (b), and (d) are allowed for the whole subscript x
irrespective of green(g) and red(r) parts separately.

Example 3.2 For m = 6, f82(m) = 8 and the relevant signed color partitions are

66, 62, 64+2, 75+2−11, 71+2−11, 71+2+22−31, 84+22−31−11, 82+2+22−31−11.

Proof We have

∞∑

m=0

A82(m)qm =
∞∑

m=0

(−q; q2)m(q
3; q6)mq

m2

(q; q2)m(q2; q2)2m

=
∞∑

m=0

(q3; q6)mq
m2

(q; q2)m(q2; q2)2m

m∏

i=1

(1+ q2i−1)

=
∞∑

m=0

(q3; q6)mq
2m2

(q; q2)m(q2; q2)2m

m∏

i=1

(1+ q−(2i−1)). (3.2.2)
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In the above,
∑∞

m=0
(q3;q6)mq

2m2

(q;q2)m(q2;q2)2m
and

m∏

i=1
(1 + q−(2i−1)) correspond to partitions

given by ϑ+ and ϑ−. Now,
2m∏

i=1
(1+ q−(2i−1)) denotes the number of split m-color

partitions of m such that parts are odd and distinct < 2α with g = 1, r = 0. Also,
∞∑

m=0

(q3;q6)mq
2m2

(q;q2)m(q2;q2)2m
enumerates the partitions denoted by B82(m). Let B82(l,m)

denote the number of partitions of m enumerated by B82(m) into l parts. We split
the partition into five classes: (i) those do not contain a part kk and kk−2+2, (ii)
those contain 22 as a part, (iii) those contain 31+2 as a part, (iv) those contain 42+2
as a part, and (v) those contain kk(k > 2) and kk−2+2(k ≥ 5). With some simple
transformation, we get the recurrence relation, which is reversible.

B82(l,m) = B82(l,m− 4l)+ B82(l − 1,m− 4l + 2)+ B82(l − 1,m− 6l + 3)

+B82(l − 1,m− 8l + 4)+ B82(l,m− 4l + 2)− B82(l,m− 8l + 2),

where B82(0, 0) = 1 and B82(l,m) = 0 for m < 0. Further using the fact,

h82(z, q) =
∞∑

m=0

∞∑
l=0

B82(l,m)zlqm, where |q| < 1, |zq| < 1. We get the q-

functional equation

h82(z, q) = h82(zq
4, q)+ zq2h82(zq

4, q)+ zq3h82(zq
6, q)

+ zq4h82(zq
8, q)+ q−2h82(zq

4, q)− q−2h82(zq
8, q).

One can further elaborate the proof easily. ��

3.3 Conclusion

Signed partitions are an unexplored tool in literature. With the work presented in the
paper one is open to many questions such as:

1. Can we find combinatorial interpretation of generalized q-series using signed
color partitions?

2. Can there be any possible bijections between signed and other combinatorial
tools under some restrictions or in general?

Acknowledgments The authors would like to thank the anonymous referee(s) for their helpful
comments that led to a better presentation of the paper.
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Chapter 4
Piecewise Continuous Stepanov-Like
Almost Automorphic Functions with
Applications to Impulsive Systems

Syed Abbas and Lakshman Mahto

Abstract In this chapter, we discuss Stepanov-like almost automorphic function
in the framework of impulsive systems. Next, we establish the existence and
uniqueness of such solution of a very general class of delayed model of impulsive
neural network. The coefficients and forcing term are assumed to be Stepanov-like
almost automorphic in nature. Since the solution is no longer continuous, so we
introduce the concept of piecewise continuous Stepanov-like almost automorphic
function. We establish some basic and important properties of these functions and
then prove composition theorem. Composition theorem is an important result from
the application point of view. Further, we use composition result and fixed point
theorem to investigate existence, uniqueness and stability of solution of the problem
under consideration. Finally, we give a numerical example to illustrate our analytical
findings.

Keywords Stepanov-like almost automorphic functions · Composition theorem ·
Impulsive differential equations · Fixed point method · Asymptotic stability

4.1 Introduction

The introduction of almost periodic functions (AP) by H. Bohr [11] in the year
1924–1925 led to various important generalizations of this concept. One important
generalization is the concept of almost automorphic function (AA) given by S.
Bochner [10]. This concept is further generalized to several other concepts out
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of which one important generalization is the concept of Stepanov-like almost
automorphic function introduced by N’Guérékata and Pankov [21]. Several authors
have discussed several classes of almost automorphic functions and their extensions
with application to differential equations [13, 14, 20]. It has been observed that
one of the natural questions in the field of differential equations is: if the forcing
function possesses a special characteristic, then whether the solution possesses the
same characteristic or not? Motivated by this many researchers have studied the
existence of Stepanov-like almost automorphic solutions of differential equations
(see, for example, [14, 20] and the references therein). While studying the behaviour
of many physical and biological phenomena, it has been observed that many phe-
nomenons exhibit regularity behaviour which is not exactly periodic. These kind of
phenomenons can be modelled by considering more general notions such as almost
periodic, almost automorphic, or Stepanov-like almost automorphic. We have the
following inclusion AP ⊂ AAu ⊂ AA ⊂ BC, where AAu stands for uniformly
almost automorphic and BC is the space of bounded and continuous functions. If
we consider the class of Stepanov-like almost automorphic, then it covers more
functions than almost automorphic functions. So, if the underlying behaviour of the
systems is not almost automorphic, it may be possible that it is Stepanov-like almost
automorphic or it belongs to other more general class of functions. For more work on
Stepanov-like almost automorphic and its generalizations, we refer to [2, 4, 15, 16]
and the references therein.

Impulsive differential equations involve differential equations on continuous time
interval as well as difference equations on discrete set of times. It provides a
real framework of modelling the systems, which undergo through abrupt changes
like shocks, earthquake, harvesting, etc. Recent years have seen tremendous work
in this area due to its applicability in several fields. There are few excellent
monographs and literatures on impulsive differential equations [7–9, 19, 24]. As
we know that impulses are sudden interruptions in the systems, in neural case, we
can say that these abrupt changes are in the neural state. Its effect on humans will
depend on the intensity of the change. In signal processing, the faulty elements
in the corresponding artificial network may produce sudden changes in the state
voltages and thereby affect the normal transient behaviour in processing signals or
information. Neural networks have been studied extensively, but the mathematical
modelling of dynamical systems with impulses is very recent area of research
[1, 3, 5, 6, 25–31].

To the best of our knowledge, the existences, uniqueness and stability
of Stepanov-like almost automorphic solution of impulsive differential equa-
tions is rarely discussed. In this work, we introduce piecewise continuous
Stepanov-like almost automorphic function. We prove composition theorem,
which is very important result. As an application we study the existence,
uniqueness and stability of Stepanov-like almost automorphic solution of the
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following impulsive delay differential equations arising from neural network
modelling,

dxi(t)

dt
=

n∑

j=1

aij (t)xj (t)+
n∑

j=1

αij (t)fj (xj (t))+
n∑

j=1

βij (t)fj (xj (t − α))

+ γi(t), t �= tk, α > 0,

�(x(tk)) = Akx(tk)+ Ik(x(tk))+ γk,

x(tk − 0) = x(tk), x(tk + 0) = x(tk)+�x(tk), k ∈ Z, t ∈ R,

x(t) = �0(t), t ∈ [−α, 0], (4.1.1)

where aij , αij , βij , fj , γi ∈ C(R,R) for i = 1, 2, · · · , n, j = 1, 2, · · · , n. The
coefficient Ak ∈ R

n×n, the function Ik(x) ∈ C(�,Rn) and the constant γk ∈ R
n.

The symbol� denotes a domain in R
n and C(X, Y ) denotes the set of all continuous

functions from X to Y.

The organization of this work is as follows: In Sect. 4.2, we give some basic
definitions and results. In Sect. 4.3, we establish composition theorem. In Sect. 4.4,
we study existence and stability of piecewise continuous Stepanov-like almost
automorphic solutions of impulsive differential equations with delay. In Sect. 4.5,
we present an example with numerical simulation.

4.2 Preliminaries

Throughout the manuscript, the symbol Rn denotes the n dimensional space with
norm ‖x‖ = max{|xi|; i = 1, 2, · · · , n}. We denote PC(J,Rn), space of all
piecewise continuous functions from J ⊂ R to R

n with points of discontinuity
of first kind tk where it is left continuous.

For smooth reading of the manuscript, we first define the following class of
spaces,

• SpAApc(R,R
n) =

{
φ ∈ PC(R,Rn) : φ is a piecewise continuous Stepanov-

like almost automorphic function
}

• SpAApc(R×R
n,Rn) =

{
φ ∈ PC(R× R

n,Rn) : φ is a piecewise continuous

Stepanov-like almost automorphic function
}

• SpAAS(Z,R) =
{
φ : Z→ R : φ is a Stepanov-like almost automorphic

sequence
}
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Note that the definition of almost automorphic operator is given by N’Guéré
kata and Pankov [22]. Now we give the following definitions in the framework of
impulsive systems motivated by the work of [12, 17, 28].

Definition 4.2.1 ([18]) A function f ∈ PC(R,Rn) is called a PC-almost automor-
phic if

(i) sequence of impulsive moments {tk} is an almost automorphic sequence,
(ii) for every real sequence (sn), there exists a subsequence (snk ) such that g(t) =

limn→∞ f (t+snk ) is well defined for each t ∈ R and limn→∞ g(t−snk ) = f (t)

for each t ∈ R.

We denote AApc(R,R
n) the set of all such functions.

Definition 4.2.2 ([18]) A function f ∈ PC(R × R
n,Rn) is called PC-almost

automorphic in t uniformly for x in compact subsets of X if

(i) sequence of impulsive moments {tk} is an almost automorphic sequence,
(ii) for every compact subset K of X and every real sequence (sn), there exists a

subsequence (snk ) such that g(t, x) = limn→∞ f (t + snk , x) is well defined for
each t ∈ R, x ∈ K and limn→∞ g(t − snk , x) = f (t, x) for each t ∈ R, x ∈ K .

We denote AApc(R× R
n,Rn) the set of all such functions.

Definition 4.2.3 A sequence of continuous functions, Ik : Rn → R
n is almost

automorphic, if for integer sequence {k′n}, there exist a subsequence {kn} such that
limn→∞ I(k+kn)(x) = I∗k (x) and limn→∞ I∗(k−kn)(x) = Ik(x) for each k and x ∈ X.

Definition 4.2.4 A bounded sequence x : Z
+ → R

n is called an almost
automorphic sequence, if for every real sequence (k

′
n), there exists a subsequence

(kn) such that y(k) = limn→∞ x(k + kn) is well defined for each m ∈ Z and
limn→∞ y(k − kn) = x(k) for each k ∈ Z

+. We denote AAS(Z,Rn), the set of all
such sequences.

Definition 4.2.5 ([23]) The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1] of a
function f : R→ R

n is defined by f b(t, s) := f (t + s).

Definition 4.2.6 ([23]) Let p ∈ [1,∞). The space BSp(Rn) of all Stepanov
bounded functions, with the exponent p, consists of all measurable functions f on
R with values in R

n such that f b ∈ L∞
(
R, Lp((0, 1), dτ )

)
. This is a Banach space

when it is equipped with the norm defined by

‖f ‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

( ∫ t+1

t

‖f (τ)‖p dτ
)1/p

.

Definition 4.2.7 A bounded piecewise continuous function f ∈ PC(R,Rn) is
called a piecewise continuous Stepanov-like almost automorphic if

(i) sequence of impulsive moments {tk} is a Stepanov-like almost automorphic
sequence,
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(ii) for every real sequence (s′n), there exists a subsequence (sn) such that

lim
n→∞

(∫ 1

0
‖f (t + sn + s)− g(t + s)‖pds

) 1
p

= 0

is well defined for each t ∈ R and

lim
n→∞

(∫ 1

0
‖g(t − sn + s)− f (t + s)‖pds

) 1
p

= 0

for each t ∈ R.

The space of all such functions is denoted by SpAApc(R,R
n).

Definition 4.2.8 A bounded piecewise continuous function f ∈ PC(R × R
n,Rn)

is called a piecewise continuous Stepanov-like almost automorphic in t uniformly
in x in compact subsets of Rn if

(i) the sequence of impulsive moments {tk} is a Stepanov-like almost automorphic
sequence,

(ii) for every compact subset K of Rn and every real sequence (s′n), there exists a
subsequence (sn) such that

lim
n→∞

(∫ 1

0
‖f (t + sn + s, x)− g(t + s, x)‖pds

) 1
p

= 0

is well defined for each t ∈ R and

lim
n→∞

(∫ 1

0
‖g(t − sn + s, x)− f (t + s, x)‖pds

) 1
p

= 0

for each t ∈ R.

The space of all such functions is denoted by SpAApc(R×R
n,Rn).

Definition 4.2.9 A bounded sequence x : Z+ → R
n is called Stepanov-like almost

automorphic if for every real sequence (k′n), there exists a subsequence (kn) and a
sequence y : Z+ → R

n such that

(
1∑

n=0

‖x(m+ nk + n)− y(m+ n)‖p
) 1

p

→ 0 as k → 0
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is well defined for each m ∈ Z and

(
1∑

n=0

‖y(m− nk + n)− x(m+ n)‖p
) 1

p

→ 0 as k → 0

for each m ∈ Z
+.

We denote SpAAS(Z+,Rn), the set of all such sequences.
We finish this section by defining few examples of Stepanov-like almost auto-

morphic functions below.

(i) Consider x = (xn)n∈Z, an almost automorphic sequence and the function:

a(t) =
{
xn, t ∈ (n− ε, n+ ε), n ∈ Z,

0, otherwise

(ii)

b(t) =
⎧
⎨

⎩
sin

(
1

2+sin(n)+sin(
√

2n)

)
, t ∈

(
n− 1

4 , n+ 1
4

)
, n ∈ Z,

0, otherwise

(iii)

c(t) =
⎧
⎨

⎩
cos

(
1

2+cos(n)+cos(
√

2n)

)
, t ∈

(
n− 1

4 , n+ 1
4

)
, n ∈ Z,

0, otherwise

4.3 Composition Theorem

Lemma 4.3.1 Let Ik : R
n → R

n be a sequence of Stepanov-like almost
automorphic functions and K ⊂ R

n be a compact subset. If Ik satisfies Lipschitz
condition on R

n, i.e.

‖Ik(x)− Ik(y)‖ ≤ L‖x − y‖,∀x, y ∈ R
n,∀k,

then the sequence {Ik(x) : x ∈ K} is Stepanov-like almost automorphic.

Proof Since Ik is Lipschitz continuous over a compact set K, its range is also
compact. Hence every sequence Ik+kn(x) has a convergent subsequence. So using
the fact that Ik is Stepanov almost automorphy, the Stepanov almost automorphy of
Ik(x) for x ∈ K is ensured. ��
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Lemma 4.3.2 Let Ik : R
n → R

n be a sequence of Stepanov-like almost
automorphic functions and φ ∈ SpAApc(R,R

n). If Ik satisfies Lipschitz condition
on R

n, i.e.

‖Ik(x)− Ik(y)‖ ≤ L‖x − y‖,∀x, y ∈ R
n,∀k,

then the sequence {Ik(φ(tk))} is Stepanov-like almost automorphic.

Proof Since Ik is a sequence of Stepanov-like almost automorphic functions, there
exists I∗k such that Ik+kn (x(tk))→ I∗k (x(tk)) and I∗k−kn(x(tk))→ Ik(x(tk)). By the
above property and Lipschitz continuity of Ik, we obtain

‖Ik+kn(x(tk+kn))− I∗k (x(tk))‖ ≤ ‖Ik+kn(x(tk+kn))− Ik+kn(x(tk))‖
+ ‖Ik+kn(x(tk))− I∗k (x(tk))‖
≤ L‖x(tk+kn)− x(tk)‖
+ ‖Ik+kn(x(tk))− I∗k (x(tk))‖. (4.3.1)

Using Lemma 4.3.1 and the above expression (4.3.1), the sequence {Ik(φ(tk))} is
Stepanov-like almost automorphic. ��
Lemma 4.3.3 If f, f1, f2 ∈ SpAApc(R,R

n), then the following are true:

(i) f1 + f2 ∈ SpAApc(R,R
n),

(ii) cf ∈ SpAApc(R,R
n) for any scalar c,

(iii) fa(t)− f (t + a) ∈ SpAApc(R,R
n) for any a ∈ R,

(iv) Rf = {f (t) : t ∈ R} is relatively compact.

Proof Proof of (i), (ii), (iii) is obvious from definition of Stepanov-like almost
automorphic function. For the proof of (iv) consider a sequence f (t + s′n) ∈ Rf ,
then using definition of Stepanov-like almost automorphic function, there exists a

function g such that limn→∞(
∫ 1

0 ‖f (t + sn + s, x) − g(t + s, x)‖ds) 1
p = 0. And

hence Rf is relatively compact. ��
Now we prove our main result of this section.

Lemma 4.3.4 (Composition Theorem) Let f ∈ SpAApc(R × R
n,Rn) is uni-

formly continuous with respect to x on any compact subset of R
n. If φ ∈

SpAApc(R,R
n), then f (·, φ(·)) ∈ SpAApc(R,R

n).

Proof From the assumption f is uniformly continuous with respect to x on any
compact subset of Rn, i.e. for ε > 0, there exists δ > 0 such that ‖x − y‖ < δ ⇒
‖f (·, x)− f (·, y)‖ < ε.

Also, the range of function φ is relatively compact, i.e. K = {φ(t) : t ∈ R} is
compact and hence there exists a finite number of open balls Ok, k = 1, 2, · · · , n
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centred at xk ∈ {φ(t) : t ∈ R} with radius δ such that

{φ(t) : t ∈ R} ⊂ ∪nk=0Ok

Define Bk such that

Bk = {s ∈ R : φ(s) ∈ Ok},R = ∪nk=0Bk

and set

E1 = B1, Ek = Bk/ ∪k−1
j=1 Bj

Consider a step function x̄ : Rn → R
n by

x̄(s) = xk, s ∈ Ek, we can see that ‖x(s)− x̄‖ ≤ δ.

Further using the definition of Stepanov-like almost automorphy of f and φ, that
is for each sequence {s′n} there exist subsequence {sn} and functions g and ψ such
that

∫ 1

0

(
‖f (t + s + sn, x)− g(t + s, x)‖pds

) 1
p → 0, (4.3.2)

∫ 1

0

(
‖g(t + s − sn, x)− f (t + s, x)‖pds

) 1
p → 0 as n→∞ pointwise on R,

and

∫ 1

0

(
‖φ(t + s + sn)− ψ(t + s)‖pds

) 1
p → 0, (4.3.3)

∫ 1

0

(
‖ψ(t + s − sn)− ψ(t + s)‖pds

) 1
p → 0 as n→∞ pointwise on R.

Calculating the Stepanov norm of f, we have

∫ 1

0

(
‖f (t + s, x(t + s))‖pds

) 1
p

≤
∫ 1

0

(
‖f (t + s, x(t + s))− f (t + s, x̄(t + s))‖pds

) 1
p

+
∫ 1

0

(
‖f (t + s, x̄(t + s))‖pds

) 1
p
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≤
∫ t+1

t

(
L‖x(s)− x̄(s)‖pds

) 1
p +

∫ t+1

t

(
‖f (s, xk)‖pds

) 1
p

≤ L‖x(s)− x̄(s)‖Sp +
n∑

k=1

∫

Ek∩[t,t+1]

(
‖f (s, xk)‖pds

) 1
p
.

Using Eqs. (4.3.2) and (4.3.3), we obtain

∫ 1

0

(
‖f (t + s + sn, φ(t + s + sn))− g(t + s, ψ(t + s))‖pds

) 1
p

≤
∫ 1

0

(
‖f (t + s + sn, φ(t + s + sn))− f (t + s + sn, ψ(t + s))‖pds

) 1
p

+
∫ 1

0

(
‖f (t + s + sn, ψ(t + s))− g(t + s, ψ(t + s))‖pds

) 1
p

≤
∫ 1

0

(
L‖φ(t + s + sn)− ψ(t + s)‖pds

) 1
p

+
∫ 1

0

(
‖f (t + s + sn, ψ(t + s))− g(t + s, ψ(t + s))‖pds

) 1
p

< (L+ 1)ε.

Similarly

∫ 1

0

(
‖g(t + s − sn, ψ(t + s − sn))− f (t + s, φ(t + s))‖pds

) 1
p
< (L+ 1)ε.

Hence f (·, φ(·)) is Stepanov almost automorphic. ��

4.4 Impulsive Delay Differential Equations

We can easily see that the Eq. (4.1.1) can be written in the following compact form:

dx(t)

dt
= A(t)x(t)+ f (t, x(t), x(t − α)) t �= tk

�x(tk) = Akx(tk)+ Ik(x(tk)), k ∈ Z, t ∈ R, (4.4.1)
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where A(t) = (aij (t))nxn, i, j = 1, 2, · · · , n, f = (f1, f2, · · · , fn)T and

fi(t, x(t), x(t − α)) =
n∑

j=1

αij (t)fj (xj (t))+
n∑

j=1

βij (t)fj (xj (t − α)) + γi(t),

for i = 1, 2, · · · , n. In order to prove our results, we need the following
assumptions:

(H1) The functionA(t) ∈ C(R,Rn) is a piecewise continuous Stepanov-like almost
automorphic function,

(H2) det(I + Ak) �= 0 and the sequences Ak and tk are Stepanov-like almost
automorphic.

It is well known that if Uk(t, s) is the Cauchy matrix associated with the system

dx(t)

dt
= A(t)x(t) tk−1 ≤ t ≤ tk,

then the Cauchy matrix of the system (4.4.1) is given by

U(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk(t, s), tk−1 ≤ t ≤ tk,

Uk+1(t, tk + 0)(I + Ak)Uk(t, s),

tk−1 < s < tk < t < tk+1,

Uk+1(t, tk + 0)(I + Ak)Uk(tk, tk + 0)

· · · (I + Ai)Ui(ti , s),

for ti−1 < s ≤ ti < tk < t < tk+1.

For the above Cauchy matrix, the solution of the corresponding homogenous system
could be written as x(t, t0, x0) = U(t, t0)x0, where x0 is the initial condition at the
initial point t0. Let us further assume the followings:

(H3) There exist positive constants K and δ such that ‖U(t, s)‖ ≤ Ke−δ(t−s),
which further implies that ‖U(t + tnk , s + tnk )− U(t, s)‖ ≤ Mεe− δ

2 (t−s) for
any ε > 0 and positive constant M.

(H4) The functions αij , βij are Stepanov-like almost automorphic such that

−∞ < αij ∗ ≤ αij (t) ≤ α∗ij <∞, −∞ < βij ∗ ≤ βij (t) ≤ β∗ij <∞.

(H5) The function fj is Stepanov-like almost automorphic with 0 <

supt∈R fj (t) < ∞ and satisfies |fj (t) − fj (s)| ≤ Lj |t − s|, j =
1, 2, · · · , n.

(H6) The function γi is Stepanov-like almost automorphic and satisfies −∞ <

γi∗ ≤ γi(t) ≤ γ ∗i <∞.
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(H7) The sequence Ik is Stepanov-like almost automorphic and there exists a
positive constant L such that ‖Ik(x)− Ik(y)‖ ≤ L‖x − y‖, for k ∈ Z, x, y ∈
� ⊂ R

n.

Now we have made enough background to prove the main results of this paper,
which are presented below.

Lemma 4.4.1 Under the properties of Cauchy matrix U(t, s), the impulsive differ-
ential Eq. (4.4.1) is equivalent to the following integral equation:

x(t) =
∫ t

−∞
U(t, s)f (s, x(s), x(s − α))ds +

∑

t>tk

U(t, tk)Ik(x(tk)). (4.4.2)

Proof For t ∈ [0, t1], we claim that the following function is the solution of
system (4.1.1)

x(t) =
∫ t

−∞
U(t, s)f (s, x(s), x(s − α))ds.

Differentiating both sides with respect to t , we get

dx(t)

dt
=

∫ t

−∞
∂U(t, s)

∂t
f (s, x(s), x(s − α))ds + f (t, x(t), x(t − α)), x(0) = ψ0(0)

⇔ dx(t)

dt
= A(t)x(t)+ f (t, x(t), x(t − α)), x(0) = ψ0(0).

For t ∈ (t1, t2], define

x(t) =
∫ t

−∞
U(t, s)f (s, x(s), x(s − α))ds + U(t, t1)(I1x(t1))

⇔ x(t) = U(t, t1)
(
I1(x(t1))+

∫ t1

−∞
U(t1, s)f (s, x(s), x(s − α))ds

)

+
∫ t

t1

U(t, s)f (s, x(s), x(s − α))ds

⇔ x(t) = U(t, t1)x(t
+
1 )+

∫ t

t1

U(t, s)f (s, x(s), x(s − α))ds,

x(t+1 ) = I1(x(t1))+
∫ t1

−∞
U(t1, s)f (s, x(s), x(s − α))ds.
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Differentiating both sides of the above relation with respect to t , we obtain

dx(t)

dt
= ∂U(t, t1)

∂t
x(t+1 )+

∫ t

t1

∂U(t, s)

∂t
f (s, x(s), x(s − α))ds

+f (t, x(t), x(t − α)),

x(t+1 ) = A1x(t1)+ I1(x(t1))+
∫ t1

−∞
U(t1, s)f (s, x(s), x(s − α))ds

⇔ dx(t)

dt
= A(t)

(
U(t, t1)x(t

+
1 )+

∫ t

t1

U(t, s)f (s, x(s), x(s − α))ds
)

+f (t, x(t), x(t − α)),

�x(t1) = A1x(t1)+ I1(x(t1))

⇔ dx(t)

dt
= A(t)x(t)+ f (t, x(t), x(t − α)), �x(t1) = A1x(t1)+ I1(x(t1)).

...

For t ∈ (tk, tk+1], define

x(t) =
∫ t

−∞
U(t, s)f (s, x(s), x(s − α))ds + U(t, tk)(I1x(tk))

⇔ x(t) = U(t, tk)(Ik(x(tk))+
∫ tk

−∞
U(tk, s)f (s, x(s), x(s − α))ds

+
∫ t

tk

U(t, s)f (s, x(s), x(s − α))ds

⇔ x(t) = U(t, tk)(x(t
+
k )+

∫ t

tk

U(t, s)f (s, x(s), x(s − α))ds,

x(t+k ) = Ik(x(tk))+
∫ tk

−∞
U(tk, s)f (s, x(s), x(s − α))ds.

Again differentiating both sides of the above relation with respect to t , we get

dx(t)

dt
= ∂U(t, tk)

∂t
(x(t+k )+

∫ t

tk

∂U(t, s)

∂t
f (s, x(s), x(s − α))ds

+f (t, x(t), x(t − α)),

x(t+k ) = Akx(tk)+ Ik(x(tk))+
∫ tk

−∞
U(tk, s)f (s, x(s), x(s − α))ds

⇔ dx(t)

dt
= A(t)

(
U(t, tk)x(t

+
k )+

∫ t

tk

U(t, s)f (s, x(s))ds
)
+ f (t, x(t), x(t − α))
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�x(tk) = Akx(tk)+ Ik(x(tk)),

⇔ dx(t)

dt
= A(t)x(t) + f (t, x(t), x(t − α)) �x(tk) = Akx(tk)+ Ik(x(tk)).

...

Similarly the result holds for any interval (tl, tl+1]. ��
Lemma 4.4.2 If f : R→ R

n is a Stepanov-like almost automorphic function, then∫ t

−∞U(t, s)f (s)ds+∑
t>tk

U(t, tk)Ik(x(tk)) is Stepanov-like almost automorphic.

Proof Since f is Stepanov-like almost automorphic, for each sequence {tn} there
exist a subsequence {tnk } and function g such that

lim
k→∞ f (t + tnk ) = g(t), lim

k→∞ g(t − tnk ) = f (t) ∀t ∈ R in Lp(R,Rn).

We define

F(t) =
∫ t

−∞
U(t, s)f (s)ds +

∑

t>tk

U(t, tk)Ik(x(tk))

and

G(t) =
∫ t

−∞
U(t, s)g(s)ds +

∑

t>tk

U(t, tk)I
∗
k (x(tk)).

Using continuity of U(t, s) and Lebesgue’s dominated convergence theorem, we
obtain

∫ t

−∞
U(t, s)f (s + tnk )ds →

∫ t

−∞
U(t, s)g(s)ds in Lp(R,Rn). (4.4.3)

Moreover,

∑

t+tnk>tk
U(t + tnk , tk)Ik(x(tk)) =

∑

t>tk

U(t + tnk , tk + tnk )Ik(x(tk + tnk ))

→
∑

t>tk

U(t, tk)I
∗
k (x(tk)) in Lp(R,Rn). (4.4.4)

Thus using Eqs. (4.4.3) and (4.4.4), we get

lim
k→∞

(∫ 1

0
‖F(t + tnk + s)−G(t + s)‖pds

) 1
p

= 0 in ∀t ∈ R.
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Similarly, we can prove that

lim
k→∞

(∫ 1

0
‖G(t − tnk + s)− F(t + s)‖pds

) 1
p

= 0 ∀t ∈ R.

Hence F is piecewise Stepanov-like almost automorphic. ��
Theorem 4.4.3 Under the hypotheses (H1)–(H7), there exists a unique piecewise
continuous Stepanov-like almost automorphic solution of Eq. (4.1.1) provided

K

⎛

⎝max
i

⎛

⎝
n∑

j=1

α∗ij +
n∑

j=1

β∗ij

⎞

⎠L∗(pδ)−
1
p + L(1− e−pδ)−

1
p

⎞

⎠ < 1.

Proof Define the operator

�φ(t) =
∫ t

−∞
U(t, s)f (s, φ(s), φ(s − α))ds +

∑

t>tk

U(t, tk)Ik(φ(tk)).

we denote B ⊂ SpAApc(R,R
n), the set of all Stepanov-like almost automorphic

functions satisfying ‖φ‖Sp ≤ K1, where ‖φ‖Sp = supt∈R(
∫ t+1
t

‖φ(s)‖pds) 1
p

and K1 = KC
(
(pδ)

− 1
p + (1 − e−pδ)−

1
p

)
. Using composition theorem, it

is not difficult to see that �φ is Stepanov-like almost automorphic as φ is
Stepanov-like almost automorphic. As the function f ∈ SpAApc(R × R

n,Rn),

define u(·) = f (·, x(·), x(· − α)). Again using composition Theorem 4.3.4 and
Lemma 4.4.2, we conclude

�1φ =
∫ t

−∞
U(t, s)f (s, φ(s), φ(s − α))ds ∈ SpAApc(R,R

n).

Further using Stepanov-like almost automorphy of sequence Ik ∈ C(Rn,Rn), we
obtain

∑

tk<t+tnk
U(t + tnk , tk)Ik(φ(tk)) =

∑

tk<t

U(t + tnk , tk + tnk )Ik(φ(tk + tnk ))

→
∑

tk<t

U(t, tk)I
∗
k (φ(tk)) in Lp(R,Rn).

Similarly

∑

tk<t−tnk
U(t − tnk , tk)(I

∗
k φ(τk)) =

∑

tk<t

U(t − tnk , tk − tnk )(I
∗
k φ(tk − tnk ))

→
∑

tk<t

U(t, tk)(Ik(φ(tk)) in Lp(R,Rn).
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The above analysis implies �φ ∈ SpAApc(R,R
n).

Let us denote

B ⊃ B∗ =
{
φ ∈ B : ‖φ‖Sp ≤ rK1

1− r

}
,

where

φ0(t) =
∫ t

−∞
U(t, s)γ (s)ds +

∑

tk<t

U(t, tk)γk.

Now first we calculate the norm of φ0, which is as follows:

‖φ0‖Sp

= sup
t∈R

( ∫ t+1

t

‖
∫ s

−∞
U(s, z)γ (z)dz‖pds

) 1
p + sup

t∈R

( ∫ t+1

t

‖
∑

tk<s

U(s, tk)γk‖pds
) 1

p

≤ sup
t∈R

( ∫ t+1

t

‖
∫ ∞

0
U(s, s − z)γ (s − z)dz‖pds

) 1
p + sup

t∈R

( ∫ t+1

t

∑

tk<s

‖U(s, tk)‖p

× ‖γk‖pds
) 1

p

≤ K sup
t∈R

( ∫ t+1

t

∫ ∞

0
e−pδz‖γ (s − z)dz‖pds

) 1
p +K sup

t∈R

( ∫ t+1

t

∑

tk<s

e−pδ(s−tk)

× ‖γk‖pds
) 1

p

≤ ‖γ ‖SpK sup
t∈R

( ∫ ∞

0
e−pδzdz

) 1
p + ‖γk‖K sup

t∈R

( ∫ t+1

t

∑

tk<s

e−pδ(s−tk)ds
) 1

p

≤ KC
(
(pδ)

− 1
p + (1− e−pδ)−

1
p

)
= K1. (4.4.5)

Hence for any φ ∈ B∗, we get

‖φ‖Sp ≤ ‖φ − φ0‖Sp + ‖φ0‖Sp ≤ rK1

1− r
+K1 = K1

1− r
.

Our next aim is to prove that � maps set B∗ to B∗.
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In order to achieve this, let us first observe that

‖�φ − φ0‖Sp

≤ sup
t∈R

( ∫ t+1

t

‖
∫ s

−∞
U(s, z)f (z, φ(z), φ(z − α))dz‖pds

) 1
p

+ sup
t∈R

( ∫ t+1

t

‖
∑

tk<s

U(s, tk)× Ik(φ(tk))‖pds
) 1

p

≤ sup
t∈R

( ∫ t+1

t

max
i

∫ s

−∞
‖U(s, z)‖p

n∑

j=1

α∗ij‖fj (φj (s − z))‖pdzds
) 1

p

+ sup
t∈R

( ∫ t+1

t

max
i

∫ s

−∞
‖U(s, z)‖p

n∑

j=1

β∗ij‖fj (φj (s − z− α))‖pdzds
) 1

p

+ sup
t∈R

( ∫ t+1

t

∑

tk<s

‖U(s, tk)‖p‖Ik(φ(tk))‖pds
) 1

p

≤ sup
t∈R

( ∫ t+1

t

max
i

∫ s

−∞
‖U(s, z)‖p

n∑

j=1

α∗ij ((L∗)p‖φj (s − z))‖p

+‖fj (0)‖p)dzds
) 1

p

+ sup
t∈R

( ∫ t+1

t

max
i

∫ s

−∞
‖U(s, z)‖p‖fj(0)‖p

n∑

j=1

β∗ij ((L∗)p‖φj (s − z− α))‖p

+‖fj (0)‖p)dzds
) 1

p + sup
t∈R

( ∫ t+1

t

∑

tk<s

‖U(s, tk)‖p(Lp‖φ(tk)‖p

+‖Ik(0)‖p)ds
) 1

p
,

where L∗ = max{Li, i = 1, 2, · · · , n}. In order to have zero as an equilibrium
solution of the system (4.1.1), we assume that fj (0) = Ik(0) = 0. Thus we have

‖�φ − φ0‖

≤ K

⎛

⎝max
i

⎛

⎝
n∑

j=1

α∗ij +
n∑

j=1

β∗ij

⎞

⎠L∗
( ∫ ∞

0
e−pδzdz

) 1
p

+L
(∑

tk<s

e−pδ(s−tk)
) 1

p

⎞

⎠ ‖φ‖Sp
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≤ K

⎛

⎝max
i

⎛

⎝
n∑

j=1

α∗ij +
n∑

j=1

β∗ij

⎞

⎠L∗(pδ)−
1
p + L(1 − e−pδ)−

1
p

⎞

⎠ ‖φ‖Sp

= r‖φ‖Sp ≤ rK1

1− r
. (4.4.6)

Thus we conclude that �φ ∈ B∗.
Now we prove that � is a contraction. For any φ1, φ2 ∈ B∗, we obtain

‖�φ1 −�φ2‖Sp

≤ sup
t∈R

( ∫ t+1

t

‖
∫ s

−∞
U(s, z)(f (z, φ1(z), φ1(z− α))

−f (z, φ2(z), φ2(z− α)))dz‖pds
) 1

p

+ sup
t∈R

( ∫ t+1

t

‖
∑

tk<s

U(s, tk)(Ik(φ1(tk))− Ik(φ2(tk))‖pds
) 1

p

≤ K

⎛

⎝max
i

⎛

⎝
n∑

j=1

α∗ij +
n∑

j=1

β∗ij

⎞

⎠L∗
( ∫ ∞

0
e−pδzdz

) 1
p

+L
(∑

tk<s

e−pδ(s−tk)
) 1

p

)

‖φ1 − φ2‖Sp

≤ K

⎛

⎝max
i

⎛

⎝
n∑

j=1

α∗ij +
n∑

j=1

β∗ij

⎞

⎠L∗(pδ)−
1
p + L(1− e−pδ)−

1
p

⎞

⎠ ‖φ1 − φ2‖Sp

= r‖φ1 − φ2‖Sp .

Using the assumptions, we obtain

r = K

⎛

⎝max
i

⎛

⎝
n∑

j=1

α∗ij +
n∑

j=1

β∗ij

⎞

⎠L∗(pδ)−
1
p + L(1− e−pδ)−

1
p

⎞

⎠ < 1.

Thus the mapping � is a contraction. Hence using Banach contraction principle,
we conclude that there exists a unique piecewise continuous Stepanov-like almost
automorphic solution of Problem (4.1.1). ��

Our next theorem is about asymptotic stability of the system (4.1.1).
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Theorem 4.4.4 Under the hypotheses (H1)–(H7), the solution of the system (4.1.1)
is asymptotically stable provided

p2δ2 > 8KpL∗p
⎛

⎝max
i

⎛

⎝
n∑

j=1

α∗ij +
n∑

j=1

β∗ij

⎞

⎠

⎞

⎠ .

Proof For any two solutions x(t) and y(t) of the system (4.1.1) with initial values
x0 and y0, we define V (t) = x(t) − y(t). Using the property (‖x‖ + ‖y‖)p ≤
2p−1(‖x‖p + ‖y‖p) and calculating p−th norm of V (t), we obtain

‖V (t)‖p = ‖x(t)− y(t)‖p
≤ 2p−1[2p−1‖U(t, 0)‖p‖x0 − y0‖p

+
∫ t

0
‖U(t, s)‖p‖f (s, x(s), x(s − α))− f (s, y(s), y(s − α))‖pds

+2p−1
∑

0<tk<t

‖U(t, tk)‖p‖Ik(x(tk))− Ik(y(tk))‖p
]
,

≤ 2p−1[2p−1Kpe−pδt‖x0 − y0‖p +Kp

∫ t

0
e−

pδ(t−s)
2 ds

×
∫ t

0
e−

pδ(t−s)
2 ‖f (s, x(s), x(s − α)) − f (s, y(s), y(s − α))‖pds

+2p−1
∑

0<tk<t

‖U(t, tk)‖p‖Ik(x(tk))− Ik(y(tk))‖p
]

≤ 2p−1[2p−1Kpe−pδt‖x0 − y0‖p

+2
KpL∗p

(
maxi

(∑n
j=1 α

∗
ij +

∑n
j=1 β

∗
ij

))

pδ

×
∫ t

0
e−

pδ(t−s)
2 ‖x(s)− y(s)‖pds

+2p−1
∑

0<tk<t

KpLpe−pδ(t−tk)‖x(tk)− y(tk)‖p
]
.

From the assumption

p2δ2 > 2pKpL∗p
⎛

⎝max
i

⎛

⎝
n∑

j=1

α∗ij +
n∑

j=1

β∗ij

⎞

⎠

⎞

⎠ ,
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there exists an ε ∈ (0, δ) such that

pδ

(
pδ

2
− ε

)
> 2p−1KpL∗p

⎛

⎝max
i

⎛

⎝
n∑

j=1

α∗ij +
n∑

j=1

β∗ij

⎞

⎠

⎞

⎠ .

We further define X(t) = ‖x(t) − y(t)‖peεt . Integrating both sides of X(t), we
obtain

∫ τ

0
X(s)ds ≤ 22p−2Kp

pδ − ε
X(0)+ 2p−1KpL∗p(maxi (

∑n
j=1 α

∗
ij +

∑n
j=1 β

∗
ij )

pδ(
pδ
2 − ε)

×

×
∫ τ

0
X(s)ds +

∑

0<tk<τ

22p−2KpLp

pδ − ε
X(tk)

∫ τ

0
X(s)ds ≤ pδ(

pδ
2 − ε)

pδ(
pδ
2 − ε)− 2p−1KpL∗p(maxi (

∑n
j=1 α

∗
ij +

∑n
j=1 β

∗
ij )
×

×
(22p−2Kp

pδ − ε
+

(
1+ 22p−2KpLp

pδ − ε

)i(0,τ ))
X(0). (4.4.7)

Here i(0, τ ) is the number of points tk in the interval (0, τ ) and the product
∏

0<tk<τ

(
1 + 22p−2KpLp

pδ−ε
)
=

(
1 + 22p−2KpLp

pδ−ε
)i(0,τ )

is convergent because of

(
1+ 22p−2KpLp

pδ−ε
)
≤

(
1+ Lp

) 22p−2Kp

pδ−ε
.

Since RHS of inequality (4.4.7) is independent of τ ∈ [0, T ) as well as of T, and
hence the LHS integral of inequality (4.4.7) exists in [0,∞). In particular, we have

X(t)→ 0 as t →∞.

Eventually, the Stepanov-like almost automorphic solution is asymptotically stable.
��

4.5 Examples

As an example of Problem (4.1.1), consider the following classical model of
Hopefield neural network model,

dxi(t)

dt
= −ai(t)xi(t)+

n∑

j=1

αij fj (xj (t))+
n∑

j=1

βijfj (xj (t − α)) + γi(t), t �= tk,

�(x(tk)) = Akx(tk)+ Ik(x(tk))+ γk,
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x(tk − 0) = x(tk), x(tk + 0) = x(tk)+�x(tk), k ∈ Z, t ∈ R,

x(t) = φ0(t), t ∈ [−α, 0], α > 0, (4.5.1)

where ai, fj , γi ∈ C(R,R), αij , βij ∈ R for i = 1, 2, · · · , n, j = 1, 2, · · · , n. The
coefficient Ak ∈ R

n×n, the function Ik(x) ∈ C(�,Rn) and the constant γk ∈ R
n,

where � a domain in R
n. In this case our matrix A(t) is a diagonal matrix with

diagonal entire−a1(t), · · · ,−an(t). We assume that ai(t) are Stepanov-like almost
automorphic and choose ai(t) = 1 for each i = 1, 2, · · · , n. One can easily verify
the hypotheses (H1) and (H2) for this case and we assume the hypothesis (H3).
Now under all the conditions of Theorem 4.4.3, there exists a Stepanov-like almost
automorphic solution of the Problem (4.5.1).

Let us choose the following set of parameters for the Problem (4.5.1) in R
2:

a1(t) = signum(cos 2πtθ), β12 = 0.2, γ1(t) = 2 sin
√

2t,

a2(t) = cos
( 1

2+ sin(t)+ sin(
√

2t)

)
, β21 = signum(cos 2πtθ), γ2(t) = c(t),

Ak =
(−0.3 0

0 −0.3

)
,

Ik(x) = 0.9|x|, x1(s) = 1 = x2(s), s ∈ [−0.1, 0], γk =
(

0.25
0.25

)
.

These parameters clearly satisfy the conditions of our Theorem 4.4.3. The graph
of the solution of (4.5.1) corresponding to these parametric values is depicted in
Fig. 4.1. It can be easily seen that the nature of the graph is Stepanov almost
automorphic.
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Fig. 4.1 Stepanov-like almost automorphic solution of 4.5.1
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4.6 Discussion

The class of Stepanov-like almost automorphic functions covers larger class of
functions and hence more complicated behaviour can be expressed in terms of
these functions. It already contains the class of almost periodicity, automorphy as
a subclass and hence it is more general in nature. One natural question one can
always ask in the neural network theory is that what will be the nature of the output
when all the parameters are Stepanov-like almost automorphic. In this work, we
answered this question under certain condition. The asymptotic stability of solution
is also established under certain conditions on the parameters. One can easily see the
truth of this claim in the numerical simulation section. The obtained results can be
easily generalized to other general class of systems such as neutral system, integro-
differential system and systems with deviated arguments.
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Chapter 5
On the Convergence of Secant-Like
Methods

I. K. Argyros, M. A. Hernández-Verón, and M. J. Rubio

Abstract In this chapter, our first idea is to improve the speed of convergence of
the Secant method by means of iterative processes free of derivatives of the operator
in their algorithms. To achieve this, we consider a uniparametric family of Secant-
like methods previously constructed. We analyze the semilocal convergence of this
uniparametric family of iterative processes by using a technique that consists of a
new system of recurrence relations.

Keywords Nonlinear equation · Non-differentiable operator · Divided
difference · Iterative method · The Secant method · Local convergence ·
Semilocal convergence

5.1 Introduction

In this chapter, we deal with the problem of approximating a solution x∗ of the
equation

F(x) = 0, (5.1)

where F : � ⊆ X → Y is a nonlinear operator defined on a nonempty open
and convex domain � of a Banach space X with values in a Banach space Y .
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Many scientific and engineering problems can be brought in the form of a nonlinear
equation (5.1). Equation (5.1) can be a scalar equation, a system of equations, a
differential equation, an integral equation, etc.

The solutions of these equations can be found in the closed form only in some
cases. Hence, they are usually approximated by iterative methods of the form

{
x−k, x−k+1, . . . , x−1, x0, given in �,

xn+1 = �(xn−k, xn−k+1, . . . , xn−1, xn), n ≥ 0,
(5.2)

where x−k, x−k+1, . . . , x−1, x0 are initial approximations to the solution x∗ of (5.1).
The most common problem when we use iterative methods is to find initial
approximations x−k, x−k+1, . . . , x−1, x0 is close enough, so that the sequence {xn}
converges to x∗.

Three types of studies can be done when we are interested to prove the
convergence of the sequence {xn} given by iterative method (5.2): local, semilocal,
and global. Firstly, the local study of the convergence is based on demanding
conditions to the solution x∗, from certain conditions on the operator F , and
provides the so-called ball of convergence of (5.2) that shows the accessibility
to x∗ from initial approximations x−k, x−k+1, . . . , x−1, x0 belonging to the ball.
Secondly, the semilocal study of the convergence is based on demanding conditions
to the initial approximations x−k, x−k+1, . . . , x−1, x0, from certain conditions on
the operator F , and provides the so-called domain of parameters corresponding to
the conditions required to the initial approximations that guarantee the convergence
of the sequence {xn}, given by (5.2), to the solution x∗. Thirdly, the global study
of the convergence guarantees, from certain conditions on the operator F , the
convergence of the sequence {xn}, given by (5.2), to the solution x∗ independently
of initial approximations.

As we just indicate, the three studies demand conditions on the operator F .
However, requirement of conditions to the solution, to the initial approximations,
or to none of these determines the different types of studies.

The local study of the convergence has the disadvantage of being able to
guarantee that the solution, that is unknown, can satisfy certain conditions. In
general, the global study of the convergence is very specific as regards the type
of operators to consider, as a consequence of absence of conditions on the initial
approximations and on the solution. This study focuses on the semilocal study of
the convergence of {xn}. Moreover, the last section also includes a local study that
is based on a new technique which uses auxiliary points.

The Newton’s method [31] is the most used iteration to solve (5.1), as a
consequence of its computational efficiency, even though sometimes less speed of
convergence is reached. But this method needs the existence of the first Fréchet
derivative of the operator F . If we are concerned with approximating a solution x∗
of the equation

F(x) = G(x)+H(x) = 0, (5.3)
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where G,H : � ⊆ X → Y , G is a Fréchet differentiable operator and H is a
continuous operator but not necessarily differentiable, the Newton’s method cannot
be applied.

The study of this situation has been considered by several authors. For example,
in [7] and [48] it is considered a modification of Newton’s method given by

xn+1 = xn −
(
G′(xn)

)−1
(G(xn)+H(xn)) , x0 ∈ �, n ≥ 0. (5.4)

In [10], the author considers the iteration

xn+1 = xn − (A(xn))
−1 (G(xn)+H(xn)) , x0 ∈ �, n ≥ 0, (5.5)

where A(xn) denotes a linear operator which is an approximation of the Fréchet
derivative of G evaluated at xn. In Banach spaces, the divided differences of first
order are commonly used as approximations of the Fréchet derivative of an operator.
Remember that, if we denote the set of linear and bounded operators from X to Y by
L(X, Y ), then if there exists an operator [x, y;F ] ∈ L(X, Y ) such that the condition

[x, y;F ](x − y) = F(x)− F(y) (5.6)

is satisfied, this is a divided differences of first order of F at the points x and y

(see [4, 38]). Condition (5.6) does not determine uniquely the divided difference,
with the exception of the case when X is one-dimensional. For the existence of
divided differences in linear spaces, see [16]. In general, if the operator F is not
differentiable, there are several studies (see [1–3, 10, 26, 38, 42, 43]) where the
Secant method is considered, with A(xn) = [xn−1, xn;F ] which is, in (5.5), a
divided difference of first order of F on the points xn−1, xn ∈ �. This method
is defined as an iteration which uses new information at two points, so that it is a
multipoint method [22]. Their algorithm is given by

{
x−1, x0 ∈ �,

xn+1 = xn − [xn−1, xn;F ]−1F(xn).
(5.7)

Other well-known methods for solving (5.1) are the Newton-like methods [9, 11,
37]:

{
x0 ∈ �,

xn+1 = xn − L−1
n F (xn),

(5.8)

where {Ln} denotes a sequence of invertible linear operators. These methods are
used due to their high efficiency, since the speed of convergence is acceptable and
the operational cost is reduced. The study of the convergence of methods (5.8) can
be found in [20], where the basic assumption made is that F ′ is Lipschitz continuous
in some ball around the initial iterate. Argyros [8] relaxes this requirement to
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operators that are only Hölder continuous. Moreover, the Secant method is examined
as a particular case of (5.8). As we have written previously, the most inconvenience
of Newton’s iteration is the evaluation of the first derivative of the operator F at
each step. The Secant method, which uses divided differences, is usually applied to
solve the previous inconvenience. But, the speed of convergence is reduced. In this
chapter, our idea is to improve the speed of convergence of the Secant method [6, 10]
by means of iterative methods that maintain the feature of not using derivatives of
the operator F in their algorithms [12–14]. We consider a uniparametric family of
Secant-like methods constructed in [30], which is given by the following algorithm:

⎧
⎨

⎩

x−1, x0 pre-chosen,
yn = λxn + (1− λ)xn−1, λ ∈ [0, 1],
xn+1 = xn − [yn, xn;F ]−1F(xn),

(5.9)

that can be considered as a combination of the Secant method (λ = 0) and Newton’s
method (λ = 1). The study of the semilocal convergence of the Secant method is
usually made by means of majorizing sequences [8, 20, 37, 38, 42]. In this chapter,
we analyze the semilocal convergence of (5.9) by using a technique that consists
of a new system of recurrence relations, in the way that Gutiérrez and Hernández
analyze the convergence of the Chebyshev method in [25].

As we have written previously, the semilocal convergence studies are based on
conditions on the starting points and the operator involved. On the other hand,
in the Secant-like methods appearing in (5.9), a divided difference of first order
is only used as approximation of a Fréchet derivative of the operator involved,
so that the semilocal convergence results are obtained from requiring conditions
on such divided difference. As we can see in [27], the conditions depend on the
differentiability of the operator. So, in Sect. 5.3, results for Fréchet differentiable
operators are included; in Sect. 5.4, results for non-differentiable operators are
given; and, in Sect. 5.5, results for any operator are obtained. Finally, the chapter
finishes with two new results on the convergence of Secant-like methods (5.9), one
local and other semilocal. Both results use auxiliary points and can be applied to
any operator (Fréchet differentiable or not).

As already mentioned previously, there is a plethora of choices for the divided
difference in the multi-dimensional case. Next, we list some used in this chapter:

1. To solve (5.3), we can use any divided difference satisfying (5.6) and compatible
to the sufficient convergence criteria for method (5.4) or (5.5).

2. To apply method (5.9), the divided difference defined in (5.12) is used, which
still satisfies (5.6) with x and y having some different component.

3. The divided differences in Sect. 5.4 are chosen to satisfy estimate (5.40).
4. In Sect. 5.5.2.1, the divided difference used is given in (5.12).
5. System (5.47) is solved using a special divided difference given above Table 5.9.

See also the numerical examples, where we use appropriately the various divided
differences given in 1–5.
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Throughout the chapter, we consider F : � ⊆ X→ Y as a continuous nonlinear
operator and � a nonempty open convex domain in the Banach space X with values
in the Banach space Y . Moreover, we suppose that there exists a divided difference
of first order [z,w;F ] ∈ L(X, Y ) for each pair of distinct points (z,w) ∈ � × �

and denote B(x, �) = {y ∈ X; ‖y−x‖ ≤ �} and B(x, �) = {y ∈ X; ‖y−x‖ < �},
for � > 0.

5.2 Preliminaries

The classical Secant method is an efficient algorithm for solving nonlinear operator
equation (5.1) [8, 37]. As suggested by the Secant iteration formula (5.7), there
are two main elements for applying this method, the smoothness properties of the
operatorF , and the use of the first order divided difference of the operatorF , instead
of the first derivative of F . It is well known that for smooth equations, the classical
Secant method is superlinearly convergent with R-order at least (1+√5)/2 (see
[26, 38]). Some Newton-like methods can be considered as generalized Secant
methods, since they use only operator values. Considering methods based only on
operator values, in this chapter, we consider the Secant-like methods given in (5.9).

Observe that (5.9) is reduced to the Secant method if λ = 0 and to Newton’s
method if λ = 1, since yn = xn and [yn, xn;F ] = F ′(xn) (see [38]). From
the geometrical interpretation of the both previous methods, in the real case, it is
clear that the closer xn and yn are, the higher the speed of the convergence is (see
Fig. 5.1). The use of the Secant method is interesting, since the calculation of the
first derivative F ′ is not required and the convergence of the method of successive
substitutions is improved, although it is slower than Newton’s method. For this, we
consider iteration (5.9), whose speed of convergence is closed to that of Newton’s
iteration, when λ is near 1 (the Newton process).

xn−1 yn xn xn+1

Fig. 5.1 Secant-like methods
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Next, we present a numerical example to analyze the speed of convergence
of Secant-like methods (5.9). So, we study the solution of a particular nonlinear
integral equation of the Hammerstein type [24, 34], which is cited in [47]:

x(s) = 1− μ

2

∫ 1

0

s

t + s

1

x(t)
dt, s ∈ [0, 1], μ ∈ [0, 1] fixed, (5.10)

in � = {x ∈ C[0, 1] : x is positive}.
To continue, Eq. (5.10) is discretized to replace it with a finite-dimensional

problem. For the direct numerical solution of (5.10), we choose μ = 1/2 and
introduce the points tj = j/m (j = 0, 1, . . . ,m), where m is an integer according to
the precision required. The composite trapezoidal rule with mesh size 1/m is used.
A scheme is then designed for the determination of numbers x(tj ). So, we obtain
the nonlinear system of equations given by:

0 = x(tj )− 1+ 1

4m

[
1

2

tj

tj + t0

1

x(t0)
+

m−1∑

k=1

tj

tj + tk

1

x(tk)
+ 1

2

tj

tj + tm

1

x(tm)

]

.

(5.11)

For u = (u1, u2, . . . , um)
T , v = (v1, v2, . . . , vm)

T ∈ R
m, with uj �= vj for

j = 1, 2, . . . ,m, we use the divided difference of first order given by [u, v;F ] =
([u, v;F ]ij )mi,j=1 ∈ L(Rm,Rm), where

[u, v;F ]i1 =
⎧
⎨

⎩

Fi(u1, u2, . . . , vm)− Fi(u1, v2, . . . , vm)

u1 − v1
, if u2 �= v2.

0, if u1 = v1.

[u, v;F ]i2 =
⎧
⎨

⎩

Fi(u1, u2, . . . , vm)− Fi(u1, v2, . . . , vm)

u2 − v2
, if u2 �= v2.

0, if u2 = v2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[u, v;F ]im =
⎧
⎨

⎩

Fi(u1, u2, . . . , um)− Fi(u1, u2, . . . , um−1, vm)

um − vm
, if um �= vm.

0, if um = vm. (5.12)

It is easy to prove that [x, y;F ](x − y) = F(x) − F(y) with x and y having
some different component.
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Table 5.1 Numerical solution x∗ of (5.11)

j x∗j j x∗j j x∗j
0 1.0000000000000000 7 0.8643075347402679 14 0.8141388910219971

1 0.9566527838959406 8 0.8555128396460574 15 0.8095584770363422

2 0.9319739617269809 9 0.8483515334503204 16 0.8121077060370004

3 0.9129724633617881 10 0.8416103236537321 17 0.8083909132037373

4 0.8977438552742314 11 0.8304716661779638 18 0.8049765496475915

5 0.8848953323716495 12 0.8245463960276492 19 0.8017901827237186

6 0.8738883606190559 13 0.8191213272527618 20 0.7988090566367779

Table 5.2 x−1(tj ) = 1.35, x0(tj ) = 1 (j = 0, 1, . . . , 20)

n λ = 0 λ = 0.6 λ = 0.85 λ = 1− 10−5

1 1.14120 × 10−2 8.05623 × 10−3 6.21652 × 10−3 4.93910 × 10−3

2 3.24264 × 10−4 1.08921 × 10−4 3.66835 × 10−5 3.99254 × 10−6

3 6.08624 × 10−7 5.91357 × 10−8 5.82438 × 10−9 2.61646 × 10−12

4 3.21652 × 10−11 4.19664 × 10−13 5.10703 × 10−15 0.0

Table 5.3 Error for
Newton’s method using 16
significant decimal places

n ‖x∗ − zn‖∞
1 4.93901 × 10−3

2 3.99072 × 10−6

3 2.58171 × 10−12

4 0.0

For the solution of (5.11), we take x0(tj ) = 1 and x−1(tj ) = 1.35 (j =
1, 2, . . . ,m).

In Table 5.1 the approximation of the solution x∗ of (5.11) is given, using 16
significant decimal places and m = 20, when the Secant method is applied to the
previous scheme.

Table 5.2 contains the errors ‖xn − x∗‖∞ for the iterates xn generated by (5.9)
for different values of the parameter λ. The solution x∗ is obtained in four steps
(n = 4), for a precision of 16 significant decimal places.

As we can see in Table 5.2, the higher λ is, the faster iteration (5.9) converges.
Finally, note that (5.9), where λ is near 1, gives similar approximations to those

obtained by Newton’s sequence {zn}, without using F ′ (see Table 5.3).
As we can see in the previous numerical example, the speed of convergence

of Secant-like methods (5.9) improves the speed of convergence of the Secant
method (5.7). Moreover, observe that with λ = 1 − 10−5 is similar to that of
Newton’s method but without evaluating the first derivative of the operator F .

To finish, we observe that the use of the Secant method is interesting since the
calculation of the first Fréchet derivative F ′ is not required and the convergence
of the successive substitutions method is improved, although it is slower than
Newton’s method. For this, we consider Secant-like methods (5.9), whose speed
of convergence is closed to that of Newton’s method when λ is near 1.
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As we have indicated previously, to obtain results of semilocal convergence for
Secant-like methods (5.9), conditions for the divided difference of first order of the
operator F are necessary. So, remember that, if � is a open convex domain of X
and we suppose that, for each pair of distinct points x, y ∈ �, there exists a divided
difference of first order of F at these points. If there exists a non-negative constant
k such that

‖[x, y;F ]− [v,w;F ]‖ ≤ k (‖x − v‖ + ‖y −w‖) (5.13)

for all x, y, v,w ∈ � with x �= y and v �= w, we say that F has a Lipschitz
continuous first order divided difference on �.

We can easily generalize this concept. So, If there exists a non-negative constant
k such that

‖[x, y;F ]− [v,w;F ]‖ ≤ k
(‖x − v‖p + ‖y −w‖p), p ∈ [0, 1], (5.14)

for all x, y, v,w ∈ � with x �= y and v �= w, we say that F has a Hölder continuous
first order divided difference on �. Notice that, if p = 1, we obtain that F has a
Lipschitz continuous divided difference on �.

In the previous case, it is known [8] that the Fréchet derivative of F exists in �

and satisfies

[x, x;F ] = F ′(x), x ∈ �. (5.15)

In this chapter we relax these previous requirements, (5.13) and (5.14), and we
only assume that the divided difference [x, y;F ] satisfies

‖[x, y;F ]− [v,w;F ]‖ ≤ ω(‖x − v‖, ‖y −w‖); x, y, v,w ∈ �, (5.16)

where ω : R+×R+ → R+ is a continuous non-decreasing function in their
components.

In the following lemma we will prove that (5.16) satisfies (5.15) if ω(0, 0) = 0.

Lemma 5.1 Let � be a convex open domain of X and suppose that, for each
pair of points x, y ∈ �, there exists a divided difference of first order [x, y;F ] ∈
L(X, Y ) satisfying (5.16) and ω(0, 0) = 0. Then (5.15) is true.

Proof Let {xn} ⊆ � be so that limn→∞xn = x. Let us consider An = [xn, x;F ] ∈
L(X, Y ) and it is verified that

‖An − Am‖ = ‖[xn, x;F ]− [xm, x;F ]‖ ≤ ω(‖xn − xm‖, 0).

Since {xn} is convergent, it is evident that {An} is a Cauchy sequence, and therefore
there exists limn→∞An = Ã ∈ L(X, Y ). So, we can define [x, x;F ] = Ã =
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limn→∞An. Let us check that Ã = F ′(x):

‖F(x +�x)− F(x)− [x, x;F ] (�x)‖
= ‖[x +�x, x;F ] (�x)− [x, x;F ](�x)‖
= ‖ ([x +�x, x;F ]− [x, x;F ]) (�x)‖
≤ ‖[x +�x, x;F ]− [x, x;F ]‖ ‖(�x)‖ ≤ ω(‖�x‖, 0)‖�x‖

Then,

lim‖�x‖→0

‖F(x +�x)− F(x)− [x, x;F ](�x)‖
‖�x‖ ≤ lim‖�x‖→0

ω(‖�x‖, 0) = ω(0, 0) = 0.

Therefore, F is a Fréchet differentiable operator and then verifies (5.15). ��
It is easy to see that condition (5.16) generalizes condition (5.14) by only

considering ω(u1, u2) = k(u
p

1 + u
p

2 ).

5.3 Convergence of Secant-Like Methods for Fréchet
Differentiable Operators

From Lemma 5.1, it is known that when the first order divided difference of operator
F is Lipschitz or Hölder continuous, then F is Fréchet differentiable. In this section,
we analyze the semilocal convergence for Secant-like methods (5.9) for divided
differences of first order Lipschitz or Hölder continuous.

5.3.1 Divided Differences of First Order Lipschitz Continuous

Let X, Y be Banach spaces and F : � ⊆ X→ Y be a nonlinear operator in an open
convex domain �. Suppose that:

(L1) ‖x0 − x−1‖ = α,
(L2) there exists L0

−1 = [y0, x0;F ]−1 such that ‖L0
−1‖ ≤ β,

(L3) ‖L0
−1F(x0)‖ ≤ η,

(L4) ‖[x, y;F ]− [u, v;F ]‖ ≤ k (‖x − u‖ + ‖y − v‖), k ≥ 0, x, y, u, v ∈ �;
x �= y, u �= v.

Under these conditions, we establish a system of recurrence relations from which
the convergence of (5.9) is proved. Let us denote

a−1 = η

α + η
, b−1 = kβα2

α + η
.
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Define the real sequences

an = f (an−1)g(an−1)bn−1, bn = f (an−1)
2an−1bn−1, n ≥ 0, (5.17)

where

f (x) = 1

1− x
and g(x) = (1− λ)+ (1+ λ)f (x)x.

Note that f and g are increasing in R− {1} and that f (x) > 1 in (0, 1).
From the initial hypotheses, it follows that x1 is well defined, since L0

−1 exists
and

‖x1 − x0‖ = ‖L0
−1F(x0)‖ ≤ η = f (a−1)a−1‖x0 − x−1‖,

k‖L0
−1‖‖x0 − x−1‖ ≤ kβα = f (a−1)b−1.

(5.18)

In [30], the following recurrence relations for n ≥ 1 are shown by mathematical
induction on n:

(in) there exists an Ln
−1= [yn, xn;F ]−1 such that ‖Ln

−1‖≤ f (an−1)‖Ln−1
−1‖,

(iin) ‖xn+1 − xn‖ ≤ f (an−1)an−1‖xn − xn−1‖,
(iiin) k‖Ln

−1‖‖xn − xn−1‖ ≤ f (an−1)bn−1.

To study the convergence of the sequence {xn}, we analyze the sequences {an}
and {bn} given by (5.17). It is sufficient to see that {xn} is a Cauchy sequence and
an < 1 for all n ≥ 0.

Firstly, if we denote by {αn} the Fibonacci sequence

α1 = α2 = 1 and αn+2 = αn+1 + αn, n ≥ 1, (5.19)

and

sn = α1 + α2 + · · · + αn, n ≥ 1. (5.20)

Then, the following properties can be proved, again by induction:

(P1) αn = 1√
5

[ (
1+√5

2

)n

−
(

1−√5

2

)n]

>
1√
5

(
1+√5

2

)n−1

, n ≥ 1,

(P2) sn = αn+2 − 1 and βn = s1 + s2 + · · · + sn = αn+4 − (n+ 3), n ≥ 1.

Secondly, some properties for the sequence {an} and {bn} are proved in the
following result.

Lemma 5.2 Let {an} and {bn} be the sequences defined in (5.17) and λ ∈ [0, 1] be a
fixed element. If a−1 < (3−√5)/2 and b−1 < a−1(1− a−1)

2/(1+ λ(2a−1 − 1)),
then
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(a) {an} and {bn} are decreasing,
(b) γ = b0/b−1 ∈ (0, 1) and a0/(1− a0) < γ ,
(c) an < γ αnan−1 and bn < γ αn+1bn−1, for n ≥ 1,
(d) an < γ sna0, for n ≥ 1.

The following semilocal convergence Theorem [30] shows that the sequence {xn}
generated by (5.9) converges to a solution x∗ of Eq. (5.1).

Theorem 5.3 Let x−1, x0 ∈ � and λ ∈ [0, 1]. Let us suppose that (L1)–(L4) and
the hypotheses of Lemma 5.2 are satisfied. If B(x0, r0) ⊆ �, where r0 = 1−a0

1−2a0
η,

then the sequence {xn} generated by (5.9) is well defined and converges to a solution
x∗ of (5.3) with R-order of convergence of at least (1+√5)/2. Moreover, it is
proved that xn, x∗ ∈ B(x0, r0) and x∗ is unique in B(x0, τ ) ∩ �, where τ = 1

βk
−

r0 − (1− λ)α. Furthermore, for all n ≥ 0,

‖x∗ − xn‖ < �n

1−�
η γ βn−1, (5.21)

where γ = b0/b−1, � = a0
1−a0

, β−1 = 0 = β0 and βn = s1 + s2 + · · · + sn, n ≥ 1.

5.3.2 Divided Differences of First Order Hölder Continuous

Let X, Y be Banach spaces and F : � ⊆ X→ Y be a nonlinear operator in an open
convex domain �. Suppose that:

(H1) ‖x0 − x−1‖ = α,
(H2) there exists L0

−1 = [y0, x0;F ]−1 such that ‖L0
−1‖ ≤ β,

(H3) ‖L0
−1F(x0)‖ ≤ η,

(H4) ‖[x, y;F ]−F ′(z)‖ ≤ k (‖x − z‖p + ‖y − z‖p), p ∈ [0, 1], for all x, y, z ∈
�.

We denote

a−1 = η

α + η
, b−1 = kβαp,

and define the sequences

an = g(an−1)bn−1, bn = f (an)f (an−1)
pa

p
n−1bn−1, n ≥ 0, (5.22)

where

f (x) = 1

1− x
, g(x) = (1− λ)p + 2

p + 1
(1+ λp)f (x)pxp. (5.23)

Note that f and g are increasing, and on the other hand f (x) > 1 in (0, 1).
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As L0
−1 exists, then x1 is well defined and, from the initial hypotheses, it follows

that

‖x1 − x0‖ ≤ η = f (a−1)a−1‖x0 − x−1‖,
k‖L0

−1‖‖x0 − x−1‖p ≤ kβαp = b−1.

(5.24)

Then, in [28], by induction on n, the following items are shown for n ≥ 1:

(in) ∃Ln
−1 = [yn, xn;F ]−1 such that ‖Ln

−1‖ ≤ f (an−1)‖Ln−1
−1‖,

(iin) ‖xn+1 − xn‖ ≤ f (an−1)an−1‖xn − xn−1‖,
(iiin) k‖Ln

−1‖‖xn − xn−1‖p ≤ bn−1.

Next, we study the real sequences defined in (5.22) in order to obtain the
convergence of sequence (5.9) in Banach spaces. It will be sufficient that: an < 1
(n ≥ 0) and {xn} is a Cauchy sequence.

Firstly, we provide the following two lemmas on the real sequences given in
(5.22).

Lemma 5.4 Let f and g be the two real functions given in (5.23). If a1/a0 ≤
b1/b0 < 1, then

(a) both sequences given in (5.22) are decreasing for n ≥ 0,
(b) an < γ α̃n an−1 and bn < γ α̃n+1 bn−1, for n ≥ 1, where γ = b1/b0 ∈ (0, 1) and

{α̃n} is the Fibonacci generalized sequence:

α̃1 = α̃2 = 1, α̃n+2 = α̃n+1 + pα̃n, n ≥ 1, (5.25)

(c) an < γ s̃na0, for n ≥ 1, where s̃n = α̃1 + α̃2 + · · · + α̃n.

Next, we provide some properties of (5.25), whose proofs are trivial by applying
induction.

Lemma 5.5 Let {α̃n} be the sequence defined in (5.25). Then,

(a) α̃n = 1√
1+ 4p

[ (
1+√1+ 4p

2

)n

−
(

1−√1+ 4p

2

)n
]

and

α̃n ≥ 1√
1+ 4p

(
1+√1+ 4p

2

)n−1

,

(b) s̃n = α̃1+ α̃2+· · ·+ α̃n is such that s̃n = (α̃n+2 − 1)/p and s̃1+ s̃2+· · ·+ s̃n =
[α̃n+4 − p(n + 2)− 1]/p2, n ≥ 1.

The following semilocal convergence Theorem [28] shows that the sequence {xn}
generated by (5.9) converges to a solution x∗ of Eq. (5.1).

Theorem 5.6 Let x−1, x0 ∈ � and λ ∈ [0, 1]. Let us suppose that (H1)–(H4) and
the hypotheses of Lemma 5.4 are satisfied. If a0 < 1/2 and B(x0, r0) ⊆ �, where
r0 = 1−a0

1−2a0
η, then the sequence {xn} given by (5.9) is well defined and converges
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to a solution x∗ of (5.3) with at least R-order of convergence (1 + √1+ 4p)/2.
Moreover xn, x∗ ∈ B(x0, r0). Furthermore,

‖x∗ − xn‖ < �n

1−�
η γ β̃n−1, (5.26)

where � = a0
1−a0

, β̃−1 = 0 = β̃0 and β̃n = s̃1 + s̃2 + · · · + s̃n, n ≥ 1.

5.3.3 Application: A Special Case of Conservative Problems

It is well known that energy is dissipated by the action of any real dynamical system,
usually through some form of friction. However, in certain situations this dissipation
is so slow that it can be neglected over relatively short periods of time. In such cases
we assume the law of conservation of energy, namely, that the sum of the kinetic
energy and the potential energy is constant. A system of this kind is said to be
conservative.

If ρ and σ are arbitrary functions with the property that ρ(0) = 0 and σ(0) = 0,
the general equation

m
d2x(t)

dt2
+ σ

(
dx(t)

dt

)
+ ρ(x) = 0, (5.27)

can be interpreted as the equation of motion of a mass m under the action
of a restoring force −ρ(x) and a damping force −σ(dx/dt). In general these
forces are nonlinear, and Eq. (5.27) can be regarded as the basic equation of
nonlinear mechanics. In this paper we shall consider the special case of a nonlinear
conservative system described by the equation

m
d2x(t)

dt2
+ ρ(x(t)) = 0,

in which the damping force is zero and there is consequently no dissipation of
energy. Extensive discussions of (5.27), with applications to a variety of physical
problems, can be found in classical references [5] and [45].

In this application, we study the existence of a unique solution for a special case
of a nonlinear conservative system described by the equation

d2x(t)

dt2
+�(x(t)) = 0, (5.28)

with the boundary conditions

x(0) = 0 = x(1). (5.29)
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In order to study the application of (5.9) for the numerical solution of differential
equation problems, we illustrate the theory for the case of particular second order
ordinary differential equation (5.28) subject to the boundary conditions (5.29).

It is required to find a solution of Problems (5.28) and (5.29) in the interval
0 ≤ t ≤ 1. Under suitable restrictions on the function �, we will see that a unique
solution of (5.28) and (5.29) exists. Moreover the method of discretization is used to
project the boundary value problem of second order into a finite-dimensional space.
The new class of Secant-like methods are applied to this problem to approximate
the solution of the corresponding system of equations.

Firstly, we suppose that � is once continuously differentiable and �′ is Hölder
(C, p) continuous. So the operator

[F(x)](t) = d2x(t)

dt2
+�(x(t)) (5.30)

is defined from C(2)[0, 1] into C[0, 1] and it is once differentiable.

5.3.3.1 Existence of the Solution

In order to see that a unique solution of Problems (5.28) and (5.29) exists, we apply
Theorem 5.6. Then the bounds α, β, η, and k, which appear in the previous section,
are necessary. The first derivative of F at x = x(t) is

F ′(x)y(t) = d2y(t)

dt2
+�′(x(t))y(t),

when it is applied to the function y(t). To start the analysis of the convergence
of (5.9) to a solution of Problems (5.28) and (5.29), from the starting functions
x−1(t) and x0(t), we first prove that L−1

0 = [y0, x0;F ]−1 exists. Observe that

[F ′(x)− F ′(y)]u(t) = (�′(x)−�′(y))u(t).

Then

‖F ′(x)− F ′(y)‖ = C‖x − y‖p,

where C is the Hölder constant for �′. Since F ′ exists and is Hölder continuous, it
follows that the operator

[x, y;F ] =
∫ 1

0
F ′(x + τ (y − x))dτ

is a divided difference at the points x, y ∈ C(2)[0, 1] and condition (H4) is satisfied
with k = C/(1+ p).
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If x−1, x0 and λ ∈ [0, 1] are now fixed, then y0 = λx0+ (1−λ)x−1 ∈ C(2)[0, 1].
Taking into account that

L0u(t)≡ [y0, x0;F ]u(t)= d2u(t)

dt2
+

∫ 1

0
�′(y0(t)+τ (x0(t)−y0(t)))u(t) dτ ≡ v(t),

it follows that u(t) = L−1
0 v(t) if L−1

0 exists.
Next, we consider the linear boundary value problem

d2u(t)

dt2
+ ψ(x0(t), y0(t))u(t) = v(t)

u(0) = 0 = u(1),

(5.31)

where ψ(x0(t), y0(t)) =
∫ 1

0 �′(y0(t) + τ (x0(t) − y0(t))) dτ . It is known, see
[36], that Problem (5.31) may be written in the form of the second kind Fredholm
equation

u(t) = −
∫ 1

0
K(t, s)v(s) ds + [P(u)](t), 0 ≤ t ≤ 1,

where

K(t, s) =
{
s(1− t), t ≥ s,

t (1− s), t ≤ s.

and

[P(u)](t) =
∫ 1

0
K(t, s)ψ(x0(s), y0(s))u(s) ds.

Thus

[(I − P)(u)](t) = −
∫ 1

0
K(t, s)v(s) ds ≡ (Kv)(t).

On the other hand, using the max-norm and denoting S = sup
0≤t≤1

|ψ(x0(t), y0(t))|,
we have ‖P‖ ≤ S/8. Consequently, by the Banach Lemma, (I − P)−1 exists if
S < 8, and then

u(t) = (I − P)−1(Kv)(t).
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Since

‖Kv‖ ≤
(

sup
0≤t≤1

∫ 1

0
|K(t, s)|ds

)

‖v‖ ≤ ‖v‖/8,

then L−1
0 exists, ‖L−1

0 ‖ ≤ 1/(8− S) and ‖L−1
0 F(x0)‖ ≤ ‖F(x0)‖/(8 − S).

We can now establish a result on the existence of the solution of Problems (5.28)
and (5.29), whose proof follows as that in Theorem 5.6.

Theorem 5.7 Following the previous notation, we consider the operator defined
in (5.30), where F : C(2)[0, 1] → C[0, 1]. Assume that x−1, x0 ∈ C(2)[0, 1], λ ∈
[0, 1] fixed, S < 8, a0 < 1/2 and a1/a0 ≤ b1/b0 < 1, where a0, a1, b0, b1 are
defined in the previous section with

α = ‖x0 − x−1‖, β = 1

8− S
, η = ‖F(x0)‖

8− S
, k = C

1+ p
,

and C the Hölder constant for �′. Then, there exists at least a solution of
Problems (5.28) and (5.29) in B(x0, r0), where r0 = 1−a0

1−2a0
η.

Next, we show the application of the previous study to the following boundary
value problem:

d2x(t)

dt2
+ x(t)1+p +Q = 0, p ∈ [0, 1], Q ∈ R,

x(0) = 0 = x(1).

(5.32)

in the space C(2)[0, 1] of all twice differentiable functions with the max-norm.
Now (5.30) can be written in the form

[F(x)](t) = d2x(t)

dt2
+ x(t)1+p +Q. (5.33)

To obtain the existence and the uniqueness of the solution of (5.32), we first
consider

� = {x, y ∈ C(2)[0, 1] : ‖ψ(x, y)‖ < 8} ⊆ C(2)[0, 1], (5.34)

where ψ(x(t), y(t)) = (1 + p)
∫ 1

0 (y(t) + τ (x(t) − y(t)))p dτ , so that F : � →
C[0, 1]. Taking into account (5.28), we have �(x(t)) = x(t)1+p +Q. Then, by the
Banach Lemma, L−1

0 exists and ‖L−1
0 ‖ ≤ 1/(8− S), where

S = (1+ p) sup
0≤t≤1

∣
∣
∣
∣

∫ 1

0
(y0(t)+ τ (x0(t)− y0(t)))

p dτ

∣
∣
∣
∣.
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In addition, we have

‖L−1
0 F(x0)‖ ≤ ‖F(x0)‖

8− S
.

On the other hand, we get

‖[x, y;F ]− F ′(z)‖ ≤ ‖x − z‖p + ‖y − z‖p; x, y, z ∈ �0, p ∈ [0, 1].

Corollary 8 Let F : � ⊆ C(2)[0, 1] → C[0, 1], where � is defined in (5.34) and
F in (5.33). Let x−1, x0 ∈ �, λ ∈ [0, 1] fixed. Let us suppose that a0 < 1/2 and
a1/a0 ≤ b1/b0 < 1, where a0, a1, b0, b1 are defined in the previous section with

α = ‖x0 − x−1‖, β = 1

8− S
, η = ‖F(x0)‖

8− S
, k = 1,

and S = (1+ p) sup
0≤t≤1

∣
∣
∣∣

∫ 1

0
(y0(t)+ τ (x0(t)− y0(t)))

p dτ

∣
∣
∣∣. If B(x0, r0) ⊆ �,

where r0 = 1−a0
1−2a0

η. Then, a solution of (5.32) exists at least in B(x0, r0).

5.3.3.2 Location of the Solution

To illustrate the previous result, we consider the Secant method and boundary value
Problem (5.32), where Q = 1/4 and p = 1/2. As the solution would vanish at the
endpoints and be positive in the interior, a reasonable choice of initial approximation
seems to be x−1(t) = 0.4 sinπt . On the other hand, we choose x0(t) = 0 in order
to simplify the domain of existence of solution and reduce the operational cost. So,

S = √0.4, α = 0.4π2, β = 1/(8− S), η = 1/(4(8− S)) and k = 1.

As a result,

a0 = 0.303022 < (3−√5)/2 < 1/2,

a1/a0 = 0.222462 ≤ b1/b0 = 0.707029 < 1,

and the conditions of Corollary 8 hold. Then, there exists a solution x∗ of (5.32) in
{w ∈ C(2)[0, 1]; ‖w‖ ≤ r0}, where r0 = 0.0600328, see Fig. 5.1.

5.3.3.3 Numerical Solution of the Finite-Difference Equations

To show how boundary value Problem (5.32) can be changed to a system of
algebraic equations, we replace the derivative in the differential equation with their
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finite-difference approximations. The system of algebraic equations can then be
solved numerically by (5.9) in order to obtain an approximate solution to boundary
value Problem (5.32).

To solve this problem by finite differences, we start by drawing the usual grid
line with grid points ti = ih, where h = 1/n and n is an appropriate integer. Note
that x0 and xn are given by the boundary conditions, then x0 = 0 = xn, and our
work is to find the other xi (i = 1, 2, . . . , n− 1). To do this, we begin by replacing
the second derivative x ′′(t) in the differential equation with its approximation

x ′′(t) ≈ [x(t + h)− 2x(t)+ x(t − h)]/h2,

x ′′(ti ) = (xi+1 − 2xi + xi−1)/h
2, i = 1, 2, . . . , n − 1.

By substituting this expression into the differential equation, we have the following
system of nonlinear equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2x1 − h2x
1+p
1 − x2 − h2Q = 0,

−xi−1 + 2xi − h2x
1+p
i − xi+1 − h2Q = 0,

−xn−2 + 2xn−1 − h2x
1+p
n−1 − h2Q = 0.

i = 2, 3, . . . , n− 2, (5.35)

We therefore have an operatorF : Rn−1 → R
n−1 such that F(x) = M(x)−h2ϕ(x),

where

M =

⎛

⎜
⎜
⎜
⎜⎜
⎝

2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

⎞

⎟
⎟
⎟
⎟⎟
⎠
, ϕ(x) =

⎛

⎜
⎜
⎜
⎜
⎝

x
1+p
1 + 1/4

x
1+p
2 + 1/4

...

x
1+p
n−1 + 1/4

⎞

⎟
⎟
⎟
⎟
⎠
, x =

⎛

⎜
⎜
⎜
⎝

x1

x2
...

xn−1

⎞

⎟
⎟
⎟
⎠

Thus, we can write

F ′(x) =M − h2(1+ p)Diag{xp1 , xp2 , . . . , xpn−1}.

Let x ∈ R
n−1 and ‖x‖ = max

1≤i≤n−1
|xi |. The corresponding norm on A ∈ R

n−1 ×
R
n−1 is

‖A‖ = max
1≤i≤n−1

n−1∑

j=1

|aij |.

It is known that F has a Hölder continuous divided difference at the points x, y ∈
R
n−1, which is defined by the matrix whose entries are given in (5.12) (see [8, 38]).
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Table 5.4 Numerical solution x∗ of (5.35)

i x∗i i x∗i i x∗i
1 0.01141648508671 4 0.03052779202087 7 0.02669609124653

2 0.02032077189279 5 0.03180615401355 8 0.02032077189279

3 0.02669609124653 6 0.03052779202087 9 0.01141648508671

1

-0.1

-0.075

-0.05

-0.025

0.025

0.05

0.075

0.1

x0 + r0 = r0

x0 − r0 = −r0

x0

x̄∗

Fig. 5.2 The domain of existence of solution and the approximated solution

If n = 10, then (5.35) gives 9 equations. Taking into account the data for the
initial iterate are x−1(ti) = 0.4 sinπti and x0(ti ) = 0 for i = 1, 2, . . . , 9. After five
iterates, we obtain the vector x∗ (see Table 5.4) as the solution of system (5.35).

Finally, we need to relate the solution vector x∗ of the system of nonlinear
equations (5.35) found in Table 5.4 to an initial point of the method used to
solve Eq. (5.32). More precisely, if x∗ is now interpolated, the approximation x̄∗
to the solution of (5.32) with p = 1/2 is that appearing in Fig. 5.2. Notice that
the interpolated approximation x̄∗ lies within the existence domain of solutions
mentioned above.

Hence, according to Fig. 5.2, giving the relationship between x∗ and x̄∗, we
should choose as an initial point (of the method to be used to solve (5.32)) the
point x̄∗.

5.3.3.4 Final Remark

Finally, we analyze two things. Firstly, we study the domain of the starting points
and, secondly, we analyze the speed of convergence of the class of iterative methods
given by (5.9). If we now choose Q = 0 in (5.32), the corresponding boundary value
problem has already been used by other authors as a test problem (see [8, 31, 41]).

We again start using the method of discretization to project this boundary value
problem into a finite-dimensional space. Let n = 10 and x−1(ti ) = 135 sinπti
(i = 1, 2, . . . , 9) be the initial approximation. We choose, as in [8], x0 by setting
x0(ti) = x−1(ti)− 10−5, i = 1, 2, . . . , 9. If we apply the Secant method (λ = 0) to
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Table 5.5 Absolute errors for (5.9) and different values of λ

n λ = 0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 0.99

1 2.24748 2.24748 2.24748 2.24748 2.24748

2 2.60218 × 10−1 2.08533 × 10−1 1.53355 × 10−1 9.43008 × 10−2 3.35497 × 10−2

3 3.66518 × 10−3 2.28181 × 10−3 1.16525 × 10−3 3.79963 × 10−4 1.20966 × 10−5

4 6.16651 × 10−6 2.31808 × 10−6 5.83199 × 10−7 5.88006 × 10−8 2.73843 × 10−11

5 1.47125 × 10−10 2.58780 × 10−11 2.20268 × 10−12 0.0 0.0

Table 5.6 Absolute errors
for Newton’s method

n ‖x∗ − xn‖∞
1 2.24749

2 3.09256 × 10−2

3 2.84217 × 10−13

4 0.0

the previous points, after two and three iterations we obtain two points x2 and x3 in
which the conditions required in this paper are satisfied for the Secant method, but
the ones required by Argyros in [8] are not. Consequently, we can take x2 and x3 as
the true starting points.

On the other hand, we obtain the errors ‖xn − x∗‖∞, which appear in Table 5.5,
for the iterates xn generated by (5.9) for different values of the parameter λ ∈ [0, 1]
and starting at x−1 and x0.

The numerical results, using 14 significative decimal figures, indicate that the
Secant method is not optimal for approximating the solution x∗ of F(x) =
0. Moreover, iteration (5.9) converges faster to x∗ for increasing values of the
parameter λ ∈ [0, 1].

Next, observe that (5.9), where λ is near 1, gives similar approximations, without
using F ′, to the solution x∗ of F(x) = 0 to Newton’s method (see Table 5.6).

5.4 Convergence of Secant-Like Methods
for Non-Differentiable Operators

We consider nonlinear integral equations of mixed Hammerstein type

x(s) = f (s)+
∫ b

a

G(s, t)H(t, x(t)) dt, s ∈ [a, b], (5.36)

where −∞ < a < b < +∞, f , G, and H are known functions and x is
a solution to be determined. Integral equations of this type appear very often in
several applications to real-world problems. For example, in problems of dynamic
models of chemical reactors [17], vehicular traffic theory, biology, and queuing
theory [19]. The Hammerstein integral equations also appear in the electro-magnetic



5 On the Convergence of Secant-Like Methods 161

fluid dynamics and can be reformulated as two-point boundary value problems with
certain nonlinear boundary conditions and in multi-dimensional analogues which
appear as reformulations of elliptic partial differentiable equations with nonlinear
boundary conditions (see [39] and the references given there).

Solving Eq. (5.36) is equivalent to solving F(x) = 0, where F : � ⊂ C[a, b] →
C[a, b] and

[F(x)](s) = x(s)− f (s)−
∫ b

a

G(s, t)H(t, x(t)) dt, s ∈ [a, b].

Examples where the operator F is differentiable are found in [30].
If we consider (5.36) where G is the Green function in [a, b]×[a, b], we then use

a discretization process to transform Eq. (5.36) into a finite-dimensional problem by
approximating the integral of (5.36) by a Gauss–Legendre quadrature formula with
m nodes:

∫ b

a

q(t) dt '
m∑

i=1

wiq(ti),

where the nodes ti and the weights wi are determined.
If we denote the approximations of x(ti) and f (ti) by xi and fi , respectively, with

i = 1, 2, . . . ,m, then Eq. (5.36) is equivalent to the following system of nonlinear
equations:

xi = fi +
m∑

j=1

aij H(tj , xj ), j = 1, 2, . . . ,m, (5.37)

where

aij = wjG(ti, tj ) =
⎧
⎨

⎩

wj
(b−ti )(tj−a)

b−a , j ≤ i,

wj
(b−tj )(ti−a)

b−a , j > i.

Then, system (5.37) can be written as

F(x) ≡ x− f− A z = 0, F : Rm −→ R
m, (5.38)

where

x = (x1, x2, . . . , xm)
T , f = (f1, f2, . . . , fm)

T , A = (aij )
m
i,j=1,

z = (H(t1, x1),H(t2, x2), . . . , H (tm, xm))
T .
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As in R
m we can consider divided difference of first order that does not need that

the functionF is Fréchet differentiable (see [38]), we then use the divided difference
of first order given by (5.12).

If we consider that system of nonlinear Eqs. (5.38) is of the form

F(x) ≡ x− f− A (δvx + μwx) = 0, F : Rm −→ R
m, (5.39)

where

vx = (x2
1 , x

2
2 , . . . , x

2
m)

T , wx = (|x1|, |x2|, . . . , |xm|)T ,

δ, μ ∈ R and μ �= 0, it is obvious that the function F defined in (5.39) is nonlinear
and non-differentiable. Moreover, [u, v;F ] = I−(δB+μC), where B = (bij )

m
i,j=1

with bij = aij (uj + vj ) and C = (cij )
m
i,j=1 with cij = aij

|uj |−|vj |
uj−vj . Furthermore,

‖[x, y;F ] − [u, v;F ]‖ ≤ L+K(‖x − u‖ + ‖y − v‖)with L = 2|μ| ‖A‖ and

K = |δ| ‖A‖.

Observe then that if the divided difference of first order of the functionF satisfies
a condition of type

‖[x, y;F ] − [u, v;F ]‖ ≤ L+K(‖x − u‖ + ‖y − v‖);
L,K ≥ 0; x, y, u, v ∈ �; x �= y; u �= v, (5.40)

in R
m, instead of a condition Hölder continuous, from Lemma 5.1 we can solve

equations where the function F is non-differentiable, as, for example, Eq. (5.39).
Then, as already discussed above and below Fig. 5.2, the approximate solution

x̄∗ to Eq. (5.36), related to the solution x∗ of Eq. (5.39) by a similar figure, will be
chosen to be the initial point to solve Eq. (5.36) using some method.

In view of the above, we present a new semilocal convergence result where the
operator F satisfies condition (5.40) that allows us to solve equations where the
operator F is non-differentiable (L �= 0).

Next, we present the semilocal convergence [23] result for methods (5.9).

Theorem 5.9 Let X and Y be two Banach spaces and F : � ⊆ X → Y be a
nonlinear operator defined on a nonempty open convex domain �. Suppose that
conditions (H1)–(H3) and (5.40) are satisfied. Once fixed λ ∈ [0, 1], if the equation

t

(
1− m

1− β (L+K(2t + (1− λ)α))

)
− η = 0, (5.41)
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where m = max { β(L+K((1− λ)α + η)), β(L+ (2− λ)Kη) }, has at least one
positive real root and the smallest positive real root, denoted by R, satisfies

β(L+K(2R + (1− λ)α)) < 1 (5.42)

and B(x0, R) ⊂ �, then the sequence {xn} defined in (5.9), starting at x−1 and x0,
is well-defined and converges to a solution x∗ of F(x) = 0. Moreover, the solution
x∗ and the iterates xn belong to B(x0, R), and x∗ is unique in B(x0, R).

5.4.1 Numerical Example

We illustrate the abovementioned with an example. We consider a non-differentiable
system of nonlinear equations of form (5.39) and see that Theorem 5.9 guarantees
the semilocal convergence of a method of (5.9).

If in (5.38) we consider m = 8, δ = μ = 3/4, we obtain the non-differentiable
system of nonlinear equations

F(x) ≡ x− 1
2
− 3

4
A(vx + wx) = 0, F : R8 −→ R

8, (5.43)

where

x = (x1, x2, . . . , x8)
T ,

1
2
=

(
1

2
,

1

2
, . . . ,

1

2

)T

, A = (aij )
8
i,j=1.

If we choose the starting points x−1 =
(

2
5 ,

2
5 , . . . ,

2
5

)T
and x0 =

(
1
2 ,

1
2 , . . . ,

1
2

)T
, method (5.9) with λ = 3

4 and the max-norm, we obtain α = 0.1,

β = 1.2170 . . ., η = 0.0824 . . ., L = 0.1853 . . ., K = 0.0926 . . . and the Eq. (5.41)
is reduced to

t

(
1− (0.2376 . . .)

1− (1.2170 . . .)((0.1863 . . .)+ (0.0926 . . .)(2t + 0.0250 . . .))

)
− (0.0824 . . .)= 0.

The last equation has two positive real roots and the smallest one, R = 0.1211 . . .,
satisfies Condition (5.42), since

β(L+K(2R + (1− λ)α)) = 0.2557 . . . < 1.
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Table 5.7 Numerical solution x∗ of (5.43)

i x∗i i x∗i i x∗i i x∗i
1 0.506462 . . . 3 0.561738 . . . 5 0.583219 . . . 7 0.530722 . . .

2 0.530722 . . . 4 0.583219 . . . 6 0.561738 . . . 8 0.506462 . . .

Table 5.8 Absolute errors
for (5.9) with λ = 3

4

n ‖xn − x∗‖
−1 1.8321 . . . × 10−1

0 8.3221 . . . × 10−2

1 7.8399 . . . × 10−4

2 1.4181 . . . × 10−6

3 2.3181 . . . × 10−11

4 6.7813 . . . × 10−19

Therefore, by Theorem 5.9, we guarantee the semilocal convergence of
Method (5.9) with λ = 3

4 . After five iterations and using the stopping
criterion ‖xn − xn−1‖ < 10−32, we obtain the numerical approximation
x∗ = (x∗1 , x∗2 , . . . , x∗8 )T of a solution of (5.43) which is given in Table 5.7. In
Table 5.8, we show the errors ‖xn − x∗‖ obtained with the same stopping criterion.
Finally, by Theorem 5.9, the existence and uniqueness of solution is guaranteed in
the ball B(x0, 0.1211 . . .).

5.5 Convergence of Secant-Like Methods Whatever
the Operator

To analyze the semilocal convergence of iterative processes that do not use deriva-
tives in their algorithms, the conditions usually required are the Lipschitz or Hölder
continuous conditions for the divided difference of first order (see [8, 32]). Notice
that, under these conditions, the operator F must be Fréchet differentiable [27]. To
generalize the above conditions and even consider situations in which operator F
is non-differentiable, we consider ω-continuous for the divided difference (5.16).
Moreover, as it is known from Lemma 5.1, if ω(0, 0) = 0, then F is a Fréchet
differentiable operator. Therefore, taking into account condition (5.16), we consider
the case in which the operator F is non-differentiable; as example, situations where
ω(0, 0) �= 0.

5.5.1 A Semilocal Convergence Result

Let us assume that

(I) ‖x−1 − x0‖ = α,

(II) there exists L0
−1 = [y0, x0;F ]−1 such that ‖L0

−1‖ ≤ β,
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(III) ‖L0
−1F(x0)‖ ≤ η,

(IV) ‖[x, y;F ]− [v,w;F ]‖ ≤ ω(‖x − v‖, ‖y −w‖); x, y, v,w ∈ �, where
ω : R+×R+ → R+ is a non-decreasing continuous function in its two

arguments.

Next, we can already give a semilocal convergence result.

Theorem 5.10 Under conditions (I)–(IV), we denote

m = max{βω ((1− λ)α, η) , βω ((1− λ)η, η)}
and assume that the equation

u

(
1− m

1− βω(u+ (1− λ)α, u)

)
− η = 0 (5.44)

has at least one positive zero. Let R be the minimum positive one. If

βω(R + (1− λ)α,R) < 1,
m

1− βω(R + (1− λ)α,R)
< 1 and B(x0, R) ⊂ �,

then the sequence {xn}, given by (5.9), is well defined, remains in B(x0, R), and
converges to the unique solution x∗ of Eq. (5.1) in B(x0, R).

Remark Note that the operator F is Fréchet differentiable when the divided
differences are Lipschitz or (k, p)-Hölder continuous. But, under condition (IV),
F is Fréchet differentiable if ω(0, 0) = 0. Therefore, if ω(0, 0) �= 0, Theorem 5.10
is true for non-differentiable operators.

5.5.2 Applications

We present two kinds of applications. The first one is theoretical and practical for
Fréchet differentiable operators, where it is proved the convergence for divided
differences that are not Lipschitz or Hölder continuous. Moreover, this application
is not usually studied by other authors. The second one is practical for non-
differentiable operators, and we compare the methods presented in the paper with
other ones given by several authors.

In the first example, a Fréchet differentiable operator is considered, i.e., in (5.3),
F = G and H(x) = 0. We note that the semilocal convergence conditions required
are mild.

5.5.2.1 Example 1

Now we apply the semilocal convergence result given above to the following
boundary value problem:

{
x ′′ + x1+p + x2 = 0, p ∈ [0, 1],
x(0) = x(1) = 0.

(5.45)
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To solve this problem by finite differences, we start drawing the usual grid line with
the grid points ti = ih, where h = 1/n and n is an appropriate integer. Note that
x0 and xn are given by the boundary conditions and then x0 = 0 = xn. We first
approximate the second derivative x ′′(t) by

x ′′(t) ≈ [x(t + h)− 2x(t)+ x(t − h)]/h2,

x ′′(ti ) = (xi+1 − 2xi + xi−1)/h
2, i = 1, 2, . . . , n − 1.

Substituting this expression into the differential equation, we have the following
system of nonlinear equations:

⎧
⎪⎨

⎪⎩

2x1 − h2x
1+p
1 − h2x2

1 − x2 = 0,

−xi−1 + 2xi − h2x
1+p
i − h2x2

i − xi+1 = 0, i = 2, 3, . . . , n− 2,

−xn−2 + 2xn−1 − h2x
1+p
n−1 − h2x2

n−1 = 0.

(5.46)

We therefore have an operatorF : Rn−1 → R
n−1 such that F(x) = M(x)−h2f (x),

where

f (x) =
(
x

1+p
1 + x2

1 , x
1+p
2 + x2

2 , . . . , x
1+p
n−1 + x2

n−1

)t

and

M =

⎛

⎜
⎜
⎜
⎜⎜
⎝

2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

⎞

⎟
⎟
⎟
⎟⎟
⎠
,

Thus,

F ′(x) = M − h2(1+ p)Diag{xp1 , xp2 , . . . , xpn−1} − 2h2Diag{x1, x2, . . . , xn−1}

Let x ∈ R
n−1 and choose the norm ‖x‖ = max

1≤i≤n−1
|xi|. The corresponding norm

on A ∈ R
n−1 × R

n−1 is

‖A‖ = max
1≤i≤n−1

n−1∑

j=1

|aij |.
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Then F has a divided difference at the points x, y ∈ R
n−1, which is defined by

the matrix, whose entries are given in (5.12). Consequently,

[x, y;F ] = M − h2

⎛

⎜⎜
⎜⎜⎜
⎜
⎝

x
1+p
1 −y1+p

1 +x2
1−y2

1
x1−y1

0 · · · 0

0
x

1+p
2 −y1+p

2 +x2
2−y2

2
x2−y2

· · · 0
...

...
. . .

...

0 0 · · · x
1+p
n−1−y1+p

n−1+x2
n−1−y2

n−1
xn−1−yn−1

⎞

⎟⎟
⎟⎟⎟
⎟
⎠

.

In this case, we have that [x, y;F ] = ∫ 1
0 F ′(x+ t (y−x)) dt . So, we study the value

‖F ′(x)− F ′(v)‖ to obtain a bound for ‖[x, y;F ] − [v,w;F ]‖.
For all x, v ∈ R

n−1 with |xi | > 0, |vi | > 0, (i = 1, 2, . . . , n− 1), and taking
into account the max-norm, it follows

‖F ′(x)− F ′(v)‖ = ‖diag{h2(1+ p) (v
p
i − x

p
i )+ 2h2(vi − xi)}‖

= max
1≤i≤n−1

|h2(1+ p) (v
p
i − x

p
i )+ 2h2(vi − xi)|

≤ (1+ p)h2 max
1≤i≤n−1

|vpi − x
p
i | + 2h2 max

1≤i≤n−1
|vi − xi |

≤ (1+ p)h2 [ max
1≤i≤n−1

|vi − xi | ]p + 2h2‖v − x‖

= (1+ p)h2‖v − x‖p + 2h2‖v − x‖.

Therefore,

‖[x, y;F ] − [v,w;F ]‖ ≤
∫ 1

0
‖F ′ (x + t (y − x))− F ′ (u+ t (w − v)) ‖ dt

≤ h2
∫ 1

0

(
(1+ p)‖(1 − t)(x − v)+ t (y −w)‖p

+ 2‖(1− t)(x − v) + t (y −w)‖) dt ≤ h2(1+ p)

×
∫ 1

0

(
(1− t)p‖x − v‖p + tp‖y −w‖p) dt + 2h2

×
∫ 1

0
((1− t)‖x − v‖ + t‖y −w‖) dt

= h2 (‖x − v‖p + ‖y −w‖p + ‖x − v‖ + ‖y −w‖) .

From (IV), we consider the function ω(u1, u2) = h2(u
p

1 + u
p

2 + u1 + u2).
Next, we apply the Secant method to approximate the solution of F(x) = 0.

If n = 10, then (5.46) gives 9 equations. Since a solution of (5.45) would vanish
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at the end points and be positive in the interior, a reasonable choice of the initial
approximation seems to be 10sinπt . This approximation gives us the following
vector y−1:

y−1 =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

3.090169943749474
5.877852522924731
8.090169943749475
9.51056516295136
10.00000000000000
9.51056516295136
8.090169943749475
5.877852522924731
3.090169943749474

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

Choose y0 by setting y0(ti ) = y−1(ti) − 10−5, i = 1, 2, . . . , 9 and using
iteration (5.9), (λ = 0), after two iterations, we obtain y1 and y2:

y1 =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

2.453176290658909
4.812704101582601
6.8481873135861

8.252997367741953
8.75737771678512

8.252997367741953
6.8481873135861

4.812704101582601
2.453176290658909

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

and y2 =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

2.404324055268407
4.713971539035271

6.7003394962933925
8.066765882171131
8.556329565792526
8.066765882171131

6.7003394962933924
4.713971539035271
2.404324055268407

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Taking x−1 = y1 and x0 = y2, we obtain α = 0.201048, β = 15.319,
η = 0.0346555. In this case, the solution of equation (5.44) given in Theorem 5.10
has a minimum positive solution R = 0.041100361. Besides, βω(α + R,R) =
0.14983 < 1 and M = 0.156808 < 1.

Therefore, the hypotheses of Theorem 5.10 are fulfilled and a unique solution of
Eq. (5.3) exists in B(x0, R).

We obtain the vector x∗ as the solution of system (5.46), after nine iterations:

x∗ =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

2.394640794786742
4.694882371216001
6.672977546934751
8.033409358893319
8.520791423704788
8.033409358893319
6.67297754693475
4.694882371216

2.394640794786742

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.
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Fig. 5.3 x∗ and the approximate solution x̄∗

If x∗ is now interpolated, its approximation x̄∗ to the solution of (5.45) with
p = 1/2 is that appearing in Fig. 5.3.

Note that, in this example, the convergence cannot be guaranteed from classical
studies where divided differences are Lipschitz or Hölder continuous [8, 38],
whereas we can do it by the technique presented in this chapter.

5.5.2.2 Example 2

Consider the non-differentiable system of equations

{
3x2y + y2 − 1+ |x − 1| = 0,

x4 + xy3 − 1+ |y| = 0.
(5.47)

We therefore have an operator F : R2 → R
2 such that F = (F1, F2). For

x = (x1, x2) ∈ R
2, we take F1(x1, x2) = 3x2

1x2+x2
2−1,F2(x1, x2) = x4

1+x1x
3
2−1.

For v,w ∈ R
2, we take the divided differences as in (5.12) and apply several

methods to solve (5.47).
For method (5.4), we have G = (G1,G2) where G1(x1, x2) = 3x2

1x2 + x2
2 − 1

and G2(x1, x2) = x4
1 + x1x

3
2 − 1. See Table 5.9 for method (5.4) with x0 = (1, 0).

Note that the approximated solution is

x∗ = (0.8946553733346867, 0.3278265117462974).

For the Secant method with x−1 = (5, 5) and x0 = (1, 0), see Table 5.10; for
method (5.9) with λ = 0.5, x−1 = (5, 5) and x0 = (1, 0), see Table 5.11; for
method (5.9) with λ = 0.99, x−1 = (5, 5) and x0 = (1, 0), see Table 5.12.
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Table 5.9 Method (5.4) with x0 = (1, 0)

n x
(1)
n x

(2)
n ‖x∗ − xn‖

1 1 0.3333333333333333 1.05345 × 10−1

2 0.9065502183406114 0.3540029112081513 2.61764 × 10−2

3 0.8853284006634119 0.3380272763613319 1.02008 × 10−2

4 0.891329556832800 0.3266139765935657 3.32582 × 10−3

5 0.8952388154638436 0.3264068528436253 1.41967 × 10−3

6 0.8951546713726346 0.3277303340450432 4.99298 × 10−4

7 0.8946737434711373 0.3279791543720321 1.52633 × 10−4

8 0.8945989089774475 0.3278650593487548 5.64644 × 10−5

9 0.894643228355865 0.3278150392082856 1.2145 × 10−5

10 0.8946599936156449 0.3278198892648906 6.63248 × 10−6

11 0.8946576401953287 0.3278267282085600 2.26686 × 10−6

12 0.8946552195650909 0.3278273518268564 8.30018 × 10−7

.

.

.
.
.
.

.

.

.
.
.
.

34 0.8946553733346867 0.3278265217462975 5.55112 × 10−17

Table 5.10 Secant method, with x−1 = (5, 5) and x0 = (1, 0)

n x
(1)
n x

(2)
n ‖x∗ − xn‖

1 0.989800874210782 0.0126274890723652 3.15199 × 10−1

2 0.9218147654932871 0.3079399161522621 2.71594 × 10−2

3 0.900073765669214 0.325927010697792 5.41839 × 10−3

4 0.8949398516241052 0.3277254373962255 2.84478 × 10−4

5 0.8946584205860127 0.3278253635007827 3.04725 × 10−6

6 0.8946553750774177 0.3278265210518334 1.74273 × 10−9

7 0.8946553733346976 0.3278265217462931 1.08802 × 10−14

8 0.8946553733346867 0.3278265217462976 1.66533 × 10−16

9 0.8946553733346867 0.3278265217462975 1.11022 × 10−16

Table 5.11 Method (5.9) with λ = 0.5, x−1 = (5, 5) and x0 = (1, 0)

n x
(1)
n x

(2)
n ‖x∗ − xn‖

1 0.9829778065072182 0.0344753285929756 2.93351 × 10−1

2 0.9191516755790264 0.3114163466921295 2.44963 × 10−2

3 0.8976925362896486 0.3267124870002544 3.03037 × 10−3

4 0.8947380642577267 0.3277957962677528 8.26909 × 10−5

5 0.8946556314301652 0.3278264207451973 2.58095 × 10−7

6 0.8946553733563231 0.3278265217375175 2.16364 × 10−11

7 0.8946553733346867 0.3278265217462975 5.55112 × 10−17

Therefore, the methods included in (5.9) improve the results given by other
authors. Moreover, if the value of the parameter λ is increased, better approxima-
tions are obtained.
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Table 5.12 Method (5.9) with λ = 0.99, x−1 = (5, 5) and x0 = (1, 0)

n x
(1)
n x

(2)
n ‖x∗ − xn‖

1 0.9228095274055251 0.3269365280425139 2.81542 × 10−2

2 0.8959888360193688 0.3276958684879607 1.33346 × 10−3

3 0.8946591561955859 0.3278259055081464 3.78286 × 10−6

4 0.894655373452723 0.3278265217196517 1.18036 × 10−10

5 0.8946553733346867 0.3278265217462975 1.11022 × 10−16

6 0.8946553733346867 0.3278265217462975 5.55112 × 10−17

5.6 Convergence for the Secant-Like Methods from Auxiliary
Points

In this section, we present a local as well as a semilocal convergence analysis
for a uniparametric family of Secant-like methods (5.9) in order to approximate
a locally unique solution of an equation containing a non-differentiable term in
a Banach space setting. In the local convergence case we obtain a wider choice
of initial points, tighter error distances, and a more precise uniqueness ball.
Moreover, in the semilocal convergence case, the sufficient convergence criteria
are more flexible than in the earlier studies. This flexibility allows take a wider
convergence domain, tighter error estimates on the distances involved and an at least
as precise information on the location of the solution. Numerical examples justify
our theoretical results.

The choice of an iterative process for solving (5.1) usually depends on its
efficiency [35, 46], which relates the speed of convergence (order of convergence)
of the method to its computational cost. However, there is another important aspect
that is usually less taken into account: the accessibility of the iterative process. The
accessibility of an iterative process shows the domain of starting points from which
the sequence {xn} given by a iterative process converges to a solution of the Eq. (5.1).
The location of starting approximations, from which the iterative processes converge
to a solution of the equation, is a difficult problem to solve. This location is from the
study of the convergence that is made of the iterative process: local or semilocal.

To give a greater generality to our study, we are interested in approximating a
solution x∗ of a nonlinear Eq. (5.1) in Banach spaces, where F : � ⊆ X → Y is
a continuous nonlinear operator, but non-differentiable, and � is a nonempty open
convex domain in the Banach space X with values in the Banach space Y . If the
operator F is not differentiable, there are iterative methods, less studied, that do
not use derivatives in their algorithms. This type of methods usually use divided
differences instead of derivatives [38].

On the other hand, so far, the study of the local convergence of derivative-
free iterative processes shows a small contradiction. Usually, for the known results
of local convergence (see [15, 18, 32, 33, 40, 44], and references therein given)
the existence of the operator [F ′(x∗)]−1, forcing the operator F to be Fréchet
differentiable. These results therefore study the accessibility of the iterative process
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for Fréchet differentiable operators. However, in [29], by modifying the hypothesis
about the solution x∗, a result of local convergence for (5.9) is obtained, where the
operator F is non-differentiable.

Given that we are considering iterative processes to approximate solutions of
non-differentiable operators, it seems logical to study the accessibility in this
situation. The main aim of this work is to improve the local convergence result
obtained in [29] and also extend it to study of the semilocal convergence of Secant-
like methods (5.9), where the operator involved F is not differentiable. To do
this, we take into account a given result in [15], where a procedure to increase
the accessibility of the Secant method is given by combining ω-continuous and
ω0-center-continuous conditions. Notice that, if an operator divided difference is
ω-continuous in � (5.16), the operator divided difference is ω0-center-continuous
for each pair of distinct points (a, b) ∈ �×�:

‖[x, y;F ]− [a, b;F ]‖ ≤ ω0(‖x − a‖, ‖y − b‖); x, y ∈ �, for x �= y, (5.48)

where ω0 : R∗ × R∗ −→ R∗ is a non-decreasing continuous function in its two
variables. We also have that ω0(s, t) ≤ ω(s, t) for each s, t ∈ R∗, and the function
ω
ω0

can be arbitrarily large [15, 40].
By means of this procedure, we establish new local and semilocal convergence

results for (5.9) when F is a non-differentiable operator.
The rest of the chapter is organized as follows. In Sect. 5.6.1, we obtain a

local convergence result for the Secant-like iterative processes given by (5.9),
including their ball of convergence, for non-differentiable operators. In Sect. 5.6.2,
taking into account the result on local convergence obtained previously, we analyze
the semilocal convergence of Secant-like iterative processes for non-differentiable
operators. Finally, in Sect. 5.6.3, we present an application where we illustrate the
results obtained.

5.6.1 Local Convergence Analysis

We shall show the local convergence of method (5.9) based on the following
conditions (L):

(L1) There exist x∗ ∈ � with F(x∗) = 0, δ > 0 and x̃ ∈ �, with ‖x̃ − x∗‖ = δ,
such that [x∗, x̃;F ]−1 ∈ L(Y,X).

(L2) ‖[x∗, x̃;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ ω(‖x − u‖, ‖y − v‖) holds for each
x, y, u, v ∈ �, with x �= y and u �= v, where ω : R∗ × R∗ −→ R∗ is a
non-decreasing continuous function in its two variables.

(L2′) ‖[x∗, x̃;F ]−1([x, y;F ] − [x∗, x̃;F ])‖ ≤ ω0(‖x − x∗‖, ‖y − x̃‖) holds for
each x, y ∈ �, with x �= y, where ω0 : R∗ ×R∗ −→ R∗ is a non-decreasing
continuous function in its two variables.
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(L3) The equation

ω(2(1− λ)t, t) + ω0(t, δ + t)− 1 = 0 (5.49)

has at least one positive zero. Denote by R the smallest zero.
(L4) B(x∗, R) ⊆ � and ω0(R, δ + R) < 1.

Notice that condition (L2′) is not additional to (L2), since in practice the
computation of function ω involves the computation of function ω0 as a special
case. That is the new results are obtained under the same computational cost as the
old ones. However, we have

ω0(s, t) ≤ ω(s, t) for each s, t ∈ R∗ (5.50)

and the function ω
ω0

can be arbitrarily large [15, 40].
Next, we present an auxiliary perturbation result on the divided difference of first

order for the operator F .

Lemma 5.11 Suppose that (L) conditions hold. If x, y ∈ B(x∗, R), with x �= y,
then [x, y;F ]−1 ∈ L(Y,X) and

‖[x, y;F ]−1[x∗, x̃;F ]‖ ≤ 1

1− ω0(‖x − x∗‖, ‖y − x̃‖) ≤
1

1− ω0(R, δ + R)
.

(5.51)

Proof Using (L2′) and (L4), we obtain in turn

‖[x∗, x̃;F ]−1([x∗, x̃;F ] − [x, y;F ])‖ ≤ ω0(‖x∗ − x‖, ‖x̃ − x∗‖ + ‖x∗ − y‖)
< ω0(R, δ + R) < 1.

Then, by the Banach Lemma on invertible operators [35], the operator [x, y;F ]−1 ∈
L(Y,X) so that (5.51) is satisfied. ��

We can now show the main result of local convergence for method (5.9) using
the (L) conditions and the preceding notation.

Theorem 5.12 Suppose that (L) conditions hold. Then, sequence {xn} generated
for x−1, x0 ∈ B(x∗, R) with x−1 �= x0, by method (5.9) is well defined, remains in
B(x∗, R) for each n = 0, 1, 2, . . ., and converges to x∗.

Proof From λ ∈ [0, 1) and the first substep of method (5.9) for n = 0, we obtain that
y0 �= x0 and y0 ∈ B(x∗, R) ⊆ �. Then, by Lemma 5.11, [y0, x0;F ]−1 ∈ L(Y,X).
Hence, x1 is well defined by the second substep of method (5.9) for n = 0. We can
write from method (5.9) and (L1)

x1 − x∗ = x0 − x∗ − [y0, x0;F ]−1F(x0)+ [y0, x0;F ]−1F(x∗) (5.52)
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Using (L2), (L3), (5.51), and (5.52), we obtain in turn that

‖x1 − x∗‖ ≤ ‖[y0, x0;F ]−1[x∗, x̃;F ]‖‖[x∗, x̃;F ]−1([y0, x0;F ]
− [x0, x

∗;F ])‖‖x0 − x∗‖
≤ ω(‖y0 − x0‖, ‖x0 − x∗‖)

1− ω0(R, δ + R)
‖x0 − x∗‖

<
ω(2(1− λ)R,R)

1− ω0(R, δ + R)
‖x0 − x∗‖

= ‖x0 − x∗‖. (5.53)

Hence, ‖x1 − x∗‖ < ‖x0 − x∗‖ < R. That is, x1 ∈ B(x∗, R) and, therefore by
the first substep of method (5.9), y1 ∈ B(x∗, R). We also have that y1 �= x1, since
λ ∈ [0, 1), so [y1, x1;F ]−1 is well defined by Lemma 5.11. By preceding estimates
we get an inductive argument that ‖xk+1 − x∗‖ < ‖xk − x∗‖ < R. Hence, we
conclude that xk+1, yk+1 ∈ B(x∗, R) and lim

n→+∞ xk = x∗. ��
Concerning the uniqueness of the solution x∗, we have the following result.

Theorem 5.13 Under the conditions (L) suppose that there exists R1 ≥ R such that

ω0(0, δ + R1) < 1. (5.54)

Then, the limit point x∗ is the only solution of equation (5.1) in B(x∗, R1) ∩�.

Proof Let y∗ ∈ B(x∗, R1) ∩ � be such that F(y∗) = 0. Define Q = [x∗, y∗;F ].
Then, using (L2′) and (5.54), we get in turn that

‖[x∗, x̃;F ]−1([x∗, y∗;F ] − [x∗, x̃;F ])‖ ≤ ω0(‖x∗ − x∗‖, ‖y∗ − x̃‖)
≤ ω0(0, δ + R1) < 1.

Hence, Q−1 ∈ L(Y,X). From 0 = F(x∗)− F(y∗) = Q(x∗ − y∗), we deduce that
x∗ = y∗. ��

Remarks 1

(1) If ω0 = ω, then Lemma 5.11 and Theorem 5.12 reduce to Lemma 1 and
Theorem 2 given in [29].

(2) Notice that a uniqueness result was not given in [29].
(3) If strict inequality holds in (5.50), then the following advantages are obtained:
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(i) New results are given in affine invariant form whereas the results in
[29] are given in nonaffine invariant form. The advantages of affine over
nonaffine invariant form are explained in [21, 38].

(ii) New radius of convergence is larger than the old one, see (L3) (for ω0 =
ω), (5.51) and the last condition in (L4). This advantage allows for a
wider choice of initial points.

(iii) New error bounds (see (5.53) for ω0 = ω to get the old ones) are more
precise than the old ones. That is fewer steps are needed to obtain the
same error tolerance.

5.6.2 Semilocal Convergence Analysis

Now, we present the semilocal convergence analysis of method (5.9). First, we
consider the conditions about the divided difference of operator F .

(SL1) There exist x0 ∈ �, μ > 0 and x̃ ∈ �, with ‖x0 − x̃‖ = μ, such that
[x̃, x0;F ]−1 ∈ L(Y,X).

(SL2) ‖[x̃, x0;F ]−1([x, y;F ]− [u, v;F ])‖ ≤ ψ(‖x−u‖, ‖y− v‖) holds for each
x, y, u, v ∈ �, with x �= y and u �= v, where ψ : R∗ × R∗ −→ R∗ is a
non-decreasing continuous function in its two variables.

As in the case of (L2) it follows from (SL2):

(SL2′) ‖[x̃, x0;F ]−1([x, y;F ] − [x̃, x0;F ])‖ ≤ ψ0(‖x − x̃‖, ‖y − x0‖) holds for
each x, y ∈ �, with x �= y, where ψ0 : R∗×R∗ −→ R∗ is a non-decreasing
continuous function in its two variables.

Then, we have again that ψ0(s, t) ≤ ψ(s, t) for each s, t ∈ R∗, and ψ
ψ0

can be
arbitrarily large.

Next, we present a perturbation result of the divided difference of the operator F .

Lemma 5.14 Under conditions (SL1) and (SL2′), if there exists r ∈ R+ such that
B(x0, r) ⊆ � and ψ0(μ+ r, r) < 1 holds, then [x, y;F ]−1 ∈ L(Y,X) and

‖[x, y;F ]−1[x̃, x0;F ]‖ ≤ 1

1− ψ0(‖x̃ − x‖, ‖x0 − y‖) ≤
1

1− ψ0(μ+ r, r)
,

(5.55)

for each pair of distinct points (x, y) ∈ B(x0, r)× B(x0, r).

Proof Using (SL2′), we obtain in turn

‖[x̃, x0;F ]−1([x̃, x0;F ] − [x, y;F ])‖ ≤ ψ0(‖x̃ − x‖, ‖x0 − y‖)
≤ ψ0(‖x̃ − x0‖ + ‖x0 − x‖, ‖x0 − y‖)
≤ ψ0(μ+ r, r) < 1.
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Then, by the Banach Lemma on invertible operators, the operator [x, y;F ]−1 ∈
L(Y,X) and (5.55) is satisfied. ��

Notice that if x−1 ∈ �, with ‖x−1 − x0‖ = α > 0, then, by λ ∈ [0, 1), y0 ∈ �,
y0 �= x0 and therefore [y0, x0;F ] ∈ L(X, Y ). So, by Lemma 5.14, it follows that
[y0, x0;F ]−1 ∈ L(Y,X). Suppose ‖[y0, x0;F ]−1F(x0)‖ ≤ η. If moreover x−1 ∈
B(x0, r), then y0 ∈ B(x0, r).

Taking into account the preceding notation, we shall show the main semilocal
convergence result for method (5.9) based on the conditions (SL): (SL1), (SL2),
(SL2′) and

(SL3) The equation

(g0(t)+ 1− g(t)) η − (1− g(t))t = 0, (5.56)

where g0(t) = ψ(η+(1−λ)α,0)
1−ψ0(μ+t,t ) , g(t) = ψ(η+(1−λ)η,0)

1−ψ0(μ+t,t ) , has at least one
positive zero. Denote by r the smallest such zero.

(SL4) B(x0, r) ⊆ � and g0(r)+ g(r) < 1.

Theorem 5.15 Suppose that conditions (SL) hold. Then, sequence {xn} generated
for x0, x−1 with ‖x−1 − x0‖ = α > 0, by method (5.9) is well defined, remains
in B(x0, r) for each n = 0, 1, 2, . . ., and converges to a solution x∗ ∈ B(x0, r) of
Eq. (5.1).

Proof From λ ∈ [0, 1), as we have just shown previously [y0, x0;F ]−1 ∈ L(Y,X),
then x1 is well defined. Moreover, as ‖x1−x0‖ ≤ η, by (5.56) we get x1 ∈ B(x0, r).
On the other hand, by (5.56), we get in turn that

‖y1 − x0‖ = ‖λx1 + (1− λ)x0 − x0‖ ≤ λ‖x1 − x0‖ ≤ λη < r,

so y1 ∈ B(x0, r).
We can write

F(x1) = F(x1)− F(x0)− [y0, x0;F ](x1 − x0) = ([x1, x0;F ] − [y0, x0;F ])(x1 − x0).

(5.57)

Then, we have by (5.55) and (5.57) that

‖x2 − x1‖ = ‖([y1, x1;F ]−1[x̃, x0;F ])[x̃, x0;F ]−1([x1, x0;F ]
−[y0, x0;F ])(x1 − x0)‖ ≤ ‖[y1, x1;F ]−1[x̃, x0;F ]‖‖[x̃, x0;F ]−1

× ([x1, x0;F ] − [y0, x0;F ])‖‖x1 − x0‖
≤ ψ(‖x1 − y0‖, 0)

1− ψ0(‖x̃ − y1‖, ‖x0 − x1‖)‖x1 − x0‖
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≤ ψ(‖x1 − x0‖ + ‖x0 − y0‖, 0)

1− ψ0(‖x̃ − x0‖ + ‖x0 − y1‖, ‖x0 − x1‖‖)‖x1 − x0‖

<
ψ(η + (1− λ)α, 0)

1− ψ0(μ+ r, r)
‖x1 − x0‖

= g0(r)‖x1 − x0‖. (5.58)

As g0(r) < 1 by (SL4), from (5.56) and (5.58), we get that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ < (g0(r)+ 1)‖x1 − x0‖ < r,

and x2 ∈ B(x0, r). Obviously, we get

‖y2−x0‖ = ‖λx2+(1−λ)x1−x0‖ ≤ λ‖x2−x0‖+(1−λ)‖x1−x0‖ < r, (5.59)

and y2 ∈ B(x0, r).
Similarly, we have

‖x3 − x2‖ ≤ ‖[y2, x2;F ]−1[x̃, x0;F ]‖‖[x̃, x0;F ]−1([x2, x1;F ]
− ([y1, x1;F ])‖‖x2 − x1‖
≤ ψ(‖x2 − y1‖, 0)

1− ψ0(‖x̃ − y2‖, ‖x0 − x2‖)‖x2 − x1‖

≤ ψ(‖x2 − x1‖ + ‖x1 − y1‖, 0)

1− ψ0(‖x̃ − x0‖ + ‖x0 − y2‖, ‖x0 − x2‖‖)‖x2 − x1‖

<
ψ(η + (1− λ)η, 0)

1− ψ0(μ+ r, r)
‖x2 − x1‖

= g(r)‖x2 − x1‖.

Then, as g(r) < 1 by (SL4), from (5.56) and (5.58), we get

‖x3 − x0‖ ≤ ‖x3 − x2‖ + ‖x2 − x1‖ + ‖x1 − x0‖ < (g(r)+ 1)‖x2 − x1‖
+‖x1 − x0‖ < [(g(r)+ 1)g0(r)+ 1]η < r.

Therefore, x3 ∈ B(x0, r) and, as before, y3 ∈ B(x0, r):

‖y3 − x0‖ = ‖λx3 + (1− λ)x2 − x0‖ ≤ λ‖x3 − x0‖ + (1− λ)‖x2 − x0‖ < r.



178 I. K. Argyros et al.

We prove that the following four items are satisfied, for j ≥ 2, by the sequence
{xn}:

(I) F (xj ) = ([xj , xj−1;F ] − [yj−1, xj−1;F ])(xj − xj−1),

(II) ‖xj+1−xj‖ ≤ g(r)‖xj −xj−1‖ ≤ g(r)j−1‖x2−x1‖ ≤ g(r)j−1g0(r)‖x1−
x0‖ < η,

(III) ‖xj+1 − x0‖ ≤ ‖xj+1 − xj‖ + ‖xj − xj−1‖ + · · · + ‖x1 − x0‖

< (g(r)j−1 + . · · · + g(r)+ 1)‖x2− x1‖+ ‖x1 − x0‖ < 1
1−g(r)‖x2 − x1‖+

‖x1 − x0‖

< (
g0(r)

1−g(r) + 1) η = r

(IV ) xj+1, yj+1 ∈ B(x0, r).

We have that items (I)–(IV ) hold for j = 2. If we now suppose that (I)–(IV )

are true for some j = k, by induction, we prove that (I)-(IV ) hold for k + 1. It
follows, by analogy to the case where j = 2, that (I) holds for k + 1. Next, we
prove (II).

‖xk+2 − xk+1‖ = ‖[yk+1, xk+1;F ]−1F(xk+1)‖
≤ ‖[yk+1, xk+1;F ]−1[x̃, x0;F ]‖‖[x̃, x0;F ]−1([xk+1, xk;F ]
−[yk, xk;F ])(xk+1 − xk)‖

≤ ψ(‖xk+1 − yk‖, 0)

1− ψ0(‖yk+1 − x̃‖, ‖xk+1 − x0‖)‖xk+1 − xk‖

≤ ψ(‖xk+1 − xk‖ + ‖xk − yk‖, 0)

1− ψ0(‖yk+1 − x0‖ + ‖x0 − x̃‖, ‖xk+1 − x0‖)‖xk+1 − xk‖

<
ψ(η + (1− λ)‖xk − xk−1‖, 0)

1− ψ0(μ+ r, r)
‖xk+1 − xk‖

<
ψ(η + (1− λ)η, 0)

1− ψ0(α + r, r)
‖xk+1 − xk‖

= g(r)‖xk+1 − xk‖ ≤ g(r)kg0(r)‖x1 − x0‖.

Moreover, by the induction hypothesis and (5.56), we get

‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x2 − x1‖ + ‖x1 − x0‖
≤ (1+ g(r)+ · · · + g(r)k)g0(r)‖x1 − x0‖ + ‖x1 − x0‖

<

(
g0(r)

1− g(r)
+ 1

)
‖x1 − x0‖ ≤

(
g0(r)

1− g(r)
+ 1

)
η = r,

so, xk+2 ∈ B(x0, r) and obviously, as in (5.59), yk+2 ∈ B(x0, r). Therefore, the
items (III) and (IV ) are proved.
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From (5.58) and (II), we have

‖xk+2 − xk+1‖ = ‖[yk+1, xk+1;F ]−1F(xk+1)‖ ≤ g(r)k+1g0(r)‖x1 − x0‖.

It follows that {xn} is a complete sequence in a Banach space X and as such it
converges to some x∗ ∈ B(x0, r).

We showed the estimate

‖[x̃, x0;F ]−1F(xk+1)‖ = ‖[x̃, x0;F ]−1([xk+1, xk;F ] − [yk, xk;F ])(xk+1 − xk)‖
≤ ψ(η + (1− λ)η, 0)‖xk+1 − xk‖.

By letting k → +∞, we conclude that F(x∗) = 0. ��
Concerning the uniqueness of the solution x∗, we obtain the following result.

Theorem 5.16 Under the conditions (SL), we suppose that there exists r1 ≥ r such
that

ψ0(μ+ r, r1) < 1. (5.60)

Then, the limit point x∗ is the only solution of Eq. (5.1) in B(x0, r1) ∩�.

Proof As in Theorem 5.13, but using (SL2′) instead of (L2′), we get by (5.60) that

‖[x̃, x0;F ]−1([x∗, y∗;F ] − [x̃, x0;F ])‖ ≤ ψ0(‖x∗ − x̃‖, ‖y∗ − x0‖)
≤ ψ0(μ+ r, r1) < 1.

Hence, we have that Q−1 ∈ L(Y,X). ��

Remarks 2

(1) Note that Theorem 5.15 and Theorem 5.16 reduce to the semilocal convergence
result (Theorem 3.2) given in [27] where ψ0 = ψ , x̃ = y0 and

m = max{ψ(η + (1− λ)α, 0), ψ(η + (1− λ)η, 0)}.

(2) In the result of semilocal convergence given in Theorem 5.15 not only the error
bounds but the information on the convergence domain ( i. e. r) and conditions
(SL3) and (SL4) can be relaxed as follows: In view of (SL2),

(SL2′′) there exists a non-decreasing continuous function in its two variables
ψ̃ : R∗ × R∗ −→ R∗ such that ‖[x̃, x0;F ]−1([x, y;F ] −
[y0, x0;F ])‖ ≤ ψ̃(‖x − y0‖, ‖y − x0‖) holds for each pair of distinct
points (x, y) ∈ �×�.
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We have that

ψ̃(s, t) ≤ ψ(s, t), for each s, t ∈ R∗. (5.61)

Define function g̃0 : R∗ −→ R∗ by

g̃0(t) = ψ̃(η + (1− λ)α, 0)

1− ψ0(μ+ t, t)
. (5.62)

Then, according to the proof of Theorem 5.15 (see (5.58)), conditions (SL3)
and (SL4) can be replaced, respectively, by

(SL3′) The equation

(g̃0(t)+ 1− g(t)) η − (1− g(t))t = 0

has at least one positive zero, where g̃0 is defined by (5.62) and g is
given in (SL3). Denote by r̃ the smallest zero.

(SL4′) B(x0, r̃) ⊆ � and g̃0(̃r)+ g(̃r) < 1.

Then, the conclusions of Theorem 5.15 hold in this weaker setting (provided
that strict inequality holds in (5.61)). Notice also that in this case we have that
g̃0(t) < g0(t).

5.6.3 Numerical Example

In this section, we apply the local and semilocal convergence results given above to
solve a nonlinear system. Let F : � ⊆ R

3 → R
3 be defined by

F(x1, x2, x3) = (x1 + 0.0125|x1|, x2
2 + x2 + 0.0125|x2|, ex3 − 1).

We consider � = B(0, 1). Obviously, a solution of F(x) = 0 is x∗ = (0, 0, 0).
For u = (u1, u2, u3)

T , v = (v1, v2, v3)
T ∈ R

3, with uj �= vj for j = 1, 2, 3,
we use the divided difference of first order given in (5.12).

It is easy to prove that [x, y;F ](x − y) = F(x) − F(y) with x and y having
a some different component. Moreover, it is clear that xn = xn+1 = x∗, where
x∗ is the solution of the problem, if the three components coincide for two terms,
xn = xn+1, when applying the Secant-like method, and then no more iterations are
done. So, the Secant-like method works correctly computationally with this divided
difference of first order.
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So, it follows

‖[x,u;F ] − [y, v;F ]‖ ≤ e

2
(‖x− y‖ + ‖u− v‖)+ 0.025,

‖[x,u;F ] − [x∗, x̃;F ]‖ ≤ (‖x − x∗‖ + ‖u− x̃‖)+ 0.025,

for x �= u and y �= v.
Then, we obtain the functions

ω(s, t) = γ
( e

2
(s + t)+ 0.025

)
, ω0(s, t) = γ ((s + t)+ 0.025),

where γ = ‖[x∗, x̃;F ]−1‖.
We choose x̃ = (0.2, 0.2, 0.1) and λ = 0. We obtain using the notation of the

local result:

δ = 0.2, ‖[x∗, x̃;F ]−1‖ = 0.987654, R = 0.125464,

ω0(R, δ + R) = 0.470053 < 1, R1 = 0.78749.

Therefore, the hypotheses of Theorem 5.12 are fulfilled and the sequence {xn},
given by (5.9) with λ = 0, is well defined, converges to x∗ = 0, and remains in
B(x∗, 0.125464) ⊆ �. Moreover, the solution x∗ is unique in B(x∗, 0.78749) ⊆ �,
since ω0(0, δ + R1) < 1.

Note that the radius R = 0.125464 is larger than the old radius R = 0.101634
obtained for ω0 = ω in [29]. Thus, just as it happened in [29], for greater lambda,
a greater radio is obtained. As it is easy to check, for λ = 0.5, we obtain Rλ=0.5 =
0.161605 and for λ = 0.9, Rλ=0.9 = 0.209999.

Next, we study the semilocal convergence. We consider x̃ = (0.02, 0.02, 0).
Then, we obtain

‖[x,u;F ] − [x̃, x0;F ]‖ ≤ (‖x − x̃‖ + ‖u− x0‖)+ 0.025, for x �= u.

Therefore, we have the functions

ψ(s, t) = β
( e

2
(s + t)+ 0.025

)
, ψ0(s, t) = β((s + t)+ 0.025),

where β = ‖[x̃, x0;F ]−1‖.
We choose x0 = (0.1, 0.1, 0.01), x−1 = x0+10−2 and λ = 0. Using the notation

of Theorem 5.15, we obtain

α= 0.01, μ= 0.08, β = 0.995008, r = 0.163106, g0(r) + g(r)= 0.822036 < 1.
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Therefore, the hypotheses of Theorem 5.15 are fulfilled and the sequence {xn}
given by (5.9) for λ = 0 is well defined, converges, and remains in B(x0, r) ⊆ �.
Moreover, the uniqueness ball is B(x0, 0.736785) ⊆ �, since ψ0(μ+ r, r1) < 1.
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Chapter 6
Spacetimes as Topological Spaces,
and the Need to Take Methods of General
Topology More Seriously

Kyriakos Papadopoulos and Fabio Scardigli

Abstract Why is the manifold topology in a spacetime taken for granted? Why
do we prefer to use Riemann open balls as basic-open sets, while there also
exists a Lorentz metric? Which topology is a best candidate for a spacetime: a
topology sufficient for the description of spacetime singularities or a topology which
incorporates the causal structure? Or both? Is it more preferable to consider a
topology with as many physical properties as possible, whose description might
be complicated and counterintuitive, or a topology which can be described via a
countable basis but misses some important information? These are just a few from
the questions that we ask in this chapter, which serves as a critical review of the
terrain and contains a survey with remarks, corrections and open questions.

Keywords Zeeman-Göbel topologies · Topologising a spacetime · Spacetime
singularities · Causal topologies · Manifold topology

6.1 Introduction

6.1.1 The Manifold Topology vs. Finer or Incomparable
Topologies

In [16], the author supports that the manifold topology in a curved spacetime is
the best possible and most natural choice, against the class of topologies that was
suggested by Zeeman and Göbel (see [38] and [13], respectively). His main focus
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lies on topologies finer than the manifold one, but there is a misjudgement here:
there are topologies in the class Z of Zeeman-Göbel topologies (as we shall see in
paragraph 4) that are neither finer nor equal nor coarser than the manifold topology.

Instead of asking whether we need a finer topology for a sufficient mathematical
description of a spacetime, we bring the topologisation question into a different
level: why should one prefer a topology which describes spacetime singularities
against a topology which hides singularities but incorporates the causal structure
of the spacetime? As we shall see, the singularity theorems were proven under the
frame of the manifold topology, while there are topologies in the class Z where
the limit curve theorem (LCT for abbreviation) fails to hold, and thus sufficient
conditions for the formation of singularities as we understand them in the presence
of Riemannian basic-open balls fail as well.

Zeeman’s main arguments against the Euclidean R
4 topology for Minkowski

spacetime M (extended by Göbel for curved spacetimes) can be summarised as
follows:

1. The 4-dimensional Euclidean topology is locally homogeneous, whereas M is
not; every point has associated with it a light cone, separating space vectors from
time vectors.

2. The group of all homeomorphisms of 4-dimensional Euclidean space is vast, and
of no physical significance.

Heathcote’s antilogue belongs to (sic) a realist view of spacetime topology as
against the instrumentalist position. A realist point of view divides the space into
structural levels, such as metric tensor field, affine connection, conformal structure,
differentiable manifold and topology. Heathcote highlights that the manifold topol-
ogy is present as long as the structure of manifold is present, and there are two
“untenable” possibilities for a replacement of the manifold topology, in both cases
by finer topologies (see [16], page 255, for more details). Heathcote’s arguments
miss here that there are topologies in the class Z that are neither finer nor coarser
than the manifold topology, as we shall see, but our disagreement does not lie only
on this ground; we believe that the answer to the question “what comes first, the
metric or the topology” cannot be a definite answer in favour of the metric (see
paragraph 5). There is a Lorentz metric which is ignored by the Riemann open
balls that serve as basic-open sets for the manifold topology. In addition, there are
topologies different (and not finer, coarser or equal) than the manifold topology,
which incorporate the causal structure of the spacetime and they could be considered
as natural topologies for a spacetime, as well.

In the recent articles (see [5] and [26] and paragraph 6 here) the authors talked
about topologies in the class Z, in the sense that general relativity generically leads
to spacetime singularities where it breaks down as a physical theory; a particular
topology in Z (that we have called Z), different than the manifold one, was proven
to be the most natural one for this frame. It is in those papers that the authors
left as an open question a different approach to the topologisation of spacetime:
the definition of a dynamical evolution of the spacetime given specific causal and
topological conditions (see paragraph 7). It is conjectured that the challenges or even
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contradictions that arise in the study and understanding of spacetime geometry are
due to the “static” nature of a topological structure; indeed, there is a specific fixed
topology in the background and the topological properties arising from this topology
affect the spacetime as a whole. This rigidity in the study of spacetime geometry
might be cured if one develops a topological space with an evolving topology, which
will incorporate quantum and relativistic frames within the spacetime and outside it
(Planck time and length, singularities, etc.). One of the aims of this critical survey
is to open such a discussion as well.

The different approaches in the study of spacetime geometry, and in the topologi-
sation of a spacetime in our case, are due to different cultural backgrounds; Penrose
states a similar argument in [32]. Those who come from QFT (quantum field theory),
for example, and those from Einstein’s general relativity seem to view things in a
different way (here we should add those who come from a purely mathematical
background, as well). Those from QFT, according to Penrose, would tend to take
renormalisability or, better, finiteness, as the primary aim of the union of relativity
and quantum theories. Those having a relativistic background would take the deep
conceptual conflicts (determinism, causality, background independence) between
the principles of quantum mechanics and those of general relativity to be the
centrally important issues that needed to be resolved, and from whose resolution we
should expect to move forward to a new physics of the future. Those from a purely
(theoretical) mathematical background, coming straight from the Platonic world
of Penrose, would love to see a spacetime as an integrated mathematical entity, a
structure with physical properties coinciding harmonically with the mathematical
formulation.

It should be said that the description of fluctuating topologies, or topological
transitions, has become a debated topic in the theoretical physics since the visionary
introduction of the concept of Spacetime Foam, by John Wheeler in the 1950s [36].
In string theory these ideas have been explored in the early 1990s, among others, by
Greene (see Refs. [6]), and innumerable have been the applications of the concept
of spacetime foam to different problems (see, e.g., [33]). In recent years, research
ideas emerged that aim to derive the concept of spacetime itself from quantum
entanglement. The seminal paper of Raamsdonk [35] paved the way to the more
recent works of Susskind and Maldacena [20]—for a readable review see New
Scientist [22]—(authors who, by the way, are all building upon two fundamental,
only apparently disconnected, papers written by Einstein in 1935, the so-called E.R.
and E.P.R. papers [10] and [9]). On the other hand, already in a model of spacetime
as simple as a lattice (see, for example, [17]) we see how the actual topology
of spacetime can deeply affect the formulation of the fundamental structures of
physical theories (in that case, the definition of the fundamental commutator of QM
is deformed by the lattice structure of the underlying spacetime).

The opinions that are presented in this chapter can be considered as opinions
stemming from the family of pure mathematicians (plus a theoretical physicist)
and it is expected that they will not easily drag the attention of a large number of
physicists: it is in our beliefs though that a spacetime as an integrated mathematical
entity, a spacetime studied as a topological space, would play a significant role to
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the search for a theory of quantum gravity. In a few words, the methods of general
topology should be taken more seriously from those working in QFT as well as
those in general relativity, at least.

6.1.2 On Name-Giving and Notation

In the geometry of spacetime we introduce three relations: the chronological order
(, the causal order≺ and the relation horismos→. These relations can be extended
to any event space (M,(,≺,→) having no metric (see [18] and [31]).

In particular, we say that x chronologically precedes an event y -written x ( y-
if y lies inside the future null cone of x. x causally precedes y -written x ≺ y- if y
lies inside or on the future null cone of x. Last, but not least, x is at horismos with
y -written x → y- if y lies on the future null cone of x. The order( is irreflexive,
the order ≺ is reflexive and the relation→ is reflexive, too.

In addition, the chronological future of an event x is denoted by I+(x) = {y ∈
M : x ( y} while its causal future by J+(x) = {y ∈ M : x ≺ y} (with a minus
instead of a plus sign, dually, for the pasts in each case, respectively). The future
null cone of x is denoted by N+(x) ≡ ∂J+(x) = {y ∈ M : x → y} and, dually,
we put a minus for the null past of x. The chronological past and future of an event
x determine its time cone, its causal past and future its causal cone and its null past
and future its light cone.

When physicists refer to the null cone of an event x they actually mean the light
cone. Zeeman, as a working topologist, preferred to substitute the term null cone by
three terms, for working with the interior, closure, boundary and exterior of it (see
paragraph 3 of [38]).

We should now mention a few problems in name-giving that arise from when
one corresponds order-theoretic and topological notions from the classical theory of
ordered sets and lattices to a spacetime manifold. Following the construction of the
interval topology (see [12]), it seems natural to say that a subset A ⊂ X is a past set
if A = I−(A) and a future set if A = I+(A). One then would expect that the future
topology T + is generated by the subbase S+ = {X \ I−(x) : x ∈ X} and the past
topology T − by S− = {X \ I+(x) : x ∈ X}. Then, the interval topology Tin on
M would consist of basic sets which are finite intersections of subbasic-open sets of
the past and the future topologies.

First of all, the names “future topology” and “past topology” are due to the lack
of inspiration for other names for such topological analogues in a spacetime, but
here we should have in mind that when one considers the chronological relation
and identifies ↓ {x} with I−(x), then obviously x /∈ I−(x). On the contrary, things
follow the pattern of the construction in [12] when one considers the causal order≺.
Furthermore, M \ I−(x) will not be a future set with(, according to the definition
that a future set satisfies X =↑ X. All these are not real problems at all, when it
comes to our target to describe particular topologies which incorporate the causal
structure of a spacetime (see the section Topologies Different than the Manifold
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Topology, below, and the corresponding references in it); the problem is sort of
corresponding more appropriate names to these topologies, as well as developing a
more systematic and simplified notation. We believe that this is not a difficult task
to achieve in the near future.

One more point, regarding the appropriateness of a name, the Minkowski space
in particular (and spacetimes in general) is not up-complete, and a topology Tin
for a spacetime belongs actually to a coarser topology than the interval topology of
[12]. So we will treat the interval topology of [12] as a special case referring to up-
complete sets, and our Tin spacetime topologies belonging to a more general case
where up-completeness is not a necessary condition. It is worth mentioning though
that for the particular case of 2-dimensional Minkowski spacetime, Tin under ≺ is
the interval topology that one defines using [12].

Finally, we would also like to highlight the distinction between the interval
topology Tin from the “interval topology” of A.P. Alexandrov (see [31], page 29 and
the succeeding section here). Tin is of a more general nature, and it can be defined
via any relation, while the Alexandrov topology is restricted to the chronological
order. These two topologies are different in nature, as well as in definition, so
we propose the use of “interval topology” for Tin exclusively, and not for the
Alexandrov topology.

6.2 Topologies Coarser Than or Equal to the Manifold
Topology

In the literature, starting from the first modern singularity theorem by Penrose (see
[30]) till recent accounts on singularities such as [34], there is no explicit mentioning
of the topology of a spacetime M , while Riemann metric and Riemann basic-open
balls can be used whenever there is a need, for example, for the proof of the limit
curve theorem (LCT) and the convergence of causal curves (for a detailed exposition
see [8] and [21]). In parallel to the manifold topology M, one can consider the
Alexandrov topology A which has basic-open sets known as “diamonds” and
are simply the intersections of future and past time cones, of two distinct events
respectively. This topology incorporates the causal structure of a spacetime, but
equals the manifold topology only in the following case (see [31]) and, in other
cases, it is coarser than M.

Theorem 6.2.1 On a spacetime M , the following are equivalent:

1. M is strongly causal.
2. A agrees with M.
3. A is Hausdorff.

So, the main contribution of the topology A is a characterisation of strong
causality, as soon as A is Hausdorff. Adding the fact that it incorporates the causality
(in particular the chronology) of a spacetime by the construction of open diamonds,
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A looks like a great candidate for a spacetime topology when it is Hausdorff but,
following Zeeman’s arguments, its group of homeomorphisms is vast and of no
physical meaning, both in the Minkowski spacetime and in curved spacetimes.

The existence of a Lorentz metric in a spacetime is enough to make us conclude
that neither the manifold topology M nor the Alexandrov topology A “in its best”,
that is when Theorem 6.2.1 is satisfied, can fully describe a spacetime topologically.
The manifold topology is a natural topology for a manifold, but not such a natural
one for a spacetime manifold!

6.3 The Class Z of Zeeman-Göbel Topologies

The class Z of Zeeman topologies on a spacetime manifold M consists of topologies
which have the property that they induce the 1-dimensional manifold topology on
every time axis and the 3-dimensional manifold topology on every space axes. This
class was first introduced in [38], in the special case of Minkowski spacetime,
and it was generalised in [13] for any curved spacetime. In particular, paper
[38] is the natural continuation of [37], where Zeeman proved that causality in
Minkowski spacetime implies the Lorentz group. He then showed that the group of
all homeomorphisms of the finest topology in Z, which is coarser than the discrete
topology, is generated by the inhomogeneous Lorentz group and dilatations. In
addition, unlike the topology of R4, this fine topologyF is not locally homogeneous
and the light cone through any point can be deduced by F . There is also a
quite interesting lemma; the topology on a light ray induced from F is discrete.
Discreteness of light, according to Göbel, describes well its physical behaviour:
there is no geometric information along a light ray. Here one should not confuse
topological discreteness (every set is open) with discreteness in the sense of (finite
or infinite) countability. Apart from the group of homeomorphisms of M under
F and its physical interpretation, the topological boundary of the null cone has
the maximum number of open sets: there is definitely a connection here with the
maximum speed, that of light.

Zeeman mentioned three other alternative topologies in Z different than F , that
we will consider in Sect. 6.4, as well as their analogues for curved spacetimes.

Göbel found that the analogue of F in a curved spacetime has the property that
the group of all homeomorphisms under this topology is isomorphic to the group of
all homothetic transformations. In a few words, under the relativistic analogue of F ,
a homeomorphism is an isometry.

A problem that was noticed first by Zeeman himself is that F is technically
difficult, as it does not admit a countable base and so it is not the best tool for a
working physicist. This was one of the arguments of the authors of [15] and [19]
as well, but we object that this is not an attractive reason for avoiding a topology
which is much more natural in a spacetime from the manifold topology. Natural in
the sense that it incorporates the differential, causal and conformal structures and the
group of homeomorphisms of the spacetime is not vast and it has physical meaning.
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So, the argument that F has “too many open sets” and does not admit a countable
base should be reconsidered. Since we are dealing with both the Lorentz metric and
the Riemann metric in a spacetime manifold, a natural topology which will describe
the properties of the spacetime should be compatible with every possible structure
which is defined on the spacetime. F is such a topology.

For some reason the supporters of the manifold topology, like Heathcote,
believed that all the topologies in Z are strictly finer than M, but actually this is
not true. Three alternative topologies that Zeeman introduces in [38] are linked in
their construction to topologies that we mention in the next paragraph, each of which
belongs to the class Z but is incomparable to M (see [21, 27] and [29]). Göbel [13,
page 297, (C)] actually states that there are other topologies in Z, but without a clear
reference that there are topologies that are not necessarily finer or coarser or equal
to the manifold topology. This is important, since the criticism against the class Z
bases many of its arguments against the term finer topology. Let us now look at a
sample of topologies in Z, which are not finer than the manifold topology M.

6.4 Topologies Different Than the Manifold Topology

In [28] we remark that the Path topology P of Hawking–King–McCarthy (see [15])
is the general relativistic analogue of the topology introduced in Example 1 of [38]
(page 169). Low showed in [19] that under this topology P (that we name ZT

for consistency of notation) the limit curve theorem (LCT) fails to hold. In [28]
we introduced three (among others) more topologies that the LCT fails to hold,
all incorporating the differential, causal and conformal structure of the spacetime
manifold. In particular, we stated the following theorem.

Theorem 6.4.1 There are three distinct topologies in a spacetime manifold which
admit a countable basis, they incorporate the causal and conformal structures and
the LCT fails with each one of them, respectively. These are the interval topologies
T→in , T ≤in and T(

=
in , which are all in the class Z.

All these topologies are not finer (neither equal nor coarser) than the manifold
topology and singularity theorems, under each one of them, respectively, cannot
be formed in the way that are described via the manifold topology. These three
topologies, together with the manifold topology, give the intersection topologies Z,
ZT , ZS , which are finer than the manifold topology, where Z is coarser than the fine
topology F and ZT (the Path topology of [15]) and ZS are incomparable to F .

Low, in [19], supports in his conclusion that LCT failing in theP (which also fails
in the extra five topologies that we suggest in Theorem 6.4.1) makes the manifold
topology remaining both technically easier to work with and fruitful. We have some
objections. All the six topologies of [28] and in particular those in Theorem 6.4.1
are technically easy to work with (they all have a countable base of open sets) and
they are fruitful, as they belong to Z and are all behaving like order topologies,
in the sense that they satisfy the orderability problem (or weaker versions of it,
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referring to non-linear orders; see [14, 23, 25] and [24]). Each one of them is
induced either from the causal or chronological orders or from (the irreflexive)
horismos, with the exception of ZS which is induced by a particular spacelike non-
causal order that we describe in [29]. More specifically, Z, ZT and ZS have open
sets bounded by Riemann open balls centred at an event x, intersected with the
timecone union spacecone of x in the case of Z, the timecone of x in the case of
ZT and the spacecone of x in the case of ZS , respectively. The rest three topologies
have unbounded open sets which are timecone union spacecone in the case of T→in ,
timecone in the case of T ≤in and spacecone in the case of T(

=
in , respectively, at an

event x. For a more detailed treatment we refer to [28].
On the other hand, the manifold topology misses the Lorentz metric and so the

causal structure of the spacetime as well, so we conclude the following.

Corollary 6.4.1 The manifold topology M, on a spacetime M , is based on the
Riemann metric and is sufficient for describing spacetime singularities, but does not
incorporate the Lorentz metric, while each of the topologies in Theorem 6.4.1 fail
to describe singularities that appear under M, but incorporate the Lorentz metric.

Corollary 6.4.2 The Fine Topology F is the Best Possible Candidate for a
Spacetime M , as it is strictly finer than M, strictly coarser than the discrete
topology and, simultaneously, finer than the topologies introduced in Theorem 6.4.1.
In addition, the group of homeomorphisms of M under F is isomorphic to the
Lorentz group and dilatations, in the case of special relativity, and to the group
of homothetic symmetries in the case of general relativity, while under the manifold
topology the group of homeomorphisms of M is vast and of no physical significance.
Last, but not least, the LCT holds under F , while it might fail in coarser topologies
to F .

The discussion about F would be incomplete, if we did not mention the comment
of Göbel about F in [13], pages 290–291: unphysical world lines, like “bad trips”
are avoided if one interprets continuity of worldlines with respect to F . Under F
basic assumptions for a kinetic theory in general relativity are satisfied and one can
incorporate electromagnetic fields into such a result, if one allows F to depend on a
gravitational field as well as on the Maxwell field (and derive corresponding results
on orbits of freely falling test particles for charged particles).

6.5 In the Beginning Was the Metric. . . or the Topology?

This is a more important question as it seems to be. Speaking about spacetime
manifolds as mathematical objects, it is vital that a natural topology will incorporate
all the mathematical structures appearing in the manifold, including the Lorentz
metric as well as the Riemann metric. In this sense (a “Platonic mathematical”
sense in the view of Penrose, which is projected to the physical world [32]) the
manifold topology is not a natural topology in a spacetime manifold, even if it



6 Spacetimes as Topological Spaces, and the Need to Take Methods of. . . 193

is defined via the Riemann metric. The metric tensor field, the affine connection
and the conformal structure, the differentiable manifold with its topology, are all
important constituents of the spacetime manifold, but what about the Lorentz metric
and the structure of the null cone? Having mentioned this, we believe that “in the
beginning was the topology”, in a spacetime manifold. A topology like F , where
the group of homeomorphisms of M under F has a physical meaning and which
incorporates all the metric structures in the manifold.

6.6 Ambient Cosmology: A Failure Due to a Topological
Misconception

In [5] we described the motivation for a 5-dimensional “ambient space”, where our
4-dimensional spacetime is its conformally related ambient boundary at infinity,
by linking it to the singularity problem in general relativity. In cosmology the
infinities that are inherent in the spacetime metric according to the singularity
theorems indicate the necessity of a conformal geometry of metrics to absorb
them, not a breakdown of general relativity. The construction of this model in
ambient cosmology can be found in [2–4] and [7], where the authors started from
the construction of the metric, leaving the topological problem at the end. As we
observed in [26], it is the topology succeeding (and, unfortunately, not preceding or
at least being constructed simultaneously with) the metric that showed a failure in
the construction and in results concerning the convergence of causal curves; it is the
Path topology P = ZT or ZS or Z where the LCT fails and not in F . Furthermore,
why should one bother to add an extra dimension while a 4-dimensional spacetime
under a topology like P has already the properties of the ambient boundary,
and while the structure of the ambient boundary is totally unknown to us (we
lack knowledge even for basic results on causality: see, for example, [27] for an
important correction on [5]). Here we should also mention that a finer topology than
the manifold one will contain manifold-open sets; this does not guarantee that the
LCT holds. For example,P is finer than M and, simultaneously, LCT fails underP .

6.7 Towards an Evolving Topology and a Quantum Theory
of Gravity

If the main problem for a working physicist is that F is not an easy topology to
work with, due to the lack of a countable basis of open sets, or if topologies like
M and those topologies mentioned in paragraph 4 are missing something important
from the spacetime structure, then we believe that there is something deeper behind
all this and this certainly is of a topological nature. We have already expressed in
[27] an idea of an evolving topology with respect to the class Z, so that different
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topologies of this class are assigned to each stage of the evolution as well as where
the spacetime itself is subjected to singularities. It could be, for example, that the
interval topology from horismos → (see [27]) could give a sufficient description
to the transition from/to the Planck time and objects like black holes, while other
topologies (where the LCT theorem holds, for example) could explain the phase
transition from locality to nonlocality. Topologies like ZT are linked to a discrete
space while ZS to a discrete time, while Z to a discrete light (these are actually
remarks of Zeeman in [38], for their special relativistic analogues). By evolution we
do not necessarily mean (and this is not our desire at all) to consider kinematically
that the spacetimes of our interest are foliated manifolds where leaves of foliation
have open sets which vary over time. The question is different: how does a spacetime
manifold appear from a functional space? An answer to such a question which refers
to the transition from nonlocality to locality seems to need a richer topological
background, a background that the class Z could possibly provide. Possible tools
can be also derived from articles like [1, 11].

6.8 The Need to Take Methods of General Topology More
Seriously

We believe that the concerns against a “finer” topology, as expressed in [16], are
reasonable. Reasonable are similar concerns expressed in [19], when we restrict
ourselves to the validity of general relativity. The problem is that even though the
manifold topology M has somehow worked nicely in the last century or so, it is
problematic in describing fully properties of a spacetime in a sufficient way; it lacks
important information, as we have seen in the previous paragraphs. F is a finer
topology which resolves, at least in a mathematical way, all such issues, and—at the
moment—there is no other candidate topology to compete with.

Criticism (in oral communication with physicists) against F , and against topolo-
gies like those mentioned in paragraph 4, highlights that there is a value of
considering these alternative topologies in Z since they may, for example, lead to
a new physical theory, or they may allow one to extract new, physically interesting,
predictions from the old theory. According to those who criticize alternatives to the
manifold topology, there is a point of diminishing returns; that, eventually, further
treatment of these topologies, in the abstract, can no longer be justified. At some
point, there should be a result of a genuine physical interest; no such a result is in
sight and, therefore, that we have reached that point.

The problem of such a criticism is that the main points of [38] and [13] have not
been understood, and this is quite disappointing. There is a prejudice against general
topology, only the reference to it is enough to discourage working mathematical
physicists and theoretical physicists to read carefully a related article. The labyrinth
that we seem to be when talking about string theory and quantum theory of gravity,
for example, is not only related to the need for an extra physical input, but for an
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extra mathematical input as well. The authors wish that this chapter contributes to
the reopening of a discussion in this serious and fascinating subject.
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Chapter 7
Analysis of Generalized BBM Equations:
Symmetry Groups and Conservation
Laws

M. S. Bruzón, T. M. Garrido, and R. de la Rosa

Abstract In this work we study a generalized BBM equation from the point of view
of the theory of symmetry reductions in partial differential equations. We obtain the
Lie symmetries, then we use the transformation groups to reduce the equations into
ordinary differential equations. Physical interpretation of these reductions and some
exact solutions are also provided.

Local conservation laws are continuity equations that provide conserved quanti-
ties of physical importance for all solutions of a particular equation. In addition, the
existence of an infinite hierarchy of local conservation laws of a partial differential
equation is a strong indicator of its integrability. For any particular partial differen-
tial equation, a complete classification of all local low-order conservation laws can
be derived by using the multiplier method.

Keywords Partial differential equations · Lie symmetries · Exact solutions ·
Conservation laws

7.1 Introduction

Benjamin et al. [6] proposed the regularized long wave (RLW) equation, or
Benjamin–Bona–Mahony equation (BBM),

ut + ux + uux − uxxt = 0, (7.1)

as an alternative model to the Korteweg–de Vries (KdV) equation for the long wave
motion in nonlinear dispersive systems. Equation (7.1) can be used to describe the
unidirectional propagation of small-amplitude long waves on the surface of water in
a channel. These authors argued that both equations are valid at the same level of
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approximation, but BBM has some advantages over the KdV from a computational
and mathematical viewpoint. Several forms of BBM equation (7.1) have been
widely studied, some of them are collected here.

The damped externally excited Benjamin–Bona–Mahony equation

ut + ux + 2buux − cuxx − du− auxxt = η cos k(x + λt), (7.2)

where c and d are nonnegative constants that are proportional to the strength of
the damping effect, was considered by Eloe and Usman [23]. Equation (7.2) was
introduced to model long waves in nonlinear dispersive systems, and it could be
checked that BBM equation is a special case of it.

Gandarias and Khalique [24] studied a generalization of (7.2) of the form

ut + ux + 2buux − cuxx − du− auxxt = f (x, t), (7.3)

where f is an arbitrary function of the variables x and t . They proved that (7.3)
is nonlinearly self-adjoint and determined some exact solutions by using Lie
symmetries.

There are also equations that are a combination of the KdV and the BBM
equation. For example, the third-order KdV–BBM equation

ut + ux + 3

2
uux + νuxxx −

(
1

6
− ν

)
utxx = 0, (7.4)

models long-crested water waves which travel mostly unidirectionally. Travelling
wave solutions and conservation laws of Eq. (7.4) were obtained in [34] through
Lie symmetry analysis along with the Jacobi elliptic function expansion and
Kudryashov methods.

In [32], the following one-dimensional BBM equation with time-dependent
coefficients was studied

ut + f (t)ux + g(t)uux + h(t)uxxt = 0, (7.5)

where f (t), g(t), and h(t) are nonzero arbitrary functions. These kind of models
are more general since in realistic physical systems, no media is homogeneous due
to long distance of propagation and the existence of some nonuniformity due to
many factors. Molati et al. obtained that the functional forms of the functions f (t),
g(t), and h(t) for which Eq. (7.5) admits point symmetries were of a linear, power,
exponential, and logarithmic type. Furthermore, by using these symmetries, they
derived some exact travelling wave solutions.

On the other hand, we found the one-dimensional modified B-BBM equation
with power law nonlinearity and time-dependent coefficients given by

ut + f (t)uqux + g(t)uxx + h(t)uxxt = 0, (7.6)



7 Analysis of Generalized BBM Equations: Symmetry Groups and Conservation Laws 199

with f (t), g(t), and h(t) nonzero arbitrary functions. Equation (7.6) was derived
to encompass the dissipation of practical problems. In [31], a classification of point
symmetries depending on the functional forms of the time-dependent variables was
obtained as well as some symmetry reductions were taking into account.

Furthermore, in order to understand the role of nonlinear dispersion in the
formation of patterns in an undular bore, Yalong [38] introduced and studied a
family of BBM-like equations with nonlinear dispersion, B(m, n) equations

ut + (um)x − (un)xxt = 0, m, n > 1.

In [38], exact solitary-wave solutions with compact support and exact special
solutions with solitary patterns of the equations were derived.

In [36] the authors introduced the family of BBM equation with strong nonlinear
dispersive B(m, n) equation:

ut + ux + a
(
um

)
x
+ (

un
)
xxt
= 0. (7.7)

By using an algebraic method, solitary pattern solutions of equation (7.7) were
obtained. The case n = 1 and m = 2 corresponds to the BBM equation (7.1).

Clarkson [18] showed that the similarity reduction of Eq. (7.7) for m = 3, n = 1,
and a = 1

3 obtained by using the classical Lie group method reduces the partial
differential equation (PDE) to an ordinary differential equation (ODE) of Painlevé
type, whereas the PDE does not possess the Painlevé property for PDEs defined by
Weiss et al. [37]. The author proved that the only non-constant similarity reductions
of this equation obtainable by using both the classical Lie method and the direct
method [19] are travelling wave type reductions.

In [10] the authors made a classification of symmetry reductions of the family of
BBM equations,

ut + bux + a
(
um

)
x
+ (

un
)
xxt
= 0, (7.8)

where a, b �= 0,m �= 0, n �= 0 are constants, m and n are not simultaneously
equal to 1, depending on the values of the constants. They constructed all the
invariant solutions with regard to one-dimensional subalgebras. Besides travelling
wave reductions, they found new similarity reductions for this family of equations.
They constructed all nonequivalent ODEs to which (7.8) could be reduced. They
obtained, for special values of the parameters of this equation, many exact solutions
expressed by various single and combined nondegenerative Jacobi elliptic function
solutions and their degenerative solutions.

In [13], the nonlocal symmetries of BBM equations (7.8) were studied. A PDE
written as a conservation law can be transformed into an equivalent system by
introducing a suitable potential. The nonlocal symmetry group generators of the
original PDE were obtained through their equivalent system. The authors proved
that the nonclassical method applied to this system leads to new symmetries, which
are not solutions arising from potential symmetries of the BBM (7.8) equations.
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In [14] the authors considered Eq. (7.8) for n = 1 and m = 2. By using the
G′
G

-expansion method they obtained three types of travelling wave solutions and
also obtained for special values of the parameters of this equation, many exact
solutions expressed by various single and combined nondegenerative Jacobi elliptic
function solutions and their degenerative solutions (soliton, kink, and compactons).
Moreover, by using the concept of self-adjoint equation, introduced by Ibragimov
in [28–30], the authors found the general class of self-adjoint equations of (7.10).
By using Ibragimov’s theorem on conservation laws, they derived conservation laws
for this equation.

In [11], the generalized Benjamin–Bona–Mahony–Burgers (BBMB) equation
was considered

ut − uxxt − αuxx + βux + (g(u))x = 0, (7.9)

where u(x, t) represents the fluid velocity in the horizontal direction x, α is a
positive constant, β ∈ R and g(u) is a C2-smooth nonlinear function which was
given in [1]. Classical symmetries of this equation were considered. The functional
forms, for which the BBMB equation (7.9) can be reduced to ODEs by using point
symmetries, were obtained. Moreover, symmetry reductions and exact solutions
were given. In particular, a set of new solitons, kinks, anti-kinks, compactons, and
Wadati solitons were derived.

In [12] the authors considered the combined dispersive-dissipative entity

ut + bux + a
(
um

)
x
+ (

un
)
txx
+ c

(
uk

)

xx
= 0, (7.10)

where a �= 0, b, c �= 0, are arbitrary constants, k, m, and n positive constants.
They obtained the complete Lie group classification of this equation. Next, from the
optimal system, the similarity variables and the similarity solutions were determined
and used to reduce Eq. (7.10) into an ODE. Finally, they derived travelling wave
solutions of Eq. (7.10).

In [15], the authors showed that this equation is not self-adjoint and we deter-
mined the subclasses of Eq. (7.10) which are nonlinearly self-adjoint. Furthermore,
by using the multipliers method of Anco and Bluman, we obtained some non-trivial
conservation laws. In the case that n = 1, k = 2, and m = 3, taking into account
the modified simplest equation method, three types of travelling wave solutions of
this equation were obtained.

In [35] the following damped, forced generalized BBM equation was considered

ut − utxx − ∂x(a(x)∂xu)+ (g(u))x = f (7.11)

where a, f , and g are arbitrary functions.
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In the present paper, we focus on two different cases of Eq. (7.11)

ut − utxx − ∂x(a(x)∂xu)+ (g(u))x = f (t), (7.12)

ut − utxx − ∂x(a(x)∂xu)+ (g(u))x = f (x). (7.13)

For both equations, Lie point symmetry method is applied. Symmetry analysis
is probably the most powerful tool to study linear and nonlinear ODEs and PDEs.
Specifically, Lie method allows us to determine the symmetries of a given ODE or
PDE through the one-parameter group of transformations that leaves invariant the
equation and transforms the solution space into itself. Thus, by using Lie symmetries
it is possible to reduce the order of an ODE, reduce the number of dependent
variables of a PDE, classify the equation, or get new solutions, among others.

Many books have been written about Lie’s method and its theory. A detail
description can be found in [7–9, 27, 33], and nowadays it is applied to several
differential equations in several fields, such as [16, 17, 20–22, 25, 26].

A conservation law is a space–time divergence expression whose importance lies
in its physical meaning. It shows us a property of the physical system model that
does not change as the system evolves over time. Furthermore, these laws can be
used to assess the accuracy and stability of numerical methods for the solutions of
PDEs and the existence of a large number of conservation laws is linked with the
integrability of a differential equation. Information about conservation laws and the
multiplier method to obtain them can be found in [2, 4, 5].

The aim of this work is to analyze both damped forced generalized BBM
equations (7.12)–(7.13) from the point of view of Lie symmetries. Furthermore,
once the Lie algebra is obtained, we will reduce these equations to ODEs and obtain
travelling wave solutions. We will also construct conservation laws by using the
multiplier method. Finally, we study the nonlocal symmetries of the equations and
Lie symmetries of the integrated equation.

7.2 Lie Point Symmetries

Before determining Lie point symmetries of Eqs. (7.12) and (7.13), we have deter-
mined the equivalence group of these equations. It is remarkable that equivalence
transformations facilitate a complete classification of point symmetries. We notice
that Eqs. (7.12) and (7.13) are conserved under the equivalence transformation

t̃ −→ t + t0, ũ −→ u+ u0, t0, u0 constants.

Thus, we can simplify the results obtained on point symmetries.
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To apply Lie method to Eqs. (7.12) and (7.13) with g′′(u) �= 0, we consider the
one-parameter Lie group of infinitesimal transformations in (x, t, u) given by

x∗ = x + εξ(x, t, u)+O(ε2),

t∗ = t + ετ(x, t, u)+O(ε2),

u∗ = u+ εη(x, t, u)+O(ε2),

where ε is the group parameter. We require that this transformation leaves invariant
the set of solutions of (7.12) and (7.13), respectively. This yields an overdetermined,
linear system of equations for the infinitesimals ξ(x, t, u), τ (x, t, u), and η(x, t, u).
The associated Lie algebra of infinitesimal symmetries is the set of vector fields of
the form

v = ξ(x, t, u)∂x + τ (x, t, u)∂t + η(x, t, u)∂u. (7.14)

7.2.1 Lie Point Symmetries of Eq. (7.12)

Invariance of Eq. (7.12) under a Lie group of point transformations with infinitesi-
mal generator (7.14) leads to a set of 28 determining equations. By simplifying this
system we obtain that τ = τ (t), ξ = ξ(x), η = η(t, x, u), a(x), f (t), and g(u) are
related by the following conditions:

ηuu = 0,

2ηux − ξxx = 0,

ηuxx − 2ξx = 0,
(7.15)

aτt + axξ + ηut = 0,

ηxxt + aηxx − f ηu + (ax − gu) ηx − ηt + ftη + 2f ξx + f τt = 0,

2ηuxt + 2aηux − ηguu − aξxx + (ax − gu) ξx + axxξ + (ax − gu) τt = 0.

By solving system (7.15), we obtain the following result:

• Case 1.1. For a(x) and g(u) arbitrary functions, f (t) constant, the infinitesimal
generator is

v1 = ∂t .
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• Case 1.2. For g(u) and f (t) arbitrary functions, a(x) constant, the infinitesimal
generator is

v2 = ∂x.

• Case 1.3. For g(u) arbitrary function, f (t) and a(x) constants, the infinitesimal
generators are

v1 = ∂t , v2 = ∂x.

• Case 1.4. For a(x) = a2 exp(a1x), f (t) = f2t
f1 , g(u) = g1u

f1
f1+1 + g2, a1,

a2 �= 0, f1 �= −1, f2, g1 �= 0, g2 constants, the infinitesimal generator is

v3 = −∂x + a1t∂t + a1(f1 + 1)u∂u.

Moreover, if a2 = 0 or f2 = 0 besides v3 we obtain v2 or v1, respectively.
• Case 1.5. For a(x) = a2 exp(a1x), f (t) = f2

t
, g(u) = g2 exp(g1u) + g3, a1,

a2 �= 0, f2, g1 �= 0, g2 �= 0, g3 constants, the infinitesimal generator is

v4 = g1∂x − a1g1t∂t + a1∂u.

Moreover, if a2 = 0 or f2 = 0 besides v4 we obtain v2 or v1, respectively.
• Case 1.6. For a(x) = a2 exp(a1x), f (t) = f2, g(u) = g1 ln(u)+ g2, a1, a2 �= 0,

f2, g1 �= 0, g2 constants, we obtain besides v1 the infinitesimal generator

v5 = −∂x + a1t∂t + a1u∂u.

Moreover, if a2 = f2 = 0 besides v1 and v5, we obtain v2.
• Case 1.7. For a(x) = a2 exp(a1x), f (t) = 0, g(u) = g2u

g1+1 + g3, a1, a2,
g1 �= 0, g2 �= 0, g3 constants, the infinitesimal generators are

v1, v6 = −g1∂x + a1g1t∂t − a1u∂u.

Moreover, if a2 = 0 besides v1 and v6, we obtain v2.
• Case 1.8. For a(x) = 0, f (t) arbitrary, g(u) = g2 exp(g1u)+ g3, g1 �= 0, g2, g3

constants, the infinitesimal generators are

v2, v7 = exp
(−g1

∫
f (t) dt

)
(∂t + f (t)∂u) , v8 = F(t)∂t + (f (t)F (t) − 1)∂u,

where

F(t) = g1 exp

(
−g1

∫
f (t) dt

)∫
exp

(
g1

∫
f (t) dt

)
dt.
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7.2.2 Lie Point Symmetries of Eq. (7.13)

Invariance of Eq. (7.13) under a Lie group of point transformations with infinitesi-
mal generator (7.14) leads to a set of 28 determining equations. By simplifying this
system we obtain that τ = τ (t), ξ = ξ(x), η = η(t, x, u), a(x), f (x), and g(u) are
related by the following conditions:

ηuu = 0,

2ηux − ξxx = 0,

ηuxx − 2ξx = 0,
(7.16)

aτt + axξ + ηut = 0,

ηxxt + aηxx − f ηu + (ax − gu) ηx − ηt + fxξ + 2f ξx + f τt = 0,

2ηuxt + 2aηux − ηguu − aξxx + (ax − gu) ξx + axxξ + (ax − gu) τt = 0.

By solving system (7.16), we obtain the following result:

• Case 2.1. For g(u), a(x), and f (x) arbitrary functions the infinitesimal generator
is v1.

• Case 2.2. For g(u) arbitrary functions, a(x) and f (x) constants, the infinitesimal
generators are v1 and v2.

• Case 2.3. For a(x) = a2 exp(a1x), f (x) = f2 exp(f1x), g(u) = g1u
f1

f1−a1 + g2,
a1 �= f1, a2, f1 �= 0, f2, g1 �= 0, g2 constants, the infinitesimal generators are

v1, v9 = −∂x + a1t∂t + (a1 − f1)u∂u.

• Case 2.4. For a(x) = a2 exp(a1x), f (x) = 0, g(u) = g2u
g1+1+g3, a1, a2, g1 �=

0, g2 �= 0, g3 constants, the infinitesimal generators are v1 and v6. Moreover, if
a2 = 0 besides v1 and v6, we obtain v2.

• Case 2.5. For a(x) = a2 exp(f1x), f (x) = f2 exp(f1x), g(u) = g2 exp(g1u) +
g3, a2, f1, f2, g1 �= 0, g2 �= 0, g3 constants, the infinitesimal generators are v1
and v4. Moreover, if a2 = f2 = 0 besides v1 and v4, we obtain v2.

• Case 2.6. For a(x) = a2 exp(a1x), f (x) = f2, g(u) = g1 ln(u)+ g2, a1, a2, f2,
g1 �= 0, g2 constants, we obtain v1 and v5. Moreover, if a2 = f2 = 0 besides v1
and v5, we obtain v2.

• Case 2.7. For a(x) = 0, f (x) = f2 exp(f1x), g(u) = g2u
g1+1 + g3, f1, f2,

g1 �= 0, g2 �= 0, g3 constants, the infinitesimal generators are

v1, v10 = −(g1 + 1)∂x + f1g1t∂t − f1u∂u.
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• Case 2.8. For a(x) = 0, f (x) = f2 exp(f1x), g(u) = g1 ln(u) + g2, f1, f2,
g1 �= 0, g2 constants, the infinitesimal generators are

v1, v11 = t∂t + u∂u.

Moreover, if f1 = 0 besides v1 and v11, we obtain v2.
• Case 2.9. For a(x) = 0, f (x) = f2, g(u) = g2 exp(g1u) + g3, f2, g1 �= 0, g2,

g3 constants, the infinitesimal generators are

v1, v2, v12 = exp(−f2g1t)∂t + f2 exp(−f2g1t)∂u.

7.3 Optimal System

In order to determine solutions of Eqs. (7.12) and (7.13) that are not equivalent by
the action of an element of the Lie symmetry group, we must calculate the optimal
system.

Next, by using the Lie bracket operation [vi , vj ] = vi(vj ) − vj (vi) we have
constructed the Lie commutator table. Moreover, by summing the Lie series, the
adjoint representation table shows the separate adjoint actions of each element as it
acts over all the other elements.

7.3.1 Optimal System for Eq. (7.12)

For the infinitesimal generators of case 1.3, we have the following:

[vi , vj ] v1 v2

v1 0 0
v2 0 0

Ad v1 v2

v1 v1 v2

v2 v1 v2

In case 1.4 and considering a2 = 0, the corresponding commutator and adjoint
tables are given by:

[vi , vj ] v2 v3

v2 0 0
v3 0 0

Ad v2 v3

v2 v2 v3

v3 v2 v3

Moreover, in case 1.4 for f2 = 0, we have the following:

[vi, vj ] v1 v3

v1 0 a1v1

v3 −a1v1 0

Ad v1 v3

v1 v1 v3 − εa1v1

v3 eεa1v1 v3
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Considering a2 = 0 in case 1.5, the corresponding commutator and adjoint tables
are given by:

[vi , vj ] v2 v4

v2 0 0
v4 0 0

Ad v2 v4

v2 v2 v4

v4 v2 v4

The commutator and adjoint tables of case 1.5, with a2 �= 0, f2 = 0, follow:

[vi, vj ] v1 v4

v1 0 −a1g1v1

v4 a1g1v1 0

Ad v1 v4

v1 v1 v4 + εa1g1v1

v4 e−εa1g1v1 v4

For the infinitesimal generators of case 1.6 with a2, f2 �= 0, we have the following
tables:

[vi, vj ] v1 v5

v1 0 a1v1

v5 −a1v1 0

Ad v1 v5

v1 v1 v5 − εa1v1

v5 eεa1v1 v5

In case 1.6 considering a2 = f2 = 0 commutator and adjoint tables are the
following:

[vi, vj ] v1 v2 v5

v1 0 0 a1v1

v2 0 0 0
v5 −a1v1 0 0

Ad v1 v2 v5

v1 v1 v2 v5 − εa1v1

v2 v1 v2 v5

v5 eεa1v1 v2 v5

Considering a2 �= 0 in case 1.7, the corresponding commutator and adjoint tables
are

[vi, vj ] v1 v6

v1 0 a1g1v1

v6 −a1g1v1 0

Ad v1 v6

v1 v1 v6 − εa1g1v1

v6 eεa1g1v1 v6

For case 1.7 with a2 = 0, we obtain

[vi , vj ] v1 v2 v6

v1 0 0 a1g1v1

v2 0 0 0
v6 −a1g1v1 0 0

Ad v1 v2 v6

v1 v1 v2 v6 − εa1g1v1

v2 v1 v2 v6

v6 eεa1g1v1 v2 v6
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In case 1.8 the commutator and adjoint tables are the following:

[vi, vj ] v1 v2 v5

v2 0 0 0
v7 0 0 g1v7

v8 0 −g1v7 0

Ad v2 v7 v8

v2 v2 v7 v8

v7 v2 v7 v8 − εg1v7

v8 v2 eεg1v7 v8

Thus, for the generalized BBM equation (7.12), an optimal system of 1-dimensional
subalgebras is given by:

• Case 1.1: {v1}.
• Case 1.2: {v2}.
• Case 1.3: {b1v1 + b2v2}, b1, b2 constants.
• Case 1.4: If a2, f2 �= 0, we obtain {v3}. If a2 = 0, f2 �= 0, we obtain
{b1v2 + b2v3}, b1, b2 constants. And if a2 �= 0, f2 = 0, we obtain {v1, v3}.

• Case 1.5: If a2, f2 �= 0, we obtain {v4}. If a2 = 0, f2 �= 0, we obtain
{b1v2 + b2v4}, b1, b2 constants. And if a2 �= 0, f2 = 0, we obtain {v1, v4}.

• Case 1.6: If a2, f2 �= 0, we obtain {v1, v5}. If a2 = f2 = 0,
{b1v1 + b2v2, b3v2 + b4v5}, b1, b2, b3, b4 constants.

• Case 1.7: If a2 �= 0, we obtain {v1, v6}. Otherwise, {b1v1 + b2v2, b3v2 + b4v6},
b1, b2, b3, b4 constants.

• Case 1.8: {b1v2 + b2v7, b3v2 + b4v8}, b1, b2, b3, b4 constants.

7.3.2 Optimal System for Eq. (7.13)

For this case, just the new commutator and adjoint tables are shown. Using the
infinitesimal generators of case 2.3, we have the following:

[vi, vj ] v1 v9

v1 0 a1v1

v9 −a1v1 0

Ad v1 v9

v1 v1 v9 − εa1v1

v9 eεa1v1 v9

In case 2.4, the corresponding commutator and adjoint tables are given by:

[vi, vj ] v1 v6

v1 0 a1g1v1

v6 −a1g1v1 0

Ad v1 v6

v1 v1 v6 − εa1g1v1

v6 eεa1g1v1 v6

[vi , vj ] v1 v2 v6

v1 0 0 a1g1v1

v2 0 0 0
v6 −a1g1v1 0 0

Ad v1 v2 v6

v1 v1 v2 v6 − εa1g1v1

v2 v1 v2 v6

v6 eεa1g1v1 v2 v6
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Considering a2, f2 = 0 in case 2.5 we have the following tables:

[vi , vj ] v1 v2 v4

v1 0 0 −a1g1v1

v2 0 0 0
v4 a1g1v1 0 0

Ad v1 v2 v4

v1 v1 v2 v4 − εa1g1v1

v2 v1 v2 v4

v4 eεa1g1v1 v2 v4

We have the following for the infinitesimal generators of case 2.7:

[vi, vj ] v1 v10

v1 0 f1g1v1

v10 −f1g1v1 0

Ad v1 v10

v1 v1 v10 − εf1g1v1

v10 eεf1g1v1 v10

For case 2.8 with f1 �= 0, the commutator and adjoint tables are

[vi , vj ] v1 v11

v1 0 v1

v11 −v1 0

Ad v1 v11

v1 v1 v11 − εv1

v11 eεv1 v11

And considering case 2.8 with f1 = 0, we have the following:

[vi , vj ] v1 v2 v11

v1 0 0 v1

v2 0 0 0
v11 −v1 0 0

Ad v1 v2 v11

v1 v1 v2 v11 − εv1

v2 v1 v2 v11

v11 eεv1 v2 v11

Finally, the commutator and adjoint tables of case 2.9:

[vi , vj ] v1 v2 v12

v1 0 0 −f2g1v12

v2 0 0 0
v12 f2g1v12 0 0

Ad v1 v2 v12

v1 v1 v2 eεf2g1v12

v2 v1 v2 v12

v12 v1 − εf2g1v12 v2 v12

Hence, for the generalized BBM equation (7.13), an optimal system of 1-
dimensional subalgebras is given by:

• Case 2.1: {v1}.
• Case 2.2: {b1v1 + b2v2}, b1, b2 constants.
• Case 2.3: {v1, v9}.
• Case 2.4: If a2 �= 0, we obtain {v1, v6}. Otherwise, {b1v1 + b2v2, b3v2 + b4v6},

b1, b2, b3, b4 constants.
• Case 2.5: If a2, f2 �= 0, we obtain {v1, v4}. Otherwise, {b1v1 + b2v2, b3v2
+b4v4}, b1, b2, b3, b4 constants.
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• Case 2.6: If a2, f2 �= 0, we obtain {v1, v5}. Otherwise, {b1v1 + b2v2, b3v2
+b4v5}, b1, b2, b3, b4 constants.

• Case 2.7: {v1, v10}.
• Case 2.8: If f1 �= 0, we obtain {v1, v11}. Otherwise, {b1v1 + b2v2, b3v2 + b4v11},

b1, b2, b3, b4 constants.
• Case 2.9: {b1v1 + b2v2, b3v2 + b4v12}, b1, b2, b3, b4 constants.

7.4 Reductions and Exact Solutions

We use the method of characteristics to determine the invariants and reduced ODEs
corresponding to each generator given in Sect. 7.3.

7.4.1 Reductions for Eq. (7.12)

Case 1.3 For g(u) arbitrary function, f (t) = f2 and a(x) = a2 constants, by
using the generator b1v1+ b2v2, we obtain the similarity variable and the similarity
solution

z = b1x − b2t, u(x, t) = h(z),

and the reduced equation

b2
1b2 h

′′′ − a2b
2
1 h

′′ + b1gh h
′ − b2 h

′ − f2 = 0.

Case 1.4 For a(x) = a2 exp(a1x), f (t) = f2t
f

1 , g(u) = g1u
f1

f1+1 + g2, by using
the generator v3, we obtain the similarity variable and the similarity solution

z = t exp(a1x), u(x, t) = h(z)tf1+1,

and the reduced equation

a2
1(f1 + 1)z3 hh′′′ + a2

1(f1 + 1)(a2z+ f1 + 4)z2 hh′′ + 2a2
1a2(f1 + 1)z2 hh′

− a1f1g1zh
f1

f1+1 h′ +
(
a2

1f
2
1 + (3a2

1 − 1)f1 + 2a2
1 − 1

)
z hh′

− (f1 + 1)2h2 + f2(f1 + 1)h = 0.
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Moreover, in the case that a2 = 0 and f2 �= 0 we consider b1v2+b2v3. Therefore,
we obtain

z = t exp

(
a1x

b2 − b1

)
, u(x, t) = h(z)tf1+1,

and the following ODE:

a2
1(f1 + 1)z3 hh′′′ + a2

1(f1 + 1)(f1 + 4)z2 hh′′ − a1(b2 − b1)f1g1zh
f1

f1+1 h′

+
(
a2

1(f
2
1 + 3f1 + 2)− (b2 − b1)

2(f1 + 1)
)
zhh′ − (b2 − b1)

2(f1 + 1)2h2

+ f2(b2 − b1)
2(f1 + 1)h = 0.

Case 1.5 For a(x) = a2 exp(a1x), f (t) = f2
t

, g(u) = g2 exp(g1u) + g3, by using
the generator v4, we get the similarity variable and the similarity solution

z = t exp(a1x), u(x, t) = h(z)+ a1

g1
x,

and the reduced equation

a2
1g1z

3 h′′′ + a2
1g1(a2z+ 3)z2 h′′ − a1g

2
1g2z

2eg1hh′

+ g1

(
2a2

1a2z+ a2
1 − 1

)
z h′ − a1g1g2e

g1hz+ a2
1a2z+ f2g1 = 0.

Furthermore, in the case that a2 = 0 and f2 �= 0 we consider b1v2 + b2v4. Thus,
we obtain

z = t exp

(
a1b2g1x

b2g1 + b1

)
, u(x, t) = h(z)+ a1b2

b2g1 + b1
x,

and the following ODE:

− a2
1b

2
2g

2
1z

3 h′′′ − 3a2
1b

2
2g

2
1z

2 h′′ + a1b2g
2
1(b2g1 + b1)g2z

2eg1hh′

− (a1b2g1 − b2g1 − b1)(a1b2g1 + b2g1 + b1)z h
′ + a1b2g1(b2g1 + b1)g2z e

g1h

− f2(b2g1 + b1)
2 = 0.

Case 1.6 For a(x) = a2 exp(a1x), f (t) = f2, g(u) = g1 ln(u) + g2, by using the
generator v5, we get the similarity variable and the similarity solution

z = t exp(a1x), u(x, t) = t h(z),
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and the reduced equation

a2
1z

3 hh′′′ + a2
1(a2z + 4)z2 hh′′ + (2a2

1a2z+ 2a2
1 − 1)z hh′

− a1g1zh
′ − h2 + f2h = 0.

Furthermore, in the case that a2 = f2 = 0 we consider the following elements of
the optimal system b1v1 + b2v2 and b3v2 + b4v5. First, for b1v1 + b2v2 we obtain

z = b1x − b2t, u(x, t) = h(z),

and the following ODE:

b2
1 h

′′′ − h′ = 0.

Finally, by using b3v2 + b4v5 we obtain

z = t exp

(
a1b4x

b4 − b3

)
, u(x, t) = t h(z),

and the following ODE:

− a2
1b

2
4z

3 hh′′′ − 4a2
1b

2
4z

2 hh′′ +
(
(b4 − b3)

2 − 2a2
1b

2
4

)
z hh′

+ a1b4(b4 − b3)g1z h
′ + (b4 − b3)

2h2 = 0.

Case 1.7 For a(x) = a2 exp(a1x), f (t) = 0, g(u) = g2u
g1+1 + g3, by using the

generator v6, we get the similarity variable and the similarity solution

z = t exp(a1x), u(x, t) = t
− 1

g1 h(z),

and the reduced equation

a2
1g1z

3 h′′′ + a2
1(a2g1z+ 3g1 − 1)z2 h′′ − a1g1(g1 + 1)g2zh

g1h′

+
(

2a2
1a2g1z+ a2

1g1 − a2
1 − g1

)
z h′ + h = 0.

Moreover, in the case that a2 = 0 we consider the following elements of the
optimal system b1v1 + b2v2 and b3v2 + b4v6. To begin with, for b1v1 + b2v2 we
obtain

z = b1x − b2t, u(x, t) = h(z),
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and the following ODE:

b2
1b2 h

′′′ − b1(g1 + 1)g2h
g1h′ − b2h

′ = 0.

Finally, by using b3v2 + b4v6 we obtain

z = t exp

(
a1g1x

b4g1 − b3

)
, u(x, t) = t

−1
g1 h(z),

and the following ODE:

a2
1g

3
1z

3 h′′′ + a2
1g

2
1(3g1 − 1)z2 h′′ − a1g

2
1(g1 + 1)(b4g1 − b3)g2zh

g1h′

− g1

(
(b4g1 − b3)

2 − a2
1g1(g1 − 1)

)
z h′ + (b4g1 − b3)

2h = 0.

Case 1.8 For a(x) = 0, f (t) arbitrary, g(u) = g2 exp(g1u) + g3, by using the
generator b1v2 + b2v7, we get the similarity variable and the similarity solution

z = x − b1

b2

∫
exp

(
g1

∫
f (t) dt

)
dt, u(x, t) =

∫
f (t) dt + h(z),

and the reduced equation

b1 h
′′′ + b2g1g2e

g1h h′ − b1 h
′ = 0.

Moreover, we consider the following element of the optimal system b3v2+b4v8.
In this case, we obtain

z = x − b3

b4g1
log

(∫
exp

(
g1

∫
f (t) dt

)
dt

)
,

u(x, t) =
∫

f (t) dt − 1

g1
log

(∫
exp

(
g1

∫
f (t) dt

)
dt

)
+ h(z),

and the reduced equation

b3 h
′′′ + b4g

2
1g2e

g1h h′ − b3 h
′ − b4 = 0.

7.4.2 Reductions for Eq. (7.13)

Now we will determine the reductions for Eq. (7.13) from the point symmetries
obtained. We would like to point out that we will only show those cases in which
f = f (x) is not constant. The cases with f constant are included in Sect. 7.4.1.



7 Analysis of Generalized BBM Equations: Symmetry Groups and Conservation Laws 213

Case 2.3 For a(x) = a2 exp(a1x), f (x) = f2 exp(f1x), g(u) = g1u
f1

f1−a1 + g2, by
using the generator v9, we obtain the similarity variable and the similarity solution

z = t exp(a1x), u(x, t) = t
a1−f1
f1 h(z),

and the reduced equation

a3
1(f1 − a1)z

3 hh′′′ + a2
1(f1 − a1)(a1a2z − f1 + 4a1)z

2 hh′′ − a2
1f1g1z h

f1
f1−a1 h′

+ a1(f1 − a1)(2a2
1a2z− a1f1 + 2a2

1 − 1)z hh′ + (f1 − a1)
2h2

+ a1(f1 − a1)f2z
f1
a1 h = 0.

Case 2.7 For a(x) = 0, f (x) = f2 exp(f1x), g(u) = g2u
g1+1 + g3, by using the

generator v10, we obtain the similarity variable and the similarity solution

z = t exp

(
f1g1x

g1 + 1

)
, u(x, t) = t

− 1
g1 h(z),

and the reduced equation

f 2
1 g

3
1z

3 h′′′ + f 2
1 g

2
1(3g1 − 1)z2 h′′ − f1g

3
1(g1 + 1)2z hg1h′ + g1(f

2
1 g1(g1 − 1)

− (g1 + 1)2)z h′ + (g1 + 1)2h+ f2g1(g1 + 1)2z
g1+1
g1 = 0.

Case 2.8 For a(x) = 0, f (x) = f2 exp(f1x), g(u) = g1 ln u + g2, by using the
generator v11, we obtain the similarity variable and the similarity solution

z = x, u(x, t) = t h(z),

and the reduced equation

hh′′ − g1 h
′ − h2 + f2e

f1z h = 0.

7.5 Travelling Waves

If g(u) is an arbitrary function, f = c and a = k are constants, by using the
generator λv1 + μv2, we obtain the similarity variable and the similarity solution

z = μx − λt, u(x, t) = h(z), (7.17)
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and the reduced equation

λμ2 h′′′ − kμ2 h′′ + μgh h
′ − λh′ − c = 0. (7.18)

Consequently the corresponding solutions of (7.18) are travelling wave solutions.
Taking c = 0 and integrating with respect to z, Eq. (7.18) can be reduced into the
equation

λμ2 h′′ − kμ2 h′ + μg − λh+ c0 = 0, (7.19)

where c0 is an integrating constant. In [11], for Eq. (7.19) with c0 = 0, many exact
solutions including solitons, kinks, anti-kinks, compactons and Wadati solitons were
obtained.

Next, we present some exact solutions of Eq. (7.18) with c �= 0. As the
derivative of trigonometric, hyperbolic, and exponential functions can be expressed
in terms of themselves, we can choose g as an algebraic function of h, so that
Eq. (7.18) admits the trigonometric functions (p sinq z, p cosq z, p tanq z, p sinhq z,
p coshq z, p tanhq z), hyperbolic functions (p snq (z|m), p cnq (z|m), p dnq (z|m)),
and exponential function (exp(z)), as solutions.

• One can be easily check that

h(z) = p sinq(z),

is a solution of Eq. (7.18) with

gh(h) = − λ

μ

(
h−2 q−1

μ4 (−1+ q) (q − 2) p2 q−1 − μ4q2 − 1
)

− 1

μ2q

√
q
√
p − q

√
h

√
q
√
p + q

√
h

×
(
ch

1−q
q + kq

(
h−q−1

(−1+ q)p2 q−1 − q
q
√
h
)
μ4

)
. (7.20)

Consequently, an exact solution of Eq. (7.12), where g(u) is obtained substituting
h by u in (7.20), is

u(x, t) = p sinq(μx − λt). (7.21)

For μ = λ = k
2 , k =

√
5

12 , p = 1, q = 2, the solution

u(x, t) =
{

sin2(μx − λt) |x − t| ≤ 2π
k
,

0 |x − t| > 2π
k
,
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Fig. 7.1 Solution (7.21) for μ = λ = k
2 , k =

√
5

12 , p = 1, and q = 2

is a sine-type double compacton (that is, solution which has two peaks, see
Fig. 7.1)

• For

gh(h) = − λ

μ

(
h−2 q−1

μ4 (−1+ q) (q − 2) p2 q−1 − μ4q2 − 1
)

− 1

μ2q

√
q
√
p − q

√
h

√
q
√
p + q

√
h

×
(
ch

1−q
q + q

(
h−q−1

(−1+ q) p2 q−1 − q
q
√
h
)
μ4k

)
, (7.22)

a solution of (7.18) is

h(z) = p cosq(z).

So an exact solution of Eq. (7.12) is

u(x, t) = p cosq(μx − λt), (7.23)
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Fig. 7.2 Solution (7.23) for μ = λ = k
2 , k =

√
5

12 , p = 1, and q = 2

where g(u) is obtained substituting h by u in (7.22). For μ = λ = k
2 , k =

√
5

12 ,
p = 1 and q = 2, the solution

u(x, t) =
{

cos2(μx − λt) |x − t| ≤ π
k
,

0 |x − t| > π
k
,

is a compacton solution with a single peak (see Fig. 7.2).
• For

gh(h) = − 1

μ2q
(
h2 q−1 + p2 q−1)

(
−h 1−q

q q
√
pc −

(
2
((
−3/2 q2l − 3/2 qλ − λ

)
μ4

+ λ/2) h2 q−1 − 3 λ
(
−1/3+

(
q2 − q + 2/3

)
μ4

)
p2 q−1

× 2
(
−1/2p4 q−1

λμ (−1+ q) (q − 2) h−2 q−1

− 1/2p−2 q−1
λμ (2+ q) (1+ q) h4 q−1

+ k
(

1/2p3 q−1
(−1+ q) h−q−1

+ 1/2p−q−1
(1+ q) h3 q−1 + q

√
h q
√
pq

))
μ3

)
qμ

)
, (7.24)
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a solution of (7.18) is

h(z) = p tanq(z).

So an exact solution of Eq. (7.12), where g(u) is obtained substituting h by u

in (7.24), is

u(x, t) = p tanq(μx − λt). (7.25)

• For

gh(h) = − λ

μ

(
h−2 q−1

μ4 (−1+ q) (q − 2) p2 q−1 − 1+
(
−q2 + 6 q − 4

)
μ4

)

− 1

μ2q

√
q
√
p − q

√
h

√
q
√
p + q

√
h

×
(
ch

1−q
q −qμ4k

(
h−q−1

(−1+q)p2 q−1 − q
√
h (q−2)

))
, (7.26)

a solution of Eq. (7.18) is

h(z) = p sinhq(z).

So an exact solution of Eq. (7.12), where g(u) is obtained substituting h by u

in (7.26), is

u(x, t) = p sinhq(μx − λt). (7.27)

• For

gh(h) = − λ

μ

(
h−2 q−1

μ2 (−1+ q) (q − 2) p2 q−1 − 1+
(
−q2 + 6 q − 4

)
μ2

)

+ 1

μq

√
q
√
p − q

√
h

√
q
√
p + q

√
h

×
(
ch

1−q
q +qμ2k

(
h−q−1

(−1+q) p2 q−1− q
√
h (q−2)

))
(7.28)

a solution of Eq. (7.18) is

h(z) = p coshq (z).
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Fig. 7.3 Solution (7.29) for λ = μ = 1, p = 1, and q = −2

Consequently, an exact solution of Eq. (7.12), where g(u) is obtained substituting
h by u in (7.28), is

u(x, t) = p coshq(μx − λt). (7.29)

For λ = μ = 1, p = 1, and q = −2 the solution

u(x, t) = sech2(x − t),

describes a soliton moving along a line with constant velocity (see Fig. 7.3).
• For

gh(h) = − 1

qμ
(
h2 q−1 − p2 q−1)

(
h

1−q
q q
√
pc −

(
3
(
q2μ2 + μ2q

+ 2/3μ2 + 1/3
)
λh2 q−1 − 3

(
q2μ2 − μ2q + 2/3μ2 + 1/3

)
λp2 q−1

+μ2
(
p4 q−1

λ (−1+q) (q−2) h−2 q−1−p−2 q−1
λ (2+q) (1+q) h4 q−1

−
(
p3 q−1

(−1+q) h−q−1+p−q−1
(1+q)h3 q−1−2 q q

√
h q
√
p
)
k
))

q
)
,

(7.30)

a solution of Eq. (7.18) is

h(z) = p tanhq(z).
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Fig. 7.4 Solution (7.31) for μ = 1, λ = 1
2 , p = 1

4 , and q = 1

Consequently, an exact solution of Eq. (7.12), where g(u) is obtained substituting
h by u in (7.30), is

u(x, t) = p tanhq(μx − λt). (7.31)

For μ = 1, λ = 1
2 , p = 1

4 , and q = 1 the solution

u(x, t) = 1

4
tanh

(
x − t

2

)
,

describes a kink solution (see Fig. 7.4).
For μ = 1, λ = 1

2 , p = 1, and q = 3 the solution

u(x, t) = tanh3
(
x − t

2

)
,

describes an anti-kink solution (see Fig. 7.5).
• For

gh(h) = −λhμ2 q3 + h k μ2 q2 + λh q + c

hμ q
, (7.32)

a solution of (7.18) is

h(z) = p exp(qz).
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Fig. 7.5 Solution (7.31) for μ = 1, λ = 1
2 , p = 1, and q = 3

Consequently, an exact solution of Eq. (7.12), where g(u) is obtained substituting
h by u in (7.32), is

u(x, t) = p exp[q(μx − λt)]. (7.33)

• For

gh(h) = 1

4μn2
√
pn/4 − hn/4

√
pn/4 + hn/4

√
pn/2 − hn/2m

×
(
−8

√
pn/4 + hn/4

(
pn/2μ2 (n− 2) (n− 4) h−n/2

+ p−n/2mμ2 (n+ 4) (n+ 2) hn/2

+ (−8m− 8)μ2 − 1/2 n2
)
λ

√
pn/4 − hn/4

√
pn/2 − hn/2m

+
(
cpn/4hn/4−1n2 − 4 k

(
4 hn/4 (m+ 1) pn/4 + p3/4 n (n− 4) h−n/4

− h3/4 np−n/4m(n+ 4)
)
μ2

)
n
)
, (7.34)

a solution of Eq. (7.18) is

h(z) = p snq(z|m),
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Fig. 7.6 Solution (7.35) for μ = λ = p = q = 1 and m = 0.996

with q = 4
n

. Consequently, an exact solution of Eq. (7.12), where g(u) is obtained
substituting h by u in (7.34), is

u(x, t) = p snq (μx − λt|m). (7.35)

For μ = λ = p = q = 1 and m = 0.996 the solution

u(x, t) = sn(x − t|0.996),

shows a stable nonlinear nonharmonic oscillatory periodic wave (see Fig. 7.6).
• For

gh(h) = 1

4μn2pn/2
√
pn/4 − hn/4

√
pn/4 + hn/4

√−mpn/2 + pn/2 + hn/2m

×
(
−8

√
pn/4 + hn/4λ

(
pn/2μ2 (n− 2) (n− 4) (m− 1) h−n/2

× p−n/2mμ2 (n+ 4) (n+ 2) hn/2

+ (−16m+ 8) μ2 + 1/2n2
)√

pn/4 − hn/4
√
−mpn/2 + pn/2 + hn/2m

+
(
cpn/4hn/4−1n2 + 4 k

(
p3/4 n (n− 4) (m− 1) h−n/4

+ (8m− 4) hn/4pn/4 − h3/4 np−n/4m(n+ 4)
)
μ2

)
n
)
, (7.36)
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a solution of Eq. (7.18) is

h(z) = p cnq(z|m).

Consequently, an exact solution of Eq. (7.12), where g(u) is obtained substituting h

by u in (7.36), is

u(x, t) = p cnq(μx − λt|m).

In the above cases, p and q represent arbitrary constants.

7.6 Conservation Laws

Conservation laws play a significant role in the resolution of equations with a
physical background, especially in problems where certain physical properties may
not change over time.

We consider T t and T x functions of t , x, u and derivatives of u, that represent
the conserved density and associated flux, respectively.

A conservation law for Eq. (7.12) (or (7.13)) is a space–time divergence such that

DtT
t (t, x, u, ut , ux, . . . )+DxT

x(t, x, u, ut , ux, . . . ) = 0, (7.37)

on all solutions u(t, x) of Eq. (7.12) (or Eq. (7.13)), where Dt , Dx denote the total
derivative operators with respect to t and x, respectively.

If a conserved density is a total x derivatives, T = Dx� , when it is restricted
to the solution space, then the conservation law (7.37) holds trivially, with the
flux being a total t derivative, X = −Dt� , when it is restricted to the solution
space. Any two conservation laws that differ by such a trivial conservation law are
considered to be physically equivalent. The set of all admitted conservation laws
forms a vector space on which there is a natural action by the symmetry group
of (7.12) (or Eq. (7.13)) [2].

Every local conservation law (7.37) has an equivalent characteristic form in
which it has been eliminated ut and its differential consequences from T t and T x

by using the equation

T̂ t = T t |utxx=�= T t −�,

T̂ x = T x |utxx=�= T x −�,

where � is the result of isolating ut from Eq. (7.12) (likewise for Eq. (7.13)).



7 Analysis of Generalized BBM Equations: Symmetry Groups and Conservation Laws 223

Hence, conservation law (7.37) for (7.12) can be expressed by using its charac-
teristic form

DtT̂ t (t, x, u, ut , ux, utx, . . .)+DxT̂ x(t, x, u, ut , ux, utx, . . .)

= (ut − utxx − ∂x(a(x)∂xu)+ (g(u))x − f (t))Q(t, x, u, ut , ux, . . .),

(7.38)

where Q(x, t, u, ux, ut , . . .) is called a multiplier. The characteristic form for
Eq. (7.13) is obtained analogously.

A function Q(x, t, u, ux, ut , . . .) is a multiplier if it is non-singular on the set of
solutions u(x, t) of Eq. (7.12) (likewise for Eq. (7.13)), and if its product with the
equation is a divergence expression with respect to t, x. For this paper we consider
multipliers of the form Q(t, x, u, ut , ux, utt ).

For (7.12), multipliers Q are obtained by means of divergence condition

δ

δu
((ut − utxx − ∂x(a(x)∂xu)+ (g(u))x − f (t))Q) = 0, (7.39)

where
δ

δu
= ∂u −Dx∂ux −Dt∂ut +DxDt∂uxt +D2

x∂uxx + . . ., denotes the vari-

ational derivative, which has the property of annihilating total derivatives. The
divergence condition for Eq. (7.13) can be obtained similarly.

Divergence condition (7.39) gives a multiplier determining equation that splits
with respect to ut , utxx and their differential consequences, yielding an overdeter-
mined system of equations forQ together with the arbitrary functions for Eqs. (7.12)
and (7.13), respectively. This system can be solved by the same algorithmic method
used to solve the determining equation for infinitesimal symmetries.

We obtain the following multipliers for Eq. (7.12):

1. For a(x), f (t), and g(u) arbitrary functions

Q(t, x, u, ut , ux, utt ) = 1 (7.40)

2. For g(u) = c1u+ c2 and a(x) and f (t) arbitrary functionsQ(t, x, u, ut , ux, utt )

must satisfy the equations

∂3

∂x2∂t
Q (t, x, u, ut , ux, utt ) =

(
∂2

∂x2Q(t, x, u, ut , ux, utt )

)
a (x)

+
(

∂

∂x
Q (t, x, u, ut , ux, utt )

)
d

dx
a (x)

−
(

∂

∂x
Q (t, x, u, ut , ux, utt )

)
c1

+ ∂3

∂x3
Q(t, x, u, ut , ux, utt )
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+ ∂

∂t
Q (t, x, u, ut , ux, utt ) ,

∂

∂u
Q (t, x, u, u1, ux, utt ) = 0,

∂

∂ut
Q (t, x, u, ut , ux, utt ) = 0,

∂

∂ux
Q (t, x, u, ut , ux, utt ) = 0,

∂

∂utt
Q (t, x, u, ut , ux, utt ) = 0

For Eq. (7.13) we obtain the same multipliers.
There is a one-to-one correspondence between non-trivial multipliers and non-

trivial conservation laws in characteristic form [3–5, 33]. Each multiplier determines
a corresponding conserved density and flux from the characteristic Eq. (7.38) by
splitting it with respect to all derivatives of u that do not appear in the multiplier
function. This yields a linear system of equations, which can be straightforwardly
integrated to obtain T t and T x .

For Eq. (7.12) and multiplier (7.40), the corresponding conserved densities and
fluxes are

• For a(x), f (t), and g(u) arbitrary functions
Q = 1,
T t = u,

T x = uxx − utx − a (x) ux − g (u) .

For Eq. (7.13) and multiplier (7.40), the corresponding conservation law is
• For a(x), f (x), and g(u) arbitrary functions

Q = 1,
T t = u,

T x = uxx − utx − a (x) ux − g (u) .

7.7 Potential Symmetries

In order to find potential symmetries of (7.12) and (7.13) we write the equation in
a conserved form by using the conservation law obtained in the previous Sect. 7.6.
Hence, the associated auxiliary system is given by

{
vx = u,

vt = utx + a(x)ux − g(u).
(7.41)

If (u(x), v(x)) satisfies (7.41), then u(x) solves the generalized BBM equa-
tions (7.12) and (7.13), with f (t) = 0 and f (x) = 0, respectively.



7 Analysis of Generalized BBM Equations: Symmetry Groups and Conservation Laws 225

The basic idea for obtaining potential symmetries is to require that the infinitesi-
mal generator

X = ξ(x, t, u, v)
∂

∂x
+ τ (x, t, u, v)

∂

∂t

+φ1(x, t, u, v)
∂

∂u
+ φ2(x, t, u, v)

∂

∂v
(7.42)

leaves invariant the set of solutions of (7.41).
We obtain classical potential symmetries if

(ξv)
2 + (τv)

2 + (
φ1,v

)2 �= 0. (7.43)

Consequently, if the projection of a point symmetry of system (7.41) has essential
dependence on v, then the resulting symmetry of Eqs. (7.12) and (7.13), with f (t) =
0 and f (x) = 0, respectively, will be a nonlocal symmetry.

The condition for the vector field (7.42) to generate a point symmetry of
system (7.41) is given by

pr(1)X(vx − u) = 0

pr(2)X(vt − utx − aux + g(u)) = 0
(7.44)

on the solution space of the system (7.41), where prX denotes the prolongation of
the vector field (7.42).

Equations (7.44) split with respect to the x and t derivatives of u and v, yielding
an overdetermined, linear system of equations for the infinitesimals ξ(t, x, u, v),
τ (t, x, u, v), φ1(t, x, u, v), φ2(t, x, u, v) together with the functions a(x) and g(u).
We derive and solve this system by using the Maple software.

Each admitted point symmetry can be used to reduce system (7.41) to a system
of ordinary differential equations whose solutions correspond to invariant solutions
(u(t, x), v(t, x)) of system (7.41) under the point symmetry. These invariant
solutions are naturally expressed in terms of similarity variables which are found
by solving the invariance conditions

φ1(t, x, u, v)− τ (t, x, u, v)ut − ξ(t, x, u, v)ux = 0,

φ2(t, x, u, v)− τ (t, x, u, v)ut − ξ(t, x, u, v)ux = 0.

We obtain the symmetries and we observe that the condition (7.43) is not
satisfied, then the Lie method applied to (7.41) leads to the Lie symmetries.

On the other hand, the potential system (7.41) yields a further potential subsys-
tem given by eliminating u in terms of vx , we obtain the integrated equation

ut − utxx − a (x) uxx + g (ux) = 0. (7.45)
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We now classify all point symmetries of this equation. A point symmetry of
Eq. (7.45) is a one-parameter Lie group of transformations on (t, x, u) generated
by a vector field of the form

X = τ (t, x, u)∂t + ξ(t, x, u)∂x + φ(t, x, u)∂u (7.46)

which is required to leave invariant the solution space of system (7.45). Invariance
of Eq. (7.45) under a Lie group of point transformations with infinitesimal genera-
tor (7.46) leads to the determining equations. The solutions of this system depend
on the functions of the equation:

• Case 1. If a(x) and g(ux) are arbitrary functions, the only symmetries admitted
by (7.12) are the group of space and time translations, which are defined by the
infinitesimal generators

V1 = ∂

∂t
, V2 = ∂

∂u
.

• Case 2. If a (x) = ea1 xa2 and

g(ux) = g1
2−n (ux + g2)

n (n− 1)1−n

n
+ g3

besides V1 and V2 we obtain

V1
3 = −a1t∂t + ∂x + a1 (g3 nt + xg2 + u)

n− 1
∂u

7.8 Conclusions

In this paper, a damped generalized Benjamin–Bona–Mahony equation with a
forcing term has been studied. The equation considered involves three arbitrary
functions. In particular, we have considered two different cases. First, the case
with a forcing term depending on t and then, a forcing term depending on x.
We have obtained all the Lie point symmetries that these equations admit. Point
symmetries can be used to reduce the PDE into ODEs. To achieve this goal, we have
constructed the optimal system of one-dimensional subalgebras of the Lie symmetry
algebra of these equations. By using the optimal systems, we have determined
all nonequivalent group-invariant solutions of these equations. Furthermore, some
travelling wave solutions have been determined. Moreover, for special values of the
parameters of this equation, we obtain many exact solutions expressed by various
single and combined nondegenerative Jacobi elliptic function solutions and their
degenerative solutions (soliton, kink, and compactons).
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On the other hand, by using the multipliers method by Anco and Bluman, we
have obtained non-trivial conservation laws. From the conservation laws, we have
written the equations under study in a conserved form, and we have proved that
the potential symmetries are projected into the Lie symmetries. Finally, we have
determined Lie symmetries of integrated equation.
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Chapter 8
Symmetry Analysis and Conservation
Laws for Some Boussinesq Equations
with Damping Terms

M. L. Gandarias and M. Rosa

Abstract In this work, we study some Boussinesq equations with damping term
from the point of view of the Lie theory. We derive the classical Lie symmetries
admitted by the equation as well as the reduced ordinary differential equations.
We also present some exact solutions. Some nontrivial conservation laws for these
equations are constructed by using the multiplier method.

8.1 Introduction

The Boussinesq equation

utt − uxx + αuxxxx − β
(
u2

)

xx
= 0 (8.1)

arises in several physical applications, the first one was propagation of long waves
in shallow water [1]. There have been several generalizations of the Boussinesq
equation such as the modified Boussinesq equation, or the dispersive water wave. A
generalization of (8.1), namely

utt − uxx + uxxxx − (f (u))xx = g (x) (8.2)

has been considered in [2]. Classical and nonclassical symmetries for Eq. (8.2) were
considered in [3]. Considering the effect of viscosity in real process, Varlamov [4, 5]
studied the following equation:

utt − 2buxxt − uxx + αuxxxx − β
(
u2

)

xx
= 0, (8.3)
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where the second term is responsible for strong internal damping [6], α > 0 and β ∈
R. Replacing the dissipative term for a weaker one Grasselli et al. [7] considered

utt + k ut + uxxxx − (f (u))xx = g (x) (8.4)

with a cubic controlled growth nonlinearity, which models the rapid spinodal
decomposition in non-equilibrium phase separation process.

Conservation laws have several important uses in the study of partial differential
equations (PDEs), especially for determining conserved quantities and constants of
motion. They are also useful in detecting integrability and linearizations, finding
potentials and nonlocally related systems, as well as checking the accuracy of
numerical solution methods.

In this direction, the most famous result is Noether’s theorem given by Noether
in 1918. And it is well known that Noether’s theorem can only be applied to
equations having variational structure. In [8] Ibragimov proved a theorem on
conservation laws, which can be applied to equations having no variational structure
and provides an elegant way to establish local conservation laws for the equations
under consideration.

For variational problems, the Noether theorem [9] can be used for the derivation
of conservation laws. For any PDE system of normal type, regardless of whether a
Lagrangian exists, the conservation laws admitted by the system can be found by a
direct method of Anco and Bluman [10, 11] which is computationally similar to Lie
method for finding the symmetries [12, 13] admitted by the system. Conservation
laws that are symmetry invariant have some important applications. It is well
known that when a differential equation admits a Noether symmetry, a conservation
law is associated with this symmetry, and furthermore that a double reduction
can be achieved as a result of this association. Moreover, any symmetry-invariant
conservation law will reduce to a first integral for the ODE obtained by symmetry
reduction of the given PDE when symmetry-invariant solutions u(x, t) are sought. In
[14–16] the relationship between symmetries and conservation laws has been used
to find a double reduction of partial differential equations with two independent
variables. This provides a direct reduction of order of the ODE.

In [17], we have applied Lie classical method to Eq. (8.3) in which the dissipative
term has been replaced for a weaker one. We have proved that the equation is
nonlinearly self-adjoint and have derived some conservation laws for this equation
by using a special method that has been introduced by Ibragimov in [8]. This
method, which does not require the existence of Lagrangians, is based on the
concept of adjoint equations for nonlinear equations and avoids the integrals of
functions. In [18] we have applied Lie classical method to the generalized equation

utt − utxx + uxxxx − (f (u))xx = g (x) , (8.5)

where the second term is responsible for strong internal damping [6], in order to
obtain exact solutions. We have determined the point symmetry group in terms
of the functions f (u) and g(x) with f (u) �= constant and g(x) �= 0. We have
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also derived conservation laws for this equation by using the conservation laws
multipliers method.

8.2 Lie Classical Symmetries and Reductions

In this section, we perform Lie symmetry analysis for Eqs. (8.4) and (8.5), with
k �= 0, f (u) �= constant , and g(x) �= 0. Let us consider a one-parameter Lie group
of infinitesimal transformations in (x, t, u) given by

x∗ = x + εξ(x, t, u)+O(ε2),

t∗ = t + ετ(x, t, u)+O(ε2),

u∗ = u+ εφ(x, t, u)+O(ε2),

(8.6)

where ε is the group parameter. Then one requires that this transformation leaves
invariant the solutions of Eqs. (8.4) and (8.5). This leads to the overdetermined,
linear system of twelve equations for the infinitesimals ξ(x, t, u), τ (x, t, u), and
φ(x, t, u). The associated Lie algebra of infinitesimal symmetries is the set of vector
fields of the form

v = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂u
. (8.7)

8.2.1 Lie Symmetries and Reductions for Eq. (8.4)

From the determining system for Eq. (8.4), we get that ξ = ξ(x), τ = τ (t), and
φ = α(x, t)u+β(x, t) where ξ , τ , φ, g, and f must satisfy the following equations:

2 αx − 3 ξx x = 0, (8.8)

τt − 2 ξx = 0, (8.9)

−τt t + kτt + 2 αt = 0, (8.10)

fuu (α u+ β)+ 2 τt fu − 2 ξx fu + 4 ξx x x − 6 αx x = 0, (8.11)

fuu u (α u+ β)+ 2 τt fu u − 2 ξx fu u + α fuu = 0, (8.12)

2 fuu (αx u+ βx)− ξx x fu + 2 αx fu + ξx x x x − 4 αx x x = 0, (8.13)

−fu (αx x u+ βx x)+ k (αt u+ βt)+ αx x x x u+ αt t u− ξ gx (8.14)

−2 τt g + α g + βx x x x + βt t = 0.
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Solving Eqs. (8.8)–(8.10) we get

ξ = k1x + k2, τ = 2k1t + k3, α = −kk1 + k4

Substituting into Eq. (8.13) we obtain the following condition fuuβx = 0. Conse-
quently we distinguish the following cases:

Case 1 If f �= au+ b, the following conditions must be satisfied:

−fuu ((k4 − k k1 t) u+ β)− 2 fu k1 = 0,

fu u u ((k4 − k k1 t) u+ β)+ fuu (k4 − k k1 t)+ 2 fuu k1 = 0,

−gx (k1 x + k2)+ k (βt − k k1 u)+ g (k4 − k k1 t)− 4 g k1 + βt t = 0.

We obtain:

• Case 1a: For f arbitrary and g arbitrary with k �= 0 we obtain that infinitesimals
are

ξ = 0, τ = k3, φ = 0.

• Case 1b: For f arbitrary and g = constant with k �= 0 we obtain that the
infinitesimals are

ξ = k2, τ = k3, φ = 0.

• Case 1c: For f = aun + b and g = c x−
2(2n−1)
n−1 with n �= 1 and k = 0 we obtain

that infinitesimals are

ξ = k1x, τ = 2k1t + k3, φ = − 2k1
n−1u.

Case 2 If f = au+ b, the following conditions must be satisfied:

−2 a k1 = 0,

−gx (k1 x + k2)+ k (βt − k k1 u)+ g (k4 − k k1 t)− 4 g k1

−βx x a + βx x x x + βt t = 0.

For f = au+ b and g = g(x) arbitrary the infinitesimals are

ξ = k2, τ = k3, φ = k4u+ β(x, t),

where for any g = g(x), β = β(x, t) must satisfy the following condition:

g k4 − gx k2 + βt k − βx x a + βx x x x + βt t = 0. (8.15)
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Table 8.1 Functions and generators for Eq. (8.4)

i f g vk

1 Arbitrary Arbitrary v2 (k �= 0)

2 Arbitrary Constant v1, v2 (k �= 0)

3 aun + b4 c x−
2(2n−1)
n−1 v2, v3 = x∂x + 2t∂t − 2

n−1u∂u n �= 1 (k = 0)

4 au+ b Arbitrary v1 = ∂x , v2 = ∂t , v4 = (u+ β(x, t))∂u

The functional forms of f (u) and g(x) as well as the corresponding generators are
given in Table 8.1.
with β must satisfy Eq. (8.15). We use the method of characteristics to determine the
invariants and reduced ODEs corresponding to each generator given in Table 8.1.

We obtain the following reduced ODEs for Eq. (8.4) setting k = 1 without loss of
generality:

Reduction 1 For f and g arbitrary, by using generator v2 we obtain the similarity
variable and similarity solution

z = x, u = h(z), (8.16)

and the ODE1

hz z z z − fh hz z − fhh (hz)
2 − g(z) = 0. (8.17)

Reduction 2 For f arbitrary and g = c = constant , by using generator λv1+μv2,
we obtain the similarity variable and similarity solution

z = μx − λt, u = h(z), (8.18)

and the ODE2

hz z z z μ
4 − fh hz z μ

2 − fhh (hz)
2 μ2 + λ2 hz z − λhz − c = 0. (8.19)

Reduction 3 For f = au+b and g = c = constant , by using generator λv1+μv2,
we obtain the similarity variable and similarity solution (8.18) and the ODE3

hz z z z μ
4 − a hz z μ

2 + λ2 hz z − λhz − c = 0. (8.20)

and integrating once with respect to z we get

−z c + hz z z μ
4 + hz

(
λ2 − a μ2

)
− λh+ c1 = 0
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whose solution is

h (z) = λ c1 − c λ2 + c aμ2 − zc λ

λ2
+ c2 e

1

6

(
ω

2
3 + 12 λ2−12 aμ2

)
z

μ2 3
√
ω

+ c3 e

− 1
12 i

(
−iω 2

3 −12 iλ2+12 iaμ2+√3ω
2
3 −12

√
3λ2+12

√
3aμ2

)
z

μ2 3
√
ω

+ c4 e

1
12 i

(
iω

2
3 + 12 iλ2 − 12 iaμ2 +√3ω

2
3 − 12

√
3λ2 + 12

√
3aμ2

)
z

μ2 3
√
ω

with

ω =
(

108 λμ2 + 12
√

3
√

4 λ6 − 12 λ4aμ2 + 12 λ2a2μ4 − 4 a3μ6 + 27 λ2μ4

)

and ci , i = 1, 2, 3, 4 constants.

For Eq. (8.4) with k = 0, we obtain the following reductions:

Reduction 4 For f = au+b and g = c = constant , by using generator λv1+μv2,
we obtain the similarity variable and similarity solution (8.18) and ODE4

hz z z z μ
4 − a hz z μ

2 + λ2 hz z − c = 0. (8.21)

Integrating once with respect to z we get

−z c + hz z z μ
4 + hz

(
λ2 − a μ2

)
+ c1 = 0,

whose solution is

h (z) = μ2
(
λ2 − aμ2

)−1
2

[

c3 sin

(√
λ2 − aμ2z

μ2

)

− c2 cos

(√
λ2 − aμ2z

μ2

)]

+ z2c − 2zc1

2
(
λ2 − aμ2

) + c4

with λ2 − aμ2 > 0 and ci, i = 1, 2, 3, 4 arbitrary constants.

Reduction 5 For f = aun + b and g = c x
−2(2n−1)

n−1 , by using generator v2, we
obtain the similarity variable and similarity solution

z = x, u = h(z), (8.22)
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and ODE5

hz z z z + a n hn−1 hz z + (n− 1) a hn−2 (hz)
2 + c z

−2(2n−1)
n−1 = 0. (8.23)

Reduction 6 For f = aun+b and g = c x
−2(2n−1)

n−1 by using generator v3, we obtain
the similarity variable and similarity solution

z = x√
t
, u = h(z)

t
1

n−1

, (8.24)

and ODE6

4 h2 (n− 1)2 z
4n+1
n−1 hz z z z + h (n− 1)2

(
h z2 − 4 a hn n

)
z

4n+1
n−1 hz z

− 4 a hn (n− 1)3 n z
4n+1
n−1 (hz)

2 + h2
(

3 n2 − 2n− 1
)
z

5n
n−1 hz

+ 4 h3 n z
4n+1
n−1 − 4 h2 z

3
n−1

(
n2 − 2 n+ c

)
= 0.

8.2.2 Lie Symmetries and Reductions for Eq. (8.5)

From the determining system for Eq. (8.5), we get that ξ = ξ(x, t), τ = τ (t), and
φ = α(x, t)u+β(x, t) where ξ , τ , φ, g, and f must satisfy the following equations:

−6 ξx x + ξt + 4 αx = 0,

−ξx x + 2 ξt + 2 αx = 0,

τt − 2 ξx = 0,

−τt t − αx x + 2 αt = 0,

fu u (α u+ β)+ 2 τt fu − 2 ξx fu + 4 ξx x x − 2 ξt x − 6 αx x + αt = 0,

fu u u (α u+ β)+ 2 τt fu u − 2 ξx fu u + α fuu = 0,

2 fuu (αx u+ βx)− ξx x fu + 2 αx fu + ξx x x x + ξt t − ξt x x

−4 αx x x + 2 αt x = 0,

u αxxxx + βxxxx − fu (u αxx + βxx)− ξ gx − αtxx u+ αtt u

−βtxx + βtt − 2 g τt + α g = 0.

From the determining equations we get

ξ = k1
x

2
+ k3, τ = k1t + k2, φ = k4u+ β(x, t),
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where f , g, and β must satisfy

2 βx fu u = 0,

fu u k4 u+ fu k1 + β fuu = 0,

fu u u k4 u+ fuu k4 + fuu k1 + β fuu u = 0,

−gx k1 x + 2 g k4 − 2 gx k3 − 4 g k1 − 2 βx x fu + 2 βx x x x

+2 βt t − 2 βt x x = 0.

From the second condition we get that βx = 0 or f (u) is a linear function.

Case 1 If βx = 0:
By substituting β = β(t) into the remaining conditions we get β = k5 where f and
g must satisfy

fuu k4 u+ fuu k5 + fu k1 = 0, (8.25)

−gx k1 x + 2 g k4 − 2 gx k3 − 4 g = 0. (8.26)

We distinguish

• Case 1a: For f arbitrary and g arbitrary we obtain that infinitesimals are

ξ = 0, τ = k2, φ = 0.

• Case 1b: For f arbitrary and g = constant with we obtain that the infinitesimals
are

ξ = k3, τ = k2, φ = 0.

• Case 1c: For f (u) = (c1 u+ c2)
n and g(x) = c3 x

m we obtain that infinitesimals
are

ξ = k4(1− n)

2
x, τ = k4(1− n)t + k4c2

c1
+ k2, φ = k4u+ k4c2

c1

with m = − 2(2n−1)
n−1 .

• Case 1d: For f (u) = c1 e
n u+ c2 and g(x) = c3 x

m we obtain that infinitesimals
are

ξ = −nk6

2
x, τ = −nk6t + k2, φ = k6

with m = −4.
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Table 8.2 Functions and generators for Eq. (8.5)

i f g vk

1 Arbitrary Arbitrary v2 = ∂t

2 Arbitrary Constant v1 = ∂x, v2

3 (c1u+ c2)
n c3x

− 2(2n−1)
n−1 v2,

v3 = (1−n)
2 x∂x +

(
(1− n)t + c2

c1

)
∂t +

(
u+ c2

c1

)
∂u

n �= 1

4 c1e
nu + c2 (c3x + c4)

−4 v2, v4 = − n
2 x∂x − nt∂t + ∂u, n �= 0, c3 �= 0

5 au+ b Arbitrary v2, v5 = k3∂x + β(x, t)∂u

Case 2 If f = au+ b, the following conditions must be satisfied:

2 a k1 = 0,

βxxxx − a βxx − k1 x gx − k3 gx − βtxx + βtt − 4 g k1 = 0.

For f = au+ b and g = g(x) arbitrary the infinitesimals are

ξ = k3, τ = k2, φ = β(x, t),

where for any g = g(x), β = β(x, t) must satisfy the following condition:

− gx k3 − βx x a + βx x x x + βt t − βt x x = 0. (8.27)

The functional forms of f (u) and g(x) as well as the corresponding generators are
given in Table 8.2.
with β must satisfy Eq. (8.27).
We use the method of characteristics to determine the invariants and reduced ODEs
corresponding to each generator given in Table 8.2. We obtain the following reduced
ODEs for Eq. (8.5)

Reduction 1 For f and g arbitrary, by using generator v2 we obtain the similarity
variable and similarity solution

z = x, u = h(z), (8.28)

and the ODE1

hz z z z − fh hz z − hz z − fhh (hz)
2 − g(z) = 0. (8.29)

Reduction 2 For f arbitrary and g = c = constant , by using generator λv1−μv2,
we obtain the similarity variable and similarity solution

z = μx + λt, u = h(z), (8.30)
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and the ODE2

hz z z z μ
4 + (λ2 − fh μ

2 − μ2)hz z − fhh (hz)
2 μ2 − c = 0. (8.31)

Reduction 3 Setting without loss of generality f = un and g = x
2−4n
n−1 by using

generator

v3 = x

2

∂

∂x
+ t

∂

∂t
− u

n− 1

∂

∂u
,

we obtain the similarity variable and similarity solution

z = x√
t
, u = t

1
n−1 h(z), (8.32)

and the ODE3

− 4 hz z z z − 2 hz z z z+hz z

(
−z2+4 hn−1n− 4

n− 1
− 4

)
+hz

(
− 4 z

n− 1
−3 z

)

+ 4 hn−2 (hz)
2 (n− 1) n− 4 h n

(n− 1)2
+ 4 z

2−4n
n−1 = 0. (8.33)

Reduction 4 For f = enu and g = x−4, by using generator

v4 = x

2

∂

∂x
+ t

∂

∂t
− 1

n

∂

∂u
,

we obtain the similarity variable and similarity solution

z = x√
t
, u = −1

n
log(t)h(z), (8.34)

and ODE4

4 hz z z z n z4 + 2 hz z z n z5 + hz z n z
4
(
z2 − 4 n ehn + 4

)
+ 3 hz n z5

− 4 (hz)
2 n3 eh n z4 + 4 z4 − 4 n = 0. (8.35)

Reduction 5 For f = au + b we obtain the similarity variable and similarity
solution

z = μx + λt, u = h(z)+ δ(x, t) (8.36)
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and ODE5

hz z z z μ
4 − hz z z μ

2 λ+ (λ2 − a μ2) hz z = 0,

where g = g(x) arbitrary and δ = δ(x, t) = ∫
β(x, t) dt must satisfy

−g(x)+ δx x x x − a δx x + δt t − δt x x = 0.

Integrating twice with respect to z we get the linear ODE

hz z μ
4 + h

(
λ2 − a μ2

)
− λhz μ

2 + z c1 + c2 = 0

whose solution is

h (z) = e
z
(
λ+
√
−3λ2+4 a2μ2

)

2μ2 c3 + e
− z

(
−λ+

√
−3λ2+4 a2μ2

)

2μ2 c4

+ (−c1 z− c2) λ2 − λμ2c1+ a2μ2 (c2+ c1 z)
(−λ2 + a2μ2

)2 .

with −3 λ2 + 4 a2μ2 > 0 and ci , i = 1, . . . , 4 arbitrary constants.

8.3 Multiplier Conservation Laws Method

In [11] Anco and Bluman gave a general treatment of a direct conservation law
method for partial differential equations expressed in the normal form. An Nth-
order PDE is normal if it can be expressed in a solved form for some leading
derivative of u such that all the other terms in the equation contain neither the
leading derivative nor its differential consequences [16]. For Eqs. (8.4) and (8.5) the
nontrivial conservation laws are characterized by a multiplier� with no dependence
on utt satisfying

Ê[u] (�utt −�G(x, u, ut , ux, uxx, . . . , unx)) = 0. (8.37)

Here

Ê[u] := ∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

x

∂

∂uxx
+ · · ·

is the Euler operator. The conservation law will be written

Dt(�
t )+Dx(�

x) |�= 0,



240 M. L. Gandarias and M. Rosa

where �t and �x are called the conserved densities. The conserved current must
satisfy

� = Ê[u]�t (8.38)

and the flux �x is given by Euler and Euler [19]

�x = −D−1
x (�G)− ∂�t

∂ux
G+GDx

(
∂�t

∂uxx

)
+ · · · . (8.39)

8.3.1 Multipliers and Conservation Laws for Eq. (8.4)

For Eq. (8.4) setting k = 1 without loss of generality, we can state:

Case 1 For f (u) arbitrary and g(x) arbitrary, we get the following multipliers:

�1 = 1, �2 = x, �3 = et , �4 = xet . (8.40)

Case 2 For f (u) = u+ d and g(x) arbitrary, applying Eq. (8.37) we get

�xxxx = �xx +�t −�tt, (8.41)

�u = 0, (8.42)

searching for solutions of the form

� = X(x)T (t), (8.43)

where X(x) and T (t) satisfy

XIV = c1X +X′′, T ′′ = −c1T + T ′,

then we obtain the following multipliers with δ1 = √1− 4c1, δ2 = √1+ 4c1 and

c1 ∈
[
− 1

4 ,
1
4

]
:

�1 = 1, �2 = x, �3 = et ,

�4 = xet , �5 = e
1
2 (t+tδ1−√2−2δ2x), �6 = e

1
2 (t+tδ1+√2−2δ2x),

�7 = e
1
2 (t+tδ1−√2+2δ2x), �8 = e

1
2 (t+tδ1+√2+2δ2x), �9 = e

1
2 (t−tδ1−√2−2δ2x),

�10 = e
1
2 (t−tδ1+√2−2δ2x), �11 = e

1
2(t−tδ1−√−2+2δ2x), �12 = e

1
2 (t−tδ1+√2+2δ2x).

(8.44)
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Table 8.3 f (u) and g(x) are arbitrary

Multiplier Conserved density Flux

�1 = 1 φt = ut + u φx = uxxx −
(

d
du

f (u)
)
ux −

∫
g (x) dx

�2 = x φt = x (ut + u) φx = xuxxx − uxx − x
(

d
du

f (u)
)
ux + f (u)− ∫

xg (x) dx

�3 = et φt = et (ut − g (x)) φx = −et
(
−uxxx +

(
d
du

f (u)
)
ux

)

�4 = xet φt = et x (ut − g (x)) φx = et
(
xuxxx − uxx − x

(
d
du

f (u)
)
ux + f (u)

)

Conservation Laws

Case 1 For f (u) arbitrary and g(x) arbitrary
Associated with the multipliers, from (8.38) and (8.39), we obtain the corresponding
conserved densities and fluxes given for Eq. (8.4) in the following Table 8.3.

Case 2 For f (u) = cu+ d , g(x) arbitrary, δ1 = √1− 4c1 and δ2 = √1+ 4c1
Associated with the multipliers, from (8.38) and (8.39), we obtain the corresponding
conserved densities and fluxes:

1.

�5 = e
1
2 (t+tδ1−√2−2δ2x),

φt = 1

2c1

(
g (−1+ δ1) e−

1
2

√
2−2δ2x+ 1

2 t (1+δ1) − e
1
2 (t+tδ1−√2−2δ2x)

× c1 (−2ut − u + uδ1)

)
,

φx = e
1
2 (t+tδ1−√2−2δ2x)

4

(
−4uxxx − 2

√
2− 2δ2uxx + 2ux + 2uxδ2

+ u
√

2− 2δ2 (1+ δ2)

)
.

2.

�6 = e
1
2 (t+tδ1+√2−2δ2x),

φt = 1

2c1

(
g (−1+ δ1) e

1
2

√
2−2δ2x+ 1

2 t (1+δ1) − e
1
2 (t+tδ1+√2−2δ2x)

× c1 (−2ut − u + uδ1)

)
,

φx = e
1
2(t+tδ1+√2−2δ2x)

4

(
4uxxx − 2

√
2− 2δ2uxx − 2ux − 2uxδ2

+ u
√

2− 2δ2 (1+ δ2)

)
.
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3.

�7 = e
1
2 (t+tδ1−√2+2δ2x),

φt = 1

2c1

(
g (−1+ δ1) e−

1
2

√
2+2δ2x+ 1

2 t (1+δ1) − e
1
2 (t+tδ1−√2+2δ2x)

× c1 (−2ut − u + uδ1)

)
,

φx = e
1
2 (t+tδ1−√2+2δ2x)

4

(
4uxxx + 2

√
2+ 2δ2uxx − 2ux + 2uxδ2

+ u
√

2+ 2δ2 (−1+ δ2)

)
.

4.

�8 = e
1
2 (t+tδ1+√2+2δ2x),

φt = 1

2c1

(
g (−1+ δ1) e

1
2

√
2+2δ2x+ 1

2 t (1+δ1) − e
1
2 (t+tδ1+√2+2δ2x)

× c1 (−2ut − u + uδ1)

)
,

φx = −e
1
2(t+tδ1+√2+2δ2x)

4

(
−4uxxx + 2

√
2+ 2δ2uxx + 2ux − 2uxδ2

+ u
√

2+ 2δ2 (−1+ δ2)

)
.

5.

�9 = e
1
2 (t−tδ1−√2−2δ2x),

φt = 1

2c1

(
−g (1+ δ1) e−

1
2

√
2−2 δ2x− 1

2 t (−1+δ1) + e
1
2 (t−tδ1−√2−2δ2x)

× c1 (2ut + u + uδ1)

)
,

φx = −e
1
2(t−tδ1−√2−2δ2x)

4

(
−4uxxx − 2

√
2− 2δ2uxx + 2ux + 2uxδ2

+ u
√

2− 2δ2 (1+ δ2)
)
.

6.

�10 = e
1
2(t−tδ1+√2−2δ2x),

φt = 1

2c1

(
−g (1+ δ1) e

1
2

√
2−2δ2x− 1

2 t (−1+δ1) + e
1
2 (t−tδ1+√2−2δ2x)
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× c1 (2ut + u + uδ1)
)
,

φx = e
1
2 (t−tδ1+√2−2δ2x)

4

(
4uxxx − 2

√
2− 2δ2uxx − 2ux − 2uxδ2

+ u
√

2− 2δ2 (1+ δ2)
)
.

7.

�11 = e
1
2 (t−tδ1−√2+2δ2x),

φt = 1

2c1

(
−g (1+ δ1) e−

1
2

√
2+2δ2x− 1

2 t (−1+δ1) + e
1
2 (t−tδ1−√2+2δ2x)

× c1 (2ut + u + uδ1)

)
,

φx = e
1
2 (t−tδ1−√2+2δ2x)

4

(
4uxxx + 2

√
2+ 2δ2uxx − 2 ux + 2 uxδ2

+ u
√

2+ 2δ2 (−1+ δ2)
)
.

8.

�12 = e
1
2 (t−tδ1+√2+2δ2x),

φt = 1

2c1

(
−g (1+ δ1) e

1
2

√
2+2δ2x− 1

2 t (−1+δ1) + e
1
2 (t−tδ1+√2+2δ2x)

× c1 (2 ut + u + uδ1)

)
,

φx = −e
1
2 (t−tδ1+√2+2δ2x)

4

(
−4uxxx + 2

√
2+ 2δuxx + 2ux − 2uxδ2

+u
√

2+ 2δ2 (−1+ δ2)

)
.

8.3.2 Multipliers and Conservation Laws for Eq. (8.5)

For Eq. (8.5), we can state:

Case 1 For f (u) arbitrary and g(x) arbitrary, we get the following multipliers:

�1 = 1, �2 = x, �3 = t, �4 = tx. (8.45)
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Table 8.4 Conserved densities and fluxes for Eq. (8.5)

Multiplier Conserved density Flux

�1 = 1 φt = −uxx + ut φx = uxxx − f ′ (u) ux
− ∫

g (x) dx

�2 = x φt = x (−uxx + ut ) φx = − ∫
xg (x) dx + uxxxx − uxx

+f (u)− xf ′(u)ux

�3 = t φt = −g (x) t2

2
φx = tuxxx − uxtf

′ (u)+ ux

+ (−2 uxx + 2 ut ) t

2
− u

�4 = tx φt = −1

2
g (x) x t2 φx = −ux txf ′ (u)+ tf (u)

− ( uxx − ut ) xt − ux + (xuxxx − uxx) t + uxx − u

Case 2 For f (u) = u+d and g(x) arbitrary we obtain the following multipliers:

�1 = 1 �2 = x �3 = t

�4 = tx �5 = x2

2c
+ t2

2
�6 = xt2

2
+ x3

6c

�7 = x2t

2c
+ t3

6
+ x2

2c2 �8 = xt3

6
+ x3t

6c
+ x3

6c2 .

(8.46)

Conservation Laws

Case 1 For f (u) arbitrary and g(x) arbitrary
Associated with the multipliers, from (8.38) and (8.39), we obtain the corresponding
conserved densities and fluxes given in the following Table 8.4.

Case 2 For f (u) = cu+ d and g(x) arbitrary.
Associated with the multipliers, from (8.38) and (8.39), we obtain the corresponding
conserved densities and fluxes:

1.

�5 = 1

2

(
x2

c
+ t2

)
,

φt =
(−3x2t − t3c

)
g (x)+ 3t ((−uxx + ut ) t − 2u) c + 3x2 (−uxx + ut )

6c
,

φx = −uxt2c2 + ((
2t − x2

)
ux+uxxxt

2+2xu
)
c+ (2ux+x (uxxxx − 2uxx))

2c
.
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2.

�6 = 1

2
xt2 + 1

6

x3

c
,

φt = x
((
t3c + x2t

)
g (x)− 3 t ((−uxx + ut ) t − 2 u) c − x2 (−uxx + ut )

)

6c
,

φx = t2 (xuxxx − uxx) c + 1
3x

3uxxx − uxxx
2

2c
.

3.

�7 = 1

2

tx2

c
+ 1

6
t3 + 1

6

x2

c2
,

φt = uxxx
2

2c2 − uxxx
2t

2c
− uxxt

3

6
+ utx

2

2c2 + utx
2t

2c
+ ut t

3

6
− ux2

2c
− ut2

2

−x2g (x) t

2c2
− x2g (x) t2

4c
− t4g (x)

24
,

φx = uxxxx
2

2c2 + uxxxx
2t

2c
+ uxxxt

3

6
− xuxx

c2 − xuxxt

c
− uxtx

2

2
− cuxt

3

6
,

+ux

c2
+ uxt

c
+ uxt

2

2
+ txu.

4.

�8 = x3

6c2
+ x3t

6c
+ xt3

6
,

�t = −x3uxx

6c2 − x3tuxx

6c
− xuxxt

3

6
+ x3ut

6c2 + x3ut t

6c
+ xut t

3

6
− x3u

6c
,

−xut2

2
− x3tg (x)

6c2
− x3g (x) t2

12c
− xt4g (x)

24
,

�x = x3uxxx

6c2 + x3uxxxt

6c
+ xuxxxt

3

6
− uxxx

2

2c2 − uxxx
2t

2c
− uxxt

3

6
− x3uxt

6

−cxuxt
3

6
+ xux

c2
+ xuxt

c
+ xuxt

2

2
+ tux2

2
+ cut3

6
− u

c2
− tu

c
− ut2

2
.
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8.4 Double Reduction Method and Exact Solutions

A powerful application of conservation laws taking into account the relationship
between Lie symmetries and conservation laws is the so-called double reduction
method [14, 20]. This method allows us to reduce directly Eq. (8.5) to a third order
ordinary differential equation. In [14] Sjöberg introduced a method in order to get
solutions of a qth partial differential equation from the solutions of an ordinary
differential equation of order q−1 called double reduction method. This method can
be applied when a symmetry v is associated with a conserved vector T [14, 16].
Considering a qth partial differential equation given by

F(x, t, u, u(1), . . . u(q) = 0 (8.47)

which admits a Lie symmetry associated with the conserved vector T = (T t , T x)

[14], any conservation law associated with a symmetry generator v can be rewritten
in canonical coordinates as

DrT
r +DsT

s = 0, (8.48)

with

T s = T tDt (s)+ T xDx(s)

Dt (r)Dx(s)−Dx(r)Dt(s)
, (8.49)

and

T r = T tDt (r)+ T xDx(r)

Dt (r)Dx(s)−Dx(r)Dt(s)
. (8.50)

The componentsT x , T t depend on
(
x, t, u, u(1), u(2), . . . , u(q−1)

)
which means that

T s , T r depend on
(
r, s,w,wr ,wrr, . . . , wrq−1

)
for solutions invariant with respect

to v. Therefore Eq. (8.48) becomes

∂T s

∂s
+DrT

r = 0. (8.51)

For T associated with v we obtain,

v
(
T r

) ≡ ∂T r

∂s
= 0, (8.52)

v
(
T s

) ≡ ∂T s

∂s
= 0. (8.53)
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Thus, the conservation law in canonical coordinates becomes

DrT
r = 0,

so that

T r
(
r,w,wr ,wrr , . . . , wrq−1

) = k, k = cte. (8.54)

We stress that Eq. (8.54) is an ordinary differential equation of order q−1, whose
solutions are solutions of Eq. (8.47), by writing this solution in terms of x, t , and u.

1. Equation

F ≡ utt − utxx + uxxxx − (f (u))xx = 0 (8.55)

admits the symmetry generators v1 = ∂
∂x

and v2 = ∂
∂t

associated with the
conservation law

φt = −uxx + ut ,

φx = auxxx − f ′(u)ux

Let v = λv1 − μv2, canonical coordinates of v are

v (r) = 0, v (s) = 1, v (w) = 0,

which leads us to

r = μx + λt s = 1

μ
t, w = u. (8.56)

In this coordinates the conservation law is written as

DsT
s +DrT

r = 0 (8.57)

with

T r = λ2wr − λμ2wrr + μ4wrrr − μ2f ′wr.

Since T = (T r, T s) is associated with v

T r = c1

that is

λ2wr − λμ2wrr + μ4wrrr − μ2f ′wr = c1.
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This last equation can be integrated and we obtain

λ2w − λμ2wr + μ4wrr − μ2f (w) = c1r + c2.

When f is a cubic polynomial

f (w) = k1w
3 + k2w

2 + k3w + k4,

an exact solution is w = tanh(r), with k1 = 2μ2, k2 = λ, k3 = λ2

μ2 − 2μ2 and
k4 = −λ. Consequently, for

f (u) = u λ2

μ2 + u2 λ− λ+ 2 u3 μ2 − 2 uμ2

u = tanh(μx + λt)

is a kink solution of Eq. (8.5).
2. Equation

F ≡ utt − utxx + uxxxx − (f (u))xx = g(x) (8.58)

with f (u) = u3 and g(x) = 1

x5 admits the symmetry generator

v = x
∂

∂x
+ 2t

∂

∂t
− u

∂

∂u

associated with the conservation law

φt = − t2

2x5 + (ut − uxx)t,

φx = tuxxx − 3tu2ux + ux.

Canonical coordinates of v leads us to

r = x√
t

s = 1

2
log(t), w = u

√
t . (8.59)

In this coordinates the conservation law is written as (8.57) with

T r = −4wr r r − 2 r wr r + 12w2 wr − r2 wr − 4wr − 3 r w − 1

r4 .

Since T = (T r, T s) is associated with v

T r = c1
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that is

−4wr r r − 2 r wr r + 12w2 wr − r2 wr − 4wr − 3 r w − 1

r4 = c1.

3. Equation

F ≡ utt − utxx + uxxxx − (f (u))xx = g(x) (8.60)

with f (u) = enu and g(x) = 1

x4 admits the symmetry generator

v = x

2

∂

∂x
+ t

∂

∂t
− 1

n
u
∂

∂u

associated with the conservation law

φt = x (−uxx + ut ) ,

φx = −
∫
xg (x) dx + (uxxxx − uxx)+ f (u)− xf ′(u)ux.

Canonical coordinates of v leads us to

r = x√
t

s = log(t), w = u+ log(t). (8.61)

In this coordinates the conservation law is written as (8.57) with

T r = r wr r r + r2 wr r

2
−wr r − n r enw wr + r3 wr

4
+ enw + r2

2 n
+ k1

r2 .

Since T = (T r, T s) is associated with v

T r = c1

that is

r wr r r + r2 wr r

2
−wr r − n r enw wr + r3 wr

4
+ enw + r2

2 n
+ k1

r2 = c1.
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8.5 Conclusions

For a damped equation with a time-independent source term, we have derived the
classical Lie symmetries admitted by the equation as well as the reduced ordinary
differential equations and we have derived some exact solutions. Conservation laws
for this equation are constructed for the first time by using the multiplier method.
We have given a group classification for a Boussinesq equation with a strong
damping term, as well as corresponding reduced ordinary differential equations.
We have derived some nontrivial conservation laws by using the multipliers
conservation laws method. Taking into account the relationship between symmetries
and conservation laws and applying the double reduction method, we have derived
a direct reduction of order of the ordinary differential equations and in particular we
have found a kink solution.
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Chapter 9
On Some Variable Exponent Problems
with No-Flux Boundary Condition

Maria-Magdalena Boureanu

Abstract The variable exponent problems allow us to deal with nonhomogeneous
materials for which it is not suitable to use the functional framework provided
by the Lebesgue and Sobolev-type spaces with constant exponents. The no-flux
boundary condition first appeared in physics and it opens the door to more real-life
applications. In addition to the no-flux boundary condition, our problems involve
more general operators, that is, Leray–Lions type operators. The discussion is
centered on the weak solvability of such problems via the critical point theory, and
it also includes the case of anisotropic exponents. For a plus of cohesion, we select
only a few powerful theorems as main tools that can be applied to all these problems.

Keywords Variable exponent spaces · Anisotropic exponent · Nonlinear elliptic
problems · No-flux boundary condition · Leray–Lions type operators · Weak
solutions · Existence · Multiplicity

9.1 Introduction

When it comes to PDEs, some of the most common boundary conditions are the
Dirichlet, Neumann, and Robin boundary conditions. But, as we all know, certain
problems that arise from real-life applications may need more unusual conditions
on the boundary. In that note, we make reference to the problem treated by Temam
[64] in 1977,

⎧
⎪⎪⎨

⎪⎪⎩

−�u+ λu− = 0 in �,

u = ĉ (unknown) constant on ∂�,∫

∂�

∂u

∂ν
dS = γ,

(9.1)
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where � ⊆ R
2 is an open set, ν represents the outward unit normal to the boundary

∂�, γ > 0 is given, and, as everywhere in this chapter, to simplify the writing we
use u instead of u

∣
∣
∂�

for the trace of u on ∂�. This problem has its origin in plasma
physics since it is a simplified version of another problem previously studied by the
same author in [63]. The solution of the problem discussed in [63] determines the
shape at equilibrium of a confined plasma. In what concerns (9.1), the region u < 0
represents the region that is filled by plasma, while the region u > 0 corresponds
to the vacuum, and once we solve problem (9.1) we can find these two regions. The
existence of a free boundary to this type of problem is physically expected, since
the plasma cannot touch the vacuum vessel, so the region u = 0 corresponds to the
free boundary which separates the plasma and the vacuum.

Other contributions to problems closely related to (9.1) are due to Berestycki and
Brezis [8], Kinderlehrer and Spruck [43], Puel [56], Schaeffer [62], etc., if we refer
to pioneering studies from the same period of time. However, the preoccupation for
such problems is carried over the years, see, for example, the recent work by Zou
et al. [72, 73].

In this chapter we focus on a slightly different situation, that is, the case when
γ = 0. This case gives us nonresonant surfaces, on which the wave number of the
perturbations parallel to the equilibrium magnetic field is zero, see [1]. These are
called no-flux surfaces, and we arrive at the following class of no-flux problems:

⎧
⎪⎪⎨

⎪⎪⎩

−�u = λf in �,

u = constant on ∂�,∫

∂�

∂u

∂ν
dS = 0,

(9.2)

where the constant boundary data is not specified, as it is the case for all the
no-flux boundary conditions from what follows. Since we are concerned with
generalizations of problem (9.2), we recall that Fan and Deng [34] studied the
problem

⎧
⎪⎪⎨

⎪⎪⎩

−�p(x)(u)+ b(x)|u|p(x)−2u = f (x, u)+ λg(x, u) in �,

u = constant on ∂�,∫

∂�

|∇u|p(x)−2 ∂u

∂ν
dS = 0,

(9.3)

where � ⊂ R
N (N ≥ 2) is a bounded open set with smooth boundary, p :

� → (1,+∞) is a variable exponent that satisfies 1 < ess infx∈� p(x) ≤
ess supx∈� p(x) <∞, and the log-Hölder continuity condition, that is, there exists
c > 0 such that

|p(x)− p(y)| ≤ c

− log |x − y| for all x, y ∈ �, 0 < |x − y| ≤ 1

2
(9.4)
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and by �p(·)(u) we denote, as usual, the p(·)-Laplace operator

�p(·)(u) = div(|∇u|p(x)−2∇u). (9.5)

As for the other functions involved in (9.3), b ∈ L∞(�) with ess infx∈� b = b0 > 0
and f, g ∈ C(� × R) satisfy a subcritical growth condition. Under additional
hypotheses on these functions the authors manage to obtain up to seven weak
solutions to problem (9.3) and some of these results are new even for the case when
the exponent p is constant.

We have brought into discussion problem (9.3) because it represents a particular
case of the more general class of problems that we are interested in, and, at the same
time, it makes the connection between (9.2) and our problem. As said above, the
conditions on the boundary, that is, the lines 2–3 of problem (9.3), are called the
no-flux boundary condition. Moreover when N = 1, this condition is the periodic
boundary condition, see [34, 47] and [48, Remark 1.1]; therefore, the no-flux
boundary conditions from our problems are in fact multidimensional generalizations
of the periodic boundary condition. Since there are not many p(·)-Laplace problems
with no-flux boundary conditions, we point out that another problem of this type was
studied a few years later, see [51].

The class of the no-flux problems that makes the subject of study of this
chapter is represented by the variable exponent problems involving Leray–Lions
type operators, see [1, 15, 16, 18, 47]. More precisely, we first discuss the following
type of problem from the framework of the variable exponent spaces:

⎧
⎪⎪⎨

⎪⎪⎩

−div(a(x,∇u))+ |u|p(x)−2u = λf (x, u) for x ∈ �,

u(x) = constant for x ∈ ∂�,∫

∂�

a(x,∇u) · ν dS = 0,
(9.6)

which is treated in Sect. 9.4, where all the assumptions on the functions that
appear here are carefully specified. The general operators from this problem took
the names of the mathematicians who introduced a first version of them in 1965
(see [49]) and have a great property: they can produce various types of operators,
including Laplace type operators and the mean curvature type operators. This is
the reason why multiple variants of the Leray–Lions operators appeared during the
years, each variant adapted to a specific type of problem, and a variant that we are
concerned with is the one from (9.6), which generalizes the p(·)-Laplace operator
(9.5). As said above, we will get into more details in Sect. 9.4, and then in Sect. 9.5,
where we extend problem (9.6) to the anisotropic case. In Sects. 9.4 and 9.5 we
will state the hypotheses corresponding to the problems and, in particular, to the
nonhomogeneous differential operators involved in them, together with meaningful
examples of operators that can be derived as particular cases of these Leray–
Lions type operators. Obviously, one can refer to no-flux problems involving the
Leray–Lions type operators with constant exponents too, see [48, 69]. Nonetheless,
when dealing with certain materials that are highly nonhomogeneous, we need an
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exponent that varies. Hence the development of the theory on the variable exponent
spaces and the solvability of the variable exponent problems, see the very well-
written books [25, 28, 57] and the references therein. One can learn from these books
that treating problems with variable exponents is quite difficult, since there are many
properties that only hold when the exponent is constant, and they do not hold even
when the variable exponent is very regular, that is, log-Hölder continuous or in
C∞(�) with 1 < ess infx∈� p(x) ≤ ess supx∈� p(x) < ∞. To give an immediate
example, since we already referred to the differential operators, we recall that, as
opposed to the p-Laplace operator with constant p,

�p(u) = div(|∇u|p−2∇u),
the p(·)-Laplace operator (9.5) has lost the homogeneity, which means that the p(·)-
Laplace equation is not scalable, that is, u being a solution of this equation does not
imply that λu is a solution too. Other things that we can briefly mention are the
fact that the space Lp() is not rearrangement invariant, the fact that the translation
operator is not bounded, or that Young’s convolution inequality

‖f # g‖Lp() ≤ c‖f ‖|L1‖g‖Lp() does not hold.

Also, the interpolation is not so useful because the variable exponent spaces never
result as an interpolant of constant exponent spaces and many inequalities (maximal,
Poincaré, Sobolev, etc.,) do not hold in a modular form.

The above described difficulties not only did not discourage the mathematicians,
but they seem to have the opposite effect and many studies continue to appear, see,
for example, the recent papers [4, 20, 40]. Many valuable properties were established
during the last years and a small part of them is displayed in our next section. The
strong interest in the variable exponent problems is fueled by multiple applications,
see, for example, [19, 70] for applications concerning elastic materials, [22] for
applications in image restoration, [3, 26, 50, 61] for applications due to smart fluids,
[37] for applications in mathematical biology, etc.

Here we are going to focus on a collection of recently obtained results due to
[15, 16, 18]. Notice that part of the results from [15] extends the results from [69],
where the exponent was constant. Furthermore, continuing this line of investigation,
the papers [16, 18] extend some of the results from [15], from the variable exponents
that are isotropic, to the anisotropic version of them. By considering anisotropic
variable exponents, that is,

→
p : �→ (1,+∞)N,

→
p(·) = (p1(·), p2(·) . . . , pN (·)) ,

we can have different behavior corresponding to the distinct space directions. The
importance of the anisotropic operators is emphasized by recent applications in
physics [9, 29, 30, 38, 39], biology [6, 7], image processing [65], etc. The theory
of the spaces with exponents that are both anisotropic and variable is quite fresh and
we recall a few early papers on this research direction [5, 12, 17, 23, 33, 44]. We
mention that the first problems involving anisotropic variable exponents and no-flux
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boundary conditions are exactly the ones from the papers [16, 18] that we are going
to discuss in Sect. 9.5.

As for the organization of our work, it is as follows: This chapter is structured
into six sections. After the introductory section, we present some notations, some
definitions, and some basic properties of the variable exponent spaces, both isotropic
and anisotropic, since they represent the abstract framework where we cast our
problems. Then, taking into account the fact that our problems are weakly solved via
the critical point theory, Sect. 9.3 contents a selections of results that are quite useful
when adopting this strategy, and a few history notes. Sections 9.4 and 9.5 mainly
present recent results obtained in [15, 16, 18] for isotropic, respectively, anisotropic,
variable exponent problems with Leray–Lions type operators and no-flux boundary
conditions. Finally, Sect. 9.6 provides comments and remarks, indicating possible
improvements and future directions of research.

9.2 Functional Framework

Everywhere in what follows, if not otherwise stated, we will assume that � ⊂ R
N

(N ≥ 2) is a bounded open set with smooth boundary and p : �→ (1,+∞), with
1 < ess infx∈� p(x) ≤ ess supx∈� p(x) < ∞, satisfies the log-Hölder continuity
condition (9.4). For simplicity, for every variable exponent r , we denote

ess inf
x∈� r(x) = r− and ess sup

x∈�
r(x) = r+.

Our goal is to insert here the basic properties from the theory of the variable
exponent spaces which are relevant for the weak solvability of the problems that
will be discussed later. Hence we start by recalling the definition of the Lebesgue
space with variable exponent,

Lp(·)(�) = {u : �→ R : u is measurable and
∫

�

|u(x)|p(x) dx <∞}

which is endowed with the Luxemburg norm,

‖u‖Lp(·)(�) = inf

{

μ > 0 :
∫

�

∣
∣
∣
∣
u(x)

μ

∣
∣
∣
∣

p(x)

dx ≤ 1

}

,

and it is a separable and reflexive Banach space, see [45, Theorem 2.5, Corollary
2.7]. As one can see, it is not easy to handle this Luxemburg norm, so we rely on
the application ρp(·) : Lp(·)(�)→ R,

ρp(·)(u) =
∫

�

|u(x)|p(x) dx,
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which is called the p(·)-modular of the Lp(·)(�) space. We can cite, for example,
[36, Theorem 1.3, Theorem 1.4] for the following properties. If u ∈ Lp(·)(�), then

‖u‖Lp(·)(�) < 1 (= 1; > 1) if and only if ρp(·)(u) < 1 (= 1; > 1);

if ‖u‖Lp(·)(�) > 1 then ‖u‖p−
Lp(·)(�) ≤ ρp(·)(u) ≤ ‖u‖p

+
Lp(·)(�);

if ‖u‖Lp(·)(�) < 1 then ‖u‖p+
Lp(·)(�) ≤ ρp(·)(u) ≤ ‖u‖p

−
Lp(·)(�);

‖u‖Lp(·)(�) → 0 (→∞) if and only if ρp(·)(u)→ 0 (→∞).

If, in addition, (un)n ⊂ Lp(·)(�), then

lim
n→∞‖un − u‖Lp(·)(�) = 0 if and only if lim

n→∞ ρp(·)(un − u) = 0.

When we need to make connections between functionals and norms, the above
properties are very useful, as well as the embedding result below.

Theorem 9.2.1 ([45, Theorem 2.8]) If 0 < |�| < ∞ and r1, r2 ∈ C(�;R),
1 ≤ r−i ≤ r+i < ∞ (i = 1, 2), are such that r1 ≤ r2 in �, then the embedding
Lr2(·)(�) ↪→ Lr1(·)(�) is continuous.

Also, the following Hölder type inequality,

∣∣
∣
∣

∫

�

u(x)v(x) dx

∣∣
∣
∣ ≤ 2 ‖u‖Lp(·)(�)‖v‖Lp′(·)(�),

holds for all u ∈ Lp(·)(�) and v ∈ Lp′(·)(�), see [45, Theorem 2.1]. Here we have
denoted by Lp′(·)(�) the conjugate space of Lp(·)(�), obtained by conjugating the
exponent pointwise, that is, 1/p(x)+ 1/p′(x) = 1, see [45, Corollary 2.7].

Furthermore, to every Carathéodory function g : �× R
m → R, m ∈ N, we can

associate a Nemytsky operator Ng that maps an m-tuple of functions (u1, . . . , um)

into

Ng(u1, . . . , um)(x) = g(x, u1(x), . . . , um(x)) x ∈ �. (9.7)

Theorem 9.2.2 ([45, Theorems 4.1–4.2]) Let g : � × R
m → R, m ∈ N, be a

Carathéodory function and li , l0 ∈ L∞(�) with li , l0 ≥ 1 for all i ∈ {1, 2, . . . ,m}.
Assume that there exist a nonnegative function h ∈ Ll0(·)(�) and a constant c > 0
such that

|g(x, ξ)| ≤ h(x)+ c

m∑

i=1

|ξi |li (x)/ l0(x)
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for all ξ ∈ R
N and a.e. x ∈ �. Then the Nemytsky operatorNg provided by formula

(9.7) maps Ll1(·)(�) × . . . × Llm(·)(�) into Ll0(·)(�) and it is a continuous and
bounded operator.

Let us pass now to the definition of the Sobolev space with variable exponent,

W 1,p(·)(�) =
{
u ∈ Lp(·)(�) : |∇u| ∈ Lp(·)(�)

}
,

which is endowed with the norm

‖u‖ = ‖u‖Lp(·)(�) + ‖∇u‖Lp(·)(�), (9.8)

where by ‖∇u‖Lp(·)(�) we understand ‖ |∇u| ‖Lp(·)(�). This space is a separable
and reflexive Banach space, see [45, Theorem 1.3], and we have the following
embedding theorem.

Theorem 9.2.3 ([32, Proposition 2.4]) Assume � ⊂ R
N (N ≥ 2) is a bounded

domain with smooth boundary and p ∈ C(�) with p− > 1. In addition, s ∈ C(�)

satisfies the condition

1 ≤ s(x) < p#(x) ∀ x ∈ �,

where p# denotes, as usual, the critical exponent given by

p#(x) =
{
Np(x)/[N − p(x)] if p(x) < N,

∞ if p(x) ≥ N.
(9.9)

Then the embedding W 1,p(·)(�) ↪→ Ls(·)(�) is compact.

Again, the following inequalities connect the norm and the functionals.

Proposition 9.2.4 ([35, Proposition 2.3]) Let u ∈ W 1,p(·)(�). We have

if ‖u‖ > 1 then ‖u‖p− ≤
∫

�

[
|∇u|p(x) + |u|p(x)

]
dx ≤ ‖u‖p+;

if ‖u‖ < 1 then ‖u‖p+ ≤
∫

�

[
|∇u|p(x) + |u|p(x)

]
dx ≤ ‖u‖p− .

But let us not lose sight of the fact that we are preoccupied with the existence of
weak solutions and, in order to be able to properly define such solutions, we need a
density result.

Theorem 9.2.5 (see [27, Theorem 3.7] and [25, Section 6.5.3]) Assume that � ⊂
R
N (N ≥ 2) is a bounded domain with Lipschitz boundary and p is log-Hölder

continuous with p− > 1. Then C∞(�) is dense in W 1,p(·)(�).
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The most well-known subspace of W 1,p(·)(�) is W 1,p(·)
0 (�), that is, the subspace

of the functions that are vanishing on the boundary. To this space we associate the
norm

‖u‖
W

1,p(·)
0 (�)

= ‖∇u‖Lp(·)(�),

due to the following Poincaré type inequality (see [32, Proposition 2.3]):

‖u‖Lp(·)(�) ≤ C‖∇u‖Lp(·)(�) for all u ∈ W
1,p(·)
0 (�),

where C is a positive constant. Then
(
W

1,p(·)
0 (�), ‖ · ‖

W
1,p(·)
0 (�)

)
is a separable and

reflexive Banach space, see [32, Proposition 2.1], and this is the space where we look
for weak solutions whenever we deal with problems with zero Dirichlet boundary
condition.

In our case, though, the problems are with no-flux boundary condition, so we
introduce another subspace of W 1,p(·)(�),

V =
{
u ∈ W 1,p(·)(�) : u

∣
∣
∂�
= constant

}

= {u+ c : u ∈ W
1,p(·)
0 (�), c ∈ R}.

With the help of the fine properties of W 1,p(·)
0 (�) we can establish the following.

Theorem 9.2.6 (see [15, Theorem 3]) (V , ‖·‖) is a separable and reflexive Banach
space, where ‖ · ‖ is the norm associated with the variable exponent Sobolev space
W 1,p(·)(�), see (9.8).

The space (V , ‖ · ‖) represents the space where we are going to search for
weak solutions for the isotropic variable exponent problem with no-flux boundary
condition (9.6).

Let us pass now to the abstract framework corresponding to the anisotropic
variable exponent problems. We recall that the anisotropic variable exponent

→
p(·) is a vectorial function,

→
p : �→ (1,+∞)N,

→
p(·) = (p1(·), p2(·) . . . , pN (·))

and for all i ∈ {1, . . . , N} we will consider pi to be log-Hölder continuous with
1 < p−i ≤ p+i < ∞. As the reader may have noticed, the log-Hölder continuity
condition that we request for the exponents is essential for the density results. We
introduce more notation:

pM(x) = max{p1(x), . . . , pN(x)}, pm(x) = min{p1(x), . . . , pN(x)},
(9.10)
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and p̄(x) = N
∑N

i=1

(
1/pi(x)

) . (9.11)

The anisotropic variable exponent Sobolev space,

W 1,
→
p(·)(�) =

{
u ∈ LpM(·)(�) : ∂xi u ∈ Lpi(·)(�) for all i ∈ {1, . . . , N}

}
,

is endowed with the norm

‖u‖
W 1,

→
p (·)(�)

= ‖u‖LpM(·)(�) +
N∑

i=1

∥
∥∂xi u

∥
∥
Lpi(·)(�) .

This space is a reflexive Banach space (see [33, Theorems 2.1 and 2.2]) and we
recall two embedding results.

Theorem 9.2.7 ([33, Corollary 2.1]) Let � ⊂ R
N be a bounded domain. Assume

that for all i ∈ {1, . . . , N}, pi ∈ L∞(�) and pi(x) ≥ 1 a.e. in �. Then for any
r ∈ L∞(�) with r(x) ≥ 1 a.e. in � such that ess infx∈�(pM(x) − r(x)) > 0 we

have the compact embedding W 1,
→
p(·)(�) ↪→ Lr(·)(�).

Theorem 9.2.8 ([33, Theorem 2.5])

(i) Let � ⊂ R
N be a rectangular-like domain, that is, a union of finitely many

rectangular domains (or cubes) with edges parallel to the coordinate axes.
Assume that pi ∈ C(�) with p−i > 1 for all i ∈ {1, . . . , N} and r ∈ C(�)

with 1 ≤ r(x) < max{p#(x), pM(x)} for all x ∈ �, where p# and pM are
given by formulae (9.9) and (9.11). Then we have the compact embedding

W 1,
→
p(·)(�) ↪→ Lr(·)(�).

(ii) The same statement as in part (i) is true for any bounded domain � ⊂ R
N

if we use W
1,
→
p(·)

0 (�) instead of W 1,
→
p(·)(�), where W

1,
→
p(·)

0 (�) represents the
subspace of the functions that are vanishing on the boundary, that is,

W
1,
→
p(·)

0 (�) =
{
u ∈ W 1,

→
p (·)(�) : u = 0 on ∂�

}
.

Another important theorem, which allows to formulate the definition of the weak
solutions, is the following.

Theorem 9.2.9 ([33, Theorem 2.4]) Assume that � ⊂ R
N (N ≥ 2) is a bounded

domain with Lipschitz boundary and
→
p ∈ (L∞(�)))N with p−i > 1 for all i ∈

{1, . . . , N}. In addition, assume that pi , i ∈ {1, . . . , N}, are log-Hölder continuous.
Then

(i) C∞0 (�) is dense in W
1,
→
p(·)

0 (�);
(ii) C∞(�) is dense in W 1,p(·)(�) if � is a rectangular-like domain.



262 M.-M. Boureanu

As in the isotropic case, we bring into discussion another subspace of

W 1,
→
p(·)(�), which is more appropriate for the weak solvability of the no-flux

problems with anisotropic variable exponent,

−→
V =

{
u ∈ W 1,

→
p(·)(�) : u

∣
∣
∂�
≡ constant

}
,

= {u+ c : u ∈ W
1,
→
p(·)

0 (�), c ∈ R}.

Theorem 9.2.10 ([18, Theorem 3.3]) The space
(
V, ‖ · ‖

W 1,
→
p (·)(�)

)
is a reflexive

Banach space.

Now that we sketched the functional framework for our discussion, we will focus
on other instruments that lead to the desired results.

9.3 Critical Point Tools

The results from the subsequent sections are based on the critical point theory,
meaning that to the variable exponent problems under discussion we associate
functionals such that the critical points of the functionals are weak solutions of
the problems, and vice versa. This strategy allows us to search for critical points
instead of weak solutions. Thus one of the most powerful theorems is the following
Weierstrass type theorem.

Theorem 9.3.1 (see [24, Section 2, Theorem 1.2]) Assume that X is a reflexive
Banach space of norm ‖ · ‖X and the functional � : X→ R is

(i) coercive on X, that is, �(u)→∞ as ‖u‖X →∞;
(ii) (sequentially) weakly lower semicontinuous on X, that is, for any u ∈ X and

any subsequence (un)n ⊂ X such that un ⇀ u weakly in X there holds

�(u) ≤ lim inf
n→∞ �(un).

Then � is bounded from below on X and attains its infimum in X.

Moreover, we remind two standard results that are advantageous when it comes
to the weak lower semicontinuity of the functionals.

Proposition 9.3.2 (see [24, Section 2, Example B]) If � : X → R is a convex
lower semicontinuous functional on a reflexive Banach space X, then � is weakly
lower semicontinuous on X.
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Proposition 9.3.3 (see [46, Theorem 6.2.1.]) Let X be a reflexive Banach space,
and let � : X → R be Gâteaux differentiable on X. Then the conditions stated
below are equivalent:

(i) � is convex;
(ii) the first Gâteaux derivative of � is monotone, that is,

〈�′(u)−�′(v), u− v〉 ≥ 0, for all u, v ∈ X;

(iii) we have

�(u)−�(v) ≥ 〈�′(v), u− v〉 for all u, v ∈ X.

Maybe as famous as the above Weierstrass type theorem is the mountain pass
theorem. We recall that the name of Theorem 9.3.1 can be viewed in connection to
the classical Dirichlet principle, which, as a funny story, first caught the attention of
Green in 1833, then it was mentioned by the name of Dirichlet principle by Riemann
in 1851, since Dirichlet was the one to provide a proof, but Weierstrass was the one
to notice that the proof is incorrect in 1870, as he pointed out the subtle difference
between the minimum and infimum. Many other great mathematicians got involved
and then, using Arzelas idea, the Dirichlet principle was established for certain
important cases by Hilbert in 1900. Major contributions to the critical point theory
are also due to Lebesgue, Tonelli, Lagrange, Legendre, Jacobi, Hamilton, Poincaré,
and the list continues. We stopped at the name of Poincaré since in 1905 he treated
a variational problem whose solution corresponds neither to a minimum nor to a
maximum. That was a revolutionary idea, since many years the general belief was
perfectly illustrated by the words of Euler: “I am convinced that the nature acts
everywhere following some principles of maximum or minimum,” see [31]. Thus
the min–max theory represents a turning point in PDEs and at the beginning of
its development subscribes not only Poincaré, but also Birkhoff (in 1917), Morse,
Ljusternik, and Schnirelman (in the late 1920s and early 1930s), and Palais, Smale,
and Rothe (in the 1960s). Finally, the contribution of Ambrosetti and Rabinowitz
[2] in 1973 with their mountain pass theorem marks “the beginning of a postmodern
era” in the critical point theory, see [42]. Many variants of this theorem appeared in
time (see, for example, [21, 42, 55] and the references therein) and we present here
two of them.

Theorem 9.3.4 (see, e.g., [55]) Let X, endowed with the norm ‖ · ‖X, be a Banach
space. Assume that � ∈C1(X;R) satisfies the Palais–Smale condition, that is, any
sequence (un)n ⊂ X such that (�(un))n is bounded and �′(un) → 0 in X# as
n → ∞, contains a subsequence converging to a critical point of �. Also, assume
that � has a mountain pass geometry, that is,

(i) there exist two constants r > 0 and ρ ∈ R such that �(u) ≥ ρ if ‖u‖X = r;
(ii) �(0) < ρ and there exists e ∈ X such that ‖e‖X > r and �(e) < ρ.
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Then � has a critical point u0 ∈ X \ {0, e} with critical value

�(u0) = inf
γ∈P

sup
u∈γ

�(u) ≥ ρ > 0,

where P denotes the class of the paths γ ∈ C([0, 1];X) joining 0 to e.

While the above theorem is used when we want to establish the existence of a
solution, for the existence of infinitely many solutions we rely on the following
mountain pass type theorem, that is, the fountain theorem. Let us introduce the
general context first. By [68, Section 17] we know that for a separable and reflexive
Banach space there exist {en}∞n=1 ⊂ X and {fn}∞n=1 ⊂ X# such that

fn(em) = δn,m =
{

1 if n = m,

0 if n �= m,

X = span{en : n = 1, 2, . . . } and X# = span{fn : n = 1, 2, . . . }.

For i = 1, 2, . . . we denote

Xi = span{ei}, Yi =
i⊕

j=1

Xj, and Zi =
∞⊕

j=i
Xj . (9.12)

Then, for a separable reflexive Banach space X and for Xi , Yi , Zi taken as in (9.12),
we remind the fountain theorem.

Theorem 9.3.5 (see, e.g., [66]) Assume that � ∈ C1(X,R) is even and that for
each i = 1, 2, . . . , there exist ρi > γi > 0 such that

(H1) infu∈Zi, ‖u‖X=γi �(u)→∞ as i →∞.
(H2) maxu∈Yi, ‖u‖X=ρi �(u) ≤ 0.
(H3) � satisfies the Palais–Smale condition for every c > 0.

Then � has a sequence of critical values tending to +∞.

Notice that in the previous two results the functional is assumed to be even. That
will reflect on the hypotheses that we impose on the problem. But there are other
possibilities to obtain multiplicity results, without imposing a symmetry condition
on the functional. Here we can refer to the so-called three critical points theorems.
After the publication of the paper [58] from 2000 where Ricceri introduced such a
theorem, this subject attracted a lot of attention and many variants and improvements
of this theorem continued to appear, see, for example, [10, 54, 59, 60] and the
references therein.

Theorem 9.3.6 ([10, Theorem 2.1]) Let X be a separable and reflexive real
Banach space, and let φ,ψ : X → R be two continuously Gâteaux differentiable
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functionals. Assume that there exists x0 ∈ X such that φ(x0) = ψ(x0) = 0 and
φ(x) ≥ 0 for every x ∈X and that there exist x1 ∈X, r0 > 0 such that

(i) r0 < φ(x1);
(ii) sup

φ(x)<r0

ψ(x) < r0ψ(x1)/φ(x1).

Further, put

α = βr0

r0
ψ(x1)
φ(x1)

− sup
φ(x)<r0

ψ(x)
,

with β > 1, and assume that the functional φ − λψ is sequentially weakly
lower semicontinuous, satisfies the Palais–Smale condition, and

(iii) lim‖x‖→+∞(φ(x)− λψ(x)) = +∞ for every λ ∈ [0, α].
Then, there exist an open interval � ⊆ [0, α] and a positive real number σ

such that, for every λ ∈ �, the equation

φ′(x)− λψ ′(x) = 0

admits at least three distinct solutions in X whose norms are less than σ .

Before ending this section, it is worth mentioning that another possibility to
obtain multiple solutions is to put together Theorems 9.3.1 and 9.3.4, as we will
see in the next sections.

9.4 Problems with (Isotropic) Variable Exponent

We are concerned with problem (9.6) which is displayed again here, for the
convenience of the reader:

⎧
⎪⎪⎨

⎪⎪⎩

−div(a(x,∇u))+ |u|p(x)−2u = λf (x, u) for x ∈ �,

u(x) = constant for x ∈ ∂�,∫

∂�

a(x,∇u) · ν dS = 0,

where � ⊂ R
N (N ≥ 2) is a bounded open set with smooth boundary, λ ≥ 0, and

the functions involved in this problem will be given below. But first, let us say that
this problem was studied in [15] and we have taken this opportunity to correct a
mistake. More precisely, we refer to the fact that in [15] the authors somehow forgot
to put condition

∫
∂�

a(x,∇u) · ν dS = 0 in their problem, although an analog
condition (corresponding to the constant exponent case) appeared in the paper [69]
that was extended by [15] to the variable exponent case. However, they signaled
their mistake to the editors immediately after publication and we mention that the
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results from [15] are valid for the problem written in the correct form, that is, (9.6).
Moreover, the study started in [15] was continued by the same authors and in their
next papers they added this condition (in the form corresponding to their problems
there), see [16, 18]. Notice that other small mistakes that appeared in [15, 16, 18]
will be corrected in what follows without much emphasis.

Let us proceed now with the discussion of problem (9.6). We introduce the
hypotheses on the functions involved here. As previously announced, p will always
satisfy

(p) p : � → (1,+∞) with 1 < p− ≤ p+ < ∞ and p fulfills the log-Hölder
continuity condition (9.4).

In addition, we have the following.

(a0) a : � × R
N → R

N is a Carathéodory function with the property that there
exists a Carathéodory function A : �× R

N → R, continuously differentiable
with respect to its second argument, such that

a(x, ξ) = ∇ξA(x, ξ) and A(x, 0) = 0,

for all ξ ∈ R
N and all x ∈ �.

(a1) There exists c̃ > 0 such that a satisfies the growth condition

|a(x, ξ)| ≤ c̃(1+ |ξ |p(x)−1)

for all x ∈� and all ξ ∈ R
N , where | · | denotes the Euclidean norm.

(a2) The inequalities

|ξ |p(x) ≤ a(x, ξ) · ξ ≤ p(x)A(x, ξ)

hold for a.e x ∈� and all ξ ∈RN .

(a3) The monotonicity condition

0 ≤ [a(x, ξ1)− a(x, ξ2)] · (ξ1 − ξ2)

holds for all x ∈� and all ξ1, ξ2 ∈RN , with equality if and only if ξ1 = ξ2.

Hypotheses (a0)–(a3) will always be assumed when we discuss the weak solvability
of problem (9.6). Moreover, when dealing with the multiplicity of the weak
solutions, in order to be able to apply Theorem 9.3.5, we assume an additional
hypothesis:

(a4) The mapping a is odd with respect to its second variable, that is,

a(x,−ξ) = −a(x, ξ)

for all x ∈ � and all ξ ∈ R
N .
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At a first glance, imposing assumptions (a0)–(a4) may seem a little too “heavy,”
but, as we said in the introductory section, the Leray–Lions type operators

div(a(x,∇u))

are quite general, and by choosing appropriate examples of functions a that verify
(a0)–(a4), we are led to different type of operators, some of them very well known.
Indeed, let us consider h ∈ L∞(�) with the property that there exists h0 > 0 such
that h(x) ≥ h0 for all x ∈ �. Then, by taking

a(x, ξ) = h(x)|ξ |p(x)−2ξ,

we have

A(x, ξ) = h(x)

p(x)
|ξ |p(x),

and (a0)–(a4) are verified. This way we have arrived at the class of operators

div(a(x,∇u)) = div(h(x)|∇u|p(x)−2∇u),

which, for h ≡ 1, produces the p(·)-Laplace operator (9.5). Moreover, if we take

a(x, ξ) = h(x)(1+ |ξ |2)(p(x)−2)/2ξ,

we have

A(x, ξ) = h(x)

p(x)

[
(1+ |ξ |2)p(x)/2 − 1

]
,

(a0)–(a4) are verified, and we have arrived at the class of operators

div(a(x,∇u)) = div
(
h(x)(1+ |∇u|2)(p(x)−2)/2∇u

)
,

which produces the generalized mean curvature operator

div(a(x,∇u)) = div
(
(1+ |∇u|2)(p(x)−2)/2∇u

)

when h ≡ 1. We believe that now it is clear to the reader why there is an
increased interest for the problems involving Leray–Lions type operators. But we
have to specify that not all the studies that analyze problems with Leray–Lions type
operators preserve these hypotheses in the exact form as above; in different papers,
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small differences appear. For example, in [52, 53], the authors use the following
assumption:

(a) There exists k0 > 0 such that

A

(
x,

ξ + η

2

)
≤ 1

2
A(x, ξ)+ 1

2
A(x, η)− k0|ξ − η|p(x)

for all x ∈ � and ξ, η ∈ R
N .

The p(·)-uniform convexity condition (a) is not so convenient because it restricts
the range of the exponents in the previous examples of operators, e.g., function
A(x, ξ) = h(x)

p(x)
|ξ |p(x) satisfies (a) only when p ≥ 2, instead of p > 1, as it is in our

case. Therefore imposing condition (a) would be a drawback, especially since there
are studies in which it is essential for the exponents to be between 1 and 2, see, for
example, [22].

Now that we have commented a little on the conditions regarding the Leray–
Lions type operators, let us carry on to the assumptions on f . In this section, we
always assume that the following condition holds.

(f0) f : �×R→ R is a Carathéodory function.

In addition to that, we will consider several hypotheses concerning f , and not all of
them are going to be fulfilled at the same time. We start with

(f̃1) there exists k > 0 such that f satisfies the growth condition

|f (x, t)| ≤ k|t|q(x)−1 (9.13)

for a.e. x ∈� and all t ∈R, where q ∈C(�) with

1 < q− ≤ q+ < p−.

This allows us to obtain an existence result by means of the Weierstrass type
theorem. It is clear that q is subcritical, since p < p#. But restriction q+ < p−
makes us wonder what happens when there is another order between the exponents
p and q . That we will see in one of the subsequent cases.

In what follows, we will distinguish between the two situations: the case when f

is p(·)− 1—superlinear at infinity—and the case when f is p(·)− 1—sublinear at
infinity. In each situation we will deduce not only an existence result, but also some
multiplicity results. For the first case, the nonlinearity f is supposed to satisfy the
following.

(f1) There exists k > 0 such that f satisfies the growth condition (9.13) for a.e.
x ∈� and all t ∈R, where q ∈C(�) with

p+ < q− ≤ q+ < p#.
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(f2) There exist θ > p+ and l > 0 such that f satisfies the Ambrosetti–Rabinowitz
condition

0 < θF(x, t) ≤ f (x, t)t

for all |t| > l and a.e. x ∈�, where

F(x, t) =
∫ t

0
f (x, τ ) dτ.

With respect to (f̃1), notice that (f1) considers a different order between p and q .
It is easy to see from (f2) that f is p(·) − 1—superlinear at infinity—and we can
deduce the existence of at least one weak solution via the mountain pass theorem.
Again, to apply Theorem 9.3.5, we assume an additional hypothesis.

(f) f is odd with respect to its second variable, that is,

f (x,−t) = −f (x, t)

for a.e. x ∈ � and all t ∈ R.

More importantly, when applying Theorem 9.3.5 we are able to avoid imposing an
order between the exponents p and q , other than the fact that q is subcritical. To be
precise, instead of (f1) we assume

(f’1) There exists k > 0 such that f satisfies the growth condition (9.13) for a.e.
x ∈� and all t ∈R, where q ∈C+(�) with

1 < q− ≤ q+ < p#.

As the reader can see, in (f’1) the values of the exponents p and q can be interleaved
and this illustrates properly how much of a difference can make the utilization of the
variable exponents instead of the constant ones.

In the case when f is p(·)− 1—sublinear at infinity—we assume the following:

(f3) There exists t0 > 0 such that F(x, t0) > 0 for a.e. x ∈ �.

(f4) lim|t |→∞
f (x, t)

|t|p(x)−1
= 0 uniformly with respect to x ∈ �.

Obviously, we deduce that f is p(·) − 1—sublinear at infinity from (f4). Also, in
order to have multiple solutions, we impose an additional hypothesis.

(f5) lim|t |→0

f (x, t)

|t|p(x)−1
= 0 uniformly with respect to x ∈ �.

Now that we have stated the assumptions, let us introduce the definition of the
weak solutions, keeping in mind Theorem 9.2.5.
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Definition 10 We say that u ∈ V is a weak solution of the boundary value problem
(9.6) if and only if

∫

�

a(x,∇u) · ∇v dx+
∫

�

|u|p(x)−2uv dx− λ

∫

�

f (x, u)v dx = 0 for all v ∈ V.

We will rely on the critical point theory for the weak solvability of the problems;
therefore to (9.6), we associate a functional I : V → R,

I (u) =
∫

�

A(x,∇u) dx +
∫

�

1

p(x)
|u|p(x) dx − λ

∫

�

F(x, u) dx. (9.14)

Taking into consideration the above hypotheses, one can see that I is well defined
and of class C1 due to some properties from Sect. 9.2, like the inequalities involving
the norm and the modular, the embedding theorems, and Theorem 9.2.2.

Note that, in the rest of the chapter we will not make a detailed reference to
the results from Sect. 9.2, since they are heavily used in all the arguments and our
intention is only to present and discuss the results concerning our problems, not
to prove them. So the main role of Sect. 9.2 is to introduce the reader into the
abstract framework corresponding to this type of problems and to let her/him see the
main ingredients for a better understanding of the information behind the theorems.
However, for every existence and multiplicity result presented in this chapter we
will indicate the main argument, and, when it is the case, a key tool for the proof.

Being faithful to our strategy (that is, to apply the critical point theory), we reveal
that

〈I ′(u), v〉 =
∫

�

a(x,∇u) · ∇v dx +
∫

�

|u|p(x)−2uv dx − λ

∫

�

f (x, u)v dx,

for all u, v ∈ V. Hence the critical points of I are weak solutions to problem (9.6).
We will focus on obtaining critical points by means of the theorems recalled in

Sect. 9.3. Thus, using Theorem 9.3.1, we arrive at our first existence theorem.

Theorem 9.4.2 ([15, Remark 2]) Assume that hypotheses (p), (a0)–(a3), (f0), and
(f̃1) hold. Then problem (9.6) has at least one nontrivial weak solution in V for
every λ > 0.

At the same time, Theorem 9.3.4 permits to achieve another existence result, with
a different order between the exponents. Here we deal with the case when f has a
p(·)− 1—superlinear growth at infinity.

Theorem 9.4.3 ([15, Theorem 4]) Assume that hypotheses (p), (a0)–(a3), and
(f0)–(f2) hold. Then problem (9.6) has at least one nontrivial weak solution in V

for every λ > 0.

To apply Theorem 9.3.4, we show that the functional I satisfies the Palais–Smale
condition. In the process, the following result is very useful.
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Theorem 9.4.4 ([47, Theorem 4.1]) Assume � ⊂ R
N (N ≥ 2) is a bounded

domain with smooth boundary and p ∈ C(�) with 1 < p− ≤ p+ < ∞. Also,
assume that the Carathéodory function a : �× R

N → R
N fulfills hypotheses (a1),

(a3) and

(ã2) there exist α ∈ L1(�) and β > 0 such that

a(x, ξ) · ξ ≥ β|ξ |p(x) − α(x) for a.e x ∈� and all ξ ∈RN .

If un ⇀ u (weakly) in W 1,p(·)(�) and

lim sup
n→∞

∫

�

a(x,∇un) · (∇un −∇u) dx ≤ 0,

then un → u (strongly) in W 1,p(·)(�).

Fortunately, by adding hypotheses (a4) and (f) to our set of assumptions, we
can provide a multiplicity result which does not require a certain order between the
exponents p and q , as we explained above. Hence, when f is p(·)− 1—superlinear
at infinity—we rely on the fountain theorem to obtain infinitely many weak solutions
to problem (9.6), for all λ > 0. Following the statement of Theorem 9.3.5, we take
X = V , which is a separable and reflexive Banach space, see Theorem 9.2.6. Then,
for Xi , Yi , Zi given by (9.12) and for I given by (9.14), we can use the fountain
theorem to arrive at another main result.

Theorem 9.4.5 ([15, Theorem 10]) Assume that hypotheses (p), (a0)–(a4), (f),
(f0), (f ’1), and (f2) hold. Then problem (9.6) has infinitely many weak solutions
in V for every λ > 0.

Besides Theorem 9.3.5, an important role in the proof of the previous theorem is
represented by the next proposition.

Proposition 9.4.6 (see [14, Proposition 5]) If for every i = 1, 2, . . . we denote

θi = sup
u∈Zi, ‖u‖≤1

∣
∣∣
∣

∫

�

1

q(x)
|u|q(x) dx

∣
∣∣
∣ ,

then when i goes to∞, θi → 0.

We revisit the Weierstrass type theorem, that is, Theorem 9.3.1, to provide an
existence result for the case when f has a p(·)− 1—sublinear growth at infinity.

Theorem 9.4.7 ([15, Theorem 11]) Assume that hypotheses (p), (a0)–(a3), (f0),
and (f3)–(f4) hold. Then there exists a constant λ0 > 0 such that problem (9.6) has
at least one nontrivial weak solution in V for every λ > λ0.

Other important ingredients for this proof are Proposition 9.3.2 and Proposi-
tion 9.3.3. Note that the case when f is p(·)−1—sublinear at infinity—has received
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little attention in comparison to the case of the superlinear growth at infinity. To fill
this gap in the mathematical literature, we also have two multiplicity results that are
obtained by adding condition (f5) to the previous set of hypotheses.

Theorem 9.4.8 ([15, Theorem 13]) Assume that hypotheses (p), (a0)–(a3), (f0),
and (f3)–(f5) hold. Then problem (9.6) has at least two nontrivial weak solutions in
V for every λ > λ0 > 0, where λ0 is the one found in Theorem 9.4.7, that is,

λ0 =
[

sup
u∈V,u �=0

∫
� F(x, u)dx

K(u)

]−1

,

with K being defined by

K(u) =
∫

�

A(x,∇u) dx +
∫

�

1

p(x)
|u|p(x) dx. (9.15)

An intriguing fact about the proof of this theorem is that it is based on a clever
combination between Theorem 9.3.1 and Theorem 9.3.4. To give some details, after
we find a first weak solution u1 of problem (9.6) by means of the Weierstrass type
theorem, this solution denoted by u1 will play the role of e from the statement of
Theorem 9.3.4. Then, it is shown that the functional I given by (9.14) verifies the
requirements of Theorem 9.3.4 and a second nontrivial solution, distinct from u1, is
found. This is an interesting manner to use a mountain pass type theorem to obtain
a multiplicity result without imposing the symmetry conditions (a4) and (f). Also,
more importantly, we have applied a mountain pass theorem to a problem involving
a nonlinearity which does not fulfill the Ambrosetti–Rabinowitz type condition.

Moving forward, we can use a different argument to infer a multiplicity result
for problem (9.6) when we deal with the sublinear growth at infinity, that is,
Theorem 9.3.6. We state the multiplicity result resulted from this theorem.

Theorem 9.4.9 ([15, Theorem 16]) Assume that hypotheses (p), (a0)–(a3), (f0),
and (f3)–(f5) hold. Then there exist an open interval � ⊂ [0, α] and a constant
σ > 0 such that for all λ ∈ � problem (9.6) has at least three weak solutions in V

whose norms are less than σ , where

α = βr0

r0
∫
�
F(x, v)dx/K(v)− supK(u)<r0

∫
�
F(x, u) dx

with β > 1 and r0 > 0, v ∈ V such that r0 < K(v), where K is given by (9.15).

Apparently under the same hypotheses as in Theorem 9.4.8 we have arrived at
three solutions instead of two. But these are obtained when the values of λ are in a
different set. Also, Theorem 9.4.9 does not say that the solutions are nontrivial, so
we may end up with two nontrivial weak solutions after all.



9 On Some Variable Exponent Problems with No-Flux Boundary Condition 273

9.5 Problems with Anisotropic Variable Exponent

In addition to the hypothesis that � ⊂ R
N (N ≥ 2) is a bounded open set

with smooth boundary that is assumed in the rest of the chapter, in this section
we consider � to be a rectangular-like domain, which, as reminded in Sect. 9.2,
is a union of finitely many rectangular domains (or cubes) with edges parallel
to the coordinate axes. We discuss the weak solvability of the following class of
anisotropic problems with no-flux boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
N∑

i=1

∂xi ai
(
x, ∂xi u

)+ b(x)|u|pM(x)−2u = λg(x, u) for x ∈ �,

u = constant for x ∈ ∂�,
∫

∂�

N∑

i=1

ai
(
x, ∂xi u

)
νi dS = 0,

(9.16)

where λ ≥ 0 and νi , i ∈ {1, . . . , N}, represent the components of the unit outer
normal vector. For the functions involved in (9.16) we consider a set of assumptions
that will be discussed in what follows.

(b) b ∈ L∞(�) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ �.

For the components pi , i ∈ {1, . . . , N}, of the anisotropic variable exponent
→
p(·)

we always assume a condition similar to (p), that is,

(pi) pi : � → (1,+∞) with 1 < p−i ≤ p+i < ∞ and each pi fulfills the log-
Hölder continuity condition (9.4), for all i ∈ {1, . . . , N}.

Notice that in the statement of the theorems we will insert an additional hypothesis

for
→
p(·) which will depend on the desired result.

We describe now the hypotheses verified by the functions ai that provide our
generalized operators.

(A0) For every i ∈ {1, . . . , N}, ai : �× R→ R is a Carathéodory function.
(A1) For every i ∈ {1, . . . , N}, there exists a positive constant ci such that ai

fulfills

|ai(x, s)| ≤ ci

(
di(x)+ |s|pi(x)−1

)
,

for all x ∈ � and all s ∈ R, where di ∈ Lp′i (·)(�) (with 1/pi(x)+ 1/p′i (x) =
1) is a nonnegative function.

(A2) For every i ∈ {1, . . . , N},

|s|pi(x) ≤ pi(x) Ai(x, s),
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for all x ∈ � and all s ∈ R, where Ai : �× R → R is the antiderivative of
ai, that is,

Ai(x, s) =
∫ s

0
ai(x, t) dt.

(A3) For every i ∈ {1, . . . , N}, the monotonicity condition

[ai(x, s)− ai(x, t)](s − t) > 0

takes place for all x ∈ � and all s, t ∈ R with s �= t .
(Ã2) For every i ∈ {1, . . . , N},

|s|pi(x) ≤ ai(x, s)s,

for all x ∈ � and all s ∈ R.

We mention that in most of the papers conditions (A2) and (Ã2) are combined
into the more restrictive condition:

(A) For every i ∈ {1, . . . , N},

|s|pi(x) ≤ ai(x, s)s ≤ pi(x) Ai(x, s),

for all x ∈ � and all s ∈ R,

see, for example, [12, 18, 44], and this is not surprising, since (A) is an extension
to the anisotropic exponent of the condition (a2), from Sect. 9.2. However, a closer
look, in, e.g., [18] is sufficient to impose (A2) and (Ã2) instead of (A), so we will
slightly generalize the result from [18] in this manner in order to present it here.
Moreover, sometimes we need only one of the assumptions (A2) and (Ã2), which is
the case of some of the results that will be exposed in this section.

Furthermore, some papers add another condition to the above set of hypotheses,

and we refer to the
→
p(·)-uniform convexity condition: there exists κi > 0 such that

Ai

(
x,

s + t

2

)
≤ 1

2
Ai(x, s)+ 1

2
Ai(x, t)− κi |s − t|pi (x), (9.17)

for all i ∈ {1, . . . , N}, all x ∈ �, and all s, t ∈ R, which is an extension of
hypothesis (a) from Sect. 9.4. Similarly to the isotropic case, when imposing the
→
p(·)-uniform convexity condition (9.17), the examples of operators that will be
obtained below as particular cases of the Leray–Lions type operators

N∑

i=1

∂xi ai
(
x, ∂xi u

)
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are not available for the case in which pi are less than 2. This is not the case for
the other hypotheses, that is, (A0)–(A3) and (Ã2), which allow us to take pi > 1,
i ∈ {1, . . . , N}.

Let us state now some examples of operators that are produced by our Leray–
Lions type operators. To this aim, we take again h ∈ L∞(�) with the property that
there exists h0 > 0 such that h(x) ≥ h0 for all x ∈ �. Then, by choosing

ai(x, s) = h(x)|s|pi(x)−2s for all i ∈ {1, . . . , N}, (9.18)

hypotheses (A0)–(A3) and (Ã2) are verified for pi > 1, i ∈ {1, . . . , N}. This way
we get the class of operators

N∑

i=1

∂xi ai
(
x, ∂xi u

) =
N∑

i=1

∂xi

(
h(x)

∣
∣∂xi u

∣
∣pi (x)−2

∂xi u
)

and, when h ≡ 1, we arrive at a problem involving the
→
p(·)-Laplace operator:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
N∑

i=1

∂xi

(
|∂xi u|pi(x)−2∂xi u

)
+ b(x)|u|pM(x)−2u = λg(x, u) for x ∈ �,

u = constant for x ∈ ∂�,
∫

∂�

N∑

i=1

|∂xi u|pi(x)−2∂xi u νi dS = 0.

On the other hand, when choosing

ai(x, s) = h(x)
(

1+ |s|2
)(pi(x)−2)/2

s for all i ∈ {1, . . . , N}, (9.19)

hypotheses (A0)–(A3) and (Ã2) are verified for pi > 1, i ∈ {1, . . . , N}, and we are
led to the following class of operators:

N∑

i=1

∂xi ai
(
x, ∂xi u

) =
N∑

i=1

∂xi

[
h(x)

(
1+ ∣

∣∂xi u
∣
∣2
)(pi(x)−2)/2

∂xi u

]
.

By taking h ≡ 1 in the previous example we arrive at the following problem
involving the generalized mean curvature operator:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
N∑

i=1

∂xi

(
1+ |∂xi u|2

)(pi(x)−2)/2
∂xi u+ b(x)|u|pM (x)−2u = λg(x, u) for x ∈ �,

u = constant for x ∈ ∂�,
∫

∂�

N∑

i=1

(
1+ |∂xi u|2

)(pi(x)−2)/2
∂xi u νi dS = 0.
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We have chosen to write explicitly these two particular cases of problem (9.16)
because there are not many papers that treat anisotropic variable exponent problems
with no-flux boundary. In fact, in addition to the papers [16, 18] which were the first
to approach this subject and which are going to be discussed here, we are only aware
of one other paper, that is, [1], in which g from (9.16) is replaced by uq(x)−2u.

Let us see now the hypotheses on our nonlinearity g.

(g0) g : �× R→ R is a Carathéodory function.
(g1) There exist k > 0 and q ∈ C(�) with

p+M < q− < q+ < p#(x)

for all x ∈ �, such that g verifies

|g(x, s)| ≤ k
(

1+ |s|q(x)−1
)

for a.e. x ∈� and all s ∈R, where p# and pM are given by formulae (9.9)
and (9.11).

(g2) There exist γ > p+M and s0 > 0 such that the Ambrosetti–Rabinowitz
condition

0 < γG(x, s) ≤ sg(x, s)

holds for a.e. x ∈ � and for all s ∈ R with |s| > s0, where G : � × R → R

denotes the antiderivative of g, that is,

G(x, s) =
∫ s

0
g(x, t) dt.

(g3) lim|s|→0

g(x, s)

|s|p+M−1
= 0 uniformly with respect to x ∈ �.

At this point it is clear that problem (9.16) is a generalization of problem (9.6) that
was analyzed in the previous section. Hypothesis (g2) implies, in particular, that
g is p+M − 1—superlinear at infinity—so, to create a situation that is analogous to
the one from the isotropic variable exponent case, we display a hypothesis which
implies that g is p−m − 1—sublinear at infinity.

(g4) lim|s|→∞
g(x,s)

|s|p−m−1
= 0 uniformly with respect to x ∈ �.

Obviously, (g2) and (g4) will not be fulfilled at the same time. But under assump-
tions (g0) and (g4) one can obtain an existence result for problem (9.16). Still, for
the nontriviality of this weak solution, we also need

(g5) There exists s0 > 0 such that G(x, s0) > 0 for a.e. x ∈ �.
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Furthermore, if we add (g3) to hypotheses (g0), (g4), and (g5), then we infer a
multiplicity result. On the other hand, if instead of (g3) we add to them

(g6) [g(x, s1)− g(x, s2)] (s1 − s2) < 0 for a.e. x ∈ � and all s1, s2 ∈ R with
s1 �= s2,

then we infer a uniqueness result.
Taking into account Theorem 9.2.9, we introduce the notion of weak solution to

problem (9.16).

Definition 11 We say that u ∈ −→V is a weak solution of the boundary value problem
(9.16) if and only if

∫

�

N∑

i=1

ai(x, ∂xi u)∂xi v dx +
∫

�

b(x)|u|pM(x)−2uv dx − λ

∫

�

g(x, u)v dx = 0,

for all v ∈ −→V .

The energy functional corresponding to (9.16) is defined as J : −→V → R,

J (u) =
∫

�

N∑

i=1

Ai(x, ∂xi u) dx +
∫

�

b(x)

pM(x)
|u|pM(x) dx − λ

∫

�

G(x, u) dx.

Based on the properties from Sect. 9.2, a standard calculus shows that functional J
is well defined and of class C1, and its derivative is described by

〈J ′(u), v〉 =
∫

�

N∑

i=1

ai (x, ∂xi u)∂xi v dx +
∫

�
b(x)|u|pM (x)−2uv dx − λ

∫

�
g(x, u)v dx,

for all u, v ∈ −→
V . Since the critical points of J are weak solutions to problem

(9.16), we rely on the critical point theorems from Sect. 9.3 for the weak solvability
of problem (9.16). Thus, due to Theorem 9.3.4, we deduce the following result.

Theorem 9.5.2 (see [18, Theorem 3.2]) Assume that hypotheses (b), (pi), (A0)–
(A3), (Ã2), and (g0)–(g3) hold, and, in addition, p+M < p#(x) for all x ∈ �. Then,

problem (9.16) has at least one nontrivial weak solution in
−→
V for every λ > 0.

As already said, in [18, Theorem 3.2] the authors imposed the more restrictive
assumption (A), but the calculus works just fine when we replace (A) by conditions
(A2) and (Ã2). Also, note that an important ingredient of the proof of Theorem 9.5.2
is represented by the next result.

Theorem 9.5.3 (see [18, Theorem 3.4]) Let � ⊂ R
N , (N ≥ 2) be a rectangular-

like domain. Assume that pi ∈ C(�), 1 < p−i ≤ p+i < ∞ for all i ∈ {1, . . . , N}
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with p+M < p#(x), and that (A0), (A1), (Ã2), and (A3) hold. If un ⇀ u (weakly) in

W 1,
→
p(·)(�) and

lim sup
n→∞

∫

�

N∑

i=1

ai(x, ∂xi u)(∂xi un − ∂xi u)dx ≤ 0,

then un → u (strongly) in W 1,
→
p(·)(�).

Notice that we have been a little more careful than the authors of [18, Theorem
3.4] when stating the assumptions on the Leray–Lions type operators in the above
theorem. For details regarding the possibility to state a slightly improved version of
Theorem 9.5.3, we send the reader to the comments from the next section.

Moving forward, to the case when g is p−m − 1—sublinear at infinity—we
have another existence result, this time due to Theorem 9.3.1 combined with
Propositions 9.3.2 and 9.3.3.

Theorem 9.5.4 (see [16, Theorem 3.2]) Assume that hypotheses (b), (pi), (A0)–
(A3), (g0), and (g4) hold and p−m < p−M . Then problem (9.16) has at least one weak

solution in
−→
V for every λ > 0.

This theorem, as well as the others from the remaining part of this section, were
given under conditions that are a bit more general in [16]. The details are spelled
out in Sect. 9.6.

The next result concerns the nontriviality of the solution.

Corollary 9.5.5 (see [16, Corollary 1]) Assume that hypotheses (b), (pi), (A0)–
(A3), (g0), (g4), and (g5) hold and p−m < p−M . Then there exists

λ0 =
⎡

⎣ sup
u∈−→V , u �=0

J2(u)

J1(u)

⎤

⎦

−1

(9.20)

such that problem (9.16) admits a nontrivial weak solution in
−→
V for every λ > λ0,

where

J1(u) =
∫

�

N∑

i=1

Ai(x, ∂xi u) dx +
∫

�

b(x)

pM(x)
|u|pM(x) dx

and

J2(u) = λ

∫

�

F(x, u) dx.
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This corollary let us know that, by adding another assumption to the set of
hypotheses from Theorem 9.5.4, we can guarantee the nontriviality of the weak
solution, but only for λ > λ0 > 0, where λ0 is given by (9.20). Still, one can see
that under certain choices of the functions g and ai , the weak solution is nontrivial
for all λ > 0. A similar remark could be made for the uniqueness results from below.

Corollary 9.5.6 (see [16, Corollary 2]) Assume that hypotheses (b), (pi), (A0)–
(A3), (g0), (g4), and (g6) hold and p−m < p−M . Then problem (9.16) admits a unique

weak solution in
−→
V for every λ > 0. Moreover, if we add hypothesis (g5), the unique

solution is nontrivial for all λ > λ0 > 0, where λ0 is given by (9.20).

Finally, we arrive at the multiplicity result, which yields when putting together
Theorems 9.3.1 and 9.3.4, as in the isotropic case.

Theorem 9.5.7 (see [16, Theorem 3.3]) Assume that hypotheses (b), (pi), (A0)–
(A3), (Ã2), (g0), and (g3)–(g5) hold and p+M < p#(x) for all x ∈ �. Then, problem

(9.16) has at least two nontrivial weak solutions in
−→
V for every λ > λ0 > 0, where

λ0 is given by (9.20).

More comments and remarks on the above results can be found in the subsequent
section.

9.6 Final Comments

Naturally, there is a continuous preoccupation with relaxing the hypotheses and
generalizing the results. One can easily see that not all the results from Sect. 9.4
were extended to the anisotropic case. And, although several difficulties will occur
on the way, we have confidence that this work can be done and it represents a
possible future direction of research. But we should be careful though, because
it is not an easy ride. For example, we are not aware of a proof of the fact that

the space W 1,
→
p(·)(�) is separable. Thus, even though

−→
V is a closed subspace of(

W 1,
→
p(·)(�), ‖ · ‖

W 1,
→
p (·)(�)

)
, it cannot inherit this property. Without it, we are not

able to apply the fountain theorem (see Theorem 9.3.5 and the lines above it) in the
situation in which we add the symmetry conditions

(g̈) g is odd with respect to its second variable, that is,

g(x,−t) = −g(x, t)

for a.e. x ∈ � and all t ∈ R.

(Ä) For every i ∈ {1, . . . , N}, ai is odd with respect to its second variable, that is,

ai(x,−t) = −ai(x, t)

for a.e. x ∈ � and all t ∈ R
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to the set of hypotheses. However, if we assume conditions (g̈) and (Ä), we open the
door to obtaining infinitely many solutions by means of the following symmetric
mountain pass theorem.

Theorem 9.6.1 ([42, Theorem 11.5]) . Let X be a real infinite dimensional Banach
space and � ∈ C1(X;R) a functional satisfying the Palais–Smale condition.
Assume that � satisfies:

(i) �(0) = 0 and there are constants ρ, r > 0 such that

�|∂Bρ ≥ r,

(ii) � is even, and
(iii) for all finite dimensional subspaces X̃ ⊂ X, there exists R = R(X̃) > 0 such

that

varPhi(u) ≤ 0 for u ∈ X̃ \ BR(X̃).

Then � possesses an unbounded sequence of critical values characterized by a min–
max argument.

Note that functions from (9.18) and (9.19) satisfy condition (Ä); thus, the
examples of operators presented in Sect. 9.5 would remain valid in the above
described eventuality.

Also, when referring to extending Theorem 9.4.9 to the anisotropic case, one
should take into account more recent and refined versions of the three critical points
result from Theorem 9.3.6, see [54, 59, 60] and the references therein.

This strong connection between the results from Sect. 9.4 and the results from
Sect. 9.5 works both ways. On the one hand, we can look at the results from the
isotropic case and see which of them could be extended to the anisotropic case. On
the other hand, by looking at the generalized results from Sect. 9.5 we can deduce
which theorems from the isotropic case could of been improved. Actually, this is the
case of all the results from Sect. 9.4 because we can follow the model from problem
(9.16) to replace problem (9.6) by

⎧
⎪⎪⎨

⎪⎪⎩

−div(a(x,∇u))+ b(x)|u|p(x)−2u = λf (x, u) for x ∈ �,

u(x) = constant for x ∈ ∂�,∫

∂�

a(x,∇u) · ν dS = 0,

where the change is represented by the presence of b, which is given by (b)
from Sect. 9.5. Moreover, assumption (A1) indicates that (a1) can be upgraded as
follows:

(ã1) There exists c̃ > 0 such that a satisfies the growth condition

|a(x, ξ)| ≤ c̃(d(x)+ |ξ |p(x)−1)

for all x ∈� and all ξ ∈ R
N, where d ∈ Lp′(·)(�) is a nonnegative function.
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In addition, (a2) can be split into

|ξ |p(x) ≤ p(x)A(x, ξ) for a.e x ∈� and all ξ ∈RN (9.21)

and

|ξ |p(x) ≤ a(x, ξ) · ξ for a.e x ∈� and all ξ ∈RN, (9.22)

as in Sect. 9.5, where we have their generalizations as (A2) and (Ã2). Since all the
main results from Sect. 9.5 work under (A2) and/or (Ã2) instead of (A), we expect
the corresponding results from Sect. 9.4 to work under relations (9.21) and/or (9.22).
Obviously, even when combined, relations (9.21) and (9.22) are less restrictive
than (a2). Furthermore, since Theorem 9.4.4 is provided under the more general
condition (ã2), we believe that Theorem 9.5.3 can be also improved by replacing
condition (Ã2) from its statement with

(Ã’2) For every i ∈ {1, . . . , N}, there exist αi ∈ L1(�) and βi > 0 such that

βi |s|pi(x) − αi(x) ≤ ai(x, s)s,

for all x ∈ � and all s ∈ R.

In fact, the authors of [16] have used a version that is more general than (Ã2) and
it is a particular case of (Ã’2), obtained for αi ≡ 0. But we believe that, in order
for Theorem 9.5.3 to hold under a more general hypothesis like (Ã’2) we need to
impose an additional condition regarding the relation between the coefficients βi
from (Ã’2) and ci from (A1), see the analogous proof from [13]. In addition, in [16]
assumption (A2) is replaced by the more relaxed assumption

(A’2) For every i ∈ {1, . . . , N}, there exists ki > 0 such that

ki |s|pi(x) ≤ pi(x) Ai(x, s),

for all x ∈ � and all s ∈ R.

Without getting too technical concerning the assumptions of the problems (if
it is not already too late) we have two other remarks. The first one concerns
Theorem 9.5.7, in which hypothesis (g3) can be replaced by the more general

(g̃3) lim|s|→0

g(x, s)

|s|p−m−1
= 0 uniformly with respect to x ∈ �,

as it is written in [16, Theorem 3.3]. Here we have used (g3) just because it was
needed for Theorem 9.5.2 and we tried to simplify the set of assumptions from
Sect. 9.5. The second one refers to conditions (f3) and (g5), which are in fact the
same condition, and can be replaced by

(f̃3) there exist t0 > 0 and a ball B with B ⊂ � such that
∫
B
F(x, t0) dx > 0,

where F(x, t) = ∫ t

0 f (x, s) ds,

see [20, 41].
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Apart from the above observations on the hypotheses, we remark that the variable
exponent problems with no-flux boundary conditions are gaining popularity. As an
illustration, there is a fresh interest for higher order problems with no-flux boundary
conditions, see [20, 71] for the first papers on this research direction. Also, we refer
to the very recent study [13] for fourth-order variable exponent problems involving
Leray–Lions type operators. Hence one can investigate whether similar results to
those presented here could be adapted to the new context. The same question could
be asked about a possible generalization of the results from this chapter to systems,
and we send the reader to [67] for systems involvingp(·) and q(·)-Laplace operators
and no-flux boundary conditions, and to [11] for anisotropic systems with variable
exponents and Leray–Lions type operators.

In conclusion, there are multiple things to consider for generalization in the
future; after all, in mathematics there is always some “work in progress.”
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53. M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising
in the theory of electrorheological fluids. Proc. Roy. Soc. Lond. Ser. A 462, 2625–2641 (2006)

54. G. Molica Bisci, D. Repovš, Multiple solutions of p-biharmonic equations with Navier
boundary conditions. Complex Var. Elliptic Equ. 59(2), 271–284 (2014)
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Chapter 10
On the General Decay for a System
of Viscoelastic Wave Equations

Salim A. Messaoudi and Jamilu Hashim Hassan

Abstract This work is concerned with a coupled system of nonlinear viscoelastic
wave equations that models the interaction of two viscoelastic fields. This system
has been extensively studied by many authors for relaxation functions decaying
exponentially, polynomially, or with some general decay rate. We prove a new
general decay result that improves most of the existing results in the literature related
to the system of viscoelastic wave equations. Our result allows wider classes of
relaxation functions.

Keywords Viscoelastic · System · Relaxation function · General decay

10.1 Introduction

In this work, we consider the following coupled system of viscoelastic wave
equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt −�u+ ∫ t

0 g1(t − s)�u(·, s)ds + f1(u, v) = 0, in �× (0,+∞),

vtt −�v + ∫ t

0 g2(t − s)�v(·, s)ds + f2(u, v) = 0, in �× (0,+∞),

u = v = 0, on ∂�× [0,+∞),

u(·, 0) = u0, ut (·, 0) = u1, v(·, 0) = v0, vt (·, 0) = v1, in �,

(P )

where � is a bounded domain of Rn with a smooth boundary ∂�, u0, u1, v0, v1
are given initial data, g1, g2 are the relaxation functions, and f1, f2 are the
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nonlinear functions to be specified in the next section. The unknowns u and
v represent the displacements of waves. This system can be considered as a
generalization of the well-known Klein–Gordon system that appears in the quantum
field theory. For more details, see [3, 17, 29].

We start with some related results in viscoelastic wave equations in order to
motivate our work. For almost a half century, viscoelastic equations had been
extensively studied by many researchers since the pioneer work of Dafermos [9, 10]
in which he investigated a one-dimensional viscoelastic equation and proved the
well-posedness of the problem provided that the relaxation function is a positive
integrable function. He also established that its solution decays asymptotically to
zero if, in addition, the relaxation function is a monotone non-increasing smooth
function. However, the rate of decay of the solution was not explicitly given. Hrusa
[13] in 1985 considered the following one-dimensional viscoelastic problem with
nonlinearity in the memory term:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

utt − cuxx +
∫ t

0
g(t − s)

(
ψ(ux(x, s))

)
x
ds = f (x, t), in (0, 1)× (0,∞),

u(0, t) = u(1, t) = 0, t ≥ 0,

u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ [0, 1],
(10.1.1)

where c > 0 is a constant, u0, u1 are given initial data, andψ is a nonlinear function.
Under certain conditions on ψ , he established the global existence of a strong
solution to problem (10.1.1) and showed that the solution decays exponentially to
zero, if the relaxation function g decays exponentially to zero.

For multi-dimensional viscoelastic problems, we start with the work of Dassios
and Zafiropoulos [11] in 1990, in which the authors studied a three-dimensional
viscoelastic problem in the whole space R

3 and proved a polynomial decay result
for an exponentially decaying relaxation function. In 1994, Rivera [22] established
an exponential decay result for the sum of the first and second energies of a linear
viscoelastic problem in a bounded domain of R

n with an exponentially decaying
relaxation function by imposing some extra conditions on the second derivative
of the relaxation function. Rivera and Lapa [23] improved this result by proving
a polynomial decay rate of the system with a relaxation function that decays
polynomially. In 2002, Cavalcanti et al. [8] studied the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

utt −�u+
∫ t

0
g(t − s)�u(s)ds + γ (x)ut = 0, in �× (0,∞),

u = 0, on ∂�× [0,∞),

u(·, 0) = u0, ut (·, 0) = u1, in �,

(10.1.2)

where � is a bounded domain of R
n (n ≥ 1) with a smooth boundary ∂� and

γ : � −→ R+ is bounded and satisfies

γ (x) ≥ γ0 a.e. on ω ⊂ �.
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They imposed the following assumptions on the relaxation function, g:

g(0) > 0,
∫ ∞

0
g(s)ds < 1,

and there exist two positive constants ξ1, ξ2 such that

− ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), ∀ t ≥ 0. (10.1.3)

They proved an exponential rate of decay for the solution of (10.1.2) under some
geometric conditions on ω. Berrimi and Messaoudi [5] showed that one can drop the
geometric condition imposed on ω in [8] and still maintain the exponential decay of
the solution of (10.1.2). They established their result under weaker conditions on g.
Furthermore, the same authors in [6] extended and improved their result to the case
where a source term is competing with a viscoelastic damping.

Up to the year 2008, most of the studies of viscoelastic problems were concerned
with relaxation functions satisfying

g′(t) ≤ −ξgp(t), ∀ t ≥ 0, (10.1.4)

where ξ > 0 and 1 ≤ p < 3
2 which, in turn, yielded either uniform or polynomial

decay. In 2008, Messaoudi [18, 19] proved a general decay rate from which the
exponential and polynomial decay rates are only special cases. Precisely, he studied
the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

utt −�u+
∫ t

0
g(t − s)�u(s)ds = γ |u|m−2u, in �× (0,∞),

u = 0, on ∂�× [0,∞),

u(·, 0) = u0, ut (·, 0) = u1, in �,

(10.1.5)

with γ = 0 or γ = 1 and g satisfying

g′(t) ≤ −ξ(t)g(t), ∀ t ≥ 0, (10.1.6)

where ξ : R+ −→ R+ is a non-increasing differentiable function and showed that
the energy of the solution of (10.1.5) decays with the same rate as g. Motivated
by these results of Messaoudi, many general decay results using (10.1.6) have been
established, see Cao [7], Han and Wang [12], Liu [14, 15], and references therein.

In 2009, Alabau-Boussouira and Cannarsa [2] announced, without a proof, a
general decay result for the solution of problem (10.1.5) with γ = 0 for a class
of relaxation functions satisfying

g′(t) ≤ −H(g(t)), ∀ t ≥ 0,
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where H : [0,∞) −→ [0,∞) is a strictly increasing, strictly convex, and C1

function on [0, k0] with H(0) = H ′(0) = 0 and satisfies the following extra
conditions:

∫ k0

0

1

H(s)
ds = ∞,

∫ k0

0

s

H(s)
ds < 1 and lim inf

s→0+
H(s)

sH(s)
>

1

2
.

Moreover, if H satisfies

g′(t) = −H(g(t)), ∀ t ≥ 0 and lim sup
s→0+

H(s)

sH ′(s)
< 1,

then an explicit optimal decay rate is claimed. They also asked the following
question:

Q. What about a more general class of relaxation functions satisfying

g′(t) ≤ −ξ(t)H(g(t)), ∀ t ≥ 0?

It is worth noting that the result of Messaoudi in [18] answered Q when H = Id

and ξ is a positive non-increasing differentiable function. In 2012, Mustafa and
Messaoudi [26] relaxed most of the unnecessary conditions imposed on H in [2]
and answered Q with ξ ≡ 1. In 2016, Messaoudi and Al-Khulafi [20] proved a
general and optimal decay rate of the solution of (10.1.5) with γ = 0 for a class of
relaxation functions, satisfying

g′(t) ≤ −ξ(t)gp(t), ∀ t ≥ 0, 1 ≤ p <
3

2
. (10.1.7)

This result answered Q with ξ being a non-increasing differentiable function and
H(s) = sp, for 1 ≤ p < 3

2 . Very recently, Mustafa [25] gave a complete answer
to Q by assuming that H is either linear or strictly increasing and strictly convex
C2 function on (0, r], for r ≤ g(0) and ξ is a positive non-increasing differentiable
function. His result generalizes and improves all the existing results in the literature
related to the decay of the solution of viscoelastic equations.

For the general decay results of a solution of the system of viscoelastic wave
equations, Messaoudi and Tatar [21] studied the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt −�u+
∫ t

0
g(t − s)�u(s)ds + f (u, v) = 0, in �× (0,∞),

vtt −�v +
∫ t

0
h(t − s)�v(s)ds + k(u, v) = 0, in �× (0,∞),

u = v = 0, on ∂�× [0,∞),

u(·, 0) = u0, ut (·, 0) = u1, v(·, 0) = v0, vt (·, 0) = v1, in �,

(10.1.8)
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where � is a bounded domain of R
n (n ≥ 1) with a smooth boundary ∂� and

u0, v0, u1, v1 are given initial data. The functionsf and k satisfy, for all (u, v) ∈ R
2,

the following assumption:

⎧
⎪⎪⎨

⎪⎪⎩

|f (u, v)| ≤ d(|u|β1 + |v|β2)

|k(u, v)| ≤ d(|u|β3 + |v|β4)

for some constant d > 0 and

βi ≥ 1 (n− 2)βi < n, i = 1, 2, 3, 4.

Under the following hypothesis: there exist two positive constants ξ1, ξ2 such that

g′(t) ≤ −ξ1g
p(t), t ≥ 0, 1 ≤ p < 3

2

h′(t) ≤ −ξ2h
q(t), t ≥ 0, 1 ≤ q < 3

2 ,

they proved an exponential decay result if (p, q) = (1, 1) and a polynomial decay
otherwise. This result improves that of Santos [28] in which some extra conditions
on g′′ and h′′ were required. Mustafa [24] discussed (10.1.8) and gave sufficient
conditions to guarantee the well-posedness of the system. In addition, under the
following assumptions on the relaxation functions:

g′(t) ≤ −ξ1(t)g(t), t ≥ 0

h′(t) ≤ −ξ2(t)h(t), t ≥ 0,
(10.1.9)

where ξ1, ξ2 : R+ −→ R+ are non-increasing functions, he proved the existence
and uniqueness result and established a generalized stability result from which
exponential and polynomial decay rates are only special cases. Said-Houari et al.
[27] considered a system of viscoelastic wave equations with nonlinear damping
terms acting on both equations. Their work was mainly concerned with the
following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt −�u+
∫ t

0
g(t − s)�u(s)ds + |ut |m−1ut = f1(u, v), in �× (0,∞),

vtt −�v +
∫ t

0
h(t − s)�v(s)ds + |vt |r−1vt = f2(u, v), in �× (0,∞),

u = v = 0, on ∂�× [0,∞),

u(·, 0) = u0, ut (·, 0) = u1, v(·, 0) = v0, vt (·, 0) = v1, in �,

(10.1.10)
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with

f1(u, v) = a|u+ v|2(ρ+1)(u+ v)+ b|u|ρu|v|ρ+2

f2(u, v) = a|u+ v|2(ρ+1)(u+ v)+ b|u|ρ+2|v|ρv.

Under some conditions on the initial data, ∂�, ρ, m, r, g, h, they proved the
existence (local and global) and uniqueness result. By imposing (10.1.9) on g and
h, they established a generalized decay rate of the solution of (10.1.10). Their result
improves the ones in Messaoudi and Tatar [21] and Liu [16]. Very recently, Al-
Gharabli and Kafini [1] established a general decay result for (10.1.8) with the
relaxation functions g′i s satisfying

g′i (t) ≤ −Hi(gi(t)), ∀ t ≥ 0, i = 1, 2 (10.1.11)

with Hi : [0,∞) −→ [0,∞) with Hi(0) = 0 and each Hi is linear or strictly
increasing and strictly convex C2 function on (0, r] for some r > 0. This later
result allowed larger class of relaxation functions and generalizes, in some cases,
those in [21, 24, 28].

The aim of this work is to investigate problem (10.1.1) with the general class
of relaxation functions g and h and use the idea developed by Mustafa in [25],
taking into consideration the nature of the system (P ), to prove a new general decay
result. Our result generalizes and improves all the existing results related to system
of viscoelastic equations. This paper is organized as follows: In Sect. 10.2, we state
some preliminary results. In Sect. 10.3, we state and prove some technical lemmas
needed for the entire work. We state and prove our main result in Sect. 10.4, followed
by some examples to demonstrate our result.

10.2 Preliminaries

In this section, we give our assumptions, state the existence theorem, and present
some useful lemmas. We use c > 1 to denote a positive generic constant.

Assumptions We assume that the relaxation functions satisfy the following
hypotheses:

(A.1) gi : [0,+∞) −→ (0,+∞) (for i = 1, 2) are non-increasing differentiable
functions such that

gi(0) > 0, 1−
∫ +∞

0
gi(s)ds =: li > 0.
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(A.2) There exist non-increasing differentiable functions ξi : [0,+∞) −→
(0,+∞) and C1 functions Hi : [0,+∞) −→ [0,+∞) which are linear
or strictly increasing and strictly convex C2 functions on (0, r], r < gi(0),
with Hi(0) = H ′

i (0) = 0 such that

g′i (t) ≤ −ξi(t)Hi(gi(t)), ∀ t ≥ 0 and for i = 1, 2.

(A.3) fi : R2 −→ R (for i = 1, 2) are C1 functions with fi(0, 0) = 0 and there
exists a function F such that

f1(x, y) = ∂F

∂x
(x, y), f2(x, y) = ∂F

∂y
(x, y),

F ≥ 0, xf1(x, y)+ yf2(x, y)− F(x, y) ≥ 0,

and
∣
∣
∣∣
∂fi

∂x
(x, y)

∣
∣
∣∣+

∣
∣
∣∣
∂fi

∂y
(x, y)

∣
∣
∣∣ ≤ d

(
1+ |x|βi−1 + |y|βi−1

)
, ∀(x, y) ∈ R

2,

(10.2.1)
for some constants d > 0 and

βi ≥ 1, if n = 1, 2; 1 ≤ βi ≤ n

n− 2
, if n ≥ 3.

Remark 10.2.1

(1) It follows from assumption (A.1) that

lim
t→+∞ gi(t) = 0 and gi(t) ≤ 1− li

t
, ∀ t > 0 and for i = 1, 2.

Also, assumption (A.2) entails that there exists ti > 0 (for i = 1, 2) such that

gi(ti) = r and gi(t) ≤ r, ∀ t ≥ t0 := max{t1, t2}.

The non-increasing property of gi gives

0 < gi(ti) ≤ gi(t) ≤ gi(0), ∀ t ∈ [0, t0].

A combination of this with the continuity of Hi yields (for i = 1, 2)

ai ≤ Hi(gi(t)) ≤ bi, ∀ t ∈ [0, t0],

for some constants ai, bi > 0, i = 1, 2. Consequently, for any t ∈ [0, t0] and
for i = 1, 2, we have

g′i (t) ≤ −ξi(t)Hi(gi(t)) ≤ −aiξi(t) = − ai

gi(0)
ξi(t)gi(0) ≤ − ai

gi(0)
ξi(t)gi(t).
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This implies that

ξi(t)gi(t) ≤ −gi(0)

ai
g′i (t), ∀ t ∈ [0, t0] and for i = 1, 2.

(10.2.2)

(2) If H is a strictly increasing and strictly convex C2 function on (0, r], with
H(0) = H ′(0) = 0, then it has an extension H̄ which is a strictly increasing
and strictly convex C2-function on (0,+∞). For instance, we can define H̄ , for
any t > r , by

H̄ (t) := H ′′(r)
2

t2 + (
H ′(r)−H ′′(r)r

)
t +

(
H(r)+ H ′′(r)

2
r2 −H ′(r)r

)
.

(3) Inequality (10.2.1) yields, for some positive constant k, that

|fi(x, y)| ≤ k
(|x| + |y| + |x|βi + |y|βi ) (10.2.3)

for all (x, y) ∈ R
2 and i = 1, 2.

For completeness, we state, without proof, the global existence and regularity result
whose proof can be found in [24].

Theorem 10.2.1 Let (u0, u1), (v0, v1) ∈ H 1
0 (�) × L2(�) be given. Assume that

hypotheses (A.1) and (A.3) are satisfied. Then, problem (P ) has a unique weak
solution

(u, v) ∈ C
([0,∞);H 1

0 (�)
) ∩C1([0,∞);L2(�)

) ∩ C2([0,∞);H−1(�)
)
.

Moreover, if (u0, u1), (v0, v1) ∈
(
H 2(�)∩H 1

0 (�)
)×H 1

0 (�), then problem (P ) has
a unique strong solution

(u, v) ∈ L∞
([0,∞);H 2(�)∩H 1

0 (�)
)∩W1,∞([0,∞);H 1

0 (�)
)∩W2,∞([0,∞);L2(�)

)
.

Now, we introduce the energy functional

E(t) := 1

2

[
‖ut‖2

2 +
(

1−
∫ t

0
g1(s)ds

)
‖∇u‖2

2 + (g1 ◦ ∇u)(t)
]

+ 1

2

[
‖vt‖2

2 +
(

1−
∫ t

0
g2(s)ds

)
‖∇v‖2

2 + (g2 ◦ ∇v)(t)
]

+
∫

�

F(u, v)dx,

(10.2.4)

where, for any w ∈ L2
loc

([0,+∞);L2(�)
)

and i = 1, 2,

(gi ◦ w)(t) :=
∫ t

0
gi(t − s)‖w(t) −w(s)‖2

2ds.
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Lemma 10.2.1 Let (u, v) be the solution of (P ). Then,

E′(t) =− 1

2
g1(t)‖∇u‖2

2 +
1

2
(g′1 ◦ ∇u)(t)−

1

2
g2(t)‖∇v‖2

2

+ 1

2
(g′2 ◦ ∇v)(t) ≤ 0, ∀ t ≥ 0. (10.2.5)

As in [25], we set, for any 0 < α < 1 and i = 1, 2,

Cα,i :=
∫ ∞

0

g2
i (s)

αgi(s)− g′i (s)
ds and hi(t) := αgi(t)− g′i (t).

Lemma 10.2.2 ([25]) Assume that conditions (A.1) hold. Then for any w ∈
L2
loc

([0,+∞);L2(�)
)
, we have

∫

�

(∫ t

0
gi(t− s)(w(t)−w(s))ds

)2

dx ≤Cα,i(hi◦w)(t), ∀ t ≥ 0, for i = 1, 2.

(10.2.6)

Lemma 10.2.3 (Jensen’s Inequality) Let G : [a, b] −→ R be a convex function.
Assume that the functions f : � −→ [a, b] and h : � −→ R are integrable such

that h(x) ≥ 0, for any x ∈ � and
∫

�

h(x)dx = k > 0. Then,

G

(
1

k

∫

�

f (x)h(x)dx

)
≤ 1

k

∫

�

G(f (x))h(x)dx.

We will also need the following embedding H 1
0 (�) ↪→ Lq(�), for q ≥ 2 if

n = 1, 2 or 2 ≤ q ≤ 2n

n− 2
if n ≥ 3, that is,

‖w‖q ≤ c‖∇w‖2, ∀w ∈ H 1
0 (�). (10.2.7)

10.3 Technical Lemmas

In this section, we state and prove some lemmas needed to establish our main result.

Lemma 10.3.1 Assume that (A.1)–(A.3) hold. Then, the functional I defined by

I (t) :=
∫

�

uutdx +
∫

�

vvtdx
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satisfies, along the solution of (P ), the estimates

I ′(t) ≤ ‖ut‖2
2 −

l1

2
‖∇u‖2

2 + cCα,1(h1 ◦ ∇u)(t)+ ‖vt‖2
2

− l2

2
‖∇v‖2

2 + cCα,2(h2 ◦ ∇v)(t)−
∫

�

F(u, v)dx. (10.3.1)

Proof Differentiating I and using equations in (P ), integrating by parts, and using
Young’s inequality, (A.3), and Lemma 10.2.2, we get

I ′(t) = ‖ut‖2
2 −

(
1−

∫ t

0
g1(s)ds

)
‖∇u‖2

2 +
∫

�

∇u(t) ·
∫ t

0
g1(t − s)(∇u(s)

−∇u(t))dsdx + ‖vt‖2
2 −

(
1−

∫ t

0
g2(s)ds

)
‖∇v‖2

2 +
∫

�

∇v(t)

·
∫ t

0
g2(t − s)(∇v(s) −∇v(t))dsdx −

∫

�

[uf1(u, v)+ vf2(u, v)]dx

≤ ‖ut‖2
2 − l1‖∇u‖2

2 +
l1

2
‖∇u‖2

2

+ 1

2l1

∫

�

(∫ t

0
g1(t − s)|∇u(s)−∇u(t)|ds

)2

dx

+‖vt‖2
2 − l2‖∇v‖2

2 +
l2

2
‖∇u‖2

2

+ 1

2l2

∫

�

(∫ t

0
g2(t − s)|∇v(s) −∇v(t)|ds

)2

dx −
∫

�

F(u, v)dx

≤ ‖ut‖2
2 −

l1

2
‖∇u‖2

2 + cCα,1(h1 ◦ ∇u)(t)

+‖vt‖2
2 −

l2

2
‖∇v‖2

2 + cCα,2(h2 ◦ ∇v)(t) −
∫

�

F(u, v)dx.

��
Lemma 10.3.2 Assume that (A.1)–(A.3) hold. Then, the functional K defined by

K(t) := K1(t)+K2(t)

with

K1(t) := −
∫

�

ut

∫ t

0
g1(t − s)(u(t)− u(s))dsdx

and

K2(t) := −
∫

�

vt

∫ t

0
g2(t − s)(v(t) − v(s))dsdx



10 On the General Decay for a System of Viscoelastic Wave Equations 297

satisfies, along the solution of (P ) and for any 0 < δ < 1, the estimate

K ′(t) ≤ −
(∫ t

0
g1(s)ds − δ

)
‖ut‖2

2 + cδ‖∇u‖2
2 +

c

δ
(Cα,1 + 1)(h1 ◦ ∇u)(t)

−
(∫ t

0
g2(s)ds − δ

)
‖vt‖2

2 + cδ‖∇v‖2
2 +

c

δ
(Cα,2 + 1)(h2 ◦ ∇v)(t).

(10.3.2)

Proof By exploiting equations in (P ) and integrating by parts, we have

K ′
1(t) =

(
1−

∫ t

0
g1(s)ds

)∫

�

∇u(t) ·
∫ t

0
g1(t − s)(∇u(t)−∇u(s))dsdx

+
∫

�

(∫ t

0
g1(t − s)|∇u(t)−∇u(s)|ds

)2

dx

+
∫

�

f1(u, v)

∫ t

0
g1(t − s)(u(t)− u(s))dsdx

−
∫

�

ut

∫ t

0
g′1(t − s)(u(t)− u(s))dsdx −

(∫ t

0
g1(s)ds

)
‖ut‖2

2.

Now, we estimate the terms in the right-hand side of the above equality.
Applying Young’s inequality and Lemma 10.2.2, we obtain, for any 0 < δ < 1,

(
1−

∫ t

0
g1(s)ds

)∫

�

∇u(t) ·
∫ t

0
g1(t − s)(∇u(t)−∇u(s))dsdx

+
∫

�

(∫ t

0
g1(t − s)|∇u(t)−∇u(s)|ds

)2

dx

≤ δ‖∇u‖2
2 +

c

δ

∫

�

(∫ t

0
g1(t − s)|∇u(t)−∇u(s)|ds

)2

dx

≤ δ‖∇u‖2
2 +

c

δ
Cα,1(h1 ◦ ∇u)(t).

Using ‖∇u‖2
2+‖∇v‖2

2 ≤ cE(t) ≤ cE(0) and inequalities (10.2.3) and (10.2.7), we
have

∫

�

f1(u, v)

∫ t

0
g1(t − s)(u(t)− u(s))dsdx

≤ cδ

∫

�

(
|u|2 + |v|2 + |u|2β1 + |v|2β2

)
dx
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+ c

δ

∫

�

(∫ t

0
g1(t − s)(u(t)− u(s))ds

)2

dx

≤ cδ
(
‖∇u‖2

2 + ‖∇v‖2
2 + ‖∇u‖2β1

2 + ‖∇v‖2β2
2

)

+ c

δ
Cα,1(h1 ◦ ∇u)(t)

= cδ
(
‖∇u‖2

2 + ‖∇v‖2
2 + ‖∇u‖2(β1−1)

2 ‖∇u‖2
2 + ‖∇v‖2(β2−1)

2 ‖∇v‖2
2

)

+ c

δ
Cα,1(h1 ◦ ∇u)(t)

≤ cδ‖∇u‖2
2 + cδ‖∇v‖2

2 +
c

δ
Cα,1(h1 ◦ ∇u)(t).

Exploiting Young’s inequality and Lemma 10.2.2 again, we obtain, for any 0 < δ <

1,

−
∫

�

ut

∫ t

0
g′1(t − s)(u(t)− u(s))dsdx

=
∫

�

ut

∫ t

0
h1(t − s)(u(t)− u(s))dsdx

−
∫

�

ut

∫ t

0
αg1(t − s)(u(t)− u(s))dsdx

≤ δ

2
‖ut‖2

2 +
1

2δ

∫

�

(∫ t

0

√
h1(t − s)

√
h1(t − s)(u(t)− u(s))ds

)2

dx

+ δ

2
‖ut‖2

2 +
1

2δ
α2

∫

�

(∫ t

0
g1(t − s)(u(t)− u(s))ds

)2

dx

≤ δ‖ut‖2
2 +

1

2δ

(∫ t

0
h1(s)ds

)
(h1 ◦ ψ)(t) + c

δ
Cα,1(h1 ◦ u)(t)

≤ δ‖ut‖2
2 +

c

δ
(Cα,1 + 1)(h1 ◦ ∇u)(t).

A combination of all the above estimates gives

K ′1(t) ≤ −
(∫ t

0
g1(s)ds − δ

)
‖ut‖2

2 + cδ‖∇u‖2
2 +

c

δ
(Cα,1 + 1)(h1 ◦ ∇u)(t)+ cδ‖∇v‖2

2 .

Similarly,

K ′2(t) ≤ −
(∫ t

0
g2(s)ds − δ

)
‖vt‖2

2 + cδ‖∇v‖2
2 +

c

δ
(Cα,2 + 1)(h2 ◦ ∇v)(t)+ cδ‖∇u‖2

2 .

The last two estimates lead to the desired result. ��
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Lemma 10.3.3 ([25]) Assume that (A.1)–(A.3) hold. Then, the functionals J1 and
J2 defined by

J1(t) :=
∫

�

∫ t

0
G1(t − s)|∇u(s)|2dsdx

and

J2(t) :=
∫

�

∫ t

0
G2(t − s)|∇v(s)|2dsdx

with Gi(t) :=
∫ ∞

t

gi(s)ds (for i = 1, 2) satisfy, along the solution of (P ), the

estimates

J ′1(t) ≤ 3(1− l)‖∇u‖2
2 −

1

2
(g1 ◦ ∇u)(t) (10.3.3)

and

J ′2(t) ≤ 3(1− l)‖∇v‖2
2 −

1

2
(g2 ◦ ∇v)(t), (10.3.4)

where l = min{l1, l2}.
Lemma 10.3.4 The functional L defined by

L(t) := NE(t) +N1I (t) +N2K(t)

satisfies, for a suitable choice of N, N1, N2 ≥ 1,

L(t) ∼ E(t) (10.3.5)

and the estimate

L′(t) ≤ −4(1− l)
(‖∇u‖2

2 + ‖∇v‖2
2

)− (‖ut‖2
2 + ‖vt‖2

2

)

− c

∫

�

F(u, v)dx + 1

4

[
(g1 ◦ ∇u)(t)+ (g2 ◦ ∇v)(t)

]
, ∀ t ≥ t0,

(10.3.6)

where l = min{l1, l2} and t0 has been introduced in Remark 10.2.1.

Proof It is not difficult to establish that L(t) ∼ E(t). To prove (10.3.6), set

g0 = min

{∫ t0

0
g1(s)ds,

∫ t0

0
g2(s)ds

}
> 0, δ = l

4cN2
, and Cα = max{Cα,1, Cα,2}.
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Exploiting (10.3.1), (10.3.2) and recalling that g′i = αgi − hi , we obtain, for any
t ≥ t0,

L′(t) ≤ − l

4
(2N1 − 1)

(‖∇u‖2
2 + ‖∇v‖2

2

)−
(
g0N2 − l

4c
−N1

)
(‖ut‖2

2 + ‖vt‖2
2

)

−N1

∫

�

F(u, v)dx + α

2
N
[
(g1 ◦ ∇u)(t)+ (g2 ◦ ∇v)(t)

]

−
[
1

2
N − 4c2

l
N2

2 − Cα

(
4c2

l
N2

2 + cN1

)] [
(h1 ◦ ∇u)(t)+ (h2 ◦ ∇v)(t)

]
.

We start by choosing N1 large enough so that

l

4
(2N1 − 1) > 4(1− l),

then we select N2 so large that

g0N2 − l

4c
−N1 > 1.

As
αg2

i (s)

αgi(s)− g′i (s)
< gi(s) for i = 1, 2, it follows from the Lebesgue dominated

convergence theorem that

lim
α→0+

αCα,i = lim
α→0+

∫ ∞

0

αg2
i (s)

αgi(s)− g′i (s)
ds = 0 for i = 1, 2.

This gives

lim
α→0+

αCα = 0.

Consequently, there exists α0 ∈ (0, 1) such that if α < α0, then

αCα <
1

8
[

4c2

l
N2

2 + cN1

] .

Now, we choose N large enough so that

N > max

{
16c2

l
N2

2 ,
1

2α0

}
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and set

α = 1

2N
.

Then

1

4
N − 4c2

l
N2

2 > 0 and α = 1

2N
< α0.

These imply

1

2
N − 4c2

l
N2

2 − Cα

[
4c2

l
N2

2 + cN1

]
>

1

2
N − 4c2

l
N2

2 −
1

8α

= 1

4
N − 4c2

l
N2

2 > 0.

Hence, we arrive at the required estimate. ��

10.4 General Decay Result

In this section, we state and prove our main result.

Theorem 10.4.1 Let (u0, u1), (v0, v1) ∈
(
H 2(�) ∩ H 1

0 (�)
) × H 1

0 (�) be given.
Suppose that assumptions (A.1)–(A.3) hold. Then there exist two positive constants
k1 and k2 such that the solution to problem (P ) satisfies the estimate

E(t) ≤ k2G
−1∗

(
k1

∫ t

t0

ξ(s)ds

)
, ∀ t > t0, (10.4.1)

where t0 = min{t1, t2} is introduced in Remark 10.2.1, ξ(t) = min{ξ1(t), ξ2(t)},
and G∗ is given by

G∗(t) =
∫ r

t

1

sG(s)
ds with G(t) = min{H ′

1(t), H
′
2(t)}.

Proof We start by using estimates (10.2.2) and (10.2.5) to deduce, for any t ≥ t0,

∫ t0

0
g1(s)‖∇u(t)− ∇u(t − s)‖2

2ds +
∫ t0

0
g2(s)‖∇v(t) −∇v(t − s)‖2

2ds

≤ 1

ξ1(t0)

∫ t0

0
ξ1(s)g1(s)‖∇u(t)−∇u(t − s)‖2

2ds
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+ 1

ξ2(t0)

∫ t0

0
ξ2(s)g2(s)‖∇v(t) −∇v(t − s)‖2

2ds

≤ − g1(0)

a1ξ1(t0)

∫ t0

0
g′1(s)‖∇u(t) −∇u(t − s)‖2

2ds

− g2(0)

a2ξ2(t0)

∫ t0

0
g′2(s)‖∇v(t) −∇v(t − s)‖2

2ds

≤ −cE′(t).

Exploiting this estimate, inequality (10.3.6) becomes, for some m > 0 and for any
t ≥ t0,

L′(t) ≤ −mE(t)+ c
[
(g1 ◦ ∇u)(t)+ (g2 ◦ ∇v)(t)

]

≤ −mE(t)− cE′(t)+ c

∫ t

t0

g1(s)‖∇u(t) −∇u(t − s)‖2
2ds

+ c

∫ t

t0

g2(s)‖∇v(t) −∇v(t − s)‖2
2ds.

By setting F := L+ cE ∼ E, we obtain

F ′(t) ≤ −mE(t)+ c

∫ t

t0

g1(s)‖∇u(t)− ∇u(t − s)‖2
2ds

+ c

∫ t

t0

g2(s)‖∇v(t) −∇v(t − s)‖2
2ds, ∀ t ≥ t0. (10.4.2)

Case I H1 and H2 are linear: Set ξ(t) = min{ξ1(t), ξ2(t)} > 0, for any t ≥ 0, then
ξ is differentiable almost everywhere and non-increasing on [0,+∞). Multiply both
sides of (10.4.2) by ξ(t) and exploit (A.2) and (10.2.5) to get

ξ(t)F ′(t) ≤ −mξ(t)E(t)+ cξ(t)

∫ t

t0

g1(s)‖∇u(t)−∇u(t − s)‖2
2ds

+cξ(t)
∫ t

t0

g2(s)‖∇v(t) −∇v(t − s)‖2
2ds

≤ −mξ(t)E(t)+ c

∫ t

t0

ξ1(s)g1(s)‖∇u(t) −∇u(t − s)‖2
2ds

+c
∫ t

t0

ξ2(s)g2(s)‖∇v(t) −∇v(t − s)‖2
2ds

≤ −mξ(t)E(t)− c

∫ t

t0

g′1(s)‖∇u(t) −∇u(t − s)‖2
2ds
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−c
∫ t

t0

g′2(s)‖∇v(t) −∇v(t − s)‖2
2ds

≤ −mξ(t)E(t)− cE′(t), ∀ t ≥ t0.

Using the non-increasing property of ξ we have ξF + cE ∼ E and

(ξF + cE)′(t) ≤ −mξ(t)E(t), ∀ t ≥ t0.

A simple integration over (t0, t) yields, for two positive constants k1 and k2,

E(t) ≤ k2 exp

(
−k1

∫ t

t0

ξ(s)ds

)
, ∀ t > t0.

Continuity of E (see [25]) gives

E(t) ≤ k2 exp

(
−k1

∫ t

0
ξ(s)ds

)
, ∀ t > 0.

Case II H1 or H2 is nonlinear: First, we use Lemmas 10.3.3 and 10.3.4 to conclude
that

L(t) := L(t) + J1(t)+ J2(t)

is nonnegative and satisfies, for any t ≥ t0,

L′(t) ≤ −(1− l)
(‖∇u‖2

2 + ‖∇v‖2
2

)− (‖ut‖2
2 + ‖vt‖2

2

)

−c
∫

�

F(u, v)dx − 1

4

[
(g1 ◦ ∇u)(t)+ (g2 ◦ ∇v)(t)

]

≤ −βE(t),

for some β > 0. Consequently, we arrive at

∫ ∞

0
E(s)ds < +∞. (10.4.3)

Now, we define functionals ηi (for i = 1, 2) by

η1(t) := γ

∫ t

t0

‖∇u(t)−∇u(t − s)‖2
2 ds

and

η2(t) := γ

∫ t

t0

‖∇v(t) −∇v(t − s)‖2
2 ds,
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where (10.4.3) allows us to choose 0 < γ < 1 so that

ηi(t) < 1, ∀ t ≥ t0 and i = 1, 2. (10.4.4)

We further assume that ηi(t) > 0, for any t > t0. Also, we define another functional
θi (for i = 1, 2) by

θ1(t) := −
∫ t

t0

g′1(s)‖∇u(t) −∇u(t − s)‖2
2ds,

θ2(t) := −
∫ t

t0

g′2(s)‖∇v(t) −∇v(t − s)‖2
2ds

and observe that

θ1(t)+ θ2(t) ≤ −cE′(t), ∀ t ≥ t0. (10.4.5)

In addition, it follows from the strict convexity of Hi and the fact that Hi(0) = 0
that

Hi(sτ ) ≤ sHi(τ ), for 0 ≤ s ≤ 1, τ ∈ (0, r] and i = 1, 2.

These facts, hypothesis (A.2), estimates (10.4.4), and Jensen’s inequality lead to

θ1(t) = − 1

γ η1(t)

∫ t

t0

γ η1(t)g
′
1(s)‖∇u(t)− ∇u(t − s)‖2

2ds

≥ 1

γ η1(t)

∫ t

t0

γ η1(t)ξ1(s)H1(g1(s))‖∇u(t)−∇u(t − s)‖2
2ds

≥ ξ1(t)

γ η1(t)

∫ t

t0

γH1(η1(t)g1(s))‖∇u(t) −∇u(t − s)‖2
2ds

≥ ξ1(t)

γ
H1

(
1

η1(t)

∫ t

t0

γ η1(t)g1(s)‖∇u(t)−∇u(t − s)‖2
2ds

)

= ξ1(t)

γ
H1

(
γ

∫ t

t0

g1(s)‖∇u(t) −∇u(t − s)‖2
2ds

)

= ξ1(t)

γ
H̄1

(
γ

∫ t

t0

g1(s)‖∇u(t) −∇u(t − s)‖2
2ds

)
, ∀ t ≥ t0,

where H̄1 is a C2 extension of H1 that is strictly increasing and strictly convex on
(0,∞). This implies that

∫ t

t0

g1(s)‖∇u(t)− ∇u(t − s)‖2
2ds ≤

1

γ
H̄−1

1

(
γ θ1(t)

ξ1(t)

)
, ∀ t ≥ t0.
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Similarly, we have

∫ t

t0

g2(s)‖∇v(t) − ∇v(t − s)‖2
2ds ≤

1

γ
H̄−1

2

(
γ θ2(t)

ξ2(t)

)
, ∀ t ≥ t0.

Thus, (10.4.2) becomes

F ′(t) ≤ −mE(t)+ cH̄−1
1

(
γ θ1(t)

ξ1(t)

)
+ cH̄−1

2

(
γ θ2(t)

ξ2(t)

)
, ∀ t ≥ t0.

(10.4.6)

Set G = min{H̄ ′
1, H̄

′
2} and, for a fixed 0 < ε < r , define a functional F1 by

F1(t) := G

(
ε
E(t)

E(0)

)
F(t)+ E(t), ∀ t ≥ 0.

Then, using the fact that E′ ≤ 0, H̄ ′
i > 0, and H̄ ′′

i > 0, we deduce that F1 ∼ E

and, we, further, have

F ′1(t) = ε
E′(t)
E(0)

G′
(
ε
E(t)

E(0)

)
F(t)+G

(
ε
E(t)

E(0)

)
F ′(t)+ E′(t), for a.e t ≥ t0.

By dropping the first and last terms of the above identity, since they are non-positive,
and using estimate (10.4.6), we get

F ′1(t) ≤ −mE(t)G

(
ε
E(t)

E(0)

)
+ cG

(
ε
E(t)

E(0)

)
H̄−1

1

(
γ θ1(t)

ξ1(t)

)

+cG
(
ε
E(t)

E(0)

)
H̄−1

2

(
γ θ2(t)

ξ2(t)

)
, for a.e t ≥ t0. (10.4.7)

Let H̄ ∗
i be the convex conjugate of H̄i in the sense of Young (see [4, pp. 61–64]),

which has the form

H̄ ∗
i (s) = s

(
H̄ ′
i

)−1
(s)− H̄i

[(
H̄ ′
i

)−1
(s)

]
, for i = 1, 2, (10.4.8)

and satisfies the following generalized Young inequality:

ABi ≤ H̄ ∗
i (A)+ H̄i(Bi), for i = 1, 2. (10.4.9)
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By taking A = G

(
ε
E(t)

E(0)

)
, Bi = H̄−1

i

(
γ θi(t)

ξi (t)

)
, for i = 1, 2, and combining

(10.4.7)–(10.4.9), we obtain, for almost every t ≥ t0,

F ′1(t) ≤ −mE(t)G

(
ε
E(t)

E(0)

)
+ cH̄ ∗

1

[
G

(
ε
E(t)

E(0)

)]
+ c

γ θ1(t)

ξ1(t)

+ cH̄ ∗
2

[
G

(
ε
E(t)

E(0)

)]
+ c

γ θ2(t)

ξ2(t)

≤ −mE(t)G

(
ε
E(t)

E(0)

)
+ cG

(
ε
E(t)

E(0)

)
(
H̄ ′

1

)−1
[
G

(
ε
E(t)

E(0)

)]
+ c

γ θ1(t)

ξ1(t)

+ cG

(
ε
E(t)

E(0)

)
(
H̄ ′

2

)−1
[
G

(
ε
E(t)

E(0)

)]
+ c

γ θ2(t)

ξ2(t)

≤ −mE(t)G

(
ε
E(t)

E(0)

)
+ cG

(
ε
E(t)

E(0)

)(
H̄ ′

1

)−1
[
H̄ ′

1

(
ε
E(t)

E(0)

)]
+ c

γ θ1(t)

ξ1(t)

+ cG

(
ε
E(t)

E(0)

)
(
H̄ ′

2

)−1
[
H̄ ′

2

(
ε
E(t)

E(0)

)]
+ c

γ θ2(t)

ξ2(t)

≤ −
(
mE(0)− cε

)E(t)
E(0)

G

(
ε
E(t)

E(0)

)
+ c

(
γ θ1(t)

ξ1(t)
+ γ θ2(t)

ξ2(t)

)
.

Multiplying this estimate by ξ(t) = min{ξ1(t), ξ2(t)} > 0 and using inequality
(10.4.5), we obtain

ξ(t)F ′1(t) ≤ −(mE(0)− cε)ξ(t)
E(t)

E(0)
G

(
ε
E(t)

E(0)

)
+ cγ

(
θ1(t)+ θ2(t)

)

≤ −(mE(0)− cε)ξ(t)
E(t)

E(0)
G

(
ε
E(t)

E(0)

)
− cE′(t), for a.e t ≥ t0.

Take ε smaller, if needed, to get, for some k0 > 0,

ξ(t)F ′1(t) ≤ −k0ξ(t)
E(t)

E(0)
G

(
ε
E(t)

E(0)

)
− cE′(t), for a.e t ≥ t0.

Consequently, by setting F2 = ξF1 + cE, we obtain, for some α1, α2 > 0

α1F2(t) ≤ E(t) ≤ α2F2(t), ∀ t ≥ t0 (10.4.10)

and

F ′2(t) ≤ −k0ξ(t)
E(t)

E(0)
G

(
ε
E(t)

E(0)

)
, for a.e t ≥ t0. (10.4.11)
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It follows from 0 ≤ ε
E(t)

E(0)
< r that

G

(
ε
E(t)

E(0)

)
= min

{
H̄ ′

1

(
ε
E(t)

E(0)

)
, H̄ ′

2

(
ε
E(t)

E(0)

)}

= min

{
H ′

1

(
ε
E(t)

E(0)

)
,H ′

2

(
ε
E(t)

E(0)

)}
, ∀ t ≥ 0.

Now, set

G0(τ ) = τG(ετ), ∀ τ ∈ [0, 1],

we deduce from H ′
i > 0 and H ′′

i > 0 on (0, r] (for i = 1, 2) that G0,G
′
0 > 0 a.e.

on (0, 1]. Define a functional R by

R(t) := α1F2(t)

E(0)

and exploit (10.4.10) and (10.4.11) to notice that R ∼ E and, for some k1 > 0,

R′(t) ≤ −k1ξ(t)G0(R(t)), for a.e t ≥ t0.

An integration over (t0, t) gives

−
∫ t

t0

R′(s)
G0(R(s))

ds ≥ k1

∫ t

t0

ξ(s)ds

or equivalently,

∫ εR(t0)

εR(t)

1

sG(s)
ds ≥ k1

∫ t

t0

ξ(s)ds,

which implies that

R(t) ≤ 1

ε
G−1∗

(
k1

∫ t

t0

ξ(s)ds

)
∀ t > t0,

where G∗(t) :=
∫ r

t

1

sG(s)
ds. A combination of this estimate with the fact that

R ∼ E gives

E(t) ≤ k2G
−1∗

(
k1

∫ t

t0

ξ(s)ds

)
∀ t > t0.
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• If ηi(t) = 0, for t ≥ t0 and i = 1, 2, then we get an exponential decay from
(10.4.2).

• If η1(t) > 0 and η2(t) = 0, for any t > t0, then we set θ2(t) = 0 and (10.4.6)
becomes

F ′(t) ≤ −mE(t)+ cH̄−1
1

(
γ θ1(t)

ξ1(t)

)
, ∀ t ≥ t0.

Repeating the above steps, we arrive at

E(t) ≤ k2G
−1∗

(
k1

∫ t

t0

ξ1(s)ds

)
∀ t > t0,

where

G∗(t) :=
∫ r

t

1

sH ′
1(s)

ds.

• Similarly, if η1(t) = 0 and η2(t) > 0, for any t > t0, we have

E(t) ≤ k2G
−1∗

(
k1

∫ t

t0

ξ2(s)ds

)
∀ t > t0,

where

G∗(t) :=
∫ r

t

1

sH ′
2(s)

ds.

This completes the proof.
��

Example 10.4.1

(1) Consider the relaxation functions g1(t) = ae−αt and g2(t) = b

(1+ t)μ
, μ > 1,

a and b are chosen so that hypothesis (A.1) holds. Then there exists C > 0 such
that

E(t) ≤ C

(1+ t)μ
, ∀ t > t0.

(2) Let g1(t) = a

(1+ t)μ
and g2(t) = b

(1+ t)ν
with μ, ν > 1, a and b are chosen

so that hypothesis (A.1) holds. Then, there exists C > 0 such that, for any
t > t0,

E(t) ≤ C

(1+ t)γ
, with γ = min{μ, ν}.
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(3) If g1(t) = ae−αt and g2(t) = be−(1+t )ν with 0 < ν < 1, a and b are chosen so
that hypothesis ( A.1) holds. Then, there exist positive constants C and k1 such
that

E(t) ≤ Ce−k1(1+t )ν , for t large.

(4) If g1(t) = ae−(1+t )ν with 0 < ν < 1 and g2(t) = b

(1+ t)μ
with μ > 1, a and

b are chosen so that hypothesis (A.1) holds. Then, there exists C > 0 such that

E(t) ≤ C

(1+ t)μ
, for t large.
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Chapter 11
Mathematical Theory of Incompressible
Flows: Local Existence, Uniqueness, and
Blow-Up of Solutions in Sobolev–Gevrey
Spaces

Wilberclay G. Melo, Natã Firmino Rocha, and Ezequiel Barbosa

Abstract This work establishes the local existence and uniqueness as well as
the blow-up criteria for solutions of the Navier–Stokes equations in Sobolev–
Gevrey spaces. More precisely, if the maximal time of existence of solutions for
these equations is finite, we demonstrate the explosion, near this instant, of some
limits superior and integrals involving a specific usual Lebesgue spaces and, as a
consequence, we prove the lower bounds related to Sobolev–Gevrey spaces.

Keywords Navier–Stokes equations · Local existence and uniqueness of
solutions · Blow-up criteria · Sobolev–Gevrey spaces

This chapter presents a study that determines the local existence, uniqueness, and
blow-up criteria of solutions for the following Navier–Stokes equations:

⎧
⎨

⎩

ut + u · ∇u + ∇p = μ�u, x ∈ R
3, t ∈ [0, T ∗),

div u = 0, x ∈ R
3, t ∈ [0, T ∗),

u(x, 0) = u0(x), x ∈ R
3,

(11.1)

where T ∗ > 0 gives the solution’s existence time, u(x, t) = (u1(x, t), u2(x, t),

u3(x, t)) ∈ R
3 denotes the incompressible velocity field, and p(x, t) ∈ R the

hydrostatic pressure. The positive constant μ is the kinematic viscosity and the
initial data for the velocity field, given by u0 in (11.1), is assumed to be divergence
free, i.e., divu0 = 0.
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Let us inform that we shall study the above system using Sobolev–Gevrey spaces
Hs
a,σ (R

3), with a > 0, σ ≥ 1, and s ∈ ( 1
2 ,

3
2

)
.

It is important to emphasize that there are two main goals to be accomplished in
this chapter: proving the local existence and uniqueness of a solution u(x, t) for the
Navier–Stokes equations (11.1) and establishing blow-up criteria obeyed for u(x, t).
It is important to point out that the authors were mainly inspired by Benameur and
Jlali [4].

Assuming that the initial data u0 belongs to Hs
a,σ (R

3), with s∈( 1
2 ,

3
2

)
, a > 0, and

σ ≥ 1, this chapter assures that there exist a positive time T and a unique solution
u ∈ C([0, T ];Hs

a,σ (R
3)) of the Navier–Stokes equations (11.1) (let us recall that it

is not known if T = ∞ always holds for these famous equations). Besides, the local
existence and uniqueness result obtained in [4] is a particular case of ours; in fact, it
is enough to take s = 1.

Under the same assumptions adopted above for s and a, if it is considered that
σ > 1 and the maximal time interval of existence, 0 ≤ t < T ∗, is finite, then the
blow-up inequality

‖u(t)‖Hs
a,σ (R

3) ≥
C2 exp{C3(T

∗ − t)− 1
3σ }

(T ∗ − t)
2(sσ+σ0)+1

6σ

, ∀ t ∈ [0, T ∗), (11.2)

is valid, where C2 and C3 are positive constants that rely only on a,μ, s, σ , and u0,
and 2σ0 is the integer part of 2σ . As a direct result, it is easy to check that (11.2)
implies

‖u(t)‖Hs
a,σ (R

3) ≥
C2

(T ∗ − t)
2(sσ+σ0)+1

6σ

, ∀ t ∈ [0, T ∗).

In order to give more details on what it is going to be done in this chapter, we shall
also demonstrate the following blow-up criteria related to the space L1(R3):

∫ T ∗

t

∥
∥∥e

a

σ(
√
σ)(n−1) |·|

1
σ

û(τ )

∥
∥∥

2

L1(R3)
dτ = ∞, (11.3)

and

∥
∥
∥e

a

σ(
√
σ)(n−1) |·|

1
σ

û(t)

∥
∥
∥
L1(R3)

≥ 8π3√μ√
T ∗ − t

, (11.4)

for all t ∈ [0, T ∗), n ∈ N ∪ {0}. Let us inform that the criterion (11.3) follows from
the limit superior

lim sup
t↗T ∗

‖u(t)‖Hs
a

(
√
σ)(n−1) ,σ

(R3) = ∞, ∀ n ∈ N ∪ {0}. (11.5)
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Notice that (11.4) is not trivial, provided that
∥
∥e

a

σ(
√
σ)(n−1) |·|

1
σ

û(t)
∥
∥
L1(R3)

is finite for
all t ∈ [0, T ∗), n ∈ N∪{0}. It can be concluded that due to the estimate (11.17) and
the standard continuous embedding Hs

a,σ (R
3) ↪→ Hs

a

(
√
σ)(n−1) ,σ

(R3). Furthermore,

by applying dominated convergence theorem in (11.4), one obtains

‖û(t)‖L1(R3) = lim
n→∞

∥
∥∥e

a

σ(
√
σ)(n−1) |·|

1
σ

û(t)

∥
∥∥
L1(R3)

≥ 8π3√μ√
T ∗ − t

, ∀ t ∈ [0, T ∗).
(11.6)

Besides, inequality (11.6) is not trivial as well. In fact, it follows from Lem-
mas 11.2.7 and 11.2.8, and (11.64).

It is also important to clarify that the lower bound given in (11.2) is not the only
one that is obtained assuming the Hs

a,σ (R
3)-norm. More specifically, we shall assure

that

‖u(t)‖Hs
a

(
√
σ)n

,σ
(R3) ≥

8π3√μ

C1
√
T ∗ − t

, ∀ t ∈ [0, T ∗), n ∈ N ∪ {0}, (11.7)

provided that C1 depends only on a, σ, s, and n.
Observe that all the blow-up criteria obtained in [4] are particular cases of ours,

it suffices to assume s = 1.
Finally, it is important to point out that the constants that appear in this chapter

may change line by line, but they are denoted the same way. Moreover, Cp,l means
the constants that rely on p and l, and we sometimes drop the dependence of t or x
in the domain of the vector fields.

As follows, we shall be interested in proving all the propositions stated above.

11.1 Local Existence and Uniqueness of Solutions

In this section, we demonstrate the existence of an instant T > 0 and a unique
solution u ∈ C([0, T ];Hs

a,σ (R
3)),1 with s ∈ ( 1

2 ,
3
2

)
, a > 0, and σ ≥ 1, for the

Navier–Stokes system (11.1).
First of all, we start presenting some basic lemmas that will be useful in the

demonstration of the statement above.

1Hs
a,σ (R

3) :=
{
f ∈ S′(R3) : ‖f ‖2

Hs
a,σ (R

3)
:= ∫

R3(1 + |ξ |2)se2a|ξ | 1
σ |f̂ (ξ )|2 dξ <∞

}
is Gevrey–

Sobolev space endowed with the inner product 〈f, g〉Hs
a,σ (R

3) :=
∫
R3(1 + |ξ |2)se2a|ξ | 1

σ
f̂ (ξ) ·

ĝ(ξ ) dξ , where · and | · | denote Euclidean inner product and norm, respectively (S′(R3) is the
set of all the distributions). Here F(f )(ξ) = f̂ (ξ ) := ∫

R3 e
−iξ ·xf (x) dx and F−1(f )(ξ) :=

(2π)−3
∫
R3 e

iξ ·xf (x) dx,∀ ξ ∈ R
3.



314 W. G. Melo et al.

Lemma 11.1.1 (see [8]) Let (X, ‖ · ‖) be a Banach space and B : X ×X→ X be
a continuous bilinear operator, i.e., there exists a positive constant C1 such that

‖B(x, y)‖ ≤ C1‖x‖‖y‖, ∀ x, y ∈ X.

Then, for each x0 ∈ X that satisfies 4C1‖x0‖ < 1, one has that the equation

a = x0 + B(a, a) (11.8)

admits a solution x = a ∈ X. Moreover, x obeys the inequality ‖x‖ ≤ 2‖x0‖ and it
is the only one such that ‖x‖ ≤ 1

2C1
.

The following result has been proved by [3] and it is useful in order to obtain
some important inequalities related to the elementary exponential function.

Lemma 11.1.2 The following inequality holds:

(a + b)r ≤ rar + br, ∀ 0 ≤ a ≤ b, r ∈ (0, 1]. (11.9)

Proof First of all, notice that if b = 0, then a = 0 and, consequently, (11.9) follows.
Thus, assume that b > 0 and let c = a/b ∈ [0, 1]. Now, apply Taylor’s theorem to
the function t �→ (1+ t)r , with t ∈ [0, c], in order to obtain γ ∈ [0, c] such that

(1+ c)r = 1+ rc + r(r − 1)(1+ γ )r−2

2
c2.

By using the fact that r, γ ∈ [0, 1], one has (1+c)r ≤ 1+rc. Moreover, c, r ∈ [0, 1]
implies that c ≤ cr . As a result, (1 + c)r ≤ 1 + rcr . Replace c = a/b in this last
inequality to prove (11.9). ��

Now, let us introduce two consequences of Lemma 11.1.2.

Lemma 11.1.3 The inequality below is valid:

ea|ξ |
1
σ ≤ ea max{|ξ−η|,|η|} 1

σ
e

a
σ min{|ξ−η|,|η|} 1

σ
, ∀ ξ, η ∈ R

3, a > 0, σ ≥ 1.

Proof Lemma 11.1.2 assures that

a|ξ | 1
σ = a|ξ − η + η| 1

σ ≤ a(|ξ − η| + |η|) 1
σ

≤ a(max{|ξ − η|, |η|} +min{|ξ − η|, |η|}) 1
σ

≤ a max{|ξ − η|, |η|} 1
σ + a

σ
min{|ξ − η|, |η|} 1

σ .

Hence, one has

ea|ξ |
1
σ ≤ ea max{|ξ−η|,|η|} 1

σ + a
σ min{|ξ−η|,|η|} 1

σ = ea max{|ξ−η|,|η|} 1
σ
e
a
σ min{|ξ−η|,|η|} 1

σ
.

It finishes the proof of Lemma 11.1.3. ��
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Lemma 11.1.4 Let ξ, η ∈ R
3, a > 0, and σ ≥ 1. Then, it holds

ea|ξ |
1
σ ≤ ea|ξ−η|

1
σ
ea|η|

1
σ
. (11.10)

Proof It is an implication that comes from Lemma 11.1.3 and the fact that σ ≥ 1.
��

The below lemma presents an interpolation property involving the space
Ḣ s(R3),2 and it has been proved by Chemin [9].

Lemma 11.1.5 (see [9]) Let (s1, s2) ∈ R
2, such that s1 < 3

2 and s1+ s2 > 0. Then,
there exists a positive constant Cs1,s2 such that, for all f, g ∈ Ḣ s1(R3) ∩ Ḣ s2(R3),
we have

‖fg‖
Ḣ

s1+s2− 3
2 (R3)

≤ Cs1,s2

[‖f ‖Ḣ s1 (R3)‖g‖Ḣ s2 (R3) + ‖f ‖Ḣ s2 (R3)‖g‖Ḣ s1 (R3)

]
.

If s1 < 3
2 , s2 < 3

2 , and s1 + s2 > 0, then there is a positive constant Cs1,s2 such that

‖fg‖
Ḣ

s1+s2− 3
2 (R3)

≤ Cs1,s2‖f ‖Ḣ s1 (R3)‖g‖Ḣ s2 (R3).

Benameur and Jlali [4] have proved a version of Chemin’s lemma (see [9]) by
considering Sobolev–Gevrey space Ḣ s

a,σ (R
3).3 Let us introduce this result exactly

as it has been enunciated and shown in [4].

Lemma 11.1.6 (see [4]) Let a > 0, σ ≥ 1, and (s1, s2) ∈ R
2, such that s1 < 3

2
and s1 + s2 > 0. Then, there exists a positive constant Cs1,s2 such that, for all
f, g ∈ Ḣ

s1
a,σ (R

3) ∩ Ḣ
s2
a,σ (R

3), we have

‖fg‖
Ḣ

s1+s2− 3
2

a,σ (R3)

≤ Cs1,s2

[‖f ‖
Ḣ

s1
a,σ (R

3)
‖g‖

Ḣ
s2
a,σ (R

3)
+ ‖f ‖

Ḣ
s2
a,σ (R

3)
‖g‖

Ḣ
s1
a,σ (R

3)

]
.

(11.11)

If s1 < 3
2 , s2 < 3

2 , and s1 + s2 > 0, then there is a positive constant Cs1,s2 such that

‖fg‖
Ḣ

s1+s2− 3
2

a,σ (R3)

≤ Cs1,s2‖f ‖Ḣ s1
a,σ (R

3)
‖g‖

Ḣ
s2
a,σ (R

3)
. (11.12)

2Ḣ s(R3) = {
f ∈ S′(R3) : ‖f ‖2

Ḣ s (R3)
:= ∫

R3 |ξ |2s |f̂ (ξ )|2 dξ < ∞}
is the homogenous Sobolev

space.
3The Sobolev–Gevrey space Ḣ s

a,σ (R
3) := {

f ∈ S′(R3) : ‖f ‖2
Ḣ s
a,σ (R

3)
:= ∫

R3 |ξ |2se2a|ξ | 1
σ

|f̂ (ξ )|2 dξ < ∞}
is endowed with the inner product 〈f, g〉Ḣ s

a,σ (R
3) :=

∫
R3 |ξ |2s e2a|ξ | 1

σ
f̂ (ξ) ·

ĝ(ξ ) dξ .
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Proof We aim to apply Lemma 11.1.5. Thereby, to accomplish this goal, it is
necessary to use the elementary equality

f̂g(ξ) = (2π)−3(f̂ ∗ ĝ)(ξ), ∀ ξ ∈ R
3.

Thus, we estimate the expression on the left-hand side of inequalities (11.11)
and (11.12) as follows4:

‖fg‖2

Ḣ
s1+s2− 3

2
a,σ (R3)

=
∫

R3
|ξ |2s1+2s2−3e2a|ξ | 1

σ |f̂g(ξ)|2 dξ

= (2π)−6
∫

R3
|ξ |2s1+2s2−3e2a|ξ | 1

σ |f̂ ∗ ĝ(ξ)|2 dξ

≤ (2π)−6
∫

R3
|ξ |2s1+2s2−3e2a|ξ | 1

σ

(∫

R3
|f̂ (ξ − η)||̂g(η)| dη

)2
dξ

= (2π)−6
∫

R3
|ξ |2s1+2s2−3

(∫

R3
ea|ξ |

1
σ |f̂ (ξ − η)||̂g(η)| dη

)2
dξ.

Moreover, inequality (11.10) implies the following results:

‖fg‖2

Ḣ
s1+s2− 3

2
a,σ (R3)

≤ (2π)−6
∫

R3
|ξ |2s1+2s2−3

×
(∫

R3
ea|ξ−η|

1
σ
∣
∣f̂ (ξ − η)

∣
∣ea|η|

1
σ |̂g(η)| dη

)2

dξ

= (2π)−6
∫

R3
|ξ |2s1+2s2−3{[(ea|·|

1
σ
∣
∣f̂

∣
∣) ∗ (ea|·|

1
σ |̂g|)](ξ)}2

dξ

=
∫

R3
|ξ |2s1+2s2−3

× {
F
[
F−1(ea|ξ |

1
σ
∣
∣f̂ (ξ)

∣
∣)F−1(ea|ξ |

1
σ |̂g(ξ)|)]}2

dξ

= ∥
∥F−1(ea|·|

1
σ
∣
∣f̂

∣
∣)F−1(ea|·|

1
σ |̂g|)∥∥2

Ḣ
s1+s2− 3

2 (R3)
.

Now, we are ready to apply Lemma 11.1.5 and, consequently, deduce (11.11). In
fact, one has

‖fg‖
Ḣ

s1+s2− 3
2

a,σ (R3)

≤ ∥
∥F−1(ea|·|

1
σ
∣
∣f̂

∣
∣)F−1(ea|·|

1
σ |̂g|)∥∥

Ḣ
s1+s2− 3

2 (R3)

≤ Cs1,s2

[∥∥F−1(ea|·|
1
σ
∣∣f̂

∣∣)∥∥
Ḣ s1 (R3)

∥∥F−1(ea|·|
1
σ |̂g|)∥∥

Ḣ s2 (R3)

4The usual convolution is given by ϕ ∗ ψ(x) = ∫
R3 ϕ(x − y)ψ(y) dy, where ϕ,ψ : R3 → R.
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+ ∥
∥F−1(ea|·|

1
σ
∣
∣f̂

∣
∣)
∥
∥
Ḣ s2 (R3)

∥
∥F−1(ea|·|

1
σ |̂g|)∥∥

Ḣ s1 (R3)

]

= Cs1,s2

[‖f ‖
Ḣ

s1
a,σ (R

3)
‖g‖

Ḣ
s2
a,σ (R

3)
+ ‖f ‖

Ḣ
s2
a,σ (R

3)
‖g‖

Ḣ
s1
a,σ (R

3)

]
.

On the other hand, if s1, s2 < 3
2 and s1 + s2 > 0, use Lemma 11.1.5 again in order

to obtain

‖fg‖
Ḣ

s1+s2− 3
2

a,σ (R3)

≤ ∥
∥F−1(ea|·|

1
σ
∣
∣f̂

∣
∣)F−1(ea|·|

1
σ |̂g|)∥∥2

Ḣ
s1+s2− 3

2 (R3)

≤ Cs1,s2

∥
∥F−1(ea|·|

1
σ
∣
∣f̂

∣
∣)‖Ḣ s1 (R3)

∥
∥F−1(ea|·|

1
σ |̂g|)∥∥

Ḣ s2 (R3)

= Cs1,s2‖f ‖Ḣ s1
a,σ (R

3)
‖g‖

Ḣ
s2
a,σ (R

3)
.

It completes the proof of (11.12). ��
The next result presents our extension of Lemma 2.5 given in [4]; since, this last

lemma is the same as Lemma 11.1.7, if it is assumed that s = 1.

Lemma 11.1.7 Let a > 0, σ > 1, and s ∈ [
0, 3

2

)
. For every f, g ∈ Hs

a,σ (R
3), we

have fg ∈ Hs
a,σ (R

3). More precisely, one obtains

i) ‖fg‖Hs
a,σ (R

3) ≤ 2
2s−5

2 π−3[∥∥e
a
σ
|·| 1

σ
f̂
∥
∥
L1(R3)

‖g‖Hs
a,σ (R

3) +
∥
∥e

a
σ
|·| 1

σ
ĝ
∥
∥
L1(R3)

‖f ‖Hs
a,σ (R

3)

];
ii) ‖fg‖Hs

a,σ (R
3)) ≤ 2s−2π−3Ca,σ,s‖f ‖Hs

a,σ (R
3)‖g‖Hs

a,σ (R
3),

where Ca,σ,s :=
√

4πσ�(σ(3−2s))[
2(a− a

σ )
]σ(3−2s) <∞, and � is the elementary gamma function.5

Proof This result is a consequence of Lemma 11.1.3. First of all, let us estimate the
left-hand side of the inequalities given in i) and ii). Thus,

‖fg‖2
Hs
a,σ (R

3)
=

∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣f̂g(ξ)

∣
∣2 dξ

= (2π)−6
∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣∣f̂ ∗ ĝ(ξ)∣∣2 dξ

≤ (2π)−6
∫

R3

(∫

R3

(
1+ |ξ |2) s

2 ea|ξ |
1
σ
∣
∣f̂ (ξ − η)

∣
∣|̂g(η)| dη

)2

dξ

≤ (2π)−6
∫

R3

( ∫

|η|≤|ξ−η|
(
1+ |ξ |2) s

2 ea|ξ |
1
σ
∣
∣f̂ (ξ − η)

∣
∣|̂g(η)| dη

+
∫

|η|>|ξ−η|
(
1+ |ξ |2) s

2 ea|ξ |
1
σ
∣
∣f̂ (ξ − η)

∣
∣|̂g(η)| dη

)2
dξ.

5�(z) = ∫∞
0 xz−1e−x dx, for all z = x + iy ∈ C, with x > 0.
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By using basic arguments, it is easy to check that

(
1+ |ξ |2

) s
2 ≤

[
1+ (|ξ − η| + |η|)2

] s
2 ≤

[
1+ (2 max{|ξ − η|, |η|})2

] s
2

≤ 2s
[
1+max{|ξ − η|, |η|}2

] s
2
. (11.13)

Now, we are interested in applying Lemma 11.1.3 in order to obtain

‖fg‖2
Hs
a,σ (R

3)
≤ (2π)−622s

∫

R3

(∫

|η|≤|ξ−η|

(
1+ |ξ − η|2

) s
2
ea|ξ−η|

1
σ

× ∣∣f̂ (ξ − η)
∣∣ e

a
σ
|η| 1

σ |̂g(η)| dη

+ int|η|>|ξ−η|e
a
σ |ξ−η|

1
σ
∣
∣f̂ (ξ − η)

∣
∣
(

1+ |η|2
) s

2
ea|η|

1
σ |̂g(η)| dη

)2

dξ

≤ (2π)−622s+1
[ ∫

R3

(∫

R3

(
1+ |ξ − η|2) s

2 ea|ξ−η|
1
σ

× ∣∣f̂ (ξ − η)
∣∣e

a
σ
|η| 1

σ |̂g(η)| dη
)2

dξ

+
∫

R3

(∫

R3
e
a
σ
|ξ−η| 1

σ
∣
∣f̂ (ξ − η)

∣
∣(1+ |η|2) s2 ea|η|

1
σ |̂g(η)| dη

)2

dξ

]
.

Rewriting the last inequality above reached, it holds

‖fg‖2
Hs
a,σ (R

3)
≤ (2π)−622s+1

∥∥[(1+ | · |2) s2 ea|·|
1
σ
∣∣f̂

∣∣] ∗ [e a
σ |·|

1
σ |̂g|]∥∥2

L2(R3)

+ (2π)−622s+1
∥∥[e

a
σ |·|

1
σ
∣∣f̂

∣∣] ∗ [(1+ | · |2) s
2 ea|·|

1
σ |̂g|]∥∥2

L2(R3)
.

Consequently, it follows from Young’s inequality for convolutions6 that

‖fg‖2
Hs
a,σ (R

3)
≤ 22s−5π−6[∥∥(1+ | · |2) s

2 ea|·|
1
σ
f̂
∥
∥2
L2(R3)

∥
∥e

a
σ |·|

1
σ
ĝ
∥
∥2
L1(R3)

+ ∥
∥e

a
σ |·|

1
σ
f̂
∥
∥2
L1(R3)

∥
∥(1+ | · |2) s

2 ea|·|
1
σ
ĝ
∥
∥2
L2(R3)

]
. (11.14)

6Let 1 ≤ p, q, r ≤ ∞ such that 1+ 1
r
= 1

p
+ 1

q
. Assume that f ∈ Lp(R3) and g ∈ Lq(R3); then,

‖f ∗ g‖Lr (R3) ≤ ‖f ‖Lp(R3)‖g‖Lq(R3).



11 Mathematical Theory of Incompressible Flows: Local Existence,. . . 319

Notice that the L2(R3)-norm of
(
1 + |ξ |2) s

2 ea|ξ |
1
σ
f̂ (ξ) presented above can be

replaced by the Hs
a,σ (R

3)-norm of f . More precisely, we have

∥
∥(1+ | · |2) s

2 ea|·|
1
σ
f̂
∥
∥2
L2(R3)

=
∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣f̂ (ξ)

∣
∣2 dξ = ‖f ‖2

Hs
a,σ (R

3)
.

(11.15)

This same process can be applied to the equivalent term related to g in (11.14).
Thereby, it is true that

∥
∥(1+ | · |2) s

2 ea|·|
1
σ
ĝ
∥
∥2
L2(R3)

= ‖g‖2
Hs
a,σ (R

3)
. (11.16)

As a consequence, replace (11.15) and (11.16) in (11.14) in order to get

‖fg‖Hs
a,σ (R

3) ≤ 2
2s−5

2 π−3[∥∥e
a
σ
|·| 1

σ
f̂
∥
∥
L1(R3)

‖g‖Hs
a,σ (R

3)

+ ∥
∥e

a
σ |·|

1
σ
ĝ
∥
∥
L1(R3)

‖f ‖Hs
a,σ (R

3)

]
.

It completes the proof of i).
Now, let us prove ii) by using the results established above. Thus, applying

Cauchy–Schwarz’s inequality,7 one infers

∥
∥e

a
σ |·|

1
σ
ĝ
∥
∥
L1(R3)

=
∫

R3
e
a
σ
|ξ | 1

σ |̂g(ξ)| dξ

≤
(∫

R3

(
1+ |ξ |2)−se2

(
a
σ −a

)
|ξ | 1

σ
dξ

) 1
2
(∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ |̂g(ξ)|2 dξ
) 1

2

≤
(∫

R3
|ξ |−2se

2
(
a
σ −a

)
|ξ | 1

σ
dξ

) 1
2
(∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ |̂g(ξ)|2 dξ
) 1

2

=: Ca,σ,s‖g‖Hs
a,σ (R

3), (11.17)

where

C2
a,σ,s =

4πσ�(σ(3− 2s))
[
2
(
a − a

σ

)]σ(3−2s)
,

7Let p, q ∈ [1,∞] such that 1
p
+ 1

q
= 1. Consider that f ∈ Lp(R3) and g ∈ Lq(R3);

then, ‖fg‖L1(R3) ≤ ‖f ‖Lp(R3)‖g‖Lq(R3). Here Lp(R3) denotes the usual Lebesgue space, where

‖f ‖Lp(R3) :=
(∫

R3 |f (x)|p dx
) 1
p and ‖f ‖L∞(R3) := esssupx∈R3{|f (x)|}.
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since σ > 1 and 0 ≤ s < 3/2. Analogously, we obtain

∥
∥∥e

a
σ |·|

1
σ
f̂

∥
∥∥
L1(R3)

≤ Ca,σ,s‖f ‖Hs
a,σ (R

3). (11.18)

Hence, by combining (11.14)–(11.18), we have

‖fg‖2
Hs
a,σ (R

3)
≤ 22s−4π−6C2

a,σ,s‖f ‖2
Hs
a,σ (R

3)
‖g‖2

Hs
a,σ (R

3)
.

It proves ii). ��
The next result is our version of Lemma 2.8 in [4], provided that this last lemma

is the same as Lemma 11.1.8, whether it is considered s = 1.

Lemma 11.1.8 Let s ≥ 0, a > 0, σ ≥ 1, and f ∈ Hs
a,σ (R

3). Then, the following
inequalities hold:

‖f ‖2
Hs
a,σ (R

3)
≤ 2s

[
e2a(2π)3‖f ‖2

L2(R3)
+ ‖f ‖2

Ḣ s
a,σ (R

3)

]
(11.19)

≤ 2s
[
e2a + 1

]‖f ‖2
Hs
a,σ (R

3)
.

Proof This result follows directly from the definition of the spaces Hs
a,σ (R

3),
Ḣ s
a,σ (R

3), and L2(R3). In fact, note that, by using Parseval’s identity, i.e.,

‖f ‖2
L2(R3)

= (2π)−3
∥
∥f̂

∥
∥2
L2(R3)

,

one obtains

‖f ‖2
Hs
a,σ (R

3)
=

∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣f̂ (ξ)

∣
∣2 dξ

=
∫

|ξ |≤1

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣f̂ (ξ)

∣
∣2 dξ

+
∫

|ξ |>1

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣f̂ (ξ)

∣
∣2 dξ

≤ 2se2a
∫

R3

∣∣f̂ (ξ)
∣∣2 dξ + 2s

∫

R3
|ξ |2se2a|ξ | 1

σ
∣∣f̂ (ξ)

∣∣2 dξ

= 2se2a(2π)3‖f ‖2
L2(R3)

+ 2s‖f ‖2
Ḣ s
a,σ (R

3)
.

It demonstrates the first inequality in (11.19).
By applying the last equality above, one infers

2se2a(2π)3‖f ‖2
L2(R3)

+ 2s‖f ‖2
Ḣ s
a,σ (R

3)
= 2se2a

∫

R3

∣
∣f̂ (ξ)

∣
∣2 dξ + 2s

×
∫

R3
|ξ |2se2a|ξ | 1

σ
∣
∣f̂ (ξ)

∣
∣2 dξ
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≤ 2s
[
e2a + 1

] ∫

R3

(
1+ |ξ |2)s

× e2a|ξ | 1
σ
∣
∣f̂ (ξ)

∣
∣2 dξ

= 2s
[
e2a + 1

]‖f ‖2
Hs
a,σ (R

3)
.

Therefore, the proof of the second inequality in (11.19) is given. ��
Remark 11.1.9 It is worth to observe that the demonstration of the lemma above
establishes, for instance, the standard embeddings Hs

a,σ (R
3) ↪→ L2(R3) and

Hs
a,σ (R

3) ↪→ Ḣ s
a,σ (R

3) (s ≥ 0). In fact, note that in the proof of Lemma 11.1.8, we
have proved

‖f ‖2
L2(R3)

= (2π)−3
∫

R3

∣
∣f̂ (ξ)

∣
∣2 dξ ≤ (2π)−3

∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣f̂ (ξ)

∣
∣2 dξ

= (2π)−3‖f ‖2
Hs
a,σ (R

3)
.

Consequently, the continuous embedding Hs
a,σ (R

3) ↪→ L2(R3) (s ≥ 0) is given by
the inequality

‖f ‖L2(R3) ≤ (2π)−
3
2 ‖f ‖Hs

a,σ (R
3).

The other embedding related above follows directly from the following results:

‖f ‖2
Ḣ s
a,σ (R

3)
=

∫

R3
|ξ |2se2a|ξ | 1

σ
∣
∣f̂ (ξ)

∣
∣2 dξ ≤

∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣f̂ (ξ)

∣
∣2 dξ

= ‖f ‖2
Hs
a,σ (R

3)
.

Finally, we enunciate the next elementary result, which follows from the basic tools
obtained in calculus.

Lemma 11.1.10 (See [5]) Let a, b > 0. Then, λae−bλ ≤ aa(eb)−a for all λ > 0.

Proof Consider the real function f defined by f (λ) = λae−bλ, for all λ > 0. It is
easy to verify that f attains its maximum at a/b since

f ′(λ) = λae−bλ
[a
λ
− b

]
and f ′′(λ) = λae−bλ

[(a
λ
− b

)2 − a

λ2

]
, ∀ λ > 0.

Therefore, the demonstration of this lemma is complete. ��
Now, let us precisely enunciate our result that assures the local existence and

uniqueness of solutions for the Navier–Stokes equations (11.1).
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Theorem 11.1.11 Assume that a > 0, σ ≥ 1, and s ∈ ( 1
2 ,

3
2

)
. Let u0 ∈ Hs

a,σ (R
3)

such that divu0 = 0. Then, there exist an instant T = Ts,a,μ,u0 > 0 and a unique
solution u ∈ C

([
0, T ];Hs

a,σ

(
R

3
))

for the Navier–Stokes equations (11.1).

Proof Our aim in this demonstration is to assure that all the assumptions presented
in Lemma 11.1.1 are satisfied if (11.25) and (11.26) are considered; thus, first of all,
let us rewrite the Navier–Stokes equations (11.1) as in (11.8).

Use the heat semigroup eμ�(t−τ ), with τ ∈ [0, t], in the first equation8 given
in (11.1), and then, integrate the obtained result over the interval [0, t] to reach

∫ t

0
eμ�(t−τ )uτ dτ +

∫ t

0
eμ�(t−τ )[u · ∇u+∇p] dτ = μ

∫ t

0
eμ�(t−τ )�u dτ.

By applying integration by parts to the first integral above and using the properties
of the heat semigroup, one deduces

u(t) = eμ�tu0 −
∫ t

0
eμ�(t−τ )[u · ∇u+∇p] dτ. (11.20)

Let us recall that Helmontz’s projector PH (see [10] and the references therein) is
well defined and it is a linear operator such that

PH (u · ∇u) = u · ∇u+∇p, (11.21)

and also

F [PH(f )](ξ) = f̂ (ξ)− f̂ (ξ) · ξ
|ξ |2 ξ. (11.22)

Notice that equality (11.22) implies that

|F [PH(f )](ξ)|2 =
∣
∣
∣f̂ (ξ)− f̂ (ξ) · ξ

|ξ |2 ξ

∣
∣
∣
2 = |f̂ (ξ)|2 − |f̂ (ξ) · ξ |

2

|ξ |2 ≤ |f̂ (ξ)|2.
(11.23)

On the other hand, by replacing (11.21) in (11.20), it follows that

u(t) = eμ�tu0 −
∫ t

0
eμ�(t−τ )PH [u · ∇u] dτ.

8In the Navier–Stokes equations (11.1), the usual Laplacian for f = (f1, f2, . . . , fn) is established
by �f = (�f1,�f2, . . . ,�fn), where �fj =∑3

i=1 D
2
i fj . The gradient field is defined by ∇f =

(∇f1,∇f2, . . . ,∇fn), where ∇fj = (D1fj ,D2fj ,D3fj ) (j = 1, 2, . . . , n). Besides, f · ∇g =
∑3

i=1 fiDig, where f = (f1, f2, f3) and g = (g1, g2, g3). At last, the standard divergent is given
by div f =∑3

i=1 Difi provided that f = (f1, f2, f3) and Di = ∂/∂xi (i = 1, 2, 3).
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It is well known that u · ∇u =∑3
j=1 ujDju. Thereby, one has

u(t) = eμ�tu0 −
∫ t

0
eμ�(t−τ )PH (u · ∇u) dτ

= eμ�tu0 −
∫ t

0
eμ�(t−τ )PH

⎡

⎣
3∑

j=1

(ujDju)

⎤

⎦ dτ

= eμ�tu0 −
∫ t

0
eμ�(t−τ )PH

⎡

⎣
3∑

j=1

Dj (uju)

⎤

⎦ dτ,

provided that divu = 0. Rewriting this last equality above, we get

u(t) = eμ�tu0 −
∫ t

0
eμ�(t−τ )PH

⎡

⎣
3∑

j=1

Dj (uju)

⎤

⎦ dτ, (11.24)

or equivalently,

u(t) = eμ�tu0 + B(u, u)(t), (11.25)

where

B(w, v)(t) = −
∫ t

0
eμ�(t−τ )PH

[ 3∑

j=1

Dj(vjw)
]
dτ. (11.26)

In order to apply Lemma 11.1.1, let X be the Banach space C
([0, T ];Hs

a,σ

(
R

3
))

(T > 0 will be revealed as follows). It is important to notice that (11.25) is the same
equation as (11.8) if it is considered that a = u and x0 = eμ�tu0. Moreover, it
is easy to check that B is a bilinear operator. Therefore, we shall prove that B is
continuous by choosing T small enough.

At first, let us estimate B(w, v)(t) in Ḣ s
a,σ

(
R

3
)
. Thereby, it follows from the

definition of the space Ḣ s
a,σ

(
R

3
)

that

∥
∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)]‖2
Ḣ s
a,σ (R

3)

=
∫

R3
|ξ |2se2a|ξ | 1

σ
∣
∣
∣F

{
eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]}
(ξ)

∣
∣
∣
2
dξ.
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It is also well known that

F{e�tf }(ξ) = e−t |ξ |2 f̂ (ξ), ∀ ξ ∈ R
3, t ≥ 0.

As a consequence, we have

∥
∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]∥∥
∥

2

Ḣ s
a,σ (R

3)

=
∫

R3
e−2μ(t−τ )|ξ |2|ξ |2se2a|ξ | 1

σ
∣
∣∣F

{
PH

[ 3∑

j=1

Dj(vjw)
]}
(ξ)

∣
∣∣
2
dξ.

By applying (11.23), one can write9

∥
∥∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]∥∥∥

2

Ḣ s
a,σ (R

3)
≤

∫

R3
e−2μ(t−τ )|ξ |2|ξ |2s

× e2a|ξ | 1
σ
∣
∣
∣

3∑

j=1

F [Dj(vjw)](ξ)
∣
∣
∣
2
dξ

≤
∫

R3
e−2μ(t−τ )|ξ |2|ξ |2s

× e2a|ξ | 1
σ |F(w ⊗ v)(ξ) · ξ |2 dξ

≤
∫

R3
e−2μ(t−τ )|ξ |2|ξ |2s+2

× e2a|ξ | 1
σ |F(w ⊗ v)(ξ)|2 dξ.

Rewriting the last integral above with the goal of applying Lemma 11.1.10, we have

∥
∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj(vjw)
]∥∥
∥

2

Ḣ s
a,σ (R

3)

≤
∫

R3
|ξ |5−2se−2μ(t−τ )|ξ |2|ξ |4s−3e2a|ξ | 1

σ |F(w ⊗ v)(ξ)|2 dξ.

9The tensor product is given by f ⊗ g := (g1f, g2f, g3f ), where f, g : R3 → R
3.



11 Mathematical Theory of Incompressible Flows: Local Existence,. . . 325

As a result, by using Lemma 11.1.10, it follows

∥∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]∥∥
∥

2

Ḣ s
a,σ (R

3)
≤

( 5−2s
4eμ

) 5−2s
2

(t − τ )
5−2s

2

∫

R3
|ξ |4s−3 (11.27)

× e2a|ξ | 1
σ |F(w ⊗ v)(ξ)|2 dξ

=: Cs,μ

(t − τ )
5−2s

2

‖w ⊗ v‖2

Ḣ
2s− 3

2
a,σ (R3)

,

where Cs,μ =
( 5−2s

4eμ

) 5−2s
2 (s < 3/2). On the other hand, let us estimate the term

‖w ⊗ v‖
Ḣ

2s− 3
2

a,σ (R3)

presented in the last equality above. Lemma 11.1.6 is the tool

that provides a suitable result related to our goal in this proof. Thus, by using this
lemma, one infers

‖w ⊗ v‖2

Ḣ
2s− 3

2
a,σ (R3)

=
∫

R3
|ξ |4s−3e2a|ξ | 1

σ |ŵ ⊗ v(ξ)|2 dξ

=
3∑

j,k=1

∫

R3
|ξ |4s−3e2a|ξ | 1

σ |v̂jwk(ξ)|2 dξ

=
3∑

j,k=1

‖vjwk‖2

Ḣ
2s− 3

2
a,σ (R3)

≤ Cs‖w‖2
Ḣ s
a,σ (R

3)
‖v‖2

Ḣ s
a,σ (R

3)
, (11.28)

provided that 0 < s < 3/2. Therefore, by replacing (11.28) in (11.27), one deduces

∥∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]∥∥
∥
Ḣ s
a,σ (R

3)
≤ Cs,μ

(t − τ )
5−2s

4

‖w‖Ḣ s
a,σ (R

3)‖v‖Ḣ s
a,σ (R

3).

By integrating over [0, t], the above estimate, we conclude10

∫ t

0

∥
∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]∥∥
∥
Ḣ s
a,σ (R

3)
dτ ≤ Cs,μ

∫ t

0

‖w‖Ḣ s
a,σ (R

3)‖v‖Ḣ s
a,σ (R

3)

(t − τ)
5−2s

4

dτ

≤ Cs,μT
2s−1

4 ‖w‖L∞([0,T ];Ḣ s
a,σ (R

3))‖v‖L∞([0,T ];Ḣ s
a,σ (R

3)), (11.29)

for all t ∈ [0, T ] (recall that s > 1/2).

10Assuming that (X, ‖ · ‖) is a Banach space and T > 0, the space L∞([0, T ];X) contains all
measurable functions f : [0, T ] → X such that ‖f ‖ ∈ L∞([0, T ]). Here ‖f ‖L∞([0,T ];X) :=
esssupt∈[0,T ]{‖f (t)‖}.
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By (11.26), we can assure that (11.29) implies

‖B(w, v)(t)‖Ḣ s
a,σ (R

3) ≤ Cs,μT
2s−1

4 ‖w‖L∞([0,T ];Ḣ s
a,σ (R

3))‖v‖L∞([0,T ];Ḣ s
a,σ (R

3)),

(11.30)

for all t ∈ [0, T ]. It is important to observe that (11.30) presents our estimate to the
operator B related to the space Ḣ s

a,σ (R
3).

Now, let us estimate B(w, v)(t) in Hs
a,σ (R

3). By Lemma 11.1.8 and (11.30), it is
enough to get a lower bound to B(w, v)(t) in L2(R3). Following a similar process
to the one presented above, we have

∥∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj(vjw)
]∥∥
∥

2

L2(R3)
=

∫

R3

∣∣
∣eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]
(ξ)

∣∣
∣
2
dξ.

Parseval’s identity implies the following equality:

∥
∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]∥∥
∥

2

L2(R3)
= (2π)−3

∫

R3

∣
∣
∣F

{
eμ�(t−τ )PH

×
[ 3∑

j=1

Dj(vjw)
]}
(ξ)

∣
∣∣
2
dξ.

As a result, we obtain the next result:

∥
∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]∥∥
∥

2

L2(R3)

= (2π)−3
∫

R3
e−2μ(t−τ )|ξ |2

∣
∣
∣F

{
PH

[ 3∑

j=1

Dj (vjw)
]}
(ξ)

∣
∣
∣
2
dξ.

By using (11.23), it is true that

∥∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj(vjw)
]∥∥
∥

2

L2(R3)
≤ (2π)−3

∫

R3
|ξ |2

× e−2μ(t−τ )|ξ |2
∣
∣
∣F(w ⊗ v)(ξ)

∣
∣
∣
2
dξ.
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Rewriting the last integral in order to apply Lemma 11.1.10, one has

∥∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]∥∥
∥

2

L2(R3)

≤ (2π)−3
∫

R3
|ξ |5−2se−2μ(t−τ )|ξ |2|ξ |2s−3|F(w ⊗ v)(ξ)|2 dξ.

As a result, by using Lemma 11.1.10, it follows

∥
∥∥eμ�(t−τ )PH

[ 3∑

j=1

Dj (vjw)
]∥∥∥

2

L2(R3)
≤ Cs,μ

(t − τ )
5−2s

2

‖w ⊗ v‖2

Ḣ
s− 3

2 (R3)
,

since s < 3/2. Now we are interested in estimating the term ‖w ⊗ v‖
Ḣ

s− 3
2 (R3)

obtained above. Lemma 11.1.5 is the tool that lets us obtain this specific bound.
More precisely, by utilizing this lemma, one has

‖w ⊗ v‖2

Ḣ
s− 3

2 (R3)
=

∫

R3
|ξ |2s−3|ŵ ⊗ v(ξ)|2 dξ =

3∑

j,k=1

∫

R3
|ξ |2s−3|v̂jwk(ξ)|2 dξ

=
3∑

j,k=1

‖vjwk‖2

Ḣ
s− 3

2 (R3)
≤ Cs‖w‖2

Ḣ s (R3)
‖v‖2

L2(R3)
.

It is easy to check out that the continuous embeddingHs
a,σ (R

3) ↪→ Ḣ s(R3) (s ≥ 0)
holds and by applying Lemma 11.1.8, we deduce

∥
∥∥eμ�(t−τ )PH

[ 3∑

j=1

Dj(vjw)
]∥∥∥

L2(R3)
≤ Cs,μ

(t − τ )
5−2s

4

‖w‖Hs
a,σ (R

3)‖v‖Hs
a,σ (R

3).

By integrating over [0, t], the above estimate, we conclude

∫ t

0

∥
∥
∥eμ�(t−τ )PH

[ 3∑

j=1

Dj(vjw)
]∥∥
∥
L2(R3)

dτ

≤ Cs,μT
2s−1

4 ‖w‖L∞([0,T ];Hs
a,σ (R

3))‖v‖L∞([0,T ];Hs
a,σ (R

3)), (11.31)

for all t ∈ [0, T ] (since that s > 1/2).
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By using definition (11.26) and applying (11.31), one concludes

‖B(w, v)(t)‖L2 (R3) ≤ Cs,μT
2s−1

4 ‖w‖L∞([0,T ];Hs
a,σ (R

3))‖v‖L∞([0,T ];Hs
a,σ (R

3)),

(11.32)

for all t ∈ [0, T ].
Finally, by using Lemma 11.1.8, (11.30), (11.32) and the fact that Hs

a,σ (R
3) ↪→

Ḣ s
a,σ (R

3) (s ≥ 0), it results

‖B(w, v)(t)‖Hs
a,σ (R

3) ≤ Cs,a,μT
2s−1

4 ‖w‖L∞([0,T ];Hs
a,σ (R

3))‖v‖L∞([0,T ];Hs
a,σ (R

3)),

(11.33)

for all t ∈ [0, T ].
To use Lemma 11.1.1, it is enough to guarantee that

4Cs,a,μT
2s−1

4 ‖eμ�tu0‖L∞([0,T ];Hs
a,σ (R

3)) < 1.

Thus, first of all, as we did before, one concludes

∥∥eμ�tu0
∥∥2
Hs
a,σ (R

3)
=

∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣∣F

{
eμ�tu0

}
(ξ)

∣∣2 dξ

=
∫

R3
e−2μt |ξ |2(1+ |ξ |2)se2a|ξ | 1

σ
∣
∣̂u0(ξ)

∣
∣2 dξ

≤
∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ |̂u0(ξ)|2 dξ

= ‖u0‖2
Hs
a,σ (R

3)
.

As a result, we write

‖eμ�tu0‖L∞([0,T ];Hs
a,σ (R

3)) ≤ ‖u0‖Hs
a,σ (R

3).

At last, choose

T <
1

[
4Cs,a,μ‖u0‖Hs

a,σ (R
3)

] 4
2s−1

,

whereCs,a,μ is given in (11.33), and apply Lemma 11.1.1 in order to obtain a unique
solution u ∈ C([0, T ]; Hs

a,σ (R
3)) for Eq. (11.25).

The arguments given above also establish the local existence of a unique solution
for the Navier–Stokes equations (11.1). ��
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11.2 Blow-Up Criteria for the Solution

In this section, we establish the veracity of the blow-up criteria for the solution of
the Navier–Stokes equations (11.1), previously presented, by proving appropriate
theorems. Let us inform that we argue similarly to references [1–4, 6, 7, 11].

11.2.1 Limit Superior Related to Hs
a,σ (R3)

The first blow-up criterion is related to the limit superior given in (11.5) (case n =
1).

Theorem 11.2.1 Assume that a > 0, σ > 1, and s ∈ ( 1
2 ,

3
2

)
. Let u0 ∈ Hs

a,σ (R
3)

such that divu0 = 0. Consider that u ∈ C([0, T ∗);Hs
a,σ (R

3)) is the maximal
solution for the Navier–Stokes equations (11.1) obtained in Theorem 11.1.11. If
T ∗ <∞, then

lim sup
t↗T ∗

‖u(t)‖Hs
a,σ (R

3) = ∞. (11.34)

Proof Consider by absurd that (11.34) is not valid, i.e., assume that

lim sup
t↗T ∗

‖u(t)‖Hs
a,σ (R

3) <∞. (11.35)

As a result, we shall prove that the solution u(·, t) can be extended beyond t = T ∗
(it is the absurd that we shall obtain). Let us prove this statement.

Assuming (11.35) to be true, and using Theorem 11.1.11, there is a non-negative
constant C such that

‖u(t)‖Hs
a,σ (R

3) ≤ C, ∀ t ∈ [0, T ∗). (11.36)

Integrating over [0, t] inequality (11.52), and applying (11.36) and (11.17), one
concludes

‖u(t)‖2
Hs
a,σ (R

3)
+ μ

∫ t

0
‖∇u(τ)‖2

Hs
a,σ (R

3)
dτ ≤ ‖u0‖2

Hs
a,σ (R

3)
+ Cs,a,σ,μC

4T ∗,

for all t ∈ [0, T ∗). As we are interested in using the fact that the integral above is
bounded, we can write

∫ t

0
‖∇u(τ)‖2

Hs
a,σ (R

3)
dτ ≤ 1

μ
‖u0‖2

Hs
a,σ (R

3)
+ Cs,a,σ,μC

4T ∗ =: Cs,a,σ,μ,u0,T ∗,

(11.37)

for all t ∈ [0, T ∗).
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Now, let (κn)n∈N be a sequence such that κn ↗ T ∗, where κn ∈ (0, T ∗), for all
n ∈ N (choose κn = T ∗ − 1/n, for n large enough, for instance). We guarantee that
(u(κn))n∈N is a Cauchy sequence in the space Hs

a,σ (R
3), that is,

lim
n,m→∞‖u(κn)− u(κm)‖Hs

a,σ (R
3) = 0. (11.38)

Let us inform that the limit (11.38) does not depend on the sequence (κn)n∈N. This
fact will be shown later. First of all, we begin with the demonstration of (11.38).
Thereby, one can apply (11.25) and (11.26) in order to obtain

u(κn)− u(κm) = I1(n,m)+ I2(n,m)+ I3(n,m), (11.39)

where

I1(n,m) = [
eμ�κn − eμ�κm

]
u0, (11.40)

I2(n,m) =
∫ κm

0

[
eμ�(κm−τ ) − eμ�(κn−τ )]PH [u · ∇u] dτ, (11.41)

and also

I3(n,m) = −
∫ κn

κm

eμ�(κn−τ )PH [u · ∇u] dτ. (11.42)

Let us prove that Ij (n,m)→ 0 in Hs
a,σ (R

3), as n,m→∞, for j = 1, 2, 3.
In order to prove the veracity of the limit related to I1(n,m), notice that

‖I1(n,m)‖2
Hs
a,σ (R

3)
= ∥

∥[eμ�κn − eμ�κm
]
u0

∥
∥2
Hs
a,σ (R

3)

=
∫

R3

[
e−μκn|ξ |2 − e−μκm|ξ |2

]2(1+ |ξ |2)se2a|ξ | 1
σ |̂u0(ξ)|2 dξ

≤
∫

R3

[
e−μκn|ξ |2 − e−μT ∗|ξ |2

]2(1+ |ξ |2)se2a|ξ | 1
σ |̂u0(ξ)|2 dξ.

By utilizing the fact that u0 ∈ Hs
a,σ (R

3) and that e−μκn|ξ |2 − e−μT ∗|ξ |2 ≤ 1, for all
n ∈ N, it results from dominated convergence theorem that

lim
n,m→∞‖I1(n,m)‖Hs

a,σ (R
3) = 0.
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Now, our imminent goal is to establish the limit limn,m→∞ ‖I2(n,m)‖Hs
a,σ (R

3) =
0. Thus, we have

‖I2(n,m)‖Hs
a,σ (R

3) ≤
∫ κm

0

∥
∥[eμ�(κm−τ ) − eμ�(κn−τ )]PH (u · ∇u)

∥
∥
Hs
a,σ (R

3)
dτ

=
∫ κm

0

( ∫

R3

[
e−μ(κm−τ )|ξ |2 − e−μ(κn−τ )|ξ |2

]2

× (
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣F

[
PH(u · ∇u)

]
(ξ)

∣
∣2dξ

) 1
2
dτ.

By (11.23), we can write |F [PH(f )](ξ)| ≤
∣
∣f̂ (ξ)

∣
∣ and, consequently,

‖I2(n,m)‖Hs
a,σ (R

3)

≤
∫ T ∗

0

(∫

R3

[
1− e−μ(T ∗−κm)|ξ |2

]2(1+ |ξ |2)se2a|ξ | 1
σ
∣
∣F [u · ∇u](ξ)∣∣2dξ

) 1
2

dτ.

Use Cauchy–Schwarz’s inequality in order to obtain

‖I2(n,m)‖Hs
a,σ (R

3)

≤ √T ∗
(∫ T ∗

0

∫

R3

[
1− e−μ(T ∗−κm)|ξ |2

]2(1+ |ξ |2)se2a|ξ | 1
σ
∣
∣F[u · ∇u](ξ)∣∣2dξdτ

) 1
2
.

On the other hand, observe that by Lemma 11.1.7 ii), (11.36) and (11.37), one infers

∫ T ∗

0
‖u · ∇u‖2

Hs
a,σ (R

3)
dτ ≤ C2

s,a,σ

∫ T ∗

0
‖u‖2

Hs
a,σ (R

3)
‖∇u‖2

Hs
a,σ (R

3)
dτ

≤ C2
s,a,σC

2
∫ T ∗

0
‖∇u‖2

Hs
a,σ (R

3)
dτ <∞. (11.43)

As 1−e−μ(T ∗−κm)|ξ |2 ≤ 1, for all m ∈ N; then, by dominated convergence theorem,
we deduce

lim
n,m→∞‖I2(n,m)‖Hs

a,σ (R
3) = 0.

Finally, we are interested in demonstrating that limn,m→∞ ‖I3(n,m)‖Hs
a,σ (R

3) =
0. Hence, one obtains

‖I3(n,m)‖Hs
a,σ (R

3) ≤
∫ κn

κm

∥
∥eμ�(κn−τ )PH (u · ∇u)

∥
∥
Hs
a,σ (R

3)
dτ

=
∫ κn

κm

(∫

R3
e−2μ(κn−τ )|ξ |2(1+ |ξ |2)se2a|ξ | 1

σ
∣
∣F [PH(u · ∇u)](ξ)

∣
∣2dξ

) 1
2

dτ.
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By (11.23), we can write |F [PH(f )](ξ)| ≤
∣
∣f̂ (ξ)

∣
∣ and, consequently,

‖I3(n,m)‖Hs
a,σ (R

3) ≤
∫ κn

κm

(∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣F [u · ∇u](ξ)∣∣2dξ

) 1
2

dτ

≤
∫ T ∗

κm

‖u · ∇u‖Hs
a,σ (R

3) dτ.

By Cauchy–Schwarz’s inequality, (11.43) and (11.37), one infers

‖I3(n,m)‖Hs
a,σ (R

3) ≤
√
T ∗ − κm

(∫ T ∗

κm

‖u · ∇u‖2
Hs
a,σ (R

3)
dτ

) 1
2

≤ CCs,a,σ

√
T ∗ − κm

(∫ T ∗

κm

‖∇u‖2
Hs
a,σ (R

3)
dτ

) 1
2

≤ Cs,a,σ,μ,u0,T ∗
√
T ∗ − κm.

As a result, we infer that limn,m→∞ ‖I3(n,m)‖Hs
a,σ (R

3) = 0. Thus, (11.39)
implies (11.38). In addition, (11.38) means that (u(κn))n∈N is a Cauchy sequence in
the Banach space Hs

a,σ (R
3). Hence, there exists u1 ∈ Hs

a,σ (R
3) such that

lim
n→∞‖u(κn)− u1‖Hs

a,σ (R
3) = 0.

Now, we shall prove that the above limit does not depend on the sequence
(κn)n∈N. Thus, choose an arbitrary sequence (ρn)n∈N ⊆ (0, T ∗) such that ρn ↗ T ∗
and

lim
n→∞‖u(ρn)− u2‖Hs

a,σ (R
3) = 0,

for some u2 ∈ Hs
a,σ (R

3). Let us verify that u2 = u1. In fact, define (ςn)n∈N ⊆
(0, T ∗) by ς2n = κn and ς2n−1 = ρn, for all n ∈ N. It is easy to check that ςn ↗ T ∗.
By rewriting the process above, we guarantee that there is u3 ∈ Hs

a,σ (R
3) such that

lim
n→∞‖u(ςn)− u3‖Hs

a,σ (R
3) = 0.

As a consequence, one has

lim
n→∞‖u(κn)− u3‖Hs

a,σ (R
3) = lim

n→∞‖u(ς2n)− u3‖Hs
a,σ (R

3) = 0

and also

lim
n→∞‖u(ρn)− u3‖Hs

a,σ (R
3) = lim

n→∞‖u(ς2n−1)− u3‖Hs
a,σ (R

3) = 0.
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By uniqueness of the limit, one infers u1 = u3 = u2. Therefore, the limit (11.38)
does not rely on the sequence (κn)n∈N.

It means that limt↗T ∗ ‖u(t) − u1‖Hs
a,σ (R

3) = 0. Thereby, assuming (11.1) with
the initial data u1, instead of u0, we assure, by Theorem 11.1.11, the local existence
and uniqueness of ū ∈ C([0, T̄ ];Hs

a,σ (R
3)) (T̄ > 0) for system (11.1). Hence,

ũ ∈ C([0, T̄ + T ∗];Hs
a,σ (R

3)) defined by

ũ(t) =
{
u(t), t ∈ [0, T ∗);
ū(t − T ∗), t ∈ [T ∗, T̄ + T ∗]

solves (11.1) in [0, T̄ + T ∗]. Thus, the solution of (11.1) can be extended beyond
t = T ∗. It is a contradiction. Consequently, one must have

lim sup
t↗T ∗

‖u(t)‖Hs
a,σ (R

3) = ∞.

��

11.2.2 Blow-Up of the Integral Related to L1(R3)

Now, we present the proof of inequality (11.3) in the case n = 1. It is important
to let the reader know that the next theorem might be written as a corollary of
Theorem 11.2.1 since the first one follows from this last result.

Theorem 11.2.2 Assume that a > 0, σ > 1, and s ∈ ( 1
2 ,

3
2

)
. Let u0 ∈ Hs

a,σ (R
3)

such that div u0 = 0. Consider that u ∈ C([0, T ∗);Hs
a,σ (R

3)) is the maximal
solution for the Navier–Stokes equations (11.1) obtained in Theorem 11.1.11. If
T ∗ <∞, then

∫ T ∗

t

∥
∥e

a
σ |·|

1
σ
û(τ )

∥
∥2
L1(R3)

dτ = ∞.

Proof This result follows from the limit superior presented in Theorem 11.2.1.
Thus, let us start taking the Hs

a,σ (R
3)-inner product, with u(t), in the first equation

of (11.1) to get

〈u, ut 〉Hs
a,σ (R

3) = 〈u,−u · ∇u−∇p + μ�u〉Hs
a,σ (R

3). (11.44)

In order to study some terms on the right-hand side of the equality above, use the
fact that

F(Djf )(ξ) = iξj f̂ (ξ), ∀ ξ = (ξ1, ξ2, ξ3) ∈ R
3,
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to get

F(u) · F [∇p](ξ) = −i
3∑

j=1

F(uj )(ξ)ξj p̂(ξ) = −
3∑

j=1

F(Djuj )(ξ)p̂(ξ)

= −F(divu)(ξ)p̂(ξ) = 0, (11.45)

because u is divergence free (see (11.1)). Thereby, the term related to the pressure
in (11.44) is null. In fact, we have

〈u,∇p〉Hs
a,σ (R

3) =
∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ F(u) · F [∇p](ξ) dξ = 0. (11.46)

On the other hand, following a similar argument, one infers

û · �̂u(ξ) =
3∑

j=1

û · D̂2
j u(ξ) = −i

3∑

j=1

û · [ξj D̂j u(ξ)
]

= −
3∑

j=1

D̂j u · D̂j u(ξ) = −
∣
∣∇̂u(ξ)∣∣2. (11.47)

Therefore, the term related to �u in (11.44) satisfies

〈u,�u〉Hs
a,σ (R

3) =
∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
û · �̂u(ξ) dξ

= −
∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣∇̂u(ξ)∣∣2 dξ

= −‖∇u‖2
Hs
a,σ (R

3)
. (11.48)

By replacing (11.46) and (11.48) in (11.44), we have

1

2

d

dt
‖u(t)‖2

Hs
a,σ (R

3)
+ μ‖∇u‖2

Hs
a,σ (R

3)
≤ |〈u, u · ∇u〉Hs

a,σ (R
3)|. (11.49)

Now, let us study the inner product above. Thus, as divu = 0, one obtains

F(∇u) · F(u⊗ u)(ξ) =
3∑

j=1

F(∇uj ) · F(uju)(ξ)

=
3∑

j,k=1

F(Dkuj )(ξ)F(uj uk)(ξ)
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= i

3∑

j,k=1

ξkF(uj )(ξ)F(ujuk)(ξ)

= −
3∑

j,k=1

F(uj )(ξ)F(Dk(ujuk))(ξ)

= −
3∑

j,k=1

F(uj )(ξ)F(ukDkuj )(ξ)

= −
3∑

j=1

F(uj )(ξ)F(u · ∇uj )(ξ)

= −F(u) · F(u · ∇u)(ξ).

As a result, by using the tensor product, it follows that

〈u, u · ∇u〉Hs
a,σ (R

3) =
∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ F(u) · F(u · ∇u)(ξ) dξ

= −
∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ F(∇u) · F(u⊗ u)(ξ) dξ

= −〈∇u, u⊗ u〉Hs
a,σ (R

3). (11.50)

Hence, applying Cauchy–Schwarz’s inequality,11 (11.49) and (11.50) imply

1

2

d

dt
‖u(t)‖2

Hs
a,σ (R

3)
+ μ‖∇u‖2

Hs
a,σ (R

3)
≤ ‖∇u‖Hs

a,σ (R
3)‖u⊗ u‖Hs

a,σ (R
3).

(11.51)

Now, our interest is to find an estimate for the term ‖u⊗u‖Hs
a,σ (R

3) obtained above.
Thus, by applying Lemma 11.1.7 i), one has

‖u⊗ u‖2
Hs
a,σ (R

3)
=

∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣F(u⊗ u)(ξ)

∣
∣2 dξ

=
3∑

j,k=1

∫

R3

(
1+ |ξ |2)se2a|ξ | 1

σ
∣
∣F(ujuk)(ξ)

∣
∣2 dξ

11|〈f, g〉Hs
a,σ (R

3)| ≤ ‖f ‖Hs
a,σ (R

3)‖g‖Hs
a,σ (R

3), for all f, g ∈ Hs
a,σ (R

3).
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=
3∑

j,k=1

‖ujuk‖2
Hs
a,σ (R

3)

≤ Cs

3∑

j,k=1

[∥∥
∥e

a
σ |·|

1
σ
ûj

∥∥
∥
L1(R3)

‖uk‖Hs
a,σ (R

3)

+
∥
∥
∥e

a
σ |·|

1
σ
ûk

∥
∥
∥
L1(R3)

‖uj‖Hs
a,σ (R

3)

]2

≤ Cs

3∑

j,k=1

[∥∥
∥e

a
σ
|·| 1

σ
ûj

∥
∥
∥

2

L1(R3)
‖uk‖2

Hs
a,σ (R

3)

+
∥
∥
∥e

a
σ |·|

1
σ
ûk

∥
∥
∥

2

L1(R3)
‖uj‖2

Hs
a,σ (R

3)

]

≤ Cs‖e a
σ
|·| 1

σ
û‖2

L1(R3)
‖u‖2

Hs
a,σ (R

3)
,

or equivalently,

‖u⊗ u‖Hs
a,σ (R

3) ≤ Cs

∥
∥e

a
σ |·|

1
σ
û
∥
∥
L1(R3)

‖u‖Hs
a,σ (R

3).

By replacing this inequality in (11.51), we deduce

1

2

d

dt
‖u(t)‖2

Hs
a,σ (R

3)
+ μ‖∇u‖2

Hs
a,σ (R

3)
≤ Cs

∥
∥e

a
σ
|·| 1

σ
û
∥
∥
L1(R3)

‖u‖Hs
a,σ (R

3)‖∇u‖Hs
a,σ (R

3).

By Young’s inequality,12 it results that

1

2

d

dt
‖u(t)‖2

Hs
a,σ (R

3)
+ μ

2
‖∇u‖2

Hs
a,σ (R

3)
≤ Cs,μ‖e a

σ
|·| 1

σ
û‖2

L1(R3)
‖u‖2

Hs
a,σ (R

3)
.

(11.52)

Consider 0 ≤ t ≤ T < T ∗ in order to obtain, by Gronwall’s inequality,13 the
following estimate:

‖u(T )‖2
Hs
a,σ (R

3)
≤ ‖u(t)‖2

Hs
a,σ (R

3)
exp

{
Cs,μ

∫ T

t

∥
∥e

a
σ
|·| 1

σ
û(τ )

∥
∥2
L1(R3)

dτ

}
.

12Let p and q be positive real numbers such that p > 1 and 1
p
+ 1

q
= 1. Then, ab ≤ ap

p
+ bq

q
, for

all a, b > 0.
13Let f, g : [t, T ] → R be differential functions in (t, T ) such that f ′(s) ≤ g(s)f (s), for all
s ∈ [t, T ]. Then, f (s) ≤ f (t) exp{∫ s

t
g(τ ) dτ }, for all s ∈ [t, T ].
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Passing to the limit superior, as T ↗ T ∗, Theorem 11.2.1 implies

∫ T ∗

t

‖e a
σ |·|

1
σ
û(τ )‖2

L1(R3)
dτ = ∞, ∀ t ∈ [0, T ∗).

The proof of Theorem 11.2.2 is given. ��

11.2.3 Blow-Up Inequality Involving L1(R3)

Below, it is presented the proof of blow-up inequality (11.4) in the case n = 1. Let us
inform that the below theorem could be enunciated as a corollary of Theorem 11.2.2.

Theorem 11.2.3 Assume that a > 0, σ > 1, and s ∈ ( 1
2 ,

3
2 ). Let u0 ∈ Hs

a,σ (R
3)

such that div u0 = 0. Consider that u ∈ C([0, T ∗);Hs
a,σ (R

3)) is the maximal
solution for the Navier–Stokes equations (11.1) obtained in Theorem 11.1.11. If
T ∗ <∞, then

‖e a
σ
|·| 1

σ
û(t)‖L1(R3) ≥

8π3√μ√
T ∗ − t

, ∀ t ∈ [0, T ∗).

Proof Allow us to inform that this result is a consequence of Theorem 11.2.2.
Thereby, apply the Fourier Transform and take the scalar product in C

3 of the first
equation of (11.1), with û(t), in order to obtain

û · ût = −μ
∣
∣∇̂u∣∣2 − û · û · ∇u,

see (11.45) and (11.47). Consequently, one infers

1

2
∂t |̂u(t)|2 + μ

∣
∣∇̂u∣∣2 ≤ ∣

∣̂u · û · ∇u∣∣. (11.53)

For δ > 0 arbitrary, by applying Cauchy–Schwarz’s inequality,14 it is easy to check
that

∂t

√
|̂u(t)|2 + δ + μ

∣
∣∇̂u∣∣2

√∣
∣̂u
∣
∣2 + δ

≤ |û|
√|̂u|2 + δ

∣
∣û · ∇u∣∣ ≤ ∣

∣û · ∇u∣∣.

By integrating from t to T , with 0 ≤ t ≤ T < T ∗, one has

√
|̂u(T )|2 + δ + μ|ξ |2

∫ T

t

|̂u(τ)|2
√
|̂u(τ)|2 + δ

dτ ≤
√
|̂u(t)|2 + δ +

∫ T

t

∣
∣ ̂(u · ∇u)(τ)∣∣ dτ,

14|v ·w| ≤ |v||w|.
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since
∣
∣∇̂u∣∣ = |ξ ||̂u|. Passing to the limit, as δ → 0, multiplying by e

a
σ |ξ |

1
σ , and

integrating over ξ ∈ R
3, we obtain

∥
∥e

a
σ
|·| 1

σ
û(T )

∥
∥
L1(R3)

+ μ

∫ T

t

∥
∥e

a
σ
|·| 1

σ
�̂u(τ )

∥
∥
L1(R3)

dτ ≤ ∥
∥e

a
σ
|·| 1

σ
û(t)

∥
∥
L1(R3)

+
∫ T

t

∫

R3
e
a
σ |ξ |

1
σ
∣
∣ ̂(u · ∇u)(τ )∣∣ dξdτ, (11.54)

because
∣
∣�̂u

∣
∣ = |ξ |2 |̂u|. Studying the last module above, we can assure

∣
∣ ̂(u · ∇u)(ξ)∣∣ =

∣
∣
∣
∣

3∑

j=1

ûjDju(ξ)

∣
∣
∣
∣ = (2π)−3

∣
∣
∣
∣

3∑

j=1

ûj ∗ D̂j u(ξ)

∣
∣
∣
∣

= (2π)−3
∣
∣
∣∣

3∑

j=1

∫

R3
ûj (η)D̂j u(ξ − η) dη

∣
∣
∣∣

≤ (2π)−3
∣
∣
∣
∣

∫

R3
û(η) · ∇̂u(ξ − η) dη

∣
∣
∣
∣

≤ (2π)−3
∫

R3
|̂u(η)|∣∣∇̂u(ξ − η)

∣
∣ dη.

Therefore, by (11.10), the last integral in (11.54) can be estimated as follows:

∫

R3
e

a
σ
|ξ | 1

σ
∣
∣ ̂(u · ∇u)(ξ)∣∣ dξ ≤ (2π)−3

∫

R3

∫

R3
e

a
σ
|ξ | 1

σ |̂u(η)|∣∣∇̂u(ξ − η)
∣
∣ dηdξ

≤ (2π)−3
∫

R3

∫

R3
e

a
σ |η|

1
σ |̂u(η)|

× e
a
σ |ξ−η|

1
σ
∣
∣∇̂u(ξ − η)

∣
∣ dηdξ

= (2π)−3
∫

R3

[
e
a
σ |ξ |

1
σ |̂u(ξ)|] ∗ [e a

σ |ξ |
1
σ
∣∣∇̂u(ξ)∣∣] dξ

= (2π)−3
∥
∥[e

a
σ |·|

1
σ |̂u|] ∗ [e a

σ |·|
1
σ
∣
∣∇̂u∣∣]∥∥

L1(R3)
.

Apply Young’s inequality for convolutions in order to obtain the following inequal-
ity:

∫

R3
e
a
σ |ξ |

1
σ
∣
∣ ̂(u · ∇u)(ξ)∣∣ dξ ≤ (2π)−3

∥
∥e

a
σ |·|

1
σ
û
∥
∥
L1(R3)

∥
∥e

a
σ |·|

1
σ ∇̂u∥∥

L1(R3)
.

(11.55)
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Let us obtain an estimate for the term
∥
∥e

a
σ |·|

1
σ ∇̂u∥∥

L1(R3)
above. Thus, Cauchy–

Schwarz’s inequality implies

∥
∥e

a
σ
|·| 1

σ ∇̂u∥∥
L1(R3)

=
∫

R3
e

a
σ
|ξ | 1

σ
∣
∣∇̂u(ξ)∣∣ dξ =

∫

R3
e
a
σ
|ξ | 1

σ |ξ ||̂u(ξ)| dξ

≤
(∫

R3
e

a
σ |ξ |

1
σ |ξ |2 |̂u(ξ)| dξ

) 1
2
(∫

R3
e
a
σ |ξ |

1
σ |̂u(ξ)| dξ

) 1
2

= ∥
∥e

a
σ |·|

1
σ
�̂u

∥
∥

1
2
L1(R3)

∥
∥e

a
σ |·|

1
σ
û
∥
∥

1
2
L1(R3)

, (11.56)

since |ξ |2 |̂u| = ∣
∣�̂u

∣
∣ and

∣
∣∇̂u∣∣ = |ξ ||̂u|. Thereby, by replacing (11.56) in (11.55),

one deduces
∫

R3
e

a
σ |ξ |

1
σ
∣∣ ̂(u · ∇u)(ξ)∣∣ dξ ≤ (2π)−3

∥∥e
a
σ |·|

1
σ
û
∥∥

3
2
L1(R3)

∥∥e
a
σ |·|

1
σ
�̂u

∥∥
1
2
L1(R3)

.

By using Cauchy–Schwarz’s inequality once again, we conclude

(2π)−3
∥
∥e

a
σ |·|

1
σ
û
∥
∥

3
2
L1(R3)

∥
∥e

a
σ |·|

1
σ
�̂u

∥
∥

1
2
L1(R3)

≤ 1

128π6μ

∥
∥e

a
σ |·|

1
σ
û
∥
∥3
L1(R3)

+ μ

2

∥
∥e

a
σ |·|

1
σ
�̂u

∥
∥
L1(R3)

.

Consequently, (11.54) can be rewritten as follows:

∥
∥e

a
σ
|·| 1

σ
û(T )

∥
∥
L1(R3)

+ μ

2

∫ T

t

∥
∥e

a
σ
|·| 1

σ
�̂u(τ )

∥
∥
L1(R3)

dτ ≤ ∥
∥e

a
σ
|·| 1

σ
û(t)

∥
∥
L1(R3)

+ 1

128π6μ

∫ T

t

∥
∥e

a
σ |·|

1
σ
û(τ )

∥
∥3
L1(R3)

dτ.

By Gronwall’s inequality,15 one gets

∥
∥e

a
σ
|·| 1

σ
û(T )

∥
∥2
L1(R3)

≤ ∥
∥e

a
σ
|·| 1

σ
û(t)

∥
∥2
L1(R3)

exp

{
1

64π6μ

∫ T

t

∥
∥e

a
σ
|·| 1

σ
û(τ )

∥
∥2
L1(R3)

dτ

}

,

for all 0 ≤ t ≤ T < T ∗, or equivalently,

(
−64π6μ

) d

dT

[

exp

{

− 1

64π6μ

∫ T

t

∥
∥e

a
σ |·|

1
σ
û(τ )

∥
∥2
L1(R3)

dτ

}]

≤ ∥
∥e

a
σ |·|

1
σ
û(t)

∥
∥2
L1(R3)

.

15Let f, g : [a, b] → R be continuous functions in [a, b] such that f (s) ≤ f (a)+∫ s

a
g(τ )f (τ) dτ,

for all s ∈ [a, b]. Then, f (s) ≤ f (a) exp
{ ∫ s

a
g(τ ) dτ

}
, for all s ∈ [a, b].
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Integrate from t to t0, with 0 ≤ t ≤ t0 < T ∗, in order to get

(
−64π6μ

)
exp

{
− 1

64π6μ

∫ t0

t

∥∥e
a
σ |·|

1
σ
û(τ )

∥∥2
L1(R3)

dτ

}
+ 64π6μ

≤ ∥∥e
a
σ |·|

1
σ
û(t)

∥∥2
L1(R3)

(t0 − t).

By passing to the limit, as t0 ↗ T ∗, and using Theorem 11.2.2, we have

64π6μ ≤ ∥
∥e

a
σ
|·| 1

σ
û(t)

∥
∥2
L1(R3)

(T ∗ − t), ∀ t ∈ [0, T ∗).

It proves Theorem 11.2.3. ��

11.2.4 Blow-Up Inequality Involving Hs
a,σ (R3)

The lower bound (11.7), in the case n = 1, can be rewritten as below. Let us clarify
that from now on T ∗ω < ∞ denotes the first blow-up time for the solution u ∈
C([0, T ∗ω);Hs

ω,σ (R
3)), where ω > 0.

Theorem 11.2.4 Assume that a > 0, σ > 1, and s ∈
(

1
2 ,

3
2

)
. Let u0 ∈ Hs

a,σ (R
3)

such that div u0 = 0. Consider that u ∈ C([0, T ∗a );Hs
a,σ

(
R

3
)
) is the maximal

solution for the Navier–Stokes equations (11.1) obtained in Theorem 11.1.11. If
T ∗a <∞, then

‖u(t)‖Hs
a√
σ
,σ
(R3) ≥

8π3√μ

C1
√
T ∗a − t

, ∀ t ∈ [0, T ∗a ),

where C1 :=
{

4πσ

[
2a

(
1√
σ
− 1

σ

)]−σ(3−2s)

�(σ (3 − 2s))

} 1
2

.

Proof This theorem is a direct implication of Theorem 11.2.3. First of all, notice
that a√

σ
∈ (0, a). As a result, it holds the following continuous embedding

Hs
a,σ

(
R

3
)
↪→ Hs

a√
σ
,σ

(
R

3
)

that comes from the inequality:

‖u‖Hs
a√
σ
,σ
(R3) ≤ ‖u‖Hs

a,σ (R3).

Thereby, we can guarantee, by Theorem 11.1.11 and the inequality above, that u ∈
C([0, T ∗a ),H s

a√
σ
,σ

(
R

3
)
) (since u ∈ C([0, T ∗a ),H s

a,σ

(
R

3
)
)) and also that

T ∗a√
σ

≥ T ∗a . (11.57)
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Moreover, by applying Theorem 11.2.3 and Cauchy–Schwarz’s inequality, it follows
that

8π3√μ
√
T ∗a − t

≤
∥
∥
∥
∥e

a
σ
|·| 1

σ
û(t)

∥
∥
∥
∥
L1(R3)

=
∫

R3
e
a
σ
|ξ | 1

σ |̂u(ξ)| dξ

≤
(∫

R3

(
1+ |ξ |2

)−s
e

2
(
a
σ
− a√

σ

)
|ξ | 1

σ

dξ

) 1
2

×
(∫

R3

(
1+ |ξ |2

)s
e

2 a√
σ
|ξ | 1

σ |̂u(ξ)|2 dξ
) 1

2

≤
(∫

R3
|ξ |−2se

2
(
a
σ − a√

σ

)
|ξ | 1

σ

dξ

) 1
2

×
(∫

R3

(
1+ |ξ |2

)s
e

2 a√
σ
|ξ | 1

σ |̂u(ξ)|2 dξ
) 1

2

≤ Ca,σ,s‖u(t)‖Hs
a√
σ
,σ
(R3), (11.58)

for all t ∈ [0, T ∗a ), where

C2
a,σ,s :=

∫

R3

1

|ξ |2s e
−2a

(
1√
σ
− 1

σ

)
|ξ | 1

σ

dξ

= 4πσ

[
2a

(
1√
σ
− 1

σ

)]−σ(3−2s)

�(σ (3− 2s)).

(Recall that s < 3/2 and σ > 1). It demonstrates Theorem 11.2.4. ��

11.2.5 Generalization of the Blow-Up Criteria

We are ready to prove the blow-up criteria given in (11.3)–(11.5) and (11.7) with
n > 1. Actually, it is enough to obtain a demonstration for the case n = 2; since,
the proof of this last statement follows by applying a simple argument of induction.

Theorem 11.2.5 Assume that a > 0, σ > 1, and s ∈
(

1
2 ,

3
2

)
. Let u0 ∈ Hs

a,σ

(
R

3
)

such that div u0 = 0. Consider that u ∈ C([0, T ∗a );Hs
a,σ

(
R

3
)
) is the maximal

solution for the Navier–Stokes equations (11.1) obtained in Theorem 11.1.11. If
T ∗a <∞, then

i) lim sup
t↗T ∗a

‖u(t)‖Hs
a√
σ
,σ
(R3) = ∞;

ii)
∫ T ∗a

t

∥
∥
∥
∥e

a
σ
√
σ
|·| 1

σ

û(τ )

∥
∥
∥
∥

2

L1(R3)

dτ = ∞;
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iii)

∥
∥
∥
∥e

a
σ
√
σ
|·| 1

σ

û(t)

∥
∥
∥
∥
L1(R3)

≥ 8π3√μ
√
T ∗a − t

;

iv) ‖u(t)‖Hs
a
σ ,σ

(R3) ≥
8π3√μ

C1
√
T ∗a − t

,

for all t ∈ [0, T ∗a ), and

C1 = Ca,σ,s :=
{

4πσ

[
2

a√
σ

(
1√
σ
− 1

σ

)]−σ(3−2s)

�(σ (3− 2s))

} 1
2

.

Proof First of all, let us inform that this result is, in its most part, an adaptation of
the proofs of the theorems established before. Understanding this, notice that (11.58)
implies

lim sup
t↗T ∗a

‖u(t)‖Hs
a√
σ
,σ
(R3) = ∞. (11.59)

It demonstrates i).
By applying i), as in the proof of Theorem 11.2.2, one can infer that

∫ T ∗a

t

∥∥
∥
∥e

a
σ
√
σ
|·| 1

σ

û(τ )

∥∥
∥
∥

2

L1(R3)

dτ = ∞, ∀ t ∈ [0, T ∗a ).

It proves ii).
Consequently, iii) follows from ii) and the proof of Theorem 11.2.3.
Moreover, as an immediate consequence of (11.59), one obtains

T ∗a ≥ T ∗a√
σ

. (11.60)

Thus, using inequalities (11.57) and (11.60), we reach

T ∗a = T ∗a√
σ

. (11.61)

Thereby, as in (11.58), by Cauchy–Schwarz’s inequality, we obtain

8π3√μ
√
T ∗a√

σ

− t
≤

∥
∥
∥
∥e

a
σ
√
σ
|·| 1

σ

û(t)

∥
∥
∥
∥
L1(R3)

=
∫

R3
e

a
σ
√
σ
|ξ | 1

σ |̂u(ξ)| dξ

≤
(∫

R3

(
1+ |ξ |2

)−s
e
−2

(
a
σ − a

σ
√
σ

)
|ξ | 1

σ

dξ

) 1
2
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×
(∫

R3

(
1+ |ξ |2

)s
e

2a
σ |ξ |

1
σ |̂u(ξ)|2 dξ

) 1
2

≤ Ca,σ,s‖u(t)‖Hs
a
σ ,σ

(R3), (11.62)

for all t ∈
[

0, T ∗a√
σ

)
, where

C2
a,σ,s =

∫

R3

1

|ξ |2s e
−2a

(
1
σ − 1

σ
√
σ

)
|ξ | 1

σ

dξ

= 4πσ

[
2

a√
σ

(
1√
σ
− 1

σ

)]−σ(3−2s)

�(σ (3− 2s)).

By (11.61) and (11.62), one has

‖u(t)‖Hs
a
σ ,σ

(R3) ≥
8π3√μ

Ca,σ,s

√
T ∗a − t

, ∀ t ∈ [0, T ∗a ). (11.63)

It completes the proof of iv). ��
Remark 11.2.6 Passing to the limit superior, as t ↗ T ∗a , in (11.63), we deduce

lim sup
t↗T ∗a

‖u(t)‖Hs
a
σ ,σ

(R3) = ∞.

Consequently, inequality (11.5), with n = 3, holds and the process above estab-
lished can be rewritten in order to guarantee the veracity of (11.3)–(11.5) and (11.7)
with n = 3. Therefore, inductively, one concludes that our blow-up criteria are valid
by assuming n > 1.

11.2.6 Main Blow-Up Criterion Involving Hs
a,σ (R3)

To guarantee the veracity of the blow-up criterion stated in (11.2), it will be
necessary to present two basic tolls. These will play an important role in the proof
of (11.2). The first one was obtained by Benameur [3] and we shall prove it for
convenience.

Lemma 11.2.7 Let δ > 3/2, and f ∈ Ḣ δ(R3) ∩ L2(R3). Then, the following
inequality is valid:

∥
∥f̂

∥
∥
L1(R3)

≤ Cδ‖f ‖1− 3
2δ

L2(R3)
‖f ‖

3
2δ

Ḣ δ(R3)
,
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where

Cδ = 2(2π)
3
2

(
1− 3

2δ

)√
π

3

[(
2δ

3
− 1

) 3
4δ +

(
2δ

3
− 1

)−1+ 3
4δ
]

.

Moreover, for each δ0 > 3/2 there exists a positive constantCδ0 such thatCδ ≤ Cδ0 ,
for all δ ≥ δ0.

Proof Consider ε > 0 arbitrary. Thereby, by using Cauchy–Schwarz’s inequality, it
results

∥
∥f̂

∥
∥
L1(R3)

=
∫

|ξ |≤ε
∣
∣f̂ (ξ)

∣
∣ dξ +

∫

|ξ |>ε
∣
∣f̂ (ξ)

∣
∣ dξ

≤
(∫

|ξ |≤ε
dξ

) 1
2
(∫

|ξ |≤ε
∣
∣f̂ (ξ)

∣
∣2 dξ

) 1
2

+
(∫

|ξ |>ε
1

|ξ |2δ dξ
) 1

2
(∫

|ξ |>ε
|ξ |2δ ∣∣f̂ (ξ)∣∣2 dξ

) 1
2

.

Now, apply Parseval’s identity and the fact that δ > 3/2 to reach

∥
∥f̂

∥
∥
L1(R3)

≤ 2

√
π

3
ε

3
2 (2π)

3
2 ‖f ‖L2(R3) + 2

√
π

2δ − 3
ε

3
2−δ‖f ‖Ḣ δ(R3)

= 2

√
π

3

⎡

⎣ε
3
2 (2π)

3
2 ‖f ‖L2(R3) +

ε
3
2−δ

√
2δ
3 − 1

‖f ‖Ḣ δ(R3)

⎤

⎦ .

Thus, we can guarantee that the function given by

ε �→ ε
3
2 (2π)

3
2 ‖f ‖L2(R3) +

ε
3
2−δ

√
2δ
3 − 1

‖f ‖Ḣ δ(R3)

attains its maximum at

⎡

⎣

√
2δ
3 − 1‖f ‖Ḣ δ (R3)

(2π)
3
2 ‖f ‖L2(R3)

⎤

⎦

1
δ

.

Consequently, we have

∥
∥f̂

∥
∥
L1(R3)

≤ 2(2π)
3
2

(
1− 3

2δ

)√
π

3

[(
2δ

3
− 1

) 3
4δ +

(
2δ

3
− 1

)−1+ 3
4δ
]

× ‖f ‖1− 3
2δ

L2(R3)
‖f ‖

3
2δ

Ḣ δ(R3)
.
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It is easy to check that

lim
δ→∞ 2(2π)

3
2

(
1− 3

2δ

)√
π

3

[(
2δ

3
− 1

) 3
4δ +

(
2δ

3
− 1

)−1+ 3
4δ
]

= 2(2π)
3
2

√
π

3
.

As a consequence, for each δ0 > 3/2, one deduces that

2(2π)
3
2

(
1− 3

2δ

)√
π

3

[(
2δ

3
− 1

) 3
4δ +

(
2δ

3
− 1

)−1+ 3
4δ
]

is bounded in the interval [δ0,∞).

It finishes the demonstration of Lemma 11.2.7. ��
It is important to point out that the affirmation below can also be used in order to

assure that (11.6) above is not trivial.

Lemma 11.2.8 Let a > 0, σ ≥ 1, s ∈
[
0, 3

2

)
, and δ ≥ 3

2 . For every f ∈ Hs
a,σ

(
R

3
)
,

we have that f ∈ Ḣ δ
(
R

3
)
. More precisely, one concludes that there is a positive

constant Ca,s,δ,σ such that

‖f ‖Ḣ δ(R3) ≤ Ca,s,δ,σ‖f ‖Hs
a,σ (R3).

Proof It is well known that R+ ⊆ ∪n∈N∪{0}[n, n+ 1). Notice that 2σ(δ− s) ∈ R+.
As a result, there is n0 ∈ N∪{0} that depends on σ, δ, and s such that n0

σ
≤ 2δ−2s <

n0+1
σ

. Consequently, one obtains t ∈ [0, 1] such that, by Young’s inequality, we infer

|ξ |2δ−2s = |ξ |t · n0
σ
+(1−t )· n0+1

σ = |ξ |t · n0
σ |ξ |(1−t )· n0+1

σ

≤ t|ξ | n0
σ + (1− t)|ξ | n0+1

σ ≤ |ξ | n0
σ + |ξ | n0+1

σ .

Therefore, one has

‖f ‖2
Ḣ δ(R3)

=
∫

R3
|ξ |2δ

∣
∣∣f̂ (ξ)

∣
∣∣
2
dξ ≤

∫

R3

[
|ξ | n0

σ + |ξ | n0+1
σ

]
|ξ |2s

∣
∣∣f̂ (ξ)

∣
∣∣
2
dξ

≤
∫

R3

[ (2a + 1)(2a)n0(n0 + 1)!
(2a)n0+1n0! |ξ | n0

σ + (2a + 1)(2a)n0+1(n0 + 1)!
(2a)n0+1(n0 + 1)!

× |ξ | n0+1
σ

]
|ξ |2s

∣
∣
∣f̂ (ξ)

∣
∣
∣
2
dξ.
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As a result, we get

‖f ‖2
Ḣ δ(R3)

≤ (n0 + 1)!(2a + 1)

(2a)n0+1

∫

R3

[ (2a|ξ | 1
σ )n0

n0! + (2a|ξ | 1
σ )n0+1

(n0 + 1)!
]
|ξ |2s

∣
∣
∣f̂ (ξ)

∣
∣
∣
2
dξ.

Hence, we deduce

‖f ‖2
Ḣ δ(R3)

≤ (n0 + 1)!(2a + 1)

(2a)n0+1

∫

R3
|ξ |2se2a|ξ | 1

σ

× |f̂ (ξ)|2 dξ ≤ (n0 + 1)!(2a + 1)

(2a)n0+1 ‖f ‖2
Hs
a,σ (R

3)
.

It completes the proof of Lemma 11.2.8. ��
At last, let us prove the lower bound given in (11.2). This inequality is our main

blow-up criterion of the solution obtained in Theorem 11.1.11.

Theorem 11.2.9 Assume that a > 0, σ > 1, and s ∈
(

1
2 ,

3
2

)
. Let u0 ∈ Hs

a,σ

(
R

3
)

such that div u0 = 0. Consider that u ∈ C
([0, T ∗);Hs

a,σ

(
R

3
))

is the maximal
solution for the Navier–Stokes equations (11.1) obtained in Theorem 11.1.11. If
T ∗ <∞, then

‖u(t)‖Hs
a,σ (R

3) ≥
aσ0+ 1

2 C2 exp{aC3(T
∗ − t)− 1

3σ }
(T ∗ − t)

2(sσ+σ0)+1
6σ

, ∀ t ∈ [0, T ∗),

where C2 = Cμ,s,σ,u0, C3 = Cμ,s,σ,u0 , and 2σ0 is the integer part of 2σ .

Proof This result follows from Lemma 11.2.7. In fact, choose δ = s + k
2σ , with

k ∈ N ∪ {0} and k ≥ 2σ , and δ0 = s + 1. By using Lemmas 11.2.7 and 11.2.8,
and (11.6), we obtain

8π3√μ√
T ∗ − t

≤ ‖û(t)‖L1(R3) ≤ Cs‖u(t)‖
1− 3

2(s+ k
2σ )

L2(R3)
‖u(t)‖

3
2(s+ k

2σ )

Ḣ
s+ k

2σ (R3)
.

By using the energy estimate

‖u(t)‖L2(R3) ≤ ‖u(t0)‖L2(R3), ∀ 0 ≤ t0 ≤ t < T ∗, (11.64)

see (2) in [7], one has

Cμ,s,u0

(T ∗ − t)
2s
3

(
Dσ,s,μ,u0

(T ∗ − t)
1

3σ

)k

≤ ‖u(t)‖2

Ḣ
s+ k

2σ (R3)
, (11.65)
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where Cμ,s,u0 = (
C−1
s 8π3√μ

) 4s
3 ‖u0‖

6−4s
3

L2(R3)
and Dσ,s,μ,u0 =

(
C−1
s 8π3

√
μ‖u0‖−1

L2(R3)

) 2
3σ
. Multiplying (11.65) by (2a)k

k! , one obtains

Cμ,s,u0

(T ∗ − t)
2s
3

(
2aDσ,s,μ,u0

(T ∗−t ) 1
3σ

)k

k! ≤
∫

R3

(2a)k

k! |ξ |
2
(
s+ k

2σ

)

|̂u(t)|2 dξ

=
∫

R3

(
2a|ξ | 1

σ

)k

k! |ξ |2s |̂u(t)|2 dξ.

By summing over the set {k ∈ N; k ≥ 2σ } and applying monotone convergence
theorem, it results

Cμ,s,u0

(T ∗ − t)
2s
3

⎡

⎢⎢
⎢
⎣

exp

{
2aDσ,s,μ,u0

(T ∗ − t)
1

3σ

}

−
∑

0≤k<2σ

(
2aDσ,s,μ,u0

(T ∗−t ) 1
3σ

)k

k!

⎤

⎥⎥
⎥
⎦

≤
∫

R3

⎡

⎢
⎣e2a|ξ | 1

σ −
∑

0≤k<2σ

(
2a|ξ | 1

σ

)k

k!

⎤

⎥
⎦ |ξ |2s |̂u(t)|2 dξ

≤
∫

R3
|ξ |2se2a|ξ | 1

σ |̂u(t)|2 dξ

≤ ‖u(t)‖2
Hs
a,σ (R

3)
,

for all t ∈ [0, T ∗). Finally, if we define

f (x) =
⎡

⎣ex −
2σ0∑

k=0

xk

k!

⎤

⎦
[
x−(2σ0+1)e−

x
2

]
, ∀ x ∈ (0,∞),

where 2σ0 is the integer part of 2σ ; then, f is continuous on (0,∞), f > 0,
lim
x→∞ f (x) = ∞ (it means that f is bounded below as x → ∞) and lim

x↗0
f (x) =

1

(2σ0 + 1)! (it implies that f is bounded below as x ↗ 0). Hence, there is a positive
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constant Cσ0 such that f (x) ≥ Cσ0 , for all x > 0. Thereby, we can write

‖u(t)‖2
Hs
a,σ (R3)

≥ Cμ,s,σ0,u0

(T ∗ − t)
2s
3

(
2aDσ,s,μ,u0

(T ∗ − t)
1

3σ

)2σ0+1

exp

{
aDσ,s,μ,u0

(T ∗ − t)
1

3σ

}

= a2σ0+1Cμ,s,σ,σ0,u0

(T ∗ − t)
2(sσ+σ0)+1

3σ

exp

{
aDσ,s,μ,u0

(T ∗ − t)
1

3σ

}

,

for all t ∈ [0, T ∗). Therefore, the demonstration of Theorem 11.2.9 is given.
��

In order to finish this chapter, let us combine the results obtained above with
the ones presented in the paper [3]. Thus, if it is considered that a > 0, σ ≥ 1,
s > 1

2 with s �= 3
2 , and u0 ∈ Hs

a,σ

(
R

3
)

satisfies divu0 = 0; then, there are an
instant T > 0 and a unique solution u ∈ C

([0, T ];Hs
a,σ

(
R

3
))

for the Navier–
Stokes equations (11.1). Moreover, the blow-up criteria (11.3)–(11.5) and (11.7)
established above are valid as well (it is necessary to replace the hypothesis σ ≥ 1

by σ > 1 in the case s ∈
(

1
2 ,

3
2

)
). On the other hand, the lower bound given in (11.2)

must be replaced by

‖(u, b)(t)‖Hs
a,σ (R

3) ≥
C1‖(u, b)(t)‖1− 2s

3
L2(R)

exp{aC2‖(u, b)(t)‖−
2

3σ
L2(R)

(T ∗ − t)− 1
3σ }

(T ∗ − t)
s
3

,

for all t ∈ [0, T ∗), in the case s > 3
2 . In fact, it follows from the proof established

in [3] without applying the estimate (11.64).
It is also important to point out that, considering the critical cases s = 1

2
and s = 3

2 , the local existence, uniqueness, and blow-up of solution for (11.1)
are not discussed here and are still open problems in the mathematical theory of
incompressible flows.
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Chapter 12
Mathematical Research for Models
Which is Related to Chemotaxis System

Jiashan Zheng

Abstract This paper proposes a survey and critical analysis focused on a variety of
chemotaxis models in biology, namely the Chemotaxis system and its subsequent
modifications, which, in several cases, have been developed to obtain models that
prevent the non-physical blow-up of solutions. The presentation is organized in
six parts. The first part focuses on background of the models which is related
to Chemotaxis system and its development. The second–five part are devoted to
the qualitative analysis of the (quasilinear) Keller–Segel model, the (quasilinear)
chemotaxis–haptotaxis model, the (quasilinear) chemotaxis system with consump-
tion of chemoattractant, and the (quasilinear) Keller–Segel–Navier–Stokes system.
Finally, an overview of the entire contents leads to suggestions for future research
activities.

Keywords Boundedness · Navier–Stokes system · Keller–Segel model ·
Chemotaxis models · Chemotaxis-haptotaxis model · Global existence ·
Nonlinear diffusion

12.1 Introduction

Mathematical analysis of biological phenomena has become more and more
important in understanding these complex processes [62]. Thus, the number of
mathematicians studying biological and medical phenomena and problems is
continuously increasing in recent years. Mathematical models of chemotaxis, the
cell movement induced by chemical substances, were introduced for the first time
by Patlak [67], and further developed by Keller and Segel [43–45]. Their model,
consisting of two coupled parabolic equations, has been studied in great detail in
the literature (see, e.g., Burger et al. [5], Winkler et al. [3, 39, 105, 108], Osaki and

J. Zheng (�)
School of Mathematics and Statistics Science, Ludong University, Yantai, P.R. China

© Springer Nature Switzerland AG 2019
H. Dutta et al. (eds.), Current Trends in Mathematical
Analysis and Its Interdisciplinary Applications,
https://doi.org/10.1007/978-3-030-15242-0_12

351

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15242-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-15242-0_12


352 J. Zheng

Yagi [64], Horstmann [37]). To describe chemotaxis of cell populations, the signal
is produced by the cells, an important variant of the quasilinear chemotaxis model

{
ut = ∇ · (φ(u)∇u)− χ∇ · (ψ(u)∇v),
vt = �v − v + u

(12.1.1)

was initially proposed by Painter and Hillen ([66], see also Winkler et al. [3, 80,
103]), where u denotes the cell density, while v describes the concentration of the
chemical signal. The function ψ measures the chemotactic sensitivity, which may
depend on u, φ(u) is the diffusion function. Various variants of the chemotaxis
model (12.1.1) have been extensively studied both theoretically and experimentally.
Throughout the main issue of the studies was whether the chemotaxis model allows
for a global-in-time solution or a chemotactic collapse (a solution blows up in finite).

If chemotaxis occurs in incompressible fluid, then the original chemotaxis system
needs to be coupled with another equation which characterizes the motion of the
fluid, and the resulting system can read as

⎧
⎪⎪⎨

⎪⎪⎩

ut +w · ∇u = �um − ∇ · (u∇v), x ∈ �, t > 0,
vt +w · ∇v = �v − v + u, x ∈ �, t > 0,
wt + κ(w · ∇)w + ∇P = �w + u∇φ, x ∈ �, t > 0,
∇ · w = 0, x ∈ �, t > 0,

(12.1.2)

where u and v are denoted as before, and m > 0, φ is a given gravitational
potential. Here w = w(x, t), P = P(x, t), and κ ∈ R denote the velocity
of incompressible fluid, the associated pressure, the strength of nonlinear fluid
convection, respectively. System (12.1.2) is called as Keller–Segel–(Navier)–Stokes
system with nonlinear diffusion (see Zheng [128], Wang et al. [91, 94, 95]), which
arises in the modeling of bacterial populations in which individuals, besides moving
randomly, partially adjust their movement according to the concentration gradients
of a chemical which they produce themselves.

Before going into our mathematical analysis, we recall some important pro-
gresses on system (12.1.2) and its variants. The following chemotaxis-Navier-
Stokes system involving tensor-valued sensitivity with saturation

⎧
⎪⎪⎨

⎪⎪⎩

ut +w · ∇u = �um −∇ · (uS(x, u, v)∇v), x ∈ �, t > 0,
vt + w · ∇v = �v − uf (v), x ∈ �, t > 0,
wt + κ(w · ∇)w +∇P = �w + u∇φ, x ∈ �, t > 0,
∇ ·w = 0, x ∈ �, t > 0.

(12.1.3)

was proposed by Tuval et al. in [87]. Systems of this type arise in the modeling
of populations of aerobic bacteria when suspended into sessile drops of water
([22, 87]). If S(x, u, v) := S(v) is a scalar function, by making use of energy-
type functionals, some local and global solvability of corresponding initial value
problem for (12.1.3) in either bounded or unbounded domains have been obtained
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in the past years (see Lorz et al. [24, 54], Winkler et al. [3, 79, 110, 113], Chae et al.
[10] and references therein). If the chemotactic sensitivity S(x, n, c) fulfills

|S(x, n, c)| ≤ CS(1+ n)−α for some CS > 0 and α > 0, (12.1.4)

which is regarded as a tensor rather than a scalar one ([116]), then system (12.1.2)
(with rotational flux) has only been studied very rudimentarily so far due to loss of
some natural gradient-like structure (see Ishida [40], Winkler [112]).

The aim of this section is to develop a survey and critical analysis of the
aforementioned analytic problems, namely a qualitative analysis of the solutions
and derivation of models at the tissue scale from the underlying description at the
cellular dynamics level. Hopefully, the critical analysis proposed in this section
will provide and answer the aforementioned questions and generate new trends in
research activity in this field.

Before giving the main results, we will give some preliminary lemmas, which
play a crucial role in the following proofs. As for the proofs of these lemmas, here
we will not repeat them again.

Lemma 12.1.1 ([86]) Let y(t) ≥ 0 be a solution of problem

{
y ′(t)+ Ayp ≤ B t > 0,
y(0) = y0

(12.1.5)

with A > 0, p > 0, and B ≥ 0. Then we have

y(t) ≤ max

{

y0,

(
B

A

) 1
p

}

, t > 0.

Lemma 12.1.2 ([96]) Let θ ∈ (0, p). There exists a positive constant CGN such
that for all u ∈ W 1,2(�) ∩ Lθ(�),

‖u‖Lp(�) ≤ CGN(‖∇u‖aL2(�)
‖u‖1−a

Lθ (�)
+ ‖u‖Lθ (�)),

is valid with a =
N
θ
− N

p

1− N
2 + N

θ

∈ (0, 1).

Lemma 12.1.3 ([28, 41]) Let s ≥ 1 and q ≥ 1. Assume that p > 0 and a ∈ (0, 1)
satisfy

1

2
− p

N
= (1− a)

q

s
+ a(

1

2
− 1

N
) and p ≤ a.

Then there exist c0, c
′
0 > 0 such that for all u ∈ W 1,2(�) ∩ L

s
q (�),

‖u‖Wp,2(�) ≤ c0‖∇u‖aL2(�)
‖u‖1−a

L
s
q (�)

+ c′0‖u‖L s
q (�)

.
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Lemma 12.1.4 ([60]) Let � be a bounded domain in R
N with smooth boundary. If

w ∈ C2(�̄) satisfies
∂w

∂ν
= 0, then

∂|∇w|2
∂ν

≤ C�|∇w|,

where C� > 0 is a constant depending only on the curvatures of �.

Lemma 12.1.5 ([7, 33]) Suppose γ ∈ (1,+∞) and g ∈ Lγ ((0, T );Lγ (�)). On
the other hand, assuming v is a solution of the following initial boundary value

⎧
⎪⎪⎨

⎪⎪⎩

vt −�v + v = g,
∂v

∂ν
= 0,

v(x, 0) = v0(x).

(12.1.6)

Then there exists a positive constant Cγ such that if s0 ∈ [0, T ), v(·, s0) ∈ W 2,γ (�)

with
∂v(·, s0)

∂ν
= 0, then

∫ T

s0

eγ s‖�v(·, t)‖γLγ (�)ds

≤ Cγ

(∫ T

s0

eγ s‖g(·, s)‖γLγ (�)ds + eγ s0(‖v0(·, s0)‖γLγ (�) + ‖�v0(·, s0)‖γLγ (�))

)
.

(12.1.7)

Lemma 12.1.6 ([134]) Let

A1 = 1

δ + 1

[
δ + 1

δ

]−δ (
δ − 1

δ

)δ+1

(12.1.8)

and H(y) = y + A1y
−δχδ+1Cδ+1 for y > 0. For any fixed δ ≥ 1, χ, Cδ+1 > 0,

then

min
y>0

H(y) = (δ − 1)

δ
C

1
δ+1
δ+1χ.

Proof It is easy to verify that

H ′(y) = 1− A1δCδ+1

(
χ

y

)δ+1

.

Let H ′(y) = 0, we have

y = (A1Cδ+1δ)
1

δ+1 χ.
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On the other hand, by limy→0+ H(y) = +∞ and limy→+∞H(y) = +∞, we have

miny>0 H(y) = H
[
(A1Cδ+1δ)

1
δ+1 χ

]
= (A1Cδ+1)

1
δ+1

(
δ

1
δ+1 + δ−

δ
δ+1

)
χ

= (δ − 1)

δ
C

1
δ+1
δ+1χ. ��

12.2 The (Quasilinear) Keller–Segel Model

The structure of the original formulation of the (quasilinear) Keller–Segel model
[43, 44] with logistic term is as follows:

{
ut = ∇ · (φ(u)∇u)− χ∇ · (ψ(u)∇v) + f (u), x ∈ �, t > 0,
τvt = �v − v + u, x ∈ �, t > 0.

(12.2.1)

During the past four decades, the Keller–Segel models (12.2.1) have been studied
extensively by many authors, where the main issue of the investigation was whether
the solutions of the models are bounded or blow-up (see, e.g., Cieślak and Winkler
[18], Calvez and Carrillo [6], Kiselev and Ryzhik [46], Osaki [64, 65], Corrias et al.
[19, 20], Painter and Hillen [34, 66], Perthame [68], Rascle and Ziti [69], Winkler et
al. [2, 102, 104, 106], Zheng et al. [123–125, 133, 134], Nagai et al. [63], Mizukami
et al. [59, 61], Viglialoro [88]), where τ = 0 or 1.

When f ≡ 0 in (12.2.1), the classical parabolic–elliptic (or fully parabolic type)
chemotaxis model has been extensively studied over the past decades. For instance,
for the case φ(u) ≡ 1, either τ = 0 or τ = 1 has been thoroughly investigated to
study the question whether solutions blow up in finite time or exist globally (see, for
instance, Gajewski and Zacharias [25], Herrero and Velázquez [31, 32], Horstmann
et al. [37–39]). In particular, in [38], Horstmann and Wang showed that the solutions

are global and bounded provided that ψ(u) ≤ c(u+ 1)
2
N−ε for all u ≥ 0 with some

ε > 0 and c > 0; on the other hand, if ψ(u) ≥ c(u + 1)
2
N+ε for all u ≥ 0

with ε > 0 and c > 0, � ⊂ R
N(N ≥ 2) is a ball, and some further technical

conditions are satisfied, then the solutions become unbounded in finite or infinite
time. Moreover, for more general φ(u), there exist many results concerning the
question whether the solutions are bounded or blow-up (see, e.g., Tao and Winkler
[78], Ishida et al. [41], Winkler [108], Cieślak and Stinner [15, 16]). In [78], Tao

and Winkler proved that if
ψ(u)

φ(u)
≤ c(u+ 1)

2
N+ε for all u ≥ 0 with some ε > 0 and

c > 0, then the corresponding solutions are global and bounded provided that φ(u)
satisfies some another technical conditions. Recently, Ishida et al. [41] improve the
results of [78] in the case of degenerate diffusion on a bounded non-convex domain.
The breakthrough of the proof for the finite-time blow-up to the fully parabolic–
parabolic Keller–Segel model has been made recently in [15] (see also [14, 18, 108])
by using a new method which strongly depends on the existence of a Lyapunov
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functional. In the case of a nonlinear diffusion system they even prove an optimal
(with respect to possible nonlinear diffusions generating explosion in finite time of
solutions) finite time blow-up result.

As we all know that logistic-type growth restrictions have been detected to
prevent blow-up in (12.2.1). Particularly, for the case f (u) = au − bu2 (the
logistic source), the problem has been studied extensively by many authors (see,
e.g., Tello and Winkler [76], Herrero and Velázquez [30], Winkler [102, 109, 111],
Lankeit [49], Cao et al. [7, 9], Li and Xiang [51]). In particular, if τ = 0, φ(u) ≡
1, ψ(u) = u, Tello and Winkler [76] discussed the existence of global bounded
classical solutions to problem (12.2.1) under the assumption that either N ≤ 2, or
that the logistic damping effect b > N−2

N
χ . In [104], Winkler proved the parabolic–

parabolic models are global and bounded provided that b is sufficiently large. When
τ = 0, φ(u) ≡ 1, and logistic damping effect b possibly being smaller than
two, it is proved in [102] that the global very weak solutions of system (12.2.1)
were constructed for rather arbitrary initial data under the assumption that b >

2 − 1
N
,N ≥ 2. Moreover, for more general f (u), there have been many papers

which dealt with the question whether the solutions are global bounded or blow-up
(see Wang et al. [98, 100], Winkler [109]). For example, the logistic source f (u)

satisfies (12.2.3), τ = 0, ψ(u) = u, φ ∈ C2([0,∞)), φ(u) ≥ Cφu
m−1( for all u >

0), φ(u) > 0( for all u ≥ 0), if one of the following cases holds: (i) r ≥ 2 and
b > b∗, where

b∗ :=

⎧
⎪⎨

⎪⎩

N[2−m] − 2

(2−m)N
χ if 2 > m+ 2

N
,

0 if 2 ≤ m+ 2

N
,

(12.2.2)

(ii) r ∈ (1, 2) and m ≥ 2 − 2

N
, the authors of [100] used the standard

Moser’s technique to prove that model (12.2.1) has a unique nonnegative classical
solution (u, v) which is global bounded. It should be pointed out that Wang et al.
[98] obtained the unique global uniformly bounded classical solution (u, v) of
problem (12.2.1) when the nonlinearitiesφ(u) = (u+1)−α andψ(u) = u(u+1)β−1

with 0 < α + β < 2
N

, and f satisfies (12.2.3).
Going beyond these boundedness statements, a number of results are available

which show that the interplay of chemotactic cross-diffusion and cell kinetics of
logistic-type may lead to quite a colorful dynamics. For instance, if N = 1, τ =
0, φ(u) ≡ 1, ψ(u) = u, f (u) = au − bu2 with b ≥ 1, Winkler ([109]) obtained
that the solutions of (12.2.1) may become large at intermediate time scales, thus
exceeding the system’s carrying capacity to an arbitrary extent (though not blowing
up). On the other hand, the result in [106] indicates that chemotaxis models may
admit finite-time blow-up solutions even in the presence of certain logistic-type
growth inhibitions, provided the latter are suitably weak.
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In this part, we assume that ψ(u) describes the chemotactic sensitivity of cell
population and the function f : [0,∞) �→ R is smooth and satisfies f (0) = 0 as
well as

f (u) ≤ a − bur for all u ≥ 0 (12.2.3)

with some a ≥ 0, b > 0 and r > 1. Moreover, we assume that the functions φ(u)
and ψ(u) satisfy

φ,ψ ∈ C2([0,∞)), φ(u) > 0 and ψ(u) ≥ 0 for all u ≥ 0. (12.2.4)

Moreover, in order to prove our results, we need to impose the conditions that there
exist some constants q > 0,m ≥ 0, Cφ and Cψ > 0 such that

φ(u) ≥ Cφu
m−1 for all u ≥ 1 (12.2.5)

and

ψ(u) ≤ Cψu
q for all u ≥ 1. (12.2.6)

The following local existence result is rather standard; since a similar reasoning
in [7, 18, 78, 97, 100, 114], see for example. However, we could not find a precise
reference in the literature that exactly matches to our situation, we include a short
proof for the sake of completeness.

Lemma 12.2.1 ([120, 121]) Assume that the nonnegative function u0(x) ∈
W 1,∞(�), φ and ψ satisfy (12.2.4), f ∈ W

1,∞
loc ([0,∞)) with f (0) ≥ 0. Then there

exist a maximal existence time Tmax ∈ (0,∞] and a pair nonnegative functions
(u, v) ∈ C0(� × [0, Tmax)) ∩ C2,1(� × [0, Tmax)) classically solving (12.2.1) in
�× [0, Tmax). Moreover, if Tmax < +∞, then

‖u(·, t)‖L∞(�) →∞ as t → Tmax (12.2.7)

is fulfilled.

Proof Let T ∈ (0, 1) be specified below and we consider the closed bounded convex
subset

S := {ū ∈ X|‖ū(·, t)‖L∞(�) ≤ R for all t ∈ [0, T ]}

of the space

X := C0(�̄× [0, T ]),
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where R = ‖u0‖L∞(�)+1 and δ > 0. For ū ∈ X, we introduce a mapping � : S �→
S such that �(ū) = u, where u is the solution of

⎧
⎪⎪⎨

⎪⎪⎩

ut − div {φ(ū)∇u} = −χ∇ · (ψ(u)∇v) + f (u), x ∈ �, t ∈ (0, T ),
∂u

∂ν
= 0, x ∈ ∂�, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ �

(12.2.8)
with v being the solution of

⎧
⎨

⎩

τvt = �v − v + ū, x ∈ �, t ∈ (0, T ),
∂v

∂ν
= 0, x ∈ ∂�, t ∈ (0, T ).

(12.2.9)

In the following we will use the Schauder fixed point theorem to show that for T
small enough � has a fixed point. To this end, firstly, by the regularity theory of the
partial differential equation (Theorem 8.34 of [27], see also [29]) there is a unique
solution v(·, t) ∈ C1+δ(�) to (12.2.9) for some δ ∈ (0, 1). Moreover, due to the
Sobolev embedding theorem, we have

‖∇v‖L∞(�×(0,T )) ≤ C1‖�v‖L∞(0,T );W 2,p(�)) ≤ C2‖ū‖L∞((0,T );Lp(�))

(12.2.10)

with p > n and some positive constants C1 and C2. On the other hand, by (12.2.4),
we obtain that there exists constant C > 0 such that

‖φ(ū)‖L∞(�×(0,T )) ≤ C.

Hence, applying the classical parabolic regularity theory (Theorem V 6.1 of [48] )

to conclude that there exists θ ∈ (0, 1) and C > 0 such that u ∈ Cθ, θ2 (�× (0, T ))
and

‖u‖
C
θ, θ2 (�×(0,T )) ≤ C, (12.2.11)

where C depending on min
0≤s≤Rφ(ū) and ‖∇v‖L∞((0,T );Cθ(�̄)). Thus, we have

max
0≤t≤T ‖u(·, t)‖L∞(�) ≤ ‖u0‖L∞(�) + Ct

θ
2 . (12.2.12)

Now, choosing T < C− 2
θ in (12.2.12) we conclude that

max
0≤t≤T ‖u(·, t)‖L∞(�) ≤ ‖u0‖L∞(�) + 1. (12.2.13)
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Hence, it then follows from � is a compact mapping that � maps S into itself for
such T . From (12.2.11) we also infer that � is a compact mapping. Therefore, the
Schauder fixed point theorem ensures the existence of a fixed point u ∈ S of �.
Employing the regularity theory for elliptic equations we have v(·, t) ∈ C2+θ (�).

Then by (12.2.11) we have v ∈ C2+θ,1+ θ
2 (�)(� × [τ, T ]) for all τ ∈ (0, T ). The

regularity theory for parabolic equations (Theorem V 6.1 of [48] ) thus entails u ∈
C2+θ,1+ θ

2 (�)(�× [τ, T ]). The solution may be prolonged in the interval [0, Tmax),
and either if Tmax = ∞ or Tmax <∞, the latter case entails that (12.2.7) holds.

Since f (0) ≥ 0 the parabolic comparison principle ensures u is nonnegative, and
hence the elliptic comparison principle applied to the second equation in (12.2.1)
implies v is nonnegative. ��

12.2.1 The Quasilinear Parabolic–Elliptic Keller–Segel System
(τ = 0)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = ∇ · (φ(u)∇u)− χ∇ · (ψ(u)∇v) + f (u), x ∈ �, t > 0,
0 = �v − v + u, x ∈ �, t > 0.
∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �

(12.2.14)

Theorem 12.2.1 ([120]) Assume that τ = 0 and the initial data u0(x) is nonnega-
tive function with u0(x) ∈ W 1,∞(�), f satisfies (12.2.3) with some a ≥ 0, b > 0
and r > 1, φ and ψ satisfy (12.2.4)–(12.2.6). If one of the following cases holds:

(i) q + 1 < max{r,m+ 2

N
};

(ii)

b > b∗ := N[r −m] − 2

(r −m)N + 2(r − 2)
χCψ if q + 1 = r;

there exists a pair (u, v) ∈ C0(�̄ × [0,∞)) ∩ C2,1((�̄ × (0,∞)) which
solves (12.2.14) in the classical sense. Moreover, both u and v are bounded
in �× (0,∞).

Lemma 12.2.2 Assume that f satisfies (12.2.3) and (u, v) is the solution
of (12.2.14). Then for any T ∈ (s, Tmax), there exists C > 0 such that

∫

�

uα(x, t)dx ≤ C for all t ∈ (s, T )
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and
∫ T

s

∫

�

ur(x, t)dxdt ≤ C(T + 1),

where 0 < α ≤ 1.

Proof Integrating (12.2.14)1 (the first equation of (12.2.14)) over � and
using (12.2.3), we obtain

d

dt

∫

�

u(x, t)dx =
∫

�

f (u(x, t))dx ≤ a|�| − b

∫

�

ur(x, t)dx. (12.2.15)

Due to r > 1 and the Hölder inequality, we conclude that

d

dt

∫

�

u(x, t)dx + b|�|1−r
(∫

�

u(x, t)dx

)r

≤ a|�|.

Hence, using Lemma 12.1.1 we can get

∫

�

u(x, t)dx ≤ max{K|�|, (a
b
)

1
r |�|} for all t ∈ (s, T ). (12.2.16)

If 0 < α < 1, by (12.2.16) and the Hölder inequality we have

∫

�

uα(x, t)dx ≤
(∫

�

u(x, t)dx

)α

|�|1−α ≤ (max{K, (
a

b
)

1
r })α|�|. (12.2.17)

On the other hand, integrating (12.2.15) over (s, T ) with respect to t and
using (12.2.19), we have

∫ T

s

∫

�

ur(x, t)dxdt ≤ 1

b

(
a|�|T +

∫

�

u(x, s)dx

)

≤ |�|
b

(aT +K)

≤ |�|
b

(a +K)(T + 1).

(12.2.18)

Finally, choosing C = [(max{K, (a
b
)

1
r })α + a+K

b
]|�| and using (12.2.17)

and (12.2.18), we can get the results. ��
In order to discuss the boundedness and classical solution of (12.2.14)

(or (12.2.63), see Sect. 12.2.2), in light of Lemma 12.2.1, firstly, let us pick any
s0 ∈ (0, Tmax) and s0 ≤ 1, there exists K > 0 such that

‖u(τ)‖L∞(�) ≤ K, ‖v(τ )‖L∞(�) ≤ K and ‖�v(τ)‖L∞(�)

≤ K for all τ ∈ [0, s0]. (12.2.19)
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Lemma 12.2.3 Assume that f satisfies (12.2.3) with q + 1 < r , φ and ψ

satisfy (12.2.4)–(12.2.6). Let (u, v) be a solution to (12.2.14) on (0, Tmax) and

κr =
{
r − 1 if 1 < r ≤ 2,
1 if r ≥ 2.

(12.2.20)

Then there exist M0 > 0 and M > 0, depending on a, b, q, r K and |�| only, such
that

∫

�

uμk+κr (x, t)dx ≤ C2M
μk+κr (T + 1) ∀ t ∈ (s, T ),

where μk = (r − q)kκr + r − 1− q and k ≥ 1.

Proof For any β ≥ −1, multiplying (12.2.14)1 by uμk+β , integrating over � and
using (12.2.5), we get

1

μk + β + 1

d

dt
‖u‖μk+β+1

Lμk+β+1(�)
+ Cφ(μk + β)

∫

�

um+μk+β−2|∇u|2dx

≤ −χ
∫

�

∇ · (ψ(u)∇v)uμk+βdx +
∫

�

uμk+βf (u)dx. (12.2.21)

Integrating by parts to the first term on the right-hand side of (12.2.21) and using
q+1 < r and the Young inequality, we obtain from the second equation in (12.2.14)

−χ
∫

�

∇ · (ψ(u)∇v)uμk+βdx

= (μk + β)χ

∫

�

ψ(u)uμk+β−1∇u · ∇vdx

= (μk + β)χ

∫

�

∇�(u) · ∇vdx
= −(μk + β)χ

∫

�

�(u)�vdx

≤ (μk + β)χ

∫

�

�(u)udx

= (μk + β)χ

∫

�

∫ u

1
ψ(τ)τμk+β−1dτudx

≤ μk + β

μk + β + q
χCψ

∫

�

uμk+β+q+1dx

≤ χCψ

∫

�

uμk+β+q+1dx

≤ b

2

∫

�

uμk+β+rdx + C1,

(12.2.22)
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where

�(u) =
∫ u

1
ψ(τ)τμk+β−1dτ, (12.2.23)

C1 := r − q − 1

μk + β + r

(
b

2
× μk + β + r

μk + β + q + 1

)−μk+β+q+1
r−q−1

(χCψ)
μk+β+r
r−q−1 |�|

= r − q − 1

μk + β + r

(
b

2

)− q
r−q−1

(χCψ)
r−1

r−q−1

(
1+ r − q − 1

μk + β + q + 1

)−μk+β+q+1
r−q−1

×
[(

2χCψ

b

) 1
r−q−1

]μk+β+1

|�|

≤ (r − q − 1)

(
b

2

)− q
r−q−1

(χCψ)
r−1

r−q−1

(
1+ r − q − 1

μk + β + q + 1

)−μk+β+q+1
r−q−1 |�|

×

[(
2χCψ

b

) 1
r−q−1

]μk+β+1

μk + β + 1
. (12.2.24)

Here we have used the fact that r > 1, u and v are nonnegative functions. On the
other hand, due to (12.2.3), we have

∫

�

uμk+βf (u)dx ≤
∫

�

uμk+β(a − bur)dx. (12.2.25)

Inserting (12.2.25) and (12.2.22) into (12.2.21), we have

1

μk + β + 1

d

dt
‖u‖μk+β+1

Lμk+β+1(�)
+ Cφ(μk + β)

∫

�

um+μk+β−2|∇u|2dx

≤ −b

2

∫

�

uμk+β+rdx + a

∫

�

uμk+βdx + C1. (12.2.26)

Since r > 1, and with the help of the Young inequality, we see that

1

μk + β + 1

d

dt
‖u‖μk+β+1

Lμk+β+1(�)
+ Cφ(μk + β)

∫

�

um+μk+β−2|∇u|2dx

≤ −1

4
b

∫

�

uμk+β+rdx + C1 + C2, (12.2.27)
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where

C2 := r

μk + β + r

(
b

4
× μk + β + r

μk + β

)−μk+β
r

(a)
μk+β+r

r |�|

= r

μk + β + r

(
b

4

) 1
r

(a)
r−1
r

(
1+ r

μk + β

)−μk+β
r

[(
4a

b

) 1
r

]μk+β+1

|�|

≤ r

(
b

4

) 1
r

(a)
r−1
r

(
1+ r

μk + β

)−μk+β
r |�|

[(
4a
b

) 1
r

]μk+β+1

μk + β + 1
.

(12.2.28)
Now, choosing

M1 = max

{

(r − q − 1)

(
b

2

)− q
r−q−1

(χCψ)
r−1

r−q−1 , r

(
b

4

) 1
r

(a)
r−1
r

}

|�|

and

M2 = max

{

1+
(

4a

b

) 1
r

, 1+
(

2χCψ

b

) 1
r−q−1

}

,

then by (12.2.24), (12.2.27) and (12.2.28), we have

1

μk + β + 1

d

dt
‖u‖μk+β+1

Lμk+β+1(�)
+ 1

4
b

∫

�

uμk+β+rdx ≤ M1
M

μk+β+1
2

μk + β + 1
.

(12.2.29)

After integrating (12.2.29) over (s, T ), then we have

∫

�

uμk+β+1(x, t)dx ≤
∫

�

uμk+β+1(x, s)dx +M1M
μk+β+1
2 T for any t ∈ (s, T ),

(12.2.30)
which together with (12.2.19) implies that

∫

�

uμk+β+1(x, t)dx ≤ Kμk+β+1|�| +M1M
μk+β+1
2 T ≤M0M

μk+β+1(T + 1)

(12.2.31)

with M0 = M1+|�|, M = M2+K . In particular, choosing β = κr −1 in (12.2.31)
and using κr > 0, then we have

∫

�

uμk+κr (x, t)dx ≤ M0M
μk+κr (T + 1). (12.2.32)

This completes the proof of Lemma 12.2.3. ��
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Lemma 12.2.4 Assume that f satisfies (12.2.3) with q + 1 = r , φ and ψ

satisfy (12.2.4)–(12.2.6). Let (u, v) be a solution to (12.2.14) on (0, Tmax). Then

for any T ∈ (s, Tmax) and k ∈ (1,
χCψ + bq − b

(χCψ − b)+
), there exists a positive constant

C such that

‖u(·, t)‖Lk(�) ≤ C for all t ∈ (s, T ) (12.2.33)

holds.

Proof Multiplying (12.2.14)1 by uk−1 and integrating over �, we get

1

k

d

dt
‖u‖k

Lk(�)
+ (k − 1)

∫

�

uk−2φ(u)|∇u|2dx

≤ −χ
∫

�

∇ · (ψ(u)∇v)uk−1dx +
∫

�

uk−1f (u)dx. (12.2.34)

Integrating by parts to the first term on the right-hand side of (12.2.34), we obtain
from the second equation in (12.2.14)

−χ
∫

�

∇ · (ψ(u)∇v)uk−1dx

= (k − 1)χ
∫

�

ψ(u)uk−2∇u · ∇vdx
= (k − 1)χ

∫

�

∇�̃(u) · ∇vdx
≤ (k − 1)χ

∫

�

�̃(u)udx

≤ k − 1

k + q − 1
χCψ

∫

�

uq+kdx,

(12.2.35)

where

�̃(u) =
∫ u

1
ψ(τ)τ k−2dτ. (12.2.36)

Inserting (12.2.35) into (12.2.34) and using (12.2.5), we have

1

k

d

dt
‖u‖k

Lk(�)
+ (k − 1)Cφ

∫

�

um+k−3φ(u)|∇u|2dx

≤ k − 1

k + q − 1
χCψ

∫

�

uq+kdx +
∫

�

uk−1f (u)dx, (12.2.37)

which combined with (12.2.3) and q + 1 = r implies that

1

k

d

dt
‖u‖k

Lk(�)
≤ −

(
b − k − 1

k + q − 1
χCψ

)∫

�

uq+kdx + a

∫

�

uk−1dx.

(12.2.38)
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Due to k ∈ (1,
χCψ + bq − b

(χCψ − b)+
), b − k − 1

k + q − 1
χCψ > 0, it then follows from the

Young inequality that

1

k

d

dt
‖u‖k

Lk(�)
≤ −1

2

(
b − k − 1

k + q − 1
χCψ

)∫

�

uq+kdx + C1 (12.2.39)

with C1 > 0 depends only on χ,Cψ, b, a, and q. Thus, by the Höder inequality, we
have

1

k

d

dt
‖u‖k

Lk(�)
+ 1

2

(
b − k − 1

k + q − 1
χ

)
|�|−

q

k

(∫

�

ukdx

) q+k
k ≤ C1.

(12.2.40)

By using Lemma 12.1.1, we have the boundedness of ‖u(·, t)‖Lk(�) for all t ∈
(s, T ). The proof Lemma 12.2.4 is complete. ��
Lemma 12.2.5 Assume that f satisfies (12.2.3) with q + 1 = r and b > b∗.
Suppose φ and ψ satisfy (12.2.4)–(12.2.6). Let (u, v) be a solution to (12.2.14)
on (0, Tmax). Then for any T ∈ (s, Tmax) and for all k > 1, there exists a positive
constant C such that

‖u(·, t)‖Lk(�) ≤ C for all t ∈ (s, T ) (12.2.41)

holds.

Proof Multiplying (12.2.14)1 by uk−1 and integrating over �, we get

1

k

d

dt
‖u‖k

Lk(�)
+ (k − 1)

∫

�

uk−2φ(u)|∇u|2dx

≤ −χ
∫

�

∇ · (ψ(u)∇v)uk−1dx +
∫

�

uk−1f (u)dx. (12.2.42)

Integrating by parts to the first term on the right-hand side of (12.2.42), we obtain
from the second equation in (12.2.14)

−χ
∫

�

∇ · (ψ(u)∇v)uk−1dx

= (k − 1)χ
∫

�

ψ(u)uk−2∇u · ∇vdx
= (k − 1)χ

∫

�

∇�̃(u) · ∇vdx

≤ (k − 1)χ
∫

�

�̃(u)udx

≤ k − 1

k + q − 1
χCψ

∫

�

uq+kdx,

(12.2.43)

where �̃(u) is given by (12.2.36).
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Inserting (12.2.43) into (12.2.42) and using (12.4.8), we have

1

k

d

dt
‖u‖k

Lk(�)
+ (k − 1)Cφ

∫

�

um+k−3φ(u)|∇u|2dx

≤ k − 1

k + q − 1
χCψ

∫

�

uq+kdx +
∫

�

uk−1f (u)dx,

which together with q + 1 = r implies that

1

k

d

dt
‖u‖k

Lk(�)
+ 4Cφ(k − 1)

(m+ k − 1)2
|∇um+k−1

2 |22

≤
(

k − 1

k + q − 1
χCψ − b

)∫

�

uq+kdx + a

∫

�

uk−1dx. (12.2.44)

It then follows from the Young inequality that

1

k

d

dt
‖u‖k

Lk(�)
+ 4Cφ(k − 1)

(m+ k − 1)2 |∇u
m+k−1

2 |22
≤

(
k − 1

k + q − 1
χCψ + a − b

)∫

�

uq+kdx + a|�|.
(12.2.45)

On the other hand, due to b > b∗, we have

χCψ + bq − b

(χCψ − b)+
>

N(r −m)

2
.

Hence, we can choose some k′ ∈ (
N[r −m]

2
,
χCψ + bq − b

(χCψ − b)+
). Therefore, by

Lemma 12.2.4 we obtain that there exists a positive constant C := C(‖u0‖Lk′ (�))
such that

‖u(·, t)‖
Lk′ (�) ≤ C for all t ∈ (s, Tmax). (12.2.46)

Thus, choosing k > k′ and using the Gagliarde–Nirenberg inequality, we obtain

∫

�

uq+kdx

= ‖um+k−1
2 ‖

2(q+k)
m+k−1
2(q+k)
m+k−1

≤ C1(‖∇um+k−1
2 ‖λ2‖u

m+k−1
2 ‖1−λ

2k′
m+k−1

+ ‖um+k−1
2 ‖ 2k′

m+k−1
)

2(q+k)
m+k−1

≤ C2(‖∇um+k−1
2 ‖

2λ(q+k)
m+k−1

2 + 1)

(12.2.47)
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with some positive constants C1, C2 and

λ =
N[m+k−1]

2k′ − N[m+k−1]
2(q+k)

1− N
2 + N[m+k−1]

2k′
= [m+ k − 1]

N
2k′ − N

2(q+k)
1− N

2 + N[m+k−1]
2k′

∈ (0, 1),

where we have used that k > [r−m]N
2 > [r−m]N−2

2 . By k′ > [r−m]N
2 , we have

2λ(q + k)

m+ k − 1

= 2(q + k)

N
2k′ − N

2(q+k)
1− N

2 + N[m+k−1]
2k′

=
N(q+k)

k′ −N

1− N
2 + N[m+k−1]

2k′
< 2.

(12.2.48)

Thus, combining (12.2.47) with (12.2.48) and using the Young inequality there
exists a positive constant C3 such that

(
k − 1

k + q − 1
χCψ + a

)∫

�

uq+kdx ≤ 4Cφ(k − 1)

(m+ k − 1)2
‖∇um+k−1

2 |22 + C3,

(12.2.49)

which together with (12.2.45) implies that

1

k

d

dt
‖u‖k

Lk(�)
+ b

∫

�

uq+kdx ≤ C4, (12.2.50)

where C4 is a positive constant. Employing the Höder inequality to the second term
on the left-hand side of (12.2.50) and using Lemma 12.1.1, we obtain the desired
result. ��
Lemma 12.2.6 Assume that f satisfies (12.2.3) with q + 1 < m+ 2

N
. Suppose φ

and ψ satisfy (12.2.4)–(12.2.6). Let (u, v) be a solution to (12.2.14) on (0, Tmax).
Then for any T ∈ (s, Tmax) and k ≥ 1, there exists a positive constant C such that

‖u(·, t)‖Lk(�) ≤ C for all t ∈ (s, T ) (12.2.51)

holds.

Proof Multiplying (12.2.14)1 by uk−1, integrating over �, employing the same
arguments as in the proof of (12.2.37) and using (12.2.3), we have

1

k

d

dt
‖u‖k

Lk(�)
+ Cφ(k − 1)

∫

�

um+k−3|∇u|2dx
≤ k − 1

k + q − 1
χCψ

∫

�

uq+kdx + a

∫

�

uk−1dx − b

∫

�

ur+k−1dx.

(12.2.52)
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Since r > 1, using the Hölder inequality yields

b|�|− r−1
k

(∫

�

ukdx

) r+k−1
k ≤ b

∫

�

ur+k−1dx, (12.2.53)

which together with (12.2.52) and the Young inequality implies that

1

k

d

dt
‖u‖k

Lk(�)
+ 4Cφ(k − 1)

[m+ k − 1]2
∥
∥
∥∇um+k−1

2

∥
∥
∥

2

L2(�)
+ b|�|− r−1

k

(∫

�

ukdx

) r+k−1
k

≤ C1

∫

�

uq+kdx + C1,

(12.2.54)

where C1 is a positive constant. On the other hand, by Lemma 12.2.2, we have
‖u(·, t)‖L1(�) is bounded for all t ∈ (s, T ) and thanks to the Gagliarde–Nirenberg
inequality, there exist positive constants C2 and C3 such that

C1

∫

�

uq+kdx

= C1

∥
∥
∥u

m+k−1
2

∥
∥
∥

2(q+k)
m+k−1

L
2(q+k)
m+k−1 (�)

≤ C2

(∥
∥∥∇um+k−1

2

∥
∥∥
λ′

L2(�)

∥
∥∥u

m+k−1
2

∥
∥∥

1−λ′

L
2

m+k−1 (�)
+

∥
∥∥u

m+k−1
2

∥
∥∥

2
m+k−1

)L
2(q+k)
m+k−1 (�)

≤ C3

(∥∥
∥∇um+k−1

2

∥∥
∥

λ′2(q+k)
m+k−1

L2(�)
+ 1

)

(12.2.55)

where

λ′ =
N[m+k−1]

2 − N[m+k−1]
2(q+k)

1− N
2 + N[m+k−1]

2

= [m+ k − 1]
N
2 − N

2(q+k)
1− N

2 + N[m+k−1]
2

∈ (0, 1).

Next, due to q + 1 < m+ 2

N
, we have

λ′2(q + k)

m+ k − 1

= 2(q + k)

N
2 − 1

2(q+k)
1− N

2 + N[m+k−1]
2

= N(q + k − 1)

1− N
2 + N[m+k−1]

2
< 2.

(12.2.56)
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Hence, by (12.2.55), (12.2.56) and using the Young inequality we find a constant
C4 > 0 such that

C1

∫

�

uq+kdx ≤ 4Cφ(k − 1)

[m+ k − 1]2
∣
∣
∣∇um+k−1

2

∣
∣
∣
2

2
+ C4. (12.2.57)

Inserting (12.2.57) into (12.2.54), we derive

1

k

d

dt
‖u‖k

Lk(�)
+ b|�|− r−1

k

(∫

�

ukdx

) r+k−1
k ≤ C5. (12.2.58)

By using Lemma 12.1.1, we have the boundedness of ‖u(·, t)‖Lk(�) for all t ∈
(s, T ). ��

In the following, we will set up the iteration procedure to derive the main result.
To this end, we we first give the ‖ · ‖L∞(�) estimate of u(t) for all t ∈ (0, T ), where
T ∈ (0, Tmax).

Lemma 12.2.7 Let q + 1 < r . Then there exists a constant C > 0 independent of
T such that for any T ∈ (0, Tmax), ‖u(·, t)‖L∞(�) ≤ C for all t ∈ (0, T ).

Proof Let μk = (r − q)kκr + r − 1 − q , where κr is given by (12.2.20). Hence,
Lemma 12.2.3 gives us

∫

�

uμk+κr (x, t)dx ≤ M0M
μk+κr (T + 1) for all t ∈ (s, T ) and k ≥ 1,

(12.2.59)

that is,

‖u(·, t)‖Lμk+κr ≤M

1
μk+κr

0 M(T + 1)
1

μk+κr for all t ∈ (s, T ) and k ≥ 1.
(12.2.60)

Because q + 1 < r implies that μk →∞ as k →∞. Thus letting k →∞ on both
sides of (12.2.60), we have

‖u(·, t)‖L∞ ≤ M for all t ∈ (s, T ). (12.2.61)

Here we have used the fact

lim
k→∞

1

μk + κr
= 0.

On the other hand, it follows from Lemma 12.2.1 that

‖u(·, t)‖L∞(�) ≤ K, for all t ∈ (0, s). (12.2.62)

Now, choosing C := max{K,M}, we complete the proof. ��
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The Proof of Theorem 12.2.1 In view of Lemmas 12.2.2–12.2.6 and 12.2.7 and
using Lemma A.1 in [78] (see also [1]), we obtain that u is uniformly bounded in
�× (0, Tmax). Theorem 12.2.1 will be proved if we can show Tmax = ∞. Suppose
on contrary that Tmax < ∞. Then ‖u(·, t)‖L∞(�) ≤ C for all t ∈ (0, T ), where C

is independent of Tmax. This contradicts Lemma 12.2.1. Thanks to Lemmas 12.2.1,
12.2.2–12.2.6 and 12.2.7, the solution (u, v) is global in time and bounded.

12.2.2 The Quasilinear Parabolic–Parabolic Keller–Segel
System (τ = 1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = ∇ · (φ(u)∇u)− χ∇ · (ψ(u)∇v) + f (u), x ∈ �, t > 0,
vt = �v − v + u, x ∈ �, t > 0.
∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �

(12.2.63)

Theorem 12.2.2 Assume that u0 ∈ C0(�̄) and v0 ∈ W 1,θ (�̄) (with some θ > n)
both are nonnegative, f satisfies (12.2.3), φ and ψ satisfies (12.2.4)–(12.2.6). If

q + 1 < max{r,m+ 2

N
},

or

b is big enough, if q = r − 1,

then there exists a pair (u, v) ∈ (C0(�̄ × [0,∞)) ∩ C2,1(� × (0,∞))2 which
solves (12.2.63) in the classical sense. Moreover, both u and v are bounded in

� × (0,∞). If φ(u) ≡ ψ(u) ≡ 1, f (u) = au − bu2 and b >
(N−2)+

N
χC

1
N
2 +1

N
2 +1

,

then (12.2.63) possesses a unique classical solution (u, v) which is globally
bounded in �× (0,∞).

Lemma 12.2.8 Let � ⊂ R
N(N ≥ 1) be a smooth bounded domain. Assume that

b >
(N−2)+

N
χC

1
N
2 +1

N
2 +1

, where CN
2 +1 is given by Lemma 12.1.5 (with γ = N

2 + 1

in Lemma 12.1.5). Let (u, v) be a solution to (12.2.63) on (0, Tmax). Then for all
p > 1, there exists a positive constant C := C(p, |�|, b, χ,K) such that

∫

�

up(x, t) ≤ C for all t ∈ (0, Tmax). (12.2.64)
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Proof Multiplying the first equation of (12.2.63) by ur−1 and integrating over �,
we get

1

r

d

dt
‖u‖rLr (�) + (r − 1)

∫

�

ur−2|∇u|2

= −χ
∫

�

∇ · (u∇v)ur−1 +
∫

�

ur−1(au− bu2) for all t ∈ (0, Tmax),

(12.2.65)
that is,

1

r

d

dt
‖u‖rLr (�)

≤ − r + 1

r

∫

�

ur − χ

∫

�

∇ · (u∇v)ur−1

+
∫

�

(
r + 1

r
ur + ur−1(au− bu2)

)
for all t ∈ (0, Tmax).

(12.2.66)

Hence, by the Young inequality, it reads that

∫

�

(
r + 1

r
ur + ur−1

(
au− bu2

))

≤ r + 1

r

∫

�

ur + a

∫

�

ur − b

∫

�

ur+1

≤ (ε1 − b)

∫

�

ur+1 + C1(ε1, r),

(12.2.67)

where

C1(ε1, r) = 1

r + 1

(
ε1
r + 1

r

)−r (
r + 1

r
+ a

)r+1

|�|.

Next, integrating by parts to the first term on the right-hand side of (12.2.65),
using the Young inequality we obtain

−χ
∫

�

∇ · (u∇v)ur−1

= (r − 1)χ
∫

�

ur−1∇u · ∇v
= − r − 1

r
χ

∫

�

ur�v

≤ r − 1

r
χ

∫

�

ur |�v| for all t ∈ (0, Tmax).

(12.2.68)

Now, let

λ0 := (A1Cr+1r)
1

r+1 χ, (12.2.69)
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where A1 is given by (12.1.8). While from (12.2.68) and the Young inequality, we
have

−χ
∫

�

∇ · (u∇v)ur−1

≤ λ0

∫

�

ur+1 + 1

r + 1

[
λ0

r + 1

r

]−r (
r − 1

r
χ

)r+1 ∫

�

|�v|r+1

= λ0

∫

�

ur+1 + A1λ
−r
0 χr+1

∫

�

|�v|r+1 for all t ∈ (0, Tmax).

(12.2.70)

Thus, inserting (12.2.67) and (12.2.70) into (12.2.66), we get

1

r

d

dt
‖u‖rLr (�) ≤ (ε1 + λ0 − b)

∫

�

ur+1 − r + 1

r

∫

�

ur

+A1λ
−r
0 χr+1

∫

�

|�v|r+1 + C1(ε1, r) for all t ∈ (0, Tmax).

For any t ∈ (s0, Tmax), employing the variation-of-constants formula to the above
inequality, we obtain

1

r
‖u(t)‖rLr (�)

≤ 1

r
e−(r+1)(t−s0)‖u(s0)‖rLr (�) + (ε1 + λ0 − b)

∫ t

s0

e−(r+1)(t−s)
∫

�

ur+1

+A1λ
−r
0 χr+1

∫ t

s0

e−(r+1)(t−s)
∫

�

|�v|r+1 + C1(ε1, r)

∫ t

s0

e−(r+1)(t−s)

≤ (ε1 + λ0 − b)

∫ t

s0

e−(r+1)(t−s)
∫

�

ur+1

+A1λ
−r
0 χr+1

∫ t

s0

e−(r+1)(t−s)
∫

�

|�v|r+1 + C2(r, ε1),

(12.2.71)
where

C2 := C2(r, ε1) = 1

r
‖u(s0)‖rLr (�) + C1(ε1, r)

∫ t

s0

e−(r+1)(t−s)ds

and s0 is the same as (12.2.19).
Now, by Lemma 12.1.5, we have

A1λ
−r
0 χr+1

∫ t

s0

e−(r+1)(t−s)
∫

�

|�v|r+1

= A1λ
−r
0 χr+1e−(r+1)t

∫ t

s0

e(r+1)s
∫

�

|�v|r+1

≤ A1λ
−r
0 χr+1e−(r+1)tCr+1[

∫ t

s0

∫

�

e(r+1)sur+1

+e(r+1)s0
(
‖v(·, s0)‖r+1

Lr+1(�)
+ ‖�v(·, s0)‖r+1

Lr+1(�)

)
]

(12.2.72)
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for all t ∈ (s0, Tmax). By substituting (12.2.72) into (12.2.71), using (12.2.69) and
Lemma 12.1.6, we get

1

r
‖u(t)‖rLr (�)

≤
(
ε1 + λ0 + A1λ

−r
0 χr+1Cr+1 − b

)∫ t

s0

e−(r+1)(t−s)
∫

�

ur+1

+ A1λ
−r
0 χr+1e−(r+1)(t−s0)Cr+1

(
‖v(·, s0)‖r+1

Lr+1(�)
+ ‖�v(·, s0)‖r+1

Lr+1(�)

)

+ C2(r, ε1) =
(
ε1 + (r − 1)

r
C

1
r+1
r+1χ − b

)∫ t

s0

e−(r+1)(t−s)
∫

�

ur+1

+ A1λ
−r
0 χr+1e−(r+1)(t−s0)Cr+1

(
‖v(·, s0)‖r+1

Lr+1(�)
+ ‖�v(·, s0)‖r+1

Lr+1(�)

)

+ C2(r, ε1). (12.2.73)

Since, b >
(N−2)+

N
χC

1
N
2 +1

N
2 +1

, we may choose r := q0 > N
2 in (12.2.73) such that

b >
q0 − 1

q0
χC

1
q0+1

q0+1,

thus, pick ε1 appropriating small such that

0 < ε1 < b − q0 − 1

q0
χC

1
q0+1

q0+1,

then in light of (12.2.73), we derive that there exists a positive constant C3 such that

∫

�

uq0(x, t)dx ≤ C3 for all t ∈ (s0, Tmax). (12.2.74)

Next, we fix q <
Nq0

(N−q0)+ and choose some α > 1
2 such that

q <
1

1
q0
− 1

N
+ 2

N
(α − 1

2 )
≤ Nq0

(N − q0)+
. (12.2.75)

Now, involving the variation-of-constants formula for v, we have

v(t) = e−τ (A+1)v(s0)+
∫ t

s0

e−(t−s)(A+1)u(s)ds, t ∈ (s0, Tmax), (12.2.76)
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where A := Ap denote the sectorial operator defined by

Apu := −�u for all u ∈ D(Ap) := {ϕ ∈ W 2,p(�)|∂ϕ
∂ν
|∂� = 0}.

Hence, it follows from (12.2.19) and (12.2.76) that

‖(A+ 1)αv(t)‖Lq(�)

≤ C4

∫ t

s0

(t − s)
−α−N

2 (
1
q0
− 1

q )e−b(t−s)‖u(s)‖Lq0 (�)ds

+C4s
−α−N

2 (1− 1
q
)

0 ‖v(s0, t)‖L1(�)

≤ C4

∫ +∞

0
σ
−α−N

2 (
1
q0
− 1

q )e−bσ dσ + C4s
−α−N

2 (1− 1
q )

0 K,

(12.2.77)

where s0 is the same as (12.2.19). Hence, due to (12.2.75) and (12.2.77), we have

∫

�

|∇v(t)|q ≤ C5 for all t ∈ (s0, Tmax) (12.2.78)

and q ∈ [1, Nq0
(N−q0)+ ). Finally, in view of (12.2.19) and (12.2.78), we can get

∫

�

|∇v(t)|q ≤ C6 for all t ∈ (0, Tmax) and q ∈
[

1,
Nq0

(N − q0)+

)
. (12.2.79)

with some positive constant C6.

Multiplying both sides of the first equation in (12.2.63) by up−1, integrating over
� and integrating by parts, we arrive at

1

p

d

dt
‖u‖pLp(�) + (p − 1)

∫

�

up−2|∇u|2

= −χ
∫

�

∇ · (u∇v)up−1 +
∫

�

up−1
(
au− bu2

)

= χ(p − 1)
∫

�

up−1∇u · ∇v +
∫

�

up−1
(
au− bu2

)
,

(12.2.80)

which together with the Young inequality implies that

1

p

d

dt
‖u‖pLp(�) + (p − 1)

∫

�

up−2|∇u|2

≤ p − 1

2

∫

�

up−2|∇u|2 + χ2(p − 1)

2

∫

�

up|∇v|2 − b

2

∫

�

up+1 + C7

(12.2.81)
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for some positive constant C7. Since, q0 > N
2 yields q0 <

Nq0
2(N−q0)

+ , in light of the
Hölder inequality and (12.2.79), we derive at

χ2(p − 1)

2

∫

�

up|∇v|2 ≤ χ2(p − 1)

2

(∫

�

u
q0

q0−1p
) q0−1

q0
(∫

�

|∇v|2q0

) 1
q0

≤ C8‖u
p
2 ‖2

L
2

q0
q0−1 (�)

,

(12.2.82)

where C8 is a positive constant. Since q0 > N
2 and p > q0 − 1, we have

q0

p
≤ q0

q0 − 1
≤ N

N − 2
,

which together with the Gagliardo–Nirenberg inequality implies that

C8

∥
∥
∥u

p
2

∥
∥
∥

2

L
2

q0
q0−1 (�)

≤ C9

(∥
∥
∥∇up

2

∥
∥
∥
b1

L2(�)

∥
∥
∥u

p
2

∥
∥
∥

1−b1

L
2q0
p (�)

+
∥
∥
∥u

p
2

∥
∥
∥
L

2q0
p (�)

)2

≤ C10

(∥
∥
∥∇up

2

∥
∥
∥

2b1

L2(�)
+ 1

)

= C10

(∥
∥
∥∇up

2

∥
∥
∥

2N(p−q0+1)
Np+2q0−Nq0

L2(�)
+ 1

)

(12.2.83)

with some positive constants C9, C10 and

b1 =
Np
2q0
− Np

2
q0

q0−1p

1− N
2 + Np

2q0

= p

N
2q0
− N

2
q0

q0−1p

1− N
2 + Np

2q0

∈ (0, 1).

Now, in view of the Young inequality, we derive that

χ2(p − 1)

2

∫

�

up|∇v|2 ≤ p − 1

4

∫

�

up−2|∇u|2 + C11. (12.2.84)

Inserting (12.2.84) into (12.2.85), we conclude that

1

p

d

dt
‖u‖pLp(�) +

p − 1

4

∫

�

up−2|∇u|2 + b

2

∫

�

up+1 ≤ C12. (12.2.85)

Therefore, letting y :=
∫

�

up in (12.2.85) yields to

d

dt
y(t)+ C13y

h(t) ≤ C14 for all t ∈ (0, Tmax)
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with some positive constant h. Thus a standard ODE comparison argument implies

‖u(·, t)‖Lp(�) ≤ C15 for all p ≥ 1 and t ∈ (0, Tmax) (12.2.86)

for some positive constant C15. The proof Lemma 12.2.8 is complete. ��
Our main result on global existence and boundedness thereby becomes a straight-
forward consequence of Lemma 12.2.1 and Lemma 12.2.8.

The Proof of Theorem 12.2.2 Theorem 12.2.2 will be proved if we can show
Tmax = ∞. Suppose on contrary that Tmax < ∞. Due to ‖u(·, t)‖Lp(�) is bounded
for any large p, we infer from the fundamental estimates for Neumann semigroup
(see Lemma 4.1 of [39]) or the standard regularity theory of parabolic equation (see,
e.g., Ladyzenskaja et al. [48]) that

‖∇v(·, t)‖L∞(�) ≤ C1 for all t ∈ (0, Tmax) (12.2.87)

and some positive constant C1.

Upon an application of the well-known Moser–Alikakos iteration procedure (see
Lemma A.1 in [78]), we see that

‖u(·, t)‖L∞(�) ≤ C2 for all t ∈ (0, Tmax) (12.2.88)

and a positive constant C2.
In view of (12.2.87) and (12.2.88), we apply Lemma 12.2.1 to reach a contradic-

tion. Hence the classical solution (u, v) of (12.2.63) is global in time and bounded.
Finally, employing the same arguments as in the proof of Lemma 1.1 in [104], and
taking advantage of (12.2.88), we conclude the uniqueness of solution to (12.2.63).

12.3 The (Quasilinear) Chemotaxis System with
Consumption of Chemoattractant

In this section, we consider the following parabolic–parabolic Keller–Segel chemo-
taxis system with nonlinear diffusion and consumption of chemoattractant under
homogeneous Neumann boundary conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut = ∇ · (φ(u)∇u)−∇ · (u∇v), x ∈ �, t > 0,
vt = �v − uv, x ∈ �, t > 0,
∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(12.3.1)
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where� ⊂ R
N(N ≥ 2) is a bounded convex domain with smooth boundary ∂�,

∂

∂ν
denotes the outward normal derivative on ∂�, the initial data u0 and v0 are assumed
to be nonnegative functions. u = u(x, t) and v = v(x, t) denote the density of the
cell population and the oxygen concentration, respectively.

In this section, we assume that

φ ∈ C2([0,∞)) (12.3.2)

as well as

φ(u) ≥ Cφu
m−1 for all u > 0 (12.3.3)

with some m > 1 and Cφ > 0. In addition to (12.3.2) and (12.3.3), D(u) satisfies

φ(u) > 0 for all u ≥ 0. (12.3.4)

Definition 12.3.1 Let T ∈ (0,∞). A pair of nonnegative functions (u, v) defined
in �× (0, T ) is called a weak solution of model (12.3.1), if

1.

u ∈ L2(0, T ;L2(�)), v ∈ L2(0, T ;W 1,2(�)),D(u)∇u ∈ L2(0, T ;L2(�)),

2.

u∇v ∈ L2(0, T ;L2(�)) and uv ∈ L2(0, T ;L2(�));

the integral equalities

−
∫ T

0

∫

�

uϕt −
∫

�

u0ϕ(·, 0) = −
∫ T

0

∫

�

D(u)∇u · ∇ϕ +
∫ T

0

∫

�

u∇v · ∇ϕ
(12.3.5)

and

−
∫ T

0

∫

�

vϕt −
∫

�

v0ϕ(·, 0) = −
∫ T

0

∫

�

∇v · ∇ϕ +
∫ T

0

∫

�

uvϕ (12.3.6)

hold for all ϕ ∈ C∞0 (�̄ × [0, T )). If (u, v) is a weak solution of model (12.3.1)
in �× (0, T ) for all T ∈ (0,∞), then we call (u, v) a global weak solution.

Theorem 12.3.1 ([131]) Let � ⊂ R
N(N ≥ 2) be a smooth bounded convex

domain and the diffusion function D satisfy (12.3.2)–(12.3.4) with some

m >
3N

2N + 2
. (12.3.7)
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Assume that the initial data u0(x) and v0(x) satisfy that

{
u0 ∈ W 1,l(�) for all l > N with u0 > 0 in �̄,

v0 ∈ W 1,l(�) for all l > N with v0 > 0 in �̄.
(12.3.8)

Then problem (12.3.1) possesses a unique global classical solution (u, v).

Now, we display an important auxiliary interpolation lemma by using the idea
which comes from the references [50, 93, 112].

Lemma 12.3.1 Suppose that q > max{1, N−2
2 } and � ⊂ R

N(N ≥ 2) is a bounded
domain with smooth boundary. Moreover, assume that

λ ∈ [2q + 2, Lq,N ], (12.3.9)

where

Lq,N

{
= N(2q+1)−2(q+1)

N−2 if N ≥ 3,
< +∞ if N = 2.

Then there exists C > 0 such that for all ϕ ∈ C2(�̄) fulfilling ϕ · ∂ϕ
∂ν
= 0 on ∂� we

have

‖∇ϕ‖Lλ(�) ≤ C‖|∇ϕ|q−1D2ϕ‖
2(λ−N)

(2q−N+2)λ

L2(�)
‖ϕ‖

2Nq−(N−2)λ
(2q−N+2)λ
L∞(�) + C‖ϕ‖L∞(�).

(12.3.10)

Proof An integration by parts together with ϕ · ∂ϕ
∂ν
= 0 on ∂� yields that

‖∇ϕ‖λ
Lλ(�)

= −
∫

�

ϕ|∇ϕ|λ−2�ϕ − (λ− 2)
∫

�

ϕ|∇ϕ|λ−4∇ϕ · (D2ϕ · ∇ϕ),
(12.3.11)

which combined with the Cauchy–Schwarz inequality we see that

∣
∣
∣
∣−(λ− 2)

∫

�

ϕ|∇ϕ|λ−4∇ϕ · (D2ϕ · ∇ϕ)
∣
∣
∣
∣

≤ (λ− 2)‖ϕ‖L∞(�) · I ·
(∫

�

|∇ϕ|2(λ−q−1)
) 1

2

(12.3.12)
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with I := ‖|∇ϕ|q−1D2ϕ‖L2(�). Likewise, using that |�ϕ| ≤ √
N |D2ϕ| we can

estimate

| − ∫
� ϕ|∇ϕ|λ−2�ϕ| ≤ √N‖ϕ‖L∞(�)

∫

�

|∇ϕ|λ−2|D2ϕ|

≤ √N‖ϕ‖L∞(�) · I ·
(∫

�

|∇ϕ|2(λ−q−1)
) 1

2

.

(12.3.13)

Observing that λ ≤ N(2q+1)−2(q+1)
N−2 implies that 2(λ−q−1)

q
≤ 2N

N−2 , by λ ≥ 2q + 2
and the Gagliardo–Nirenberg inequality, there exist C1 > 0 and C2 > 0 such that

(∫

�

|∇ϕ|2(λ−q−1)
) 1

2 = ‖|∇ϕ|q‖
λ−q−1

q

L
2(λ−q−1)

q (�)

≤ C1‖∇|∇ϕ|q‖
(λ−q−1)a

q

L2(�)
‖|∇ϕ|q‖

(λ−q−1)(1−a)
q

L
λ
q (�)

+C1‖|∇ϕ|q‖
λ−q−1

q

L
λ
q (�)

≤ C2 · I
(λ−q−1)a

q · ‖∇ϕ‖(λ−q−1)(1−a)
Lλ(�)

+ C1‖∇ϕ‖λ−q−1
Lλ(�)

(12.3.14)

with

a =
Nq
λ
− Nq

2(λ−q−1)

1− N
2 + Nq

λ

∈ [0, 1].

Hence combining (12.3.12)–(12.3.14) yields C3 > 0 fulfilling

‖∇ϕ‖λ
Lλ(�)

≤ C3‖ϕ‖L∞(�) · I 1+ (λ−q−1)a
q · ‖∇ϕ‖(λ−q−1)(1−a)

Lλ(�)
+ C3‖ϕ‖L∞(�) · I · ‖∇ϕ‖λ−q−1

Lλ(�)

= C3‖ϕ‖L∞(�) · I
2(λ−N)

2Nq−(N−2)λ · ‖∇ϕ‖
λ[(2N−2)q−(N−2)(λ−1)]

2Nq−(N−2)λ

Lλ(�)

+C3‖ϕ‖L∞(�)I · ‖∇ϕ‖λ−q−1
Lλ(�)

.

(12.3.15)

Now, invoking the Young inequality, we find C4 > 0 and C5 > 0 such that

C3‖ϕ‖L∞(�) · I
2(λ−N)

2Nq−(N−2)λ · ‖∇ϕ‖
λ[(2N−2)q−(N−2)(λ−1)]

2Nq−(N−2)λ

Lλ(�)
≤ 1

4‖∇ϕ‖λLλ(�)

+C4‖ϕ‖
2Nq−(N−2)λ

2q−N+2
L∞(�) · I 2(λ−N)

2q−N+2

(12.3.16)
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and

C3‖ϕ‖L∞(�)I · ‖∇ϕ‖λ−q−1
Lλ(�)

≤ 1
4‖∇ϕ‖λLλ(�)

+ C5‖ϕ‖
λ

q+1
L∞(�)

· I λ
q+1

= 1
4‖∇ϕ‖λLλ(�)

+ C5

(
‖ϕ‖

2Nq−(N−2)λ
2q−N+2

L∞(�) · I 2(λ−N)
2q−N+2

) λ(2q−N+2)
2(λ−N)(q+1)

‖ϕ‖
Nλ(λ−2q−2)
2(q+1)(λ−N)

L∞(�)

≤ 1
4‖∇ϕ‖λLλ(�)

+ C5‖ϕ‖
2Nq−(N−2)λ

2q−N+2
L∞(�) · I 2(λ−N)

2q−N+2 + C5‖ϕ‖λL∞(�).

(12.3.17)

Finally, (12.3.15)–(12.3.17) prove (12.3.10). ��
In light of the well-established fixed point arguments (see Wang et al. [99, 101],

Lemma 2.1 of [66] and Lemma 2.1 of [113]), we can prove that (12.3.1) is locally
solvable in classical sense, which is stated as the following lemma.

Lemma 12.3.2 Assume that the initial data u0 and v0 satisfy (12.3.8) and the
diffusion function D(u) satisfies (12.3.2) and (12.3.4). Then there exist Tmax ∈
(0,∞] and a classical solution (u, v) of (12.3.1) in �× (0, Tmax) such that

{
u ∈ C0(�̄× [0, Tmax)) ∩ C2,1(�̄× (0, Tmax)),
v ∈ C0(�̄× [0, Tmax)) ∩ C2,1(�̄× (0, Tmax)),

(12.3.18)

classically solving (12.3.1) in �× [0, Tmax). Moreover, u and v are nonnegative in
�× (0, Tmax), and

‖u(·, t)‖L∞(�) + ‖v(·, t)‖L∞(�) →∞ as t → Tmax. (12.3.19)

Lemma 12.3.3 The solution (u, v) of (12.3.1) satisfies the following properties

‖u(·, t)‖L1(�) = ‖u0‖L1(�) for all t ∈ (0, Tmax) (12.3.20)

and

‖v(·, t)‖L∞(�) ≤ ‖v0‖L∞(�) for all t ∈ (0, Tmax). (12.3.21)

12.3.1 A Priori Estimates

In this section, our main purpose is to establish some a priori estimates for the
solutions of model (12.3.1). The iteration depends on a series of a priori estimates.
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Let us first recall an energy inequality which is a consequence of Lemmas 3.2–3.4
of [107] (see also Lemma 2.3 of [81]).

Lemma 12.3.4 Assume that the initial data u0 and v0 satisfy (12.3.8) and the
diffusion function D(u) satisfies (12.3.2)–(12.3.4), then the solution of (12.3.1)
satisfies

d

dt

{∫

�

u lnu+ 2
∫

�

|∇√v|2
}
+

∫

�

um−2|∇u|2 +
∫

�

v|D2 ln v|2

+1

2

∫

�

u
|∇v|2
v

≤ 0
(12.3.22)

for all t ∈ (0, Tmax). Moreover, for each t ∈ (0, Tmax), one can find a constant
C > 0 such that

∫ t

0

∫

�

um−2|∇u|2 ≤ C (12.3.23)

and

∫ t

0

∫

�

|∇v|4 ≤ C (12.3.24)

as well as
∫

�

|∇v(·, t)|2 ≤ C. (12.3.25)

Proof First, testing the first equation in (12.3.1) by ln u yields

d

dt

(∫

�
u ln u+ 2

∫

�
|∇√v|2

)
+

∫

�

D(u)

u
|∇u|2 +

∫

�
v|D2 ln v|2 + 1

2

∫

�
u
|∇v|2
v

= 1

2

∫

∂�

1

v

∂|∇v|2
∂v

for all t ∈ (0, Tmax).

(12.3.26)

Since � is convex and ∂v
∂v
= 0 on ∂�, ∂|∇v|2

∂v
≤ 0 on ∂� (see [78]), so that also

using (12.3.3) relation (12.3.22) is shown. Hence, by (12.3.3), we can get (12.3.23).

Finally, due to the fact
∫
�
|∇v|4
v3 ≤ (2 + √N)

∫
�
v|D2 ln v|2 (see, e.g., Lemma 3.3

of [107]) and |∇√v|2 = |∇v|2
4v , by (12.3.21) and (12.3.22), we can derive (12.3.24)–

(12.3.25). ��
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Lemma 12.3.5 Let p > 1 and q > 1. Assume that the initial data u0 and v0
satisfy (12.3.8) and the diffusion function D(u) satisfies (12.3.2)–(12.3.4). Then,
there exists a constant C > 0 such that

d

dt

(
‖u‖pLp(�) + ‖∇v‖2q

L2q (�)

)
+ 2CDp(p − 1)

(m+ p − 1)2

∫

�

|∇um+p−1
2 |2

+2(q − 1)

q

∫

�

∣
∣∇|∇v|q ∣∣2 + q

2

∫

�

|∇v|2q−2|D2v|2

≤ C

(∫

�

up+1−m|∇v|2 +
∫

�

u2|∇v|2q−2
)

for all t ∈ (0, Tmax),

(12.3.27)

where C := C(p, q,N,CD, ‖v0‖L∞(�)) is a positive constant.

Proof Multiplying the first equation of (12.3.1) by up−1, combining with the Young
inequality, we conclude that

1

p

d

dt
‖u‖pLp(�) + (p − 1)

∫

�

up−2D(u)|∇u|2

≤ (p − 1)
∫

�

up−1|∇u||∇v|
≤ (p − 1)CD

2

∫

�

um+p−3|∇u|2 + (p − 1)

2CD

∫

�

up+1−m|∇v|2,
(12.3.28)

which together with (12.3.3) implies that

1

p

d

dt
‖u‖pLp(�) +

(p − 1)CD

2

∫

�

um+p−3|∇u|2 ≤ (p − 1)

2CD

∫

�

up+1−m|∇v|2.
(12.3.29)

Observing that ∇v · ∇�v = 1
2�|∇v|2 − |D2v|2, by a straightforward computation

using the second equation in (12.3.1) and several integrations by parts, we find that

1

2q

d

dt
‖∇v‖2q

L2q (�)
=

∫

�

|∇v|2q−2∇v · ∇(�v − uv)

= 1

2

∫

�

|∇v|2q−2�|∇v|2 −
∫

�

|∇v|2q−2|D2v|2

+
∫

�

uv∇ · (|∇v|2q−2∇v)

= −q − 1

2

∫

�

|∇v|2q−4
∣∣
∣∇|∇v|2

∣∣
∣
2 + 1

2

∫

∂�

|∇v|2q−2 ∂|∇v|2
∂ν

−
∫

�

|∇v|2q−2|D2v|2 +
∫

�

uv|∇v|2q−2�v

+
∫

�

uv∇v · ∇(|∇v|2q−2)
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= −2(q − 1)

q2

∫

�

∣
∣∇|∇v|q ∣∣2 + 1

2

∫

∂�

|∇v|2q−2 ∂|∇v|2
∂ν

−
∫

�

|∇v|2q−2|D2v|2 +
∫

�

uv|∇v|2q−2�v

+
∫

�

uv∇v · ∇(|∇v|2q−2) (12.3.30)

for all t ∈ (0, Tmax). Now, by |�v| ≤ √N |D2v| and the Young inequality, we can
get

∫

�

uv|∇v|2q−2�v ≤ √N‖v0‖L∞(�)

∫

�

u|∇v|2q−2|D2v|
≤ 1

4

∫

�

|∇v|2q−2|D2v|2 +N‖v0‖2
L∞(�)

∫

�

u2|∇v|2q−2.

(12.3.31)

Now, by the Cauchy–Schwarz inequality, we have
∫

�

uv∇v · ∇(|∇v|2q−2) = (q − 1)
∫

�

uv|∇v|2(q−2)∇v · ∇|∇v|2

≤ q − 1

8

∫

�

|∇v|2q−4
∣
∣
∣∇|∇v|2

∣
∣
∣
2 + 2(q − 1)‖v0‖2

L∞(�)

×
∫

�

|u|2|∇v|2q−2 ≤ (q − 1)

2q2

∫

�

∣
∣∇|∇v|q ∣∣2

+2(q − 1)‖v0‖2
L∞(�)

∫

�

|u|2|∇v|2q−2.

(12.3.32)

On the other hand, collecting (12.3.29)–(12.3.32) yields (12.3.27) after obvious
rearrangements. This completes the proof of Lemma 12.3.5. ��

Our main result on global existence and boundedness thereby becomes a
straightforward consequence of Lemma 12.2.1 and Lemma 12.3.5. Therefore we
omit it.

12.4 The (Quasilinear) Chemotaxis–Haptotaxis Model

In order to describe the cancer invasion mechanism, in 2005, Chaplain and Lolas
([12]) extended the classical Keller–Segel model where, in addition to random
diffusion, cancer cells bias their movement towards a gradient of a diffusible matrix-
degrading enzyme (MDE) secreted by themselves, as well as a gradient of a static
tissue, referred to as extracellular matrix (ECM), by detecting matrix molecules such
as vitronectin adhered therein. The latter type of directed migration of cancer cells
is usually referred to as haptotaxis (see Chaplain and Lolas [11, 13]). According to
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the model proposed in [11–13, 36, 72], in this section, we consider the chemotaxis–
haptotaxis system with (generalized) logistic source
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut = �u− χ∇ · (u∇v)− ξ∇ · (u∇w)+ u(1− ur−1 − w), x ∈ �, t > 0,
vt = �v + u− v, x ∈ �, t > 0,
wt = −vw, x ∈ �, t > 0,
∂u

∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x),w(x, 0) = w0(x), x ∈ �,

(12.4.1)

where r > 1,� ⊂ R
N(N ≥ 1) is a bounded domain with smooth boundary,

∂

∂ν
denotes the outward normal derivative on ∂�, the three variables u, v, and w

represent the cancer cell density, the MDE concentration, and the ECM density,
respectively. The parameters χ, ξ , and μ are positive which measure the chemo-
tactic, haptotactic sensitivities, and the proliferation rate of the cells, respectively.
As is pointed out by [3] (see also Meral et al. [58], Tao and Winkler [77], Zheng
[126]), in this modeling context the cancer cells are also usually assumed to follow a
generalized logistic growth u(1−ur−1−w) (r > 1), which denotes the proliferation
rate of the cells and competing for space with healthy tissue. And the initial data
(u0, v0, w0) is supposed to be satisfied the following conditions:
⎧
⎪⎪⎨

⎪⎪⎩

u0 ∈ C(�̄) with u0 ≥ 0 in � and u0 �≡ 0,
v0 ∈ W 1,∞(�) with v0 ≥ 0 in �,

w0 ∈ C2+ϑ(�̄) with w0 ≥ 0 in �̄ and
∂w0

∂ν
= 0 on ∂�

(12.4.2)
with some ϑ ∈ (0, 1).

In order to better understand model (12.4.1), let us mention the following quasi-
linear chemotaxis–haptotaxis system, which is a closely related variant of (12.4.1)
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (φ(u)∇u)− χ∇ · (u∇v)− ξ∇ · (u∇w)+ μu(1− ur−1 − w), x ∈ �, t > 0,

τvt = �v + u− v, x ∈ �, t > 0,

wt = −vw, x ∈ �, t > 0,
∂u

∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ �,

(12.4.3)

where μ ≥ 0, τ ∈ {0, 1}, the function φ(u) fulfills

φ ∈ C2([0,∞)) (12.4.4)

and there exist constants m ≥ 1 and Cφ such that

φ(u) ≥ Cφ(u+ 1)m−1 for all u ≥ 0. (12.4.5)
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When w ≡ 0, (12.4.3) is reduced to the chemotaxis-only system with (general-
ized) logistic source (see Xiang [115], Zheng et al. [120, 121, 124, 128, 130, 132]).
Global existence, boundedness, and asymptotic behavior of solution were studied
in [53, 57, 89, 123]. From a theoretical point of view, due to the fact that the
chemotaxis and haptotaxis terms require different Lp-estimate techniques, the
problem related to the chemotaxis–haptotaxis models of cancer invasion presents an
important mathematical challenging. There are only few results on the mathematical
analysis of this (quasilinear) chemotaxis–haptotaxis system (12.4.3) (Cao [8],
Zheng et al. [55], Tao et al. [74, 75, 77, 82–84], Wang et al. [55, 90, 92, 130]).
Indeed, if MDEs diffuse much faster than cells (see [42, 83]), (τ = 0 in the
second equation of (12.4.3)), (12.4.3) is reduced to the parabolic–ODE–elliptic
chemotaxis–haptotaxis system, the (generalized) logistic source. To the best of our
knowledge, there exist some boundedness and stabilization results on the simplified
parabolic–elliptic–ODE chemotaxis–haptotaxis model [75, 82, 83]. When r = 2 in
the first equation of (12.4.3), the global boundedness of solutions to the chemotaxis–
haptotaxis system with the standard logistic source has been proved for anyμ > 0 in
two dimensions and for large μ (compared to the chemotactic sensitivity χ) in three
dimensions (see Tao and Wang [75]). In [83], Tao and Winkler studied the global

boundedness for model (12.4.3) under the condition μ >
(N−2)+

N χ , moreover, in
addition to explicit smallness on w0, they gave the exponential decay of w in the
large time limit. While if r > 1 (the (generalized) logistic source), one can see [130].

As for parabolic–ODE–parabolic system (12.4.3), if r = 2, there has been some
progress made in two or three dimensions (see Cao [8] Tao and Winkler [73, 75, 83]).
In fact, when φ ≡ 1, Cao ([8]) and Tao ([74]) proved that (12.4.3) admits a unique,
smooth, and bounded solution if μ > 0 on N = 2 and μ is large enough on N = 3.
Recently, assume that μ is large enough and 3 ≤ N ≤ 8, the boundedness of the
global solution of system (12.4.3) is obtained by Wang and Ke in [92]. However,
they did not give the lower bound estimation for the logistic source. Note that
the global existence and boundedness of solutions to (12.4.3) is still open in three
dimensions for small μ > 0 and in higher dimensions.

The main objective of the present section is to address the boundedness to
solutions of (12.4.1) without any restriction on the space dimension. Our main
result is the following.

Taking into account all these processes, Tao and Winkler ([77]) proposed the
model generalizing the prototypes

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (φ(u)∇u)− χ∇ · (u∇v) − ξ∇ · (u∇w) + μu(1− u− w), x ∈ �, t > 0,

vt = �v + u− v, x ∈ �, t > 0,

wt = −vw, x ∈ �, t > 0,
∂u

∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ �,

(12.4.6)
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where � is a bounded domain in R
N(N ≥ 2) with smooth boundary ∂�,

� =
N∑

i=1

∂2

∂x2
i

,
∂

∂ν
denotes the outward normal derivative on ∂�, χ > 0 is a

parameter referred to as chemosensitivity. φ(u) describes the density-dependent
motility of cancer cells through the ECM, and μ is the proliferation rate of the
cells. The variables u, v, and w describe the density of the cancer cell population,
the concentration of a matrix-degrading enzyme (MDE), and the concentration of
extracellular matrix (ECM), respectively. In order to prove our results, we assume
that the function φ(u) fulfill

φ ∈ C2([0,∞)) for all u ≥ 0 (12.4.7)

and there exist constants m ≥ 1 and Cφ such that

φ(u) ≥ Cφ(u+ 1)m−1 for all u ≥ 0. (12.4.8)

Theorem 12.4.1 Assume that φ satisfy (12.4.7)–(12.2.5) and the initial data
(u0, v0, w0) fulfills (12.4.2) with some ϑ ∈ (0, 1). If m > 2N

N+2 , then there exists

a triple (u, v,w) ∈ (C0(�̄ × [0,∞)) ∩ C2,1(�̄ × (0,∞)))3 which solves (12.4.6)
in the classical sense. Moreover, u, v, and w are bounded in �× (0,∞).

In this section, we are going to establish an iteration step to develop the main
ingredient of our result. The iteration depends on a series of a priori estimates. The
following lemma can be proved by Lemma 3.4 of [77] and Lemma 2.2 of [90] (see
also Lemma 2.1 of [104] and [127]).

Lemma 12.4.1 There exists C > 0 such that the solution of (12.4.6) satisfies

∫

�

u+
∫

�

|∇v|2 +
∫

�

|∇v|l ≤ C for all t ∈ (0, Tmax) (12.4.9)

with l ∈ [1, N
N−1 ).

Remark 12.4.1 The bounded of
∫
� |∇v|2 plays an important role in getting the

boundedness of
∫
�
|u|k + ∫

�
|∇v|2β for some large k and β.

Next, we are in a position to improve the regularity of u in a higherLp space. Firstly,
we give the following Lemma which plays an important role in obtaining the main
results. The proof is almost same as that of Lemma 3.2 in [90]. Consequently, we
omit the proof here.

Lemma 12.4.2 Let (u, v,w) be a solution to (12.4.6) on (0, Tmax). Then for any
k > 1, there exists a positive constant C1 which is independent of k such that

−ξ
∫

�

(u+ 1)k−1∇ · (u∇w) ≤ C1

(∫

�

(u+ 1)k(v + 1)+ k

∫

�

(u+ 1)k−1|∇u|
)
.

(12.4.10)
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Proof The third equation of (12.4.6) can be solved according to

w(x, t) = w0(x)e
− ∫ t

0 v(x,s)ds, (x, t) ∈ �× (0, Tmax), (12.4.11)

from which we can obtain

∇w(x, t) = e−
∫ t

0 v(x,s)ds(∇w0(x)−w0(x)

∫ t

0
∇v(x, s)ds (12.4.12)

and

�w(x, t) ≥ �w0(x)e
− ∫ t

0 v(x,s)ds

− 2e−
∫ t

0 v(x,s)ds ·
∫ t

0
∇v(x, s)ds −w0(x)e

− ∫ t
0 v(x,s)ds

∫ t

0
�v(x, s)ds.

(12.4.13)

For any k ≥ 1, we integrate the left-hand side of (12.4.10) and then get

−ξ
∫

�

(u+ 1)k−1∇ · (u∇w)dx
= (k − 1)ξ

∫

�

(u+ 1)k−2u∇u · ∇wdx
= (k − 1)ξ

∫

�

∇ϕ(u) · ∇wdx
= −(k − 1)ξ

∫

�

ϕ(u)�wdx

≤ −(k − 1)ξ
∫

�

ϕ(u)(�w0(x)e
− ∫ t

0 v(x,s)ds − 2e−
∫ t

0 v(x,s)ds∇w0(x)

× ∫ t

0 ∇v(x, s)ds − w0(x)e
− ∫ t

0 v(x,s)ds

∫ t

0
�v(x, s)ds)dx

= A1 + A2 + A3,

(12.4.14)
where

ϕ(u) :=
∫ u

0
τ (τ + 1)k−2dτ,

A1 := −(k − 1)ξ
∫

�

ϕ(u)�w0(x)e
− ∫ t

0 v(x,s)dsdx,

A2 := 2(k − 1)ξ
∫

�

ϕ(u)e−
∫ t

0 v(x,s)ds∇w0(x) ·
∫ t

0
∇v(x, s)dsdx
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and

A3 := (k − 1)ξ
∫

�

ϕ(u)w0(x)e
− ∫ t

0 v(x,s)ds

∫ t

0
�v(x, s)dsdx.

Next, due to u, v ≥ 0, the Young inequality, we have

A1 = −(k − 1)ξ
∫

�

ϕ(u)�w0(x)e
− ∫ t

0 v(x,s)dsdx

≤ (k − 1)ξ‖�w0‖L∞(�)

∫

�

ϕ(u)dx

≤ C0

∫

�

(u+ 1)k−1dx,

(12.4.15)

A2 = 2(k − 1)ξ
∫

�

ϕ(u)e−
∫ t

0 v(x,s)ds∇w0(x)

∫ t

0
∇v(x, s)dsdx

= −2(k − 1)ξ
∫

�

ϕ(u)∇w0(x) · ∇e−
∫ t

0 v(x,s)dsdx

= 2(k − 1)ξ
∫

�

ϕ(u)(u+ 1)k−2∇u · ∇w0(x)e
− ∫ t

0 v(x,s)dsdx

+2(k − 1)ξ
∫

�

ϕ(u)�w0(x)e
− ∫ t

0 v(x,s)dsdx

≤ 2C0(k − 1)
∫

�

(u+ 1)k−1|∇u|dx + 2C0

∫

�

(u+ 1)kdx

(12.4.16)

and

A3 = (k − 1)ξ
∫

�

ϕ(u)w0(x)e
− ∫ t

0 v(x,s)ds

∫ t

0
(vs(x, s)+ v(x, s)− u(x, s))dsdx

≤ (k − 1)ξ
∫

�

ϕ(u)w0(x)e
− ∫ t

0 v(x,s)ds(v(x, t)− v0(x)+
∫ t

0
v(x, s)ds)dx

≤ C0

∫

�

(u+ 1)kvdx + C0

∫

�

(u+ 1)kdx.

(12.4.17)

Here C0 depends on ‖�w0‖L∞(�), ‖∇w0‖L∞(�), ξ and ‖w0‖L∞(�). Finally, insert-
ing (12.4.15)–(12.4.17) into (12.4.14), we can get the results. ��
Lemma 12.4.3 Let � ⊂ R

N(N ≥ 2) be a bounded domain with smooth boundary.
Furthermore, assume that φ satisfies (12.4.7)–(12.4.8) and m > 2N

N+2 . Then for all
k > 1, there exists C > 0 such that

d

dt
(

1

k
‖u+ 1‖k

Lk(�)
+ 1

2β
‖∇v‖2β

L2β (�)
)+ (β − 1)

β2

∫

�

∣
∣
∣∇|∇v|β

∣
∣
∣
2 + μ

2

∫

�
(u+ 1)k+1

+1

2

∫

�
|∇v|2β−2|D2v|2 +

∫

�
|∇v|2β + (k − 1)Cφ

4

∫

�
(u+ 1)m+k−3|∇u|2

≤ C(
χ2(k − 1)

2Cφ

∫

�
(u+ 1)k+1−m|∇v|2 +

∫

�
u2|∇v|2β−2 +

∫

�
vk+1)+ C

:= J1 + J2 + J3 + C for all t ∈ (0, Tmax).

(12.4.18)
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where

J1 := Cχ2(k − 1)

2Cφ

∫

�

(u+ 1)k+1−m|∇v|2,

J2 := C

∫

�

u2|∇v|2β−2

and

J3 := C

∫

�

vk+1.

Proof Multiplying (12.4.6)1 (the first equation of (12.4.6)) by (u + 1)k−1 and
integrating over �, we get

1

k

d

dt
‖u+ 1‖k

Lk(�)
+ (k − 1)

∫

�

(u+ 1)k−2φ(u)|∇u|2

= −χ
∫

�

∇ · (u∇v)(u+ 1)k−1 − ξ

∫

�

∇ · (u∇w)(u+ 1)k−1

+μ
∫

�

(u+ 1)k−1u(1− u− w),

(12.4.19)

which implies that

1

k

d

dt
‖u+ 1‖k

Lk(�)
+ (k − 1)

∫

�

(u+ 1)k−2φ(u)|∇u|2

+μ
∫

�

(u+ 1)k+1 + 2μ
∫

�

(u+ 1)k−1 ≤ −χ
∫

�

∇ · (u∇v)(u+ 1)k−1

−ξ
∫

�

∇ · (u∇w)(u+ 1)k−1 + 3μ
∫

�

(u+ 1)k.

(12.4.20)

By (12.2.5), we obtain

(k − 1)
∫

�

(u+ 1)m+k−3|∇u|2 ≤ (k − 1)
∫

�

(u+ 1)k−2φ(u)|∇u|2. (12.4.21)

Integrating by parts to the first term on the right-hand side of (12.4.20) and from the
second equation in (12.4.6) we obtain

−χ
∫

�

∇ · (u∇v)(u+ 1)k−1

= (k − 1)χ
∫

�

u(u+ 1)k−2∇u · ∇v

≤ (k − 1)Cφ

2

∫

�

(u+ 1)m+k−3|∇u|2 + χ2(k − 1)

2Cφ

∫

�

(u+ 1)k+1−m|∇v|2.
(12.4.22)
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On the other hand, due to (12.4.2), we have

−ξ
∫

�

∇ · (u∇w)(u+ 1)k−1

≤ C1

∫

�

(u+ 1)k(v + 1)+ C1k

∫

�

(u+ 1)k−1|∇u|
≤ C1

∫

�

(u+ 1)k(v + 1)+ (k − 1)Cφ

4

∫

�

(u+ 1)m+k−3|∇u|2

+2k2C2
1

Cφ

∫

�

(u+ 1)k+1−m.

(12.4.23)

Furthermore, inserting (12.4.21)–(12.4.23) into (12.4.20), we have

1

k

d

dt
‖u+ 1‖k

Lk(�)
+ (k − 1)Cφ

4

∫

�

(u+ 1)m+k−3|∇u|2 + μ

2

∫

�

(u+ 1)k+1

≤ χ2(k − 1)

2Cφ

∫

�

(u+ 1)k+1−m|∇v|2 + C1

∫

�

(u+ 1)k(v + 1)

+2k2C2
1

Cφ

∫

�

(u+ 1)k+1−m + μ

∫

�

(u+ 1)k.

(12.4.24)

Hence, with the help of the Young inequality, we can derive that

1

k

d

dt
‖u+ 1‖k

Lk(�)
+ (k − 1)Cφ

4

∫

�

(u+ 1)m+k−3|∇u|2 + μ

2

∫

�

(u+ 1)k+1

≤ χ2(k − 1)

2Cφ

∫

�

(u+ 1)k+1−m|∇v|2 + C2

∫

�

vk+1 + C2,

(12.4.25)

where C2 > 0 depends on k,m,C1, μ, |�|, and Cφ .
Using that ∇v · ∇�v = 1

2�|∇v|2 − |D2v|2, by a straightforward computation
using the second equation in (12.4.6) and several integrations by parts, we find that

1

2β

d

dt
‖∇v‖2β

L2β (�)
=

∫

�

|∇v|2β−2∇v · ∇(�v − v + u)

=1

2

∫

�

|∇v|2β−2�|∇v|2 −
∫

�

|∇v|2β−2|D2v|2

−
∫

�

|∇v|2β −
∫

�

u∇ · (|∇v|2β−2∇v)

=− β − 1

2

∫

�

|∇v|2β−4
∣∣
∣∇|∇v|2

∣∣
∣
2 + 1

2

∫

∂�

|∇v|2β−2 ∂|∇v|2
∂ν

−
∫

�

|∇v|2β −
∫

�

|∇v|2β−2|D2v|2
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−
∫

�

u|∇v|2β−2�v −
∫

�

u∇v · ∇(|∇v|2β−2)

=− 2(β − 1)

β2

∫

�

∣
∣∇|∇v|β ∣∣2

+ 1

2

∫

∂�

|∇v|2β−2 ∂|∇v|2
∂ν

−
∫

�

|∇v|2β−2|D2v|2

−
∫

�

u|∇v|2β−2�v −
∫

�

u∇v · ∇(|∇v|2β−2)−
∫

�

|∇v|2β
(12.4.26)

for all t ∈ (0, Tmax). Here, since |�v| ≤ √
N |D2v|, by the Young inequality, we

can estimate
∫

�

u|∇v|2β−2�v ≤ √N

∫

�

u|∇v|2β−2|D2v|
≤ 1

4

∫

�

|∇v|2β−2|D2v|2 +N

∫

�

u2|∇v|2β−2
(12.4.27)

for all t ∈ (0, Tmax). As moreover by the Cauchy–Schwarz inequality, we have

−
∫

�

u∇v · ∇(|∇v|2β−2) = −(β − 1)
∫

�

u|∇v|2(β−2)∇v · ∇|∇v|2

≤ β − 1

8

∫

�

|∇v|2β−4
∣
∣
∣∇|∇v|2

∣
∣
∣
2

+2(β − 1)
∫

�

|u|2|∇v|2β−2

≤ (β − 1)

2β2

∫

�

∣
∣∇|∇v|β ∣∣2 + 2(β − 1)

∫

�

|u|2|∇v|2β−2.

(12.4.28)

Next we deal with the integration on ∂�. We see from Lemma 12.1.3 that

∫

∂�

∂|∇v|2
∂ν

|∇v|2β−2

≤ C�

∫

∂�

|∇v|2β
= C�||∇v|β |2L2(∂�)

.

(12.4.29)

Let us take r ∈ (0, 1
2 ). By the embedding Wr+ 1

2 ,2(�) ↪→ L2(∂�) is compact (see,
e.g., Haroske and Triebel [29]), we have

‖|∇v|β‖2
L2(∂�)

≤ C3‖|∇v|β‖2

W
r+ 1

2 ,2(�)
. (12.4.30)
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Let us pick a ∈ (0, 1) satisfying

a =
1

2N + β
l
+ γ

N
− 1

2
1
N
+ β

l
− 1

2

.

Noting that γ ∈ (0, 1
2 ) and β > 1 imply that γ + 1

2 ≤ a < 1, we see from
the fractional Gagliardo–Nirenberg inequality (Lemma 12.1.3) and boundedness of
|∇v|l that

||∇v|β |2
W

r+ 1
2 ,2(�)

≤ c0‖∇|∇v|β‖aL2(�)
‖|∇v|β‖1−a

L
l
β (�)

+ c′0‖|∇v|β‖
L

l
β (�)

≤ C4‖∇|∇v|β‖aL2(�)
+ C4.

(12.4.31)

Combining (12.4.29) and (12.4.30) with (12.4.31), we obtain

∫

∂�

∂|∇v|2
∂ν

|∇v|2β−2 ≤ C5|∇|∇v|β |aL2(�)
+ C5. (12.4.32)

Now, inserting (12.4.32)–(12.4.28) into (12.4.26) and using the Young inequality
we can get

1

2β

d

dt
‖∇v‖2β

L2β (�)
+ 3(β − 1)

4β2

∫

�

∣
∣∇|∇v|β ∣∣2

+1

2

∫

�

|∇v|2β−2|D2v|2 +
∫

�

|∇v|2β

≤ C6

∫

�

u2|∇v|2β−2 + C6 for all t ∈ (0, Tmax),

(12.4.33)

which together with (12.4.25) implies the results. ��
Lemma 12.4.4 Let � ⊂ R

N(N ≥ 2) be a bounded domain with smooth boundary.
Furthermore, assume that φ satisfies (12.4.7)–(12.2.5) and m > 2N

N+2 . There exist

β̄ > 1 and C > 0 such that

‖u(·, t)‖Lk(�) + ‖∇v(·, t)‖L2β (�) ≤ C for all t ∈ (0, Tmax) (12.4.34)

for all β ≥ β̄ and k > 1.

Proof In order to avoid common sense errors, we will prove the Lemma for two
cases. Case N ≥ 3; let

β̄ = max{ (N + 2)(2m− 1)

N
,

7N + 4

2
,

4(2Nm+ 2− 3N)

(m− 1)(N + 2)− (N − 2)
}
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and

k0(β) = 2m− 2

N − 2
(Nβ − N + 2)+ 2− 2

N
−m.

Then due to m > 2N
N+2 and N > 2, we have

min{k0(β), 2β − 1} >
β
4 − 1

β
4 +N

β
8 −N

(Nβ −N + 2)+ 2− 2

N
−m

≥ max

{
1−m+ N − 2

4N
β,m− 2

N
, 2− 2

N
−m

}

(12.4.35)

for all β ≥ β̄. Therefore, we can choose

k ∈
(

β
4 − 1

β
4 +N

β
8 −N

(Nβ − N + 2)+ 2− 2

N
−m,min{k0(β), 2β − 1}

)

.

(12.4.36)

Now for the above k, by the Hölder inequality, we have

J1 = C6χ
2(k − 1)

2Cφ

∫

�

(u+ 1)k+1−m|∇v|2

≤ C6χ
2(k − 1)

2Cφ

(∫

�

(u+ 1)
N

N−2 (k+1−m)
)N−2

N
(∫

�

|∇v|N
) 2

N

= C6χ
2(k − 1)

2Cφ

‖(u+ 1)
k+m−1

2 ‖
2(k+1−m)
k+m−1

L

2N
N−2 (k+1−m)

k+m−1 (�)

‖∇v‖2
LN(�)

.

(12.4.37)

Since, m ≥ 1 and N > 2, we have

1

k +m− 1
≤ k + 1−m

k +m− 1

N
2

N
2 − 1

≤ N

N − 2
,

which together with Lemma 12.1.2 implies that

C6χ
2(k − 1)

2Cφ

‖(u+ 1)
k+m−1

2 ‖
2(k+1−m)
k+m−1

L

2N
N−2 (k+1−m)

k+m−1 (�)

≤ C7

(
‖∇(u+ 1)

k+m−1
2 ‖μ1

L2(�)
‖(u+ 1)

k+m−1
2 ‖1−μ1

L
2

k+m−1 (�)

+‖(u+ 1)
k+m−1

2 ‖
L

2
k+m−1 (�)

) 2(k+1−m)
k+m−1 ≤C8

(
‖∇(u+1)

k+m−1
2 ‖

2(k+1−m)μ1
k+m−1

L2(�)
+1

)

(12.4.38)
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with some positive constants C10, C8 and

μ1 =
N[k+m−1]

2 − N(k+m−1)
2N
N−2 (k+1−m)

1− N
2 + N[k+m−1]

2

= [k +m− 1]
N
2 − N

2N
N−2 (k+1−m)

1− N
2 + N[k+m−1]

2

∈ (0, 1).

On the other hand, due to Lemma 12.1.2 and the fact that β ≥ β̄ > N
2 and N > 2,

we have

‖∇v‖2
LN (�)

= ‖|∇v|β‖
2
β

L
N
β (�)

≤ C9

(

‖∇|∇v|β‖
2μ2
β

L2(�)
‖|∇v|β‖

2(1−μ2)
β

L
2
β (�)

+ ‖|∇v|β‖
2
β

L
2
β (�)

)

≤ C10

(

‖∇|∇v|β‖
2μ2
β

L2(�)
+ 1

)

,

(12.4.39)

where some positive constants C9, C10 and

μ2 =
Nβ
2 − Nβ

N

1− N
2 + Nβ

2

= β

N
2 − N

N

1− N
2 + Nβ

2

∈ (0, 1).

Inserting (12.4.38)–(12.4.39) into (12.4.49) and using the Young inequality, β ≥ β̄

and (12.4.36), we have

J1 ≤ C11

(
‖∇(u+ 1)

k+m−1
2 ‖

2(k+1−m)μ1
k+m−1

L2(�)
+ 1

)(

‖∇|∇v|β‖
2μ2
β

L2(�)
+ 1

)

= C11

⎛

⎜
⎝‖∇(u+ 1)

k+m−1
2 ‖

N(k+1−m−N−2
N

)

1−N
2 +

N[k+m−1]
2

L2(�)
+ 1

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎝
‖∇|∇v|β‖

N( 2
2− 1

N
2

)

1−N
2 +

Nβ
2

L2(�)
+ 1

⎞

⎟
⎟
⎟
⎠

≤ δ

∫

�

|∇(u+ 1)
m+k−1

2 |2 + δ‖∇|∇v|β‖2
L2(�)

+ C12 for all t ∈ (0, Tmax).

(12.4.40)

Next, due to the Hölder inequality and β ≥ β̄ > 8, we have

J2 = C6

∫

�

u2|∇v|2β−2

≤ C6

(∫

�

u
β
4

) 8
β
(∫

�

|∇v| β(2β−2)
β−8

) β−8
β

≤ C6

(∫

�

(u+ 1)
β
4

) 8
β
(∫

�

|∇v| β(2β−2)
β−8

) β−8
β

= C6‖(u+ 1)
k+m−1

2 ‖
4

k+m−1

L

β
2

k+m−1 (�)

‖∇v‖(2β−2)

L
β(2β−2)
β−8 (�)

.

(12.4.41)
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On the other hand, with the help of k > 1 − m + N−2
4N β, β ≥ β̄ ≥ 4 and

Lemma 12.1.2 we conclude that

C6‖(u+ 1)
k+m−1

2 ‖
4

k+m−1

L

β
2

k+m−1 (�)

≤ C13

(
‖∇(u+ 1)

k+m−1
2 ‖μ3

L2(�)
‖(u+ 1)

k+m−1
2 ‖(1−μ3)

L
2

k+m−1 (�)

+‖(u+ 1)
k+m−1

2 ‖
L

2
k+m−1 (�)

) 4
k+m−1 ≤ C14

(
‖∇(u+ 1)

k+m−1
2 ‖

4μ3
k+m−1

L2(�)
+ 1

)

(12.4.42)

with some positive constants C13, C14 and

μ3 =
N[k+m−1]

2 − N(k+m−1)
β
2

1− N
2 + N[k+m−1]

2

= [k +m− 1]
N
2 − N

β
2

1− N
2 + N[k+m−1]

2

∈ (0, 1).

On the other hand, it then follows from β ≥ β̄ > 7N+2
2 and Lemma 12.1.2 that

‖∇v‖(2β−2)

L
β(2β−2)
β−8 (�)

= ‖|∇v|β‖
2β−2
β

L

β(2β−2)
β−8
β (�)

≤ C15(‖∇|∇v|β‖
(2β−2)μ4

β

L2(�)
‖|∇v|β‖

(2β−2)(1−μ4)
β

L
2
β (�)

+ ‖|∇v|β‖
(2β−2)

β

L
2
β (�)

)

≤ C16(‖∇|∇v|β‖
(2β−2)μ4

β

L2(�)
+ 1),

(12.4.43)

where some positive constants C15, C16 and

μ4 =
Nβ
2 − Nβ

β(2β−2)
β−8

1− N
2 + Nβ

2

= β

N
2 − N

β(2β−2)
β−8

1− N
2 + Nβ

2

∈ (0, 1).

Inserting (12.4.42)–(12.4.43) into (12.4.41) and using k >
β
4−1

β
4+N β

8−N
(Nβ − N +

2)+ 2− 2
N
−m and Lemma 12.1.2, we have

J2 ≤ C17

⎛

⎜
⎝‖∇(u+ 1)

k+m−1
2 ‖

N(2− 8
β
)

1−N
2 +

N[k+m−1]
2

L2(�)
+ 1

⎞

⎟
⎠

⎛

⎜
⎜
⎝‖∇|∇v|β‖

N(
2β−2

2 − β−8
β

)

1−N
2 +

Nβ
2

L2(�)
+ 1

⎞

⎟
⎟
⎠

≤ δ

∫

�

|∇(u+ 1)
m+k−1

2 |2 + δ‖∇|∇v|β‖2
L2(�)

+ C18 for all t ∈ (0, Tmax).

(12.4.44)
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Finally, with the help of (12.4.9) and by the Sobolev inequality, the Young
inequality and (12.4.36), we have

J3 = C6

∫

�

vk+1

≤ C19‖v‖k+1
L∞(�)

≤ C20

(
‖∇v‖k+1

LN+1(�)
+ 1

)

≤ C21

(
‖∇v‖k+1

L2β (�)
+ 1

)

≤ 1

2
‖∇v‖2β

L2β (�)
+ C22

(12.4.45)

with β ≥ β̄ > N+1
2 . Now, inserting (12.4.40), (12.4.44)–(12.4.45) into (12.4.33)

and using the Young inequality and choosing δ small enough yields to

d

dt

(
1

k
‖u+ 1‖k

Lk(�)
+ 1

2β
‖∇v‖2β

L2β (�)

)

+3(β − 1)

8β2

∫

�

∣
∣∇|∇v|β ∣∣2 + μ

2

∫

�

(u+ 1)k+1

+1

2

∫

�

|∇v|2β−2|D2v|2 + 1

2

∫

�

|∇v|2β + (k − 1)Cφ

8

∫

�

(u+ 1)m+k−3|∇u|2
≤ C23 for all t ∈ (0, Tmax).

(12.4.46)

Therefore, letting y :=
∫

�

(u+ 1)k +
∫

�

|∇v|2β in (12.4.46) yields to

d

dt
y(t)+ C24y(t) ≤ C25 for all t ∈ (0, Tmax).

Thus a standard ODE comparison argument implies boundedness of y(t) for all t ∈
(0, Tmax). Clearly, ‖(u+ 1)(·, t)‖Lk(�) and ‖∇v(·, t)‖L2β (�) are bounded for all t ∈
(0, Tmax). Obviously, limβ→+∞

β
4 − 1

β
4 +N

β
8 −N

(Nβ −N + 2)+ 2− 2

N
−m =

lim
β→+∞min{k0(β), 2β − 1} = +∞, hence, the boundedness of ‖(u+ 1)(·, t)‖Lk(�)

and the Hölder inequality implies the results.
Case N = 2; let β̃ = max{2, 2m,m− 1

2 }, then due to m > 1, we have

(4m− 3)β + 1−m > β + 1−m ≥ max

{
7

3
−m,m− 1

}
for all β ≥ β̃.

(12.4.47)

Therefore, we can choose

k ∈ (β + 1−m, (4m− 3)β + 1−m) . (12.4.48)
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By the Hölder inequality, we have

J1 = C6χ
2(k − 1)

2Cφ

∫

�

(u+ 1)k+1−m|∇v|2

≤ C6χ
2(k − 1)

2Cφ

(∫

�

(u+ 1)2(k+1−m)
) 1

2
(∫

�

|∇v|4
) 1

2

= C6χ
2(k − 1)

2Cφ

‖(u+ 1)
k+m−1

2 ‖
2(k+1−m)
k+m−1

L
4(k+1−m)
k+m−1 (�)

‖∇v‖2
L4(�)

.

(12.4.49)

Since m ≥ 1 and k ≥ m− 1
2 , we have

1

k +m− 1
≤ 2(k + 1−m)

k +m− 1
< +∞,

which together with Lemma 12.1.2 implies that

C6χ
2(k − 1)

2Cφ

‖(u+ 1)
k+m−1

2 ‖
2(k+1−m)
k+m−1

L
4(k+1−m)
k+m−1 (�)

≤ C26

(
‖∇(u+ 1)

k+m−1
2 ‖μ5

L2(�)
‖(u+ 1)

k+m−1
2 ‖1−μ5

L
2

k+m−1 (�)

+‖(u+ 1)
k+m−1

2 ‖
L

2
k+m−1 (�)

) 2(k+1−m)
k+m−1 ≤ C27

(
‖∇(u+ 1)

k+m−1
2 ‖

2(k+1−m)μ5
k+m−1

L2(�)
+ 1

)

(12.4.50)

with some positive constants C26, C27 and

μ5 =
(k +m− 1)− (k+m−1)

2(k+1−m)
(k +m− 1)

= 1− 1

2(k + 1−m)
∈ (0, 1).

On the other hand, due to Lemma 12.1.2 and the fact that 2
β
< +∞, we have

‖∇v‖2
L4(�)

= ‖|∇v|β‖
2
β

L
4
β (�)

≤ C28

(

‖∇|∇v|β‖
2μ6
β

L2(�)
‖|∇v|β‖

2(1−μ6)
β

L
2
β (�)

+ ‖|∇v|β‖
2
β

L
2
β (�)

)

≤ C29

(

‖∇|∇v|β‖
2μ6
β

L2(�)
+ 1

)

,

(12.4.51)
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where some positive constants C28, C29 and

μ6 = β − β
2

β
= 1

2
∈ (0, 1).

Inserting (12.4.50)–(12.4.51) into (12.4.49) and using the Young inequality, we have

J1 ≤ C30

(
‖∇(u+ 1)

k+m−1
2 ‖

2(k+1−m)μ5
k+m−1

L2(�)
+ 1

)(

‖∇|∇v|β‖
2μ6
β

L2(�)
+ 1

)

= C30

⎛

⎝‖∇(u+ 1)
k+m−1

2 ‖
2(k+1−m− 1

2 )
(k+m−1)

L2(�)
+ 1

⎞

⎠

⎛

⎝‖∇|∇v|β‖
2( 2

2− 1
2 )

β

L2(�)
+ 1

⎞

⎠

≤ δ

∫

�

|∇(u+ 1)
m+k−1

2 |2 + δ‖∇|∇v|β‖2
L2(�)

+ C31 for all t ∈ (0, Tmax).

(12.4.52)

Here we have used the fact that k < (4m− 3)β + 1−m and k > 1−m.

Now, due to the Hölder inequality, we have

J2 = C6

∫

�

u2|∇v|2β−2

≤ C32

(∫

�

u4
) 1

2
(∫

�

|∇v|2(2β−2)
) 1

2

≤ C32

(∫

�

(u+ 1)4
) 1

2
(∫

�

|∇v|2(2β−2)
) 1

2

= C32‖(u+ 1)
k+m−1

2 ‖
4

k+m−1

L
8

k+m−1 (�)

‖∇v‖(2β−2)
L2(2β−2)(�)

.

(12.4.53)

On the other hand, with the help of k > 1,m > 1 and Lemma 12.1.2 we conclude
that

C6‖(u+ 1)
k+m−1

2 ‖
4

k+m−1

L
8

k+m−1 (�)

≤ C33

(
‖∇(u+ 1)

k+m−1
2 ‖μ7

L2(�)
‖(u+ 1)

k+m−1
2 ‖(1−μ7)

L
2

k+m−1 (�)

+‖(u+ 1)
k+m−1

2 ‖
L

2
k+m−1 (�)

) 4
k+m−1 ≤ C34

(
‖∇(u+ 1)

k+m−1
2 ‖

4μ7
k+m−1

L2(�)
+ 1

)

(12.4.54)

with some positive constants C29, C30 and

μ7 = [k +m− 1] − (k+m−1)
4

[k +m− 1] = 3

4
∈ (0, 1).
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On the other hand, it then follows from β ≥ 2 and Lemma 12.1.2 that

‖∇v‖(2β−2)
L2(2β−2)(�)

= ‖|∇v|β‖
2β−2
β

L
2(2β−2)

β (�)

≤ C35

(

‖∇|∇v|β‖
(2β−2)μ8

β

L2(�)
‖|∇v|β‖

(2β−2)(1−μ8)
β

L
2
β (�)

+ ‖|∇v|β‖
(2β−2)

β

L
2
β (�)

)

≤ C36

(

‖∇|∇v|β‖
(2β−2)μ8

β

L2(�)
+ 1

)

,

(12.4.55)

where some positive constants C31, C32 and

μ8 =
β − β

(2β−2)

β
= β

1− 1
(2β−2)

β
∈ (0, 1).

Inserting (12.4.54)–(12.4.55) into (12.4.53) and using k > β + 1 − m and
Lemma 12.1.2, we have

J2 ≤ C37

⎛

⎝‖∇(u+ 1)
k+m−1

2 ‖
2(2− 1

2 )[k+m−1]
L2(�)

+ 1

⎞

⎠

⎛

⎝‖∇|∇v|β‖
2(β−1− 1

2 )
β

L2(�)
+ 1

⎞

⎠

≤ δ

∫

�

|∇(u+ 1)
m+k−1

2 |2 + δ‖∇|∇v|β‖2
L2(�)

+ C38 for all t ∈ (0, Tmax).

(12.4.56)

The same argument as in the derivation of (12.4.45)–(12.4.46) then shows the
results. ��

Note that ‖∇v(·, t)‖L2β (�) (β is big enough)is bounded by (12.4.34), how-
ever ‖∇w(·, t)‖L∞(�) might become unbounded in light of (12.4.11). Therefore,
Lemma A.1 in [78] cannot be directly applied to the first equation in (12.4.6) to get
the boundedness of ‖u(·, t)‖L∞(�). In view of Lemma 12.4.4 and using the standard
Moser-type iteration procedure (see [1]), we derive that u is uniformly bounded in
�× (0, Tmax).

Lemma 12.4.5 Let T ∈ (0, Tmax), χ > 0, ξ > 0, and assume that u0, v0, and w0
satisfy (12.4.2) with some ϑ ∈ (0, 1). Then there exists C > 0 independent of T
such that the solution (u, v,w) of (12.4.6) satisfies

‖u(·, t)‖L∞(�) ≤ C for all t ∈ (0, T ). (12.4.57)

Proof Firstly, due to ‖u(·, t)‖Lk(�) is bounded for any large k, by the fundamental
estimates for Neumann semigroup (see Lemma 4.1 of [39]) or the standard
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regularity theory of parabolic equation, we immediately get:

‖∇v(·, t)‖L∞(�) ≤ C35 for all t ∈ (0, T ), (12.4.58)

whereC39 is a positive constant independent of T . Hence by (12.4.24) and (12.4.58),
we conclude that

1

k

d

dt
‖u+ 1‖k

Lk(�)
+ (k − 1)Cφ

4

∫

�

(u+ 1)m+k−3|∇u|2 + μ

2

∫

�

(u+ 1)k+1

≤ C40k

∫

�

(u+ 1)k+1−m + C1

∫

�

(u+ 1)k + μ

∫

�

(u+ 1)k,

(12.4.59)

where C40 > 0, as all subsequently appearing constants Ci(i = 41, 42, . . .) are
independent of k as well as of T . Now, according to m ≥ 1 and u ≥ 0, an obvious
rearrangement implies

d

dt
‖u+ 1‖k

Lk(�)
+

∫

�

|∇(u+ 1)
k
2 |2 + k

∫

�

(u+ 1)k+1 ≤ C41k
2
∫

�

(u+ 1)k.

(12.4.60)

Therefore by means of the Gagliardo–Nirenberg inequality (see Lemma 12.1.2) and
the Young inequality, we can get that

d

dt
‖u+ 1‖k

Lk(�)
+ k

∫

�

(u+ 1)k ≤ C42k
2+N

∫

�

(u+ 1)
k
2 . (12.4.61)

Now, choosing ki = 2i (i ∈ N) and letting Mi = supt∈(0,T )
∫
�
(u + 1)

ki
2 .

Then (12.4.61) implies that

d

dt
‖u+ 1‖ki

Lki (�)
+ ki

∫

�

(u+ 1)ki ≤ λi‖(u+ 1)
ki
2 ‖2

L1(�)
(12.4.62)

with some λ > 1. Now, if λi‖(u+ 1)
ki
2 ‖2

L1(�)
≤ ‖1+ u0‖kiL∞(�) for infinitely many

i ≥ 1, we get (12.4.57) with C = ‖1 + u0‖L∞(�). Otherwise, by a straightforward
induction (see, e.g., Lemma 3.12 of [84]) we have

∫

�

(1+ u)ki ≤ λi(λi−1M2
i−2)

2

= λi+2(i−1)M22

i−2

≤ λ
i+&i

j=2(j−1)
M2i

0 .

(12.4.63)

Taking ki-th roots on both sides of (12.4.63), using the fact that ln(1+ z) ≤ z for all
z ≥ 0, we can easily get (12.4.57). ��
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Collecting the above Lemmas, we can prove Theorem 12.4.1.

The Proof of Theorem 12.4.1 In view of (12.4.58) and Lemma 12.4.5, we obtain
that u and ∇v are uniformly bounded in �×(0, Tmax). According to Lemma 12.3.2,
this entails that (u, v,w) is global in time, and that u is bounded in �× (0,∞).

Lemma 12.4.6 Under the assumptions in theorem 12.4.1, we derive that there
exists a positive constant C such that the solution of (12.4.1) satisfies

∫

�

u(x, t)+
∫

�

v2(x, t)+
∫

�

|∇v(x, t)|2 ≤ C for all t ∈ (0, Tmax). (12.4.64)

Moreover, for each T ∈ (0, Tmax), one can find a constant C > 0 independent of ε
such that

∫ T

0

∫

�

[
|∇v|2 + ur + |�v|2

]
≤ C. (12.4.65)

Now, applying almost exactly the same arguments as in the proof of Lemma 3.2
of [90] (the minor necessary changes are left as an easy exercise to the reader), we
conclude the following Lemma:

Lemma 12.4.7 Let (u, v,w) be a solution to (12.4.1) on (0, Tmax). Then for any
k > 1, there exists a positive constant Cβ := C(ξ, ‖w0‖L∞(�), β) which depends
on ξ, ‖w0‖L∞(�) and β such that

−ξ
∫

�

uk−1∇ · (u∇w) ≤ Cβ(
k − 1

k

∫

�

uk(v + 1)+ k

∫

�

uk−1|∇u|).
(12.4.66)

where β is the same as (12.2.19).

Proof Here and throughout the proof of Lemma 12.4.7, we shall denote by Mi(i ∈
N) several positive constants independent of k. Firstly, observing that the third
equation of (12.4.1) is an ODE, we derive that

w(x, t) = w(x, s0)e
− ∫ t

0 v(x,s)ds, (x, t) ∈ �× (0, Tmax). (12.4.67)

Hence, by a basic calculation, we conclude that

∇w(x, t) = ∇w(x, s0)e
− ∫ t

0 v(x,s)ds

−w(x, s0)e
− ∫ t

0 v(x,s)ds

∫ t

0
∇v(x, s)ds, (x, t) ∈ �× (0, Tmax).

(12.4.68)
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and

�w(x, t)

≥ �w(x, s0)e
− ∫ t

0 v(x,s)ds − 2∇w(x, s0) ·
∫ t

0
∇v(x, s)dse−

∫ t
0 v(x,s)ds

−w(x, s0)e
− ∫ t

0 �v(x,s)ds

∫ t

0
�v(x, s)ds.

(12.4.69)

On the other hand, for any k ≥ 1, integrating by parts yields

− ξ

∫

�

uk−1∇ · (u∇w)

= −ξ k − 1

k

∫

�

uk�w

≤ ξ
k − 1

k

∫

�

uk
(
−�w(x, s0)e

− ∫ t
0 v(x,s)ds

+2∇w(x, s0) ·
∫ t

0
∇v(x, s)dse−

∫ t
0 v(x,s)ds

)

+ ξ
k − 1

k

∫

�

ukw(x, s0)e
− ∫ t

0 �v(x,s)ds

∫ t

0
�v(x, s)ds

:= J1. (12.4.70)

Now, using v ≥ 0 and the Young inequality, we have

J1 ≤ −ξ k − 1

k

∫

�

uk�w(x, s0)e
− ∫ t

0 v(x,s)ds + ξ
k − 1

k

∫

�

ukw(x, s0)e
− ∫ t

0 v(x,s)ds

×
∫ t

0
�v(x, s)ds + ξ

2(k − 1)

k

∫

�

uk∇w(x, s0) ·
∫ t

0
∇v(x, s)dse−

∫ t
0 v(x,s)ds

= −ξ k − 1

k

∫

�

uk�w(x, s0)e
− ∫ t

0 v(x,s)ds + ξ
k − 1

k

∫

�

ukw(x, s0)e
− ∫ t

0 v(x,s)ds

×
∫ t

0
�v(x, s)ds − ξ

2(k − 1)

k

∫

�

uk∇w(x, s0) · ∇e−
∫ t

0 v(x,s)ds

≤ ξβ

∫

�

uk + ξ
k − 1

k

∫

�

ukw(x, s0)e
− ∫ t

0 v(x,s)ds

∫ t

0
�v(x, s)ds+2ξ(k − 1)

×
∫

�

uk−1∇u · ∇w(x, s0)e
− ∫ t

0 v(x,s)ds+2(k−1)

k

∫

�

uk�w(x, s0)e
−∫ t

0 v(x,s)ds

≤ M1

∫

�

uk + ξ
k − 1

k

∫

�

ukw(x, s0)e
− ∫ t

0 v(x,s)ds

∫ t

0
�v(x, s)ds

+M2(k

∫

�

uk−1|∇u| +
∫

�

uk).

(12.4.71)
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Next, due to the second equality of (12.4.1) and u ≥ 0, we conclude that

ξ
k − 1

k

∫

�

ukw(x, s0)e
− ∫ t

0 v(x,s)ds

∫ t

0
�v(x, s)ds

= ξ
k − 1

k

∫

�

ukw(x, s0)e
− ∫ t

0 v(x,s)ds

∫ t

0
(vs(x, s)+ v(x, s) − u(x, s)))ds

≤ ξ
k − 1

k

∫

�

ukw(x, s0)e
− ∫ t

0 v(x,s)ds(v(x, t)− v0(x)+
∫ t

0
v(x, s)ds

≤ ξ
k − 1

k
‖w0‖L∞(�)

∫

�

uk(v + 1).

(12.4.72)

Here we have used the fact that t
et
≤ 1 (for all t ≥ 0). Collecting (12.4.71)

with (12.4.72), we can get the result. ��
Lemma 12.4.8 Let

A1 = 1

δ + 1

[
δ + 1

δ

]−δ (
δ − 1

δ

)δ+1

, (12.4.73)

H(y) = y + A1y
−δχδ+1Cδ+1 and H̃ (y) = y + A1y

−δCδ+1
β Cδ+1 for y > 0. For

any fixed δ ≥ 1, χ, Cβ,Cδ+1 > 0, Then

min
y>0

H(y) = (δ − 1)

δ
C

1
δ+1
δ+1χ

and

min
y>0

H̃ (y) = (δ − 1)

δ
C

1
δ+1
δ+1Cβ. (12.4.74)

Proof It is easy to verify that

H ′(y) = 1− A1δCδ+1

(
χ

y

)δ+1

.

Let H ′(y) = 0, we have

y = (A1Cδ+1δ)
1

δ+1 χ.

On the other hand, by limy→0+ H(y) = +∞ and limy→+∞H(y) = +∞, we have

miny>0 H(y) = H
[
(A1Cδ+1δ)

1
δ+1 χ

]
= (A1Cδ+1)

1
δ+1 (δ

1
δ+1 + δ−

δ
δ+1 )χ

= (δ − 1)

δ
C

1
δ+1
δ+1χ.

(12.4.75)

Employing the same arguments as in the proof of (12.4.75), we conclude (12.4.74).
��
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Lemma 12.4.9 Let r = 2 and (u, v,w) be a solution to (12.4.1) on (0, Tmax). If

μ >
(N − 2)+

N
(χ + Cβ)C

1
N
2 +1

N
2 +1

, (12.4.76)

then for all p > 1, there exists a positive constant C := C(p, |�|, μ, χ, ξ, β) such
that

∫

�

up(x, t)dx ≤ C for all t ∈ (0, Tmax). (12.4.77)

Proof Let l > 1. Multiplying the first equation of (12.4.1) by ul−1 and integrating
over �, we get

1

l

d

dt
‖u‖l

Ll (�)
+ (l − 1)

∫

�

ul−2|∇u|2dx
= −χ

∫

�

∇ · (u∇v)ul−1dx − ξ

∫

�

∇ · (u∇w)ul−1dx +
∫

�

ul−1(au− μu2)dx,

(12.4.78)

that is,

1

l

d

dt
‖u‖l

Ll (�)
+ (l − 1)

∫

�

ul−2|∇u|2dx
≤ − l + 1

l

∫

�

uldx − χ

∫

�

∇ · (u∇v)ul−1dx

−ξ
∫

�

∇ · (u∇w)ul−1dx +
∫

�

(
l + 1

l
ul + ul−1(au− μu2)

)
dx.

(12.4.79)

Hence, by Young inequality, it reads that

∫

�

(
l + 1

l
ul + ul−1(au− μu2)

)
dx

≤ l + 1

l

∫

�

uldx + a

∫

�

uldx − μ

∫

�

ul+1dx

≤ (ε1 − μ)

∫

�

ul+1dx + C1(ε1, l),

(12.4.80)

where

C1(ε1, l) = 1

l + 1

(
ε1
l + 1

l

)−l (
l + 1

l
+ a

)l+1

|�|.
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Next, integrating by parts to the first term on the right-hand side of (12.4.78), we
obtain

−χ
∫

�

∇ · (u∇v)ul−1dx

= (l − 1)χ
∫

�

ul−1∇u · ∇vdx
≤ l − 1

l
χ

∫

�

ul |�v|dx.
(12.4.81)

Next, due to (12.4.66) and the Young inequality, we derive that there exist
positive constant C2 := ( 1

2
1

l−1C
2
βl

2 + Cβ), and C3 := 1
l+1 (ε3

l+1
l
)−lCl+1

2 such
that

−ξ
∫

�

∇ · (u∇w)ul−1dx ≤ Cβ

(
l − 1

l

∫

�

ul(v + 1)+ l

∫

�

ul−1|∇u|
)

≤ l − 1

2

∫

�

ul−2|∇u|2 +
(

1

2

1

l − 1
C2
β l

2 + l − 1

l
Cβ

)

×
∫

�

ul + Cβ
l − 1

l

∫

�

ulv

≤ l − 1

2

∫

�

ul−2|∇u|2 + C2

∫

�

ul + Cβ
l − 1

l

∫

�

ulv

≤ l − 1

2

∫

�

ul−2|∇u|2 + (ε2 + ε3)

∫

�

ul+1

+ 1

l + 1
(ε2

l + 1

l
)−lCl+1

β

(
l − 1

l

)l+1 ∫

�

vl+1 + C3

(12.4.82)

for any positive constant ε2 and ε3.

Now, let

λ0 := (A1Cl+1l)
1

l+1 χ (12.4.83)

and

λ̃0 := (A1Cl+1l)
1

l+1 Cβ, (12.4.84)

where A1 is given by (12.4.73). While from (12.4.81) and the Young inequality, we
have

−χ
∫

�

∇ · (u∇v)ul−1dx

≤ λ0

∫

�

ul+1dx + 1

l + 1

[
λ0

l + 1

l

]−l (
l − 1

l
χ

)l+1 ∫

�

|�v|l+1dx

= λ0

∫

�

ul+1dx + A1λ
−l
0 χl+1

∫

�

|�v|l+1dx,

(12.4.85)



406 J. Zheng

where A1 is given by (12.4.73). Thus, inserting (12.4.80), (12.4.82), and (12.4.85)
into (12.4.79), we get

1

l

d

dt
‖u‖l

Ll (�)
+ l−1

2

∫
� ul−2|∇u|2 ≤ (ε1 + ε2 + λ0 − μ)

∫

�
ul+1dx − l + 1

l

∫

�
uldx

+A1λ
−l
0 χl+1

∫

�
|�v|l+1dx

+A1ε
−l
2 Cl+1

β

∫

�
vl+1 + C1(ε1, l).

For any t ∈ (s0, Tmax), employing the variation-of-constants formula to the above
inequality, we obtain

1

l
‖u(t)‖l

Ll (�)

≤ 1

l
e−(l+1)(t−s0)‖u(s0)‖lLl(�)

+ (ε1 + ε2 + λ0 − μ)

∫ t

s0

e−(l+1)(t−s)
∫

�

ul+1dxds

+A1λ
−l
0 χl+1

∫ t

s0

e−(l+1)(t−s)
∫

�

|�v|l+1dxds

+C1(ε1, l)

∫ t

s0

e−(l+1)(t−s)ds + A1ε
−l
2 Cl+1

β

∫ t

s0

e−(l+1)(t−s)
∫

�

vl+1dxds

≤ (ε1 + ε2 + λ0 − μ)

∫ t

s0

e−(l+1)(t−s)
∫

�

ul+1dxds + A1λ
−l
0 χl+1

∫ t

s0

e−(l+1)(t−s)

×
∫

�

|�v|l+1dxds + A1ε
−l
2 Cl+1

β

∫ t

s0

e−(l+1)(t−s)
∫

�

vl+1dxds + C2(ε1, l),

(12.4.86)

where

C2 := C2(ε1, l) = 1

l
‖u(s0)‖lLl(�)

+ C1(ε1, l)

∫ t

s0

e−(l+1)(t−s)ds.

Now, choosing ε2 := λ̃0 in (12.4.86), by (12.4.84), Lemma 12.1.5 and the second
equation of (12.4.1), we have

A1λ
−l
0 χl+1

∫ t

s0

e−(l+1)(t−s)
∫

�

|�v|l+1dxds

= A1λ
−l
0 χl+1e−(l+1)t

∫ t

s0

e(l+1)s
∫

�

|�v|l+1dxds

≤ A1λ
−l
0 χl+1e−(l+1)tCl+1

(∫ t

s0

∫

�

e(l+1)sul+1dxds + e(l+1)s0‖v(s0, t)‖l+1
W 2,l+1

)

(12.4.87)
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and

A1λ̃
−l
0 Cl+1

β

∫ t

s0

e−(l+1)(t−s)
∫

�
vl+1dxds

= A1λ̃
−l
0 Cl+1

β e−(l+1)t
∫ t

s0

e(l+1)s
∫

�
vl+1dxds

≤ A1λ̃
−l
0 Cl+1

β e−(l+1)tCl+1

(∫ t

s0

∫

�
e(l+1)sul+1dxds + e(l+1)s0‖v(s0, t)‖l+1

W 2,l+1

)

(12.4.88)

for all t ∈ (s0, Tmax). By substituting (12.4.87)–(12.4.88) into (12.4.86),
using (12.4.83) and Lemma 12.4.8, we get

1

l
‖u(t)‖l

Ll (�)

≤
(
ε1 + λ̃0 + A1λ̃

−l
0 Cl+1

β Cl+1 + λ0 + A1λ
−l
0 χl+1Cl+1 − μ

)

×
∫ t

s0

e−(l+1)(t−s)
∫

�

ul+1dxds

+A1

(
λ−l0 χl+1 + λ̃−l0 Cl+1

β

)
e−(l+1)(t−s0)Cl+1‖v(s0, t)‖l+1

W 2,l+1 + C2(l, ε1)

=
(
ε1+ε3+ (l − 1)

l
C

1
l+1
l+1Cβ+ (l − 1)

l
C

1
l+1
l+1χ − μ

)∫ t

s0

e−(l+1)(t−s)
∫

�

ul+1dxds

+A1

(
λ−l0 χl+1 + λ̃−l0 Cl+1

β

)
e−(l+1)(t−s0)Cl+1‖v(s0, t)‖l+1

W 2,l+1 + C2(l, ε1).

(12.4.89)

Since μ >
(N−2)+

N
(Cβ + χ)C

1
N
2 +1

N
2 +1

, we may choose N+2
(N−2)+ > q0 > N

2 in (12.4.89)

such that

μ >
q0 − 1

q0
(Cβ + χ)C

1
q0+1

q0+1,

thus, pick ε1 and ε3 appropriating small such that

0 < ε1 + ε3 < μ− q0 − 1

q0
(Cβ + χ)C

1
q0+1

q0+1. (12.4.90)

Observe q0 < N+2
(N−2)+ , in light of (12.4.64), we may derive that there exists a positive

constant C4 such that

∫

�

vq0+1(x, t) ≤ C4 for all t ∈ (0, Tmax). (12.4.91)
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Collecting (12.4.90) and (12.4.91) then in light of (12.4.89), we derive that there
exists a positive constant C5 such that

∫

�

uq0(x, t)dx ≤ C5 for all t ∈ (s0, Tmax). (12.4.92)

Next, we fix q <
Nq0

(N−q0)
+ and choose some α > 1

2 such that

q <
1

1
q0
− 1

N
+ 2

N
(α − 1

2 )
≤ Nq0

(N − q0)+
. (12.4.93)

Now, involving the variation-of-constants formula for v, we have

v(t) = e−τ (A+1)v(s0)+
∫ t

s0

e−(t−s)(A+1)u(s)ds, t ∈ (s0, Tmax). (12.4.94)

Hence, it follows from (12.2.19) and (12.4.94) that

‖(A+ 1)αv(t)‖Lq (�)

≤ C6

∫ t

s0

(t − s)
−α−N

2 (
1
q0
− 1

q )e−μ(t−s)‖u(s)‖Lq0 (�)ds

+C6s
−α−N

2 (1− 1
q
)

0 ‖v(s0, t)‖L1(�)

≤ C6

∫ +∞

0
σ
−α−N

2 (
1
q0
− 1

q
)
e−μσ dσ + C6s

−α−N
2 (1− 1

q )

0 β.

(12.4.95)

Hence, due to (12.4.93) and (12.4.95), we have
∫

�

|∇v(t)|q ≤ C7 for all t ∈ (s0, Tmax) (12.4.96)

and q ∈ [1, Nq0
(N−q0)+ ). Finally, in view of (12.2.19) and (12.4.96), we can get

∫

�

|∇v(t)|q ≤ C8 for all t ∈ (0, Tmax) and q ∈ [1, Nq0

(N − q0)+
) (12.4.97)

with some positive constant C8.

Multiplying both sides of the first equation in (12.4.1) by up−1, integrating over
� and integrating by parts, we arrive at

1

p

d

dt
‖u‖pLp(�) + (p − 1)

∫

�

up−2|∇u|2dx
= −χ

∫

�

∇ · (u∇v)up−1dx − ξ

∫

�

∇ · (u∇w)up−1dx +
∫

�

up−1(au− μu2)dx

= χ(p − 1)
∫

�

up−1∇u · ∇vdx + ξ(p − 1)
∫

�

up−1∇u · ∇wdx
+

∫

�

up−1(au− μu2)dx,

(12.4.98)
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which together with the Young inequality and (12.4.66) implies that

1

p

d

dt
‖u‖pLp(�) + (p − 1)

∫

�

up−2|∇u|2dx

≤ p − 1

2

∫

�

up−2|∇u|2dx + χ2(p − 1)

2

∫

�

up|∇v|2dx + C9

∫

�

vp+1

−μ

2

∫

�

up+1dx + C10

(12.4.99)

for some positive constants C9 and C10. Now, in light of q0 > N
2 , due to (12.4.97)

and the Sobolev imbedding theorem, we derive that there exists a positive constant
C11 such that

C9

∫

�

vp+1(x, t) ≤ C11 for all t ∈ (0, Tmax) and p > 1. (12.4.100)

Since q0 > N
2 yields q0 <

Nq0
2(N−q0)+ , in light of the Hölder inequality, (12.2.19)

and (12.4.97), we derive that

χ2(p − 1)

2

∫

�

up|∇v|2 ≤ χ2(p − 1)

2

(∫

�

u
q0

q0−1p
) q0−1

q0
(∫

�

|∇v|2q0

) 1
q0

≤ C12‖up
2 ‖2

L
2

q0
q0−1 (�)

,

(12.4.101)

where C10 is a positive constant. Since q0 > N
2 and p > q0 − 1, we have

q0

p
≤ q0

q0 − 1
≤ N

N − 2
,

which together with the Gagliardo–Nirenberg inequality implies that

C12‖up
2 ‖2

L
2

q0
q0−1 (�)

≤ C13

(

‖∇up
2 ‖μ1

L2(�)
‖up

2 ‖1−μ1

L
2q0
p (�)

+ ‖up
2 ‖

L
2q0
p (�)

)2

≤ C14

(
‖∇up

2 ‖2μ1
L2(�)

+ 1
)

= C14

(

‖∇up
2 ‖

2N(p−q0+1)
Np+2q0−Nq0
L2(�)

+ 1

)

(12.4.102)
with some positive constants C13, C14 and

μ1 =
Np
2q0
− Np

2
q0

q0−1p

1− N
2 + Np

2q0

= p

N
2q0
− N

2
q0

q0−1p

1− N
2 + Np

2q0

∈ (0, 1).
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Now, in view of the Young inequality, we derive that

χ2(p − 1)

2

∫

�

up|∇v|2dx ≤ p − 1

4

∫

�

up−2|∇u|2dx + C15. (12.4.103)

Inserting (12.4.103) into (12.4.104), we conclude that

1

p

d

dt
‖u‖pLp(�) +

p − 1

4

∫

�

up−2|∇u|2dx + μ

2

∫

�

up+1dx ≤ C16.

(12.4.104)

Therefore, integrating the above inequality with respect to t yields

‖u(·, t)‖Lp(�) ≤ C17 for all p ≥ 1 and t ∈ (0, Tmax) (12.4.105)

for some positive constant C17. The proof Lemma 12.4.9 is complete. ��
Lemma 12.4.10 Let (u, v,w) be a solution to (12.4.1) on (0, Tmax). Assume
that r > 2. Then for all p > 1, there exists a positive constant C :=
C(p, |�|, r, μ, ξ, χ, β) such that

∫

�

up(x, t)dx ≤ C for all t ∈ (0, Tmax). (12.4.106)

Proof Firstly, multiplying the first equation of (12.4.1) by ul−1 and integrating over
�, we get

1

l

d

dt
‖u‖l

Ll(�)
+ (l − 1)

∫

�

ul−2|∇u|2dx
= −χ

∫

�

∇ · (u∇v)ul−1dx − ξ

∫

�

∇ · (u∇w)ul−1dx +
∫

�

ul−1(au− μur)dx.

(12.4.107)

In light of the Young inequality and r > 2, it reads that there exists a positive
constant C1 such that

∫

�

(
l + 1

l
ul + ul−1(au− μur)

)
dx

≤ l + 1

l

∫

�

uldx + a

∫

�

uldx − μ

∫

�

ul+r−1dx

≤ −7μ

8

∫

�

ul+r−1dx + C1.

(12.4.108)
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Next, integrating by parts to the first term on the right-hand side of (12.4.107)
and using the Young inequality, we obtain

−χ
∫

�

∇ · (u∇v)ul−1dx

≤ l − 1

l
χ

∫

�

ul|�v|dx
≤ μ

8

∫

�

ul+r−1dx + C2

∫

�

|�v| r+l−1
r−1 dx

≤ μ

8

∫

�

ul+r−1dx +
∫

�

|�v|l+1dx + C3.

(12.4.109)

Next, due to (12.4.66) and the Young inequality, we derive that there exist
positive constant C4, C5 and C6 such that

−ξ
∫

�

∇ · (u∇w)ul−1dx ≤ Cβ

(
l − 1

l

∫

�

ul(v + 1)+ l

∫

�

ul−1|∇u|
)

≤ C4

(∫

�

ul(v + 1)+ l

∫

�

ul−1|∇u|
)

≤ l − 1

2

∫

�

ul−2|∇u|2 + C5

∫

�

ul + C5

∫

�

ulv

≤ l − 1

2

∫

�

ul−2|∇u|2 + μ

8

∫

�

ul+r−1 +
∫

�

vl+1 + C6.

(12.4.110)

Thus, inserting (12.4.108)–(12.4.85) into (12.4.107), we get

1

l

d

dt
‖u‖l

Ll (�)
+ l−1

2

∫
�
ul−2|∇u|2 ≤ −5μ

8

∫

�

ul+r−1dx − l + 1

l

∫

�

uldx

+
∫

�

|�v|l+1dx +
∫

�

vl+1 + C7.

(12.4.111)

For any t ∈ (s0, Tmax), apply the variation-of-constants formula to (12.4.111),
we get

1

l
‖u(t)‖l

Ll (�)

≤ 1

l
e−(l+1)(t−s0)‖u(s0)‖lLl(�)

− 5μ

8

∫ t

s0

e−(l+1)(t−s)
∫

�

ul+r−1dxds

+
∫ t

s0

e−(l+1)(t−s)
∫

�

|�v|l+1dxds + C7

∫ t

s0

e−(l+1)(t−s)ds
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+
∫ t

s0

e−(l+1)(t−s)
∫

�

vl+1dxds

≤ −5μ

8

∫ t

s0

e−(l+1)(t−s)
∫

�

ul+r−1dxds

+
∫ t

s0

e−(l+1)(t−s)
∫

�

(
|�v|l+1 + vl+1

)
dxds + C8, (12.4.112)

where

C8 := 1

l
‖u(s0)‖lLl(�)

+ C7

∫ t

s0

e−(l+1)(t−s)ds.

Now, by Lemma 12.1.5, we have

∫ t

s0

e−(l+1)(t−s)
∫

�

(
|�v|l+1 + |v|l+1

)
dxds

= e−(l+1)t
∫ t

s0

e(l+1)s
∫

�

(
|�v|l+1 + |v|l+1

)
dxds

≤ e−(l+1)tCl+1

(∫ t

s0

∫

�

e(l+1)sul+1dxds + e(l+1)s0‖v(s0, t)‖l+1
W 2,l+1

)

(12.4.113)

for all t ∈ (s0, Tmax). By substituting (12.4.113) into (12.4.112) and using the Young
inequality, we get

1

l
‖u(t)‖l

Ll (�)

≤ −5μ

8

∫ t

s0

e−(l+1)(t−s)
∫

�

ul+r−1dxds + Cl+1

∫ t

s0

e−(l+1)(t−s)
∫

�

ul+1dxds

+e−(l+1)(t−s0)Cl+1‖v(s0, t)‖l+1
W 2,l+1 + C8

≤ −μ

2

∫ t

s0

e−(l+1)(t−s)
∫

�

ul+r−1dxds + C9

(12.4.114)

with

C9 = e−(l+1)(t−s0)Cl+1‖v(s0, t)‖l+1
W 2,l+1 +

r − 2

r + l − 1

(
μ

8

r + l − 1

l + 1

)− l+1
r−2

× C
r+l−1
r−2

l+1
μ

8
|�|

∫ t

s0

e−(l+1)(t−s)ds + C8.
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Therefore, integrating (12.4.114) with respect to t and using (12.2.19) yields

‖u(·, t)‖Ll (�) ≤ C11 for all l ≥ 1 and t ∈ (0, Tmax) (12.4.115)

for some positive constant C11. The proof Lemma 12.4.9 is complete. ��
Our main result on global existence and boundedness thereby becomes a straight-
forward consequence of Lemmata 12.4.9–12.4.10 and Lemma 12.3.2. Indeed,
collecting the above Lemmata, in the following, by invoking a Moser-type iteration
(see Lemma A.1 in [78]) and the standard estimate for Neumann semigroup (or the
standard parabolic regularity arguments), we will prove Theorem 12.4.1.

The Proof of Theorem 12.4.1 Firstly, due to Lemmata 12.4.9–12.4.10, we derive
that there exist positive constants q0 > N and C1 such that

‖u(·, t)‖Lq0 (�) ≤ C1 for all t ∈ (0, Tmax). (12.4.116)

Next, employing the standard estimate for Neumann semigroup provides C2 and
C3 > 0 such that

‖∇v(t)‖L∞(�)

≤ C2

∫ t

s0

(t − s)
−α− N

2q0 e−μ(t−s)‖u(s)‖Lq0 (�)ds + C2s
−α
0 ‖v(s0, t)‖L∞(�)

≤ C2

∫ +∞

0
σ
−α− N

2q0 e−μσ dσ + C2s
−α
0 β

≤ C3 for all t ∈ (0, Tmax).

(12.4.117)

Multiplying both sides of the first equation in (12.4.1) by up−1, integrating over �
and integrating by parts, we conclude that

1

p

d

dt
‖u‖pLp(�) + (p − 1)

∫

�

up−2|∇u|2dx
= −χ

∫

�

∇ · (u∇v)up−1dx − ξ

∫

�

∇ · (u∇w)up−1dx +
∫

�

up−1(au− μur)dx

= χ(p − 1)
∫

�

up−1∇u · ∇vdx − ξ

∫

�

∇ · (u∇w)up−1dx

+
∫

�

up−1(au− μur)dx.

(12.4.118)

Due to (12.4.66) and (12.4.117) and the Young inequality, we derive that there exist
positive constants C4, C5, C6 and C7 independent of p such that

χ(p − 1)
∫

�

up−1∇u · ∇vdx ≤ χ(p − 1)C4

∫

�

up−1|∇u|dx
≤ p − 1

4

∫

�

up−2|∇u|2 + C5p

∫

�

up

(12.4.119)



414 J. Zheng

and

−ξ
∫

�

up−1∇ · (u∇w) ≤ C6

(∫

�

up(v + 1)+ p

∫

�

up−1|∇u|
)

≤ p − 1

4

∫

�

up−2|∇u|2 + C7p

∫

�

up.

(12.4.120)

Hence by (12.4.118)–(12.4.120), we conclude that there exist positive constants
C8 and C9 independent of p such that

d

dt
‖u‖pLp(�) + C8

∫

�

|∇up
2 |2dx +

∫

�

up ≤ C9p
2
∫

�

up. (12.4.121)

Here and throughout the proof of Theorem 12.4.1, we shall denote by Ci(i ∈ N)

several positive constants independent of p. Next, with the help of the Gagliardo–
Nirenberg inequality, we derive that

C9p
2
∫

�

up = C9p
2‖up

2 ‖2
L2(�)

≤ C9p
2
(
‖∇up

2 ‖2ς1
L2(�)

‖up
2 ‖2(1−ς1)

L1(�)
+ ‖up

2 ‖2
L1(�)

)

= C9p
2
(
‖∇up

2 ‖
2N
N+2

L2(�)
‖up

2 ‖
4

N+2

L1(�)
+ ‖up

2 ‖2
L1(�)

)

≤ C9p
2
(
‖∇up

2 ‖
2N
N+2

L2(�)
‖up

2 ‖
4

N+2

L1(�)
+ ‖up

2 ‖2
L1(�)

)

≤ C8‖∇up
2 ‖2

L2(�)
+ C10p

N+2‖up
2 ‖2

L1(�)
+ C9p

2‖up
2 ‖2

L1(�)

≤ C8‖∇u
p
2 ‖2

L2(�)
+ C11p

N+2‖up
2 ‖2

L1(�)
,

(12.4.122)

where

0 < ς1 = N − N
2

1− N
2 + N

= N

N + 2
< 1,

C10 and C11 are positive constants independent of p. Therefore, inserting (12.4.122)
into (12.4.121), we derive that

d

dt
‖u‖pLp(�) +

∫

�

up ≤ C11p
2+N‖up

2 ‖2
L1(�)

≤ C11p
2+N (

max{1, ‖up
2 ‖2

L1(�)

)2
.

(12.4.123)
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Now, choosing pi = 2i and letting Mi = max{1, supt∈(0,T )
∫
�
u

pi
2 } for T ∈

(0, Tmax) and i = 1, 2, · · · . Then (12.4.123) implies that

d

dt
‖u‖pi

Lpi (�)
+

∫

�

upi ≤ C11p
2+N
i M2

i−1(T ), (12.4.124)

which together with the comparison argument entails that there exists a λ > 1
independent of i such that

Mi(T ) ≤ max{λiM2
i−1(T ), |�|‖u0‖piL∞(�)}. (12.4.125)

Now, if λiM2
i−1(T ) ≤ |�|‖u0‖piL∞(�) for infinitely many i ≥ 1, we get

‖u(·, t)‖L∞(�) ≤ C for all t ∈ (0, T ) (12.4.126)

with C = ‖u0‖L∞(�). Otherwise, if λiM2
i−1(T ) > |�|‖u0‖piL∞(�) for all sufficiently

large i, then by (12.4.125), we derive that

Mi(T ) ≤ λiM2
i−1(T ) for all sufficiently large i. (12.4.127)

Hence, we may choose λ large enough such that

Mi(T ) ≤ λiM2
i−1(T ) for all i ≥ 1. (12.4.128)

Therefore, in light of a straightforward induction (see, e.g., Lemma 3.12 of [84]) we
have

Mi(T ) ≤ λi
(
λi−1M2

i−2

)2

= λi+2(i−1)M22

i−2

≤ λ
i+&i

j=2(j−1)
M2i

0 .

(12.4.129)

Taking pi-th roots on both sides of (12.4.129), with some basic calculation and by
taking T ↗ Tmax, we can finally conclude that

‖u(·, t)‖L∞(�) ≤ C for all t ∈ (0, Tmax). (12.4.130)

Now, with the above estimate in hand, using (12.4.68), we may establish

‖∇w(·, t)‖L∞(�) ≤ C for all t ∈ (0, Tmax). (12.4.131)

Finally, according to Lemma 12.3.2, this together with (12.4.117) and (12.4.130)
entails that (u, v,w) is global in time, and that u is bounded in �× (0,∞). ��
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12.5 The (Quasilinear) Keller–Segel–Navier–Stokes System

Chemotaxis is a biological process in which cells move toward a chemically more
favorable environment (see Hillen and Painter [35]). In 1970, Keller and Segel
(see Keller and Segel [43, 44]) proposed a mathematical model for chemotaxis
phenomena through a system of parabolic equations (see, e.g., Winkler et al.
[3, 39, 108], Osaki and Yagi [64], Horstmann [37]). To describe chemotaxis of
cell populations, the signal is produced by the cells, an important variant of the
quasilinear chemotaxis model

{
nt = ∇ · (D(n)∇n) − χ∇ · (S(n)∇c),
ct = �c − c + n

(12.5.1)

was initially proposed by Painter and Hillen ([66], see also Winkler et al. [3, 80])
where n denotes the cell density and c describes the concentration of the chemical
signal secreted by cells. The function S measures the chemotactic sensitivity, which
may depend on n, D(n) is the diffusion function. The results about the chemotaxis
model (12.5.1) appear to be rather complete, which dealt with the problem (12.5.1)
whether the solutions are global bounded or blow-up (see Cieślak et al. [14, 15, 18],
Hillen [35], Horstmann et al. [38], Ishida et al. [41], Kowalczyk [47], Winkler et al.
[78, 108, 114]). In fact, Tao and Winkler ([78]), proved that the solutions of (12.5.1)

are global and bounded provided that
S(n)

D(n)
≤ c(n+1)

2
N
+ε for all n ≥ 0 with some

ε > 0 and c > 0, and D(n) satisfies some another technical conditions. For the
more related works in this direction, we mention that a corresponding quasilinear
version, the logistic damping or the signal is consumed by the cells has been deeply
investigated by Cieślak and Stinner [15, 17], Tao and Winkler [78, 103, 114] and
Zheng et al. [120, 121, 129, 131].

In various situations, however, the migration of bacteria is furthermore substan-
tially affected by changes in their environment (see Winkler et al. [3, 85]). As in the
quasilinear Keller–Segel system (12.5.1) where the chemoattractant is produced by
cells, the corresponding chemotaxis–fluid model is then quasilinear Keller–Segel–
Navier-Stokes system of the form

⎧
⎪⎪⎨

⎪⎪⎩

nt + u · ∇n = ∇ · (D(n)∇n) −∇ · (S(n)∇c), x ∈ �, t > 0,
ct + u · ∇c = �c − c + n, x ∈ �, t > 0,
ut + κ(u · ∇)u+∇P = �u+ n∇φ, x ∈ �, t > 0,
∇ · u = 0, x ∈ �, t > 0,

(12.5.2)

where n and c are denoted as before, u and P stand for the velocity of incompress-
ible fluid and the associated pressure, respectively. φ is a given potential function
and κ ∈ R denotes the strength of nonlinear fluid convection. Problem (12.5.2) is
proposed to describe chemotaxis–fluid interaction in cases when the evolution of
the chemoattractant is essentially dominated by production through cells ([3, 35]).
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If the signal is consumed, rather than produced, by the cells, Tuval et al. ([87])
proposed the following model

⎧
⎪⎪⎨

⎪⎪⎩

nt + u · ∇n = ∇ · (D(n)∇n) −∇ · (nS(c)∇c), x ∈ �, t > 0,
ct + u · ∇c = �c − nf (c), x ∈ �, t > 0,
ut + κ(u · ∇)u+ ∇P = �u+ n∇φ, x ∈ �, t > 0,
∇ · u = 0, x ∈ �, t > 0.

(12.5.3)

Here f (c) is the consumption rate of the oxygen by the cells. Approaches
based on a natural energy functional, the (quasilinear) chemotaxis-(Navier-)Stokes
system (12.5.3) have been studied in the last few years and the main focus is on
the solvability result (see, e.g., Chae et al. [10], Francesco et al. [21], Duan et al.
[23, 24], Liu and Lorz [54, 56], Tao and Winkler [85, 107, 110, 113], Zhang and
Zheng [118] and references therein). For instance, if κ = 0 in (12.5.3), the model is
simplified to the chemotaxis-Stokes equation. In [104], Winkler showed the global
weak solutions of (12.5.3) in bounded three-dimensional domains. Other variants
of the model of (12.5.3) that include porous medium-type diffusion and S being a
chemotactic sensitivity tensor, one can see Winkler ([112]) and Zheng ([119]) and
the references therein for details.

In contrast to problem (12.5.3), the mathematical analysis of the Keller–Segel–
Stokes system (12.5.2) (κ = 0) is quite few (Black [4], Wang et al. [52, 94,
95]). Among these results, Wang et al. [94, 95] proved the global boundedness
of solutions to the two-dimensional and three-dimensional Keller-Segel–Stokes
system (12.5.2) when S is a tensor satisfying some dampening condition with
respect to n. However, for the three-dimensional fully Keller–Segel-Navier-Stokes
system (12.5.2) (κ ∈ R), to the best our knowledge, there is no result on global
solvability. Motivated by the above works, we will investigate the interaction of
the fully quasilinear Keller–Segel–Navier–Stokes in this section. Precisely, we shall
consider the following initial-boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = �nm −∇ · (n∇c), x ∈ �, t > 0,
ct + u · ∇c = �c − c + n, x ∈ �, t > 0,
ut + κ(u · ∇)u+∇P = �u+ n∇φ, x ∈ �, t > 0,
∇ · u = 0, x ∈ �, t > 0,
∇n · ν = ∇c · ν = 0, u = 0, x ∈ ∂�, t > 0,
n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ �,

(12.5.4)

where � ⊆ R
3 is a bounded domain with smooth boundary.
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12.5.1 Preliminaries and Theorems

Due to the strongly nonlinear term (u · ∇)u and �nm, the problem (12.5.4) has
no classical solutions in general, and thus we consider its weak solutions in the
following sense. We first specify the notion of weak solution to which we will refer
in the sequel.

Definition 12.5.1 Let T > 0 and (n0, c0, u0) fulfills (12.3.8). Then a triple of
functions (n, c, u) is called a weak solution of (12.5.4) if the following conditions
are satisfied

⎧
⎨

⎩

n ∈ L1
loc(�̄× [0, T )),

c ∈ L1
loc([0, T );W 1,1(�)),

u ∈ L1
loc([0, T );W 1,1(�)),

(12.5.5)

where n ≥ 0 and c ≥ 0 in �× (0, T ) as well as ∇ ·u = 0 in the distributional sense
in �× (0, T ), moreover,

u⊗ u ∈ L1
loc(�̄× [0,∞);R3×3) and nm belong to L1

loc(�̄× [0,∞)),

cu, nu and n|∇c| belong to L1
loc(�̄× [0,∞);R3)

(12.5.6)

and

−
∫ T

0

∫

�

nϕt −
∫

�

n0ϕ(·, 0) =
∫ T

0

∫

�

nm�ϕ +
∫ T

0

∫

�

n∇c · ∇ϕ

+
∫ T

0

∫

�

nu · ∇ϕ
(12.5.7)

for any ϕ ∈ C∞0 (�̄× [0, T )) satisfying ∂ϕ
∂ν
= 0 on ∂�× (0, T ) as well as

−
∫ T

0

∫

�

cϕt −
∫

�

c0ϕ(·, 0) = −
∫ T

0

∫

�

∇c · ∇ϕ −
∫ T

0

∫

�

cϕ

+
∫ T

0

∫

�

nϕ +
∫ T

0

∫

�

cu · ∇ϕ
(12.5.8)

for any ϕ ∈ C∞0 (�̄× [0, T )) and

−
∫ T

0

∫

�

uϕt −
∫

�

u0ϕ(·, 0)− κ

∫ T

0

∫

�

u⊗ u · ∇ϕ = −
∫ T

0

∫

�

∇u · ∇ϕ

−
∫ T

0

∫

�

n∇φ · ϕ
(12.5.9)
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for any ϕ ∈ C∞0 (�̄×[0, T );R3) fulfilling∇ϕ ≡ 0 in �×(0, T ). If �×(0,∞) −→
R

5 is a weak solution of (12.5.4) in �× (0, T ) for all T > 0, then we call (n, c, u)
a global weak solution of (12.5.4).

Throughout this paper, we assume that

φ ∈ W 1,∞(�) (12.5.10)

and the initial data (n0, c0, u0) fulfills

⎧
⎪⎪⎨

⎪⎪⎩

n0 ∈ Cκ(�̄) for certain κ > 0 with n0 ≥ 0 in �,

c0 ∈ W 1,∞(�) with c0 ≥ 0 in �̄,

u0 ∈ D(A
γ
r ) for some γ ∈ (

1

2
, 1) and any r ∈ (1,∞),

(12.5.11)

where Ar denotes the Stokes operator with domainD(Ar) := W 2,r (�)∩W 1,r
0 (�)∩

Lr
σ (�), and Lr

σ (�) := {ϕ ∈ Lr(�)|∇ · ϕ = 0} for r ∈ (1,∞) ([71]).

Theorem 12.5.1 Let � ⊂ R
3 be a smooth bounded domain. Assume that (12.5.10)

holds. If

m > 2, (12.5.12)

then for any choice of n0, c0 and u0 fulfilling (12.5.11), the problem (12.5.4) pos-
sesses at least one global weak solution (n, c, u, P ) in the sense of Definition 12.5.1.

Remark 12.5.1 From Theorem 12.5.1, we conclude that if the exponent m of
nonlinear diffusion is larger than 2, then model (12.5.4) exists a global solution,
which implies the nonlinear diffusion term benefits the global of solutions, which
seems partly extends the results of Tao and Winkler [85], who proved the possibility
of boundedness, in the case that m = 1, the coefficient of logistic source suitably
large and the strength of nonlinear fluid convection κ = 0.

Our intention is to construct a global weak solution of (12.5.4) as the limit of
smooth solutions of appropriately regularized problems. To this end, in order to
deal with the strongly nonlinear term (u · ∇)u and �nm, we need to introduce the
following approximating equation of (12.5.4):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

nεt + uε · ∇nε = �(nε + ε)m −∇ · (nε∇cε), x ∈ �, t > 0,
cεt + uε · ∇cε = �cε − cε + nε, x ∈ �, t > 0,
uεt + ∇Pε = �uε − κ(Yεuε · ∇)uε + nε∇φ, x ∈ �, t > 0,
∇ · uε = 0, x ∈ �, t > 0,
∇nε · ν = ∇cε · ν = 0, uε = 0, x ∈ ∂�, t > 0,
nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ �,

(12.5.13)
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where

Yεw := (1+ εA)−1w for all w ∈ L2
σ (�) (12.5.14)

is the standard Yosida approximation. In light of the well-established fixed point
arguments (see [112], Lemma 2.1 of [66] and Lemma 2.1 of [113]), we can prove
that (12.5.13) is locally solvable in classical sense, which is stated as the following
lemma.

Lemma 12.5.1 Assume that ε ∈ (0, 1). Then there exist Tmax,ε ∈ (0,∞] and a
classical solution (nε, cε, uε, Pε) of (12.5.13) in �× (0, Tmax,ε) such that

⎧
⎪⎪⎨

⎪⎪⎩

nε ∈ C0(�̄× [0, Tmax,ε)) ∩ C2,1(�̄× (0, Tmax,ε)),
cε ∈ C0(�̄× [0, Tmax,ε)) ∩ C2,1(�̄× (0, Tmax,ε)),
uε ∈ C0(�̄× [0, Tmax,ε)) ∩ C2,1(�̄× (0, Tmax,ε)),
Pε ∈ C1,0(�̄× (0, Tmax,ε)),

(12.5.15)

classically solving (12.5.13) in �×[0, Tmax,ε). Moreover, nε and cε are nonnegative
in �× (0, Tmax,ε), and

‖nε(·, t)‖L∞(�) + ‖cε(·, t)‖W 1,∞(�) + ‖Aγuε(·, t)‖L2(�) →∞ as t → Tmax,ε,

(12.5.16)

where γ is given by (12.5.11).

12.5.2 A Priori Estimates

In the following, we are going to establish an iteration step to develop the main
ingredient of our result. The iteration depends on a series of a priori estimate. The
proof of this lemma is very similar to that of Lemmata 2.2 and 2.6 of [85], so we
omit its proof here.

Lemma 12.5.2 There exists λ > 0 independent of ε such that the solution
of (12.5.13) satisfies

∫

�

nε +
∫

�

cε ≤ λ for all t ∈ (0, Tmax,ε). (12.5.17)

Lemma 12.5.3 Let m > 2. Then there exists C > 0 independent of ε such that the
solution of (12.5.13) satisfies

∫

�

(nε + ε)m−1 +
∫

�

c2
ε +

∫

�

|uε|2 ≤ C for all t ∈ (0, Tmax,ε). (12.5.18)
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In addition, for each T ∈ (0, Tmax,ε), one can find a constant C > 0 independent
of ε such that

∫ T

0

∫

�

[
(nε + ε)2m−4|∇nε|2 + |∇cε|2 + |∇uε|2

]
≤ C. (12.5.19)

Proof Taking cε as the test function for the second equation of (12.5.13) and using
∇ · uε = 0 and the Young inequality yields that

1

2

d

dt
‖cε‖2

L2(�)
+

∫

�

|∇cε|2 +
∫

�

|cε|2 =
∫

�

nεcε

≤ 1

2

∫

�

n2
ε +

1

2

∫

�

c2
ε .

(12.5.20)

On the other hand, due to the Gagliardo–Nirenberg inequality, (12.5.17), in light of
the Young inequality and m > 2, we obtain that

‖nε‖2
L2(�)

≤ ‖nε + ε‖2
L2(�)

= ‖(nε + ε)m−1‖
2

m−1

L
2

m−1 (�)

≤ C1‖∇(nε + ε)m−1‖
6

6m−7

L2(�)
‖(nε + ε)m−1‖

2
m−1− 6

6m−7

L
1

m−1 (�)

≤ C2

(
‖∇(nε + ε)m−1‖

6
6m−7

L2(�)
+ 1

)

≤ m2

2(m− 1)2 ‖∇(nε + ε)m−1‖2
L2(�)

+ C3 for all t ∈ (0, Tmax,ε)

(12.5.21)

with some positive constants C1, C2, and C3 independent of ε. Hence, in light
of (12.5.20) and (12.5.21), we derive that

d

dt
‖cε‖2

L2(�)
+ 2

∫

�

|∇cε|2 +
∫

�

c2
ε ≤

m2

2(m− 1)2 ‖∇(nε + ε)m−1‖2
L2(�)

+C3 for all t ∈ (0, Tmax,ε)

(12.5.22)

and some positive constant C3 independent of ε. Next, multiply the first equation
in (12.5.13) by (nε+ε)m−2 and combining with the second equation, using∇ ·uε =
0 and the Young inequality implies that

1

m− 1

d

dt
‖nε + ε‖m−1

Lm−1(�)
+m(m− 2)

∫

�

(nε + ε)2m−4|∇nε|2

≤ (m− 2)
∫

�

(nε + ε)m−2|∇nε||∇cε|
≤ m(m− 2)

2

∫

�

(nε + ε)2m−4|∇nε|2 + (m− 2)

2m

∫

�

|∇cε|2.
(12.5.23)
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Now, multiplying the third equation of (12.5.13) by uε, integrating by parts and
using ∇ · uε = 0, we derive that

1

2

d

dt

∫

�

|uε|2 +
∫

�

|∇uε|2 =
∫

�

nεuε · ∇φ for all t ∈ (0, Tmax,ε). (12.5.24)

Here we use the Hölder inequality and (12.5.10) and the continuity of the embedding
W 1,2(�) ↪→ L6(�) and to find C4 > 0 and C5 > 0 such that

∫

�

nεuε · ∇φ ≤ ‖∇φ‖L∞(�)‖nε‖
L

6
5 (�)

‖∇uε‖L2(�)

≤ C4‖nε‖
L

6
5 (�)

‖∇uε‖L2(�)

≤ C2
4

2
‖nε‖2

L
6
5 (�)

+ 1

2
‖∇uε‖2

L2(�)

≤ C5‖nε‖2
L2(�)

+ 1

2
‖∇uε‖2

L2(�)
for all t ∈ (0, Tmax,ε),

(12.5.25)

which in conjunction with (12.5.21) yields

∫

�

nεuε · ∇φ ≤ m2

4(m− 1)2 ‖∇(nε + ε)m−1‖2
L2(�)

+ 1

2
‖∇uε‖2

L2(�)

+C6 for all t ∈ (0, Tmax,ε),

(12.5.26)

where C6 is a positive constant independent of ε. Inserting (12.5.26) into (12.5.25)
and using the Young inequality and m > 2, we conclude that there exists a positive
constant C7 such that

d

dt

∫

�

|uε|2 +
∫

�

|∇uε|2 ≤ m2

2(m− 1)2
‖∇(nε + ε)m−1‖2

L2(�)

+ C7 for all t ∈ (0, Tmax,ε). (12.5.27)

Taking an evident linear combination of the inequalities provided by (12.5.22),
(12.5.23), and (12.5.27), we conclude

d

dt

(
‖cε‖2

L2(�)
+ 2m

(m− 2)(m− 1)
‖nε + ε‖m−1

Lm−1(�)
+

∫

�

|uε|2
)
+

∫

�

|∇uε|2

+ m2

(m− 1)2 ‖∇(nε + ε)m−1‖2
L2(�)

+
∫

�

|∇cε|2 +
∫

�

c2
ε

≤ C8 for all t ∈ (0, Tmax,ε),

(12.5.28)

where C8 is a positive constant. An elementary calculus entails (12.5.18)
and (12.5.19). ��
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With the help of Lemma 12.5.3, in light of the Gagliardo–Nirenberg inequality and
an application of well-known arguments from parabolic regularity theory, we can
derive the following Lemma:

Lemma 12.5.4 Let m > 2. Then there exists C > 0 independent of ε such that the
solution of (12.5.13) satisfies

∫

�

c
8(m−1)

3
ε ≤ C for all t ∈ (0, Tmax,ε). (12.5.29)

In addition, for each T ∈ (0, Tmax,ε), one can find a constant C > 0 independent
of ε such that

∫ T

0

∫

�

[
n

8(m−1)
3

ε + c
8m−14

3
ε |∇cε|2 + c

40(m−1)
9

ε

]
≤ C. (12.5.30)

Proof Firstly, due to (12.5.18) and (12.5.19), in light of the Gagliardo–Nirenberg
inequality, for some C1 and C2 > 0 which are independent of ε, we derive that

∫ T

0

∫

�

(nε + ε)
8(m−1)

3 =
∫ T

0
‖(nε + ε)m−1‖

8
3

L
8
3 (�)

≤ C1

∫ T

0

(
‖∇(nε + ε)m−1‖2

L2(�)
‖(nε + ε)m−1‖

2
3
L1(�)

+‖(nε + ε)m−1‖
8
3
L1(�)

)

≤ C2(T + 1) for all T > 0. (12.5.31)

Next, taking c
8m−11

3
ε as the test function for the second equation of (12.5.13) and

using ∇ · uε = 0 and the Young inequality yields that

3

8(m− 1)

d

dt
‖cε‖

8(m−1)
3

L
8(m−1)

3 (�)

+ 8m− 11

3

∫

�

c
8m−14

3
ε |∇cε|2 +

∫

�

c
8(m−1)

3
ε

=
∫

�

nεc
8m−11

3
ε

≤ C3

∫

�

n
8(m−1)

3
ε + 1

2

∫

�

c
8(m−1)

3
ε for all t ∈ (0, Tmax,ε)

(12.5.32)

with some positive constant C3. Hence, due to (12.5.31) and (12.5.32), we can find
C4 > 0 such that

∫

�

c
8(m−1)

3
ε ≤ C4 for all t ∈ (0, Tmax,ε) (12.5.33)
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and

∫ T

0

∫

�

c
8m−14

3
ε |∇cε|2 ≤ C4(T + 1) for all T ∈ (0, Tmax,ε). (12.5.34)

Now, due to (12.5.33) and (12.5.34), in light of the Gagliardo–Nirenberg inequality,
we derive that there exist positive constants C5 and C6 such that

∫ T

0

∫

�

c
40(m−1)

9
ε =

∫ T

0
‖c

4(m−1)
3

ε ‖
10
3

L
10
3 (�)

≤ C5

∫ T

0

(
‖∇c

4(m−1)
3

ε ‖2
L2(�)

‖c
4(m−1)

3
ε ‖

4
3
L2(�)

+ ‖c
4(m−1)

3
ε ‖

10
3
L2(�)

)

≤ C6(T + 1) for all T > 0.
(12.5.35)

Finally, collecting (12.5.31) with (12.5.33)–(12.5.35), we can get the results. ��
Lemma 12.5.5 There exists a positive constant C := C(ε) depends on ε such that

∫

�

|∇uε(·, t)|2 ≤ C for all t ∈ (0, Tmax,ε) (12.5.36)

and

∫ T

0

∫

�

|�uε|2 ≤ C for all T ∈ (0, Tmax,ε). (12.5.37)

Proof Firstly, due to D(1+ εA) := W 2,2(�)∩W
1,2
0,σ (�) ↪→ L∞(�), by (12.5.18),

we derive that for some C1 > 0 and C2 > 0,

‖Yεuε‖L∞(�) = ‖(I + εA)−1uε‖L∞(�)

≤ C1‖uε(·, t)‖L2(�) ≤ C2 for all t ∈ (0, Tmax,ε). (12.5.38)

Next, testing the projected Stokes equation uεt+Auε = P[−κ(Yεuε ·∇)uε+nε∇φ]
by Auε, we derive

1

2

d

dt
‖A 1

2 uε‖2
L2(�)

+
∫

�

|Auε|2

=
∫

�

AuεP(−κ(Yεuε · ∇)uε)+
∫

�

P(nε∇φ)Auε
≤ 1

2

∫

�

|Auε|2 + κ2
∫

�

|(Yεuε · ∇)uε|2

+‖∇φ‖2
L∞(�)

∫

�

n2
ε for all t ∈ (0, Tmax,ε).

(12.5.39)
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On the other hand, in light of the Gagliardo–Nirenberg inequality, the Young
inequality and (12.5.38), there exists a positive constant C3 such that

κ2
∫

�

|(Yεuε · ∇)uε|2 ≤ κ2‖Yεuε‖2
L∞(�)

∫

�

|∇uε|2

≤ κ2‖Yεuε‖2
L∞(�)

∫

�

|∇uε|2

≤ C3

∫

�

|∇uε|2 for all t ∈ (0, Tmax,ε).

(12.5.40)

Here we have the well-known fact that ‖A(·)‖L2(�) defines a norm equivalent to
‖ · ‖W 2,2(�) on D(A) (see Theorem 2.1.1 of [71]). Now, recalling that

‖A 1
2 uε‖2

L2(�)
= ‖∇uε‖2

L2(�)
,

inserting the above equation and (12.5.40) into (12.5.39), we can conclude that

1

2

d

dt
‖∇uε‖2

L2(�)
+

∫

�

|�uε|2 ≤ C4

∫

�

|∇uε|2

+ ‖∇φ‖2
L∞(�)

∫

�

n2
ε for all t ∈ (0, Tmax,ε)

(12.5.41)

with some positive constant C4. Collecting (12.5.31) and (12.5.41) and applying the
Young inequality, we can get the results. ��

12.5.3 The Global Solvability of Regularized Problem (12.5.13)

In this section, we will prove the global solvability of regularized problem (12.5.13).
To this end, we need to establish some ε-dependent estimates of (nε, cε, uε) firstly.

Lemma 12.5.6 There exists C := C(ε) > 0 depends on ε such that
∫

�

|∇cε(·, t)|2 ≤ C for all t ∈ (0, Tmax,ε) (12.5.42)

and
∫ T

0

∫

�

|�cε|2 ≤ C for all T ∈ (0, Tmax,ε). (12.5.43)
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Proof Firstly, testing the second equation in (12.5.13) against−�cε and employing
the Young inequality yields

1

2

d

dt
‖∇cε‖2

L2(�)
=

∫

�

−�cε(�cε − cε + nε − uε · ∇cε)
= −

∫

�

|�cε|2 −
∫

�

|∇cε|2 −
∫

�

nε�cε −
∫

�

(uε · ∇cε)�cε

≤ −1

2

∫

�

|�cε|2 −
∫

�

|∇cε|2 +
∫

�

n2
ε +

∫

�

|uε|2|∇cε|2
(12.5.44)

for all t ∈ (0, Tmax,ε). Now, applying (12.5.18) and (12.5.37), the Gagliardo–
Nirenberg inequality and the Young inequality, we derive there exist positive
constants C1, C2, and C3 such that

∫

�

|uε|2|∇cε|2 =‖uε‖2
L8(�)

‖∇cε‖2

L
8
3 (�)

≤‖uε‖2
L8(�)

C1

(
‖�cε‖

11
8
L2(�)

‖cε‖
5
8
L2(�)

+ ‖cε‖2
L2(�)

)

≤‖uε‖2
L8(�)

C2

(
‖�cε‖

11
8
L2(�)

+ 1

)

≤1

4
‖�cε‖2

L2(�)
+ C3

(
‖uε‖

32
5
L8(�)

+ 1

)
(12.5.45)

for all t ∈ (0, Tmax,ε). Now, in view of the Gagliardo–Nirenberg inequality and
the well-known fact that ‖A(·)‖L2(�) defines a norm equivalent to ‖ · ‖W 2,2(�) on

W 2,2(�) ∩W
1,2
0 (�) (see p. 129, Theorem e of [71]), we have

C3‖uε‖
32
5
L8(�)

≤ C3‖Auε‖
4
5
L2(�)

‖uε‖
28
5
L6(�)

≤ C4

(
‖Auε‖2

L2(�)
+ 1

)
,

(12.5.46)

where C4 is a positive constant. Hence, together with (12.5.46) and (12.5.37), we
conclude that there exists a positive constant C5 such that for all T ∈ (0, Tmax,ε),

C3

∫ T

0
‖uε‖

32
5
L8(�)

≤ C5. (12.5.47)

Inserting (12.5.46) and (12.5.45) into (12.5.44) and using (12.5.31) and (12.5.47),
we can derive (12.5.42) and (12.5.43). This completes the proof of Lemma 12.5.6.

��
With Lemmata 12.5.3–12.5.6 at hand, we are now in the position to prove the
solution of approximate problem (12.5.13) is actually global in time.
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Lemma 12.5.7 Let m > 2. Then for all ε ∈ (0, 1), the solution of (12.5.13) is
global in time.

Proof Assuming that Tmax,ε be finite for some ε ∈ (0, 1). Next, applying almost
exactly the same arguments as in the proof of Lemma 3.4 in [122], we may derive
the following estimate: the solution of (12.5.13) satisfies that for all β > 1

1

2β

d

dt

∫

�

|∇cε|2β +
∫

�

|∇cε|2β + 1

2

∫

�

|∇cε|2β−2|D2cε|2

+ (β − 1)

2β2 ‖∇|∇cε|β‖2
L2(�)

≤ C1

∫

�

n2
ε |∇cε|2β−2 +

∫

�

|Duε||∇cε|2β + C1 for all t ∈ (0, Tmax,ε),

(12.5.48)

where C1 is a positive constant, as all subsequently appearing constants C2, C3, . . .

possibly depend on ε and β. On the other hand, due to (12.5.36), we derive that
there exists a positive constant C2 such that

‖Duε(·, t)‖L2(�) ≤ C2 for all t ∈ (0, Tmax,ε). (12.5.49)

Hence, in light of the Hölder inequality and the Gagliardo–Nirenberg inequal-
ity, (12.5.42) and the Young inequality, we conclude that

∫

�

|Duε||∇cε|2β ≤ C2‖∇cε‖2β
L4β (�)

= C2‖|∇cε|β‖2
L4(�)

= C2

(

‖∇|∇cε|β‖
6β−3
6β−2

L2(�)
‖|∇cε|β‖

6β−1
6β−2

L
2
β (�)

+ ‖|∇cε|β‖2

L
2
β (�)

)

≤ C3

(
‖∇|∇cε|β‖

6β−3
6β−2

L2(�)
+ 1

)

≤ (β − 1)

8β2 ‖∇|∇cε|β‖2
L2(�)

+ C4 for all t ∈ (0, Tmax,ε)

(12.5.50)

with some positive constants C3 and C4. Now, inserting (12.5.50) into (12.5.48), we
derive that there exists a positive constant C5 such that

1

2β

d

dt

∫

�

|∇cε|2β +
∫

�

|∇cε|2β + 1

2

∫

�

|∇cε|2β−2|D2cε|2

+3(β − 1)

8β2 ‖∇|∇cε|β‖2
L2(�)

≤ C1

∫

�

n2
ε |∇cε|2β−2+C5 for all t ∈ (0, Tmax,ε).

(12.5.51)
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Next, with the help of the Young inequality, we derive that there exists a positive
constant C6 such that

C1

∫

�

n2
ε |∇cε|2β−2 ≤ 1

4

∫

�

|∇cε|4(2β−2) + C6

∫

�

n
8
3
ε + C1. (12.5.52)

Now, choosing β = 4
3 in (12.5.51) and (12.5.52), we conclude that

1
8
3

d

dt

∫

�

|∇cε| 8
3 + 3

4

∫

�

|∇cε| 8
3 + 1

2

∫

�

|∇cε| 2
3 |D2cε|2 + 3

16
‖∇|∇cε| 4

3 ‖2
L2(�)

≤ C6

∫

�

n
8
3
ε + C1.

(12.5.53)

Here we have used the fact that 4(2β − 2) = 2β. Hence, in light of (12.5.31) and
m > 2, by (12.5.53), we derive that there exists a positive constant C7 such that

‖∇cε(·, t)‖
L

8
3 (�)

≤ C7 for all t ∈ (0, Tmax,ε) (12.5.54)

Now, employing almost exactly the same arguments as in the proof of Lemma 3.3
in [122], we conclude that the solution of (12.5.13) satisfies that for all p > 1,

1

p

d

dt
‖nε + ε‖pLp(�) +

2m(p − 1)

(m+ p − 1)2

∫

�

|∇(nε + ε)
m+p−1

2 |2

≤ C8

∫

�

(nε + ε)p+1−m|∇cε|2
(12.5.55)

for all t ∈ (0, Tmax,ε) and some positive constant C7. By the Hölder inequality
and (12.5.54) and using m > 2 and the Gagliardo–Nirenberg inequality, we derive
there exist positive constants C9, C10, and C11 such that

∫

�

(nε + ε)p+1−m|∇cε|2

≤
(∫

�

(nε + ε)4(p+1−m)
) 1

4
(∫

�

|∇cε| 8
3

) 3
4

≤ C9‖(nε + ε)
p+m−1

2 ‖
2(p+1−m)
p+m−1

L
8(p+1−m)
p+m−1 (�)

≤ C10

(

‖∇(nε + ε)
p+m−1

2 ‖b1
L2(�)

‖(nε + ε)
p+m−1

2 ‖1−b1

L
2

p+m−1 (�)

+‖(nε + ε)
p+m−1

2 ‖
L

2
p+m−1 (�)

) 2(p+1−m)
p+m−1
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≤ C11(‖∇(nε + ε)
p+m−1

2 ‖
2(p+1−m)b1

p+m−1

L2(�)
+ 1)

= C11(‖∇(nε + ε)
p+m−1

2 ‖
12p−12m+9

6p+6m−8

L2(�)
+ 1) for all t ∈ (0, Tmax,ε), (12.5.56)

where

b1 =
3[p+m−1]

2 − 3(p+m−1)
8(p+1−m)

− 1
2 + 3[p+m−1]

2

∈ (0, 1).

Since m > 2 yields to 12p−12m+9
6p+6m−8 < 2, in light of (12.5.56) and the Young

inequality, we derive that there exists a positive constant C12 such that

C8

∫

�

(nε + ε)p+1−m|∇cε|2 ≤ m(p−1)
(m+p−1)2 ‖∇(nε + ε)

p+m−1
2 ‖

12p−12m+9
6p+6m−8

L2(�)

+C12 for all t ∈ (0, Tmax,ε).

(12.5.57)

Together with (12.5.55), this yields the desired estimate

1

p

d

dt
‖nε + ε‖pLp(�) +

2m(p − 1)

(m+ p − 1)2

∫

�

|∇(nε + ε)
m+p−1

2 |2
≤ C12 for all t ∈ (0, Tmax,ε).

(12.5.58)

Now, with some basic analysis, we may derive that for all p > 1, there exists a
positive constant C13 such that

‖nε(·, t)‖Lp(�) ≤ C13 for all t ∈ (0, Tmax,ε). (12.5.59)

Let hε(x, t) = P[−κ(Yεuε ·∇)uε+nε∇φ]. Then along with (12.5.18) and (12.5.59),
there exists a positive constant C13 such that ‖hε(·, t)‖L2(�) ≤ C14 for all t ∈
(0, Tmax,ε). Hence, we pick an arbitrary γ ∈ ( 3

4 , 1), then in light of the smoothing
properties of the Stokes semigroup ([26]), we derive that for some C15 > 0, we have

‖Aγ uε(·, t)‖L2(�) ≤ ‖Aγ e−tAu0‖L2(�) +
∫ t

0
‖Aγ e−(t−τ )Ahε(·, τ )dτ‖L2(�)dτ

≤ C15t
−λ1(t−1)‖u0‖L2(�) + C15

∫ t

0
(t − τ)−γ ‖hε(·, τ )‖L2(�)dτ

≤ C15t
−λ1(t−1)‖u0‖L2(�) +

C14C15T
1−γ
max,ε

1− γ
for all t ∈ (0, Tmax,ε).

(12.5.60)
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Observe that γ > 3
4 , D(Aγ ) is continuously embedded into L∞(�), therefore, due

to (12.5.60), we derive that there exists a positive constant C16 such that

‖uε(·, t)‖L∞(�) ≤ C16 for all t ∈ (0, Tmax,ε). (12.5.61)

Now, for any β > 1, choosing p > 0 large enough such that p > 2β, then due
to (12.5.51) and (12.5.59), invoking the Young inequality, we derive that there exists
a positive constant C17 such that

1

2β

d

dt

∫

�

|∇cε|2β + 1

2

∫

�

|∇cε|2β + 1

2

∫

�

|∇cε|2β−2|D2cε|2
+ 3(β−1)

8β2 ‖∇|∇cε|β‖2
L2(�)

≤ C17 for all t ∈ (0, Tmax,ε).
(12.5.62)

Now, integrating the above inequality in time, we derive that there exists a positive
constant C18 such that

‖∇cε(·, t)‖L2β (�) ≤ C18 for all t ∈ (0, Tmax,ε) and β > 1. (12.5.63)

In order to get the boundedness of ‖∇cε(·, t)‖L∞(�), we rewrite the variation-of-
constants formula for cε in the form

cε(·, t) = et(�−1)c0+
∫ t

0
e(t−s)(�−1)(nε−uε ·∇cε)(·, s)ds for all t ∈ (0, Tmax,ε).

Now, we choose θ ∈ ( 7
8 , 1), then the domain of the fractional power D((−� +

1)θ ) ↪→ W 1,∞(�) ([117]). Hence, in view of Lp-Lq estimates associated heat
semigroup, (12.5.11), (12.5.59), (12.5.61) and (12.5.63), we derive that there exist
positive constants C19, C20, and C21 such that

‖∇cε(·, t)‖W 1,∞(�)

≤ C19t
−θ e−λt‖c0‖L4(�)

+
∫ t

0
(t − s)−θ e−λ(t−s)‖(nε − uε · ∇cε)(s)‖L4(�)ds

≤ C20τ
−θ + C20

∫ t

0
(t − s)−θ e−λ(t−s)

+C20

∫ t

0
(t − s)−θ e−λ(t−s)[‖nε(s)‖L4(�) + ‖∇cε(s)‖L4(�)]ds

≤ C21 for all t ∈ (τ, Tmax,ε)

(12.5.64)

with τ ∈ (0, Tmax,ε). Next, using the outcome of (12.5.55) with suitably large p as
a starting point, we may employ a Moser-type iteration (see, e.g., Lemma A.1 of
[78]) applied to the first equation of (12.5.13) to get that

‖nε(·, t)‖L∞(�) ≤ C22 for all t ∈ (τ, Tmax,ε) (12.5.65)
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and some positive constant C22. In view of (12.5.61), (12.5.64), and (12.5.65), we
apply Lemma 12.5.1 to reach a contradiction. ��

12.5.3.1 Regularity Properties of Time Derivatives

In this subsection, we provide some time-derivatives uniform estimates of solutions
to the system (12.5.13). The estimate is used in this section to construct the weak
solution of the Eq. (12.5.4). This will be the purpose of the following lemmata:

Lemma 12.5.8 Let m > 2, (12.5.10) and (12.5.11) hold. Then for any T > 0, one
can find C > 0 independent if ε such that

∫ T

0
‖∂tnm−1

ε (·, t)‖(W 2,4(�))∗dt ≤ C(T + 1) (12.5.66)

as well as

∫ T

0
‖∂t cε(·, t)‖

5
3

(W
1, 5

2 (�))∗
dt ≤ C(T + 1) (12.5.67)

and

∫ T

0
‖∂tuε(·, t)‖2

(W 1,2(�))∗dt ≤ C(T + 1). (12.5.68)

Proof Firstly, due to (12.5.18), (12.5.19) and (12.5.31), employing the Hölder
inequality (with two exponents 4m−1

4(m−1) and 4(m−1)
3 ) and the Gagliardo–Nirenberg

inequality, we conclude that there exist positive constants C1, C2, C3 and C4 such
that

∫ T

0

∫

�

|m(nε + ε)m−1∇nε|
8(m−1)
4m−1 ≤ C1

[∫ T

0

∫

�

(nε + ε)2m−4|∇nε|2
] 4(m−1)

4m−1

×
[∫ T

0

∫

�

[nε + ε] 8(m−1)
3

] 3
4m−1

≤ C2(T + 1) for all T > 0
(12.5.69)

and

∫ T

0

∫

�

|uε| 10
3 =

∫ T

0
‖uε‖

10
3

L
10
3 (�)

≤ C3

∫ T

0

(
‖∇uε‖2

L2(�)
‖uε‖

4
3
L2(�)

+ ‖uε‖
10
3
L2(�)

)

≤ C4(T + 1) for all T > 0.

(12.5.70)
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Next, testing the first equation of (12.5.13) by certain (m− 1)nm−2
ε ϕ ∈ C∞(�̄), we

have
∣
∣
∣
∣

∫

�
(nm−1

ε )tϕ

∣
∣
∣
∣

=
∣
∣∣
∣

∫

�

[
�(nε + ε)m − ∇ · (nε∇cε)− uε · ∇nε

] · (m− 1)nm−2
ε ϕ

∣
∣∣
∣

≤
∣
∣
∣
∣−(m− 1)

∫

�

[
m(nε + ε)m−1nm−2

ε ∇nε · ∇ϕ + (m− 2)(nε + ε)m−1nm−3
ε |∇nε |2ϕ

]∣∣
∣
∣

+(m− 1)

∣
∣
∣
∣

∫

�
[(m− 2)nm−2

ε ∇nε · ∇cεϕ + nm−1
ε ∇cε · ∇ϕ]

∣
∣
∣
∣+

∣
∣
∣
∣

∫

�
nm−1
ε uε · ∇ϕ

∣
∣
∣
∣

≤ m(m− 1)

{∫

�

[
(nε + ε)m−1nm−2

ε |∇nε | + (nε + ε)m−1nm−3
ε |∇nε |2

]}
‖ϕ‖W 1,∞(�)

+(m− 1)2
{∫

�
[nm−2

ε |∇nε ||∇cε | + nm−1
ε |∇cε | + nm−1

ε |uε |]
}
‖ϕ‖W 1,∞(�)

(12.5.71)

for all t > 0. Hence, observe that the embedding W 2,4(�) ↪→ W 1,∞(�), due
to (12.5.19), (12.5.31) and (12.5.70), applying m > 2 and the Young inequlity, we
deduce C1, C2 and C3 such that

∫ T

0
‖∂tnm−1

ε (·, t)‖(W 2,4(�))∗dt

≤ C1

{∫ T

0

∫

�

(nε + ε)2m−4|∇nε|2 +
∫ T

0

∫

�

n2m−2
ε

+
∫ T

0

∫

�

|∇cε|2 +
∫ T

0

∫

�

|uε|2
}

≤ C2

{∫ T

0

∫

�

(nε + ε)2m−4|∇nε|2 +
∫ T

0

∫

�

|∇cε|2

+
∫ T

0

∫

�

n
8(m−1)

3
ε +

∫ T

0

∫

�

|uε| 10
3 + T

}

≤ C3(T + 1) for all T > 0, (12.5.72)

which implies (12.5.66).
Likewise, given any ϕ ∈ C∞(�̄), we may test the second equation in (12.5.13)

against ϕ to conclude that

∣
∣∣
∣

∫

�

∂t cε(·, t)ϕ
∣
∣∣
∣ =

∣
∣∣
∣

∫

�

[�cε − cε + nε − uε · ∇cε] · ϕ
∣
∣∣
∣

=
∣
∣
∣
∣−

∫

�

∇cε · ∇ϕ −
∫

�

cεϕ +
∫

�

nεϕ +
∫

�

cεuε · ∇ϕ
∣
∣
∣
∣
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≤
{
‖∇cε‖

L
5
3 (�)

+ ‖cε‖
L

5
3 (�)

+ ‖nε‖
L

5
3 (�)

+‖cεuε‖
L

5
3 (�)

}
‖ϕ‖

W
1, 5

2 (�)
for all t > 0. (12.5.73)

Thus, due to (12.5.19), (12.5.30)–(12.5.31) and (12.5.70), in light of m > 2, we
invoke the Young inequality again and obtain that there exist positive constant C8
and C9 such that

∫ T

0
‖∂t cε(·, t)‖

5
3

(W
1, 5

2 (�))∗
dt

≤ C8

(∫ T

0

∫

�

|∇cε|2 +
∫ T

0

∫

�

n
8(m−1)

3
ε +

∫ T

0

∫

�

c
40(m−1)

9
ε +

∫ T

0

∫

�

|uε| 10
3 + T

)

≤ C9(T + 1) for all T > 0.
(12.5.74)

Hence, (12.5.67) is proved.
Finally, for any given ϕ ∈ C∞0,σ (�;R3), we infer from the third equation

in (12.5.13) that

∣∣
∣
∣

∫

�

∂tuε(·, t)ϕ
∣∣
∣
∣ =

∣∣
∣
∣−

∫

�

∇uε · ∇ϕ − κ

∫

�

(Yεuε ⊗ uε) · ∇ϕ

+
∫

�

nε∇φ · ϕ
∣
∣
∣∣ for all t > 0. (12.5.75)

Now, by virtue of (12.5.19), (12.5.30) and (12.5.38), we also get that there exist
positive constants C10, C11 and C12 such that

∫ T

0
‖∂tuε(·, t)‖2

(W 1,2(�))∗dt

≤ C10

(∫ T

0

∫

�

|∇uε|2 +
∫ T

0

∫

�

|Yεuε ⊗ uε|2 +
∫ T

0

∫

�

n2
ε

)

≤ C11

(∫ T

0

∫

�

|∇uε|2 +
∫ T

0

∫

�

|Yεuε|2 +
∫ T

0

∫

�

n
8(m−1)

3
ε + T

)

≤ C12(T + 1) for all T > 0.

(12.5.76)

Hence, (12.5.68) is hold. ��
In order to prove the limit functions n and c gained below, we will rely on an

additional regularity estimate for nε∇cε and uε · ∇cε .
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Lemma 12.5.9 Let m > 2, (12.5.10) and (12.5.11) hold. Then for any T > 0, one
can find C > 0 independent of ε such that

∫ T

0

∫

�

|nε∇cε|
8(m−1)
4m−1 ≤ C(T + 1) (12.5.77)

and
∫ T

0

∫

�

|uε · ∇cε| 5
4 ≤ C(T + 1). (12.5.78)

Proof In light of (12.5.19), (12.5.31), (12.5.70) and the Young inequality, we derive
that there exist positive constants C1 and C2 such that

∫ T

0

∫

�

|nε∇cε|
8(m−1)
4m−1 ≤

(∫ T

0

∫

�

|∇cε|2
) 3

4m−1
(∫ T

0

∫

�

n
8(m−1)

3
ε

) 4(m−1)
4m−1

≤ C1(T + 1) for all T > 0
(12.5.79)

and

∫ T

0

∫

�

|uε · ∇cε| 5
4 ≤

(∫ T

0

∫

�

|∇cε|2
) 5

8
(∫ T

0

∫

�

|uε| 10
3

) 3
8

≤ C2(T + 1) for all T > 0.

(12.5.80)

These readily establish (12.5.77) and (12.5.78).
��

12.5.3.2 Passing to the Limit: Proof of Theorem 12.5.1

With the above compactness properties at hand, by means of a standard extraction
procedure we can now derive the following lemma which actually contains our main
existence result already.

The Proof of Theorem 12.5.1 Firstly, in light of Lemmata 12.5.3–12.5.4 and 12.5.8,
we conclude that there exists a positive constant C1 such that

‖nm−1
ε ‖L2

loc([0,∞);W 1,2(�)) ≤ C1(T + 1)

and ‖∂tnm−1
ε ‖L1

loc([0,∞);(W 2,4(�))∗) ≤ C2(T + 1)
(12.5.81)

as well as

‖cε‖L2
loc([0,∞);W 1,2(�)) ≤ C1(T + 1)

and ‖∂tcε‖
L1
loc([0,∞);(W 1, 5

2 (�)))∗)
≤ C1(T + 1) (12.5.82)
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and

‖uε‖L2
loc([0,∞);W 1,2(�)) ≤ C1(T + 1)

and ‖∂tuε‖L1
loc([0,∞);(W 1,2(�))∗) ≤ C1(T + 1).

(12.5.83)

Hence, collecting (12.5.82)–(12.5.83) and employing the Aubin–Lions lemma (see,
e.g., [70]), we conclude that

(cε)ε∈(0,1) is strongly precompact in L2
loc(�̄× [0,∞)) (12.5.84)

and

(uε)ε∈(0,1) is strongly precompact in L2
loc(�̄× [0,∞)). (12.5.85)

Therefore, there exists a subsequence ε = εj ⊂ (0, 1)j∈N and the limit functions
c and u such that

cε → c in L2
loc(�̄× [0,∞)) and a.e. in �× (0,∞), (12.5.86)

uε → u in L2
loc(�̄× [0,∞)) and a.e. in �× (0,∞) (12.5.87)

as well as

∇cε ⇀ ∇c in L2
loc(�̄× [0,∞)) (12.5.88)

and

∇uε ⇀ ∇u in L2
loc(�̄× [0,∞)). (12.5.89)

Next, in view of (12.5.81), an Aubin–Lions lemma (see, e.g., [70]) applies to yield
strong precompactness of (nm−1

ε )ε∈(0,1) in L2(�× (0, T )), whence along a suitable
subsequence we may derive that nm−1

ε → zm−1
1 and hence nε → z1 a.e. in � ×

(0,∞) for some nonnegative measurable z1 : �× (0,∞)→ R. Now, with the help
of the Egorov theorem, we conclude that necessarily z1 = n, thus

nε → n a.e. in �× (0,∞). (12.5.90)

Therefore, observing that 8(m−1)
4m−1 > 1, 8(m−1)

3 > 1, due to (12.5.69)–
(12.5.70), (12.5.31), there exists a subsequence ε = εj ⊂ (0, 1)j∈N such that
εj ↘ 0 as j →∞

(nε + ε)m−1∇nε ⇀ nm−1∇n in L
8(m−1)
4m−1
loc (�̄× [0,∞)) (12.5.91)
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as well as

uε ⇀ u in L
10
3
loc(�̄× [0,∞)) (12.5.92)

and

nε ⇀ n in L
8(m−1)

3
loc (�̄× [0,∞)). (12.5.93)

Next, let gε(x, t) := −cε + nε − uε · ∇cε. Therefore, recalling (12.5.19), (12.5.31)

and (12.5.78), we conclude that cεt − �cε = gε is bounded in L
5
4 (� × (0, T ))

for any ε ∈ (0, 1), we may invoke the standard parabolic regularity theory to infer

that (cε)ε∈(0,1) is bounded in L
5
4 ((0, T );W 2, 5

4 (�)). Thus, by virtue of (12.5.67)
and the Aubin–Lions lemma we derive that the relative compactness of (cε)ε∈(0,1)
in L

5
4 ((0, T );W 1, 5

4 (�)). We can pick an appropriate subsequence which is still

written as (εj )j∈N such that ∇cεj → z2 in L
5
4 (�× (0, T )) for all T ∈ (0,∞) and

some z2 ∈ L
5
4 (� × (0, T )) as j → ∞, hence ∇cεj → z2 a.e. in � × (0,∞) as

j → ∞. In view of (12.5.88) and the Egorov theorem we conclude that z2 = ∇c,
and whence

∇cε → ∇c a.e. in �× (0,∞) as ε = εj ↘ 0. (12.5.94)

In the following, we shall prove (n, c, u) is a weak solution of problem (12.5.4)
in Definition 12.5.1. In fact, with the help of (12.5.86)–(12.5.89), (12.5.93), we can
derive (12.5.5). Now, by the nonnegativity of nε and cε, we derive n ≥ 0 and c ≥ 0.
Next, due to (12.5.89) and ∇ ·uε = 0, we conclude that ∇ ·u = 0 a.e. in �×(0,∞).
On the other hand, in view of (12.5.19) and (12.5.31), we can infer from (12.5.77)
that

nε∇cε ⇀ z3 in L
8(m−1)

3 (�× (0, T )) for each T ∈ (0,∞).

Next, due to (12.5.86), (12.5.90) and (12.5.94), we derive that

nε∇cε → n∇c a.e. in �× (0,∞) as ε = εj ↘ 0. (12.5.95)

Therefore, we invoke the Egorov theorem again and obtain z3 = n∇c, and hence

nε∇cε ⇀ n∇c in L
8(m−1)

3 (�× (0, T )) for each T ∈ (0,∞). (12.5.96)

Next, due to 3
8(m−1) + 3

10 < 3
4 , in view of (12.5.92) and (12.5.93), we also infer that

for each T ∈ (0,∞)

nεuε ⇀ z4 in L
4
3 (�× (0, T )) as ε = εj ↘ 0,
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and moreover, (12.5.87) and (12.5.90) imply that

nεuε → nu a.e. in �× (0,∞) as ε = εj ↘ 0, (12.5.97)

which along with the Egorov theorem implies that

nεuε ⇀ nu in L
4
3 (�× (0, T )) as ε = εj ↘ 0 (12.5.98)

for each T ∈ (0,∞). As a straightforward consequence of (12.5.86) and (12.5.87),
it holds that

cεuε → cu in L1
loc(�̄× (0,∞)) as ε = εj ↘ 0. (12.5.99)

Next, by (12.5.87) and using the fact that ‖Yεϕ‖L2(�) ≤ ‖ϕ‖L2(�)(ϕ ∈
L2
σ (�))and Yεϕ → ϕ in L2(�) as ε ↘ 0, we derive that there exists a positive

constant C2 such that

‖Yεuε(·, t)− u(·, t)‖L2(�) ≤ ‖Yε[uε(·, t)− u(·, t)]‖L2(�)

+‖Yεu(·, t)− u(·, t)‖L2(�)

≤ ‖uε(·, t)− u(·, t)‖L2(�) + ‖Yεu(·, t)− u(·, t)‖L2(�)

→ 0 as ε = εj ↘ 0
(12.5.100)

and

‖Yεuε(·, t) − u(·, t)‖2
L2(�)

≤ (‖Yεuε(·, t)|‖L2(�) + ‖u(·, t)|‖L2(�)

)2

≤ (‖uε(·, t)|‖L2(�) + ‖u(·, t)|‖L2(�)

)2

≤ C2 for all t ∈ (0,∞) and ε ∈ (0, 1).
(12.5.101)

Now, thus, by (12.5.87), (12.5.100) and (12.5.101) and the dominated convergence
theorem, we derive that

∫ T

0
‖Yεuε(·, t)− u(·, t)‖2

L2(�)
dt → 0 as ε = εj ↘ 0 for all T > 0,

(12.5.102)

which implies that

Yεuε → u in L2
loc([0,∞);L2(�)). (12.5.103)

Now, combining (12.5.87) with (12.5.103), we derive

Yεuε ⊗ uε → u⊗ u in L1
loc(�̄× [0,∞)) as ε = εj ↘ 0. (12.5.104)
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Therefore, by (12.5.96)–(12.5.99) and (12.5.104) we conclude that the integrability
of n∇c, nu and cu, u ⊗ u in (12.5.6). Finally, according to (12.5.86)–(12.5.99)
and (12.5.103)–(12.5.104), we may pass to the limit in the respective weak
formulations associated with the regularized system (12.5.13) and get the integral
identities (12.5.7)–(12.5.9).

12.6 Open Problem

This paper has proposed an overview and critical analysis on the qualitative study of
mathematical problems for models which is related to Chemotaxis-(Navier)-Stokes
System. These new models appear to be of interest for the applications in various
fields of biology. However, this final section is devoted to the indication of research
perspectives. This aim is pursued by bringing to the reader’s attention four key
questions. More in detail, the following questions need to be discussed:

(i) Is the b∗ best or not in (12.2.14)? Can one rigorously prove the finite-time
blow-up of solutions to problem (12.2.14).

(ii) Is the b∗ best or not in (12.3.1)? Can one rigorously prove the finite-time blow-
up of solutions to problem (12.3.1).

(iii) Is it possible to determine whether or not in the spatial three-dimensional case
some unbounded solutions to the chemotaxis-growth model (12.2.63) may

exist when f (u) = au− bu2 and b <
(N−2)+

N
χC

1
N
2 +1

N
2 +1

?

(iv) Is it possible to get the global existence or even boundedness to chemotaxis-
haptotaxis model (12.4.1) with remodeling of non-diffusible attractant in
higher dimensions (N ≥ 3).
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Chapter 13
Optimal Control of Quasivariational
Inequalities with Applications to Contact
Mechanics

Mircea Sofonea

Abstract This chapter deals with the optimal control of a class of elliptic quasi-
variational inequalities. We start with an existence and uniqueness result for such
inequalities. Then we state an optimal control problem, list the assumptions on
the data and prove the existence of optimal pairs. We proceed with a perturbed
control problem for which we state and prove a convergence result, under general
conditions. Further, we present a relevant particular case for which these conditions
are satisfied and, therefore, our convergence result works. Finally, we illustrate the
use of these abstract results in the study of a mathematical model which describes
the equilibrium of an elastic body in frictional contact with an obstacle, the so-
called foundation. The process is static and the contact is modeled with normal
compliance and unilateral constraint, associated with the Coulomb’s law of dry
friction. We prove the existence, uniqueness, and convergence results together with
the corresponding mechanical interpretation. We illustrate these results in the study
of a one-dimensional example. Finally, we end this chapter with some concluding
remarks.

Keywords Quasivariational inequality · Optimal pair · Optimal control ·
Convergence results · Frictional contact · Unilateral constraint · Weak solution

13.1 Introduction

Variational inequalities represent a powerful mathematical tool used in the study
of various nonlinear boundary value problems with partial differential equations.
They are usually formulated by using a set of constraints, a nonlinear operator, and
a convex function which could be nondifferentiable. Quasivariational inequalities
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represent a special class of variational inequalities in which the convex function
depends on the solution. The theory of variational inequalities was developed based
on arguments of monotonicity and convexity, including properties of the subdiffer-
ential of a convex function. Basic references in the field are [4, 10, 17, 22, 25], for
instance. Application of variational inequalities in mechanics could be found in the
books [14, 19–21, 36], for instance.

The optimal control theory deals with the existence and, when possible, the
uniqueness of optimal pairs and optimal control. It also deals with the derivation
of necessary conditions of optimality or, better, necessary and sufficient conditions
of optimality. This means to find an equation or an inequality which characterizes
the optimal control. Basic references for the optimal control of systems governed
by partial differential equations are the books [24, 35]. Application of the optimal
control theory in mechanics could be found in [1, 2, 13, 31], for instance. Optimal
control problems for variational inequalities have been discussed in several works,
including [7, 9, 16, 29, 30, 34, 43]. Due to the nonsmooth and nonconvex feature
of the functional involved, the treatment of optimal control problems for variational
inequalities requires the use of their approximation by smooth optimization prob-
lems. And, on this matter, establishing convergence results for the optimal pairs
represents a topic of major interest.

Processes of contact between deformable bodies abound in industry and everyday
life. A few simple examples are brake pads in contact with wheels, tires on roads,
and pistons with skirts. Due to the complex phenomena involved, they lead to
strongly nonlinear mathematical models, formulated in terms of various classes of
inequalities, including variational and quasivariational inequalities. Because of the
importance of contact processes in structural and mechanical systems, considerable
effort has been put into their modeling, analysis, and numerical simulations and
the literature in the field is extensive. It includes the books [14, 15, 19, 23, 32, 36,
38, 41, 42], for instance. The literature concerning optimal control problems in the
study of mathematical models of contact is quite limited. The reason is the strong
nonlinearities which arise in the boundary conditions included in such models. The
results on optimal control for various contact problems with elastic materials can be
found in [3, 6, 8, 11, 12, 26–28, 44] and the references therein.

In the current chapter we consider an optimal control problem for a general class
of elliptic quasivariational inequalities. Our motivation is given by the fact that such
kind of inequalities arises in the study of frictional contact models and, therefore,
their optimal control is important in a large number of engineering applications. The
functional framework is the following: let X and Y be real Hilbert spaces endowed
with the inner products (·, ·)X and (·, ·)Y , respectively, K ⊂ X, A : X → X,
j : X ×X → R, and π : X → Y . Then, the inequality problem we consider is the
following.

Problem P . Given f ∈ Y , find u such that

u ∈ K, (Au, v − u)X + j (u, v)− j (u, u) ≥ (f, πv − πu)Y ∀ v ∈ K.

(13.1)
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Note that the function j depends on the solution u and, for this reason, we refer
to (13.1) as a quasivariational inequality. We assume in what follows that for each
f ∈ Y the quasivariational inequality (13.1) has a unique solution u = u(f ).
Sufficient conditions on the data which guarantee this assumption will be provided
in Theorem 13.2.12. The set of admissible pairs for inequality (13.1) is given by

Vad = { (u, f ) ∈ K × Y such that (13.1) holds }. (13.2)

Consider now a cost functional L : X × Y → R, where, here and below, X × Y

represents the product of the Hilbert spaces X and Y , equipped with the canonical
inner product. Then, the optimal control problem we study in this chapter is the
following.

Problem Q. Find (u∗, f ∗) ∈ Vad such that

L(u∗, f ∗) = min
(u,f )∈Vad

L(u, f ). (13.3)

Our aim in this chapter is threefold. The first one is to formulate sufficient
assumptions on the data which guarantee the existence of optimal pairs, i.e.,
elements (u∗, f ∗) ∈ Vad which solve Problem Q. The answer to this question is
provided by Theorem 13.3.1. The second aim is to study the dependence of the
optimal pairs with respect to perturbations of the set K , the operator A, and the
functional j . The answer to this question is provided by Theorem 13.3.5 which
provides a convergence result, under general conditions. This result is completed by
Theorem 13.3.8, which holds under specific conditions on the data. Finally, our
third aim is to illustrate how these abstract results could be useful in the study
of mathematical models of contact. The answer to this question is provided by
Theorems 13.4.4–13.4.6 and the corresponding mechanical interpretation.

The rest of this chapter is structured in four sections, as follows: In Sect. 13.2
we provide some preliminary results in the study of Problem P . They concern
the existence, uniqueness, and convergence of the solution. Then, in Sect. 13.3
we state and prove the existence of optimal pairs to the control problem Q as
well as a general convergence result. Next, we present a relevant particular case
for which our convergence result holds. In Sect. 13.4 we consider a mathematical
model of frictional contact with elastic materials. The process is static and the
contact is described with normal compliance and unilateral constraint, associated
with a version of Coulomb’s law of dry friction. We apply our results in Sects. 13.2
and 13.3 in the study of this problem. Moreover, we illustrate them in the study
of a one-dimensional example. Finally, we end this chapter with some concluding
remarks, presented in Sect. 13.5.
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13.2 Quasivariational Inequalities

In this section we provide some results in the study of Problem P that we need in the
rest of this chapter. We first introduce preliminary material from functional analysis,
and then we state and prove an existence and uniqueness result, Theorem 13.2.12.
Finally, we study the dependence of the solution with respect to the element f and
we prove a convergence result, Theorem 13.2.13.

13.2.1 Notation and Preliminaries

All the linear spaces considered in this chapter including abstract normed spaces,
Banach spaces, Hilbert spaces, and various function spaces are assumed to be real
linear spaces. For a normed space X we denote by ‖ · ‖X its norm and by 0X its zero
element. In addition, we denote by → and ⇀ the strong and weak convergence in
various normed spaces. For an inner product space X we denote by (·, ·)X its inner
product and by ‖ · ‖X the associated norm. Unless stated otherwise, all the limits,
upper and lower limits, below are considered as n→∞, even if we do not mention
it explicitly. The results presented below in this subsection are well known and can
be found in many books and survey and, for this reason, we skip their proofs.

Definition 13.2.1 Let X be a normed space. A subset K ⊂ X is called:

(i) (strongly) closed if the limit of each convergent sequence of elements of K
belongs to K , that is, {un} ⊂ K, un → u in X �⇒ u ∈ K .

(ii) weakly closed if the limit of each weakly convergent sequence of elements of
K belongs to K , that is, {un} ⊂ K, un ⇀ u in X �⇒ u ∈ K .

(iii) convex, if u, v ∈ K �⇒ (1− t) u+ t v ∈ K ∀ t ∈ [0, 1].
Evidently, every weakly closed subset of X is (strongly) closed, but the converse

is not true, in general. An exception is provided by the class of convex subsets of a
Banach space, as shown in the following result.

Theorem 13.2.2 (The Mazur Theorem) A convex subset of a Banach space is
(strongly) closed if and only if it is weakly closed.

We now recall the following important property which represents a particular
case of the well-known Eberlein–Smulyan theorem.

Theorem 13.2.3 If X is a Hilbert space, then any bounded sequence in X has a
weakly convergent subsequence.

It follows that if X is a Hilbert space and the sequence {un} ⊂ X is bounded, that
is, supn ‖un‖X < ∞, then there exists a subsequence {unk } ⊂ {un} and an element
u ∈ X such that unk ⇀ u in X. Furthermore, if the limit u is independent of the
subsequence, then the whole sequence {un} converges weakly to u, as stated in the
following result.
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Theorem 13.2.4 Let X be a Hilbert space and let {un} be a bounded sequence
of elements in X such that each weakly convergent subsequence of {un} converges
weakly to the same limit u ∈ X. Then un ⇀ u in X.

We now proceed with the definition of some classes of operators.

Definition 13.2.5 Let X be an inner product space and let A : X → X be an
operator. The operator A is said to be:

(i) monotone, if (Au− Av, u− v)X ≥ 0 ∀ u, v ∈ X.
(ii) strongly monotone, if there exists a constant m > 0 such that

(Au− Av, u− v)X ≥ m ‖u− v‖2
X ∀ u, v ∈ X.

(iii) bounded, if A maps bounded sets into bounded sets.
(iv) pseudomonotone, if it is bounded and un ⇀ u in X with

lim sup
n→∞

(Aun, un − u)X ≤ 0 (13.4)

implies

lim inf
n→∞ (Aun, un − v)X ≥ (Au, u− v)X ∀ v ∈ X. (13.5)

(v) Lipschitz continuous if there exists M > 0 such that

‖Au− Av‖X ≤ M‖u− v‖X ∀ u, v ∈ X.

(vi) hemicontinuous if the real valued function

θ �→ (A(u+ θv),w)X is continuous on R, ∀ u, v, w ∈ X.

It is easy to see that a strongly monotone operator A : X → X is monotone
and a Lipschitz continuous operator A : X → X is bounded and hemicontinuous.
Moreover, the following result holds.

Proposition 13.2.6 Let X be an inner product space and A : X → X a monotone
hemicontinuous operator. Assume that {un} is a sequence of elements in X which
converges weakly to the element u ∈ X such that (13.4) holds. Then (13.5) holds,
too.

A proof of Proposition 13.2.6 can be found in [41, p. 21]. As a consequence we
obtain the following result which will be used later in this chapter.

Corollary 13.2.7 Let X be an inner product space and A : X → X a monotone
Lipschitz continuous operator. Then A is pseudomonotone.
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Convex lower semicontinuous functions represent a crucial ingredient in the
study of variational inequalities. To introduce them, we start with the following
definitions.

Definition 13.2.8 Let X be a linear space and let K be a nonempty convex subset
of X. A function ϕ : K → R is said to be convex if

ϕ((1− t)u+ tv) ≤ (1− t)ϕ(u)+ tϕ(v) (13.6)

for all u, v ∈ K and t ∈ [0, 1]. The function ϕ is strictly convex if the inequality
in (13.6) is strict for u �= v and t ∈ (0, 1).

Definition 13.2.9 Let X be a normed space and let K be a nonempty closed convex
subset of X. A function ϕ : K → R is said to be lower semicontinuous (l.s.c.) at
u ∈ K if

lim inf
n→∞ ϕ(un) ≥ ϕ(u) (13.7)

for each sequence {un} ⊂ K converging to u in X. The function ϕ is l.s.c. if it is l.s.c.
at every point u ∈ K . When inequality (13.7) holds for each sequence {un} ⊂ K

that converges weakly to u, the function ϕ is said to be weakly lower semicontinuous
at u. The function ϕ is weakly l.s.c. if it is weakly l.s.c. at every point u ∈ K .

Since the strong convergence implies the weak convergence, it follows that
a weakly lower semicontinuous function is lower semicontinuous. Moreover, the
following results hold.

Proposition 13.2.10 Let X be a Banach space, K a nonempty closed convex subset
of X, and ϕ : K → R a convex function. Then ϕ is lower semicontinuous if and
only if it is weakly lower semicontinuous.

The proof of this result is based on Theorem 13.2.2.

13.2.2 Existence and Uniqueness

Everywhere in the rest of this chapter we assume that X is a Hilbert space. Given
a subset K ⊂ X, an operator A : X → X, a function j : X × X → R, and an
element f̃ ∈ X, we consider the following quasivariational inequality problem: find
an element u such that

u ∈ K, (Au, v − u)X + j (u, v) − j (u, u) ≥ (
f̃ , v − u

)
X

∀ v ∈ K. (13.8)

Quasivariational inequalities of the form (13.8) have been studied by many authors,
by using different functional methods, including fixed point and topological degree
arguments. The existence and uniqueness results for such inequalities could be
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found in [12, 33, 40, 41], for instance, under various assumptions on the function j .
Here, in this chapter, we consider the following assumptions:

K is a nonempty, closed, convex subset of X. (13.9)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A is a strongly monotone Lipschitz continuous operator, i.e.,
there exist m > 0 and M > 0 such that

(a) (Au− Av, u− v)X ≥ m‖u− v‖2
X ∀ u, v ∈ X,

(b) ‖Au− Av‖X ≤ M ‖u− v‖X ∀ u, v ∈ X.

(13.10)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a) For all η ∈ X, j (η, ·) : X→ R is convex and l.s.c.

(b) There exists α ≥ 0 such that
j (η1, v2)− j (η1, v1)+ j (η2, v1)− j (η2, v2)

≤ α ‖η1 − η2‖X‖v1 − v2‖X ∀ η1, η2, v1, v2 ∈ X.

(13.11)

m > α. (13.12)

We recall the following existence and uniqueness result, which guarantees the
unique solvability of Problem P .

Theorem 13.2.11 Assume that (13.9)–(13.12) hold. Then, for each f̃ ∈ X the
quasivariational inequality (13.8) has a unique solution.

A proof of Theorem 13.2.11 can be found in [41, p. 49], based on the Banach
fixed point argument. We now turn to the study of Problem P and, to this end, we
consider the following additional assumptions:

⎧
⎨

⎩

π is a linear continuous operator, i.e.,
there exists c0 > 0 such that
‖πv‖Y ≤ c0 ‖v‖X ∀ v ∈ X.

(13.13)

⎧
⎨

⎩

There exist β, γ ≥ 0 such that
j (η, v1)− j (η, v2) ≤ (β + γ ‖η‖X) ‖v1 − v2‖X
∀ η, v1, v2 ∈ X.

(13.14)

m > γ. (13.15)

We have the following result.

Theorem 13.2.12 Assume that (13.9)–(13.13) hold. Then, for each f ∈ Y , the
quasivariational inequality (13.1) has a unique solution. Moreover, if (13.14)
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and (13.15) hold, then the solution satisfies the inequality

‖u‖X ≤ 1

m− γ

(‖Au0‖X + c0‖f ‖Y + γ ‖u0‖X + β
)+ ‖u0‖X, (13.16)

for any element u0 ∈ K .

Proof Let f ∈ Y . We use assumption (13.13) to see that the functional v �→
(f, πv)Y is linear and continuous on X. Therefore, using the Riesz representation
theorem, there exists a unique element f̃ ∈ X such that

(f̃ , v)X = (f, πv)Y ∀ v ∈ X. (13.17)

Using now Theorem 13.2.11 we deduce that there exists a unique element u such
that

u ∈ K, (Au, v − u)X + j (u, v) − j (u, u) ≥ (
f̃ , v − u

)
X

∀ v ∈ K.

(13.18)

The existence and uniqueness part of Theorem 13.2.12 is now a direct consequence
of (13.17) and (13.18).

Assume now that (13.14) and (13.15) hold and consider an arbitrary element
u0 ∈ K . Then, taking v = u0 in (13.1) we find that

(Au, u− u0)X ≤ (f, πu− πu0)Y + j (u, u0)− j (u, u)

which implies that

(Au− Au0, u− u0)X ≤ (Au0, u0 − u)X + (f, πu− πu0)Y + j (u, u0)− j (u, u).

We now use assumptions (13.10)(a), (13.13), and (13.14) to deduce that

m ‖u− u0‖2
X ≤ ‖Au0‖X‖u− u0‖X

+c0‖f ‖Y ‖u− u0‖X + (β + γ ‖u‖X)‖u− u0‖X.

Next, we use the triangle inequality ‖u‖X ≤ ‖u− u0‖X + ‖u0‖X to deduce that

(m− γ ) ‖u− u0‖X ≤ ‖Au0‖X + c0‖f ‖Y + γ ‖u0‖X + β.

This inequality combined with the smallness assumption (13.15) implies the
bound (13.16) and concludes the proof. ��
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13.2.3 A Convergence Result

Theorem 13.2.12 allows us to define the operator f �→ u(f ) which associates to
each element f ∈ Y the solution u = u(f ) ∈ K of the quasivariational inequal-
ity (13.1). An important property of this operator is its weak–strong continuity,
which represents a crucial ingredient in the study of the optimal control problem
Q. It holds under the following additional assumptions:

⎧
⎪⎨

⎪⎩

For any sequences {ηk} ⊂ X, {uk} ⊂ X such that
ηk ⇀ η ∈ X, uk ⇀ u ∈ X one has

lim sup
k→∞

[j (ηk, v)− j (ηk, uk)] ≤ j (η, v)− j (η, u) ∀ v ∈ X.
(13.19)

{
For any sequence {vk} ⊂ X such that
vk ⇀ v in X one has πvk → πv in Y.

(13.20)

Note that assumption (13.19) implies that for all η ∈ X, j (η, ·) : X → R is
lower semicontinuous. Indeed, this property can be easily deduced by taking ηk = η

in (13.19). Moreover, assumption (13.20) shows that the operator π : X → Y is
completely continuous.

Our main result in this subsection is the following.

Theorem 13.2.13 Assume that (13.9)–(13.15), (13.19), and (13.20) hold. Then,

fn ⇀ f in Y �⇒ u(fn)→ u(f ) in X, as n→∞. (13.21)

Proof The proof of Theorem 13.2.13 will be carried out in several steps that we
present in what follows.

(i) Weak convergence of a subsequence. Assume that {fn} is a sequence of
elements in Y such that

fn ⇀ f in Y as n→∞ (13.22)

and, for simplicity, denote u(fn) = un and u(f ) = u. Then, it fol-
lows from (13.22) that {fn} is a bounded sequence in Y and, therefore,
inequality (13.16) implies that {un} is a bounded sequence in X. Using
now Theorem 13.2.3 we deduce that there exists an element ũ ∈ X and a
subsequence of {un}, again denoted {un}, such that

un ⇀ ũ in X as n→∞. (13.23)

On the other hand, we recall that K is a closed convex subset of the space X

and {un} ⊂ K . Then, Theorem 13.2.2 and (13.23) imply that

ũ ∈ K. (13.24)
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(ii) Weak convergence of the whole subsequence. Let n ∈ N. We write (13.1) for
f = fn to obtain

(Aun, un − v)X ≤ j (un, v) − j (un, un)+ (fn, πun − πv)Y ∀ v ∈ K,

(13.25)

then we take v = ũ ∈ K to find that

(Aun, un − ũ)X ≤ j (un, ũ)− j (un, un)+ (fn, πun − πũ)Y .

We now pass to the upper limit and use the convergences (13.22), (13.23) and
assumptions (13.19), (13.20). As a result we deduce that

lim
n→∞ sup (Aun, un − ũ)X ≤ 0.

Therefore, using assumption (13.10), Corollary 13.2.7, and Defini-
tion 13.2.5(iv) we deduce that

lim inf
n→∞ (Aun, un − v)X ≥ (Aũ, ũ− v)X ∀ v ∈ X. (13.26)

On the other hand, passing to the upper limit in inequality (13.25) and using
the convergences (13.22), (13.23) and assumptions (13.19), (13.20) yields

lim sup
n→∞

(Aun, un − ũ)X ≤ j (̃u, v) − j (̃u, ũ)+ (f, πũ− πv)Y ∀ v ∈ K.

(13.27)

We now combine the inequalities (13.26) and (13.27) to see that

(Aũ, v − ũ)X + j (̃u, v) − j (̃u, ũ) ≥ (f, πv − πũ)Y ∀ v ∈ K.

(13.28)

Next, it follows from (13.24) and (13.28) that ũ is a solution of inequality (13.1)
and, by the uniqueness of the solution of this inequality, guaranteed by
Theorem 13.2.12, we obtain that

ũ = u. (13.29)

A careful analysis, based on the arguments above, reveals that u is the weak
limit of any weakly convergent subsequence of the sequence {un}. Therefore,
using Theorem 13.2.4 we deduce that the whole sequence {un} converges
weakly in X to u as n→∞, i.e.,

un ⇀ u in X as n→∞. (13.30)
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(iii) Strong convergence. Let n ∈ N be given. We take v = u in inequality (13.25)
to see that

(Aun, un − u)X ≤ j (un, u)− j (un, un)+ (fn, πun − πu)Y . (13.31)

Next, we use (13.31) and assumption (13.10)(a) to find that

m ‖un − u‖2
X ≤ (Aun − Au, un − u)X

= (Aun, un − u)X − (Au, un − u)X

≤ j (un, u)− j (un, un)+ (fn, πun − πu)Y − (Au, un − u)X.

We now pass to the upper limit in this inequality and use the conver-
gences (13.22), (13.30) and assumptions (13.19), (13.20) to deduce that

‖un − u‖X → 0 as n→∞.

This convergence concludes the proof since, recall, un = u(fn) and u = u(f ).
��

13.3 Optimal Control of Quasivariational Inequalities

We now move to the study of the optimal control problem Q. We start with
an existence result for the optimal pairs, Theorem 13.3.1. We proceed with a
convergence result, Theorem 13.3.5. Finally, we consider a relevant particular case
for which this convergence result holds, Theorem 13.3.8.

13.3.1 Existence of Optimal Pairs

In the study of Problem Q we assume that

L(u, f ) = g(u)+ h(f ) ∀ u ∈ X, f ∈ Y, (13.32)

where g and h are functions which satisfy the following conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g : X→ R is continuous, positive, and bounded, i.e.,

(a) vn → v in X �⇒ g(vn)→ g(v).

(b) g(v) ≥ 0 ∀ v ∈ X.

(c) g maps bounded sets in X into bounded sets in R.

(13.33)
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⎧
⎪⎪⎨

⎪⎪⎩

h : Y → R is weakly lower semicontinuous and coercive, i.e.,

(a) fn ⇀ f in Y �⇒ lim inf
n→∞ h(fn) ≥ h(f ).

(b) ‖fn‖Y →∞ �⇒ h(fn)→∞.

(13.34)

Our first result in this section is the following.

Theorem 13.3.1 Assume that (13.9)–(13.15), (13.19), (13.20), and (13.32)–(13.34)
hold. Then, there exists at least one solution (u∗, f ∗) ∈ Vad of Problem Q.

Proof Let

θ = inf
(u,f )∈Vad

L(u, f ) ∈ R (13.35)

and let {(un, fn)} ⊂ Vad be a minimizing sequence for the functional L, i.e.,

lim
n→∞ L(un, fn) = θ. (13.36)

We claim that the sequence {fn} is bounded in Y . Arguing by contradiction, assume
that {fn} is not bounded in Y . Then, passing to a subsequence still denoted {fn}, we
have

‖fn‖Y →+∞ as n→+∞. (13.37)

We now use equality (13.32) and assumption (13.33)(b) to see that

L(un, fn) ≥ h(fn).

Therefore, passing to the limit as n → +∞ and using (13.37) combined with
assumption (13.34)(b) we deduce that

lim
n→+∞L(un, fn) = +∞. (13.38)

Equalities (13.36) and (13.38) imply that θ = +∞ which is in contradiction
with (13.35).

We conclude from above that the sequence {fn} is bounded in Y . Therefore,
using Theorem 13.2.3 we deduce that there exists f ∗ ∈ Y such that, passing to a
subsequence still denoted {fn}, we have

fn ⇀ f ∗ in Y as n→+∞. (13.39)

Let u∗ be the solution of the quasivariational inequality (13.1) for f = f ∗, i.e.,
u∗ = u(f ∗). Recall that the existence and uniqueness of this solution is guaranteed
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by Theorem 13.2.12. Then, by the definition (13.2) of the set Vad we have

(u∗, f ∗) ∈ Vad. (13.40)

Moreover, using (13.39) and (13.21) it follows that

un → u∗ in X as n→+∞. (13.41)

We now use the convergences (13.39), (13.41) and the weakly lower semicontinuity
of the functional L, guaranteed by assumptions (13.33)(a) and (13.34)(a), to deduce
that

lim inf
n→+∞L(un, fn) ≥ L(u∗, f ∗). (13.42)

It follows from (13.36) and (13.42) that

θ ≥ L(u∗, f ∗). (13.43)

In addition, (13.40) and (13.35) yield

θ ≤ L(u∗, f ∗). (13.44)

We now combine inequalities (13.43) and (13.44) to see that (13.3) holds, which
concludes the proof. ��
Remark 13.3.2 Assume now that U ⊂ Y is a nonempty weakly closed subset, i.e.,
it satisfies the following property:

for any sequence {fn} ⊂ U such that fn ⇀ f ∈ Y one has f ∈ U. (13.45)

Then, careful analysis of the previous proof reveals the fact that the statement of
Theorem 13.3.1 still remains valid if we replace the definition (13.2) of admissible
pairs for inequality (13.1) with the following one:

Vad = { (u, f ) ∈ K × U such that (13.1) holds }. (13.46)

Considering the set (13.46) instead of (13.2) leads to a version of Theorem 13.3.1
which could be useful in various applications, when the control f is assumed to
satisfy some constraints.
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13.3.2 Convergence of Optimal Pairs

In this subsection we focus on the dependence of the solution of the optimal control
Q with respect to the set K , the operator A, and the function j . To this end, we
assume in what follows that the hypothesis of Theorem 13.3.1 holds. Moreover, for
each n ∈ N we consider a perturbation Kn, An, and jn of K , A, and j , respectively,
which satisfy the following conditions:

Kn is a nonempty, closed, convex subset of X. (13.47)

⎧
⎨

⎩

An is a strongly monotone Lipschitz continuous operator,

i.e., it satisfies condition (13.10) with mn > 0 and Mn > 0.
(13.48)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) For all η ∈ X, jn(η, ·) : X→ R is convex.

(b) There exists αn ≥ 0 such that
jn(η1, v2)− jn(η1, v1)+ jn(η2, v1)− jn(η2, v2)

≤ αn ‖η1 − η2‖X‖v1 − v2‖X ∀ η1, η2, v1, v2 ∈ X.

(c) There exist βn, γn ≥ 0 such that
jn(η, v1)− jn(η, v2) ≤ (βn + γn‖η‖X) ‖v1 − v2‖X
∀ η, v1, v2 ∈ X.

(d) For any sequences {ηk} ⊂ X, {uk} ⊂ X such that
ηk ⇀ η ∈ X, uk ⇀ u ∈ X one has
lim sup

k

[jn(ηk, v)− jn(ηk, uk)] ≤ jn(η, v)− jn(η, u) ∀ v ∈ X.

(13.49)

mn > αn. (13.50)

mn > γn. (13.51)

We consider the following perturbation of Problem P .

Problem Pn. Given fn ∈ Y , find un such that

un ∈ Kn, (Anun, v − un)X + jn(un, v)− jn(un, un) (13.52)

≥ (fn, πv − πun)Y ∀ v ∈ Kn.

It follows from Theorem 13.2.12 that for each fn ∈ Y there exists a unique
solution un = un(fn) to the quasivariational inequality (13.52). Moreover, the
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solution satisfies

‖un‖X ≤ 1

mn − γn

(‖Anu0n‖X+c0‖fn‖Y+γn‖u0n‖X+βn
)+‖u0n‖X, (13.53)

where u0n denotes an arbitrary element of Kn. We define the set of admissible pairs
for inequality (13.52) by

Vn
ad = { (un, fn) ∈ Kn × Y such that (13.52) holds }. (13.54)

Then, the optimal control problem associated with Problem Pn is the following.

Problem Qn. Find (u∗n, f ∗n ) ∈ Vn
ad such that

L(u∗n, f ∗n ) = min
(un,fn)∈Vn

ad

L(un, fn). (13.55)

Using Theorem 13.3.1 it follows that for each n ∈ N there exists at least
one solution (u∗n, f ∗n ) ∈ Vn

ad of Problem Qn. We now consider the following
assumptions:

fn ⇀ f in Y �⇒ un(fn)→ u(f ) in X, as n→∞. (13.56)

{
There exists f 0 ∈ Y such that

the sequence {un(f 0)} is bounded in X.
(13.57)

Concerning assumptions (13.56) and (13.57) we have the following remarks.

Remark 13.3.3 Assumptions (13.56) and (13.57) are not formulated in terms of
the data Kn, An, and jn. They are formulated in terms of the solutions un and u

which are unknown and, therefore, they represent implicit assumptions. We consider
these assumptions for their generality. In the next section we shall provide explicit
assumptions on Kn, An, and jn which guarantee that conditions (13.56) and (13.57)
hold. Considering such explicit assumptions will lead us to introduce a relevant
particular case in which Theorem 13.3.5 holds.

Remark 13.3.4 Condition (13.56) represents a continuous dependence condition of
the solution of (13.1) with respect to the set K , the operator A, the function j , and
the element f ∈ Y .

The second result in this section is a convergence result for the set of solution of
Problem Q. Its statement is as follows.

Theorem 13.3.5 Assume that (13.9)–(13.15), (13.19), (13.20), and (13.32)–(13.34)
hold and, for any n ∈ N, assume that (13.47)–(13.51) hold, too. Moreover, assume
that conditions (13.56)–(13.57) are satisfied and let {(u∗n, f ∗n )} be a sequence
of solutions of Problem Qn. Then, there exists a subsequence of the sequence
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{(u∗n, f ∗n )}, again denoted {(u∗n, f ∗n )}, and an element (u∗, f ∗) ∈ X × Y such that

f ∗n ⇀ f ∗ in Y as n→∞, (13.58)

u∗n → u∗ in X as n→∞, (13.59)

(u∗, f ∗) is a solution of Problem Q. (13.60)

Proof We claim that the sequence {f ∗n } is bounded in Y . Arguing by contradiction,
assume that {f ∗n } is not bounded in Y . Then, passing to a subsequence still denoted
{f ∗n }, we have

∥
∥f ∗n

∥
∥
Y
→ +∞ as n→+∞. (13.61)

We use equality (13.32) and assumption (13.33)(b) to see that

L
(
u∗n, f ∗n

) ≥ h
(
f ∗n

)
.

Therefore, passing to the limit as n → ∞ in this inequality and using (13.61)
combined with assumption (13.34)(b) we deduce that

lim
n→∞L

(
u∗n, f ∗n

) = +∞. (13.62)

On the other hand, since
(
u∗n, f ∗n

)
represents a solution to Problem Qn, for each

n ∈ N we have

L
(
u∗n, f ∗n

) ≤ L(un, fn) ∀ (un, fn) ∈ Vn
ad. (13.63)

We now use assumption (13.57) and denote by u0
n the solution of Problem Pn

for fn = f 0, i.e., u0
n = un

(
f 0

)
. Then

(
u0
n, f

0
) ∈ Vn

ad and, therefore, (13.63)
and (13.32) imply that

L
(
u∗n, f ∗n

) ≤ g
(
u0
n

)
+ h

(
f 0

)
. (13.64)

Then, since (13.57) guarantees that
{
u0
n

}
is a bounded sequence in X, assump-

tion (13.33)(c) on the function g implies that there exists D > 0 which does not
depend on n such that

g
(
u0
n

)
+ h

(
f 0

)
≤ D ∀ n ∈ N. (13.65)

Relations (13.62), (13.64), and (13.65) lead to a contradiction, which concludes the
claim.
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Next, since the sequence {f ∗n } is bounded in Y we can find a subsequence again
denoted {f ∗n } and an element f ∗ ∈ Y such that (13.58) holds. Denote by u∗ the
solution of Problem P for f = f ∗, i.e., u∗ = u(f ∗). Then, we have

(u∗, f ∗) ∈ Vad (13.66)

and, moreover, assumption (13.56) implies that (13.59) holds, too.
We now prove that (u∗, f ∗) is a solution to the optimal control problem

Q. To this end we use the convergences (13.58), (13.59) and the weakly lower
semicontinuity of the functional L, guaranteed by (13.32)–(13.34), to see that

L(u∗, f ∗) ≤ lim inf
n→∞ L(u∗n, f ∗n ). (13.67)

Next, we fix a solution
(
u∗0, f ∗0

)
of Problem Q and, in addition, for each n ∈ N we

denote by ũ0
n the solution of Problem Pn for fn = f ∗0 . It follows from here that(

ũ0
n, f

∗
0

) ∈ Vn
ad and, by the optimality of the pair

(
u∗n, f ∗n

)
, we have that

L
(
u∗n, f ∗n

) ≤ L
(
ũ0
n, f

∗
0

)
∀ n ∈ N.

We pass to the upper limit in this inequality to see that

lim sup
n→∞

L
(
u∗n, f ∗n

) ≤ lim sup
n→∞

L
(
ũ0
n, f

∗
0

)
. (13.68)

Now, remember that u∗0 is the solution of the inequality (13.1) for f = f ∗0 and
ũ0
n is the solution of the inequality (13.52) for fn = f ∗0 , i.e., ũ0

n = un
(
f ∗0

)
and

ũn = un
(
f ∗0

)
. Therefore, assumption (13.56) implies that

ũ0
n → u∗0 in X as n→∞

and, using the continuity of the functional u �→ L
(
u, f ∗0

) : X→ R yields

lim
n→∞L

(
ũ0
n, f

∗
0

)
= L

(
u∗0, f ∗0

)
. (13.69)

We now use (13.67)–(13.69) to see that

L
(
u∗, f ∗

) ≤ L(u∗0, f ∗0 ). (13.70)

On the other hand, since (u∗0, f ∗0 ) is a solution of Problem Q, we have

L
(
u∗0, f ∗0

) = min
(u,f )∈Vad

L(u, f ), (13.71)
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and, therefore, inclusion (13.66) implies that

L
(
u∗0, f ∗0

) ≤ L
(
u∗, f ∗

)
. (13.72)

We now combine the inequalities (13.70) and (13.72) to see that

L
(
u∗, f ∗

) = L
(
u∗0, f ∗0

)
. (13.73)

Finally, relations (13.66), (13.73), and (13.71) imply that (13.60) holds, which
concludes the proof. ��

We end this subsection with the following remarks.

Remark 13.3.6 If Problem Q has a unique solution (u∗, f ∗) then, under the
assumption of Theorem 13.3.5 the convergences (13.58) and (13.59) are valid
for the whole sequence

{(
u∗n, f ∗n

)}
. Indeed, a careful analysis of the proof of

Theorem 13.2 reveals that the sequence
{
f ∗n

}
is bounded in Y and, moreover, each

weakly convergent subsequence of
{
f ∗n

}
converges weakly to f ∗. We now use

Theorem 13.2.4 to deduce that the whole sequence satisfies (13.58). Finally, using
Theorem 13.2.13 it follows that (13.59) holds, too.

Remark 13.3.7 The statement of Theorem 13.3.5 still remains valid if we replace
the definition (13.2) with (13.46) and the definition (13.54) with

Vn
ad = { (un, fn) ∈ Kn × U such that (13.52) holds }, (13.74)

U being a nonempty weakly closed subset of Y . The proof of this statement is based
on the property (13.45) of the set U .

13.3.3 A Relevant Particular Case

Our aim in this subsection is to present explicit conditions on the family of sets
Kn, operators An, and functionals jn which guarantee that assumptions (13.56)
and (13.57) hold. We conclude from here that, under these conditions, the abstract
result in Theorem 13.3.5 holds.

Everywhere in this subsection we assume that (13.9)–(13.15), (13.19), and
(13.20) hold and, for each f ∈ Y , we denote by u = u(f ) the solution of
inequality (13.1), guaranteed by Theorem 13.2.12. Moreover, for each n ∈ N

we consider the set Kn ⊂ X, the operator An : X → X, and the functional
jn : X ×X→ R such that the followings hold:

Kn = cnK with cn > 0. (13.75)
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) An = A+ Tn.

(b) A : X→ X satisfies condition (13.10) with
m > 0 and M > 0.

(c) Tn : X→ X is a monotone Lipschitz continuous operator.

(13.76)

{
jn satisfies condition (13.49) with αn ≥ 0, βn ≥ 0, γn ≥ 0
such that m > αn, m > γn.

(13.77)

With this choice we consider Problem Pn. It is easy to see that for each
n ∈ N the set Kn ⊂ X satisfies condition (13.47). Moreover, the operator An

satisfies condition (13.48) with mn = m and Mn = M + LTn , LTn being the
Lipschitz constant of the operator Tn. We now use assumption (13.77) to see that
conditions (13.49)–(13.51) are also satisfied. Therefore, using Theorem 13.2.12 we
deduce that for each fn ∈ Y there exists a unique solution un = un(fn) to the
quasivariational inequality (13.52).

On the other hand, if (13.32)–(13.34) hold, then Theorem 13.3.1 guarantees the
existence of at least one solution (u∗, f ∗) of Problem Q and, for each n ∈ N, the
existence of at least one solution (u∗n, f ∗n ) to Problem Qn.

We now consider the following additional assumptions:

lim
n→∞ cn = 1. (13.78)

j (u, λv) = λj (u, v) ∀ λ ≥ 0, u, v ∈ X. (13.79)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

For any n ∈ N there exists Fn ≥ 0 and δn ≥ 0 such that

(a) ‖Tnv‖X ≤ Fn(‖v‖X + δn) ∀ v ∈ X.

(b) lim
n→∞Fn = 0.

(c) The sequence {δn} ⊂ R is bounded.

(13.80)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

For any n ∈ N there exists Gn ≥ 0 and Hn ≥ 0 such that

(a) jn(v1, v2)− jn(v1, v1)+ j (v2, v1)− j (v2, v2)

≤ Gn +Hn‖v1 − v2‖X + α ‖v1 − v2‖2
X

∀ v1, v2 ∈ X.

(b) lim
n→∞Gn = lim

n→∞Hn = 0.

(13.81)

Moreover, we reinforce assumption (13.77) by assuming that there exist two
constants β0 and γ0 such that

βn ≤ β0, γn ≤ γ0 < m, ∀ n ∈ N. (13.82)
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We have the following result.

Theorem 13.3.8 Assume that (13.9)–(13.15), (13.19), (13.20), and (13.32)–(13.34)
hold and, for any n ∈ N, assume that (13.75)–(13.77) hold, too. Assume moreover
that conditions (13.78)–(13.82) are satisfied and let

{(
u∗n, f ∗n

)}
be a sequence

of solutions of Problem Qn. Then, there exists a subsequence of the sequence{(
u∗n, f ∗n

)}
, again denoted

{(
u∗n, f ∗n

)}
, and an element (u∗, f ∗) ∈ X × Y such

that (13.58)–(13.60) hold.

The proof is carried out in several steps, based on the abstract result provided by
Theorem 13.3.5. The first step of the proof is the following.

Lemma 13.3.9 Under the assumption of Theorem 13.3.8, if the sequence {fn} is
bounded in Y , then the sequence {un(fn)} is bounded in X.

Proof Let u0 be a given element of K and let n ∈ N. Condition (13.75) guarantees
that cnu0 ∈ Kn and, therefore, using inequality (13.53) with u0n = cnu0 yields

‖un‖X ≤ 1

mn − γn

(‖An(cnu0)‖X + c0‖fn‖Y + γn‖cnu0‖X + βn
)+ ‖cnu0‖X.

We now use assumption (13.82) and equality mn = m which, recall, follows from
assumption (13.76). In this way we deduce that

‖un‖X ≤ 1

m− γ0

(‖An(cnu0)‖X + c0‖fn‖Y + γ0cn‖u0‖X + β0
)+ cn‖u0‖X.

(13.83)

Recall that An(cnu0) = A(cnu0)+ Tn(cnu0) and, therefore,

‖An(cnu0)‖X ≤ ‖A(cnu0)‖X + ‖Tn(cnu0)‖X. (13.84)

We now write

‖A(cnu0)‖X ≤ ‖A(cnu0)− Au0‖X + ‖Au0‖X,

then we use assumption (13.10)(b) to deduce that

‖A(cnu0)‖X ≤ (M|cn − 1| ‖u0‖X + ‖Au0‖X). (13.85)

Moreover, using (13.80) we have that

‖Tn(cnu0)‖X ≤ Fn(cn ‖u0‖X + δn). (13.86)
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Next, we combine inequalities (13.83)–(13.86) to find that

‖un‖X (13.87)

≤ 1

m− γ0

(
M|cn − 1| ‖u0‖X + ‖Au0‖X + Fn(cn ‖u0‖X + δn)

+ 1

m− γ0

(
c0‖fn‖Y + γ0cn‖u0‖X + β0

)+ cn‖u0‖X.

Lemma 13.3.9 is now a direct consequence of inequality (13.87) and assump-
tions (13.78), (13.80)(b). ��

We proceed with the following result.

Lemma 13.3.10 Under the assumption of Theorem 13.3.8, condition (13.56) holds.

Proof Let {fn} ⊂ Y , f ∈ Y such that

fn ⇀ f in Y as n→∞. (13.88)

Let n ∈ N. Besides Problems P and Pn we consider the intermediate problems of
finding two elements ūn and ũn such that

ūn ∈ K, (Aūn, v − ūn)X + j (ūn, v)− j (ūn, ūn) (13.89)

≥ (fn, πv − πūn)Y ∀ v ∈ K.

ũn ∈ Kn, (Aũn, vn − ũn)X + j (̃un, vn)− j (̃un, ũn) (13.90)

≥ (fn, πvn − πũn)Y ∀ vn ∈ Kn.

Note that Theorem 13.2.12 guarantees the existence of a unique solution ūn and
ũn to the quasivariational inequalities (13.89) and (13.90), respectively. Our aim in
what follows is to establish estimates for the norms ‖un − ũn‖X and ‖ũn − ūn‖X.

Let n ∈ N. We take vn = un in (13.90), vn = ũn in (13.52), then we add the
resulting inequalities to obtain that

(Anun − Aũn, un − ũn)X ≤ jn (un, ũn)− jn(un, un)+ j (̃un, un)− j (̃un, ũn) .

We use now assumption (13.76)(a) to see that Anun = Aun + Tnun and, therefore,
we deduce that

(Aun − Aũn, un − ũn)X ≤ (Tnun, ũn − un)X

+jn (un, ũn)− jn(un, un)+ j (̃un, un)− j (̃un, ũn) .
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Next, we use conditions (13.10)(a), (13.80)(a), and (13.81)(a) to find that

m ‖un − ũn‖2
X ≤ Fn(‖un‖X + δn) ‖un − ũn‖X (13.91)

+Gn +Hn ‖un − ũn‖X + α ‖un − ũn‖2
X .

On the other hand, assumption (13.88) and Lemma 13.3.9 imply that there exists
E > 0 which does not depend on n such that ‖un‖X ≤ E. Therefore, since m > α,
inequality (13.91) yields

‖un − ũn‖2
X ≤

(
Hn

m− α
+ (E + δn)Fn

m− α

)
‖un − ũn‖X + Gn

m− α
.

Next, the elementary inequality

x2 ≤ ax + b �⇒ x ≤ a +√b ∀ x, a, b ≥ 0

combined with assumptions (13.80)(b),(c) and (13.81)(b) implies that

‖un − ũn‖X → 0 as n→ 0. (13.92)

On the other hand, condition (13.75) allows us to test in (13.90) with vn =
cnūn ∈ Kn. As a result we deduce that

(Aũn, cnūn − ũn)X + j (̃un, cnūn)− j (̃un, ũn) ≥ (fn, cnπūn − πũn)Y .

(13.93)

We now use condition (13.75), again, to test in (13.89) with v = 1
cn
ũn ∈ K . Then,

we multiply the resulting inequality with cn > 0 and use assumption (13.79) on j

to find that

(Aūn, ũn − cnūn)X + j (ūn, ũn)− j (ūn, cnūn) ≥ (fn, πũn − cnπūn)Y .

(13.94)

We now add inequalities (13.93) and (13.94) to deduce that

(Aũn − Aūn, ũn − cnūn)X

≤ j (̃un, cnūn)− j (̃un, ũn)+ j (ūn, ũn)− j (ūn, cnūn) ,

then we use assumption (13.11)(b) to obtain that

(Aũn − Aūn, ũn − cnūn)X ≤ α ‖ũn − ūn‖X ‖ũn − cnūn‖X . (13.95)
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Next, we write

ũn − cnūn = ũn − ūn + (1− cn)ūn,

then we substitute this equality in (13.95) and use condition (13.10)(a) to find that

m‖ũn − ūn‖2
X ≤ (Aũn − Aūn, (cn − 1)ūn)X

+α‖ũn − ūn‖2
X + α|1 − cn| ‖ũn − ūn‖X ‖ūn‖X.

We now use assumption (13.10)(b) and the smallness assumption (13.12) to see that

‖ũn − ūn‖X ≤ M + α

m− α
|1− cn| ‖ūn‖X. (13.96)

Next, consider an element u0 ∈ K . Condition (13.75) guarantees that cnu0 ∈ Kn

and, therefore, using inequality (13.16) for the variational inequality (13.90) yields

‖ūn‖X ≤ 1

m− γ

(‖A(cnu0)‖X + c0‖fn‖Y + γ ‖cnu0‖X + β
)+ ‖cnu0‖X.

We use assumption (13.10) and convergences (13.78), (13.88) to deduce that the
sequence {ūn} is bounded in X, i.e., there exists E > 0 such that

‖ūn‖X ≤ E ∀ n ∈ N. (13.97)

We now combine inequalities (13.96) and (13.97), then we use assumption (13.78)
to deduce that

‖ũn − ūn‖X → 0 as n→∞. (13.98)

Finally, assumption (13.88) and Theorem 13.2.13 yield

‖ūn − u‖X → 0 as n→∞. (13.99)

We now write

‖un − u‖X ≤ ‖un − ũn‖X + ‖ũn − ūn‖X + ‖ūn − u‖X ,

then we use the convergences (13.92), (13.98), and (13.99) to see that

‖un − u‖X → 0 as n→∞.

It follows from here that condition (13.56) is satisfied, which concludes the proof.
��
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We now are in a position to provide the proof of Theorem 13.3.8.

Proof First, we use Lemma 13.3.10 to see that, under the assumptions of The-
orem 13.3.8, condition (13.56) holds. On the other hand, Lemma 13.3.9 shows
that the sequence

{
un(f

0)
}

is bounded in X, for any f 0 ∈ Y . Therefore,
condition (13.57) holds, too. Theorem 13.3.8 is now a direct consequence of
Theorem 13.3.5. ��

We end this section with the following remarks.

Remark 13.3.11 In contrast to conditions (13.56) and (13.57), conditions (13.75)–
(13.82) are explicit conditions, since they are formulated in terms of the data Kn,
An, and jn. In many applications they are easy to be verified. A concrete example
which illustrates this statement will be presented in Sect. 13.4.

Remark 13.3.12 If Problem Q has a unique solution (u∗, f ∗) then, under the
assumptions of Theorem 13.3.8 the convergences (13.58) and (13.59) are valid
for the whole sequence

{
(u∗n, f ∗n )

}
. This statement is a direct consequence of

Remark 13.3.6.

Remark 13.3.13 The statement of Theorem 13.3.5 still remains valid if we replace
the definitions (13.2) and (13.54) with definitions (13.46) and (13.74), respectively,
U being a given nonempty weakly closed subset of Y .

13.4 A Frictional Contact Problem

In this section we use the abstract results presented in Sects. 13.2 and 13.3 in
the study of a quasivariational inequality which models the frictional contact of
an elastic body with a foundation. We start by introducing the function spaces
we need, then we describe the model of contact and prove its unique weak
solvability, Theorem 13.4.1. Next, we turn to the optimal control of the problem and
prove existence and convergence results, Theorems 13.4.4 and 13.4.6, respectively.
Finally, we exemplify our results in the study of a one-dimensional mathematical
model which describes the equilibrium of an elastic rod in unilateral contact with a
foundation, under the action of a body force.

13.4.1 Function Spaces

For the study of mathematical models of contact we need further notation and
preliminary material that we introduce in this subsection. Everywhere below we
denote by S

d the space of second order symmetric tensors on R
d or, equivalently,

the space of symmetric matrices of order d . The inner product and norm on R
d and



13 Optimal Control of Quasivariational Inequalities with Applications to. . . 469

S
d are defined by

u · v = uivi , ‖v‖ = (v · v) 1
2 ∀u, v ∈ R

d ,

σ · τ = σij τij , ‖τ‖ = (τ · τ ) 1
2 ∀ σ , τ ∈ S

d ,

and 0 will denote the zero element of these spaces. Let � ⊂ R
d (d = 2, 3) be a

bounded domain. We denote by � its boundary, assumed to be Lipschitz continuous
and divided into three measurable parts �1, �2, and �3 such that meas (�1) > 0.
We use the notation x = (xi) for a typical point in �∪� and we denote by ν = (νi)

the outward unit normal at �. Here and below the indices i and j run between 1 and
d and, unless stated otherwise, the summation convention over repeated indices is
used. An index that follows a comma represents the partial derivative with respect
to the corresponding component of the spatial variable x, i.e., ui,j = ∂ui/∂xj .
Moreover, ε represents the deformation operator, i.e.,

ε(v) = (εij (v)), εij (v) = 1

2
(vi,j + vj,i ).

We use the standard notation for Sobolev and Lebesgue spaces associated with �

and � and, in addition, we consider the spaces

V =
{

v ∈ H 1(�)d : v = 0 on �1

}
, Y = L2(�)d × L2(�2)

d .

It is well known that V is a real Hilbert space endowed with the inner product

(u, v)V =
∫

�

ε(u) · ε(v) dx,

and the associated norm ‖ · ‖V . Completeness of the space (V , ‖ · ‖V ) follows from
the assumption meas (�1) > 0, which allows the use of Korn’s inequality. For an
element v ∈ V we still write v for the trace of v and we denote by vν and vτ the
normal and tangential components of v on � given by vν = v · ν, vτ = v− vνν. We
also recall that there exists d0 > 0 which depends on �, �1, and �3 such that

‖v‖L2(�3)d
≤ d0‖v‖V for all v ∈ V. (13.100)

Inequality (13.100) represents a consequence of the Sobolev trace theorem. The
space Y will be endowed with its canonic inner product and associated norm,
denoted by (·, ·)Y and ‖ · ‖, respectively.

For a regular function σ : � → S
d we denote by σν and σ τ the normal and

tangential stress on �, that is, σν = (σν) · ν and σ τ = σν − σνν, and we recall that
the following Green’s formula holds:

∫

�

σ ·ε(v) dx+
∫

�

Div σ ·v dx =
∫

�

σν·v da for all v ∈ H 1(�)d. (13.101)
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More details on the function spaces used in contact mechanics, including their basic
properties, can be found in the books [41, 42].

13.4.2 The Model

The physical setting is the following. An elastic body occupies, in its reference
configuration, the domain � ⊂ R

d . Its boundary � is divided into three measurable
disjoint parts�1,�2, �3 such thatmeas (�1) > 0, as already mentioned. The body is
fixed on�1, is acted upon by given surface tractions on�2, and is in potential contact
with an obstacle on �3. To construct a mathematical model which corresponds to the
equilibrium of the body in this physical setting above we need to prescribe specific
interface boundary condition. Here, we assume that the contact is with normal
compliance and finite penetration, associated with a version of Coulomb’s law of
dry friction. Therefore, the classical formulation of the problem is the following.

Problem P . Find a displacement field u : �→ R
d and a stress field σ : �→ S

d

such that

σ = Fε(u) in �, (13.102)

Div σ + f 0 = 0 in �, (13.103)

u = 0 on �1, (13.104)

σν = f 2 on �2, (13.105)

uν ≤ k, σν + p(uν) ≤ 0,

(uν − k)(σν + p(uν)) = 0

⎫
⎬

⎭
on �3, (13.106)

‖σ τ‖ ≤ μp(uν),

−σ τ = μp(uν)
uτ‖uτ ‖ if uτ �= 0

⎫
⎬

⎭
on �3. (13.107)

We now provide a description of the equations and boundary conditions in
Problem P . First, Eq. (13.102) represents the elastic constitutive law of the material
in which F is assumed to be a nonlinear constitutive operator. Equation (13.103)
is the equation of equilibrium. We use it here since the contact process is assumed
to be static and, therefore, the inertial term in the equation of motion is neglected.
Conditions (13.104) and (13.105) represent the displacement and traction boundary
conditions, respectively.

Condition (13.106) represents the so-called normal compliance condition with
unilateral constraint. Here, k > 0 is a given bound which limits the normal
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displacement and p is a given positive function which will be described below.
This condition describes the contact with an obstacle made of a rigid body
covered by a layer of thickness k made of deformable material. Condition (13.107)
represents a static version of Coulomb’s law of dry friction in which μ denotes the
coefficient of friction and μp(uν) is the friction bound. The coupling of boundary
conditions (13.106) and (13.107) was considered for the first time in [5]. Later, it
was used in a number of papers, see [42] and the references therein. It describes
a contact with normal compliance, as far as the normal displacement satisfies the
condition uν < k, associated with the classical Coulomb’s law of dry friction.
When uν = k the contact is with a Signorini-type condition and is associated with
the Tresca friction law with the friction bound μp(k). It follows from here that
conditions (13.106), (13.107) describe a natural transition from the Coulomb law of
dry friction (which is valid as far as 0 ≤ uν < k) to the Tresca law (which is valid
when uν = k).

In the study of the mechanical problem (13.102)–(13.107) we assume that the
elasticity operator F and the normal compliance function p satisfy the following
conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) F : �× S
d → S

d .

(b) There exists LF > 0 such that
‖F(x, ε1)− F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
∀ ε1, ε2 ∈ S

d , a.e. x ∈ �.

(c) The mapping x �→ F(x, ε) is measurable on �,

for any ε ∈ S
d .

(d) There exists mF > 0 such that
(F(x, ε1)− F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ S
d , a.e. x ∈ �.

(e) F(x, 0) = 0.

(13.108)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) p : �3 × R→ R+.

(b) There exists Lp > 0 such that
|p(x, r1)− p(x, r2)| ≤ Lp|r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ �3.

(c) (p(x, r1)− p(x, r2)) (r1 − r2) ≥ 0
∀ r1, r2 ∈ R, a.e. x ∈ �3.

(d) The mapping x �→ p(x, r) is measurable on �3,

for any r ∈ R.

(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ �3.

(f) There exists p∗ ∈ R such that p(x, r) ≤ p∗
for all r ≥ 0, a.e. x ∈ �3.

(13.109)
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The coefficient of friction is such that

μ ∈ L∞(�3), μ(x) ≥ 0 a.e. x ∈ �3. (13.110)

Moreover, we assume that

d2
0Lp‖μ‖L∞(�3) < mF (13.111)

where d0, mF , and Lp are the constants which appear in (13.100), (13.108)(d),
and (13.109)(b), respectively. Note that inequality (13.111) could be interpreted as
a smallness condition on the coefficient of friction. Such kind of conditions are often
used in the variational analysis of frictional contact problems with elastic materials,
as explained in [38] and the references therein.

Let K denote the set defined by

K = { v ∈ V : vν ≤ k a.e. on �3 }, (13.112)

and assume that the densities of body forces and tractions are such that f 0 ∈
L2(�)d , f 2 ∈ L2(�2)

d . We now derive the variational formulation of Problem
P and, to this end, we assume that (u, σ ) are sufficiently regular functions which
satisfy (13.102)–(13.107). Then, using (13.106) and (13.112) it follows that

u ∈ K. (13.113)

Let v ∈ K . We use Green’s formula (13.101) and equalities (13.103)–(13.105) to
see that

∫

�

σ · (ε(v)− ε(u)) dx =
∫

�

f 0 · (v − u) dx (13.114)

+
∫

�2

f 2 · (v − u) da +
∫

�3

σν · (v − u) da.

Moreover, using the boundary conditions (13.106) and (13.107) it is easy to see that

σν(vν − uν) ≥ p(uν)(uν − vν) a.e. on �3,

σ τ (vτ − uτ ) ≥ μp(uν)(‖uτ‖ − ‖vτ‖) a.e. on �3.

Therefore, since

σν · (v − u) = σν(vν − uν)+ σ τ (vτ − uτ ) a.e. on �3,
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we deduce that
∫

�3

σν · (v − u) da (13.115)

≥
∫

�3

p(uν)(uν − vν) da +
∫

�3

μp(uν)(‖uτ‖ − ‖vτ‖) da.

Next, we combine equality (13.114) with inequality (13.115), then we use the
constitutive law (13.102) and the regularity (13.113). As a result we find the
following variational formulation of Problem P .

Problem PV . Given f = (f 0,f 2) ∈ Y , find u such that

u ∈ K,

∫

�

Fε(u) · (ε(v)− ε(u)) dx (13.116)

+
∫

�3

p(uν)(vν − uν) da +
∫

�3

μp(uν)(‖vτ‖ − ‖uτ ‖) da

≥
∫

�

f 0 · (v − u) dx +
∫

�2

f 2 · (v − u) da ∀ v ∈ K.

Note that Problem PV is formulated in terms of the displacement field. Once
the displacement field is known, the stress field can be easily obtained by using the
constitutive law (13.102). A couple (u, σ ) which satisfies (13.102) and (13.116) is
called a weak solution to the contact problem P .

13.4.3 Weak Solvability

Our main result in this section, which represents a continuation of our previous
results in [5, 39], is the following.

Theorem 13.4.1 Assume that (13.108)–(13.111) hold. Then, for each f =
(f 0,f 2) ∈ Y there exists a unique solution u = u(f ) to the variational
inequality (13.116). Moreover, if f n = (f 0n,f 2n) ∈ Y , f = (f 0,f 2) ∈ Y ,
and f 0n ⇀ f 0 in L2(�)d , f 2n ⇀ f 2 in L2(�2)

d , as n → ∞, then
un(f n)→ u(f ) in X, as n→∞.

Note that Theorem 13.4.1 provides the existence of a unique weak solution to the
frictional contact Problem P as well as its continuous dependence with respect to
the density of body forces and tractions.

The proof of Theorem 13.4.1 will be carried out in several steps, based on the
abstract existence and convergence results in Sect. 13.2. To present it assume in what
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follows that (13.108)–(13.111) hold and we consider the operator A : V → V , the
function j : V × V → R, and the operator π : V → Y defined by

(Au, v)V =
∫

�

Fε(u) · ε(v) dx +
∫

�3

p(uν)vν da ∀u, v ∈ V, (13.117)

j (u, v) =
∫

�3

μp(uν)‖vτ‖ da ∀u ∈ V, v ∈ V, (13.118)

πv = (ιv, γ2v) ∀ v ∈ V. (13.119)

Here ι : V → L2(�)d is the canonic embedding and γ2 : V → L2(�2)
d is the

restriction to the trace map to �2. The first step of the proof is the following.

Lemma 13.4.2 Given f = (f 0,f 2) ∈ Y , an element u ∈ V is solution to the
variational inequality (13.116) if and only if

u ∈ K, (Au, v − u)V + j (u, v)− j (u,u) ≥ (f , πv − πu)Y ∀ v ∈ K.

(13.120)

Proof The statement of Lemma 13.4.2 is a direct consequence of the nota-
tion (13.117)–(13.119). ��
Lemma 13.4.3 The function j defined by (13.118) satisfies conditions (13.11),
(13.14), and (13.19) on the space X = V .

Proof Condition (13.11)(a) is obviously satisfied. On the other hand, an elementary
calculation based on the definition (13.118) and assumptions (13.109), (13.110)
yields

j (u1, v2)− j (u1, v1)+ j (u2, v1)− j (u2, v2)

≤ Lp‖μ‖L∞(�3)

∫

�3

‖u1 − u2‖‖v1 − v2‖ da

for all u1, u2, v1, v2 ∈ V . Therefore, the trace inequality (13.100) shows that
condition (13.11)(b) holds with α = d2

0Lp‖μ‖L∞(�3). Next, using assump-
tions (13.109)(b), (e) and (13.110) it is easy to see that

j (η, v1)− j (η, v2) ≤
∫

�3

μp(ην)‖v1 − v2‖ da

≤ Lp‖μ‖L∞(�3)

∫

�3

‖η‖‖v1 − v2‖ da

for all η, v1, v2 ∈ V . Therefore, the trace inequality (13.100) shows that condition
(13.14)(b) is satisfied with β = 0 and γ = d2

0Lp‖μ‖L∞(�3). Finally, note that
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condition (13.19) holds from assumption (13.109) and the compactness of the trace
operator, since uk ⇀ u in V implies that p(ukν) → p(uν) and ‖ukτ‖ → ‖uτ‖ in
L2(�3). ��

We now have all the ingredients to provide the proof of Theorem 13.4.1.

Proof The set K is obviously a convex nonempty subset of V . Moreover, using the
properties of the trace map we deduce that K is closed and, therefore, (13.9) holds.
Next, we use assumptions (13.108) and (13.109) and the trace inequality (13.100)
to see that

(Au− Av,u− v)V ≥ mF‖u − v‖2
V ,

‖Au− Av‖V ≤
(
LF + d2

0Lp

)
‖u− v‖V

for all u, v ∈ V . Therefore, condition (13.10) holds with X = V and m =
mF . On the other hand, Lemma 13.4.3 guarantees that the functional (13.118)
satisfies conditions (13.11), (13.14), and (13.19) on the space X = V , with
α = d2

0Lp‖μ‖L∞(�3), β = 0, and γ = d2
0Lp‖μ‖L∞(�3). Therefore, using (13.111)

it follows that the smallness assumption (13.12) is satisfied and, moreover, (13.15)
holds, too. Finally, we note that conditions (13.13) and (13.20) are a direct
consequence of definition (13.119) combined with the properties of the operators
ι and γ2.

It follows from above that we are in a position to apply Theorem 13.2.12
on the space X = V . As a result we deduce the unique solvability of the
variational inequality (13.120), for each f = (f 0,f 2) ∈ Y . This result combined
with Lemma 13.4.2 proves the existence of a unique solution to the variational
inequality (13.116), for each f = (f 0,f 2) ∈ Y .

Assume now that f n = (f 0n,f 2n) ∈ Y , f = (f 0,f 2) ∈ Y , and f 0n ⇀

f 0 in L2(�)d , f 2n ⇀ f 2 in L2(�2)
d , as n→∞. Then f n ⇀ f in Y , as n→∞.

Therefore, using Theorem 13.2.13 and Lemma 13.4.2 we deduce that u(f n) →
u(f ) in V, as n→∞, which concludes the proof. ��

13.4.4 Optimal Control

We now associate to Problem PV the set of admissible pairs Vad and the cost
function L given by

Vad = { (u,f ) ∈ K × Y such that f = (f 0,f 2) and (13.116) holds }, (13.121)

L(u,f ) = a0

∫

�

‖f 0‖2 dx + a2

∫

�2

‖f 2‖2 da + a3

∫

�3

|uν − θ |2 da (13.122)
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for all u ∈ V , f = (f 0,f 2) ∈ Y . Here θ is a given element in L2(�3) and a0,
a2, a3 are strictly positive constants. Moreover, we consider the following optimal
control problem.

Problem QV . Find (u∗,f ∗) ∈ Vad such that

L(u∗,f ∗) = min
(u,f )∈Vad

L(u,f ). (13.123)

Our first result in this subsection is the following.

Theorem 13.4.4 Assume that (13.108)–(13.111) hold. Then, the optimal control
problem QV has at least one solution (u∗,f ∗).

Proof It is easy to see that the function L defined by (13.122) satisfy condi-
tions (13.32)–(13.34) on the spaces X = V , Y = L2(�)d × L2(�3)

d with

g(v) = a3

∫

�3

|vν − θ |2 da, h(f ) = a0

∫

�

‖f 0‖2 dx + a2

∫

�2

‖f 2‖2 da

for all v ∈ V , f = (f 0,f 2) ∈ Y . Therefore, the solvability of the optimal control
problem QV is a direct consequence of Lemma 13.4.2 and Theorem 13.3.1. ��

Next, besides conditions (13.108)–(13.111), we assume that

B is a closed convex set of Sd such that 0 ∈ B (13.124)

and we denote by PB : Sd → B the projection operator. We also consider the
sequences {ωn}, {kn}, and {εn} such that

ωn ≥ 0, kn > 0, εn ≥ 0 ∀ n ∈ N (13.125)

and, for each n ∈ N, we define the set Kn by

Kn = { v ∈ V : vν ≤ kn a.e. on �3 }. (13.126)

With these data, we consider the following perturbation of Problem PV .

Problem PV
n . Given f n = (f 0n,f 2n) ∈ Y , find un ∈ V such that

un ∈ Kn,

∫

�

Fε(un) · (ε(v)− ε(un)) dx (13.127)

+ωn

∫

�

(ε(un)− PBε(un)) · (ε(v)− ε(un)) dx +
∫

�3

p(unν)(vν − unν) da



13 Optimal Control of Quasivariational Inequalities with Applications to. . . 477

+
∫

�3

μp(unν)
(√‖vτ‖2 + ε2

n −
√
‖unτ‖2 + ε2

n

)
da

≥
∫

�

f 0n · (v − un) dx +
∫

�2

f 2n · (v − un) da ∀ v ∈ Kn.

Note that Problem PV
n represents the variational formulation of an elastic contact

problem of the form (13.102)–(13.107) in which the following changes have been
operated in the model:

• The elastic constitutive law (13.102) was replaced with the constitutive law σ =
Fε(u)) + ωn(ε(u) − PBε(u)). Such kind of constitutive law has been used by
many authors, see [38, 41] and the references therein.

• The bound k in (13.106) was replaced by a perturbation, denoted kn.
• The Coulomb law of dry friction (13.107) was replaced with its regularization

−σ τ = μp(uν)
uτ√‖uτ‖2 + ε2

n

.

• The densities f 0 and f 2 of body forces and tractions, respectively, were replaced
by their perturbations f 0n and f 2n, respectively.

For Problem PV
n we have the following existence and uniqueness result.

Theorem 13.4.5 Assume (13.108)–(13.111) and, moreover, assume that (13.124)–
(13.125) hold. Then, for each f n = (f 0n,f 2n) ∈ Y there exists a unique solution
un = un(f n) to the variational inequality (13.127).

Proof The proof of Theorem 13.4.5 is based on arguments similar to those used in
the proof of Theorem 13.4.1 and, for this reason, we skip the details. The steps of
the proof are the following.

i) The quasivariational inequality. Besides the operatorπ defined in (13.119), for
each n ∈ N we consider the operatorAn : V → V and the function jn : V×V → R

given by

(Anu, v)V =
∫

�

Fε(u) · ε(v) dx +
∫

�3

p(uν)vν da (13.128)

+ ωn

∫

�

(ε(u)− PBε(u)) · ε(v) dx ∀u, v ∈ V.

jn(u, v) =
∫

�3

μp(uν)

(√
‖vτ‖2 + ε2

n − εn

)
da ∀u, v ∈ V. (13.129)
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Then, it is easy to see that, given f n = (f 0n,f 2n) ∈ Y , an element un ∈ V is a
solution to inequality (13.127) if and only if

un ∈ Kn, (Anun, v − un)V + jn(un, v)− jn(un,un) (13.130)

≥ (f n, πv − πun)Y ∀ v ∈ Kn.

ii) The operator An. First, we recall that the projector operator PB : Sd → B is
nonexpansive, i.e.,

‖PBτ 1 − PBτ 2‖ ≤ ‖τ 1 − τ 2‖ (13.131)

for all τ 1, τ 2 ∈ S
d . This inequality implies that

(
(τ 1 − PBτ 1)− (τ 2 − PBτ 2)

) · (τ 1 − τ 2) ≥ 0, (13.132)

for all τ 1, τ 2 ∈ S
d . Therefore, using assumptions (13.108) and (13.109), the trace

inequality (13.100), and estimates (13.131), (13.132) we deduce that

(Anu− Anv,u− v)V ≥ mF‖u− v‖2
V ,

‖Anu− Anv‖V ≤ (LF + d2
0Lp + 2ωn) ‖u− v‖V

for all u, v ∈ X. It follows from here that condition (13.48) holds with X = V ,
mn = mF , and Mn = LF + d2

0Lp + 2ωn.
iii) The function jn. We claim that the function jn defined by (13.129) satisfies

conditions (13.11), (13.14), and (13.19) on the space X = V .
First, condition (13.11)(a) is obviously satisfied. On the other hand,

an elementary calculation based on the definition (13.129) and assump-
tions (13.109), (13.110), combined with inequality

∣
∣
∣
√
a2 + ε2 −

√
b2 + ε2

∣
∣
∣ ≤ |a − b| ∀ a, b, ε > 0,

implies that

jn(u1, v2)− jn(u1, v1)+ jn(u2, v1)− jn(u2, v2)

≤ Lp‖μ‖L∞(�3)

∫

�3

‖u1 − u2‖‖v1 − v2‖ da

for all u1, u2, v1, v2 ∈ V . Therefore, the trace inequality (13.100) shows that
condition (13.11)(b) holds with α = d2

0Lp‖μ‖L∞(�3). A similar argument shows
that condition (13.14) is satisfied with β = 0 and γ = d2

0Lp‖μ‖L∞(�3). Finally, note
that condition (13.19) holds from assumption (13.109) and the compactness of the
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trace operator, since uk ⇀ u in V implies that p(ukν)→ p(uν) and ‖ukτ‖ → ‖uτ‖
in L2(�3).
iv) End of proof. The set Kn is obviously a convex nonempty subset of V .
Moreover, recall that step ii) shows that condition (13.48) holds with X = V

and m = mF . On the other hand, step iii) guarantees that the functional (13.118)
satisfies conditions (13.11), (13.14), and (13.19) on the space X = V , with
α = γ = d2

0Lp‖μ‖L∞(�3). Therefore, using (13.111) it follows that the smallness
assumption (13.12) is satisfied and, moreover, (13.15) holds, too. Finally, we note
that conditions (13.13) and (13.20) are a direct consequence of definition (13.119)
combined with the properties of the operators ι and γ2.

It follows from above that we are in a position to apply Theorem 13.2.12 on the
space X = V . In this way we deduce the unique solvability of the quasivariational
inequality (13.130), for each f n = (f 0n,f 2n) ∈ Y . This result, combined
with step i), leads to the existence of a unique solution to the quasivariational
inequality (13.127), for each f n = (f 0n,f 2n) ∈ Y . ��

We now move to the control of Problem PV
n . The set of admissible pairs for this

problem is given by

Vn
ad = { (un,f n) ∈ Kn × Y s. t. f n = (f 0n,f 2n) and (13.127) holds }.

(13.133)

Moreover, the corresponding optimal control problem is the following.

Problem QV
n . Find (u∗n,f ∗n) ∈ Vn

ad such that

L(u∗n,f ∗n) = min
(un,f n)∈Vn

ad

L(un,f n). (13.134)

Our main result in this section is the following.

Theorem 13.4.6 Assume (13.108)–(13.111), (13.124), and (13.125). Then the
following statements hold.

i) For each n ∈ N the optimal control problem QV
n has at least one solution

(u∗n,f ∗n).
ii) If ωn → 0, kn → k, and εn → ε as n→∞, then for any sequence {(u∗n,f ∗n)} of

solutions of Problem QV
n there exists a subsequence, again denoted {(u∗n,f ∗n)},

and an element (u∗,f ∗) ∈ X × Y , such that

f ∗n ⇀ f ∗ in Y, as n→∞, (13.135)

u∗n → u∗ in X as n→∞, (13.136)

(u∗,f ∗) is a solution of Problem QV . (13.137)
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Proof i) First, it is easy to see that condition (13.75) holds with cn = kn
k
> 0. Next,

we use (13.131), (13.132) to see that condition (13.76) is satisfied with

(Tnu, v)V = ωn

∫

�

(ε(u)− PBε(u)) · ε(v) dx ∀u, v ∈ V. (13.138)

On the other hand, it follows from step iii) in the proof of Theorem 13.4.5 that the
function jn satisfies condition (13.77) with αn = d2

0Lp‖μ‖L∞(�3), βn = 0, and
γn = d2

0Lp‖μ‖L∞(�3). In addition, recall that the function L defined by (13.122)
satisfies conditions (13.32)–(13.34) on the spaces X = V , Y = L2(�)d × L2(�3)

d

with

g(v) = a3

∫

�3

|vν − θ |2 da, h(f ) = a0

∫

�

‖f 0‖2 dx + a2

∫

�2

‖f 2‖2 da.

Therefore, as already explained in page 463, we are in a position to apply
Theorem 13.3.5 to deduce that the optimal control problem QV

n has at least one
solution (u∗n,f ∗n), for each n ∈ N.

ii) Assume now that ωn → 0, kn → k, and εn → 0, as n → ∞. In order
to prove (13.135)–(13.137) we use Theorem 13.3.8 and, to this end, we start by
checking that conditions (13.78)–(13.82) are satisfied.

First, since cn = kn
k

we deduce that condition (13.78) holds. Moreover, it is
easy to see that condition (13.79) holds, too. On the other hand, assumption 0 ∈ B

combined with inequality (13.131) shows that ‖τ − PBτ‖ ≤ 2 ‖τ‖ for all τ ∈ S
d .

Therefore, definition (13.138) implies that

(Tnv,w)V = ωn

∫

�

‖ε(v)− PBε(v)‖ ‖ε(w)‖ dx ≤ 2ωn‖v‖V ‖w‖V

for all u, v ∈ V , n ∈ N, which shows that

‖Tnv‖V ≤ 2ωn‖v‖V ∀ v ∈ V, n ∈ N.

We conclude from here that condition (13.80) holds with Fn = 2ωn and δn = 0.
Assume now that n ∈ N is fixed and v1, v2 ∈ V . We use definitions (13.129)

and (13.118) to see that

jn(v1, v2)− jn(v1, v1)+ j (v2, v1)− j (v2, v2)

=
∫

�3

μp(v1ν)
(√‖v2τ‖2 + ε2

n − εn − ‖v2τ‖
)
da
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+
∫

�3

μp(v1ν)
(‖v1τ‖ −

√
‖v1τ‖2 + ε2

n + εn
)
da

+
∫

�3

μ
(
p(v1ν)− p(v2ν)

)(‖v2τ‖ − ‖v1τ‖
)
da.

Therefore, using assumptions (13.109)(b) and (13.110) combined with the
inequality

∣
∣∣
√
a2 + ε2 − a − ε

∣
∣∣ ≤ ε ∀ a, ε > 0,

we find that

jn(v1, v2)− jn(v1, v1)+ j (v2, v1)− j (v2, v2)

≤ 2εn‖μ‖L∞(�3)

∫

�3

p(v1ν) da + Lp‖μ‖L∞(�3)

∫

�3

‖v1τ − v2τ‖2 da.

Next, we use assumption (13.109)(f) and the trace inequality (13.100) to deduce that

jn(v1, v2)− jn(v1, v1)+ j (v2, v1)− j (v2, v2)

≤ 2εnp∗‖μ‖L∞(�3)meas(�3)+ d2
0Lp‖μ‖L∞(�3)‖v1 − v2‖2

V .

It follows from here that condition (13.81) holds with Gn = 2εnp∗‖μ‖L∞(�3)

meas(�3) and Hn = 0.
Recall now that mn = mF , α = γn = d2

0Lp‖μ‖L∞(�3), and βn = 0, for each
n ∈ N. Moreover, d2

0Lp‖μ‖L∞(�3) < mF , as assumed in (13.111). We conclude
from here that condition (13.82) is satisfied.

Finally, note that the rest of the conditions in Theorem 13.3.8 are satisfied, as it
follows from the previous results proved in this section. Theorem 13.4.6 is now a
direct consequence of Theorem 13.3.8. ��
Remark 13.4.7 As a consequence of Remarks 13.3.2 and 13.3.7 we deduce that
the statements of Theorems 13.4.4 and 13.4.6 still remain valid if we replace the
definition (13.121) and (13.133) with the following ones:

Vad = { (u,f ) ∈ K × U s.t. f = (f 0,f 2) and (13.116) holds }, (13.139)

Vn
ad = { (un,f n) ∈ Kn × U s.t. f = (f 0n,f 2n) and (13.127) holds }, (13.140)

U being a given nonempty weakly closed subset of Y . The proof of this statement
is based on the property (13.45) of the set U .
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13.4.5 A One-Dimensional Example

In this subsection we illustrate our results in the study of a one-dimensional
example. Thus, we consider Problem P in the particular case when � = (0, 1),
�1 = {0}, �2 = ∅, �3 = {1}. Note that in this case the linearized strain field
is given by ε = u′, where, here and below, the prime denotes the derivative with
respect to the spatial variable x ∈ [0, 1]. Moreover, we assume that the material
is homogeneous and behaves linearly elastic. Therefore, the elasticity operator is
Fε = Eε where E > 0 is the Young modulus of the material. In addition, we
assume that the density of the body force does not depend on the spatial variable
and we denote it by f ∈ R. Then, the statement of the problem is the following.

Problem P 1d . Find a displacement field u : [0, 1] → R and a stress field
σ : [0, 1] → R such that

σ(x) = E u′(x) for x ∈ (0, 1), (13.141)

σ ′(x)+ f = 0 for x ∈ (0, 1), (13.142)

u(0) = 0, (13.143)

u(1) ≤ k, σ (1)+ p(u(1)) ≤ 0,

(u(1)− k)(σ (1)+ p(u(1))) = 0

}

. (13.144)

Note that Problem P 1d models the contact of an elastic rod of length l = 1. The
rod occupies the domain [0, 1] on the Ox axis, is fixed at its end x = 0, as acted
by a body force, and its extremity x = 1 is in contact with a foundation made of a
deformable material of thickness k > 0, which covers a rigid body. The reaction of
the deformable material is described with the function p : R→ R which is positive,
monotone, and vanishes for a negative argument. This physical setting is depicted
in Fig. 13.1.

For the analysis of Problem P 1d we use the space

V = { v ∈ H 1(0, 1) : v(0) = 0 }

and the set of admissible displacement field defined by

K = { u ∈ V | u(1) ≤ k }.

The variational formulation of Problem P 1d , obtained using integration by parts, is
the following.



13 Optimal Control of Quasivariational Inequalities with Applications to. . . 483

Fig. 13.1 Physical setting

Problem P 1d
V . Find a displacement field u ∈ K such that

∫ 1

0
Eu′(v′ − u′) dx + p(u(1))(v(1)− u(1)) ≥

∫ 1

0
f (v − u) dx ∀ v ∈ K.

(13.145)

The existence of a unique solution to Problem P 1d
V follows from Theorem 13.4.1.

Consider now the case when

p(r) = r+ =
{

0 if r < 0,

r if r ≥ 0.
(13.146)

Then, a simple calculation allows us to solve ProblemP 1d . Three cases are possible,
described below, together with the corresponding mechanical interpretations.

a) The case f < 0. In this case the body force acts in the opposite direction of the
foundation and the solution of Problem P 1d is given by

{
σ(x) = −f x + f,

u(x) = − f
2E x2 + f

E
x

∀ x ∈ [0, 1]. (13.147)

We have u(1) < 0 and σ(1) = 0 which shows that there is separation between
the rod and the foundation and, therefore, there is no reaction on the point x = 1.
This case corresponds to Fig. 13.2a.
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Fig. 13.2 The rod in contact with a foundation. (a) The case f < 0; (b) The case 0 ≤ f <

2k(E + 1); (c) The case f ≥ 2k(E + 1)

b) The case 0 ≤ f < 2k(E+1). In this case the body force pushes the rod towards
the foundation and the solution of Problem P 1d is given by

⎧
⎨

⎩

σ(x) = −f x + f (2E+1)
2(E+1) ,

u(x) = − f
2E x2 + f (2E+1)

2E(E+1) x
∀ x ∈ [0, 1]. (13.148)

We have 0 ≤ u(1) < k and σ(1) ≤ 0 which shows that there is penetration
into the deformable layer and the reaction of the foundation is towards the rod.
Nevertheless, the penetration is partial, since u(1) < k. This case corresponds to
Fig. 13.2b.

c) The case f ≥ 2k(E + 1). In this case the solution of Problem P 1d is given by
⎧
⎨

⎩

σ(x) = −f x + f
2 + kE,

u(x) = − f
2E x2 +

(
f

2E + k
)
x

∀ x ∈ [0, 1]. (13.149)
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We have u(1) = k which shows that the rigid-plastic layer is completely
penetrated and the point x = 1 reaches the rigid body. This case corresponds
to Fig. 13.2c).

We now formulate the optimal control problem QV in the one-dimensional case
of Problem P 1d . In this particular setting Y = L2(0, 1) and we choose

U = { f ∈ Y : f is a constant }.

We use (13.139) to see that in this case

Vad = { (u, f ) ∈ K × U : (13.145) holds } (13.150)

and

L(u, f ) = a0 |f |2 + a3 |u(1)− θ |2, (13.151)

where θ ∈ R, a0 > 0, a3 > 0. Then, using (13.123) we see that the problem can be
formulated as follows.

Problem Q1d . Find (u∗, f ∗) ∈ Vad such that

L(u∗, f ∗) = min
(u,g)∈Vad

L(u, f ). (13.152)

We now take E = 1. Then, it is easy to see that if 0 ≤ f < 4k, then 0 ≤ f <

2k(E+1) and, if f ≥ 4k, then f ≥ 2k(E+1). Therefore, using (13.147)–(13.149)
we have

u(x) =

⎧
⎪⎪⎨

⎪⎪⎩

− f
2 x2 + f x if f < 0,

− f
2 x2 + 3f

4 x if 0 ≤ f < 4k

− f
2 x2 + (

f
2 + k) x if f ≥ 4k

∀ x ∈ [0, 1]. (13.153)

So,

u(1) =

⎧
⎪⎪⎨

⎪⎪⎩

f
2 if f < 0,

f
4 if 0 ≤ f < 4k,

k if f ≥ 4k

and, using (13.151) with θ = 1, a0 = 1, a3 = 16, we find that

L(u, f ) =

⎧
⎪⎪⎨

⎪⎪⎩

5f 2 − 16f + 16 if f < 0,

2f 2 − 8f + 16 if 0 ≤ f < 4k,

f 2 + 16 if f ≥ 4k.

(13.154)
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To conclude, problem (13.152) consists to minimize the function (13.154) when
f ∈ R, for a given k > 0. For this reason, in what follows we denote by Jk the
function defined by (13.154), i.e.,

Jk(f ) =

⎧
⎪⎪⎨

⎪⎪⎩

5f 2 − 16f + 16 if f < 0,

2f 2 − 8f + 16 if 0 ≤ f < 4k,

f 2 + 16(k − 1)2 if f ≥ 4k.

(13.155)

It is easy to see that this function is not a convex function. Nevertheless, it has a
unique point of minimum given by

f ∗(k) =
{

4k if 0 < k ≤ 1
2 ,

2 if k > 1
2 .

(13.156)

Then, using (13.153) we find that the optimal control problem Q1d has a unique
solution (u∗(k), f ∗(k)), given by

u∗(k) =
⎧
⎨

⎩
− f ∗(k)

2 x2 +
(
f ∗(k)

2 + k
)
x ∀ x ∈ [0, 1], if 0 ≤ k ≤ 1

2 ,

− f ∗(k)
2 x2 + 3f ∗(k)

4 x ∀ x ∈ [0, 1], if k > 1
2

where, recall, f ∗(k) is given by (13.156). It is easy to see that when kn → k, then
f ∗(kn) → f ∗(k) and, therefore, u∗(kn) → u∗(k). This represents a validation of
the abstract convergence result in Theorem 13.3.8.

13.5 Conclusion

In this chapter we studied an optimal control problem for elliptic quasivariational
inequalities in Hilbert spaces. We provided the existence of optimal pairs and proved
a convergence result. The proofs were based on arguments of monotonicity and
lower semicontinuity. Then, we applied these abstract results in the study of a
mathematical model which describes the equilibrium of an elastic body in frictional
contact with an obstacle, the so-called foundation. We presented various mechanical
interpretations of these results and we exemplified them in the particular case of an
elastic rod in contact with a rigid body covered by a layer of soft material.

The study presented in this chapter gives rise to several open problems that we
describe in what follows. Any progress in these directions will complete our work
and will open the way for new advances and ideas.
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First, it would be interesting to derive necessary optimality conditions in the
study of Problem Q introduced on page 447. Due to the nonsmooth and nonconvex
feature of the functional L, the treatment of this problem requires the use of its
approximation by smooth optimization problems. And, in this matter, the abstract
convergence results for the optimal pairs in this chapter could be a crucial tool.
Next, it would be useful to establish an optimality condition for the optimal control
problem QV stated on page 476. We are convinced that such conditions could be
established for a regularization of this problem, by using arguments similar to those
used in [27]. There, a boundary optimal control problem for a frictional contact
problem with normal compliance has been considered.

Another interesting continuation of the results presented in this chapter would
be their extension to evolutionary variational inequalities. For such inequalities
both the data and the unknown depend on time variable and, moreover, the time
derivative of the unknown appears in the statement of the problem. In addition, an
initial condition is needed. Such kind of inequalities model quasistatic process of
contact for elastic, viscoelastic, and viscoplastic materials. The optimal control of
a quasistatic model of contact with linearly elastic materials was studied in [3].
There, besides the existence of the optimal pairs, necessary optimality conditions
for a regularization problem have been established.

An interesting continuation of the results presented in this chapter would be their
extension to variational–hemivariational inequalities. These inequalities represent
a generalization of variational inequalities, in which both convex and nonconvex
functions are involved. Besides arguments of convexity and monotonicity, the theory
of variational–hemivariational inequalities was built based on the properties of
Clarke subdifferential, defined for locally Lipschitz function. The details can be
found in the books [32, 42] and the edited volume [18]. Some preliminary results
in the study of optimal control for variational–hemivariational inequalities can be
found in [37].

We end this section by recalling that the control of mathematical models of
contact, as well as their optimal shape design, deserves to make the object of
important studies in the future. These topics are of considerable theoretical and
applied interest. Indeed, in most applications this is the main interest of the design
engineer and any result in this direction will illustrate the cross fertilization between
models and applications, in one hand, and the nonlinear functional analysis, on
the other hand. The related issues are the observability properties of the models
and parameter identification. Using reliable parameter identification procedures will
help in establishing the validity of various mathematical models of contact with
deformable bodies. This, in turn, will help in the construction of effective and
efficient numerical algorithms for the problems with established convergence. As
better models for specific applications are obtained, improved mathematical models
and numerical simulations will be possible.
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Chapter 14
On Generalized Derivative Sampling
Series Expansion

Zurab A. Piranashvili and Tibor K. Pogány

Abstract Master generalized sampling series expansion is presented for entire
functions (signals) coming from a class whose members satisfy an extended
exponential boundedness condition. Firstly, estimates are given for the remainder
of Maclaurin series of those functions and consequent derivative sampling results
are obtained and discussed.

The established results are employed in evaluating the related remainder term
of signals which occur in sampling series expansion of stochastic processes and
random fields (not necessarily stationary or homogeneous) whose spectral kernel
satisfies the relaxed exponential boundedness. The derived truncation error upper
bounds enable to obtain mean-square master generalized derivative sampling series
expansion formulae either for harmonizable Piranashvili-type stochastic processes
or for random fields.

Finally, being the sampling series convergence rate exponential, almost sure P
sampling series expansion formulae are presented.
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14.1 Introduction and Motivation

Last year was the 50th anniversary of publishing first named author’s article
[30] which became one of the most prolific and in the same time unavoidable
cornerstone works for the mean-square and also almost sure sampling reconstruction
of a general class of stochastic processes which are not necessarily of weak
sense (or Khintchine sense) stationary or homogeneous. Moreover the process
class considered in [30] covers the harmonizable (in the Rozanov’s sense [51])
processes, Karhunen processes, Loève processes, and the weak sense stationary
processes as well. To achieve these results the complex analytical background
had been established, employing among others the Cauchy residue theorem, by
deriving a set of different types of sampling series truncation error bounds of
exponentially vanishing convergence rate of the kernel functions. These general
kernels occur in the integrands of spectral representations related to the correlation
functions of studied input processes. Finally, thanking to the aid of the celebrated
Karhunen–Cramér theorem one concludes about the similar fashion sampling series
reconstruction results in both mean-square and almost sure sense for the so-called
Piranashvili processes.

Thereafter the issued 1967 article [30], following the traces installed therein the
first named author gradually enlarged and generalized the kernel functions class to
be considered in his works taking not only sampling but the more essential derivative
sampling restoration series whose initial form was modified by a cosine hyperbolic
denominator term in getting substantially improved convergence rate, thereby
achieving exponential vanishing behavior. Moreover, not only scalar argument
signals but vectorial ones (e.g., random fields) came into the focus of his interest,
compare [31–38]. Certain aspects of his ancestor results reported in [30] were
explored and developed in parallel or out of his mainstream (for instance, the results
by Lee in 1970s [18–21], Higgins [6–8], Houdré in 1990s [9–13], and recently by
Olenko and/or Pogány [23–29, 39–43, 45, 47, 48]). Here should be mentioned Jerri’s
survey article [15] and the exhaustive work by Butzer et al. [3].

In this memoir our goal is to unify, extend, and generalize the first named
author’s earlier efforts giving a master sampling reconstruction formula in uniform
sampling setting. In all occurring situations regarding the input signal which
should be restored in view of “digital-to-analog” procedure the established master
theorems final specialized form is the “holy grail of the digital signal processing,”
the celebrated Whittaker–Kotel’nikov–Shannon (WKS) sampling reconstruction
formula is

f (z) =
∑

n∈Z
f
(
n
π

α

) sin(αz − nπ)

αz − nπ
, α > 0 (14.1)

either for deterministic or stochastic signal f (function, stochastic process, or
random field) coming from a special class for scalar or higher dimensional argument
z which belongs to certain compact in C

d , d ∈ N.
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14.2 Master Sampling Theorem for Deterministic Signals

Let f (z) be the entire function satisfying the condition

|f (z)| ≤ Lf

(
1+ |z|m) eσ |y|, z = x + iy ∈ C , (14.2)

where m ∈ N0, and Lf , σ > 0 are absolute constants. Consider the integral

In(z) = 1

2π i

∫

γn

g(ζ, z)

(ζ − z)p+1 dζ , (14.3)

where the integrand is of the form:

g(ζ, z) = f (z) sincqβ(ζ − z)

(ζ − c)N0+1(aeδζ + be−δζ ) sinN+1(αζ )
,

where

z �= ζk := k
π

α
; k ∈ Z.

Here the familiar “sinus cardinalis” (sinc) terminology has been used:

sinc w =
⎧
⎨

⎩

sinw

w
, w �= 0

1, w = 0
,

while the circular integration path

γn = {ζ : |ζ | = (n+ 1
2 )π/α}, (14.4)

for N,N0 + 1, p, q ∈ N0; a, b, α, β > 0, δ ∈ R and a certain c �= 0 is coming from
the punctured complex plane C \ {0}.

Applying Cauchy’s residue theorem to In(z), mentioning that the structure of
g(ζ, z) dictates that there occur poles ζk, k = −n, n of the order N + 1, ζ = c of
the order N0 + 1, and ζ = z �= ζk of the order p + 1, we conclude

In(z) = Res

[
g(ζ, z)

(ζ − z)p+1 ; c,N0 + 1

]
+

∑

|k|≤n
Res

[
g(ζ, z)

(ζ − z)p+1 ; ζk,N + 1

]

+ 1

p! lim
ζ→z

(
d

dζ

)p

g(ζ, z) =: Rc +
∑

|k|≤n
Rk + 1

p! lim
ζ→z

(
d

dζ

)p

g(ζ, z).

(14.5)
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By the residue calculation via the general Leibniz chain-rule for the higher order
derivatives of the product function we conclude

Rc = 1

N0! lim
ζ→c

(
d

dζ

)N0 f (z) sincqβ(ζ − z)

(ζ − z)p+1 (aeδζ + be−δζ ) sinN+1(αζ )

= 1

N0! lim
ζ→c

N0∑

r1=0

(
N0

r1

)(
d

dζ

)r1 f (ζ )

(ζ − z)p+1

·
(

d

dζ

)N0−r1 sincqβ(ζ − z)

(aeδζ + be−δζ ) sinN+1(αζ )

=: 1

N0! lim
ζ→c

N0∑

r1=0

(
N0

r1

)
Ur1(ζ ) VN0−r1(ζ ) .

Accordingly,

lim
ζ→c

Ur1(ζ ) =
(−1)p

p! (c − z)p+1

r1∑

r2=0

(
r1

r2

)
(p + r1 − r2)! f (r2)(c)

(c − z)r1−r2
. (14.6)

Let us introduce the Kummer’s confluent hypergeometric function [1, p. 504]

1F1

(
a

b

∣
∣
∣ z

)
=

∑

n≥0

(a)n

(b)n

zn

n! ,

where (x)m = x(x+1) · · · (x+m−1) stands for the familiar Pochhammer symbol
(or, in other words shifted factorial), taking by convention (0)0 ≡ 1. Obviously, for
a to be equal to some negative integer, −κ say, this series reduces to a polynomial
in z of the degree deg

(
1F1

) = κ . So, with the aid of Kummer’s function we define
the hypergeometric polynomial type differential operator

1F1

(−κ
b

∣
∣∣μ

d

dw

)
=

κ∑

n=0

(−κ)n
(b)n

μn

n!
(

d

dw

)n

.

Now, putting μ = c − z, κ = r1, b = −p − r1, it is a routine exercise to show that
the right-hand side sum one transforms (14.6) into

lim
ζ→c

Ur1(ζ ) =
(−1)p (p + 1)r1

(c − z)p+r1+1 1F1

( −r1

−p − r1

∣
∣∣(c − z)

d

dw

)
◦ f (w)

∣
∣∣
w=c ;

where h1 ◦ h2(x) stands for the composite function h1(h2(x)). Denote

lim
ζ→c

Vs(ζ ) =: As(z; θN0) ,
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where the parameter vector θM = (M, q, α, β, δ, a, b, c). Therefore,

Rc = (−1)p

N0!
N0∑

r1=0

(
N0

r1

)
(p + 1)r1 AN0−r1(z; θN0)

(c − z)p+r1+1

· 1F1

( −r1

−p − r1

∣∣
∣(c − z)

d

dw

)
◦ f (w)

∣∣
∣
w=c . (14.7)

Next, applying again the Leibniz rule, we can write

Rk = 1

N !
N∑

j=0

(
N

j

)
lim
ζ→ζk

(
d

dζ

)j f (ζ )(ζ − ζk)
N+1

(ζ − c)N0+1(ζ − z)p+1 sinN+1(αζ )

·
(

d

dζ

)N−j sincqβ(ζ − z)

aeδζ + be−δζ
. (14.8)

The first derivative can be solved by another use of the Leibniz rule, separating the
indeterminate form, which results in

(
d

dζ

)j
f (ζ)

(ζ − c)N0+1(ζ − z)p+1

(
ζ − ζk

sin(αζ)

)N+1

=
j∑

m1=0

(
j

m1

)(
d

dζ

)m1

× f (ζ)

(ζ − c)N0+1(ζ − z)p+1

(
d

dζ

)j−m1
(
ζ − ζk

sin(αζ)

)N+1

=:
j∑

m1=0

(
j

m1

)
Sm1 (ζ ; z) Tj−m1 (ζ ) .

Now, we have

lim
ζ→ζk

Sm1(ζ ; z) =
m1∑

m2=0

(
m1

m2

)
f (m2)(ζk)

(
d

dζ

)m1−m2 1

(ζ − c)N0+1(ζ − z)p+1

∣
∣
∣
ζ=ζk

= 1

p! N0! (ζk − c)N0+1(ζk − z)p+1

m1∑

m2=0

m1−m2∑

m3=0

(
m1

m2

)(
m1 −m2

m3

)

· (−1)m1−m2f (m2)(ζk) (p +m3)! (N0 +m1 −m2 −m3)!
(ζk − c)m1−m2−m3(ζ − z)m3
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= 1

N0! (ζk − c)N0+1(ζk − z)p+1

m1∑

m2=0

(
m1

m2

)
f (m2)(ζk)

(c − ζk)m1−m2

· (N0 +m1 −m2)! 2F1

(
m2 −m1, p + 1
m2 −m1 −N0

∣
∣
∣
ζk − c

ζk − z

)
, (14.9)

bearing in mind that for all p,P,M ∈ N0; P ≥M

M∑

s=0

(
M

s

)
(p + s)! (P − s)!ws = p! P ! 2F1

(−M,p + 1
−P

∣
∣
∣w

)
, (14.10)

where

2F1

(
a, b

c

∣
∣
∣z
)
=

∑

n≥0

(a)n (b)n

(c)n

zn

n!

denotes the familiar Gaussian hypergeometric function (the case P < M is
redundant). Moreover, the right-hand side expression in the display (14.10) turns
out to be a polynomial of deg

(
2F1

) = M . Indeed, we have

M∑

s=0

(
M

s

)
(p + s)! (P − s)!

p! P ! ws =
M∑

s=0

(−1)s(−M)s �(p + s + 1) �(P − s + 1)

�(p + 1) �(P + 1)

ws

s!

=
M∑

s=0

(−1)s (−M)s (p + 1)s (P + 1)−s
ws

s!

=
M∑

s=0

(−M)s (p + 1)s
(−P)s

ws

s! ,

which confirms (14.10) by virtue of the Pochhammer symbol transformation
formula

(a)n (1− a)−n = (−1)n, n ∈ Z .

Unfortunately, further closed form summation in (14.9) cannot be inferred due to
the unknown input function f .

Writing x := α(ζ − ζk) we conclude

lim
ζ→ζk

Tr(ζ ) = (−1)k(N+1)

αN−r+1 lim
x→0

(
d

dx

)r( x

sin x

)N+1 =: (−1)k(N+1)

αN−r+1 Br(N) .



14 On Generalized Derivative Sampling Series Expansion 497

Denote the latter derivative term in (14.8)

Cj,k(z; θ ′N) :=
(

d

dζ

)N−j sincqβ(ζ − z)

aeδζ + be−δζ
∣∣
∣
ζ=ζk

,

where θ ′M = θM
∣
∣
c=0 = (M, q, α, β, δ, a, b, 0). Collecting the established formulae

we can write:

Rk = (−1)k(N+1) (ζ − c)−N0−1

N ! N0! αN+1 (ζ − z)p+1

N∑

j=0

(
N

j

)
Cj,k(z; θ ′N)

j∑

m1=0

(
j

m1

)
Bj−m1 (N)

m1∑

m2=0

(
m1
m2

)
(N0 +m1 −m2)!f (m2)(ζk)

(c − ζk)m1−m2
2F1

(
m2 −m1, p + 1
m2 −m1 −N0

∣
∣
∣
ζk − c

ζk − z

)
.

(14.11)

Having in mind (14.3), (14.5), (14.7), and (14.11) we conclude

In(z) = (−1)p

N0!
N0∑

r1=0

(
N0

r1

)
(p + 1)r1AN0−r1(z; θN0)

(c − z)p+r1+1

· 1F1

( −r1

−p − r1

∣
∣
∣(c − z)

d

dw

)
◦ f (w)

∣
∣
∣
w=c

+ α−N−1

N ! N0!
∑

|k|≤n

N∑

j=0

j∑

m1=0

(−1)k(N+1)
(
N

j

)
Cj,k(z; θ ′N)

(
j

m1

)
Bj−m1(N)

(ζk − c)N0+1(ζk − z)p+1

m1∑

m2=0

(
m1

m2

)
f (m2)(ζk)

(c − ζk)m1−m2
(N0 +m1 −m2)!

· 2F1

(
m2 −m1, p + 1
m2 −m1 −N0

∣
∣
∣
ζk − c

ζk − z

)
+ 1

p! lim
ζ→z

(
d

dζ

)p

g(ζ, z),

where the meanings of the coefficients A,B,C remain the same as above.
Our following step is to evaluate the modulus of the integral In(z) by substituting

ζ = rneiϕ , where rn = (n + 1
2 )π/α. Also, we apply (1) the estimate | sin z| ≤

e|"(z)|, z ∈ C, (2) the constraint (14.2) concerning the behavior of the input signal
f , and (3) the lower bound

∣
∣ sin

(
αrneiϕ)∣∣ ≥ 1

2

(
1− e−π

)
eαrn| sinϕ| .
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These three tools imply

|In(z)| ≤ 2NLf eβ q|y|(1+ rmn
)
r
−(p+q+N0+1)
n

πβq
(
1− e−π

)N+1
∣∣
∣
∣1−

|z|
rn

∣∣
∣
∣

p+q+1 ∣∣
∣
∣1−

|c|
rn

∣∣
∣
∣

N0+1

·
∫ 2π

0

e−[(N+1)α−σ−qβ]rn | sinϕ| dϕ
Fa,b,δ(ϕ)

, (14.12)

where the shorthand

Fa,b,δ(ϕ) := eδ rn cosϕ(a2 + b2e−4δ rn cosϕ + 2ab cos(2δ rn sin ϕ) e−2δ rn cosϕ) 1
2

is used, ϕ ∈ [0, 2π]. The integrand in (14.12) is symmetric in ϕ with respect to π

so

|In(z)| ≤ 2N+1Lf eβq|y|
(
1+ rmn

)
r
−(p+q+N0+1)
n

πβq
(
1− e−π

)N+1
∣
∣
∣
∣1−

|z|
rn

∣
∣
∣
∣

p+q+1 ∣∣
∣
∣1−

|c|
rn

∣
∣
∣
∣

N0+1

·
∫ π

0

e−[(N+1)α−σ−qβ]rn | sinϕ| dϕ
Fa,b,δ(ϕ)

. (14.13)

Because Fa,b,δ(π − ϕ) = Fb,a,δ(ϕ), ϕ ∈ [0, π2 ], we halve the integration domain.
Pointing out that

min
0≤ϕ≤ π

2

e−δ rn cosϕFa,b,δ(ϕ) = Fa,b,δ

(π
2

)

= min
{
a + be−2δ rn,

√
a2 + b2 + 2ab cos(2δ rn)

}

≥ min{a, b, |a − b|} =: D0(a, b) , (14.14)

making use of the Jordan’s sine inequality [22, p. 33]

sin ϕ ≥ 2

π
ϕ, ϕ ∈ [0, π2 ]

and its straightforward counterpart

cosϕ ≥ 1− 2

π
ϕ, ϕ ∈ [0, π2 ],
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from (14.13) via (14.14) we derive the estimate

|In(z)| ≤ 2N+2Lf eβq|y|−δrn
(
1+ rmn

)
r
−(p+q+N0+2)
n β−q

D0(a, b)
(
1− e−π

)N+1
∣
∣
∣
∣1−

|z|
rn

∣
∣
∣
∣

p+q+1 ∣∣
∣
∣1−

|c|
rn

∣
∣
∣
∣

N0+1

·
∫ π

2

0
e−[(N+1)α−δ−σ−qβ]rn 2ϕ

π dϕ

= π2N+1Lf eβq|y|−δrn
(
1+ rmn

)
r
−(p+q+N0+2)
n β−q

D0(a, b)
(
1− e−π

)N+1
∣
∣
∣∣1−

|z|
rn

∣
∣
∣∣

p+q+1 ∣∣
∣∣1−

|c|
rn

∣
∣
∣∣

N0+1

· 1− e−[(N+1)α−σ−δ−qβ]rn
(N + 1)α − σ − δ − qβ

.

For any fixed z, c, and enough large n there hold the bounds

2 min {|1− |z|/rn| , |1− |c|/rn|} ≥ 1; 1− e−[(N+1)α−σ−δ−qβ]rn ≤ 1.

Hence, for any (N + 1)α − δ − σ − qβ > 0 we conclude

|In(z)| ≤ π Lf

2p+q+N+N0+2

(1− e−π )N+1

eβq|y|−δ rn
(
1+ rmn

)
r
−(p+q+N0+2)
n

D0(a, b) βq [(N + 1)α − σ − δ − qβ] ;
(14.15)

quote that eβq|y| remains finite for any bounded z ∈ C.
Signify

T
(p)
n (f ; z) : = lim

ζ→z

(
d

dζ

)p
f (ζ ) sincqβ(ζ − z)

(ζ − c)N0+1(aeδζ + be−δζ ) sinN+1(αζ )

− p!
N ! N0! αN+1

×
∑

|k|≤n

N∑

j=0

j∑

m1=0

(−1)k(N+1)
(
N
j

)(
j
m1

)
Cj,k(z; θ ′N)Bj−m1(N)

(ζk − c)N0+1(ζk − z)p+1

×
m1∑

m2=0

(
m1

m2

)
(N0 +m1 −m2)! f (m2)(ζk)

(c − ζk)m1−m2

× 2F1

(
m2 −m1, p + 1
m2 −m1 −N0

∣
∣
∣
ζk − c

ζk − z

)
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− (−1)p p!
N0!

N0∑

r1=0

(
N0
r1

)
(p + 1)r1AN0−r1(z; θN0)

(c − z)p+r1+1

× 1F1

( −r1

−p − r1

∣
∣
∣(c − z)

d

dc

)
◦ f (c) (14.16)

the truncation error of the generalized pth order derivative sampling expansion of
the size 2n + 1 of a suitable input function (signal) f with respect to the circular
integration path γn defined by (14.4).

Here and in what follows, we write by convention

1F1

( −r1

−p − r1

∣
∣
∣(c − z)

d

dc

)
◦ f (c) := 1F1

( −r1

−p − r1

∣
∣
∣(c − z)

d

dw

)
◦ f (w)

∣
∣
∣
w=c.

Thus, we deduce the following truncation error bound result.

Theorem 1 Let f (z) be entire satisfying (14.2) for a non-negative integer m. Then
for allN,N0, p, q ∈ N0, a, b, α, β > 0, δ ∈ R for which (N+1)α−δ−σ−qβ > 0,
and c ∈ C \ {0}, we have

∣
∣T (p)

n (f ; z)∣∣ ≤ π Lf

( 2

1− e−π
)N+1 p! 2p+q+N0+1 eβq|y| e

−δ
(
n+ 1

2

)
π
α

βq D0(a, b) [(N + 1)α − σ − δ − qβ]

·
⎛

⎝ α

π
(
n+ 1

2

)

⎞

⎠

p+q+N0−m+2 ⎧
⎨

⎩
1+

⎛

⎝ α

π
(
n+ 1

2

)

⎞

⎠

m⎫
⎬

⎭
,

(14.17)

provided n is enough large positive integer, z �= c is coming from a bounded sub-
region of the complex plane, and z �= ζk = k π

α
, k = −n, n. The truncation error

T
(p)
n (f ; z) contains

As(z; θN0) = lim
ζ→c

(
d

dζ

)s sincqβ(ζ − z)

(aeδζ + be−δζ ) sinN+1(αζ )
, s ∈ N0

Br(N) = lim
x→0

(
d

dx

)r( x

sin x

)N+1
, r ∈ N0

Cj,k(z; θ ′N) = lim
ζ→ζk

(
d

dζ

)N−j sincqβ(ζ − z)

aeδζ + be−δζ
,
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while θM = (M, q, α, β, δ, a, b, c) and θ ′M = (M, q, α, β, δ, a, b, 0), M non-
negative integer, while

D0(a, b) = min{a, b, |a − b|} .

Remark 1 The truncation error upper bound (14.17) is useful for all positive values
of β, but it is senseless in the case β → 0. Therefore we have changed the estimation
procedure in evaluating the integrand by the bound | sin z| ≤ e|y| to achieve (14.12),
which finally lead to the upper bound (14.15). �

Next, making use of the less sensitive bound |sinc z| ≤ e|"(z)| in estimating the
integrand of In(z) we avoid the term β−q in (14.17). The resulting upper bound is
applicable for all β ≥ 0.

Theorem 2 Let the parameter space be the same as in Theorem 1 and β ≥ 0. Then
we have the truncation error upper bound

∣
∣T (p)

n (f ; z)∣∣ ≤ π Lf

( 2

1− e−π
)N+1 p! 2p+N0+1 eβq|y|

D0(a, b) [(N + 1)α − σ − δ − qβ] e
−δ

(
n+ 1

2

)
π
α

·
⎛

⎝ α

π
(
n+ 1

2

)

⎞

⎠

p+N0−m+2 ⎧
⎨

⎩
1+

⎛

⎝ α

π
(
n+ 1

2

)

⎞

⎠

m⎫
⎬

⎭
,

(14.18)

which holds for all bounded z ∈ C.

By letting n → ∞ in both truncation error upper bounds (14.17) and (14.18)
for certain fixed complex z satisfying the constraints of Theorem 1 with the weaker
β ≥ 0, we arrive at the master generalized derivative sampling expansion formula.

Theorem 3 Let f (z) be entire function satisfying (14.2) for certain non-negative
integer m. Then for all

α(N + 1)− σ > 0,

[(N + 1)α − σ ]q−1 > β ≥ 0,

(N + 1)α − σ − qβ > δ > 0,

the following representation holds true pointwise in any bounded z-region of C
which satisfies the conditions of Theorem 1

lim
ζ→z

(
d

dζ

)p
f (ζ ) sincqβ(ζ − z)

(ζ − c)N0+1(aeδζ + be−δζ ) sinN+1(αζ )

= p! (−1)N0+p

N ! N0! αN−N0−p−1

∑

k∈Z

N∑

j=0

j∑

m1=0

(−1)k(N+1)
(
N
j

)
Cj,k(z; θ ′N)

(
j
m1

)
Bj−m1(N)

(αc − kπ)N0+1 (αz− kπ)p+1
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m1∑

m2=0

(
m1

m2

) (N0 +m1 −m2)!f (m2)
(
k
π

α

)

(
c − k

π

α

)m1−m2 2F1

(
m2 −m1, p + 1
m2 −m1 −N0

∣∣
∣
αc − kπ

αz − kπ

)

+ (−1)p p!
N0!

N0∑

r1=0

(
N0
r1

)
(p + 1)r1AN0−r1(z; θN0 )

(c − z)p+r1+1 1F1

( −r1

−p − r1

∣∣∣(c − z)
d

dc

)
◦ f (c)

(14.19)

uniformly for all z �= ζn = nπ
α
, n ∈ Z.

14.3 Discussion of Certain Special Cases

The detailed presentation and evolution of certain corollaries of Theorem 3 (14.19)
we illustrate by few groups of results.

A. We begin with the case N0 = −1. Then the function g(ζ, z) is without poles;
therefore, the residue Rc = 0, accordingly the second sum in (14.19) vanishes.

The resulting formula reads

lim
ζ→z

(
d

dζ

)p
f (ζ ) sincqβ(ζ − z)

(aeδζ + be−δζ ) sinN+1(αζ )

= p! (−1)p+1

N ! αN−p
∑

k∈Z

(−1)k(N+1)

(αz − kπ)p+1

N∑

j=0

Cj,k(z; θ ′N)
(N − j)!

j∑

m1=0

Bj−m1(N)

(j −m1)!

m1∑

m2=0

f (m2)
(
k
π

α

)

m2! 2F1

(
m2 −m1, p + 1
m2 −m1 + 1

∣
∣
∣

α

αz − kπ

)
, (14.20)

which coincides with the formula [34, Eq. (1)] and with [35, Eq. (2)] in the limiting
case when n→∞.

Next, specifying δ = 0 in (14.20), having in mind that Br(N) does not depend
on δ and

Cj,k(z; θ ′′N)
∣∣
δ=0 =

1

a + b
lim
ζ→ζk

(
d

dζ

)N−j
sincqβ(ζ − z),
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where θ ′′N = θ ′N
∣
∣
δ=0 = (N, q, α, β, 0, a, b, 0), we conclude

lim
ζ→z

(
d

dζ

)p
f (ζ ) sincqβ(ζ − z)

sinN+1(αζ )

= p! (−1)p+1(a + b)

N ! αN−p
∑

k∈Z

(−1)k(N+1)

(αz − kπ)p+1

N∑

j=0

Cj,k(z; θ ′′N)
(N − j)!

j∑

m1=0

Bj−m1(N)

(j −m1)!

m1∑

m2=0

f (m2)
(
k
π

α

)

m2! 2F1

(
m2 −m1, p + 1
m2 −m1 + 1

∣
∣∣

α

αz − kπ

)
, (14.21)

provided p + q + 1 − m > 0. The condition for which holds true the general
truncation error upper bound result (14.17) in Theorem 1 takes the reduced form
being N0 = −1, δ = 0. The resulting sampling series expansion is in fact [33, Eq.
(1)].

The associated special case N = 0 implies that all summation indices j = m1 =
m2 = 0, that is,

B0(0) = 1 and C00(z; θ ′′N) =
1

a + b
sincqβ

(
z − kπ

α

)
,

and since the hypergeometric term becomes unity, we have

lim
ζ→z

(
d

dζ

)p
f (ζ ) sincqβ(ζ − z)

sin(αζ )
= p!αp

∑

k∈Z

(−1)k+p+1 f
(
k
π

α

)

(αz − kπ)p+1

× sincqβ

(
z− kπ

α

)
. (14.22)

From the last expansion letting q = 0, for all α > σ and p ≤ m we deduce the
derivative sampling series expansion

lim
ζ→z

(
d

dζ

)p
f (ζ )

sin(αζ )
= p!αp

∑

k∈Z

(−1)k+p+1 f
(
k
π

α

)

(αz − kπ)p+1 . (14.23)

Finally, f ∈ B2
σ indicate1 m = 0 and p ∈ N0. For these kind of input functions f

for p = 0 (14.23) becomes the classical WKS formula. We notice that for p = 1
this formula appears in [14, pp. 115–120].

1The Bernstein class Bp
σ consists of entire functions (in the complex plane) of exponential type at

most σ , whose restriction to R belongs to Lp(R). We are interested here in B2
σ -functions since our

study belongs to the L2-correlation theory area.
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Consider now (14.22) for p = 0. Rewriting (−1)k sin(αz) = sin(αz − kπ), we
obviously recover the extended WKS interpolation formula [30, Eq. (19)]

f (z) =
∑

k∈Z
f
(
k
π

α

)
sinc(αz − kπ) sincq

(
βz− β kπ

α

)
,

α − σ

β
> q ≥ m.

(14.24)

This extension significantly improves the convergence rate of the WKS sampling
series and recovers the classical WKS sampling theorem (14.1) from (14.24) when
q = 0:

f (z) =
∑

k∈Z
f
(
k
π

α

)
sinc(αz − kπ) , α > σ.

B. Different kinds of parameter specifications in (14.21) lead to another class of
sampling series. Firstly, letting p = 0 we obtain by reusing the hypergeometric
polynomial’s property (14.10) the relation

f (z) = (a + b) sinN+1(αz)

N ! αN
∑

k∈Z

N∑

j=0

j∑

m1=0

(−1)k(N+1)+1

αz− kπ

Cj,k(z; θ ′′N)
(N − j)!

Bj−m1(N)

(j −m1)!

·
m1∑

m2=0

f (m2)
(
k
π

α

)

m2!(m1 −m2 − 1)!
m1−m2∑

s=0

(
m1 −m2

s

)
s!(m1 −m2 − 1− s)!

(z− kπ/α)s
.

Now, for N = 1 this expansion one reduces to the first order derivative sampling
series [31, Eq. (5)]:

f (z) =
∑

k∈Z

{[
(1+ q) sincβ

(
z− kπ

α

)
− q cosβ

(
z− kπ

α

)]
f

(
kπ

α

)

+
(
z− kπ

α

)
sincβ

(
z− kπ

α

)
f ′

(
kπ

α

)}

· sinc2(αz − kπ) sincq−1β

(
z− kπ

α

)
,

where

α >
σ

2
, 0 < β <

2α − σ

q
.
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Next, putting q = 0, this formula takes the form

f (z) =
∑

k∈Z

[
f

(
kπ

α

)
+

(
z− kπ

α

)
f ′

(
kπ

α

)]
sinc2(αz − kπ),

under assumption 2α > σ .

14.4 Brief Invitation to Piranashvili Processes

In this section we give some key results concerning harmonizable processes and
their spectral representations with respect to bimeasures; for harmonizability, we
refer to [17, 50, 52, 53]. Let {ξ(t), t ∈ R} be a centered (which means Eξ(t) = 0)
finite second order random process defined on certain standard fixed probability
space (�,F,P). The process ξ(t) has a covariance function (associated with a
domain � ⊆ R with the sigma-algebra σ(�)) in the form:

B(t, s) =
∫

�

∫

�

f (t, λ)f ∗(s, μ)Fξ (dλ, dμ), (14.25)

where, for (usually taken) each λ ∈ �, f (·, λ) can be extended to the complex
plane as a complex analytic exponentially bounded kernel function, that is, for some
M > 0, α ∈ R

|f (t, λ)| ≤Meα|t |,

while Fξ (·, ·) is a positive definite measure on �2. The total variation ‖Fξ‖(�,�)

of the spectral distribution function Fξ satisfies

‖Fξ‖(�,�) =
∫

�

∫

�

∣
∣Fξ (dλ, dμ)

∣
∣ = VFξ <∞;

the constant VFξ is also called the Vitali variation [53, p. 153]. Notice that the
sample function ξ(t) ≡ ξ(t, ω0) and f (t, λ) possess the same exponential types
[2, Theorem 4] and [30, Theorem 3]. Then, by the Karhunen–Cramér theorem the
process ξ(t) has the spectral representation

ξ(t) =
∫

�

f (t, λ)Zξ (dλ) , (14.26)

where Zξ(·) is the spectral process (associated with ξ ) which is a spectral measure
and

EZξ (S)Z
∗
ξ (S

′) = Fξ (S, S
′), S, S′ ∈ σ(�).
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In turn, the first named author’s approach was more general in [30] in which he
considered instead of exponentially bounded kernel function f (t, λ), appearing in
the spectral representation (14.26), the kernel function satisfying similarly to (14.2)
the condition

|f (t, λ)| ≤ Lf (λ)
(
1+ |t|m) ec(λ) |"(t)|, t ∈ C; m ∈ N0 , (14.27)

where

sup
�

Lf (λ) <∞; sup
�

c(λ) = σ <∞ .

The background for this kind extension is the following. Being f (t, λ) entire, it
possesses the Maclaurin expansion

f (t, λ) =
∞∑

n=0

f (n)(0, λ)

n! tn .

As

σ = sup
�

c(λ) = sup
�

lim sup
n

n

√
|f (n)(0, λ)| <∞ ,

the exponential type of f (t, λ) is equal to σ . The process possessing this type of
kernel has been called Piranashvili process [44]. Consequently, for all w > σ there
holds

ξ(t) =
∑

n∈Z
ξ
(nπ
w

) sin(wt − nπ)

wt − nπ
, (14.28)

and the series converges uniformly in the mean-square and almost surely [30, The-
orem 1]. This result we call as Whittaker–Kotel’nikov–Shannon (WKS) stochastic
sampling theorem, also consult Remark 2 in [44, §2. The Piranashvili–Lee theory].

The class of Piranashvili processes includes various well-known subclasses of
stochastic processes. Some of their particular cases are listed below. Specifying
Fξ (x, y) = δxyFξ (x) in (14.25) one easily concludes the Karhunen-representation
of the covariance

B(t, s) =
∫

�

f (t, λ)f ∗(s, λ)Fξ (dλ).

Next, putting f (t, λ) = eitλ in (14.25) one gets the Loève representation:

B(t, s) =
∫

�

∫

�

ei(tλ−sμ)Fξ (dλ, dμ).
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Here is c(λ) = |λ|; therefore, the WKS formula (14.28) holds for all w > σ =
sup |�|.

Note that the Karhunen process with the Fourier kernel f (t, λ) = eitλ is the
weakly stationary stochastic process having the covariance

B(τ) =
∫

�

eiτλFξ (dλ), τ = t − s.

A deeper insight into different kinds of harmonizability is presented in [17, 49–
51, 53] and the related references therein.

Finally, using � = [−w,w] for some finite w > 0 (called bandwidth) for a
Karhunen process we arrive at

B(τ) =
∫ w

−w
eiτλFξ (dλ),

getting the band-limited process.
For further reading—including historical background, exhaustive results

overview and references list until 1987—we refer to the monumental two-tom
monograph by Yaglom [52, 53].

14.5 Master Sampling Theorem for Stochastic Signals

Here and in what follows we will concentrate to transferring the results of
deterministic results from Sect. 14.2 to stochastic framework. Firstly, we introduce
the concept of mean-square derivative of a stochastic process. Denote L2(�)

the space of finite second order complex random variables X defined on a
standard probability space (�,F,P); L2(�) is a Hilbert space equipped with the
scalar product 〈X,Y 〉 = EXY ∗, that is, with the norm ‖ · ‖2 = (E| · |2)1/2

endowed. The linear mean-square sense closure H(ξ) = L2{ξ(t) : t ∈ R} of the
process ξ(t) is a subspace of L2(�), and possesses an H-space structure by itself
too.

If there exists a random variable ξ ′(t) such that

lim
h→0

∥
∥∥
∥
ξ(t + h)− ξ(t)

h
− ξ ′(t)

∥
∥∥
∥

2
= 0,

it is called the first mean-square (or in medio) sense derivative of the stochastic
process ξ(t) ∈ L2(�), see, e.g., [46, p. 388, Definition 2]. Conventionally, we
will denote by l.i.m. the shorthand of limes-in-medio (or mean-square limit) in the
sequel. The higher order derivatives we introduce by induction.
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Let L2(Fξ ;�) be the class of all complex valued functions integrable with
respect to the measure Fξ (·, ·), i.e.,

L2(Fξ ;�) =
{
φ(z) :

∫

�

∫

�

φ(z) φ∗(w) Fξ (dz, dw) <∞
}
.

Moreover, equipped with the inner product

〈φ,ψ〉L2(Fξ ;�) =
∫

�

∫

�

φ(z) ψ∗(w) Fξ (dz, dw) ,

L2(Fξ ;�) possesses also Hilbert space structure [52, 53, p. 155]. Accordingly, the
spectral representation of the rth mean-square derivative ξ(r)(t) is of the form [46,
p. 388, Lemma 3, Eq. (17)]

ξ(r)(t) =
∫

�

∂r

∂tr
f (t, λ) Zξ (dλ), r ∈ N0 (14.29)

assuming ∂r

∂t r
f (t, λ) ∈ L2(Fξ ;�); for the weakly stationary processes case consult

[5, p. 281].
Finally, introduce the mean-square truncation error

τ
(p)
n (ξ; t) := ‖T (p)

n (ξ; t)‖2
2 (14.30)

via the truncation error of a deterministic signal f treated in the previous sections.

Lemma 1 If f (t, λ) appears as the kernel function in the spectral representa-
tion (14.26), then we have the spectral representation

T
(p)
n (ξ; t) =

∫

�

T
(p)
n (f ; t) Zξ (dλ) (14.31)

in the mean-square sense.

Lemma 1 is the immediate consequence of the definition (14.16) applied to the
process ξ(t) and the spectral representation (14.26), bearing in mind the isometric
isomorphism between H(ξ) and L2(Fξ ;�).

Now we are ready to formulate the stochastic setting counterparts of Theorems 1
and 2.

Theorem 4 Suppose that {ξ(t) : t ∈ � ⊆ R} is a stochastic process with
covariance function of the form (14.25):

B(t, s) =
∫

�

∫

�

f (t, λ)f ∗(s, μ)Fξ (dλ, dμ) ,
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where F(S1, S2) is a complex additive set function with respect to both variables,
positive definite with bounded total variation ‖Fξ‖(�,�) < ∞ and the kernel
function f (t, λ), which satisfies the condition (14.27) for certain m ∈ N0, has
analytic continuation to the whole C with respect to the argument t . Then for all
parameters N,N0, p, q ∈ N0, a, b, α, β, σ > 0, c ∈ C \ {0}, and δ ∈ R satisfying

α(N + 1)− σ > 0,

[(N + 1)α − σ ]q−1 > β ≥ 0,

(N + 1)α − σ − qβ > δ > 0,

the mean-square truncation error upper bound in generalized pth order derivative
sampling series expansion reads as follows:

τ
(p)
n (ξ; t) ≤ L2

f

( 2

1− e−π
)2(N+1) π2 (p!)2 4p+q+N0+1 ‖Fξ‖(�,�) e−δ (2n+1) π

α

β2qD2
0(a, b) [(N + 1)α − σ − δ − qβ]2

·
⎛

⎝ α

π
(
n+ 1

2

)

⎞

⎠

2(p+q+N0−m+2) ⎧
⎨

⎩
1+

⎛

⎝ α

π
(
n+ 1

2

)

⎞

⎠

m⎫
⎬

⎭

2

=: Un(t),

(14.32)

provided n is enough large positive integer, and finite Vitali total variation

VFξ = ‖Fξ‖(�,�) =
∫

�

∫

�

|Fξ (dλ, dμ)|,

while t is any bounded real t �∈ {c, xk = k π
α
: k = −n, n }.

Proof Direct calculation via (14.30) and Lemma 1 (14.31) gives

τ
(p)
n (ξ; t) = ‖T (p)

n (ξ; t)‖2
2 =

∥
∥
∥
∥

∫

�

T
(p)
n (f ; t) Zξ (dλ)

∥
∥
∥
∥

2

2

≤ sup
t∈R

|T (p)
n (f ; t)|2

∫

�

∣
∣Fξ (dλ, dμ)

∣
∣ ≤ ‖Fξ‖(�,�) sup

t∈R
|T (p)

n (f ; t)|2.

By virtue of the estimate (14.17) (remarking that "(t) = 0) applied to the truncation
errorT (p)

n (f ; t) of the kernel function, we conclude the asserted bound (14.32). ��
Take now into account the facts upon the parameter β → 0 by which we obtained

Theorem 2, that is, the bound (14.18). By similar argumentation like in the previous
proof assuming only β ≥ 0 we deduce the
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Theorem 5 Under the same hypotheses then in Theorem 4 and using β ≥ 0 we
have

τ
(p)
n (ξ; t) ≤ π2 L2

f

( 2

1− e−π
)2(N+1) (p!)2 4p+N0+1 ‖Fξ‖(�,�) e−δ (2n+1) π

α

D2
0(a, b) [(N + 1)α − σ − δ − qβ]2

·
⎛

⎝ α

π
(
n+ 1

2

)

⎞

⎠

2(p+N0−m+2) ⎧
⎨

⎩
1+

⎛

⎝ α

π
(
n+ 1

2

)

⎞

⎠

m⎫
⎬

⎭

2

=: Vn(t),

(14.33)

for all bounded real t �∈ {c, xk = k π
α
: k = −n, n }.

Remark 2 The decay rate of both upper bounds for fixed t is exponential; (14.32)
and (14.33) have magnitudes of

Un(t) = O
(
n−2(p+q+N0−m+3) e−2(δπ/α) n)

Vn(t) = O
(
n−2(p+N0−m+3) e−2(δπ/α) n)

as n→∞, respectively. �
So the final generalized derivative sampling series results.

Theorem 6 Suppose that {ξ(t) : t ∈ � ⊆ R} is a Piranashvili process with
covariance function of the form (14.25):

B(t, s) =
∫

�

∫

�

f (t, λ)f ∗(s, μ)Fξ (dλ, dμ) ,

where F(S1, S2) is a complex additive set function with respect to both variables,
positive definite with finite Vitali variation VFξ = ‖Fξ‖(�,�) <∞ and the kernel
function f (t, λ), which satisfies the condition (14.27) for certain m ∈ N0, has
analytic continuation to the whole C with respect to the argument t . Then for all
parameters N,N0, p, q ∈ N0, a, b, α, β, σ > 0, δ ∈ R satisfying the constraint set

α(N+1)−σ > 0, [(N+1)α−σ ]q−1 > β ≥ 0, (N+1)α−σ −qβ > δ > 0,

there holds true the master generalized pth order mean-square derivative sampling
formula

l.i.m.
x→t

(
d

dx

)p
ξ(x) sincqβ(x − t)

(x − c)N0+1(aeδx + be−δx) sinN+1(αx)

= p! (−α)N0+p

N ! N0! αN−1

∑

k∈Z

N∑

j=0

j∑

m1=0

(−1)k(N+1)
(
N
j

)(
j
m1

)
Cj,k(t; θ ′N)Bj−m1(N)

(αc − kπ)N0+1 (αt − kπ)p+1
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m1∑

m2=0

(
m1

m2

) (N0 +m1 −m2)! 2F1

(
m2 −m1, p + 1
m2 −m1 −N0

∣
∣∣
αc − kπ

αt − kπ

)

(
c − k

π

α

)m1−m2
ξ (m2)

(
k
π

α

)

+ (−1)p p!
N0!

N0∑

r1=0

(
N0
r1

)
(p + 1)r1AN0−r1(t; θN0 )

(c − t)p+r1+1 1F1

( −r1

−p − r1

∣∣∣(c − t)
d

dc

)
◦ ξ(c),

(14.34)

for all bounded real t �= c, nπ
α
, n ∈ Z. The notations A,B,C have the same

meaning as above.

Proof As to the generalized derivative mean-square sense sampling series result for
Piranashvili processes, it is enough letting n → ∞ in both (14.32) and (14.33).
Indeed,

0 ≤ lim
n→∞ τ

(p)
n (ξ; t) ≤ lim

n→∞max{Un(t), Vn(t)} = 0

implies the assertion. ��
Remark 3 It is worth to mention another approach which leads to the same result
of considerable interest since it will be exploited in obtaining the sampling series
expansion for random fields.

Consider the pth mean-square derivative
(

d
dx

)p
ξ(x) h(x, t) where

h(x, t) := sincqβ(x − t)

(x − c)N0+1(aeδx + be−δx) sinN+1(αx)
.

Thus, by virtue of the spectral representations (14.26) and (14.29) of the input
process and its higher order derivatives, we get

(
d

dx

)p

ξ(x) h(x, t) =
(

d

dx

)p ∫

�

f (x, λ)Zξ (dλ) h(x, t)

=
∫

�

(
d

dx

)p {
f (x, λ) h(x, t)

}
Zξ (dλ).

Applying to the last expression the derivative series expansion (14.19) of Theorem 3

to the kernel function
(

d
dx

)p
f (x, λ), by several legitimate exchange of the order of
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integration and summation, we conclude

(
d

dx

)p

ξ(x) h(x, t) = C1

∑

k∈Z

N∑

j=0

j∑

m1=0

(−1)k(N+1)
(
N
j

)
Cj,k(z; θ ′N)

(
j
m1

)
Bj−m1(N)

(αc − kπ)N0+1 (αz − kπ)p+1

×
m1∑

m2=0

(
m1

m2

)
(N0 +m1 −m2)!
(
c − k

π

α

)m1−m2

× 2F1

(
m2 −m1, p + 1
m2 −m1 − N0

∣
∣
∣
αc − kπ

αz − kπ

)

·
∫

�

(
d

dx

)m2

f (x, λ)

∣
∣∣
x=xk

Zξ (dλ)

+ C2

N0∑

r1=0

(
N0
r1

)
(p + 1)r1AN0−r1(z; θN0)

(c − z)p+r1+1

× 1F1

( −r1

−p − r1

∣
∣∣(c− z)

d

dc

)
◦ f (c), (14.35)

where

C1 = p! (−α)N0+p

N ! N0! αN−1
; xk = k

π

α
; C2 = (−1)p p!

N0! .

Being
∫

�

(
d

dx

)m2

f (x, λ)

∣
∣
∣
x=xk

Zξ (dλ) = ξ(m2)(xk),

it is sufficient to apply l.i.m.x→t in (14.35) to obtain the series expansion state-
ment (14.34) of Theorem 6. �

The last topic of this section is to derive the almost sure sense (called also a.s.
P, or with probability 1) master generalized derivative sampling series expansion
formula. This result we will deduce by the upper bounds either (14.32) or (14.33)
and the celebrated Borel–Cantelli Lemma.

Theorem 7 Assume the same range of parameters applied in Theorem 6. Then we
have

P
{
(−1)p

N0!
p! lim

x→t

dp

dxp
ξ(x) sincqβ(x − t)

(x − c)N0+1(aeδx + be−δx) sinN+1(αx)

= (−1)N0αN0+p

N ! αN−1

∑

k∈Z

N∑

j=0

j∑

m1=0

(−1)k(N+1)
(
N
j

)(
j
m1

)
Cj,k(t; θ ′N)Bj−m1(N)

(αc − kπ)N0+1 (αt − kπ)p+1
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m1∑

m2=0

(
m1
m2

)
(N0 +m1 −m2)! 2F1

(
m2 −m1, p + 1
m2 −m1 −N0

∣
∣
∣
αc − kπ

αt − kπ

)

αm2−m1 (cα − kπ)m1−m2
ξ(m2)(xk)

+
N0∑

r1=0

(
N0
r1

)
(p + 1)r1AN0−r1(t; θN0)

(c − t)p+r1+1 1F1

( −r1

−p − r1

∣
∣
∣(c − t)

d

dc

)
◦ξ(c)

}
= 1

(14.36)

for all bounded real t �∈ {c, xk = k π
α
: k ∈ Z}.

Proof To prove the almost sure convergence of the partial sum of the right-hand side
series (14.34) it is suitable to evaluate, using the Markov inequality, the probability

Pn = P
{
|T (p)

n (ξ; t)| ≥ ε; for at least one n ≥ n0

}
≤ ε−2 τ

(p)
n (ξ; t).

Accordingly, since the asymptotic described in Remark 2 we have

Pn = O
(
n−2(p+q+N0−m+3) e−2(δπ/α) n).

The series

∑

n≥n0

Pn < C Li2(p+q+N0−m+3)

(
e−2(δπ/α)

)
; C > 0

obviously converges. (Here Lia(w) = ∑
n≥1 n

−awn; |w| < 1 stands for the so-
called polylogarithm or Jonquière’s function, see [4, pp. 30–31], [16].)

Thus, by the Borel–Cantelli Lemma we deduce that the convergence in (14.36)
holds with probability 1 uniformly in any bounded t . ��

Now, we make use of a Belyaev’s idea [2, p. 443] to evaluate the a.s. P
convergence rate ρ(n) in (14.34).

Theorem 8 There exists a positive integer N(ω);ω ∈ � for which

P
{
|T (p)

n (ξ; t)| < ρ(n); for all n ≥ N(ω)
}
= 1,

where the series

∑

n≥1

e−2(δπ/α)n

n2(p+N0−m+3)

1

ρ2(n)

converges.
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Proof For fixed parameters p, q,N0,m, α, δ and bounded t we have

P
{
∃n ≥ N(ω) : |T (p)

n (ξ; t)| > ρ(n)
}

≤
∑

n≥N(ω)

τ
(p)
n (ξ; t)
ρ2(n)

≤
∑

n≥N(ω)

e−2(δπ/α)n

n2(p+N0−m+3)

1

ρ2(n)
.

The existence of such non-negative integer N(ω) that for all n ≥ N(ω) there holds
|T (p)

n (ξ; t)| < ρ(n) with probability 1 is ensured by the Borel–Cantelli Lemma as
the right-hand side series converges. The rest is obvious. ��
Remark 4 The truncation error upper bound Un(t) (14.32) is of greater magnitude
than Vn(t), which is the applied one in Theorem 8, consult Remark 2 as well.
Therefore Theorem 8 covers both approaches to the matter discussed in detail in
Theorems 1 and 2 for deterministic signals. �

Finally, a plethora of illustrative examples can be constructed by Theorem 7
in obtaining the almost sure P rate of convergence. So, following the traces of
Belyaev’s classical example [2, p. 443]

|T (p)
n (ξ; t)| < e−2(δπ/α)n

n2(p+N0−m+5/2) (logn)
1+ε

2 , ε > 0

can be considered for instance.

14.6 Generalized Sampling Series for Random Fields

Let {*(t) : t = (t1, · · · , td) ∈ R
d} be a scalar complex valued random field

with d-dimensional argument, separable simultaneously with all its mean-square
derivatives if any. For the sake of simplicity let us assume that *(t) is centered, that
is, E*(t) = 0, t ∈ R

d and the covariance

B(t, s) =
∫

�

∫

�

d∏

j=1

fj (tj , λj ) f
∗
j (sj , μj ) F*(dλ, dμ)

, where �j is a parameter space � := ∏d
j=1 �j and u := (u1, · · · , ud) denotes

a d-dimensional vector throughout, while F(S,S′) is a complex positive definite
function of sets S1, · · · , Sd ; S′1, · · · , S′d , additive with respect to all arguments
having finite total variation, provided

∫

�

∫

�

|F*(dλ, dμ)| <∞.
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Similarly to the spectral representation of the Piranashvili process, the random field
*(t) possesses the mean-square stochastic integral representation2

*(t) =
∫

�

d∏

j=1

fj (tj , λj ) Z*(λ) .

Here the so-called spectral field Z*(λ) is orthogonally scattered, that is,

EZ*(S)Z
∗
*(S

′) = F*(S,S
′), S,S ′ ∈ σ(�) .

Moreover, we assume that all fj (tj , λj ); j = 1, d are kernel functions satisfy-
ing (14.27), that is,

|fj (tj , λj )| ≤ Lfj (λj )
(
1+ |tj |mj

)
ecj (λj ) |"(tj )|, tj ∈ C; mj ∈ N0,

where

sup
�j

Lj (λj ) <∞; sup
�j

cj (λj ) = σj <∞; j = 1, d.

At this point we are ready to formulate the appropriate generalized derivative mean-
square sampling series result for random fields. For the sake of simplicity we take
the shorthand notations

∂ |p|

∂x|p|
= ∂p1+···+pd

∂x
p1
1 · · · ∂xpdd

; u|v| =
d∏

j=1

u
vj
j ; p! =

d∏

j=1

pj ! .

Theorem 9 Assume that the two-dimensional random field {*(t1, t2) : t1, t2 ∈ R}
satisfies the above exposed conditions. Also let all parameters N1, N2, N01, N02,
p1, p2, q1, q2 ∈ N0; a1, a2, b1, b2, α1, α2, β1, β2, σ1, σ2 > 0; c1, c2 ∈ C \ {0}, and
δ1, δ2 ∈ R satisfy

αj (Nj + 1)− σj > 0,

[(Nj + 1)αj − σj ]q−1
j > βj ≥ 0,

(Nj + 1)αj − σj − qjβj > δj , > 0, j = 1, 2.

Denote

hj (xj , tj ) = sincqj βj (xj − tj )

(xj − cj )
N0j+1(ajeδj xj + bje−δj xj ) sinNj+1(αj xj )

, j = 1, 2 .

2The existence of such representation is ensured by the Karhunen–Cramèr theorem.
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Then for the almost all sample paths there holds true

l.i.m.
x→t

∂ |p|

∂xp1∂x
p2
2

{
*(x1, x2)h1(x1, t1) h2(x2, t2)

} = p! (−α)|N0+p|

N ! N0! α|N−1|

·
∑

k1,k2∈Z

N1∑

j1=0

j1∑

m11=0

N2∑

j2=0

j2∑

m21=0

(−1)k1(N1+1)
(
N1
j1

)(
j1
m11

)
Cj1,k1(t1; θN ′1)Bj1−m11(N1)

(α1c1 − k1π)
N01+1 (α1t1 − k1π)

p1+1

· (−1)k2(N2+1)
(
N2
j2

)(
j2
m21

)
Cj2,k2(t2; θN ′2)Bj2−m21(N2)

(α2c2 − k2π)
N02+1 (α2t2 − k2π)

p2+1

m11∑

m12=0

(
m11
m12

)
(N01 +m11 −m12)! 2F1

(
m12 −m11, p1 + 1
m12 −m11 −N01

∣
∣
∣
α1c1 − k1π

α1t1 − k1π

)

α
m12−m11
1 (c1α1 − k1π)

m11−m12

m21∑

m22=0

(
m21
m22

)
(N02 +m21 −m22)! 2F1

(
m22 −m21, p2 + 1
m22 −m21 −N02

∣∣
∣
α2c2 − k2π

α2t2 − k2π

)

α
m22−m21
2 (c2α2 − k2π)

m21−m22

· ∂ |m|

∂x
m12
1 ∂x

m21
2

*

(
k1

π

α1
, k2

π

α2

)
+ (−1)p2p! (−α1)

N01+p1

N1!N01!N02!αN1−1
1

·
∑

k1∈Z

N02∑

r2=0

N1∑

j1=0

j1∑

m11=0

(−1)k1(N1+1)
(
N1
j1

)(
j1
m11

)
Cj1,k1(t1; θN ′1)Bj1−m11(N1)

(α1c1 − k1π)
N01+1 (α1t1 − k1π)

p1+1

·
(
N02
r2

)
(p2 + 1)r2AN02−r2(t2; θN02)

(c2 − t2)p2+r2+1

m11∑

m12=0

(
m11
m12

)
(N01 +m11 −m12)! 2F1

(
m12 −m11, p1 + 1
m12 −m11 −N01

∣
∣
∣
α1c1 − k1π

α1t1 − k1π

)

α
m12−m11
1 (c1α1 − k1π)

m11−m12

· ∂m12

∂x
m12
1

1F1

( −r2

−p2 − r2

∣∣
∣(c2 − t2)

∂

∂c2

)
◦*

(
k1

π

α1
, c2

)

+ (−1)p1p! (−α2)
N02+p2

N2!N02!N01!αN2−1
2

·
∑

k2∈Z

N01∑

r1=0

N2∑

j2=0

j2∑

m21=0

(−1)k2(N2+1)
(
N2
j2

)(
j2
m21

)
Cj2,k2(t2; θN ′2)Bj2−m21(N2)

(α2c2 − k2π)
N02+1 (α2t2 − k2π)

p2+1

·
(
N01
r1

)
(p1 + 1)r1AN01−r1(t1; θN01)

(c1 − t1)p1+r1+1
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m21∑

m22=0

(
m21
m22

)
(N02 +m21 −m22)! 2F1

(
m22 −m21, p2 + 1
m22 −m21 −N02

∣
∣
∣
α2c2 − k2π

α2t2 − k2π

)

α
m22−m21
2 (c2α2 − k2π)

m21−m22

· ∂m21

∂x
m21
2

1F1

( −r1

−p1 − r1

∣
∣
∣(c1 − t1)

∂

∂c1

)
◦*

(
c1, k2

π

α2

)

+ (−1)|p|p!
N0!

N01∑

r1=0

(
N01
r1

)
(p1 + 1)r1AN01−r1(t1; θN01)

(c1 − t1)p1+r1+1

N02∑

r2=0

(
N02
r2

)
(p2 + 1)r2AN02−r2(t2; θN02)

(c2 − t2)p2+r2+1

1F1

( −r1

−p1 − r1

∣
∣∣(c1 − t1)

∂

∂c1

)
1F1

( −r2

−p2 − r2

∣
∣∣(c2 − t2)

∂

∂c2

)
◦*(c1, c2).

(14.37)

The convergence is uniform with respect to bounded tj �∈ {cj , xjn = nj
π
αj
},

j = 1, 2.

Remark 5 We point out that certain formulae listed in [32–34] are corollaries of
the master two-dimensional generalized sampling series (14.37). Moreover, in the
case pj = qj = Nj = 0; j = 1, 2 (14.37) becomes the formula [37, p. 17, Eq. (7)],
while specifying pj = Nj = N0j = 0; j = 1, 2 implies [37, p. 18, Eq. (8)]. Finally,
by pj = Nj = 0;N0j = −1; j = 1, 2 we infer the formula [37, p. 18, Eq. (9)]. �
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Chapter 15
Voronoi Polygonal Hybrid Finite
Elements and Their Applications

Hui Wang and Qing-Hua Qin

This chapter describes the polygonal hybrid finite element formulation with fun-
damental solution kernels for two-dimensional elasticity in isotropic and homoge-
neous solids. The n-sided polygonal discretization is implemented by the Voronoi
diagram in a given domain. Then the element formulation is established by introduc-
ing two independent displacements, respectively, defined within the element domain
and over the element boundary. The element interior fields approximated by the
fundamental solutions of problem can naturally satisfy the governing equations
and the element frame fields approximated by one-dimensional shape functions
are used to guarantee the conformity of elements. As a result, only element
boundary integrals caused in the modified hybrid functional are needed for practical
computation. Finally, the present method is verified by three examples involving the
usage of general and special n-sided polygonal hybrid finite elements.

15.1 Introduction

The finite element method (FEM) is the most popular tool for finding numerical
solutions of a wide range of engineering problems subjected to loadings, because
an engineering problem defined in a complex continuum can be modeled by a finite
number of small elements with simple geometric shapes. In the conventional two-
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Fig. 15.1 Schematic of triangular linear finite element

dimensional finite element formulation, triangular or quadrilateral finite elements
are well developed for various engineering applications [1, 2]. Such element formu-
lation is generally based on the use of first- or second-order polynomial interpolation
functions for the dependent field variable approximation, i.e., displacement and
temperature. This requires that the values of the dependent field variable at element
nodes can uniquely determine the coefficients of its interpolating polynomial. For
example, for the two-dimensional triangular linear finite element consisting of three
nodes, displayed in Fig. 15.1, the displacement component at any point (x, y) or
(x1, x2) in the whole element can be approximated by the following first-order
polynomial interpolation as:

u(x, y) = a + bx + cy (15.1)

where a, b, and c are the coefficients to be determined.
We notice that the displacement field variable u(x, y) should be equal to the

nodal displacement when the coordinate (x, y) moves to that nodal point. Thus, we
have

a + bx1 + cy1 = u(x1, y1) = u1

a + bx2 + cy2 = u(x2, y2) = u2

a + bx3 + cy3 = u(x3, y3) = u3

(15.2)
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Equation (15.2) can be rewritten in matrix form as

⎡

⎣
1 x1 y1

1 x2 y2

1 x3 y3

⎤

⎦

⎧
⎨

⎩

a

b

c

⎫
⎬

⎭
=

⎧
⎨

⎩

u1

u2

u3

⎫
⎬

⎭
(15.3)

from which we obtain

⎧
⎨

⎩

a

b

c

⎫
⎬

⎭
=

⎡

⎣
1 x1 y1

1 x2 y2

1 x3 y3

⎤

⎦

−1 ⎧
⎨

⎩

u1

u2

u3

⎫
⎬

⎭
(15.4)

Hence, substituting these coefficients into Eq. (15.1) finally gives

u(x, y) = N1(x, y)u1 +N2(x, y)u2 +N3(x, y)u3 (15.5)

in which

N1(x, y) = 1

2Ae

[(x2y3 − x3y2)+ (y2 − y3)x + (x3 − x2)y]
N2(x, y) = 1

2Ae

[(x3y1 − x1y3)+ (y3 − y1)x + (x1 − x3)y]
N3(x, y) = 1

2Ae

[(x1y2 − x2y1)+ (y1 − y2)x + (x2 − x1)y]
(15.6)

are shape functions andAe is the area of the triangular element that can be calculated
using the determinant of the coefficient matrix in Eq. (15.3)

Ae = 1

2

∣
∣
∣
∣
∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣
∣
∣
∣
∣∣

(15.7)

As an alternative to conventional finite elements, there has been growing interest
in developing nontraditional finite elements with arbitrary polygonal and polyhedral
meshes over the past decade [3–5]. In convex polygonal or polyhedral finite
elements, the number of element sides n is not restricted to three (triangles) or
four (quadrilaterals) in the two-dimensional cases, so that they are capable of
possessing higher degrees of geometric isotropy and thus the meshing effort can
be significantly simplified for modeling complex geometries without introducing
numerical instability and the quality of mesh can be improved. However, it may
not be always possible to uniquely determine the coefficients of the polynomials
when n ≥ 4, typically for polygonal elements of arbitrary shapes. For such case,
although n linear equations for the n polynomial coefficients can still be defined,
the equations may not be independent. Moreover, when n ≥ 4, it is impossible
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to ensure inter-element displacement compatibility with n-term polynomial rep-
resentations. To overcome these obstacles, the Laplace/Wachspress interpolants
based on barycentric coordinates [3–6] are usually employed as shape functions
for approximated displacement fields in the polygonal finite element [7–9]. How-
ever, the construction of Laplace/Wachspress shape functions requires complicated
mathematical transformations, especially for polygonal elements with curved edges.
Moreover, different polygonal finite elements require different interpolants, as like
conventional finite elements. Besides, the numerical domain integration associated
with arbitrary polygonal finite element is a non-trivial task and usually needs special
integration rule such as homogeneous integration, Green-Gauss quadrature, and
strain smoothing [10–12].

Apart from the polygonal finite element technique with Laplace/Wachspress
interpolants, the hybrid Trefftz finite element method (HT-FEM) using T-complete
solutions of problem as approximation kernels can be utilized for developing
polygonal finite elements, because of the distinctive characteristic of element
boundary integral in the HT-FEM [13]. Different to the shape-function-based finite
elements, the hybrid Trefftz finite element introduces the two different displacement
fields, which are, respectively, defined inside the element and on its boundary. The
interior displacement field is approximated by the linear combination of truncated
T-complete functions of the problem, which exactly satisfy the governing partial
differential equations of the problem, such that the interior displacement field can
also satisfy the governing partial differential equations of the problem inside the
element, but not the conformity conditions between adjacent elements, which can
be guaranteed by introducing the frame displacement field defined on the element
boundary. To provide a linkage between these two independent displacement fields,
the hybrid integral functional should be elaborately developed. Typically, the natural
feature of the interior displacement field can be used to remove the domain integral
in it, and only element boundary integrals are encountered for computation, which
can be easily evaluated by standard Gaussian numerical quadrature. This means
the polygonal hybrid Trefftz finite elements with any number of sides can be
flexibly constructed for modeling the computational domain. Figure 15.2 shows
a general triangular hybrid Trefftz finite element with three nodes, for which
the interior displacement field (gray region) is only defined inside the element,
and the independent linear frame displacement field (color lines) is just defined
over the element boundary. Although the same three nodes are included in this
element, the interior displacement field based on T-complete interpolant can give
non-uniform stress and strain fields inside the element, rather than the constant
stress and strain fields in the conventional triangular linear finite element shown in
Fig. 15.1. However, the expressions of T-complete solutions of some problems are
either complex or difficult to be derived. Moreover, one needs to properly arrange
truncated terms for hybrid polygonal Trefftz finite elements with large numbers of
sides to prevent spurious energy modes and keep the solving matrix be of full rank.

In order to improve the hybrid Trefftz finite element formulation, a novel hybrid
finite element formulation is formed with the help of fundamental solutions of
problem which usually have unified expressions in practice [13–19], as is called
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Fig. 15.2 Schematic of triangular hybrid Trefftz finite element

HFS-FEM for short. In this chapter, Voronoi convex polygons with any number
of sides (n-sided convex polygons), and its performances on convergence and
accuracy are numerically studied via a few benchmark problems in the context of
two-dimensional linear isotropic elasticity. To generate convex polygons in various
shaped geometric domains, the PolyMesher written in Matlab codes based on
Voronoi diagram theory is employed by introducing related distance functions [20–
37]. For each Voronoi n-sided polygonal hybrid finite element, two types of indepen-
dent fields are introduced into the double-variable hybrid variational functional. One
is the intra-element displacement and stress fields, which are approximated by the
linear combination of fundamental solutions associated with several fictitious source
points so that they can naturally satisfy the elastic equilibrium equations. Another
is the auxiliary conforming element displacement field, which is defined along the
element boundary and interpolated by the conventional shape functions which is the
same as that in the conventional FEM [38] and boundary element method (BEM)
[39–43] to enforce the conformity requirement of displacement field on the common
interface of adjacent elements. The independence of the intra-element fields and
the inter-element field makes us conveniently construct arbitrary n-sided polygonal
elements. Moreover, the mathematical definition of the intra-element fields allows
the domain integral in the hybrid functional be converted into integrals on element
boundary wireframe, which are suitable for n-sided polygonal finite elements and
can be easily evaluated by summing Gaussian numerical quadrature values on each
segment of the element wireframe. This means that multiple types of polygonal
elements with different number of sides can be used together to model a specific
domain with same kernel functions, i.e., fundamental solutions in a unified form.
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This is the main advantage of the present hybrid polygonal finite element over
the conventional polygonal finite element with Laplace/Wachspress interpolants or
Trefftz polygonal finite element with T-complete functions.

The outline of this chapter is as follows: The basic theory of Voronoi diagram
is reviewed in Sect. 15.2, and then the governing equations for plane linear
elasticity and the basic procedure of the Voronoi polygonal hybrid finite elements
with fundamental solution kernels are described in Sect. 15.3. In Sect. 15.4, three
numerical examples are presented to validate the present element formulation and
assess its accuracy and convergence. Finally, some concluding remarks are drawn
in Sect. 15.5.

15.2 Basics of Voronoi Polygons

Voronoi cells provide rather convenience to develop unconventional polygonal
elements to discretize the computational domain due to the fact that different
polygonal cells are permitted to have a different number of sides. In mathematics
and computational geometry, a Voronoi polygonal cell is defined as a partition of
a plane based on distance to points in a specific subset of the plane. That set of
points is usually called as seeds, and for each seed there is a corresponding region
consisting of all points closer to that seed than to any other.

Given an arbitrary plane domain � ⊆ R
2. Let |x− z| denote the Euclidean

distance between the point x and the subset z. Given a set of seeds {zi}ki=1 belonging
to �, the Voronoi polygonal cell Vi corresponding to the point zi is defined by

Vi =
{
x ∈ � : |x− zi | ≤

∣∣x− zj
∣∣ , for all i �= j, j = 1, . . . , k

}
(15.8)

from which it is found that each such cell is obtained from the intersection of (k−1)
half-planes, and every common edge of it is defined as bisector to the line connecting
two neighboring seeds. Hence it is a convex polygon and has up to (k − 1) edges in
the boundary.

In order to understand how the Voronoi partition works, we consider two simple
cases including two and seven seeds, respectively, as indicated in Fig. 15.3. For
the case of two seeds, the definition in Eq. (15.8) gives the bisector of the line
connecting the two seeds and the shaded region is the Voronoi region corresponding
to the seed z1, while, for the case of seven seeds, the bisectors of lines connecting the
seed z1 and any other seeds zj (j �= 1) meet at circumcenters of related Delaunay
triangles. The connection of these centers of the circumcircles produces the Voronoi
region corresponding to the seed z1.

As a typical application of Voronoi diagram, Fig. 15.4 shows the Voronoi
polygonal cells corresponding to 200 randomly selected seeds in a square. It is
clearly seen that the Voronoi diagram discretizes the square with 200 polygonal
cells, which can be used to model topology change of material phase in material
science.
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Fig. 15.3 Schematic of producing Voronoi diagram. (a) Voronoi region generated by two seeds.
(b) Voronoi region generated by seven seeds

However, it is seen from Fig. 15.4 that there are some very small cells in
the generated Voronoi diagram, due to the randomness of seeds in the square
domain, and they are not beneficial to produce high-quality convex polygonal
discretization in the computing domain, so that the solution with higher accuracy
can be achieved. To improve mesh quality, the centroid Voronoi technique can
be employed by iteratively setting the seed of each cell to coincide with the cell
centroid [44]. Figure 15.5 shows a centroidal Voronoi tessellation in a square with
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Fig. 15.4 Voronoi diagram corresponding to 200 randomly selected seeds in a square

Fig. 15.5 200-cell centroidal Voronoi diagram corresponding to 200 seeds in a square
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Fig. 15.6 Schematic of two-dimensional elasticity

200 seeds, which are simultaneously the generators for the Voronoi tessellation and
the centroids of the Voronoi regions. It is clearly seen that the sizes of Voronoi
polygonal cells are relatively uniform, which are important to obtain high-accurate
finite element solutions.

15.3 Formulations of Polygonal Hybrid Finite Element

15.3.1 Governing Equations

In order to derive the element formulation, the governing equations of two-
dimensional linear elasticity in isotropic and homogeneous solids are firstly
reviewed to keep the content of this chapter intact.

Let us consider a two-dimensional (2D) static elasticity problem defined in the
isotropic and homogeneous domain � bounded by its boundary � = �u ∪ �t , �u ∩
�t = ∅, where �u and �t are the displacement and traction boundaries, respectively.
In the absence of body forces, the 2D static governing partial differential equations
describing elastic small element equilibrium at a point x ∈ �, as indicated in
Fig. 15.6, are given by [45]

LTσ(x) = 0, x ∈ � (15.9)
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where σ(x) = {σx(x), σy(x), τxy(x)}T or {σ11(x), σ22(x), σ12(x)}T is the stress
vector, and L is the strain–displacement operator matrix

L =

⎡

⎢⎢
⎢
⎢
⎢
⎣

∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

⎤

⎥⎥
⎥
⎥
⎥
⎦

(15.10)

It’s assumed that the rigid motion of an elastic body is constrained fully so
that no displacements of particles of the body are possible without a defor-
mation of it. Therefore, for small deformation case, the strain vector ε(x) =
{εx(x), εy(x), γxy(x)}T or {ε11(x), ε22 (x), γ12(x)}T at point x can be defined
through considering the deformation of small element at point x as

ε(x) = Lu(x) (15.11)

where u(x) = {u(x), v(x)}T or {u1(x), u2(x)}T is the displacement vector.
The relations between the stress and the strain components can be described by

the Hooke’s law in matrix form as

σ(x) = Dε(x) (15.12)

where D stands by the constant constitutive matrix

D =
⎡

⎣
λ+ 2μ λ 0

λ λ+ 2μ 0
0 0 μ

⎤

⎦ (15.13)

with

μ = E

2 (1+ ν)
, λ =

⎧
⎪⎨

⎪⎩

νE

(1+ ν) (1− ν)
for plane stress

νE

(1+ ν) (1− 2ν)
for plane strain

(15.14)

In Eq. (15.14), ν is Poisson’s ratio and E is Young’s modulus of isotropic and
homogeneous material.

Besides, the following displacement and traction boundary conditions prescribed
on the displacement boundary �u and the traction boundary �t

u(x) = ū, x ∈ �u

s(x) = s̄, x ∈ �s (15.15)
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and the continuity condition between adjacent material constituents Ri and Rj

ui = uj

on Ri ∩ Rj

si + sj = 0 (15.16)

should be augmented to form a complete solving system. ū and s̄ are, respectively,
the specified displacement and traction constraints, and the traction vector s =
{sx(x), sy(x)}T or {s1(x), s2(x)}T is given by

s = Aσ (15.17)

with

A =
[
n1 0 n2

0 n2 n1

]
(15.18)

and ni (i = 1, 2) are components of the unit outward normal vector to the boundary.
Alternatively, the governing partial differential equations and boundary condi-

tions listed above can be written in extremely concise form as

σij,j = 0 (15.19)

εij = 1

2
(ui,j + uj,i ) (15.20)

σij = Cijklεkl (15.21)

and

lui(x) = ūi , x ∈ �u

si(x) = σij (x)nj = s̄i , x ∈ �s (15.22)

where the repeated indices imply summation and the comma represents the differ-
ential operation, i.e., ui,j = ∂ui/∂xj . Cijkl is the general material tensor.

15.3.2 Mesh Discretization

In the computation, the solid body is firstly divided into N Voronoi polygonal
elements, which can be achieved by the so-called pre-processors, i.e., PolyMesher
[46]. This is especially true for problems with complex geometries. The meshing
procedure in a continuum solid generates unique numbers for all the polygonal
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Fig. 15.7 Example of a mesh with three polygonal elements and nodes properly numbered

Table 15.1 Example of
element connectivity

Elements Nodes

1© 6, 9, 12, 13, 10, 7
2© 7, 3, 1, 2, 6
3© 10, 11, 8, 5, 4, 3, 7

elements and nodes in a proper numbering manner. A polygonal element is
formed by connecting its nodes in a pre-defined consistent fashion, i.e., anti-
clockwise direction, to create the connectivity of the element. Figure 15.7 shows
an example of a polygonal mesh for a two-dimensional solid, and Table 15.1 gives
the corresponding nodal connectivity data. It is evident that all the three polygonal
elements together form the entire computing domain of the problem without any
gap or overlapping. Moreover, it is seen from Fig. 15.7 that it is possible for the
domain to consist of different types of polygonal elements with different numbers
of nodes, as long as they are geometrical compatible (no gaps and overlapping)
on the boundaries between adjacent elements. Besides, you can freely control the
density of mesh according to your requirements of accuracy and computational
time. Generally, a finer mesh will yield more accurate results, but will increase the
computational cost.
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Fig. 15.8 Illustration of polygonal hybrid finite element with linear boundary

15.3.3 Displacement Interpolations

Once the domain discretization is finished, we can introduce the assumed pattern
of displacement field in each polygonal element. As an example, for a typical
polygonal hybrid finite element shown in Fig. 15.8, it will be assumed that the whole
element domain consists of the interior domain �e and the boundary �e. Such
partition will make it easier in introducing different patterns of the displacement
field on the boundary and in the interior domain.

Within the interior of the element domain, the linear combination of displacement
fundamental solutions of the problem at a set of sources is used as the approximation
function to model the intra-element displacement field at any point x ∈ �e, that is,

uk(x) =
m∑

i=1

[u∗1k(x, xsi )c
i
1 + u∗2k(x, xsi )c

i
2] =

m∑

i=1

2∑

l=1

u∗lk(x, xsi )c
i
l , x ∈ �e

(15.23)

where m is the number of source points distributed outside the element domain,
u∗lk(x, xsi ) represents the displacement response along the kth direction at the point
x due to the unit force along the lth direction at the source point xsi , and cil is the
source intensity along the lth direction at the source point xsi . Besides, u1 and u2
stand by the displacement component u and v in the study, respectively.
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For plane strain problems, the induced displacement solutions, the so-called
Kelvin solutions, at x caused by the l-direction unit force at xsi , can be written as
[40, 47]

u∗lk(x, xsi ) =
1

8πG(1− ν)

[
(3− 4ν) δlk ln

1

r
+ r,lr,k

]
(15.24)

where r stands for the Euclidean distance between x and xsi , and

r,l = ∂r

∂xl
(15.25)

Besides, as indicated in Eq. (15.23), the source points placed outside the element
are needed for the intra-element displacement approximation. This can be done by
distributing these source points on the pseudo-boundary geometrically similar to the
element physical boundary �e, as well done in the classic method of fundamental
solution [48–55], and their locations on the pseudo-boundary can be generated by a
simple geometrical expression with a dimensionless parameter γ > 0 [56, 57]

xs = xb + γ (xb − xc) (15.26)

where xs, xb, xc represent the coordinates of source point, node, and center of the
element, respectively.

For convenience, we rewrite Eq. (15.23) in the following matrix form:

u(x) =
m∑

i=1

Ni (x)ci = Ne(x)ce, x ∈ �e (15.27)

where

ce = { c1
T c2

T · · · cmT }T (15.28)

is a column vector of 2×m undetermined coefficients,

Ne(x) = [N1(x) N2(x) · · · Nm(x) ] (15.29)

denotes a matrix containing displacement fundamental solutions of coordinates x,
and

Ni (x) =
[
u∗11(x, xsi ) u

∗
21(x, xsi )

u∗12(x, xsi ) u
∗
22(x, xsi )

]
, ci = { ci1, ci2 }T (15.30)
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Furthermore, the corresponding strain and stress fields can be derived by
considering the strain–displacement relation in (15.11) and the stress–strain relation
in (15.12)

ε(x) = Se(x)ce (15.31)

σ(x) = T(x)ce (15.32)

where

Se(x) = LNe(x) (15.33)

and

Te(x) = DSe(x) (15.34)

respectively, denote the induced strain and stress matrices that consist of fundamen-
tal solutions of the strain and stress fields.

Besides, from Eqs. (15.17) and (15.32), the column vector of boundary traction
can be expressed as

t = Aσ = ATece = Qece (15.35)

It’s evident that the intra-element stress field (15.32) can naturally satisfy the
linear elastic governing partial differential equations (15.9) for the sake of the
physical definition of fundamental solutions. This attractive feature is beneficial to
simplify the hybrid functional below.

However, the intra-element displacement field defined within the interior of the
element given by Eq. (15.27) is non-conforming across the inter-element boundary.
To deal with such problem, the hybrid technique popularly used in the hybrid finite
element method pioneered by Pian [58–62] is employed to introduce an auxiliary
conforming displacement field along the element boundaries. Here, the independent
boundary displacement field is interpolated using the displacement vector de at the
nodes of the element as

ũ(x) = Ñe(x)de, x ∈ �e (15.36)

where the elements of the interpolation matrix Ñe are functions of the element
boundary coordinates. For the two-dimensional case under consideration, the
boundary displacement interpolation matrix Ñe consists of the standard one-
dimensional shape functions as used in the conventional one-dimensional bar
element. For example, for the six-sided polygonal hybrid finite element including
1, 2, 3, 4, 5, and 6 nodes, as indicated in Fig. 15.8, when x locates at its second side
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connecting the global nodes 2 and 3, the matrix Ñe and the vector de can be written
as

Ñe =
[

0 Ñ1 Ñ2 0 0 0
]

(15.37)

de =
[

u1 u2 u3 u4 u5 u6
]T

(15.38)

where the elements in the interpolation matrix Ñe are 2× 2 submatrix, i.e.,

Ñ1 =
[
Ñ1(ξ) 0

0 Ñ1(ξ)

]
, Ñ2 =

[
Ñ2(ξ) 0

0 Ñ2(ξ)

]
(15.39)

and

Ñ1(ξ) = 1− ξ

2
, Ñ2(ξ) = 1+ ξ

2
(−1 ≤ ξ ≤ 1) (15.40)

represent the standard one-dimensional linear shape functions. In Eq. (15.40), ξ is a
natural coordinate system defined along the side connecting the global nodes 2 and
3. Besides, in Eq. (15.38), uiT = {ui, vi} is the nodal displacement vector.

For the isoparametric element formulation, the linear shape functions Ñ1(ξ) and
Ñ2(ξ) in Eq. (15.40) are also used for the element geometry interpolation through
the following relation:

x(ξ) = Ñ1(ξ)x2 + Ñ2(ξ)x3 (15.41)

which maps the natural ξ coordinate of any point in the mapped element to the
actual x coordinate of the point in the physical element, as indicated in Fig. 15.9.

Additionally, as illustrated above, the linear shape functions are employed for
the approximation of inter-element displacement distribution on each element side.
Actually, the quadratic shape functions can also be employed for inter-element

Fig. 15.9 Geometry interpolation from one side of the physical element to the mapped line
element
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Fig. 15.10 Illustration of
polygonal hybrid finite
element with quadratic
boundary

displacement interpolation. This means that there are three nodes for each element
side. As an example, for the element shown in Fig. 15.10 containing 6 quadratic
sides and 12 nodes, the shape function matrix Ñe and the nodal vector de over the
second side consisting of nodes 2, 8, and 3 can be written as

Ñe =
[

0 Ñ1 Ñ3 0 0 0 0 Ñ2 0 0 0 0
]

(15.42)

de =
[

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12
]T

(15.43)

where each element in the interpolation matrix Ñe is 2× 2 submatrix, i.e.,

Ñ1 =
[
Ñ1(ξ) 0

0 Ñ1(ξ)

]
, Ñ2 =

[
Ñ2(ξ) 0

0 Ñ2(ξ)

]
, Ñ3 =

[
Ñ3(ξ) 0

0 Ñ3(ξ)

]

(15.44)

with

Ñ1(ξ) = −ξ(1− ξ)

2
, Ñ2(ξ) = 1− ξ2, Ñ3(ξ) = ξ(1+ ξ)

2
(15.45)

Correspondingly, the geometry interpolation over this element side can be given
through the following relation:

x(ξ) = Ñ1(ξ)x2 + Ñ2(ξ)x8 + Ñ3(ξ)x3 (15.46)
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15.3.4 Double-Variable Hybrid Functional

In mechanics of solids, our problem is to determine the displacement distribu-
tion of the body shown in Fig. 15.6, which should satisfy the governing equa-
tions (15.9), (15.11), (15.12) and the boundary conditions (15.15). Then strains and
stresses can be subsequently determined because they are related to displacements.
This leads to requiring solutions of the second-order partial differential equations.
However, the exact solutions to such problem are only available for simple
geometries and loading conditions [63–69]. For problems of complex geometries
and general boundary and loading conditions, obtaining exact solutions is an
almost impossible task. For such case, finding approximate solutions is popularly
performed and can usually be achieved through energy (variational) methods or
weighted residual methods, which require a weaker continuity on the field variables
and generally are written in an integral form. The typical application of weak-
form method is the finite element method. However, the stationary conditions of
the traditional potential or complementary variational functional cannot guarantee
satisfaction of the inter-element continuity conditions. To meet the requirement of
inter-element continuity, a modified variational functional based on two independent
field variables is defined in integral form

+m =
∑

e

+me (15.47)

where

+me =
∫

�e

Uεd�−
∫

�s
e

s̄i ũid� +
∫

�e

si (ũi − ui) d� (15.48)

is the elementary variational functional and Uε is the strain energy per unit volume
defined as

Uε = 1

2
σij εij (15.49)

In Eq. (15.47), the governing equations (15.9), (15.11), (15.12) hold true, a
priori, within the element domain due to the use of the fundamental solutions as
intra-element trial functions, and the boundary displacement satisfies the essential
boundary conditions. The similar principle to construct variational functional with
two independent variables can be found for potential problems [13, 20] and elastic
problems [22, 23]. As indicated in Fig. 15.8, the boundary �e of a particular
polygonal element e consists of the following parts:

�e = �u
e ∪ �s

e ∪ �I
e (15.50)
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where �u
e = �e ∩ �u is the prescribed displacement boundary, �s

e = �e ∩ �s is the
prescribed traction boundary, and �I

e stands for the inter-element boundary of the
element “e.”

15.3.4.1 Stationary Condition of the Proposed Variational Functional

Next we will show that the stationary condition of the elementary functional (15.48)
leads to the equilibrium equation (15.9), the boundary conditions (15.15), and the
continuity conditions (15.16) between elements.

For this purpose, Hamilton’s principle can be used as a simple yet powerful tool
to derive discretized system equations. It states simply that of all the admissible
displacement the most accurate solution makes the static Lagrangian functional
a minimum. Here, an admissible displacement refers to that satisfying the dis-
placement compatible (continuous) requirement in the problem domain and the
prescribed displacement constraints.

Therefore, in mathematics, Hamilton’s principle states

δ+me = 0 (15.51)

The first-order variational of Eq. (15.51) yields

δ+me =
∫

�e

δUεd�−
∫

�s
e

s̄i δũid� +
∫

�e

δsi (ũi − ui) d� +
∫

�e

si (δũi − δui) d�

(15.52)

in which the first term is given as

∫

�e

δUεd� =
∫

�e

σij δεijd� =
∫

�e

σij δui,jd�

=
∫

�e

(σij δui),jd� −
∫

�e

σij,j δuid� (15.53)

Using the Gaussian theorem

∫

�

f,id� =
∫

�

f nid� (15.54)

we have
∫

�e

(σij δui),jd� =
∫

�e

siδuid� (15.55)
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Thus, Eq. (15.53) can be written as

∫

�e

δUεd� =
∫

�e

siδuid� −
∫

�e

σij,j δuid� (15.56)

Substituting Eq. (15.56) into Eq. (15.52) gives

δ+me = −
∫

�e

σij,j δuid�−
∫

�s
e

s̄i δũid� +
∫

�e

δsi (ũi − ui) d� +
∫

�e

siδũid�

(15.57)

For the proposed method, the admissible boundary displacement δũi satisfies the
displacement conformity in advance, that is,

δũi = 0 on �u
e (ũi = ūi)

δũei = δũ
f

i on �I
ef (ũei = ũ

f

i ) (15.58)

then, Eq. (15.57) can be rewritten as

δ+me = −
∫

�e

σij,j δuid�+
∫

�s
e

(si − s̄i ) δũid� +
∫

�I
e

siδũid�

+
∫

�e

δsi (ũi − ui) d� (15.59)

from which the governing equation in the domain �e and boundary conditions on
�s
e can be obtained

σij,j = 0 in �e

si = σij nj = s̄i on �s
e

ũi = ui on �u
e (15.60)

by using the stationary condition δ+me = 0 and the arbitrariness of quantities δui ,
δũi , and δsi .

As to the continuity requirement between the two adjacent elements “e” and
“f ” given in Eq. (15.16), we can obtain it in the following way. When assembling
elements “e” and “f,” we have

δ+m(e+f ) = −
∫

�e+�f

σij,j δuid�+
∫

�s
e+�s

f

(si − s̄i ) δũid�

+
∫

�I
ef

(
sie + sif

)
δũid� +

∫

�e+�f

δsi (ũi − ui) d�
(15.61)
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from which the vanishing variation of +m(e+f ) leads to the continuity condition
sie + sif = 0 on the inter-element boundary �I

ef .

15.3.4.2 Theorem on the Existence of Extremum

If the expression

∫

�

δ2Uεd�−
∑

e

[∫

�e

δsie(δũie − δuie)d� +
∫

�I
e

δsieδũied�

]

(15.62)

is uniformly positive (or negative) in the neighborhood of ui0, where the displace-
ment ui0 has such a value that +m(ui0) = (+m)0, and (+m)0 stands for the
stationary value of +m, we have

+m ≥ (+m)0 [or +m ≤ (+m)0] (15.63)

in which the relation that ũie = ũif is identical on �e ∩ �f has been used. This is
due to the definition of continuity condition in Eq. (15.16).

Proof The proof of the theorem on the existence of extremum may be completed by
way of the so-called second variational approach [23, 70]. In doing this, performing
variation of δ+m and using the constrained conditions, we find

δ2+m =
∫

�

δ2Uεd�−
∑

e

[∫

�e

δsie(δũie − δuie)d� +
∫

�I
e

δsieδũied�

]

= expression (15.62) (15.64)

Therefore, the theorem has been proved from the sufficient condition of the
existence of a local extreme of a functional. This completes the proof.

15.3.5 Formation of Resulting Linear Equations

15.3.5.1 Element Equations

Once the two independent displacement fields, which are, respectively, defined
within the interior and along the boundary of the element domain, are assumed,
the hybrid finite element equation for a polygonal element can be formulated using
the following process.
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The element double-variable hybrid functional in Eq. (15.48) can be written in
concise form as

+me = 1

2

∫

�e

σij εijd�−
∫

�s
e

s̄i ũid� +
∫

�e

si (ũi − ui) d� (15.65)

By substituting for the strain component from the element strain–displacement
relationship in Eq. (15.20) into the first integral in the right-hand side of Eq. (15.65),
we have

+me = 1

4

∫

�e

σij (ui,j + uj,i )d�−
∫

�s
e

s̄i ũid� +
∫

�e

si (ũi − ui) d� (15.66)

Considering the symmetry of stress components, that is, σij = σji , we have

σij ui,j = σij uj,i (15.67)

Then Eq. (15.66) is further expressed as

+me = 1

2

∫

�e

σij ui,jd�−
∫

�s
e

s̄i ũid� +
∫

�e

si (ũi − ui) d� (15.68)

Using the Gaussian theorem given in Eq. (15.54), we get

1

2

∫

�e

σij ui,jd� = 1

2

∫

�e

(σij ui),jd�− 1

2

∫

�e

σij,j uid�

= 1

2

∫

�e

σij uinjd�− 1

2

∫

�e

σij,j uid� (15.69)

Remembering the relationship in Eq. (15.22), we further have

1

2

∫

�e

σij ui,jd� = 1

2

∫

�e

siuid�− 1

2

∫

�e

σij,j uid� (15.70)

Because of the natural satisfaction of the equilibrium equations by the assumed
intra-element displacement field inside the element domain, the domain integral in
Eq. (15.70) can be really removed. Hence, we finally have

1

2

∫

�e

σij ui,jd� = 1

2

∫

�e

siuid� (15.71)
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Substituting Eq. (15.71) into Eq. (15.68) can produce

+me = 1

2

∫

�e

siuid�−
∫

�s
e

s̄i ũid� +
∫

�e

si (ũi − ui) d�

= −1

2

∫

�e

siuid�−
∫

�s
e

s̄i ũid� +
∫

�e

si ũid� (15.72)

which can be rewritten in matrix form as

+me = −1

2

∫

�e

sTud� −
∫

�t
e

s̄Tũd� +
∫

�e

sTũd� (15.73)

Subsequently, the substitution of the intra-element displacement field (15.27), the
induced traction field (15.35), and the inter-element displacement field (15.36) into
the functional (15.73) yields

+me = −1

2
ceTHece − deTge + ceTGede (15.74)

where

He =
∫

�e

Qe
TNed�

Ge =
∫

�e

Qe
TÑed�

ge =
∫

�s
e

ÑT
e s̄d� (15.75)

In the practical numerical implementation, the matrices He and Ge can be
evaluated by means of side-by-side Gaussian quadrature over the entire element
boundary, while the element equivalent nodal force vector ge representing the
contribution of prescribed external tractions on the element side can be evaluated
by the same numerical quadrature scheme just along this side, that is,

He =
ns∑

s=1

[∫ 1

−1
QT(x(ξ))N(x(ξ))J (ξ)dξ

]
=

ns∑

s=1

ng∑

k=1

wkQT(x(ξk))N(x(ξk))J (ξk)

Ge =
ns∑

s=1

[∫ 1

−1
QT(x(ξ))Ñ(x(ξ))J (ξ)dξ

]
=

ns∑

s=1

ng∑

k=1

wkQT(x(ξk))Ñ(x(ξk))J (ξk)

ge =
∫ 1

−1
ÑT(x(ξ))t̄J (ξ)dξ =

ng∑

k=1

wkÑT(x(ξk))t̄J (ξk) (15.76)
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where ns is the number of sides of polygonal element, ng is the number of Gaussian
quadrature points on each element side, wk is the weighting factors for the kth
Gaussian points ξk , and J (ξk) is the corresponding Jacobian coefficient which can
be evaluated by the geometrical mapping equation given in Eqs. (15.41) or (15.46)

J (ξ) =
√(

dx

dξ

)2

+
(

dy

dξ

)2

=
√√
√
√

(
nn∑

i=1

dÑi

dξ
xi

)2

+
(

nn∑

i=1

dÑi

dξ
xi

)2

(15.77)

where nn is the number of nodes on each side of the element.
The minimization of the functional +me in Eq. (15.74) with respect to ce and de

yields

∂+me

∂ceT = −Hece +Gede = 0

∂+me

∂deT = Ge
Tce − ge = 0

(15.78)

from which we can obtain the element stiffness equation

kede=ge (15.79)

and the optional relationship of ce and de

ce=He
−1Gede (15.80)

where

ke = Ge
THe

−1Ge (15.81)

It is necessary to note that in the element equation (15.79), the computation of the
right term is same as that in the conventional finite element formulation. Besides,
since the element matrix He is symmetric, the caused element stiffness matrix ke in
Eq. (15.81) keeps symmetric too.

More importantly, from the procedure described above, the evaluations of both
He and Ge involve the element boundary integrals only. The employment of
fundamental solutions of the problem in the intra-element displacement field can
directly convert the domain integral in the hybrid functional into the boundary
line integrals, which obviously decreases the complexity of the integration by
one dimension and can be more easily evaluated in practice than the domain
integrals, especially in the natural polygonal finite elements [36, 71]. Furthermore,
the limitation of number of element sides is entirely removed. Such feature allows
for greater flexibility in constructing polygonal elements of arbitrary shapes with the
same kernel functions, the fundamental solutions of problem here, for discretizing
complex geometry domains. This means that we can establish a family of n-sided
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Fig. 15.11 Schematic of n-sided polygonal hybrid finite element family tree

polygonal hybrid finite element (n ≥ 3) in a unified form for computational
application, as shown in Fig. 15.11. But we need to note that the element in
Fig. 15.11 can be modified to that with quadratic side consisting of three nodes,
according to your needs.

15.3.5.2 Assembly of Global Equation

The element stiffness equations (15.79) for all the individual elements can be
assembled together to form the global stiffness equation:

KD = F (15.82)
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where K is the global stiffness matrix, which is sparse and symmetric in practice.
D is a vector of all the displacements at all the nodes in the entire problem domain,
and F is a vector of the total equivalent nodal force vector.

This process of assembly is one of simply adding up the contributions from
all the elements connected at a node, as done in the conventional finite element
procedure. For example, for the system consisting of three polygonal elements given
in Fig. 15.7, the node 6 corresponding to the global degrees of freedom 11 and 12
occupies the rows 11 and 12 and the columns 11 and 12 in the global stiffness matrix
K, while it is the starting node of the six-sided polygonal element 1 so it has the local
degrees of freedom 1, 2. Similarly, for the five-sided polygonal element 2, it has the
local degrees of freedom 9, 10, as indicated in element connectivity Table 15.1, so
we can simply add the corresponding elements in the element matrices to produce
the counterpart in the global stiffness matrix

[
k1

1,1 k1
1,2

k1
1,2 k1

2,2

]

+
[
k2

9,9 k2
9,10

k2
9,10 k2

10,10

]

=
[
K11,11 K11,12
K11,12 K12,12

]

(15.83)

where kei,j and Ki,j denote the matrix component of the local element matrix and
the global matrix, respectively.

15.3.5.3 Imposition of Displacement Constraints

The global stiffness matrix K in Eq. (15.82) does not usually have a full rank,
because the prescribed displacement constraints are not yet imposed. Physically, an
unconstrained solid or structure is capable of performing rigid movement; thus, the
displacement solutions may be not unique. To obtain unique displacement solutions,
the prescribed displacement conditions must be introduced into the global stiffness
equations.

For constrained solids and structures, the most direct way to impose the
displacement constraints is simply removing the rows and columns corresponding
to the constrained nodal degree of freedoms. But such treatment may lead to the
disorder of the global matrix and the size of it is changed too. Besides, the penalty
approach can be employed, which is achieved by adding a large number (penalty
term), i.e., 1020, to the leading diagonal of the global matrix in the row in which
the prescribed constraint value is required, and simultaneously, the term in the same
row of the nodal force vector is replaced by the multiplication of the prescribed
constraint value and the augmented stiffness diagonal element. For example, we
may assume that the condition at the degree of freedom D5 is known to be D̄5, then
following the rule described above, the fifth row of the unconstrained set of stiffness
equations (15.82) with n unknowns totally would be modified as

K5,1D1+· · ·+
(
K5,5 + 1020

)
D5+· · ·+K5,nDn = D̄5

(
K5,5 + 1020

)
(15.84)
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which would have the approximated effect of making D5 = D̄5, since the terms
n∑

i=1,i �=5
K5,iDi are very small relative to the larger diagonal term (K5,5 + 1020)D5

and can be neglected in the practical computation.
Additionally, the so-called large number 1020 can be replaced by a smaller

number. In our application, the penalty parameter is chosen by

max
i,j=1→n

(
∣
∣Ki,j

∣
∣)× 106 (15.85)

After the treatment of constraints, the modified stiffness matrix K in Eq. (15.82)
will be of full rank, and will be positive definite. Next, the modified stiffness
equations can be solved by the standard solver of linear system of equations such as
Gaussian elimination method.

15.3.6 Recovery of Rigid-Body Motion

By checking the above procedure, we know that the solution fails if any of the
functions u∗li is in a rigid-body motion mode. As a consequence, the matrix He is
not in full rank and becomes singular for inversion. Therefore, special care should
be taken to discard all rigid-body motion terms from ue to prevent the element
deformability matrix He from being singular.

However, it is necessary to reintroduce the discarded rigid-body modes in the
internal field ue of a particular element and then to calculate the corresponding rigid-
body amplitude by requiring local or average fitting, for example, the least squares
adjustment of ue and ũe at all nodes of the polygonal element. In this case, these
missing terms can easily be recovered by setting for the augmented intra-element
displacement field of the polygonal element e

ûe = ue +
[

1 0 x2

0 1 −x1

]
c0 (15.86)

where c0 is the undetermined rigid-body amplitude vector, which can be calculated
using the least square matching of ue and ũe at all nodes of the polygonal element,
that is,

n∑

i=1

[
(u1i − ũ1i )

2 + (u2i − ũ2i)
2
]
= min (15.87)

which finally yields

Rec0 = re (15.88)
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with

Re =
n∑

i=1

⎡

⎣
1 0 x2i

0 1 −x1i

x2i −x1i x
2
1i + x2

2i

⎤

⎦ (15.89)

re =
n∑

i=1

⎧
⎪⎨

⎪⎩

die1 − uie1
die2 − uie2(

die1 − uie1

)
x2i −

(
die2 − uie2

)
x1i

⎫
⎪⎬

⎪⎭
(15.90)

As a result, once the nodal field de and the interpolation coefficient ce are
determined by solving Eq. (15.80), then c0 can be evaluated from Eq. (15.88).
Finally, the complete displacement field ûe at any interior point in a particular
element can be obtained by means of Eq. (15.86).

15.3.7 Algorithm for Implementing the Solution Procedure

A step-to-step algorithm is presented here to implement the element formulations
and the solution procedures for the analysis of linear elastic problems using the
Voronoi polygonal hybrid finite elements, as follows:

Step 1: The computing domain is discretized using the Voronoi polygonal cells,
and correspondingly, the element connectivity is established for use

Step 2: Evaluate the matrices He and Ge for each polygonal hybrid finite element
by Eq. (15.75)

Step 3: Evaluate the element stiffness matrix ke for each polygonal hybrid finite
element by Eq. (15.81)

Step 4: Assemble for producing the global stiffness matrix K
Step 5: Evaluate the equivalent nodal force vector F
Step 6: Introduce the prescribed displacement constraints in the global equations
Step 7: Solve the modified global equations for the nodal displacement solutions

D, and then determine the element nodal displacement de
Step 8: Evaluate the element interpolation coefficient ce by Eq. (15.80)
Step 9: Perform recovery of rigid-body motion for each element by solving

Eq. (15.88)
Step 10: Evaluate the element interior displacement and stress fields by

Eqs. (15.86) and (15.32)
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15.4 Applications

In this section, three numerical examples including the Cook’s problem, the thick
cylinder under internal pressure, and the elliptical hole problem in infinite plate are
tested to validate the present polygonal hybrid finite element and demonstrate its
accuracy and convergence.

15.4.1 Cook’s Problem

To validate the present polygonal hybrid finite element in a simple way, the Cook’s
problem in plane stress state [12, 72] is taken into consideration. It is assumed
that the left edge of the beam is fixed without rotation constraint and the right
edge is subjected to uniformly distributed shearing loads, as shown in Fig. 15.12.
For this problem, the deflection at the midpoint of the loaded edge is evaluated
by several meshes with the conventional quadrilateral finite elements implemented
by ABAQUS and the present n-sided polygonal hybrid finite elements to assess
the performance of the present elements, as indicated in Fig. 15.13. The results are
compared with the available reference value 23.96 [73, 74]. Besides, the results by
the present elements are also compared to those in Reference [74] by the 16 and 64
natural polygonal finite elements with Laplace interpolants.

The results in Table 15.2 indicate that the three types of elements can produce
better results with the increase of number of elements. However, the present
polygonal hybrid finite elements are not as stiff as the quadrilateral elements and
the natural polygonal finite elements and behave the best accuracy, especially with
coarser meshes. Similar conclusions can be found in literature [73].

Besides, it is observed that both the present polygonal hybrid finite elements
and the natural polygonal finite elements have more nodes than the conventional
quadrilateral finite elements with the same number of elements. For example, 19,
65, and 148 polygonal elements have 39, 132, and 296 nodes, respectively, but the

Fig. 15.12 Cook’s problem
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Fig. 15.13 Quadrilateral and polygonal discretization with 19, 65, and 148 elements

Table 15.2 Comparison of deflection results at the midpoint of the loaded edge for Cook’s
problem

Number of elements Polygonal hybrid FE Quadrilateral FE Polygonal FE Reference value

19 23.116 25.183 21.9240 23.96

65 23.801 24.195 23.4488

148 23.880 24.087 /

same number of quadrilateral elements just has 28, 83, and 175 nodes, respectively.
This can be attributed to the multi-node connection of polygonal mesh. Thus, the
polygonal elements inevitably lead to the bigger size of the solving system than that
for the quadrilateral elements.

Finally, to demonstrate the reasonable choice of the parameter γ in Eq. (15.26),
we investigate the variation of the deflection at the midpoint of the loaded edge
when the value of the parameter γ changes from 0.1 to 20. The results in Fig. 15.14
indicate that there is a large range to produce stable results for the three polygonal
meshes given in Fig. 15.13. However, it is found that too small values of γ , that is,
the source points are too close to the physical boundary of the hybrid element, lead
to vibrating results due to the near singularity of fundamental solutions. However,
when the source points are too remote from the element physical boundary, the
numerical accuracy may also decrease due to the round-off error caused by large
magnitude difference between the unknown interpolating coefficient ce and nodal
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Fig. 15.14 Illustration of the effect of the parameter γ on the deflection at the midpoint of the
loaded edge

displacement de. Here, we take γ = 10 for the following computation, unless
otherwise stated.

15.4.2 Thick Cylinder Under Internal Pressure

To demonstrate the applicability of the present Voronoi polygonal element for deal-
ing with curved boundaries, a long thick circular cylinder under internal pressure p
is accounted for, as indicated in Fig. 15.15. This problem has been studied by many
researchers to demonstrate the efficiency of the developed numerical methods such
as radial basis collocation methods [75, 76], in which the strong RBF interpolation
can produce exponential convergence rate. Due to axisymmetric feature of the
cylinder model, only one quarter of it, the shaded region in Fig. 15.15, is chosen
for computation and the corresponding boundary conditions are also displayed in
the figure. For this particular problem, the theoretical solutions of displacements
and stresses in the polar coordinate system (r, θ) are expressed as [45, 77]

ur = 1+ ν

E

[
−A

r
+ 2B (1− 2ν) r

]
, uθ = 0 (15.91)

σr = A

r2 + 2B, σθ = −A

r2 + 2B, σrθ = 0 (15.92)
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Fig. 15.15 Schematic diagram of thick cylinder under internal pressure

where

A = − Ra
2Rb

2

Rb
2 − Ra

2p, B = Ra
2

2(Rb
2 − Ra

2)
p (15.93)

In the practical computation, the inner and outer radii are Ra = 5 and Rb =
10, respectively. The applied internal uniform pressure is chosen as p = 10.
In Fig. 15.16, total three polygonal mesh configurations are used to model the
computing domain: (a) 150 Voronoi polygonal elements including 3 four-sided
elements, 46 five-sided elements, 96 six-sided elements, and 5 seven-sided elements;
(b) 400 Voronoi polygonal elements including 5 four-sided elements, 97 five-sided
elements, 273 six-sided elements, and 25 seven-sided elements; (c) 560 Voronoi
polygonal elements including 9 four-sided elements, 119 five-sided elements, 398
six-sided elements, and 34 seven-sided elements. For comparison, in Fig. 15.16,
the mesh divisions using general 4-node quadrilateral finite elements (CPE4R) in
ABAQUS are also provided. It’s noticed that the general finite element mesh is
produced by setting the same number of segments as that in Voronoi mesh along the
boundary of the computing domain.

Firstly, the numerical convergence of the relative error in the stress norm is shown
in Fig. 15.17. It is seen from Fig. 15.17 that both the present Voronoi polygonal
elements and the general 4-node quadrilateral elements yield optimal convergence
with mesh refinement. From Fig. 15.17, it can be observed that the present hybrid
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Fig. 15.16 Various mesh configurations of the thick cylinder with hybrid polygonal elements (left)
and general 4-node quadrilateral element CPE4R in ABAQUS (right)

polygonal elements yield more accurate results than general 4-node quadrilateral
elements. Also, similar convergence ratio for the two types of elements is presented
in Fig. 15.17. Next, the variations of radial displacement and radial and hoop stresses
along the bottom edge of the computing domain using 150 polygonal elements are
displayed in Fig. 15.18, from which it’s found that the numerical results from the
present polygonal elements agree well with the available exact results, except for
the radial stress σr at r = 5. The main reason is that the linear approximation of
equivalent nodal loads brings large error along the curved edge. Same problem can
be found when we solve this example using the commercial finite element software
ABAQUS with linear general element. To improve the numerical accuracy at r = 5,
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Fig. 15.17 Convergent results of stress for the thick cylinder under internal pressure

we can use more elements in the computing domain. For clarifying this, comparison
of exact solutions and numerical results from the present method and ABAQUS at
two key positions (point A and B in Fig. 15.15) is performed in Table 15.3, from
which it is illustrated that with mesh refinement, both the two methods converge to
the exact solution. Again, one observes that the present hybrid Voronoi polygonal
element can produce better accuracy than the general 4-node quadrilateral finite
element.

15.4.3 Infinite Plate with a Centered Elliptical Hole Under
Tension

In this example, for which the exact solution is available, an infinite plate with a
centered elliptical hole is considered to demonstrate the accuracy of the constructed
special n-sided elliptical-hole hybrid finite element. It is assumed that the plate is
subjected to unidirectional tension. Under the plane stress state, the exact complex
potential solutions for such case can be determined by using Cauchy integral
methods, as found in Muskhelishvili [77]. The related stress concentration factor
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Fig. 15.18 Variations of radial displacement (a) and stresses (b) along the bottom edge

(SCF) on the hoop stress σθ at the top point (a, 0) of the elliptical boundary is given
by

(σθ )max

p
= 1+ 2

a

b
(15.94)

In the computation, the infinite domain is idealized by a large square domain
taken from the work of Piltner [78] with the side length 100 and the major axis of
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Table 15.3 Comparison of exact solutions and different numerical results

Point A Point B

EXACT σ r −10.000 0.0000

σ θ 16.667 6.6667

Present σ r −8.3379 (150 elements) −0.1284 (150 elements)

−9.6818 (560 elements) −0.0107 (560 elements)

σ θ 16.8756 (150 elements) 6.6746 (150 elements)

16.6193 (560 elements) 6.6591 (560 elements)

ABAQUS σ r −8.4733 (144 elements) −0.2087 (144 elements)

−9.2030 (560 elements) −0.1041 (560 elements)

σ θ 15.1400 (144 elements) 6.8753 (144 elements)

15.8697 (560 elements) 6.7707 (560 elements)

Fig. 15.19 Infinite square
plate with a centered elliptical
hole under tension

the elliptical hole is taken to be a=2, as shown in Fig. 15.19. The applied uniform
tension load p is assumed to be 1. The mesh configuration associated with one 8-
node special hybrid element and 48 8-node general hybrid elements is displayed in
Fig. 15.20. The intra-element displacement field in the special hybrid element can
be formulated by employing the special fundamental solutions corresponding to
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Fig. 15.20 Mesh configuration of special element

the elliptical hole [78] to replace the general fundamental solutions in Eq. (15.24),
such that we can simply use a special hybrid polygonal element to enclose the
elliptical hole to avoid the mesh division around the hole boundary. Such strategy
can significantly decrease the computational cost when there are many holes or
inclusions in the computational domains [20]. The total number of nodes is 176.
Four symmetric displacement constraints at points (±50, 0), (0, ±50) are imposed
during the computation.

The corresponding variation of hoop stress along the elliptical hole boundary
is displayed in Fig. 15.21, and it is seen that there is good agreement between the
numerical results using the present hybrid finite element model and the analytical
solutions. As well, the decays of stress components σ11 and σ22 away from the
edge of the elliptical hole are shown in Figs. 15.22 and 15.23, from which it can be
seen that the magnitude of the stress components decays rapidly to the state without
the elliptical hole, so the correctness of the truncated size of the infinite plate is
illustrated.

Finally, the stress concentration factor for various ratios of a/b is calculated,
and numerical and analytical solutions are tabulated in Table 15.4, from which it
is found that the maximum relative error is just 0.27%, indicating that the present
hybrid model can accurately capture the dramatic variation of stress on the elliptical
hole boundary and the constructed special element is verified.
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Fig. 15.21 Variation of hoop stress along the boundary of elliptical hole

Fig. 15.22 Stress decay along the horizontal coordinate axis
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Fig. 15.23 Stress decay along the vertical coordinate axis

Table 15.4 Stress concentration factor for various ratios of a/b

a/b 1 2 3 4 5 6 7 8

EXACT 3 5 7 9 11 13 15 17

This study 3.008 5.010 7.012 9.015 11.018 13.021 15.024 17.026

Percentage relative error (%) 0.27 0.20 0.17 0.17 0.16 0.16 0.16 0.15

15.5 Conclusions

Voronoi cells can easily possess more connected neighbors and thus are suitable for
generating unstructured polygonal mesh with high level of geometric isotropy. In
this chapter, the formulation and implementation of n-sided polygonal hybrid finite
element based on Voronoi partition are presented for two-dimensional linear elastic
problems in isotropic and homogeneous materials. Different to the conventional
conforming finite element and the natural polygonal finite element which is based
on shape function interpolation at the whole element level, the present Voronoi
polygonal hybrid finite element is formulated by introducing two independent
displacement fields, respectively, within the interior and along the boundary of the
element domain. The attractive property of element boundary integrals is achieved
and permits versatile construction of convex polygons of arbitrary order to model
the computing domain. It is demonstrated from three numerical experiments that the
present Voronoi polygonal hybrid finite element has good convergence and accuracy
for handling two-dimensional linear elastic analysis and hence significantly extends
the potential applications of finite elements to convex n-sided polygons. Moreover,
it’s straightforward to integrate the present technique with conventional finite
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elements when necessary. It should also be mentioned that the present polygonal
element formulation can be extended to the solutions of three-dimensional prob-
lems, nonlinear problem, and coupled problems if the related fundamental solutions
are available.
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Chapter 16
Variational Methods for Schrödinger
Type Equations

Giovany Malcher Figueiredo, Edwin Gonzalo Murcia, and Gaetano Siciliano

16.1 Introduction

It is well known that the Schrödinger equation is one of the most important
equations in physics. It was formulated by E. Schrödinger in 1925 (which later in
1933 received the Nobel Prize in Physics) and introduced by taking into account
the de Broglie hypothesis according to which matter particles possess a wave
packet delocalized in space. According to the Copenhagen interpretation the square
modulus of the wave functionψ : R3×R→ C encloses the physical information on
the particle; in particular, |ψ|2 is related to the probability of finding the particle in
a specific space region. Since its formulation the Schrödinger equation is the object
of many research from a physical and mathematical point of view. Mathematically
the Schrödinger equation is a partial differential equation of the form

ih̄∂tψ = − h̄

2m
�ψ + Vψ + f (|ψ|)ψ

where ψ is the unknown function, m the mass particle, h̄ the normalized Plank
constant, V : R3 → R is a potential, and f a suitable nonlinearity. The symbol � is
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the Laplacian with respect to the spatial variables. We remark that, depending on the
physical model described, the potential V can be given a priori, which is the case
studied in Sect. 16.3, as well as it can be an unknown of the problem, for example it
can depend on the same ψ , which is the case studied in Sect. 16.4.

Actually here we will concern with fractional versions of the Schrödinger
equation driven by the Fractional Laplacian (−�)s, s ∈ (0, 1). In fact, since
the paper of Laskin [45–47], where he gave the bases for a Fractional Quantum
Mechanics, it has been recognized that the fractional version of the Schrödinger
equation is more appropriate to describe some physical and real models. We will
not enter in details here referring the reader to the appropriate sections below.

The search of standing wave solutions of the above fractional Schrödinger
equation, that is solution of the particular form

ψ(x, t) = u(x)eiωt , u : R3 → R, ω > 0,

(which are even interesting from a physical point of view) led to consider a
semilinear elliptic equation of type

(−�)su+ ωu+ V u = f (u).

Roughly speaking, we will treat the case in which the potential V is given, and
the case in which it is unknown, depending on the same wave function ψ . We
will employ variational methods in order to find multiple solutions. The choice of
working with variational methods is mainly due to the fact that, as it is well known,
the Schrödinger equation has a Lagrangian formulation. Indeed our assumptions on
f and V will be “compatible” with the use of variational tools.

The organization of this chapter is as follows.
Section 16.2 is devoted to recall basic mathematical facts useful to study our

equations. In particular the Sobolev spaces we will use, as well as few notions
of Differential Calculus in Hilbert spaces and Critical Point Theory. Indeed the
solutions of our fractional equations will be found as critical points of suitable
functionals defined in infinite dimensional Hilbert spaces, or Hilbert manifolds. This
part can be found in [52].

Section 16.3 is devoted to study the problem under a given external potential
V and a multiplicity result of solutions is presented. The results of this section are
given in [39].

Finally in Sect. 16.4 the problem under an unknown potential depending on the
same wave function (in other words, a system of partial differential equations) is
studied. Again a multiplicity result is obtained. The results presented here are taken
from [53].

Few Basic Notations As a matter of notations, we alert the reader that the Lebesgue
measure dx, dy, . . . in the integration will be omitted, unless strictly necessary.

We use the symbols C, Ci , for i = 1, 2, . . . for positive constants which may also
change from line to line.
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We denote with Br(x) the closed ball in R
3 centered in x with radius r > 0, with

Bc
r (x) its complementary; if x = 0, we simply write Br .

Other notations will be introduced whenever we need.

16.2 Background Material

In this section we recall few mathematical facts that will be used in the next two
sections where Schrödinger type equations are studied. Besides [52], we give also
other references where the interested reader may find all the details.

For the reader convenience we have divided this part into the following subsec-
tions.

• Recalling Sobolev Spaces. Here the function spaces where we will work are
introduced.

• Basic notions of differential calculus in Hilbert spaces. Here few notions of
differential calculus in Hilbert spaces are given: the notion of critical point of
functionals as well as few calculation rules and important examples. This is a
quite important topic since the solutions of our equations will be found as critical
points of suitable functionals restricted to Hilbert manifolds.

• The Ljusternick-Schnirelmann category. Here the main theorem of the Lju-
sternick-Schnirelmann theory is proved. This will be fundamental in order to
prove existence of many critical points of the functionals, hence solutions of our
equations.

• Schrödinger type equations. Here we apply the abstract results given in the
previous subsections to a Schrödinger equation involving the “genuine” Laplace
operator. Even though this is not exactly the equation studied in the subsequent
sections (indeed we will consider the case of fractional Laplacian and with a more
general nonlinearity) we believe this example is important in order to understand
the basic ideas and then generalize to the fractional case.

16.2.1 Recalling Sobolev Spaces

We begin by recalling basic facts in measure theory, see, e.g., [56, pg. 86 and pg. 91]
for more details. Here � is a domain in R

3.
We will concern just with the three-dimensional case since this is the case of our

applications, but of course the same analysis can be done for RN . If � ⊂ R
3 is a

domain, Lp(�) is the usual Lebesgue space endowed with norm | · |p,� or simply
| · |p if no confusion arises.

For our purpose, important results in Measure Theory are the following.
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Theorem 16.2.1 (Fatou’s Lemma) Let {fn} be a sequence of nonnegative, mea-
surable functions on �, such that fn(x)→ f (x) a.e. in �. Then

∫

�

f ≤ lim inf
n→∞

∫

�

fn.

Theorem 16.2.2 (Lebesgue Convergence Theorem) Let g be integrable over �

and let {fn} be a sequence of measurable functions such that |fn| ≤ g on � and for
almost all x in � we have fn(x)→ f (x) when n→∞. Then

∫

�

fn →
∫

�

f.

Lemma 16.2.3 (Brezis-Lieb Lemma) Given 1 < p < ∞, if {fn} ⊂ Lp(�) is
a bounded sequence of functions such that fn(x) → f (x) a.e. x ∈ �, then f ∈
Lp(�) and

∫

�

(|fn|p − |fn − f |p)→
∫

�

|f |p.

In virtue of the Brezis-Lieb lemma, if {fn} ⊂ Lp(�) is a sequence of functions such
that

fn(x)→ f (x) a.e. x ∈ � and |fn|p → |f |p,

then

fn → f in Lp(�).

The natural setting for the equations we are going to study involves Sobolev
spaces. H 1(�) is the Hilbert space endowed with the inner product and norm

〈u, v〉� :=
∫

�

∇u∇v +
∫

�

uv, ‖u‖2
� := 〈u, u〉�.

The space H 1
0 (�) is the subspace of H 1(�) defined as the completion of the test

functions C∞c (R3), the space of infinitely differentiable functions with compact
support, with respect to ‖ · ‖�. When � ⊂ R

3 is a bounded domain, H 1
0 (�) is

a Hilbert space endowed with the equivalent inner product and norm given by

〈u, v〉H 1
0 (�)

:=
∫

�

∇u∇v, ‖u‖2
H 1

0 (�)
:= 〈u, u〉H 1

0 (�)
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If � = R
3 we will suppress the symbol � in scalar products and Sobolev norms, as

well as in the Lp−norm. We will make use also of the Hilbert space

D1,2(R3) = {u ∈ L2∗(R3) : ‖∇u‖ ∈ L2(R3)}, 2∗ = 6

which coincides with the completion of the test functions with respect to the (square)
norm

‖u‖2
D :=

∫

R3
‖∇u‖2.

The dual spaces of H 1
0 (�) and D1,2(R3) are denoted by H−1(�) and D′,

respectively.
Recall that given X, Y Banach spaces, the notation X ↪→ Y means that X is

continuously embedded into Y , i.e. X ⊂ Y and the inclusion map ι : X → Y is
continuous. In this case there exists a constant C > 0 such that

‖u‖Y ≤ C‖u‖X, ∀u ∈ X.

When X ↪→ Y and the inclusion map ι is also a compact map we say that X is
compactly embedded into Y and we use the notation X ↪→↪→ Y .

For the next result see, e.g., [14, 15].

Theorem 16.2.4 If � ⊂ R
3 is a bounded domain, we have

H 1(�) ↪→ Lp(�), for 1 ≤ p ≤ 2∗

and

H 1(�) ↪→↪→ Lp(�), for 1 ≤ p < 2∗.

If � = R
3, then

H 1(R3) ↪→ Lp(R3), for 2 ≤ p ≤ 2∗

and

D1,2(R3) ↪→ L2∗(R3).

The embeddings in the whole space are not compact.

Let us introduce now the fractional Sobolev spaces. Given β ∈ (0, 1), we recall
that the fractional Laplacian (−�)β is the pseudodifferential operator which can be
defined via the Fourier transform

F((−�)βu) = | · |2βFu.
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If u has sufficient regularity, it can be given also by

(−�)βu(z) = −Cβ

2

∫

R3

u(z+ y)+ u(z− y)− 2u(z)

|y|3+2β dy, z ∈ R
3,

where Cβ is a suitable normalization constant depending also on the dimension. Let

Hβ(R3) =
{
u ∈ L2(R3) : (−�)β/2u ∈ L2(R3)

}

be the Hilbert space with scalar product and (squared) norm given by

(u, v) =
∫

R3
(−�)β/2u(−�)s/2v +

∫

R3
uv, ‖u‖2 = |(−�)β/2u|22 + |u|22.

It is known that Hβ(R3) ↪→ Lp(R3), p ∈ [2, 2∗β] with 2∗β := 6/(3− 2β).

We will consider also the homogeneous Sobolev spaces Ḣ α/2(R3), α ∈ (0, 3),
defined as the completion of C∞c (R3) with respect to the norm |(−�)α/4u|2. This
is a Hilbert space with scalar product and (squared) norm

(u, v)Ḣα/2 =
∫

R3
(−�)α/4u(−�)α/4v, ‖u‖2

Ḣ α/2 = |(−�)α/4u|22.

It is well known that Ḣ α/2(R3) ↪→ L
2∗α/2(R3), 2∗α = 6/(3 − α). For more general

facts about the fractional Laplacian, we refer the reader to the beautiful paper [34].
We remark that, recently, especially after the formulation of the Fractional

Quantum Mechanics, the derivation of the Fractional Schrödinger equation given
by Laskin in [45–47], and the notion of fractional harmonic extension of a function
studied in the pioneering paper [23], equations involving fractional operators are
receiving a great attention. Fractional Schrödinger type equations have been studied,
e.g., in [10, 30, 40]. Actually pseudodifferential operators appear in many problems
in Physics and Chemistry, see, e.g., [48, 49]; but also in obstacle problems [50, 59],
optimization and finance [29, 35], conformal geometry and minimal surfaces
[22, 24, 25], phase transition [1, 60], material science [16], anomalous diffusion
[33, 48, 49]. But also to crystal dislocation, soft thin films, multiple scattering, quasi-
geostrophic flows, water waves, and so on. It is really difficult to give an extensive
list of references; the interested reader is invited to see also the references in the
above cited papers.

16.2.2 Basic Notions of Differential Calculus in Hilbert Spaces

We recall here some basic fact of calculus in the infinite dimensional case. This
will be fundamental in order to find solutions of our Schrödinger like equations as
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critical point of suitable functionals. For more details on the subject, the reader may
consult, e.g., [14]. We remark that all that we say here also holds, with suitable
changes, for Banach spaces and manifolds.

Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be Hilbert spaces. We denote by L(X; Y ) the space of
linear and continuous maps from X to Y with the operator norm

‖A‖# := sup
‖u‖X≤1

‖A[u]‖Y

for which it is also complete. Here is the key definition which gives rise to
differential calculus in Banach spaces.

Definition 16.2.5 Let U ⊂ X be an open set, and I : U → Y a map. We say that I
is (Fréchét) differentiable at u0 ∈ U if there is Au0 ∈ L(X; Y ) such that

I (u0 + h)− I (u0)− Au0[h] = o(‖h‖) as h→ 0.

In other words,

lim
h→0

I (u0 + h)− I (u0)− Au0[h]
‖h‖ = 0.

The function I is said to be (Fréchét) differentiable in U if it is differentiable in
every u ∈ U .

If I is differentiable in U and the map I ′ : U → L(X, Y ) is continuous, we say
that I is C1 and write I ∈ C1(U ; Y ).

If I ∈ C1(U ;R), we say that u0 ∈ U is a critical point of I if Au0 = 0.

It is easy to see that whenever exists, Au0 is unique, and will be denoted with
I ′(u0). Observe that if I is differentiable at u0, then I is continuous at u0.

Of course the definition can be “iterated” in the following sense. If I ′ : U ⊂
X→ L(X, Y ) is differentiable at u0, we say that I is twice differentiable at u0, and
we denote I ′′(u0) := (I ′)′(u0). Note that I ′′(u0) ∈ L(X;L(X; Y )) ' L(X×X; Y ),
where L(X×X; Y ) is the set of bilinear, continuous maps from X×X to Y . Thus,
if I ′ is differentiable at u0 and v,w ∈ X, I ′′(u0)[v,w] ∈ Y .

If I is twice differentiable at every point u ∈ U , we say that I is twice
differentiable in U . In this case, if the map I ′′ : U ⊂ X → L(X × X; Y ) is
continuous in U , we write I ∈ C2(U ; Y ).
Example We give here two basic but very important examples of differentiable
functionals.

1. If I ∈ L(X; Y ), then I is differentiable at every point u, and I ′(u) = I . Moreover
I ′′ ≡ 0.

2. Let X, Y , and Z be Hilbert spaces, and b : X × Y → Z a bilinear continuous
map. For any pair (u, v) ∈ X × Y

b(u+ h, v + k)− b(u, v) = b(h, v) + b(u, k)+ b(h, k).
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Since ‖b(h, k)‖ ≤ C‖h‖‖k‖, it follows that ‖b(h, k)‖ = o(‖(h, k)‖) and thus

b′(u, v)[h, k] = b(h, v)+ b(u, k).

Now assume that Y = X and that b is symmetric. Denoting

I (u) := b(u, u),

we have, for every u ∈ X,

I ′(u)[h] = 2b(u, h).

In particular this applies to I (u) = ‖u‖2. In this case I ′(u)[v] = 2(u, v)X.

As in the finite dimensional case we have the important

Proposition 16.2.6 (Chain Rule) Let

(i) X, Y , Z be Hilbert spaces,
(ii) U , V be open sets of X, Y , respectively,

(iii) I : U → Y , J : V → Z be two maps with f (U) ⊂ V .

If I is differentiable at u0 ∈ U and J is differentiable at v0 := I (u0), then J ◦ I is
differentiable at u0 and we have

(J ◦ I)′(u0)[h] = J ′(v0)
[
I ′(u0)[h]

]
, for every h ∈ X.

A useful tool in order to find the differential of a map is the Gâteaux differential, the
analogous of the directional derivative.

Definition 16.2.7 Let U ⊂ X be an open set, and I : U → Y a map. The function
I is Gâteaux differentiable at u0 ∈ U in the direction of h ∈ X \ {0}, if

∃ lim
t→0

I (u0 + th)− I (u0)

t
∈ Y.

In that case we write

I ′G(u0)[h] := lim
t→0

I (u0 + th)− I (u0)

t
= d

dt
f (u0 + th)

∣
∣
∣
t=0

.

Proposition 16.2.8 Let I : U ⊂ X→ Y be a map such that

(i) I is Gâteaux differentiable in U in any direction h ∈ X.
(ii) I ′G(u) ∈ L(X, Y ), for every u ∈ U .

(iii) I ′G : U → L(X, Y ) is continuous at u.

Then, I is differentiable at u, and I ′(u) = I ′G(u).
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By the previous proposition, to calculate the differential of I at u ∈ U , we can find
first I ′G(u). Then, if I ′G(u) ∈ L(X, Y ) and I ′G maps continuously U in L(X, Y ), we
have that I is differentiable at u and I ′(u) = I ′G(u). This is a standard procedure.

Now we want to extent the notion of partial derivatives of functions defined in
R
N .

Definition 16.2.9 Let X, Y , and Z be Hilbert spaces, and consider the map F :
X × Y → Z. We define the maps

ϕv : X→ Z by ϕv(u) := F(u, v)

ϕu : Y → Z by ϕu(v) := F(u, v)

The partial derivative with respect to u of F at (u0, v0) is defined by ∂uF (u0, v0) :=
(ϕv0)

′(u0); the partial derivative with respect to v of F at (u0, v0) is defined by
∂vF (u0, v0) := (ϕu0)

′(v0).

Of course higher partial derivatives are defined in a similar way.
Observe that, if F is differentiable in the point (u0, v0) in the Hilbert space X×Y

in the sense of Definition 16.2.5, then its partial derivatives exist at (u0, v0) and

∂uF (u0, v0)[h] = (ϕv0)
′(u0)[h] = F ′(u0, v0)[h, 0] ∀h ∈ X,

∂vF (u0, v0)[k] = (ϕu0)
′(v0)[k] = F ′(u0, v0)[0, k] ∀k ∈ Y.

Moreover a sort of “total differential theorem” holds.

Proposition 16.2.10 Assume that F : X × Y → Z has the partial derivatives with
respect to u and v in a neighborhood Q ⊂ X × Y of (u0, v0), and that ∂uF maps
continuously Q in L(X,Z) and ∂vF maps continuously Q in L(Y,Z). Then F is
differentiable at (u0, v0) and

F ′(u0, v0)[h, k] = ∂uF (u0, v0)[h] + ∂vF (u0, v0)[k].

We state the generalization to Hilbert spaces of the implicit function theorem of
calculus in R

n.

Theorem 16.2.11 (Implicit Function Theorem) Let T , X, and Y be Hilbert
spaces; � ⊂ T , U ⊂ X open subsets. Assume F ∈ C1(� × U, Y ) and let
(λ0, u0) ∈ �×U be such that F(λ0, u0) = 0. If F ′u(λ0, u0) ∈ L(X, Y ) is invertible,
then there are neighborhoods �0 of λ0, U0 of u0 and a map g ∈ C1(�0,X) that
satisfy

F(λ, u) = 0, (λ, u) ∈ �0 × U0 ⇐⇒ u = g(λ), for every λ ∈ �0.

The next result is about locally invertible functions. If I ∈ C(U, Y ), I is locally
invertible at u0 ∈ U if there are neighborhoods U0 of u0, V0 of v0 := I (u0) and a
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map J ∈ C(V0, U0) such that

J (I (u)) = u, ∀u ∈ U0, and I (J (v)) = v, ∀v ∈ V0.

The common used notation is I−1 := J .

Theorem 16.2.12 (Local Inversion Theorem) Let I ∈ C1(U, Y ) be a map such
that I ′(u0) ∈ L(X, Y ) is invertible. Then I is locally invertible at u0, with I−1 in
C1(V0, U0). Also

(I−1)′(v) = (I ′(u))−1, ∀v ∈ V0, v := I (u).

As for the finite dimensional case, we give here some basic facts about function-
als on infinite dimensional Hilbert manifolds. We restrict here to the Hilbertian case
because this will be the case treated in the next sections. The same theory can be
developed on Banach manifold (see, e.g., [54]).

Let us begin by introducing some basic concepts about infinite dimensional
manifolds. For more details on this section, the reader may consult [14, Chapter 6,
pg. 89].

Definition 16.2.13 Let X,Y be Hilbert spaces, U ⊂ X, V ⊂ Y open subsets in X,
Y , respectively. A map I : U → V is a C1 diffeomorphism if I is C1, bijective, and
its inverse I−1 is also C1.

To be coherent with some notations used in Differential Geometry, we will write the
differential of I at u also as dI (u) := I ′(u) ∈ L(X, Y ).

Definition 16.2.14 Let E be a Hilbert space and M a topological space. We say
that M is a C1 Hilbert manifold modelled on the Hilbert subspace X ⊂ E if it can
be covered with a family of open sets in M, {Ui}i∈I such that

(i) for each i ∈ I, there is a map ψi : Ui → X such that Vi := ψi(Ui) is an open
set in X; ψi is a homeomorphism onto its image Vi ,

(ii) if there are two pairs (Ui, ψi ), (Uj ,ψj ) with Ui ∩ Uj �= ∅, then the map ψj ◦
ψ−1
i : ψi(Ui ∩ Uj)→ ψj(Ui ∩ Uj) is C1 differentiable.

We say that the pair (Ui, ψi) is a chart of the manifold, the maps ψj ◦ ψ−1
i are

changes of charts, and the pair (Vi, ψ
−1
i ) is a local parametrization of M.

Henceforth, we assume that for every point p ∈M, there are Ũ , Ṽ open subsets
of E and ϕ̃ : Ṽ → Ũ a C1 diffeomorphism such that

• p ∈ Ũ ,
• defining U := Ũ ∩M, V := Ṽ ∩ X and ϕ := ϕ̃|V , we have x := ϕ−1(p) ∈ V

and U = ϕ(V ).

Thus the pair (V , ϕ) is a local parametrization of M.
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Definition 16.2.15 Given p ∈M, the tangent space to M at p is defined by

TpM := dϕ̃(x)[X].

The following facts can be proved (see the details in [14, pg. 90–93]):

(i) TpM is independent of the local parametrization.
(ii) TpM is a Hilbert space homeomorphic to X.

(iii) TpM is the set of tangent vectors at p to C1 curves on M.

Each tangent space TpM inherits an inner product from X, that allows us to
measure length of smooth curves on M. Moreover if M is arcwise connected it can
be considered as a metric space. From now on we will always assume this.

Let now Mi ⊂ Ei be manifolds modelled on the Hilbert spaces Xi ⊂ Ei ,
respectively, i = 1, 2. Suppose that there exist an open subset U1 ⊂ E1 and a C1

map Ĩ : U1 → E2 such that

M1 ⊂ U1 and I = Ĩ |M1 .

Definition 16.2.16 The differential of I :M1 →M2 at p is defined by

dM1I (p) := dĨ (p)|TpM1 .

Note that dĨ (p) ∈ L(E1, E2).

The definition does not depend on the map Ĩ .

Example Let E be a Hilbert space and let I : U ⊂ E → R be a C1 functional,
with U an open subset of E that contains a manifold M modelled on the Hilbert
subspace X of E. Then given p ∈M,

dMI (p) = dI (p)|TpM . (16.1)

Let us denote by (·, ·) the inner product on E. Since dI (p) ∈ E′, the Riesz
representation theorem gives the existence of a unique ∇I (p) ∈ E such that

(∇I (p), v) = dI (p)[v], ∀v ∈ E.

∇I (p) is called the gradient of I at p.
Analogously is defined the constrained gradient of I at p:

(∇MI (p), v) = dMI (p)[v], ∀v ∈ TpM. (16.2)

Thus, by using (16.1)

(∇MI (p), v) = (∇I (p), v) ∀v ∈ TpM. (16.3)
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Therefore, the constraint gradient is just the projection of the (free) gradient on the
tangent space TpM.

Definition 16.2.17 Suppose that I : E → R is a C1 functional and M is a C1

manifold modelled on X ⊂ E. The point z ∈ M is a constraint critical point of I
on M if

dMI (z) = 0, i.e., dMI (z)[v] = 0, ∀v ∈ TzM.

Thus from (16.2) and (16.3),

z constrained critical point of I on M �⇒ (∇I (z), v) = 0, ∀v ∈ TzM,

in other words, if z is constrained critical point of I on M, then ∇I (z) is orthogonal
to TzM.

Example Assume thatE, M, X, and I ∈ C1(E;R) are as in the previous definition.
An element z ∈ M is a local constrained minimum of I on M if there is a
neighborhood - of z in E such that

I (z) ≤ I (u), ∀u ∈ - ∩M.

If (V , ϕ) is a local parametrization of M such that 0 ∈ V and z = ϕ(0), this means
that for some W ⊂ X neighborhood of 0,

I (ϕ(0)) ≤ I (ϕ(w)) ∀w ∈ W.

Therefore, z is a local constrained minimum of I on M if and only if 0 ∈ X is a
local minimum of I ◦ ϕ. Hence

0 is a critical point of the functional I ◦ ϕ : W ⊂ X→ R.

Using the chain rule, the last statement can be written as

dI (z)[dϕ(0)[w]] = d(I ◦ ϕ)(0)[w] = 0, ∀w ∈ X.

From ϕ = ϕ̃|V we have

dϕ(0)[X] = dϕ̃(0)[X] = TzM,

so that

dI (z)[dϕ(0)[w]] = 0, ∀w ∈ X ⇔ dI (z)[v] = 0,∀v ∈ TzM.

Summing up, if z is a local constrained minimum of I on M, then z is a constrained
critical point of I on M.
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If M ⊂ E is modelled on a subspace X ⊂ E of codimension one, M is called a
manifold of codimension one. This happens, for example, when

M := J−1(0), where J ∈ C1(E,R), and ∇J (u) �= 0, ∀u ∈M.

Indeed, for p ∈M, we define a linear subspace of E,

Xp := {v ∈ E : (∇J (p), v) = 0}.

We have the decomposition E = Xp ⊕ 〈w〉, where

w := ∇J (p)
‖∇J (p)‖2 .

Thus Xp is a subspace of codimension one. Let us show that M is a manifold
modelled on Xp. Let ψ : E → E be the map given by

ψ(u) := u− p − (∇J (p), u− p)w + J (u)w.

Taking the inner product with ∇J (p) and using the fact that

(∇J (p),w) = (∇J (p),∇J (p))
‖∇J (p)‖2 = 1,

we have

(∇J (p),ψ(u)) = (∇J (p), u− p)− (∇J (p), u− p)(∇J (p),w)
+ J (u)(∇J (p),w)

= (∇J (p), u− p)− (∇J (p), u− p)+ J (u)

= J (u),

and then

ψ(u) ∈ Xp ⇐⇒ (∇J (p),ψ(u)) = 0 ⇐⇒ J (u) = 0 ⇐⇒ u ∈M.

Note that ψ(p) = 0 and that ψ is clearly differentiable. Then,

dψ(u)[v] = v − (∇J (p), v)w + (dJ (u)[v])w
= v − (∇J (p), v)w + (∇J (u), v)w,

implying that

dψ(p)[v] = v − (∇J (p), v)w + (∇J (p), v)w = v = id[v].
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Therefore, by the local inversion theorem, ψ is a diffeomorphism between some
Ũ ⊂ E neighborhood of p and Ṽ ⊂ E neighborhood of 0. Let ϕ̃ := ψ−1. Defining

U := Ũ ∩M, V := Ṽ ∩Xp, ϕ := ϕ̃|V ,

it holds

0 = ϕ−1(p), and ϕ(V ) = U.

Then M is a manifold of codimension one modelled on X, with local parametriza-
tion (V , ϕ) at p. Furthermore

dϕ(0) = d(ψ−1)(0) = (dψ(p))−1 = id,

and then

TpM = dϕ(0)[Xp] = id[Xp] = Xp,

or equivalently

TpM = {v ∈ E : (∇J (p), v) = 0}. (16.4)

Now let I ∈ C1(E;R) be a functional. We know that if z ∈ M is a constrained
critical point of I on M, then

(∇I (z), v) = 0, ∀v ∈ TzM,

and hence by (16.4), there exists λ ∈ R that satisfies

∇I (z) = λ∇J (z). (16.5)

Recalling that the constrained gradient is the projection onto TpM of the free
gradient,

∇MI (p) = ∇I (p) − (∇I (p),w)w = ∇I (p) − (∇I (p),∇J (p))
‖∇J (p)‖2 ∇J (p).

Then if z is a constrained critical point, ∇MI (z) = 0 and (16.5) holds with

λ = (∇I (p),∇J (p))
‖∇J (p)‖2 .

Definition 16.2.18 Given a functional I ∈ C1(E;R), we say that a manifold M is
a natural constraint for I if there exists a functional Ĩ ∈ C1(E;R) such that all the
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critical points of Ĩ constrained on M are critical points of I , i.e.

z ∈M, ∇MĨ (z) = 0 ⇐⇒ ∇I (z) = 0.

Definition 16.2.19 Let I ∈ C1(E;R) be a functional. The Nehari set associated
with I is given by

N := {u ∈ E \ {0} : I ′(u)[u] = 0}.

Proposition 16.2.20 Assume that I ∈ C2(E;R) and that the Nehari set N is
nonempty. Furthermore, suppose that

I ′′(u)[u, u] �= 0, ∀u ∈ N . (16.6)

Then, N is a manifold (called the Nehari manifold), and it is a natural constraint
for I .

Proof Defining J (u) := I ′(u)[u] we see that

(i) J ∈ C1(E,R),
(ii) if u ∈ N , by (16.6)

J ′(u)[u] = I ′′(u)[u, u] + I ′(u)[u] = I ′′(u)[u, u] �= 0.

Hence J ′(u) �= 0 for u ∈ N .

So N is a manifold of codimension one. If now z ∈ N is a constrained critical point
of I on N , then for some λ ∈ R we have

∇I (z) = λ∇J (z).

So

0 = I ′(z)[z] = (∇I (z), z) = λ(∇J (z), z) = λJ ′(z)[z], with J ′(z)[z] �= 0,

and thus λ = 0. Thence ∇I (z) = 0, i.e., z is a critical point of the (free) functional
I .

If z �= 0 is a critical point of I , then

∇I (z) = 0 ⇔ I ′(z) = 0.

In particular, I ′(z)[z] = 0 and clearly z ∈ N . Also it is clear that ∇N I (z) = 0,
completing the proof. ��

The main objective in the Theory of Critical Points is to find conditions under
which a functional possesses many critical points, since in many cases they
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are related to weak solutions of partial differential equations. We will show in
Sect. 16.2.4 an application to a Schrödinger type equation.

16.2.3 The Ljusternick-Schnirelmann Category

The Ljusternick-Schnirelmann theory is a key ingredient in order to obtain mul-
tiplicity results of critical points of functionals, and then solutions for variational
equations. The theory is based on suitable topological properties. We recall here the
main elements of the theory. For details, we refer the reader to [14, Chapter 9].

Definition 16.2.21 Let M be a topological space; A ⊂ M is contractible if the
inclusion A ↪→ M is homotopic to a constant map defined on A with value in M,
i.e., there is H ∈ C([0, 1] ×A,M) such that

H(0, u) = u, and H(1, u) = p, ∀u ∈ A; p is a fixed element of M.

In this section, we assume that E is a Hilbert space, M ⊂ E is a manifold given by

M = J−1(0), with J ∈ C1(E;R) and J ′(u) �= 0, ∀u ∈M. (16.7)

Definition 16.2.22 Let M be a topological space. The Ljusternick-Schnirelmann
category (or LS-category, or simply the category) of A with respect to M is defined
by

catM(A) :=
{

0, if A = ∅,
k, if k is the least natural number l in the property (C),

where

(C) There are A1, . . . , Al closed, contractible subsets in M with A ⊂ A1 ∪ · · · ∪ Al.

If A �= ∅ and A does not satisfy property (C), we set catM(A) = ∞.

We usually set catM := catM(M).
From the definition it holds:

1. if A ⊂ B are subsets of M, catM(A) ≤ catM(B).
Indeed any covering of B by subsets of M is also a covering of A by subsets

of M.
2. catM(A) = catM( A ).

Assume that A �= ∅, catM(A) = k < +∞, otherwise the statement is trivial.
Therefore, there are A1, . . . , Ak closed, contractible sets in M with

A ⊂ A1 ∪ · · · ∪ Ak
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Since A1 ∪ · · · ∪ Ak is closed in M and it contains A,

A ⊂ A1 ∪ · · · ∪ Ak,

and thus

catM( A ) ≤ k = catM(A) ≤ catM( A ).

3. A ⊂M ⊂ N with M closed in N implies catM(A) ≥ catN (A).

Definition 16.2.23 Let M be a topological space. A deformation of A ⊂ M in
M is a map η ∈ C(A;M) homotopic to the inclusion A ↪→ M, i.e., there exists
H ∈ C([0, 1] ×A;M) such that

H(0, u) = u, H(1, u) = η(u), ∀u ∈ A.

Through this section, the following topological fact will be used in some arguments
(see [51, Lemma 18.3, pg. 106]).

Lemma 16.2.24 (Gluing Lemma) Let X, Y be topological spaces. Assume that
X = A∪B, where A, B are closed. Let f : A→ Y and g : B → Y be continuous.
If f (x) = g(x), for every x ∈ A ∩ B, then we can define a continuous function
h : X → Y using f and g, namely by putting h(x) := f (x), for every x ∈ A, and
h(x) := g(x), for every x ∈ B.

Lemma 16.2.25 Let A,B be subsets of M.

1. if A ⊂ B then catM(A) ≤ catM(B)

2. catM(A ∪ B) ≤ catM(A)+ catM(B)

3. Let A be closed in M, η a deformation of A in M. Then catM(A) ≤
catM

(
η(A)

)

Proof

1. The monotonicity of cat was already proved.
2. If catM(A) = ∞ or catM(B) = ∞, the result is immediate. Let us assume that

catM(A) = k and catM(B) = l. If A ⊂ A1 ∪ · · · ∪ Ak and B ⊂ B1 ∪ · · · ∪ Bl ,
with Ai,Bj closed, contractible in M, then

A ∪ B ⊂ (A1 ∪ · · · ∪ Ak) ∪ (B1 ∪ · · · ∪ Bl),

and the item follows.
3. We assume that catM(η(A)) = k < +∞, so that there are B1, . . . , Bk closed,

contractible subsets in M such that

η(A) ⊂ B1 ∪ · · · ∪ Bk.
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Taking Ai := η−1(Bi), Ai is closed in A, and since A is closed in M, it is also
closed in M. Furthermore

A ⊂ A1 ∪ · · · ∪ Ak.

We claim that Ai is contractible in M. Indeed, since η is a deformation of A in
M and Bi contractible in M, we have, respectively, mapsH ∈ C([0, 1]×A;M)

with

H(0, u) = u, H(1, u) = η(u), ∀u ∈ A,

and Hi ∈ C([0, 1] × Bi;M) such that

Hi(0, v) = v, Hi(1, v) = pi, ∀v ∈ Bi, pi fixed element in M.

Consider the map H̃i : [0, 1] ×Ai →M given by

H̃i(t, u) :=
{
H(2t, u), for 0 ≤ t ≤ 1/2

Hi(2t − 1, η(u)), for 1/2 ≤ t ≤ 1,

for every u ∈ Ai . By the Gluing Lemma H̃i ∈ C([0, 1] ×M) and satisfies

H̃i(0, u) = u, H̃i(1, v) = pi, ∀u ∈ Ai.

Hence Ai is contractible in M, from which

catM(A) ≤ k = catM(η(A)) = catM
(
η(A)

)

concluding the proof. ��
Proposition 16.2.26 (Dominating Property) Let X and Y be topological spaces,
let f : X→ Y and g : Y → X be continuous functions such that g◦f is homotopic
to IdX, then cat(X) ≤ cat(Y ).

The reader may consult, e.g., [43].

Definition 16.2.27 (Extension Property) Let M be a metric space. M satisfies
the extension property if for every metric space Y , every subset S closed in Y and
every continuous map f : S → M, there are N a neighborhood of S in Y and a
map f̃ ∈ C(N;M) such that f̃ |S = f .

For the next result, see [51, Exercise 2, pg. 177].
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Proposition 16.2.28 Let X be a metric space and A ⊂ X . The ε-neighborhood of
A in X is defined as

U(A, ε) := {x ∈ X : d(x,A) < ε}.
1. U(A, ε) is the union of the open balls Bd(a, ε), for a ∈ A. Here

Bd(a, ε) := {y ∈ X : d(a, y) < ε}

2. If A is compact and U is an open set in X containing A, there is ε > 0 such that
the ε-neighborhood U(A, ε) of A is contained in U .

Lemma 16.2.29 Let M be a metric space with the extension property and let A ⊂
M be a compact subset. Then

(1) catM(A) <∞.
(2) There exists UA neighborhood of A in M such that catM( UA) = catM(A).

Proof We divide the proof in steps.

Step 1 For A ⊂M compact with catM(A) = 1, there is UA neighborhood of A in
M such that catM( UA) = 1.

Since catM(A) = 1 we have A ⊂ B, with B closed, contractible in M and also
a homotopy H1 : [0, 1] × B →M with

H1(0, u) = u, and H1(1, u) = p, for every u ∈ B;p fixed element in M.

In particular A is contractible, considering H2 := H1|[0,1]×A ∈ C([0, 1] × A;M)

such that

H2(0, u) = u, and H2(1, u) = p, for every u ∈ A.

Note that Y := [0, 1]×M is a metric space, since M is a metric space. Clearly the
set

S := ({0} ×M) ∪ ([0, 1] × A) ∪ ({1} ×M)

is closed in Y . By the pasting lemma the map H : S →M given by

H(t, u) :=

⎧
⎪⎪⎨

⎪⎪⎩

u, for t = 0, u ∈M
H2(t, u), for t ∈ [0, 1], u ∈ A

p, for t = 1, u ∈M

satisfies H ∈ C(S;M). As a consequence of the extension property, there is N

neighborhood of S in Y and a map H̃ ∈ C(N;M) such that H̃ |S = H . Note that



584 G. M. Figueiredo et al.

[0, 1]×A is compact, and [0, 1]×A ⊂ N open in Y . Using the Proposition 16.2.28,
there is UA neighborhood of A in M with [0, 1] × UA ⊂ N . Furthermore

H̃ (0, u) = H(0, u) = u, and H̃ (1, u) = H(1, u) = p, for every u ∈ UA

Thus UA is contractible in M and thence catM( UA) = 1.

Step 2 Since for every q ∈ M, catM({q}) = 1, as a particular case of Step 1
there exists a neighborhood Uq of q in M with Uq contractible in M, so that
catM( Uq) = 1.

Step 3 Proofs of items (1) and (2) of the lemma.

Since A is compact, we can find points q1, . . . , qk ∈ M and the corresponding
neighborhoodsUq1, . . . , Uqk with Uq1, . . . , Uqk contractibles in M, such that

A ⊂ Uq1 ∪ · · · ∪Uqk,

from which

catM(A) ≤ catM
(
Uq1 ∪ · · · ∪ Uqk

) ≤ catM( Uq1)+ · · · catM( Uqk) = k,

and item (1) of lemma follows.
Now assume that catM(A) = k. Then there existA1, . . . , Ak closed, contractible

sets in M withA ⊂ A1∪· · ·∪Ak . DefiningBi := Ai∩A, we haveA ⊂ B1∪· · ·∪Bk ,
with each Bi compact. Using Step 1, for each i there is Ui neighborhood of Bi in
M with Ui contractible in M. Defining

UA := U1 ∪ · · · ∪ Uk,

it is clear that UA = U1 ∪ · · · ∪ Uk and hence

catM( UA) ≤ k = catM(A).

On the other hand, since A ⊂ UA, we have catM(A) ≤ catM( UA), and item (2)
holds true, finishing the proof. ��
Definition 16.2.30 Let M be a manifold of the type (16.7). We define

catk(M) := sup{catM(A) : A ⊂M, A compact}.

Of course if M is compact, catk(M) = catM, by the monotonicity property of the
category.

Let us consider natural numbers m such that

m ∈
{
{1, . . . , catk(M)}, if catk(M) <∞
N, if catk(M) = ∞ (16.8)
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and the collection

Cm := {A ⊂M : A is compact and catM(A) ≥ m}.

Observe that Cm �= ∅; indeed by the definition of catk , when catk(M) < ∞,
catk(M) = catM(K), for some compact subset K in M, and thus K ∈ Cm, for
every m = 1, . . . , catk(M). When catk(M) = ∞, for every m ∈ N, there is
Am ⊂M compact such that m ≤ catM(Am), from which Am ∈ Cm.

Now, for I ∈ C(M,R) and every m satisfying (16.8), we define the minimax
levels of I

cm := inf
A∈Cm

max
u∈A I (u).

We have:

(i) c1 = infM I .
In fact, for every u ∈ M, catM({u}) = 1, and being {u} is compact, we

infer {u} ∈ C1. Thus c1 ≤ I (u), for every u ∈M, and so

c1 ≤ inf
u∈M

I (u).

On the other hand, infu∈M I (u) ≤ I (v), for every v ∈ M. In particular, for
any v ∈ A, with A ∈ Cm, infu∈M I (u) ≤ maxv∈A I (v). Hence

inf
u∈M

I (u) ≤ c1.

(ii) c1 ≤ c2 ≤ . . . ≤ cm−1 ≤ cm ≤ . . .

This follows from the fact that Cm ⊂ Cm−1.
(iii) cm <∞, for every m satisfying (16.8).

For any A ∈ Cm,

cm ≤ max
u∈A I (u) <∞,

since A is compact and I ∈ C(M;R).
(iv) infM I > −∞ ⇒ cm ∈ R, i.e., −∞ < c1 ≤ cm <∞ :

Immediate from the hypothesis, in virtue of items (i)–(iii).

Remark 16.2.31 Observe that the class Cm is invariant by deformations, in the
following sense. Let η be a deformation in M. By the item (3) of Lemma 16.2.25,
for any A ∈ Cm,

m ≤ catM(A) ≤ catM(η(A)).
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Furthermore, since η is continuous and η(A) is compact, we have η(A) ∈ Cm.
Summing up,

A ∈ Cm, η deformation in M ⇒ η(A) ∈ Cm (16.9)

The next definition is a useful tool in Critical Point Theory.

Definition 16.2.32 Let M be a differentiable manifold in the Hilbert space X

(eventually we may have M = X). A sequence {un} ⊂ M is said a Palais-Smale
sequence (PS sequence) on M for I if {I (un)} is bounded and ∇MI (un)→ 0.

It is a (PS)c sequence if I (un)→ c and ∇MI (un)→ 0.
We say that I satisfies the (PS)c condition on M if every (PS)c sequence has a

convergent subsequence. Analogously we say that I satisfies the (PS) condition if
every PS sequence has a convergent subsequence.

Now we can sketch the proof of the main theorem of the Ljusternick-
Schnirelmann theory. We first establish some notation and state an auxiliary
lemma concerning deformations (see [14, Lemma 7.10, pg. 108 and Lemma 9.12,
pg. 151]).

• given a ∈ R, Ma := {p ∈ M : I (p) ≤ a}, the sublevel of I on M under the
level a.

• Z := {z ∈M : ∇MI (z) = 0}, the set of critical points of I on M.
• Zc := {z ∈ Z : I (z) = c}. c is a critical level of I on M if Zc �= ∅. Note that Zc

is compact if (PS)c is satisfied.

Lemma 16.2.33 Let M be a manifold of the type (16.7).

(i) Suppose that c ∈ R is not a critical level of I on M and that (PS)c holds. Then,
there exist δ > 0 and a deformation η in M such that η(Mc+δ) ⊂Mc−δ .

(ii) Assume that (PS)c holds. For every neighborhood U of Zc, there are δ > 0
and a deformation η ∈M such that

η(Mc+δ \ U) ⊂Mc−δ.

Theorem 16.2.34 (Ljusternick-Schnirelmann Theorem) Let M be a manifold of
the type (16.7) and I ∈ C1(E,R) bounded from below on M, satisfying (PS). Then
I has at least catk(M) critical points on M. More precisely:

(1) any cm is a critical level of I on M.
(2) Suppose that c := cm = cm+1 = · · · = cm+l , for some l ∈ N. Then

catM(Zc) ≥ l + 1.

Proof Note that cm ∈ R, since I is bounded from below on M. We argue by
contradiction.

Suppose that Zcm = ∅. Since I is bounded from below on M and satisfies (PS),
by item (i) of Lemma 16.2.33, there are δ > 0 and η a deformation of M with

η(Mcm+δ) ⊂Mcm−δ.
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Also, by the definition of cm, there exists Am ∈ Cm such that

I (u) ≤ max
v∈Am

I (v) ≤ cm + δ, ∀u ∈ Am,

so that Am ⊂Mcm+δ . Therefore

η(Am) ⊂Mcm−δ. (16.10)

But by (16.9), η(Am) ∈ Cm, from which, for any v ∈ η(Am),

cm ≤ I (v) ≤ max
v∈η(Am)

I (v),

in contradiction with (16.10), and this proves (1).
Let us assume that catM(Zc) ≤ l. Since Zc is compact, by Lemma 16.2.29, there

is U neighborhood of Zc with

catM( U) = catM(Zc) ≤ l.

Now by item (ii) of Lemma 16.2.33, there exist δ > 0 and η a deformation in M
with

η(Mc+δ \ U) ⊂Mc−δ (16.11)

Since c = cm+l , there is Ac ∈ Cm+l such that

I (u) ≤ max
v∈Ac

I (v) ≤ c + δ, ∀u ∈ Ac,

and thus

Ac ⊂Mc+δ (16.12)

Now define Bc := Ac \ U . Using the monotonicity property of cat,

Ac ⊂ U ∪ Bc ⇒ catM(Ac) = catM( Ac) ≤ catM( U)+ catM(Bc),

and thence

catM(Bc) ≥ catM(Ac)− catM( U) ≥ m+ l − l = m.

As a consequence, Bc ∈ Cm, and by (16.9), η(Bc) ∈ Cm. In particular, for any
v ∈ η(Bc),

c = cm ≤ max
v∈η(Bc)

I (v).
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But on the other hand, it follows from (16.11) and (16.12) that

η(Bc) ⊂Mc−δ,

so that I (v) ≤ c − δ, a contradiction which proves (2). ��
Remark 16.2.35 Observe the following facts:

• In Lemma 16.2.33 item (ii) includes item (i), as well as in the Theorem of
Ljusternick-Schnirelmann item (2) includes item (1). Indeed, in the Lemma, if
c is not a critical point of I on M, U = ∅ is a neighborhood of Zc = ∅. In the
Theorem, item (1) is included in item (2) with l = 0; when catM(Zc) ≥ 1, we
have Zc �= ∅.

• Item (2) of the Ljusternick-Schnirelmann theorem implies that there are non-
countable critical points of I on M at level c. Indeed, since

A discrete set �⇒ catM(A) = 1,

if item (2) holds true, Zc cannot be countable.
• The proof of the theorem can be done if we have a weaker restriction than (PS);

namely, if the minimax levels satisfy

cm < b, for every m,

then we only need that (PS)c holds for any c < b.

16.2.4 Schrödinger Type Equations

As already said, in the next sections we will be interested in finding solutions for
two kinds of Schrödinger type equations: (1) one with a given external potential,
and (2) one with un unknown potential. We see here how to define the functional
and using some of the previous abstract results to the slightly more difficult case
of unknown potential, that physically speaking, can be interpreted as related to the
motion of the charged particle. The case of external and fixed potential can be easily
obtained by repeating the same arguments.

Without entering in physical details here (the interested reader is referred to the
pioneering paper [19]), the search of standing wave solutions ψ(x, t) = u(x)eiωt

leads us to consider the following system

{−�u+ u+ φu = |u|p−2u in R
3

−�φ = u2 in R
3,

(16.13)
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with 2 < p < 6. Here the nonlinearity f (u) = |u|p−2u simulates the interaction
between many particles. However a more general nonlinearity can be (and indeed
will be) considered in Sect. 16.4. Observe that the potential φ is related to the other
unknown u by the second equation.

For a (weak) solution of the previous system we mean a pair (u, φ) ∈ H 1(R3)×
D1,2(R3) that satisfies

∫

R3
∇u∇v +

∫

R3
uv +

∫

R3
φuv =

∫

R3
|u|p−2uv,

∫

R3
∇φ∇ψ =

∫

R3
u2ψ,

for every pair (v, ψ) ∈ H 1(R3) × D1,2(R3). Let us define the functional F :
H 1(R3)×D1,2(R3)→ R by

F(u, φ) := 1

2

∫

R3
|∇u|2 + 1

2

∫

R3
(1+ φ)u2 − 1

p

∫

R3
|u|p − 1

4

∫

R3
|∇φ|2.

Proposition 16.2.36 The functional F is C1 and its critical points are the solutions
of (16.13).

Proof Consider the functional

L(u, φ) := 1

2

∫

R3
φu2

and let us show it is C1, by proving it has continuous partial derivatives, by using
Proposition 16.2.8.

First note that the map L(u, · ) : D1,2(R3)→ R is linear and continuous because

∫

R3
φu2 ≤ |φ|6|u2|6/5 = |φ|6|u|212/5 ≤ C‖u‖2‖φ‖D. (16.14)

Therefore

∂φL(u, φ)[ψ] = L(u,ψ) = 1

2

∫

R3
ψu2, ∀ψ ∈ D1,2(R3).

For the partial derivative ∂uL We have

(L′u)G(u, φ)[v] :=
d

dt
L(u+ tv, φ)

∣
∣
∣
t=0

=
∫

R3
φuv,
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and since
∫

R3
φuv ≤ |φ|6|u|12/5|v|12/5 ≤ C‖u‖‖v‖‖φ‖D, (16.15)

it follows that

(L′u)G(u, φ) ∈ H−1 and (L′u)G( · , φ) : H 1(R3)→ H−1 is continuous.

Hence L′u exists at (u, φ) and

∂uL(u, φ) = (L′u)G(u, φ).

To sum up, L has partial derivatives with respect to u and φ at any point (u, φ).
Let us see that the maps

∂uL : H 1(R3)×D1,2(R3)→ H−1 and ∂φL : H 1(R3)×D1,2(R3)→ D′

are continuous. Assume that (un, φn) → (u, φ) in H 1(R3) × D1,2(R3). For the
continuity of Lu, note that if v ∈ H 1(R3) with ‖v‖ ≤ 1,

∣∣
∣(Lu(un, φn)− Lu(u, φ))[v]

∣∣
∣ ≤

∫

R3
|(φnun − φu)v|

≤
∫

R3
|φn − φ||un||v|

+
∫

R3
|φ||un − u||v|.

Using the Hölder inequality and the Sobolev embeddings

∫

R3
|φ||un − u||v| ≤ |φ|6|un − u|12/5|v|12/5 ≤ C‖φ‖D‖un − u‖‖v‖

≤ C‖un − u‖.

On the other hand, since {un} is bounded in H 1(R3)

∫

R3
|φn − φ||un||v| ≤ |φn − φ|6|un|12/5|v|12/5 ≤ C‖φn − φ‖D‖un‖‖v‖

≤ C‖φn − φ‖D.

Therefore

‖∂uL(un, φn)− ∂uL(u, φ)‖# ≤ C(‖φn − φ‖D + ‖un − u‖) = on(1). (16.16)
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For the continuity of ∂φL, taking an element ψ ∈ D1,2(R3) with ‖ψ‖D ≤ 1,

∣∣
∣(∂φL(un, φn)− ∂φL(u, φ))[ψ]

∣∣
∣ ≤

∫

R3
|ψ||u2

n − u2|

≤ |u2
n − u2|6/5|ψ|6

≤ C|u2
n − u2|6/5‖ψ‖D

≤ C|u2
n − u2|6/5.

Since un → u in H 1(R3), up to a subsequence

un → u in L12/5(R3) �⇒ un(x)→ u(x) a.e. x ∈ R
3

un → u in L12/5(R3) �⇒ |u2
n|6/5 = |un|212/5 → |u|212/5 = |u2|6/5,

and by the Brezis-Lieb lemma u2
n → u2 in L6/5(R3). Thus

‖∂φL(un, φn)− ∂φL(u, φ)‖# = on(1) (16.17)

Because of (16.16), (16.17) and Proposition 16.2.10, L is C1. The fact that the
other terms of F are C1 is a consequence of the differentiability of the norm (see
Example 16.2.2) and the Sobolev embeddings, for what concerns the p − power

nonlinearity; indeed, for the functional

K(u) := 1

p

∫

R3
|u|p,

it is easy to see that

K ′
G(u)[v] =

∫

R3
|u|p−2uv,

from which it follows that K ′
G(u) ∈ H−1. Now, if un → u in H 1(R3), it can be

shown that
∫

R3
|un|p−2unv →

∫

R3
|u|p−2uv, ∀v ∈ H 1(R3),

arguing as in the proof of [62, Lemma 8.1].
The partial derivatives of F in (u, φ) are given by

∂uF (u, φ)[v] =
∫

R3
∇u∇v +

∫

R3
(1+ φ)uv − |u|p−2uv,

∂φF (u, φ)[ψ] = 1

2

∫

R3
ψu2 −

∫

R3
∇φ∇ψ.
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for v ∈ H 1(R3), ψ ∈ D1,2(R3). Finally,

(u, φ) is a critical point of F ⇐⇒ ∂uF (u, φ) = 0, ∂φF (u, φ) = 0

⇐⇒ (u, φ) is a weak solution of (16.13),

and we conclude. ��
The main difficulty concerning the functional F is that it is unbounded from

below and above. Indeed when t →+∞

F(tu, φ) ≤ t2

2

∫

R3
|∇u|2 +

∫

R3
(1+ φ)u2 − tp

p

∫

R3
|u|p → −∞.

On the other hand, considering the function uk ∈ H 1(R3) for k ∈ N defined by

uk(x) :=
{

sin k|x|, 0 ≤ |x| ≤ π

0, |x| > π,

we have

F(uk, 0) = 1

2

∫

R3
|∇uk|2 + 1

2

∫

R3
u2
k −

1

p

∫

R3
|uk|p

≥ 1

2

∫

R3
|∇uk|2 − 1

p

∫

R3
|uk|p

= πk2
[∫ π

0
r2dr +

∫ π

0
r2 cos 2kr dr

]
− 4π

p

∫ π

0
r2| sin kr|pdr

≥ π2k2
(
π2

3
+ 1

2k2

)
− 4π4

3p
→∞,

when k →∞.
To avoid this unboundedness of F , we use the so-called reduction method. First

observe that

Proposition 16.2.37 Given u ∈ H 1(R3), let φu ∈ D1,2(R3) be the unique solution
for the problem

−�φ = u2 in R
3. (16.18)

Define the map � : H 1(R3) → D1,2(R3) by �[u] := φu and let G� be its graph.
Then

G� = {(u, φ) ∈ H 1(R3)×D1,2(R3) : ∂φF (u, φ) = 0}. (16.19)
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Proof Let u ∈ H 1(R3) be fixed and consider the linear transformation Tu :
D1,2(R3)→ R given by

Tu[ψ] :=
∫

R3
ψu2.

This map is continuous because of (16.14); thus, T ∈ D1,2(R3)′. By Riesz
representation theorem, there is a unique element φu ∈ D1,2(R3) such that

∫

R3
∇φu∇ψ = T [ψ] =

∫

R3
ψu2, for every ψ ∈ D1,2(R3), (16.20)

i.e. φu is the unique solution of (16.18). If G� denotes the graph of�, given (u, φ) ∈
H 1(R3)×D1,2(R3)

∂φF (u, φ) = 0 ⇐⇒
∫

R3
∇φ∇ψ =

∫

R3
ψu2

⇐⇒ φ is a solution of (16.18)

⇐⇒ φ = φu = �[u],

concluding the proof. ��
Remark 16.2.38 Recall that from (16.14) we have the inequality

∫

R3
ψu2 ≤ C‖u‖2‖ψ‖D, for every ψ ∈ D1,2(R3).

Also by (16.20), the solution φu of (16.18) satisfies

∫

R3
∇φu∇ψ =

∫

R3
ψu2, for every ψ ∈ D1,2(R3). (16.21)

Therefore, taking ψ = φu we can write

‖φu‖2
D =

∫

R3
‖∇φu‖2 =

∫

R3
φuu

2 ≤ C‖u‖2‖φu‖D,

from which

‖φu‖D ≤ C‖u‖2.

Thus, we obtain

∫

R3
φuu

2 ≤ C‖u‖4.
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The last inequality, in the adapted version in the following sections, will be very
useful. We also have the representation

φu(x) =
(

1

4π | · | # u
2
)
(x) = 1

4π

∫

R3

u2(y)

|x − y|dy, ∀x ∈ R
3.

Proposition 16.2.39 We have

� ∈ C1(H 1(R3);D1,2(R3)).

Proof We define the map J : H 1(R3)×D1,2(R3)→ D′ by J (u, φ) := ∂φF (u, φ)

and we claim that

J ∈ C1(H 1(R3)×D1,2(R3);D′) (16.22)

In fact, since

J (u, φ)[ · ] = L(u, · )− 1

2

∫

R3
∇φ∇( · ),

where L is the C1 map used in the proof of the Proposition 16.2.36, (16.22) is
immediate. Thus we can write

(∂uJ (u, φ)[v])[ψ] = ∂2
u,φF (u, φ)[v,ψ] =

∫

R3
uvψ

(∂φJ (u, φ)[ν])[ψ] = ∂2
φ,φF (u, φ)[ν,ψ] = −

1

2

∫

R3
∇ν∇ψ.

Now we show that

∂φJ (u, φ) ∈ L(D1,2(R3);D′) is invertible. (16.23)

Indeed, since

∂φJ (u, φ)[ν] = ∂2
φ,φF (u, φ)[ν, · ] = −

1

2

∫

R3
∇ν∇( · ),

up to a constant factor, ∂φJ (u, φ) is the Riesz isomorphism between D1,2(R3) and
its dual, D′.

Finally, let u0 ∈ H 1(R3). Because of (16.19),

(u0,�[u0]) ∈ G� �⇒ J (u0,�[u0]) = 0.
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Since (16.22) holds true and ∂φJ (u0,�[u0]) ∈ L(D1,2(R3),D′) is invertible
by (16.23), in virtue of the implicit theorem function there exist neighborhoods U0
of u0, V0 of �[u0] and a map g ∈ C1(U0,D

1,2(R3)) such that

J (u, φ) = 0 and (u, φ) ∈ U0 × V0 ⇐⇒ φ = g(u), ∀u ∈ U0.

But then, for every u ∈ U0,

J (u, g(u)) = 0 �⇒ (u, g(u)) ∈ G�,

from which

g = �|U0 .

In particular �|U0 ∈ C1(U0,D
1,2(R3)), and by the arbitrariness of u0 we conclude

��
Let us define the functional I : H 1(R3)→ R by

I (u) := F(u, φu)

= 1

2

∫

R3
[|∇u|2 + (1+ φu)u

2] − 1

p

∫

R3
|u|p − 1

4

∫

R3
|∇φu|2

= 1

2

∫

R3
(|∇u|2 + u2)+ 1

4

∫

R3
φuu

2 − 1

p

∫

R3
|u|p,

where we have used the relation (see (16.21))

∫

R3
|∇φu|2 =

∫

R3
φuu

2.

Since F ∈ C1(H 1(R3)×D1,2(R3);R) and � ∈ C1(H 1(R3);D1,2(R3)), I is a C1

functional in H 1(R3) and by (16.19) we get

I ′(u) = ∂uF (u,�[u])+ ∂φF (u,�[u]) ◦�′[u] = ∂uF (u,�[u]).

Proposition 16.2.40 For (u, φ) ∈ H 1(R3)×D1,2(R3),

(u, φ) is a critical point of F ⇐⇒ u is a critical point of I and φ = �[u]
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Proof Indeed

(u, φ) is a critical point of F ⇐⇒ ∂uF (u, φ) = 0 and ∂φF (u, φ) = 0

⇐⇒ ∂uF (u, φ)+ ∂φF (u, φ)�
′[u]

= 0 and φ = �[u]
⇐⇒ I ′(u) = 0 and φ = �[u]
⇐⇒ u is a critical point of I and φ = �[u],

concluding the proof. ��
Thus system (16.13) has been reduced to the equation

−�u+ u+�[u]u = |u|p−2u in R
3, (16.24)

whose solutions are the critical points of I .
It is easy to see that I ∈ C2(H 1(R3);R). Indeed by using the same techniques as

before, after straightforward computations one sees that for every v,w ∈ H 1(R3)

I ′(u)[v] =
∫

R3
∇u∇v +

∫

R3
uv +

∫

R3
φuuv −

∫

R3
|u|p−2uv,

I ′′(u)[v,w] =
∫

R3
∇v∇w +

∫

R3
vw +

∫

R3
φuvw

+ 2
∫

R3
φu,wuv − (p − 1)

∫

R3
|u|p−2vw,

where φu,w is the unique solution of

−�φ = uw in R
3.

which can be obtained by the Riesz Representation Theorem.
The Nehari set for I is defined by

I ′(u)[u] = 0 ⇐⇒
∫

R3
(|∇u|2 + u2)+

∫

R3
φuu

2 =
∫

R3
|u|p. (16.25)

Let now u ∈ H 1(R3), u �= 0. For t > 0 we have

I (tu) = t2

2

∫

R3
(|∇u|2 + u2)+ t4

4

∫

R3
φuu

2 − tp

p

∫

R3
|u|p
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from which we see that

• I (tu) has a strict local minimum at t = 0,
• there is T > 0 large enough such that I (T u) < 0.

Therefore, for some tu > 0, tuu ∈ N showing that N is not empty. Moreover, for
every u ∈ N \ {0}, using (16.25) we have

I ′′(u)[u, u] =
∫

R3
(|∇u|2 + u2)+ 3

∫

R3
φuu

2 − (p − 1)
∫

R3
|u|p

< 3

[∫

R3
(|∇u|2 + u2)+

∫

R3
φuu

2
]
− (p − 1)

∫

R3
|u|p

= 3
∫

R3
|u|p − (p − 1)

∫

R3
|u|p

= −(p − 4)
∫

R3
|u|p < 0,

so that (16.6) is satisfied. By Proposition 16.2.20, N is a natural constraint for I .
Moreover from (16.25) and the Sobolev embedding

‖u‖2 ≤ |u|pp ≤ C‖u‖p

we deduce that

0 <
1

C
≤ ‖u‖p−2

showing that N is bounded away from zero. Then any critical point of I constrained
to N is a solution of (16.24).

Analogously it can be seen that the solutions of

−�u+ V (x)u = |u|p−2u in R
3 (16.26)

are critical points of the C2 functional

I (u) = 1

2

∫

R3
|∇u|2 + 1

2

∫
V (x)u2 − 1

p

∫

R3
|u|p

on a suitable Hilbert space on which it is well defined. A similar equation to (16.26)
will be studied in Sect. 16.3 below.

Actually the equations studied in the next two sections are generalizations of
that we have seen here. Indeed we will consider fractional equations; moreover,
the nonlinearity will be a f (u) of “power” type; finally, a small parameter ε

appears in the equations. Physically the parameter is related to the Planck constant.
From a mathematically point of view it is important since, whenever it tends to
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zero, that is whenever it is sufficiently small, we are in a position to apply all
the previous machinery in order to prove the (PS) condition and implementing the
barycenter technique to find multiple critical points, hence multiple solutions of the
problem. The case when ε tends to zero is known in the physical literature as “the
semiclassical limit.”

16.3 The Case of Given Potential: The Fractional
Schrödinger Equation

The results shown in this section are taken from [39].
This kind of Schrödinger equation was first derived and studied by Laskin

[47]. Then many papers appeared studying existence, multiplicity, and behavior
of solutions to such equations. In these last years problems involving fractional
operators are receiving a special attention, due to the fact that fractional and nonlocal
equations have important applications in many sciences, as we said before.

More specifically, the problem addressed here concerns with existence and
multiplicity of positive solutions for the following equation

{
ε2s(−�)su+ V (z)u = f (u)

u ∈ Hs(R3)
(Pε)

where s ∈ (0, 1) and ε > 0.
Problem (Pε) appears when one look for standing wave solutions, that is solution

of the special form

ψ(z, t) = u(z)e−iEt/ε, u(z) ∈ R, E a real constant

to the following Fractional Schrödinger equation

iε
∂ψ

∂t
= ε2s(−�)sψ +W(z)ψ − f (|ψ|)

where W : R3 → R is an external potential and f a suitable nonlinearity. The
parameter ε corresponds, after some normalizations, to the Planck constant.

We introduce the basic assumptions on f and V :

(V) V : R3 → R is a continuous function satisfying

0 < min
R3

V (x) =: V0 < lim inf|x|→∞ V (x) =: V∞ ∈ (0,+∞] ;

(f1) f : R→ R is a function of class C1 and f (u) = 0 for u ≤ 0;
(f2) ∃ q ∈ (2, 2∗s − 1) such that limu→∞ f ′(u)/uq−1 = 0, where 2∗s := 6/(3− 2s);
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(f3) ∃ θ > 2 such that 0 < θF(u) := θ
∫ u

0 f (t)dt ≤ uf (u) for all u > 0;
(f4) the function u→ f (u)/u is strictly increasing in (0,+∞).

We say that u ∈ Wε (see Sect. 16.3.1 below for the definition of Wε) is a solution
of (Pε) if for every v ∈ Wε

ε2s
∫

R3
(−�)s/2u(−�)s/2v +

∫

R3
V (z)uv =

∫

R3
f (u)v

that is, as we will see, u is a critical point of a suitable energy functional Iε . The
solution with “minimal energy” is what we call a ground state.

We remark that the assumptions on V and f are quite natural in this context.
Assumption (V) was first introduced by Rabinowitz in [55] to take into account
potentials which are possibly not coercive. Hypothesis (f1) is not restrictive since
we are looking for positive solutions (see, e.g., [38, pag. 1247]) and (f2)–(f4) are
useful to use variational techniques which involve the Palais-Smale condition, the
Mountain Pass Theorem, and the Nehari manifold.

The existence of ground states solutions is the aim of our first result.

Theorem 16.3.1 Suppose that f verifies (f1)–(f4) and V verifies (V). Then there
exists a ground state solution uε ∈ Wε of (Pε),

1. for every ε > 0, if V∞ = +∞;
2. for every ε ∈ (0, ε̄], for some ε̄ > 0, if V∞ < +∞.

We treat also the case of the multiplicity of solutions. This result involves
topological properties of the set of minima of the potential V :

M :=
{
x ∈ R

3 : V (x) = V0

}
.

Indeed by means of the Ljusternik-Schnirelman theory we arrive at the following
result.

Theorem 16.3.2 Suppose that f satisfies (f1)–(f4) and the function V satisfies (V).
Then, there exists ε∗ > 0 such that for every ε ∈ (0, ε∗] problem (Pε) has at least

1. catM positive solutions;
2. catM + 1 positive solutions, if M is bounded and catM ≥ 2.

Even if we will not prove the next result, we just say that using the Morse Theory
we can obtain a result relating the number of positive solutions with the homology
of the domain M .

Theorem 16.3.3 Suppose that f satisfies (f1)–(f4) and the function V satisfies (V).
Then there exists ε∗ > 0 such that for every ε ∈ (0, ε∗] problem (Pε) has at least
2P1(M)− 1 solutions, possibly counted with their multiplicity.

Here

Pt (M) =
∑

k

dimHk(M)tk
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where H∗(M) be its singular homology with coefficients in some field F. If, for
example, M is obtained by a contractible domain cutting off k disjoint contractible
sets, it is cat(M) = 2 and P1(M) = 1+ k. For the proof of this last result, we refer
the reader to [39].

Remark 16.3.4 As it will be evident by the proofs, Theorems 16.3.1 and 16.3.2
remain true if we replace conditions (f2) with the weaker condition

• ∃ q ∈ (2, 2∗s − 1) such that limu→∞ f (u)/uq = 0, where 2∗s := 6/(3− 2s).

On the other hand, for Theorem 16.3.3 we need (f2) to have the compactness of
a certain operator (see [39]). We have preferred to state our theorems under the
stronger conditions just for the sake of simplicity.

To prove our result will be mainly inspired by some papers of Benci, Cerami
and Passaseo [17, 18, 21] and Cingolani and Lazzo [27, 28] who treated the case
s = 1. Indeed Cingolani and Lazzo prove a multiplicity result on the existence
of solutions based on the topological richness of the set of minima of the potential
appearing in the equation, as in [27], or a suitable function involving the potentials in
the case of competing potentials, as in [28]. These ideas and techniques have been
extensively used to attack also other type of problems, and indeed similar results
are obtained for other equations and operators, like the p−laplacian [3, 9], the
biharmonic operator [4], p&q−laplacian, fractional laplacian in expanding domain
[41], magnetic Laplacian [5, 6], or quasilinear operators [7, 12, 13].

We point out that the existing literature on the semiclassical limit for fractional
equations like in (Pε) deals with the study of the concentration points of a single
solution uε whenever ε → 0, see, e.g., [8, 31, 32, 36]. The interest in studying the
semiclassical case lies in the fact that such solutions uε develop some spikes around
one or more different points of the space. However, to the best of our knowledge
there are no results dealing with the multiplicity of solutions, for small ε involving
the “topological richness” of the set of the minima of the potential V .

For the reader convenience the subdivision of this section is the following.

• The variational setting. Here after a change of variable, we introduce an
equivalent problem (P ∗ε ) and the related variational setting; actually, we will
prove Theorems 16.3.1, 16.3.2 and 16.3.3 by referring to this equivalent problem.
The variational setting of the problem is settled and suitable functionals Iε and
Eμ are introduced.

• Compactness for Iε and Eμ. Existence of a ground state solution. Here
some compactness properties for the functionals are proved and the proof of
Theorem 16.3.1 is given, that is the existence of the ground state solution is
proved.

• The barycenter map. Here barycenter maps are introduced in order to estimate
the category of suitable sublevels of the energy functional whenever ε→ 0.

• Proof of Theorem 16.3.2. Here the proof of the multiplicity result is completed.
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16.3.1 The Variational Setting

First of all, it is easy to see that our problem is equivalent, after a change of variable
to the following one

⎧
⎨

⎩

(−�)su+ V (εx)u = f (u) in R
3,

u ∈ Hs(R3)

u(x) > 0, x ∈ R
3

(P ∗ε )

to which we will refer from now on. Once we find solutions uε for (P ∗ε ), the function
wε(x) := uε(x/ε) will be a solution of (Pε).

We fix now some notations involving the functionals used to get the solutions
to (P ∗ε ).

Let us consider first the autonomous case. For a given constant (potential) μ > 0
consider the problem

⎧
⎨

⎩

(−�)su+ μu = f (u) in R
3,

u ∈ Hs(R3)

u(x) > 0, x ∈ R
3

(Aμ)

and the C1 functional in Hs(R3)

Eμ(u) = 1

2

∫

R3
|(−�)s/2u|2 + μ

2

∫

R3
u2 −

∫

R3
F(u)

whose critical points are the solutions of (Aμ). In this case Hs(R3) is endowed with
the (squared) norm

‖u‖2
μ =

∫

R3
|(−�)s/2u|2 + μ

∫

R3
u2.

The following are well-known facts. The functional Eμ has a mountain pass
geometry and, defining H = {γ ∈ C([0, 1],H s(R3)) : γ (0) = 0, Eμ(γ (1)) < 0},
the mountain pass level

m(μ) := inf
γ∈H

sup
t∈[0,1]

Eμ(γ (t)) (16.27)

satisfies

m(μ) = inf
u∈Hs(R3)\{0}

sup
t≥0

Eμ(tu) = inf
u∈Mμ

Eμ(u) > 0, (16.28)
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where

Mμ :=
{
u ∈ Hs(R3) \ {0} :

∫

R3
|(−�)s/2u|2 + μ

∫

R3
u2 =

∫

R3
f (u)u

}
.

It is easy to see that Mμ is bounded away from zero in Hs(R3), and is a
differentiable manifold radially diffeomorphic to the unit sphere. It is usually called
the Nehari manifold associated with Eμ.

On the other hand, the solutions of (P ∗ε ) can be characterized as critical points of
the C1 functional given by

Iε(u) = 1

2

∫

R3
|(−�)s/2u|2 + 1

2

∫

R3
V (εx)u2 −

∫

R3
F(u)

which is well defined on the Hilbert space

Wε :=
{
u ∈ Hs(R3) :

∫

R3
V (εx)u2 <∞

}

endowed with the (squared) norm

‖u‖2
Wε
=

∫

R3
|(−�)s/2u|2 +

∫

R3
V (εx)u2.

Note that if V∞ = +∞,Wε has compact embedding into Lp(R3) for p ∈ [2, 2∗s ),
see, e.g., [26, Lemma 3.2].

The Nehari manifold associated with Iε is

Nε =
{
u ∈ Wε \ {0} : Jε(u) = 0

}

where

Jε(u) :=
∫

R3
|(−�)s/2u|2 +

∫

R3
V (εx)u2 −

∫

RN

f (u)u (16.29)

and its tangent space in u is given by

TuNε =
{
v ∈ Hs(R3) : J ′(u)[v] = 0

}
.

Let us introduce also

Sε :=
{
u ∈ Wε : ‖u‖Wε = 1

}
\ {u ∈ Hs(R3) : u ≤ 0 a.e.}

which is a smooth manifold of codimension 1. The next result is standard; the proof
follows the same lines of [18, Lemma 2.1 and Lemma 2.2].
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Lemma 16.3.5 The following propositions hold true:

1. for every u ∈ Nε it is J ′ε(u)[u] < 0;
2. Nε is a differentiable manifold radially diffeomorphic to Sε and there exists

kε > 0 such that

‖u‖Wε ≥ kε, Iε(u) ≥ kε

As in [18, Lemma 2.1], it is easy to see that the functions in Nε have to be positive
on some set of nonzero measure. It is also easy to check that Iε has the mountain
pass geometry, as given in the next

Lemma 16.3.6 Fixed ε > 0, for the functional Iε the following statements hold:

i) there exists α, ρ > 0 such that Iε(u) ≥ α with ‖u‖ε = ρ,

ii) there exist e ∈ Wε with ‖e‖Wε > ρ such that Iε(e) < 0.

Then, defining the mountain pass level of Iε ,

cε := inf
γ∈H

sup
t∈[0,1]

Iε(γ (t))

where H = {γ ∈ C([0, 1],Wε) : γ (0) = 0, Iε(γ (1)) < 0}, well-known arguments
imply that

cε = inf
u∈Wε\{0}

sup
t≥0

Iε(tu) = inf
u∈Nε

Iε(u) ≥ m(V0).

16.3.2 Compactness for Iε and Eμ: Existence of a Ground
State Solution

This section is devoted to prove compactness properties related to the functionals Iε
and Eμ.

It is standard by now to see that hypothesis (f3) is used to obtain the boundedness
of the (PS) sequences for Iε or Eμ.

We need to recall the following Lions type lemma.

Lemma 16.3.7 If {un} is bounded in Hs(R3) and for some R > 0 and 2 ≤ r < 2∗s
we have

sup
x∈RN

∫

BR(x)

|un|r → 0 as n→∞,

then un → 0 in Lp(R3) for 2 < p < 2∗s .

For a proof see, e.g., [30, Lemma 2.3].
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In order to prove compactness, some preliminary work is needed.

Lemma 16.3.8 Let {un} ⊂ Wε be such that I ′ε(un) → 0 and un ⇀ 0 in Wε . Then
we have either

a) un → 0 in Wε , or
b) there exist a sequence {yn} ⊂ R

3 and constants R, c > 0 such that

lim inf
n→+∞

∫

BR(yn)

u2
n ≥ c > 0.

Proof Suppose that b) does not occur. Using Lemma 16.3.7 it follows

un → 0 in Lp(R3) for p ∈ (2, 2∗s ).

Given ξ > 0, by (f1) and (f2), for some constant Cξ > 0 we have

0 ≤
∫

R3
f (un)un ≤ ξ

∫

R3
u2
n + Cξ

∫

R3
|un|q+1.

Using the fact that {un} is bounded in L2(R3), un → 0 in Lq+1(R3), and that ξ is
arbitrary, we can conclude that

∫

R3
f (un)un → 0.

Recalling that

‖un‖2
Wε
−

∫

R3
f (un)un = I ′ε(un)[un] = on(1),

it follows that un → 0 in Wε . ��
Lemma 16.3.9 Assume that V∞ < ∞ and let {vn} be a (PS)d sequence for Iε in
Wε with vn ⇀ 0 in Wε . Then

vn �→ 0 in Wε �⇒ d ≥ m(V∞)

(recall that m(V∞) is the mountain pass level of EV∞ , see (16.28)).

Proof Let {tn} ⊂ (0,+∞) be a sequence such that {tnvn} ⊂ MV∞ . We start by
showing the following

Claim The sequence {tn} satisfies lim supn→∞ tn ≤ 1.
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In fact, supposing by contradiction that the claim does not hold, there exists δ > 0
and a subsequence still denoted by {tn}, such that

tn ≥ 1+ δ for all n ∈ N. (16.30)

Since {vn} is bounded in Wε , I ′ε(vn)[vn] = on(1), that is,

∫

R3

[
|(−�)s/2vn|2 + V (εx)v2

n

]
=

∫

R3
f (vn)vn + on(1).

Moreover, since {tnvn} ⊂MV∞ , we get

t2n

∫

R3

[
|(−�)s/2vn|2 + V∞v2

n

]
=

∫

R3
f (tnvn)tnvn.

The last two equalities imply that

∫

R3

[
f (tnvn)v

2
n

tnvn
− f (vn)v

2
n

vn

]
=

∫

R3
[V∞ − V (εx)]v2

n + on(1). (16.31)

Given ξ > 0, by condition (16.3) there exists R = R(ξ) > 0 such that

V (εx) ≥ V∞ − ξ for any |x| ≥ R.

Let C > 0 be such that ‖vn‖Wε ≤ C. Since vn → 0 in L2(BR(0)), we conclude
by (16.31)

∫

R3

[
f (tnvn)

tnvn
− f (vn)

vn

]
v2
n ≤ ξCV∞ + on(1). (16.32)

Since vn �→ 0 in Wε , we may invoke Lemma 16.3.8 to obtain {yn} ⊂ R
3 and

Ř, c > 0 such that

∫

B
Ř
(yn)

v2
n ≥ c. (16.33)

Defining v̌n := vn(· + yn), we may suppose that, up to a subsequence,

v̌n ⇀ v̌ in Hs(R3).

Moreover, in view of (16.33), there exists a subset � ⊂ R
N with positive measure

such that v̌ > 0 in �. From (f4), we can use (16.30) to rewrite (16.32) as

0 <

∫

�

[
f ((1+ δ)v̌n)

(1+ δ)v̌n
− f (v̌n)

v̌n

]
v̌2
n ≤ ξCV∞ + on(1), for any ξ > 0.
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Letting n→∞ in the last inequality and applying Fatou’s Lemma, it follows that

0 <

∫

�

[
f ((1+ δ)v̌)

(1+ δ)v̌
− f (v̌)

v̌

]
v̌2 ≤ ξCV∞, for any ξ > 0.

which is an absurd, proving the claim.
Now, it is convenient to distinguish the following cases:

Case 1 lim supn→∞ tn = 1.
In this case there exists a subsequence, still denoted by {tn}, such that tn → 1.

Thus,

d + on(1) = Iε(vn) ≥ m(V∞)+ Iε(vn)− EV∞(tnvn). (16.34)

Recalling that

Iε(vn)− EV∞(tnvn) =
(1− t2n)

2

∫

R3
|(−�)s/2vn|2 + 1

2

∫

R3
V (εx)v2

n

− t2n

2

∫

R3
V∞v2

n +
∫

R3
[F(tnvn)− F(vn)],

and using the fact that {vn} is bounded in Wε by C > 0 together with the
condition (16.3), we get

Iε(vn)− EV∞(tnvn) ≥ on(1)− Cξ +
∫

RN

[F(tnvn)− F(vn)].

Moreover, by the Mean Value Theorem,

∫

RN

[F(tnvn)− F(vn)] = on(1),

therefore (16.34) becomes

d + on(1) ≥ m(V∞)− Cξ + on(1),

and taking the limit in n, by the arbitrariness of ξ , we have d ≥ m(V∞).

Case 2 lim supn→∞ tn = t0 < 1.
In this case up to a subsequence, still denoted by {tn}, we have

tn → t0 and tn < 1 for all n ∈ N.

Since u �→ 1
2f (u)u− F(u) is increasing, we have

m(V∞) ≤
∫

RN

[
1

2
f (tnvn)tnvn − F(tnvn)

]
≤

∫

RN

[
1

2
f (vn)vn − F(vn)

]
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hence,

m(V∞) ≤ Iε(vn)− 1

2
I ′ε(vn)[vn] = d + on(1),

and again we easily conclude. ��
Now we are ready to give the desired compactness result.

Proposition 16.3.10 The functional Iε in Wε satisfies the (PS)c condition

1. at any level c < m(V∞), if V∞ <∞,
2. at any level c ∈ R, if V∞ = ∞.

Proof Let {un} ⊂ Wε be such that Iε(un) → c and I ′ε(un) → 0. By standard
calculations, we can see that {un} is bounded in Wε . Thus there exists u ∈ Wε such
that, up to a subsequence, un ⇀ u in Wε and we see that I ′ε(u) = 0.

Defining vn := un − u, by [11] we know that

∫

R3
F(vn) =

∫

R3
F(un)−

∫

R3
F(u)+ o(1)

and arguing as in [3] we have also I ′ε(vn)→ 0. Then

Iε(vn) = Iε(un)− Iε(u)+ on(1) = c − Iε(u)+ on(1) =: d + on(1) (16.35)

and {vn} is a (PS)d sequence. By (f3),

Iε(u) = Iε(u)− 1

2
I ′ε(u)[u] =

∫

R3
[1
2
f (u)u− F(u)] ≥ 0,

and then, if V∞ <∞ and c < m(V∞), by (16.35) we obtain

d ≤ c < m(V∞).

It follows from Lemma 16.3.9 that vn → 0, that is un → u in Wε .
In the case V∞ = ∞ by the compact imbeddingWε ↪→↪→ Lp(R3), 2 ≤ p < 2∗s ,

up to a subsequence, vn → 0 in Lp(R3) and by (f2)

‖vn‖2
Wε
=

∫

R3
f (vn)vn = on(1).

This last equality implies that un → u in Wε . ��
It follows the next
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Proposition 16.3.11 The functional Iε restricted to Nε satisfies the (PS)c
condition

1. at any level c < m(V∞), if V∞ <∞,
2. at any level c ∈ R, if V∞ = ∞.

Proof Let {un} ⊂ Nε be such that Iε(un)→ c and for some sequence {λn} ⊂ R,

I ′ε(un) = λnJ
′
ε(un)+ on(1), (16.36)

where Jε : Wε → R is defined in (16.29). Again we can deduce that {un} is
bounded. Now

a) evaluating (16.36) in un we get λnJ ′ε(un)[un] = on(1),
b) evaluating (16.36) in v ∈ TunNε we get J ′ε(un)[v] = 0.

Hence λnJ ′ε(un) = on(1) and by (16.36) we deduce I ′ε(un) = on(1). Then {un} is a
(PS)c sequence for Iε and we conclude by Proposition 16.3.10. ��
Corollary 16.3.12 The constrained critical points of the functional Iε on Nε are
critical points of Iε in Wε .

Proof The standard proof follows by using similar arguments explored in the last
proposition. ��

Now let us pass to the functional related to the autonomous problem (Aμ).

Lemma 16.3.13 (Ground State for the Autonomous Problem) Let {un} ⊂ Mμ

be a sequence satisfying Eμ(un)→ m(μ). Then, up to subsequences the following
alternative holds:

a) {un} strongly converges in Hs(R3);
b) there exists a sequence {ỹn} ⊂ R

3 such that un(· + ỹn) strongly converges in
Hs(R3).

In particular, there exists a minimizer wμ ≥ 0 for m(μ).

This result is known in the literature, but for completeness we give here the proof.

Proof By the Ekeland Variational Principle we may suppose that {un} is a (PS)m(μ)
sequence for Eμ. Thus going to a subsequence if necessary, we have that un ⇀ u

weakly in Hs(R3) and it is easy to verify that E′μ(u) = 0.
In case u �= 0, then wμ := u is a ground state solution of the autonomous

problem (Aμ), that is, Eμ(wμ) = m(μ).
In case u ≡ 0, applying the same arguments employed in the proof of

Lemma 16.3.8, there exists a sequence {ỹn} ⊂ R
3 such that

vn ⇀ v in Hs(R3)
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where vn := un(· + ỹn). Therefore, {vn} is also a (PS)m(μ) sequence of Eμ and
v �≡ 0. It follows from the above arguments that setting wμ := v it is the ground
state solution we were looking for.

In both cases, it is easy to see that wμ ≥ 0 and the proof of the lemma is finished.
��

Now we can complete the proof of Theorem 16.3.1 on the existence of ground
state solution for problem (Pε).

By Lemma 16.3.6, the functional Iε has the geometry of the Mountain Pass
Theorem in Wε. Then by well-known results there exists {un} ⊂ Wε satisfying

Iε(un)→ cε and I ′ε(un)→ 0.

Case I V∞ = ∞. By Proposition 16.3.10, {un} strongly converges to some uε in
Hs(R3), which satisfies

Iε(uε) = cε and I ′ε(uε) = 0.

Case II V∞ <∞. In virtue of Proposition 16.3.10 we just need to show that cε <
m(V∞). Suppose without loss of generality that 0 ∈ M , i.e.

V (0) = V0.

Let μ ∈ (V0, V∞), so that

m(V0) < m(μ) < m(V∞). (16.37)

For r > 0 let ηr a smooth cut-off function in R
3 which equals 1 on Br and with

support in B2r . Let wr := ηrwμ and tr > 0 such that trwr ∈ Mμ. If it were, for
every r > 0 : Eμ(trwr) ≥ m(V∞), since wr → wμ in Hs(R3) for r → +∞, we
would have tr → 1 and then

m(V∞) ≤ lim inf
r→+∞Eμ(trwr) = Eμ(wμ) = m(μ)

which contradicts (16.37). Then there exists r > 0 such that φ := tr̄wr̄ satisfies
Eμ(φ) < m(V∞). Condition (16.3) implies that for some ε > 0

V (εx) ≤ μ, for all x ∈ suppφ and ε ≤ ε,

so
∫

RN

V (εx)φ2 ≤ μ

∫

RN

φ2 for all ε ≤ ε
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and consequently

Iε(tφ) ≤ Eμ(tφ) ≤ Eμ(φ) for all t > 0.

Therefore maxt>0 Iε(tφ) ≤ Eμ(φ), and then

cε < m(V∞)

which conclude the proof.

To get the multiplicity result we need to introduce the machinery of the
“barycenter method.”

16.3.3 The Barycenter Map

Up to now ε was fixed in our considerations. Now we deal with the case ε → 0+.
The next result will be fundamental when we implement the “barycenter machinery”
below.

Proposition 16.3.14 Let εn → 0 and {un} ⊂ Nεn be such that Iεn(un) → m(V0).
Then there exists a sequence {ỹn} ⊂ R

3 such that un(· + ỹn) has a convergent
subsequence in Hs(R3). Moreover, up to a subsequence, yn := εnỹn → y ∈ M .

Proof Arguing as in the proof of Lemma 16.3.8, we obtain a sequence {ỹn} ⊂ R
3

and constants R, c > 0 such that

lim inf
n→∞

∫

BR(ỹn)

u2
n ≥ c > 0.

Thus, if vn := un(· + ỹn), up to a subsequence, vn ⇀ v �≡ 0 in Hs(R3). Let tn > 0
be such that ṽn := tnvn ∈MV0 . Then,

EV0(ṽn)→ m(V0).

Since {tn} is bounded, so is the sequence {ṽn}, thus for some subsequence, ṽn ⇀ ṽ

in Hs(RN). Moreover, reasoning as in [3], up to some subsequence still denoted
with {tn}, we can assume that tn → t0 > 0, and this limit implies that ṽ �≡ 0. From
Lemma 16.3.13, ṽn → ṽ in Hs(R3), and so vn → v in Hs(R3).

Now, we will show that {yn} := {εnỹn} has a subsequence verifying yn →
y ∈ M . First note that the sequence {yn} is bounded in R

3. Indeed, assume by
contradiction that (up to subsequences) |yn| → ∞.

In case V∞ = ∞, the inequality

∫

R3
V (εnx + yn)v

2
n ≤

∫

R3
|(−�)s/2vn|2 +

∫

R3
V (εnx + yn)v

2
n =

∫

R3
f (vn)vn,
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and the Fatou’s Lemma imply

∞ = lim inf
n→∞

∫

R3
f (vn)vn

which is an absurd, since the sequence {f (vn)vn} is bounded in L1(R3).
Now let us consider the case V∞ <∞. Since ṽn → ṽ in Hs(R3) and V0 < V∞,

we have

m(V0) = 1

2

∫

R3
|(−�)s/2ṽ|2 + V0

2

∫

R3
ṽ2 −

∫

R3
F(ṽ)

<
1

2

∫

R3
|(−�)s/2ṽ|2 + V∞

2

∫

R3
ṽ2 −

∫

R3
F(ṽ)

≤ lim inf
n→∞

[
1

2

∫

R3
|(−�)s/2ṽn|2 + 1

2

∫

R3
V (εnx + yn)ṽ

2
n −

∫

R3
F(ṽn)

]
,

or equivalently

m(V0) < lim inf
n→∞

[
t2n

2

∫

R3
|(−�)s/2un|2 + t2n

2

∫

R3
V (εnz)u

2
n −

∫

R3
F(tnun)

]
.

The last inequality implies

m(V0) < lim inf
n→∞ Iεn(tnun) ≤ lim inf

n→∞ Iεn(un) = m(V0),

which is a contradiction. Hence, {yn} has to be bounded and, up to a subsequence,
yn → y ∈ R

N . If y �∈ 3, then V (y) > V0 and we obtain a contradiction arguing as
above. Thus, y ∈ M and the Proposition is proved. ��

Let δ > 0 be fixed and η be a smooth nonincreasing cut-off function defined in
[0,∞) by

η(s) =
{

1 if 0 ≤ s ≤ δ/2

0 if s ≥ δ.

Let wV0 be a ground state solution given in Lemma 16.3.13 of problem (Aμ) with
μ = V0 and for any y ∈ M , let us define

�ε,y(x) := η(|εx − y|)wV0

(
εx − y

ε

)
.

Let tε > 0 verifying maxt≥0 Iε(t�ε,y) = Iε(tε�ε,y), so that tε�ε,y ∈ Nε, and let

�ε : y ∈ M �→ tε�ε,y ∈ Nε.
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By construction, �ε(y) has compact support for any y ∈ M and �ε is a continuous
map.

The next result will help us to define a map from M to a suitable sublevel in the
Nehari manifold.

Lemma 16.3.15 The function �ε satisfies

lim
ε→0+

Iε(�ε(y)) = m(V0), uniformly in y ∈ M.

Proof Suppose by contradiction that the lemma is false. Then there exist δ0 > 0,
{yn} ⊂ M and εn → 0+ such that

|Iεn(�εn(yn))−m(V0)| ≥ δ0. (16.38)

Repeating the same arguments explored in [2], it is possible to check that tεn → 1.
From Lebesgue’s Theorem, we can check that

lim
n→∞‖�εn,yn‖2

εn
= ‖wV0‖2

V0

and

lim
n→∞

∫

R3
F(�εn,yn) =

∫

R3
F(wV0).

Now, note that

Iεn(�εn(yn)) =
t2εn

2

∫

R3

∣
∣
∣(−�)s/2(η(|εnz|)wV0(z))

∣
∣
∣
2

+ t2εn

2

∫

R3
V (εnz+ yn)|η(|εnz|)wV0(z)|2

−
∫

R3
F(tεnη(|εnz|)wV0(z)).

Letting n → ∞, we get limn→∞ Iεn(�εn(yn)) = EV0(wV0) = m(V0), which
contradicts (16.38). Thus the Lemma holds. ��

Observe that by Lemma 16.3.15, h(ε) := |Iε(�ε(y))−m(V0)| = o(1) for ε →
0+ uniformly in y, and then Iε(�ε(y))−m(V0) ≤ h(ε). In particular the set

Nm(V0)+h(ε)
ε :=

{
u ∈ Nε : Iε(u) ≤ m(V0)+ h(ε)

}

is not empty, since for sufficiently small ε,

∀ y ∈ M : �ε(y) ∈ Nm(V0)+h(ε)
ε . (16.39)



16 Variational Methods for Schrödinger Type Equations 613

We are in a position now to define the barycenter map that will send a convenient
sublevel in the Nehari manifold in a suitable neighborhood of M . From now on we
fix a δ > 0 in such a way that M and

M2δ :=
{
x ∈ R

3 : d(x,M) ≤ 2δ
}

are homotopically equivalent (d denotes the euclidean distance). Let ρ = ρ(δ) > 0
be such that M2δ ⊂ Bρ and χ : R3 → R

3 be defined as

χ(x) =
⎧
⎨

⎩

x if |x| ≤ ρ

ρ
x

|x| if |x| ≥ ρ.

Finally, let us consider the so-called barycenter map βε defined on functions with
compact support u ∈ Wε by

βε(u) :=

∫

R3
χ(εx)u2(x)

∫

R3
u2(x)

∈ R
3.

Lemma 16.3.16 The function βε satisfies

lim
ε→0+

βε(�ε(y)) = y, uniformly in y ∈ M.

Proof Suppose, by contradiction, that the lemma is false. Then, there exist δ0 > 0,
{yn} ⊂ M and εn → 0+ such that

|βεn(�εn(yn))− yn| ≥ δ0. (16.40)

Using the definition of �εn(yn), βεn and η given above, we have the equality

βεn(�εn(yn)) = yn +

∫

R3
[χ(εnz+ yn)− yn]

∣
∣
∣η(|εnz|)w(z)

∣
∣
∣
2

∫

R3

∣
∣
∣η(|εnz|)w(z)

∣
∣
∣
2 .

Using the fact that {yn} ⊂ M ⊂ Bρ and the Lebesgue’s Theorem, it follows

|βεn(�εn(yn))− yn| = on(1),

which contradicts (16.40) and the Lemma is proved. ��
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Lemma 16.3.17 We have

lim
ε→0+

sup
u∈Nm(V0)+h(ε)

ε

inf
y∈Mδ

∣
∣
∣βε(u)− y

∣
∣
∣ = 0.

Proof Let {εn} be such that εn → 0+. For each n ∈ N, there exists un ∈
Nm(V0)+h(εn)

εn such that

inf
y∈Mδ

∣
∣
∣βεn(un)− y

∣
∣
∣ = sup

u∈Nm(V0)+h(εn)
εn

inf
y∈Mδ

∣
∣
∣βεn(u)− y

∣
∣
∣+ on(1).

Thus, it suffices to find a sequence {yn} ⊂ Mδ such that

lim
n→∞

∣
∣
∣
∣βεn(un)− yn

∣
∣
∣
∣ = 0. (16.41)

Recalling that un ∈ Nm(V0)+h(εn)
εn ⊂ Nεn we have

m(V0) ≤ cεn ≤ Iεn(un) ≤ m(V0)+ h(εn),

so Iεn(un) → m(V0). By Proposition 16.3.14, we get a sequence {ỹn} ⊂ R
3 such

that vn := un(·+ ỹn) converges in Hs(R3) to some v and {yn} := {εnỹn} ⊂ Mδ , for
n sufficiently large. Thus

βεn(un) = yn +

∫

R3
[χ(εnz+ yn)− yn]v2

n(z)

∫

RN

vn(z)
2

.

Since vn → v in Hs(R3), it is easy to check that the sequence {yn} verifies
(16.41). ��

16.3.4 Proof of Theorem 16.3.2

In virtue of Lemma 16.3.17, there exists ε∗ > 0 such that

∀ ε ∈ (0, ε∗] : sup
u∈Nm(V0)+h(ε)

ε

d(βε(u),Mδ) < δ/2.
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Define now

M+ :=
{
x ∈ R

3 : d(x,M) ≤ 3δ/2
}

so that M and M+ are homotopically equivalent.
Now, reducing ε∗ > 0 if necessary, we can assume that Lemmas 16.3.16, 16.3.17

and (16.39) hold. Then by standard arguments the composed map

M
�ε−→ Nm(V0)+h(ε)

ε

βε−→ M+ is homotopic to the inclusion map. (16.42)

In case V∞ < ∞, we eventually reduce ε∗ in such a way that also the
Palais-Smale condition is satisfied in the interval (m(V0),m(V0) + h(ε)), see
Proposition 16.3.11.

By (16.42) and well-known properties of the category, we get

cat(Nm(V0)+h(ε)
ε ) ≥ catM+(M),

and the Ljusternik-Schnirelman theory (see, e.g., [42]) implies that Iε has at least
catM+(M) = catM critical points on Nε.

To obtain another solution we use the same ideas of [18]. First note that, since
M is not contractible, the set A := �ε(M) cannot be contractible in Nm(V0)+h(ε)

ε .
Moreover A is compact.

For u ∈ Wε \ {0} we denote with tε(u) > 0 the unique positive number such that
tε(u)u ∈ Nε. Let u∗ ∈ Wε be such that u∗ ≥ 0, and Iε(tε(u

∗)u∗) > m(V0)+ h(ε).

Consider the cone

C :=
{
tu∗ + (1− t)u : t ∈ [0, 1], u ∈ A

}

and note that 0 /∈ C, since functions in C have to be positive on a set of nonzero
measure. Clearly it is compact and contractible. Let

tε(C) :=
{
tε(w)w : w ∈ C

}

be its projection on Nε , which is compact as well, and

c := max
tε(C)

Iε > m(V0)+ h(ε).

Since A ⊂ tε(C) ⊂ Nε and tε(C) is contractible in N c
ε := {u ∈ Nε : Iε(u) ≤ c},

we infer that also A is contractible in N c
ε .

Summing up, we have a set A which is contractible in N c
ε but not in Nm(V0)+h(ε)

ε ,
where c > m(V0) + h(ε). This is only possible, since Iε satisfies the Palais-Smale
condition, if there is a critical level between m(V0)+ h(ε) and c.
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By Corollary 16.3.12, we conclude the proof of statements about the existence
of solutions in Theorem 16.3.2.

16.4 The Case of Unknown Potential: The Fractional
Schrödinger-Poisson System

The results shown in this section are taken from [53].
In the last decades a great attention has been given to the following Schrödinger-

Poisson type system

{−�u+ V (x)u+ φu = |u|p−2u

−�φ = u2,

which arises in nonrelativistic Quantum Mechanics. Such a system is obtained
by looking for standing wave solutions in the purely electrostatic case to the
Schrödinger-Maxwell system. For a deduction of this system, see, e.g., [19]. Here
the unknowns are u, the modulus of the wave function, and φ which represents the
electrostatic potential. V is a given external potential and p ≥ 2 a suitable given
number.

The system has been studied by many authors, both in bounded and unbounded
domains, with different assumptions on the data involved: boundary conditions,
potentials, nonlinearities; many different type of solutions have been encountered
(minimal energy, sign changing, radial, nonradial, etc.), the behavior of the solutions
(e.g., concentration phenomena) has been studied as well as multiplicity results have
been obtained. It is really difficult to give a complete list of references: the reader
may see [20] and the references therein.

However it seems that results relating the number of positive solutions with
topological invariants of the “objects” appearing in the problem are few in the
literature. We cite the paper [58] where the system is studied in a (smooth and)
bounded domain � ⊂ R

3 with u = φ = 0 on ∂� and V constant. It is shown, by
using variational methods, that whenever p is sufficiently near the critical Sobolev
exponent 6, the number of positive solutions is estimated below by the Ljusternick-
Schnirelmann category of the domain �.

On the other hand, it is known that a particular interest has the semiclassical limit
of the Schrödinger-Poisson system (that is when the Plank constant h̄ appearing in
the system, see, e.g., [19], tends to zero) especially due to the fact that this limit
describes the transition from Quantum to Classical Mechanics. Such a situation is
studied, e.g., in [57], among many other papers. We cite also Fang and Zhang [37]
which consider the following doubly perturbed system in the whole space R

3:

{−ε2�w + V (x)w + ψw = |w|p−2w

−ε�ψ = w2.
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Here V is a suitable potential, 4 < p < 6, and ε is a positive parameter proportional
to h̄. In this case the authors estimate, whenever ε tends to zero, the number of
positive solutions by the Ljusternick-Schnirelamnn category of the set of minima of
the potential V , obtaining a result in the same spirit of [58].

Motivated by the previous discussion, we investigate in this paper the existence
of positive solutions for the following doubly singularly perturbed fractional
Schrödinger-Poisson system in R

N :

{
ε2s (−�)s w + V (x)w + ψw = f (w)

εθ (−�)α/2 ψ = γαw
2,

(Pε)

where γα := πN/22α�(α/2)
�(N/2−α/2) is a constant (� is the Euler function). By a positive

solution of (Pε) we mean a pair (w,ψ) where w is positive. To the best of our
knowledge, there are only few recent papers dealing with a system like (Pε): in [63]
the author deals with ε = 1 proving under suitable assumptions on f the existence
of infinitely many (but possibly sign changing) solutions by means of the Fountain
Theorem. A similar system is studied in [61] and the existence of infinitely many
(again, possibly sign changing) solutions is obtained by means of the Symmetric
Mountain Pass Theorem.

In this section we assume that

(H) s ∈ (0, 1), α ∈ (3− 2s, 3), θ ∈ (0, α),

moreover the potential V and the nonlinearity f satisfy the assumptions listed
below:

(V) V : R3 → R is a continuous function and

0 < min
R3

V := V0 < V∞ := lim inf|x|→+∞V ∈ (V0,+∞];

(f1) f : R→ R is a function of class C1 and f (t) = 0 for t ≤ 0;
(f2) there is q0 ∈ (2, 2∗s − 1) such that limt→∞ f (t)/tq0 = 0, where 2∗s := 6/(3−

2s);
(f3) there is K > 4 such that 0 < KF(t) := K

∫ t

0 f (τ)dτ ≤ tf (t) for all t > 0;

(f4)
d

dt

f (t)

t3
> 0 in (0,+∞).

The assumptions on the nonlinearity f are quite standard in order to work with
variational methods, use the Nehari manifold and the Palais-Smale condition. The
assumption (V) will be fundamental in order to estimate the number of positive
solutions and also to recover some compactness.

Observe that by (f1) it follows that

lim
t→0

f (t)/t = 0. (16.43)
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Moreover

∀ε > 0 ∃Mξ > 0 :
∫

R3
f (u)u ≤ ξ

∫

R3
u2 +Mξ

∫

R3
|u|q0+1, ∀u ∈ Hs(R3).

(16.44)

which simply follows by (16.43) and (f2). A similar inequality is used in the proof
of Lemma 16.3.8 in the previous section.

To state our result let us introduce

M :=
{
x ∈ R

3 : V (x) = V0

}

the set of minima of V . Our results are the following

Theorem 16.4.1 Under the above assumptions (H), (V), (f1)–(f4), there exists a
ground state solution uε ∈ Wε of problem (Pε),

1. for every ε ∈ (0, ε̄], for some ε̄ > 0, if V∞ <∞;
2. for every ε > 0, if V∞ =∞.

Theorem 16.4.2 Under the above assumptions (H), (V), (f1)–(f4), there exists an
ε∗ > 0 such that for every ε ∈ (0, ε∗] problem (Pε) has at least

1. catM positive solutions.
2. catM + 1 positive solutions, if M is bounded and catM ≥ 2.

As for the “single” Fractional Schrödinger equation, the proof of Theorem 16.4.2
is carried out by adapting some ideas of Benci, Cerami, and Passaseo [17, 18, 21]
and using the Ljusternick-Schnirelmann Theory.

As done in Sect. 16.3 the plan here is the following.

• The Variational Setting. Here after a change of variable we introduce an equiv-
alent problem. Then some preliminaries facts are presented and the variational
setting for the problem is given.

• Compactness for Iε and Eμ: Existence of a Ground State Solution. Here we
prove some compactness properties; as a by-product we prove the existence of a
ground state solution for our problem, proving Theorem 16.4.1.

• The Barycenter Map. Here barycenter maps are introduced in order to estimate
the category of suitable sub levels of the energy functional for ε→ 0.

• Proof of Theorem 16.4.2. Here, by using all the previous machinery, the proof
of the multiplicity result is completed.
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16.4.1 The Variational Setting

It is easily seen that, just performing the change of variables w(x) :=
u(x/ε), ψ(x) := φ(x/ε), problem (Pε) can be rewritten as

{
(−�)s u+ V (εx)u+ φ(x)u = f (u)

(−�)α/2φ = εα−θγαu2,
(P ∗ε )

to which we will refer from now on.
A usual “reduction” argument can be used to deal with a single equation

involving just u. Indeed for every u ∈ Hs(R3) the second equation in (P ∗ε ) is
uniquely solved. Actually, for future reference, we will prove a slightly more general
fact.

Let us fix two functions u,w ∈ Hs(R3) and consider the problem

{
(−�)α/2 φ = εα−θγαuw,
φ ∈ Ḣ α/2(R3)

(Qε)

whose weak solution is a function φ̃ ∈ Ḣ α/2(R3) such that

∀v ∈ Ḣ α/2(R3) :
∫

R3
(−�)α/4φ̃(−�)α/4v = εα−θγα

∫

R3
uwv.

For every v ∈ Ḣ α/2(R3), by the Hölder inequality and the continuous embeddings,
we have

∣∣
∣
∫

R3
uwv

∣∣
∣ ≤ |u| 4·3

3+α
|w| 4·3

3+α
|v|2∗α/2

≤ C‖u‖‖w‖‖v‖Ḣ α/2

deducing that the map

Tu,w : v ∈ Ḣ α/2(R3) �−→
∫

R3
uwv ∈ R

is linear and continuous: then there exists a unique solution φε,u,w ∈ Ḣ α/2(R3)

to (Qε). Moreover this solution has the representation by means of the Riesz kernel
Kα(x) = γ−1

α |x|α−3, hence

φε,u,w = εα−θ 1

| · |3−α # (uw).

Furthermore

‖φε,u,w‖Ḣ α/2 = εα−θ‖Tu,w‖L(Ḣ α/2;R) ≤ εα−θC‖u‖‖w‖ (16.45)
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and then, for ζ, η ∈ Hs(R3)

∫

R3
φε,u,wζη ≤ ‖φε,u,w‖2∗α/2

|ζ | 4·3
3+α
|η| 4·3

N+α
≤ εα−θCe‖u‖‖w‖‖ζ‖‖η‖ (16.46)

where Ce is a suitable embedding constant. Although its value is not important, we
will refer to this constant later on.

A particular case of the previous situation is when u = w. In this case we simplify
the notation and write

• Tu(v) := Tu,u(v) =
∫
R3 u

2v, and
• φε,u for the unique solution of the second equation in (P ∗ε ) for fixed u ∈ Hs(R3).

Then

‖φε,u‖Ḣ α/2 ≤ εα−θC‖u‖2

and the map

u ∈ Hs(R3) �−→ φε,u ∈ Ḣ α/2(R3)

is bounded.

Observe also that

u2
n → u2 in L

2·3
3+α (R3) �⇒ Tun → Tu as operators

�⇒ φε,un → φε,u in Ḣ α/2(R3). (16.47)

For convenience let us define the map (well defined by (16.46))

A : u ∈ Hs(R3) �−→
∫

R3
φε,uu

2 ∈ R.

Then

|A(u)| ≤ εα−θCe‖u‖4 (16.48)

(where Ce is the same constant in (16.46)). Some relevant properties of φε,u and A

are listed below. Although these properties are known to be true, we are not able to
find them explicitly in the literature; so we prefer to give a proof here.

Lemma 16.4.3 The following propositions hold.

(i) For every u ∈ Hs(R3) : φε,u ≥ 0;
(ii) for every u ∈ Hs(R3), t ∈ R : φε,tu = t2φε,u;
(iii) if un ⇀ u in Hs(R3), then φε,un ⇀ φε,u in Ḣ α/2(R3);
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(iv) A is of class C2 and for every u, v,w ∈ Hs(R3)

A′(u)[v] = 4
∫

R3
φε,uuv, A′′(u)[v,w] = 4

∫

R3
φε,uvw + 8

∫

R3
φε,u,wuv,

(v) if un → u in Lr(R3), with 2 ≤ r < 2∗s , then A(un)→ A(u);
(vi) if un ⇀ u in Hs(R3) then A(un − u) = A(un)− A(u)+ on(1).

Proof Items (i) and (ii) follow directly by the definition of φε,u.
To prove (iii), let v ∈ C∞c (R3); we have

∫

R3
(−�)α/4(φε,un − φε,u)(−�)α/4v =

∫

R3
(u2

n − u2)v

≤ |v|∞
( ∫

suppv
(un − u)2

)1/2

×
( ∫

supp v
(un + u)2

)1/2 → 0.

The conclusion then follows by density.
The proof of (iv) is straightforward: we refer the reader to [37].
To show (v), recall that 2 < 4·3

3+α < 2∗s . Since by assumption |u2
n| 2·3

3+α
→ |u2| 2·3

3+α
and u2

n → u2 a.e. in R
3, using the Brezis-Lieb Lemma, u2

n → u2 in L
2·3

3+α
(
R

3
)
. But

then using (16.47) we get φε,un → φε,u in L
2∗α/2(R3). Consequently

|A (un)− A (u) | ≤
∫

R3
|φε,unu2

n − φε,uu
2|

≤
∫

R3
| (φε,un − φε,u

)
u2
n| +

∫

R3
|φε,u

(
u2
n − u2

)
|

≤ |φε,un − φε,u|2∗α/2
|u2

n| 2·3
3+α

+ |φε,u|2∗α/2
|u2

n − u2| 2·3
3+α

from which we conclude.
To prove (vi), for the sake of simplicity we drop the factor εα−θ in the expression

of φε,u,v. Defining

σ :=
∫

R3

∫

R3

u2(y)u2(x)

|x − y|3−α dydx ,

σ 1
n :=

∫

R3

∫

R3

u2
n(y)u

2(x)

|x − y|3−α dydx , σ 2
n :=

∫

R3

∫

R3

un(y)u(y)un(x)u(x)

|x − y|3−α dydx

σ 3
n :=

∫

R3

∫

R3

u2
n(y)un(x)u(x)

|x − y|3−α dydx , σ 4
n :=

∫

R3

∫

R3

un(y)u(y)u
2 (x)

|x − y|3−α dydx,
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it is easy to check that

A(un − u)− A(un)+ A(u) = 2σ + 2σ 1
n + 4σ 2

n − 4σ 3
n − 4σ 4

n .

Now we claim that, whenever un ⇀ u in Hs(R3),

lim
n→∞ σ i

n = σ, i = 1, 2, 3, 4

which readily gives the conclusion.
We prove here only the cases i = 1, 2 since the proof of the other cases is very

similar. Recall that

φε,u(x) =
∫

R3

u2 (y)

|x − y|3−α dy , φε,un(x) =
∫

R3

u2
n(y)

|x − y|3−α dy.

Since u2 ∈ L
2·3

3+α (R3) = L
(2∗α/2)

′
(R3) and by item (iii) it holds φε,un → φε,u in

L
2∗α/2(R3), we conclude that

σ 1
n =

∫

R3
φε,unu

2 →
∫

R3
φε,uu

2 = σ

and the claim is true for i = 1.
For i = 2 recall that

φε,un,u(x) =
∫

R3

un (y) u (y)

|x − y|3−α dy.

First we show that φε,un,u → φε,u a.e. in R
3. Given ξ > 0 and choosing R >

1/ξ, N
2s < p < 3

3−α and 3
3−α < q (so that 2p′, 2q ′ ∈ (2, 2∗s )), we have, for large n:

|φε,un,u(x)− φε,u(x)| ≤ |un − u|L2p′ (BR(x))
|u|L2p′ (BR(x))

×
( ∫

|y−x|<R
dy

|x − y|p(3−α)
)1/p

+|un − u|
L2q′ (Bc

R(x))
|u|

L2q′ (Bc
R(x))

×
(∫

|y−x|≥R
dy

|x − y|q(3−α)
)1/q

≤ C1ξ + C2ξ
3−α,

concluding the pointwise convergence. Moreover by the Sobolev embedding and
using (16.45),

|φε,un,uun|2 ≤ |φε,un,u|2∗α/2
|un|2N/α ≤ C1‖un‖2‖u‖ ≤ C2
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and therefore, up to subsequence, φε,un,uun ⇀ φε,uu in L2(R3), by Kavian [44,
Lemma 4.8]. Since u ∈ L2(R3)

σ 2
n =

∫

R3
φε,un,uunu→

∫

R3
φε,uu

2 = σ

and the claim is proved for i = 2. ��
We introduce now the variational setting for our problem. Let us define the

Hilbert space

Wε :=
{
u ∈ Hs(R3) :

∫

R3
V (εx)u2 <∞

}

endowed with scalar product and (squared) norm given by

(u, v)ε :=
∫

R3
(−�)s/2u(−�)s/2v +

∫

R3
V (εx)uv

and

‖u‖2
ε :=

∫

R3
|(−�)s/2u|2 +

∫

R3
V (εx)u2.

Then it is standard to see that the critical points of the C2 functional (see
Lemma 16.4.3 (iv))

Iε(u) := 1

2

∫

R3
|(−�)s/2u|2 + 1

2

∫

R3
V (εx)u2 + 1

4

∫

R3
φε,uu

2 −
∫

R3
F(u),

on Wε are weak solutions of problem (P ∗ε ).
By defining

Nε :=
{
u ∈ Wε \ {0} : Jε(u) = 0

}
,

where

Jε(u) := I ′ε(u)[u] = ‖u‖2
ε +

∫

R3
φε,uu

2 −
∫

R3
f (u)u,

we have, by standard arguments:

Lemma 16.4.4 For every u ∈ Nε , J ′ε(u)[u] < 0 and there are positive constants
hε, kε such that ‖u‖ε ≥ hε, Iε(u) ≥ kε. Furthermore, Nε is diffeomorphic to the set

Sε := {u ∈ Wε : ‖u‖ε = 1} \ {u ∈ Wε : u ≤ 0 a.e. }.
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Nε is the Nehari manifold associated with Iε. By the assumptions on f , the
functional Iε has the Mountain Pass geometry. This is standard but we give the easy
proof for completeness.

(MP1) Iε(0) = 0;
(MP2) since, for every ξ > 0 there exists Mξ > 0 such that F(u) ≤ ξu2 +

Mξ |u|q0+1, we have

Iε(u) ≥ 1

2
‖u‖2

ε −
∫

R3
F(u)

≥ 1

2
‖u‖2

ε − ξC1‖u‖2
ε −MξC2‖u‖q0+1

ε

and we conclude Iε has a strict local minimum at u = 0;
(MP3) finally, since (f3) implies F(t) ≥ CtK for t > 0, with K > 4 (and less

than q0 + 1), fixed v ∈ C∞c (RN), v > 0 we have

Iε(tv) = t2

2
‖v‖2

ε +
t4

4

∫

R3
φε,vv

2 −
∫

R3
F(tv)

≤ t2

2
‖v‖2

ε +
t4

4

∫

RN

φε,vv
2 − CtK

∫

R3
vK

concluding that the functional is negative for suitable large t .

Then denoting with

cε := inf
γ∈Hε

sup
t∈[0,1]

Iε(γ (t)),

Hε =
{
γ ∈ C([0, 1],Wε) : γ (0) = 0, Iε(γ (1)) < 0

}

the Mountain Pass level, and with

mε := inf
u∈Nε

Iε(u)

the ground state level, it holds, in a standard way, that

cε = mε = inf
u∈Wε\{0}

sup
t≥0

Iε(tu). (16.49)

It is known that for “perturbed” problems a major role is played by the problem
at infinity that we now introduce.
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16.4.1.1 The Problem at “Infinity”

Let us consider the “limit” problem (the autonomous problem) associated with (P ∗ε ),
that is

{
(−�)su+ μu = f (u)

u ∈ Hs(R3)
(Aμ)

where μ > 0 is a constant. The solutions are critical points of the functional

Eμ(u) = 1

2

∫

R3
|(−�)s/2u|2 + μ

2

∫

R3
u2 −

∫

R3
F(u).

in Hs(R3). Denoting with Hs
μ(R

3) simply the space Hs(R3) endowed with the
(equivalent squared) norm

‖u‖2
Hs
μ
:= |(−�)s/2u|22 + μ|u|22,

by the assumptions of the nonlinearity f , it is easy to see that the functional Eμ has
the Mountain Pass geometry with Mountain Pass level

c∞μ := inf
γ∈Hμ

sup
t∈[0,1]

Eμ(γ (t)),

Hμ :=
{
γ ∈ C([0, 1],H s

μ(R
3)) : γ (0) = 0, Eμ(γ (1)) < 0

}
.

Introducing the set

Mμ :=
{
u ∈ Hs(R3) \ {0} : ‖u‖2

Hs
μ
=

∫

R3
f (u)u

}

it is standard to see that

• Mμ has a structure of differentiable manifold (said the Nehari manifold associ-
ated with Eμ),

• Mμ is bounded away from zero and radially homeomorphic to the unit sphere,
• the mountain pass value c∞μ coincides with the ground state level

m∞μ := inf
u∈Mμ

Eμ(u) > 0.

The symbol “∞” in the notations is just to recall we are dealing with the limit
problem. In the sequel we will mainly deal with μ = V0 and μ = V∞ (whenever
this last one is finite). Of course the inequality

mε ≥ m∞V0

holds.
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16.4.2 Compactness for Iε and Eμ: Existence of a Ground
State Solution

We begin by showing the boundedness of the Palais-Smale sequences for Eμ in
Hs
μ(R

3) and Iε in Wε. Let {un} ⊂ Hs
μ(R

3) be a Palais-Smale sequence for Eμ, that
is, |Eμ(un)| ≤ C and E′μ(un)→ 0. Then, for large n,

C + ‖un‖Hs
μ
> Eμ(un)− 1

K
E′μ(un)[un]

=
(

1

2
− 1

K

)
‖un‖2

Hs
μ
+ 1

K

∫

R3
(f (un)un −KF(un))

≥
(

1

2
− 1

K

)
‖un‖2

Hs
μ
,

and thus {un} is bounded. Similarly we conclude for Iε , using that

Iε(un)− 1

K
I ′ε(un)[un] =

(
1

2
− 1

K

)
||un| |2ε +

(
1

4
− 1

K

)∫

R3
φε,unu

2
n

+ 1

K

∫

R3
(f (un)un −KF(un))

≥
(

1

2
− 1

K

)
||un| |2ε.

In order to prove compactness, some preliminary work is needed. Let us recall
the following Lions type lemma, whose proof can be found in [30, Lemma 2.3].

Lemma 16.4.5 If {un} is bounded in Hs(R3) and for some R > 0 and 2 ≤ r < 2∗s
we have

sup
x∈R3

∫

BR(x)

|un|r → 0 as n→∞,

then un → 0 in Lp(R3) for 2 < p < 2∗s .

Then we can prove the following

Lemma 16.4.6 Let {un} ⊂ Wε be bounded and such that I ′ε(un) → 0. Then we
have either

a) un → 0 in Wε , or
b) there exist a sequence {yn} ⊂ R

3 and constants R, c > 0 such that

lim inf
n→+∞

∫

BR(yn)

u2
n ≥ c > 0.
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Proof Suppose that b) does not occur. Using Lemma 16.4.5 it follows

un → 0 in Lp(R3) for p ∈ (2, 2∗s ).

Using (16.44), the boundedness of {un} in L2(R3) and the fact that un → 0 in
Lq0+1(R3), we conclude that

∫

R3
f (un)un → 0.

Finally, since

||un| |2ε −
∫

R3
f (un)un ≤ ||un| |2ε +

∫

R3
φε,unu

2
n −

∫

R3
f (un)un = I ′ε(un)[un] = on(1),

it follows that un → 0 in Wε . ��
In the rest of the section we assume, without loss of generality, that 0 ∈ M , that

is, V (0) = V0.

Lemma 16.4.7 Assume that V∞ <∞ and let {vn} ⊂ Wε be a (PS)d sequence for
Iε such that vn ⇀ 0 in Wε . Then

vn �→ 0 in Wε �⇒ d ≥ m∞V∞ .

Proof Observe, preliminarily, that by condition (V) it follows that

∀ξ > 0 ∃R̃ = R̃ξ > 0 : V (εx) > V∞ − ξ, ∀x /∈ BR̃. (16.50)

Let {tn} ⊂ (0,+∞) be such that {tnvn} ⊂ MV∞ . We start by showing the
following

Claim The sequence {tn} satisfies lim supn→∞ tn ≤ 1.

Supposing by contradiction that the claim does not hold, there exists δ > 0 and a
subsequence still denoted by {tn}, such that

tn ≥ 1+ δ for all n ∈ N. (16.51)

Since {vn} is a bounded (PS)d sequence for Iε , I ′ε(vn)[vn] = on(1), that is,

||vn| |2ε +
∫

R3
φε,vnv

2
n =

∫

R3
f (vn)vn + on (1) .

Moreover, since {tnvn} ⊂MV∞ , we get

||tnvn| |2Hs
V∞
=

∫

R3
f (tnvn)tnvn.
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These equalities imply that

∫

R3

(
f (tnvn)

tn
− f (vn)

)
vn =

∫

R3
(V∞ − V (εx))v2

n −
∫

R3
φε,vnv

2
n + on(1),

and thus
∫

RN

(f (tnvn)
tn

− f (vn)
)
vn ≤

∫

RN

(V∞ − V (εx))v2
n + on(1). (16.52)

Using (16.50), the fact that vn → 0 in L2(BR̃) and that {vn} is bounded in Wε , let
us say by some constant C > 0, we deduce by (16.52)

∀ξ > 0 :
∫

R3

(
f (tnvn)

tn
− f (vn)

)
vn ≤ ξC + on(1). (16.53)

Since vn �→ 0 in Wε , we may invoke Lemma 16.4.6 to obtain {yn} ⊂ R
3 and

R, c > 0 such that

∫

BR(yn)

v2
n ≥ c. (16.54)

Defining v̌n := vn(· + yn), we may suppose that, up to a subsequence,

v̌n ⇀ v̌ in Hs(R3)

and, in view of (16.54), there exists a subset � ⊂ R
N with positive measure such

that v̌ > 0 in �. By (f4) and (16.51), (16.53) becomes

0 <

∫

�

(
f ((1+ δ)v̌n)

(1+ δ)v̌n
− f (v̌n)

v̌n

)
v̌2
n ≤ ξC + on(1).

Now passing to the limit and applying Fatou’s Lemma, it follows that, for every
ξ > 0

0 <

∫

�

[
f ((1+ δ)v̌)

(1+ δ)v̌
− f (v̌)

v̌

]
v̌2 ≤ ξC,

which is absurd and proves the claim.
Now we distinguish two cases.

Case 1 lim supn→∞ tn = 1.

Up to subsequence we can assume that tn → 1. We have

d + on(1) = Iε(vn) ≥ m∞V∞ + Iε(vn)− EV∞(tnvn). (16.55)
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Moreover,

Iε(vn)− EV∞(tnvn) =
(1− t2n)

2

∫

RN

|(−�)s/2vn|2 + 1

2

∫

RN

(V (εx)− t2nV∞)v2
n

+ 1

4

∫

Rn

φε,vnv
2
n +

∫

RN

(F (tnvn)− F(vn)),

and due to the boundedness of {vn} we get, for every ξ > 0,

Iε(vn)− EV∞(tnvn) ≥ on(1)− Cξ +
∫

RN

(F (tnvn)− F(vn)),

where we have used again (16.50). By the Mean Value Theorem, it is

∫

R3
(F (tnvn)− F(vn)) = on(1),

therefore (16.55) becomes

d + on(1) ≥ m∞V∞ − Cξ + on(1),

and taking the limit in n, by the arbitrariness of ξ , we deduce d ≥ m∞V∞ .

Case 2 lim supn→∞ tn = t0 < 1.

We can assume tn → t0 and tn < 1. Since t �→ 1
4f (t)t − F(t) is increasing in

(0,∞),

m∞V∞ ≤ EV∞(tnvn) =
∫

R3

(
1

2
f (tnvn)tnvn − F(tnvn)

)

=
∫

RN

1

4
f (tnvn)tnvn +

∫

R3

(
1

4
f (tnvn)tnvn − F(tnvn)

)

= 1

4
||tnvn| |2Hs

V∞
+

∫

R3

(
1

4
f (tnvn)tnvn − F(tnvn)

)

≤ 1

4
||tnvn| |2Hs

V∞
+

∫

R3

(
1

4
f (vn)vn − F(vn)

)
. (16.56)

But

||tnvn| |2V∞ ≤
∫

R3

∣∣
∣(−�)s/2vn

∣∣
∣
2 +

∫

R3
t2nV∞v2

n. (16.57)

Again by (16.50), given ξ > 0,

t2nV∞ − ξ < V∞ − ξ < V (εx) for x /∈ BR̃
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and hence
∫

R3
t2nV∞v2

n ≤
∫

BR̃

V∞v2
n +

∫

|x|≥R̃
V (εx)v2

n +
∫

|x|≥R̃
ξv2

n

≤ on(1)+
∫

R3
V (εx)v2

n + Cξ.

From this and (16.57) we have

||tnvn| |2Hs
V∞
≤ ||vn| |2ε + Cξ + on(1).

Therefore, using (16.56)

m∞V∞ ≤
1

4
||vn| |2ε +

∫

R3

(
1

4
f (vn)vn − F(vn)

)
+ Cξ + on(1)

= Iε(vn)− 1

4
I ′ε(vn)[vn] + Cξ + on(1)

= d + Cξ + on(1).

concluding the proof. ��
Proposition 16.4.8 The functional Iε in Wε satisfies the (PS)c condition

1. at any level c < m∞V∞ , if V∞ <∞,
2. at any level c ∈ R, if V∞ = ∞.

Proof Let {un} ⊂ Wε be such that Iε(un) → c and I ′ε(un) → 0. We have already
seen that {un} is bounded in Wε . Thus there exists u ∈ Wε such that, up to a
subsequence, un ⇀ u in Wε . Note that I ′ε(u) = 0, since by Lemma 16.4.3 (iv),
we have for every w ∈ Wε

(un,w)ε → (u,w)ε, A′(un)[w] → A′(u)[w] and
∫

RN

f (un)w→
∫

RN

f (u)w.

Defining vn := un − u, we have that

∫

R3
F(vn) =

∫

RN

F (un)−
∫

R3
F(u)+ on(1)

(see [11]) and by Lemma 16.4.3 (vi), we have A(vn) = A(un) − A(u) + on(1);
hence arguing as in [3], we obtain also

I ′ε(vn)→ 0. (16.58)



16 Variational Methods for Schrödinger Type Equations 631

Moreover

Iε(vn) = Iε(un)− Iε(u)+ on(1) = c − Iε(u)+ on(1) =: d + on(1) (16.59)

and (16.58) and (16.59) show that {vn} is a (PS)d sequence. By (f3),

Iε(u) = Iε(u)− 1

4
I ′ε(u)[u]

= 1

4
||u| |2ε +

∫

R3

(1

4
f (u)u− F(u)

)

≥ 1

4

∫

R3

(
f (u)u− 4F(u)

)

≥ 0

and then coming back in (16.59) we have

d ≤ c. (16.60)

Then,

1. if V∞ <∞, and c < m∞V∞ , by (16.60) we obtain

d ≤ c < m∞V∞ .

It follows from Lemma 16.4.7 that vn → 0, that is un → u in Wε .
2. If V∞ = ∞, by the compact imbedding Wε ↪→↪→ Lr(R3), 2 ≤ r < 2∗s , up to a

subsequence, vn → 0 in Lr(R3) and since I ′ε(vn)→ 0, we have

I ′ε(vn)[vn] = ||vn| |2ε +
∫

R3
φε,vnv

2
n −

∫

R3
f (vn)vn = on(1). (16.61)

By Lemma 16.4.3 (v), A(vn) =
∫
R3 φε,vnv

2
n = on(1), and since by (16.44) it

holds again
∫
R3 f (vn)vn = on(1), we have by (16.61) ||vn| |2ε = on(1), that is

un → u in Wε .

The proof is thereby complete. ��
As a consequence it is standard to prove that

Proposition 16.4.9 The functional Iε restricted to Nε satisfies the (PS)c condi-
tion

1. at any level c < m∞V∞ , if V∞ <∞,
2. at any level c ∈ R, if V∞ = ∞.
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Moreover, the constrained critical points of the functional Iε on Nε are critical
points of Iε in Wε , hence solutions of (P ∗ε ).

Let us recall the following result (see [39, Lemma 6]) concerning problem (Aμ).

Lemma 16.4.10 (Ground State for the Autonomous Problem) Let {un} ⊂ Mμ

be a sequence satisfying Eμ(un) → m∞μ . Then, up to subsequences the following
alternative holds:

a) {un} strongly converges in Hs(R3);
b) there exists a sequence {ỹn} ⊂ R

3 such that un(· + ỹn) strongly converges in
Hs(R3).

In particular, there exists a minimizer wμ ≥ 0 for m∞μ .

Now we can prove the existence of a ground state for our problem. Assumption (H)
is tacitly assumed.

Proof Since the functional Iε has the geometry of the Mountain Pass Theorem in
Wε there exists {un} ⊂ Wε satisfying

Iε(un)→ cε and I ′ε(un)→ 0.

1. If V∞ <∞, in virtue of Proposition 16.4.8, we have only to show that cε < m∞V∞
for every positive ε smaller than a certain ε̄.

Let μ ∈ (V0, V∞), so that

m∞V0
< m∞μ < m∞V∞ . (16.62)

For r > 0 let ηr be a smooth cut-off function in R
3 which equals 1 on Br and

with support in B2r . Let wr := ηrwμ and sr > 0 such that srwr ∈ Mμ. If
it were, for every r > 0 : Eμ(srwr) ≥ m∞V∞ , since wr → wμ in Hs(R3) for
r → +∞, we would have sr → 1 and then

m∞V∞ ≤ lim inf
r→+∞Eμ(srwr) = Eμ(wμ) = m∞μ

which contradicts (16.62). This means that there exists r > 0 such that ω :=
sr̄wr̄ ∈Mμ satisfies

Eμ(ω) < m∞V∞ . (16.63)

Given ε > 0, let tε > 0 the number such that tε ω ∈ Nε . Therefore

t2ε ||ω| |2ε + t4ε

∫

R3
φε,ω ω

2 = tε

∫

R3
f (tε ω)ω
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implying that

||ω| |2ε
t2ε

+
∫

R3
φε,ω ω

2 ≥
∫

Br

f (tε ω)

(tε ω)3 ω4. (16.64)

Now we claim that there exists T > 0 such that lim supε→0+ tε ≤ T . If by
contradiction there exists εn → 0+ with tεn → ∞, then by (16.64) and (f4) we
have

||ω| |2εn
t2εn

+
∫

R3
φεn,ω ω

2 ≥ f (tεn ω(x))

(tεn ω(x))
3

∫

Br

ω4, (16.65)

where ω(x) := minBr
ω (x). The absurd is achieved by passing to the limit in n,

since by (f3) the right-hand side of (16.65) tends to ∞, while the left-hand side
tends to 0.

Then there exists ε1 > 0 such that

∀ε ∈ (0, ε1] : tε ∈ (0, T ]. (16.66)

Condition (V) implies also that there exists some ε2 > 0 such that

∀ε ∈ (0, ε2] : V (εx) ≤ V0 + μ

2
, for all x ∈ suppω. (16.67)

Finally let

ε3 :=
(
(μ− V0)|ω|22
Ce T 2‖ω‖4

)1/(α−θ)
,

where Ce is the same constant appearing in (16.48), hence in particular

∀ε ∈ (0, ε3] :
∫

R3
φε,ωω

2 ≤ εα−θCe‖ω‖4 and

T 2εα−θCe ||ω| |4 ≤ (μ− V0)

∫

R3
ω2. (16.68)

Let ε̄ := min{ε1, ε2, ε3}. By using (16.66)–(16.68) we have, for every ε ∈ (0, ε̄]:
∫

R3
V (εx)ω2 + t2ε

2

∫

R3
φε,ω ω

2 ≤ V0 + μ

2
|ω|22 +

1

2
T 2εα−θCe‖ω‖4 ≤ μ

∫

R3
ω2,

from which we infer Iε(tεω) ≤ Eμ(tεω). Then by (16.49) and (16.63),

cε ≤ Iε(tε ω) ≤ Eμ (tε ω) ≤ Eμ(ω) < m∞V∞ .

which concludes the proof in this case.
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2. If V∞ = ∞, by Proposition 16.4.8, {un} strongly converges to some uε in
Hs(R3), which satisfies

Iε(uε) = cε and I ′ε(uε) = 0.

and uε is the ground state we were looking for. ��

16.4.3 The Barycenter Map

In this subsection we introduce the barycenter map in order to study the “topological
complexity” of suitable sublevels of the functional Iε in the Nehari manifold. Let us
start with the following

Proposition 16.4.11 Let εn → 0+ and un ∈ Nεn be such that Iεn(un) → m∞V0
.

Then there exists a sequence {ỹn} ⊂ R
3 such that un(· + ỹn) has a convergent

subsequence in Hs(R3). Moreover, up to a subsequence, yn := εnỹn → y ∈ M .

Recall that M is the set where V achieves the minimum V0.

Proof We begin by showing that {un} is bounded in Hs
V0
(R3). By assumptions,

I ′εn(un)[un] = 0 and Iεn(un)→ m∞V0
write as

||un| |2εn +
∫

R3
φεn,unu

2
n =

∫

R3
f (un)un (16.69)

and

1

2
||un| |2εn +

1

4

∫

R3
φεn,unu

2
n −

∫

R3
F(un) = m∞V0

+ on(1)

which combined together give

1

4

∫

R3
f (un)un −

∫

R3
F(un) = 1

4

(
||un| |2εn +

∫

R3
φεn,unu

2
n

)

−
∫

R3
F(un) ≤ m∞V0

+ on (1) .

Using (f3) we get

0 ≤
(1

4
− 1

K

) ∫

R3
f (un)un ≤ m∞V0

+ on(1),
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and therefore, coming back to (16.69), for some positive constant C (independent
on n)

||un| |Hs
V0
≤ ||un| |εn ≤ C. (16.70)

We prove the following

Claim There exists {ỹn} ⊂ R
N and R, c > 0 such that lim infn→∞

∫
BR(ỹn)

u2
n ≥

c > 0.

Indeed, if it were not the case, then

lim
n→∞ sup

y∈RN

∫

BR(y)

u2
n = 0, for every R > 0.

By Lemma 16.4.6, un → 0 in Lp(RN), for 2 < p < 2∗s and then

∫

R3
f (un)un → 0.

Therefore ||un| |2εn +
∫
R3 φεn,unu

2
n = on(1), and also from

0 ≤
∫

R3
F(un) ≤ 1

K

∫

R3
f (un)un

we have
∫
R3 F(un) = on(1). But then limn→∞ Iεn(un) = m∞V0

= 0 which is a
contradiction and proves our claim.

Then the sequence vn := un(· + ỹn) is also bounded in Hs(R3) and

vn ⇀ v �≡ 0 in Hs(R3) (16.71)

since
∫

BR

v2 = lim inf
n→∞

∫

BR

v2
n = lim inf

n→∞

∫

BR(ỹn)

u2
n ≥ c > 0,

by the claim.
Let now tn > 0 be such that ṽn := tnvn ∈MV0 ; the next step is to prove that

EV0(ṽn)→ m∞V0
. (16.72)
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For this, note that

m∞V0
≤ EV0(ṽn) =

1

2
||ṽn| |2V0

−
∫

R3
F(ṽn)

= t2n

2

∫

R3

[ ∣∣
∣(−�)s/2un(x + ỹn)

∣
∣
∣
2 + V0u

2
n(x + ỹn)

]
dx

−
∫

R3
F(tnun(x + ỹn))dx

= t2n

2

∫

R3

∣
∣∣(−�)s/2un(z)

∣
∣∣
2
dz+ t2n

2

∫

R3
V0u

2
n(z)dz

−
∫

R3
F(tnun(z))dz

≤ t2n

2

∫

R3

∣
∣
∣(−�)s/2un

∣
∣
∣
2 + t2n

2

∫

R3
V (εnz)u

2
n

+ t4n

4

∫

R3
φεn,unu

2
n −

∫

R3
F(tnun)

= Iεn(tnun)

and then

m∞V0
≤ EV0(ṽn) ≤ Iεn(tnun) ≤ Iεn(un) = m∞V0

+ on(1)

which proves (16.72).
We can prove now that vn → v in Hs(R3). As in the first part of the proof (where

we proved the boundedness of {un} in Hs
V0
(R3)), it is easy to see that

{ṽn} ⊂MV0 and EV0(ṽn)→ m∞V0
�⇒ ||ṽn| |Hs

V0
≤ C

and an analogous claim as before holds for the sequence {ṽn}. Then ṽn ⇀ v̄ in
Hs
V0
(R3). Since ‖vn‖Hs

V0
�→ 0, there exists δ > 0 such that

0 < δ ≤ ||vn| |Hs
V0
. (16.73)

This implies

0 < tnδ ≤ ||tnvn| |Hs
V0
= ||ṽn| |Hs

V0
≤ C,
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showing that, up to subsequence, tn → t0 ≥ 0. If now t0 = 0 using (16.70) we
derive

0 ≤ ||ṽn| |Hs
V0
= tn ||vn| |Hs

V0
≤ tnC1 → 0,

so that ṽn → 0 in Hs
V0
(R3). From this and (16.72) it follows m∞V0

= 0 which is

absurd. So t0 > 0. Then tnvn ⇀ t0v̄ =: ṽ in Hs(R3) and by (16.73) ṽ �≡ 0.
By Lemma 16.4.10 applied to {ṽn} we get ṽn → ṽ in Hs(R3) and then vn → v̄.
By (16.71) we deduce vn → v and the first part of the proposition is proved.

We proceed to prove the second part. We first state that {yn} is bounded in R
3

(here yn = εnỹn with ỹn given in the above claim). Assume the contrary; then

1. if V∞ <∞, since ṽn → ṽ in Hs(R3) and V0 < V∞, we have

m∞V0
= 1

2
||ṽ| |2Hs

V0
−

∫

R3
F(ṽ) <

1

2
||ṽ| |2Hs

V∞
−

∫

R3
F(ṽ)

≤ lim inf
n→∞

1

2

∫

R3

∣
∣∣(−�)s/2ṽn

∣
∣∣
2

+ lim
n→∞

(
1

2

∫

R3
V (εnx + yn)ṽ

2
n(x)dx −

∫

R3
F(ṽn)

)

= lim inf
n→∞

(
t2n

2

∫

R3

∣
∣∣(−�)s/2un

∣
∣∣
2 + t2n

2

∫

R3
V (εnz)u

2
n −

∫

R3
F(tnun)

)

≤ lim inf
n→∞

(
1

2
||tnun| |2εn −

∫

R3
F(tnun)+ t4n

4

∫

R3
φεn,unu

2
n

)

from which

m∞V0
< lim inf

n→∞ Iεn(tnun) ≤ lim inf
n→∞ Iεn(un) = m∞V0

which is a contradiction.
2. If V∞ = ∞, we have

∫

R3
V (εnx + yn)v

2
n(x)dx ≤

∫

R3

∣
∣
∣(−�)s/2vn(x)

∣
∣
∣
2
dx

+
∫

R3
V (εnx + yn)v

2
n(x)dx

+
∫

R3
φεn,vn(x)v

2
n(x)dx

=
∫

R3
f (vn(x))vn(x)dx,
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and by the Fatou’s Lemma we obtain the absurd

∞ = lim inf
n→∞

∫

R3
f (vn)vn =

∫

R3
f (v)v.

Then {yn} has to be bounded and we can assume yn → y ∈ R
3. If y /∈ M

then V0 < V (y), and similarly to the computation made in case 1. above (simply
replace V∞ with V (y)) we have a contradiction. Hence y ∈ M and the proof is
thereby complete. ��
For δ > 0 (later on it will be fixed conveniently) let η be a smooth nonincreasing

cut-off function defined in [0,∞) such that

η(ξ) =
{

1 if 0 ≤ ξ ≤ δ/2

0 if ξ ≥ δ.

Let wV0 be a ground state solution given in Lemma 16.4.10 of problem (Aμ) with
μ = V0 and for any y ∈ M , let us define

�ε,y(x) := η(|εx − y|)wV0

(
εx − y

ε

)
.

Let tε > 0 verifying maxt≥0 Iε(t�ε,y) = Iε(tε�ε,y), so that tε�ε,y ∈ Nε, and let

�ε : y ∈ M �→ tε�ε,y ∈ Nε.

By construction, �ε(y) has compact support for any y ∈ M and it is easy to see that
�ε is a continuous map.

The next result will help us to define a map from M to a suitable sublevel in the
Nehari manifold.

Lemma 16.4.12 The function �ε satisfies

lim
ε→0+

Iε(�ε(y)) = m∞V0
, uniformly in y ∈ M.

Proof Suppose by contradiction that the lemma is false. Then there exist δ0 > 0,
{yn} ⊂ M and εn → 0+ such that

|Iεn(�εn(yn))−m∞V0
| ≥ δ0. (16.74)
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Using Lebesgue’s Theorem, we have

lim
n→∞

∣
∣|�εn,yn

∣
∣ |2εn =

∣
∣|wV0

∣
∣ |2Hs

V0
, (16.75)

lim
n→∞

∫

R3
F

(
�εn,yn

) =
∫

RN

F
(
wV0

)
,

lim
n→∞

∣
∣|�εn,yn

∣
∣ |2Hs

V0
= ∣

∣|wV0

∣
∣ |2Hs

V0
.

This last convergence implies that {∣∣|�εn,yn

∣∣ |} is bounded. From (16.46)

∫

R3
φεn,�εn,yn

�2
εn,yn

≤ εα−θn Ce
∣∣|�εn,yn

∣∣ |4,

and then

lim
n→∞

∫

R3
φεn,�εn,yn

�2
εn,yn

= 0. (16.76)

Remembering that tεn�εn,y ∈ Nεn (see few lines before the Lemma), the
condition

I ′εn (tεn�εn,yn)[tεn�εn,yn] = 0

means

∣
∣|�εn,yn

∣
∣ |2εn + t2εn

∫

R3
φεn,�εn,yn

�2
εn,yn

=
∫

R3

f
(
tεn�εn,yn

)

tεn�εn,yn

�2
εn,yn

. (16.77)

We now prove the following

Claim limn→+∞ tεn = 1.

We begin by showing the boundedness of {tεn}. Since εn → 0+, we can assume
δ/2 < δ/(2εn) and then from (16.77), using (f4) and making the change of variable
z := (εnx − yn)/εn, we get

∣
∣|�εn,yn

∣
∣ |2εn

t2εn
+

∫

R3
φεn,�εn,yn

�2
εn,yn

≥ f
(
tεnwV0 (z)

)

(
tεnwV0 (z)

)3

∫

Bδ/2

w4
V0
(z) , (16.78)

where wV0(z) := minBδ/2 wV0(z). If {tεn} were unbounded, passing to the limit in
n in (16.78), the left-hand side would tend to 0 (due to (16.75) and (16.76)), the
right-hand side to +∞ (due to (f3)). So we can assume that tεn → t0 ≥ 0.
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For given ξ > 0, by (16.44), there exists Mξ > 0 such that

∫

R3

f
(
tεn�εn,yn

)

tεn�εn,yn

�2
εn,yn

≤ ξ

∫

R3
�2
εn,yn

+Mξ t
q−1
εn

∫

R3
�

q+1
εn,yn . (16.79)

Since {�εn,yn} is bounded in Hs(R3), if t0 = 0, from (16.79) we deduce

lim
n→∞

∫

R3

f
(
tεn�εn,yn

)

tεn�εn,yn

�2
εn,yn

= 0,

which joint with (16.76) and (16.77) led to limn→∞
∣
∣|�εn,yn

∣
∣ |2εn = 0 contradict-

ing (16.75). Then tεn → t0 > 0. Now taking the limit in n in (16.77) we arrive
at

∣
∣|wV0

∣
∣ |2Hs

V0
=

∫

R3

f (t0wV0)

t0
wV0,

and since wV0 ∈MV0 , it has to be t0 = 1, which proves the claim.
Finally, note that

Iεn(�εn(yn)) =
t2εn

2

∫

R3

∣∣
∣(−�)s/2�εn,yn

∣∣
∣
2 + t2εn

2

∫

R3
V (εnx)�

2
εn,yn

+ t4εn

4

∫

R3
φεn,�εn,yn

�2
εn,yn

−
∫

R3
F

(
tεn�εn,yn

)
.

and then (by using the claim) limn→∞ Iεn(�εn(yn)) = EV0(wV0) = m∞V0
, which

contradicts (16.74). Thus the Lemma holds. ��
The remaining part of the paper mainly follows the arguments of [39].
By Lemma 16.4.12, h(ε) := |Iε(�ε(y)) − m∞V0

| = o(1) for ε → 0+ uniformly
in y, and then Iε(�ε(y))−m∞V0

≤ h(ε). In particular the sublevel set in the Nehari
manifold

N
m∞V0

+h(ε)
ε :=

{
u ∈ Nε : Iε(u) ≤ m∞V0

+ h(ε)
}

is not empty, since for sufficiently small ε,

∀ y ∈ M : �ε(y) ∈ N
m∞V0

+h(ε)
ε . (16.80)

From now on we fix a δ > 0 in such a way that M and

M2δ :=
{
x ∈ R

3 : d(x,M) ≤ 2δ
}
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are homotopically equivalent (d denotes the euclidean distance). Take a ρ = ρ(δ) >

0 such that M2δ ⊂ Bρ and χ : R3 → R
3 be defined as follows:

χ(x) =
⎧
⎨

⎩

x if |x| ≤ ρ

ρ
x

|x| if |x| ≥ ρ.

Define the barycenter map βε

βε(u) :=

∫

R3
χ(εx)u2(x)

∫

R3
u2(x)

∈ R
3

for all u ∈ Wε with compact support.
We will take advantage of the following results from Sect. 16.3.3. They are

rewritten for the reader convenience.

Lemma 16.4.13 The function βε satisfies

lim
ε→0+

βε(�ε(y)) = y, uniformly in y ∈ M.

Lemma 16.4.14 We have

lim
ε→0+

sup

u∈N
m∞
V0
+h(ε)

ε

inf
y∈Mδ

∣∣
∣βε(u)− y

∣∣
∣ = 0.

16.4.4 Proof of Theorem 16.4.2

In virtue of Lemma 16.4.14, there exists ε∗ > 0 such that

∀ ε ∈ (0, ε∗] : sup

u∈N
m∞
V0
+h(ε)

ε

d(βε(u),Mδ) < δ/2.

Define now

M+ :=
{
x ∈ R

3 : d(x,M) ≤ 3δ/2
}

so that M and M+ are homotopically equivalent.
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Now, reducing ε∗ > 0 if necessary, we can assume that Lemmas 16.4.13, 16.4.14
and (16.80) hold. Then by standard arguments the composed map

M
�ε−→ N

m∞V0
+h(ε)

ε
βε−→ M+ is homotopic to the inclusion map.

In case V∞ < ∞, we eventually reduce ε∗ in such a way that also the Palais-
Smale condition is satisfied in the interval (m∞V0

,m∞V0
+h(ε)), see Proposition 16.4.9.

By well-known properties of the category, it is

cat(N
m∞V0

+h(ε)
ε ) ≥ catM+(M)

and the Ljusternik-Schnirelmann theory ensures the existence of at least
catM+(M) = catM constraint critical points of Iε on Nε. The proof of the main
Theorem 16.4.2 then follows by Proposition 16.4.9.

If M is bounded and not contractible in itself, then the existence of another
critical point of Iε on Nε follows from some ideas in [21]. We recall here the main
steps for completeness.

The goal is to exhibit a subset A ⊂ Nε such that

i) A is not contractible in N
m∞V0

+h(ε)
ε ,

ii) A is contractible in N c̄
ε = {u ∈ Nε : Iε(u) ≤ c̄}, for some c̄ > m∞V0

+ h(ε).

This would imply, since the Palais-Smale holds, that there is a critical level between
m∞V0

+ h(ε) and c̄.
First note that when M is not contractible and bounded the compact set A :=

�ε(M) cannot be contractible in N
m∞V0

+h(ε)
ε , proving i).

Let us denote, for u ∈ Wε \ {0}, with tε(u) > 0 the unique positive number such
that tε(u)u ∈ Nε. Choose a function u∗ ∈ Wε be such that u∗ ≥ 0, Iε(tε(u∗)u∗) >
m∞V0

+ h(ε) and consider the compact and contractible cone

C :=
{
tu∗ + (1− t)u : t ∈ [0, 1], u ∈ A

}
.

Observe that, since the functions in C have to be positive on a set of nonzero
measure, it is 0 /∈ C. Now we project this cone on Nε: let

tε(C) :=
{
tε(w)w : w ∈ C

}
⊂ Nε

and set

c := max
tε(C)

Iε > m∞V0
+ h(ε)



16 Variational Methods for Schrödinger Type Equations 643

(indeed the maximum is achieved being tε(C) compact). Of course A ⊂ tε(C) ⊂ Nε

and tε(C) is contractible in N c̄
ε : we deduce ii).

Then there is a critical level for Iε greater than m∞V0
+ h(ε), hence different from

the previous ones we have found. The proof of Theorem 16.4.2 is complete.
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Chapter 17
Nonlinear Nonhomogeneous Elliptic
Problems

Nikolaos S. Papageorgiou, Calogero Vetro, and Francesca Vetro

Abstract We consider nonlinear elliptic equations driven by a nonhomogeneous
differential operator plus an indefinite potential. The boundary condition is either
Dirichlet or Robin (including as a special case the Neumann problem). First
we present the corresponding regularity theory (up to the boundary). Then we
develop the nonlinear maximum principle and present some important nonlinear
strong comparison principles. Subsequently we see how these results together with
variational methods, truncation and perturbation techniques, and Morse theory
(critical groups) can be used to analyze different classes of elliptic equations. Special
attention is given to (p, 2)-equations (these are equations driven by the sum of a p-
Laplacian and a Laplacian), where stronger results can be stated.
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17.1 Introduction

In this chapter we study the following nonlinear nonhomogeneous elliptic equation

{
−div a(∇u(z))+ ξ(z)|u(z)|p−2u(z) = f (z, u(z)) in �,

u ∈ BC, 1 < p < +∞.

In this problem � ⊆ R
N is a bounded domain with a C2-boundary ∂�. In

the differential operator the map a : RN → R
N is continuous, strictly monotone

(hence maximal monotone too) and satisfies certain other regularity and growth
conditions listed in hypotheses H(a) (see Sect. 17.2). These conditions are mild
and incorporate in our framework many differential operators of interest, such as
the p-Laplacian and the (p, q)-Laplacian (that is, the sum of a p-Laplacian and of
a q-Laplacian). There is also the potential term u→ ξ(z)|u|p−2u with the potential
function ξ ∈ L∞(�) being in general indefinite. The reaction term f (z, x) is in
general a Carathéodory function (that is, for all x ∈ R z → f (z, x) is measurable
and for a.a. z ∈ � x → f (z, x) is continuous). We will consider reactions with
different structure. More precisely, we will examine problems with f (z, ·) being
(p − 1)-superlinear but without satisfying the usual in such cases Ambrosetti-
Rabinowitz condition (the AR-condition for short). Also, we will consider the case
of a reaction which is (p − 1)-linear near ±∞ and of a reaction which exhibits
concave nonlinearities near the origin. We will also consider parametric problems
and examine the set of positive solutions as the parameter λ > 0 varies. The
particular case of (p, 2)-equations (that is, when a(y) = |y|p−2y+y for all y ∈ R

N

with 2 < p), will be considered separately because for such equations stronger
results can be obtained, combining variational methods and Morse theoretic tools.
The notation u ∈ BC means that we will deal with both the Dirichlet problem, that

is, u
∣∣
∂�
= 0 or the Robin problem

∂u

∂na
+ β(z)|u|p−2u = 0 on ∂� with β ≥ 0 on

∂�. The case β ≡ 0 is also included and corresponds to the Neumann problem. By
∂u

∂na
we denote the conormal derivative defined by extension of the map

C1(�) � u→ (a(∇u), n)RN ,

with n(·) being the outward unit normal on ∂�.

17.2 Regularity and Auxiliary Results

First let us introduce the hypotheses on the map a(·) involved in the differential
operator. These conditions on a(·) are dictated by the nonlinear regularity theory of
Lieberman [45] and the nonlinear maximum principle of Pucci and Serrin [72].
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So, let ϑ ∈ C1(0,+∞) and assume that it satisfies the following conditions:

0 < ĉ ≤ tϑ ′(t)
ϑ(t)

≤ c0 and c1t
p−1 ≤ ϑ(t) ≤ c2[tτ−1 + tp−1] for all t > 0,

(17.1)

with 0 < c1, c2 and 1 ≤ τ < p.

H(a) a(y) = a0(|y|)y for all y ∈ R
N with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,+∞), t → a0(t)t is strictly increasing on (0,+∞), a0(t)t → 0+

as t → 0+ and lim
t→0+

a′0(t)t
a0(t)

> −1;

(ii) |∇a(y)| ≤ c3
ϑ(|y|)
|y| for all y ∈ R

N \ {0}, some c3 > 0;

(iii) (∇a(y)ξ, ξ)RN ≥ ϑ(|y|)
|y| |ξ |

2 for all y ∈ R
N \ {0}, all ξ ∈ R

N ;

(iv) if G0(t) =
∫ t

0 a0(s)sds, then 0 ≤ pG0(t)− a0(t)t
2 for all t ≥ 0.

These conditions on a(·) permit the use of the nonlinear regularity theory of
Lieberman [45] and of the nonlinear maximum principle of Pucci and Serrin [72].

Some additional conditions will be imposed on G0(·) according to the needs of
our problem. These extra conditions are mild and do not eliminate any of the maps
a(·) included in the examples below.

Evidently G0(·) is strictly increasing and strictly convex. Let G(y) = G0(|y|)
for all y ∈ R

N . Then

∇G(y) = G′0(|y|)
y

|y| = a0(|y|)y = a(y) for all y ∈ R
N \ {0}, ∇G(0) = 0.

Therefore G(·) is the primitive of a(·) and G(·) is convex with G(0) = 0. It
follows that

G(y) ≤ (a(y), y)RN for all y ∈ R
N . (17.2)

From hypotheses H(a) (i), (ii), (iii) and (17.1), we deduce easily the following
properties for the map a(·).
Lemma 17.2.1 If hypotheses H(a) (i), (ii), (iii) hold, then

(a) y → a(y) is continuous and strictly monotone (hence maximal monotone too);
(b) |a(y)| ≤ c4[1+ |y|p−1] for all y ∈ R

N , some c4 > 0;

(c) (a(y), y)RN ≥ c1

p − 1
|y|p for all y ∈ R

N .
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This lemma and (17.2) lead to the following growth properties for the primi-
tive G(·).
Corollary 17.2.2 If hypotheses H(a) (i), (ii), (iii) hold, then

c1

p(p − 1)
|y|p ≤

G(y) ≤ c5[1+ |y|p] for all y ∈ R
N , some c5 > 0.

Examples The following functions satisfy hypotheses H(a):

(a) a(y) = |y|p−2y with 1 < p < +∞.
This map corresponds to the p-Laplace differential operator defined by

�pu = div
(
|∇u|p−2∇u

)
for all u ∈ W 1,p(�).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p < +∞.
This map corresponds to the (p, q)-Laplace differential operator defined by

�pu+�qu for all u ∈ W 1,p(�).

(c) a(y) = [
1+ |y|2]

p−2
2 y with 1 < p < +∞.

This map corresponds to the generalized p-mean curvature differential
operator defined by

div
(
(1+ |∇u|2) p−2

2 ∇u
)

for all u ∈ W 1,p(�).

(d) a(y) = |y|p−2y

[
1+ 1

1+ |y|p
]

with 1 < p < +∞.

Let f0 : �×R→ R be a Carathéodory function such that

|f0(z, x)| ≤ a0(z)[1+ |x|r−1] for a.a. z ∈ �, all x ∈ R,

with a0 ∈ L∞(�) and 1 < r ≤ p∗ =
⎧
⎨

⎩

Np

N − p
if p < N,

+∞ if N ≤ p

(the critical Sobolev

exponent). We consider the following nonlinear elliptic boundary value problem

{
−div a(∇u(z)) = f0(z, u(z)) in �,

u ∈ BC.
(17.3)

In the case of Robin boundary condition, we assume the following for the
boundary coefficient β(·):
H(β) β ∈ C0,α(∂�) with α ∈ (0, 1), β(z) ≥ 0 for all z ∈ ∂�.
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From Guedda and Véron [38] (Dirichlet case) and Papageorgiou and Rǎdulescu
[59] (Robin case), we have:

Proposition 17.2.3 If u ∈ W 1,p(�) is a weak solution of (17.3), then u ∈ L∞(�)

and there exists M = M(p,N,�, ‖u‖p∗) > 0 such that ‖u‖∞ ≤ M .

Using this proposition, we can now apply the nonlinear regularity theory of
Lieberman [45] and have:

Proposition 17.2.4 If u ∈ W 1,p(�) is a weak solution of (17.3), then there exists
η = η(p,N) > 0 and M̂ = M̂(p,N,�, ‖u‖∞) > 0 such that u ∈ C1,η(�) and
‖u‖C1,η(�) ≤ M̂ .

This regularity up to the boundary result is a very powerful tool in our disposal.
In particular it leads to the following result relating local minimizers for the energy
functional of (17.3). So, let F0(z, x) =

∫ x

0 f0(z, s)ds and consider the following
C1-functionals:

ϕ0(u) =
∫

�

G(∇u)dz−
∫

�

F0(z, u)dz for all u ∈ W
1,p
0 (�) (Dirichlet problem),

ϕ0(u) =
∫

�

G(∇u)dz+ 1

p

∫

∂�

β(z)|u|pdσ −
∫

�

F0(z, u)dz for all u ∈ W 1,p(�)

(Robin problem).

Here σ(·) denotes the Hausdorff (surface) (N − 1)-dimensional measure on
∂�. Using Proposition 17.2.4 and the Lagrange multiplier rule, we can prove
the following result relating local C1

0 (�) or C1(�) and W
1,p
0 (�) or W 1,p(�)

minimizers of ϕ0. In what follows for notational economy, we set V = C1
0 (�)

or C1(�) and X = W
1,p
0 (�) or W 1,p(�).

Proposition 17.2.5 If u0 ∈ X is a local V -minimizer of ϕ0, that is, there exists
ρ1 > 0 such that ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ V with ‖h‖V ≤ ρ1, then
u0 ∈ C1,η(�) for some η ∈ (0, 1) and u0 is a local X-minimizer of ϕ0, that is, there
exists ρ2 > 0 such that ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ X with ‖h‖X ≤ ρ2.

Remark 17.2.6 The first such result was proved by Brezis and Nirenberg [15] for

the space H 1
0 (�) with G(y) = 1

2
|y|2. It was extended to the space W

1,p
0 (�) with

G(y) = 1

p
|y|p by Garcia Azorero et al. [30]. The version for the space W 1,p(�)

and general G(·) can be found in Papageorgiou and Rǎdulescu [59].

Consider the nonlinear map A : X→ X∗ defined by

〈A(u), h〉 =
∫

�

(a(∇u),∇h)RN dz for all u, h ∈ X. (17.4)
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Recall X = W
1,p
0 (�) or W 1,p(�) and that W 1,p

0 (�)∗ = W−1,p′(�) with
1

p
+ 1

p′
= 1. The following proposition determines the main properties of A(·).

Proposition 17.2.7 If hypotheses H(a) hold and A : X→ X∗ is defined by (17.4),
then A is bounded (that is maps bounded sets to bounded sets), continuous,
monotone (hence maximal monotone too) and of type (S)+, that is, if un

w−→ u

in X and lim sup
n→+∞

〈A(un), un − u〉 ≤ 0, then un → u in X.

Finally by δk,i with k, i ∈ N0, we denote the Kronecker symbol defined by

δk,i =
{

1 if k = i,

0 if k �= i.

17.3 Maximum Principle: Comparison Results

Let γ (t) = a0(t)t for all t > 0. Hypothesis H(a) (iii) and (17.1) ensure that

γ ′(t)t = a′0(t)t2 + a0(t)t ≥ c1t
p−1.

Integrating by parts, we obtain

∫ t

0
γ ′(s)sds = γ (t)t −

∫ t

0
γ (s)ds = a0(t)t

2 −G0(t) ≥ c1

p
tp for all t > 0.

We set H(t) = a0(t)t
2 − G0(t) and H0(t) = c1

p
tp for all t > 0. Let δ ∈ (0, 1)

and s > 0. We consider the following two sets:

C = {t ∈ (0, 1) : H(t) ≥ s} and C0 = {t ∈ (0, 1) : H0(t) ≥ s}.

Evidently C ⊇ C0 and so infC ≤ infC0. Then Proposition 1.55, p. 12, of
Gasiński and Papageorgiou [34] implies that H−1(s) ≤ H−1

0 (s). Let k : R+ → R+
a continuous function such that k(0) = 0, k(·) is nondecreasing on [0, δ) and
∫ δ

0
1

H0(k(s))
ds = +∞. Then, the nonlinear strong maximum principle of Pucci

and Serrin [72] (pp. 111, 120) applies and we can state the following result.

Theorem 17.3.1 If hypotheses H(a) hold and u0 ∈ C1(�), u0 ≥ 0, u0 �= 0
satisfies div a(∇u0(z)) ≤ k(u0(z)) in �, then u0(z) > 0 for all z ∈ � and if

u0(̂z) = 0 for some ẑ ∈ ∂�, then
∂u0

∂n
(̂z) < 0.
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The Banach spaces

C1
0 (�) =

{
u ∈ C1(�) : u∣∣

∂�
= 0

}
and C1(�)

are ordered Banach spaces with positive (order) cones given by

C0+ = {u ∈ C1
0 (�) : u(z) ≥ 0 for all z ∈ �},

C+ = {u ∈ C1(�) : u(z) ≥ 0 for all z ∈ �}.

Both cones have nonempty interiors given by

intC0+ =
{
u ∈ C0+ : u(z) > 0 for all z ∈ �,

∂u

∂n

∣
∣
∣
∂�

< 0

}
,

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω

}
.

Also let

int Ĉ+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u

∂n

∣
∣
∣
∂Ω∩u−1(0)

< 0}.

In general for nonlinear differential operators it is very difficult to have strong
comparison principles. This makes it significantly more difficult to prove multiplic-
ity theorems for positive solutions of nonlinear boundary value problems. Next we
present some such strong comparison results, which are helpful in this respect.

If h1, h2 ∈ L∞(�), then we write that h1 ≺ h2 if and only if for every K ⊆ �

compact we have

0 < cK ≤ h2(z)− h1(z) for a.a. z ∈ K.

Clearly if h1, h2 ∈ C(�) and h1(z) < h2(z) for all z ∈ �, then h1 ≺ h2.
The next proposition was first proved by Arcoya and Ruiz [8] for the p-Laplacian

with ξ ≡ ϑ ≥ 0. The more general version stated here is due to Papageorgiou and
Winkert [66].

Proposition 17.3.2 If hypotheses H(a) hold, ξ ∈ L∞(�), ξ(z) ≥ 0 for a.a. z ∈ �,
h1, h2 ∈ L∞(�) with h1 ≺ h2 and u ∈ C1

0 (�), v ∈ intC0+ satisfy

− div a(∇u(z))+ ξ(z)|u(z)|p−2u(z) = h1(z) for a.a. z ∈ �,

− div a(∇v(z))+ ξ(z)v(z)p−1 = h2(z) for a.a. z ∈ �,

then v − u ∈ intC0+.
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Remark 17.3.3 If the hypothesis h1 ≺ h2 is replaced by the condition h1(z) ≤
h2(z) for a.a. z ∈ � with strict inequality on a set of positive measure, then the
result fails (see Cuesta and Takáč [19]). However, see Proposition 17.3.6 below.

There is the “Robin” counterpart of Proposition 17.3.2 due to Fragnelli et al. [28].

Proposition 17.3.4 If hypotheses H(a) hold, ξ ∈ L∞(�), ξ(z) ≥ 0 for a.a. z ∈ �,
h1, h2 ∈ L∞(�) with h1 ≺ h2, u ∈ C1(�), v ∈ int C+, u ≤ v satisfy

− div a(∇u(z))+ ξ(z)|u(z)|p−2u(z) = h1(z) for a.a. z ∈ �,

− div a(∇v(z))+ ξ(z)v(z)p−1 = h2(z) for a.a. z ∈ �,

and
∂u

∂na

∣∣
∣
∂�

< 0 or
∂v

∂na

∣∣
∣
∂�

< 0, then v − u ∈ int Ĉ+.

We can drop the hypothesis on the conormal derivatives used in the above result,
by strengthening the hypothesis on h2 − h1.

Proposition 17.3.5 If hypotheses H(a) hold, ξ ∈ L∞(�), ξ(z) ≥ 0 for a.a. z ∈ �,
h1, h2 ∈ L∞(�),

0 < c̃ ≤ h2(z)− h1(z) for a.a. z ∈ � (17.5)

and u, v ∈ C1,α(�) with α ∈ (0, 1], u ≤ v and

− div a(∇u(z))+ ξ(z)|u(z)|p−2u(z) = h1(z) for a.a. z ∈ �,

− div a(∇v(z))+ ξ(z)|v(z)|p−2v(z) = h2(z) for a.a. z ∈ �,

then v − u ∈ int Ĉ+.

Proof By hypothesis we have

−div (a(∇v(z))− a(∇u(z))) = h2(z)− h1(z)

− ξ(z)
[
|v(z)|p−2v(z)− |u(z)|p−2u(z)

]

(17.6)

for a.a. z ∈ �. Let a = (ak)
N
k=1 denote the components of a(·). We consider y =

(yi)
N
i=1 ∈ R

N and y ′ = (y ′i )
N
i=1 ∈ R

N . We have

a(y)− a(y ′) =
∫ 1

0

d

dt
a
(
y ′ + t (y − y ′)

)
dt

=
∫ 1

0
∇a (y ′ + t (y − y ′)

)
(y − y ′)dt (by the chain rule),
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⇒ ak(y)− ak(y
′) =

N∑

i=1

∫ 1

0

∂ak

∂yi

(
y ′ + t (y − y ′)

)
(yi − y ′i )dt

for all k ∈ {1, . . . , N}. (17.7)

Let ∇i = ∂

∂zi
and consider the coefficients

ek,i(z) =
∫ 1

0

∂ak

∂yi
(∇u(z)+ t (∇v(z)−∇u(z)))dt. (17.8)

Using these coefficients, we introduce the following second order differential
operator in divergence form

L(w) = −div

(
N∑

i=1

ek,i(z)∇iw

)

= −
N∑

k,i=1

∇k

(
ek,i(z)∇iw

)
.

We set β = v − u ∈ C1,α(�). By hypothesis

β(z) ≥ 0 for all z ∈ � and β �≡ 0.

Let z0 ∈ � be such that β(z0) = 0, hence u(z0) = v(z0).
The function x → |x|p−2x is a uniformly continuous homeomorphism on R (in

fact the map is Hölder continuous if 1 < p < 2, locally Lipschitz if p ≥ 2). Since
ξ ∈ L∞(�), we can find ρ > 0 small such that

h2(z)− h1(z)− ξ(z)
[
|v(z)|p−2v(z)− |u(z)|p−2u(z)

]
≥ c6 > 0 (17.9)

for a.a. z ∈ Bρ(z0) (see (17.5)),

where Bρ(z0) = {z ∈ � : |z − z0| < ρ}. On account of Theorem 1.1 of Lucia and
Prashanth [47], we have that ek,i ∈ W 1,∞(Bρ(z0)) (see (17.8) and choose ρ > 0
even smaller if necessary). From (17.6), (17.7), and (17.9), we have

L(β)(z) ≥ c7 > 0 for a.a. z ∈ Bρ(z0), some c7 > 0.

Then Theorem 4 of Vázquez [76] (alternatively using the Harnack inequality, see
Pucci and Serrin [72], p. 163), we have

β(z) > 0 for all z ∈ Bρ(z0),
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a contradiction since β(z0) = 0. Therefore we infer that

β(z) > 0 for all z ∈ �.

Now, let &0 = {z ∈ ∂� : β(z) = 0}. If &0 = ∅, then v − u ∈ int Ĉ+. So,
we assume that &0 �= ∅ and let z0 ∈ &0. Since by hypothesis ∂� is a C2-manifold,
we can find r > 0 small and an open r-ball Br such that

Br ⊆ �, z0 ∈ ∂� ∩ ∂Br.

On account of (17.5), (17.6), we can choose r > 0 small enough so that L
∣
∣
Br

is

strictly elliptic and ek,i ∈ W 1,∞(Br ). So, the Hopf boundary point lemma implies

∂β

∂n
(z0) < 0,

⇒ β = v − u ∈ intC+.

��
When ξ ≡ 0, we can extend Propositions 17.3.2, 17.3.4, and 17.3.5 as follows.

The result can be found in Gasiński and Papageorgiou [36].

Proposition 17.3.6 If hypotheses H(a) hold, h1, h2 ∈ L∞(�), h1(z) ≤ h2(z) for
a.a. z ∈ � and the inequality is strict on a set of positive measure, u, v ∈ C1(�)

satisfy u ≤ v and

− div a(∇u(z)) = h1(z) for a.a. z ∈ �,

− div a(∇v(z)) = h2(z) for a.a. z ∈ �,

∂u

∂n

∣
∣∣
∂�

< 0,
∂v

∂n

∣
∣∣
∂�

< 0,

then v − u ∈ int Ĉ+.

Continuing with the case ξ ≡ 0, we have the following result which does not
require any conditions on u, v on ∂�.

Proposition 17.3.7 If hypotheses H(a) hold, h1, h2 ∈ L∞(�), h1(z) ≤ h2(z) for
a.a. z ∈ �, u, v ∈ C1(�) satisfy u ≤ v and

− div a(∇u(z)) = h1(z) for a.a. z ∈ �,

− div a(∇v(z)) = h2(z) for a.a. z ∈ �,

and the set E = {z ∈ � : u(z) = v(z)} is either compact or discrete, then 0 <

(v − u)(z) for all z ∈ �.
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Proof Suppose that E �= ∅. If E is compact, then we can find U open set such that
E ⊆ U ⊆ U ⊆ �. If E is discrete, then for each z ∈ E we can find U ⊆ �

open such that z ∈ U ⊆ U ⊆ � and E ∩ U = {z}. Therefore in both cases we
have E ∩ ∂U = ∅. Then we have (v − u)

∣
∣
∂U

> 0 and we can find ε > 0 such that
(v−u)

∣∣
∂U
≥ ε > 0 (recall that ∂U ⊆ R

N is compact). We set vε = v− ε ∈ C1(�)

and have

− div a(∇u) = h1 ≤ h2 = −div a(∇v) = −div a(∇vε). (17.10)

On (17.10) we act with (u − vε)+ ∈ W
1,p
0 (U). Using the nonlinear Green’s

identity (see Gasiński and Papageorgiou [31], p. 211), we have

∫

{u>vε}∩U
(a(∇u)− a(∇v),∇u−∇v)RN dz ≤ 0,

⇒ u ≤ vε on U,

a contradiction since E ⊆ U . Therefore E = ∅ and we have u(z) < v(z) for all
z ∈ �. ��

17.4 Eigenvalue Problems

We start with a quick review of the spectral properties of the p-Laplacian plus an
indefinite potential under Dirichlet and Robin boundary conditions. So, we consider
the following nonlinear eigenvalue problems

{
−�pu(z)+ ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in �,

u
∣∣
∂�
= 0, 1 < p < +∞,

(17.11)

and

⎧
⎨

⎩

−�pu(z)+ ξ(z)|u(z)|p−2u(z) = λ̂|u(z)|p−2u(z) in �,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂�, 1 < p < +∞.

(17.12)

Here
∂u

∂np
= |∇u|p−2(∇u, n)RN with n(·) being the outward unit normal on ∂�.

If β ≡ 0, then the boundary condition in (17.12) becomes
∂u

∂n
= 0 on ∂� (Neumann

problem). The boundary coefficient β(·) satisfies hypothesis H(β), while for the
potential function ξ(·) we assume the following:

H(ξ) ξ ∈ L∞(�).
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We say that λ̂ ∈ R is an “eigenvalue” of (17.11) or (17.12), if the problem admits
a nontrivial solution û ∈ X (recall X = W

1,p
0 (�) for (17.11) and X = W 1,p(�)

for (17.12)) known as an “eigenfunction” corresponding to λ̂. On account of
Propositions 17.2.3 and 17.2.4, we have û ∈ C1

0 (�) or û ∈ C1(�). We know
that both eigenvalue problems have a smallest eigenvalue λ̂1 = λ̂1(p, ξ) for (17.11)
and λ̂1 = λ̂1(p, ξ, β) for (17.12). In what follows let μ0 : W 1,p

0 (�) → R and
μ : W 1,p(�)→ R be the C1-functionals defined by

μ0(u) = ‖∇u‖pp +
∫

�

ξ(z)|u|pdz for all u ∈ W
1,p
0 (�),

μ(u) = ‖∇u‖pp +
∫

�

ξ(z)|u|pdz+
∫

∂�

β(z)|u|pdσ for all u ∈ W 1,p(�).

The first eigenvalue exhibits some important properties, which we list below:

• λ̂1 is isolated (that is, if σ̂ (p) denotes the spectrum of (17.11) or (17.12), then we
can find ε > 0 such that (̂λ1, λ̂1 + ε) ∩ σ̂ (p) = ∅).

• λ̂1 is simple (that is, if û, v̂ are eigenfunctions corresponding to λ̂1, then û = ηv̂

for some η ∈ R \ {0}).
• λ̂1 admits the following variational characterization

λ̂1 = inf

[
μ0(u)

‖u‖pp
: u ∈ W

1,p
0 (�), u �= 0

]

(for (17.11)), (17.13)

λ̂1 = inf

[
μ(u)

‖u‖pp
: u ∈ W 1,p(�), u �= 0

]

(for (17.12)). (17.14)

In both (17.13) and (17.14) the infimum is realized on the corresponding one-
dimensional eigenspace. From the above properties, we infer easily that the elements
of this eigenspace do not change sign. By û1 = û1(p, ξ) (for (17.11)) and û1 =
û1(p, ξ, β) (for (17.12)), we denote the positive, Lp-normalized (that is, ‖û1‖p =
1) eigenfunction corresponding to λ̂1. Then Theorem 17.3.1 implies that

û1 ∈ int C0+ (for (17.11)) and û1 ∈ intC+ (for (17.12)).

The second eigenvalue of (17.11) or (17.12) is then defined by

λ̂2 = min{̂λ ∈ σ̂ (p) : λ̂ > λ̂1}.

In general eigenvalues of (17.11) (resp. (17.12)) are the critical values of the
C1-functional μ0(·) (resp. μ(·)) on M = X ∩ ∂BLp

1 where ∂BLp

1 = {u ∈
Lp(�) : ‖u‖p = 1}. Using the Ljusternik-Schnirelmann minimax scheme (see
Gasiński and Papageorgiou [31], Section 5.5), we can have a whole increasing
sequence of distinct eigenvalues {̂λk}k≥1 such that λ̂k → +∞. These eigenvalues
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are known as “variational eigenvalues,” but in general we do not know if they
exhaust σ̂ (p). Depending on the index used in the Ljusternik-Schnirelmann scheme,
we can generate three such sequences of variational eigenvalues. Let S be the closed,
symmetric subsets of M . For all A ∈ S we define

γ ∗0 (A) = sup{k ∈ N : there exists a continuous, odd map h : A→ R
k \ {0}},

γ ∗1 (A) = sup{k ∈ N : there exists a continuous, odd map h : Rk \ {0} → A}.

In the above definitions we can replace Rk \ {0} by Sk−1 = the unit sphere of Rk .
In the literature γ ∗0 (·) is known as the “Krasnosel’skii genus.” Also we set

γ ∗(A) = ind(A)

where ind (·) denotes the Fadell and Rabinowitz [25] cohomological index. We have

γ ∗1 (A) ≤ γ ∗(A) ≤ γ ∗0 (A) for all A ∈ S. (17.15)

We define

λ̂ik = inf
A ∈ S

γ ∗i (A) ≥ k

sup
u∈A

μ0(u) (or μ(u) ) for i = 0, 1, (17.16)

λ̂k = inf
A ∈ S

γ ∗(A) ≥ k

sup
u∈A

μ0(u) (or μ(u) ) for all k ∈ N. (17.17)

From (17.15) it is clear that

λ̂0
k ≤ λ̂k ≤ λ̂1

k for all k ∈ N.

For k = 1, 2, we have λ̂0
k = λ̂k = λ̂1

k and the common values are defined as
above. For k ≥ 3 we do not know if the three sequences of variational eigenvalues
coincide. Depending on the problem, we use one of the above sequences.

Evidently (17.16) (= (17.17)) provide a variational (minimax) characterization
of λ̂2. However, for the study of nonlinear elliptic problems, another minimax
characterization is more convenient. This characterization was proved by Cuesta-
de Figueiredo and Gossez [20] (Dirichlet case), Mugnai and Papageorgiou [53]
(Neumann case), and Papageorgiou and Rǎdulescu [57] (Robin case).

Proposition 17.4.1 λ̂2 = inf
γ̂∈�̂

max−1≤t≤1
μ0(γ̂ (t)) (or μ(γ̂ (t))) where

�̂ = {γ̂ ∈ C([−1, 1],M) : γ̂ (−1) = −û1, γ̂ (1) = û1} .
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Remark 17.4.2 In fact in Proposition 17.4.1 we can replace �̂ by

�̂0 = {γ̂ ∈ C([−1, 1],M) : γ̂ (−1) ≤ 0 ≤ γ̂ (1)} .

Let V = {u ∈ X : ∫
�
û1udz = 0} and set

λ̂0
V = inf [μ0(u) : u ∈ M ∩ V ] ,

λ̂V = inf [μ(u) : u ∈ M ∩ V ] .

Proposition 17.4.3 λ̂1 < λ̂0
V ≤ λ̂2 and λ̂1 < λ̂V ≤ λ̂2.

In fact, let D be the set of all topological complements of R in X and set

λ̂0
D = inf

v∈D
sup
v∈V

μ0(v),

λ̂D = inf
v∈D

sup
v∈V

μ(v).

It is an open question whether λ̂D = λ̂2. This is the case for the linear eigenvalue
problem (that is, p = 2). In this case the spectral theorem for compact, self-
adjoint operators on a Hilbert space gives us a full description of the spectrum
σ̂ (2) which consists of a sequence {̂λk}k≥1 of distinct eigenvalues such that λ̂k →
+∞. Again we have that λ̂1 is simple and is described by (17.13) and (17.14)
with p = 2. In the nonlinear case (p �= 2), the eigenspaces are not linear
subspaces (they are only cones) and we do not have a direct sum decomposition
of X in terms of them. This is the main source of difficulties when we deal with
resonant nonlinear problems. For the linear eigenvalue problem, we do not have
this difficulty. The eigenspaces are linear subspaces of X (now X = H 1

0 (�)

or X = H 1(�)). Let E(̂λk) be the eigenspace corresponding to the eigenvalue
λ̂k . Then E(̂λk) is a finite dimensional subspace of X and E(̂λk) ⊆ C1

0 (�)

or C1(�) (standard regularity theory). Also, all eigenvalues admit variational
characterizations. Now μ0 : H 1

0 (�) → R and μ : H 1(�) → R are the C1-
functionals defined by

μ0(u) = ‖∇u‖2
2 +

∫

�

ξ(z)u2dz for all u ∈ H 1
0 (�),

μ(u) = ‖∇u‖2
2 +

∫

�

ξ(z)u2dz+
∫

∂�

β(z)u2dσ for all u ∈ H 1(�).
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We have

λ̂1 = inf

[
μ0(u)

‖u‖2
2

: u ∈ H 1
0 (�), u �= 0

]

, (17.18)

λ̂1 = inf

[
μ(u)

‖u‖2
2

: u ∈ H 1(�), u �= 0

]

, (17.19)

λ̂m = inf

[
μ0(u)

‖u‖2
2

: u ∈ Ĥm = ⊕k≥mE(̂λk), u �= 0

]

= sup

[
μ0(u)

‖u‖2
2

: u ∈ Hm = ⊕m
k=1E(̂λk), u �= 0

]

, (17.20)

λ̂m = inf

[
μ(u)

‖u‖2
2

: u ∈ Ĥm = ⊕k≥mE(̂λk), u �= 0

]

= sup

[
μ(u)

‖u‖2
2

: u ∈ Hm = ⊕m
k=1E(̂λk), u �= 0

]

for m ≥ 2. (17.21)

As before in (17.18) and (17.19) the infimum is realized on E(̂λ1), the elements
of which do not change sign. Also, in (17.20) and in (17.21) both the infimum and
the supremum are realized on E(̂λm) ⊆ C1(�). The eigenspaces E(̂λk), k ∈ N,
have the so-called Unique Continuation Property (UCP for short), that is, if u ∈
E(̂λk) and u vanishes on a set of positive measure, then u ≡ 0.

For both the linear and nonlinear eigenvalue problems, every eigenfunction
corresponding to an eigenvalue λ̂ �= λ̂1 is nodal (that is, sign changing). Also we
can have weighted versions of the eigenvalue problems (17.11) and (17.12). So, let
m ∈ L∞(�), m(z) ≥ 0 for a.a. z ∈ �, m �≡ 0. We consider the following nonlinear
eigenvalue problems:

{
−�pu(z)+ ξ(z)|u(z)|p−2u(z) = λ̃|u(z)|p−2u(z) in �,

u
∣
∣
∂�
= 0, 1 < p < +∞,

(17.22)

⎧
⎨

⎩

−�pu(z)+ ξ(z)|u(z)|p−2u(z) = λ̃|u(z)|p−2u(z) in �,
∂u

∂np
+ β(z)|u|p−2u = 0 on ∂�, 1 < p < +∞.

(17.23)

The previous analysis remains valid also for these weighted eigenvalue problems.
So, we have a smallest eigenvalue λ̃1(m) = λ̃1(p, ξ,m) (for (17.22)) and λ̃1(m) =
λ̃1(p, ξ, β,m) (for (17.23)) which is isolated, simple and admits the following
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variational characterization:

λ̃1(m) = inf

[
μ0(u)∫

� m(z)|u|pdz : u ∈ W
1,p
0 (�), u �= 0

]
(for (17.22)), (17.24)

λ̃1(m) = inf

[
μ(u)

∫
�
m(z)|u|pdz : u ∈ W 1,p(�), u �= 0

]
(for (17.23)). (17.25)

In both (17.24) and (17.25) the infimum is realized on the corresponding
one-dimensional eigenspace, the elements of which have fixed sign. Again all
eigenfunctions corresponding to an eigenvalue λ̃ �= λ̃1(m) are nodal. By ũ1 we
denote the positive, Lp-normalized eigenfunction for (17.22) or (17.23). We have

ũ1 ∈ int C0+ (for (17.22)) and ũ1 ∈ int Ĉ+ (for (17.23)).

From (17.24) and (17.25) we easily deduce the following monotonicity property
for the map m→ λ̃1(m).

Proposition 17.4.4 If m,m∗ ∈ L∞(�), 0 ≤ m(z) ≤ m∗(z) for a.a. z ∈ �, m �≡ 0,
m �≡ m∗, then λ̃1(m

∗) < λ̃1(m).

For the second eigenvalue λ̃2(m) we have (see [7], [52]).

Proposition 17.4.5 If m,m∗ ∈ L∞(�), 0 ≤ m(z) < m∗(z) for a.a. z ∈ �, m �≡ 0,
then λ̃2(m

∗) < λ̃2(m).

Also from the properties of λ̂1 and û1, we have the following result. In what
follows ‖ · ‖ denotes the norm of the space X. So

‖u‖ = ‖∇u‖p for all u ∈ X = W
1,p
0 (�) (by Poincaré’s inequality),

‖u‖ = [‖u‖pp + ‖∇u‖pp
]

for all u ∈ X = W 1,p(�).

Proposition 17.4.6 If η ∈ L∞(�), η(z) ≤ λ̂1 for a.a. z ∈ �, η �≡ λ̂1, then

(a) c8‖u‖p ≤ μ0(u)−
∫
�
η(z)|u|pdz for some c8 > 0, all u ∈ W

1,p
0 (�);

(b) c9‖u‖p ≤ μ(u)− ∫
� η(z)|u|pdz for some c9 > 0, all u ∈ W 1,p(�).

In the “linear” case (p = 2), using (17.20), (17.21), and the UCP of the
eigenspaces, we have the following useful inequalities.

Proposition 17.4.7 We have:

(a) If η ∈ L∞(�), η(z) ≥ λ̂m for a.a. z ∈ �, η �≡ λ̂m, m ∈ N, then

μ0(u)−
∫

�

η(z)u2dz ≤ −c10‖u‖2 for some c10 > 0, all u ∈ Hm;

μ(u)−
∫

�

η(z)u2dz ≤ −c11‖u‖2 for some c11 > 0, all u ∈ Hm.
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(b) If η ∈ L∞(�), η(z) ≤ λ̂m for a.a. z ∈ �, η �≡ λ̂m, m ∈ N, then

c12‖u‖2 ≤ μ0(u)−
∫

�

η(z)u2dz for some c12 > 0, all u ∈ Ĥm;

c13‖u‖2 ≤ μ(u)−
∫

�

η(z)u2dz for some c13 > 0, all u ∈ Ĥm.

Another consequence of the UCP is the following monotonicity property of the
map m→ λ̃k(m) for all positive eigenvalues.

Proposition 17.4.8 If m,m∗ ∈ L∞(�), 0 ≤ m(z) ≤ m∗(z) for a.a. z ∈ �, m �≡ 0,
m �≡ m∗, then λ̃k(m

∗) < λ̃k(m) for all k ≥ k0.

Next we consider the following nonlinear, nonhomogeneous parametric Neu-
mann problem. The choice of the Neumann boundary condition was made in order
to simplify the exposition. A similar analysis can be done for the general Robin
problem.

So, the problem under consideration is the following:

⎧
⎨

⎩

−div a(∇u(z))+ ξ(z)u(z)p−1 = λu(z)p−1 + f (z, u(z)) in �,
∂u

∂n
= 0 on ∂�, u > 0, 1 < p < +∞, λ ∈ R.

(17.26)

The hypotheses on the map a(·) are the following:

H(a)′ a(y) = a0(|y|)y for all y ∈ R
N with a0(t) > 0 for all t > 0,

hypotheses H(a)′ (i), (ii), (iii), (iv) are the same as the corresponding hypotheses
H(a) (i), (ii), (iii), (iv) and

(v) there exists q ∈ (1, p] such that

t → G0(t
1
q ) is convex,

lim
t→0+

qG0(t)

tq
= c̃ > 0.

The hypotheses on the perturbation f (z, x) are the following:

H(f )1 f : � × R → R is a Carathéodory function such that for a.a. z ∈ �

f (z, 0) = 0 and

(i) for every ρ > 0, there exists aρ ∈ L∞(�)+ such that |f (z, x)| ≤ aρ(z) for
a.a. z ∈ �, all 0 ≤ x ≤ ρ;

(ii) lim
x→+∞

f (z, x)

xp−1 = 0 uniformly for a.a. z ∈ �;

(iii) lim
x→0+

f (z, x)

xq−1 = +∞ uniformly for a.a. z ∈ �;

(iv) for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a. z ∈ � the function
x → f (z, x)+ ξ̂ρx

p−1 is nondecreasing on [0, ρ].
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Remark 17.4.9 Since we are looking for positive solutions and all the above
hypotheses concern the positive semiaxis R+ = [0,+∞), without any loss of
generality we may assume that f (z, x) = 0 for a.a. z ∈ �, all x ≤ 0. Hypothesis
H(f )1(ii) implies that f (z, ·) is (p − 1)-sublinear near +∞, while H(f )1(iii)

implies that f (z, ·) is (q − 1)-sublinear near 0+.

Let

L = {λ ∈ R such that problem (17.26) has a positive solution},
S(λ) = {set of positive solutions for (17.26)}.

Proposition 17.4.10 If hypotheses H(a)′, H(ξ), H(f )1 hold, then L �= ∅.

Proof Let η > ‖ξ‖∞ and consider the following Carathéodory function:

kλ(z, x) =
{

0 if x ≤ 0,

[λ+ η]xp−1 + f (z, x) if 0 < x.
(17.27)

We setKλ(z, x)=
∫ x

0 kλ(z, s)ds and consider the C1-functionalϕλ : W 1,p(�)→
R defined by

ϕλ(u) = 1

p
μ̂(u)+ η

p
‖u‖pp −

∫

�

Kλ(z, u)dz for all u ∈ W 1,p(�),

with μ̂ : W 1,p(�)→ R being the C1-functional defined by

μ̂(u) =
∫

�

pG(∇u)dz +
∫

�

ξ(z)|u|pdz for all u ∈ W 1,p(�).

Hypotheses H(f )1(i), (ii) imply that given ε > 0, we can find c14 = c14(ε) > 0
such that

F(z, x) ≤ ε

p
xp + c14 for a.a. z ∈ �, all x ≥ 0. (17.28)

Using (17.27), (17.28), and Corollary 17.2.2, we have

ϕλ(u) ≥ c1

p(p − 1)
‖∇u‖pp + 1

p

∫

�

[ξ(z)+ η − (λ+ ε)] |u|pdz − c15 for some c15 > 0

≥ c1

p(p − 1)
‖∇u‖pp + c16‖u‖pp − c15 for some c16 > 0

(choosing λ ∈ R, ε > 0 such that λ+ ε < η − ‖ξ‖∞ ),

⇒ ϕλ(·) is coercive.
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Also, using the Sobolev embedding theorem, we see that ϕλ is sequentially
weakly lower semicontinuous. Then by the Weierstrass-Tonelli theorem, we can
find uλ ∈ W 1,p(�) such that

ϕλ(uλ) = inf
[
ϕλ(u) : u ∈ W 1,p(�)

]
. (17.29)

Hypothesis H(a)′ (v) implies that given c̃0 > c̃ we can find δ > 0 such that

G(y) ≤ c̃0

q
|y|q for all |y| ≤ δ. (17.30)

Moreover, on account of hypothesis H(f )1(iii) given any ϑ > 0, by choosing
δ > 0 even smaller if necessary, we can also have

F(z, x) ≥ ϑ

q
xq for a.a. z ∈ �, all 0 ≤ x ≤ δ. (17.31)

Let λ̂1 = λ̂1(q, ξ0), û1 = û1(q, ξ0) with ξ0 = 1

c̃0
ξ . We have û1 ∈ int Ĉ+. We

choose t ∈ (0, 1) small such that

0 < tû1(z) ≤ δ, |∇(tû1)(z)| ≤ δ for all z ∈ �. (17.32)

Then using (17.27), (17.30), (17.31), (17.32), we have

ϕλ(tû1) ≤ c̃0t
q

q

[
‖∇û1‖qq +

∫

�

ξ0(z)̂u
q
1dz

]

− λtp

p
‖û1‖pp − ϑtq

q
(recall ‖û1‖p = 1 )

≤ tq

q

[
c̃0̂λ1 − ϑ

]− λtp

p
.

Since ϑ > 0 is arbitrary, choosing ϑ > 0 appropriately big, we have that

ϕλ(tû1) < 0 (recall t ∈ (0, 1) is small),

⇒ ϕλ(uλ) < 0 = ϕλ(0) (see (17.29)),

⇒ uλ �= 0.
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From (17.29) we have that

ϕ′λ(uλ) = 0,

⇒ 〈A(uλ), h〉 +
∫

�

[ξ(z)+ η]|uλ|p−2uλhdz =
∫

�

kλ(z, uλ)hdz (17.33)

for all h ∈ W 1,p(�).

In (17.33) we choose h = −u−λ ∈ W 1,p(�). Using Lemma 17.2.1 we obtain

c1

p − 1
‖∇u−λ ‖pp +

∫

�

[ξ(z)+ η](u−λ )pdz = 0 (see (17.27)),

⇒ uλ ≥ 0, uλ �= 0.

From (17.27) and (17.33) we infer that

⎧
⎨

⎩

−div a(∇uλ(z))+ ξ(z)uλ(z)
p−1 = λuλ(z)

p−1 + f (z, uλ(z)) for a.a. z ∈ �,
∂uλ

∂n
= 0 on ∂�.

(17.34)

Then Propositions 17.2.3 and 17.2.4 imply that uλ ∈ C+ \ {0}.
From hypothesis H(f )1(iv) we know that, if ρ = ‖uλ‖∞, then we can find

ξ̂ρ > 0 such that f (z, x) + ξ̂ρx
p−1 ≥ 0 for a.a. z ∈ �, all 0 ≤ x ≤ ρ. Then

from (17.34) we have

div a(∇uλ(z)) ≤
[‖ξ‖∞ + ξ̂ρ

]
uλ(z)

p−1 for a.a. z ∈ �,

⇒ uλ ∈ int Ĉ+ (see Theorem 17.3.1) and solves (17.26).

Therefore λ ∈ L and so L �= ∅. ��
Remark 17.4.11 A by-product of the above proof is that S(λ) ⊆ int Ĉ+. Also in the
case of the p-Laplacian (that is, a(y) = |y|p−2y for all y ∈ R

N ), from the above
proof we see that for all λ < λ̂1 = λ̂1(p, ξ), S(λ) �= ∅.

Next we show that L is a half line.

Proposition 17.4.12 If hypotheses H(a)′, H(ξ), H(f )1 hold, λ ∈ L and ϑ < λ,
then ϑ ∈ L.



17 Nonlinear Nonhomogeneous Elliptic Problems 667

Proof Since λ ∈ L we can find uλ ∈ S(λ) ⊆ int Ĉ+. We consider the following
truncation-perturbation of the reaction in problem (17.26)ϑ (again η > ‖ξ‖∞):

eϑ(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0,

ϑxp−1 + f (z, x)+ ηxp−1 if 0 ≤ x ≤ uλ(z),

ϑuλ(z)
p−1 + f (z, uλ(z))+ ηuλ(z)

p−1 if uλ(z) < x.

(17.35)

This is a Carathéodory function. We set Eϑ(z, x) =
∫ x

0 eϑ(z, s)ds and consider
the C1-functional ψϑ : W 1,p(�)→ R defined by

ψϑ(u) = 1

p
μ̂(u)+ η

p
‖u‖pp −

∫

�

Eϑ(z, u)dz for all u ∈ W 1,p(�).

Evidently ψϑ(·) is coercive and sequentially weakly lower semicontinuous. So,
we can find uϑ ∈ W 1,p(�) such that

ψϑ(uϑ) = inf
[
ψϑ(u) : u ∈ W 1,p(�)

]
. (17.36)

As in the proof of Proposition 17.4.10, using hypotheses H(a)′(v) and
H(f )1(iii) we show that ψϑ(uϑ) < 0 = ψϑ(0), hence uϑ �= 0. From (17.36)
we have

ψ ′ϑ(uϑ) = 0,

⇒ 〈A(uϑ), h〉 +
∫

�

[ξ(z)+ η]|uϑ |p−2uϑhdz =
∫

�

eϑ(z, uϑ)hdz (17.37)

for all h ∈ W 1,p(�).

In (17.37) we choose h = −u−ϑ ∈ W 1,p(�). Then using Lemma 17.2.1 we have

c1

p − 1
‖∇u−ϑ ‖pp +

∫

�

[ξ(z)+ η](u−ϑ )pdz = 0 (see (17.35)),

⇒ c16‖u−ϑ ‖p ≤ 0 for some c16 > 0 (recall η > ‖ξ‖∞),

⇒ uϑ ≥ 0, uϑ �= 0.

Also in (17.37) we choose h = (uϑ − uλ)
+ ∈ W 1,p(�). Then

〈A(uϑ), (uϑ − uλ)
+〉 +

∫

�

[ξ(z)+ η]up−1
ϑ (uϑ − uλ)

+dz

=
∫

�

[
ϑu

p−1
λ + f (z, uλ)+ ηu

p−1
λ

]
(uϑ − uλ)

+dz (see (17.35))
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≤
∫

�

[
λu

p
λ + f (z, uλ)+ ηu

p−1
λ

]
(uϑ − uλ)

+dz (recall ϑ < λ)

= 〈A(uλ), (uϑ − uλ)
+〉+

∫

�

[ξ(z)+ η]up−1
λ (uϑ − uλ)

+dz (since uλ ∈ S(λ))

⇒ uϑ ≤ uλ.

So, we have proved that

uϑ ∈ [0, uλ] = {u ∈ W 1,p(�) : 0 ≤ u(z) ≤ uλ(z) for a.a. z ∈ �}, uϑ �= 0.
(17.38)

Then from (17.35), (17.37), (17.38) we conclude that uϑ ∈ S(ϑ) ⊆ int Ĉ+, hence
ϑ ∈ L. ��

Let λ∗ = supL.

Proposition 17.4.13 If hypotheses H(a)′, H(ξ), H(f )1 hold, then λ∗ < +∞.

Proof Hypotheses H(ξ), H(f )1 imply that we can find λ̃ > 0 big such that

λ̃xp−1 + f (z, x)− ξ(z)xp−1 ≥ xp−1 for a.a. z ∈ �, all x ≥ 0. (17.39)

Let λ > λ̃ and assume that λ ∈ L. Then we can find u ∈ S(λ) ⊆ int Ĉ+. Let

m = min
�

u > 0.

For δ > 0 we set mδ = m + δ > 0 and for ρ = ‖u‖∞ let ξ̂ρ > 0 be as
in H(f )1(iv). We can always take ξ̂ρ > max{λ, ‖ξ‖∞} so that x → λxp−1 +
f (z, x)+ ξ̂ρx

p−1 is nondecreasing on [0, ρ]. Then we have

− div a(∇mδ)+ [ξ(z)+ ξ̂ρ ]mp−1
δ

≤ [ξ(z)+ ξ̂ρ ]mp−1 + τ (δ) with τ (δ)→ 0+ as δ→ 0+

≤ [ξ(z)+ ξ̂ρ ]mp−1 +mp−1 + τ (δ)

≤ λ̃mp−1 + f (z,m)+ ξ̂ρm
p−1 + τ (δ) (see (17.39))

= λmp−1 + f (z,m)+ ξ̂ρm
p−1 − (λ− λ̃)mp−1 + τ (δ)

≤ λmp−1 + f (z,m)+ ξ̂ρm
p−1 for δ > 0 small

(recall λ > λ̃ and τ (δ)→ 0+ as δ → 0+)

≤ λup−1 + f (z, u)+ ξ̂ρu
p−1

= −div a(∇u)+ [ξ(z)+ ξ̂ρ ]up−1 for a.a. z ∈ �. (17.40)
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Acting on (17.40) with (mδ − u)+ ∈ W 1,p(�), we obtain

mδ ≤ u for δ > 0 small,

a contradiction to the definition of m (alternatively, we can use Proposition 17.3.5).
Therefore λ �∈ L and so λ∗ ≤ λ̃ < +∞. ��

Next we show that for λ < λ∗, the solution set S(λ) ⊆ int Ĉ+ admits a smallest
element. Fix λ < λ∗ and r ∈ (p, p∗). Hypotheses H(f )1 imply that we can find
c17 = c17(λ) > 0 and c18 = c18(λ) > 0 such that

λxp−1 + f (z, x) ≥ c17x
q−1 − c18x

r−1 for a.a. z ∈ �, x ≥ 0.

This unilateral growth condition on the reaction of problem (17.26) leads to the
following auxiliary Neumann equation

⎧
⎨

⎩

−div a(∇u(z))+ |ξ(z)|u(z)p−1 = c17u(z)
q−1 − c18u(z)

r−1 in �,
∂u

∂n
= 0 on ∂�, u > 0.

(17.41)

Proposition 17.4.14 If hypotheses H(a)′, H(ξ) hold, then problem (17.41) admits
a unique solution uλ∗ ∈ int Ĉ+.

Proof Consider the energy functional for problem (17.41) ψ : W 1,p(�) → R

defined by

ψ(u) =
∫

�

G(∇u)dz+ 1

p

∫

�

|ξ(z)||u|pdz+ 1

p
‖u−‖pp + c18

r
‖u+‖rr −

c17

q
‖u+‖qq

for all u ∈ W 1,p(�).

Evidently ψ(·) is coercive and sequentially weakly lower semicontinuous. So,
we can find uλ∗ ∈ W 1,p(�) such that

ψ(uλ∗) = inf
[
ψ(u) : u ∈ W 1,p(�)

]
. (17.42)

Since q < p < r , we have ψ(uλ∗) < 0 = ψ(0), hence uλ∗ �= 0. From (17.42) we
have

ψ ′(uλ∗) = 0,

⇒ 〈A(uλ∗), h〉 +
∫

�

|ξ(z)||uλ∗|p−2uλ∗hdz−
∫

�

((uλ∗)−)p−1hdz

= c17

∫

�

((uλ∗)+)q−1hdz− c18

∫

�

((uλ∗)+)r−1hdz for all h ∈ W 1,p(�).

(17.43)
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In (17.43) we choose h = −(uλ∗)− ∈ W 1,p(�). Then

c1

p − 1
‖∇(uλ∗)−‖pp +

∫

�

[|ξ(z)| + 1]((uλ∗)−)pdz ≤ 0 (see Lemma 17.2.1),

⇒ uλ∗ ≥ 0, uλ∗ �= 0.

From (17.43) it follows that uλ∗ is a positive solution of (17.41) and uλ∗ ∈ int Ĉ+.
Next we show that this positive solution is unique. To this end, we introduce the

integral function j : L1(�)→ R = R ∪ {+∞} defined by

j (u) =
⎧
⎨

⎩

∫
� G(∇u 1

q )dz+ 1

p

∫
� |ξ(z)|u

p
q dz if u ≥ 0, u

1
q ∈ W 1,p(�),

+∞ otherwise.

Here q ≤ p is as in hypothesis H(a)′ (v). Let dom j = {u ∈ L1(�) : j (u) <
+∞} (the effective domain of j (·)). Let u1, u2 ∈ dom j and set u = [(1− t)u1 +
tu2]

1
q with t ∈ [0, 1]. Using Lemma 1 of Díaz and Saá [23]

|∇u(z)| ≤
[
(1− t)|∇u1(z)

1
q |q + t|∇u2(z)

1
q |q

] 1
q

for a.a. z ∈ �,

⇒ G0(|∇u(z)|) ≤ G0

(
[
(1− t)|∇u1(z)

1
q |q + t|∇u2(z)

1
q |q

] 1
q

)

(since G0(·) is increasing)

≤ (1− t)G0

(
|∇u1(z)

1
q |
)
+ tG0

(
|∇u2(z)

1
q |
)

for a.a. z ∈ �

(see hypothesis H(a)′(v)),

⇒ G(∇u(z)) ≤ (1− t)G
(
∇u1(z)

1
q

)
+ tG

(
∇u2(z)

1
q

)
for a.a. z ∈ �,

⇒ dom j � u→
∫

�

G
(
∇u 1

q

)
dz is convex.

Since q ≤ p, it follows that dom j � u → ∫
�
|ξ(z)|up

q dz is convex
too. Therefore u → j (u) is convex and by Fatou’s lemma it is also lower
semicontinuous.

Suppose that vλ∗ is another positive solution of (17.41). Again we show that vλ∗ ∈
int Ĉ+. Given h ∈ C1(�), for |t| ≤ 1 small we have

(uλ∗)q + th ∈ dom j and (vλ∗)q + th ∈ dom j.



17 Nonlinear Nonhomogeneous Elliptic Problems 671

We can easily see that j (·) is Gateaux differentiable at (uλ∗)q and at (vλ∗)q in the
direction h. Moreover, using the chain rule and Green’s identity (see Gasiński and
Papageorgiou [31], p. 210), we have

j ′((uλ∗)q)(h) =
1

q

∫

�

−div a(∇uλ∗)+ |ξ(z)|(uλ∗)p−1

(uλ∗)q−1
hdz,

j ′((vλ∗)q)(h) =
1

q

∫

�

−div a(∇vλ∗)+ |ξ(z)|(vλ∗)p−1

(vλ∗)q−1 hdz.

The convexity of j (·) implies the monotonicity of j ′(·). So

0 ≤
∫

�

(−div a(∇uλ∗)+ |ξ(z)|(uλ∗)p−1

(uλ∗)q−1 − −div a(∇vλ∗)+ |ξ(z)|(vλ∗)p−1

(vλ∗ )q−1

)

×
((
uλ∗

)q − (
vλ∗

)q)
dz

=
∫

�

c18

[(
vλ∗

)r−q − (
uλ∗

)r−q] ((
uλ∗

)q − (
vλ∗

)q)
dz

⇒ uλ∗ = vλ∗ (recall q ≤ p < r).

This proves the uniqueness of the positive solution of problem (17.41). ��
Proposition 17.4.15 If hypotheses H(a)′, H(ξ), H(f )1 hold and λ < λ∗, then
uλ∗ ≤ u for all u ∈ S(λ).

Proof Let u ∈ S(λ) ⊆ int Ĉ+. With η > ‖ξ‖∞ as before, we introduce the
Carathéodory function e : �× R→ R defined by:

e(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0,

c17x
q−1 − c18x

r−1 + ηxp−1 if 0 ≤ x ≤ u(z),

c17u(z)
q−1 − c18u(z)

r−1 + ηu(z)p−1 if u(z) < x.

(17.44)

We set E(z, x) = ∫ x

0 e(z, s)ds and consider the C1-functional τ : W 1,p(�)→ R

defined by

τ (u) = 1

p
μ̂(u)+ η

p
‖u‖pp −

∫

�

E(z, u)dz for all u ∈ W 1,p(�).

Since η > ‖ξ‖∞, τ (·) is coercive (see (17.44)). Also, it is sequentially weakly
lower semicontinuous. So, we can find ũλ∗ ∈ W 1,p(�) such that

τ (̃uλ∗) = inf
[
τ (u) : u ∈ W 1,p(�)

]
. (17.45)
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As before, using the fact that q ≤ p < r , we see that

τ (̃uλ∗) < 0 = τ (0),

⇒ ũλ∗ �= 0.

From (17.45) we have

τ ′(̃uλ∗) = 0,

⇒ 〈A(̃uλ∗), h〉 +
∫

�

[ξ(z)+ η]|̃uλ∗|p−2ũλ∗hdz =
∫

�

e(z, ũλ∗)hdz (17.46)

for all h ∈ W 1,p(�).

In (17.46) first we choose h = −(̃uλ∗)− ∈ W 1,p(�). Then

c1

p − 1
‖∇ (̃uλ∗)−‖pp +

∫

�

[ξ(z)+ η]((̃uλ∗)−)pdz ≤ 0 (see (17.44)),

⇒ ũλ∗ ≥ 0, ũλ∗ �= 0.

Next in (17.46) we choose h = (̃uλ∗ − u)+ ∈ W 1,p(�). Then

〈A(̃uλ∗), (̃uλ∗ − u)+〉 +
∫

�

[ξ(z)+ η](̃uλ∗)p−1(̃uλ∗ − u)+dz

=
∫

�

[c17u
q−1 − c18u

r−1 + ηup−1](̃uλ∗ − u)+dz (see (17.44))

= 〈A(u), (̃uλ∗ − u)+〉 +
∫

�

[ξ(z)+ η]up−1(̃uλ∗ − u)+dz

⇒ ũλ∗ ≤ u.

Therefore

ũλ∗ ∈ [0, u], ũλ∗ �= 0. (17.47)

From (17.44), (17.46), (17.47) we infer that

ũλ∗ is a positive solution of (17.41),

⇒ ũλ∗ = uλ∗ ∈ int Ĉ+ (see Proposition 17.4.14),

⇒ ũλ∗ ≤ u for all u ∈ S(λ).

��
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The set S(λ) is downward directed, that is, if u1, u2 ∈ S(λ) we can find u ∈ S(λ)

such that u ≤ u1, u ≤ u2 (see Papageorgiou et al. [69], proof of Proposition 7)

Proposition 17.4.16 If hypotheses H(a)′,H(ξ),H(f )1 hold and λ < λ∗, then
S(λ) admits a smallest element uλ ∈ S(λ), that is, uλ ≤ u for all u ∈ S(λ).

Proof Using Lemma 3.10, p. 178, of Hu and Papageorgiou [43], we can find
{un}n≥1 ⊆ S(λ) decreasing such that infS(λ) = infn≥1 un. We have

〈A(un), h〉 +
∫

�

ξ(z)u
p−1
n hdz = λ

∫

�

u
p−1
n hdz+

∫

�

f (z, un)hdz (17.48)

for all h ∈ W 1,p(�), all n ∈ N.

Since 0 ≤ un ≤ u1 ∈ int Ĉ+ for all n ∈ N, choosing h = un ∈ W 1,p(�), we
show that {un}n≥1 ⊆ W 1,p(�) is bounded. So, we may assume that

un
w−→ uλ in W 1,p(�) and un → uλ in Lp(�) as n→+∞. (17.49)

In (17.48) we choose h = un − uλ ∈ W 1,p(�), pass to the limit as n → +∞
and use (17.49). Then

lim
n→+∞〈A(un), un − uλ〉 = 0,

⇒ un → uλ in W 1,p(�) (see Proposition 17.2.7). (17.50)

If in (17.48) we pass to the limit as n→ +∞ and use (17.50), then

〈A(uλ), h〉 +
∫

�

ξ(z)u
p−1
λ hdz =

∫

�

[λup−1
λ + f (z, uλ)]hdz for all h ∈ W 1,p(�).

(17.51)

From Proposition 17.4.15, we know that

uλ∗ ≤ un for all n ∈ N,

⇒ uλ∗ ≤ uλ. (17.52)

From (17.51) and (17.52) it follows that uλ ∈ S(λ), uλ = inf S(λ). ��
We examine the map λ→ uλ from L into C1(�).

Proposition 17.4.17 If hypotheses H(a)′,H(ξ),H(f )1 hold, then the map λ →
uλ from L into C1(�) is

(a) strictly increasing, that is, if ϑ < λ ∈ L, then uλ − uϑ ∈ intC+;
(b) left continuous.
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Proof

(a) Let ϑ < λ ∈ L and let uλ ∈ S(λ) ⊆ int Ĉ+ be the minimal solution of
problem (17.26) produced in Proposition 17.4.16. Again we choose η > ‖ξ‖∞
and introduce the Carathéodory function γϑ : �×R→ R defined by

γϑ(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < 0,

[ϑ + η]xp−1 + f (z, x) if 0 ≤ x ≤ uλ(z),

[ϑ + η]uλ(z)p−1 + f (z, uλ(z)) if uλ(z) < x.

(17.53)

We set �ϑ(z, x) = ∫ x

0 γϑ(z, s)ds and consider the C1-functional ϕ̃ϑ :
W 1,p(�)→ R defined by

ϕ̃ϑ(u) = 1

p
μ̂(u)+ η

p
‖u‖pp −

∫

�

�ϑ(z, u)dz for all u ∈ W 1,p(�).

This functional too is coercive (see (17.53)) and sequentially weakly lower
semicontinuous. So, we can find uϑ ∈ W 1,p(�) such that

ϕ̃ϑ (uϑ) = inf[ϕ̃ϑ (u) : u ∈ W 1,p(�)]. (17.54)

Using hypotheses H(a)′(v) and H(f )1(iii), as in the proof of Proposi-
tion 17.4.10, we show that

ϕ̃ϑ(uϑ) < 0 = ϕ̃ϑ(0), hence uϑ �= 0.

From (17.54) we have

〈A(uϑ), h〉 +
∫

�

[ξ(z)+ η]|uϑ |p−2uϑhdz =
∫

�

γϑ(z, uϑ)hdz for all h ∈ W 1,p(�).

(17.55)

If in (17.55) we choose first h = −u−ϑ ∈ W 1,p(�) and then h = (uϑ −
uλ)

+ ∈ W 1,p(�), we obtain

uϑ ∈ [0, uλ], uϑ �= 0, uϑ �= uλ (since θ < λ). (17.56)

From (17.53), (17.55), (17.56) it follows that uϑ ∈ S(ϑ) ⊆ int Ĉ+. Then

uϑ ≤ uϑ ≤ uλ.
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Now let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis
H(f )1(iv). In fact we can always take ξ̂ρ > max{λ, ‖ξ‖∞} so that for a.a.
z ∈ � the function x → [λ + ξ̂ρ]xp−1 + f (z, x) is nondecreasing on [0, ρ].
Also let mϑ = min� uϑ > 0 (recall uϑ ∈ int Ĉ+). We have

− div a(∇uδϑ)+
[
ξ(z) + ξ̂ρ

]
(uδϑ )

p−1

≤ −div a(∇uϑ)+
[
ξ(z)+ ξ̂ρ

]
u
p−1
ϑ + ε(δ) with ε(δ)→ 0+ as δ→ 0+

= ϑu
p−1
ϑ + f (z, uϑ)+ ξ̂ρu

p−1
ϑ + ε(δ)

= λu
p−1
ϑ + f (z, uϑ)+ ξ̂ρu

p−1
ϑ − (λ− ϑ)u

p−1
ϑ + ε(δ)

≤ λu
p−1
λ + f (z, uλ)+ ξ̂ρu

p−1
λ − (λ− θ)mϑ + ε(δ) (recall the choice of ξ̂ρ)

≤ λu
p−1
λ + f (z, uλ)+ ξ̂ρu

p−1
λ for δ > 0 small

= −div a(∇uλ)+
[
ξ(z)+ ξ̂ρ

]
u
p−1
λ . (17.57)

Acting on (17.57) with (uδϑ − uλ)
+ ∈ W 1,p(�), using the nonlinear Green’s

identity and the Neumann boundary condition (note
∂uδϑ

∂n
= ∂u

∂n
= 0), we obtain

uλ − uδϑ ∈ C+ for δ > 0 small,

⇒ uλ − uϑ ∈ int Ĉ+,

⇒ λ→ uλ is strictly increasing.

(b) Let λn → λ− with λ ∈ L. We set un = uλn for all n ∈ N. Evidently {un}n≥1 ⊆
W 1,p(�) is bounded (see hypothesis H(f )1(i) and note that from part (a) we
have 0 ≤ un ≤ uλ ∈ int Ĉ+ for all n ∈ N). So, we may assume that

un
w−→ ũλ in W 1,p(�) and un → ũλ in Lp(�) as n→+∞. (17.58)

We know that

〈A(un), h〉 +
∫

�

ξ(z)u
p−1
n hdz =

∫

�

[
λnu

p−1
n + f (z, un)

]
hdz (17.59)

for all h ∈ W 1,p(�), all n ∈ N.
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Choosing h = un − ũλ ∈ W 1,p(�) in (17.59), passing to the limit as n →
+∞ and using Proposition 17.2.7, we have

un → ũλ in W 1,p(�). (17.60)

So, if we pass to the limit as n → +∞ in (17.59) and use (17.60), then
we infer that ũλ ∈ S(λ). We claim that ũλ = uλ. On account of (17.60) and
Proposition 17.2.3, we can find c19 > 0 such that

‖un‖∞ ≤ c19 for all n ∈ N. (17.61)

Then (17.61) and Proposition 17.2.4 imply that we can find s ∈ (0, 1) and
c20 > 0 such that

un ∈ C1,s(�) and ‖un‖C1,s (�) ≤ c20 for all n ∈ N. (17.62)

Recalling that C1,s(�) is embedded compactly in C1(�) from (17.62)
and (17.60) we infer that

un → ũλ in C1(�). (17.63)

If ũλ �= uλ, then we can find z0 ∈ � such that

uλ(z0) < ũλ(z0),

⇒ uλ(z0) < un(z0) for all n ≥ n0 (see (17.63)).

But this contradicts (a). Therefore ũλ = uλ and so we conclude that λ→ uλ is
left continuous. ��

Now we show that λ∗ is not admissible.

Proposition 17.4.18 If hypotheses H(a)′,H(ξ),H(f )1 hold, then λ∗ /∈ L.

Proof Arguing by contradiction suppose that λ∗ ∈ L. By Proposition 17.4.16 we
have uλ∗ = u∗ ∈ int Ĉ+. Let λ > λ∗ and consider the following Carathéodory
function

θλ(z, x) =
{
[λ+ η]up−1∗ (z)+ f (z, u∗(z)) if x ≤ u∗(z),
[λ+ η]xp−1 + f (z, x) if u∗(z) < x,

(17.64)

(as before η > ‖ξ‖∞). We set -λ(z, x) =
∫ x

0 θλ(z, s)ds and consider the C1-
functional ϕ∗λ : W 1,p(�)→ R defined by

ϕ∗λ(u) =
1

p
μ̂(u)+ η

p
‖u‖pp −

∫

�

-λ(z, u)dz for all u ∈ W 1,p(�).
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An application of the mountain pass theorem gives

uλ ∈ Kϕ∗λ ,

⇒ (ϕ∗λ)′(uλ) = 0

⇒ 〈A(uλ), h〉 +
∫

�

[ξ(z)+ η]|uλ|p−2uλhdz =
∫

�

θλ(z, uλ)hdz (17.65)

for all h ∈ W 1,p(�).

In (17.65) we choose h = (u∗ − uλ)
+ ∈ W 1,p(�). Then

〈A(uλ), (u∗ − uλ)
+〉 +

∫

�

[ξ(z)+ η]|uλ|p−2uλ(u∗ − uλ)
+dz

=
∫

�

([λ+ η] up−1∗ + f (z, u∗))(u∗ − uλ)
+dz (see (17.64))

≥
∫

�

([λ∗ + η]up−1∗ + f (z, u∗))(u∗ − uλ)
+dz

= 〈A(u∗), (u∗ − uλ)
+〉 +

∫

�

[ξ(z)+ η]up−1∗ (u∗ − uλ)
+dz,

⇒ u∗ ≤ uλ. (17.66)

From (17.64), (17.65), (17.66) we conclude uλ ∈ S(λ) ⊆ int Ĉ+, a contradiction
since λ > λ∗. Therefore λ∗ /∈ L. ��

So, finally we have L = (−∞, λ∗) and summarizing the situation for prob-
lem (17.26), we can state the following theorem.

Theorem 17.4.19 If hypotheses H(a)′,H(ξ),H(f )1 hold, then there exists λ∗ <

+∞ such that

(a) for all λ ≥ λ∗ problem (17.26) has no positive solution;
(b) for all λ < λ∗ problem (17.26) has at least one positive solution uλ ∈ int Ĉ+;
(c) for every λ < λ∗ problem (17.26) has a smallest positive solution uλ ∈ int Ĉ+

and the map λ → uλ from L = (−∞, λ∗) into C1(�) is strictly increasing
(that is, ϑ < λ < λ∗ ⇒ uλ − uϑ ∈ int Ĉ+) and left continuous.

The particular case of the p-Laplacian (that is, a(y) = |y|p−2y for all y ∈ R
N )

presents special interest because we can identify precisely λ∗.
So, we consider the following problem:

⎧
⎨

⎩

−�pu(z)+ ξ(z)u(z)p−1 = λu(z)p−1 + f (z, u(z)) in �,
∂u

∂n
= 0 on ∂�, u > 0.

(17.67)
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Proposition 17.4.20 If hypothesis H(ξ) holds and f : � × R → R is a
Carathéodory function such that for a.a. z ∈ �, f (z, 0) = 0, f (z, x) > 0 for
all x > 0, f (z, x) ≤ a(z)[1+ xp

∗−1] for a.a. z ∈ �, all x ≥ 0, with a ∈ L∞(�)+
and λ ≥ λ̂1(p, ξ), then S(λ) = ∅.

Proof Suppose that S(λ) �= ∅. Let u ∈ S(λ) ⊆ int Ĉ+. Consider û1 = û1(p, ξ) ∈
int Ĉ+ and introduce the function

R(̂u1, u)(z) = |∇û1(z)|p − |∇u(z)|p−2

(

∇u(z),∇
(

û
p

1

up−1

)

(z)

)

RN

.

From the nonlinear Picone’s identity of Allegretto and Huang [5] (see also
Motreanu et al. [52], p. 255), we have

0 ≤ R(̂u1, u)(z) for a.a. z ∈ �,

⇒ 0 ≤
∫

�

R(̂u1, u)dz

= ‖∇û1‖pp −
∫

�

|∇u|p−2
(
∇u,∇

(
û
p
1

up−1

))

RN

dz

= ‖∇û1‖pp −
∫

�

(−�pu)
û
p

1

up−1 dz

(by the nonlinear Green’s identity, see [31], p. 211)

= ‖∇û1‖pp +
∫

�

ξ(z)̂u
p

1dz−
∫

�

[

λû
p

1 + f (z, u)
û
p
1

up−1

]

dz

< μ(̂u1)− λ (recall ‖û1‖p = 1)

= λ̂1 − λ ≤ 0,

a contradiction. Therefore S(λ) = ∅ for all λ ≥ λ̂1. ��
On the other hand, we already observed from the proof of Proposition 17.4.10

that for λ < λ̂1 = λ̂1(p, ξ), we have S(λ) �= ∅. So, for problem (17.67), we can say
that L = (−∞, λ̂1). Note that the argument with the nonlinear Picone’s identity can
be used also to show that λ∗ /∈ L.

17.5 Superlinear Problems

We continue with � ⊆ R
N a bounded domain with a C2-boundary ∂� and ξ ∈

L∞(�) an indefinite potential function. In this section we deal with the following
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nonlinear Robin problem

⎧
⎨

⎩

−div a(∇u(z))+ ξ(z)|u(z)|p−2u(z) = f (z, u(z)) in �,
∂u

∂n
+ β(z)|u|p−2u = 0 on ∂�, 1 < p < +∞.

(17.68)

Again the differential operator u → div a(∇u) need not be homogeneous and
the hypotheses on a(·) are the same and so we incorporate as special cases the p-
Laplacian and the (p, q)-Laplacian. The result also holds for the Dirichlet problem.
In problem (17.68) the reaction term f (z, x) is a Carathéodory function (that is,
for all x ∈ R z → f (z, x) is measurable and for a.a. z ∈ � x → f (z, x) is
continuous) and we assume that f (z, ·) exhibits (p−1)-superlinear growth near±∞
but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition (the
AR-condition for short). Here instead we employ a less restrictive condition which
involves the function e(z, x) = f (z, x)x − pF(z, x) with F(z, x) = ∫ x

0 f (z, s)ds.
We recall that the AR-condition says that there exist τ > p and M > 0 such that

0 < τF(z, x) ≤ f (z, x)x for a.a. z ∈ �, all |x| ≥M and essinf�F(·,±M) > 0.
(17.69)

A direct integration of (17.69) leads to the following weaker condition

c22|x|τ ≤ F(z, x) for a.a. z ∈ �, all |x| ≥ M, some c22 > 0. (17.70)

It is clear from (17.69) and (17.70) that the AR-condition dictates a (p − 1)-
superlinear growth for f (z, ·) near ±∞. The AR-condition, although very useful
in verifying the compactness condition (the Palais-Smale (PS-) condition) for
the energy functional of the problem, is somewhat restrictive and excludes from
consideration of superlinear nonlinearities with “slower” growth near ±∞.

Here combining variational methods with suitable truncation and perturbation
techniques and Morse theory (critical groups), we prove a multiplicity theorem
producing three nontrivial smooth solutions.

We start by recalling some notions which we will use in the sequel. So, let X
be a Banach space and let X∗ be its topological dual. Given ϕ ∈ C1(X,R), we say
that ϕ satisfies the “Cerami condition” (the “C-condition” for short), if the following
property holds:

Every sequence {un}n≥1 ⊆ X such that

|ϕ(un)| ≤ M for some M > 0, all n ∈ N,

(1+ ‖un‖)ϕ′(un)→ 0 in X∗ as n→+∞,

admits a strongly convergent subsequence.
This compactness-type condition on the functional ϕ(·) is more general than the

usual PS-condition. Nevertheless practically all the critical point theory remains
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valid if the PS-condition is replaced by the C-condition (see Gasiński and Papa-
georgiou [31]).

Given ϕ ∈ C1(X,R) and c ∈ R, we introduce the following sets

Kϕ = {u ∈ X : ϕ′(u) = 0}, Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c},

ϕc = {u ∈ X : ϕ(u) ≤ c}, ϕ̇c = {u ∈ X : ϕ(u) < c}.

If (Y1, Y2) is a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ N0, then
by Hk(Y1, Y2) we denote the kth-relative singular homology group with integer
coefficients for the pair (Y1, Y2). The critical groups of ϕ at an isolated u0 ∈ Kϕ

with ϕ(u0) = c (that is, u0 ∈ Kc
ϕ) are defined by

Ck(ϕ, u0) = Hk(ϕ
c ∩ U, ϕc ∩ U \ {u0}) for all k ∈ N0,

with U being a neighborhood of u0 such that Kϕ ∩ ϕc ∩ U = {u0}. The excision
property of singular homology implies that this definition is independent of the
particular choice of the neighborhood U .

Suppose that ϕ ∈ C1(X,R) satisfies the C-condition and infϕ(Kϕ) > −∞. Let
c < infϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X, ϕ
c) for all k ∈ N0.

The second deformation theorem (see, for example, Gasiński and Papageorgiou
[31], p. 628) implies that this definition is independent of the choice of c <

infϕ(Kϕ).
Moreover, for every c < infϕ(Kϕ), we have

Ck(ϕ,∞) = Hk(X, ϕ̇
c) for all k ∈ N0. (17.71)

Indeed if ϑ < c < infϕ(Kϕ), then from Granas and Dugundji [37, p. 407], we
have that ϕϑ is a strong deformation retract of ϕ̇c, hence

Hk(X, ϕ
ϑ) = Hk(X, ϕ̇

c) for all k ∈ N0

(see Motreanu et al. [52, p. 145]), hence (17.71) follows.
With Kϕ we define

M(t, u) =
∑

k≥0

rankCk(ϕ, u)t
k for all t ∈ R, u ∈ Kϕ,

P (t,∞) =
∑

k≥0

rankCk(ϕ,∞)tk t ∈ R.
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Then the “Morse relation” says

∑

u∈Kϕ

M(t, u) = P(t,∞)+ (1+ t)Q(t) for all t ∈ R, (17.72)

with Q(t) =∑
k≥0 βk t

k being a formal series with nonnegative integer coefficients.
The hypotheses on the reaction f (z, x) are the following:

H(f )2 f : �× R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ � and

(i) |f (z, x)| ≤ a(z)[1 + |x|r−1] for a.a. z ∈ �, all x ∈ R, with a ∈ L∞(�),
p < r < p∗;

(ii) if F(z, x) = ∫ x

0 f (z, s)ds, then lim
x→±∞

F(z, x)

|x|p = +∞ uniformly for a.a.

z ∈ �;
(iii) if e(z, x) = f (z, x)x−pF(z, x), then e(z, x) ≤ e(z, y)+�(z) for a.a. z ∈ �,

all 0 ≤ x ≤ y or y ≤ x ≤ 0, with � ∈ L1(�);
(iv) there exist a function ϑ ∈ L∞(�) and γ > 0 such that

ϑ(z) ≤ c1

p − 1
λ̂1(p, ξ0, β0) for a.a. z ∈ �, ϑ �≡ λ̂1(p, ξ0, β0),

where

ξ0 = p − 1

c1
ξ, β0 = p − 1

c1
β,

lim sup
x→0

pF(z, x)

|x|p ≤ ϑ(z) uniformly for a.a. z ∈ �,

lim inf
x→0

f (z, x)

|x|p−2x
> −γ uniformly for a.a. z ∈ �.

Remark 17.5.1 Evidently hypotheses H(f )2 (ii), (iii) imply that

lim
x→±∞

f (z, x)

|x|p−2x
= +∞ uniformly for a.a. z ∈ �,

that is, the reaction f (z, ·) is (p−1)-superlinear. Hypothesis H(f )2 (iii) is a quasi-
monotonicity condition on e and it is satisfied if there exists M > 0 such that for
a.a. z ∈ �

x → f (z, x)

xp−1 is increasing on x ≥ M and x → f (z, x)

|x|p−2x
is decreasing on x ≤ −M.
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In what follows μ̃ : W 1,p(�)→ R is the C1-functional defined by

μ̃(u) =
∫

�

pG(∇(u))dz +
∫

�

ξ(z)|u|pdz+
∫

∂�

β(z)|u|pdσ for all u ∈ W 1,p(�).

Also let f±(z, x) be the positive (resp. negative) truncations of f (z, ·), that is,
f±(z, x) = f (z, x±) (recall x+ = max{x, 0}, x− = max{−x, 0}). These are
Carathéodory functions. We set F±(z, x) =

∫ x

0 f±(z, s)ds and consider the C1-
functionals ϕ± : W 1,p(�)→ R defined by

ϕ±(u) = 1

p
μ̃(u)+ η

p
‖u∓‖pp −

∫

�

F±(z, u)dz for all u ∈ W 1,p(�) (η > ‖ξ‖∞).

In addition we consider the energy functional ϕ : W 1,p(�) → R for
problem (17.68) defined by

ϕ(u) = 1

p
μ̃(u)−

∫

�

F(z, u)dz for all u ∈ W 1,p(�).

Then ϕ ∈ C1(W 1,p(�)).

Proposition 17.5.2 If hypotheses H(a)′,H(ξ),H(β),H(f )2 hold, then the func-
tionals ϕ± satisfy the C-condition.

Proof We do the proof for ϕ+, the proof for ϕ− being similar. So, we consider a
sequence {un}n≥1 ⊆ W 1,p(�) such that

|ϕ+(un)| ≤ M1 for some M1 > 0, all n ∈ N, (17.73)

(1+ ‖un‖)ϕ′+(un)→ 0 in W 1,p(�)∗ as n→+∞. (17.74)

From (17.74) we have

∣
∣
∣〈A(un), h〉 +

∫

�

ξ(z)(u+n )p−1hdz+
∫

�

[ξ(z)+ η](u−n )p−1hdz

+
∫

∂�

β(z)|un|p−2unhdσ −
∫

�

f+(z, un)hdz
∣∣
∣ ≤ εn‖h‖

1+ ‖un‖ (17.75)

for all h ∈ W 1,p(�) with εn → 0+.

In (17.75) we choose h = −u−n ∈ W 1,p(�). Then

c1

p − 1
‖∇u−n ‖pp +

∫

�

[ξ(z)+ η](u−n )pdz ≤ εn for all n ∈ N,

⇒ u−n → 0 in W 1,p(�) as n→+∞. (17.76)
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Now in (17.75) we choose h = u+n ∈ W 1,p(�). Then

−
∫

�

(
a
(∇u+n

)
,∇u+n

)
RN dz−

∫

�

ξ(z)
(
u+n

)p
dz−

∫

∂�

β(z)
(
u+n

)p
dσ

+
∫

�

f
(
z, u+n

)
u+n dz ≤ εn for all n ∈ N. (17.77)

Also from (17.73) and (17.76), we have

∫

�

pG
(∇u+n

)
dz+

∫

�

ξ(z)
(
u+n

)p
dz+

∫

∂�

β(z)
(
u+n

)p
dσ −

∫

�

pF
(
z, u+n

)
dz

≤ M2 for some M2 > 0, all n ∈ N. (17.78)

Adding (17.77), (17.78) and using hypothesis H(a)′(iv), we obtain

∫

�

e(z, u+n )dz ≤ M3 for some M3 > 0, all n ∈ N. (17.79)

Claim {u+n }n≥1 ⊆ W 1,p(�) is bounded.
Arguing by contradiction, suppose that the claim is not true. Then we may

assume that ‖u+n ‖ → +∞. We set yn = u+n
‖u+n ‖

, n ∈ N. Then ‖yn‖ = 1 for all

n ∈ N and so we may assume that

yn
w−→ y in W 1,p(�) and yn → y in Lr(�) and in Lp(∂�). (17.80)

First we assume that y �= 0. So, if �0 = {z ∈ � : y(z) = 0}, then |� \�0|N > 0
(by | · |N we denote the Lebesgue measure on R

N ). We have u+n (z)→+∞ for a.a.
z ∈ � \�0. Hence by hypothesis H(f )2(ii) implies that

F
(
z, u+n (z)

)

‖u+n ‖p
= F

(
z, u+n (z)

)

(u+n (z))p
yn(z)

p → +∞ for a.a. z ∈ � \�0,

⇒
∫

�

F
(
z, u+n

)

‖u+n ‖p
dz→+∞ as n→ +∞ (by Fatou’s lemma). (17.81)

From Corollary 17.2.2 and hypothesis H(a)′(v), we have

G(y) ≤ c23
[|y|q + |y|p] for some c23 > 0, all y ∈ R

N .
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From (17.73) and (17.76) it follows that

−
∫

�

G(∇u+n )dz−
1

p

∫

�

ξ(z)(u+n )pdz−
1

p

∫

∂�

β(z)(u+n )pdσ

+
∫

�

F(z, u+n )dz ≤ M4 for some M4 > 0, all n ∈ N,

⇒
∫

�

F(z, u+n )
‖u+n ‖p

dz ≤ M5 for some M5 > 0, all n ∈ N (see (17.80)).

(17.82)

Comparing (17.81) and (17.82) we reach a contradiction.
Next assume that y = 0. Consider the C1-functional ϕ̂+ : W 1,p(�)→ R defined

by

ϕ̂+(u) = c1

p(p − 1)
‖∇u‖pp + 1

p

∫

�

[ξ(z)+ η]|u|pdz+ 1

p

∫

∂�

β(z)|u|pdσ

−
∫

�

F(z, u+)dz− η

p
‖u+‖pp for all u ∈ W 1,p(�).

Let kn(t) = ϕ̂+(tu+n ) for all t ∈ [0, 1], all n ∈ N. We can find tn ∈ [0, 1] such
that

kn(tn) = max{kn(t) : 0 ≤ t ≤ 1}. (17.83)

For λ > 0, let vn = (2λ)
1
p yn ∈ W 1,p(�). Then vn → 0 in Lr(�) (see (17.80)).

Therefore
∫

�

F(z, vn)dz→ 0 as n→ +∞. (17.84)

Recall that ‖u+n ‖ → +∞. So, we can find n0 ∈ N such that

(2λ)
1
p

1

‖u+n ‖
∈ (0, 1) for all n ≥ n0. (17.85)

Then from (17.83) and (17.85) we have

kn(tn) ≥ kn

⎛

⎝ (2λ)
1
p

‖u+n ‖

⎞

⎠ for all n ≥ n0,

⇒ ϕ̂+(tnu+n ) ≥ ϕ̂+((2λ)
1
p yn) = ϕ̂+(vn)
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≥ 2λc1

p(p − 1)

[
‖∇yn‖pp +

∫

�

[̃ξ(z)+ η]ypn dz
]
−

∫

�

F(z, vn)dz− η

p
‖vn‖pp

≥ 2λc24

p(p − 1)
−

[ ∫

�

F(z, vn)dz+ η

p
‖vn‖pp

]
for some c24 > 0

(recall η > ‖ξ‖∞, ‖yn‖ = 1)

≥ λc24

p(p − 1)
for all n ≥ n1 ≥ n0

(see (17.84) and recall vn → 0 in Lr(�), r > p).

But recall that λ > 0 is arbitrary. Therefore from the last inequality, we infer that

ϕ̂+(tnu+n )→+∞ as n→+∞. (17.86)

We have 0 ≤ tnu
+
n ≤ u+n for all n ∈ N. Hence hypothesis H(f )2(iii) implies

that
∫

�

e(z, tnu
+
n )dz ≤

∫

�

e(z, u+n )dz+ ‖�‖1 ≤ M6 (17.87)

for some M6 > 0, all n ∈ N (see (17.79)).

We know that

ϕ̂+(0) = 0 and ϕ̂+(u+n ) ≤ M7 for some M7 > 0, all n ∈ N (see (17.73), (17.76)).

Therefore tn ∈ (0, 1) for all n ≥ n2 (see (17.86)). Hence

0 = tn
d

dt
ϕ̂+(tun)

∣
∣
∣
t=tn

= 〈ϕ̂′+(tnun), tnun〉. (17.88)

From (17.87) and (17.88) it follows that

pϕ̂+(tnun) ≤M6 for all n ∈ N. (17.89)

Comparing (17.86) and (17.89), we have a contradiction. This proves the claim.
From (17.76) and the claim it follows that {un}n≥1 ⊆ W 1,p(�) is bounded. So,

we may assume that

un
w−→ u in W 1,p(�) and un → u in Lr(�) and in Lp(∂�). (17.90)
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If in (17.75) we choose h = un − u ∈ W 1,p(�), pass to the limit as n → +∞
and use (17.90), then

lim
n→+∞〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p(�) (see Proposition 17.2.7).

Therefore ϕ+ satisfies the C-condition. Similarly for ϕ−. ��
Minor changes in the above proof lead to the following result.

Proposition 17.5.3 If hypotheses H(a)′,H(ξ),H(β),H(f )2 hold, then the func-
tional ϕ satisfies the C-condition.

Proposition 17.5.4 If hypotheses H(a)′,H(ξ),H(β),H(f )2 hold, then u = 0 is
a local minimizer of ϕ± and ϕ.

Proof We do the proof for the functional ϕ+, the proofs for ϕ− and ϕ being similar.
Hypothesis H(f )2(iv) implies that given ε > 0, we can find δ > 0 such that

F(z, x) ≤ 1

p
[ϑ(z)+ ε]|x|p for a.a z ∈ �, all |x| ≤ δ. (17.91)

Consider u ∈ C1(�) with ‖u‖C1(�) ≤ δ. We have

ϕ+(u) ≥ c1

p(p − 1)

[
‖∇u‖pp +

∫

�

ξ0(z)|u|pdz +
∫

�

β0(z)|u|pdσ
]

+ η

p
‖u−‖pp − 1

p

∫

�

ϑ(z)
(
u+

)p
dz− ε

p
‖u‖p (see Corollary 17.2.2 and (17.91))

≥ c1

p(p − 1)

[
‖∇u+‖pp +

∫

�

ξ0(z)
(
u+

)p
dz+

∫

∂�

β0(z)
(
u+

)p
dσ

−
∫

�

ϑ0(z)
(
u+

)p
dz

]

+ c1

p(p − 1)
‖∇u−‖pp + 1

p

∫

�

[ξ(z)+ η](u−)p dz− ε

p
‖u‖p

≥ 1

p
[c25 − ε]‖u‖p for some c25 > 0 (see Proposition 17.4.6).

Choosing ε ∈ (0, c25) we infer that

ϕ+(u) ≥ 0 = ϕ+(0) for all u ∈ C1(�) with ‖u‖C1(�) ≤ δ,

⇒ u = 0 is a local C1(�)-minimizer of ϕ+,

⇒ u = 0 is a local W 1,p(�)-minimizer of ϕ+ (see Proposition 17.2.5).
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Similarly for ϕ− and ϕ. ��
Now we are ready to produce solutions of constant sign.

Proposition 17.5.5 If hypotheses H(a)′,H(ξ),H(β),H(f )2 hold, then prob-
lem (17.68) admits two nontrivial constant sign solutions u0 ∈ int Ĉ+ and
v0 ∈ −int Ĉ+.

Proof We easily show that Kϕ+ ⊆ C+. So, we can assume that Kϕ+ is finite. Then
Proposition 17.5.4 implies that we can find ρ ∈ (0, 1) small such that

ϕ+(0) = 0 < inf[ϕ+(u) : ‖u‖ = ρ] = m+ρ . (17.92)

On account of hypothesis H(f )2(ii), given ũ ∈ int Ĉ+, we have

ϕ+(tũ)→−∞ as t →+∞. (17.93)

From Proposition 17.5.2 we know that

ϕ+ satisfies the C-condition. (17.94)

Then (17.92), (17.93), (17.94) permit the use of the mountain pass theorem. So,
we can find u0 ∈ W 1,p(�) such that

u0 ∈ Kϕ+ ⊆ C+, m+ρ ≤ ϕ+(u0), hence u0 �= 0.

Therefore u0 ∈ C+ \ {0}. Evidently hypotheses H(f )2 imply that given ρ0 > 0, we
can find ξ̂0 > 0 such that f (z, x)+ ξ̂0x

p−1 ≥ 0 for a.a. z ∈ �. Hence

div a(∇u0(z)) ≤ [‖ξ‖∞ + ξ̂0]u0(z)
p−1 for a.a. z ∈ �,

⇒ u0 ∈ int Ĉ+ (see Theorem 17.3.1).

Similarly working this time with ϕ−, we produce a negative solution v0 ∈
−int Ĉ+ for problem (17.68). ��

To produce a third solution for problem (17.68), we will use critical groups.

Proposition 17.5.6 If hypotheses H(a)′, H(ξ), H(β), H(f )2 hold, then
Ck(ϕ,∞) = 0 for all k ∈ N0.

Proof Given u ∈ W 1,p(�), u �= 0, hypothesis H(f )2(ii) implies that

ϕ(tu)→ −∞ as t →+∞. (17.95)

Moreover, hypothesis H(f )2(iii) implies that

0 = e(z, 0) ≤ e(z, u+(z))+�(z) and 0 = e(z, 0) ≤ e(z,−u−(z))+�(z) for a.a. z ∈ �.
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It follows that

0 = e(z, 0) ≤ e(z, u(z))+ �(z) for a.a. z ∈ �,

⇒ pF(z, u(z))− f (z, u(z))u(z) ≤ �(z) for a.a. z ∈ �. (17.96)

For t > 0, we have

d

dt
ϕ(tu) = 〈ϕ′(tu), u〉 = 1

t
〈ϕ′(tu), tu〉

= 1

t

[ ∫

�

(a(∇(tu)),∇(tu))RN dz+
∫

�

ξ(z)|tu|pdz+
∫

∂�

β(z)|tu|pdσ

−
∫

�

f (z, tu)(tu)dz

]

≤ 1

t

[∫

�

pG(∇(tu))dz +
∫

�

ξ(z)|tu|pdz+
∫

∂�

β(z)|tu|pdσ

−
∫

�

pF(z, tu)+ ‖�‖1

]

(see hypothesis H(a)′(iv) and (17.96))

= 1

t
[pϕ(tu)+ ‖�‖1] .

On account of (17.95) we see that for t > 0 big, we have

ϕ(tu) ≤ τ0 < −‖�‖1

p
,

⇒ d

dt
ϕ(tu) < 0 for t > 0 big. (17.97)

Let ∂B1 = {u ∈ W 1,p(�) : ‖u‖ = 1}. Then for u ∈ ∂B1 we can find a unique
t0(u) > 0 such that ϕ(t0(u)u) = τ0. On account of the implicit function theorem (it
can be used thanks to (17.97)), we have t0 ∈ C(∂B1). Extend t0 on W 1,p(�) \ {0}
by setting

t̂0(u) = 1

‖u‖ t0
(

u

‖u‖
)

for all u ∈ W 1,p(�) \ {0}.

Then t̂0 ∈ C(W 1,p(�) \ {0}) and ϕ(̂t0(u)u) = τ0. Moreover, if ϕ(u) = τ0, then
t̂0(u) = 1. So, we set

ŝ(u) =
{

1 if ϕ(u) < τ0,

t0(u) if τ0 ≤ ϕ(u).
(17.98)
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Evidently ŝ ∈ C(W 1,p(�) \ {0}). Consider the deformation h : [0, 1] ×
(W 1,p(�) \ {0})→ W 1,p(�) \ {0} defined by

h(t, u) = (1− t)u+ t ŝ(u)u.

We have

h(0, u) = u, h(1, u) = ŝ(u)u ∈ ϕτ0 for all u ∈ W 1,p(�) \ {0}

and h(t, ·)∣∣
ϕτ0
= id

∣
∣
ϕτ0

(see (17.98)).
From these facts we infer that

ϕτ0 is a strong deformation retract of W 1,p(�) \ {0}. (17.99)

Via the radial retraction we see that W 1,p(�)\{0} is deformable into ∂B1. Hence
by Theorem 6.5, p. 325, of Dugundji [24] we have

∂B1 is a deformation retract of W 1,p(�) \ {0}. (17.100)

Then (17.99) and (17.100) imply that

ϕτ0 and ∂B1 are homotopy equivalent,

⇒ Hk(W
1,p(�), ϕτ0) = Hk(W

1,p(�), ∂B1) for all k ∈ N0. (17.101)

Since W 1,p(�) is infinite dimensional, from Gasiński and Papageorgiou [34]
(Problems 4.154, 4.159, pp. 677–678), we have

Hk(W
1,p(�), ∂B1) = 0 for all k ∈ N0,

⇒ Hk(W
1,p(�), ϕτ0) = 0 for all k ∈ N0 (see (17.101)),

⇒ Ck(ϕ,∞) = 0 for all k ∈ N0.

��
We can also compute the critical groups at infinity for the functional ϕ±.

Proposition 17.5.7 If hypotheses H(a)′, H(ξ), H(β), H(f )2 hold, then
Ck(ϕ±,∞) = 0 for all k ∈ N0.

Proof Let ϕ̂+ = ϕ+
∣
∣
C1(�)

. We have Kϕ+ ⊆ C+ (Proposition 17.2.4). Hence Kϕ̂+ =
Kϕ+ = Kϕ ⊆ C+. Recall that C1(�) is dense in W 1,p(�) and so

Hk(W
1,p(�), ϕ̇c+) = Hk(C

1(�), ˙̂ϕc+)
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for c < inf
k
ϕ̂+ = inf

k
ϕ+. Therefore

Ck(ϕ+,∞) = Ck(ϕ̂+,∞) for all k ∈ N0 (see (17.71)). (17.102)

Based on (17.102) we see that it suffices to show that

Ck(ϕ+,∞) = Hk

(
C1(�), ϕ̂c+

)
= 0 for all k ∈ N0.

To this end we introduce the following sets

∂BC
1 =

{
u ∈ C1(�) : ‖u‖C1(�) = 1

}
and ∂BC

1,+ = {u ∈ ∂BC
1 : u+ �= 0}.

We consider the deformation h+ : [0, 1] × ∂BC
1,+ → ∂BC

1,+ defined by

h+(t, u) = (1− t)u+ t û1

‖(1 − t)u+ t û1‖C1(�)

for all (t, u) ∈ [0, 1] × ∂BC
1,+,

with û1 = û1(p, ξ, β) ∈ int Ĉ+. Note that

h+(1, u) = û1

‖û1‖C1(�)

and so we see that ∂BC
1,+ is contractible in itself.

As before, hypothesis H(f )2(ii) implies that for all u ∈ ∂BC
1,+ we have

ϕ̂+(tu)→−∞ as t →+∞. (17.103)

Hypothesis H(f )2(iii) implies that

− f+(z, u(z))u(z) ≤ �(z)− pF+(z, u(z)) for a.a. z ∈ �. (17.104)

In what follows by 〈·, ·〉C we denote the duality brackets for the pair
(C1(�)∗, C1(�)). Then for u ∈ ∂BC

1,+ and t > 0, we have

d

dt
ϕ̂+(tu) = 〈ϕ̂′+(tu), u〉C (by the chain rule)

= 1

t
〈ϕ̂′+(tu), tu〉

= 1

t

[
〈A(tu), tu〉 +

∫

�

ξ(z)|tu|pdz+
∫

∂�

β(z)|tu|pdσ
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− η‖tu−‖pp −
∫

�

f+(z, tu)(tu)dz
]

≤ 1

t

[ ∫

�

pG(tu)dz +
∫

�

ξ(z)|tu|pdz+
∫

∂�

β(z)|tu|pdσ

− η‖tu−‖pp −
∫

�

pF+(z, tu)dz+ ‖�‖1

]

(see hypothesis H(a)′(iv) and (17.104))

= 1

t
[pϕ+(tu)+ ‖�‖1] . (17.105)

From (17.103) and (17.105) it follows that

d

dt
ϕ̂+(tu) < 0 for t > 0 big. (17.106)

Let BC
1 = {u ∈ C1(�) : ‖u‖C1(�) ≤ 1} and choose λ ∈ R such that

λ < min

⎧
⎨

⎩
− 1

p
‖�‖1,min

BC
1

ϕ̂+

⎫
⎬

⎭
. (17.107)

From (17.106) we infer that there exists unique τ (u) ≥ 1 such that

ϕ̂+(tu) =

⎧
⎪⎪⎨

⎪⎪⎩

> λ if t ∈ [0, τ (u)),
= λ if t = τ (u),

< λ if τ (u) < t.

(17.108)

By the implicit function theorem τ ∈ C(∂BC
1,+). Also we have

ϕ̂λ+ =
{
tu : u ∈ ∂BC

1,+, t ≥ τ (u)
}

(see (17.107), (17.108)). (17.109)

We set

E+ =
{
tu : u ∈ ∂BC

1,+, t ≥ 1
}
.

It is clear from (17.109) that ϕ̂λ+ ⊆ E+. Consider the deformation ĥ+ : [0, 1] ×
E+ → E+ defined by

ĥ+(s, tu) =
{
(1− s)tu+ sτ (u)u if t ∈ [1, τ (u)),
tu if τ (u) < t,
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for all s ∈ [0, 1], all t ≥ 1 and all u ∈ ∂BC
1,+. We have

ĥ+(0, tu) = tu, ĥ+(1, tu) = τ (u)u ∈ ϕ̂λ+ (see (17.108))

and

ĥ+(s, ·)
∣∣
∣
ϕ̂λ+
= id

∣∣
∣
ϕ̂λ+

for all s ∈ [0, 1].

These properties imply that ϕ̂λ+ is a strong deformation retract of E+. This
implies that

Hk

(
C1(�),E+

)
= Hk

(
C1(�), ϕ̂λ+

)
for all k ∈ N0 (17.110)

(see Motreanu et al. [52, p. 145]). Next consider the deformation h̃+ : [0, 1]×E+ →
E+ defined by

h̃+(s, tu) = (1− s)tu+ s
tu

‖tu‖C1(�)

for all s ∈ [0, 1], all t ≥ 1 and all u ∈ ∂BC
1,+.

As before, using Theorem 6.5, p. 325 of Dugundji [24], we have that ∂BC
1,+ is a

deformation retract of E+. Therefore

Hk(C
1(�),E+) = Hk(C

1(�), ∂BC
1,+) for all k ∈ N0. (17.111)

From (17.110) and (17.111) it follows that

Hk(C
1(�), ϕ̂λ+) = Hk(C

1(�), ∂BC
1,+) for all k ∈ N0. (17.112)

But we have seen that ∂BC
1,+ is contractible in itself. Hence

Hk(C
1(�), ∂BC

1,+) = 0 for all k ∈ N0

(see Motreanu et al. [52, p.147]). Then

Hk(C
1(�), ϕ̂λ+) = 0 for all k ∈ N0 (see (17.112)),

⇒ Ck(ϕ̂+,∞) = 0 for all k ∈ N0,

⇒ Ck(ϕ+,∞) = 0 for all k ∈ N0 (see (17.102)).

In a similar fashion we also show that Ck(ϕ−,∞) = 0 for all k ∈ N0. ��
This proposition permits the exact computation of the critical groups of ϕ at the

two constant sign solutions u0 ∈ int Ĉ+ and v0 ∈ −int Ĉ+ (see Proposition 17.5.5).
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Proposition 17.5.8 If hypotheses H(a)′, H(ξ), H(β), H(f )2 hold and Kϕ =
{0, u0, v0}, then Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0.

Proof We have Kϕ+ = {0, u0}. Let τ < 0 < λ < m+ρ (see (17.92)) and consider
the following triple of sets

ϕτ+ ⊆ ϕλ+ ⊆ W 1,p(�).

We consider the corresponding long exact sequence of singular homology groups
(see Motreanu et al. [52, p. 151]). So, we have

· · · → Hk(W
1,p(�), ϕτ+)

i∗−→ Hk(W
1,p(�), ϕλ+)

∂̂∗−→ Hk−1(ϕ
λ+, ϕτ+)→ · · · .

(17.113)
From (17.113) we have

rankHk(W
1,p(�), ϕλ+) = rank im ∂̂∗ + rank ker ∂̂∗

= rank im ∂̂∗ + rank im i∗ ((17.113) is exact).
(17.114)

Since Kϕ+ = {0, u0} and τ < 0 < λ < m+ρ ≤ ϕ+(u0), we have

Hk(W
1,p(�), ϕτ+) = Ck(ϕ+,∞) = 0 for all k ∈ N0 (see Proposition 17.5.7),

⇒ im i∗ = {0} (see (17.113)). (17.115)

Also since 0 < λ < m+ρ ≤ ϕ+(u0), we have

Hk(W
1,p(�), ϕτ+) = Ck(ϕ+, u0) for all k ∈ N0. (17.116)

We know that u0 ∈ Kϕ+ is of mountain pass type (see the proof of Proposi-
tion 17.5.5). Therefore C1(ϕ+, u0) �= 0 (see Motreanu et al. [52, p. 176]). Also
since τ < 0 < λ < m+ρ ≤ ϕ+(u0) we have

Hk−1(ϕ
λ+, ϕτ+) = Ck−1(ϕ+, 0) = δk−1,0 Z = δk,1 Z for all k ∈ N0. (17.117)

In (17.114) note that for k ≥ 2 all terms are trivial. Using (17.115), (17.116),
(17.117) we obtain

rankC1(ϕ+, u0) ≤ 1,

⇒ rankC1(ϕ+, u0) = 1,

⇒ Ck(ϕ+, u0) = δk,1 Z for all k ∈ N0. (17.118)
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Consider the homotopy h : [0, 1] ×W 1,p(�)→ W 1,p(�) defined by

h(t, u) = (1− t)ϕ(u)+ tϕ+(u) for all (t, u) ∈ [0, 1] ×W 1,p(�).

Suppose we could find two sequences {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ W 1,p(�)

such that

tn → t̂ in [0,1], un → u0 in W 1,p(�) and h′u(tn, un) = 0 for all n ∈ N.

(17.119)

From (17.119) we have

〈A(un), h〉 +
∫

�

ξ(z)|un|p−2unhdz+
∫

∂�

β(z)|un|p−2unhdσ

− tnη

∫

�

(u−n )p−1hdz

=
∫

�

f
(
z, u+n

)
hdz+ (1− tn)

∫

�

f (z,−u−n )hdz for all h ∈ W 1,p(�), all n ∈ N.

It follows that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−div a(∇un)+ ξ(z)|un|p−2un = f
(
z, u+n

)+ (1− tn)f (z,−u−n )+ η(u−n )p−1

for a.a. z ∈ �,
∂un

∂na
+ β(z)|un|p−2un = 0 on ∂�.

(17.120)

Then using Propositions 17.2.3 and 17.2.4, from (17.120) we see that we can find
α ∈ (0, 1) and c26 > 0 such that

un ∈ C1,α(�) and ‖un‖C1,α(�) ≤ c26 for all n ∈ N.

Recalling that C1,α(�) is embedded compactly in C1(�) and using (17.119), we
infer that un → u0 in C1(�). But u0 ∈ int Ĉ+. Hence un ∈ int Ĉ+ for all n ≥ n0 and
so from (17.120) it follows that {un}n≥1 ⊆ Kϕ , a contradiction. Therefore (17.119)
cannot be true and from the homotopy invariance of critical groups (see Gasiński
and Papageorgiou [34], p.836) we have

Ck(ϕ, u0) = Ck(ϕ+, u0) for all k ∈ N0,

⇒ Ck(ϕ, u0) = δk,1 Z for all k ∈ N0 (see (17.118)).

Similarly using this time ϕ−, we show that Ck(ϕ, v0) = Ck(ϕ−, v0) = δk,1 Z for
all k ∈ N0. ��
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Now we are ready to produce a third nontrivial solution and have the full
multiplicity result for problem (17.68) (three solutions theorem).

Theorem 17.5.9 If hypotheses H(a)′, H(ξ), H(β), H(f )2 hold, then prob-
lem (17.68) has at least three nontrivial solutions u0 ∈ int Ĉ+, v0 ∈ −int Ĉ+
and y0 ∈ C1(�) \ {0}.
Proof From Proposition 17.5.5, we already have two nontrivial constant sign
solutions u0 ∈ int Ĉ+ and v0 ∈ −int Ĉ+. From Proposition 17.5.8 we know that

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,1Z for all k ∈ N0. (17.121)

From Proposition 17.5.4 we know that u = 0 is a local minimizer of ϕ. Hence

Ck(ϕ, 0) = δk,0Z for all k ∈ N0. (17.122)

Finally from Proposition 17.5.6, we have

Ck(ϕ,∞) = 0 for all k ∈ N0. (17.123)

Suppose that Kϕ = {0, u0, v0}. Then using (17.121), (17.122), (17.123) and the
Morse relation with t = −1 (see (17.72)), we have

(−1)0 + 2(−1)1 = 0,

⇒ (−1)1 = 0, a contradiction.

So, there exists y0 ∈ Kϕ , y0 /∈ {0, u0, v0}. Then y0 is a solution of prob-
lem (17.68) and the nonlinear regularity theory (see Propositions 17.2.3 and 17.2.4)
implies that y0 ∈ C1(�). ��

17.6 Nodal Solutions

In this section we prove the existence of nodal solutions for the following nonlinear
nonhomogeneous Robin problem.

⎧
⎨

⎩

−div a(∇u(z))+ ξ(z)|u(z)|p−2u(z) = f (z, u(z)) in �,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂�.

(17.124)

The reaction term f (z, x) is a Carathéodory function which exhibits (p − 1)-linear
growth near ±∞ and a concave nonlinearity near the origin. Under such conditions
we show that problem (17.124) admits at least one nodal solution.
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The new conditions on the reaction term f (z, x) are the following:

H(f )3 f : � × R → R is a Carathéodory function such that for a.a. z ∈ �

f (z, 0) = 0 and

(i) for every ρ > 0, there exists aρ ∈ L∞(�) such that |f (z, x)| ≤ aρ(z) for a.a.
z ∈ �, all |x| ≤ ρ;

(ii) there exist ϑ ∈ L∞(�) and γ > 0 such that

ϑ(z) ≤ c1

p − 1
λ̂1(p, ξ0, β0) for a.a. z ∈ �, ϑ �≡ c1

p − 1
λ̂1(p, ξ0, β0),

−γ ≤ lim inf
x→±∞

pF(z, x)

|x|p ≤ lim sup
x→±∞

pF(z, x)

|x|p ≤ ϑ(z) uniformly for a.a. z ∈ �

(recall F(z, x) = ∫ x

0 f (z, s)ds);
(iii) with q ∈ (1, p] as in hypothesis H(a)′(v) we have

lim
x→0

F(z, x)

|x|q = +∞ uniformly for a.a. z ∈ �.

First we establish the existence of constant sign solutions for problem (17.124).
So, let S± be the sets of positive (resp. negative) solutions of (17.124).

Proposition 17.6.1 If hypotheses H(a)′, H(ξ), H(β), H(f )3 hold, then S± �= ∅
and S+ ⊆ int Ĉ+, S− ⊆ −int Ĉ+.

Proof Let η > max{‖ξ‖∞, ‖ξ0‖∞} and consider the C1-functional ϕ+ :
W 1,p(�)→ R defined by

ϕ+(u) = 1

p
μ̂(u)+ η

p
‖u−‖pp −

∫

�

F(z, u+)dz for all u ∈ W 1,p(�).

Recall that μ̂ : W 1,p(�)→ R is defined by

μ̂(u) =
∫

�
pG(∇u)dz + 1

p

∫

�
ξ(z)|u|pdz + 1

p

∫

∂�
β(z)|u|pdσ for all u ∈ W1,p(�).

Claim ϕ+ is coercive.
Hypotheses H(f )3(i), (ii) imply that given ε > 0, we can find c27 = c27(ε) > 0

such that

F(z, x) ≤ 1

p
[ϑ(z)+ ε]|x|p + c27 for a.a. z ∈ �, all x ∈ R. (17.125)
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For all u ∈ W 1,p(�), we have

ϕ+(u) ≥ c1

p(p − 1)

[
‖∇u‖pp +

∫

�

ξ0(z)|u|pdz+
∫

∂�

β0(z)|u|pdσ
]

− c1

p(p − 1)

∫

�

ϑ0(z)
(
u+

)p
dz+ η

p
‖u−‖pp − ε

p
‖u‖p − c28

(with ϑ0 = p − 1

c1
ϑ and some c28 > 0 (see (17.125))

= c1

p(p − 1)

[
‖∇u+‖pp +

∫

�

ξ(z)(u+)pdz+
∫

∂�

β(z)(u+)pdσ

−
∫

�

ϑ0(z)(u
+)pdz

]
+ c1

p(p − 1)

[
‖∇u−‖pp +

∫

�

(ξ0(z)+ η)(u−)pdz

+
∫

∂�

β0(z)(u
−)pdσ

]
− ε

p
‖u‖p − c28 ≥ [c29 − ε]‖u+‖p

+ c30‖u−‖p − c28 for some c29, c30 > 0 (see Proposition 17.4.6).

Choosing ε ∈ (0, c29), we conclude that

ϕ+(u) ≥ c31‖u‖p − c28 for all u ∈ W 1,p(�), some c31 > 0,

⇒ ϕ+ is coercive.

This proves the claim.
The Sobolev embedding theorem and the compactness of the trace map imply

that ϕ+ is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli
theorem, we can find u0 ∈ W 1,p(�) such that

ϕ+(u0) = inf
[
ϕ+(u) : u ∈ W 1,p(�)

]
. (17.126)

Hypothesis H(f )3(iii) implies that given any λ > 0, we can find δ ∈ (0, 1) such
that

F(z, x) ≥ λ

q
|x|q for a.a. z ∈ �, all |x| ≤ δ. (17.127)

Let t ∈ (0, δ]. Then on account of (17.127) and since δ < 1, q < p, we have

ϕ+(t) ≤ tq

q
[‖ξ‖∞|�|N + ‖β‖∞σ(∂�)]− λtq

q

= tq

q
[‖ξ‖∞|�|N + ‖β‖∞σ(∂�)− λ] .
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Since λ > 0 is arbitrary, we choose λ > ‖ξ‖∞|�|N +‖β‖∞σ(∂�) and we have
ϕ+(t) < 0. Hence from (17.126) we have

ϕ+(u0) < 0 = ϕ+(0),

⇒ u0 �= 0.

From (17.126) we have

ϕ′+(u0) = 0,

⇒ 〈A(u0), h〉 +
∫

�

ξ(z)|u0|p−2u0hdz+
∫

∂�

β(z)|u0|p−2u0hdσ

− η

∫

�

(u−0 )
p−1hdz

=
∫

�

f (z, u+0 )hdz for all h ∈ W 1,p(�). (17.128)

In (17.128) we choose h = −u−0 ∈ W 1,p(�). Then

c1

p − 1
‖∇u−0 ‖pp +

∫

�

[ξ(z)+ η](u−0 )pdz+
∫

∂�

β(z)(u−0 )
pdσ ≤ 0,

⇒ u0 ≥ 0, u0 �= 0.

Then from (17.128) it follows that u0 solves problem (17.124) and u0 ∈ C+ \{0}
(nonlinear regularity). Let ρ = ‖u0‖∞. Hypotheses H(f )3 imply that we can find
ξ̂ρ > 0 such that

f (z, x)+ ξ̂ρx
p−1 ≥ 0 for a.a. z ∈ �, all 0 ≤ x ≤ ρ.

Then we have

div a(∇u0(z)) ≤
[‖ξ‖∞ + ξ̂ρ

]
u0(z)

p−1 for a.a. z ∈ �,

⇒ u0 ∈ int Ĉ+ (see Theorem 17.3.1).

So, we have proved that S+ �= ∅ and S+ ⊆ int Ĉ+. Similarly we show that
S− �= ∅ and S− ⊆ −int Ĉ+. ��

Hypotheses H(f )3 imply that given any λ > 0, we can find c32 = c32(λ) > 0
such that

f (z, x)x ≥ λ|x|q − c32|x|r for a.a. z ∈ �, all x ∈ R,

with r ∈ (p, p∗).
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We consider the following auxiliary Robin problem

⎧
⎨

⎩

−div a(∇u(z))+|ξ(z)||u(z)|p−2u(z)= λ|u(z)|q−2u(z)−c32|u(z)|r−2u(z) in �,

∂u

∂na
+β(z)|u|p−2u = 0 on ∂�.

(17.129)

Reasoning as in the proof of Proposition 17.4.14 and using hypothesis H(a)′(v),
we show that problem (17.129) admits a unique positive solution u∗ ∈ int Ĉ+.
Moreover, since (17.129) is odd v∗ = −u∗ ∈ −int Ĉ+ is the unique negative
solution of (17.129). Then arguing as in the proof of Proposition 17.4.15, we show
that

u∗ ≤ u for all u ∈ S+, v ≤ v∗ for all v ∈ S−. (17.130)

Using (17.130) and Lemma 3.10, p. 178, of Hu and Papageorgiou [43], we
generate extremal constant sign solutions for problem (17.129) (see also Proposi-
tion 17.4.16).

Proposition 17.6.2 If hypotheses H(a)′, H(ξ), H(β), H(f )3 hold, then prob-
lem (17.124) has a smallest positive solution û ∈ S+ ⊆ int Ĉ+, that is, û ≤ u

for all u ∈ S+ and a biggest negative solution v̂ ∈ S− ⊆ −int Ĉ+, that is, v ≤ v̂ for
all v ∈ S−.

Now we focus on the order interval

[̂v, û] = {y ∈ W 1,p(�) : v̂(z) ≤ y(z) ≤ û(z) for a.a. z ∈ �}

and we produce a nontrivial solution of (17.124) distinct from û ∈ int Ĉ+ and v̂ ∈
−int Ĉ+. Then the extremality of û and v̂ implies that this new solution is necessarily
nodal.

From Sect. 17.3, we know that

a0(t)t
2 −G0(t) ≥ c1

p
tp for all t > 0,

⇒ (a(y), y)RN −G(y) ≥ c1

p
|y|p for all y ∈ R

N .

Proposition 17.6.3 If hypotheses H(a)′, H(ξ), H(β), H(f )3 hold, then
Ck(ϕ, 0) = 0 for all k ∈ N0.

Proof Hypotheses H(f )3 imply that given any λ > 0, we can find c32 > 0 such
that

F(z, x) ≥ λ |x|q − c32 |x|r for a.a. z ∈ �, all x ∈ R, with r > p. (17.131)
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In addition hypothesis H(a)′(v) and Corollary 17.2.2 imply that

G(y) ≤ c33
[ |y|q + |y|p] for some c33 > 0, all y ∈ R

N . (17.132)

For u ∈ W 1,p(�) and t > 0, we have

ϕ(tu) ≤ c33
[
tq‖∇u‖qq + tp‖∇u‖pp

]+ tp

p

∫

�

ξ(z)|u|pdz+ tp

p

∫

∂�

β(z)|u|pdσ

− λtq‖u‖qq + c32‖u‖rr (see (17.131), (17.132)).

Since q ≤ p < r and λ > 0 is arbitrary we can find τ ∗ = τ ∗(u) ∈ (0, 1) small
such that

ϕ(tu) < 0 for all t ∈ (0, τ ∗). (17.133)

Let u ∈ W 1,p(�) with 0 < ‖u‖ ≤ 1 and ϕ(u) = 0. For η > ‖ξ‖∞ we have

d

dt
ϕ(tu)

∣∣
∣
t=1

= 〈ϕ′(u), u〉

=
∫

�

[(a(∇u),∇u)−G(∇u)] dz+
(

1− 1

p

)∫

�

[ξ(z)+ η]|u|pdz

+
∫

�

[F(z, u)− f (z, u)u]dz−
(

1− 1

p

)
η‖u‖pp

≥ c34‖u‖p − c35‖u‖r for some c34, c35 > 0 (17.134)

(see (17.131) and recall η > ‖ξ‖∞).

Recall that p < r . So, from (17.134) it follows that we can find ρ ∈ (0, 1) small
such that

d

dt
ϕ(tu)

∣
∣∣
t=1

> 0 for all u ∈ W 1,p(�), 0 < ‖u‖ ≤ ρ, ϕ(u) = 0. (17.135)

Pick u ∈ W 1,p(�) such that 0 < ‖u‖ ≤ ρ, ϕ(u) = 0. We will show that

ϕ(tu) ≤ 0 for all t ∈ [0, 1]. (17.136)

Arguing by contradiction, suppose that (17.136) is not true. We can find t0 ∈
(0, 1) such that ϕ(t0u) > 0. We set

t∗ = min{t ∈ (t0, 1] : ϕ(tu) = 0} > t0 > 0 (recall ϕ(u) = 0).
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Let y = t∗u. We have

0 < ‖y‖ ≤ ‖u‖ ≤ ρ and ϕ(y) = 0.

Then (17.135) implies that

d

dt
ϕ(ty)

∣
∣
∣
t=1

> 0. (17.137)

Also we see that ϕ(tu) > 0 for all t ∈ [t0, t∗). Hence

ϕ(y) = ϕ(t∗u) = 0 < ϕ(tu) for all t ∈ [t0, t∗),

⇒ d

dt
ϕ(ty)

∣
∣
∣
t=1

= t∗ d
dt

ϕ(tu)

∣
∣
∣
t=t∗ ≤ 0,

which contradicts (17.137). Therefore (17.136) holds.
We can always choose ρ ∈ (0, 1) small such that Kϕ∩Bρ = {0} (hereBρ = {u ∈

W 1,p(�) : ‖u‖ ≤ ρ}). Consider the deformation h : [0, 1]× (ϕ◦ ∩Bρ)→ ϕ◦ ∩Bρ

defined by h(t, u) = (1 − t)u. On account of (17.136) this deformation is well-
defined and shows that ϕ◦ ∩ Bρ is contractible in itself.

Fix u ∈ Bρ with ϕ(u) > 0. From (17.133), (17.135) and Bolzano’s theorem, we
see that there is a unique t (u) ∈ (0, 1) such that ϕ(t (u)u) = 0. Then

ϕ(tu) < 0 if t ∈ (0, t (u)), ϕ(tu) > 0 if t ∈ (t (u), 1]. (17.138)

Consider the map k̂0 : Bρ \ {0} → [0, 1] defined by

k̂0(u) =
{

1 if u ∈ Bρ \ {0}, ϕ(u) ≤ 0,

t (u), if u ∈ Bρ \ {0}, ϕ(u) > 0.

We can easily see using (17.138) that k̂0(·) is continuous. Then consider the map
γ̂0 : Bρ \ {0} → (ϕ◦ ∩ Bρ) \ {0} defined by

γ̂0(u) =
{
u if u ∈ Bρ \ {0}, ϕ(u) ≤ 0,

k̂0(u)u, if u ∈ Bρ \ {0}, ϕ(u) > 0.

The continuity of k̂0(·) implies the continuity of γ̂0(·). Also, we have

γ̂0
∣∣
(ϕ◦∩Bρ)\{0} = id

∣∣
(ϕ◦∩Bρ)\{0}.

Therefore (ϕ◦ ∩ Bρ) \ {0} is a retract of Bρ \ {0}. The infinite dimensionality of
W 1,p(�) implies the contractibility of Bρ \{0}. Hence (ϕ◦∩Bρ)\{0} is contractible
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too (see Gasiński and Papageorgiou [34, p. 677]). Recall that ϕ◦∩Bρ is contractible.
Therefore from Motreanu et al. [52, p. 147], we have

Hk(ϕ
◦ ∩ Bρ, (ϕ

◦ ∩ Bρ) \ {0}) = 0 for all k ∈ N0,

⇒ Ck(ϕ, 0) = 0 for all k ∈ N0.

��
Using this proposition we can establish the existence of nodal solutions.

Theorem 17.6.4 If hypotheses H(a)′, H(ξ), H(β), H(f )3 hold, then prob-
lem (17.124) admits a nodal solution ŷ ∈ C1(�).

Proof Let û ∈ int Ĉ+ and v̂ ∈ −int Ĉ+ be the two extremal constant sign solutions
of problem (17.124) produced in Proposition 17.6.2. We consider the Carathéodory
function

�0(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (z, v̂(z))+ η |̂v(z)|p−2 v̂(z) if x < v̂(z),

f (z, x)+ η |x|p−2 x if v̂(z) ≤ x ≤ û(z),

f (z, û(z))+ η û(z)p−1 if û(z) < x,

(17.139)

with η > ‖ξ‖∞. We set L0(z, x) =
∫ x

0 �0(z, s)ds and consider the C1-functional
ϕ0 : W 1,p(�)→ R defined by

ϕ0(u) = 1

p
μ̂(u)+ η

p
‖u‖pp −

∫

�

L0(z, u)dz for all u ∈ W 1,p(�).

Evidently ϕ0 is coercive (see (17.139) and recall that η > ‖ξ‖∞). So, it satisfies
the C-condition and

Ck(ϕ0,∞) = δk,0Z for all k ∈ N0.

Also since û ∈ int Ĉ+, v̂ ∈ −int Ĉ+, it follows that

Ck(ϕ0, 0) = Ck(ϕ, 0) for all k ∈ N0,

⇒ Ck(ϕ0, 0) = 0 for all k ∈ N0. (17.140)

Consider the positive and negative truncations of �0(z, ·), that is, the Carathéodory
function �±0 (z, x) = �0(z,±x±) for all (z, x) ∈ � × R. We set L±0 (z, x) =∫ x

0 �±0 (z, s)ds and consider the C1-functional ϕ±0 : W 1,p(�)→ R defined by

ϕ±0 (u) =
1

p
μ̂(u)+ η

p
‖u‖pp −

∫

�

L±0 (z, u)dz for all u ∈ W 1,p(�).
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Using (17.139) we can see that

Kϕ0 ⊆ [̂v, û] ∩ C1(�), Kϕ+0
⊆ [0, û] ∩ C+, Kϕ−0

⊆ [̂v, 0] ∩ (−C+).

The extremality of û, v̂ implies that

Kϕ0 ⊆ [̂v, û] ∩ C1(�), Kϕ+0
= {0, û}, Kϕ−0

= {0, v̂}. (17.141)

Claim û, v̂ are local minimizers of ϕ0.
The functional ϕ+0 is coercive and sequentially weakly lower semicontinuous.

So, we can find ũ ∈ W 1,p(�) such that

ϕ+0 (̃u) = inf
[
ϕ0(u) : u ∈ W 1,p(�)

]
. (17.142)

As before hypothesis H(f )3(iii) implies that

ϕ+0 (̃u) < 0 = ϕ+0 (0),

⇒ ũ �= 0.

Then from (17.141) and (17.142) it follows that ũ = û ∈ int Ĉ+. Since ϕ0
∣
∣
C+ =

ϕ+0
∣
∣
C+ it follows that û is a local C1(�)-minimizer of ϕ+0 . So, by Proposition 17.2.5

û ∈ int Ĉ+ is a local W 1,p(�)-minimizer of ϕ0. Similarly for v̂ ∈ −int Ĉ+ using
this time ϕ−0 . This proves the claim.

Evidently we may assume that Kϕ0 is finite (see (17.141)). Also without any
loss of generality we can have ϕ0(̂v) ≤ ϕ0(̂u). The claim implies that we can find
ρ ∈ (0, 1) small such that

ϕ0(̂v) ≤ ϕ0(̂u) < inf [ϕ0(u) : ‖u− û‖ = ρ] = m0
ρ (17.143)

(see Aizicovici et al. [1, proof of Proposition 29]). Recall that ϕ0 satisfies the C-
condition. This fact and (17.143) permit the use of the mountain pass theorem. So,
we can find ŷ ∈ W 1,p(�) such that

ŷ ∈ Kϕ0 ⊆ [̂v, û] ∩ C1(�) (see (17.141)), m0
ρ ≤ ϕ0(ŷ). (17.144)

From (17.143), (17.144) we have that ŷ /∈ {̂v, û}. Moreover, since ŷ is a critical
point of ϕ of mountain pass type, we have

C1(ϕ0, ŷ) �= 0 (17.145)
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(see Motreanu et al. [52, p. 176]). Then comparing (17.140) and (17.145), we infer
that ŷ �= 0. Hence

ŷ ∈ Kϕ0 ⊆ [̂v, û] ∩ C1(�) \ {0},
⇒ ŷ ∈ C1(�) is a nodal solution of (17.124).

��
When ξ ≡ 0, β > 0, and f (z, ·) is nondecreasing, we can generate a second

nodal solution. So, the problem under consideration is the following:

⎧
⎨

⎩

−div a(∇u(z)) = f (z, u(z)) in �,
∂u

∂na
+ β(z)|u|p−2u = 0 on ∂�.

(17.146)

The new hypotheses on the reaction term f (z, x) are:

H(f )4 f : � × R → R is a Carathéodory function such that for a.a. z ∈ �

f (z, 0) = 0, hypotheses H(f )4(i), (ii), (iii) are the same as the corresponding
hypotheses H(f )3(i), (ii), (iii) and

(iv) for a.a. z ∈ Ω f (z, ·) is nondecreasing.

Also we restrict further the boundary coefficient β(·).
H(β)′ β ∈ C0,α(∂�) with α ∈ (0, 1), β(z) > 0 for all z ∈ ∂�.

Theorem 17.6.5 If the hypotheses H(a)′, H(β)′, H(f )4 hold, then prob-
lem (17.146) has at least two nodal solutions ŷ, y0 ∈ C1(�).

Proof From Theorem 17.6.4 we already have a nodal solution ŷ ∈ [̂v, û] ∩ C1(�).
We have

− div a(∇ŷ(z)) = f (z, ŷ(z)) ≤ f (z, û(z)) ≤ −div a(∇û(z)) for a.a. z ∈ �

(see hypothesis H(f )4(iv)),

⇒ û− ŷ ∈ intC+ (see Proposition 17.3.6).

Similarly we show that ŷ − v̂ ∈ intC+. Hence

ŷ ∈ intC1(�) [̂v, û]. (17.147)

On the other hand, from He et al. [40] we know that problem (17.146) has a nodal
solution y0 /∈ intC1(�) [̂v, û]. Because of (17.147) we conclude that ŷ �= y0. ��
Remark 17.6.6 It is interesting to know if we can remove the stronger condition
H(β)′ which excludes from consideration of Neumann problems. This can be done
in the case of (p, 2)-equations.
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17.7 Dirichlet (p, 2)-Equations

In this section we study the following nonlinear nonhomogeneous Dirichlet prob-
lem:

{
−�pu(z)−�u(z) = f (z, u(z)) in �,

u
∣
∣
∂�
= 0, p > 2.

(17.148)

So, in this case

a(y) = |y|p−2y + y for all y ∈ R
N,

and q = 2 (see hypothesis H(a)′(v)).
The hypotheses on the reaction term f (z, x) are the following:

H(f )5 f : �×R→ R is a measurable function such that for a.a. z ∈ � f (z, 0) =
0, f (z, ·) ∈ C1(R) and

(i) |f ′x(z, x)| ≤ a(z)[1 + |x|r−2] for a.a. z ∈ �, all x ∈ R, with a ∈ L∞(�),
p < r < p∗;

(ii) there exist function ϑ ∈ L∞(�) and γ > 0 such that

ϑ(z) ≤ λ̂1(p) for a.a. z ∈ �, ϑ �≡ λ̂1(p),

−γ ≤ lim inf
x→±∞

pF(z, x)

|x|p ≤ lim sup
x→±∞

pF(z, x)

|x|p ≤ ϑ(z) uniformly for a.a. z ∈ �;

(iii) there exist integer m ≥ 2, η̂ ∈ L∞(�) and δ0 > 0 such that

η̂(z) ≤ λ̂m+1(2) for a.a. z ∈ �, η̂ �≡ λ̂m+1(2),

f (z, x)x ≥ λ̂m(2)x2 for a.a. z ∈ �, all |x| ≤ δ0,

f ′x(z, 0) = lim
x→0

f (z, x)

x
≤ η̂(z) uniformly for a.a. z ∈ �.

Remark 17.7.1 Now in contrast to H(f )3, f (z, ·) exhibits linear and not sublinear
growth near zero (recall that in the present setting q = 2).

Reasoning as in Sect. 17.6, we can generate extremal constant sign solutions û ∈
intC0+ and v̂ ∈ −intC0+. Then we truncate f (z, ·) at {̂v(z), û(z)}. So, we introduce
the Carathéodory function f̂0(z, x) defined by

f̂0(z, x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (z, v̂(z)) if x < v̂(z),

f (z, x) if v̂(z) ≤ x ≤ û(z),

f (z, û(z)) if û(z) < x.
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We set F̂0(z, x) = ∫ x

0 f̂0(z, s)ds and consider the C1-functional ϕ̂0 :
W

1,p
0 (�)→ R defined by

ϕ̂0(u) = 1

p
‖∇u‖pp + 1

2
‖∇u‖2

2 −
∫

�

F̂0(z, u)dz for all u ∈ W
1,p
0 (�).

Also, let ψ̂0 : H 1
0 (�)→ R be the functional defined by

ψ̂0(u) = 1

2
‖∇u‖2

2 −
∫

�

F̂0(z, u)dz for all u ∈ H 1
0 (�).

Evidently ψ̂0(·) is C2 in a neighborhood of the origin.

Proposition 17.7.2 If hypothesis H(f )5(iii) holds, then Ck(ψ̂0, 0) = δk,dmZ for
all k ∈ N0 with dm = dimHm ≥ 2.

Proof We consider the orthogonal direct sum decomposition H 1
0 (�) = Hm ⊕ Ĥm

(see Sect. 17.4). The space Hm is finite dimensional. So, all norms are equivalent
and we can find ρ1 ∈ (0, 1) small such that

u ∈ Hm, ‖u‖H 1
0 (�)

≤ ρ1 ⇒ |u(z)| ≤ δ0 for all z ∈ �.

Then for u ∈ Hm with ‖u‖H 1
0 (�)

≤ ρ1, we have

ψ̂0(u) ≤ 1

2
‖∇u‖2

2 −
λ̂m(2)

2
‖u‖2

2 (see hypothesis H(f )5(iii))

≤ 0 (see (17.20)). (17.149)

On the other hand, from hypothesis H(f )5(iii) and the definition of f̂0 we see
that given ε > 0, we can find c36 > 0 such that

F̂0(z, x) ≤ 1

2
[̂η(z)+ ε]x2 + c36|x|r for a.a. z ∈ �, all x ∈ R, with r > 2.

(17.150)

Then for u ∈ Ĥm we have

ψ̂0(u) ≥ 1

2
‖∇u‖2

2 −
1

2

∫

�

η̂(z)u2dz− ε‖u‖2 − c37‖u‖r

for some c37 > 0 (see (17.150)),

⇒ ψ̂0(u) ≥ [c38 − ε]‖u‖2 − c37‖u‖r for some c38 > 0 (see Proposition 17.4.7).
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Choosing ε ∈ (0, c38) we have

ψ̂0(u) ≥ c39‖u‖2 − c37‖u‖r for some c39 > 0, all u ∈ Ĥm.

Since r > 2, we can find ρ2 ∈ (0, 1) small such that

ψ̂0(u) > 0 for all u ∈ Ĥm, 0 < ‖u‖ ≤ ρ2. (17.151)

From (17.149) and (17.151) we infer that ψ̂0 has a local linking at u = 0. So,
invoking Proposition 2.3 of Su [73], we conclude that

Ck(ψ̂0, 0) = δk,dmZ for all k ∈ N0, dm = dimHm ≥ 2.

��
Using this proposition, we can prove the following multiplicity theorem for
problem (17.148). We have sign-information for all the solutions we produce.

Theorem 17.7.3 If hypotheses H(f )5 hold, then problem (17.148) admits at least
five nontrivial solutions û ∈ intC0+, v̂ ∈ −intC0+ and ŷ, y0, ỹ ∈ C1

0 (�) all nodal
solutions.

Proof As we already mentioned, we have two constant sign solutions û ∈ intC0+
and v̂ ∈ − intC0+, which we can assume to be extremal. Then using ϕ̂0,
Proposition 17.7.2 and the C1-continuity of critical groups (see Gasiński and
Papageorgiou [34, p. 836]), we obtain that if ψ0 = ψ̂0

∣
∣
W

1,p
0 (�)

, then

Ck(ψ0, 0) = Ck(ϕ̂0, 0) for all k ∈ N0. (17.152)

Since W 1,p
0 (�) is dense in H 1

0 (�), we have

Ck(ψ0, 0) = Ck(ψ̂0, 0) for all k ∈ N0,

⇒ Ck(ψ0, 0) = δk,dmZ for all k ∈ N0 (see Proposition 17.7.2),

⇒ Ck(ϕ̂0, 0) = δk,dmZ for all k ∈ N0 (see (17.152)). (17.153)

Using (17.153) (recall that dm ≥ 2) as in the proof of Theorem 17.6.4, via the
mountain pass theorem, we produce a solution ŷ such that

ŷ ∈ [̂v, û] ∩ C1
0 (�) \ {0}.

Hypotheses H(f )5 imply that if ρ = max{‖̂v‖∞, ‖û‖∞}, then we can find ξ̂ρ >

0 such that for a.a. z ∈ �, the function

x → f (z, x)+ ξ̂ρ |x|p−2x
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is nondecreasing on [−ρ, ρ]. We have

−�pŷ(z)−�ŷ(z)+ ξ̂ρ |̂y(z)|p−2ŷ(z)

= f (z, ŷ(z))+ ξ̂ρ |̂y(z)|p−2ŷ(z)

≤ f (z, û(z))+ ξ̂ρ û(z)
p−1

= −�pû(z)−�û(z)+ ξ̂ρ û(z)
p−1 for a.a. z ∈ �. (17.154)

Recall that in the present setting a(y) = |y|p−2y + y for all y ∈ R
N . Since

2 < p, we have a ∈ C1(RN,RN) and we have

∇a(y) = |y|p−2
[

id+ y ⊗ y

|y|2
]
+ id.

Therefore

(∇a(y)ξ, ξ)RN ≥ |ξ |2 for all y, ξ ∈ R
N .

Hence the tangency principle of Pucci and Serrin [72, p. 35] implies that

ŷ(z) < û(z) for all z ∈ �. (17.155)

Since û ∈ intC0+, from (17.154), (17.155) and Proposition 17.3.4, we infer that

û− ŷ ∈ intC0+.

Similarly we show that ŷ − v̂ ∈ intC0+. Therefore

ŷ ∈ intC1
0 (�)

[̂v, û]. (17.156)

The solution ŷ is a critical point of ϕ̂0 of mountain pass type. So, from
Papageorgiou and Rădulescu [56], we have

Ck(ϕ̂0, ŷ) = δk,1Z for all k ∈ N0. (17.157)

Recall that û, v̂ are local minimizers of ϕ̂0. Hence

Ck(ϕ̂0, û) = Ck(ϕ̂0, v̂) = δk,1Z for all k ∈ N0. (17.158)

Moreover, the coercivity of ϕ̂0 implies that

Ck(ϕ̂0,∞) = δk,0Z for all k ∈ N0. (17.159)
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Suppose that Kϕ̂0 = {0, û, v̂, ŷ} ⊆ [̂v, û] ∩ C1
0 (�). From (17.153), (17.157),

(17.158), (17.159), and the Morse relation with t = −1 (see (17.72), we have

(−1)dm + 2(−1)0 + (−1)1 = (−1)0,

⇒ (−1)dm = 0, a contradiction.

So, there exists y0 ∈ Kϕ̂0 ⊆ [̂v, û] ∩ C1
0 (�), y0 �∈ {0, û, v̂, ŷ}. Hence y0 is a

second nodal solution. Moreover, as for ŷ we show that

y0 ∈ intC1
0 (�)

[̂v, û]. (17.160)

Finally from Papageorgiou and Papalini [55], we can find a nodal solution ỹ ∈
C1

0 (�) such that

ỹ /∈ intC1
0 (�)

[̂v, û].

Then from (17.156), (17.160), we have that ỹ /∈ {ŷ, y0}. Therefore ỹ ∈ C1
0 (�) is

the third nodal solution of (17.148). ��

17.8 Remarks

Section 17.2 The nonlinear regularity theory was formulated by Lieberman [45].
The nonlinear maximum principle is discussed in the book of Pucci and Serrin
[72]. Note that equations driven by the (p, q)-Laplace operator arise in problems
of mathematical physics, see Cherfils and Il′yasov [18]. A good survey of such
equations can be found in Marano and Mosconi [48]. The L∞-regularity of the weak
solutions (see Proposition 17.2.3) can be found in Guedda and Véron [38] (Dirichlet
problems) and in Papageorgiou and Rădulescu [59] (Robin problems). The first
result in the direction of Proposition 17.2.5 is due to Brezis and Nirenberg [15]
with X = H 1

0 (�) and G(y) = 1
2 |y|2 for all y ∈ R

N . In the general form proved in
Proposition 17.2.5, can be found in Papageorgiou and Rădulescu [59]. A more gen-
eral version of Proposition 17.2.7 can be found in Gasiński and Papageorgiou [32].

Section 17.3 Various weak and strong comparison principles can be found in
Arcoya and Ruiz [8], Cuesta and Takáč [19], Damascelli [22], Fragnelli et al. [28],
Gasiński and Papageorgiou [36], Lucia and Prashanth [47].

Section 17.4 The spectral theory of the p-Laplacian (with or without potential
term) under various boundary conditions can be found in Anane [6], Anane and
Tsouli [7], Gasiński and Papageorgiou [31, 34], Motreanu et al. [52], Mugnai and
Papageorgiou [53], Papageorgiou and Rădulescu [57]. For the linear eigenvalue
problem (p = 2), we refer to D’Aguì et al. [21]. Problem (17.26) in the particular
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case of the p-Laplacian (that is, a(y) = |y|p−2y, 1 < p < +∞) can be thought
as a perturbation of the classical eigenvalue problem. The semilinear case (p = 2)
with Robin boundary condition can be found in Papageorgiou et al. [69]. For the
Dirichlet p-Laplacian, we refer to Bonanno et al. [14]. Our work here subsumes
both the aforementioned papers.

Section 17.5 More on critical groups and Morse theory can found in the books of
Chang [16, 17] and Motreanu et al. [52]. Three solutions theorems for p-Laplacian
equations with (p − 1)-superlinear reaction were proved by Aizicovici et al. [2],
Bartsch and Liu [12], Filippakis et al. [27], Li and Yang [44], Liu [46], Sun [74]. For
nonhomogeneous equations we mention Barletta and Papageorgiou [10], Fukagai
and Narukawa [29], Papageorgiou and Rădulescu [58].

Section 17.6 Nodal solutions for nonhomogeneous boundary value problems were
obtained by Aizicovici et al. [2–4], Gasiński and Papageorgiou [35], He et al. [40],
He et al. [41], He et al. [39], He et al. [42], Papageorgiou and Rădulescu [57, 58, 60,
63], Papageorgiou et al. [68], Papageorgiou and Winkert [66, 67].

Section 17.7 Existence and multiplicity theorem for (p, 2) and more gener-
ally (p, q)-equations can be found in Barile and Figueiredo [9], Barletta et al.
[11], Benouhiba and Belyacine [13], Figueiredo [26], Gasiński and Papageorgiou
[33, 35], Marano et al. [50, 51], Marano and Papageorgiou [49], Mugnai and
Papageorgiou [54], Papageorgiou and Rădulescu [56, 61, 62], Papageorgiou et al.
[68], Papageorgiou and Vetro [64], Papageorgiou et al. [70], Papageorgiou and
Winkert [65], Pei and Zhang [71], Tanaka [75], Yang and Bai [77], Yin and Yang
[78, 79].
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Chapter 18
Summability of Double Sequences
and Double Series Over
Non-Archimedean Fields: A Survey

P. N. Natarajan and Hemen Dutta

Abstract In this chapter, K denotes a complete, non-trivially valued, non-
Archimedean field. We introduce a new definition of convergence of a double
sequence and a double series (Natarajan and Srinivasan, Ann Math Blaise Pascal
9:85–100, 2002), which seems to be most suitable in the non-Archimedean context.
We study some of its properties. We then present a very brief survey of the
results, proved so far, pertaining to the Nörlund, weighted mean, and (M, λm,n)

(or Natarajan) methods of summability for double sequences. In this chapter, a
Tauberian theorem for the Nörlund method for double series is presented.

Keywords Non-Archimedean field · Double sequence · Double series ·
4-Dimensional infinite matrix · Conservative matrix · Regular matrix ·
Pringsheim · Silverman–Toeplitz theorem · Schur’s theorem · Steinhaus
theorem · Nörlund method · Weighted mean method · (M, λm,n) (or Natarajan)
method · Tauberian theorem

18.1 Double Sequences and Double Series

At the outset, we suggest that the reader can refer to [1–3] for a study of double
sequences and double series in the classical case. For a compact overview of basics
of summability theory in the classical case, the reader can refer to [4].
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Throughout this chapter, K denotes a complete, non-trivially valued, non-
Archimedean field. Double sequences, double series, and 4-dimensional infinite
matrices have entries in K . We now introduce a new definition of convergence of a
double sequence in K (see [5]).

Definition 18.1.1 Let {xm,n} be a double sequence in K and x ∈ K . We say that

lim
m+n→∞ xm,n = x,

if for every ε > 0, the set

{(m, n) ∈ N
2 : |xm,n − x| ≥ ε}

is finite, where N denotes the set of all non-negative integers. In such a case, we say
that the double sequence {xm,n} converges to x. Note that x is unique and we say
that x is the limit of {xm,n}.
Definition 18.1.2 Let {xm,n} be a double sequence in K and s ∈ K . We say that

∞,∞∑

m,n=0

xm,n = s,

if

lim
m+n→∞ sm,n = s,

where

sm,n =
m,n∑

k,�=0

xk,�, m, n = 0, 1, 2, . . . .

We say that the double series
∞,∞∑

m,n=0

xm,n converges to s and s is the sum of

∞,∞∑

m,n=0

xm,n.

Remark 18.1.3 If lim
m+n→∞ xm,n = x, then the double sequence {xm,n} is bounded.

The following important results are easily proved.

Theorem 18.1.4 lim
m+n→∞ xm,n = x

if and only if

(i) lim
n→∞ xm,n = x, m = 0, 1, 2, . . . ;

(ii) lim
m→∞ xm,n = x, n = 0, 1, 2, . . . ; and
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(iii) for each ε > 0, there exists N ∈ N such that

|xm,n − x| < ε, for all m,n ≥ N,

which we write as

lim
m,n→∞ xm,n = x.

(This is well-known as Pringsheim’s definition of convergence of a double
sequence.)

Theorem 18.1.5
∞,∞∑

m,n=0

xm,n converges if and only if

lim
m+n→∞ xm,n = 0.

Remark 18.1.6 In the case of simple sequences {xn}, xn ∈ K , n = 0, 1, 2, . . . , it is

very well-known (see [6]) that the series
∞∑

n=0

xn converges if and only if

lim
n→∞ xn = 0.

So, Theorem 18.1.5 implies that Definition 18.1.1 is the most suitable definition of
convergence of a double sequence in the non-Archimedean context.

18.2 Silverman–Toeplitz, Schur, and Steinhaus Theorems

Definition 18.2.1 Given a 4-dimensional infinite matrix A = (am,n,k,�), am,n,k,� ∈
K , m,n, k, � = 0, 1, 2, . . . , and a double sequence x = {xk,�}, xk,� ∈ K , k, � =
0, 1, 2, . . . , by the A-transform of x = {xk,�}, we mean the double sequence Ax =
{(Ax)m,n}, where

(Ax)m,n =
∞,∞∑

k,�=0

am,n,k,�xk,�, m, n = 0, 1, 2, . . . ,

it is being assumed that the double series on the right converge. If lim
m+n→∞

(Ax)m,n= s, we say that {xk,�} is A-summable or summable A to s. If
lim

m+n→∞(Ax)m,n = s, whenever lim
k+�→∞ xk,� = t , we say that A is convergence

preserving or conservative. If A is conservative and s = t , we say that A is regular.
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Natarajan and Srinivasan [5] proved the following theorem which characterizes
a regular 4-dimensional matrix in terms of its entries.

Theorem 18.2.2 (Silverman–Toeplitz Theorem) The 4-dimensional matrix A =
(am,n,k,�) is regular if and only if

lim
m+n→∞ am,n,k,� = 0, k, � = 0, 1, 2, . . . ; (18.1)

lim
m+n→∞

∞,∞∑

k,�=0

am,n,k,� = 1; (18.2)

lim
m+n→∞ sup

k≥0
|am,n,k,�| = 0, � = 0, 1, 2, . . . ; (18.3)

lim
m+n→∞ sup

�≥0
|am,n,k,�| = 0, k = 0, 1, 2, . . . ; (18.4)

and

sup
m,n,k,�

|am,n,k,�| <∞. (18.5)

The following definitions are needed in the sequel (see [7]).

Definition 18.2.3 A = (am,n,k,�) is called a Schur matrix if {(Ax)m,n} ∈ cds ,
whenever x = {xk,�} ∈ �∞ds , where cds, �

∞
ds , respectively, denote the spaces of

convergent and bounded double sequences.

Definition 18.2.4 The double sequence {xm,n} in K is called a Cauchy sequence if
for every ε > 0, there exists N ∈ N such that the set

{(m, n), (k, �) ∈ N
2 : |xm,n − xk,�| ≥ ε, m, n, k, � ≥ N}

is finite.

It is now easy to prove the following result.

Theorem 18.2.5 The double sequence {xm,n} in K is Cauchy if and only if

lim
m+n→∞ |xm+1,n − xm,n| = 0;

and

lim
m+n→∞ |xm,n+1 − xm,n| = 0.
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Definition 18.2.6 If every Cauchy double sequence of a non-Archimedean normed
linear space X converges to an element of X, then X is said to be double sequence
complete or ds-complete.

For x = {xm,n} ∈ �∞ds , define

‖x‖ = sup
m,n
|xm,n|. (18.6)

One can easily prove that �∞ds is a non-Archimedean normed linear space which is
ds-complete. With the same definition of norm for elements of cds , cds is a closed
subspace of �∞ds .

In the rest of this section, we shall suppose that K is a non-trivially valued,
non-Archimedean field which is ds-complete. The following result was proved by
Natarajan [7].

Theorem 18.2.7 (Schur’s Theorem) A = (am,n,k,�) is a Schur matrix if and
only if

lim
k+�→∞ am,n,k,� = 0, m, n = 0, 1, 2, . . . ; (18.7)

lim
m+n→∞ sup

k,�

|am+1,n,k,� − am,n,k,�| = 0; (18.8)

and

lim
m+n→∞ sup

k,�

|am,n+1,k,� − am,n,k,�| = 0. (18.9)

Using Theorems 18.2.2 and 18.2.7, we can now deduce the following important
result.

Theorem 18.2.8 (Steinhaus Theorem) A 4-dimensional infinite matrix A =
(am,n,k,�) cannot be both a regular and a Schur matrix, i.e., given a regular matrix
A = (am,n,k,�), there exists a bounded, divergent double sequence, which is not
A-summable.

Proof If A = (am,n,k,�) is regular, then (18.1) and (18.2) hold. If A were a Schur
matrix too, {am,n,k,�}∞,∞

m,n=0 is uniformly Cauchy with respect to k, � = 0, 1, 2, . . . .
Since K is ds-complete, {am,n,k,�}∞,∞

m,n=0 converges to 0 uniformly with respect to
k, � = 0, 1, 2, . . . so that

lim
m+n→∞

∞,∞∑

k,�=0

am,n,k,� = 0,

a contradiction of (18.2), completing the proof of the theorem. ��
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18.3 Characterization of 2-Dimensional Schur Matrices

In this section, we prove a characterization of 2-dimensional Schur matrices using
Definition 18.1.1 (see [8, 9]). We shall now explain a notation. Let X,Y denote
spaces of simple sequences {xk} in K . Given a 2-dimensional infinite matrix A =
(ank) in K , we write A ∈ (X, Y ) if {(Ax)n} ∈ Y , whenever x = {xk} ∈ X, where

(Ax)n =
∞∑

k=0

ankxk, n = 0, 1, 2, . . . ,

assuming that the series on the right converge. Let c0, c, �∞, respectively, denote
the spaces of null, convergent, and bounded sequences. We now have the following
result.

Theorem 18.3.1 The following statements are equivalent:

(a) A ∈ (�∞, c0);
(b) (i)

lim
k→∞ ank = 0, n = 0, 1, 2, . . . ; (18.10)

and
(ii)

lim
n→∞ sup

k≥0
|ank| = 0. (18.11)

(c) (i)

lim
n→∞ ank = 0, k = 0, 1, 2, . . . ; (18.12)

and
(ii)

lim
k→∞ sup

n≥0
|ank| = 0. (18.13)

(d)

lim
n+k→∞ ank = 0. (18.14)

Proof Natarajan proved that (a) and (b) are equivalent (see [10, p.422]). For the
equivalence of (b) and (c), see [11, p.129]. We will prove that (c) and (d) are
equivalent. It is clear that (c) implies (d), using Theorem 18.1.4. Conversely, let
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(d) hold. Using Theorem 18.1.4 again, (18.10), (18.12) hold and

lim
n,k→∞ ank = 0. (18.15)

Equation (18.10), along with (18.15), implies that (18.13) holds. Thus (c) holds, i.e.,
(d) implies (c), completing the proof of the theorem. ��

It is now easy to prove the following.

Theorem 18.3.2 The following statements are equivalent:

(a) A = (ank) ∈ (�∞, c);
(b) (i) (18.10) holds;

and
(ii)

lim
n→∞ sup

k≥0
|an+1,k − ank| = 0. (18.16)

(c) (i) (18.10) holds;
(ii)

lim
n→∞ ank = δk exists, k = 0, 1, 2, . . . ; (18.17)

and
(iii)

lim
k→∞ sup

n≥0
|an+1,k − ank| = 0. (18.18)

(d) (i) (18.10) holds;
and
(ii)

lim
n+k→∞(an+1,k − ank) = 0. (18.19)

(e) (i) (18.10) holds;
(ii) (18.17) holds;
and
(iii)

lim
n,k→∞(an+1,k − ank) = 0.
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18.4 The Nörlund Method for Double Sequences

We now introduce the Nörlund method (or mean) for double sequences in K [5].

Definition 18.4.1 Let pm,n ∈ K , m,n = 0, 1, 2, . . . with

|pij | < |p0,0|, (i, j) �= (0, 0), i, j = 0, 1, 2, . . . .

Let

Pm,n =
m,n∑

i,j=0

pi,j , m, n = 0, 1, 2, . . . .

Given a double sequence {sm,n}, we define

σm,n = (N, pm,n)({sm,n})

=

m,n∑

i,j=0

pm−i,n−j si,j

Pm,n

, m, n = 0, 1, 2, . . . .

If lim
m+n→∞ σm,n = σ , we say that {sm,n} is (N, pm,n) summable to σ , written as

sm,n → σ(N, pm,n).

The summability method (N, pm,n) is called a Nörlund method (or mean). Any

double series
∞,∞∑

m,n=0

xm,n is said to be (N, pm,n) summable to σ , if

sm,n → σ(N, pm,n),

where

sm,n =
m,n∑

i,j=0

xi,j , m, n = 0, 1, 2, . . . .

Using Theorem 18.2.2, it is easy to prove the following result.

Theorem 18.4.2 The Nörlund method (N, pm,n) is regular if and only if

lim
m+n→∞ sup

0≤j≤n
|pm−i,n−j | = 0, 0 ≤ i ≤ m; (18.20)
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and

lim
m+n→∞ sup

0≤i≤m
|pm−i,n−j | = 0, 0 ≤ j ≤ n. (18.21)

In the remaining part of the present section, we shall suppose that (N, pm,n),
(N, qm,n) are regular Nörlund methods such that each row and each column of the 2-
dimensional infinite matrices (pm,n), (qm,n) is a regular Nörlund method for simple
sequences. Under this assumption, we can prove the following results (see [5] for
details of proof).

Theorem 18.4.3 Any two such regular Nörlund methods (N, pm,n), (N, qm,n) are
consistent.

Theorem 18.4.4

(N, pm,n) ⊆ (N, qm,n),

i.e., whenever sm,n → σ(N, pm,n), sm,n → σ(N, qm,n) too,

if and only if

lim
m+n→∞ km,n = 0,

where {km,n} is defined by:

k(x, y) =
∞,∞∑

m,n=0

km,nx
myn = q(x, y)

p(x, y)
,

p(x, y) =
∞,∞∑

m,n=0

pm,nx
myn,

and

q(x, y) =
∞,∞∑

m,n=0

qm,nx
myn.

Theorem 18.4.5 The Nörlund methods (N, pm,n), (N, qm,n) are equivalent, i.e.,
(N, pm,n) ⊆ (N, qm,n) and vice versa if and only if

lim
m+n→∞ km,n = 0
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and

lim
m+n→∞ �m,n = 0,

where {�m,n} is defined by:

�(x, y) =
∞,∞∑

m,n=0

�m,nx
myn = p(x, y)

q(x, y)

and {km,n} is defined as in Theorem 18.4.4.

Natarajan [12] is the motivation for proving the following Tauberian theorem.

Theorem 18.4.6 ([13]) If
∞,∞∑

m,n=0

am,n is (N, pm,n) summable to s, (N, pm,n) being

regular and if

am,n → �∗, m+ n→∞,

then
∞,∞∑

m,n=0

am,n converges to s.

Proof We first note the following: Since |pk,�| < |p0,0|, (k, �) �= (0, 0), k, � =
0, 1, 2, . . . , it follows that

p0,0 �= 0.

Since the valuation of K is non-Archimedean,

|Pm,n| = |p0,0|, m, n = 0, 1, 2, . . .

(see [6, p. 8,Theorem 2.2]). Also, since (N, pm,n) is regular,

lim
m+n→∞ am,n,0,0 = 0,

using (18.1). So

lim
m+n→∞ |am,n,0,0| = 0,

i.e., lim
m+n→∞

∣
∣
∣
∣
pm,n

Pm,n

∣
∣
∣
∣ = 0,

i.e., lim
m+n→∞ |pm,n| = 0, since |Pm,n| = |p0,0|,

i.e., lim
m+n→∞ pm,n = 0.
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So
∞,∞∑

m,n=0

pm,n converges, in view of Theorem 18.1.5. Consequently,

lim
m+n→∞Pm,n exists (say) = P.

Note that P �= 0, since |Pm,n| = |p0,0|, m,n = 0, 1, 2, . . . , and p0,0 �= 0. Let {tm,n}
be the (N, pm,n)-transform of the double sequence {sm,n}, where

sm,n =
m,n∑

k,�=0

ak,�, m, n = 0, 1, 2, . . . .

Then,

tm,n =

m,n∑

i,j=0

pm−i,n−j si,j

Pm,n
, m, n = 0, 1, 2, . . .

and

lim
m+n→∞ tm,n = s.

Thus,

lim
m+n→∞

m,n∑

i,j=0

pm−i,n−j si,j = sP.

Now,

m,n∑

i,j=0

pm−i,n−j si,j =
m,n∑

i,j=0

pm−i,n−j

⎛

⎝
i,j∑

k,�=0

ak,�

⎞

⎠

=
m,n∑

i,j=0

ai,jPm−i,n−j

=
m,n∑

i,j=0

(ai,j − �∗)(Pm−i,n−j − P)

+ �∗
m,n∑

i,j=0

Pm−i,n−j
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+ P

m,n∑

i,j=0

(ai,j − �∗)

=
m,n∑

i,j=0

(ai,j − �∗)(Pm−i,n−j − P)

+ �∗
m,n∑

i,j=0

Pi,j + P

m,n∑

i,j=0

(ai,j − �∗). (18.22)

We note that

lim
m+n→∞

m,n∑

i,j=0

(ai,j − �∗)(Pm−i,n−j − P) = 0,

since lim
m+n→∞ am,n = �∗ and lim

m+n→∞Pm,n = P , using Theorem 2 of [14]. Taking

limit as m+ n→∞ in (18.22), we have

sP = lim
m+n→∞

⎡

⎣�∗
m,n∑

i,j=0

Pi,j + P

⎧
⎨

⎩

m,n∑

i,j=0

ai,j −mn�∗
⎫
⎬

⎭

⎤

⎦

= lim
m+n→∞

⎡

⎣Psm,n + �∗
⎧
⎨

⎩

m,n∑

i,j=0

(Pi,j − P)

⎫
⎬

⎭

⎤

⎦

= P lim
m+n→∞ sm,n + �∗

∞,∞∑

i,j=0

(Pi,j − P).

Thus, lim
m+n→∞ sm,n exists and

lim
m+n→∞ sm,n = 1

P

⎡

⎣sP − �∗
∞,∞∑

m,n=0

(Pm,n − P)

⎤

⎦ .

In other words,
∞,∞∑

m,n=0

am,n converges and so lim
m+n→∞ am,n = 0, proving that

�∗ = 0.
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It now follows that

lim
m+n→∞ sm,n = s,

i.e.,
∞,∞∑

m,n=0

am,n converges to s, completing the proof of the theorem. ��

18.5 Weighted Mean Method for Double Sequences

We now introduce weighted mean methods for double sequences and extend
theorems dealing with weighted mean methods for simple sequences (for details,
refer to [15]).

Definition 18.5.1 The (N, pm,n) method, called the weighted mean method, is
defined by the 4-dimensional infinite matrix (am,n,k,�), m,n, k, � = 0, 1, 2, . . . ,
where

(am,n,k,�) =
{

pk,�
Pm,n

, if k ≤ m, � ≤ n;
0, if k > m or � > n,

Pm,n =
m,n∑

i,j=0

pi,j , m, n = 0, 1, 2, . . . ,

with the sequence {pm,n} of weights satisfying the conditions

pm,n �= 0, m, n = 0, 1, 2, . . . , (18.23)

for each fixed pair (i, j),

|pk,�| ≤ |Pi,j |, k = 0, 1, 2, . . . , i;
i = 0, 1, 2, . . . ; (18.24)

� = 0, 1, 2, . . . , j ;
j = 0, 1, 2, . . . .

Remark 18.5.2 From (18.24), it is clear that for every fixed i = 0, 1, 2, . . . ,

|pi,�| ≤ |Pi,j |, � = 0, 1, 2, . . . , j ; (18.25)

j = 0, 1, 2, . . .
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and for every fixed j = 0, 1, 2, . . . ,

|pk,j | ≤ |Pi,j |, k = 0, 1, 2, . . . , i; (18.26)

i = 0, 1, 2, . . . .

Note that (18.24) is equivalent to

max
0≤k≤i
0≤�≤j

|pk,�| ≤ |Pi,j |, i, j = 0, 1, 2, . . . . (18.27)

Equation (18.25) is equivalent to

max
0≤�≤j |pi,�| ≤ |Pi,j |, j = 0, 1, 2, . . . , (18.28)

while (18.26) is equivalent to

max
0≤k≤i |pk,j | ≤ |Pi,j |, i = 0, 1, 2, . . . . (18.29)

Since the valuation of K is non-Archimedean,

|Pi,j | ≤ max
0≤k≤i
0≤�≤j

|pk,�|, i, j = 0, 1, 2, . . . . (18.30)

Combining (18.27) and (18.30), we have, for every fixed pair (i, j),

|Pi,j | = max
0≤k≤i
0≤�≤j

|pk,�|, i, j = 0, 1, 2, . . . . (18.31)

Using (18.31), we have

Pm,n �= 0, m, n = 0, 1, 2, . . . . (18.32)

Remark 18.5.3 Equation (18.31) implies

|Pm+1,n+1| ≥ |Pm,n|; (18.33)

|Pm,n+1| ≥ |Pm,n|; (18.34)

and

|Pm+1,n| ≥ |Pm,n|. (18.35)
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Proof Using (18.31), we have

|Pm+1,n+1| = max
0≤k≤m+1
0≤�≤n+1

|pk,�|

= max

[

max
0≤k≤m
0≤�≤n

|pk,�|, |pm,n+1|,

|pm+1,n|, |pm+1,n+1|
]

= max
[|Pm,n|, |pm,n+1|, |pm+1,n|,

|pm+1,n+1|
]

≥ |Pm,n|.

In a similar fashion, we can prove that (18.31) implies (18.34) and (18.35). ��
Using Theorem 18.2.2, we can prove the following result.

Theorem 18.5.4 The weighted mean method (N, pm,n) is regular if and only if

lim
m+n→∞ |Pm,n| = ∞; (18.36)

lim
m+n→∞

max
0≤k≤m |pk,�|
|Pm,n| = 0, � = 0, 1, 2, . . . ; (18.37)

and

lim
m+n→∞

max
0≤�≤n |pk,�|
|Pm,n| = 0, k = 0, 1, 2, . . . . (18.38)

The next result puts a limitation on the (N, pm,n) summability of a double
sequence {sm,n} (see [15]).

Theorem 18.5.5 (Limitation Theorem) If {sm,n} is (N, pm,n) summable to s, then

sm,n − s = o

(
Pm,n

pm,n

)
, m+ n→∞, (18.39)

in the sense that

pm,n

Pm,n

(sm,n − s)→ 0, m+ n→∞.
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Proof Let {tm,n} be the (N, pm,n)-transform of {sm,n}. Then,

∣
∣
∣∣
pm,n

Pm,n

(sm,n − s)

∣
∣
∣∣

=

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

(Pm,ntm,n − Pm,n−1tm,n−1 − Pm−1,ntm−1,n

+Pm−1,n−1tm−1,n−1)

−(Pm,n − Pm,n−1 − Pm−1,n + Pm−1,n−1)s

Pm,n

∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣

=
∣
∣∣
∣
∣
(tm,n − s)− Pm,n−1

Pm,n
(tm,n−1 − s)− Pm−1,n

Pm,n
(tm−1,n − s)

+Pm−1,n−1
Pm,n

(tm−1,n−1 − s)

∣
∣∣
∣
∣

≤ max

[
|tm,n − s|,

∣∣
∣
∣
Pm,n−1

Pm,n

∣∣
∣
∣ |tm,n−1 − s|,

∣
∣
∣
∣
Pm−1,n

Pm,n

∣
∣
∣
∣ |tm−1,n − s|,

∣
∣
∣
∣
Pm−1,n−1

Pm,n

∣
∣
∣
∣ |tm−1,n−1 − s|

]

≤ max
[|tm,n − s|, |tm,n−1 − s|, |tm−1,n − s|, |tm−1,n−1 − s|]

in view of Remark 18.5.3. Since lim
m+n→∞ tm,n = s, it follows that

lim
m+n→∞

∣
∣
∣
∣
pm,n

Pm,n

(sm,n − s)

∣
∣
∣
∣ = 0,

i.e., sm,n − s = o

(
Pm,n

pm,n

)
, m+ n→∞,

which completes the proof of the theorem. ��
We now list a few inclusion theorems involving weighted mean methods for

double sequences (see [11, 15] for details).

Theorem 18.5.6 (Comparison Theorem for Two Weighted Mean Methods for
Double Sequences) Let (N, pm,n), (N, qm,n) be two weighted mean methods such
that

qm,n = O(pm,n), m+ n→∞ (18.40)



18 Summability of Double Sequences and Double Series Over Non-. . . 731

in the sense that there exists M > 0 such that
∣
∣
∣∣
qm,n

pm,n

∣
∣
∣∣ ≤ M, m, n = 0, 1, 2, . . .

and

Pm,n = o(Qm,n), m+ n→∞ (18.41)

in the sense that
∣
∣
∣
∣
Pm,n

Qm,n

∣
∣
∣
∣→ 0, m+ n→∞,

where Pm,n =
m,n∑

k,�=0

pk,�, Qm,n =
m,n∑

k,�=0

qk,�, m,n = 0, 1, 2, . . . .

Then,

(N, pm,n) ⊆ (N, qm,n),

i.e., sm,n → s(N, pm,n) implies that

sm,n → s(N, qm,n).

Theorem 18.5.7 (Comparison Theorem for a (N, pm,n) Method and a Regular
Matrix Method) Let (N, pm,n) be a weighted mean method and A = (am,n,k,�) be
a regular matrix. If

lim
k+�→∞

am,n,k,�

pk,�
Pk,� = 0, m, n = 0, 1, 2, . . . (18.42)

and

Pm,n = O(pm,n), m+ n→∞, (18.43)

i.e.,

∣∣
∣
∣
Pm,n

pm,n

∣∣
∣
∣ ≤ M, M > 0, m, n = 0, 1, 2, . . . ,

then

(N, pm,n) ⊆ A.

Theorem 18.5.8 (Comparison Theorem for a (N, pm,n) Method and a Regular
Matrix Method) Let (N, pm,n) be a weighted mean method and A = (am,n,k,�) be



732 P. N. Natarajan and H. Dutta

a regular matrix. If

lim
k+�→∞ am,n,k,�

Pk,�

pk,�
= 0, m, n = 0, 1, 2, . . . ; (18.44)

sup
m,n,k,�

∣
∣∣
∣am,n,k,�

Pk,�

pk,�

∣
∣∣
∣ <∞; (18.45)

lim
m+n→∞ sup

k≥0

∣
∣
∣
∣am,n,k,�

Pk,�

pk,�

∣
∣
∣
∣ = 0, � = 0, 1, 2, . . . ; (18.46)

and

lim
m+n→∞ sup

�≥0

∣
∣
∣∣am,n,k,�

Pk,�

pk,�

∣
∣
∣∣ = 0, k = 0, 1, 2, . . . , (18.47)

then

(N, pm,n) ⊆ A.

18.6 (M, λm,n) Method (or Natarajan Method) for Double
Sequences

In an attempt to generalize the Nörlund method, the (M, λn) method for simple
sequences in K was introduced earlier by Natarajan [16]. We now recall the
definition.

Definition 18.6.1 Let {λn} be a sequence in K such that lim
n→∞ λn = 0. The (M, λn)

method is defined by the 2-dimensional infinite matrix (ank), where

ank =
{
λn−k, if k ≤ n;
0, if k > n.

Remark 18.6.2 Note that the (M, λn) method is a non-trivial method. In this
context, we also note that the (M, λn) method reduces to the Y -method of Srinivasan
[17], whenK = Qp, the p-adic field for a primep, λ0 = λ1 = 1

2 and λn = 0, n ≥ 2.
More generally, the (M, λn) method reduces to the Y -method whenK is a complete,
non-trivially valued, non-Archimedean field of characteristic zero, λ0 = λ1 = 1

2 and
λn = 0, n ≥ 2.

We now introduce the (M, λm,n) method for double sequences and list some of
the results (see [18]).
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Definition 18.6.3 Let {λm,n} be a double sequence in K such that

lim
m+n→∞ λm,n = 0.

The method (M, λm,n) is defined by the 4-dimensional infinite matrix (am,n,k,�),
where

(am,n,k,�) =
{
λm−k,n−�, if k ≤ m and � ≤ n;
0, otherwise.

Theorem 18.6.4 The method (M, λm,n) is regular if and only if

∞∞∑

m,n=0

λm,n = 1.

For Theorem 18.6.5, let (M, λm,n), (M,μm,n) be regular methods such that each
row and each column of the 2-dimensional infinite matrices (λm,n), (μm,n) is a
regular Natarajan method for simple sequences.

Theorem 18.6.5 Any two such methods (M, λm,n), (M,μm,n) are consistent.

Theorem 18.6.6 If (M, λm,n), (M,μm,n) are regular, then

(M, λm,n) ⊆ (M,μm,n)

if and only if

lim
m+n→∞ km,n = 0 and

∞,∞∑

m,n=0

km,n = 1,

where {km,n} is defined by

k(x, y) =
∞,∞∑

m,n=0

km,nx
myn = μ(x, y)

λ(x, y)
,

λ(x, y) =
∞,∞∑

m,n=0

λm,nx
myn,

μ(x, y) =
∞,∞∑

m,n=0

μm,nx
myn.



734 P. N. Natarajan and H. Dutta

Theorem 18.6.7 The regular methods (M, λm,n), (M,μm,n) are equivalent if and
only if

lim
m+n→∞ km,n = 0,

∞,∞∑

m,n=0

km,n = 1;

and

lim
m+n→∞ hm,n = 0,

∞,∞∑

m,n=0

hm,n = 1,

where {hm,n} is defined by

h(x, y) =
∞,∞∑

m,n=0

hm,nx
myn = λ(x, y)

μ(x, y)

and {km,n} is defined as in Theorem 18.6.6.

We now record some results on the Cauchy multiplication of (M, λm,n)-
summable double sequences and double series (see [19]).

Theorem 18.6.8 If lim
m+n→∞ am,n = 0 and {bm,n} is (M, λm,n) summable to B, then

{cm,n} is (M, λm,n) summable to AB, where

cm,n =
m,n∑

k,�=0

am−k,n−�bk,�, m, n = 0, 1, 2, . . .

and

∞,∞∑

m,n=0

am,n = A.

Theorem 18.6.9 If lim
m+n→∞ am,n = 0 and

∞,∞∑

m,n=0

bm,n is (M, λm,n) summable to B,

then
∞,∞∑

m,n=0

cm,n is (M, λm,n) summable to AB, where

cm,n =
m,n∑

k,�=0

am−k,n−�bk,�, m, n = 0, 1, 2, . . .
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and

∞,∞∑

m,n=0

am,n = A.

Theorem 18.6.10 If
∞,∞∑

m,n=0

am,n is (M, λm,n) summable to A,
∞,∞∑

m,n=0

bm,n is

(M,μm,n) summable to B, then
∞,∞∑

m,n=0

cm,n is (M, γm,n) summable to AB, where

cm,n =
m,n∑

k,�=0

am−k,n−�bk,�, m, n = 0, 1, 2, . . .

and

γm,n =
m,n∑

k,�=0

λm−k,n−�μk,�, m, n = 0, 1, 2, . . . .

We have the following result too.

Theorem 18.6.11 Let (M, λm,n), (M,μm,n) be regular methods. Then, (M, λm,n)

(M,μm,n) is regular too, where, we define, for x = {xm,n},

((M, λm,n)(M,μm,n))(x) = (M, λm,n)((M,μm,n)(x)).
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Chapter 19
On Approximate Solutions of Linear
and Nonlinear Singular Integral
Equations

Nizami Mustafa and Veysel Nezir

Abstract Singular integral equation theory has broad applications to theoretical
and practical investigations in mathematics, mathematical physics, hydrodynamic
and elasticity theory. This fact motivated many researchers to work on this field and
their studies have showed that finding approximate solutions of linear and nonlinear
singular integral equations in Banach spaces provides many applications even if
their definite solutions cannot be found or if there are difficulties in finding them.
Thus, the central theme of the recent studies is to develop effective approximate
solution methods for the linear and nonlinear singular integral equations in Banach
spaces. This chapter has been devoted to investigating approximate solutions of
linear and nonlinear singular integral equations in Banach spaces using technical
methods such as collocation method, quadrature method, Newton–Kantorovich
method, monotonic operators method, and fixed point theory depending on the
type of the equations. We provide sufficient conditions for the convergence of these
methods and investigate some properties.

19.1 Introduction

The theory of nonlinear singular integral equations (NLSIEs) has developed signif-
icant importance over the last few years as many engineering problems of applied
mechanics and applied mathematics are reduced to the solution of such types of
nonlinear equations.

It is well known that the solutions to a host of familiar problems of mathematical
physics, such as elasticity, plasticity, thermo-elasticity, and fluid mechanics have
been reduced to solving equations of the NLSIE type; besides, the application area
of NLSIEs is outstanding in connection to the theories of elasticity, viscoelasticity,
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thermo-elasticity, hydrodynamics, fluid mechanics, and many other fields outside
mathematical physics [42, 44–47].

Recent investigations on this topic have observed that, for many nonlinear dif-
ferential equation systems, the solutions of the Dirichlet boundary-value problems
which have partial derivatives and are defined in a region can be reduced to solving
equations of the NLSIE type [9, 15, 56, 86]. The solution of the seismic wave
equation—of great importance in elastodynamics—is investigated by reducing it
to the solution of NLSIE by using Hilbert transformation [9].

Many problems of applied mechanics are to be reduced to the solution of an
NLSIE. This approach involves a nonlinear generalization of the linear singular
integral equations of the finite-part type and the multidimensional form, which have
been investigated by Ladopoulos [44, 45], Bojarskii [10], Lackau [41], Monahov
[61]. Moreover, a nonlinear integro-differential equation analysis was proposed by
Ladopoulos [62], with applications to some basic problems of orthotropic shallow
spherical shell stress analysis. Beyond these applications, Ladopoulos [47], Tutshke
[90] have examined the existence and the uniqueness of the solution of the NLSIEs
defined in Banach spaces while investigating the application of such types of
equations in two-dimensional fluid mechanics.

As it is known, the analytical solutions of NLSIEs can only be found in certain
special cases. In the absence of analytical solutions, these types of equations are
usually solved by approximation methods. From this point of view, it is important
to know how to solve the NLSIEs with approximation methods. Over the past few
years, there have been many studies of the approximate solutions of NLSIEs [1,
5, 8, 11, 16, 17, 19–21, 26, 28, 29, 32, 37, 43, 48–55, 59, 60, 68, 69, 74–78, 80–
82, 84, 85, 87, 88, 91, 94–97].

Note that this chapter is formed by the works [69–73, 75].

19.2 Newton–Kantorovich Method for Two-Dimensional
Nonlinear Singular Integral Equations

In this section, we investigate the following two-dimensional NLSIE and apply
Newton–Kantorovich method to find its approximate solutions.

B(ϕ)(z) ≡ F(z, ϕ(z), TGf (·, ϕ(·))(z),ΠGg(·, ϕ(·))(z)) = 0, z ∈ G, (19.1)

where f, g : D0 → C, F : G→ C are known continuous functions in their domains

of definition, ϕ(z) is an unknown function, D0 = {(z, ϕ) : z ∈ Ḡ = ∂G ∪ ◦
G, ϕ ∈

C} = Ḡ × C, ∂G denotes the boundary of the region G ⊂ C, C is the complex

plane,
◦
G is a set of interior points of the region G, while its closure Ḡ = ∂G

⋃ ◦
G

and D = {(z, ϕ, v,w) : z ∈ Ḡ, ϕ, v,w ∈ C} = Ḡ×C
3.
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Moreover,

TGh(·)(z) = −1

π

∫∫

G

h(ζ )

ζ − z
dξdη, ΠGh(·)(z) = −1

π

∫∫

G

h(ζ )

(ζ − z)2 dξdη.

The existence and uniqueness of the solution of Eq. (19.1) was proved by
Mustafa and Ardil [74]. In order to derive the approximate solution of Eq. (19.1),
we show that the nonlinear operator B(ϕ) defined by Eq. (19.1) is the Freshet
differentiable operator. Furthermore, the Freshet derivative of nonlinear operator
B(ϕ) is calculated and sufficient conditions for the convergence of the Newton–
Kantorovich method for the approximate solution of Eq. (19.1) are given.

Throughout Sect. 19.2, if the opposite is not indicated, the set G ⊂ C is
considered as a bounded and simple connected region in the complex plane as it
has already been stated in the introduction section.

If, for every z1, z2 ∈ Ḡ there exist H > 0 and α ∈ (0, 1) numbers such that

|ϕ(z1)− ϕ(z2)| ≤ H · |z1 − z2|α

then it is said that the function ϕ : Ḡ → C satisfies the Holder condition on the
set Ḡ with exponent α. The symbol Hα(Ḡ) will denote the set of all functions that
satisfies Holder condition on the set Ḡ with exponent α.

It is well known that the vector space (Hα(Ḡ); ‖·‖α) is a Banach space with the
norm

‖ϕ‖α = ‖ϕ‖Hα(Ḡ) ≡ ‖ϕ‖∞ +H(ϕ, α; Ḡ).

Here, the sup norm satisfies ‖ϕ‖∞ = max
{|ϕ(z)| : z ∈ Ḡ

}
and defines

H(ϕ, α; Ḡ) = sup

{ |ϕ(z1)− ϕ(z2)|
|z1 − z2|α : z1, z2 ∈ Ḡ, z1 �= z2

}
.

Furthermore, for every zk ∈ Ḡ and (zk, ϕk) ∈ D0, (zk, ϕk, vk,wk) ∈
D for k = 1, 2, suppose that the scalar α ∈ (0, 1) and the positive numbers
m1,m2, n1, n2, l1, l2, l3, l4 exist such that the following inequalities are satisfied:

|f (z1, ϕ1)− f (z2, ϕ2)| ≤ m1 · |z1 − z2|α +m2 · |ϕ1 − ϕ2| , (19.2)

|g(z1, ϕ1)− g(z2, ϕ2)| ≤ n1 · |z1 − z2|α + n2 · |ϕ1 − ϕ2| , (19.3)

|F(z1, ϕ1, v1, w1)− F(z2, ϕ2, v2, w2)| ≤ l1 · |z1 − z2|α + l2 · |ϕ1 − ϕ2|
(19.4)

+ l3 · |v1 − v2|+l4 · |w1 −w2| .
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The symbols Hα,1(m1,m2;D0), Hα,1(n1, n2;D0), and Hα,1,1,1(l1, l2, l3,

l4;D) denote the sets of functions that satisfy the conditions (19.2), (19.3), and
(19.4) respectively.

The following definition is well known in the literature.

Definition 19.1 ([19]) Let A be an nonlinear operator defined on a set E in a
Banach space X. Recall that A is said to be Freshet-differentiable at a point x0 ∈ E

if there exists a bounded linear operator B such that

lim‖h‖→0

‖A(x0 + h)− Ax0 − Bh‖
‖h‖ = 0.

Operator B is called the Freshet derivative of operator A at point x0, denoted by
A′(x0).

In our study we will prove that the following nonlinear operator is Freshet
differentiable:

B(ϕ)(z) ≡ F(z, ϕ(z), TGf (·, ϕ(·))(z),ΠGg(·, ϕ(·))(z)), z ∈ G. (19.5)

Let B ′(ϕ) be the Freshet differential of nonlinear operator B(ϕ). Assume that
there exists a solution for the linear equation

B ′(ϕ)h(z) = φ(z), z ∈ G, (19.6)

for every φ ∈ Hα(Ḡ), 0 < α < 1. This means that the existence of the bounded
linear inverse operator

[
B ′(ϕ)

]−1 is assumed.

19.2.1 Newton–Kantorovich Method for Eq. (19.1)

Let X and Y be Banach spaces and L(X, Y ) denote the linear operator spaces from
X to Y . If kerA and CokerA = Y/ImA are finite-dimensional, A ∈ L(X, Y ) is
called a Fredholm operator. The index of operator A is defined by κ = indA =
dim kerA − dimCo kerA. The family of the Fredholm transformations from X to
Y with index κ is denoted by φκ(X, Y ).

Let U ⊂ X be an open set and h : U → Y be a transformation. If h′(ϕ) ∈
φκ(X, Y ) for every ϕ ∈ X,, then the transformation h : U → Y is called a Fredholm
operator with index κ from class C′. Here, h′(ϕ) is a Freshet differential of operator
h : U → Y.

In this study the family of Fredholm transformations C′ from U to Y with index
κ is denoted by φκC

′(U, Y ).
Now the following theorem about the existence of a Freshet derivative for

nonlinear operator B(ϕ) is presented.
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Theorem 19.1 Let functions F(t, u, v,w), f (t, u), g(t, u) and derivatives
F
′
u, F

′
v, F

′
w, F

′′
u2, F

′′
v2, F

′′
w2 , F

′′
uv, F

′′
uw, F

′′
vw and f

′
u, f

′′
u2 , g

′
u, g

′′
u2

be of class Hα,1,1,1(l1, l2, l3, l4;D), Hα,1(m1,m2;D0) and Hα,1(n1, n2;D0),

0 < β < α ≤ 1, respectively. Then nonlinear operator B(ϕ) defined by (19.5) is
Freshet differentiable for every ϕ ∈ Hβ(Ḡ), and derivative can be written:

B ′(ϕ)h(z) = F
′
u(z, ϕ(z), TGf (τ, ϕ(τ ))(z),ΠGg(τ, ϕ(τ ))(z)) · h(z)
+ F

′
v(z, ϕ(z), TGf (τ, ϕ(τ ))(z),ΠGg(τ, ϕ(τ ))(z))

· TG(f ′
u(τ, ϕ(τ ))h(τ ))+ F

′
W(z, ϕ(z), TGf (τ, ϕ(τ ))(z),

ΠGg(τ, ϕ(τ ))(z)) ·ΠG(g
′
u(τ, ϕ(τ ))h(τ )).

(19.7)

Furthermore, Freshet derivative B ′(ϕ) on the ball
U(ϕ0, r) =

{
ϕ ∈ Hβ(Ḡ) : ‖ϕ0 − ϕ‖ ≤ r

}
provides the following Lipchitz condi-

tion:

∥
∥B ′(ϕ1)− B ′(ϕ2)

∥
∥ ≤ L · ‖ϕ1 − ϕ2‖ , ϕ1, ϕ2 ∈ U(ϕ0, r), (19.8)

where L is a constant and depends on functions F, f, g and r, ϕ0 ∈ Hβ(Ḡ).

Proof Firstly, to prove that the equality (19.7) is correct, let functions ϕ, h ∈ Hβ(Ḡ)

and β ∈ (0, 1) be given.
Now

B(ϕ + h)− B(ϕ) = F(z, (ϕ + h)(z), TGf (z, (ϕ + h)(τ))(z),ΠGg(z, (ϕ + h)(τ))(z))

− F(z, ϕ(z), TGf (z, ϕ(τ))(z),ΠGg(z, ϕ(τ))(z)).

Then

B(ϕ + h)− B(ϕ) = [F(z, (ϕ + h)(z), TGf (z, (ϕ + h)(τ))(z),ΠGg(z, (ϕ + h)(τ))(z))

− F(z, ϕ(z), TGf (z, (ϕ + h)(τ))(z),ΠGg(z, (ϕ + h)(τ))(z))]
+ [F(z, ϕ(z), TGf (z, (ϕ + h)(τ))(z),ΠGg(z, (ϕ + h)(τ))(z))

− F(z, ϕ(z), TGf (z, ϕ(τ))(z),ΠGg(z, (ϕ + h)(τ))(z))]
+ [F(z, ϕ(z), TGf (z, ϕ(τ))(z),ΠGg(z, (ϕ + h)(τ))(z))

− F(z, ϕ(z), TGf (z, ϕ(τ))(z),ΠGg(z, ϕ(τ))(z))].
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From the assumptions of the theorem, the following can be written:

B(ϕ + h)− B(ϕ) = F
′
u(z, ϕ(z), TGf (τ, ϕ(τ))(z),ΠGg(τ, ϕ(τ))(z)) · h(z)
+ F

′
v(z, ϕ(z), TGf (τ, ϕ(τ))(z),ΠGg(τ, ϕ(τ))(z))

· TG(f ′
u(τ, ϕ(τ )) · h(τ))+ F

′
w(z, ϕ(z), TGf (τ, ϕ(τ))(z),

ΠGg(τ, ϕ(τ))(z)) ·ΠG(g
′
u(τ, ϕ(τ )) · h(τ ))+ ω(ϕ, h)(z).

(19.9)

Here,

ω(ϕ, h)(z) = ω1(ϕ, h)(z)+ ω2(ϕ, h)(z)+ ω3(ϕ, h)(z), (19.10)

ω1(ϕ, h)(z) =
∫ 1

0

⎡

⎢
⎢
⎣
F
′
u

⎛

⎝
z, (ϕ + θ · h)(z),
TGf (τ, (ϕ + θ · h)(τ ))(z),
ΠGg(τ, (ϕ + θ · h)(z))

⎞

⎠

−F ′
u(z, ϕ(z), TGf (τ, ϕ(τ ))(z)),ΠGg(τ, ϕ(z)))

⎤

⎥
⎥
⎦ · h(z)dθ,

(19.11)

ω2(ϕ, h)(z) =
∫ 1

0

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

F
′
v

⎛

⎜
⎝
z, (ϕ + θ · h)(z),
TGf (τ, (ϕ + θ · h)(τ))(z),
ΠGg(τ, (ϕ + θ · h)(z))

⎞

⎟
⎠

−F ′
v

⎛

⎜
⎝
z, ϕ(z),

TGf (τ, ϕ(τ))(z),

ΠGg(τ, ϕ(z))

⎞

⎟
⎠

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

· TG(f ′
u(τ, ϕ(τ))(z)h(z)dθ,

(19.12)

ω3(ϕ, h)(z) =
∫ 1

0

⎡

⎢
⎢⎢⎢⎢
⎢⎢
⎣

F
′
w

⎛

⎝
z, ϕ(z),

TGf (τ, ϕ(τ ))(z),

ΠGg(τ, (ϕ + θ · h)(z))

⎞

⎠

−F ′
v

⎛

⎝
z, ϕ(z),

TGf (τ, ϕ(τ ))(z),

ΠGg(τ, ϕ(z))

⎞

⎠

⎤

⎥
⎥⎥⎥⎥
⎥⎥
⎦

·ΠG(g
′
u(τ, ϕ(τ ))(z)h(z)dθ.

(19.13)

Let Dr = {(z, ϕ, v,w) : z ∈ Ḡ, ‖ϕ − ϕ0(τ )‖ ≤ r, v,w ∈ C}, r > 0.
From the assumptions of the theorem and properties of operators TG and ΠG, it

can be seen that derivative F
′
u(z, u, v,w) is uniformly continuous on Dr . Therefore,
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for any ε > 0, the following evaluation can be written:

‖ω1(ϕ, h)‖∞ ≤ max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1
0

∣∣∣
∣∣∣∣
∣∣∣
∣∣∣
∣

F
′
u

⎛

⎜
⎝
z, (ϕ + θ · h)(z),
TGf (τ, (ϕ + θ · h)(τ))(z),
ΠGg(τ, (ϕ + θ · h)(z))

⎞

⎟
⎠

−F ′
u

⎛

⎜
⎝
z, ϕ(z),

TGf (τ, ϕ(τ))(z),

ΠGg(τ, ϕ(z))

⎞

⎟
⎠

∣∣∣
∣∣∣∣
∣∣∣
∣∣∣
∣

· |h(z)|dθdθ : z ∈ Ḡ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ c1 · ε · ‖h‖∞ .

It follows that

lim‖h‖→0

‖ω1(ϕ, h)‖
‖h‖ = 0. (19.14)

The following limits can be proved in a manner similar to (19.14)

lim‖h‖→0

‖ω2(ϕ, h)‖
‖h‖ = 0 and lim‖h‖→0

‖ω3(ϕ, h)‖
‖h‖ = 0. (19.15)

From (19.14) and (19.15), the following is obtained:

lim‖h‖→0

‖ω(ϕ, h)‖
‖h‖ = 0.

Hence by the definition of the Freshet derivative, the veracity of the equality (19.7)
is proved.

Now to prove that Freshet derivative B ′(ϕ) provides Lipchitz condition (19.8) on
ball U(ϕ0, r),

let ϕ1, ϕ2 ∈ U(ϕ0, r). Then (B ′(ϕ1)− B ′(ϕ2))h(z) is obtained as

(B ′(ϕ1)− B ′(ϕ2))h(z) = [F ′
u(z, ϕ1(z), TGf (τ, ϕ1(τ))(z),ΠGg(τ, ϕ1(τ))(z))

− F
′
u(z, ϕ2(z), TGf (τ, ϕ2(τ))(z),ΠGg(τ, ϕ2(τ))(z))] · h(z)

+ [F ′
v(z, ϕ1(z), TGf (τ, ϕ1(τ))(z),ΠGg(τ, ϕ1(τ))(z)) · Tg(f ′

u(ξ, ϕ1(ξ ))(τ)h(τ))

− F
′
v(z, ϕ2(z), TGf (τ, ϕ2(τ))(z),ΠGg(τ, ϕ2(τ))(z)) · Tg(f ′

u(ξ, ϕ2(ξ ))(τ)h(τ))]
+ [F ′

w(z, ϕ1(z), TGf (τ, ϕ1(τ))(z),ΠGg(τ, ϕ1(τ))(z)) ·Πg(g
′
u(ξ, ϕ1(ξ ))(τ)h(τ))

− F
′
v(z, ϕ2(z), TGf (τ, ϕ2(τ))(z),ΠGg(τ, ϕ2(τ))(z)) ·Πg(g

′
u(ξ, ϕ2(ξ ))(τ)h(τ))].

(19.16)
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From the assumptions of the theorem and properties of operators TG and ΠG,
it is seen that

∥
∥∥
∥
F
′
u(·, ϕ1(·), TGf (·, ϕ1(·))(·),ΠGg(·, ϕ1(·))(·))
−F ′

u(·, ϕ2(·), TGf (·, ϕ2(·))(·),ΠGg(·, ϕ2(·))(·))
∥
∥∥
∥ ≤ L1 · ‖ϕ1 − ϕ2‖ .

(19.17)

Similar evaluations can be proved for the second and third terms of difference
(19.16). From these evaluations, it is seen that condition (19.8) is true.

Thus, the proof of Theorem 19.1 is complete.

The Freshet derivative in the form of a linear singular integral operator can be
written as follows:

B ′(ϕ)h(z) = a(ϕ, z) · h(z)+ b(ϕ, z) · TG(f ′
u(τ, ϕ(τ ))h(τ )) (19.18)

+c(ϕ, z) ·ΠG(g
′
u(τ, ϕ(τ ))h(τ )).

Here,

a(ϕ, z) = F
′
u(z, ϕ(z), TGf (τ, ϕ(τ ))(z),ΠGg(τ, ϕ(τ ))(z)),

b(ϕ, z) = F
′
v(z, ϕ(z), TGf (τ, ϕ(τ ))(z),ΠGg(τ, ϕ(τ ))(z)),

c(ϕ, z) = F
′
W(z, ϕ(z), TGf (τ, ϕ(τ ))(z),ΠGg(τ, ϕ(τ ))(z)).

The existence of the only zero solution of the equation below in space Hβ(Ḡ) is
assumed:

B ′(ϕ)h(z) = 0. (19.19)

In this case the following equation is the unique solution for every φ ∈ Hβ(Ḡ) :

B ′(ϕ)h(z) = φ(z). (19.20)

Therefore, bounded linear inverse operator
[
B ′(ϕ0)

]−1 : Hβ(Ḡ) → Hβ(Ḡ) exists.
As a result, the solution of Eq. (19.20) is given as follows:

h(z) = [
B ′(ϕ0)

]−1
φ(z).

Now a theorem on convergence of the Newton–Kantorovich method for
Eq. (19.1) is given.

Theorem 19.2 Let the conditions of Theorem 19.1 be provided and κ =
indB ′(ϕ0) ≥ 0 for a ϕ0 ∈ Hβ(Ḡ). Furthermore, assume that homogeneous
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Eq. (19.19) has only a trivial solution. Also, suppose that

∥
∥
∥
[
B ′(ϕ0)

]−1
∥
∥
∥ ≤ m,

∥
∥
∥
[
B ′(ϕ0)

]−1 · B(ϕ0)

∥
∥
∥ ≤M.

If

δ = LMm <
1

2
and r ≥ r0 = 1−√1− 2δ

δ
·M,

then the following equation has a unique solution ϕ∗, which is in ball U(ϕ0, r0) ={
ϕ ∈ Hβ(Ḡ) : ‖ϕ0 − ϕ‖ ≤ r0

}

B(ϕ)(z) = 0, z ∈ G. (19.21)

Furthermore, the following successive approximations converge to the solution ϕ∗
of Eq. (19.21) in the ball U(ϕ0, r0)

ϕn+1(z) = ϕn(z)−
[
B ′(ϕ0)

]−1 · B(ϕn), n = 0, 1, . . . . (19.22)

Also, the convergence ratio is to be taken as the following:

∥
∥ϕ∗ − ϕn

∥
∥ ≤ (1−√1− 2δ)n√

1− 2δ
·M, n = 0, 1, . . . .

Proof Let ϕ0 ∈ Hβ(Ḡ), r0 = 1−√1−2δ
δ

·M and U(ϕ0, r0)=
{
ϕ ∈ Hβ(Ḡ): ‖ϕ0−ϕ‖

≤ r0
}
. It must then be proved that the Newton–Kantorovich method is applied to

the approximate solution of Eq. (19.21).
If

A(ϕ)(z) = ϕ(z)− [
B ′(ϕ0)

]−1
B(ϕ)(z),

then Eq. (19.21) can be written as

ϕ(z) = A(ϕ)(z). (19.23)

In this case applying the Newton–Kantorovich method to the approximate solution
of Eq. (19.21) is equivalent to applying the iteration method to the approximate
solution of Eq. (19.23).

Now let us show that the iteration method to the approximate solution of
Eq. (19.23) can be applied. To this end, it is sufficient to show that operator A

satisfies the contraction mapping principle conditions.
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Now it is to be shown that operator A maps from ball U(ϕ0, r0) to itself and that
it is a contraction mapping. It can be written that for every ϕ ∈ U(ϕ0, r0),

∫ 1

0
B ′(ϕ0 + θ(ϕ − ϕ0))(ϕ − ϕ0)dθ =

∫ 1

0
B ′(ϕ0 + θ(ϕ − ϕ0))d(θ(ϕ − ϕ0))

=
∫ ϕ

ϕ0

B ′(t)dt = B(ϕ)− B(ϕ0).

Thus, the following equality is true:

B(ϕ)− B(ϕ0) =
∫ 1

0
B ′(ϕ0 + θ(ϕ − ϕ0))(ϕ − ϕ0)dθ. (19.24)

Let ϕ1, ϕ2 ∈ U(ϕ0, r0). Using (19.24), it can be written that

B(ϕ1)−B(ϕ2)−B ′(ϕ2)(ϕ1−ϕ2) =
∫ 1

0

[
B ′(ϕ2 + θ(ϕ1 − ϕ2))− B ′(ϕ2)

]
dθ(ϕ1−ϕ2).

This gives the following:

∥∥B(ϕ1)− B(ϕ2)− B ′(ϕ2)(ϕ1 − ϕ2)
∥∥ ≤ L

∫ 1

0
‖ϕ1 − ϕ2‖ ‖ϕ1 − ϕ2‖ θdθ

= L

2
‖ϕ1 − ϕ2‖2 .

Therefore,

∥
∥B(ϕ1)− B(ϕ2)− B ′(ϕ2)(ϕ1 − ϕ2)

∥
∥ ≤ L

2
‖ϕ1 − ϕ2‖2 . (19.25)

Now let us show that operatorA maps from ballU(ϕ0, r0) to itself. The following
inequality is clear:

‖A(ϕ)− ϕ0‖ ≤ ‖A(ϕ)− A(ϕ0)‖ + ‖A(ϕ0)− ϕ0‖
=

∥
∥
∥
[
B ′(ϕ0)

]−1 [
B(ϕ) − B(ϕ0)− B ′(ϕ0)(ϕ − ϕ0)

]∥∥
∥

+
∥
∥
∥
[
B ′(ϕ0)

]−1
B(ϕ0)

∥
∥
∥

≤ m
∥
∥B(ϕ) − B(ϕ0)− B ′(ϕ0)(ϕ − ϕ0)

∥
∥+M, ϕ ∈ U(ϕ0, r0).

Using (19.25), it is written that

‖A(ϕ)− ϕ0‖ ≤ 1

2
mLr2

0 +M.
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Furthermore, taking mLr2
0 − 2r0 + 2M = 0 from the previous inequality, it is

obtained that

‖A(ϕ)− ϕ0‖ ≤ r0.

Hence A(ϕ) ∈ U(ϕ0, r0).

Now let us show that operator A is a contraction mapping. Using (19.24) it can
be written that

A(ϕ1)− A(ϕ2) = ϕ1 − ϕ2 −
[
B ′(ϕ0)

]−1
[B(ϕ1)− B(ϕ2)]

= [
B ′(ϕ0)

]−1 [
B ′(ϕ0)(ϕ1 − ϕ2)− B(ϕ1)+ B(ϕ2)

]

= [
B ′(ϕ0)

]−1
∫ 1

0

[
B ′(ϕ0)− B ′(ϕ2 + θ(ϕ1 − ϕ2))

]
d(θ(ϕ1 − ϕ2)).

Thus, it is obtained that

‖A(ϕ1)− A(ϕ2)‖ ≤ mLr0 ‖ϕ1 − ϕ2‖ .

Now since mLr0 < 1, operator A is a contraction mapping with coefficient
q = 1−√1− 2δ.

Therefore, according to the contraction mapping principle, Eq. (19.23) has a
unique solution ϕ∗ in ball U(ϕ0, r0) and this solution is the limit of the following
iteration:

ϕn+1(z) = A(ϕn)(z), n = 0, 1, . . . ,

and

∥
∥ϕn − ϕ∗

∥
∥ ≤ qn

1− q
‖ϕ1 − ϕ0‖ .

Also, under the hypothesis of the theorem

‖ϕ1 − ϕ0‖ = ‖A(ϕ0)− ϕ0‖ =
∥
∥
∥
[
B ′(ϕ0)

]−1
B(ϕ0)

∥
∥
∥ ≤ M.

Therefore, the proof of Theorem 19.2 is complete.

19.3 Some Integral Operators in Holder Space

In this section, some integral operators, which have broad applications in the theory
of elementary particles and scattering, have been investigated in Holder space. We
show that some important inequalities for the norm of these operators are also
satisfied in Holder space.
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Consider the following nonlinear singular integral equation

ϕ(t) = f (t)
{
ϕ2(t)+ [λ− Sϕ(t)+ μS+ϕ(t)]2

}
, t ∈ [0, 1] . (19.26)

Here,

Sϕ(t) = 1

π

∫ 1

0

ϕ(τ)

τ − t
dτ and S+ϕ(t) = 1

π

∫ 1

0

ϕ(τ)

τ + t
dτ. (19.27)

Nonlinear singular integral Eq. (19.26) has crucial applications in the theory of
elementary particles and scattering [12]. It is important to examine the type of such
equations. In the investigation of the existence of the solution of Eq. (19.26) it is
important to examine the operators (19.27).

In this section, we prove that the operators S and S+ from (19.27) are bounded
in Holder space. Moreover, for these operators, some important inequalities in the
different norms are also given.

Firstly, we will introduce some necessary information required for the proof of
main results.

As usual, throughout the work, C [0, 1] is the set of continuous functions defined
on [0, 1] with maximum norm

‖f ‖∞ = max {|f (t)| : t ∈ [0, 1]} .

Definition 19.2 ([13]) The function

ω(ϕ, x) = sup {|ϕ(t2)− ϕ(t1)| : |t2 − t1| ≤ x} , x ∈ [0,+∞)

is called the modulus of continuity of the bounded function ϕ : R→ R.

Let us recall the properties of the modulus of continuity:

1. The modulus of continuity is a continuous function.
2. The modulus of continuity is a non-decreasing function.
3. For every x1, x2 > 0, ω(x1 + x2) ≤ ω(x1)+ ω(x2).
4. ω(0) = 0.
5. For every x > 0 and α > 0, ω(x)

x
and ω(x)

xα
are decreasing functions.

Definition 19.3 ([58]) Assume ϕ(t) is defined on [0, 1]. If

|ϕ(x2)− ϕ(x1)| ≤ K |x2 − x1|α , 0 < α ≤ 1

for arbitrary points x1, x2 ∈ [0, 1], where K > 0 and α are definite constants, then
ϕ(t) is said to satisfy the Holder condition of order α, or simply condition Hα,
denoted by ϕ ∈ Hα [0, 1].
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The functions in class H possess the following properties:

1. If ϕ ∈ H [0, 1], then ϕ ∈ C [0, 1], i.e., H [0, 1] ⊂ C [0, 1].
2. If ϕ ∈ Hα [0, 1] and 0 < β ≤ α, then ϕ ∈ Hβ [0, 1] i.e., Hα [0, 1] ⊆ Hβ [0, 1] if

0 < β ≤ α.
3. If both ϕ and ψ ∈ Hα [0, 1] , then so do ϕ ± ψ, ϕ.ψ, ϕ/ψ (ψ �= 0 on [0, 1]).
4. If both ϕ and ψ ∈ Hα [0, 1] , then so do ϕ + ψ, ϕ.ψ and

H(ϕ + ψ; α) = H(ϕ; α)+H(ψ; α)

H(ϕ · ψ; α) ≤ H(ϕ; α) ‖ψ‖∞ + ‖ϕ‖∞H(ψ; α).

Let C̊ [0, 1] = {f ∈ C [0, 1] : f (0) = 0 = f (1)} and
H̊α [0, 1] = {ϕ ∈ Hα : ϕ(0) = 0 = ϕ(1)}.

The function spaces Hα [0, 1] and H̊α [0, 1] are Banach spaces with norm

‖ϕ‖α = max(‖ϕ‖∞ ,H(ϕ; α)).

Here,

H(ϕ; α) = sup

{
ω(ϕ, x)

xα
: 0 < x ≤ 1

}
.

Furthermore, throughout the section, we denote Hα(H̊α) instead of Hα [0, 1]
(H̊α [0, 1]), unless stated otherwise.

We denote the norm of function ϕ ∈ H̊α by

‖ϕ‖α,0 = max(‖ϕ‖∞ ,H(ϕ; α)).

The norm of a bounded linear operator " : H̊α → Hα is defined as follows [38]:

‖"‖α = ‖"‖H̊α→Hα
= sup

ϕ �=0

{‖"ϕ‖α
‖ϕ‖α,0

: ϕ ∈ H̊α

}

‖"‖∞ = ‖"‖
H̊α→C[0,1] = sup

ϕ �=0

{‖"ϕ‖∞
‖ϕ‖α,0

: ϕ ∈ H̊α

}
.

Let

J0 =
{
ϕ ∈ C [0, 1] :

∫ 1

0

ω(ϕ, ξ)

ξ
< +∞

}
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and

Z(ω(ϕ, ·), t) =
∫ t

0

ω(ϕ, ξ)

ξ
dξ + t

∫ 1

t

ω(ϕ, ξ)

ξ2 dξ, t ∈ [0, 1] .

Then, the following is provided:

1. If ϕ ∈ H̊α, then ϕ ∈ J0, i.e., H̊α ⊂ J0.
2. Z(ω(ϕ, ·), t) is a non-decreasing function on [0, 1].

19.3.1 Some Properties of the Integral Operator (19.27)

In this section, we provide some properties of the operators S : H̊α → Hα and S+ :
H̊α → Hα , which are defined in formula (19.27).

Theorem 19.3 Let the operators S : H̊α → Hα and S+ : H̊α → Hα be defined as
in formula (19.27) and ϕ ∈ J0. Then, for every x ∈ (0, 1],

ω(Sϕ, x) ≤ c1Z(ω(ϕ, ·), x), (19.28)

ω(S+ϕ, x) ≤ c2Z(ω(ϕ, ·), x). (19.29)

Here, c1 = 1
π
( 67

6 + ln 3), c2 = 2
π

are definite constants.

Proof Let

φ(t) =
{
ϕ(t) for t ∈ [0, 1] ,
0 for t ∈ [−1, 2] / [0, 1]

and

Fφ(t) = 1

π

∫ 2

−1

φ(τ)

τ − t
dτ, t ∈ (−1, 2) .

The operator F : H̊α → Hα can be written as

Fφ(t) = 1

π

∫ 2

−1

φ(τ)− φ(t)

τ − t
dτ + 1

π
φ(t) ln

2− t

1+ t
, t ∈ (−1, 2) .
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Let t1, t2 ∈ [0, 1] , 0 ≤ t1 < t2 ≤ 1 (0 < t2 − t1 ≤ 1) and ε = t2−t1
2 . In that case,

we write

π (Fφ(t2)− Fφ(t1)) =
∫ 2

−1

φ(τ)− φ(t2)

τ − t2
dτ −

∫ 2

−1

φ(τ)− φ(t1)

τ − t1
dτ

+φ(t2) ln
2− t2

1+ t2
− φ(t1) ln

2− t1

1+ t1

=
∫ t2−ε

t1−ε
φ(τ )− φ(t2)

τ − t2
dτ −

∫ t2−ε

t1−ε
φ(τ )− φ(t1)

τ − t1
dτ

+
∫ t1−ε

−1

[
φ(τ)− φ(t2)

τ − t2
− φ(τ)− φ(t1)

τ − t1

]
dτ

+
∫ 2

t2−ε

[
φ(τ)− φ(t2)

τ − t2
− φ(τ)− φ(t1)

τ − t1

]
dτ

+φ(t2) ln
2− t2

1+ t2
− φ(t1) ln

2− t1

1+ t1

Thus,

π (Fφ(t2)− Fφ(t1)) =
∫ t2−ε

t1−ε
φ(τ)− φ(t2)

τ − t2
dτ −

∫ t2−ε

t1−ε
φ(τ)− φ(t1)

τ − t1
dτ

+
∫ t1−ε

−1

[
φ(τ)− φ(t1)

τ − t2
− φ(τ)− φ(t1)

τ − t1
+ φ(t1)− φ(t2)

τ − t2

]
dτ

+
∫ 2

t2−ε

[
φ(τ)− φ(t2)

τ − t2
− φ(τ)− φ(t2)

τ − t1
+ φ(t1)− φ(t2)

τ − t1

]
dτ

+φ(t2) ln
2− t2

1+ t2
− φ(t1) ln

2− t1

1+ t1

=
∫ t2−ε

t1−ε
φ(τ)− φ(t2)

τ − t2
dτ −

∫ t2−ε

t1−ε
φ(τ)− φ(t1)

τ − t1
dτ

+ (t2 − t1)

∫ t1−ε

−1

φ(τ)− φ(t1)

(τ − t1)(τ − t2)
dτ

+ [φ(t1)− φ(t2)]
∫ t1−ε

−1

dτ

τ − t2

+ (t2 − t1)

∫ 2

t2−ε
φ(τ)− φ(t2)

(τ − t1)(τ − t2)
dτ

+ [φ(t1)− φ(t2)]
∫ 2

t2−ε
dτ

τ − t1
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+φ(t2) ln
2− t2

1+ t2
− φ(t1) ln

2− t1

1+ t1

=
∫ t2−ε

t1−ε
φ(τ)− φ(t2)

τ − t2
dτ −

∫ t2−ε

t1−ε
φ(τ)− φ(t1)

τ − t1
dτ

+ (t2 − t1)

∫ t1−ε

−1

φ(τ)− φ(t1)

(τ − t1)(τ − t2)
dτ

+ (t2 − t1)

∫ 2

t2−ε
φ(τ)− φ(t2)

(τ − t1)(τ − t2)
dτ

+ [φ(t1)− φ(t2)] [ln |t1 − ε − t2| − ln(1+ t2)]

+ [φ(t1)− φ(t2)] [ln(2− t1)− ln |t2 − ε − t1|]
+φ(t2) ln

2− t2

1+ t2
− φ(t1) ln

2− t1

1+ t1
.

As a result of simple calculations, we write

[φ(t1)− φ(t2)] [ln |t1 − ε − t2| − ln(1+ t2)]+ φ(t2) ln
2− t2

1+ t2

+ [φ(t1)− φ(t2)] [ln(2− t1)− ln |t2 − ε − t1|]− φ(t1) ln
2− t1

1+ t1

= [φ(t1)− φ(t2)]

[
ln

3

2
(t2 − t1)− ln(1+ t2)

]
− φ(t1) [ln(2− t1)− ln(1 + t1)]

+ [φ(t1)− φ(t2)]

[
ln(2− t1)− ln

t2 − t1

2

]
+ φ(t2) [ln(2 − t2)− ln(1+ t2)] .

That is,

[φ(t1)− φ(t2)] [ln |t1 − ε − t2| − ln(1+ t2)]+ φ(t2) ln
2− t2

1+ t2

+ [φ(t1)− φ(t2)] [ln(2− t1)− ln |t2 − ε − t1|]− φ(t1) ln
2− t1

1+ t1

= [φ(t1)− φ(t2)]

[
ln 3+ ln

t2 − t1

2
− ln(1+ t2)

]

+ [φ(t1)− φ(t2)]

[
ln(2− t1)− ln

t2 − t1

2

]

+φ(t2) [ln(2− t2)− ln(1+ t2)]− φ(t1) [ln(2− t1)− ln(1+ t1)]

= φ(t1) ln
1+ t1

1+ t2
+ φ(t2) ln

2− t2

2− t1
+ [φ(t1)− φ(t2)] ln 3.
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Thus, we obtain

π (Fφ(t2)− Fφ(t1)) =
7∑

ν=1

Iν .

Here,

I1 =
∫ t2−ε

t1−ε
φ(τ )− φ(t2)

τ − t2
dτ,

I2 = −
∫ t2−ε

t1−ε
φ(τ )− φ(t1)

τ − t1
dτ,

I3 = (t2 − t1)

∫ t1−ε

−1

φ(τ)− φ(t1)

(τ − t1)(τ − t2)
dτ,

I4 = (t2 − t1)

∫ 2

t2−ε
φ(τ )− φ(t2)

(τ − t1)(τ − t2)
dτ,

I5 = φ(t1) ln
1+ t1

1+ t2
,

I6 = φ(t2) ln
2− t2

2− t1
,

I7 = (φ(t1)− φ(t2)) ln 3.

Now we consider |Iν | , ν = 1, . . . , 7.
For I1, we write

|I1| ≤
∫ t2−ε

t1−ε
ω(φ, |τ − t2|)
|τ − t2| dτ =

∫ ε+t2−t1

ε

ω(φ, ξ)

ξ
dξ =

∫ t2−t1

0

ω(φ, ξ + ε)

ξ + ε
dξ

≤
∫ t2−t1

0

ω(φ, ξ)

ξ
dξ.

Similarly,

|I2| ≤
∫ t2−ε

t1−ε
ω(φ, |τ − t1|)
|τ − t1| dτ

=
∫ t1

t1−ε
ω(φ, t1 − τ )

t1 − τ
dτ +

∫ t2−ε

t1

ω(φ, τ − t1)

τ − t1
dτ

= 2
∫ ε

0

ω(φ, ξ)

ξ
dξ
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= 2
∫ t2−t1

0

ω(φ, ξ/2)

ξ
dξ

≤ 2
∫ t2−t1

0

ω(φ, ξ)

ξ
dξ.

Also, we can write

|I3| ≤ (t2 − t1)

∫ t1−ε

−1

ω(φ, t1 − τ )

(t1 − τ )(t2 − τ )
dτ

= (t2 − t1)

∫ 1+t1

ε

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ =

3∑

ν=1

I
(ν)
3 .

Here,

I
(1)
3 = (t2 − t1)

∫ t2−t1

ε

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ,

I
(2)
3 = (t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ,

I
(3)
3 = (t2 − t1)

∫ 1+t1

1

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ.

For I (1)3 and I
(2)
3 , we write

I
(1)
3 ≤

∫ t2−t1

ε

ω(φ, ξ)

ξ
dξ =

∫ ε

0

ω(φ, ξ + ε)

ξ + ε
dξ

≤
∫ ε

0

ω(φ, ξ)

ξ
dξ =

∫ t2−t1

0

ω(φ, ξ/2)

ξ
dξ

≤
∫ t2−t1

0

ω(φ, ξ)

ξ
dξ,

I
(2)
3 ≤ (t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ2 dξ.
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For I (3)3 , we have

I
(3)
3 = (t2 − t1)

∫ 1+t1

1

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ = (t2 − t1)

∫ t1

0

ω(φ, ξ + 1)

(ξ + 1)(ξ + 1+ t2 − t1)
dξ

≤ (t2 − t1)

∫ t1

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ.

Here, we need to consider two cases: t1 ≤ t2 − t1 and t1 > t2 − t1.

Case 1 If t1 ≤ t2 − t1, then

I
(3)
3 ≤ (t2 − t1)

∫ t1

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ

≤ (t2 − t1)

∫ t2−t1

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ

≤
∫ t2−t1

0

ω(φ, ξ)

ξ
dξ.

Case 2 If t1 > t2 − t1, then

I
(3)
3 ≤ (t2 − t1)

∫ t1

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ

= (t2 − t1)

∫ t2−t1

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ + (t2 − t1)

∫ t1

t2−t1
ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ.

Furthermore, since we can write

(t2 − t1)

∫ t2−t1

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ ≤

∫ t2−t1

0

ω(φ, ξ)

ξ
dξ,

(t2 − t1)

∫ t1

t2−t1
ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ ≤ (t2 − t1)

∫ t1

t2−t1
ω(φ, ξ)

ξ2 dξ

≤ (t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ2 dξ,

we obtain

I
(3)
3 ≤

∫ t2−t1

0

ω(φ, ξ)

ξ
dξ + (t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ2 dξ.



756 N. Mustafa and V. Nezir

Thus, considering estimates for I (1)3 , I
(2)
3 , and I

(3)
3 , we obtain

|I3| ≤ 2

(∫ t2−t1

0

ω(φ, ξ)

ξ
dξ + (t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ2 dξ

)
.

Now we consider I4. We can write

|I4| ≤ (t2 − t1)

∫ 2

t2−ε
ω(φ, |τ − t2|)
|τ − t1| |τ − t2|dτ =

3∑

ν=1

J
(ν)
4 .

Here,

I
(1)
4 = (t2 − t1)

∫ t2

t2−ε
ω(φ, t2 − τ )

(t2 − τ )(τ − t1)
dτ,

I
(2)
4 = (t2 − t1)

∫ t2+ε

t2

ω(φ, τ − t2)

(τ − t2)(τ − t1)
dτ,

I
(3)
4 = (t2 − t1)

∫ 2

t2+ε
ω(φ, τ − t2)

(τ − t2)(τ − t1)
dτ.

For I (1)4 , we obtain

I
(1)
4 = (t2 − t1)

∫ ε

0

ω(φ, ξ)

ξ(t2 − t1 − ξ)
dξ = (t2 − t1)

∫ t2−t1

ε

ω(φ, t2 − t1 − ξ)

(t2 − t1 − ξ)ξ
dξ

≤ 2
∫ t2−t1

ε

ω(φ, t2 − t1 − ξ)

t2 − t1 − ξ
dξ = 2

∫ ε

0

ω(φ, ξ)

ξ
dξ=2

∫ t2−t1

0

ω(φ, ξ/2)

ξ
dξ

≤ 2
∫ t2−t1

0

ω(φ, ξ)

ξ
dξ.

Similarly,

I
(2)
4 = (t2 − t1)

∫ ε

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ

≤
∫ ε

0

ω(φ, ξ)

ξ
dξ =

∫ t2−t1

0

ω(φ, ξ/2)

ξ
dξ

≤
∫ t2−t1

0

ω(φ, ξ)

ξ
dξ.
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For I (3)4 , we write

I
(3)
4 = (t2 − t1)

∫ 2

t2+ε
ω(φ, τ − t2)

(τ − t2)(τ − t1)
dτ

= (t2 − t1)

∫ 2−t2

ε

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ =

3∑

ν=1

I
(3,ν)
4 .

Here,

I
(3,1)
4 = (t2 − t1)

∫ t2−t1

ε

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ,

I
(3,2)
4 = (t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ,

I
(3,3)
4 = (t2 − t1)

∫ 2−t2

1

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ

For I (3,1)4 and I
(3,2)
4 , we obtain the following estimates

I
(3,1)
4 = (t2 − t1)

∫ t2−t1

ε

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ = (t2 − t1)

∫ ε

0

ω(φ, ξ + ε)

(ξ + ε)(ξ + 3ε)
dξ

≤ t2 − t1

3ε

∫ ε

0

ω(φ, ξ + ε)

ξ + ε
dξ = 2

3

∫ ε

0

ω(φ, ξ + ε)

ξ + ε
dξ ≤ 2

3

∫ ε

0

ω(φ, ξ)

ξ
dξ

= 2

3

∫ t2−t1

0

ω(φ, ξ/2)

ξ
dξ

≤ 2

3

∫ t2−t1

0

ω(φ, ξ)

ξ
dξ,

I
(3,2)
4 = (t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ ≤ (t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ2 dξ.

Now, we consider I (3,3)4 . Firstly, we can write

I
(3,3)
4 = (t2 − t1)

∫ 2−t2

1

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ = (t2 − t1)

∫ 1−t2

0

ω(φ, ξ + 1)

(ξ + 1)(ξ + 1+ t2 − t1)
dξ

≤ (t2 − t1)

∫ 1−t2

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ.

Here, we need to consider two cases: 1− t2 ≤ t2 − t1 and 1− t2 > t2 − t1.
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Case 1 If 1− t2 ≤ t2 − t1, then

I
(3,3)
4 ≤ (t2 − t1)

∫ 1−t2

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ ≤ (t2 − t1)

∫ t2−t1

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ

≤
∫ t2−t1

0

ω(φ, ξ)

ξ
dξ.

Case 2 If 1− t2 > t2 − t1, then

I
(3,3)
4 ≤ (t2 − t1)

∫ t2−t1

0

ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ + (t2 − t1)

∫ 1−t2

t2−t1
ω(φ, ξ)

ξ(ξ + t2 − t1)
dξ

≤
∫ t2−t1

0

ω(φ, ξ)

ξ
dξ + (t2 − t1)

∫ 1−t2

t2−t1
ω(φ, ξ)

ξ2 dξ

≤
∫ t2−t1

0

ω(φ, ξ)

ξ
dξ + (t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ2 dξ.

Thus, using the results for I (3,ν)4 , ν = 1, 2, 3, we obtain the following estimate:

I
(3)
4 ≤ 5

3

∫ t2−t1

0

ω(φ, ξ)

ξ
dξ + 2(t2 − t1)

∫ 1−t2

t2−t1
ω(φ, ξ)

ξ2
dξ.

Using the results for I (ν)4 , ν = 1, 2, 3, we obtain the following estimate:

|I4| ≤ 14

3

∫ t2−t1

0

ω(φ, ξ)

ξ
dξ + 2(t2 − t1)

∫ 1

t2−t1
ω(φ, ξ)

ξ2 dξ.

Now, we consider Iν, ν = 5, 6, 7.

For I5, we write

|I5| = |φ(t1)| (ln(1+ t2)− ln(1+ t1)).

For the right-hand side, we use the mean value theorem on the interval
[1+ t1, 1 + t2] and obtain the following:

|I5| = |φ(t1)| t2 − t1

2+ t1 + θ.(t2 − t1)
= |φ(t1)− φ(−1)| t2 − t1

2+ t1 + θ.(t2 − t1)
, θ ∈ [0, 1] .
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Thus, we obtain the following estimate:

|I5| ≤ ω(φ, 1+ t1)
t2 − t1

2+ t1 + θ · (t2 − t1)
≤ ω(φ, t2 − t1)

t2 − t1
(1 + t1)

t2 − t1

2+ t1 + θ.(t2 − t1)

≤ 2

2+ t1 + θ.(t2 − t1)
ω(φ, t2 − t1) ≤ ω(φ, t2 − t1).

Now, we consider the term I6 = φ(t2) ln 2−t2
2−t1 .

We rewrite the difference ln(2− t1)− ln(2− t2) as follows:

ln(2− t1)− ln(2− t2) = ln(1+ (1− t1))− ln(1+ (1− t2)).

We set 1 − t1 = w1, 1 − t2 = w2 and deduce that w1, w2 ∈ [0, 1] and 0 ≤ w2 <

w1 ≤ 1. Thus, we can write

ln(2− t1)− ln(2− t2) = ln(1+ w1)− ln(1+ w2).

Therefore,

|I6| = |φ(t2)| (ln(1+w1)− ln(1+w2)).

Then, for the function ln(1+w), similarly to the previous term, we apply the mean
value theorem on the interval [1+w2, 1+w1] when θ ∈ [0, 1] .,

|I6| = |φ(t2)| w1 −w2

2+w2 + θ.(w1 −w2)
= |φ(t2)− φ(0)| w1 − w2

2+w2 + θ.(w1 − w2)
.

Hence,

|I6| = |φ(t2)− φ(0)| t2 − t1

2+w2 + θ.(t2 − t1)
≤ t2 − t1

2
ω(φ, t2)

≤ t2 − t1

2

ω(φ, t2 − t1)

t2 − t1
t2 ≤ ω(φ, t2 − t1)

2
.

Also for I7, we write

|I7| = |φ(t1)− φ(t2)| ln 3 ≤ ω(φ, t2 − t1) ln 3.

Hence, we obtain the following estimate:

|I5| + |I6| + |I7| ≤
(

3

2
+ ln 3

)
ω(φ, t2 − t1).
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Furthermore, since we can write

ω(φ, t2 − t1) = ω(φ, t2 − t1)

t2 − t1
(t2 − t1) =

∫ t2−t1

0

ω(φ, t2 − t1)

t2 − t1
dξ,

we obtain

|I5| + |I6| + |I7| ≤
(

3

2
+ ln 3

)∫ t2−t1

0

ω(φ, ξ)

ξ
dξ.

However, since for every x ∈ (0, 1], ω(ϕ, x) = ω(φ, x) and for every t ∈ [0, 1] ,
Fφ(t) = Sϕ(t), using the previous observations, we can deduce that

|Sϕ(t2)− Sϕ(t1)| ≤ c1Z(ω(ϕ, ·), t2 − t1), c1 = 67

6
+ ln 3. (19.30)

Now, we consider the difference S+ϕ(t2)− S+ϕ(t1), which we can write

S+ϕ(t2)− S+ϕ(t1) = 1

π

∫ t2−t1

0

ϕ(τ)

τ + t2
dτ − 1

π

∫ t2−t1

0

ϕ(τ)

τ + t1
dτ

+ t1 − t2

π

∫ 1

t2−t1
ϕ(τ)

(τ + t1)(τ + t2)
dτ.

Since |ϕ(τ)| = |ϕ(τ)− ϕ(0)| ≤ ω(φ, τ), we obtain

|S+ϕ(t2)− S+ϕ(t1)| ≤ 1

π

∫ t2−t1

0

ω(ϕ, τ )

τ + t2
dτ + 1

π

∫ t2−t1

0

ω(ϕ, τ )

τ + t1
dτ

+ t2 − t1

π

∫ 1

t2−t1
ω(ϕ, τ )

(τ + t1)(τ + t2)
dτ

≤ 2

π

∫ t2−t1

0

ω(ϕ, ξ)

ξ
dξ + t2 − t1

π

∫ 1

t2−t1
ω(ϕ, ξ)

ξ2 dξ

≤ 2

π
Z(ω(ϕ, ·), t2 − t1).

Thus

|S+ϕ(t2)− S+ϕ(t1)| ≤ c1Z(ω(ϕ, ·), t2 − t1), c1 = 2

π
. (19.31)

Since the function Z(ω(ϕ, ·), t), t ∈ [0, 1] is non-decreasing, from inequalities
(19.30) and (19.31), we see that inequalities (19.28) and (19.29) exist.

Thus, the proof of Theorem 19.3 is complete.
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Theorem 19.4 Let operators S : H̊α → Hα and S+ : H̊α → Hα be defined as in
formula (19.27) and ϕ ∈ H̊α. Then,

‖S‖α ≤ A(α), ‖S+‖α ≤ B(α), (19.32)

‖S‖∞ ≤ C(α), ‖S+‖∞ ≤ D(α). (19.33)

Here, the constants A(α), B(α), C(α), and D(α) depend only on parameter α.

Proof According to Theorem 19.3, for each ϕ ∈ J0 and x ∈ (0, 1] we write

ω(Sϕ, x) ≤ c1Z(ω(ϕ, ·), x) = c1

(∫ x

0

ω(ϕ, ξ)

ξ
dξ + x

∫ 1

x

ω(ϕ, ξ)

ξ2 dξ

)

= c1

(∫ x

0

ω(ϕ, ξ)

ξα
ξα−1dξ + x

∫ 1

x

ω(ϕ, ξ)

ξα
ξα−2dξ

)

≤ c1H(ϕ, α)

(
xα

α
+ x.

xα−1 − 1

1− α

)

= c1H(ϕ, α)
xα(1− αx1−α)

α(1 − α)

≤ c1

α(1 − α)
xαH(ϕ, α).

Thus,

ω(Sϕ, x) ≤ c1

α(1 − α)
xαH(ϕ, α).

It follows that

H(Sϕ, α) ≤ c1

α(1 − α)
H(ϕ, α) ≤ c1

α(1 − α)
‖ϕ‖α,0 . (19.34)

Similarly

ω(S+ϕ, x) ≤ c2

α(1− α)
xαH(ϕ, α)

and

H(S+ϕ, α) ≤ c2

α(1 − α)
H(ϕ, α) ≤ c2

α(1− α)
‖ϕ‖α,0 . (19.35)
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From the definition of the operator Fφ(t), we write

π |Fφ(t)| ≤
∫ 2

−1

ω(φ, |τ − t|)
|τ − t| dτ + ω(φ, 1 + t) ln 2

=
∫ t

−1

ω(φ, t − τ )

t − τ
dτ +

∫ 2

t

ω(φ, τ − t)

τ − t
dτ + ω(φ, 1 + t) ln 2

=
∫ 1+t

0

ω(φ, ξ)

ξ
dξ +

∫ 2−t

0

ω(φ, ξ)

ξ
dξ + ω(φ, 1 + t) ln 2

≤ H(ϕ, α)

(∫ 1+t

0
ξα−1dξ +

∫ 2−t

0
ξα−1dξ + (1+ t)α ln 2

)

= H(ϕ, α)

(
(1+ t)α + (2− t)α

α
+ (1+ t)α ln 2

)

≤ 2α
(

2

α
+ ln 2

)
H(ϕ, α).

According to this

‖Sϕ‖∞ ≤ 2α

π

(
2

α
+ ln 2

)
H(ϕ, α) ≤ 2α

π

(
2

α
+ ln 2

)
‖ϕ‖α,0 . (19.36)

Hence,

‖S‖∞ ≤ C(α),C(α) = 2α

π

(
2

α
+ ln 2

)
.

From (19.34) and (19.36), we obtain

‖Sϕ‖α ≤ A(α) ‖ϕ‖α,0 , A(α) = max

(
c1

α(1 − α)
,C(α)

)
.

Finally,

‖S‖α ≤ A(α).

Now, we consider ‖S+ϕ‖∞ .

Writing

S+ϕ(t) = 1

π

∫ 1

0

ϕ(τ )

τ + t
dτ = 1

π

∫ 1

0

ϕ(τ )− ϕ(0)

τ + t
dτ = 1

π

∫ 1

0

ϕ(τ )− ϕ(0)

τ α

τα

τ + t
dτ
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we obtain

|S+ϕ(t)| ≤ H(ϕ, α)

π

∫ 1

0

τα

τ + t
dτ ≤ H(ϕ, α)

π

∫ 1

0
τα−1dτ ≤ 1

απ
‖ϕ‖α,0 .

Thus,

‖S+ϕ‖∞ ≤ 1

απ
‖ϕ‖α,0 . (19.37)

Hence,

‖S+‖∞ ≤ D(α),D(α) = 1

απ
.

From (19.35) and (19.37), we obtain

‖S+ϕ‖α ≤ B(α) ‖ϕ‖α,0 , B(α) = max

(
c2

α(1− α)
,D(α)

)
.

Finally,

‖S+‖α ≤ B(α).

Thus, the proof of Theorem 19.4 is complete.

19.3.2 Existence of the Solutions due to Banach Contraction
Principle

Using Theorems 19.3 and 19.4, we can show that the operator

Aϕ(t) = f (t)
{
ϕ2(t)+ [λ− Sϕ(t)+ μ · S+ϕ(t)]2

}
, t ∈ [0, 1]

is a contraction mapping. Furthermore, we can show that the operator A maps a
closed sphere of space into itself. Thus, the conditions of the Banach contraction
mapping principle are satisfied for the operator equation

ϕ(t) = Aϕ(t), t ∈ [0, 1] ;

in other words, this equation has a unique solution.
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19.4 Fixed Point Theory and Approximate Solutions
of Nonlinear Singular Integral Equations

In this section, the existence and uniqueness of the solution of a nonlinear singular
integral equation with Cauchy kernel defined on a closed, simple smooth curve in
the complex plane are researched in Holder space. In addition, an iteration method is
given for the solution of the nonlinear singular integral equation. It is demonstrated
that the iteration which was constructed for approximate solution converges to the
definite solution. To obtain the existence of the solutions, fixed point property is
used.

In nonlinear singular integral equation theory, the solution of an equation is
approached from two directions. The first problem is to prove the existence and
uniqueness of the solution of the equation; the second problem is to find the solution
of the equation (if a solution exists). Sometimes, proving the existence of the
solution of nonlinear singular integral equations is difficult, and it is important to
find the solution. Furthermore, the solution of that equation (if it is exists) may
not necessarily be obtained analytically. In such cases, approximate solutions are
investigated.

Thus, in this section, the solution of a general nonlinear singular integral equation

F(t, ϕ(t), Sγ k(., ϕ(.))(t)) = f (t), t ∈ γ (19.38)

is studied, where γ is a closed, simple smooth curve for the sets D0 and
∼
D given by

D0 = {(t, ϕ) : t ∈ γ, ϕ ∈ C} and
∼
D = {(t, ϕ, s) : t ∈ γ, ϕ, s ∈ C}. When the

functions k : D0 → C, F : ∼D → C and f : γ → C are given functions,

Sγ k(., ϕ(.))(t) = 1

πi

∫

γ

k(τ, ϕ(τ ))

τ − 1
dτ, t ∈ γ

is a nonlinear singular integral equation with a Cauchy kernel respect to unknown
function ϕ : γ → C.

In our study, Eq. (19.38) was investigated by using functional analysis methods
and conditions were found for the existence of the unique solution of the equation
in Holder space (Hα(γ ); ‖ · ‖α). In addition, an iteration was constructed for
approximate solution and was demonstrated to be convergent.

Throughout this section, we will assume that the curve γ ⊂ C is a closed, simple
smooth curve and that � = |γ denotes the length of the curve γ .

Definition 19.4 ([22, 67]) If there exists a constant c > 0 and α ∈ (0, 1] such that

|ϕ(t1)− ϕ(t2)| ≤ c. |t1 − t2|α ,

for ∀t1, t2 ∈ γ , then it is said that the function ϕ : γ → C satisfies the Holder
condition with the exponent α on the curve γ .
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Hα(γ ) denotes the set of all the functions ϕ : γ → C that satisfy the Holder
condition with the exponent α on the curve γ . For ϕ ∈ Hα(γ ), α ∈ (0, 1) the vector
space (Hα(γ );

∥
∥ .

∥
∥
α
) is a Banach space with norm

‖ϕ‖α = ‖ϕ‖hα(γ ) ≡ ‖ϕ‖∞ +H(ϕ; α),

where

‖ϕ‖∞ = max {|ϕ(t)| : t ∈ γ } , H(ϕ; α) = sup

{ |ϕ(t1)− ϕ(t2)|
|t1 − t2|α : t1, t2 ∈ γ, t1 �= t2

}

are as given. Let ϕ ∈ Lp(γ ) = {ϕ : γ → C : ∫
γ
|ϕ(τ)|p |dτ | < +∞ }, p > 1.

In this case, ∀ϕ ∈ Lp(γ ), the vector space(Lp(γ ); ‖.‖p) is a Banach space with
norm

‖ϕ‖p = ‖ϕ‖Lp(γ ) ≡
(∫

γ

|ϕ(τ)|p |dτ |
)1/p

(see [14]).

Theorem 19.5 Given two metric spaces (X, ρ1) and (X, ρ2) let the following
assumptions hold:

1. (X, ρ1) is a compact metric space;
2. Every convergent sequence in X with respect to the ρ1 metric is also convergent

with respect to another metric ρ2;
3. The operator A : X → X is a contraction map with respect to the ρ2 metric.

That is, there exists a number 0 ≤ q1 < 1, such that

ρ2(Ax,Ay) ≤ q.ρ2(x, y), ∀x, y ∈ X

In this case, the operator equation

x = Ax

has a unique solution x∗ ∈ X, and for any initial approximation x0 ∈ X the
sequence (xn) ⊂ X,n = 1, 2, . . . defined as

xn = Axn−1, n = 1, 2, . . .

converges to the solution x∗ with a “velocity”

ρ2(xn, x∗) ≤ qn

1− q
.ρ2(x0, x1).

Proof Proof is well known but if one would like to see [24], can be good source.
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Let us express Eq. (19.38) as

ϕ(t) = Φ(t, ϕ(t), f (t), Sγ k(., ϕ(.))(t)), t ∈ γ (19.39)

where
Φ(t, ϕ(t), f (t), Sγ k(., ϕ(.))(t)) = ϕ(t)−f (t)+F(t, ϕ(t), Sγ k(., ϕ(.))(t)), t ∈

γ is as given.
Equations (19.38) and (19.39) are equivalent. Therefore, we will henceforth

investigate Eq. (19.39) instead of Eq. (19.38).

Definition 19.5 If ∀t1, t2 ∈ γ and ∀(tk, ϕk) ∈ D0,∀(tk, ϕk, fk, sk) ∈ D, k =
1, 2, α ∈ (0, 1) there exist positive numbers m1, m2, n1, n2, n3, n4 which satisfy the
following inequalities

|k(t1, ϕ1)− k(t2, ϕ2)| ≤ m1 |t1 − t2|α +m2 |ϕ1 − ϕ2| (19.40)

and

|Φ(t1, ϕ1, f1, s1)−Φ(t2, ϕ2, f2, s2)| ≤ n1 |t1− t2|α+n2 |ϕ1−ϕ2| (19.41)

+n3 |f1 − f2| + n4 |s1 − s2|

where D = D̃ × C = {(t, ϕ, f, s) : t ∈ γ, ϕ, f, s ∈ C } then we will say that the
functions k(t, ϕ)and Φ(t, ϕ, f, s) are from classes Hα,1(m1,m2;D0) and Hα,1,1,1
(n1, n2, n3, n4;D), respectively.

19.4.1 On the Solution of Nonlinear Singular Integral
Equations

This section addresses the solution of Eq. (19.39). First, let us give some auxiliary
lemmas.

Lemma 19.1 If ϕ ∈ Hα(γ ), α ∈ (0, 1), then for ∀p > 1and ∀ε ∈ (0, �] the
following inequality is true

‖ϕ‖∞ ≤ εα ‖ϕ‖α +
ε−1/p

p
√

2
‖ϕ‖p (19.42)

Proof Let the function ϕ ∈ Hα(γ ), α ∈ (0, 1) be given. For any t, τ∈ γ , let us
denote the shortest arc length between the point’s t and τ on the curve γ with ρ(t, τ ).
In this case, since γ is a simple curve for any point t on γ there exists ε > 0 such
that U(t; ε) = {τ ∈ γ : p(t, τ ) < ε} ⊂ γ .
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Therefore, it can be written that

ϕ(t) = 1

2ε

∫

U(t;ε)
ϕ(τ )dτ + 1

2ε

∫

U(t;ε)
[ϕ(t)− ϕ(τ)] dτ, t ∈ γ.

Accordingly, if we apply the Holder inequality to the first integral on the right-
hand side of the above equality, for any point t on γ . Then we have

|ϕ(t)| ≤ 1

2ε

∫

U(t;ε)
|ϕ(τ)| |dτ | + 1

2ε
H(ϕ; α)

∫

U(t;ε)
|t − τ |α |dτ |

≤ 1

2ε

(∫

U(t;ε)
|ϕ(τ)|p |dτ |

)1/p

.

(∫

U(t;ε)
|dτ |

)1− 1
p + εα.H(ϕ; α)

≤ 1

(2ε)1/p
. ‖ϕ‖p + εα. ‖ϕ‖α , t ∈ γ.

Consequently,

|ϕ(t)| ≤ εα. ‖ϕ‖α +
1

(2ε)1/p . ‖ϕ‖p .

From the last inequality the proof of inequality (19.42) is immediate.

Lemma 19.2 ∀ϕ ∈ Hα(γ ), α ∈ (0, 1) and p > 1, the following inequality is true:

‖ϕ‖∞ ≤ M(α, p). ‖ϕ‖
1

1+αp
α . ‖ϕ‖

αp
1+αp
p . (19.43)

Here,

M (α, p) = max {M1 (α, p) ,M2 (α, p)} ,

M1 (α, p) = (n (α, p))α + (2.n (α, p))−1/p ,

M2 (α, p) =
p
√

2
p
√

2− 1
(n (α, p))α , n (α, p) =

(
α.p.

p
√

2
) −p

1+αp

Proof For convenience, if we take A = ‖ϕ‖∞, B = ‖ϕ‖α , C = ‖ϕ‖p, then from
Lemma 19.1 for ε ∈ (0, �], we can write

A ≤ εα.B + C

21/p ε
−1/p (19.44)
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∀α ∈ (0, 1), p > 1 let us define the functionθ = θ(ε), θ : (0,+∞)→ (0,+∞) as
below

θ (ε) = B.εα + C

21/p ε
−1/p.

It is easy to show that the function θ = θ(ε) takes its smallest value at the point

ε∗ = n(α, p).(C/B)
p

1+αp where n(α, p) = (α.p.
p
√

2)
−p

1+αp .
Therefore, we have

min {θ(ε) : ε ∈ (0,+∞)} = θ(ε∗) = M1(α, p).B
1

1+αp .C
αp

1+αp , (19.45)

where M1(α, p) = (n(α, p))α + (2.n(α, p))−1/p.
If ε∗ ∈ (0, �], then from Eqs. (19.44) and (19.45) we obtain

‖ϕ‖∞ ≤ M1(α, p). ‖ϕ‖
1

1+αp
α . ‖ϕ‖

αp
1+αp
p . (19.46)

If ε∗ > �, and if we take into consideration that

C = ‖ϕ‖p ≤ ‖ϕ‖∞ .
(∫

γ
|dτ |

)1/p = �1/p.A,

then from Eq. (19.44) we have

A ≤ B.�α + �−1/p

p
√

2
.�−1/p.A.

Consequently, we have

A ≤
p
√

2
p
√

2− 1
.B.�α.

Thus, for � < ε∗ we have

A ≤
p
√

2
p
√

2− 1
.B.εα∗ =

p
√

2
p
√

2− 1
. (n(α, p))α .B

1
1+αp .C

αp
1+αp .

Finally, we obtain

‖ϕ‖∞ ≤ M2(α, p). ‖ϕ‖
1

1+αp
α . ‖ϕ‖

αp
1+αp
p , (19.47)

where M2(α, p) =
p√2

p√2−1
. (n(α, p))α .

From inequalities (19.46) and (19.47), Lemma 19.2 is proven.

Lemma 19.3 Let D0r = {(t, ϕ) ∈ D0 : t ∈ γ, |ϕ| ≤ r}, r > 0,
Bα(0; r) =

{
ϕ ∈ Hα(γ ) : ‖ϕ‖α ≤ r

}
, α ∈ (0, 1) and k1(t) = k(t, ϕ(t)), t ∈ γ .
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If ϕ ∈ Bα(0; r) and k ∈ Hα,1(m1,m2;D0r ), for the function k1(t) the following
inequalities are hold

|k1(t)| ≤ m0 +m2.r, t ∈ γ,

|k1(t1)− k1(t2)| ≤ (m1 +m2.r) . |t1 − t2|α , t1, t2 ∈ γ. (19.48)

Here m0 = max {|k(t, 0)| : t ∈ γ }.
Proof ∀t, t1, t2 ∈ γ and α ∈ Bα(0; r), 0 < α < 1, r > 0, in accordance with
(19.40) it can be seen that

|k1(t)| ≤ |k(t, ϕ(t))− k(t, 0)| + |k(t, 0)| ≤ m2 |ϕ(t)| +m0 ≤ m0 +m2.r

and

|k1(t1)− k1(t2)| = |k(t1, ϕ(t1))− k(t2, ϕ(t2))|
≤ m1. |t1 − t2|α +m2. |ϕ(t1)− ϕ(t2)|
≤ (m1 +m2.H (ϕ, α; γ )) . |t1 − t2|α
≤ (

m1 +m2. ‖ϕ‖α
)
. |t1 − t2|α

≤ (m1 +m2.r) . |t1 − t2|α .

Therefore, inequality (19.48) is proven.

Corollary 19.1 If the assumptions of Lemma 19.3 are satisfied, then k1 ∈ Hα(γ )

and for the norm ‖k1‖α the following evaluation is true

‖k1‖α ≤ m0 +m1 + 2.m2.r. (19.49)

Now, for k ∈ Hα,1(m1,m2;D0) and ϕ ∈ Hα(γ ),0 < α < 1, let us the define the
function k̃1 : γ → C as

k̃1(t) = Sγ k(., ϕ(.))(t), t ∈ γ. (19.50)

For the bounded operator Sγ : Hα(γ )→ Hα(γ ), α ∈ (0, 1) (see [22, 24]) let the
norm below is given

∥
∥Sγ

∥
∥
α
= ∥

∥Sγ
∥
∥
Hα(γ )

≡ sup
{∥∥Sγ ϕ

∥
∥
α
: ϕ ∈ Hα(γ ), ‖ϕ‖α ≤ 1

}
. (19.51)

Lemma 19.4 If k ∈ Hα,1(m1,m2;D0r )andϕ ∈ Bα(0; r),0 < α < 1, then the
function k̃1(t) that is defined by formula (19.50) is of the class Hα(γ ) and the
following evaluation for the norm ‖k1‖α is true,

‖k1‖α ≤ (m0 +m1 + 2.m2.r).
∥
∥Sγ

∥
∥
α
= L1. (19.52)
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Proof From Corollary 19.1, the definition of k̃1(t) and the property of the operator
Sγ : Hα(γ ) → Hα(γ ),α ∈ (0, 1) (see [4, 10]), it is obvious that k̃1 ∈ Hα(γ ),
α ∈ (0, 1).

From formula (19.50) and the boundedness of the operator Sγ : Hα(γ ) →
Hα(γ ), α ∈ (0, 1) we have

∥
∥
∥k̃1

∥
∥
∥
α
≤ ‖k(., ϕ(.))‖α .

∥
∥Sγ

∥
∥
α
.

From this inequality and the inequality (19.49), the lemma is proven.

Lemma 19.5 ∀r > 0 and ∀t ∈ γ , let Dr = {(t, ϕ, f, s) : t ∈ γ, |ϕ| ≤ r, |f | ≤ r,

|s| ≤ r} and

Φ̃(t) = Φ(t, ϕ(t), f (t), (Sγ ◦ k1)(t)).

If k ∈ Hα,1(m1,m2;D0r ), Φ ∈ Hα,1,1,1(n1, n2, n3, n4;Dr) and ϕ, f ∈
Bα(0; r),α ∈ (0, 1), then for ∀t, t1, t2 ∈ γ the following inequalities hold

∣∣
∣Φ̃(t)

∣∣
∣ ≤ n0+n2.r+n3.L1,

∣∣
∣Φ̃(t1)− Φ̃(t2)

∣∣
∣ ≤ n1+(n2+n3).r+n4.L1) |t1 − t2|α .

Here, n0 = ‖Φ(., 0, 0, 0)‖∞ .

Proof ∀ϕ, f ∈ Bα(0; r),α ∈ (0, 1) and ∀t, t1, t2 ∈ γ , as required by inequality
(19.41) and Lemma 19.4, it can be easily seen that

∣
∣∣Φ̃(t)

∣
∣∣ ≤ ∣

∣Φ(t, ϕ(t), f (t), (Sγ ◦ k1)(t)− Φ(t, 0, 0, 0)
∣
∣+ |Φ(t, 0, 0, 0)|

≤ n2. |ϕ(t)| + n3. |f (t)| + n4.
∣
∣(Sγ ◦ k1)(t)

∣
∣+ n0

≤ n0 + (n2 + n3).r + n4.L1

and
∣∣
∣Φ̃(t1)− Φ̃(t2)

∣∣
∣ ≤ (n1. |t1 − t2|α + n2. |ϕ(t1)− ϕ(t2)| + n3. |f (t1)− f (t2)|

+ n4.
∣
∣(Sγ ◦ k1)(t1)− (Sγ ◦ k1)(t2)

∣
∣

≤ (n1 + (n2 + n3).r + n4.L1). |t1 − t2|α .

From Lemma 19.5, we can obtain the following conclusions:

Corollary 19.2 If the assumptions of Lemma 19.5 are satisfied, then Φ̃ ∈ Hα(γ )

and, for the norm
∥
∥
∥Φ̃

∥
∥
∥
α

, the following inequality holds

∥
∥
∥Φ̃

∥
∥
∥
α
≤ 2. {max(n0, n1)+ (n2 + n3).r + n4.L1)} = L.
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Corollary 19.3 If the assumptions of Lemma 19.5 are satisfied, then the operator
A that is defined by the following equality

A(ϕ)(t) = Φ(t, ϕ(t), f (t), (Sγ ◦ k1)(t)), t ∈ γ (19.53)

transforms the sphere Bα(0; r) to the sphere Bα(0;L).
Corollary 19.4 If the assumptions of Lemma 19.5 are satisfied and, if L ≤ r , then
the operator A that is defined by formula (19.53) transforms the sphere Bα(0; r) to
itself.

Lemma 19.6 The sphere Bα(0; r),α ∈ (0, 1) is a compact set in the space
(Hα(γ ); ‖ϕ‖∞).

Proof From the definition of the sphere Bα(0; r), ∀α ∈ (0, 1) and ∀ϕ ∈ Bα(0; r),
we have ‖ϕ‖α ≤ r and thus we have ‖ϕ‖∞ ≤ r.

Consequently, it is obvious that the sphere Bα(0; r)is a uniformly bounded set in
the space (Hα(γ ); ‖ϕ‖∞).

Furthermore, for ∀ε > 0 if we takeδ = (ε/r)1/α, then for ∀t1, t2 ∈ γ and
∀ϕ ∈ Bα(0; r) we have

|t1 − t2| < δ ⇒ |ϕ(t1)− ϕ(t2)| ≤ r. |t1 − t2|α < ε.

From here, it is seen that the elements of the sphere Bα(0; r) are continuous at
the same degree. Therefore, by the Arzela–Ascoli compactness theorem the sphere
Bα(0; r) is a compact set of the space (Hα(γ ); ‖ϕ‖∞).

From that point, we yield the conclusion.

From Lemma 19.6 we can state the following corollary:

Corollary 19.5 ∀α ∈ (0, 1), the sphere Bα(0; r) is a complete subspace of the
space (Hα(γ ); ‖ϕ‖∞).

Now, let us define two transformations in the space Hα(γ ). ∀ϕ, ϕ̃ ∈ Hα(γ ),
α ∈ (0, 1),p > 1 let d∞(ϕ, ϕ̃) = ‖ϕ − ϕ̃‖∞ and dp(ϕ, ϕ̃) = ‖ϕ − ϕ̃‖p be as given.

It is obvious that the transformations d∞ : Hα(γ )xHα(γ )→ [0,+∞) and dp :
Hα(γ )xHα(γ )→ [0,+∞) are metrics in the space Hα(γ ), α ∈ (0, 1) and therefore
(Hα(γ ); d∞) and (Hα(γ ); dp) are metric spaces.

Lemma 19.7 ∀α ∈ (0, 1) and p > 1, convergence according to the metrics d∞
and dp is equivalent in the subspace Bα(0; r).
Proof Let ϕ0, ϕn ∈ Bα(0; r), α ∈ (0, 1), n = 1, 2, . . .. In this case, since

dp(ϕ0, ϕn) = ‖ϕ0 − ϕn‖p ≤ �1/p. ‖ϕ0 − ϕn‖∞ = �1/p.d∞(ϕ0, ϕn)

is as given, it is obvious that

lim
n→∞ d∞(ϕ0, ϕn) = 0 ⇒ lim

n→∞ dp(ϕ0, ϕn) = 0.
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Let us see that the converse of this is also true. From inequality (19.43) forϕ0, ϕn ∈
Bα(0; r), we can write

‖ϕ0 − ϕn‖∞ ≤ M(α, p). ‖ϕ0 − ϕn‖
1

1+αp
α . ‖ϕ0 − ϕn‖

αp
1+αp
p

or

d∞(ϕ0, ϕn) ≤ (2r)
1

1+αp .M(α, p).(dp(ϕ0, ϕn))
αp

1+αp .

From here, we have

lim
n→∞ dp(ϕ0, ϕn) = 0 ⇒ lim

n→∞ d∞(ϕ0, ϕn) = 0.

Therefore, lemma is proven.

Now, for the bounded operator Sγ : Lp(γ ) → Lp(γ ), p ∈ (1,+∞) let us assume
that

∥
∥Sγ

∥
∥
p
= ∥

∥Sγ
∥
∥
Lp(γ )

≡ sup
{∥
∥Sγ ϕ

∥
∥
p
: ‖ϕ‖p ≤ 1

}
.

Lemma 19.8 If k ∈ Hα,1(m1,m2;D0r ) and Φ ∈ Hα,1,1,1(n1, n2, n3, n4;D0r ),
α ∈ (0, 1), then the operator A, that is defined by formula (19.53), satisfies the
following inequality:

dp (A(ϕ),A(ϕ̃)) ≤ M3(p).d∞(ϕ, ϕ̃), p > 1, (19.54)

∀ϕ, ϕ̃ ∈ Bα(0; r). Here,M3(p) = (n2 + n4.m2.
∥
∥Sγ

∥
∥
p
).�1/p.

Proof ∀t ∈ γ and ∀ϕ, ϕ̃ ∈ Bα(0; r) from the assumption of the lemma we can
obtain

|A(ϕ)(t)− A(ϕ̃)(t)| =
∣
∣∣
∣
Φ(t, ϕ(t), f (t), Sγ k(., ϕ(.)(t))

−Φ(t, ϕ̃(t), f (t), Sγ k(., ϕ̃(.)(t))

∣
∣∣
∣

≤ n2. |ϕ(t)− ϕ̃(t)| + n4.
∣
∣Sγ k(., ϕ(.))− Sγ k(., ϕ̃(.)))(t)

∣
∣ .

From the last inequality, according to the Minkowski inequality and the assumptions
of the lemma we have

(∫

γ

|A(ϕ)(t)− A(ϕ̃)(t)|p |dt|
)1/p

=
⎛

⎜
⎝
∫

γ

⎡

⎣
n2. |ϕ(t)− ϕ̃(t)|
+n4.

∣
∣
∣∣
Sγ (k(., ϕ(.))

−k(., ϕ̃(.)))(t)
∣
∣
∣∣

⎤

⎦

p

|dt|
⎞

⎟
⎠

1/p

≤ n2. ‖ϕ − ϕ̃‖p
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+n4.
∥
∥Sγ

∥
∥
p
. ‖k(., ϕ(.))− k(., ϕ̃(.))‖p

≤
(
n2 + n4.m2.

∥
∥Sγ

∥
∥
p

)
. ‖ϕ − ϕ̃‖p .

So, we have

dp (A(ϕ),A(ϕ̃)) ≤ (n2 + n4.m2.
∥
∥Sγ

∥
∥
p
). ‖ϕ − ϕ̃‖p .

∀p > 1, since

‖ϕ − ϕ̃‖p ≤ �1/p. ‖ϕ − ϕ̃‖∞
from the last inequality we have

dp (A(ϕ),A(ϕ̃)) ≤ (n2 + n4.m2.
∥
∥Sγ

∥
∥
p
).�1/p.d∞(ϕ, ϕ̃).

Therefore, the lemma is proven.

Lemma 19.9 If k ∈ Hα,1(m1,m2;D0r ) and Φ ∈ Hα,1,1,1(n1, n2, n3, n4;D0r ),
α ∈ (0, 1), then the operator A : Bα(0; r)→ Bα(0; r), α ∈ (0, 1) is a continuous
operator according to the metric d∞.

Proof ∀ϕ0, ϕn ∈ Bα(0; r), α ∈ (0, 1), n = 1, 2, . . ., in accordance with
Lemma 19.2 we can write

‖A(ϕ0)− A(ϕn)‖∞ ≤ M(α, p). ‖A(ϕ0)− A(ϕn)‖
1

1+αp
α . ‖A(ϕ0)− A(ϕn)‖

αp
1+αp
p .

From here, in accordance with inequality (19.54) we obtain:

‖A(ϕ0)− A(ϕn)‖∞ ≤ c.(d∞(ϕ0, ϕn))
αp

1+αp .

Here, the constant c that is defined as

c = c(α, p) = M(α, p). (M3(p))
αp

1+αp . (2.r)
1

1+αp is a positive number independent
of n.

From the last inequality, if lim
n→∞ d∞(ϕ0, ϕn) = 0, then it is understood that

lim
n→∞ d∞(A(ϕ0), A(ϕn)) = 0.

Now, let us present the following corollaries about the solution of the nonlinear
singular integral equation (19.39).

Theorem 19.6 If k ∈ Hα,1(m1,m2;D0r ), Φ ∈ Hα,1,1,1(n1, n2, n3, n4;Dr), α ∈
(0, 1) and L ≤ r , then the nonlinear singular integral equation (19.39) has at least
one solution at the sphere Bα(0; r).
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Proof In accordance with Lemma 19.6, the sphere Bα(0; r) is a compact set of
the space Hα(γ ), α ∈ (0, 1). Moreover, if L ≤ r , then from Corollary 19.4 the
operator A that is defined by formula (19.53) transforms the convex, closed, and
compact sphere Bα(0; r) to itself. Therefore, the operator A is compact in the space
Hα(γ ), α ∈ (0, 1). From another perspective, in accordance with Lemma 19.9,
since the operator A is continuous on the sphereBα(0; r), it is completely continuous
on the sphereBα(0; r). Thus, from well-known Schauder’s fixed point principle the
operator A has a fixed point in the sphereBα(0; r). Consequently, Eq. (19.39) has a
solution in the spaceHα(γ ),α ∈ (0, 1).

Therefore, the theorem is proven.

Theorem 19.6 concern the existence of the solution of the nonlinear singular
integral equation (19.39).

Now, let us investigate the uniqueness of the solution of Eq. (19.39) and the
problem of how an approximation to this solution may be found. The next theorem
concerns this.

Theorem 19.7 If k ∈ Hα,1(m1,m2;D0r ), Φ ∈ Hα,1,1,1(n1, n2, n3, n4;D0r ), α ∈
(0, 1), L ≤ r and Δ = n2 + n4.m2.

∥
∥Sγ

∥
∥
p

< 1, then the nonlinear singular
integral equation (19.39) has only one solution ϕ∗ ∈ Bα(0; r). This solution for
ϕ0 ∈ Bα(0; r)at any starting approximation can be found as a limit of the sequence
(ϕn), n = 1, 2, . . . whose terms are defined as,

ϕn(t) = Φ(t, ϕn−1(t), f (t), Sγ k(., ϕn−1(.))(t), t ∈ γ. (19.55)

Furthermore, for the approximation ϕn the following evaluation is hold

dp(ϕ∗, ϕn) ≤ Δn

1−Δ
.dp(ϕ0, ϕ1), n = 1, 2, . . . (19.56)

Proof We will prove that Eq. (19.39) has a unique solution by using Theorem 19.5.
Let us show that Eq. (19.39) satisfies the assumptions of Theorem 19.5.

If we take Bα(0; r) = X, d∞ = ρ1 and dp = ρ2, then according to Lemma 19.6,
Corollary 19.5, and Lemma 19.7 it is seen that the first and second assumptions of
Theorem 19.5 are hold.

Now, let us show that when Δ < 1, the operator A which is defined by formula
(19.53) is a contraction transformation on the space Bα(0; r),α ∈ (0, 1) according
to the metric dp,p > 1.
∀ϕ1, ϕ2 ∈ Bα(0; r),α ∈ (0, 1) in accordance with Lemma 19.8 we can prove the

following inequality

‖A(ϕ1)− A(ϕ2)‖p ≤
(
n2 + n4.m2.

∥
∥Sγ

∥
∥
p

)
. ‖ϕ1 − ϕ2‖p .

From here, for∀ϕ1, ϕ2 ∈ Bα(0; r),α ∈ (0, 1) we have

dp(A(ϕ1), A(ϕ2)) ≤ Δ.dp(ϕ1, ϕ2). (19.57)
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Thus, when Δ < 1, the operator A is a contraction transformation on the
Bα(0; r), α ∈ (0, 1) according to the metric dp, p > 1. So, according to
Theorem 19.5, the operator equation

ϕ = Aϕ

and consequently Eq. (19.39) has only one solution ϕ∗ ∈ Bα(0; r).
Now, let us show that the solution ϕ∗ ∈ Bα(0; r) is the limit of the sequence

(ϕn), n = 1, 2, . . . whose terms are defined by Eq. (19.55) as

ϕn(t) = Aϕn−1(t), t ∈ γ, n = 1, 2, . . .

for any starting approximation ϕ0 ∈ Bα(0; r).
∀n = 1, 2, . . . from inequality (19.57) we can write

dp(ϕn+1, ϕn) ≤ Δ.dp(ϕn, ϕn−1).

From this inequality, we obtain

dp(ϕn+1, ϕn) ≤ Δn.dp(ϕ0, ϕ1).

Similarly, for ∀m,n (m, n ∈ N ) we can write

dp(ϕm+n, ϕn) ≤ Δn.dp(ϕ0, ϕm).

Furthermore, since

dp(ϕ0, ϕm) ≤ (Δm−1 +Δm−2 + · · · +Δ+ 1).dp(ϕ0, ϕ1)

we obtain

dp(ϕn, ϕn+m) ≤ 1−Δm

1−Δ
Δn.dp(ϕ0, ϕ1). (19.58)

From inequality (19.58), it can be seen that the sequence (ϕn), n = 1, 2, . . .
is a Cauchy sequence according to the metric dp, p > 1. Because the space
(Bα(0; r); dp) is a complete metric space according to Corollary 19.5 and
Lemma 19.7, there exists an element ϕ̃ ∈ Bα(0; r) such that lim

n→∞ ϕn = ϕ̃ or

lim
n→∞ dp(ϕn, ϕ̃) = 0.



776 N. Mustafa and V. Nezir

Now, let us show that ϕ̃ = ϕ∗.
∀n = 1, 2, . . ., since

dp(ϕn+1, A(ϕ̃)) ≤ dp(A(ϕn),A(ϕ̃)) ≤ Δ.dp(ϕn, ϕ̃)

and

lim
n→∞ dp(ϕn, ϕ̃) = 0

we obtain

lim
n→∞ dp(ϕn+1, A(ϕ̃)) = 0.

Thus, from the inequality

dp(ϕ̃, A(ϕ̃)) ≤ dp(ϕ̃, ϕn+1)+ dp(ϕn+1, A(ϕ̃))

we have ϕ̃ = Aϕ̃.
From here, it is seen that ϕ̃ = ϕ∗.
Thus, the unique solution of the operator equation

ϕ(t) = A(ϕ)(t), t ∈ γ

is the limit of the sequence (ϕn) ⊂ Bα(0; r), α ∈ (0, 1), n = 1, 2, . . . whose terms
are defined as

ϕn(t) = Aϕn−1(t), t ∈ γ, n = 1, 2, . . . .

Furthermore, since

lim
m→∞ ϕn+m(t) = ϕ∗(t), lim

m→∞Δm = 0

according to inequality (19.58) it can be seen that inequality (19.56) is hold.
From that point, we yield the conclusion.

From Theorem 19.7 and Lemma 19.7 we will reach the following conclusion:

Corollary 19.6 The sequence (ϕn) ⊂ Bα(0; r), α ∈ (0, 1), n = 1, 2, . . . whose
terms ∀ϕ0 ∈ Bα(0; r), α ∈ (0, 1) are defined as

ϕn(t) = Aϕn−1(t), t ∈ γ, n = 1, 2, . . . .

converges to the unique solution of the nonlinear Cauchy singular integral equation
(19.39) according to the metric d∞.
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19.5 Nonlinear Singular Integro-Differential Equations

In this section, it has been shown with the help of monotonic operators that a
nonlinear singular integro-differential equation has a unique solution.

In the theory of elasticity, in an elastic plane with a linear crack the solution of
the crack broadening is reduced to the solution of

f (ϕ(x))− λ

π

∫ a

−a
ϕ′(t)
t − x

dt = μ, |x| ≤ a, a ≥ 1 (19.59)

type singular integro-differential equation with Cauchy kernel by taking the attrac-
tive forces along the borders of the crack [3]. Here, μ is the force causing the
broadening in the crack, 2a is the width of the crack( in most of the problems a
is taken as a = 1), λ is an arbitrary positive parameter, π is the known constant in
mathematics( in this study π is only used for convenience in computation), f (u) is a
known function which is continuous and positive valued in the domain, and finally
ϕ(x)is the characterization of the broadening in the crack and it is an unknown
function.

In fact, in Eq. (19.59) μ is also an unknown parameter. However, after founding
the solution that satisfies some of the boundary conditions (see (19.60) formula
below) of Eq. (19.59), μ can be found with the help of the ϕ(x) function (see (19.62)
formula below). For this reason we do not take μ as an unknown parameter.

Equation (19.59) is used in several problems of mathematical physics. Mathe-
matical models of several physical phenomena include integro-differential equation
with Cauchy kernel. Furthermore, for several applications in important fields such as
fractal mechanics [7], elastic contact problems [30], radiation and molecular contact
problems of physics [25], (19.59) type equations are being used.

The analytic solution of singular integral equation was given by Muskhelishvili
[4]. Later, several different methods have been used to analytically solve the singular
integral and integro-differential equation with singular kernel [6, 22, 23, 36, 89].
There are several studies on approximate solution of integral and integro-differential
equations [18, 23, 39, 57, 66]. The approximate solution of (19.59) type equation,
known as Prandtl equation in the literature (see [66, p. 109]), can be set up by the
methods given in references [2, 23].

In reference [3], the solution of (19.59) type equation was investigated asymptot-
ically in C(1) [−1, 1] space and the existence of two solutions besides zero solution
was tried to be proven.

In fact, for applications in several fields, problems in which the solution are
reduced to the solution of (19.59) equation (for example, broadening of the crack in
elastic plane) only the existence of the zero solution of the problem is required.

In this section, we prove that there exist a zero solution of the (19.59) type
nonlinear integro-differential equation with Cauchy kernel which satisfies the
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following conditions for every λ > 0

ϕ′(−a) = ϕ′(a) = 0,
ϕ(−a) = ϕ(a) = 0.

(19.60)

or this, the problem of finding the solution of Eq. (19.59) satisfying the (19.60)
conditions is reduced to the solution of nonlinear Fredholm integral equation whose
solution corresponds to this problem. It is shown that Fredholm integral equation
has a single solution.

Throughout the section, unless the opposite is stated, the problem of finding
the solution that satisfies the conditions (19.60) of Eq. (19.59) is called as (19.59)–
(19.60) problem.

With the help of the formula of the inverse transformation of singular integral
equation with Cauchy kernel at finite interval (see [4, 83]) the problem (19.59)–
(19.60) can be reduced to the problem of finding the solution of following singular
integro-differential equation

ϕ′(x) = −
√
a2 − x2

πλ

∫ a

−a
f (ϕ(t))

(t − x)
√
a2 − t2

dt, |x| ≤ a (19.61)

that satisfies the following condition:

1

π

∫ a

−a
f (ϕ(t))√
a2 − t2

dt = μ. (19.62)

If both sides of Eq. (19.61) are integrated over the interval [−a, x] and if the
conditions (19.60) are taken into account, then we have the following nonlinear
Fredholm integral equation

ϕ(x) = 1

πλ

∫ a

−a
K(x, t)f (ϕ(t))dt, |x| ≤ a. (19.63)

Here,

K(x, t) = ln
a. |t − x|

a2 − xt +
√
(a2 − x2).(a2 − t2)

−
(
arcsin x

a
+ π

2

)
t −√a2 − x2

√
a2 − t2

.

From Eq. (19.63), if we take the conditions (19.60) into account, then we have

∫ a

−a
t.f (ϕ(t))√
a2 − t2

dt = 0 (19.64)

Thus, we have reduced the problem (19.59)–(19.60) to the problem of finding
the solution of the Fredholm integral equation (19.63) that satisfies the conditions
(19.62) and (19.64).



19 On Approximate Solutions of Linear and Nonlinear Singular Integral Equations 779

Furthermore, the solution of Eq. (19.63) that satisfies the condition (19.64) is also
a solution of the following Fredholm integral equation

ϕ(x) = 1

πλ

∫ a

−a
M(x, t)f (ϕ(t))dt, |x| ≤ a (19.65)

Here,

M(x, t) = ln
a. |t − x|

a2 − xt +√
(a2 − x2).(a2 − t2)

+
√
a2 − x2

√
a2 − t2

(19.66)

Every solution of Eq. (19.65) is also a solution of Eq. (19.63) that satisfies the
condition (19.64).

Thus, the problem (19.59)–(19.60) now is reduced to the problem of finding the
solution of Eq. (19.65) that satisfies the condition (19.62). Therefore, from now on
we will work on the solution of Eq. (19.65).

Remark 19.1 If it is shown that Eq. (19.65) has a unique solution and if the
parameterμ is found from the formula (19.62), then it is also shown that the problem
(19.59)–(19.60) has a unique solution.

Definition 19.6 [8, see p. 256] Let X be a Banach space and K be a nonempty
convex subset of X. If ∀x ∈ K\ {0}, β.x ∈ K when β ≥ 0 and β.x /∈ K when
β < 0, then K is said to be a conic in X.

In the space X, it is obvious that all conics are partially ordered sets and the partial
order relation “≺” in the conic K can be defined as follows

≺ : for x, y ∈ X x ≺ y ⇔ y − x ∈ K

The relation ≺ satisfies the properties of the relation ≤ in real number set.

Definition 19.7 ([8, see p. 259]) Let X be a Banach space, K is a conic with K ⊂
X, and B is a nonlinear operator that is defined on X. If for every subset M ⊂ X we
have B(M) ⊂ K , then the operator B is said to be nonnegative operator on M and
if ∀x, y ∈ X, Bx ≺ By when x ≺ y, then B is said to be monotone operator.

The class of functions—defined on the interval [−a, a]—that satisfies Hölder
condition with the exponential α ∈ (0, 1] is a Banach space with the norm ‖.‖α =
‖.‖∞ +H(.; α) and we denote this space with Hα [−a, a]. Here,

‖ϕ‖∞ = max {|ϕ(x)| : x ∈ [−a, a]} ,

H(ϕ; α) = sup

{ |ϕ(x1)− ϕ(x2)|
|x1 − x2|α : x1, x2 ∈ [−a, a] , x1 �= x2

}
.
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Further in the study, unless the opposite is stated, we will denote space Hα [−a, a]
with Hα. The set of functions which takes the value of zero at the endpoints of the

interval [−a, a] is a subspace of Hα and we denote this subspace with
◦
H
α

. The subset

of
◦
H
α

which composed of functions that do not take nonnegative values is denoted

by
◦

H+
α .

Let us define a norm ‖.‖α,0 = H(.; α) on the subspace
◦
Hα. It is obvious that the

norm ‖.‖α,0 and the norm ‖.‖α are equivalent at the space
◦
Hα . Thus, (

◦
Hα, ‖.‖α,0) is

a Banach space.

In the space
◦

H+
α let us denote the subset of even functions that are monotone

increasing on the interval [−a, 0] and monotone decreasing on the interval [0, a]
with K+

α .

For every α ∈
(

0, 1
2

)
, K+

α is a conic in the subspace
◦
H
α

. The set of continuous

functions on the interval [−a, a] is a normed space with the norm‖.‖∞. Let us
denote this space with (C [−a, a] , ‖.‖∞) = Y .

The operator Aλ : Y → Y whose domain is the set D(Aλ) = Hα is defined as
follows:

Aλ : ϕ → 1

πλ

∫ a

−a
M(x, t)f (ϕ(t))dt = Aλϕ(x), |x| ≤ a (19.67)

Here, M(x, t) is the function which is given in the Formula (19.66).

Lemma 19.10 If the function f : §+ → §+ is monotone decreasing, continuously

differentiable and
∥
∥f ′

∥
∥∞ < +∞, then for ∀α ∈

(
0, 1

2

)
and ∀λ > 0 we have

Aλ(K
+
α ) ⊂ K+

α .

Proof Let the assumptions of the lemma be satisfied. ∀x ∈ [−a, a] let us take

F(ϕ)(x) = 1

πλ

∫ a

−a
M(x, t)f (ϕ(t))dt, |x| ≤ a, a ≥ 1

as given above.
Firstly, let us see that for ∀ϕ ∈ K+

α we have F(ϕ) ∈ Hα. ∀x ∈ [−a, a]

F ′(ϕ)(x) = −
√
a2 − x2

πλ

∫ a

−a
f (ϕ(t))

(t − x)
√
a2 − t2

dt.

We can write the derivative function F ′(ϕ) as follows

F ′(ϕ)(x) = −
√
a2 − x2

πλ

∫ a

−a
G(t)

(t − x)
√
a2 − t2

dt.
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Here, G(t) = f (ϕ(t)) − f (0). It is obvious that G ∈ ◦
H
α

. Therefore, from the last

statement of F ′(ϕ) it is also obvious that F ′(ϕ) ∈ ◦
H
α

.

Let ‖S‖α,0 be a norm of the following bounded linear operator

Sθ(x) = −
√
a2 − x2

πλ

∫ a

−a
θ(t)

(t − x)
√
a2 − t2

dt : ◦H
α
→ ◦

H
α

then we obtain

∥
∥F ′(ϕ)

∥
∥∞ ≤ 1

|λ|
∥
∥f ′

∥
∥∞ . ‖ϕ‖α,0 . ‖S‖α,0 (19.68)

Thus, F(ϕ) ∈ Hα. Furthermore, since M(−a, t) = M(a, t) = 0 we have

F(ϕ)(−a) = F(ϕ)(a). Therefore, F ∈ ◦
H
α

.

Now, let us show that for every ϕ ∈ K+
α the function F(ϕ) is an even function

which does not take negative values, monotone increasing on the interval [−a, 0]
and monotone decreasing on the interval [0, a].

For every ϕ ∈ K+
α and ∀x ∈ [−a, a] we have

F(ϕ)(−x) = 1
πλ

∫ a

−a M(−x, t)f (ϕ(t))dt = 1
πλ

∫ a

−a M(−x,−t)f (ϕ(t))dt =
1
πλ

∫ a

−a M(x, t)f (ϕ(t))dt = F(ϕ)(x).

∀x ∈ [0, a] we can write

F ′(ϕ)(x) = −2x
√
a2 − x2

πλ

∫ a

−a
f (ϕ(t))− f (ϕ(x))

(t − x)(t + x)
√
a2 − t2

dt. (19.69)

Thus, from the assumptions of the lemma and equality (19.69) for every ϕ ∈ K+
α

and ∀x ∈ [0, a] we have F ′(ϕ)(x) < 0; hence, it is seen that the function F ′(ϕ)(x)
is monotone decreasing on the interval[0, a]. On the other hand, since the function
F(ϕ)(x) is an even function on the interval [−a, a], F(ϕ)(x) is monotone increasing
on the interval [−a, 0].

Furthermore, since F(ϕ)(−a) = F(ϕ)(a) = 0 for ∀x ∈ [−a, a] it is seen that
F(ϕ)(x) ≥ 0.

Thus, it has also proven that for every ϕ ∈ K+
α and ∀λ > 0 we have F(ϕ) ∈ K+

α .
It is proven that Aλ(K

+
α ) ⊂ K+

α . With this Lemma 19.10 has proven.

Let us take K−
α =

{
ϕ ∈ ◦

H
α
: −ϕ ∈ K+

α

}
and in the space

◦
H
α

define the operator Mλ

as below

Mλϕ(x) = 1

πλ

∫ a

−a
M(x, t)f (ϕ(t))dt, |x| ≤ a (19.70)
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Since it can be proven similarly to Lemma 19.10, the next lemma is given without
proof.

Lemma 19.11 ∀α ∈
(

0, 1
2

)
and ∀λ > 0 the operator Mλ satisfies the following

relations

Mλ(K
−
α ) ⊂ K+

α ,

Mλ(K
+
α ) ⊂ K−

α .

Lemma 19.12 Let the function f : §+ → §+ be monotone decreasing, contin-
uously differentiable, and

∥
∥f ′

∥
∥∞ < +∞. If also the derivative function f ′(u) is

monotone decreasing on §+, for ∀α ∈
(

0, 1
2

)
and ∀λ > 0, then the operator Aλ

that is defined by the formula (19.67) is a monotone operator on the conic K+
α .

Proof Let the assumptions of the lemma be satisfied. For any ϕ1, ϕ2 ∈ K+
α and

ϕ1 ≺ ϕ2. With the help of this function let us define the following function

Φ(t) = f (ϕ2(t))− f (ϕ1(t)), t ∈ [−a, a] (19.71)

For every t ∈ [−a, a] it is obvious thatΦ(−t) = Φ(t). Furthermore, from the
assumptions of the lemma it can be seen that Φ(t) ≤ 0.

For every t ∈ [−a, a] and θ ∈ (0, 1) we can write

Φ(t) = f ′ (ϕ1(t)+ θ. [ϕ2(t)− ϕ1(t)]) . [ϕ2(t)− ϕ1(t)] (19.72)

For every θ ∈ (0, 1), H(t) = ϕ1(t) + θ. [ϕ2(t)− ϕ1(t)] is a monotone decreasing
function on the interval [0, a]. Thus, f ′ {ϕ1(t)+ θ. [ϕ2(t)− ϕ1(t)]} is a function of
variable t that does not take positive values and it is monotone decreasing on the
interval [0, a]. Moreover, since K+

α is a conic, for every ϕ1, ϕ2 ∈ K+
α and ϕ1 ≺ ϕ2

we haveϕ2 − ϕ1 ∈ K+
α . Therefore, ϕ2 − ϕ1 is a function that does not take negative

values and it is monotone decreasing on the interval [0, a].
Thus, Φ(t) is a monotone increasing function on the interval [0, a]. Besides,

since Φ(t) is an even function on the interval [−a, a], it is monotone increasing on
the interval [−a, 0]. On the other hand, Φ(−a) = Φ(a) = 0. As a result, we have
the conclusion that −Φ ∈ K+

α and consequently Φ ∈ K−
α . Hence, according to

Lemma 19.11, we have Mλ(Φ) ∈ K+
α . On the other hand, since Mλ(Φ) = Aλ(ϕ2)−

Aλ(ϕ1), we have Aλ(ϕ2)−Aλ(ϕ1) ∈ K+
α and as a result, we have Aλ(ϕ1) ≺ Aλ(ϕ2).

As a consequence, for every ϕ1, ϕ2 ∈ K+
α and ϕ1 ≺ ϕ2 we obtain that Aλ(ϕ1) ≺

Aλ(ϕ2) and this is the evidence of the fact that the operator Aλ is monotone on the
conic K+

α . With this the lemma is proven.

The following lemma can be proven using similar arguments in the proof of
Lemma 19.12.
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Lemma 19.13 Let the function f : §+ → §+ be monotone decreasing, contin-
uously differentiable, and

∥
∥f ′

∥
∥∞ < +∞. If also the derivative function f ′(u) is

monotone decreasing for ∀α ∈
(

0, 1
2

)
, ∀ϕ ∈ K+

α and ∀λ > 0, then the following

two relations are true

Aλ(p.ϕ) ≺ p.Aλ(ϕ), if p ∈ (0, 1),

p.Aλ(ϕ) ≺ Aλ(p.ϕ), if p ∈ [1,+∞) .

19.5.1 On the Solution of Eq. (19.65)

In this section we will give the proof of a theorem which is about the solution of
Eq. (19.65).

Theorem 19.8 If the function f : §+ → §+ is monotone decreasing, continuously
differentiable,

∥
∥f ′

∥
∥∞ < +∞ and the derivative function f ′(u) is monotone

decreasing, then for ∀α ∈
(

0, 1
2

)
and ∀λ > 0 Eq. (19.65) has a unique zero solution

in the conic K+
α .

Proof Let the assumptions of the theorem be satisfied. From the following formula
it can be concluded that ∀λ > 0, the zero function satisfies Eq. (19.65)

∫
M(x, t)dt = (t − x) ln

a. |t − x|
a2 − xt +√

(a2 − x2)(a2 − t2)
.

Now, let us show that ∀λ > 0 the function ϕ(x) = 0 is the unique solution of
Eq. (19.65). We will show this by using contradiction. Let us assume that for one
λ = λ0 > 0 there exists a nonzero ϕ0 ∈ K+

α solution of Eq. (19.65).
If we write Eq. (19.65)

ϕ = Aλ(ϕ)

like as an operator equation and take ν = λ0
2 , then the following equality is satisfied

2.ϕ0 = Aν(ϕ0). (19.73)

If we multiply both sides of the above equality with 2 and take into account the
second relation of the Lemma 19.13, then we have

22.ϕ0 ≺ A2
ν(ϕ0). (19.74)

This relation can be written in inductive form as given below

2n.ϕ0 ≺ An
ν(ϕ0), n = 1, 2, . . . (19.75)
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From relation (19.75) we obtain

lim
n→∞An

ν(ϕ0)(0) = +∞. (19.76)

On the other hand, from the following equality

Aν(ϕ0)(0) = 4

πλ0

∫ a

0

[
ln

a.t

a +√a2 − t2
+ a√

a2 − t2

]
f (Aν(ϕ0)(t))dt,

we have

∣
∣Aν(ϕ0)(0)

∣
∣ ≤ 4a

λ0
.f (0). (19.77)

Since

A2
ν(ϕ0)(0) = Aν (Aν(ϕ0)(0))

= 4

πλ0

∫ a

0

[
ln

a.t

a +√a2 − t2
+ a√

a2 − t2

]
f (Aν(ϕ0)(t))dt,

and for every t ∈ [−a, a] we have

f (Aν(ϕ0)(t) ≤ f (0),

then in this case we obtain

A2
ν(ϕ0)(0) ≤ 4a

λ0
.f (0).

In inductive form it can be easily seen that

An
ν(ϕ0)(0) ≤ 4a

λ0
.f (0), n = 1, 2, . . .

Therefore,
(
An
ν(ϕ0)(0)

)
, n = 1, 2, . . . is a bounded sequence. Thus, what

obtained in the formula (19.76) is a contradiction. This contradiction proves that
Eq. (19.65) has a unique zero solution. With this the theorem is proven.

From this theorem we have the following conclusion.

Corollary 19.7 There is a unique zero solution of the nonlinear singular integro-
differential equation (19.59) which satisfies the conditions (19.60). For the parame-
ter μ, it can be found that μ = f (0) from Eq. (19.62).
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19.6 The Collocation Method for the Solution of Boundary
Integral Equations

This section is devoted to investigating the approximate solutions to a class of
boundary integral equations over a closed, bounded, and smooth surface found
via the collocation method. The section provides sufficient conditions for the
convergence of the method in the space of continuous functions.

Consider the following singular integral equation:

ϕ(x)+
∫

S

φ(x, y)

|x − y|2ϕ(y)dσy = f (x), x ∈ S, (19.78)

where φ(x, y) and f (x) are known continuous functions in their domains of
definition, ϕ(x) is an unknown function, S is a closed, bounded, and smooth surface
in R

3 such that for every x ∈ S, φ(x, x) = 0, and |x − y| denotes the distance
between the points x and y.

Many dispersion and radiation problems are related to finding the solution of
Helmholtz’s equation in an exterior region defined by an equation of the following
form:

Δu+ k2.u = 0, Imk ≥ 0.

Although these problems are typically solved approximately using the finite
element method or the finite difference method, there are well-known difficulties in
applying these methods in the general case. These difficulties have been overcome
by using the integral equation method given by Jones instead (see [12, 27, 33, 34,
92]).

Analytical solutions of equations of the form (19.78) can only be found in certain
special cases. In the absence of analytical solutions, these kinds of equations are
usually solved by approximate methods. In addition, approximate solutions are often
sufficient for a wide range of applications of problems of the form (19.78). From this
point of view, it is important to know how to solve the boundary integral equations
with approximate methods.

This section is an analysis of the collocation method for solving the boundary
integral equation (19.78) over a closed, bounded, and smooth surface in R

3. It gives
sufficient conditions for the convergence of this method in the space of continuous
functions.

We consider with the integral equation stated on a two-dimensional closed,
bounded, and smooth surface in R

3, where the kernel of the corresponding integral
operator is a function of the form φ(x, y)/ |x − y|2 with continuous φ(x, y).

In this study, it is shown that if the modulus of continuity of φ(x, y)satisfies some
minor restrictions, then, in spite of the presence of a high level of singularity along
the diagonal, the integral operator in question is well defined and compact in the
space of continuous functions. In this case, the Fredholm theorem applies, so the
integral equation has a solution for any continuous right-hand side if and only if the
corresponding homogeneous equation does not have a nontrivial solution.
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Then, in the second subsection, we prove the existence and uniqueness of the
solution of the class of boundary integral equations under consideration.

In Sect. 19.6, we show the convergence of the collocation method applied to the
boundary integral equation (19.78).

Firstly, we will introduce some necessary information for proving the main
results.

Let � = diam(S) = sup {|x − y| : x, y ∈ S}, where S is a closed, bounded,
and smooth surface in R

3. We denote the complex numbers by C, the natural
numbers by N, the real numbers by R, the nonnegative real numbers by R+, and
the radius of the standard sphere associated to the surface S by d (see [40]). The
symbol C(X) denotes the space of continuous functions on X. We denote by
‖u‖ = max {|ui | : i = 1, 2, . . . , n} the norm of the vectors (u1, . . . , un), ui ∈ C,
i = 1, 2, . . . , n; n ∈ N, and the normed space is denoted C

n.
Throughout this section, the numbers ci, i = 1, 2, . . . will denote positive real

numbers.

Definition 19.8 The function ωϕ : (0, δ] → R+, which is defined by the following
formula

ωϕ(δ) = δ. sup
{
ω̄ϕ(τ ).τ

−1 : τ ≥ δ
}
, δ ∈ (0, �] ,

is the modulus of continuity of the function ϕ ∈ C(S).
Here, ω̄ϕ (δ) = max {|ϕ(x)− ϕ(y)| : |x − y| ≤ δ, x, y ∈ S} , δ ∈ (0, �].

Definition 19.9 Let us define the following functions for φ ∈ C(S × S) and δ ∈
(0, �] :

ω̄∗φ(δ) = sup {|φ(x, y)| : |x − y| ≤ δ, x, y ∈ S} ,

ω∗φ(δ) = δ. sup
{
ω̄∗φ(τ ).τ−1 : τ ≥ δ

}
,

ω
1,0
φ (δ) = sup

{
max
y∈S

|φ (x1, y)− φ (x2, y)| : |x1 − x2| ≤ δ, x1, x2 ∈ S

}
,

ω
0,1
φ (δ) = sup

{
max
x∈S

|φ (x, y1)− φ (x, y2)| : |y1 − y2| ≤ δ, y1, y2 ∈ S

}
.

Remark 19.2 If a function g : R → R is increasing or decreasing in its domain,
then we denote it by g ↑ or g ↓, respectively.

Definition 19.10 We define the following sets of functions g : (0, �] → R+:

E1 (0, �] =
{
g : g ≥ 0, g ↑, g(δ).δ−1 ↓, g(δ1 + δ2) ≤ g(δ1)+ g(δ2), lim

δ→0
g(δ)) = 0

}
,

E2 (0, �] =
{
g : g ≥ 0, g ↑, lim

δ→0
g(δ) = 0

}
.
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Proposition 19.1 For ϕ ∈ C(S) and φ ∈ C(S × S), we have ωϕ,ω
∗
φ ∈ E1 (0, �]

and ω
1,0
φ , ω

0,1
φ ∈ E2 (0, �] .

Definition 19.11 ([40]) If the surface components Si ⊂ S, i = 1, 2, . . . , n; n ∈ N

satisfy the following conditions, then Si ’s will be called the “regular” elementary
regions of the surface S :
(1) For every i = 1, 2, . . . , n, Si is closed and the interior

◦
Si is not empty.

Furthermore,

mes(Si) = mes(
◦
Si) and for every i, j = 1, 2, . . . n, i �= j Si

⋂
Sj = ∅. Here,

mes(X) is the surface area of X;
(2) S =⋃n

i=1 Siand the Si ’s are connected and have continuous boundaries;
(3) For every i = 1, 2, . . . , n, ∃xi ∈ Si such that

(3.1) for all ri = inf {|xi − x| : x ∈ ∂Si} , Ri = sup {|xi − x| : x ∈ ∂Si} we
have ri ≈ Ri , where ∂X is the boundary of X;

(3.2) for every i = 1, 2, . . . , n, we have Ri ≤ d/2;
(3.3) for every i, j = 1, 2, . . . , n, we have ri ≈ rj ;

(4) h = max {hi : i = 1, 2, . . . , n} , hi = sup {|x − y| : x, y ∈ Si} = diam(Si)

and h→ 0.

Definition 19.12 The points xi ∈ Si, i = 1, 2, . . . , n that satisfy conditions 3.1–3.3
of Definition 19.11 are called the “support points” of Si (see [40]).

Remark 19.3 Actually, the number n (and consequently, the numbers ri and Ri )
in Definition 19.11 depends on h. Therefore, we will sometimes denote it by
n(h)instead of n (for riand Ri we will use ri (h) andRi(h), respectively). It is
also clear that as h → 0, then n(h) → +∞. For every bounded surface, it
can be seen that r(h) ≈ R(h). Here, r(h) = min {ri (h) : i = 1, 2, . . . n} , and
R(h) = max {Ri(h) : i = 1, 2, . . . , n} .
Definition 19.13 ([93]) If

(1) for every u ∈ C(S) when h→ 0, we have
∥
∥qn(h)u

∥
∥→ ‖u‖ and

(2) for u, u1 ∈ C(S) and a, a1 ∈ C when h→ 0, we have

∥
∥∥qn(h)(a.u+ a1.u1)− (a.qn(h)u+ a1.qn(h)u1)

∥
∥∥→ 0,

then the system G = {
qn(h)

}
, n(h) = 1, 2, . . . of operators qn(h) : C(S) → C

n(h)

is called a “connective system” for the space C(S) and C
n(h).

Definition 19.14 ([93]) If
∥
∥un(h) − –qn(h)u

∥
∥ → 0 as h → 0, then we say that the

sequence
{
un(h)

}
of elements Cn(h), n(h) = 0, 1, 2, . . . is G-converging to the u ∈

C(S), and denote this by the shorthand notation un(h)
G−→ u.
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Definition 19.15 ([93]) If every subsequence of the sequence
{
un(h)

}
, un(h) ∈

C
n(h), n(h) = 1, 2, . . . has a G-converging subsequence, then the sequence

{
un(h)

}

is called G-compact.

Proposition 19.2 ([93]) If qn(h) : C(S) → C
n(h), n(h) = 1, 2, . . . is linear and

bounded, then the following two statements are equivalent:

(1) The sequence
{
un(h)

}
is G-compact.

(2) There exists a relatively compact sequence
{
un(h)

} ⊂ C(S) such that a h→ 0,
we have

∥
∥un(h) − qn(h)un(h)

∥
∥→ 0.

Definition 19.16 ([93]) If, as h → 0, we have un(h)
G−→ u and at the same

time Fn(h)un(h)
G−→ Fu, then we will say that the operator sequence Fn(h) ∈

L(Cn(h),Cn(h)) GG-converges to F ∈ L(C(S), C(S)) (where L(X, Y ) denotes the
space of bounded linear operators from the Banach space X to the Banach space Y ),

and we denote this by the shorthand notation: Fn(h) GG−→ F. If the following two
conditions are satisfied:

(1) Fn(h) GG−→ F,

(2) For every un(h) ∈ C
n(h),

∥
∥un(h)

∥
∥ ≤ c1 the sequence

{
Fn(h)un(h)

}
, n(h) =

1, 2, . . . is G -compact, then the sequence
{
Fn(h)

}
that converges to F is said to

be GG-compact. For this, we use the shorthand notationFn(h) GG−→ F -compact.

Proposition 19.3 ([93]) If Fn(h) GG−→ F is compact, then for every n(h) ≥ n0,
there exists a number n0 ∈ N such that dimKer(In(h) + Fn(h)) ≤ dimKer(I + F),
where In(h) : Cn(h) → C

n(h) is the identity operator.

Theorem 19.9 ([93]) Let the following conditions hold:

(1) Fn(h) GG−→ F is compact;
(2) Ker(I + F) = {0};
(3) For every n(h) ≥ n0, there exists a number n0 ∈ N such that In(h) + Fn(h) is a

Fredholm operator with zero indexes;
(4) The sequence

{
vn(h)

} ⊂ C
n(h),n(h) = 1, 2, . . . G-converges to v ∈ C(S).

In this case, the operator equations (I + F)u = v and (In(h) + Fn(h))un(h) =
vn(h) for n(h) ≥ n0 have only the unique solutions u∗ ∈ C(S) and u

n(h)∗ ∈ C
n(h),

respectively, and u
n(h)∗ → u∗ as h → 0. We have the following estimate for the

velocity of convergence:

c2.

∥
∥
∥
(
In(h) + Fn(h)

)
qn(h)u∗ − vn(h)

∥
∥
∥ ≤

∥
∥
∥un(h)∗ − qn(h)u∗

∥
∥
∥

≤ c3.

∥∥
∥
(
In(h) + Fn(h)

)
qn(h)u∗ − vn(h)

∥∥
∥ ,
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where c2 = 1/ sup
{∥∥In(h) + Fn(h)

∥
∥ : n(h) ≥ n0

}
and c3= sup

{∥∥ (In(h)+Fn(h)
)−1

∥
∥ : n(h) ≥ n0

}
.

19.6.1 On the Existence and Uniqueness of the Solution

Before proving the existence and uniqueness of the solution of the singular integral
equation (19.78), we give the following lemma:

Lemma 19.14 If (1)
∫ �

0 ω∗φ(τ ).τ−1dτ < +∞ and (2) as δ→ 0 we have ω1,0
φ (δ) =

o(ln−1 δ), then, for φ ∈ C(S × S),

(Kϕ)(x) =
∫

S

φ(x, y)

|x − y|2 ϕ(y)dσy, x ∈ S (19.79)

is a compact operator in C(S).

Proof For ϕ ∈ C(S), φ ∈ C(S × S) and for everyx ∈ S, the following inequality
can be easily proven:

∣
∣
∣∣

∫

S

φ(x, y)

|x − y|2ϕ(y)dσy
∣
∣
∣∣ ≤ c4. ‖ϕ‖ .

{

1+
∫ d

0

ω∗φ(τ )
τ

dτ

}

. (19.80)

From this inequality, according to the first assumption of the lemma, we can see that
the integral on the right-hand side of (19.79) is converging.

Now, let us show that the operator K that is defined by (19.79) is continuous in
C(S).

Let x1, x2 ∈ S, |x1 − x2| = δ and δ ∈ (0, d/2]. In that case, we can write

(Kϕ)(x1)− (Kϕ)(x2) =
∫

S1

φ(x1, y)

|x1 − y|2 ϕ(y)dσy −
∫

S1

φ(x2, y)

|x2 − y|2 ϕ(y)dσy

+
∫

S2

[
φ
(
x1,y

)

|x1 − y|2 −
φ (x2, y)

|x2 − y|2ϕ (y) dσy

]

where S1 = Sδ/2(x1)
⋃

Sδ/2(x2), S2 = S\S1, Sδ(x) = {y ∈ S : |x − y| ≤ δ}. Let
us denote the integrals on the right-hand side of the above equality by I1, I2, I3,
respectively. It is obvious that

I1 =
∫

S1
1

φ(x1, y)

|x1 − y|2 ϕ(y)dσy +
∫

S2
1

φ(x1, y)

|x1 − y|2ϕ(y)dσy,
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whereSi1 = Sδ/2(xi), i = 1, 2. In a manner similar to the proof of Inequality (19.80),
we can prove the following inequality:

∣
∣
∣I 1

1

∣
∣
∣ =

∣∣
∣
∣
∣

∫

S1
1

φ(x1, y)

|x1 − y|2 ϕ(y)dσy
∣∣
∣
∣
∣
≤ c5. ‖ϕ‖ .

∫ δ

0

ω∗φ(τ )
τ

dτ. (19.81)

Since δ/2 ≤ |x1 − y| ≤ 3δ/2 fory ∈ S2
1 , we have

∣
∣∣I 2

1

∣
∣∣ =

∣
∣
∣∣
∣

∫

S2
1

φ(x1, y)

|x1 − y|2ϕ(y)dσy
∣
∣
∣∣
∣
≤ ‖ϕ‖ .

∫

S2
1

ω∗φ(|x1 − y|)
|x1 − y| dσy ≤ c6. ‖ϕ‖ .ω∗φ(δ).

(19.82)

From inequalities (19.81) and (19.82), it follows that

|I1| ≤ c7. ‖ϕ‖ .
[

ω∗φ (δ)+
∫ δ

0

ω∗φ (τ )
τ

dτ

]

. (19.83)

The following inequality can be proved in a manner similar to Inequality (19.83):

|I2| ≤ c8. ‖ϕ‖ .
[

ω∗φ(δ)+
∫ δ

0

ω∗φ(τ )
τ

dτ

]

. (19.84)

Now, let us evaluate the integral I3. We can write

I3 ker =
∫

S2

φ(x1, y)− φ(x2, y)

|x1 − y|2 ϕ(y)dσy

+
∫

S2

φ(x2, y)

[
1

|x1 − y|2 −
1

|x2 − y|2
]
ϕ(y)dσy.

Let us denote the individual integrals that are on the right-hand side of the above
equality with I 1

3 , I
2
3 , respectively. For I 1

3 , we obtain

∣
∣
∣I 1

3

∣
∣
∣ ≤ ‖ϕ‖ .ω1,0

φ (δ).

∫

S2

dσy

|x1 − y|2 ≤ c9. ‖ϕ‖ .ω1,0
φ (δ). |ln δ| . (19.85)

Since |x1 − y| /3 ≤ |x1 − y| ≤ 3. |x2 − y| for y ∈ S2, we have

∣
∣∣I 2

3

∣
∣∣ ≤ ‖ϕ‖ .

∫

S2

ω∗φ (|x2−y|) |x1−x2| [|x1−y|+ |x2−y|]
|x1−y|2 |x2−y|2 dσy (19.86)

≤ c10. ‖ϕ‖ .δ.
∫ �

δ

ω∗φ (τ )
τ

dτ.
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From (19.85) and (19.86), we have

|I3| ≤ c11. ‖ϕ‖ .
[

ω
1,0
φ (δ) . |ln δ| + δ.

∫ �

δ

ω∗φ (τ )
τ

dτ

]

. (19.87)

From inequalities (19.83), (19.84), (19.87), we obtain

|(Kϕ) (x1)− (Kϕ) (x2)| ≤ c12. ‖ϕ‖ .
[
ω∗φ (δ)+ ω

1,0
φ (δ) . |ln δ|

+ ∫ δ

0
ω∗φ(τ )
τ

dτ + δ.
∫ �

δ

ω∗φ(τ )
τ

dτ

]

From this inequality, according to the assumptions of the lemma and Proposi-
tion 19.1, we can see that K : C(S)→ C(S).

Now, we will prove that the operator K is compact. For any ϕ ∈ C(S), let us
define the following operators:

(Gnϕ) =
∫

S

gn (x, y) ϕ (y) dσy, x ∈ S,

where

gn (x, y) =

⎧
⎪⎨

⎪⎩

0 , |x − y| ≤ 1
2n ,

[2n.|x−y|−1].φ(x,y)
|x−y|2 , 1

2n < |x − y| ≤ 1
n
,

φ(x,y)

|x−y|2 , 1
n
< |x − y| ,

n = 1, 2, . . . .

It is obvious that the operators Gn : C(S) → C(S), n = 1, 2, . . . are compact.
Furthermore, from the inequality

|(Kϕ) (x)− (Gnϕ) (x)| ≤ c13. ‖ϕ‖ .
∫ 1/n

0

ω∗φ (τ )
τ

dτ

it can be seen that the compact operator sequence {Gn} , n = 1, 2, . . . is converging
to the operator K . Therefore, the operator K is also compact (see [35, Theorem 1,
p241]).

This completes the proof of the lemma.

We can write the integral equation (19.78) in the form of an operator equation as
follows:

(I +K)ϕ (x) = f (x) . (19.88)

Here, I is the identity operator of C(S), and K is the operator that is defined by the
Formula (19.79).
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Now, we present a theorem on the existence and uniqueness of the solution to the
operator equation (19.88).

Theorem 19.10 If (1)
∫ �

0
ω∗φ(τ )
τ

dτ < +∞; (2) as δ → 0, we have ω
1,0
φ (δ) =

o
(
ln−1 δ

)
; and (3) Ker (I +K) = {0}, then, for f ∈ C(S) and φ ∈ C(S × S), the

operator equation (19.88) has a unique solution in the space C(S).

Proof To prove the theorem, it is sufficient to show that the linear operator I +
K : C(S) → C(S) is bounded and one to one. The operator K (according to the
Lemma 19.14) is compact. Since every compact operator is bounded, the operator
K is bounded. Thus, the operator I +K is bounded. Furthermore, by condition (3)
of the theorem, the operator I + K is a one-to-one operator. Therefore, according
to the Banach Theorem on the existence of a bounded inverse operator, the operator
I +K has a bounded inverse (see [35, Theorem 3, p. 225]).

This completes the proof of Theorem 19.10.

19.6.2 Collocation Method

Let S be a closed, bounded, and smooth surface in R
3, Si ⊂ S, i = 1, 2, . . . , n(h)

be the “regular” elementary regions of S, and xi, i = 1, 2, . . . , n(h) be the support
points of the Si ’s. We will use the following equality as an estimate of the integral
on the right-hand side of (19.79) at the support points xi ∈ Si :

(
Kn(h)ϕ

)
(xi) =

n(h)∑

j=1,j �=i

φ
(
xi, xj

)

∣∣xi − xj
∣∣2
.ϕ

(
xj

)
.mes

(
Sj

)
. (19.89)

We will refer to Formula (19.89), as the cubature formula of the integral that is on
the right-hand side of (19.79).

Now, we will give a theorem below, which can be proven in a manner similar to
the proof of Theorem 2.2.2 in [31, p. 75], concerns the following difference:

Rn(h) (xi) = (Kϕ) (xi)−
(
Kn(h)ϕ

)
(xi) , i = 1, 2, . . . , n(h).

Theorem 19.11 If S is a closed, bounded, and smooth surface in R
3, then the

following estimate is true:

max
{∣∣
∣Rn(h) (xi)

∣∣
∣ : i = 1, 2, . . . , n(h)

}

≤ c14.

{

ωϕ (R(h))+ ‖ϕ‖
[
ω

0,1
φ (R(h)) |lnR(h)|
+ ∫ R(h)

0
ω∗φ(τ )
τ

dτ + R(h).
∫ R(h)

r(h)

ω∗φ(τ )
τ 2 dτ

]}

.
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For every un(h) ∈ C
n(h),n(h) = 1, 2, . . . let us define the operators Kn(h) :

C
n(h) → C

n(h) via the following formulas:

Kn(h)un(h) =
(
K

n(h)
1 un(h),K

n(h)
2 un(h), . . . ,K

n(h)
n(h) u

n(h)
)
, (19.90)

where

K
n(h)
i un(h) =

n(h)∑

j=1,j �=i

φ
(
xi, xj

)

∣
∣xi − xj

∣
∣2
.uj .mes

(
Sj

)
, i = 1, 2, . . . , n(h).

For u ∈ C(S), we will call the operator pn(h) : C(S) → C
n(h), defined by

pn(h)u = (
u1, u2, . . . , un(h)

) = un(h), ui = u (xi) , i = 1, 2, . . . , n(h), n(h) =
1, 2, . . ., the simple drift operator. It is clear that pn(h) ∈ L(C(S),Cn(h)).

If we use the cubature formula (19.89) instead of the integral in Eq. (19.78)
and substitute the ui’s (ui’s are the approximate values of ϕ (xi)) for the ϕ (xi)’s,
then we obtain the following linear system of equations in the unknowns ui,

i = 1, 2, . . . , n(h):

ui +K
n(h)
i un(h) = fi, i = 1, 2, . . . , n(h), (19.91)

wherefi = f (xi). We can write system (19.91) as an operator equation in the
following form by using the simple drift operatorpn(h):

(
In(h) +Kn(h)

)
un(h) = f n(h). (19.92)

The following theorem posits the existence of a unique solution of the operator
equation (19.92) and the convergence of this solution to the solution of the singular
integral equation (19.78).

Theorem 19.12 Let the following conditions be satisfied:

(1)
∫ �

0
ω∗φ(τ )
τ

dτ <∞;

(2) as δ→ 0, we have ω1,0
φ (δ) = o

(
ln−1 δ

)
and ω

0,1
φ (δ) = o

(
ln−1 δ

)
;

(3) Ker (I +K) = {0} .
In this case, Eqs. (19.78) and (19.92), for every f ∈ C(S), φ ∈ C(S × S), have

only the unique solutions ϕ∗ ∈ C(S) and u
n(h)∗ ∈ C

n(h), respectively, such that
∃n0 ∈,∀n(h) ≥ n0.
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Furthermore, the following estimate is true:

c15.Δn(h) ≤
∥
∥
∥un(h)∗ − pn(h)ϕ∗

∥
∥
∥ ≤ c16.Δn(h), (19.93)

where c15 = 1/ sup
{∥∥In(h) +Kn(h)

∥
∥ : n(h) ≥ n0

}
,

c16 = sup
{∥∥
∥
(
In(h) +Kn(h)

)−1
∥
∥
∥ : n(h) ≥ n0

}
,

Δn(h) = max
{∣∣∣Kn(h)

i

(
pn(h)ϕ∗

)− (Kϕ∗) (xi)
∣
∣∣ : i = 1, 2, . . . , n(h)

}
.

Proof Let P = {
pn(h)

}
, n(h) = 1, 2, . . . be a system of simple drift operators.

From the definition of P , it is obvious that the system P is a connective system for
C(S) and cn(h), n(h) = 1, 2, . . . . From Lemma 19.14, the definition of Kn(h), for

n(h) = 1, 2, . . . , and Theorem 19.11, we can see that Kn(h) GG−→ K .

Now, we show that Kn(h) GG−→ K is compact. For every un(h) ∈ C
n(h), let us take

(
Kn(h)u

n(h)
)
(x) =

n(h)∑

j=1

[∫

Sj

φ (x, y)

|x − y|2 dσy
]

.uj , x ∈ S.

From the assumptions of the theorem (and using Lemma 19.14), it can be easily
shown that the class of

{
Kn(h)u

n(h)
}

is uniformly bounded and equicontinuous.
Thus, according to the Arzela–Ascoli Theorem, the sequence

{
Kn(h)u

n(h)
}

is
relatively compact (see [35, p. 110, Theorem 4]).

Just as in the proof of Theorem 19.11, the following inequality can be proven:∣∣
∣Kn(h)

i un(h) − (
Kn(h)u

n(h)
)
(xi)

∣∣
∣ ≤

≤ c17.

{

ω
0,1
φ (R (h)) . |lnR(h)| +

∫ R(h)

0

ω∗φ (τ)
τ

dτ + R(h).

∫ �

R(h)

ω∗φ (τ)
τ 2 dτ

}

.

∥
∥
∥un(h)

∥
∥
∥ .

From this inequality, it can be seen that
∥
∥Kn(h)un(h) − pn(h)

(
Kn(h)u

n(h)
)∥∥→ 0 as

h→ 0. Thus, from Proposition 19.2 and Definition 19.16,Kn(h) GG−→ K is compact.
From the third assumption of the theorem and Proposition 19.3, ∃n0 ∈n such that,
for everyn(h) ≥ n0, the operator In(h) + Kn(h) is a Fredholm operator with zero
indexes.

Furthermore, from the definition of the system P , it is obvious that f n(h) G−→ f .
Therefore, Theorem 19.12 follows from Theorems 19.9 and 19.10.

Corollary 19.8 If the assumptions of Theorem 19.12 are satisfied, then the solution
of Eq. (19.92) G-converges to the solution of Eq. (19.78).

This corollary is obvious from Estimate (19.93) and Theorem 19.11.
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19.7 On the Approximate Solution of Singular Integral
Equations with Negative Index

This part is devoted to investigating a class of singular integral equations with a
negative index on a closed, simple, and smooth curve. In this section, we propose
the collocation method to solve negative index linear singular integral equations. In
the section, sufficient conditions are given for the convergence of this method in
Hölder space.

The purpose of this study is to examine the collocation method to identify an
approximate solution of the singular integral equations in cases where the index is
negative, on a closed simple smooth curve.

In this section, we investigate the following type of linear singular integral
equation:

Kϕ(t) = K0ϕ(t)+ λ · kϕ(t) = f (t), t ∈ γ. (19.94)

In this equation,

K0ϕ(t) = a(t)ϕ(t)+ b(t)Sϕ(t), Sϕ(t) = 1

πi

∫

γ

ϕ(τ )

τ − t
dτ,

kϕ(t) =
∫

γ

k(t, τ )ϕ(τ )dτ, t ∈ γ,

where γ is a closed, simple, and smooth curve in the complex plane, the functions
a(t), b(t), f (t)and k(t, τ )are known functions in Hölder space, and a2(t)−b2(t) �=
0 in γ , and λ is a complex parameter and ϕ(t) is the unknown function.

In this section, the present studies about the approximate solution of singular
integral equations of type (19.94) are improved in two ways, then the collocation
method is applied for the approximate solution of singular integral equations with
negative index defined on an Alper curve.

First, we introduce some concepts needed to prove our main results.
Then, we show the convergence of the collocation method applied to singular

integral equation (19.94).
Now, we will introduce some necessary information for proving the main results.
We consider a closed, simple, and smooth curve γ with equation t = t (s), 0 ≤

s ≤ � in the complex plane, where s is the arc length calculated from a fixed point
and � = |γ | is the length of the curve γ . The interior and exterior of the curve γ are
denoted by γ+ and γ−, respectively. Let the origin 0 ∈ γ+.

Definition 19.17 ([22, 58, 67]) Let the function θ(s) be the slope angle of the curve
γ at the point t (s) and let ω(θ, x) be the continuity modulo of this function. If the
condition

∫ d1
0 x−1ω(θ, x) |ln x| dx < ∞ is satisfied, then the curve γ is called an

Alper curve.
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We will denote the class of Alper curves with(A). From here on d1, d2, . . . will
denote positive real numbers.

Remark 19.4 It is known that if the function θ(s) in Definition 19.17 satisfies the
condition |θ(s1)− θ(s2)| ≤ d2 · |s1 − s2|α , 0 < α < 1, s1, s2 ∈ [0, �], then the
curve γ is said to be a Lyapunov curve.

Based on Remark 19.4 and Definition 19.17, it is obvious that every Lyapunov curve
is an Alper curve.

Let C(γ ) be the set of continuous functions, which are defined on the curve γ .
For 0 < α < 1, let us take

Hα(γ ) =
{
f ∈ C(γ ) : H(f ;α) = sup

{ |f (t1)− f (t2)|
|t1 − t2|α : t1, t2 ∈ γ, t1 �= t2

}
<∞

}

as given above.
The set Hα(γ ), 0 < α < 1 is a Banach space with the norm ‖f ‖α = ‖f ‖C(γ ) +

H(f ; α) (see [22, 58, 67]). Here, ‖f ‖C(γ ) = max {|f (t)| : t ∈ γ }.
Let H(r)

α (γ ) be the set of functions whose derivative of order r is from the
spaceHα(γ ). Here, r is a nonnegative integer.

Definition 19.18 ([22, 58, 67]) The integer number ν = 1
2π

[
arg(D(t)/C(t))

]
γ

is
called the index of the singular integral equation (19.94) (or of the operator K).
Here, D(t) = a(t)− b(t) andC(t) = a(t)+ b(t).

In the linear singular integral equation theory the following equation

K0ϕ(t) = f (t), t ∈ γ (19.95)

is called the characteristic equation of the singular integral equation (19.94) (see
[7, 18, 22]). The sufficient conditions for the solvability of the singular integral equa-
tion (19.94) can be derived from the existence of the solution of the characteristic
equation.

Let us state the necessary assumptions.

Theorem 19.13 ([22, 58, 67]) Let a, b, f ∈ Hα(γ ), 0 < α < 1, and ν is the index
of the singular integral equation (19.94), and γ is a closed simple smooth curve.

1. If ν > 0 and the condition

∫

γ

τp−1ϕ(τ)dτ = 0, p = 1, 2, . . . , ν (19.96)
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is satisfied, then the characteristic equation (19.95) has the unique solution ϕ(t) =
Rf (t) in the space Hα(γ ), 0 < α < 1. Here,

Rf (t) = Z(t)

D(t)C(t)
K̄0(f (t)/Z(t)), K̄0(f (t)/Z(t)) = a(t)

f (t)

Z(t)
− b(t)S(f (t)/Z(t))

Z(t) = C(t)ψ+(t) = t−νD(t)ψ−(t), ψ±(t) = exp[Γ ±(t)],

Γ (z) = 1

2πi

∫

γ

ln
[
τ−νG(τ)

]

τ − z
dτ, z /∈ γ, G(t) = D(t)/C(t),

Γ ±(t) = Γ (t)± 1

2
ln[t−ν ·G(t)], t ∈ γ. (19.97)

1. If ν = 0, then the characteristic equation (19.95) has the unique solution ϕ(t) =
Rf (t) in Hα(γ ), 0 < α < 1.

2. If ν < 0, then the existence of the unique solution ϕ(t) = Rf (t) in the space
Hα(γ ), 0 < α < 1 depends upon meeting the following condition:

∫

γ

f (τ )

Z(τ)
τp−1dτ = 0, p = 1, 2, . . . ,−ν (19.98)

As always, we will denote the complex numbers by C.

Theorem 19.14 ([63]) Let γ be a close simple smooth curve, a, b, f ∈ Hα(γ ), 0 <

α < 1, and suppose that the index of the singular integral equation (19.94) is
ν < 0. In this case, then the following equation has the unique solution x(t) =
(ϕ, ε1, ε2, . . . , ε−ν)

K0
ε x(t) ≡ K0ϕ(t)+

−ν∑

k=1

εkhk(t) = f (t), t ∈ γ, (19.99)

in the space X = {x = (ϕ, ε1, ε2, . . . , ε−ν) : ϕ ∈ Hα(γ ), εk ∈ C, k = 1, 2, . . . ,
− ν}. Here, the functions hk(t) = b(t) · tk−1, k = 1, 2, . . . ,−ν are linearly
independent solutions of the equation Rh(t) = 0.

Now suppose that the index of the singular integral equation (19.94) is ν < 0. In this
case, the singular integral equation (19.94) together with the following conditions

Lp(f, k, ϕ) ≡
∫

γ

τp−1

Z(τ)

[
f (τ)− λ

∫

γ

k(τ, ξ)ϕ(ξ)dξ

]
dτ = 0, p = 1, 2, . . . ,−ν

(19.100)

is equivalent to the following Fredholm integral equation

Fϕ(t) ≡ ϕ(t)+ λ

∫

γ

F (t, τ )ϕ(τ )dτ = Rf (t), (19.101)



798 N. Mustafa and V. Nezir

in the subspace H̄α(γ ) =
{
f ∈ Hα(γ ) : Lp(f, k, ϕ) = 0, p = 1, 2, . . . ,−ν}, 0 <

α < 1.
Here,

F(t, τ ) = a(t)k(t, τ )

D(t)C(t)
− b(t)Z(t)

D(t)C(t)

1

πi

∫

γ

k(ξ, τ )

Z(ξ)

dξ

ξ − t
.

Really, if (19.94) has a solution ϕ then, due to (19.98) this solution automatically
satisfies (19.100). Then, by (19.97) it follows that ϕ is a solution of (19.101).
Conversely, if ϕ ∈ H̄α(γ ), then ϕ is a solution of (19.94). Hence, problem (19.94)
is equivalent to problem (19.100)–(19.101).

Moreover, the equation

Kεx(t) ≡ Kϕ(t)+
−ν∑

k=1

εkhk(t) = f (t), x(t) = (ϕ(t), ε1, ε2, . . . , ε−ν) (19.102)

is equivalent to the Fredholm integral equation (19.101) together with the following
conditions

−ν∑

k=1

εk

∫

γ

hk(τ )

Z(τ)
τp−1dτ = Lp(f, k, ϕ), p = 1, 2, . . . ,−ν (19.103)

in the subspace

X̄ =
{
x ∈ X : Lp(f, k, ϕ) =∑−ν

k=1 εk
∫
γ

hk(τ )
Z(τ)

τp−1dτ , p = 1, 2, . . . ,−ν
}

.

Really, if x(t) = (ϕ(t), ε1, ε2, . . . , ε−ν) is a solution of (19.102), then (19.103)
is automatically satisfied. Conversely, if x(t) = (ϕ(t), ε1, ε2, . . . , ε−ν) is a solution
of (19.101), then (19.103) is the solution of (19.102).

Remark 19.5 We call Eq. (19.102) the “regularization” of the singular integral
equation (19.94). We also want to indicate that previously in the studies of V. V.
Ivanov (see [26]) the idea of presenting the unknowns ε1, ε2, . . . , ε−ν(regularized
parameter) was given. Afterwards this idea was used by B. I. Musaev (see [63–65]).

We now provide certain pertinent information regarding the Fredholm integral
equation theory. Let us take the following homogeneous Fredholm integral equation
in the space Hβ(γ ), 0 < β < α < 1

Fϕ(t) ≡ ϕ(t)+ λ

∫

γ

F (t, τ )ϕ(τ )dτ = 0. (19.104)

Definition 19.19 ([22, 58]) If, for a value of theλ parameter, there exists a non-zero
solution of the homogeneous Fredholm integral equation (19.104), then we will call
this value of the parameter an eigenvalue of the kernel F(t, τ ) (or, equivalently, of
Eq. (19.104)).
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Theorem 19.15 ([21, 96]) If the parameter λ is not an eigenvalue, or, equivalently,
if the homogeneous Fredholm integral equation (19.104) has only the zero solution,
then the non-homogeneous Fredholm integral equation (19.101) has only one
solution for everyf, k ∈ Hα(γ ), 0 < α < 1.

In this study, we assume that the homogeneous equation (19.104) has only the
zero solution. In this case, according to Theorems 19.13 and 19.14, Eq. (19.102) has
the unique solution x(t) = (ϕ, ε1, ε2, . . . , ε−ν) for every f ∈ Hα(γ ), 0 < α < 1.
Here, the function ϕ(t) == Rf (t)− ∫

γ F̄ (t, τ )Rf (τ)dτ is the solution of the non-

homogeneous Fredholm integral equation (19.101). F̄ (t, τ ) is the resolvent kernel
of Eq. (19.101) and can be clearly expressed with the help of the function F(t, τ )

(see [21]). The components εk, k = 1, 2, . . . ,−ν are found from Eq. (19.103).
We will denote the set of natural numbers by N. For every functionf ∈ C(γ )

and n ∈ N let us define the Lagrange interpolation polynomial using the following
formula (see [79]).

Unf (t) ≡ Un(f, t) =
2n∑

j=1

f (tj )lj (t), t ∈ γ. (19.105)

Here,

lj (t) =
2n∏

k=0,k �=j

t − tk

tj − tk

(
tj

t

)n

, t ∈ γ, tj = φ(wj ),

wj = exp

[
2πi

2n+ 1
(j − k)

]
, i2 = −1, j = 0, 1, . . . , 2n (19.106)

and z = φ(w) is a conform transformation which satisfies the conditions φ(∞) =
∞, φ′(∞) > 0 and transforms the region outside the unit circle centred at the origin
to the region γ−.

Lemma 19.15 (See [80, Corollary 1.2.1]) Letγ ∈ (A), andf ∈ H
(r)
α (γ ), 0 < β <

α < 1 (0 ≤ r- is an integer). In this case, for every n ∈ N, we have

‖f − Unf ‖β ≤ (d3 + d4 ln n)H(f, α)nβ−α−r . (19.107)

The following information is derived from the works of Gabdulkhaev [19–21].
Let X and Y be normed spaces and let Xn and Yn be respective, subspaces of X

and Y with finite dimension n. Let us take the following operator equations:

Kx = y(x ∈ X, y ∈ Y ), (19.108)

Knxn = yn(xn ∈ Xn, yn ∈ Yn). (19.109)
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Here, K and Kn are bounded linear operators from X to Y and from Xn toYn,
respectively.

Theorem 19.16 (See [20, Theorem 7]) Let the following conditions be satisfied:

1. The operator K : X→ Y has a bounded inverse;
2. When n→∞ then ‖Kn −K‖ → 0;
3. dimXn = dimYn <∞ (n = 1, 2, . . .)

Then, for every n ∈ N that satisfies the condition pn ≡
∥
∥K−1

∥
∥ . ‖Kn −K‖ <

1, Eq. (19.109) has only one solution:xn ∈ Xn. Furthermore,

‖xn‖ ≤
∥∥
∥K−1

n

∥∥
∥ . ‖yn‖ ,

∥∥
∥K−1

n

∥∥
∥ ≤

∥∥
∥K−1

∥∥
∥ (1− pn)

−1 .

If the condition
4. when n→∞ then ‖yn − y‖ → 0

is also satisfied, then the solution of Eq. (19.109) convergences to the solution
x ∈ X of Eq. (19.108). In this case, the following is true:

‖xn − x‖ ≤ (‖yn − y‖ + pn ‖y‖)
∥
∥
∥K−1

∥
∥
∥ (1− pn)

−1 .

19.7.1 Collocation Method

Let us take

X = {
x = (ϕ, ε1, ε2, . . . , ε−ν) : ϕ ∈ Hβ(γ ), εk ∈ C, k = 1, 2, . . . ,−ν}

with norm ‖x‖X = ‖ϕ‖β +
∑−ν

k=1 |εk|,0 < β < α < 1.
We can write Eq. (19.102) in the space X, as following linear operator equation

C(t) · Pϕ(t)+D(t) ·Qϕ(t)+ λkϕ(t)+
−ν∑

k=1

εkhk(t) = f (t), (19.110)

where P = 1
2 (I + S) , Q = 1

2 (I − S) are projection operators, I is the identity
operator on Hα(γ ) and S is the linear singular integral operator with Cauchy kernel
that is defined by (19.94).

We will seek the approximate solution of Eq. (19.102) in the form xn−ν = (ϕn−ν,
ε1,n, ε2,n, . . . , ε−ν,n). Here, ϕn−ν = ϕ+n−ν − ϕ−n ,ϕ+n−ν(t) =

∑n−ν
k=0 αkt

k ,ϕ−n (t) =
−∑−1

k=−n αktk .We will find the α−n, . . . , αn−ν , ε1,n, . . . , ε−ν,n unknown values
from the following linear equation system:

Cj ·
n−ν∑

k=0

αkt
k
j +Dj ·

−1∑

k=−n
αkt

k
j + λ

∫

γ

k(tj , τ )ϕn−ν(τ )dτ +
−ν∑

k=1

εkhk(tj ) = fj .

(19.111)
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Here, Cj , Dj , k(tj , τ ), and fj are the respective values of the functions C(t), D(t),
k(t, τ ) and f (t) at the points t = tj . The points tj , j = 0, 1, . . . , 2(n − ν) are the
collocation points that are defined by (19.106).

Let us denote the (2(n− ν)+ 1)-dimensional subspace of X using
Xn−ν = {xn−ν : xn−ν = (ϕn−ν, ε1,n, ε2,n, . . . , ε−ν,n)}.
In the space X, we can write Eq. (19.102) in the form of a linear operator

equation:

K̄νx ≡ ψ−Pϕ + tνψ+Qϕ + λd.kϕ + d ·
−ν∑

k=1

εkhk = g, (19.112)

where the functions ψ± are the functions that are defined in formulas (19.97) and
where x = (ϕ, ε1, ε2, . . . , ε−ν) ∈ X, d = ψ−/C, g = d · f .

Now we offer the following theorem about the existence of the approximate
solution of Eq. (19.102) and the convergence of the collocation method.

Theorem 19.17 Let γ ∈ (A). The functions a(t), b(t), f (t), and k(t, τ ) (for every
two variable) are of the class H(r)

α (γ ), 0 < α < 1 (0 ≤ r- is an integer). For every
t ∈ γ , a2(t)− b2(t) �= 0 and index ν < 0.

If the homogeneous Fredholm integral equation (19.104) has only the zero
solution, then, for every n > n0 = min {n ∈ N:δn,ν ≡ (d5 + d6 ln (n− ν))

(n− ν)β−α−r · ∥∥K−1
ν

∥
∥ < 1 },0 < β < α < 1 the linear equation system (19.111)

has the unique solution
(
α∗−n, . . . , α∗n−ν , ε∗1,n, . . . , ε∗−ν,n

)
in the space Xn−ν . The

approximate solution x∗n−v =
(
ϕ∗n−v, ε∗1,n, . . . , ε∗−ν,n

)
of Eq. (19.102) converges to

the unique solution x∗ = (
ϕ∗, ε∗1, . . . , ε∗−ν

)
, and the following estimate is correct:

∥
∥x∗n−ν − x∗

∥
∥
X
≤ (d7 + d8 ln (n− ν)) (n− ν)β−α−r , 0 < β < α (19.113)

where ϕ∗n−ν(t) =
∑n−ν

k=−n α∗k tk .

Proof Let the index of the singular integral equation (19.102) be ν < 0. Let us take
the collocation points tj ∈ γ, j = 0, 1, . . . , 2 (n− ν) as the points that are defined
in formula (19.106), and the operator Un−ν as a Lagrange interpolation operator of
the degree n−ν that is defined in formula (19.105). Let us write the linear equations
system (19.111) in the space Xn−ν as the following linear operator equation:

K̄n,νxn−ν ≡ Un−ν
(
ψ−Pϕn−ν + tνψ+Qϕn−ν + λd.kϕn−ν

)

+ Un−ν

(

d ·
−ν∑

k=1

εk,nhk

)

= Un−νg ≡ gn−ν . (19.114)
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From (19.112) and (19.114), we can write:

K̄n,νxn−ν − K̄νxn−ν =
(
ψ−n−ν − ψ−

) · Pϕn−ν +
(
ψ+n−ν − ψ+

) · tνQϕn−ν

− ψ−n−ν · Pϕn−ν − tνψ+n−ν ·Qϕn−ν + Un−ν
(
ψ− · Pϕn−ν

+ tνψ+n−ν ·Qϕn−ν
)− λ · (Un−ν (d · kϕn−ν)− d · kϕn−ν)

−
−ν∑

k=1

εk,n (Un−ν (d · hk)− d · hk) . (19.115)

Here, ψn−ν = ψ+n−ν − ψ−n−ν (ψ+n−ν (t) =
∑n−ν

k=0 βkt
k, ψ−n−ν (t) =

∑−1
k=−n+ν βktk)

is the best approximation to the function ψ = ψ+ − ψ− with rational polynomial
whose degree does not exceed n − ν. Since ψ−n−ν · Pϕn−ν + tνψ+n−ν ·Qϕn−ν is a
rational polynomial whose degree does not exceed n−ν and Un−ν(ψ−n−ν ·Pϕn−ν +
tνψ+n−ν · Qϕn−ν ) = ψ−n−ν · Pϕn−ν + tνψ+n−ν · Qϕn−ν , we can write (19.115) as
follows:

K̄n,νxn−ν − K̄νxn−ν = (I − Un−ν)
[(
ψ−n−ν − ψ−

)
Pϕn−ν + tν

· (ψ+n−ν − ψ+
)
Qϕn−ν

]−λ · [Un−ν (d ·kϕn−ν)−d · kϕn−ν]

−
−ν∑

k=1

εk,n [Un−ν (d · hk)− d · hk] . (19.116)

From the boundedness of the operators P and Q in Hölder space (see [22, 58, 67])
and the following estimates (see [80, Corollary 1.1.5]):

∥
∥ψ+n−ν − ψ+

∥
∥
β
≤ d9 (n− ν)β−α−r ,

∥
∥ψ−n−ν − ψ−

∥
∥
β
≤ d10 (n− ν)β−α−r ,

we have

∥
∥(ψ−n−ν − ψ−

)
Pϕn−ν + tν · (ψ+n−ν − ψ+

)
Qϕn−ν

∥
∥
β
≤ d11 (n− ν)β−α−r · ‖ϕn−ν‖β .

(19.117)

In this case, from the following inequality (see [79, Lemma 2.1])

‖Un−ν‖β ≤ d12 + d13 ln (n− ν)

and, from (19.117), it is clear that the following estimate is correct:

∥∥(I − Un−ν)
[(
ψ−n−ν − ψ−

)
Pϕn−ν + tν · (ψ+n−ν − ψ+

)
Qϕn−ν

]∥∥
β

≤ (d14 + d15 ln (n− ν)) (n− ν)β−α−r · ‖ϕn−ν‖β . (19.118)
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From the Lemma 19.15 we can write

‖Un−ν(d.kϕn−ν)− d.kϕn−ν‖β ≤ (d16 + d17 ln(n− ν))(n− ν)β−α−r . ‖ϕn−ν‖β .
(19.119)

In the evaluation of the last term of equality (19.116), the following estimate is
evident:

∥
∥
∥
∥
∥

−ν∑

k=1

εk,n [Un−ν (d · hk)− d · hk]

∥
∥
∥
∥
∥
β

≤
−ν∑

k=11

∣
∣εk,n

∣
∣ ‖Un−ν (d · hk)− d · hk‖β

(19.120)

Thus, from the evaluations (19.118)–(19.120) we obtain the following estimate of
the difference K̄n,νxn−ν − K̄νxn−ν :

∥
∥K̄n,νxn−ν − K̄νxn−ν

∥
∥
β
≤ (d18 + d19 ln (n− ν)) (n− ν)β−α−r · ‖xn−ν‖X .

(19.121)

Besides, according to Lemma 19.15, the following evaluation is true:

‖gn−ν − g‖β ≤ (d20 + d21 ln (n− ν)) (n− ν)β−α−r . (19.122)

From the assumptions of the theorem, the operator equation (19.112) has only one
solution. Consequently, exists the bounded linear inverse operator:K̄−1

ν : Hβ(γ )→
X,0 < β < α. Thus, from the estimates (19.121) and (19.122) (according to
the Theorem 19.16), there exists a unique solution x∗n−ν ∈ Xn−ν for operator
equation (19.114) that satisfies the following condition for every n ∈ N:

n > n0 = min {n ∈ N : δn,ν ≡
∥
∥∥K̄−1

ν

∥
∥∥ (d22 + d23 ln (n− ν)) (n− ν)β−α−r < 1 } .

In this case, for the x∗ ∈ X to be the solution of operator equation (19.112), then

∥
∥x∗n−ν − x∗

∥
∥
X
≤ (d24 + d25 ln (n− ν)) (n− ν)β−α−r . (19.123)

Therefore, based on the conclusions that we have obtained so far, we can state
that linear equation system (19.111) has a unique solution. Therefore, Eq. (19.102)
can be solved approximately. Furthermore, the solution of Eq. (19.114) is the
approximate solution of Eq. (19.102). Besides, the unique solution of Eq. (19.112)
is the unique solution of Eq. (19.102).

Theorem 19.17 is thus completely proved.

From Theorem 19.17, proof of the following theorem is obvious.
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Theorem 19.18 Let us suppose that the parameter λ is not an eigenvalue of the
homogeneous Fredholm integral equation (19.104) and let ν < 0. Let the unique
solution of Eq. (19.102) be x∗ = (

ϕ∗, ε∗1, ε∗2, . . . , ε∗−ν
)

and the approximate solution

be x∗n−ν =
(
ϕ∗n−ν, ε∗1,n, ε∗2,n, . . . , ε∗−ν,n

)
. The necessary and sufficient condition for

the function ϕ∗ to be the unique solution of the singular integral equation (19.94) is
lim
n→∞ ε∗k,n = 0 for every k = 1, 2, . . . ,−ν.

19.7.2 Conclusions for Sect. 19.7

In Sect. 19.7, we apply the collocation method not to the singular integral equation
(19.94), but to the “regularization” of Eq. (19.94). We proposed the collocation
method in the context of the singular integral equation (19.102) and we derived
sufficient conditions for the convergence of this method.

As evidenced by Theorem 19.18, if the vector x∗ = (
ϕ∗, ε∗1, ε∗2 , . . . , ε∗−ν

)
is the

unique solution of Eq. (19.102) and the vector x∗n−ν =
(
ϕ∗n−ν, ε∗1,n, ε∗2,n, . . . , ε∗−ν,n

)

is the approximate solution, and if condition (19.100) is satisfied for the function ϕ∗,
then ε∗1 = ε∗2 = · · · = ε∗−ν = 0. Therefore, the function ϕ∗ is the unique solution
of singular integral equation (19.94). In this case, for sufficiently large values of
the natural number n, we can take the rational polynomial ϕ∗n−ν as the approximate
solution of the singular integral equation (19.94). Furthermore, from Theorem 19.17
the following estimate is true:

∥
∥ϕ∗n−ν − ϕ∗

∥
∥
β
≤ (d24 + d25 ln (n− ν)) (n− ν)β−α−r , 0 < β < α < 1.
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Chapter 20
On Difference Double Sequences
and Their Applications

L. Nayak and P. Baliarsingh

20.1 Introduction

Due to its numerous applications in the diverse fields of pure and applied sciences,
recently the theory of difference single sequences has been attracted by several
researchers. The applications of difference sequences become more apparent in
linear algebra, approximation theory, and calculus in both classical and fractional
cases. The idea of difference single sequence spaces based on order one has been
introduced by Kızmaz [1] in the year 1981. Further, Et and Çolak [2] extended
this idea to the case of an integral order in 1995. In order to stimulate its utility
and applications, several extensions of this idea have been provided by many
prominent authors. Quite recently, the notion of difference sequence spaces based
on fractional order was provided by Baliarsingh [3] (see also [4–7]) and the idea
was directly being used to study the fractional derivatives of certain functions and
their geometrical interpretations.

As it is quite natural to extend the above idea to the case of double sequences,
the primary aim of this work is to define certain related difference double sequence
spaces and apply the idea in the study of approximations of partial derivatives based
on both integer and fractional orders. Several prominent authors such as Gökhan
and Çolak [8] studied certain paranormed double sequences and determined their
alpha-, beta- , gamma-duals. Mursaleen [9] and Mursaleen and Edely [10] have
studied the almost strong regularity of matrices for double sequences and Altay and
Başar [11] have studied some double sequences involving sequence of partial sums
of the double series. For more detail on the domain of difference sequence spaces
and summability theory, one may refer to [12–28].
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20.2 Definitions

Let N0 be the set of all nonnegative integers. Then for a double sequence x of real or
complex numbers, we write x = (xm,n), m, n ∈ N0 whose elements are represented
by an infinite two-dimensional matrix.

The double sequence x = (xm,n) is said to be convergent in the Pringsheim’s
sense (or p-convergent) if for every ε > 0, there exists a positive integer N(ε) and
L ∈ C, the complex field such that

|xm,n − L| < ε, for all m,n ≥ N0(ε).

More briefly, we write

p − lim
m,n→∞,∞ xm,n = L,

where m and n are tending to infinity independent of each other (see [12]). The limit
L is called the double limit or Pringsheim limit of the sequence x = (xm,n).

A double sequence x = (xm,n) is called bounded if there exists a positive number
M such that |xm,n| < M for all m,n ∈ N0, i.e.,

‖x‖(∞,2) = sup
m,n
|xm,n| <∞. (20.1)

Let � be the space of all real double sequences of the form (xm,n). By Mu, Cp, and
Cp0, we denote the spaces of all bounded, convergent, and null double sequences (in
Pringsheim’s sense), respectively. Then,

Mu := {x ∈ � : sup
m,n
|xm,n| <∞},

Cp := {x ∈ � : p − lim
m,n
|xm,n − l| = 0, for some l ∈ C},

Cp0 := {x ∈ � : p − lim
m,n
|xm,n| = 0}.

In particular cases, it is known that Mu does not include Cp; therefore, we write
Cbp for the space of all double sequences which are bounded and convergent, and
explicitly, we write Cbp =Mu ∩ Cp.

Let A = (a
ij
m,n),m, n, i, j ∈ N0, be a four-dimensional matrix and the A-

transform of a double sequence x = (xm,n) is denoted by Ax = y, provided the
following double summation exists for all i, j ∈ N0 :

(Ax)i,j := yi,j =
∞∑

m=0

∞∑

n=0

a
ij
m,nxm,n.
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A four-dimensional matrix A = (a
ij
m,n) is said to be conservative if x ∈ Cbp

implies Ax ∈ Cp and we write A ∈ (Cbp, Cp). Equivalently, A is conservative if and
only if

p − lim
i,j

a
ij
m,n = zm,n for each m,n; (20.2)

p − lim
i,j

∑

m

∑

n

a
ij
m,n = z; (20.3)

p − lim
i,j

∑

m

|aijm,n| = zn for each n; (20.4)

p − lim
i,j

∑

n

|aijm,n| = zm for each m; (20.5)

p − lim
i,j

∑

m

∑

n

|aijm,n| exists; (20.6)

‖A‖ = sup
i,j

∑

m

∑

n

|aijm,n| <∞. (20.7)

If A is conservative and p − limAx = p − lim x for each x ∈ Cbp, then A is
called RH -regular (see [5, 6]). Also, it can be shown that A is RH -regular if and
only if the conditions (20.2) with zm,n = 0, (20.3) with z = 1, (20.4) and (20.5)
with zn = zm = 0, and the conditions (20.6) and (20.7) hold.

The α-dual, β(p)-dual with respect to p-convergence, and γ -duals of the double
sequence space X are, respectively, defined by

Xα =
⎧
⎨

⎩
(ai,j ) ∈ � :

∞∑

i=0

∞∑

j=0

|ai,j xi,j | <∞, for all (xm,n) ∈ X

⎫
⎬

⎭
,

Xβ(p) =
⎧
⎨

⎩
(ai,j ) ∈ � : p − lim

∞∑

i=0

∞∑

j=0

ai,j xi,j exists, for all (xm,n) ∈ X

⎫
⎬

⎭
,

Xγ =
⎧
⎨

⎩
(ai,j ) ∈ � : sup

m,n

∣
∣
∣
∣∣
∣

m∑

i=0

n∑

j=0

ai,j xi,j

∣
∣
∣
∣∣
∣
<∞, for all (xm,n) ∈ X

⎫
⎬

⎭
.

For single sequences, Xα,Xβ , and Xγ are called Köthe Toeplitz dual of X. For
double sequences, -alpha and -gamma dual of X are unique, whereas -beta dual is
different with respect to the type of convergence.
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For a positive proper fraction ᾱ and x ∈ �, recently, the double difference
sequence of fractional order ᾱ has been defined by Baliarsingh [29] as

(2�
(ᾱ)x)m,n = 2�

(ᾱ)xm,n =
∞∑

i=0

∞∑

j=0

(−1)i+j �(ᾱ + 1)2

i!j !�(ᾱ − i + 1)�(ᾱ − j + 1)
xm−i,n−j ,

(20.8)

(2�
ᾱx)m,n = 2�

ᾱxm,n =
∞∑

i=0

∞∑

j=0

(−1)i+j �(ᾱ + 1)2

i!j !�(ᾱ − i + 1)�(ᾱ − j + 1)
xm+i,n+j ,

(20.9)

where �(ᾱ + 1) denotes Euler gamma function of a real number ᾱ, which can be
defined by an improper integral

�(ᾱ) =
∫ ∞

0
e−t t ᾱ−1dt.

It is noted that ᾱ /∈ {0,−1,−2,−3 . . . } and �(ᾱ + 1) = ᾱ�(ᾱ).
The infinite series defined in (20.8) and (20.9) can be reduced to finite series

if ᾱ is a positive integer. An infinite series has no meaning unless it converges;
therefore, throughout the text it is being presumed that the series (20.8) and (20.9)
are convergent (in Pringsheim’s sense), and xi,j = 0 for any negative integers of
i, j . It is well-known that convergent double series (in Pringsheim’s sense) may not
be bounded.

In particular, for ᾱ = 1, we have

2�
1xm,n = xm,n − xm,n+1 − xm+1,n + xm+1,n+1.

For any positive reals α, β and h, k ∈ (0, 1], we define the generalized difference
double sequence based on arbitrary orders as

(2�
(α,β)
h,k x)m,n =

∞∑

i=0

∞∑

j=0

(−α)i(−β)j
i!j !hαkβ xm−i,n−j ; (m, n ∈ N), (20.10)

where (α)k denotes the Pochhammer symbol or shifted factorial of a real number
α which is being defined using familiar Euler gamma function as

(α)k =
⎧
⎨

⎩

1, (α = 0 or k = 0)
�(α + k)

�(α)
= α(α + 1)(α + 2) . . . (α + k − 1), (k ∈ N).
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It is noted that if α = β, then the above difference sequence generalizes the
sequence defined in (20.8). The related double difference operator 2�

(α,β)
h,k includes

the following known operators in different special cases:

Special cases of the operator 2�
(α,β)
h,k

α β h k Operators cf.

1 1 1 1 2�
(1) [1, 30]

r r 1 1 2�
(r) [31]

α α 1 1 2�
(α) [29]

1 0 1 1 � [14]

m 0 1 1 �(m) [2, 32]

α 0 1 1 �(α) [3]

α 0 h 1 �
a,b,b
h [7]

Now we discuss the convergence of the double sequence defined in (20.8) by
providing the following numerical examples:

Example Suppose the double sequence x = (xm,n) is defined by xm,n = m + n,
then it is trivial to calculate that

(2�
(α,β)

h,k x)m,n =
∞∑

i=0

∞∑

j=0

(−α)i(−β)j
i!j !hαkβ (m− i + n− j)

= (m+ n)

∞∑

i=0

∞∑

j=0

(−α)i(−β)j
i!j !hαkβ 1−

∞∑

i=0

∞∑

j=0

(−α)i(−β)j
i!j !hαkβ j

−
∞∑

i=0

∞∑

j=0

(−α)i(−β)j
i!j !hαkβ i = (m+ n)

hαkβ

∞∑

i=0

∞∑

j=0

(−α)i(−β)j
i!j !

+ β

hαkβ

∞∑

i=0

∞∑

j=1

(−α)i(−β + 1)j
i!(j − 1)!

+ α

hαkβ

∞∑

i=1

∞∑

j=0

(−α + 1)i(−β)j
(i − 1)!j !

→ 0, as m,n→∞ andα, β ≥ 1.

It has been observed that the difference double sequence 2�
(α,β)
h,k x is convergent (in

Pringsheim’s sense) if the primary double sequence x = (xm,n) is of order (m+n)γ ,
where γ ≤ max(1, α + β). For details we have the following examples:
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Example Consider a double sequence x = (xm,n), defined by xm,n = (m+n)3, and
choose α = 2 and β = 3. Then it is clear that 3 = γ ≤ max(1, α + β) = 5 and

(2�
(2,3)
h,k x)m,n =

2∑

i=0

3∑

j=0

(−2)i(−3)j
i!j !h2k3 ((m− i + n− j)3)

=
2∑

i=0

(−2)i
i!h2k3 ((m− i + n)3 − 3(m− i + n− 1)3

+ 3(m− i + n− 2)3 − (m− i + n− 3)3

=
2∑

i=0

(−2)i
i!h2k3 6 → 0, as m,n→∞.

On the contrary, if we take α = 1/2 and β = 2, then 3 = γ > max(1, α+β) = 5/2
and observe that

(2�
(1/2,2)
h,k x)m,n =

∞∑

i=0

2∑

j=0

(−1/2)i(−2)j
i!j !h1/2k2 ((m− i + n− j)3)

=
∞∑

i=0

(−1/2)i
i!h1/2k2

((m− i + n)3 − 2(m− i + n− 1)3

+ (m− i + n− 2)3)

= 6
∞∑

i=0

(−1/2)i
i!h1/2k2 (m+ n− i − 1)

= 6(m+ n)

∞∑

i=0

(−1/2)i
i!h1/2k2 1− 6

∞∑

i=0

(−1/2)i
i!h1/2k2 i − 6

∞∑

i=0

(−1/2)i
i!h1/2k2 1

= 3
∞∑

i=1

(1/2)i
(i − 1)!h1/2k2 →∞, as m,n→∞.

Let α = r1 and β = r2 be two nonnegative integers. Then Eq. (20.10) can be
rewritten as

(2�
(r1,r2)
h,k x)m,n =

r1∑

i=0

r2∑

j=0

(−r1)i (−r2)j

i!j !hr1kr2
xm−i,n−j

= 1

hr1kr2

r1∑

i=0

r2∑

j=0

(
r1

i

)(
r2

j

)
xm−i,n−j ; (m, n ∈ N). (20.11)
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The double sequence based on inverse of double difference operator used
in (20.10) is given by

(2�
(−α,−β)
h,k x)m,n =

∞∑

i=0

∞∑

j=0

(α)i(β)j

i!j !h−αk−β xm−i,n−j ; (m, n ∈ N). (20.12)

Now, we quote some results related to the double difference operator 2�
(α,β)
h,k .

Theorem 20.2.1 If α and β are two nonnegative reals and h, k → 1, then the
double difference operators 2�

(α,β)
h,k : � → � is a linear operator over the field R

and ‖2�
(α,β)

h,k ‖ = 2α+β
hαkβ

, where ‖A‖ is the supremum over �1 norms of the rows of
the matrix A.

Proof Proof is trivial, hence omitted. ��
Theorem 20.2.2 Let r1, r2, p1, and p2 be any positive integers and x = (xmn) ∈
Cbp. Then

(i) (2�
(r1,r2)
h,k 2�

(p1,p2)
h,k x)m,n=(2�

(r1,r2)
h,k 2�

(p1,p2)
h,k x)m,n = (2�

(r1+p1,r1+p2)
h,k x)m,n,

(ii) (2�
(r1,r2)
h,k 2�

(−r1,−r2)
h,k x)m,n=(2�

(−r1,−r2)
h,k 2�

(r1,r2)
h,k x)m,n = xm,n.

Proof Proof is a straightforward calculation, hence omitted. ��

20.3 Related Difference Double Sequence Spaces

In the present section, using (20.11), we define the related difference double
sequence spaces based on the difference operator 2�

(r1,r2)
h,k . Let r1, r2 be any two

positive integers and h, k → 1. Then we define

�2∞(2�
(r1,r2)
h,k ) = {(xm,n) ∈ � : sup

m,n
|(2�

(r1,r2)
h,k x)m,n| <∞},

c2(2�
(r1,r2)
h,k ) = {(xm,n) ∈ � : p − lim

m,n
|(2�

(r1,r2)
h,k x)m,n − l| = 0, for some l ∈ R},

c2
0(2�

(r1,r2)
h,k ) = {(xm,n) ∈ � : p − lim

m,n
|(2�

(r1,r2)
h,k x)m,n)| = 0}

and

c2
b(2�

(r1,r2)
h,k ) = c2(2�

(r1,r2)
h,k ) ∩ �2∞(2�

(r1,r2)
h,k ).
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It is observed that the above double sequence spaces are being derived by taking

2�
(r1,r2)
h,k -transform of the double sequence x = (xm,n), i.e.,

ym,n = (2�
(r1,r2)
h,k x)m,n =

m∑

i=m−r1

n∑

j=n−r2

(−1)m+n−(i+j)

hr1kr2

(
r1

m− i

)(
r2

n− j

)
xi,j

=
m∑

i=m−r1

n∑

j=n−r2

((δ
r1,r2
h,k )m,n)j,ixi,j ,

where 2�
(r1,r2)
h,k = ((δ

r1,r2
h,k )m,n)j,i represents a four-dimensional matrix, defined by

((δ
r1,r2
h,k )m,n)j,i

=

⎧
⎪⎨

⎪⎩

(−1)m+n−(i+j)

hr1kr2

(
r1

m− i

)(
r2

n− j

)
, (m− r1 ≤ j ≤ m), (n− r2 ≤ i ≤ n)

0, ( otherwise).

In fact, each element of the four-dimensional matrix ((δ
r1,r2
h,k )m,n) is being expressed

by the corresponding two-dimensional matrix (δ
r1,r2
h,k )m,n, (m, n ∈ N0), namely

(δ
r1,r2
h,k )0,0 = 1

hr1kr2

⎛

⎜⎜
⎜
⎝

1 0 0 . . .

0 0 0 . . .

0 0 0 . . .
...
...
...
. . .

⎞

⎟⎟
⎟
⎠
, (δ

r1,r2
h,k )1,0 = 1

hr1kr2

⎛

⎜⎜
⎜
⎝

−r1 1 0 . . .

0 0 0 . . .

0 0 0 . . .
...

...
...
. . .

⎞

⎟⎟
⎟
⎠
,

(δ
r1,r2
h,k )1,1 = 1

hr1kr2

⎛

⎜
⎜
⎜
⎝

r1r2 −r2 0 . . .

−r1 1 0 . . .

0 0 0 . . .
...

...
...
. . .

⎞

⎟
⎟
⎟
⎠
, (δ

r1,r2
h,k )0,1 = 1

hr1kr2

⎛

⎜
⎜
⎜
⎝

−r2 0 0 . . .

1 0 0 . . .

0 0 0 . . .
...

...
...
. . .

⎞

⎟
⎟
⎟
⎠
,

(δ
r1,r2
h,k )2,0 = 1

hr1kr2

⎛

⎜
⎜
⎜
⎝

r1(r1−1)
2 −r1 1 . . .

0 0 0 . . .

0 0 0 . . .
...

...
...
. . .

⎞

⎟
⎟
⎟
⎠
,

(δ
r1,r2
h,k )0,2 = 1

hr1kr2

⎛

⎜
⎜
⎜
⎝

r2(r2−1)
2 0 0 . . .

−r2 0 0 . . .

1 0 0 . . .
...

...
...
. . .

⎞

⎟
⎟
⎟
⎠
,
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(δ
r1,r2
h,k )2,1 = 1

hr1kr2

⎛

⎜
⎜
⎜
⎝

−r2r1(r1−1)
2 r2r1 −r2 . . .

r1(r1−1)
2 −r1 1 . . .

0 0 0 . . .
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠
,

(δ
r1,r2
h,k )2,2 = 1

hr1kr2

⎛

⎜
⎜
⎜
⎝

(
r1
2

)(
r2
2

) −r1
(
r2
2

) (
r2
2

)
. . .

−r2
(
r1
2

)
r2r1 −r2 . . .(

r1
2

) −r1 1 . . .
...

...
...

. . .

⎞

⎟
⎟
⎟
⎠
.

Theorem 20.3.1 The sets �2∞(2�
(r1,r2)
h,k ), c2

0(2�
(r1,r2)
h,k ), and c2

b(2�
(r1,r2)
h,k ) are com-

plete normed linear spaces with the norm defined by

‖x‖
2�

(r1,r2)
h,k

=
r1∑

i=0

r2∑

j=0

|xi,j | + sup
m,n

∣
∣
∣(2�

(r1,r2)
h,k x)m,n

∣
∣
∣ . (20.13)

Proof It is noted that the expression defined in (20.13) without the first term is not

a norm. This is due to the fact that if supm,n

∣
∣
∣(2�

(r1,r2)
h,k x)m,n

∣
∣
∣ = 0, then it does not

imply that x = θ , where θ = (θm,n) with θm,n = 0 for all m,n ∈ N0. In fact, the
first term suggests that ‖x‖

2�
(r1,r2)
h,k

= 0 if and only if x = θ . ��
Theorem 20.3.2 If r1 and r2 are two positive integers, then

(i) Mu ⊆ �2∞(2�
(r1,r2)
h,k ),

(ii) Cp0 ⊆ c2
0(2�

(r1,r2)
h,k ),

(iii) Cbp ⊆ c2
b(2�

(r1,r2)
h,k ),

(iv) c2
0(2�

(r1,r2)
h,k ) ⊆ �2∞(2�

(r1,r2)
h,k ) ⊆ c2

b(2�
(r1,r2)
h,k ).

Proof We provide the proof of (i) only and those of others may require similar
arguments. Let x ∈ Mu, then there exists a constant M , such that supm,n

∣
∣xm,n

∣
∣ ≤

M. Therefore, one may directly deduce that
∣∣
∣
∣
∣
∣

m∑

i=m−r1

n∑

j=n−r2

(−1)m+n−(i+j)

hr1kr2

(
r1

m− i

)(
r2

n− j

)
xi,j

∣∣
∣
∣
∣
∣

≤ 1

hr1kr2

m∑

i=m−r1

n∑

j=n−r2

∣
∣∣
∣

(
r1

m− i

)(
r2

n− j

)
xi,j

∣
∣∣
∣

≤ M

hr1kr2

m∑

i=m−r1

n∑

j=n−r2

∣
∣
∣
∣

(
r1

m− i

)(
r2

n− j

)∣∣
∣
∣

≤ M

hr1kr2
2r1+r2 <∞.
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Thus, supm,n
∣
∣2�(r1,r2)x)m,n

∣
∣ <∞,

This implies that Mu ⊂ �2∞(2�
(r1,r2)
h,k ) and equality holds if r1 = r2 = 0. ��

Theorem 20.3.3 If e2 = (e2
m,n), with em,n = 1 for all m,n ∈ N0 and

supm,n |(2�
(−r1,−r2)e2)m,n| <∞, then

(i) �2∞(2�
(r1,r2)
h,k ) ⊆Mu,

(ii) c2
0(2�

(r1,r2)
h,k ) ⊆ Cp0,

(iii) c2
b(2�

(r1,r2)
h,k ) ⊆ Cbp.

Proof We prove the theorem for the space �2∞(2�
(r1,r2)
h,k ). Let x ∈ �2∞(2�

(r1,r2)
h,k ),

then there exists a constant K , such that

sup
m,n

∣∣
∣
∣
∣
∣

m∑

i=m−r1

n∑

j=n−r2

(−1)m+n−(i+j)

hr1kr2

(
r1

m− i

)(
r2

n− j

)
xi,j

∣∣
∣
∣
∣
∣
≤ K.

But, it is known that

|xm,n| = |2�(−r1,−r2)((2�
(r1,r2)
h,k x)m,n)|

=
∣
∣
∣
∣∣
∣
2�

(−r1,−r2)

⎛

⎝
m∑

i=m−r1

n∑

j=n−r2

(−1)m+n−(i+j)

hr1kr2

(
r1

m− i

)(
r2

n− j

)
xi,j

⎞

⎠

∣
∣
∣
∣∣
∣

≤ K sup
m,n

∣
∣
∣
∣
(

2�
(−r1,−r2)e2

)

m,n

∣
∣
∣
∣ <∞,

Therefore, �2∞(2�
(r1,r2)
h,k ) ⊂ Mu, and equality holds for r1 = r2 = 0. This

concludes the proof. ��
Theorem 20.3.4 The sets �2∞(2�

(r1,r2)
h,k ), c2

0(2�
(r1,r2)
h,k ), and c2

b(2�
(r1,r2)
h,k ) are linear

isomorphic to the spaces Mu, Cp0, and Cbp, respectively.

Proof We prove the theorem for the space �2∞(2�
(r1,r2)
h,k ). We show that there

exists a linear bijection between the spaces �2∞(2�
(r1,r2)
h,k ) and Mu. Using the

notation (20.10), consider the mapping T : �2∞(2�
(r1,r2)
h,k ) → Mu defined by

x �→ y = T x. Then, clearly T is linear and injective. Let y ∈ Mu and define
a sequence x = (xm,n) via ym,n as

xm,n =
∞∑

i=0

∞∑

j=0

(r1)i(r2)j

i!j !h−r1k−r2
ym−i,n−j . (20.14)
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Then, we have

sup
m,n
|(2�

(r1,r2)
h,k x)m,n)| = sup

m,n

∣
∣ym,n

∣
∣ <∞.

Thus, we obtain that x ∈ �2∞(2�
(r1,r2)
h,k ) and therefore T is surjective. This completes

the proof. ��
Now, we discuss the α-dual, β(p)-dual with respect to p-convergence, and γ -duals
of the proposed difference double sequence spaces.

Theorem 20.3.5 The alpha dual of the space �2∞(2�
(r1,r2)
h,k ) is the set D1, defined

by

D1 =
{

(am,n) ∈ � :
∞∑

m=0

∞∑

n=0

∣
∣
∣
∣
∣

∞∑

l=m

∞∑

k=n

(r1)m−l (r2)n−k
(m− k)!(m− n)!h−r1k−r2

am,n

∣
∣
∣
∣
∣
<∞

}

.

Proof Suppose D is the alpha dual of the space �2∞(2�
(r1,r2)
h,k ). Firstly, we show that

D1 ⊂ D. Let x = (xm,n) ∈ �2∞(2�
(r1,r2)
h,k ) and y = (ym,n) ∈Mu, then there exists

a positive integer B > 1 such that

|ym,n| < max

(
1, sup

m,n
|ym,n|

)
= B <∞.

Suppose a = (am,n) ∈ D1, then we have

∞∑

m=0

∞∑

n=0

|am,nxm,n| =
∞∑

m=0

∞∑

n=0

∣
∣
∣
∣
∣
∣

∞∑

i=0

∞∑

j=0

(r1)i(r2)j

i!j !h−r1k−r2
ym−i,n−j am,n

∣
∣
∣
∣
∣
∣

=
∞∑

m=0

∞∑

n=0

∣
∣
∣
∣
∣

∞∑

l=m

∞∑

k=n

(r1)m−l (r2)n−k
(m− l)!(n− k)!h−r1k−r2

yl,kam,n

∣
∣
∣
∣
∣

≤ B

∞∑

m=0

∞∑

n=0

∣
∣
∣∣
∣

∞∑

l=m

∞∑

k=n

(r1)m−l (r2)n−k
(m− l)!(n− k)!h−r1k−r2

am,n

∣
∣
∣∣
∣
.

From the above inequality it is concluded that if a = (am,n) ∈ D1 whenever y ∈
Mu, then a ∈ D which implies that D1 ⊂ D.

Conversely, suppose that a ∈ D and a /∈ D1, then it is very easy to show that for
y ∈Mu,

∞∑

m=0

∞∑

n=0

|am,nxm,n| = ∞.

This concludes that a /∈ D, which is contradiction. ��
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Theorem 20.3.6 The beta dual with respect to p-convergent and gamma dual of the
space �2∞(2�

(r1,r2)
h,k ) is the set D1.

Proof Proof follows from Theorem 20.3.5. ��
Theorem 20.3.7 The alpha, beta dual with respect to p-convergent and gamma
dual of the space c2

b(2�
(r1,r2)
h,k ) are the set D1 ∩ Cbp.

Proof Proof is similar to that of Theorem 20.3.5. ��
Theorem 20.3.8 Let A = (a

ij
m,n) be a four-dimensional matrix.

Then A ∈ (c2
b(2�

(r1,r2)
h,k , Cp) if and only if

sup
m,n

⎛

⎝
∑

i,j

i,j∑

r,s=0,0

r,s∑

p,q=0,0

|2�1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)|
⎞

⎠ <∞,

lim
j→∞

⎛

⎝
i,j∑

r,s=0,0

r,s∑

p,q=0,0

�1
i ((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)

⎞

⎠ = 0, for fixed i ∈ N0,

lim
i→∞

⎛

⎝
i,j∑

r,s=0,0

r,s∑

p,q=0,0

�1
j ((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)

⎞

⎠ = 0, for fixed j ∈ N0,

p − lim
m,n→∞,∞

⎛

⎝
i,j∑

r,s=0,0

r,s∑

p,q=0,0

2�
1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)

⎞

⎠ = ci,j ,

for all i, j ∈ N0,

p − lim
m,n→∞,∞

⎛

⎝
∑

i,j

i,j∑

r,s=0,0

r,s∑

p,q=0,0

|2�1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)|
⎞

⎠ = c,

p − lim
m,n→∞,∞

⎛

⎝
∑

i

i,j∑

r,s=0,0

r,s∑

p,q=0,0

|2�1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)|
⎞

⎠ =
∑

j

|ci,j |,

where

�1
i ((am,n)i,l) = am,n,i,l − am,n,i+1,l

�1
j ((am,n)k,j ) = am,n,k,j − am,n,k,j+1

δ(r1, r2, h, k, p, q, r, s) = (r1)r−p(r2)s−q
(r − p)!(s − q)!h−r1k−r2

.
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Proof Suppose that x ∈ c2
b(2�

(r1,r2)
h,k ) and define the sequence y = (ym,n) by

zm,n =
m,n∑

i,j=0,0

xi,j (m, n ∈ N0).

Now, taking (k, l)th partial sums of the series

(Ax)m,n =
∞∑

i=0

∞∑

j=0

am,n,i,j xi,j ,

for each m,n ∈ N0, and applying Abel transformation, it becomes

(Ax)(k,l)m,n =
k,l∑

i,j=0,0

am,n,i,j xi,j

=
k−1,l−1∑

i,j=0,0

2�
1((am,n)i,j )zi,j +

k−1∑

i=0

�1
i ((am,n)i,l )zi,l

+
l−1∑

j=0

�1
j ((am,n)k,j )zk,j + am,n,k,lzk,l

=
k−1,l−1∑

i,j=0,0

i,j∑

r,s=0,0

r,s∑

p,q=0,0

2�
1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)yp,q

+
k−1∑

i=0

i,l∑

r,s=0,0

r,s∑

p,q=0,0

�1
i ((am,n)i,l )δ(r1, r2, h, k, p, q, r, s)yp,q

+
l−1∑

j=0

k,j∑

r,s=0,0

r,s∑

p,q=0,0

�1
j ((am,n)k,j )δ(r1, r2, h, k, p, q, r, s)yp,q

+ am,n,k,l

k,l∑

r,s=0,0

r,s∑

p,q=0,0

�1
i ((am,n)k,l)δ(r1, r2, h, k, p, q, r, s)yp,q ,

where

�1
i ((am,n)i,l) = am,n,i,l − am,n,i+1,l ,

�1
j ((am,n)k,j ) = am,n,k,j − am,n,k,j+1
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and

δ(r1, r2, h, k, p, q, r, s) = (r1)r−p(r2)s−q
(r − p)!(s − q)!h−r1k−r2

.

The (k, l)th partial sums of the series (Ax)
(k,l)
m,n are being expressed as a four-

dimensional matrix transformation of the double sequence y = (ym,n), i.e.,

(Ax)(k,l)m,n = (T y)m,n,k,l , (20.15)

where T = (t
m,n
k,l,i,j ) with

t
m,n
k,l,i,j =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i,j
r,s=0,0

∑r,s
p,q=0,0 2�

1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s), (i ≤ k− 1 and j ≤ l− 1),
∑i,j

r,s=0,0
∑r,s

p,q=0,0 �
1
i ((am,n)i,j )δ(r1, r2, h, k, p, q, r, s), (i = k and j ≤ l − 1),

∑i,j
r,s=0,0

∑r,s
p,q=0,0 �

1
j
((am,n)i,j )δ(r1, r2, h, k, p, q, r, s), (i ≤ k − 1 and j = l),

∑i,j
r,s=0,0

∑r,s
p,q=0,0 ((am,n)k,l )δ(r1, r2, h, k, p, q, r, s), (i = k and j = l),

0, (otherwise).

Therefore, it is concluded by (20.15) that m,n ∈ N0, the (k, l)th partial sums of the
series (Ax)(k,l)m,n converge (in the Pringsheim’s sense) if and only if Ty is bounded
and convergent (in the Pringsheim’s sense) which is equivalent to the following
conditions:

sup
m,n

⎛

⎝
∑

i,j

i,j∑

r,s=0,0

r,s∑

p,q=0,0

|2�1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)|
⎞

⎠ <∞, (20.16)

lim
j→∞

⎛

⎝
i,j∑

r,s=0,0

r,s∑

p,q=0,0

�1
i ((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)

⎞

⎠ = 0, for fixed i ∈ N0,

(20.17)

lim
i→∞

⎛

⎝
i,j∑

r,s=0,0

r,s∑

p,q=0,0

�1
j ((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)

⎞

⎠ = 0, for fixed j ∈ N0,

(20.18)

p − lim
m,n→∞,∞

⎛

⎝
i,j∑

r,s=0,0

r,s∑

p,q=0,0

2�
1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)

⎞

⎠ = ci,j ,∀i, j ∈ N0,

(20.19)
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p − lim
m,n→∞,∞

⎛

⎝
∑

i,j

i,j∑

r,s=0,0

r,s∑

p,q=0,0

|2�1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)|
⎞

⎠ = c,

(20.20)

p − lim
m,n→∞,∞

⎛

⎝
∑

i

i,j∑

r,s=0,0

r,s∑

p,q=0,0

|2�1((am,n)i,j )δ(r1, r2, h, k, p, q, r, s)|
⎞

⎠ =
∑

j

|ci,j |.

(20.21)

Combining the above equations together, we complete the proof. ��

20.4 Applications

In this section, we provide some applications of the sequence (2�
(r1,r2)
h,k x) in

approximating the ordinary differential operator and partial differential operators.
Let f = f (x, y) be a differentiable function. Let r1, r2 be any positive integers

and h, k be two positive constants tending to zero. Then we define the following
sequence of function f via double difference operator 2�

(r1,r2)
h,k as

2�
(r1,r2)
h,k f (x, y) =

r1∑

i=0

r2∑

j=0

(−r1)i(−r2)j

i!j !hr1kr2
f (x − ih, y − jk). (20.22)

In particular, for different suitable values of r1, r2 and different functions f (x, y),
it has been observed that Eq. (20.22) reduces to the following cases of various
derivatives:

1. If r2 = 0 and f (x, y) is independent of y, then we have

2�
(r1,0)
h,k f (x) =

r1∑

i=0

(−r1)i

i!hr1
f (x − ih) = dr1f

dxr1
.

2. If r1 = 0 and f (x, y) is independent of x, then we have

2�
(0,r2)
h,k f (y) =

r2∑

j=0

(−r2)j

j !kr2
f (y − jh) = dr2f

dyr2
.
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3. If r2 = 0 and f is a function with two independent variables x and y, then we
have

2�
(r1,0)
h,k f (x, y) =

r1∑

i=0

(−r1)i

i!hri f (x − ih, y) = ∂r1f

∂xr1
.

4. If r1 = 0 and f is a function with two independent variables x and y, then we
have

2�
(0,r2)
h,k f (x, y) =

r2∑

j=0

(−r2)j

j !kr2
f (x, y − jh) = ∂r2f

∂yr2
.

5. If r1, r2 are any two positive integers and f is a function with two independent
variables x and y, then we have

2�
(r1,r2)
h,k f (x, y) =

r1∑

i=0

r2∑

j=0

(−r1)i (−r2)j

i!j !hr1kr2
f (x − ih, y − jk) = ∂r1+r2f

∂xr1∂yr2
.

Now, using formula defined in Eq. (20.22), we illustrate some examples for finding
partial derivatives of certain functions.

Example Consider a real valued function f = f (x, y), defined by f (x, y) =
1√

x2+y2
. Then for h, k → 0 and r1 = 2, and r2 = 0, Eq. (20.22) reduces to

2�
(2,0)
h,k f (x, y)

=
2∑

i=0

(−2)i
i!h2 f (x − ih, y − jk)

= 1

h2

[
(x2 + y2)−1/2 − 2((x − h)2 + y2)−1/2)+ ((x − 2h)2 + y2)−1/2

]

= 1

h

[
(x2 + y2)−1/2 − ((x − h)2 + y2)−1/2)− ((x − h)2 + y2)−1/2)+ ((x − 2h)2 + y2)−1/2

h

]

= 1

h

[
− x

(x2 + y2)3/2
+ x − h

((x − h)2 + y2)3/2

]
,

= − 1

((x − h)2 + y2)3/2
+
− x

(x2+y2)3/2 + x−h
((x−h)2+y2)3/2

h
,

= − 1

(x2 + y2)3/2
+ 3x2

(x2 + y2)5/2
, (as h→ 0).
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Example Let us consider a real valued function f (x, y) = sin xy + x + y. Then
taking h, k → 0 in Eq. (20.22), it can be easily seen that

2�
(2,1)
h,k f (x, y)

=
2∑

i=0

1∑

j=0

(−2)i(−1)j
i!j !h2k

f (x − ih, y − jk)

= 1

h2k
[sin xy − 2 sin(x − h)y + sin(x − 2h)y − sin x(y − k)

− 2 sin(x − h)(y − k) + sin(x − 2h)(y − k)+ x + y − 2(x − h)

− 2y+x−2h+y − x − y+k +2(x − h)+2(y − k)− (x − 2h)− (y − k)]

= 1

h2k
[sin xy − 2 sin(x − h)y + sin(x − 2h)y − sin x(y − k)

− 2 sin(x − h)(y − k) + sin(x − 2h)(y − k)]

= 1

h

[
x cos xy + 2(h− x) cos(x − h)y + (x − 2h) cos(2x − h)y

h

]
, (as k → 0)

= x

h

[
cos xy − 2 cos(x − h)y + cos(2x − h)y

h

]

= x

h

⎡

⎣
2 sin (2x−h)y

2 sin
(
−hy

2

)
+ 2 sin (2x−3h)y

2 sin hy
2

h

⎤

⎦

= xy

[
sin (2x−3h)y

2 − sin (2x−h)y
2

h

]

, (as h→ 0)

= xy

⎡

⎣
2 cos(x − h)y sin

(
−hy

2

)

h

⎤

⎦

= −xy2 cos xy, (as h→ 0).

In a similar way, one can easily find other partial derivatives of sin xy+x+y. Using
Matlab, 3D plots of some partial derivative of the above function are mentioned in
Figs. 20.1, 20.2, 20.3, 20.4, 20.5, 20.6, and 20.7.
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Fig. 20.1 3D graph of the function f (x, y) = sin xy + x + y with −3 ≤ x ≤ 3 and −3 ≤ y ≤ 3
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Fig. 20.2 3D graph of the partial derivative 2�
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Fig. 20.4 3D graph of the partial derivative 2�
2,0
h,k(sin xy + x + y) with −3 ≤ x ≤ 3 and −3 ≤

y ≤ 3
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Fig. 20.5 3D graph of the partial derivative 2�
0,2
h,k(sin xy + x + y) with −3 ≤ x ≤ 3 and −3 ≤

y ≤ 3
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Fig. 20.6 3D graph of the partial derivative 2�
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21. D. Djurčić, L.D.R. Kočinac, M.R. v Zižzović, Double sequences and selections. Abstr. Appl.

Anal. 6 (2012). Article ID: 497594. https://doi.org/10.1155/2012/497594,2012
22. P. Baliarsingh, L. Nayak, P. Beuria, On fractional powers of double band matrices. Proyec-

ciones (Antofagasta) 36(4), 701–709 (2017)
23. P. Beuria, P. Baliarsingh, L. Nayak, On arbitrary powers of double band matrices. Appl. Math.

E-Notes 18(1), 82–91 (2018)
24. P. Baliarsingh, L. Nayak, V. Kumar, On matrix inversions through difference operators. Iran J.

Sci. Technol. Trans. Sci. https://doi.org/10.1007/s40995-017-0161-9
25. L. Nayak, M. Et, P. Baliarsingh, On certain generalized weighted mean fractional difference

sequence spaces. Proc. Natl. Acad. Sci., India Sect. A Phys. Sci. (2018). https://doi.org/10.
1007/s40010-017-0403-4
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Chapter 21
Pointwise Convergence Analysis
for Nonlinear Double m-Singular
Integral Operators

Gümrah Uysal and Hemen Dutta

Abstract In this chapter, m-singularity notion is discussed for double singular inte-
gral operators. In this direction, several results concerning pointwise convergence
of nonlinear double m-singular integral operators are presented. This chapter is
divided into six sections. In the first section, the reasons giving birth tom-singularity
notion are explained and related theoretical background is mentioned. Also, the
motivations giving inspiration to this note are presented. In the second section, the
well-definiteness of the operators which are under the spotlights is shown on their
domain. In the third section, an auxiliary result, pointwise convergence theorem,
is proved. In the fourth section, main theorem, Fatou type convergence theorem, is
proved. In the fifth section, corresponding rates of convergences are evaluated. In
the last section, some concluding remarks are given.

Keywords Pointwise convergence · Fatou-type convergence · Nonlinear
bivariate integral operators · m-Singularity

21.1 Introduction

Progress in approximation theory techniques concerning approximation by integral
operators in the last several decades has turned the researchers work with more
general types of operators. In this context, there are at least two important types
of integral operators which come to the fore: singular integral operators with
approximate identity type kernels and Calderón-Zygmund type singular integral
operators. The working areas of both types of operators have almost same power
on the theory of real and complex functions too. Also, for both cases, the word
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“singular” indicates different concepts. A well-known example for the first type
is Gauss-Weierstrass type singular integral operators and Hilbert transform for
the second type. For both cases, the word “singular” indicates different concepts.
For further information, we refer the reader to [7, 15, 30] and [8], for the first
and second types of singular integral operators mentioned above, respectively.
Singular integral operators or shortly singular integrals have a wide range of
applications in science, engineering and technology. For some applications, we
refer the reader to the monograph by Bracewel [6] and work by Papadopou-
los [22].

Denoting the points on an open, half-open or closed line segment by 〈−π, π〉 ,
in [33], Taberski handled the following two-parameter singular integral operators:

Lζ (f ; v) =
π∫

−π
f (u)Kζ (u− v) du, v ∈ 〈−π, π〉 , ζ ∈ I, (21.1.1)

where Kζ : R→ R
+
0 stands for a 2π-periodic kernel enriched with some properties

for each ζ ∈ I , and I is a given non-empty set of non-negative numbers with
accumulation point ζ0. In the same work, after giving generalization of Natanson’s
well-known lemma (see [21]), some pointwise convergence theorems were proved.
Then, Gadjiev [11] generalized Taberski’s indicated version of Natanson’s lemma
by the aid of the function μ(t), which was taken previously as μ(t) = t in the
generalization given by Taberski [33]. This work also contains some approximation
theorems for the operators of type (21.1.1) with respect to specific definition of
the function μ(t). Also, the definition μ-generalized Lebesgue point was obtained
due to this invention. Particularly, if μ(t) = t, then conventional definition
of Lebesgue point is obtained. After this work, Rydzewska [23] studied on the
operators of type (21.1.1) and presented some results on the rate of convergence
at μ-generalized Lebesgue point of 2π-periodic Lebesgue integrable function
f ∈ L 〈−π, π〉 . In regard to pointwise approximation by assorted types of linear
integral operators, we refer the reader to [3, 7, 17, 31]. Also, for the q-analogues
of some linear integral operators, we refer the reader to the monograph by Aral
et al. [2].

Musielak [18] focused on the convergence of nonlinear integral operators
designated by:

Tw(f ; y) =
∫

G

Kw(x − y; f (x))dx, y ∈ G, w ∈ �, (21.1.2)

where G denotes locally compact Abelian group along with Haar measure and
� is a non-empty index set with certain topology. In this study, the innovative
ideas were usage of Lipschitz condition for Kw with respect to second variable
and a new singularity notion. Therefore, the previously developed solutions and
proving methods were applied to nonlinear approximation problems and theorems,
respectively. For some studies on nonlinear integral operators in many different
settings, we refer the reader to [4, 10, 19, 32].



21 Pointwise Convergence Analysis for Nonlinear Double m-Singular. . . 833

Mamedov [16] constructed the following m-singular integral operators

L
[m]
λ (f ; x) = (−1)m+1

∫

R

[
m∑

k=1

(−1)m−k
(
m

k

)
f (x + kt)

]

Kλ(t)dt, (21.1.3)

where x ∈ R, m ≥ 1 is a finite certain natural number and λ ∈ � which is a
non-empty set of non-negative indices, by employing m-th finite differences. Here,
the main aim is approximating the m-th derivatives of the integral of the functions
almost everywhere by using these m-singular integral operators (compare with
Lebesgue point notion [7]). Then, Karsli [14] studied the Fatou type convergence
of nonlinear counterparts of the operators of type (21.1.3) in the following form:

T
[m]
λ (f ; x) =

∫

R

Kλ

(

t,

m∑

k=1

(−1)k−1
(
m

k

)
f (x + kt)

)

dt, (21.1.4)

where x ∈ R, m ≥ 1 is a finite natural number and λ ∈ � which is a non-empty set
of non-negative indices, at m− p − μ-Lebesgue point of the functions f ∈ Lp (R)

(1 ≤ p <∞) , where Lp (R) is the space of all measurable functions for which
|f |p has finite integral value on R. For the studies concerning approximation by
m-singular integral operators in various settings, we refer the reader to [5, 12, 13,
25, 35].

In the year 1964, Taberski [34] handled the problem of pointwise approximation
of functions f ∈ L1 (R) by convolution type operators of two variables in the
following form:

Lλ (f ; x, y) =
∫∫

R

f (t, s)Kλ (t − x, s − y) dsdt, (x, y) ∈ R, (21.1.5)

where R denotes an arbitrary bounded rectangle and Kλ (t, s) is a kernel satisfying
some conditions with λ ∈ �, where � is a non-empty set of non-negative numbers
with accumulation point λ0. The studies [27, 28] and [25] related to Taberski’s study
[34] presented some results on the study of pointwise convergence of the operators
of type (21.1.5) on some special sets consisting of characteristic points (x0, y0) of
different types.

Let us consider the nonlinear double singular integral operators of the form:

Tλ (f ; x, y) =
∫∫

D

Kλ(t − x, s − y, f (t, s))dsdt, (x, y) ∈ D, λ ∈ �,

(21.1.6)
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where D denotes an arbitrary bounded rectangle and � is a set of non-negative
numbers with accumulation point λ0. The operators of type (21.1.6) are the
nonlinear generalizations of the operators of type (21.1.5). The properties belonging
to indicated operators, such as boundedness, well-definiteness, pointwise conver-
gence and modularity, were studied by many approximation theory researchers
throughout the years. For some of the related works, we refer the reader to
[20, 37].

In [1], certain multidimensional nonlinear integrals in the following form:

Lλ(u, x) = λn

wn−1

∫

Rn

K (λ |t − x| , u(t)) dt, x ∈ R
n, (21.1.7)

where K (λ |t| , u(t)) is a kernel satisfying some properties including differentiabil-
ity with respect to second variable and λ is a positive parameter, were considered. In
order to remove nonlinearity problem in the proofs, two main technics are used: The
first technic is obtaining Taylor expansion of kernel with respect to second variable
and the second one is using majorization. From this point of view, this work contains
very important results.

Incorporating the operators of type (21.1.3) and (21.1.6), the following m-
singular integral operators are obtained:

T
[m]
ζ (f ; x, y) =

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x + kt, y + ks)

)

dsdt,

(21.1.8)

where (x, y) ∈ R
2, m ≥ 1 is a finite natural number and ζ ∈ � ⊆ −

R+ ∪ {0},
which is a non-empty set of indices, at [m;μ]-Lebesgue point of the function
f ∈ L1

(
R

2
)
, where L1

(
R

2
)

is the space of all measurable functions for which
|f | has finite integral value on R

2. In operators of type (21.1.8), we consider
a direct two-dimensional generalization of m-th finite differences used in [16]
and, as a result, these are the two-dimensional counterparts of the operators of
type (21.1.4). On the other hand, this study is a continuation of very recent
work [36] in which mixed differences were harnessed in order to construct the
operators.

The chapter is organized as follows: In Sect. 21.2, we introduce fundamental
notions bringing the well-definiteness of the operators. In Sect. 21.3, we prove
pointwise convergence of the operators of type (21.1.8). In Sect. 21.4, we present,
as a main result, Fatou type convergence theorem for the indicated operators. In
Sect. 21.5, we establish the rates of both pointwise and Fatou type convergences
by using the results obtained in the previous sections. In Sect. 21.6, we give some
concluding remarks.
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21.2 Preliminaries

In this section, basic concepts used in this chapter are introduced.

Definition 21.2.1 A point (x0, y0) ∈ R
2 at which the following relations hold:

lim
(h,k)→(0,0)

1

μ1(h)μ2 (k)

±h∫

0

±k∫

0

∣
∣
∣�m

(t,s)g(x0, y0)

∣
∣
∣ dsdt = 0, (21.2.1)

where

�m
(t,s)g(x0, y0) =

m∑

k=0

(−1)m−k
(
m

k

)
g(x0 + kt, y0 + ks)

is called [m;μ]-Lebesgue point of g ∈ L1
(
R

2
)
. Here, μ1 : R→ R is an increasing

and absolutely continuous function on 0 ≤ h ≤ δ1, where δ1 is a fixed positive real
number with μ1(0) = 0. Similarly, μ2 : R → R is an increasing and absolutely
continuous function on 0 ≤ k ≤ δ2, where δ2 is a fixed positive real number with
μ2(0) = 0.

Remark 21.2.2 Definition 21.2.1 is obtained by incorporating the characterization
of function μ given by Gadjiev [11] and m-Lebesgue point definition used by
Mamedov [16]. On the other hand, for some other μ-generalized Lebesgue point
characterizations, we refer the reader to [14, 23, 24].

Definition 21.2.3 (ClassA) Let ζ0 be an accumulation point of �. A family(
Kζ

)
ζ∈� which consists of the functions Kζ : R2 × R → R is called class A,

if the following conditions hold:

(a) Kζ (t, s, 0) = 0 for every (t, s) ∈ R
2 and for each ζ ∈ �, and Kζ (., ., u) ∈

L1
(
R

2
)

for every u ∈ R and for each ζ ∈ �.

(b) There exists a family
(
Lζ

)
ζ∈� consisting of the globally Lebesgue integrable

functions for each ζLζ : R2 → R such that the inequality

∣
∣Kζ (t, s, u) −Kζ (t, s, v)

∣
∣ ≤ Lζ (t, s) |u− v|

holds for every (t, s) ∈ R
2, u, v ∈ R, and for each fixed ζ ∈ �.

(c) For every ξ > 0, limζ→ζ0

[
sup

ξ≤
√

t2+s2 Lζ (t, s)
]
= 0.

(d) For every ξ > 0, limζ→ζ0

[∫∫
ξ≤
√

t2+s2 Lζ (t, s) dsdt
]
= 0.

(e)
∥
∥Lζ

∥
∥
L1(R2)

≤ M <∞ for every ζ ∈ �.

(f ) Lζ (t, s) is non-increasing on [0,∞) and non-decreasing on (−∞, 0] for each
fixed ζ ∈ � as a function of t for all values of s. Similarly, Lζ (t, s) is non-
increasing on [0,∞) and non-decreasing on (−∞, 0] for each fixed ζ ∈ �
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as a function of s for all values of t . Lζ (t, s) is bimonotonically increasing
with respect to (t, s) on [0,∞) × [0,∞) and on (−∞, 0] × (−∞, 0] and
bimonotonically decreasing with respect to (t, s) on [0,∞) × (−∞, 0] and
(−∞, 0]× [0,∞) for each fixed ζ ∈ �.

(g) lim
ζ→ζ0

∣
∣
∣∣
∣
∫∫

R2

Kζ

(
t, s,

m∑

k=1
(−1)k−1

(
m

k

)
u

)
dsdt − u

∣
∣
∣∣
∣
= 0 for every u ∈ R.

Throughout this chapter the kernel function Kζ belongs to Class A.

Remark 21.2.4 The conditions (a)–(g) in Definition 21.2.1, which are compulsory
for the proof of main results from the theoretical point of view, were also used in
[37] with some modifications (for analogues conditions, see also [36]). The studies
[4, 5] shall be seen as main references for Class A. For the Lipschitz condition (b),
we refer the reader to [4, 18, 19].

Now, we will give a lemma concerning well-definiteness of the operators of type
(1.8).

Lemma 21.2.5 If f ∈ L1
(
R

2
)
, then the operators T [m]

ζ (f ) ∈ L1
(
R

2
)

and the
inequality

∥
∥
∥T [m]

ζ (f )

∥
∥
∥
L1(R2)

≤ (2m − 1)
∥
∥Lζ

∥
∥
L1(R2)

‖f ‖L1(R2)

hold for every ζ ∈ �.

Proof By condition (a) , we can write

∥
∥∥T [m]

ζ (f )

∥
∥∥
L1(R2)

=
∫∫

R2

∣
∣
∣
∣
∣
∣∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x + kt, y + ks)

)

dsdt

∣
∣
∣
∣
∣
∣∣
dydx

≤
∫∫

R2

⎛

⎜
⎝
∫∫

R2

m∑

k=1

(
m

k

)
|f (x + kt, y + ks)|Lζ (t, s) dsdt

⎞

⎟
⎠ dydx.

Now, applying Fubini’s theorem (see, e.g., [26]) and change of variables, we have

∥
∥
∥T [m]

ζ (f )

∥
∥
∥
L1(R2)

≤
m∑

k=1

(
m

k

)∫∫

R2

Lζ (t, s) dsdt

∫∫

R2

|f (u, v)| dvdu

= (
2m − 1

) ∥∥Lζ

∥
∥
L1(R

2)
‖f ‖L1(R2) ,



21 Pointwise Convergence Analysis for Nonlinear Double m-Singular. . . 837

where
m∑

k=1

(
m

k

)
= 2m−1. Therefore, the desired result follows from condition (e).

Thus the proof is completed. ��

21.3 Pointwise Convergence

Theorem 21.3.1 If (x0, y0) ∈ R
2 is [m;μ]-Lebesgue point of the function f ∈

L1
(
R

2
)
, then

lim
ζ→ζ0

∣
∣
∣T [m]

ζ (f ; x0, y0)− f (x0, y0)

∣
∣
∣ = 0,

on any set Z on which the function

δ∫

−δ

δ∫

−δ
Lζ (t, s)

∣
∣{μ1 (|t|)}′t

∣
∣
∣
∣{μ2 (|s|)}′s

∣
∣ dsdt,

where 0 < δ < min {δ1, δ2} , is bounded as ζ → ζ0.

Proof Let (x0, y0) ∈ R
2 be a [m;μ]-Lebesgue point of the function f ∈ L1

(
R

2
)
.

Therefore, for every ε > 0, there exists δ > 0 such that for every h and for every
k satisfying 0 < h, k < δ < min {δ1, δ2}, we have the following inequalities
by (21.2.1):

h∫

0

0∫

−k

∣
∣
∣�m

(t,s)f (x0, y0)

∣
∣
∣ dsdt ≤ εμ1(h)μ2 (k) , (21.3.1)

0∫

−h

0∫

−k

∣
∣
∣�m

(t,s)f (x0, y0)

∣
∣
∣ dsdt ≤ εμ1(h)μ2 (k) , (21.3.2)

0∫

−h

k∫

0

∣∣
∣�m

(t,s)f (x0, y0)

∣∣
∣ dsdt ≤ εμ1(h)μ2 (k) , (21.3.3)

h∫

0

k∫

0

∣∣
∣�m

(t,s)f (x0, y0)

∣∣
∣ dsdt ≤ εμ1(h)μ2 (k) , (21.3.4)
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where

�m
(t,s)f (x0, y0) =

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + kt, y0 + ks).

Now, set I (ζ ) =
∣∣
∣T [m]

ζ (f ; x0, y0)− f (x0, y0)

∣∣
∣ . Using condition (g), we obtain

I (ζ ) =

∣
∣
∣∣
∣
∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0 + kt, y0 + ks)

)

dsdt − f (x0, y0)

∣
∣
∣∣
∣
∣
∣

=

∣∣
∣
∣
∣
∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0 + kt, y0 + ks)

)

dsdt

−
∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0, y0)

)

dsdt

+
∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0, y0)

)

dsdt − f (x0, y0)

∣
∣
∣
∣∣
∣
∣
.

Furthermore, we obtain the following inequality:

I (ζ ) ≤

∣
∣∣
∣
∣
∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0 + kt, y0 + ks)

)

dsdt

−
∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0, y0)

)

dsdt

∣∣
∣
∣
∣
∣∣

+

∣
∣
∣
∣
∣∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0, y0)

)

dsdt − f (x0, y0)

∣
∣
∣
∣
∣∣
∣

= I1 (ζ )+ I2 (ζ ) .
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By condition (g), I2 (ζ )→ 0 as ζ → ζ0. Now, we focus on the integral I1 (ζ ) .

By condition (b) , the following inequality holds for I1 (ζ ) :

I1(ζ ) ≤
∫∫

R2

∣
∣
∣∣
∣

(
m∑

k=1

(−1)k−1
(
m

k

)
f (x0 + kt, y0 + ks)

)

−
(

m∑

k=1

(−1)k−1
(
m

k

)
f (x0, y0)

)∣∣
∣
∣
∣

× Lζ (t, s) dsdt.

Let

Bδ :=
{
(t, s) ∈ R

2 : t2 + s2 < δ2
}
.

By condition (b), the integral I1 (ζ ) satisfies that

I1(ζ ) ≤
∫∫

Bδ

∣
∣∣
∣
∣

(
m∑

k=1

(−1)k−1
(
m

k

)
f (x0 + kt, y0 + ks)

)

−
(

m∑

k=1

(−1)k−1
(
m

k

)
f (x0, y0)

)∣∣
∣
∣
∣
Lζ (t, s) dsdt

+

∣
∣
∣
∣∣
∣
∣

∫∫

R2\Bδ

m∑

k=1

(
m

k

)
{|f (x0 + kt, y0 + ks)| + |f (x0, y0)|}Lζ (t, s) dsdt

∣
∣
∣
∣∣
∣
∣

= I11(ζ )+ I12(ζ ).

Now, we deal with the integral I12(ζ ). The operations for the integral I12(ζ ) are as
follows:

I12(ζ ) ≤ sup
δ≤
√

t2+s2

Lζ (t, s)

∣
∣
∣∣
∣
∣
∣

∫∫

R2\Bδ

m∑

k=1

(
m

k

)
|f (x0 + kt, y0 + ks)| dsdt

∣
∣
∣∣
∣
∣
∣

+
m∑

k=1

(
m

k

)
|f (x0, y0)|

∣
∣
∣
∣∣
∣
∣

∫∫

R2\Bδ

Lζ (t, s) dsdt

∣
∣
∣
∣∣
∣
∣
.
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Furthermore, we proceed as follows:

I12(ζ ) ≤ sup
δ≤
√

t2+s2

Lζ (t, s)

∣
∣
∣∣
∣
∣
∣

∫∫

R2

m∑

k=1

(
m

k

)
|f (x0 + kt, y0 + ks)| dsdt

∣
∣
∣∣
∣
∣
∣

+ (
2m − 1

) |f (x0, y0)|
∫∫

δ≤
√

t2+s2

Lζ (t, s) dsdt

≤ 2m

⎧
⎪⎪⎨

⎪⎪⎩
sup

δ≤
√

t2+s2

Lζ (t, s) ‖f ‖L1(R2) + |f (x0, y0)|
∫∫

δ≤
√

t2+s2

Lζ (t, s) dsdt

⎫
⎪⎪⎬

⎪⎪⎭

= 2m (I121(ζ )+ I122(ζ )) ,

where

m∑

k=1

(
m

k

)
= (

2m − 1
)
.

It follows that I121 (ζ )→ 0 as ζ → ζ0 and I122 (ζ )→ 0 as ζ → ζ0 by conditions
(c) and (d), respectively.

Recalling the integral I11(ζ ),we have

I11(ζ ) =
∫∫

Bδ

∣
∣
∣
∣
∣

m∑

k=0

(−1)k−1
(
m

k

)
f (x0 + kt, y0 + ks)

∣
∣
∣
∣
∣
Lζ (t, s) dsdt

=
∫∫

Bδ

∣
∣
∣∣
∣

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + kt, y0 + ks)

∣
∣
∣∣
∣
Lζ (t, s) dsdt.

It follows that

I11(ζ ) ≤
δ∫

−δ

δ∫

−δ

∣∣∣
∣∣

m∑

k=0

(−1)m−k
(
m

k

)

f (x0 + kt, y0 + ks)

∣∣∣
∣∣
Lζ (t, s) dsdt

=
⎧
⎨

⎩

δ∫

0

0∫

−δ
+

0∫

−δ

0∫

−δ

⎫
⎬

⎭

∣
∣∣∣
∣

m∑

k=0

(−1)m−k
(
m

k

)

f (x0 + kt, y0 + ks)

∣
∣∣∣
∣
Lζ (t, s) dsdt
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+
⎧
⎨

⎩

0∫

−δ

δ∫

0

+
δ∫

0

δ∫

0

⎫
⎬

⎭

∣∣
∣∣∣

m∑

k=0

(−1)m−k
(
m

k

)

f (x0 + kt, y0 + ks)

∣∣
∣∣∣
Lζ (t, s) dsdt

= I111 + I112 + I113 + I114.

Let us consider the integral I111. Let us define the function F (t, s) by

F (t, s) =
t∫

0

0∫

s

∣
∣
∣∣
∣

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + ku, y0 + kv)

∣
∣
∣∣
∣
dvdu.

In view of inequality (21.3.1), the following expression

|F (t, s)| ≤ εμ1 (t) μ2 (−s) , (21.3.5)

where 0 < t < δ and −δ < s < 0, holds. In view of Theorem 2.6 in [34], we can
write

I111 = (L)

δ∫

0

0∫

−δ

∣
∣
∣∣
∣

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + kt, y0 + ks)

∣
∣
∣∣
∣
Lζ (t, s) dsdt

= (LS)

δ∫

0

0∫

−δ
Lζ (t, s) d [−F (t, s)] ,

where LS denotes Lebesgue-Stieltjes integral. Applying bivariate integration by
parts (see Theorem 2.2, p.100 in [34]) to the Lebesgue-Stieltjes integral, we have

|I111| =
∣∣
∣
∣
∣
∣

δ∫

0

0∫

−δ
Lζ (t, s) d [F (t, s)]

∣∣
∣
∣
∣
∣

≤
δ∫

0

0∫

−δ
|F (t, s)| ∣∣dLζ (t, s)

∣
∣+ |F (δ,−δ)|Lζ (δ,−δ)

+
δ∫

0

|F (t,−δ)| ∣∣dLζ (t,−δ)
∣
∣+

0∫

−δ
|F (δ, s)| ∣∣dLζ (δ, s)

∣
∣ .
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If we apply inequality (21.3.5) to the last inequality, then we have

|I111| ≤ ε

δ∫

0

0∫

−δ
μ1 (t) μ2 (−s)

∣∣dLζ (t, s)
∣∣+ εμ1(δ)μ2(δ)Lζ (δ,−δ)

+ εμ2(δ)

δ∫

0

μ1 (t)
∣
∣dLζ (t,−δ)

∣
∣+ εμ1(δ)

0∫

−δ
μ2(s)

∣
∣dLζ (δ, s)

∣
∣ .

One more application of integration by parts gives (for the analogues situation, see
[24, 34]):

|I111| ≤ ε

δ∫

0

0∫

−δ

∣
∣{μ1 (t)}′t

∣
∣
∣
∣{μ2 (−s)}′s

∣
∣Lζ (t, s) dsdt.

Let us consider the integral I112. Let us define the function E (t, s) by

E (t, s) =
0∫

t

0∫

s

∣
∣
∣
∣∣

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + ku, y0 + kv)

∣
∣
∣
∣∣
dvdu.

In view of inequality (21.3.2), the following expression

|E (t, s)| ≤ εμ1 (−t) μ2 (−s) , (21.3.6)

where −δ < t < 0 and −δ < s < 0, holds. In view of Theorem 2.6 in [34], we can
write

I112 = (L)

0∫

−δ

0∫

−δ

∣
∣
∣∣
∣

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + kt, y0 + ks)

∣
∣
∣∣
∣
Lζ (t, s) dsdt

= (LS)

0∫

−δ

0∫

−δ
Lζ (t, s) d [E (t, s)] ,

where LS denotes Lebesgue-Stieltjes integral. Applying bivariate integration
by parts (see Theorem 2.2, p.100 in [34]) to the Lebesgue-Stieltjes integral,
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we have

|I112| =
∣
∣
∣∣
∣
∣

0∫

−δ

0∫

−δ
Lζ (t, s) d [E (t, s)]

∣
∣
∣∣
∣
∣

≤
0∫

−δ

0∫

−δ
|E (t, s)| ∣∣dLζ (t, s)

∣
∣+ |E (−δ,−δ)|Lζ (−δ,−δ)

+
0∫

−δ
|E (t,−δ)| ∣∣dLζ (t,−δ)

∣
∣+

0∫

−δ
|E (−δ, s)| ∣∣dLζ (−δ, s)

∣
∣ .

If we apply inequality (21.3.6) to the last inequality, then we have

|I112| ≤ ε

0∫

−δ

0∫

−δ
μ1 (−t) μ2 (−s)

∣∣dLζ (t, s)
∣∣+ εμ1(δ)μ2(δ)Lζ (−δ,−δ)

+ εμ2(δ)

0∫

−δ
μ1 (t)

∣
∣dLζ (t,−δ)

∣
∣+ εμ1(δ)

0∫

−δ
μ2(s)

∣
∣dLζ (−δ, s)

∣
∣ .

One more application of integration by parts gives:

|I112| ≤ ε

0∫

−δ

0∫

−δ
Lζ (t, s)

∣
∣{μ1 (−t)}′t

∣
∣
∣
∣{μ2 (−s)}′s

∣
∣ dsdt.

Let us consider the integral I113. Let us define the function G(t, s) by

G(t, s) =
0∫

t

s∫

0

∣
∣
∣
∣
∣

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + ku, y0 + kv)

∣
∣
∣
∣
∣
dvdu.

In view of inequality (21.3.3), the following expression

|G(t, s)| ≤ εμ1 (−t) μ2 (s) , (21.3.7)
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where −δ < t < 0 and 0 < s < δ, holds. In view of Theorem 2.6 in [34], we can
write

I113 = (L)

0∫

−δ

δ∫

0

∣
∣∣
∣
∣

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + kt, y0 + ks)

∣
∣∣
∣
∣
Lζ (t, s) dsdt

= (LS)

0∫

−δ

δ∫

0

Lζ (t, s) d [−G(t, s)] ,

where LS denotes Lebesgue-Stieltjes integral. Applying bivariate integration by
parts (see Theorem 2.2, p.100 in [34]) to the Lebesgue-Stieltjes integral, we have

|I113| =
∣
∣
∣
∣
∣∣

0∫

−δ

δ∫

0

Lζ (t, s) d [G(t, s)]

∣
∣
∣
∣
∣∣

≤
0∫

−δ

δ∫

0

|G(t, s)| ∣∣dLζ (t, s)
∣
∣+ |G(−δ, δ)|Lζ (−δ, δ)

+
0∫

−δ
|G(t, δ)| ∣∣dLζ (t, δ)

∣∣+
δ∫

0

|G(−δ, s)| ∣∣dLζ (−δ, s)
∣∣ .

If we apply inequality (21.3.7) to the last inequality, then we have

|I113| ≤ ε

0∫

−δ

δ∫

0

μ1 (−t) μ2 (+s)
∣
∣dLζ (t, s)

∣
∣+ εμ1(δ)μ2(δ)Lζ (−δ, δ)

+ εμ2(δ)

0∫

−δ
μ1 (t)

∣
∣dLζ (t, δ)

∣
∣+ εμ1(δ)

δ∫

0

μ2(s)
∣
∣dLζ (−δ, s)

∣
∣ .

One more application of integration by parts gives:

|I113| ≤ ε

0∫

−δ

δ∫

0

Lζ (t, s)
∣∣{μ1 (−t)}′t

∣∣ ∣∣{μ2 (s)}′s
∣∣ dsdt.
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Let us consider the integral I114. Let us define the function H (t, s) by

H (t, s) =
t∫

0

s∫

0

∣
∣
∣
∣
∣

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + ku, y0 + kv)

∣
∣
∣
∣
∣
dvdu.

In view of inequality (21.3.4), the following expression

|H (t, s)| ≤ εμ1 (t) μ2 (s) , (21.3.8)

where 0 < t < δ and 0 < s < δ, holds. In view of Theorem 2.6 in [34], we can
write

I114 = (L)

δ∫

0

δ∫

0

∣
∣
∣
∣
∣

m∑

k=0

(−1)m−k
(
m

k

)
f (x0 + kt, y0 + ks)

∣
∣
∣
∣
∣
Lζ (t, s) dsdt

= (LS)

δ∫

0

δ∫

0

Lζ (t, s) d [H (t, s)] ,

where LS denotes Lebesgue-Stieltjes integral. Applying bivariate integration by
parts (see Theorem 2.2, p.100 in [34]) to the Lebesgue-Stieltjes integral, we have

|I114| =
∣
∣
∣∣
∣
∣

δ∫

0

δ∫

0

Lζ (t, s) d [H (t, s)]

∣
∣
∣∣
∣
∣

≤
δ∫

0

δ∫

0

|H (t, s)| ∣∣dLζ (t, s)
∣
∣+ |H (δ, δ)|Lζ (δ, δ)

+
δ∫

0

|H (t, δ)| ∣∣dLζ (t, δ)
∣
∣+

δ∫

0

|H (δ, s)| ∣∣dLζ (δ, s)
∣
∣ .

If we apply inequality (21.3.8) to the last inequality, then we have

|I114| ≤ ε

δ∫

0

δ∫

0

μ1 (t) μ2 (s)
∣
∣dLζ (t, s)

∣
∣+ εμ1(δ)μ2(δ)Lζ (δ, δ)

+ εμ2(δ)

δ∫

0

μ1 (t)
∣
∣dLζ (t, δ)

∣
∣+ εμ1(δ)

δ∫

0

μ2(s)
∣
∣dLζ (δ, s)

∣
∣ .
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One more application of integration by parts gives:

|I114| ≤ ε

δ∫

0

δ∫

0

Lζ (t, s)
∣
∣{μ1 (t)}′t

∣
∣
∣
∣{μ2 (s)}′s

∣
∣ dsdt.

Hence, the following inequality is obtained for I11 :

|I11| ≤ ε

δ∫

−δ

δ∫

−δ
Lζ (t, s)

∣∣{μ1 (|t|)}′t
∣∣ ∣∣{μ2 (|s|)}′s

∣∣ dsdt.

Summarizing all evaluations, we obtain the following general inequality:

I (ζ ) ≤ 2m sup
δ≤
√

t2+s2

Lζ (t, s) ‖f ‖L1(R2)

+ 2m |f (x0, y0)|
∫∫

δ≤
√

t2+s2

Lζ (t, s) dsdt

+

∣∣
∣
∣
∣
∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0, y0)

)

dsdt − f (x0, y0)

∣∣
∣
∣
∣
∣
∣

+ ε

δ∫

−δ

δ∫

−δ
Lζ (t, s)

∣
∣{μ1 (|t|)}′t

∣
∣
∣
∣{μ2 (|s|)}′s

∣
∣ dsdt.

Since the last term above is bounded by the hypothesis, the assertion follows, that is
I (ζ )→ 0 as ζ → ζ0. Thus, the proof is completed. ��

21.4 Fatou Type Convergence

In this section, we will prove the Fatou type convergence of the operators of type
(21.1.8) (see [9]). Now, we suppose that for a sufficiently small δ > 0 such that the
function �δ given as

�δ(x, y, ζ ) =
m∑

k=1

(
m

k

) δ∫

−δ

δ∫

−δ
|f (x + kt, y + ks)

−f (x0 + kt, y0 + ks)|Lζ (t, s) dsdt,
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where 0 < δ < min {δ1, δ2} , is bounded on the set defined as

ZC,δ,m =
{
(x, y, ζ ) ∈ R

2 ×� : �δ,m(x, y, ζ ) < C
}
,

where C is positive constant, as (x, y, ζ ) tends to (x0, y0, ζ0) . For some results
giving inspiration to the following theorem, we refer the reader to [14, 29, 34].

Theorem 21.4.1 Suppose that the hypotheses of Theorem 21.3.1 hold. If (x0, y0) ∈
R

2 is a [m;μ]-Lebesgue point of the function f ∈ L1(R
2), then

lim
(x,y,ζ )→(x0,y0,ζ0)

∣
∣
∣T [m]

ζ (f ; x, y)− f (x0, y0)

∣
∣
∣ = 0

provided that (x, y, ζ ) ∈ ZC,δ,m.

Proof Let 0 < |x0 − x| < δ
2 and 0 < |y0 − y| < δ

2 for a given 0 < δ <

min {δ1, δ2} . Now, we denote
∣
∣
∣T [m]

ζ
(f ; x, y)− f (x0, y0)

∣
∣
∣ by Iζ (x, y) .

Write

Iζ (x, y) =

∣∣
∣∣∣
∣∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1

(
m

k

)

f (x + kt, y + ks)

)

dsdt − f (x0, y0)

∣∣
∣∣∣
∣∣

=

∣
∣∣∣
∣∣∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1

(
m

k

)

f (x + kt, y + ks)

)

dsdt

−
∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1

(
m

k

)

f (x0 + kt, y0 + ks)

)

dsdt

+
∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1

(
m

k

)

f (x0 + kt, y0 + ks)

)

dsdt − f (x0, y0)

∣∣∣
∣∣∣
∣
.

From above equality, we deduce that

∣∣Iζ (x, y)
∣∣

≤
∫∫

R2

m∑

k=1

(
m

k

)

|f (x + kt, y + ks) − f (x0 + kt, y0 + ks)|Lζ (t, s) dsdt
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+

∣∣
∣∣∣∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1

(
m

k

)

f (x0 + kt, y0 + ks)

)

dsdt − f (x0, y0)

∣∣
∣∣∣∣
∣

= I1 + I2.

The following inequality is valid for I1 :

|I1| ≤
∫∫

Bδ

m∑

k=1

(
m

k

)
|f (x + kt, y + ks)− f (x0 + kt, y0 + ks)|

× Lζ (t, s) dsdt

+
∫∫

R2\Bδ

m∑

k=1

(
m

k

)
|f (x + kt, y + ks)− f (x0 + kt, y0 + ks)|

× Lζ (t, s) dsdt,

where

Bδ :=
{
(t, s) ∈ R

2 : t2 + s2 < δ2
}
.

Equivalently, we may write

I1 ≤
m∑

k=1

(
m

k

) δ∫

−δ

δ∫

−δ
|f (x + kt, y + ks)− f (x0 + kt, y0 + ks)|Lζ (t, s) dsdt

+
∫∫

δ≤
√

t2+s2

m∑

k=1

(
m

k

)

|f (x + kt, y + ks)− f (x0 + kt, y0 + ks)|Lζ (t, s) dsdt

= I11 + I12.

It is easy to see that

I11 ≤
∫∫

δ≤
√

t2+s2

m∑

k=1

(
m

k

)
|f (x + kt, y + ks)|Lζ (t, s) dsdt

+
∫∫

δ≤
√

t2+s2

m∑

k=1

(
m

k

)
|f (x0 + kt, y0 + ks)|Lζ (t, s) dsdt

= I111 + I112.
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Now, we deal with the integral I111. The operations for the integral I111 are as
follows:

I111 ≤ sup
δ≤
√

t2+s2

Lζ (t, s)

∣
∣∣
∣
∣
∣
∣

∫∫

R2\Bδ

m∑

k=1

(
m

k

)
|f (x + kt, y + ks)| dsdt

∣
∣∣
∣
∣
∣
∣
.

Furthermore, we proceed as follows:

I111 ≤ sup
δ≤
√

t2+s2

Lζ (t, s)

∣
∣∣
∣
∣
∣
∣

∫∫

R2

m∑

k=1

(
m

k

)
|f (x + kt, y + ks)| dsdt

∣
∣∣
∣
∣
∣
∣

≤ 2m sup
δ≤
√

t2+s2

Lζ (t, s) ‖f ‖L1(R2)

= 2mI1111,

where

m∑

k=1

(
m

k

)
= (

2m − 1
)
.

It follows that I1111 → 0 as ζ → ζ0 by condition (c).
Now, we deal with the integral I112. The operations for the integral I112 are as

follows:

I112 ≤ sup
δ≤
√

t2+s2

Lζ (t, s)

∣∣
∣
∣
∣
∣∣

∫∫

R2\Bδ

m∑

k=1

(
m

k

)
|f (x0 + kt, y0 + ks)| dsdt

∣∣
∣
∣
∣
∣∣
.

Now, we proceed as follows:

I112 ≤ sup
δ≤
√

t2+s2

Lζ (t, s)

∣
∣∣
∣
∣
∣
∣

∫∫

R2

m∑

k=1

(
m

k

)
|f (x0 + kt, y0 + ks)| dsdt

∣
∣∣
∣
∣
∣
∣

≤ 2m sup
δ≤
√

t2+s2

Lζ (t, s) ‖f ‖L1(R2)

= 2mI1121,
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where

m∑

k=1

(
m

k

)
= (

2m − 1
)
.

It follows that I1121 → 0 as ζ → ζ0 by condition (c).

Clearly, by Theorem 21.3.1, I2 → 0 as ζ tends to ζ0.

Summarizing all operations, we obtain the following general inequality:

Iζ (x, y) ≤ 2m+1 sup
δ≤
√

t2+s2

Lζ (t, s) ‖f ‖L1(R2)

+

∣
∣
∣
∣∣
∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0 + kt, y0 + ks)

)

dsdt − f (x0, y0)

∣
∣
∣
∣∣
∣
∣

+
m∑

k=1

(
m

k

) δ∫

−δ

δ∫

−δ
|f (x + kt, y + ks)− f (x0 + kt, y0 + ks)|Lζ (t, s) dsdt.

Since the last term above is bounded on ZC,δ,m by the hypothesis, the assertion
follows, that is Iζ (x, y) → 0 as (x, y, ζ ) → (x0, y0, ζ0). Thus, the proof is
completed. ��

21.5 Rate of Convergence

Theorem 21.5.1 Suppose that the hypotheses of Theorem 21.3.1 are satisfied. Let

�(ζ, δ) =
δ∫

−δ

δ∫

−δ
Lζ (t, s)

∣
∣{μ1 (|t|)}′t

∣
∣
∣
∣{μ2 (|s|)}′s

∣
∣ dsdt,

where 0 < δ < min {δ1, δ2} , and the following conditions are satisfied:

(i) �(ζ, δ)→ 0 as ζ → ζ0 for some δ > 0.
(ii) For every δ > 0, we have

sup
δ≤
√

t2+s2

Lζ (t, s) = o(�(ζ, δ))

as ζ → ζ0.
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(iii) For every δ > 0, we have

∫∫

δ≤
√

t2+s2

Lζ (t, s) dsdt = o(�(ζ, δ))

as ζ → ζ0.

(iv) Letting ζ → ζ0, we have

∣∣∣
∣∣∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1

(
m

k

)

f (x0, y0)

)

dsdt − f (x0, y0)

∣∣∣
∣∣∣
∣
= o(�(ζ, δ)).

Then, at each [m;μ]-Lebesgue point of f ∈ L1(R
2), we have

∣∣
∣T [m]

ζ (f ; x0, y0)− f (x0, y0)

∣∣
∣ = o(�(ζ, δ))

as ζ → ζ0.

Proof By the hypotheses of Theorem 21.3.1, we have

∣
∣
∣T [m]

ζ (f ; x0, y0)− f (x0, y0)

∣
∣
∣ ≤ 2m sup

δ≤
√

t2+s2

Lζ (t, s) ‖f ‖L1(R2)

+ 2m |f (x0, y0)|
∫∫

δ≤
√

t2+s2

Lζ (t, s) dsdt

+

∣
∣
∣
∣
∣∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0, y0)

)

dsdt − f (x0, y0)

∣
∣
∣
∣
∣∣
∣

+ ε

δ∫

−δ

δ∫

−δ
Lζ (t, s)

∣
∣{μ1 (|t|)}′t

∣
∣
∣
∣{μ2 (|s|)}′s

∣
∣ dsdt.

The proof is obvious by (i)–(iv). ��
Theorem 21.5.2 Suppose that the hypotheses of Theorem 21.4.1 hold. Let

�δ(x, y, ζ ) =
m∑

k=1

(
m

k

) δ∫

−δ

δ∫

−δ
|f (x + kt, y + ks)− f (x0 + kt, y0 + ks)|

× Lζ (t, s) dsdt,
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where 0 < δ < min {δ1, δ2} , and the following conditions are satisfied:

(i) �δ(x, y, ζ )→ 0 as (x, y, ζ )→ (x0, y0, ζ0) for some δ > 0.
(ii) For every δ > 0, we have

sup
δ≤
√

t2+s2

Lζ (t, s) = o (�δ(x, y, ζ ))

as (x, y, ζ )→ (x0, y0, ζ0).

(iii) Letting (x, y, ζ )→ (x0, y0, ζ0), we have

∣
∣
∣
∣∣
∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0 + kt, y0 + ks)

)

dsdt − f (x0, y0)

∣
∣
∣
∣∣
∣
∣

= o (�δ(x, y, ζ )) .

Then, at each [m;μ]-Lebesgue point of f ∈ L1(R
2), we have

∣∣
∣T [m]

ζ (f ; x, y)− f (x0, y0)

∣∣
∣ = o (�δ(x, y, ζ ))

as (x, y, ζ )→ (x0, y0, ζ0).

Proof Under the hypotheses of Theorem 21.4.1, we may write

∣∣
∣T [m]

ζ (f ; x, y)− f (x0, y0)

∣∣
∣ ≤ 2m+1 sup

δ≤
√

t2+s2

Lζ (t, s) ‖f ‖L1(R2)

+

∣
∣
∣
∣∣
∣
∣

∫∫

R2

Kζ

(

t, s,

m∑

k=1

(−1)k−1
(
m

k

)
f (x0 + kt, y0 + ks)

)

dsdt − f (x0, y0)

∣
∣
∣
∣∣
∣
∣

+
m∑

k=1

(
m

k

) δ∫

−δ

δ∫

−δ
|f (x + kt, y + ks)− f (x0 + kt, y0 + ks)|Lζ (t, s) dsdt.

From conditions (i)–(iii), the proof is completed. ��

21.6 Concluding Remarks

The concept of singular integral operators arising from Fourier analysis is widely
used in many areas of science, including medicine and engineering. Magnetic
resonance imaging (MRI) is the well-known application area. Also, the singular
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integral operator type of operators are used for approximating the solutions of
ordinary and partial differential equations in the case of analytical solution cannot
be obtained by known technics. Similarly, nonlinear singular integral operators are
also employed for approximating the solutions of nonlinear ordinary and partial
differential equations. For some applications, we refer the reader to see [6, 22].
In order to approximate derivatives of the indefinite integrals of the integrable
functions in the sense of Lebesgue, one may prefer to use m-singular integral
operators.

In this work, we start by giving pointwise convergence result for double m-
singular integral operators. Using this auxiliary result, the main result, Fatou type
convergence theorem, is presented. Finally, corresponding rate of convergences are
computed.
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Chapter 22
A Survey on p-Adic Integrals

Ugur Duran and Hemen Dutta

Abstract The p-adic numbers are a counterintuitive arithmetic system and were
firstly introduced circa end of the nineteenth century. In conjunction with the
introduction of these numbers, many mathematicians and physicists started to
develop new scientific tools using their available, useful, and applicable properties.
Several effects of these researches have emerged in mathematics and physics such
as p-adic analysis, string theory, p-adic quantum mechanics, quantum field theory,
representation theory, algebraic geometry, complex systems, dynamical systems,
and genetic codes. One of the important tools of the mentioned advancements is
the p-adic integrals. Intense research activities in such an area like p-adic integrals
are principally motivated by their significance in p-adic analysis. Recently, p-
adic integrals and its diverse extensions have been studied and investigated in
detail by many mathematicians. This chapter considers and investigates multifarious
extensions of the p-adic integrals elaborately. q-Analogues with diverse extensions
of p-adic integrals are also considered such as the weighted p-adic q-integral on Zp.
The two types of the weighted q-Boole polynomials and numbers are introduced
and investigated in detail. As several special polynomials and numbers can be
derived from the p-adic integrals, some generalized and classical q-polynomials
and numbers are obtained from the aforesaid extensions of p-adic integrals. Finally,
the importance of these extensions is analyzed.
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22.1 Introduction

Arnt Volkenborn (cf. [29, 30]) invented p-adic integral with respect to the following
Haar measure about the end of the third quarter of the twentieth century. Despite
there have been so many scientific studies for these topics since more than four
decades (cf. [4, 9, 11, 12, 17, 18, 20, 22, 24–30] and see also the references cited in
each of these earlier works), the Volkenborn integral is today a hot topic and still
keeps its mystery. Moreover, it is penetrated multifarious mathematical research
areas such as special functions, the functional equations of zeta functions, number
theory, Stirling numbers, Mittag-Leffler function, and Mahler theory of integration
with respect to the ring Zp in conjunction with Iwasawa’s p-adic L functions.

The fermionic p-adic invariant integral is firstly considered by Taekyun Kim (cf.
[14]), a Korean mathematician, in order to investigate several special numbers and
polynomials which can be represented by the fermionic p-adic integrals (cf. [1–
3, 5–8, 10, 14–16, 18, 19, 21, 23, 25] and see the references cited therein). Then,
this integral has been more common, and it is used in many mathematical fields.

In this study, we firstly focus on the Volkenborn integral and fermionic p-
adic integral with their properties and reflections on the special polynomials and
numbers. We then consider the q-extensions of the aforementioned integrals (p-
adic q-integral and fermionic p-adic q-integral) and use these integrals in order to
define q-analogues of the classical special polynomials and numbers.

22.2 p-Adic Integrals on Zp

We study the two-type p-adic integrals: the first is based on the Haar measure and
the second is the fermionic p-adic invariant integral.

Imagine that p be a fixed prime number. Throughout this part, Zp, Q, Qp, and
Cp will denote the ring of p-adic rational integers, the field of rational numbers,
the field of p-adic rational numbers, and the completion of algebraic closure of Qp,
respectively. Let N = {1, 2, 3, . . .} and N

∗ = N∪{0}. The normalized absolute value
according to the theory of p-adic analysis is given by |p|p = p−1 (cf. [1–30]).

22.2.1 Volkenborn Integral and Its Some Properties

The Volkenborn integral and its several generalizations have been used to introduce
and research some special polynomials and numbers such as Bernoulli, Daehee
polynomials and numbers, cf. [4, 9, 11, 12, 17, 18, 20, 22, 24–30] and see also the
references cited therein.
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Definition 22.1 (Koblitz [22]) Let f ∈ C1
(
Zp → Cp

) = {
f | f : X → Cp

is continuous
}
. The uncertain sum of f is denoted Sf and is defined as

Sf (n) =
n∑

j=0

f (j) (n ∈ N) .

If f ∈ C1
(
Zp → Cp

)
, then we get Sf ∈ C1

(
Zp → Cp

)
.

Here we present the definition of the Volkenborn integral and its some properties.

Definition 22.2 (Koblitz [22]) Let f ∈ C1
(
Zp → Cp

)
be a function from the

p-adic integers taking values in the p-adic numbers. The Volkenborn integral is
defined by the limit, if it exists:

∫

Zp

f (x) dμ (x) = lim
n→∞

1

pn

pn−1∑

x=0

f (x) . (22.2.1)

Some properties of Volkenborn integral are given in theorem below.

Theorem 22.1 (Koblitz [22]) Let dμ (x) = μHaar

(
x + pn

Zp

) = 1
pn . The

following expressions hold:

∫

Zp

f (x) dμ (x) = lim
n→∞

Sf (pn)− Sf (0)

pn
= (Sf )′ (0) .

∫

Zp

f (x) dμ (x) = lim
n→∞

f (0)+ f (1)+ · · · + f (pn − 1)

pn

∫

Zp

(f (x + 1)− f (x)) dμ (x) = f ′ (0) (22.2.2)

∫

Zp

(f (x + n)− f (x)) dμ (x) =
n−1∑

l=0

f ′ (l) ,

where

(Sf )′ (x) = d (Sf (x))

dx
.

By means of the useful property (22.2.2) of the Volkenborn integral, generating
function of a lot of special number type can be found. For example, to get well-
known Bernoulli numbers if we take f (x) = ext in formula (22.2.2), we then have

∫

Zp

(
e(x+1)t − ext

)
dμ (x) = t .
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In conjunction with some mathematical computations, we get

∫

Zp

extdμ (x) =
∞∑

n=0

Bn
tn

n! .

which means, by comparing the coefficient tn

n! of both sides,

∫

Zp

xndμ (x) = Bn.

Also choosing f (x) = (1+ t)x+y in Volkenborn integral in relation (22.2.2)
gives the generating function of the Daehee polynomials given by (cf. [18])

∞∑

n=0

Dn (x)
tn

n! =
∫

Zp

(1+ t)x+y dμ (y) .

The main aim of this Volkenborn integral representations of special numbers and
polynomials is to get more formulas and identities for the related special numbers
and polynomials by making use of the good and useful properties of the Volkenborn
integral.

22.2.2 Fermionic p-Adic Integral and Its Some Properties

The fermionicp-adic integral and its diverse extensions have been used to define and
explore many special polynomials and numbers such as Euler, Genocchi, Frobenius-
Euler, Changhee, Boole polynomials and numbers, cf. [1–3, 5–8, 10, 14–16, 18, 19,
21–23, 25] and see also the references cited therein.

Supposing that p be a fixed odd prime number. Here we give fermionic p-adic
integral defined by Kim, South Korean, [14] and its some properties. Then, the Euler
numbers and Genocchi numbers are presented by means of the fermionic p-adic
integral.

Definition 22.3 (Kim [13]) Let p be an odd prime number and f ∈
C1

(
Zp → Cp

)
be a function from the p-adic integers taking values in the p-adic

numbers. The fermionic integral of f is defined by the limit, if it exists

∫

Zp

f (x) dμ−1 (x) = lim
n→∞

pn−1∑

x=0

(−1)x f (x) .
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Theorem 22.2 (cf. [13] and [15]) Let dμ−1 (x) = μ−1
(
x + pn

Zp

) = (−1)x . The
following identities hold true

∫

Zp

(f (x + 1)+ f (x)) dμ−1 (x) = 2f (0) (22.2.3)

∫

Zp

(
f (x + n)+ (−1)n−1 f (x)

)
dμ−1 (x) = 2

n−1∑

l=0

(−1)n−1−l f (l) . (22.2.4)

By using fermionic p-adic integral generating functions of not only Euler type
numbers and polynomials but also Genocchi type numbers and polynomials can be
derived. For instance, to obtain the generating function of Euler numbers if we take
f (x) = ext in Eq. (22.2.3), we then have

∫

Zp

(
e(x+1)t + ext

)
dμ−1 (x) = 2,

from which, we deduce that

∫

Zp

extdμ−1 (x) = 2

et + 1
,

whose right side gives the generating function of the Euler numbers. By motivating
the applications above, we observe that

∞∑

n=0

(∫

Zp

xndμ−1 (x)

)
tn

n! =
∞∑

n=0

En
tn

n! ,

which yields to

∫

Zp

xndμ−1 (x) = En (22.2.5)

that means the Euler numbers can be shown by means of the fermionic p-adic
integral (cf. [14]).

Note that

En (x) = Gn+1 (x)

n+ 1
,

which also implies

En = Gn+1

n+ 1
.
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Thus, we can write

Gn+1

n+ 1
=

∫

Zp

xndμ−1 (x) .

We refer the reader to look at Refs. [1–30] in order to see some generalizations of
the Volkenborn integral and fermionic integral in conjunction with some of their
applications.

It is well known that the usual Frobenius-Euler polynomials Hn(x) for λ ∈ C

with |λ| > 1 were defined by the power series expansion at t = 0:

∞∑

n=0

Hn(x)
tn

n! =
1− λ

et − λ
ext . (22.2.6)

Taking x = 0 in Eq. (22.2.6), we have Hn(0) := Hn that is widely known as n-th
Frobenius-Euler number cf. [3].

In [2], the Frobenius-Euler polynomials are defined by the following p-adic
fermionic integral on Zp , with respect to μ−1:

Hn(x | −λ−1) = λ+ 1

2

∫

Zp

λy (x + y)n dμ−1 (y) . (22.2.7)

Upon setting x = 0 into Eq. (22.2.7) gives Hn(0) := Hn which are called n-th
Frobenius-Euler number.

Moreover, the Changhee and the Boole polynomials can be shown by the
fermionic p-adic invariant integral as follows (cf. [2, 5, 7, 8, 19, 21, 23, 28]):

∞∑

n=0

Chn (x)
tn

n! =
∫

Zp

(1+ t)x+y dμ−1 (y)

and

∞∑

n=0

Bln (x |ω)
tn

n! =
1

2

∫

Zp

(1+ t)x+ωy dμ−1 (y)
(
ω ∈ Zp

)
. (22.2.8)

22.3 p-Adic q-Integrals on Zp

We study the two q-extensions of the p-adic integrals: the first is bosonic p-adic
q-integral on Zp (or called q-Volkenborn integral on Zp) with respect to the q-Haar
measure and the other is the fermionic p-adic q-integral on Zp.
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Let N := {1, 2, 3, . . .} and N0 = N ∪ {0}. Along this section, Z denotes the set
of integers, R denotes the set of real numbers, and C denotes the set of complex
numbers. Let p be chosen as a fixed prime number. The symbols Zp, Qp, and Cp

indicate the ring of p-adic rational integers, the field of p-adic rational numbers, and
the completion of an algebraic closure of Qp, respectively. The normalized absolute
value according to the theory of p-adic analysis is given by |p|p = p−1. The
parameter q can be considered as an indeterminate, a complex number q ∈ C with

|q| < 1, or a p-adic number q ∈ Cp with |q − 1|p < p
− 1

p−1 and qx = exp (x log q)
for |x|p ≤ 1. The q-analogue of x is defined by [x]q = (1− qx) / (1− q) (see [1–
7, 9–12, 15–18, 20, 21, 23, 24, 26] for more details about q-numbers). It is easy to
show that limq→1 [x]q = x for any x with |x|p ≤ 1 in the p-adic case (for details,
cf. [1–30]; see also the related references cited therein).

22.3.1 q-Volkenborn Integral and Its Some Properties

We say that f is uniformly differentiable function at a point a ∈ Zp, which is
denoted by f ∈ UD

(
Zp

)
. From here, Kim defined the q-Volkenborn integral or

bosonic p-adic q-integral on Zp of a function f ∈ UD
(
Zp

)
in [12] as follows:

Iq(f ) =
∫

Zp

f (x) dμq (x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f (x) qx , (22.3.1)

where μq (x) implies the q-Haar measure given by

μq

(
a + pN

Zp

)
= qa

[
pN

]
q

.

The most famous two properties of the q-Volkenborn integral are (cf. [12])

qIq(f1) = Iq(f )+ (q − 1) f (0)+ q − 1

log q
f
′
(0)

and

qnIq(fn) = Iq(f )+ (q − 1)
n−1∑

r=0

qrf (r)+ q − 1

log q

n−1∑

r=0

f
′
(r)

where fn(x) = f (x + n). For these related issues, see [4, 9, 11, 12, 17, 20, 24, 26]
and related references cited therein.

When q → 1, the integral Iq(f ) reduces to the usual Volkenborn integral
I1(f ) := I (f ), see (22.2.1).
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The q-Daehee numbers Dn,q and q-Daehee polynomials Dn,q(x) are defined by
means of q-Volkenborn integrals (cf. [4, 20]):

Dn,q =
∫

Zp

(x)n dμq (x) and Dn,q(x) =
∫

Zp

(x + y)n dμq (y) (n ≥ 0) ,

where the symbol (x)n denotes the falling factorial given by (cf. [4, 5, 7, 8, 18–
21, 23, 24, 28]):

(x)n = x (x − 1) (x − 2) · · · (x − n+ 1) . (22.3.2)

The falling factorial (x)n has the following summation representation:

(x)n =
n∑

k=0

S1 (n, k) x
k, (22.3.3)

where S1 (n, k) denotes the Stirling number of the first kind, see [4, 5, 7, 8, 18–
21, 23, 24, 28]. The Stirling numbers of second kind are also defined by (cf. [4, 5,
7, 8, 18–21, 23, 24, 28]):

(
et − 1

)k

k! =
∞∑

n=k
S2 (k, n)

tn

n! . (22.3.4)

It is obvious that limq→1 Dn,q := Dn and limq→1 Dn,q (x) := Dn(x), where Dn

and Dn(x) denote the classical Daehee numbers and polynomials, respectively.
The q-Bernoulli numbers and polynomials are introduced by the following q-

Volkenborn integrals (cf. [4, 20, 24]):

Bn,q =
∫

Zp

xndμq (x) and Bn,q(x) =
∫

Zp

(x + y)n dμq (y) (n ≥ 0) .

The q-Daehee and q-Bernoulli polynomials and numbers and their various gener-
alizations have been studied by many mathematicians, cf. [4, 9, 11, 17, 20, 24, 26];
see also the related references cited therein.

22.3.2 Fermionic p-Adic q-Integral and Its Some Properties

In this part, let p be chosen as an odd fixed prime number. The symbols Zp, Qp,
and Cp indicate the ring of p-adic rational integers, the field of p-adic rational
numbers, and the completion of an algebraic closure of Qp, respectively. The
normalized absolute value according to the theory of p-adic analysis is given by
|p|p = p−1. The parameter q can be considered as an indeterminate, a complex
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number q ∈ C with |q| < 1, or a p-adic number q ∈ Cp with |q − 1|p <

p
− 1

p−1 and qx = exp (x log q) for |x|p ≤ 1. The q-analogue of x is defined by
[x]q = (1− qx) / (1− q). It is easy to show that limq→1 [x]q = x for any x with
|x|p ≤ 1 in the p-adic case (for details, cf. [1–30]; see also the related references
cited therein).

Let f be uniformly differentiable function at a point a ∈ Zp , denoted by f ∈
UD

(
Zp

)
. Kim [13] originally introduced the fermionic q-Volkenborn integral (or

fermionic p-adic q-integral on Zp) of a function f ∈ UD
(
Zp

)
, as follows:

I−q (f ) =
∫

Zp

f (x) dμ−q (x) = lim
N→∞

1
[
pN

]
−q

pN−1∑

k=0

(−1)k f (k) qk. (22.3.5)

Let f1(x) = f (x + 1). By (22.3.5), the following interesting integral equation
holds true:

qI−q(f1)+ I−q (f ) = [2]q f (0) ,

which intensely preserves usability in introducing diverse generalizations of several
special polynomials such as Euler polynomials, q-Euler polynomials with their
assorted extensions, and the families of Changhee polynomials. As a general case
of (22.2.4), Kim [13] gave the following integral equation for fn(x) = f (x + n):

qnI−q(fn)+ (−1)n−1 I−q (f ) = [2]q

n−1∑

r=0

(−1)n−r−1 qrf (r) .

In [2], Araci et al. defined the q-analogue of Changhee polynomials in terms of
the fermionic p-adic q-integral:

Chn,q (x) =
∫

Zp

q−y (x + y)n dμ−q (y)
(
n � 0

)
.

When x = 0, then it yields Chn,q (0) := Chn,q being called n-th q-Changhee
number. It is obvious that limq→1 Chn,q (x) := Chn(x).

For n � 0, the q-Changhee polynomials of the second kind are defined as
follows:

Ĉhn,q (x) =
∫

Zp

q−y (−x − y)n dμ−q (y) . (22.3.6)

Upon setting x = 0 in Eq. (22.3.6) yields Ĉhn,q(0) := Ĉhn,q being called q-
Changhee numbers of the second kind (cf. [2]; see also the related references cited
therein).
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In [21], Kim et al. considered the q-extension of Boole polynomials the first and
second kinds by means of the fermionic q-Volkenborn integrals:

Bln,q (x |ω) = [2]−1
q

∫

Zp

(x + ωy)n dμ−q (y)
(
ω ∈ Zp and n � 0

)
,

(22.3.7)

and

B̂ln,q (x |ω) = [2]−1
q

∫

Zp

(−x − ωy)n dμ−q (y)
(
ω ∈ Zp and n � 0

)
.

(22.3.8)

Substituting x = 0 in Eqs. (22.3.7) and (22.3.8), the polynomials above
reduce to the corresponding numbers, namely Bln,q (0 |ω) := Bln,q (ω) being
called n-th q-Boole number of the first kind and B̂ln,q (0 |ω) := B̂ln,q (ω)

being called n-th q-Boole number of the second kind. It is readily seen
that limq→1 Bln,q (x |ω) := Bln (x |ω). In recent years, the Changhee and
Boole polynomials and its many generalizations with applications in p-adic
analysis and q-analysis have been studied by diverse mathematicians as well,
cf. [2, 5, 7, 8, 21, 23].

22.4 Weighted p-Adic Integrals on Zp

In this section, we present the weighted p-adic q-integral and the weighted
fermionic p-adic q-integral and analyze some of their fundamental properties. We
then provide the types of the q-Daehee polynomials with weight (α, β) arising
from the weighted p-adic q-integral on Zp and the two types of the q-Changhee
polynomials derived from the weighted fermionicp-adic q-integral on Zp with their
diverse identities, relations, and formulas. We finally introduce two generalizations
of q-Boole numbers and polynomials called q-Boole polynomials and numbers
with weight (α, β) and q-Boole polynomials and numbers of second kind with
weight (α, β) by means of the weighted fermionic p-adic q-integral on Zp.
Moreover, we acquire multifarious novel and interesting formulas and relations
including recurrence relation, symmetric relations and many correlations related to
the weighted q-Euler polynomials, the Apostol type weighted q-Euler polynomials,
familiar Stirling numbers of first and second kinds, and λ-Stirling numbers of the
second kind.
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22.4.1 (α, β)-Volkenborn Integral and Its Some Properties

In [4], Araci et al. considered a generalization of Kim’s p-adic q-integral on Zp

including the parameters α and β, as follows:

I (α,β)q (f ) =
∫

Zp

q−βxf (x) dμqα (x) = lim
N→∞

1
[
pN

]
qα

pN−1∑

k=0

f (k) q(α−β)k .

(22.4.1)

Remark 22.1 In the case when α = 1 and β = 0 in Eq. (22.4.1), we have
I
(1,0)
q (f ) := Iq(f ) in (22.3.1).

Remark 22.2 As q goes to 1 in Eq. (22.4.1), we have Volkenborn integral in
(22.2.1).

By (22.4.1), for, the following relation holds true for fn (x) = f (x + n) (cf. [4]):

q(α−β)nI (α,β)q (fn)− I (α,β)q (f ) = [α]q
α

(

(q − 1)
n−1∑

r=0

q(α−β)rf (r)

+q − 1

log q

n−1∑

r=0

q(α−β)rf ′
(r)

)

. (22.4.2)

22.4.1.1 The q-Daehee Polynomials with Weight (α, β)

Taking f (x) = (x + y)n in (22.4.1), we then have

I (α,β)q ((x + y)n) =
∫

Zp

q−βy (x + y)n dμqα (y) . (22.4.3)

It follows from Eq. (22.4.3) that

∞∑

n=0

∫

Zp

q−βy (x + y)n dμqα (y)
tn

n! =
∫

Zp

q−βy
( ∞∑

n=0

(
x + y

n

)
tn

)

dμqα (y)

=
∫

Zp

q−βy (1+ t)x+y dμqα (y) . (22.4.4)
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Since
∫

Zp

q−βy (1+ t)x+y dμqα (y)

= (q − 1)
[α]q
α (α − β)+ [α]q

α
q−1
log q log (1+ t)

tqα−2β + qα−2β − 1
(1+ t)x , (22.4.5)

we are able to state the following definition.
The q-Daehee polynomials with weight (α, β) are defined by the following

generating function to be:

∞∑

n=0

D(α,β)
n,q (x)

tn

n! =
(q − 1)

[α]q
α (α − β)+ [α]q

α
q−1
logq log (1+ t)

tqα−2β + qα−2β − 1
(1+ t)x .

(22.4.6)

From Eqs. (22.4.5) and (22.4.6), we get

∞∑

n=0

D(α,β)
n,q (x)

tn

n! =
∫

Zp

q−βy (1+ t)x+y dμqα (y) . (22.4.7)

Upon setting x = 0 in (22.4.7), we have D
(α,β)
n,q (0) := D

(α,β)
n,q which are called

q-Daehee numbers with weight (α, β) shown by

∞∑

n=0

D(α,β)
n,q

tn

n! =
∫

Zp

q−βy (1+ t)y dμqα (y) .

From Eqs. (22.3.3) and (22.4.7), it can be easily shown that (cf. [4])

D(α,β)
n,q (x) =

n∑

k=0

S1 (n, k) B
(α,β)
k,q (x) ,

where B(α,β)
k,q (x) are a new generalization of q-Bernoulli polynomials given by

B
(α,β)

k,q (x) =
∫

Zp

q−βy (x + y)k dμqα (y) .

Furthermore, in the case x = 0, we obtain

D(α,β)
n,q =

n∑

k=0

S1 (n, k) B
(α,β)
k,q
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where B(α,β)
k,q (0) := B

(α,β)
k,q are a new generalization of q-Bernoulli numbers.

There is a relationship among D
(α,β)
n,q (x), B(α,β)

n,q (x), and S2 (n, l) (cf. [4]):

B(α,β)
n,q (x) =

n∑

k=0

D
(α,β)
k,q (x)S2 (n, k) .

The q-Daehee numbers of second kind with weight (α, β) are defined by the
following the weighted p-adic q-integral on Zp:

D̂(α,β)
n,q =

∫

Zp

q−βy (−y)n dμqα (y) (n ∈ N0) . (22.4.8)

By (22.3.3) and (22.4.8), one can get the following result (cf. [4]):

D̂(α,β)
n,q =

n∑

k=0

S1 (n, k) (−1)k B(α,β)
k,q .

The generating function of the weighted q-analogue of Daehee numbers of the
second kind is defined in [4] as follows:

∞∑

n=0

D̂(α,β)
n,q

tn

n! =
∞∑

n=0

(∫

Zp

q−βy (−y)n dμqα (y)

)
tn

n!

=
∫

Zp

q−βy
( ∞∑

n=0

(−y
n

)
tn

)

dμqα (y)

=
∫

Zp

q−βy (1+ t)−y dμqα (y) .

Also, from (22.4.8), we have

∫

Zp

q−βy (1+ t)−y dμqα (y) = (q − 1)
[α]q
α

α − β − log(1+t )
logq

qα−2β − t − 1
(1+ t) .

Thus, it can be readily seen that

∞∑

n=0

D̂(α,β)
n,q

tn

n! = (q − 1)
[α]q
α

α − β − log(1+t )
logq

qα−2β − t − 1
(1+ t) .
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Now also the q-Daehee polynomials with weight (α, β) of second kind are
defined by means of the following generating function (cf. [4]):

(q − 1)
[α]q
α

α − β − log(1+t )
logq

qα−2β − t − 1
(1+ t)1−x =

∞∑

n=0

D̂(α,β)
n,q (x)

tn

n! (22.4.9)

By utilizing (22.4.9), we readily have

∫

Zp

q−βy (1+ t)−(x+y) dμqα (y) =
∞∑

n=0

D̂(α,β)
n,q (x)

tn

n! .

From here, it is obvious that

D̂(α,β)
n,q (x) =

∫

Zp

q−βy (−x − y)n dμqα (y) . (22.4.10)

The following relationships hold true (cf. [4]):

D̂(α,β)
n,q (x) =

n∑

l=0

(−1)l S1 (n, l) B
(α,β)
l,q (x)

and

B(α,β)
n,q (x) = (−1)n

n∑

k=0

D̂
(α,β)
k,q (x) S2 (n, k) .

The following relationships hold for two types of the q-Daehee polynomials with
weight (α, β) (cf. [4]):

D̂
(α,β)
n,q (x)

n! (−1)n =
n∑

k=1

(
n− 1

k − 1

)
D

(α,β)
k,q (x)

k!

and

D
(α,β)
n,q (x)

n! (−1)n =
n∑

k=1

(
n− 1

k − 1

)
D̂

(α,β)
k,q (x)

k! .
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22.4.2 (α, β)-Fermionic Integral and Its Some Properties

Here assume that t, q ∈ Cp with |q|p < p
− 1

1−p and |t|p < p
− 1

1−p . The weighted
fermionic p-adic q-integral on Zp including the real numbers α and β is given as
follows (cf. [7]):

I
(α,β)
−q (f ) =

∫

Zp

q−βxf (x) dμ−qα (x)

= lim
N→∞

1
[
pN

]
−qα

pN−1∑

k=0

(−1)k f (k) q(α−β)k . (22.4.11)

In the case when α = 1 and β = 0 in (22.4.11), it reduces to the I (1,0)−q (f ) :=
I−q (f ) given in (22.3.5).

Let fn (x) = f (x + n). By (22.4.11), we see that (cf. [7])

q(α−β)I (α,β)−q (f1) = q(α−β)
∫

Zp

q−βxf (x) dμ−qα (x)

= − lim
N→∞

1
[
pN

]
−qα

pN−1∑

k=0

(−1)k+1 f (k + 1) q(α−β)(k+1)

= − lim
N→∞

1
[
pN

]
−qα

pN−1∑

k=0

(−1)k f (k) q(α−β)k

+ (
1+ qα

)
lim

N→∞
f
(
pN

)
q(α−β)pN + f (0)

1+ qαp
N

= −I (α,β)−q (f )+ (
1+ qα

)
f (0)

and

q2(α−β)I (α,β)−q (f2) = (−1)2 lim
N→∞

1
[
pN

]
−qα

pN−1∑

k=0

(−1)k+2 f (k + 2) q(α−β)(k+2)

= (−1)2 I (α,β)−q (f )+ (
1+ qα

)

· lim
N→∞

−f (0)+ qα−βf (1)− f
(
pN

)
q(α−β)pN + f

(
pN + 1

)
q(α−β)

(
pN+1

)

1+ qαp
N

= (−1)2 I (α,β)q (f )+ (
1+ qα

) 1∑

r=0

(−1)r+1 q(α−β)rf (r) .
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By continuing this process, we acquire the following result for fn (x) =
f (x + n):

q(α−β)nI (α,β)−q (fn)− (−1)n+1 I
(α,β)
−q (f ) = (

1+ qα
) n−1∑

r=0

(−1)n−r+1 q(α−β)rf (r) .

This weighted integral is used to generalize and unify the well-known formulas and
identities for the some special q-polynomials.

22.4.2.1 The q-Changhee Polynomials with Weight (α, β)

Upon setting f (x) = (x + y)n in (22.4.11), we then have

I
(α,β)
−q ((x + y)n) =

∫

Zp

q−βy (x + y)n dμ−qα (y) . (22.4.12)

It follows from (22.4.12) that

∞∑

n=0

∫

Zp

q−βy (x + y)n dμ−qα (y)
tn

n! =
∫

Zp

q−βy
( ∞∑

n=0

(
x + y

n

)
tn

)

dμ−qα (y)

=
∫

Zp

q−βy (1+ t)x+y dμ−qα (y) ,

(22.4.13)

which yields the following identity:

∫

Zp

q−βy (1+ t)x+y dμ−qα (y) = 1+ qα

1+ (1+ t) qα−β
(1+ t)x . (22.4.14)

The q-Changhee polynomials with weight (α, β) by the following generating
function to be (cf. [7]):

∞∑

n=0

Ch(α,β)n,q (x)
tn

n! =
1+ qα

1+ (1+ t) qα−β
(1+ t)x . (22.4.15)

With the help of (22.4.14) and (22.4.15), we get

∞∑

n=0

Ch(α,β)n,q (x)
tn

n! =
∫

Zp

q−βy (1+ t)x+y dμ−qα (y) . (22.4.16)
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Upon setting x = 0 in (22.4.15) and (22.4.16), we have Ch
(α,β)
n,q (0) := Ch

(α,β)
n,q

which are called q-Changhee numbers with weight (α, β) generated by (cf. [7])

∞∑

n=0

Ch(α,β)n,q

tn

n! =
1+ qα

1+ (1+ t) qα−β
=

∫

Zp

q−βy (1+ t)y dμ−qα (y) . (22.4.17)

The weighted q-Euler polynomials for n � 0 are introduced in [7] as follows:

E(α,β)
n,q (x) =

∫

Zp

q−βy (x + y)n dμ−qα (y) . (22.4.18)

Substituting x = 0 in (22.4.18) gives E(α,β)
n,q (0) := E

(α,β)
n,q dubbed as the weighted

q-Euler numbers. Also the weighted q-Euler polynomials and numbers satisfy the
following relation:

E(α,β)
n,q (x) =

n∑

k=0

(
n

k

)
E
(α,β)
k,q xn−k .

In terms of (22.4.16) and (22.4.18), there are two relationships among
Ch

(α,β)
n,q (x), E(α,β)

n,q (x), and S2 (n, k) (cf. [7]):

Ch(α,β)n,q (x) =
n∑

k=0

S1 (n, k)E
(α,β)
k,q (x)

and

E(α,β)
n,q (x) =

n∑

k=0

Ch
(α,β)
k,q (x)S2 (n, k) .

The q-Changhee numbers of second kind with weight (α, β) are considered in
[7] by the following weighted fermionic p-adic q-integral on Zp:

Ĉh
(α,β)
n,q =

∫

Zp

q−βy (−y)n dμ−qα (y) (n ∈ N0) . (22.4.19)

The following result just follows from (22.3.3) and (22.4.19) (cf. [7]):

Ĉh
(α,β)
n,q =

n∑

k=0

S1 (n, k) (−1)k E(α,β)
k,q .
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Let us consider the exponential generating function of the weighted q-analogue
of Changhee numbers of the second kind as follows:

∞∑

n=0

Ĉh
(α,β)

n,q

tn

n! =
∞∑

n=0

(∫

Zp

q−βy (−y)n dμ−qα (y)
)
tn

n!

=
∫

Zp

q−βy
( ∞∑

n=0

(−y
n

)
tn

)

dμ−qα (y)

=
∫

Zp

q−βy (1+ t)−y dμ−qα (y) .

Also,

∫

Zp

q−βy (1+ t)−y dμ−qα (y) = (1+ qα) (1+ t)

1+ t + qα−β
.

so, it can be rewritten as follows:

∞∑

n=0

Ĉh
(α,β)
n,q

tn

n! =
1+ qα

1+ t + qα−β (1+ t) .

The q-Changhee polynomials with weight (α, β) of second kind Ĉh
(α,β)
n,q (x) are

defined (cf. [7]) by means of the following exponential generating function:

∞∑

n=0

Ĉh
(α,β)
n,q (x)

tn

n! =
(1+ qα)

1+ t + qα−β (1+ t)1−x (22.4.20)

As a result of (22.4.20), it follows

∞∑

n=0

Ĉh
(α,β)
n,q (x)

tn

n! =
∫

Zp

q−βy (1+ t)−(x+y) dμ−qα (y) .

and then

Ĉh
(α,β)
n,q (x) =

∫

Zp

q−βy (−x − y)n dμ−qα (y) . (22.4.21)

A symmetric relation for Ĉh
(α,β)
n,q (x) and Ch

(α,β)
n,q (x) is directly derived

from (22.4.15) and (22.4.20) with some basic computations (cf. [7]):

Ĉh
(α,β)
n,q (x) = qβCh

(α,β)

n,q−1 (1− x) . (22.4.22)
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The rising factorial x〈n〉 is defined by (cf. [4, 5, 7, 8, 18–21, 23, 24, 28])

x〈n〉 = x (x + 1) (x + 2) · · · (x + n− 1)
(
n � 0

)

and provides the following expression:

x〈n〉 = (−1)n (−x)n =
n∑

k=0

S1 (n, k) (−1)n−k xk. (22.4.23)

By (22.4.21), (22.4.23), and (22.4.18), for n � 0, the following relations hold true:

Ĉh
(α,β)
n,q (x) =

n∑

k=0

S1 (n, k) (−1)k E(α,β)
k,q (x)

and

Ĉh
(α,β)
n,q (x) =

n∑

l=0

(−1)l S1 (n, l)E
(α,β)
l,q (x) .

For λ ∈ C, the λ-Stirling numbers of second kind S2 (k, n; λ) are given by the
following series expansion (cf. [7] and [28]):

(
λet − 1

)k

k! =
∞∑

n=k
S2 (k, n; λ) t

n

n!
(
n � k

)
. (22.4.24)

Upon setting λ = 1, λ-Stirling numbers of second kind S2 (k, n; λ) reduce to the
Stirling numbers of second kind S2 (k, n) in (22.3.4), cf. [4, 5, 7, 8, 18–21, 23, 24,
28].

A correlation including the λ-Stirling numbers of second kind S2 (k, n; λ), q-
Changhee polynomials with weight (α, β) of second kind, and the weighted q-Euler
polynomials is valid for n � 0 (cf. [7]):

E(α,β)
n,q (x) = q(α−β)(1−2x)

n∑

k=0

Ĉh
(α,β)
k,q (1− x) S2

(
k, n; q2(α−β)) .

By using the relation (22.4.22), an immediate result of the formula above is as
follows:

E(α,β)
n,q (x) = q(α−β)(1−2x)+β

n∑

k=0

Ch
(α,β)

k,q−1 (x) S2

(
k, n; q2(α−β)) .
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The following formulas provide correlations for the q-Changhee polynomials
with weight (α, β) of the both sides (cf. [7]):

Ĉh
(α,β)
n,q (x) = (−1)n

n∑

k=1

(n− k)!
(
n

k

)(
n− 1

k − 1

)
Ch

(α,β)
k,q (x)

and

Ch(α,β)n,q (x) = (−1)n
n∑

k=1

(n− k)!
(
n

k

)(
n− 1

k − 1

)
Ĉh

(α,β)
k,q (x) .

22.4.2.2 The q-Boole Polynomials with Weight (α, β)

In this part, we perform to investigate q-extension of the Boole polynomials with
weight (α, β) via the weighted fermionic p-adic q-integral on Zp.

Throughout this part, assuming that t, q ∈ Cp with |q|p < p
− 1

1−p and |t|p <

p
− 1

1−p .
We firstly considered choosing a function f (x) = [2]−1

q (x + ωy)n in the
weighted fermionic p-adic q-integral (22.4.11), we then have

I
(α,β)
−q ([2]−1

q (x + ωy)n) = [2]−1
q

∫

Zp

q−βy (x + ωy)n dμ−qα (y) . (22.4.25)

It follows from (22.4.25) that

∞∑

n=0

∫

Zp

q−βy (x + ωy)n dμ−qα (y)
tn

n! =
∫

Zp

q−βy
( ∞∑

n=0

(
x + ωy

n

)
tn

)

dμ−qα (y)

=
∫

Zp

q−βy (1+ t)x+ωy dμ−qα (y) ,

which yields the following identity:

∫

Zp

q−βy (1+ t)x+ωy dμ−qα (y) = (1+ qα)

(1+ t)ω qα−β + 1
(1+ t)x . (22.4.26)

We are able to consider the following Definition 22.4.

Definition 22.4 We introduce q-Boole polynomials Bl
(α,β)
n,q (x |ω) with weight

(α, β) via the following exponential generating function to be:

∞∑

n=0

Bl(α,β)n,q (x |ω)
tn

n! =
1

1+ q

1+ qα

(1+ t)ω qα−β + 1
(1+ t)x . (22.4.27)
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Remark 22.3 In the case when α = 1 and β = 0 in Eq. (22.4.27), we then have
Bl

(1,0)
n,q (x |ω) := Bln,q (x |ω) in (22.3.7).

Remark 22.4 As q goes to 1 in Eq. (22.4.27), we get the familiar Boole polynomials
in (22.2.8).

In terms of (22.4.26) and (22.4.27), we can write

∞∑

n=0

Bl(α,β)n,q (x |ω)
tn

n! =
1

1+ q

∫

Zp

q−βy (1+ t)x+ωy dμ−qα (y) . (22.4.28)

If we put x = 0 in (22.4.27) and (22.4.28), we then have Bl
(α,β)
n,q (0 |ω) :=

Bl
(α,β)
n,q (ω) that are called q-Boole numbers with weight (α, β) having the following

generating function:

∞∑

n=0

Bl(α,β)n,q (ω)
tn

n! =
1

1+ q

1+ qα

(1+ t)ω qα−β + 1

= 1

1+ q

∫

Zp

q−βy (1+ t)ωy dμ−qα (y) .

By (22.4.25) and (22.4.28), it is obvious that

Bl(α,β)n,q (x |ω) = [2]−1
q

∫

Zp

q−βy (x + ωy)n dμ−qα (y) (22.4.29)

and

Bl(α,β)n,q (ω) = [2]−1
q

∫

Zp

q−βy (ωy)n dμ−qα (y) . (22.4.30)

In terms of (22.3.3), (22.4.18), and (22.4.29), we observe that

Bl(α,β)n,q (x |ω) = [2]−1
q

∫

Zp

q−βy (x + ωy)n dμ−qα (y)

= [2]−1
q

∫

Zp

q−βy
n∑

k=0

S1 (n, k) (x + ωy)k dμ−qα (y)

=
n∑

k=0

S1 (n, k) ω
k [2]−1

q

∫

Zp

q−βy
( x
ω
+ y

)k
dμ−qα (y)

=
n∑

k=0

S1 (n, k) ω
k [2]−1

q E
(α,β)
k,q

( x
ω

)
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Thus we state the following theorem.

Theorem 22.3 Let n be a nonnegative integer. We have

Bl(α,β)n,q (x |ω) =
n∑

k=0

S1 (n, k) ω
k [2]−1

q E
(α,β)
k,q

( x
ω

)
. (22.4.31)

In the special case x = 0 in Eq. (22.4.31), we get

Bl(α,β)n,q (ω) =
n∑

k=0

S1 (n, k) ω
k [2]−1

q E
(α,β)
k,q .

Now, we provide a formula including Bl
(α,β)
n,q (x |ω), E(α,β)

n,q (x), and S2 (n, k)

which we discuss below.

Theorem 22.4 For n ∈ N0, we have

E(α,β)
n,q

( x
ω

)
= [2]q

ωn

n∑

k=0

Bl
(α,β)
k,q (x |ω)S2 (n, k) . (22.4.32)

Proof Substituting t by et − 1 in (22.4.27), we then get

[2]−1
q

(1+ qα)

qα−βetω + 1
etx =

∞∑

n=0

Bl(α,β)n,q (x |ω)

(
et − 1

)n

n!

=
∞∑

n=0

Bl(α,β)n,q (x |ω)

∞∑

k=n
S2 (n, k)

tk

k!

=
∞∑

n=0

(
n∑

k=0

Bl
(α,β)

k,q (x |ω)S2 (n, k)

)
tn

n!

and via (22.4.18), we also have

∞∑

n=0

E(α,β)
n,q

( x
ω

)
ωn t

n

n! =
1+ qα

qα−βetω + 1
etx ,

which completes the proof of this theorem. ��
The immediate result of Eq. (22.4.32) is as follows:

E(α,β)
n,q = [2]q

ωn

n∑

k=0

Bl
(α,β)
k,q (ω)S2 (n, k) .
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Let us consider the other type of the Boole numbers arising from the weighted
fermionic p-adic q-integral on Zp.

Definition 22.5 The q-Boole numbers of second kind with weight (α, β) are
introduced by the following weighted fermionic p-adic q-integral on Zp:

B̂l
(α,β)

n,q (ω) = 1

1+ q

∫

Zp

q−βy (−ωy)n dμ−qα (y)
(
ω ∈ Zp and n ∈ N0

)
.

(22.4.33)

In view of (22.3.3) and (22.4.33), we acquire the following relation stated in
Theorem 22.5.

Theorem 22.5 We have, for ω ∈ Zp and n � 0,

B̂l
(α,β)
n,q (ω) = 1

1+ q

n∑

k=0

S1 (n, k) (−ω)k E(α,β)
k,q .

Proof Using (22.3.3), we obtain

B̂l
(α,β)
n,q (ω) = 1

1+ q

∫

Zp

q−βy (−ωy)n dμ−qα (y)

= 1

1+ q

∫

Zp

q−βy
(

n∑

k=0

S1 (n, k) (−ωy)k
)

dμ−qα (y)

= 1

1+ q

n∑

k=0

S1 (n, k) (−ω)k
∫

Zp

q−βyykdμ−qα (y)

= 1

1+ q

n∑

k=0

S1 (n, k) (−ω)k E(α,β)
k,q ,

hence, we attain the asserted result. ��
Here we perform to investigate the exponential generating function of the

weighted q-Boole numbers of the second kind as follows:

∞∑

n=0

B̂l
(α,β)
n,q (ω)

tn

n! =
∞∑

n=0

(
1

1+ q

∫

Zp

q−βy (−ωy)n dμ−qα (y)
)
tn

n!

= 1

1+ q

∫

Zp

q−βy
( ∞∑

n=0

(−ωy
n

)
tn

)

dμ−qα (y)

= 1

1+ q

∫

Zp

q−βy (1+ t)−ωy dμ−qα (y) . (22.4.34)
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Also, by means of (22.4.11), we have

∫

Zp

q−βy (1+ t)−ωy dμ−qα (y) = (1+ qα)

(1+ t)ω + qα−β (1+ t)ω .

Thus let us rewrite Definition 22.5 as

∞∑

n=0

B̂l
(α,β)
n,q (ω)

tn

n! =
1+ qα

1+ q

(1+ t)ω

(1+ t)ω + qα−β
.

Now, we can consider the q-Boole polynomials with weight (α, β) of second
kind by the following definition.

Definition 22.6 The q-Boole polynomials B̂l
(α,β)
n,q (x |ω) with weight (α, β) of

second kind Ĉh
(α,β)
n,q (x) are introduced via the following series expansion:

∞∑

n=0

B̂l
(α,β)
n,q (x |ω)

tn

n! =
1+ qα

1+ q

(1+ t)ω+x

(1+ t)ω + qα−β
(22.4.35)

Remark 22.5 Upon setting α = 1 and β = 0 in Eq. (22.4.35), we then have

B̂l
(1,0)
n,q (x |ω) := B̂ln,q (x |ω) in (22.3.8).

As a result of (22.4.34), we readily have

∞∑

n=0

B̂l
(α,β)
n,q (x |ω)

tn

n! =
1

1+ q

∫

Zp

q−βy (1+ t)x−ωy dμ−qα (y) , (22.4.36)

then,

∞∑

n=0

B̂l
(α,β)
n,q (x |ω)

tn

n! =
1

1+ q

∫

Zp

q−βy
( ∞∑

n=0

(
x − ωy

n

)
tn

)

dμ−qα (y)

=
∞∑

l=0

(
1

1+ q

∫

Zp

q−βy (x − ωy)n dμ−qα (y)
)
tn

n! .

Hence, the following expression:

B̂l
(α,β)
n,q (x |ω) = 1

1+ q

∫

Zp

q−βy (x − ωy)n dμ−qα (y) (22.4.37)

holds true for ω ∈ Zp and n ∈ N0.

A formula for B̂l
(α,β)
n,q (x |ω) and Bl

(α,β)
n,q (x |ω) is a direct result of (22.4.27)

and (22.4.35) with some basic computations.
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Theorem 22.6 The following symmetric relation holds true for n � 0:

B̂l
(α,β)
n,q (x |−ω) = Bl(α,β)n,q (x |ω) .

From (22.4.37) and (22.4.23), it is easily seen that

B̂l
(α,β)
n,q (−x |−ω) = 1

1+ q

∫

Zp

q−βy (−x − ωy)n dμ−qα (y)

= 1

1+ q

∫

Zp

q−βy (−1)n (x + ωy)〈n〉 dμ−qα (y)

= 1

1+ q

n∑

k=0

S1 (n, k) (−1)k
∫

Zp

q−βy (x + ωy)k dμ−qα (y) ,

which yields the following theorem with (22.4.18).

Theorem 22.7 The following relation

B̂l
(α,β)
n,q (−x |−ω) = 1

1+ q

n∑

k=0

S1 (n, k) (−ω)k E(α,β)
k,q

( x
ω

)

holds true for n � 0 and ω ∈ Zp.

An immediate result of the theorem above is stated below:

B̂l
(α,β)
n,q (−ω) = 1

1+ q

n∑

k=0

S1 (n, k) (−ω)k E(α,β)
k,q .

We here give the following correlation.

Theorem 22.8 The following relationship holds true:

B̂l
(α,β)
n,q (x |−ω) = 1

1+ q

n∑

k=0

S1 (n, k) (−ω1)k E(α,β)
k,q

(
− x

ω

)
.

Proof Indeed,

B̂l
(α,β)
n,q (x |−ω) = 1

1+ q

∫

Zp

q−βy (x − ωy)n dμqα (y)

= 1

1+ q

∫

Zp

q−βy
(

n∑

k=0

S1 (n, k) (x − ωy)k

)

dμ−qα (y)
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= 1

1+ q

n∑

k=0

S1 (n, k) (−ω)k
∫

Zp

q−βy
(
− x

ω
+ y

)k
dμ−qα (y)

= 1

1+ q

n∑

k=0

S1 (n, k) (−ω1)k E(α,β)
k,q

(
− x

ω

)
.

��
We now introduce the Apostol type weighted q-Euler polynomials E(α,β)

n,q (x |γ )

and numbers E(α,β)
n,q (γ ) by the following exponential generating functions:

∞∑

n=0

E(α,β)
n,q (x |γ )

tn

n! =
1+ qα

qα−βγ etω + 1
etωx (22.4.38)

and

∞∑

n=0

E(α,β)
n,q (γ )

tn

n! =
1+ qα

qα−βγ etω + 1
etωx .

When γ = 1, the Apostol type weighted q-Euler polynomials E(α,β)
n,q (x |γ ) and

numbers E(α,β)
n,q (γ ) reduce to the classical corresponding polynomials and numbers

mentioned in the previous part, see Eq. (22.4.18).
A relationship covering the λ-Stirling numbers of second kind S2 (k, n; λ)

in (22.4.24), the q-Boole polynomials with weight (α, β) of second kind
in (22.4.36), and the weighted q-Euler polynomials in (22.4.18) is stated in the
following theorem.

Theorem 22.9 The following relationship is valid for n � 0:

E(α,β)
n,q (x) = q(α−β)(1−2x)

n∑

k=0

Ĉh
(α,β)
k,q (1− x) S2

(
k, n; q2(α−β)) .

Proof By replacing t by
(
q(α−β)et − 1

)
in (22.4.35), we get

1+ qα

1+ q

q(α−β)(ω+x)et(ω+x)

q(α−β)ωetω + qα−β

=
∞∑

n=0

B̂l
(α,β)
n,q (x |ω)

(
q(α−β)et − 1

)n

n!
q(α−β)(ω+x−1)

1+ q

1+ qα

q(α−β)(ω−2)q(α−β)etω + 1
etω(1+x/ω)
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=
∞∑

n=0

B̂l
(α,β)
n,q (x |ω)

(
q(α−β)et − 1

)n

n!

q(α−β)(ω+x−1)

1+ q

∞∑

n=0

E(α,β)
n,q

(
1+ x

ω

∣
∣
∣q(α−β)(ω−2)

) tn

n!

=
∞∑

n=0

B̂l
(α,β)
n,q (x |ω)

∞∑

k=n
S2

(
k, n; qα−β) t

k

k!

q(α−β)(ω+x−1)

1+ q

∞∑

n=0

E(α,β)
n,q

(
1+ x

ω

∣
∣∣q(α−β)(ω−2)

) tn

n!

=
∞∑

n=0

(
n∑

k=0

B̂l
(α,β)
k,q (x |ω) S2

(
k, n; qα−β)

)
tn

n!

and from (22.4.38), we arrive

E(α,β)
n,q

(
1+ x

ω

∣
∣
∣q(α−β)(ω−2)

)
= [2]q

q(α−β)(ω+x−1)

n∑

k=0

B̂l
(α,β)
k,q (x |ω) S2

(
k, n; qα−β) .

��
We finally give the following relationships for two types of the q-Boole

polynomials with weight (α, β).

Theorem 22.10 The following expressions are valid:

Bl(α,β)n,q (x |ω) = (−1)n
n∑

k=1

(n− k)!
(
n

k

)(
n− 1

k − 1

)
B̂l

(α,β)

k,q (−x |ω)

and

B̂l
(α,β)
n,q (x |ω) = (−1)n

n∑

k=1

(n− k)!
(
n

k

)(
n− 1

k − 1

)
Bl

(α,β)
k,q (−x |ω) .

Proof With the help of the known binomial identities

(
m

n

)
= (−1)n

(−m+ n− 1

n

)
and

(−m+ n− 1

n

)
=

n∑

k=1

(
n− 1

n− k

)(−m
k

)
,
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and via (22.4.29) and (22.4.37), we acquire

Bl
(α,β)
n,q (x |ω)

n! (−1)n = (−1)n
∫

Zp

q−βy
(
x + ωy

n

)
dμ−qα (y)

=
∫

Zp

q−βy
(−x − ωy + n− 1

n

)
dμ−qα (y)

=
n∑

k=1

(
n− 1

n− k

)∫

Zp

q−βy
(−x − ωy

k

)
dμ−qα (y)

=
n∑

k=1

(
n− 1

k − 1

)
B̂l

(α,β)
k,q (−x |ω)

k!

and

B̂l
(α,β)
n,q (x |ω)

n! (−1)n = (−1)n
∫

Zp

q−βy
(
x − ωy

n

)
dμ−qα (y)

=
∫

Zp

q−βy
(−x + ωy + n− 1

n

)
dμ−qα (y)

=
n∑

k=1

(
n− 1

n− k

)∫

Zp

q−βy
(−x + ωy

k

)
dμ−qα (y)

=
n∑

k=1

(
n− 1

k − 1

)
Bl

(α,β)
k,q (−x |ω)

k! .

��

22.5 Conclusion

The Volkenborn integral was firstly introduced by, a German mathematician, Arnt
Volkenborn, see [29] and [30]. With the introduction of the mentioned integral,
this integral has been utilized to define and investigate several special polynomials
and numbers such as Daehee and Bernoulli numbers and polynomials along with
their diverse generalizations. The fermionic p-adic integral is firstly introduced by
Korean mathematician Taekyun Kim in 2005. In conjunction with the introduction
of this integral, the foregoing integral and its many extensions have been used
to consider and analyze several special numbers and polynomials such as Euler,
Genocchi, Frobenius-Euler, Eulerian, Changhee, Boole and their many extensions
polynomials and numbers. Nowadays, the Volkenborn integral and the fermionic
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p-adic integral have been more common, and they are used in multifarious
mathematical research areas and physical research areas.

The p-adic q-integral and the fermionic p-adic q-integral were introduced more
than a decade ago. Since the introductions of these integrals, the problems have been
considered and investigated by using the useful properties of the aforementioned
integrals which intensely preserve usability in introducing several extensions of
diverse special polynomials such as q-Euler, q-Genocchi, q-Frobenius-Euler, q-
Eulerian, q-Changhee, q-Boole polynomials and numbers with their assorted
extensions.

In the last section, the weighted p-adic q-integral and the weighted fermionic
p-adic q-integral are given and examined with some of their basic properties. The
types of the q-Daehee polynomials with weight (α, β) arising from the weighted
p-adic q-integral on Zp and the two types of the q-Changhee polynomials derived
from the weighted fermionic p-adic q-integral on Zp are presented in conjunction
with their several properties. Then, two generalizations of q-Boole numbers and
polynomials called q-Boole polynomials and numbers with weight (α, β) and q-
Boole polynomials and numbers of second kind with weight (α, β) are introduced
by means of the weighted fermionic p-adic q-integral on Zp. Multifarious new and
interesting formulas and relations including recurrence relation, symmetric relation,
and many correlations related to the weighted q-Euler polynomials, the Apostol type
weighted q-Euler polynomials, familiar Stirling numbers of first and second kinds,
and λ-Stirling numbers of the second kind are derived properly.
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Chapter 23
On Statistical Deferred Cesàro
Summability

Hemen Dutta, S. K. Paikray, and B. B. Jena

Abstract This chapter consists of five sections. The first section is introductory,
where from the concept of infiniteness to the development of summability methods
are presented. In the second section, ordinary and statistical versions of Cesàro
and deferred Cesàro summability methods have been introduced and accordingly
some basic terminologies are considered. In the third section, we have applied our
proposed deferred Cesàro mean to prove a Korovkin-type approximation theorem
for the set of functions 1, e−x , and e−2x defined on a Banach space and demonstrated
that our theorem is a non-trivial extension of some well-known Korovkin-type
approximation theorems. In the fourth section, we have established a result for
the rate of our statistical deferred Cesàro summability mean with the help of the
modulus of continuity. Finally, in the last section, we have given some concluding
remarks and presented some interesting examples in support of our definitions and
results.

Keywords Infinite series · Natural density · Statistical convergence · Statistical
deferred Cesàro convergence · Statistical deferred Cesàro summability ·
Korovkin-type approximation theorem · Modulus of continuity · Rate of
statistical deferred Cesàro summability

23.1 Introduction

The concept of counting seems to excite the human thought right from the time man
put his feet on the earth as Homo-sapiens. Later with the introduction of arithmetic
operations in the field of number system there emerged the concept of infinite
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series. Its scope has been widened in the present days. The study of such series is
very interesting with regard to the notion of their convergence and divergence. The
study of summability has always been of great interest for modern mathematicians,
as it occupies a very prominent position in analysis. It is worth mentioning here
that the concept of summability is nothing but a generalization of the concept of
convergence.

Carl Friedrich Gauss, the German Mathematician, was the pioneer in the
introduction of concept of infinite process into Mathematical Analysis. However,
Augustine-Louis Cauchy (1789–1859), a French Mathematician, was the first to
look into the clear concept of sum of an infinite series strictly in terms of limit.
He introduced ideas regarding convergence and divergence in his famous book
Analysis Algebrique (Published in 1821, Paris), which was the first book on analysis
written in modern spirit. The sum of a series by Cauchy is known as natural sum or
Cauchy’s sum of a series.

Let {an} be a given real or complex-valued sequence. Then an expression of the
form

a1 + a2 + a3 + a4 + · · ·

is called an infinite series and is in brief generally denoted by

∞∑

n=1

an or
∑

an.

If all of the terms of the sequence {an} after a certain number are zero, then the
expression

a1 + a2 + a3 + a4 + · · · + am

is called a finite series and is written simply as

m∑

n=1

an.

An expression of the form

∞∑

n=1

an =
∑

an = a1 + a2 + a3 + a4 + · · ·,

which involves the addition of infinitely many terms, has indeed no meaning, as
there is no way to sum an infinite number of terms. However, in order to accord
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some plausible meaning to such an expression, Cauchy uses the concept of limits.
For this Cauchy forms a sequence of partial sums of the series and defines the sum

a1 + a2 + a3 + a4 + · · ·

as the limiting value of the partial sums as the number of terms tends to infinity.
Let

∑
an be an infinite series with real or complex terms and let, for n =

1, 2, 3, . . .,

sn = a1 + a2 + a3 + a4 + · · · + an.

Then sn is called the n-th partial sum of the series and the sequence {sn}, thus
obtained, is called the sequence of partial sums of the series

∑
an. An infinite series∑

an is said to converge, diverge, or oscillate, according as its sequence of partial
sums {sn} converges, diverges, or oscillates. According to Cauchy the infinite series∑

an has the sum s (known as a Cauchy’s sum) if and only if there exists a finite
real number s such that, for every ε > 0, there exists a natural number n0 such that

|sn − s| < ε, for every n ≥ n0.

That is to say, lim
n→∞ sn = s. A series for which Cauchy’s sum exists (that is,

lim
n→∞ sn = s, a finite number) is termed as convergent.

The series which were not convergent, that is, the series having no sum in the
sense of Cauchy, were termed as divergent. According to Cauchy, divergent series do
not belong to the understandable domain of mathematics, and the convergent series
were the only valid mathematical entities. Before Cauchy series, convergent and
divergent both were in use and no distinction was made between the two. This leads
to paradoxes and irreconcilable situations. But Cauchy in one stroke removed all the
contradictions and paradoxes by out casting divergent series from the valid domain
of mathematics. It brought the much needed relief to the then mathematicians,
whose faith in their methodology was badly shaken owing to frequent appearances
of paradoxes and contradictions. After this it began to be regarded that the problem
of the sum of an infinite series had fully and finally been resolved. Thus, even though
the divergent series were mostly used for good purposes earlier by such eminent
mathematicians as Leibnitz, Euler, and others, they were thrown out from the valid
domain of mathematics without hesitation. The concept of sum of an infinite series,
as derived by Cauchy was so natural, so efficacious that mathematicians thought the
problem of sum of infinite series had finally been settled once for all. Niels Henrik
Abel (Norwegian Mathematician, 1802–1829) was another important contributor
for giving the ideas concerning convergence and divergence in the early part of
the nineteenth century. He was so excited with the discovery that in a letter to
Holmbee he expresses his conviction in such telling that divergent series are in
general, something quite calamitous, and it is a shame that any one dares to base
a proof of them.
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As mathematics is based on principles of reasoning, any slightest deviation
from the right track of the flow of mathematical ideas would ultimately end in
disharmony. Even after the theory, propounded by Cauchy, having received the
stamp of finality of almost all mathematicians of the time, it did face same dishar-
monies particularly in the field of orthogonal expansion of continuous functions
and product series. It was noticed that certain non-convergent series (Fourier series)
behaved very much the same way with regard to arithmetical operations on them
as convergent ones and the calculation based on certain asymptotic series, not
convergent in the sense of Cauchy, used in dynamical astronomy, were quite valid
and verifiable otherwise. All these facts, in course of time led mathematicians
to conclude that Cauchy method of assigning sum to an infinite series was of
a far reaching importance and yet was not the last word on the subject and
divergent series were not that devilish as they were earlier made out to be. All
these stirred the imagination of several inquisitive mathematicians to delve deep
into the character of the sum of an infinite series, over and above that of Cauchy
of assigning sum. Persistent efforts made by a number of eminent mathematicians
led to the discovery of alternative methods which were closely connected with that
of Cauchy, yet associated sum even to divergent series, particularly to those whose
partial sums oscillate. By the close of the nineteenth century, several alternative
methods of assigning sum to infinite series were invented by mathematicians. These
methods of summation were termed as summability methods. Some of the most
familiar methods of summability are those that are associated with the name of
great mathematicians like Abel, Borel, Cesàro, Euler, Hausdroff, Hölder, Lambert,
Nörlund, Riesz, Riemann, and Lebesgue. Thus, by the third decade of the last
century, a very rich and fruitful theory of summability had been introduced. This
theory found applications even in such remote fields as the probability and the
theory of numbers. Norbert Wiener applied Lambert’s method of summation to
prove the prime number theorem. As Cauchy’s concept of sum of convergent series
well withstood all the rigors of mathematics, the framework of the summability
methods was in general so devised as to assign convergent series, the same sum as
that assigned by Cauchy.

A summability method or summation method is a function from the set of
sequence of partial sums of series to a value. In other words, in its broadest meaning,
summability theory or in short summability is the theory of assignment of limits,
which is fundamental in analysis, function theory, topology, and functional analysis.
Moreover, a summability method is said to be regular if the method sums all
convergent series to its Cauchy’s sum and it is said to be consistent if it assigns
same sum to same series. Thus, regular methods of summability may be regarded
as the generalization of Cauchy’s concept of convergence. Just as the concept of
ordinary convergence has been generalized into that of summability, commonly
termed “ordinary summability,” the concept of absolute convergence too has been
extended similarly into the concept called as absolute summability. The simplest
method of summability is the method of first arithmetic mean, that is, (C, 1)-mean
(Cesàro mean of order one).
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23.2 Cesàro and Deferred Cesàro Summability Methods

In 1890, Cesàro made a study about multiplication of series and introduced
arithmetic mean method for sequence of partial sum of infinite series to find the sum
of divergent series. In fact, he was the first mathematician who introduced (C, 1)-
summability. Let

∑
un be an infinite series of real or complex terms and let the n-th

partial sum of the series be

sn =
n∑

k=0

uk, n = 0, 1, . . . .

Let

σn = s0 + s1 + s2 + · · · + sn

n+ 1
= 1

n+ 1

n∑

k=0

xk,

also this σn is known as the first arithmetic mean of the Cesàro transform of order
one (in short (C, 1) transform) of the sequence {sn}.

If limn→∞ σn = s, then the series
∑

un is (C, 1) summable to s.
In this case, we write

∑
un = s(C, 1).

Further, if {σn} belongs to B.V., that is to say,

∑
|σn − σn−1| <∞,

then the series
∑

un or the sequence {sn} is said to be absolutely (C, 1)-summable
or |(C, 1)|-summable to s. Later he extended this method for the positive integral
order α. It is symbolically denoted as (C, α) method. Subsequently, Knop (1911)
extended the scope of this summability method to positive fractional orders. Further,
Chapman (1910) extended it to negative index α, for α > −1, which increases the
scope of summability even beyond convergence. For Cesàro transform of order α,
the sequence-to-sequence transformation {σn} is defined as

σn = 1

Aα
n

n∑

k=0

Aα−1
n=k sk,

where

Aα
n =

�(n + α + 1)

�(α + 1)�(n+ 1)
,
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and it is also known as the nth Cesàro-mean of order α, or simply the (C, α)

mean of the series
∑

un, or of the sequence {sn}. The series
∑

un is said to be
summable by Cesàro-method of order α, or simply (C, α)-summable, to the sum s,
if limn→∞ tn = s, where s is a finite number.

Further, if {σn} belongs to B.V., that is to say,

∑
|σn − σn−1| <∞,

then the series
∑

un or the sequence {sn} is said to be absolutely (C, α)-summable
or |(C, α)|-summable to s.

Example Consider a sequence (xn) = (−1)n, (n ∈ N∪{0}) with sequence of partial
sum (sn). We have

s0 = x0 = 1

s1 = x0 + x1 = 0

s2 = x0 + x1 + x2 = 1

· · · · · · · · ·

s2n−1 = x0 + x1 + x2 + · · · + x2n−1 = 0

s2n = x0 + x1 + x2 + · · · + x2n−1 + x2n = 1.

The Cesàro transform of order one is given by

σn = s0 + s1 + s2 + · · · + sn

n+ 1
(n � 0).

Clearly,

lim
n→∞ σ2n = lim

n→∞
s0 + · · · + s2n

2n+ 1
= lim

n→∞
n

2n+ 1
= 1

2
,

and

lim
n→∞ σ2n−1 = lim

n→∞
s1 + · · · + s2n−1

2n
= lim

n→∞
n− 1

2n
= 1

2
.

This implies,

lim
n→∞ σn = 1

2
.

Hence, (xn) is Cesàro summable to 1
2 .
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In the study of sequence space, classical convergence has got innumerable
applications where the convergence of a sequence requires that almost all elements
are to satisfy the convergence condition, that is, every element of the sequence needs
to be in some neighborhood (arbitrarily small) of the limit. However, such restriction
is relaxed in statistical convergence, where the set having a few elements that are
not in the neighborhood of the limit is discarded subject to the condition that the
natural density of the set is zero, and at the same time the condition of convergence
is valid for the rest majority of the elements. The notion of statistical convergence
was introduced by Fast [7] and Steinhaus [27]. Recently, statistical convergence has
been a dynamic research area due to the fact that it is more general than classical
convergence and such theory is discussed in the study of Fourier analysis, number
theory, and approximation theory. For more details, see [8, 9, 12, 20, 23, 25] and
[26].

Let N be the set of natural numbers and K ⊆ N. Also, let

Kn = {k : k ≤ n and k ∈ K}

with |Kn| as the cardinality of Kn. The natural density of K is defined by

δ(K) = lim
n→∞

|Kn|
n

= lim
n→∞

1

n
|{k : k ≤ n and k ∈ K}|,

provided the limit exists.
A given sequence (xn) is said to be statistically convergent to �, if for each ε > 0,

the set

Kε = {k : k ∈ N and |xk − �| ≥ ε}

has zero natural density (see [7, 27]). That is, for each ε > 0,

δ(Kε) = lim
n→∞

|Kε |
n

= lim
n→∞

1

n
|{k : k ≤ n and |xk − �| ≥ ε}| = 0.

In this case, we write

stat lim
n→∞ xn = �.

Now we present an example to show that every convergent sequence is statistically
convergent but the converse is not true in general.

Example Consider a sequence x = (xn) by

xn =
⎧
⎨

⎩

n when n = m2, for all m ∈ N

1
n

otherwise.
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It is easy to see that the sequence (xn) is divergent in the ordinary sense, while
0 is the statistical limit of (xn) since δ(K) = 0, where K = {m2, for all m =
1, 2, 3, . . .}.

In 2002, Móricz [15] introduced the fundamental idea of statistical (C, 1)
summability and recently Mohiuddine et al. [14] have established the statistical
(C, 1) summability as follows.

A sequence (xn) is said to be statistical (C, 1) summable to �, if for each ε > 0,
the set

{k : k ∈ N and |σk − �| ≥ ε}

has zero Cesàro density. That is, for each ε > 0,

lim
n→∞

1

n
|{k : k ≤ n and |σk − �| ≥ ε}| = 0.

In this case, we write

stat− lim
n→∞ σn = � or C1(stat)− lim

n→∞ xn = �.

In the following example, we illustrate that a sequence is statistically (C, 1)
summable even if it is not statistically convergent.

Example Define a sequence xk by

xk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if k = m2 −m,m2 −m+ 1, . . . ,m2 − 1,

−m if k = m2 (m = 2, 3, 4, . . . , )

0 otherwise.

The (C, 1) transform

σn = 1

n+ 1

n∑

k=0

xk,

yields

σn =
⎧
⎨

⎩

s+1
n+1 if n = m2 −m+ s; s = 0, 1, 2, . . .m− 1;m = 2, 3, 4, . . . ,

0 otherwise.
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It is easy to see that limn→∞ σn = 0, which implies that stat − limn→∞ σn = 0.
Clearly, the sequence xn is statistically (C, 1) summable to 0; however, it is not
statistically convergent to 0.

In the year 2008, Özarslan et al. [18] established certain results on statistical
approximation for Kantorovich-type operators involving some special polynomials,
and then Braha et al. [5] investigated a Korovkin-type approximation theorem
for periodic functions via the statistical summability of the generalized de la
Vallée Poussin mean. Very recently, Kadak et al. [10] have established some
approximation theorems by statistical weighted B-summability, and then Srivastava
and Et [21] established a result on lacunary statistical convergence and strongly
lacunary summable functions of order α. Furthermore, Srivastava et al. [24] have
proved some interesting results on approximation theorems involving the q-Szàsz–
Mirakjan–Kantorovich type operators via Dunkl’s generalization.

Motivated essentially by the above-mentioned works, in view of establishing
certain new approximation results, we now recall the deferred Cesàro D(an, bn)

summability mean as follows.
Let (an) and (bn) be sequences of non-negative integers such that (i) an <

bn and (ii) lim
n→∞ bn = ∞, then the deferred Cesàro D(xn) mean is defined by

(Agnew [1, p. 414]),

D(xn) = xan+1 + xan+2 + · · · + xbn

bn − an
= 1

bn − an

bn∑

k=an+1

xk (23.1)

It is well known that D(xn) is regular under conditions (i) and (ii) (see Agnew [1]).
Also, very recently Srivastava et al. [23] have introduced deferred weighted

mean, Db
a(N, p, q) as,

tn = 1

R
bn
an+1

bn∑

m=an+1

pmqmxm.

It will be interesting to see that, for pm = qm = 1, tn is same as D(xn). Thus,
deferred Cesàro mean is very fundamental in the study of such type of means. Here,
we have considered the statistical summability via deferred Cesàro mean in order to
establish certain approximation theorems.

Let us now introduce the following definitions in support of our proposed work.

Definition 23.2.1 A sequence (xn) is said to be deferred Cesàro convergent to � if,
for every ε > 0, the set

{k : an < k ≤ bn and |xn − �| ≥ ε}
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has deferred Cesàro density zero [12, 29] that is,

lim
n→∞

1

bn − an
|{k : an < k ≤ bn and |xn − �| ≥ ε}| = 0.

In this case, we write

statDC lim
n→∞ xn = �.

Definition 23.2.2 A sequence (xn) is said to be statistical deferred Cesàro
summable to � if, for every ε > 0, the set

{k : an < k ≤ bn and |D(xn)− �| ≥ ε}
has deferred Cesàro summable density zero, that is,

lim
n→∞

1

bn − an
|{k : an < k ≤ bn and |D(xn)− �| ≥ ε}| = 0.

In this case, we write

stat− lim
n→∞D(xn) = � or DC1(stat)− lim

n→∞ xn = �.

Clearly, above definition can be viewed as the generalization of some existing
definitions.

We now prove the following theorem which determines the inclusion relation
between the deferred Cesàro statistical convergence and the statistical deferred
Cesàro summability.

Theorem 23.2.3 Let a sequence (xn) is deferred Cesàro statistical convergent to a
number �, then it is statistical deferred Cesàro summable to the same number �, but
the converse is not true.

Proof Suppose (xn) is deferred Cesàro statistically convergent to �. By the hypoth-
esis, we have

lim
n→∞

1

bn − an
|{k : an < k ≤ bn and |xn − �| ≥ ε}| = 0.

Consider two sets as follows:

Kε = lim
n→∞ |{k : an < k ≤ bn and |xn − �| ≥ ε}|

and

Kc
ε = lim

n→∞ |{k : an < k ≤ bn and |xn − �| < ε}|.
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Now,

|D(xn)− �| =
∣
∣
∣∣
∣
∣

1

bn − an

bn∑

m=an+1

(xk)− �

∣
∣
∣∣
∣
∣

�

∣
∣
∣∣
∣
∣

1

bn − an

bn∑

m=an+1

(xk − �)

∣
∣
∣∣
∣
∣
+ |�|

∣
∣
∣∣
∣
∣

1

bn − an

bn∑

m=an+1

1− 1

∣
∣
∣∣
∣
∣

� 1

bn − an

bn∑

m=an+1
(k∈Kε)

|xk − �| + 1

bn − an

bn∑

m=an+1
(k∈Kc

ε)

|xk − �| + |�|
bn − an

� 1

bn − an
|Kε | + 1

bn − an
Kc
ε + 0

→ 0 as n→∞ (∵ lim
n→∞ bn = ∞),

which implies that D(xn) → �. Hence, the sequence (xn) is statistically deferred
Cesàro summable to the same number �. ��

In order to prove that the converse is not true, we consider an example (below).

Example Suppose that

an = 2n− 1 and bn = 4n− 1,

and also consider a sequence (xn) by

xn =

⎧
⎪⎪⎨

⎪⎪⎩

0 (n is even)

1 (n is odd).

(23.2)

It is easy to see that (xn) is neither convergent nor statistical convergent. Further, we
have

1

bn − an

bn∑

m=an+1

xm = 1

2n

4n−1∑

m=2n

xm = 1

2n

2n

2
= 1

2
.

That is, (xn) deferred Cesàro summable to 1
2 , and so also, statistical deferred Cesàro

summable to 1
2 ; however, it is not deferred Cesàro statistical convergent.
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23.3 A Korovkin-Type Theorem

The theory of approximation of functions has been originated from a well-known
theorem of Weierstrass, it has become an exciting interdisciplinary field of study for
the last 130 years. Later, the theory of approximation was enriched by Korovkin-
type approximation results. Korovkin-type theorems furnish simple and useful
tools for ascertaining whether a given sequence of positive linear operators acting
on some function space is an approximation process or, equivalently, converges
strongly to the identity operator. Roughly speaking, these theorems exhibit a
variety of test subsets of functions which guarantee that the approximation (or the
convergence) property holds in the whole space provided it holds on them. The
custom of calling these kinds of results “Korovkin-type theorems” refers to P. P.
Korovkin who in 1953 discovered such a property for the functions 1, x, and x2 in
the space C([0, 1]) of all continuous functions on the real interval as well as for the
functions 1, cos x, and sin x in the space of all continuous 2π-periodic functions on
the real line. Several mathematicians have worked on extending or generalizing the
Korovkin-type theorems in many ways and to several settings, including function
spaces, abstract Banach lattices, Banach algebras, Banach spaces, and so on.
This theory is very useful in real analysis, functional analysis, harmonic analysis,
measure theory, probability theory, summability theory, and partial differential
equations. Recently, Mohiuddine [13] has obtained an application of almost con-
vergence for single sequences in Korovkin-type approximation theorem and proved
some related results. For the function of two variables, such type of approximation
theorems are proved in [3] by using almost convergence of double sequences. Quite
recently, in [16] and [17] the Korovkin-type theorem is proved for statistical λ-
convergence and statistical lacunary summability, respectively. For some recent
work on this topic, we refer to [4, 6, 19, 20, 23] and [26]. Recently, Mohiuddine
et al. [14] have proved the Korovkin theorem on C[0,∞) by using the test functions
1, e−x , and e−2x . In this paper, we generalize the result of Mohiuddine, Alotaibi,
and Mursaleen via the notion of statistical deferred Cesàro summability for the same
test functions 1, e−x , and e−2x . We also present an example to justify that our result
is stronger than that of Mohiuddine, Alotaibi, and Mursaleen (see [14]).

Let C(X) be the space of all real-valued continuous functions defined on [0,∞)

under the norm ‖.‖∞. Also, C[0,∞) is a Banach space. We have, for f ∈ C[0,∞),
the norm of f denoted by ‖f ‖ is given by,

‖f ‖∞ = sup
x∈[0,∞)

{|f (x)|}

with

ω(δ, f ) = sup
0≤|h|≤δ

‖f (x + h)− f (x)‖∞, f ∈ C[0,∞).

The quantities ω(δ, f ) is called the modulus of continuity of f .
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Let L : C[0,∞)→ C[0,∞) be a linear operator. Then, as usual, we say that L
is a positive linear operator provided that f ≥ 0 implies L(f ) ≥ 0. Also, we denote
the value of L(f ) at a point x ∈ [0,∞) by L(f (u); x) or, briefly, L(f ; x).

The classical Korovkin theorem states as follows [11].
Let Ln : C[a, b] → C[a, b] be a sequence of positive linear operators and let

f ∈ C[0,∞). Then

lim
n→∞‖Ln(f ; x)− f (x)‖∞ = 0 ⇐⇒ lim

n→∞‖Ln(fi; x)− fi(x)‖∞ = 0,

where

f0(x) = 1, f1(x) = x and f2(x) = x2 (i = 0, 1, 2).

The statistical Cesàro summability version for the theorem established by Mohiud-
dine et al. [14] states as follows.

Let Ln : C[0,∞)→ C[0,∞) be a sequence of positive linear operators and let
f ∈ C[0,∞). Then

C1(stat)− lim
n→∞‖Ln(f ; x)− f (x)‖∞ = 0

if and only if

C1(stat)− lim
n→∞‖Ln(fi; x)− fi(x)‖∞ = 0 (i = 0, 1, 2),

where

f0(x) = 1, f1(x) = e−x and f2(x) = e−2x.

Now we prove the following theorem by using the notion of statistical deferred
Cesàro summability.

Theorem 23.3.1 Let Lm : C[0,∞) → C[0,∞) be a sequence of positive linear
operators. Then for all f ∈ C[0,∞)

DC1(stat)− lim
m→∞‖Lm(f ; x)− f (x)‖∞ = 0, (23.3)

if and only if

DC1(stat)− lim
m→∞‖Lm(1; x)− 1‖∞ = 0, (23.4)

DC1(stat)− lim
m→∞‖Lm(e

−s; x)− e−x‖∞ = 0 (23.5)

DC1(stat)− lim
m→∞‖Lm(e

−2s; x)− e−2x‖∞ = 0. (23.6)
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Proof Since each of fi(x) = {1, e−x, e−2x} ∈ C(X) (i = 0, 1, 2) is continuous,
the implication (23.3)�⇒(23.4)–(23.6) is obvious. In order to complete the proof of
the theorem we first assume that (23.4)–(23.6) hold true. Let f ∈ C[X], then there
exists a constant K > 0 such that |f (x)| ≤ K, ∀ x ∈ X = [0,∞).

Thus,

|f (s)− f (x)| ≤ 2K, s, x ∈ X. (23.7)

Clearly, for given ε > 0, there exists δ > 0 such that

|f (s)− f (x)| < ε (23.8)

whenever |e−s − e−x | < δ, for all s, x ∈ X.
Let us choose ϕ1 = ϕ1(s, x) = (e−s − e−x)2. If |e−s − x−x | ≥ δ, then we obtain

|f (s)− f (x)| < 2K
δ2 ϕ1(s, x). (23.9)

From Eqs. (23.8) and (23.9), we get

|f (s)− f (x)| < ε + 2K
δ2 ϕ1(s, x),

This implies that,

−ε − 2K
δ2 ϕ1(s, x) ≤ f (s)− f (x) ≤ ε + 2K

δ2 ϕ1(s, x). (23.10)

Now since Lm(1; x) is monotone and linear, so by applying the operator Lm(1; x)
to this inequality, we have

Lm(1; x)
(
−ε − 2K

δ2 ϕ1(s, x)

)
≤ Lm(1; x)(f (s)− f (x))

≤ Lm(1; x)
(
ε + 2K

δ2 ϕ1(s, x)

)
. (23.11)

Note that x is fixed and so f (x) is a constant number. Therefore,

− εLm(1; x)− 2K
δ2

Lm(ϕ1; x) ≤ Lm(f ; x)− f (x)Lm(1; x)

≤ εLm(1; x)+ 2K
δ2 Lm(ϕ1; x). (23.12)
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But

Lm(f ; x)− f (x) = [Lm(f ; x)− f (x)Lm(1; x)]
+f (x)[Lm(1; x)− 1]. (23.13)

Using (23.12) and (23.13), we have

Lm(f ; x)− f (x) < εLm(1; x)+ 2K
δ2 Lm(ϕ1; x)

+f (x)[Lm(1; x)− 1]. (23.14)

Now, estimate Lm(ϕ1; x) as,

Lm(ϕ1; x) = Lm((e
−s − e−x)2; x) = Lm(e

−2s − 2e−xe−s + e−2x; x)
= Lm(e

−2s; x)− 2e−xLm(e
−s; x)+ e−2sLm(1; x)

= [Lm(e
−2s; x)− e−2x] − 2e−x[Lm(e

−s; x)− e−x ]
+e−2x[Lm(1; x)− 1].

Using (23.14), we obtain

Lm(f ; x)− f (x) < εLm(1; x)+ 2K
δ2 {[Lm(e

−2s; x)− e−2s]

−2e−x[Lm(e
−s; x)− e−x] + e−2s[Lm(1; x)− 1]}

+f (x)[Lm(1; x)− 1].
= ε[Lm(1; x)− 1] + ε + 2K

δ2 {[Lm(e
−2s; x)− e−2x]

−2e−x[Lm(e
−s; x)− e−x] + e−2x[Lm(1; x)− 1]}

+f (x)[Lm(1; x)− 1].

Since ε is arbitrary, we can write

|Lm(f ; x)− f (x)| ≤ ε +
(
ε + 2K

δ2 +K
)
|Lm(1; x)− 1|

+4K
δ2 |Lm(e

−s; x)− e−x | + 2K
δ2 |Lm(e

−2s; x)− e−2x |
≤ B(|Lm(1; x)− 1| + |Lm(e

−s; x)− e−x |
+|Lm(e

−2s; x)− e−2x |) (23.15)
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where

B = max

(
ε + 2K

δ2 +K, 4K
δ2 ,

2K
δ2

)
.

Now replacing Lm(f ; x) by L(f ; x), where

L(f ; x) = 1

bn − an

bn∑

m=an+1

Tm(f ; x)

and next, for a given r > 0, there exists ε > 0 with ε < r and by setting

�m(x; r) = {m : an < m ≤ bn and |L(f ; x)− f (x)| ≥ r}
and

�i,m(x; r) =
{
m : an < m ≤ bn and |L(fi; x)− fi(x)| ≥ r − ε

3B

}
,

Eq. (23.15) yields

�m(x; r) ≤
2∑

i=0

�i,m(x; r).

Clearly,

‖�m(x; r)‖C(X)

bn − an
≤

2∑

i=0

‖�i,m(x; r)‖C(X)

bn − an
. (23.16)

Now, using the above assumption about the implications in (23.4)–(23.6) and by
Definition 23.2.2, the right-hand side of (23.16) is seen to tend to zero as n → ∞.
Consequently, we get

lim
n→∞

‖�m(x; r)‖C(X)

bn − an
= 0 (r > 0).

Therefore, the implication (23.3) holds true. This completes the proof of Theo-
rem 23.3.1. ��
Remark 23.3.2 By taking an = 0, bn = n, ∀ n in Theorem 23.3.1, one can obtain
the statistical Cesàro summability version of Korovkin-type approximation for the
set of functions 1, e−x , and e−2x established by Mohiuddine et al. [14].

Now we present below an illustrative example for the sequence of positive
linear operators that does not satisfy the conditions of the Korovkin approximation
theorems due to Mohiuddine et al. [14] and Boyanov and Veselinov [4] but satisfies
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the conditions of our Theorem 23.3.1. Thus, our theorem is stronger than the results
established by both Mohiuddine et al. [14] and Boyanov and Veselinov [4].

Here we consider the operator

x(1+ xD)

(
D = d

dx

)

which was used by Al-Salam [2] and, more recently, by Viskov and Srivastava
[28] (see also the monograph by Srivastava and Manocha [22] for various general
families of operators of this kind). Here, we use this operator over the Baskakov
operators.

Example Let Lm : C[0,∞)→ C[0,∞) be defined by

Lm(f ; x) = (1+ xm)x(1+ xD)Vm(f ; x), (23.17)

where

Vm(f ; x) =
∞∑

k=0

f

(
k

m

)(
m− k + 1

k

)
xk · (1+ x)−n−k

and (xm) is a sequence as defined in Eq. (23.2).
Recall that (see [4]),

Vm(1; x) = 1, Vm(e
−s; x) = (1+ x − xe−

1
m )−m

and

Vm(f ; x) = (1+ x2 − x2e−
1
m )−m.

Now, we have

Lm(1; x) = [1+ xm]x(1+ xD)1 = [1+ xm]x,
Lm(e

−s; x) = [1+ xm]x(1+ xD)(1+ x − xe−
1
m )−m

= [1+ xm]x(1+ x − xe−
1
m )−m

·
(

1−mx(1− e−
1
m )(1+ x − xe−

1
m )−1

)
,

Lm(e
−2s; x) = [1+ xm]x(1+ xD)(1+ x2 − x2e−

1
m )−m

= [1+ xm]x(1+ x2 − x2e−
1
m )−m

·
(

1− 2mx2(1− e−
1
m )(1+ x2 − x2e−

1
m )−1

)
.
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Thus, we obtain

DC1(stat)− lim
m→∞‖Lm(1; x)− 1‖∞ = 0,

DC1(stat)− lim
m→∞‖Lm(e

−s; x)− e−x‖∞ = 0

and

DC1(stat)− lim
m→∞‖Lm(e

−2s; x)− e−2x‖∞ = 0,

that is, the sequence Lm(f ; x) satisfies the conditions (23.4)–(23.6). Therefore by
Theorem 23.3.1, we have

DC1(stat)− lim
m→∞‖Lm(f ; x)− f ‖∞ = 0.

Hence, it is statistically deferred Cesàro summable; however, since (xm) is neither
statistically convergent nor statistically Cesàro summable, so we conclude that
earlier works under [14] and [4] are not valid for the operators defined by (23.17),
while our Theorem 23.3.1 still works.

23.4 Rate of Statistical Deferred Cesàro Summability

In this section, we study the rates of statistical deferred Cesàro summability of a
sequence of positive linear operators L(f ; x) defined on C[0,∞) with the help of
modulus of continuity.

We now presenting the following definition.

Definition 23.4.1 Let (un) be a positive non-increasing sequence. A given
sequence x = (xm) is statistically deferred Cesàro summable to a number �

with rate o(un), if for every ε > 0,

lim
n→∞

1

un(bn − an)
|{m : an < m ≤ bn and |D(xm)− �| ≥ ε}| = 0.

In this case, we may write

xm − � = DC1(stat)− o(un).

We now prove the following basic lemma.

Lemma 23.4.2 Let (un) and (vn) be two positive non-increasing sequences. Let
x = (xm) and y = (ym) be two sequences such that

xm − �1 = DC1(stat)− o(un)
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and

ym − �2 = DC1(stat)− o(vn)

respectively. Then the following conditions hold true:

(i) (xm + ym)− (�1 + �2) = DC1(stat)− o(wn);
(ii) (xm − �1)(ym − �2) = DC1(stat)− o(unvn);

(iii) λ(xm − �1) = DC1(stat)− o(un) (for any scalar λ);
(iv)

√|xm − �1| = DC1(stat) − o(un),

where

wn = max{un, vn}.

Proof (i) In order to prove the condition (i), for ε > 0 and x ∈ [0,∞), we define
the following sets:

An(x; ε) = |{m : an < m ≤ bn and |D(xm)+D(ym)− (�1 + �2)| ≥ ε}| ,
A0,n(x; ε) =

∣∣
∣
{
m : an < m ≤ bn and |D(xm)− �1| ≥ ε

2

}∣∣
∣ ,

and

A1,n(x; ε) =
∣
∣
∣
{
m : an < m ≤ bn and |D(ym)− �2| ≥ ε

2

}∣∣
∣ .

Clearly, we have

An(x; ε) ⊆ A0,n(x; ε) ∪ A1,n(x; ε).

Moreover, since

wn = max{un, vn},

by condition (23.3) of Theorem 23.3.1, we obtain

‖Am(x; ε)‖∞
wn(bn − an)

≤ ‖A0,n(x; ε)‖∞
un(bn − an)

+ ‖A1,n(x; ε)‖∞
vn(bn − an)

. (23.18)

Now, by conditions (23.4)–(23.6) of Theorem 23.3.1, we obtain

‖An(x; ε)‖∞
wn(bn − an)

= 0, (23.19)

which establishes (i). ��
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Proof (ii) In order to prove the condition (ii), for ε > 0 and x ∈ [0,∞), we define
the following sets:

Gn(x; ε) = |{m : an < m ≤ bn and |D(xm)D(ym)− (�1�2)| ≥ ε}| ,

G0,n(x; ε) =
∣
∣∣
{
m : an < m ≤ bn and |D(xm)− �1| ≥ ε

2

}∣∣∣ ,

and

G1,n(x; ε) =
∣
∣
∣
{
m : an < m ≤ bn and |D(ym)− �2| ≥ ε

2

}∣∣
∣ .

Clearly, we have

Gn(x; ε) ⊆ G0,n(x; ε) ∪G1,n(x; ε).

Moreover, since

wn = max{un, vn},

by condition (23.3) of Theorem 23.3.1, we obtain

‖Gm(x; ε)‖∞
unvn(bn − an)

≤ ‖G0,n(x; ε)‖∞
un(bn − an)

+ ‖G1,n(x; ε)‖∞
vn(bn − an)

.

Now, by conditions (23.4)–(23.6) of Theorem 23.3.1, we obtain

‖Gn(x; ε)‖∞
unvn(bn − an)

= 0,

which establishes (ii).
Since the proofs of other conditions (iii)–(iv) are similar, we omit them. ��
Further, we recall that the modulus of continuity of a function f ∈ C[0,∞) is

defined by

ω(f, δ) = sup
|y−x|≤δ:x,y∈X

|f (y)− f (x)| (δ > 0),

this implies that

|f (y)− f (x)| ≤ ω(f, δ)

( |x − y|
δ

+ 1

)
. (23.20)
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Now we state and prove a new result in the form of the following theorem.

Theorem 23.4.3 Let [0,∞) ⊂ R and let Lm : C[0,∞)→ C[0,∞) be a sequence
of positive linear operators. Assume that the following conditions hold true:

(i) ‖Lm(1; x)− 1‖∞ = DC1(stat)− o(un),
(ii) ω(f, λm) = DC1(stat)− o(vn),

where

λm =
√
Lm(ϕ2; x) and ϕ1(y, x) = (e−y − x−x)2.

Then, for all f ∈ C[0,∞), the following statement holds true:

‖Lm(f ; x)− f ‖∞ = DC1(stat)− o(wn), (23.21)

wn = max{un, vn}.
Proof Let f ∈ C[0,∞) and x ∈ [0,∞). Using (23.20), we have

|Lm(f ; x)− f (x)| ≤ Lm(|f (y)− f (x)|; x)+ |f (x)||Lm(1; x)− 1|

≤ Lm

( |e−x − e−y |
λm

+ 1; x
)
ω(f, λm)+ |f (x)||Lm(1; x)− 1|

≤ Lm

(
1+ 1

λ2
m

(e−x − e−y)2; x
)
ω(f, λm)

+|f (x)||Lm(1; x)− 1|

≤
(
Lm(1; x)+ 1

λ2
m

Lm(ϕx; x)
)
ω(f, λm)

+|f (x)||Lm(1; x)− 1|.

Putting λm =
√
Lm(ϕ2; x), we get

‖Lm(f ; x)− f (x)‖∞ ≤ 2ω(f, λm)+ ω(f, λm)‖Lm(1; x)− 1‖∞
+‖f (x)‖‖Lm(1; x)− 1‖∞

≤M{ω(f, λm)+ ω(f, λm)‖Lm(1; x)− 1‖∞
+‖Lm(1; x)− 1‖∞},

where

M = {‖f ‖∞, 2}.
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Thus,

∥
∥
∥∥
∥
∥

1

bn − an

bn∑

m=an+1

Lm(f ; x)− f (x)

∥
∥
∥∥
∥
∥∞

≤M

⎧
⎨

⎩
ω(f, λm)

1

bn − an

+ω(f, λm)
∥
∥
∥
∥∥
∥

1

bn − an

bn∑

m=an+1

Lm(f ; x)− f (x)

∥
∥
∥
∥∥
∥∞

⎫
⎬

⎭

+M
⎧
⎨

⎩

∥
∥
∥
∥
∥∥

1

bn − an

bn∑

m=an+1

Lm(f ; x)− f (x)

∥
∥
∥
∥
∥∥∞

⎫
⎬

⎭
.

Now, by using the conditions (i) and (ii) of Theorem 23.4.3, in conjunction with
Lemma 23.4.2, we arrive at the statement (23.21) of Theorem 23.4.3.

This completes the proof of Theorem 23.4.3. ��

23.5 Concluding Remarks and Observations

In this concluding section of our investigation, we present several further remarks
and observations concerning to various results which we have proved here.

Remark 23.5.1 Let (xm)m∈N be a sequence given in Eq. (23.2). Then, since

DC1(stat)− lim
m→∞ xm → 0 on [0,∞),

we have

DC1(stat)− lim
m→∞‖Lm(fi; x)− fi(x)‖∞ = 0. (23.22)

Thus, we can write (by Theorem 23.3.1)

DC1(stat)− lim
m→∞‖Lm(f ; x)− f (x)‖∞ = 0, (23.23)

where

f0(x) = 1, f1(x) = e−x and f2(x) = e−2x.

However, since (xm) is not ordinarily convergent and so also it does not converge
uniformly in the ordinary sense. Thus, the classical Korovkin theorem does not work
here for the operators defined by (23.17). Hence, this application clearly indicates
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that our Theorem 23.3.1 is a non-trivial generalization of the classical Korovkin-
type theorem (see [11]).

Remark 23.5.2 Let (xm)m∈N be a sequence as given in Eq. (23.2). Then, since

DC1(stat)− lim
m→∞ xm → 0 on [0,∞),

so (23.22) holds true. Now by applying (23.22) and Theorem 23.3.1, condi-
tion (23.23) holds true. However, since (xm) does not statistical Cesàro summable,
so Theorem 23.3.1 of Mohiuddine et al. (see [14]) does not work for our operator
defined in (23.17). Thus, our Theorem 23.3.1 is also a non-trivial extension of
Theorem 23.3.1 of Mohiuddine et al. [14] (see also [4] and [11]). Based upon the
above results, it is concluded here that our proposed method has successfully worked
for the operators defined in (23.17) and therefore it is stronger than the classical
and statistical version of the Korovkin-type approximation (see [4, 14] and [11])
established earlier.

Remark 23.5.3 Let us suppose that we replace the conditions (i) and (ii) in
Theorem 23.4.3 by the following condition:

|Lm(fi; x)− fi | = DC1(stat)− o(uni ) (i = 0, 1, 2). (23.24)

Then, since

Lm(ϕ
2; x) = e−2x |Lm(1; x)− 1| − 2e−x|Lm(e

−x; x)− e−x |
+|Lm(e

−2x; x)− e−2x |,

we can write

Lm(ϕ
2; x) ≤M

2∑

i=0

|Lm(fi; x)− fi(x)|∞, (23.25)

where

M = {‖f2‖∞ + 2‖f1‖∞ + 1}.

Now it follows from (23.24), (23.25) and Lemma 23.4.2 that,

λm =
√
Lm(ϕ2) = DC1(stat)− o(dn), (23.26)

where

o(dn) = max{un0, un1 , un2}.
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This implies,

ω(f, δ) = DC1(stat)− o(dn).

Now using (23.26) in Theorem 23.4.3, we immediately see that, for f ∈ C[0,∞),

Lm(f ; x)− f (x) = DC1(stat)− o(dn). (23.27)

Therefore, if we use the condition (23.24) in Theorem 23.4.3 instead of (i) and (ii),
then we obtain the rates of statistical deferred Cesàro summability of the sequence
of positive linear operators in Theorem 23.3.1.
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