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Chapter 2
Measurement Challenges of Interactive 
Educational Assessment

David C. Gibson, Mary E. Webb, and Dirk Ifenthaler

Abstract  This chapter discusses four measurement challenges of data science in 
educational assessments that are enabled by technology: (1) Dealing with change 
over time. (2) How a digital performance space’s relationships interact with learner 
actions, communications and products. (3) How layers of interpretation are formed 
from translations of atomistic data into meaningful larger units suitable for making 
inferences about what someone knows and can do. (4) How to represent the dynam-
ics of interactions between and among learners who are being assessed by their 
interactions with each other as well as with digital resources and agents in digital 
performance spaces. Because of the movement from paper-based tests to online 
learning, and in order to make progress on these challenges, the authors advocate 
the restructuring of training of the next generation of researchers and psychometri-
cians in technology-enabled assessments.
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1 � Introduction

Assessment and learning analytics challenges have dramatically increased since 
new digital performance affordances, interactive user interfaces and the targets of 
technology-enabled assessments have become more complex. The increased com-
plexity is due in part to technology’s capabilities and roles in presenting interactive 
learning experiences and collecting rich data (de Freitas, 2014; Quellmalz et al., 
2012) which is leading to the infusion of data science methods and techniques into 
learning and behavioural science research (Gibson & Knezek, 2011; Kozleski, 
Gibson, & Hynds, 2012). These changes require new quantitative methods as well 
as a reconceptualization of mixed methods (Tashakkori & Teddlie, 2003) that 
include domain experts as well as stakeholders in the construction of knowledge of 
such complex systems (Gibson & Ifenthaler, 2017).

In technology-enhanced assessments, the emergence of ‘big data’—which at a 
minimum are defined as data with a large numbers of records, of widely differing 
data types, that are rapidly collected for immediate action (IBM, 2015; Margetts & 
Sutcliffe, 2013)—underscores the need to develop assessment literacy (Stiggins, 
1995) in teachers, learners and other audiences of assessment. Assessment literacy 
has become more important than ever for understanding how technology influences 
and impacts assessment types and processes and especially for developing confi-
dence in creating and analysing arguments from evidence, based on a user’s current 
understanding of validation (Black, Harrison, Hodgen, Marshall, & Serret, 2010).

This chapter discusses four key challenges associated with applying data science 
methods to address aspects of an interactive digital media assessment’s psychomet-
ric properties; time sensitivity; digital performance and the problem space for anal-
ysis; the hierarchy of tasks, turns and translations between different levels and the 
dynamics of interrelationships in assessment systems. First, in traditional assess-
ments such as quizzes, tests and on-demand performances, change over time (e.g. 
whether a learner has newly acquired knowledge or skill, or has learned) is a matter 
of comparing a series of summative results. But in interactive digital media learn-
ing, acquisition of knowledge or skill may be evident during the learner’s dynamic 
engagement with the media (Quellmalz et al., 2012). Second, the problem space in 
a traditional assessment is designed around the concept of a valid construct 
(Cronbach & Meehl, 1955); whereas in interactive digital media, it is perhaps more 
relevant to speak of an authentic performance (Wiggins, 1989). Third, in traditional 
assessments, a relatively static model pre-exists as the backdrop for the relationship 
of the test taker’s task to the construct being measured (Fischer & Molenaar, 2012); 
while in interactive assessments, unexpected performances, resource utilizations 
and therefore interpretation models can dynamically emerge. Finally, in traditional 
assessments, the relationship of a learner’s performance to the construct (including 
any error) is treated as invariant, but in interactive assessments, the challenges of 
longitudinal data analysis are evident (Hedeker & Gibbons, 2006).

In this chapter, the OECD (Organisation for Economic Co-operation and 
Development) PISA (Programme for International Student Assessment) plan for 
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assessing complex problem-solving (CPS) is used as an example to explain these 
challenges in relation to a complex problem space. The chapter then illustrates a 
learning analytics case that shows how the identified challenges have been addressed 
in the development of assessments.

2 � Background

There is uncertainty as to whether and how different perspectives on assessment—
providing feedback information, supporting improvement decisions, identifying the 
degree of engagement and understanding, and making value judgments—can co-
exist to the benefit of learners (Webb, Gibson, & Forkosh-Baruch, 2013). Even with 
the increased possibilities that information technology provides there is not yet a 
way to say confidently that the multiple purposes for which some assessments have 
been used (Mansell, James, & The Assessment Reform Group, 2009) can or should 
be supported through the same assessment systems. This is because the impacts of 
some purposes interact with the validation processes of others (Messick, 1994). For 
example, the validity of an assessment for a learner may be related to its relevance 
to knowledge needed immediately to improve performance, but the purpose of the 
assessment might have been designed to provide information about program effec-
tiveness to a school authority. The test taker, not seeing the relevance, might not 
perform as well as possible. Therefore, in considering assessment design for mul-
tiple purposes for example for formative as well as summative purposes, assessment 
designers need to examine potential impacts carefully in order to minimise negative 
consequences on learning and learners.

Developing theory for the application of data science methods in educational 
research is important for two primary reasons. First, assessment of virtual perfor-
mance presents new challenges for psychometrics (Clarke-Midura & Dede, 2010; 
Ifenthaler, Eseryel, & Ge, 2012; Quellmalz et  al., 2012). Secondly, new tools are 
needed for discovery of patterns and drivers in complex systems for working with 
‘big data’ in educational research preparation and practice (Gibson, 2012; Ifenthaler, 
2015; Patton, 2011). Indicators of progress in theory development would be an 
increase in research exploring and articulating the use of data science methods in 
learning analytics to improve learning and achievement; and the expansion of meth-
ods beyond traditional statistics and qualitative approaches in educational research, to 
include data mining, machine learning and, in general, the methods of data science.

3 � Four Psychometric Challenges

Psychometrics is the branch of psychology that deals with the design, administra-
tion and interpretation of quantitative tests for the measurement of psychological 
variables such as intelligence, aptitude and personality traits (“Psychometrics”, 

2  Measurement Challenges of Interactive Educational Assessment



22

2014). A good psychometric test is “internally consistent, reliable over time, dis-
criminating and of demonstrated validity in respect of its correlations with other 
tests, its predictive power and the performance of various criterion groups. It also 
has good norms” (Kline, 1998, p. 92).

Until recently, the field dealt almost exclusively with the construction and valida-
tion of measurement instruments such as questionnaires, tests and personality 
assessments. However, there is now a need to expand to include highly interactive 
digital learning and adaptive test experiences, such as the OECD PISA assessment 
of CPS. In brief, PISA is a triennial international survey that aims to evaluate educa-
tion systems worldwide by testing the skills and knowledge of 15-year-old students 
in order to determine the extent to which they can apply their knowledge to real-life 
situations and hence are prepared for full participation in society. To constrain the 
quite complex variables that would be involved if the collaboration was among a set 
of real people, the OECD PISA CPS assessment utilizes the computer to play roles 
as collaborators in a virtual performance assessment (Clarke-Midura, Code, Dede, 
Mayrath, & Zap, 2012; Zervas & Sampson, 2018). The PISA assessment plan incor-
porates a complex behaviour space that illustrates some of the new demands on 
psychometrics.

The challenge with technology-enabled assessments that produce big data is to 
evolve the procedural foundations of psychometrics, which until recently have been 
primarily based on population statistics and static snapshots of data. Elements of a 
new foundation outlined here highlight the need to include time sensitivity, digital 
performance space relationships, multiple layers of aggregations at different scales 
and representations of the dynamics of a complex behaviour space (Gibson & Jakl, 
2013; Quellmalz et al., 2012).

3.1 � Time Sensitivity

In the OECD PISA CPS assessment, time is controlled as a boundary variable of the 
test and the computer is used to prompt the test taker to ‘move on’ when the evi-
dence rule system detects that the student needs to be rescued from an unproductive 
problem-solving path. The decision to redirect appears natural to the situation 
because the computer is playing the role of one or more collaborators, so the sug-
gestion to move on comes from a simulated peer. This situation illustrates that a 
technology-enabled assessment might well give the student perceived or actual con-
trol over time, compared to an assessment that only displays test item prompts in a 
timed test. In some virtual performance assessments, time is open-ended, and the 
use of item resources (e.g. in what order, with or without returning to the resources 
multiple times, time spent with each resource, timing of the appropriate use of a 
resource and total time to utilize the appropriate resources to accomplish the task) 
may be critical to the classification of the learner’s response (Gibson & Jakl, 2013; 
Stevens & Palacio-Cayetano, 2003).
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Table 2.1  Domain model for assessing collaborative problem-solving

(1) Establishing and 
maintaining shared 
understanding

(2) Taking appropriate 
action to solve the 
problem

(3) Establishing and 
maintaining team 
organisation

(A) Exploring 
and 
understanding

(A1) Discovering 
perspectives and abilities 
of team members

(A2) Discovering the 
type of collaborative 
interaction to solve 
the problem, along 
with goals

(A3) Understanding roles 
to solve problem

(B) Representing 
and formulating

(B1) Building a shared 
representation and 
negotiating the meaning 
of the problem (common 
ground)

(B2) Identifying and 
describing tasks to be 
completed

(B3) Describe roles and 
team organisation 
(communication protocol/
rules of engagement)

(C) Planning 
and executing

(C1) Communicating with 
team members about the 
actions to be/being 
performed

(C2) Enacting plans (C3) Following rules of 
engagement (e.g., 
prompting other team 
members to perform their 
tasks)

(D) Monitoring 
and reflecting

(D1) Monitoring and 
repairing the shared 
understanding

(D2) Monitoring 
results of actions and 
evaluating success in 
solving the problem

(D3) Monitoring, 
providing feedback and 
adapting the team 
organisation and roles

The OECD PISA CPS assessment solves the time sensitivity problem by pars-
ing time into critical events and then monitoring the event patterns to detect the 
level of evidence of the competencies in the domain model (see Table 2.1). This 
is a form of time segmentation, because some events cannot happen until other 
events have occurred (e.g. establishing and maintaining team organisation must 
occur after establishing a shared vision, and while maintaining that vision and 
taking appropriate action to solve the problem). A planned sequence of activities 
and timed release of testing resources, known in game-based learning as a 
‘branching storyline’ (Aldrich, 2005) is a method for controlling the evolution of 
a process.

Other problem-solving contexts, such as coordination of group actions needed 
for scientific inquiry and experimentation, require simultaneous actions mixed with 
sequences of actions. The classification system of the assessment has to handle pat-
terns of simultaneous and sequential interactions in order to make valid links to 
time-sensitive evidence rules within the conceptual assessment framework (CAF), 
which is a key component of evidence-centred design (Mislevy, Steinberg, & 
Almond, 1999), an approach that is becoming increasingly prominent in assessment 
design and on which this analysis is based. The CAF has three core components: the 
student model, task model and evidence model (Mislevy et  al., 1999; Mislevy, 
Steinberg, & Almond, 2003) within and among which the time-sensitive relation-
ships adhere.

2  Measurement Challenges of Interactive Educational Assessment
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3.2 � Digital Performance Space Relationships

A learning experience entails a designed structure of knowledge and action (Jonassen, 
1997) and when that experience is interactive and digital there are many measure-
ment challenges (Quellmalz et al., 2012). The emerging varieties of network analysis 
(e.g. social networks, visualization, artificial neural networks, decision trees) have 
arisen as new analytical tools and methods for understanding the structural relation-
ships in technology-enhanced learning (Choi, Rupp, Gushta, & Sweet, 2010; Shaffer 
et al., 2009). In addition, the traces of knowledge and action (i.e., the actions, com-
munications and products) created by a learner during the course of interacting with 
a digital learning application bear a relationship to that person’s mental representa-
tions of the problem (Newell & Simon, 1972) and the knowledge and capability they 
acquired, accessed and utilized during the interaction (Ifenthaler, 2014; Pirnay-
Dummer, Ifenthaler, & Spector, 2010; Thagard, 2010). This set of ideas are referred 
to here as ‘digital performance space relationships’ which will be shown to be simi-
lar to ‘items’ and ‘constructs’ in classical test theory.

An interactive digital performance space can support several scenarios, each 
with one or more classification challenges for inferring what the test taker knows 
and can do. In the OECD PISA CPS assessment, for example, the scenarios pre-
sented to the student are designed to sample the digital performance space construct 
of ‘collaborative problem-solving.’ Each scenario allows the classification of the 
test taker into one or more cells of a matrix created by the intersection of three 
stages of ‘collaboration’ with four stages of ‘problem-solving’ (see Table 2.1). In 
classical test theory, the ‘construct’ plays a similar role to the digital performance 
space; several test items are used to make multiple measures of the construct. A 
review of the historical idea of a valid construct is helpful for making the bridge 
from classical testing to the digital age.

A valid construct was thought of as an inductive summary and as part of a series 
of validity investigations that included concurrent, predictive and content consider-
ations. In addition, the construct can change and become more elaborated over 
time, as Cronbach noted (Cronbach & Meehl, 1955): When a construct is fairly new, 
there may be few specifiable associations by which to pin down the concept. As 
research proceeds, the construct sends out roots in many directions, which attach it 
to more and more facts or other constructs. Finally, the construct acquired validity 
through the idea of a nomological network which is a collection of overlapping 
mappings from (a) observable properties or quantities to one another; (b) different 
theoretical ideas to one another, or (c) theoretical constructs to observables (ibid). A 
single mapping might include examples of all these relations, as a construct might 
be a complex set of factors that interact with one another. The idea of a network of 
ideas and relationships was a fairly abstract philosophical idea in the 1950s but 
today has a renewed and concrete meaning that has become known as network 
theory in social science (Borgatti & Halgin, 2011) and network analysis in compu-
tational sciences, both of which are applied graph theory from mathematics (Brandes & 
Erlebach, 2005). This history outlines a bridge of ideas that carries forward into 
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today when digital media learning spaces can record a network of traces of the 
actions of a learner.

Digital media learning presents problems as well as prompts for learner perfor-
mance (e.g. problem-solving, collaboration) in a space that is characterized by 
hyperlinked resources that can be represented as nodes and relations in a network 
(Clarke-Midura et al., 2012; Quellmalz et al., 2012; Stevens, 2006). As a learner 
uses such a space to learn and perform (e.g. interacting with the resources to solve 
a problem, adding new information, re-arranging resources into new relationships) 
a new network can be created that represents the learner’s response, a time-specific 
performance path through the digital performance space (Ifenthaler et al., 2012). 
The learner’s performance network is a constructed knowledge structure that needs 
to be taken into account in assessment (Gijbels, Dochy, Van den Bossche, & Segers, 
2005). The digital performance space and the constructed knowledge structure of 
the learner hold the same kind of relationship as the nomological network does to a 
demonstrated construct; the digital performance space holds the learning designer’s 
view of the construct (e.g. what it means to act like a scientist in a given situation) 
and the constructed knowledge structure (e.g. what the learner did in this instance) 
holds evidence of the processes and products of knowing and doing.

The terms of the nomological network inference, which underpins a claim of 
construct validity, bear a similarity to the rules of a chain of a reasoned argument, 
which can lead to a claim concerning what a learner knows and can do as used in 
Evidence-Centered Design (ECD). In ECD, an argument has constituent claims, 
data, warrants and backing and must take account of alternative explanations. In a 
nomological network by comparison, there are observations, ideas and relation-
ships, and a chain of inference must be used in order to establish a claim that a 
particular test is a measure of the construct.

The relationships and nodes of a network representation of the traces of learner 
interactions can be compared to the digital performance space resources and rela-
tionships to enable inferences about what the learner knows and can do (Al-Diban 
& Ifenthaler, 2011; Ifenthaler, 2010; Quellmalz, Timms, & Schneider, 2009). 
Network measures such as similarity, centrality, clusters and pattern matching are 
used in such inferences, where the patterns of the network imply functional and 
structural connectivity (Sporns, 2011). Digital performance space relationships 
examined with time-sensitive network analysis has increased the ability of research 
to characterise and make comment on processes, products, knowledge and know-
how, and their complex entanglements in authentic performance settings.

3.3 � Layers of Aggregations and Translations

In the OECD PISA CPS assessment, aggregations of events into tasks takes place in 
a hierarchy that begins at the top with a scenario and ends within each task of the 
scenario at the level of a ‘turn’—a game-based learning concept that updates the 
state of the scenario based on the learner’s input.

2  Measurement Challenges of Interactive Educational Assessment
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Each problem scenario (unit) contains multiple tasks. A task, for example, con-
sensus building, is a particular phase within the scenario, with a beginning and an 
end. A task consists of a number of turns (exchanges, chats, actions, etc.) between 
the participants in the team. A finite number of options leading onto different paths 
are available to the participants after each turn, some of which constitute a step 
towards solving the problem. The end of a task forms an appropriate point to start 
the next task. Whenever the participants fail to reach this point a ‘rescue’ is pro-
grammed to ensure that the next task can be started (PISA, 2013).

With this hierarchy in mind (e.g. scenarios containing tasks that contain turns) 
the challenge of aggregating with time sensitivity and translating from one level of 
analysis to another can be addressed with moving averages, sliding time windows 
and event recognition. The OECD PISA CPS assessment uses event recognition, in 
which an action, communication or product of the test taker triggers a reaction by 
the test engine to update the scenario, which might include rescuing the test taker. 
In a moving average, some window of time is selected (e.g. every second, or after 
every three turns) and an average is performed to form an abstracted data layer that 
preserves some of the shape of the data movement over time. In the sliding time 
window (Choi et al., 2010; Han, Cheng, Xin, & Yan, 2007), a combination of event 
recognitions and moving averages, or some configuration of either, might be per-
formed and then used as an abstracted data layer. In the example case summarized 
below, for example, the time stamps of every action were subtracted from each other 
to compute duration, which was then applied to each action, to nearby action-pairs 
and to action-n-grams (motifs) for further analysis.

Within any slice of time, or when comparing two or a few slices of time, standard 
statistical procedures and aggregations apply (e.g., means testing, correlations, 
regressions), but when high-resolution data is involved (e.g. many data points per 
record per unit of time) and where there are complex aggregations (e.g., widely 
varying sources of data and different units of measure) then data mining techniques 
are more applicable. Of note, regression techniques in data mining are not equiva-
lent to the same methods in statistics, even though the terms sound and look the 
same. In data mining, regression represents a search within a complex nonlinear 
space for patterns and representations of structure and causal dynamic relationships, 
rather than the reduction of error of a linear model (Schmidt & Lipson, 2009). Thus, 
aggregations in the two approaches are also of different lineage and need to be con-
sidered as separate entities with separate representational functions, meaning and 
purposes (Bates & Watts, 1988).

3.4 � Representations of Dynamics

Systems dynamics (Bar-Yam, 1997; Sterman, 1994) involves a mathematical mod-
eling technique for framing, understanding and discussing the issues of time, digital 
performance space relationships and aggregation-translation in highly interactive 
technology-enhanced assessments. Field experiments with systems dynamics 
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methods have, for example, focused on mid-level model-based theory building in 
an assessment context (Kopainsky, Pirnay-Dummer, & Alessi, 2010). The process 
of building a model from snapshots of a dynamic system is called a ‘nonlinear state 
space reconstruction’ (Sugihara et al., 2012). In such a state space equivalent to a 
network all the data fall within a finite band or manifold of behaviour. That is, every 
state of the system will be in one of the spaces created by the finite possibilities 
for each variable at some point in time. Such reconstructions of the underlying 
manifold governing the dynamics of a system can map to and uncover the causal 
relationships in a complex system (Schmidt & Lipson, 2009) including those that 
support inferences concerning what a user knows and can do.

Visualizing the current status of a learner’s progress on an assessment is an 
example of representing a state of a dynamic system, as is visualizing the progress 
of the learner in relation to a domain model driving the assessment’s evidence col-
lection processes. The Khan Academy (Khan, 2011), for example, charts progress 
in learning mathematics or science content against a visualization of the content 
hierarchy. If the learner has mastered division, a visual tree shows how mastery fits 
with addition and subtraction and allows access to the next higher level of math 
skill. More dynamic and fine-grained visualizations are also possible, for example, 
that would trace the process steps of a solution, or document the details of a con-
structive process. Visualizations can aide pattern discovery involving both nonver-
bal and verbal expressions; for example, from bodies of text, from online student 
discussion forums, and from cognitive and mental model representations (Pirnay-
Dummer et al., 2010).

To date the developments in learning analytics that provide visualisations of 
learning traces for learners and teachers have been represented by learning analytics 
dashboards. Such dashboards have been developed that keep track of time, social 
interactions for insights into collaboration, the use of documents and tools and the 
artefacts produced by students (Verbert, Duval, Klerkx, Govaerts, & Santos, 2013). 
While these dashboards currently fall far short of the detailed traces of assessment 
data that are possible to create, even these more limited opportunities for analysing 
their learning have been found to support learners’ reflection and improve self-
assessment as well as increasing course satisfaction (Verbert et al., 2013).

Examples of the more highly detailed traces are readily found in serious games, 
as well as casual games that are designed to be immersive and emotionally engaging 
rather than a simple pastime (Aldrich, 2005). In these game-based examples, the 
high-resolution feedback is always on, giving the player an up-to-date view of prog-
ress, hints about upcoming challenges, and a view to the longer-term goal (Prensky, 
2001). Clearly educators and researchers might want to promote to policymakers 
the importance of researching the methods and impacts of presenting visualisations 
of data to teachers and learners along with developments in data processing that will 
better enable judgements of student performances.

Perhaps the biggest unresolved issue of representation of collaborative learning 
(and perhaps any learning progress during a complex process) is how to represent 
the moving and evolving quality of change over time. ‘Movies’ of dynamic educa-
tional processes have not yet been documented in many cases, and if existing, have 
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not been widely disseminated into common practice. This lack of a practice base 
and experience hampers theory as well as practice in technology-enhanced assess-
ments, and points to the need illustrated by the case in the next section, for future 
research and practice to create a shared understanding of the methods of data sci-
ence in educational research.

4 � Case Story: Virtual Performance Assessment

A case story illustrates how technology-enabled educational assessment can pro-
duce a large number of records, how time and process can be an included mediating 
factor in analysis and how machine learning and data mining methods are needed to 
support the rapid simultaneous testing of multiple hypotheses.

A game-based assessment of scientific thinking was created at Harvard (Clarke-
Midura et al., 2012) and analysed by one of the authors (Gibson & Clarke-Midura, 
2013) to ascertain the abilities of middle school students to design a scientific inves-
tigation and construct a causal explanation. A summary of the data science findings 
and issues included the observation of two of the three aspects of big data: volume 
(~821,000 records for 4000 subjects, or 205 records per subject); and variety of data 
(user actions, decisions and artefacts provided evidence of learning and thought 
processes). The third element of big data, velocity, was less important in this case; 
because the flow of data was not used in near-real time to give hints, correct mis-
takes, or inform the learner during the experience, so the data was streamed off to 
storage for later analysis.

This case illustrates several of the features of big data in educational assessment. 
First, the context was captured along with the learner action, decision and product, 
but that context needed to be effectively constructed from the smallest items of data 
into larger clusters of information. For example, a data element named ‘opened 
door’ by itself was relatively meaningless compared to knowing that it was a par-
ticular door, opened after another significant event such as talking to a scientist. 
Thus, patterns of action were transformed into n-grams (Scheffel, Niemann, & 
Leony, 2012) or motifs, which then became the transformed units of analysis. This 
concept of the unit of analysis containing the semantic, time and space contexts for 
lower levels of aggregation may be a new methodological requirement of digital 
assessments, and needs further study.

Second, as a large number of users traverse through the network of possibilities 
in a digital performance space, key movements of the population within the network 
can be counted and then used as the basis for empirical prior probabilities which 
assist in creating Bayesian inferences about the scientific problem-solving path-
maps of learners (Stevens, Johnson, & Soller, 2005). In particular, each pathway in 
such a network can be further characterized or specified with a predictive nonlinear 
mathematical relationship (Gibson & Clarke-Midura, 2013), for example, found 
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through symbolic regression an evolutionary machine learning technique (Schmidt & 
Lipson, 2009). Or, alternatively an association rule network can be created that 
distinguishes user action patterns and motifs according to the prevalence of utilizing 
one resource compared to another. For example, if 100% of the population goes to 
resource 3 after resource 1 (skipping over and not utilising resource 2), then with a 
very high probability, if the sample is a good sample of the greater population, the 
next user entering the system will follow that path and the inference system can 
make a highly probable educated guess about what the person now using resource 1 
will do next.

The third feature is that the complex set of relationships in various analyses such 
as those just mentioned, bear a structural relationship to something meaningful 
about the digital performance space as outlined above. For example, a cluster analy-
sis can reveal that some resources are critical to success and others are ignored and 
not important to the most successful learners (Quellmalz et al., 2012) or a network 
visualization can highlight how people relate to each other or to a task such as quot-
ing and using scientific resources (Bollen et al., 2009).

5 � Conclusion and Implications

This chapter has introduced four challenges of big data in educational assessments 
that are enabled by technology: how to deal with change over time and time-based 
data; how a digital performance space’s relationships interact with learner actions, 
communications and products; how layers of interpretation are formed from transla-
tions of atomistic data into meaningful larger units; and how to represent the dynam-
ics of interactions between and among learners who are being assessed by their 
interactions in digital performance spaces. The chapter linked the big data chal-
lenges to solutions offered in the OECD PISA CPS assessment of collaborative 
problem-solving, and then reviewed some of the same issues by briefly summariz-
ing a particular case.

The challenges and issues discussed in this chapter reveal the requirements for 
developments in theory as well as some of the practical challenges that will need to 
be overcome if educators are to achieve the vision of providing learners and teach-
ers with a ‘quiet assessment’ system in which the impact can be turned up at the 
request of learners and teachers as they seek to understand the progress of learning. 
This joint approach which emphasises assessment AS, FOR and OF learning 
(Bennett, 2010) is discussed further in the following publications (Gibson & Webb, 
2015; Webb & Gibson, 2015; Webb & Ifenthaler, 2018). In moving forward to 
embrace the opportunities that could be provided by technology-enhanced 
assessments the challenges that remain to be addressed must not be underestimated 
before educators can use automated assessments of complex skills and understand-
ing with confidence.
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