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Abstract. At present, in the field of general aviation track processing in China,
only discrete track points can be monitored, but smooth track curves cannot be
obtained. Based on the existing cubic spline curve theory, this paper proposes a
navigation path smoothing algorithm based on cubic spline curve. The algorithm
sequentially constructs a cubic curve equation between two adjacent points of
the track. According to the curve equation, the interpolation between the two
points is obtained, and the track points and the interpolation points are
sequentially connected by a straight line according to the time. When the track
point and the interpolation point reach a certain density, the track becomes
smooth. After experimental comparison, the curve processed by the track
smoothing algorithm is closer to the actual aircraft track.
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1 Introduction

Since general aviation aircraft do not have advanced communication facilities, General
Aviation cannot monitor real track curves like civil aviation. In practice, the navigation
track monitoring can only detect discrete points of the navigation path of the navigable
aircraft. This is very unfavorable for the recording, research and planning of the
navigation path of the navigable aircraft, and there are huge security risks [6]. This
paper expects to use the cubic spline method to process the discrete points of the track
and make it a smooth track curve, so as to realize the monitoring and processing of the
general aviation aircraft track.

2 Navigation Path Smoothing Algorithm Based on Cubic
Spline Curve

2.1 Algorithm Principle

The basic idea of the algorithm is to construct a cubic curve equation between two
adjacent points of the unsmooth track, and obtain the interpolation between the two
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points according to the curve equation. Then, the track points and the interpolation
points are sequentially connected by a straight line according to the time. When the
density of the track point and the interpolation point reaches a certain level, the track
can reach a smooth state [2, 5].

First, a cubic spline function is generated between two points, and N interpolation
points are determined according to the obtained cubic spline function. The main
function of the algorithm in this process is to process the flight data of the aircraft we
are monitoring, including the geographic coordinate points of the aircraft flight and the
heading angle of the aircraft at that point. Then through the coordinates of the two
discrete tracks, we can find the cubic spline function between these two points.

To simplify the calculation, this derivation will use the coordinate vector method
[3]. Let two points P1 and P2 be known, as shown in Fig. 1. Since the cubic spline
function is a cubic equation, we can set the three-parameter vector equation of the
curve over P1 and P2 to the following form.

P tð Þ ¼ B0 þB1tþB2t
2 þB3t

3 0� t� t1ð Þ ð1Þ

The meaning of each unknown is shown in Fig. 1.

When t ¼ 0, the curve passes through point P1, and the tangent vector of the curve
segment at that point is P0

1. When t ¼ t1, the point P2 is passed, and the tangent vector
of the curve segment at this point is P0

2, as shown in Fig. 2.

Fig. 1. Description of unknown meaning

Fig. 2. Vector description of discrete track points
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Derivation of Eq. (1) once.

P0 tð Þ ¼ B1 þ 2B2tþ 3B3t
2 ð2Þ

When t ¼ 0, the following expression can be derived from the Eqs. (1) and (2).

P 0ð Þ ¼ B0 ¼ P1 ð3Þ

P0 0ð Þ ¼ B1 ¼ P0
1 ð4Þ

When t ¼ t1.

P t1ð Þ ¼ B0 þB1t1 þB2t
2
1 þB3t

3
1 ¼ P2 ð5Þ

P0 t1ð Þ ¼ B1 þ 2B2t1 þ 3B3t
2
1 ¼ P0

2 ð6Þ

By combining the formulas (3), (4), (5) and (6), B0, B1, B2, and B3 can be solved.

B0 ¼ P1

B1 ¼ P0
1

B2 ¼ 3
t21

P2 � P1ð Þ � 1
t1

P0
2 þ 2P0

1

� �

B3 ¼ � 2
t31

P2 � P1ð Þþ 1
t21

P0
2 þP0

1

� �

The coefficients B0, B1, B2, and B3 are substituted into the vector Eq. (1) and sorted.

P tð Þ ¼ 1� 3
t
t1

� �2

þ 2
t
t1

� �3
" #

P1 þ 3
t
t1

� �2

�2
t
t1

� �3
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� �
� 2
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� �3
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ð7Þ

Equation (7) is the vector form of the cubic polynomial parametric equation
passing through two points. Its component form can be expressed as follows.

x tð Þ ¼ 1� 3
t
t1

� �2

þ 2
t
t1

� �3
" #

x1 þ 3
t
t1

� �2

�2
t
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� �3
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� �
� 2
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ð8Þ
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y tð Þ ¼ 1� 3
t
t1

� �2

þ 2
t
t1

� �3
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y1 þ 3
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t1

� �2
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ð9Þ

Equations (8) and (9) are the result of processing the two adjacent discrete track
points by the general aviation track smoothing algorithm, that is, the component rep-
resentation of the cubic spline curve between two points. However, the first derivatives
x01, x

0
2, y

0
1 and y02 at points P1 and P2 in Eqs. (8) and (9) are still unknown. In order to

determine these four unknown first-order derivatives, the algorithm needs to process
the monitored heading angle to obtain the first derivative of each track point.

According to the nature of the first derivative, the course angle is the inclination of
the tangential line of the spline function at that point. Set the heading angle to ai, then
y0i=x

0
i ¼ tan aið Þ. Let x0i ¼ 1, then y0i ¼ tan aið Þ. When ai ¼ 90�=180�=360�, let aiþ 1 ¼

91�=181�=361�. Similarly y0iþ 1=x
0
iþ 1 ¼ tan aiþ 1ð Þ, let x0iþ 1 ¼ 1, then y0iþ 1 ¼

cot aiþ 1ð Þ. When aiþ 1 ¼ 90�=180�=360�, let aiþ 1 ¼ 91�=181�=359�. By substituting
the calculated x01, x

0
2, y

0
1 and y02 into the Eqs. (8) and (9), a complete cubic spline

interpolation function can be obtained [4].
After obtaining the cubic spline interpolation function between two points, the next

step is to use the cubic spline interpolation function to determine the interpolation
between the two discrete track points [7]. The specific method is to divide the interval
0; ti½ � of the parameter t into k equal parts, each aliquot dt ¼ ti=k, taking t ¼
dt; 2dt; 3dt. . .jdt; . . . in order. The coordinates of the corresponding points are calcu-
lated using the cubic spline interpolation function equation, and these points are used as
interpolation points. And then save the calculated interpolation point coordinates to the
specified table. It is worth noting that the larger the value of K is, the more interpolation
points are obtained, and the smoother the resulting track curve is. But this also
increases the amount of calculations and reduces the processing speed of the algorithm.
So we need to choose a moderate value when choosing K [8].

The above is the processing of the two discrete points by the algorithm. However,
in practice, we have monitored N discrete track points, so we need to perform seg-
mentation fitting on the processing results of each segment. We use the chase method
to fit the N track points in turn. The specific method is as follows.

Set three track points P1, P2, P3. First monitor the two points P1 and P2, and curve
the two points. When the third point P3 appears, the two points P2 and P3 are fitted.
Repeat the above steps until the new track point no longer appears.

The course angle of the aircraft at these three points is constant. Ensure that the first
derivative of point P2 is the same value when smoothing the two segments P1P2 and
P2P3 respectively. This ensures that the second derivative at point b is also the same,
that is, the cubic spline function is continuous at point b. It can be known from the
nature of the cubic spline curve that the cubic spline curve is continuous and smooth at
this point, which ensures the smooth completion of the smooth connection processing
of the adjacent two segments [1].
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3 Algorithm Test

In the above, we propose a general aviation track smoothing curve processing algo-
rithm based on cubic spline curve, and theoretically demonstrate the effectiveness and
practicality of the algorithm. But is it characterized by high accuracy and low com-
plexity in practical applications? We need to verify by experiment.

The source of the experimental data is the track monitoring system of General
Aviation. After obtaining the discrete track data, the obtained discrete track points are
processed by the algorithm, and finally a smooth track path close to the real track is
obtained.

3.1 Algorithm Coding

The main way to implement the algorithm is to implement the smooth curve functions
derived in Sect. 2, namely the Eqs. (8) and (9). Encapsulate the core algorithm code as
a class when writing code, and generate an interpolation each time it runs. This
algorithm class is called cyclically, and finally K interpolations are generated. The
pseudo code is as follows.

3.2 Experimental Test

The program core algorithm uses the method described above, and the final imple-
mented test interface is shown in Fig. 4.
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Click on the Get Data function, the program reads the data from the file and stores it
in a temporary array. In order to compare the processed smooth track with the original
discrete track, we use the display original track function. Click on the original track
function and the result is shown in Fig. 3. The green polyline is the original track. The
track generated in the figure is a polyline instead of a smooth curve.

Click Show Smooth Tracks to use the algorithm to process the read data and
display a smooth track curve. The result is shown in Fig. 4. The red curve in the figure
is the final smooth track curve. Compared with the original track, it can be found that
the curve is obviously smoothed at the inflection point, which is very suitable for the
actual track curve. This also proves the feasibility of this algorithm from experimental
data.

Fig. 3. Original track display (Color figure online)

Fig. 4. Smooth track map (Color figure online)
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4 Conclusion

This paper proposes a general aviation track smoothing algorithm based on cubic spline
curve to solve the problem that only the discrete points of the aircraft track can be
detected in the actual general aviation track monitoring. After theoretical verification
and experimental testing of the algorithm, the results are as follows.

a. Based on the theory of the existing cubic spline curve, a vector representation of the
cubic spline function between two discrete track points is established. This method
greatly reduces the complexity and computational complexity of the algorithm.

b. Introducing the idea of the cubic spline interpolation processing curve into the
general aviation track processing can achieve the effect of smoothing the track. The
curve generated by the experimental results is smooth and more suitable for the
actual heading curve of the aircraft.
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