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Abstract. Image super-resolution has always been a research hotspot in the
field of computer vision. Recently, image super-resolution algorithms using
convolutional neural networks (CNN) have achieved good performance. But the
existing methods based on CNN usually has to many (20–30) convolution
layers, which has a large amount of calculations. In response to this problem,
this paper proposes a lightweight network model based on parallel convolution,
skip connections and ResNet. Parallel convolution means that different sizes of
convolution kernels are set in the same convolutional layer to extract image
features of different scales. In addition, in order to reduce the loss of image
details, we combine the input and output of the previous layer as the input of the
next layer, which is the skip connection. We also borrowed the idea of Residual
Net. The network learns the residuals between high-resolution images and low-
resolution images. Therefore, the algorithm proposed in this paper not only
achieves the most advanced performance, but also achieves faster calculations.
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1 Introduction

Due to the limitation of the equipment in real life, sometimes the image we obtain is
low resolution and cannot meet our needs. In order to solve this problem, we can use
Image Super-Resolution technology.

Image Super-Resolution refers to the recovery of high resolution images from a
lowresolution image or image sequence. Image Super-Resolution is divided into Single
Image Super-Resolution (SISR) and Multiple Image Super-Resolution (MISR). In this
paper, we mainly focus on Single Image Super-Resolution (SISR). At present, SISR
mainly includes three methods: interpolation-based method [1–4], reconstruction-based
method [5–8], and learning-based [9–13] method. In recent years, with the wide
application of artificial neural networks and the development of deep learning, the idea
of deep learning has been introduced into the field of image super-resolution and many
classical methods have been proposed. The current classic algorithm contains SRCNN
[9], FSRCNN [10], VDSR [11], DRCN [12], SRDenseNet [13], RED [14].

SRCNN is proposed by Dong [9] et al. SRCNN consists of three convolutional
layer, which are image feature extraction layer, nonlinear mapping layer and recon-
struction layer. Then, Dong [10] and others proposed the FSRCNN algorithm.
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FSRCNN is an improved algorithm for SRCNN. It eliminates the steps of bicubic
interpolation and adds a deconvolution layer to the final layer to amplify the image.
Kim [11] and others proposed the VDSR algorithm, drawing on the idea of the ResNet
to speed up the network convergence. In addition, Kim [12] and others also proposed
the DRCN algorithm. The DRCN algorithm applies the existing recurrent neural net-
work to the image super-resolution field for the first time. Tong [13] et al. proposed the
SRDenseNet algorithm, and SRDenseNet links SISR and dense connections for the
first time.

In this paper, we propose a new Image Super-Resolution model called CPCSCR in
which ideas of skip connection [13], parallel convolution [15] and Residual Net [16]
were employed. This network mainly includes four advantages. First, this algorithm
directly processes the original image, eliminating the pre-processing steps and retaining
the details of the image. Second, parallel convolution is used to extract image features
of different scales. Third, skip connection enables the network to more fully learn the
image features. Fourth, the network learns the residuals between high-resolution
images and low-resolution images, achieves more efficient calculations. Therefore, this
model is lighter, less computational, and better performing than the models we men-
tioned above.

2 Method

As shown in Fig. 1, CPCSCR is a fully convolutional neural network with feature
extraction network and reconstruction network. We use the original image as input,
extract features of different scales of the image through the parallel convolution
module, and then import the extracted features into the reconstruction layer to recon-
struct the image details. In addition, our model learns the residuals between low-
resolution images and high-resolution images.
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Fig. 1. CPCSCR network overall architecture
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2.1 Feature Extraction Network

As shown as Fig. 2, feature extraction layers consists of five parallel convolutional
modules, each modules contains 1*1 [17] and 3*3 kernels, bias and Parametric ReLU.
Five modules have the same structure. The input and output of each module are spliced
and used as input for the next module.

In the case of feature extraction, the parallel convolutional proposed by Google [15]
is typically used. The parallel convolutional means process an image with multiple
different convolution kernels simultaneously and splice different feature maps together.
In CPCSCR, we use 1*1 and 3*3 convolutional kernels. The role of the 1*1 convo-
lution kernel is to control the number of feature maps so that it can be easily con-
catenated with the feature map generated by the 3*3 convolution kernel. Because the
original image is the input of the network, the size of the original image is smaller than
the image after preprocessing, so a large-sized convolution kernel is not required [10].
A 3*3 convolution kernel is sufficient to cover the entire image information.

In addition, we have found that the network has a good performance when the
network contains 5 modules. Since then, when the number of modules has increased
again, the performance of the network has not been greatly improved.

2.2 Reconstruction Network

As shown as Fig. 1, the reconstruction network consists of three parallel branches, the
first branch is three serial 3*3 convolution kernels, the second branch is a 1*1 [16]
convolution kernel, and the third branch is the same as the first branch. As the name
suggests, the reconstruction layer up-sampling the image to complement the image
details.
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In previous models, deconvolution (also known as transposed convolution) was
mostly used in the reconstruction layer to up-sampled the image. The process of
transposed convolutional layer is similar to the usual convolutional layer and the
reconstruction ability is limited. This means that the deeper the deconvolution layer, the
better the reconstruction performance, but it also means that the computational burden
is increased. So we propose a parallelized CNN structure, which usually consists of 1*1
[16] and 3*3 convolutional kernels.

As stated in the model, because there are a lot of connection operations in the
feature extraction layer, the input data dimension of the reconstruction layer is very
large. So we use 1*1 [16] CNNs to reduce the input dimension before generating the
HR pixels.

The last CNN, represented by the dark blue color in Fig. 1, compensating for the
dimensional reduction caused by the parallel convolution structure.

3 Experiment

3.1 Experiment Setup

Experimental training datasets are Yang 91 [18] and BSDS200 [19]. Then we expand
the training-sets by performing data augmentation operations on each image. The
specific operations are that each image is vertically flipped, flipped horizontally, flipped
horizontally and vertically. The total number of training images is 1,164 and the total
size is 259 MB. In order to compare with existing image super-resolution algorithms,
this paper converts color (RGB) images to YCbCr images and only processes
Y-channels (Y-channel represents brightness). Each training image is divided into 32
steps, 32 steps, 16 steps, and 64 patches are used as the minimum batch. We use
BSDS100 [19], SET 5 [20] and SET 14 [21] as test datasets.

The experiment uses an internationally accepted evaluation criterion to measure the
network performance: Peak Signal-to-Noise Ratio (often abbreviated as PSNR). The
unit of PSNR is dB. The larger the value is, the smaller the picture distortion is, and the
better the network performance is.

We Initialize each convolution kernel using the method of He et al. All biases and
PReLUs in the network are initialized to zero. The dropout rate of p = 0.8 during
training. The Mean Squared Error function is used as a loss function to calculate the
difference between the network output value and the true value. In addition, we used
Adam [22] with an initial learning rate = 0.002 to optimize the algorithm to minimize
the loss. If the loss value does not decrease after 5 training steps, the learning rate drops
by 2 times. Training ends when the learning rate is less than 0.00002. An example of
the results is shown in Fig. 3.
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3.2 Comparisons with State-of-the-Art Methods

Comparisons of PSNR: We use PSNR to objectively evaluate the processing result of
the algorithm. Table 1 show the results of objective tests at scale = x2, scale = x3 and
scale = x4 respectively. Except that the objective index of RED30 algorithm for
BSD100 data set is slightly higher than our algorithm, the other test results show that
the PSNR value obtained by our algorithm is higher than other algorithms, which fully
demonstrates that the algorithm has better processing effect. Although the performance
of our algorithm on the BSD100 dataset is slightly lower than RED30, it greatly
reduces the computational complexity.

Comparison of computational complexity: Since each implementation is performed
on a different hardware device or platform, it is unfair to compare test execution times.
Here we calculate the computational complexity of each method. The approximate
computational complexity of each method is shown in Table 2. Therefore, we can see
that our DCSCN has the most advanced reconstruction performance, and the compu-
tational complexity is much smaller than VDSR [11], DRCN [12] and RED30 [14].

input                            bicubic                result of our model           ground truth

Fig. 3. An example of our results of img_001 in Set5

Table 1. Comparisons of PSNR with other SR Method. (scale = x2)

Dataset SRCNN DRCN VDSR RED30 CPCSC(ours)

Set5(x2) 36.66 37.63 37.53 37.66 37.75
(x3) 32.75 33.82 33.66 33.82 34.04
(x4) 30.49 31.53 31.35 31.51 31.70
Set14(x2) 32.45 33.04 33.03 32.94 33.18
(x3) 29.28 29.76 29.77 29.61 29.90
(x4) 27.49 28.02 28.01 27.86 28.24
BSD100(x2) 31.36 31.85 31.90 31.99 32.00
(x3) 28.41 28.80 28.82 28.93 28.86
(x4) 26.90 27.23 27.29 27.40 27.35
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4 Conclusion

This paper presents an image super-resolution method based on convolutional neural
networks with parallel convolution, skip connection and ResNet. The algorithm uses
parallel convolution to extract features of different scales of the image, and inputs the
local and global features of each layer to the next layer by means of skip connections.
In addition, the algorithm learns the residual between the low resolution image and the
high resolution image. Another important point is, the model takes an image of the
original size as an input, reducing image information loss. Using these methods, our
model can achieve the most advanced performance with less computing resources. The
experimental results also show that the model has better performance.
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