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Abstract This paper presents an up-to-date Lagrangian particle method for the
analysis of a coupled thermo-mechanical problem in the friction drilling simulation.
The method is obtained by a modification of variational equations using the
penalized approach to avoid onerous stability problems in conventional Lagrangian
particle methods and to obtain semi-discrete equations that are amenable to temporal
and spatial integration using the staggered explicit time marching scheme. To deal
with the critical numerical limitation associated with large deformation and material
separation at the bushing forming stage, the method is furnished with an adaptive
anisotropic Lagrangian kernel and a bond-based failure criterion. Representative
simulation of a thermal-mechanical coupled friction drilling process is studied, and
results are comparedwith the experimental data to examine the validity of this study.

1 Introduction

Friction drilling is a nonconventional drilling process that utilizes the heat generated
by friction between the rotating tool and metal workpiece to soften the material
and create a hole [1]. Unlike traditional drilling, friction drilling is a chip-less and
dry manufacturing method that produces the hole in only one operation without
the material removal and lubricants. Friction drilling creates sturdy bushing on thin
walled structures such as sheet metal or tubing. The bushing created in the process is
usually two to three times thicker than the original workpiece allowing for mounting
of soldered and screw connections in a simple and efficient way. Friction drilling
can be performed on most metal materials using a high-speed rotating tool made
of conical tungsten carbide. Typical applications of friction drilling in automotive
industry include seat handle/frame, foot pedal, exhaust part, fuel rail, and among
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others. A growing interest on the study of friction drilling process has been shown
by many car companies motivated by the need to reduce manufacturing costs and
obtain the high quality of final product.

Numerical modeling is a necessary tool to understand the material flow, tem-
peratures, stresses and strains which are difficult to measure experimentally during
friction drilling [2]. Numerical simulation of friction drilling involves solving a
coupled thermo-mechanical system, a task that can turn out to be difficult when
considerable deformation and material separation are developed in bushing forming.
It has become one of the research topics of great interest in computationalmechanics
over the last years. Since the Eulerian representation of a material has the difficulty
to capture the free surface flow in the simulation of bushing forming, Lagrangian
finite element methods [3] have been favored. While the Lagrangian finite element
method is used in combination with the r-adaptive re-meshing strategy [4, 5]
to handle large deformation problems in similar manufacturing processes such
as the friction stir spot welding (FSSW) and the friction stir welding (FSW)
[6, 7], modeling material separation in the friction drilling process has always
been problematic. This is because the r-adaptive re-meshing may become unstable
or unable to maintain the high quality mesh when some or lots elements are
deleted using the element erosion technique in mimicking the material separation
phenomenon during the forming of the metal bushing.

In comparison to Lagrangian finite element methods, Lagrangian particle meth-
ods are adventurous in modeling large deformation and material failure [8–10]
problems. Lagrangian particle methods were also found to be very effective on
reducing volumetric locking and shear locking in solid and structural analyses
[11, 12]. Smoothed Particle Hydrodynamics (SPH) method developed by Gingold
and Monaghan [13] and Lucy [14] in late 1970s for astrophysical problems has
been considered the earliest Lagrangian particle method. In early 1990s, Libersky
and Petschek [15] extended SPH to solid mechanics applications. In spite of its
popularity in simulating high-velocity impact/penetration and fluid flow problems
[16], SPH has limited success in solid mechanics applications due to several
numerical instabilities. Among them, tensile instability [17], spurious zero-energy
mode [18] and excessive straining [19] are critical to the simulation result and have
been the important research topics in the past two decades.

Intensive research work has been carried out to resolve those numerical insta-
bilities. For instance, the introduction of Lagrangian kernel [8, 20] or stress
points method [21] has been proven to effectively remove the tension instability
in Lagrangian particle methods. The origin of spurious zero-energy mode can
be explained by inspecting the system of equations of the particle method. A
pioneering approach to circumvent this numerical instability was demonstrated
by Beissel and Belytschko [22] using a residual-type stabilization procedure. A
variant of this stabilization approach includes the non-residual type of stabilization
methods [23, 24], stabilized conforming nodal integration (SCNI) method [25],
and variationally consistent integration methods [26]. The problem of excessive
straining emerges as a numerical instability in Lagrangian particle methods when
the strictly use of Lagrangian kernel is no more applicable in large deformation
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range. In order to enable the Lagrangian kernel in large deformation analyses, semi-
Lagrangian kernel [27] and adaptive anisotropic Lagrangian kernel [28] have been
developed. Nevertheless, very few studies [24, 29] have addressed all numerical
issues concurrently and comprehensively.

Smoothed Particle Galerkin (SPG) method motivated by Beissel and
Belytschko’s residual-type stabilization method [22] is one of the new Lagrangian
particle methods developed by Wu et al. [29] to deal with those numerical
instabilities. Another new Lagrangian particle method which is based on implicit
gradient expansion [30], strain gradient stabilization technique [25] and semi-
Lagrangian kernel [27] was proposed by Hillman and Chen [24] to sufficiently
control those numerical instabilities in severe deformation analysis. These two
Lagrangian particle methods share a common feature in augmenting the standard
quadratic energy functional by a non-residual term for stabilization. Since the
stabilization in those methods is accomplished without the use of the momentum
equation residual, dependence of artificial control parameters for stabilization can
be eliminated.

Modeling material separation in three-dimensional problem is another important
research topic for Lagrangian particle methods as well as a desirable feature
for industrial applications. However, the extant literature in Lagrangian particle
methods gives very few examples [9] in simulating the three-dimensional mate-
rial separation process. In essence, the development of 3D material separation
techniques for Lagrangian particle methods face formidable challenges in tracing
moving discontinuity surfaces and in dealing with the interaction of particles
affecting by the discontinuity. In order to avoid those numerical difficulties and meet
the current need in industrial applications, a bond-based failure criterion inspired by
the peridynamics method of Silling et al. [31] was introduced to SPG method by
Wu et al. [29] for material failure analysis. While the SPG method has been used to
model ductile failure in metals recently [32], its application to the coupled thermo-
mechanical problem in manufacturing applications remains to be developed.

The object of this study is to develop a thermo-mechanical coupled SPG method
to realistically simulate the friction drilling process involving large deformation
and material separation. The reminder of the paper is organized as follows: the
preliminaries and weak formulations for the coupled thermo-mechanical problem
are given in Sect. 2. In Sect. 3, the SPG formulation and semi-discrete equations
are provided. The computational procedures for thermal and mechanical induced
large deformation and material separation analyses are described in the Sect. 4.
One friction drilling simulation using the present method is given in Sect. 5, and
conclusions are made in Sect. 6.

2 Preliminaries

The highly coupled and nonlinear system in thermo-mechanical equations for the
friction drilling simulation is usually difficult to be solved by the simultaneous
time-stepping algorithm. In particular, the large and un-symmetric system in fully
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coupled thermo-mechanical equations inevitably involves the convergent problem
and is expensive to be solved implicitly in the presence of large deformation,
material separation, severe contact conditions and contact-induced thermal shock.
Additionally, because friction drilling is a very quick machining process, staggered
and explicit time-stepping schemes are considered in this study for the application of
interest. In the staggered time-steeping algorithm [33], the thermo-mechanical cou-
pled system of equations is partitioned into a thermal phase at fixed configuration,
followed by a mechanical phase at constant temperature.

In the thermal phase of the coupled system, we consider the transient heat
transfer response of a metal workpiece in three-dimensional case. We assume
linear dependence of heat flux on the temperature gradient which is known as
the Fourier’s law. We also assume isotropy of the material thermal conductivity.
Since the temperature range over which the workpiece is observed in experiments
is lower than the melting point, we presume the drilling process does not involve
the material phase change. We also presume the heat generation is only due to
plastic deformation and frictional contact between the drilling tool and workpiece.
If we neglect the thermal exchange due to surface convection and radiation in the
workpiece during the friction drilling, the standard variational formulation of the
thermal energy conservation equation can be written to find the temperature field
θ(X, t) ∈ � = {θ ∈ H 1(�) : θ = θd on ∂�d} such that for arbitrary variation
δθ ∈ �0 = {θ ∈ H 1(�) : θ = 0 on ∂�d} the following equation is satisfied

∫

�

ρCpθ̇δθ d�+
∫

�

k∇θ · ∇(δθ) d� =
∫

∂�n

qnδθ ds +
∫

�

Qδθ d�

+
∫

∂�c

hc(θ − θtool)δθ ds +
∫

∂�c

ητ · [u̇t
]
δθ ds.

(1)

In the above equation ρ is the mass density,Cp is the heat capacity, k is the isotropic
thermal conductivity, ∇ is the gradient operator with respect to current position
x, and “∇·” denotes the divergence operator. ∂�d describes a Dirichlet boundary
imposed by a temperature θd , and ∂�n is the Neumann boundary prescribed by a
normal heat flux qn = k(θ)∇θ · n, where n is the outward unit normal vector. We
also have Q denoting the internal heat generation rate per unit deformed volume
from plastic deformation and is defined by

Q := ηS : ε̇p (2)

where S and ε̇p are the deviatoric part of Cauchy stress and the rate of plastic
straining, respectively, and η is the Taylor-Quinney [34] coefficient that takes into
account the fraction of heat generated by plastic deformation energy dissipation.
The boundary ∂�c denotes the contact surface with a thermal exchange between the
tool and work piece. Subsequently, the third term on the right-hand side of Eq. (1)
designates the interfacial heat transfer where hc is the heat conductance on ∂�c, and
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θtool is the temperature of the tool. The last term on the right-hand side of Eq. (1)
represents the rate of frictional energy dissipation in which η is the fraction of heat
generated by the frictional contact, and τ is the Cauchy contact traction and

[
u̇t

]
is

the contact slip rate which is regarded as the jump in velocity across contact surface.
In the mechanical phase, the dynamic process of friction drilling process is

described by the equation of motion in the context of large strain analysis. During
the friction drilling process, the workpiece experiences different rates of heating
and cooling, and thus expansion and contraction. This leads to considerable thermal
strains and stresses which need to be taken into account in the mechanical analysis.
Using standard procedures, the variational equation for the mechanical problem in
friction drilling process is written to find the displacement field u(X, t) ∈ V =
{u ∈ H 1(�) : u = ug on ∂�g}, such that for arbitrary variation δu ∈ V0 = {u ∈
H 1(�) : u = 0 on ∂�g}, the following equation is satisfied:
∫

�

ρü · δu d� +
∫

�

δ

(
ε(u)

)T

: σ d� =
∫

�

b · δu d� +
∫

�h

h · δu ds +
∫

∂�c

γ · δu ds

(3)

where b is the body force vector and σ is the Cauchy stress obtained from the
constitutive law which is temperature dependent. The rate representation of strain
field ε̇ should consider the thermal effect which is described by

ε̇ = ε̇e + ε̇p + ε̇θ (4)

where ε̇e is elastic strain rate tensor, and ε̇θ = αθ̇ is the thermal strain rate
tensor with α denoting the thermal expansion coefficient. ∂�g denotes a Dirichlet
boundary imposed by a displacement ug , and ∂�h is the Neumann boundary
prescribed by a surface traction h. γ denotes the contact traction which is governed
by the unilateral contact conditions and Coulomb friction law [3]. Using Eq. (4)
and the isothermal assumption from the staggered time-steeping algorithm, the
corresponding rate form of the constitutive relation in mechanical phase can be
written as

σ̇ = C(θ) :
(

ε̇ − ε̇p − ε̇θ

)
(5)

where C is the temperature-dependent fourth-order isotropic elastic tensor.
Consequently, the thermal-mechanical problem in metal drilling process can be

stated by coupling the mechanical weak form in Eq. (3) with the thermal weak
form in Eq. (1) using the staggered time marching scheme. The coupled system of
equations is discretized using meshfree approximations and solved by the classical
explicit time-stepping approach which is described in the next section.
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3 Particle Formulation

3.1 Meshfree Approximation and Discretization

The standard meshfree Galerkin method [8] for the thermal problem is formulated
on a finite dimensional space �sh ⊂ � employing the thermal weak form of Eq. (1)
to find θh(t) ∈ �h such that

∫

�

ρCpθ̇hδθ d� +
∫

�

k∇θh · ∇
(

δθh

)
d� =

∫

∂�n

qnδθ
h ds +

∫

�

Qδθh d�

+
∫

∂�c

hc

(
θh − θtool

)
δθh ds +

∫

∂�c

ητ ·
[
u̇t

]
δθh ds ∀δθh ∈ �h

0

(6)

with initial condition

θh(X, 0) = θ0(X) in � (7)

where and �h = span{φa
I : I ∈ ZI } and ZI is an index set. {φa

I }I ∈ ZI

are meshfree shape functions constructed by the meshfree convex approximation
[35, 36] which is employed in this study to simplify the boundary condition
enforcement.

For a particle distribution denoted by an index set ZI = {XI }NP
I=1 ⊂ R

3,
approximating the displacement field using the meshfree approximation gives

uh(X, t) =
∑
I∈ZI

φa
I (X)u(XI , t) =

∑
I∈ZI

φa
I ũ(t) ∀X ∈ � (8)

where NP is the total number of particles in discretization. φa
I (X), I = 1, . . . , NP

can be interpreted as Lagrangian shape functions of the meshfree approximation for
the displacement field uh as well as the temperature field θh where the superscript
“a” denotes the support size of φa

I (X).
In order to prevent the tensile instability caused by the Eulerian kernel, the

Lagrangian kernel approach [8] is considered in this development. Correspondingly,
Eq. (6) is rewritten by

∫

�

ρCpθ̇hδθ d� +
∫

�

(
F−1 · K · F−T · ∇0θh

)
· ∇0

(
δθh

)
d� =

∫

∂�n

qnδθ
h ds

+
∫

�

Qδθh d� +
∫

∂�c

hc

(
θh − θtool

)
δθh ds +

∫

∂�c

ητ ·
[
u̇t

]
δθh ds

∀δθh ∈ �h
0

(9)
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where ∇0 denotes the gradient operator with respect to reference position X,
K = kI (2) is the thermal conductivity tensor with I (2) denoting the second-order
identity tensor, and F is the deformation gradient. We remark that although the
term tensile instability is reserved to describe the numerical instability of particle
methods in structural analysis, we take the term in this paper to address the similar
instability caused by the Eulerian kernel in the coupled thermo-mechanical analysis.
Consequently, discrete points from meshfree discretization that carry the primary
unknown variables are attached to the same set of material points throughout the
course of deformation in Lagrangian particle methods. Under this consideration,
the node set ZI = {XI , I = 1, . . . , NP } is the set of nodes defined in the
reference configuration. In practice, the set of meshfree nodes can be taken from the
finite element nodes created by a finite element mesh generator initially. Thus the
geometrical representation of� can be numerically approximated by� ≈ ⋃NP

I=1 �I

where�I refers the volume of particle I which can be evaluated at time t = 0 using
the information from the finite element mesh. The resultant discrete equations are
then integrated using the direct nodal integration (DNI) scheme.

We can also formulate the mechanical weak form of Eq. (3) in similar fashion.
Nevertheless, an application of the DNI scheme to Lagrangian particle methods
leads to another numerical instability known as the zero-energy mode in structural
analysis. To suppress the zero-energy mode and stabilize the solution for friction
drilling simulation, the standard smoothed particle Galerkin (SPG) method [28, 29]
is employed with a consideration of the thermal effect. The essence of SPG method
in structural analysis is to augment the standard energy functional by a stabilization
term using the penalty approach. As opposed to the residual-type stabilization
method [22] which uses the residual of the momentum equation and artificial
control parameters to effect stabilization, SPG method introduces a projection of
displacement gradients on to a strain space leading to an additional term that
penalizes the difference in strain fields for stabilization. The penalty approach
modifies the DNI scheme and gives rise to a dual stress-points algorithm [28]
which can be easily implemented and parallelized for the large-scale computation
in industrial applications. The reader is refer to [28, 29] for detail information and
references on SPG method. The SPG method for mechanical part of the coupling
problem we considered is then as follows: find uh(X, t) ∈ V h such that

∫

�

ρüh ·δuh d� +
∫

�

σ :
(

F−1 · ∇0δuh

)
d�

︸ ︷︷ ︸
standard

+
∫

�

δ

(
F−1 ·∇0

(
F−1 ·∇0δuh

)
·λ

)T

: σ̃ d�

︸ ︷︷ ︸
stabilization

=
∫

�

b · δuh d� +
∫

�n

h · δuh ds +
∫

∂�c

γ · δuh ds ∀δuH ∈ V h
0

(10)
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with initial conditions

uh(X, 0) = u0(X) (11)

u̇h(X, 0) = u̇0(X) (12)

where the stabilization term is composed of first-order strain gradients, stabilization
stresses σ̃ , and stabilization coefficient matrix λ(x) that can be found in [28, 29].

3.2 Semi-discrete Equations

The semi-discrete equations of the thermal problem can be expressed by the
following algebraic equations.

θ̃ + Hθ̃ = P (13)

where

CIJ =
∫

�x

ρ0Cp�I�J d�X (14)

HIJ =
∫

�

kF−1
il F−T

lj �I,j�J,i d� +
∫

∂�c

hc�I�J ds (15)

PI =
∫

�

ηS : ε̇p�I d� +
∫

∂�n

qn�I ds +
∫

∂�c

(
hcθtool − ητ ·

[
u̇t

])
�I ds (16)

Thermal equation in Eq. (13) is marched through time using the forward difference
algorithm [3] which is given by

θ̃n+1 = θ̃n + �t
˙̃
θn (17)

˙̃
θn = Cl−1

(
Pn − HNθ̃n

)
(18)

where the thermal capacity matrix C is advantageously replaced by the lumped
matrix Cl for the explicit analysis. When the tool surface is in contact with the
workpiece, the standard Fourier’s law cannot be used to fully describe the heat
transfer phenomena because the contact surfaces do not physically match perfectly.
In this case, the heat resistance generally decreases as contact pressure increases.
For this reason, the heat conductance hc in the thermal contact is assumed to be a
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function of normal contact pressure, thermal conductivity of the gas, yielding stress
of the work piece and surface roughness as described in [37].

In a similar way, the semi-discrete equations of the mechanical problem are given
by

M
¨̃
U = F ext + Fc − F int − F stab (19)

where the mass matrix M , external force F ext, internal force F int, and stabilization
force F stab for the SPG method can be found in [28, 29, 32]. Fc is the contact force
which is given by

Fc
I =

∫

∂�c

γ φa
I ds (20)

Since the tungsten carbide tool is also meshed by the finite element discretization,
the mechanical contact between the workpiece and drilling tool is modelled using
the standard node-to-surface penalty contact algorithm [3, 38].

It also suffices to integrate Eq. (19) by the central difference integration algorithm
and results in

˙̃
Un+1/2 = ˙̃

Un−1/2 + �tn+1 + �tn

2
¨̃
Un (21)

˙̃
Un+1 = Ũn + �tn+1

¨̃
Un+1/2 (22)

¨̃
Un = Ml−1

(
F ext

n + Fc
n − F int

n − F stab
n

)
(23)

where Ml is the lumped mass matrix. Noting that the temperature remains constant
and material properties are temperature dependent during this mechanical phase.

The critical time step in the explicit method is governed by the Courant-
Friedrichs-Lewy (CFL) condition [3] which is given in the following for the thermal
and mechanical analysis respectively

�tθ ≤ Sc min

(
ρCpl2

2k

)
, �tu ≤ Sc min

(
l

Cu

)
(24)

where the sound speed Cu gives the characteristic speed of the medium in
mechanical analysis. l is the support size of the kernel [8] for the particle system. A
scaling factor Sc = 0.15 is used in this study.
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4 Large Deformation and Material Separation Analyses

In this section, we discuss the computational procedures of the present method for
the analysis of large deformation and material separation problems in frictional
drilling simulation.

4.1 The Adaptive Anisotropic Lagrangian Kernel for Large
Deformation Analysis

As mentioned earlier in the Introduction, Lagrangian kernel has been utilized in
the particle method to remove the tension instability in the nonlinear structural
analysis. However, the Lagrangian particle methods experience the excessive
straining problem when the strictly use of Lagrangian kernel is no more applicable.
Specifically, the excessive straining during the large deformation friction drilling
simulation inevitably causes the numerical breakdown when the deformation
gradient computed at the particle ceases to become invertible.

In order to handle the excessive straining problem, an adaptive anisotropic
Lagrangian kernel is considered [28]. Using the chain rule, the calculation for the
deformation gradient at the particle can be rewritten [32] as

Fn+m = F̂ n+mFn (25)

where F̂ n+m(̂x) is the decomposed deformation gradient, from t = tn to tn+m,
computed based on the new reference configuration and is given by

F̂ n+m
ij (XJ ) = ∂x̂i

∂X̂j

=
NP∑
I=1

∂φa
I (X̂J )

∂X̂j

x̂iI (X, tn+m)

=
NP∑
I=1

∂φa
I (X̂J )

∂X̂j

(
X̂iI + ũiI (X, tn+m)

)

= δij +
NP∑
I=1

∂φa
I (X̂J )

∂X̂j

ũiI (X, tn+m)

(26)

Here, x̂ = X̂ + ũ(X, tn+m) is a position vector defined in the new reference
configuration X̂=x(X,tn). A local X̂I -coordinate system in which the axes are parallel
to the global Cartesian coordinates and the origin is located at X̂I which is defined for
each particle I . In each new reference configuration, an ellipsoidal nodal support is
defined for the neighbor particle searching. The three-dimensional ellipsoidal cubic
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spline kernel function is defined in another local ̂̂XI -coordinate system by

ϕa
I (X̂J ) = ϕ1

(̂̂XI
J

hn
1

)
ϕ1

(̂̂Y I
J

hn
2

)
ϕ1

(̂̂ZI
J

hn
3

)
(27)

where φ1 is a standard one-dimensional cubic spline kernel function, hn
1, hn

2 and
hn
3 are the current semi-major axes of the ellipsoid. The sizes of semi-major axes

can be considered the support sizes of the kernel and are updated according to
the deformation [28]. ̂̂XI

J ,
̂̂Y I

J and ̂̂ZI
J are the projections of relative position vector

X̂J −X̂I on the local ̂̂XI -coordinate system respectively. The adaptive anisotropic
Lagrangian kernel is updated constantly over a period of time. The spherical
shape domain of cubic spline kernel function deforms and rotates according to the
Lagrangian motion between each two adaptive Lagrangian kernel steps. We address
the reader to reference [28] for a comprehensive description of the approach. For the
computational efficiency in explicit time integrationmethod, the material derivatives
of meshfree shape functions are always computed and stored at the new reference
configuration and reused during the time stepping.

Since the operation of adaptive anisotropic Lagrangian kernel does not involve
remeshing, the stress-recovery techniques or remapping procedures are not neces-
sary. This unique property of present method leads to a relatively simple mathemat-
ical formulation for simulating the large strain problems.

4.2 The Bond-Based Failure Criterion for Material Separation
Analysis

Excessive straining also appears in the friction drilling process when the material
of workpiece starts to fail at the bushing forming stage. Precisely, the C1-continuity
assumption in Lagrangian particle methods is inadequate to describe the kinematic
discontinuity of displacement field in a continuous setting for the failure analysis
[19]. This makes Lagrangian particle methods even more challenging in friction
drilling simulation.

To further avoid the excessive straining problem due to the assumption of con-
tinuous displacement field in the friction drilling simulation, a bond-based failure
criterion [29, 31] is incorporated with the present coupled thermal-mechanical
formulations. The origins of this approach can be traced back to the bond failure in
peridynamics [31, 39] in which material failure is modeled through bond breakage.
In Lagrangian particle methods, the bond is a representation of a connection
between two particles. Given a length of the bond ‖XJ −XI ‖ for a particle pair
consisting of particles I and J in the initial configuration, the stretch ratio eIJ of
the bond is defined by

eIJ = ‖xJ − xI‖
‖XJ − XI‖ (28)
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For the friction drilling simulation, we restrict our attention to the material failure
in metals. In the bond-based failure criterion for ductile material, two neighbor
particles are considered disconnected during the neighbor particle sorting whenever
their averaged effective plastic strain and stretch ratio reach their respective critical
values. Accordingly, the three-dimensional ellipsoidal cubic spline kernel function
in Eq. (27) for a pair of particles I and J can be modified as:

φa
I

(
X̂J

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if X̂J 	∈ supp
(
φa

I

)
or

(
ε̄P
IJ > ε̄

p
crit and eIJ > ecrit

)
φ1

(̂̂XI

J

hn
1

)
φ1

(̂̂Y I

J

hn
2

)
φ1

(̂̂ZI

J

hn
3

)
, otherwise

(29)

where ε̄
p

ij = (
ε̄p

(
X̂J

))
/2, and ε̄p denoting the effective plastic strain. ε̄

p

critis the
critical effective plastic strain for bond failure, and ecrit denotes the critical stretch
ratio. We consider ecrit ≥ 1.0 in our numerical analysis which implies that the bond
failure does not occur under compression. This implication is valid for most metal
failure process.

Because the effective plastic strain at each particle is monotonically increasing
during the course of deformation, the kinematic disconnection in a particle pair is
considered as a permanent and irreversible process. This is a substantial characteris-
tic for the present method in metal failure analyses since the non-physical material
self-healing and excessive straining issues can also be completely excluded from the
material failure simulation.

5 Numerical Example

A friction drilling process of AISI 304 stainless steel is modeled and compared with
the experimental data in this section. The normalized nodal support size of 1.9 is
used and the adaptive anisotropic Lagrangian kernel is updated every 50 time steps
in the explicit dynamic analysis.

The AISI 304 stainless steel specimen used in the friction drilling process has a
diameter of 18mm and thickness of 1.5mm [40]. The geometry of the tool is shown
in Fig. 1a. The tool, which rotates at 3000 rpm and plunges at 100mm/min in the
test, is modeled by rigid material and meshed using tetrahedral finite elements. As
can be seen in Fig. 1b, the metal workpiece is discretized using 12,607 Lagrangian
particles. Finer discretization with a nodal distance of approximately 0.25mm is
employed in the central portion of the specimen where large deformation and
material separation occurs. As such, the explicit time step size for thermal analysis
is 50 μs and for structural analysis is about 4μs. The perimeter of the workpiece
is clamped. The stress flow in the AISI 304 steel is modeled by the Johnson-Cook
material law [41] (parameters: A = 205MPa, B = 802.5MPa, C = 0.08, m =
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0.6mm
1.4mm

10mm

33º

61º

86º

Ø5.2mm

(a)

32706 elements
Rotate: 3000rpm
Plunge: 100mm/min12607 nodes

Perimeter fixed

(b)

Fig. 1 Friction drilling: (a) tool geometry, (b) discretization and boundary conditions

1.09, n = 0.622). The failure behavior of the steel is handled by the SPG bond
failure mechanism as described in Sect. 4.2 rather than the Johnson-Cook damage
law, and the effective plastic strain for bond failure is set to 0.4. According to efunda
(www.efunda.com), the Young’s modulus of the workpiece is set to 193GPa. The
thermal properties of the AISI stainless steel are: coefficient of thermal expansion
0.0000184, heat capacity Cp 500 J/kg-K, and thermal conductivity k 16.2 W/m-K.
The coefficient of friction (COF) between the tool and the workpiece is set to 0.2
for the node-to-surface contact algorithm in the numerical analysis. The fraction of
heat generation η in the frictional contact is taken to be 0.5. The interfacial heat
transfer between the tool and the workpiece is neglected. The Taylor-Quinney [34]
coefficient η of 0.9 is considered in Eq. (2).

The comparison of thrust force and torque is presented in Fig. 2a and b,
respectively. Both the force and torque responses capture the basic profiles of
experimental data nicely. Further improvement in the force and torque results can
be made by tuning the coefficient of contact friction. But this is not within the scope
of this study and therefore not considered in this numerical example.

Fig. 2 Response of friction drilling: (a) thrust force, (b) torque

www.efunda.com
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s05.2=t@s52.1=t@

s00.5=t@s57.3=t@

s05.7=t@s52.6=t@

Fig. 3 Friction drilling: effective plastic strain distribution (red ≥ 0.4, blue: 0)

Figure 3 shows the evolution of the effective plastic strain in the workpiece while
only half of it is plotted. Red color indicates effective plastic strain level of 0.4
(which is the bond failure criterion) or more. It should be pointed out that bond
failure, i.e., material separation, only occurs when the effective plastic strain and
stretch ratio both reach their respective critical values. As shown in Fig. 3, material
failure occurs in a relatively small region and the bushing is qualitatively formed. It
is worthwhile to emphasize that the creation of bushing shape is one of the major
purposes of this type manufacturing process. However, it is not captured by any
other numerical technique by far.

Figure 4 shows the simulation result of temperature distribution during the
friction drilling process (back view). Red color indicates temperature rising of
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@ t=3.75 sec

Temperature statistics

@ t=5.00 sec

@ t=2.50 sec

@ t=6.25 sec @ t=7.50 sec

Fig. 4 Friction drilling: temperature field in workpiece (red: ≥ 100◦K, blue: 0◦K)
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100◦K or more, and blue color means no temperature rising. Due to the low thermal
conductivity in AISI 304 stainless steel, the temperature rising is less than 100◦K
for more than 90% of the particles. Very few particles (about 1%) directly in contact
with the tool have a temperature rising to 800◦K or more. The simulation result is
close to the measured temperature on the upper side of the disc at the contact zone
which was reported at 842◦K [40]. The heat wave did not propagate far away from
the tool-workpiece contact region because of the low thermal conductivity of the
workpiece and the fast machining process.

6 Conclusions

The main difficulty in finite element modeling of friction drilling process consists in
dealing with high levels of deformations involving in the complex material flow due
to frictional heating and material separation at the busing forming stage. Despite the
enormous progress achieved lately in computational mechanics, the development of
an advanced numerical tool for the robust and accurate friction drilling simulation
continues to be nowadays an emerging need for industry.

In this study, we have introduced a Lagrangian particle method that is suitable
for the three-dimensional thermo-mechanical analysis and can become a promising
alternative numerical tool for the friction drilling simulation. The present method
is developed to improve several numerical instabilities in conventional Lagrangian
particle methods. The numerical results in this study suggest that the present method
is able to produce the desired physics in the forming of a busing and generate
reasonable force and torque responses compared with the experimental data. To
the authors’ best knowledge, the existing literature has not been able to demonstrate
similar results. The extension of this method to other thermo-mechanical problems
that consider complex multi-physics behaviors such as phase transformation and
phase change will be the focus of our future development.
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