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Preface

The Ninth International Workshop on Meshfree Methods for Partial Differential
Equations was held from September 18 to September 20, 2017, in Bonn, Germany.
Meshfree methods have a diverse and rich mathematical background and their
flexibility renders them particularly interesting for challenging applications in which
classical mesh-based approximation techniques struggle or even fail. This workshop
series was established in 2001 to bring together European, American, and Asian
researchers working in this exciting field of interdisciplinary research on a regular
basis.

To this end, Ivo Babuška, Jiun-Shyan Chen, Michael Griebel, Wing Kam Liu,
Marc Alexander Schweitzer, C. T. Wu, and Harry Yserentant invited scientists
from all over the world to Bonn to strengthen the mathematical understanding and
analysis of meshfree discretizations and to promote the exchange of ideas on their
implementation and application.

The workshop was again hosted by the Institut für Numerische Simulation at
the Rheinische Friedrich-Wilhelms-Universität Bonn with the financial support of
the Sonderforschungsbereich 1060 The Mathematics of Emergent Effects and the
Hausdorff Center for Mathematics.

Bonn, Germany Michael Griebel
Bonn, Germany Marc Alexander Schweitzer
December 2018
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Preconditioned Conjugate Gradient
Solvers for the Generalized Finite
Element Method

Travis B. Fillmore, Varun Gupta, and Carlos Armando Duarte

Abstract This paper focuses on preconditioners for the conjugate gradient method
and their applications to the Generalized FEM with global-local enrichments
(GFEMgl) and the Stable GFEMgl. The preconditioners take advantage of the
hierarchical struture of the matrices in these methods and the fact that most of the
matrix does not change when simulating for example, the evolution of interfaces
and fractures. The performance of the conjugate gradient method with the proposed
preconditioner is investigated. A 3-D fracture problem is adopted for the numerical
experiments.

1 Introduction

The Generalized or Extended FEM (GFEM/XFEM) [3, 4, 6, 12, 26, 28, 31]
has successfully been applied to problems involving moving interfaces, crack
propagation, material discontinuities, and many others. These applications rely on
a-priori knowledge of the solution in order to define enrichment functions. Several
assumptions are usually required for the derivation of these enrichments. As a
result, refinement of the FEM mesh is usually required for acceptable accuracy. One
strategy to address this issue is to define the enrichments numerically as the solution
of auxiliary boundary value problems [10]. This leads to the so-called Generalized
FEM with global-local enrichments (GFEMgl). Another limitation of the GFEM is
the ill-conditioning of the resulting system of equations which may lead to severe
round-off errors of direct solvers or to the lack convergence of iterative solvers.
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2 T. B. Fillmore et al.

Preconditioning schemes for the GFEM can be found in the works of Kim et
al. [23] which proposes a Block-Jacobi preconditioner for the conjugate gradient
method, Waisman et al. [7, 36], Menk and Bordas [27], Béchet et al. [5], and several
others.

The Stable GFEM (SGFEM), initially proposed in [1, 2] and extended to 2- and
3-D fracture mechanics in [17, 18], provides a robust and yet simple solution to the
problem of ill-conditioning of the GFEM/XFEM. It is shown in [2] that the SGFEM
yields matrices with a condition number which is orders of magnitude lower than in
the GFEM/XFEM.

Block Gauss-Seidel iterative solution algorithms for the SGFEM are proposed in
Kergrene et al. [20] and [15]. This paper proposes preconditioners for the SGFEM
and, in particular to the SGFEMgl –an application of SGFEM ideas to the GFEMgl

which was first proposed in [15]. The key idea of the preconditioners is to explore
the hierarchical structure of the system of equations in Generalized FEMs like
the SGFEMgl. For example, when simulating the propagation of fractures in a
domain using the SGFEMgl, only the enrichments change between propagation
steps. The entries of the matrix associated with the FEM space—a sub-space of
the SGFEMgl space—remains constant throughout the entire simulation regardless
of the complexity of the fracture. This has been demonstrated in [32]. Two
preconditioners for the conjugate gradient method are investigated: The Block
Jacobi (BJ-PCG) and the Block Gauss-Seidel (BGS-PCG). They are defined in
Sect. 4 and their performance investigated in Sect. 5. The numerical experiments
involve the solution of a 3-D fracture problem using the SGFEMgl. This method
is briefly reviewed in Sect. 3. The model problem adopted in this paper—the
linear elastic fracture mechanics problem—is summarized in Sect. 2. The main
conclusions of this work are presented in Sect. 6.

2 Model Problem

The iterative solvers investigated in this paper are not restricted to a particular
problem. However, we focus on linear elastic fracture mechanics problems in 2-
and 3-D. Consider a cracked domain �̄ = � ∪ ∂� in R

d, d = 2 or 3, as illustrated
in Fig. 1. The boundary is decomposed as ∂� = ∂�u ∪ ∂�σ with ∂�u ∩ ∂�σ = ∅.
The crack surface S ⊂ ∂�σ is assumed to be traction-free. We consider the linear
elasticity problem on this domain. The equilibrium equations are given by

∇ · σ = 0 in �, (1)

where σ is the Cauchy stress tensor. The following boundary conditions are
prescribed on ∂�

u = ū on ∂�u σ · n = t̄ on ∂�σ , (2)
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Fig. 1 Fractured domain �̄
in R

2 or R3

where n is the outward unit normal vector to ∂�σ and t̄ and ū are prescribed
tractions and displacements, respectively. Without loss of generality, we assume
hereafter that ū = 0. The constitutive relations are given by the generalized Hooke’s
law,

σ = C : ε, (3)

where C is Hooke’s tensor. The kinematic relations are given by

ε = ∇su in �, (4)

where ε is the linear strain tensor and ∇s is the symmetric part of the gradient
operator. We seek to find a GFEM approximation to the solution u of the problem
defined by Eqs. (1)–(4).

3 GFEM and GFEMgl Approximations

A brief review of generalized FEM approximations is given in this section. Further
details can be found in, for example, [3, 11, 26, 31, 34].

The GFEM test and trial space S
GFEM is obtained by hierarchically enriching a

low-order standard finite element approximation space SFEM, with special functions
related to the given problem and belonging to the enrichment space SENR. Consider
a finite element mesh covering the domain of interest �̄. Let Nα(x), α ∈ Ih =
{1, · · · , nnod}, be the standard linear finite element shape function associated with
node xα and with support ωα . The patch or cloud ωα is given by the union of the
finite elements sharing node xα . The test/trial space of the GFEM is given by

S
GFEM = S

FEM + S
ENR, (5)
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where

S
FEM =

∑

α∈Ih
û αNα, û α ∈ R

d , d = 2, 3,

S
ENR =

∑

α∈I eh
Nαχα, and χα(ωα) = span{Eαi}mαi=1. (6)

The basis functionEαi is called an enrichment function, α ∈ I eh ⊂ Ih is the index of
the node with this enrichment, and i = {1, · · · ,mα} is the index of the enrichment
function at the node withmα being the total number of enrichments associated with
node xα. The functions Eαi ∈ χα(ωα) are chosen such that they approximate
the unknown solution u of the problem locally in ωα . Examples of enrichment
functions are polynomials, the Heaviside function, crack tip singular functions, and
numerically generated functions (cf. Sect. 3.1). The spaces χα(ωα) are called patch
approximation spaces, and S

ENR is referred to as the global enrichment space of the
GFEM. The functions in S

ENR

φαi(x) = Nα(x)Eαi(x), α ∈ I eh, i = 1, . . . ,mα, (7)

are denoted GFEM shape functions. They are built from the product of Finite
Element shape functions, Nα(x), α ∈ I eh , and enrichment functions, Eαi , i =
1, . . . ,mα . There are mα GFEM shape functions at a node xα, α ∈ I eh , of a finite
element mesh. These nodes also have a standard FE shape function Nα ∈ S

FEM.
Nodes not in the set I eh have only one function—the FE shape functionNα .

Based on Eqs. (5)–(7), the GFEM approximation uGFEM of a vector field u (e.g.,
displacements) can be written as

uGFEM(x) = uFEM(x)+ uENR(x)

=
∑

α∈Ih
ûαNα(x)

︸ ︷︷ ︸
Standard FEM approx.

+
∑

α∈I eh
Nα(x)

mα∑

i=1

ũαiEαi(x)

︸ ︷︷ ︸
GFEM enriched approx.

, ûα, ũαi ∈ R
d , d = 2, 3.

(8)

The above equation clearly shows that a GFEM approximation is obtained by
hierarchically enriching a standard finite element approximation. As a consequence,
any GFEM stiffness matrix is given by a FEM matrix augmented with entries
associated with GFEM enrichments. This property of GFEM matrices is used in
the proposed preconditioners for the GFEM.
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3.1 The Generalized FEM with Global-Local Enrichments

Available enrichment functions for linear elastic fracture problems [6, 12, 13, 28,
30] are based on the expansion of the elasticity solution in the neighborhood of a
straight crack front in an infinite domain. They also assume a planar fracture surface.
These assumptions are not valid in most practical fracture mechanics problems, in
particular for the case of 3-D problems. As a result, refinement of the FEM mesh
is required for acceptable accuracy. Alternatively, the enrichments can be defined
numerically as the solution of auxiliary boundary value problems [10, 14]. This
so-called Generalized FEM with Global-Local Enrichments (GFEMgl), combines
the GFEM and the global-local FEM [9, 29]. This allows the GFEM to use coarse
meshes while delivering accurate solutions. The GFEMgl has been formulated and
applied to various classes of problems. In Sect. 5, the method is used to discretize
a 3-D linear elastic fracture problem. The resulting discrete system of equations is
solved using the iterative solvers described in Sect. 4. Further details on GFEMgl in
the context of linear elastic fracture mechanics, can be found in [10, 21, 22].

3.2 Stable GFEM and Stable GFEMgl

It can be shown that the growth of the condition number for the GFEM is O(h−4)

with mesh refinement [2]. In contrast, the condition number of the standard FEM
stiffness matrix for a 3-D elasticity problem subjected to Neumann boundary
conditions is O(h−2) [8]. It is noted that if point constraints are adopted in 3-D
to eliminate the rigid body motions, the condition number of the FEM matrix with
these point constraints is O(h−3) [8]. Condition number in this paper is taken to
mean the condition number computed using the non-zero eigenvalues of a matrix
scaled such that its diagonal entries are 1 or O(1). This is also known as the scaled
condition number.

The Stable GFEM (SGFEM) [2] was proposed to address this ill-conditioning
issue of the GFEM. In the SGFEM, the enrichment functions are locally modified
to construct the patch approximation spaces χ̃α, α ∈ I eh . The modified SGFEM
enrichment functions Ẽαi(x) ∈ χ̃α(ωα) are given by

Ẽαi(x) = Eαi(x)− Iωα (Eαi)(x) and χ̃α = span{Ẽαi}mαi=1 (9)

where Iωα (Eαi) is the piecewise linear finite element interpolant of the enrichment
function Eαi on the patch ωα . The global enrichment space associated with χ̃α is
denoted by S̃

ENR. Therefore, the SGFEM trial space SSGFEM is given by

S
SGFEM = S

FEM + S̃
ENR. (10)
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The SGFEM shape functions φ̃αi(x) belonging to S̃
ENR are constructed using the

same framework as GFEM and are given by

φ̃αi(x) = Nα(x)Ẽαi(x). (11)

The above procedure can also be applied to the GFEMgl [15, 25]. The resulting
methodology is denoted as the SGFEMgl. Further details about the SGFEM are
given in [1, 2, 17]. The numerical implementation of the SGFEM is described in
Section 4 of [17].

4 Iterative Solvers

The iterative solvers studied in this paper are the Block Gauss-Seidel (BGS),
the Conjugate Gradient (CG), Block Jacobi Preconditioned CG (BJ-PCG), and
Block Gauss-Seidel PCG (BGS-PCG). All of the “Block” iterative solvers take
advantage of the hierarchical nature of the GFEM/SGFEM approximation spaces (5)
and (10). This property leads to the following structure for the global stiffness matrix
K, displacement vector d , and load vector f associated with a GFEM/SGFEM
discretization of the problem described in Sect. 2:

Kd =
[

K0 K0,gl

Kgl,0 Kgl

] [
d0

dgl

]
=
[

f 0

f gl

]
= f , (12)

where K0 is associated with the FEM space SFEM, Kgl is associated with enrichment
space S

ENR or S̃
ENR, and Kgl,0 = (K0,gl)T represents the coupling between the

FEM and enrichment spaces.

Remark 1 The notation K0,gl , Kgl , dgl, and f gl is adopted since the enrichments
used in this paper are computed through a global-local analysis as described in
Sect. 3.1.

Remark 2 Matrix K0 does not change in a crack propagation simulation. Thus, it
can be factorized once and re-used to define an efficient pre-conditioner for the
GFEM. This factorization can also be re-used when solving the enriched global
problem in the GFEMgl [10]. An iterative algorithm for the standard FEM can be
used to solve a system of equations with coefficients given by K0 instead of a direct
method. In this paper, however, a direct method is adopted.

4.1 Block Gauss-Seidel Algorithm

The Block Gauss-Seidel iterative method has been used in [15] and [20] to solve the
system of equations (12). An SGFEM was adopted in these references. Rather, than
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factorizing K , the Block Gauss-Seidel (Block GS) method factorizes the diagonal
blocks K0 and Kgl . Algorithm 1 describes the method in details.

Algorithm 1: Block GS algorithm
Input: K,f , d

Output: d

for i = 0 until convergence do
rgl ← f gl −Kgl,0d0

dgl ← (Kgl)−1rgl

r0 ← f 0 −K0,gldgl

d0 ← (K0)−1r0

return d

4.2 Preconditioned Conjugate Gradient Method

The Preconditioned Conjugate Gradient (PCG) method is one of the most used
iterative methods to solve symmetric positive-definite systems of equations. An
excellent introduction to PCG can be found in [35]. The method finds new search
directions through A-orthogonalization of previous search directions. It finds the
magnitude of this direction by using the residual, a preconditioner, and matrix K .
The PCG algorithm as described in [35] follows in Algorithm 2.

The effectiveness of the PCG depends on the symmetric positive definite
preconditioner M adopted. Matrix M is usually similar to K but easier to factorize.
The lower the condition number of M−1K , the faster the convergence of PCG.
The most effective preconditioner is one that is easy to compute and factorize while
leading to a better condition number than K. The Block Jacobi and the Block Gauss-
Seidel preconditioners are adopted in this paper. They are briefly described next.

4.2.1 Block Jacobi Preconditioner

The Block Jacobi PCG is used in [23] to solve the systems of equations (12). The
following preconditioner is adopted in this algorithm

M =
(

K0 0
0 Kgl

)
. (13)

This is potentially a good preconditioner for the SGFEM and SGFEMgl since in
these methods Kgl and K0 are near orthogonal [1]. The Block Jacobi Preconditioner
proceeds as described in Algorithm 3.
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Algorithm 2: PCG algorithm
Input: K,f , d

Output: d

i ⇐ 0
r ⇐ f −Ku

d ⇐ M−1r

δnew ⇐ rT d

for i = 0 until convergence do
q ⇐ Kd

α ⇐ δnew

dT q

d ⇐ d + αd

if i is divisible by 50 then
r ⇐ f −Ku /* Reset r to exact value */

else
r ⇐ r − αq /* r is typically not evaluated directly to
save computations */

s ⇐ M−1r /* Preconditioner solution step */

δold ⇐ δnew

δnew ⇐ rT s

η ⇐ δnew
δold

d ⇐ s + ηd

return d

Algorithm 3: BJ preconditioner algorithm
Input: K, r

Output: s

sgl ← (Kgl)−1rgl

s0 ← (K0)−1r0

return s

In this paper, the Cholesky factorization of K0 and Kgl are computed and stored
at the start of the PCG iteration. See also Remark 2.

4.2.2 Block Gauss-Seidel Preconditioner

The Block Gauss-Seidel PCG uses the Block Gauss-Seidel Algorithm 4 as M . The
BGS method is similar computationally to the Block Jacobi method. It solves two
systems of equations using the factorizations of K0 and Kgl .

BGS-PCG is different from BJ-PCG because it involves sparse matrix multipli-
cation of K0,gl and its transpose, which is relatively inexpensive. This means that
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Algorithm 4: Block GS algorithm
Input: K, r, s

Output: s

sgl ← (Kgl)−1
(
rgl −Kgl,0s0

)

s0 ← (K0)−1
(
r0 −K0,glsgl

)

return s

BGS-PCG considers more information about the coupling matrices. The BGS-PCG
can also perform multiple iterations. In this paper, one iteration of the BGS is used
in the preconditioner step of the PCG iteration. The initial value for r is 0.

5 Analysis of a 3-D Edge-Crack

The 3-D edge-crack shown in Fig. 2 is analyzed in this section using the GFEMgl

and the SGFEMgl. The system of equations is solved using the iterative algorithms
described in the previous section. The problem domain and dimensions are shown
in Fig. 2. The dimensions are b = 2, l = 4, t = 1, and a = 1. The magnitude
of the tractions is taken as σ = 1. The material parameters are Young’s modulus
E = 200, 000, and Poisson’s ratio ν = 0.3. Point displacement boundary conditions
are assigned to selected nodes of the FEM mesh to prevent rigid body motions. The
GFEMgl and the SGFEMgl are used to numerically define the enrichment functions
adopted in the global problem. The three steps of the (S)GFEMgl analysis of this
problem are illustrated in Fig. 3. It shows the domains for each stage in the GFEMgl

and SGFEMgl solution process. Tetrahedron elements are used at both global and
local problems. The local step of the GFEMgl simulates the crack. Spring boundary

Fig. 2 Three-dimensional
edge crack

tb

l

l

a

crack

s
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Fig. 3 GFEMgl steps for a
3-D edge crack. The same
steps are used in the
SGFEMgl. Red spheres are
shown at global nodes
enriched with the local
solution. (a) Initial global
mesh. (b) Local mesh. (c)
Enriched global mesh

(a)

(b)

(c)

conditions are applied along the portion of the local boundary that does not intersect
the boundary of the global problem. The local mesh is refined near the crack front,
with the element length adjacent to the crack front being about 5% of the crack
length. The polynomial order of the local problem is taken as 3. The local solution
is used to generate enrichments for the enriched global problem. These global-local
enrichments are the only enrichments in the global domain.

5.1 Condition Number Analysis

The condition number of the global stiffness matrix K of the GFEMgl and the
SGFEMgl is compared in this section. The condition number of the sub-matrices
in (12) is also compared. The following notation is adopted hereafter: κ(K), κ(K0),
and κ(Kgl) denote the condition number of global matrix K , and sub-matrices K0
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Fig. 4 Growth of condition numbers as the global mesh is refined in all three directions. Point
Dirichlet boundary conditions are prescribed to the global problem to prevent rigid body motion

and Kgl, respectively. The condition number is computed for a sequence of global
meshes with the same number of elements in all three directions. The local mesh is
unchanged. This, and the boundary condition of the global problem, implies that the
global-local enrichments do not change with refinement of the global mesh.

Figure 4 shows the condition number for the GFEMgl and the SGFEMgl with
this sequence of meshes. The plots show that κ(K) = O(h−3) for both methods
and that κ(K0) is also of O(h−3). This is surprising since one would expect that
the conditioning of K would grow much quicker than κ(K0), at least for the
GFEMgl. The cause of this apparent contradiction is the point Dirichlet boundary
conditions prescribed to prevent rigid body motion of the global problem. The
condition number of the FEM stiffness matrix for a 3-D Neumann problem with
point boundary conditions is O(h−3) [8]. Thus, the condition number for both the
GFEMgl and the SGFEMgl matrices is controlled by the effect of point constraints.
Figure 4 also shows κ(K0) when no point constraint is prescribed to the global
problem. In this case κ(K0) = O(h−2) as expected. It is noted that in the case
of the GFEMgl, κ(K) is expected to grow faster than O(h−3) with further mesh
refinement than shown in Fig. 4. This is proved in [1].

Another interesting feature shown in Fig. 4 is the noticeable decrease in
SGFEMgl κ(Kgl) relative to κ(Kgl) from GFEMgl. This is the case even though
the SGFEM was designed to reduce the condition number κ(K) by reducing the
coupling between K0 and Kgl. This reduction in κ(Kgl) has an impact on the
performance of iterative solvers as shown in the next section.
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5.2 Performance of Preconditioners for GFEMgl and
SGFEMgl

The performance of the iterative algorithms described in Sect. 4 is investigated
in this section. The CG, BJ-PCG and BGS-PCG algorithms are used to solve the
global system of equations (12) associated with the GFEMgl and the SGFEMgl

discretizations. Each iterative solver is run until the relative error is less than
econv = 10−5, which is taken as the convergence tolerance. The relative error ei

of an iterative solver solution is calculated at each iteration i using

ei = ||d̂ − d i ||2
||d̂||2

where d̂ is a precalculated direct solver solution. The iteration i at which the solver
converges is hereafter denoted iconv.

Figure 5 shows the number of iterations for convergence (iconv) of each solver
and for the GFEMgl and SGFEMgl. The same sequence of global meshes adopted
in the previous section is used. Point Dirichlet boundary conditions are used in the
global problem to prevent rigid body motion. For any given mesh, the GFEMgl

iconv is significantly higher than that for the SGFEMgl. Also, the rate of growth of
iconv with respect to element size for the SGFEMgl is less than half the rate for the
GFEMgl. This indicates that although the conditioning of the matrices for GFEMgl

and SGFEMgl are for this problem fairly similar, iteratively solving (12) for the
SGFEMgl is faster than for the GFEMgl. Both BGS-PCG and BJ-PCG benefit from
the SGFEMgl. The slopes of the curves in Fig. 5 is similar but iconv is always less
for the BGS-PCG than for BJ-PCG. The advantages of SGFEM versus GFEM in
iterative solvers are also shown in [15] and [20].

Fig. 5 Iterations to convergence of CG, BJ-PCG and BGS-PCG when solving global system (12)
for GFEMgl (left) and SGFEMgl (right). Point Dirichlet boundary conditions are adopted in the
global problem
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5.3 Comparison of BGS-PCG with Pardiso

The performance of the proposed BGS-PCG algorithm with the SGFEMgl is
compared with the Intel Pardiso direct solver [24, 33]. The pure Neumann edge-
crack problem with point Dirichlet boundary conditions is solved using both solvers
and the sequence of uniform meshes described earlier. The largest global problem
has about 2 million degrees of freedom. The CPU time required for convergence of
the BGS-PCG when solving (12) and for the factorization of K by Pardiso is plotted
against the number of degrees of freedom in Fig. 6. It shows that the BGS-PCG is,
for this problem, always faster than Pardiso. The slope of the BGS-PCG curve is
lower than the one for Pardiso which implies that the bigger the problem, the more
efficient the BGS-PCG is relative to Pardiso. For the largest problem solved, BGS-
PCG took 496 s for convergence while Pardiso required 7030 s for the factorization
of K which is about 14 times slower than BGS-PCG.

The slope of 2.07 for Pardiso and 1.54 for BGS-PCG shown in Fig. 6 can
be considered equivalent to the rate of increase of the total number of algebraic
operations versus the number of degrees of freedom of the problem. The theoretical
rate when solving 3-D elliptic boundary value problems using the adopted sparse
direct solver is 2 [19]. This matches pretty well with the rate shown in Fig. 6. The
theoretical rate when solving the same class of problems using the preconditioned
conjugate gradient is 1.17 [19], which is lower than the rate for the BGS-PCG
shown in Fig. 6. This can be traced to the computational effort required by the
BGS preconditioner. The cost of the PCG is given by the number of CG iterations
times the cost of each iteration, including the preconditioner. Figure 5 shows that
the number of iterations required for convergence of the BGS-PCG grows at a rate
of 0.59/3 with respect to the number of degrees of freedom in 3-D. This slow rate

Fig. 6 Comparison of
BGS-PCG with Pardiso for
several problem sizes
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Fig. 7 Growth of condition numbers as the global mesh is refined in all three directions. Face
Dirichlet boundary conditions are prescribed at the bottom face of the global domain instead of
point constraints

of growth indicates that the higher-than theoretical rate observed in Fig. 6 for the
BGS-PCG is likely caused by the cost of the BGS preconditioner.

5.4 Condition Number with Face Dirichlet Boundary
Conditions

The boundary conditions applied at the lower edge of the domain shown in Fig. 2
are in this section changed from a constant traction to prescribed displacements in
all directions. This eliminates the need to impose point constraints to the body. The
effect of this change on the condition number of the matrices is shown in Fig. 7. Two
changes can be observed relative to the results shown in Fig. 4. First, the growth rate
of κ(K) of the SGFEMgl and κ(K0) are close to the growth rate of κ(K0) without
boundary conditions. Recall that K0 is a standard FEM matrix. Second, the growth
rate of κ(K) of the GFEMgl becomes higher than in the SGFEMgl as the mesh is
refined, attesting the benefits of using the SGFEMgl.

The performance of the BJ-PCG and BGS-PCG iterative solvers with the change
in boundary conditions described above is nearly identical to the Neumann problem
with point constraints. This is due the choice of K0 as a preconditioner. The point
constraints are applied to this matrix, and thus its effect on the CG is absorbed by
the preconditioner.
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6 Conclusions

The main conclusions based on the numerical experiments presented in Sect. 5 are
summarized in this section.

The convergence of iterative solvers for the GFEMgl and SGFEMgl is controlled
by the element size adopted in the global problem. This is important since, for the
same level of accuracy, these methods can adopt much coarser meshes than the FEM
[16]. The mesh size in the FEM has to be comparable to the local problem mesh size
within the GFEMgl and SGFEMgl.

The SGFEM modification of enrichment functions can also be applied to
numerically computed enrichments leading to the SGFEMgl. This was also shown
in [15]. The results presented in Sect. 5 show that: (1) The SGFEMgl requires
much fewer PCG iterations for convergence than the GFEMgl; (2) The proposed
preconditioners significantly accelerate the convergence of the SGFEMgl. They also
reduce the rate of growth of the number of iterations for convergence with respect
to problem size.
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A Fast and Stable Multi-Level Solution
Technique for the Method
of Fundamental Solutions

Csaba Gáspár

Abstract The classical form of the Method of Fundamental Solutions is applied.
Instead of using a single set of subtly located external sources, a special strategy
of defining several sets of external source points is introduced. The sets of sources
are defined by the quadtree/octtree subdivision technique controlled by the boundary
collocation points in a completely automatic way, resulting in a point set, the density
of the spatial distribution of which decreases quickly far from the boundary. The
‘far’ sources are interpreted to form a ‘coarse grid’, while the densely distributed
‘near-boundary’ sources are considered a ‘fine grid’ (despite they need not to have
any grid structure). Based on this classification, a multi-level technique is built up,
where the smoothing procedure is defined by performing some familiar iterative
technique e.g. the (conjugate) gradient method. The approximate solutions are
calculated by enforcing the boundary conditions in the sense of least squares. The
resulting multi-level method is robust and significantly reduces the computational
cost. No weakly or strongly singular integrals have to be evaluated. Moreover, the
problem of severely ill-conditioned matrices is completely avoided.

1 Introduction

The Method of Fundamental Solutions (MFS, see. e.g. [10]) has become a popular,
truly meshfree solution technique of some elliptic boundary value problems due
to its simplicity and high accuracy. In addition to it, the MFS is a boundary-only
technique, that is, it requires some (unstructured) points along the boundary but not
inside the domain.
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If L is a 2D or 3D elliptic partial differential operator,� is a (2D or 3D) bounded
domain with boundary �, consider the boundary value problem

Lu = 0 in � (1)

u|� = u0, (2)

where a simple Dirichlet boundary condition is supposed for simplicity. Denote by
 a fundamental solution of L, then the traditional form of the MFS provides an
approximate solution of (1)–(2) in the following form:

u(x) =
N∑

j=1

αj(x − x̃j ) (3)

Here x̃1, x̃2, . . . , x̃N are predefined external points (source points). Thus, the partial
differential equation (1) is exactly satisfied in �; due to the singularity of  at the
origin, the approximate solution u defined by (3) exhibits singularities at the source
points (but not in �).

The a priori unknown coefficients α1, α2, . . . , αN are determined by enforcing
the boundary conditions in some boundary collocation points x1, x2, . . . , xM ∈ �,
i.e. by solving the linear system of equations:

N∑

j=1

αj(xk − x̃j ) = u0(xk) =: uk (k = 1, 2, . . .M) (4)

Note that the case of Neumann or mixed boundary conditions can be treated in a
completely similar way. In this case, some equations of the system (4) contain the
normal derivative of the fundamental solution:

N∑

j=1

αj
∂

∂nk
(xk − x̃j ) = v0(xk) =: vk (if xk ∈ �N)

Here nk is the outward normal unit vector at the point xk and �N denotes the
Neumann part of the boundary �, where the boundary condition

∂u

∂n
|�N = v0

is prescribed.
The matrix of the linear system (4) is generally non-selfadjoint and fully

populated. The numbers of the source points and boundary collocation points need
not be equal. In this case, the linear system (4) can be dealt with either the Singular
Value Decomposition (SVD) or some iterative method applied to the Gaussian
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normal equations of (4) i.e. a technique based on the least squares. For technical
reasons, however, it is often supposed that M = N , i.e. the system (4) has a square
matrix. In this case, the system (4) is often severely ill-conditioned, which causes
numerical difficulties, though the accuracy of the method is generally very good, see
[12]. This is especially the case, when the sources are located far from the boundary.
On the other hand, if they are too close to the boundary, numerical singularities
appear in the vicinity of the boundary collocation points, which may strongly reduce
the accuracy.

Another problem in implementing the MFS is the proper and automated defi-
nition of the external source points. As pointed out by many authors, this is not a
trivial task, especially in such cases when the shape of the domain� is complicated.
Moreover, both the computational complexity and the accuracy are sensitive to the
choice of the source locations. In [1, 5] the use of sources with large distance from
the boundary was proposed. This results in excellent accuracy (provided that the
exact solution is smooth enough), but leads to an extremely ill-conditioned linear
system to be solved. In [16], the number of sources may be initially quite large, and
several algorithms were proposed to pick out a (preferably much) smaller amount
of sources which results in approximately the same accuracy. More recently, in [4],
several strategies are investigated to define source locations, but all of them were
defined to be placed along the boundary of a larger domain.

To avoid the above mentioned difficulties, a number of techniques have been
developed. A group of such methods is based on allowing the source and the
boundary collocation points to coincide. This solves the problem of the automatic
location of sources. Using nonsingular solutions instead of the fundamental solution,
the problem of singularity can be avoided [3], but the problem of ill-conditioned
matrices remains. The picture is similar, if fundamental solutions concentrated to
straight lines are used [7].

The use of the classical fundamental solutions leads to the problem of proper
computations of singular terms, since the diagonal entries of the matrix of (4) have
to be properly redefined due to the singularity of. The problem is more difficult in
the presence of Neumann or mixed boundary conditions, since the normal derivative
of has a stronger singularity at the origin. These methods are some regularization
and/or more sophisticated desingularization techniques (see [14, 15, 18]), often
based on the solution of some auxiliary problem (see [2, 8, 11]).

In this paper, we return to the traditional form of the MFS, using several
groups of source points. The spatial density of the source points decreases rapidly
when their distance from the boundary increases. Such point sets can be easily
defined by using the computationally very efficient quadtree/octtree subdivision
technique. The subdivision is controlled by the boundary collocation points and can
be performed in a completely automatic way. Using the multigrid terminology, the
‘far’ sources are interpreted to form a ‘coarse grid’, while the densely distributed
‘near-boundary’ sources are considered a ‘fine grid’. It should be pointed out,
however, that they need not to have any grid structure. On each level, we use much
more boundary collocation points than source points. As a smoothing procedure, a
simple (conjugate) gradient method is applied to the Gaussian normal equations
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of the corresponding system having the form (4). This significantly reduces the
high-frequency components of the error. Using the familiar multigrid tools, a
simple multi-level algorithm is constructed resulting in a computationally economic
method, which still has an acceptable accuracy. As the main advantage, it should be
pointed out that the sources are defined in an automatic way, and, at the same time,
the problem of highly ill-conditioned systems is completely avoided.

2 The Method of Fundamental Solutions
with Near-Boundary Sources

For the sake of simplicity, we restrict ourselves to the 2D Laplace equation supplied
with pure Dirichlet boundary condition. Suppose that the domain of the partial
differential equation is a circle centered at the origin with radiusR:�R := {(x, y) ∈
R2 : x2 + y2 < R2} . The problem to be investigated is

�u = 0 in �R, (5)

u|�R = u0, (6)

where �R is the boundary of �R and u0 is a predefined boundary function. It is
well known that if u0 is regular enough, problem (5)–(6) has a unique solution in an
appropriate Sobolev space.

Let us seek the exact solution in the form of a single layer potential (the
discretized form of this technique leads to the traditional Method of Fundamental
Solutions). Let the sources of the single layer potential be concentrated on the circle
�R+δ centered at the origin with radius R + δ, where δ > 0 is a given constant:

(w)(x) :=
∫

�R+δ
(log ||x − y||) · w(y) d�y (7)

(x ∈ �R+δ; ||.|| denotes the Euclidean norm in R2). Suppose that the density
function w is expressed in terms of complex Fourier series (in polar coordinates):

w(R + δ, t) =
∑

k

wk · eikt (8)

where, for simplicity, we assume that w0 = 1
2π

∫ π
−π w(t) dt = 0. Standard

calculations show that the single layer potential w along the circle �R+δ is as
follows (written in polar coordinates):

(w)(R + δ, t) = −(R + δ)π ·
∑

k 
=0

1

|k|wk · e
ikt . (9)
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Moreover, for the point (r, t) ∈ �R+δ , the single layer potential can be expressed
as:

(w)(r, t) = −(R + δ)π
∑

k 
=0

1

|k|wk
(

r

R + δ
)|k|

· eikt . (10)

(Indeed, this function is harmonic inside �R+δ and identically equals (9) along the
boundary �R+δ .)

Let us express the boundary condition u0 in terms of complex Fourier series as
well:

u0(t) :=
∑

k 
=0

βk · eikt (11)

Then, from (11) and (10), we immediately obtain that the Fourier coefficients of the
density function w can be expressed with those of the boundary condition u0 as

wk = − |k|
(R + δ)π

(
1+ δ

R

)|k|
· βk. (12)

Define the operator

Aw := (w)|�R = −(R + δ)π ·
∑

k 
=0

1

|k|wk
(

R

R + δ
)|k|

· eikt . (13)

We have obtained that the (unique) solution of the equation

Aw = u0 (14)

defines the (unique) solution of (5)–(6) in the form:

u = w (15)

where w = A−1u0, and the Fourier coefficients of w can be computed by (12).
Note that the operator A−1 is not bounded between the usual Sobolev spaces

Hs1(�R) and Hs2(�R+δ) due to the exponentially increasing factor
(
1+ δ

R

)|k|
,

which may cause serious numerical difficulties. However, the inverses of the dis-
cretizations of A can still be uniformly bounded, if the fineness of the discretization
depends on the distance δ. Roughly speaking, if the discretization of A becomes
finer and finer, the distance δ of �R and �R+δ should be smaller and smaller. Two
of such techniques are detailed below.
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2.1 Band-Limited Approximation

Let N ∈ N be a fixed even index (a power of 2 in the following). Let us look for an
approximate solution of (14) in terms of truncated Fourier series, i.e.

w(N)(t) :=
∑

0 
=|k|≤N/2
wk · eikt . (16)

Denote by XN the N-dimensional subspace of the functions in L2(0, 2π) spanned
by the functions eikt (0 
= |k| ≤ N/2), and define the operator A(N) by restricting
A to XN , i.e.

(A(N)w(N))(t) := −(R + δ)π ·
∑

0 
=|k|≤N/2

1

|k|wk
(

R

R + δ
)|k|

· eikt .

Then the equation

A(N)w(N) = u0 (17)

has no solution in general but has a unique generalized solution in the sense of
least squares. Namely, define the Fourier coefficients wk by (12) for 0 
= |k| ≤
N/2, while for all |k| > N/2, define wk := 0. This function w(N) minimizes
||A(N)w − u0||2L2(0,2π)

on XN , since by Parseval’s formula

||A(N)w(N) − u0||2L2(0,2π) =

= 2π ·
∑

0 
=|k|≤N/2

∣∣∣∣∣−
(R + δ)π
|k|

(
R

R + δ
)|k|

wk − βk
∣∣∣∣∣

2

+ 2π ·
∑

|k|>N/2
|βk|2.

The first sum of the right-hand side equals to zero due to the definition of wk
(see (12)), while the second sum is independent ofw(N). That is, the above function
w(N) minimizes the L2-norm of the residual (A(N)w − u0).

2.1.1 Accuracy

The accuracy of the band-limited approximate solution can be characterized by
some norm of the residual (A(N)w(N) − u0). Let s ≥ 1 be arbitrary, then

||A(N)w(N) − u0||2L2(0,2π) = 2π ·
∑

|k|>N/2
|βk|2 ≤
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≤ 22s+1π

N2s ·
∑

|k|>N/2
|k|2s|βk|2 ≤

≤ 22s+1π

N2s · ||u0||2Hs(�R)
,

which implies the following result.

Proposition 1 If the boundary condition u0 belongs to the Sobolev space Hs(�R)

for some s ≥ 1, then the L2-norm of the residual of the band-limited approxima-
tion (16) can be estimated by

||A(N)w(N) − u0||L2(0,2π) ≤
2s · √2π

Ns
· ||u0||Hs(�R). (18)

Remark Proposition 1 states that the band-limited approximation (16) results in a
quite accurate approximate solution provided that the boundary condition is smooth
enough.

2.1.2 Condition Number

To numerically solve the problem (14), the most natural technique is the use of
least squares. Practically, this means that the Gaussian normal equations have to be
solved, i.e.

(A(N))∗A(N)w = (A(N))∗u0. (19)

The matrix of the operator A(N) is diagonal in the basis of the orthogonal functions
eikt (0 
= |k| ≤ N/2). The diagonal entries can be obtained from (13) as

A
(N)
kk = −(R + δ)π · 1

|k| ·
(

R

R + δ
)|k|

(0 
= |k| ≤ N

2
),

which are the eigenvalues of A(N); the corresponding eigenfunctions are eikt . Thus,
the condition number of A(N) can be easily calculated as

cond(A(N)) = |A(N)11 |
|A(N)N/2,N/2|

=
R
R+δ

2
N
( R
R+δ )N/2

≤ N

2
·
(

1+ δ

R

)N/2
. (20)

It is clear that if δ > 0 is fixed (independently of N), then cond(A(N)) increases
exponentially with N . However, if δ depends on N in such a way that δ is inversely
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proportional to N , i.e.

δ

R
= 2π

N
· δ0 (21)

with some δ0 > 0 (δ0 is independent of N), then from (20), we have

cond(A(N)) ≤ N

2
·
(

1+ 2πδ0

N

)N/2
≤ N

2
· eπδ0 . (22)

We have obtained an estimation for the condition number of the operator A(N).

Proposition 2 If the distance of the boundaries �R and �R+δ satisfies the condi-
tion (21), then the condition number of A(N) can be estimated as

cond(A(N)) ≤ eπδ0

2
· N. (23)

Consequently, for the condition number of the Gaussian normal equation (19), the
estimation

cond((A(N))∗A(N)) ≤ e2πδ0

4
· N2 (24)

holds.

2.1.3 Convergence

To solve Eq. (17), some direct method e.g. Gaussian elimination is used in general.
The computational cost of these methods are rather high, therefore the classical
(conjugate) gradient iteration technique will be applied to the Gaussian normal
equations (19). Recall (for details, see e.g. [13]) that if A is a self-adjoint, positive
definite operator with condition number κ , then after m gradient steps, the error of
the approximate solution of the equation Ax = b can be estimated by

||xm − x∗||A ≤
(
κ − 1

κ + 1

)m
· ||x0 − x∗||A,

while after m conjugate gradient steps, the error estimation has the form

||xm − x∗||A ≤ 2 ·
(√

κ − 1√
κ + 1

)m
· ||x0 − x∗||A.

Here x∗ and xm denotes the exact and the approximate solutions, respectively. ||.||A
is the energy norm, i.e. ||x||A = √〈Ax, x〉.



A Fast Multi-Level Technique for the MFS 27

Proposition 2 states that if the distance of the sources and the boundary �R
is inversely proportional to N (where N characterizes the ‘fineness’ of the band-
limited discretization), then the condition number of the discretized operator A(N)

increases linearly with N only. This results in moderately increasing condition
numbers. However, this moderate increase makes the (conjugate) gradient method
slow very soon, even for relatively low values of N . The convergence can be
significantly improved by a multi-level technique detailed below.

2.1.4 Controlling by External Boundary Values

If, in contrast to the MFS-approach, the band-limited approximate solution is
expressed in terms of external boundary values on �R+δ (rather than external
sources), the situation becomes simpler. Now the approximate solution has the form

u(N)(r, t) =
∑

|k|≤N/2
ûk

(
r

R + δ
)|k|

eikt .

The boundary condition along �R is approximated by enforcing

u(N)(R, t) =
∑

|k|≤N/2
ûk

(
R

R + δ
)|k|

· eikt = u0(t) =
∑

k

βke
ikt

in the sense of least squares, yielding

ûk =
(
R + δ
R

)|k|
· βk (|k| ≤ N

2
),

whence

|βk| ≤ |ûk| ≤
(

1+ 2πδ0

N

)|k|
· |βk| ≤ eπδ0 · |βk|.

This implies that the computation of the a priori unknown external boundary values
along �R+δ is a uniformly well-conditioned problem; the condition number remains
smaller than eπδ0 , independently of N . This means that the classical (conjugate)
gradient method itself is a robust method without introducing any multi-level
technique. In practice, the technique requires an external boundary and a robust
method to solve the external problem. This can be performed by using quadtree-
based multi-level techniques, for details, see [9]. The present method, however,
requires no external boundary and uses pure MFS-like solution tools.
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2.2 Band-Limited Approximation: A Two-Level Technique

Consider another circle �R+2δ centered at the origin with radius (R+ 2δ), and seek
the approximate solution of (5)–(6) as a sum of two single-layer potentials

u := A(N)w(N) + A(N/2)w(N/2), (25)

where

(A(N)w(N))(x) :=
∫

�R+δ
(log ||x − y||) · w(N)(y) d�y

and

(A(N/2)w(N/2))(x) :=
∫

�R+2δ

(log ||x − y||) · w(N/2)(y) d�y.

In polar coordinates, the density functions w(N) and w(N/2) are expressed in terms
of finite Fourier series

w(N)(t) =
∑

0 
=|k|≤N/2
w̃ke

ikt , w(N/2)(t) =
∑

0 
=|k|≤N/4
˜̃wkeikt .

The Fourier coefficients are defined in such a way that the Dirichlet boundary
condition (6) is satisfied i.e.

A(N)w(N) + A(N/2)w(N/2) = u0. (26)

This results in the following equation (in the sense of least squares, cf (13)):

u|�R = u0 =
∑

k 
=0

βk · eikt =

= −
∑

0 
=|k|≤N/4

(R + δ)π
|k| · w̃k

(
R

R + δ
)|k|

· eikt

−
∑

0 
=|k|≤N/4

(R + 2δ)π

|k| · ˜̃wk
(

R

R + 2δ

)|k|
· eikt

−
∑

N/4<|k|≤N/2

(R + δ)π
|k| · w̃k

(
R

R + δ
)|k|

· eikt .
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Equation (26) has several solutions. The simplest solution technique is to solve the
‘coarse level problem’

A(N/2)w(N/2) = u0 (27)

exactly (in the sense of least squares), yielding

˜̃wk = |k|
(R + 2δ)π

·
(
R + 2δ

R

)|k|
· βk, (0 
= |k| ≤ N

4
). (28)

As a next step, consider the ‘fine level problem’

A(N)w(N) = u0 − A(N/2)w(N/2). (29)

From (26) and (28), it follows that

w̃k = 0 (0 
= |k| ≤ N

4
),

which is interpreted as follows. The low-frequency components of the approximate
solution (i.e. for which 0 
= |k| ≤ N

4 ) are calculated from the coarse level
problem (27). The high-frequency components (i.e. for which N

4 < |k| ≤ N
2 ) are

calculated by solving (29), applying a simple (conjugate) gradient method. Since the
operator A(N) maps the ‘high-frequency subspace’ X⊥N/2 spanned by the functions

{eikt : N
4 < |k| ≤ N

2 } into itself, the speed of the convergence is determined by the
condition number of the restricted operator A(N)|X⊥N/2 , which is much less than that

of the original operatorA(N), i.e.

cond(A(N)|X⊥N/2) ≤
|A(N)N/4,N/4|
|AN/2,N/2| = 2 ·

(
R + δ
R

)N/4
.

But δ
R
= 2πδ0

N
(cf (21)), which implies

cond(A(N)|X⊥N/2) ≤ 2 · e 1
2πδ0

and

cond((A(N))∗A(N)|X⊥N/2) ≤ 4 · eπδ0

independently of N . This means that the speed of convergence of the (conjugate)
gradient method increases by a significant amount and the iteration is robust, i.e.
the speed of convergence does not depend on N . In other words, the (conjugate)
gradient iteration reduces the high-frequency error components quickly, thus, it can
be used as an efficient smoothing procedure in a multi-level context.
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We have obtained the following two-level algorithm:

• Step 1: Perform a band-limited discretization both on �R+δ and on �R+2δ, and
build up the discretized problem (26).

• Step 2: Solve the coarse level problem

A(N/2)w(N/2) = u0

exactly (in the sense of least squares).
• Step 3: Apply several (conjugate) gradient iteration steps to the fine level problem

A(N)w(N) = u0 − A(N/2)w(N/2)

in the sense of least squares, i.e. to the Gaussian normal equation of the fine level
problem

(A(N))∗A(N)w(N) = (A(N))∗(u0 − A(N/2)w(N/2)).

The number of the iteration steps is typically between 10 and 20, and independent
of N .

• Step 4: If necessary, improve the approximation: redefine the coarse level
problem by

A(N/2)w(N/2) = u0 − A(N)w(N),

and continue the algorithm from Step 2.

The method requires O(N2) algebraic operations at the fine level, which is much
less than the computational cost of a traditional direct solver. It should be also
pointed out that no ill-conditioned problem has to be handled.

In practice, the coarse level problem needs not necessarily be solved exactly. In
this case, the gradient steps may be somewhat slower.

2.3 Band-Limited Approximation: Extension to Multi-Level
Method

The two-level algorithm can be extended to a multi-level technique in a straightfor-
ward way by applying the same technique to solve the coarse level problem (27).

Let us define additional concentric circles �R+4δ , �R+8δ , . . . , �R+2Lδ. Along
each circle, consider the single layer potential

A(N ·21−�)w(N ·21−�) :=
∫

�
R+2�δ

(log ||x − y||) ·w(N ·21−�)(y) d�y (30)
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((� = 1, 2, . . . , L)), where, in polar coordinates, w(N ·21−�) has the band-limited
Fourier series expansion

w(N ·21−�)(t) :=
∑

0 
=|k|≤N ·2−�
ŵ
(�)
k · eikt . (31)

The approximate solution of (5)–(6) is sought as a two-level approximation (25)

u := A(N)w(N) + A(N/2)w(N/2),
where the density functions w(N) and w(N/2) are recursively defined as follows,
using a MATLAB-style pseudocode (see also the classical multigrid techniques
detailed in e.g. [17]):

function [w(N)] = MGC(N,A(N),w(N), b)

if N = Nmin
w(N) := (A(N))−1b

return

end

w(N/2) := 0
f or i = 1 : iteration number
w(N/2) := MGC(N/2, A(N/2), w(N/2), u0 − A(N)w(N))
w(N) := gradient steps(N,A(N),w(N), u0 − A(N/2)w(N/2))

end

return

In practice, the use of the band-limited approximation is inconvenient, especially
when the shape of the domain is more complicated. However, after minor modifica-
tions, the idea still can be applied to the case of usual point sources as shown in the
next subsection.

2.4 Approximation by Near-Boundary Point Sources

Let N ∈ N be a fixed even number (a power of 2 in the following). Now let
us look for the approximate solution of (5)–(6) in terms of point sources located
equidistantly along �R+δ , i.e.

u(N)(x) :=
N−1∑

j=0

αj · log ||x − xj ||, (32)

where xj is the j th source point

xj = (R + δ) ·
(

cos
2jπ

N
, sin

2jπ

N

)
(j = 0, 1, . . . , N − 1).
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We assume again that the sources are located in the vicinity of �R , i.e. the
condition (21) is still satisfied. Thus, δ

R
= 2π

N
· δ0 for some δ0 > 0 which is

independent of N .
Standard calculations show that the function u(N) can be expressed in terms of

Fourier series in the following way (written in polar coordinates). We have

u(N)(r, t) = (log(R+ δ)) ·
⎛

⎝
N−1∑

j=0

αj

⎞

⎠− 1

2
·
∑

k 
=0

1

|k|
(

r

R + δ
)|k|

α̂k · e−ikt , (33)

where α̂k (k = 0, 1, . . . , N − 1) denotes the discrete Fourier transform of the finite
sequence of the coefficients αj (j = 0, 1, . . . , N − 1)

α̂k :=
N−1∑

j=0

αj e
2πikj
N (k = 0, 1, . . . N − 1).

Here, α̂k is considered to be extended to the set Z of all integers in an N-periodic
way.

Thus, the approximate solution along the boundary �R can be expressed as

u(N)|�R = u(N)(R, t) = α̂0 ·log(R+δ)− 1

2
·
∑

k 
=0

1

|k|
(

R

R + δ
)|k|

α̂k ·e−ikt . (34)

Define the discrete operatorA(N) : CN → L2(0, 2π) by

(A(N)α)(t) := u(N)(R, t),

where α ∈ CN denotes the vector formed by the componentsαj (j = 0, 1, . . . , N−
1). For determining the approximate solution u(N), one has to solve the system of
equations

A(N)α = u0 (35)

in the sense of least squares, i.e. the Gaussian normal equations

(A(N))∗A(N)α = (A(N))∗u0. (36)

Now we will show that the matrix (A(N))∗A(N) is a diagonal matrix in the

orthonormal basis formed by the vectors α(−N
2 +1), α(−N

2 +2), . . . , α(
N
2 ) ∈ CN , where

α
(p)
j := 1√

N
· e− 2πipj

N
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(j = 0, 1, . . . , N − 1), (p = −N
2 + 1,−N

2 + 2, . . . , N2 ). By definition, it is easy to
see that

(α̂
(p)
)k =

⎧
⎨

⎩

√
N if k ≡ p (mod N),

0 otherwise,

which implies that, for p 
= 0,

A(N)α(p) = (α̂(p))0 · log(R + δ)− 1

2
·
∑

k 
=0

1

|k|
(

R

R + δ
)|k|

(α̂
(p)
)k · e−ikt =

= −
√
N

2
·
+∞∑

�=−∞

1

|p + �N |
(

R

R + δ
)|p+�N |

· e−i(p+�N)t .

If p = 0, then

A(N)α(0) = (α̂(0))0 · log(R + δ)− 1

2
·
∑

k 
=0

1

|k|
(

R

R + δ
)|k|

(α̂
(0)
)k · e−ikt =

= √
N · log(R + δ)−

√
N

2
·
∑

� 
=0

1

|�N |
(

R

R + δ
)|�N |

· e−i�Nt .

Since the (p, q)th element of the matrix (A(N))∗A(N) is

((A(N))∗A(N))pq = 〈(A(N))∗A(N)α(p),α(q)〉CN = 〈A(N)α(p), A(N)α(q)〉L2(0,2π),

the above equalities imply that the matrix (A(N))∗A(N) is a diagonal matrix, as
stated above. Moreover, the diagonal entries can easily be calculated by virtue of
Parseval’s theorem. For k 
= 0

((A(N))∗A(N))kk = 2Nπ ·
+∞∑

�=−∞

1

4|k + �N |2
(

R

R + δ
)2|k+�N |

=: 2Nπ ·
+∞∑

�=−∞
c2
k+�N,

where

c2
γ :=

1

4|γ |2
(

R

R + δ
)2|γ |

.



34 C. Gáspár

For k = 0

((A(N))∗A(N))00 = 2Nπ ·
⎛

⎝(log(R + δ))2 +
∑

� 
=0

1

4|�N |2
(

R

R + δ
)2|�N |

⎞

⎠ .

We have obtained that for nonzero indices k (written in a more convenient form)

((A(N))∗A(N))kk =

= 2Nπ · (c2
k + (c2

k+N + c2
k+2N + . . .)+ (c2

k−N + c2
k−2N + . . .)).

(37)

From (37), the condition number can be conveniently estimated both in the whole
space and also in the ‘high frequency subspace’, similarly than in the case of the
band-limited approximation.

2.4.1 Condition Number

The diagonal entries of the matrix (A(N))∗A(N) should be estimated from below and
above. Obviously

((A(N))∗A(N))kk ≥ 2Nπ · c2
k ≥ 2Nπ · 1

N2 ·
(

R

R + δ
)2·N2

,

and therefore

((A(N))∗A(N))kk ≥ 1

N2 · 2Nπ · e−2πδ0 (38)

for k 
= 0. On the other hand

((A(N))∗A(N))kk ≤ 2Nπ · (c2
k + (c2

N/2 + c2
3N/2 + . . .)+ (c2−N/2 + c2−3N/2 + . . .))

≤ 2Nπ

[
1

4k2

(
R
R+δ

)2|k| + 2
N2

(
R
R+δ

)N ·
(

1
12 + 1

32 + 1
52 + . . .

)]
,

whence

((A(N))∗A(N))kk ≤ 2Nπ ·
(

1

4
+ π2

4N2

)
. (39)

Thus, the condition number can be estimated as

cond((A(N))∗A(N)) ≤ N2 · π
2 + 1

4
· e2πδ0 (40)
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similarly to (24) in the band-limited approximation, and this estimation does not
change essentially when the 0th diagonal entry is also taken into account. This
means that the condition number increases moderately with N , but makes the speed
of convergence of the gradient method low. However, similarly to the band-limited
case, the high-frequency error may decrease much faster. To show this, it is sufficient
to estimate the condition number of the matrix ((A(N))∗A(N)) restricted to the ‘high-
frequency subspace’ i.e. for the indices k for which

N

4
< |k| ≤ N

2

is satisfied. The lower bound of the diagonal entries is the same as previously, i.e.

((A(N))∗A(N))kk ≥ 2Nπ · 1

N2 ·
(

R

R + δ
)N

,

while the estimation of the upper bound is slightly different, i.e.

((A(N))∗A(N))kk ≤ 2Nπ · (c2
N/4 + (c2

N/2 + c2
3N/2 + . . .)+ (c2−N/2 + c2−3N/2 + . . .))

≤ 2Nπ

[
4
N2

(
R
R+δ

)2·N4 + π2

4N2

(
R
R+δ

)N]
,

which implies that in the ‘high-frequency subspace’

cond((A(N))∗A(N)) ≤
4
(

R
R+δ

)N/2 + π2

4

(
R
R+δ

)N

(
R
R+δ

)N ≤ 4 · eπδ0 + π2

4
(41)

independently of N . That is, the (conjugate) gradient method is a suitable smoothing
procedure in the multi-level context, similarly to the band-limited case, thus, the
two-level as well as the multi-level method of the preceding subsections can be built
up without difficulty, using the discretization of (35) instead of (17). For illustration,
Fig. 1 shows the arrangements of the sources both on the fine level (x(1)j , j =
0, 1, . . . , N − 1) and on the coarse level as well (x(2)j , j = 0, 1, . . . , N2 − 1). Note
that this type of approximation can be implemented much easier than the band-
limited technique and can be generalized to more general domains in a natural way.

2.5 Definition of Sources Using Quadtrees

As seen in the previous subsections, the ‘coarse problem’ requires half as much
source points as the ‘fine problem’, located at double distance from the boundary.



36 C. Gáspár

Fig. 1 Two-level MFS,
locations of sources

ΓR+δ

ΓR+2δ

u

ΩR

xj

x(2)
j

x(1)
j

In the multi-level expansion, this means that the density of the spatial distribution
of the source points should decrease exponentially when the distance from the
boundary increases. This can be performed by the quadtree (octtree in 3D) algorithm
in a completely automatic way. Recall that the quadtree algorithm is a recursively
defined, systematic subdivision of an initial square into four congruent subsquares
controlled by a finite number of points (referred to as controlling points hereafter).
A subdivision is performed if the number of controlling points contained in the
actual subsquare exceeds a predefined minimal value, provided that the level
of subdivision remains under a predefined maximal value. By performing some
additional subdivisions, it can be assured that the ration of the neighbouring cell
sizes is at most 2 (regularization of the quadtree cell systems), i.e. no abrupt changes
in neighbouring cell sizes occur. This procedure results in a non-equidistant, non-
uniform cell system which automatically exhibits local refinements in the vicinity of
the controlling points. This cell system is suitable for defining simple finite volume
schemes as well (see [6]). In the presented multi-level technique, the quadtree cell
system is controlled by the boundary collocation points x1, x2, . . . , xM ∈ �R .

As an example, Fig. 2 shows a regular quadtree cell system controlled by the
boundary points of a circle centered at the point (0.5, 0.5) with radius R = 0.3.
Figure 3 shows all the external sources. In Fig. 4, the sources belonging to the
different levels are displayed. The maximal subdivision level is 8, i.e. the size of
the finest cell is 1/256. The level of the finest (coarsest) source points is 7 (3,
respectively). The number of boundary collocation points is 476; the collocation
points are the centers of the cells at the 8th i.e. the finest subdivision level, which
contain some boundary points.
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Fig. 2 Quadtree cell system generated by a circle
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Fig. 3 Circle, the source point locations
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Fig. 4 Circle, the source point locations at the different levels

3 A Numerical Example

The above presented technique is illustrated through a numerical example. Consider
the problem (5)–(6) in the unit circle �1 with the test solution

u(x, y) = (cos 2πx) · (sinh 2πy), (42)



A Fast Multi-Level Technique for the MFS 39

where the Dirichlet boundary condition is defined to be consistent with the test
solution (42). Discretize the boundary �1 by N equidistantly spaced boundary
collocation points

(xj , yj ) :=
(

cos
2jπ

N
, sin

2jπ

N

)
(j = 0, 1, . . . , N − 1).

Let �1+δ be a circle centered at the origin with radius (1+δ), where δ := 2π
N

. Define
the source points as

(x̃j , ỹj ) := (1+ δ) ·
(

cos
2jπ

N
, sin

2jπ

N

)
(j = 0, 1, . . . , N − 1),

i.e. they are ‘near-boundary sources’ in the sense of (21). First, we have computed
the standard MFS-solutions with different values of N , while the number of
boundary collocation points was unchanged, M = 256. The solutions of the
corresponding Gaussian normal equations were calculated by a standard direct
method. Table 1 shows the relative L2-norms of the residuals (A(N)αN −u0), where
αN is the solution of (35) (in the sense of least squares) and A(N) is the discrete
MFS-operator defined by (32). Table 1 also contains the condition numbers of A(N)

and of (A(N))∗A(N) as well.
Table 1 illustrates that the condition numbers increase moderately with N ,

however, this makes the familiar iterative methods slow. That is, the use of the
standard direct methods is needed, but the number of necessary algebraic operations
is rather high, O(N3).

A two-level method was also applied to the above test problem by using one
coarse level, as illustrated in Fig. 1. The coarse level problem was solved directly,
while, to the fine level problem, 16 conjugate gradient iterations were applied,
and the fine-coarse level improvement steps were repeated iteratively. The errors
were always calculated on the fine level. The relative L2-norms of the residuals for
different values ofN can be seen in Table 2. Here the coarse level problem contains
N sources, while the fine level possesses 2N sources. Table 3 shows the relative L2-
norms of the residuals, when, for the coarse level problem, 16 conjugate gradient
iteration steps were applied instead of solving the coarse problem directly.

Comparing these results with those of Table 2, one can observe that the accuracy
is more or less the same as in the previous case. The situation remains similar, when

Table 1 Relative L2-norms of the residuals and the condition numbers

N 16 32 64 128 256

cond(A(N)) 57.4 166.5 412.5 925.7 1390.8

cond((A(N))∗A(N)) 3304 27730 170176 856981 1934341

Relative L2-error on �1 (%) 11.68 1.775 0.1203 0.0250 0.0148

Test solution: (42), method: single-level MFS



40 C. Gáspár

Table 2 Relative L2-norms of the residuals, two-level MFS

N/2N 8/16 16/32 32/64 64/128 128/256

Relative L2-error (%) 12.01 1.065 0.1351 0.0200 2.1e−8

Test solution: (42), method: two-level MFS. Direct solution on the coarse level

Table 3 Relative L2-norms of the residuals, two-level MFS

N/2N 8/16 16/32 32/64 64/128 128/256

Relative L2-error (%) 12.01 1.065 0.1351 0.0202 0.0007

Test solution: (42), method: two-level MFS. Conjugate gradient iterations on the coarse level

Table 4 Relative L2-norms of the residuals, three-level MFS

N/2N/4N 4/8/16 8/16/32 16/32/64 32/64/128 64/128/256

Relative L2-error (%) 12.01 1.106 0.0541 0.0058 4.3e−5

Test solution: (42), method: three-level MFS

Table 5 Relative L2-norms of the residuals, single-level MFS on quadtree cell system

L 3 4 5 6 7

N 12 88 104 216 376

Relative L2-error (%) 58.58 0.0086 0.0011 0.0006 0.0048

Test solution: (43), method: single-level MFS on quadtree cell system

applying a multi-level technique using several consecutively coarser levels. Table 4
shows 3-grid results (with N coarsest and 4N finest source points). Note also that
the presented technique does not suffer from the problem of severely ill-conditioned
matrices.

Finally, some illustration of the automatic quadtree-based source definition
technique is shown. Now let the domain � be a circle contained in the unit square
centered at the point (0.5, 0.5) with radius 0.3 as shown in Figs. 2 and 3. The
number of boundary collocation points is 476 in each level (the centers of the
finest cells which contain some boundary points). The source points belonging to
the different levels can be seen in Fig. 4. Their quadtree subdivision levels vary
from 3 to 7, and the numbers of the corresponding points are 12, 88, 104, 216 and
376. Now the test solution is defined by

u(x, y) = cos
2π(x − 0.5)

0.3
· sinh

2π(y − 0.5)

0.3
. (43)

Table 5 shows the relative L2-norms of the residuals (calculated in the boundary
collocation points). Here L denotes the quadtree subdivision level and N is the
number of source points in the corresponding level. The approximate solutions
were calculated by a standard direct method. This indicates that the accuracy
remains good enough, but the systems are severely ill-conditioned. From level 4, the
condition numbers are above 1012. However, using a two-level technique (applying
20 conjugate gradient steps in both levels), we obtain an acceptable accuracy,
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Table 6 Relative L2-norms
of the residuals, two-level
MFS on quadtree cell system

L1/L2 3/4 4/5 5/6 6/7

N1/N2 12/88 88/104 104/216 216/376

Relative L2-error (%) 0.2729 0.0601 0.0263 0.0183

Test solution: (43), method: two-level MFS on quadtree cell
system

with much less computational cost and without having to deal with severely ill-
conditioned matrices, as shown in Table 6. Here L1 denotes the quadtree level of
the coarser problem, L2 is that of the finer problem. N1 (resp. N2) is the number of
sources in the coarse (resp. the fine) level. The norms of the residuals i.e. the errors
are calculated always in the fine level.

4 Summary and Conclusions

A traditional form of the Method of Fundamental Solutions was applied. The
external source point locations were defined in a completely automated way using
a quadtree/octtree subdivision technique controlled by the boundary collocation
points. Thus, the density of the spatial distribution of the sources decreases far from
the boundary. The external sources form groups of points which are interpreted as
coarse grids and fine grids (however, they have no grid structure at all). At each
level, the approximate solution was defined by least square approximation of the
corresponding Gaussian normal equations. As a smoothing procedure, a simple
(conjugate) gradient method was used. It was shown that, using the above groups
of source points, the gradient method significantly reduces the high-frequency
components of the errors, which made it possible to build up a multi-level method
in a simple way. The resulting method has acceptable accuracy and much less
computational complexity compared to the usual solution techniques. No special
tricks to treat singularities are needed. At the same time, the problem of solving
large and severely ill-conditioned linear systems is completely avoided.
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Explicit Margin of Safety Assessment
of Composite Structure

J. H. Gosse and E. J. Sharp

Abstract In this paper, we discuss the assessment of the margins of safety (MOS)
for engineered structures (buildings, bridges, machines and aircraft). With respect
to metallic structures the MOS are primarily a function of the observed yield stress
of the metal (critical property of the constitutive material). With continuous fiber
reinforced polymer composites (composites in this paper) such a crisp measurement
of the “yield stress” is not available. The result has been an empirical test-intensive
building block approach to the assessment of the MOS for composite structure.
However, the capability to use the critical properties of the constitutive materials
of the composite system to evaluate the MOS of the composite structure is now
possible (explicit MOS assessment). Such an approach will lead to significant
reductions in cost and time-to-design as well as a practical means towards expanding
the design space. The measurement of the critical measures, de-homogenization
of homogenous strain states and classical convergence of the numerical solutions
involved are discussed in detail. Finally, integrating generalized finite elements into
the analysis process will allow for rapid and efficient assessment of the MOS for
global structures.

1 Introduction

All engineered structures need to be safe. The MOS to assess safety is primarily
a function of the peak value of the measure of interest (for a given load case) at a
point within the structure and the critical material property of the material used in
the structure. For example, the MOS can be expressed very simply [1],

MOS = σtu

σt
− 1 (1)
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where σtu is the allowable stress and σt is the in-situ stress. Actual expressions of
the MOS for bridges and buildings [2] as well as machinery [3] and aircraft [1] are
usually more complicated than that shown in (1). MOS that pertain to stability or
crippling checks usually do not involve the critical measures of the material.

All solid materials (systems that resist shear) deform either by dilatation,
distortion or both. The mechanisms do not synergize (they are not additive at a
point, they compete). Mathematically, these two deformations can be expressed as
[4],

εdilatation = ∇V
V

= (1+ ε1) (1+ ε2) (1+ ε3)− 1 (2)

which is the expression describing change in volume (as a function of the principal
strains). For small strains (2) simplifies to,

εdilatation ∼= ε1 + ε2 + ε3 (3)

The other deformation mode is distortion (sometimes called the deviatoric strain)
[4],

εdistortion =
√

1

6

[
(ε1 − ε1)

2 + (ε1 − ε3)
2 + (ε2 − ε3)

2] (4)

which is the square root of the second invariant of the strain deviator tensor. Note
that (4) is a more fundamental form of the von Mises strain where the factor 1

2 is
replaced with the factor 1

6 . As can be seen in (1) either of these factors would cancel
in the assessment of the MOS. The use of these two measures to assess material
failure is the basis of the Onset theory. The von Mises yield criterion is the first
published instance of the theory. The measures of interest for solids are dilatation
and distortion. Their critical values are the critical material properties of the solid.
All solids possess these two critical measures. Deformations are fundamentally
functions of strain, therefore strain invariants, Eqs. (2)–(4) are the measures to use
in the assessment of the MOS. If the elastic or plastic modulus is known precisely
as a function of both space and time, then the stress invariants may be admitted as
well. This is never the case with viscoelastic or plastic solids [5].

Typical stress-strain behaviors for uniaxially loaded test coupons for both
a ductile metal (example, a ferrous alloy) and general laminated carbon fiber
reinforced polymers (CFRP) are shown in Fig. 1. Typically, CFRP have around 60%
effective fiber volume resulting in the polymer being constrained [6]. Therefore, the
stress-strain behavior shown in Fig. 1 for ductile metals does not manifest itself in
constrained polymers, once the critical deformation exists the polymer will cavitate.
As can be seen in Fig. 1, the ductile metal is reasonably linear in the stress-strain
response until the material yields. Further observations exist as well, but it is the
initial yielding of the material that is of most importance with respect to the MOS.
Within the composite coupon, the constituent materials are also reaching their
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Fig. 1 Stress-strain behavior of an uniaxially loaded ductile metal coupon and the stress-strain
behavior of an uniaxially loaded laminated CFRP coupon
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Fig. 2 Building block approach to design in composite structure

critical limits with respect to dilatation and distortion, but this is not obvious in
Fig. 1. It is this final catastrophic failure mode along with an ever-changing failure
load with changes in the laminate layup (stacking sequence of the plies within the
laminate) that has led to the building block approach illustrated in Fig. 2.

Any change in the laminate layups, material systems, geometric configurations,
loading/boundary conditions or the environment requires that the complete set of
tests shown in Fig. 2 be repeated. In addition, it is the coupons that establish the
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allowable stresses/strains needed to write the MOS. As with metallic structure, the
use of the critical material properties to write the MOS circumvents this procedure.
The proposed method does not eliminate testing, it allows for smart testing greatly
mitigating the test requirements relative to today’s standard practice. It is the
potential to return to a more fundamental approach to writing MOS using the
intrinsic critical properties of the materials that is the main theme of this paper.
All sources of strain are to be included in the calculation of the strain invariants
(applied mechanical, thermal residual, clamp-up, environmental, shrinkage, etc.).

Before the critical property approach to writing MOS can be implemented there
are issues that must be addressed first including; de-homogenization of the homoge-
nous strain states from analytical or numerical solutions, classical convergence of
the laminate solution (removal of mesh dependency from discretized numerical
solutions), the use of the critical measures to write the MOS and implementation
of the generalized finite element method to address global structural assessments
subject to hundreds of load cases and thousands of structural details.

2 De-homogenization of the Homogenous Strain State

With respect to composite material systems the constituent material properties must
be homogenized to obtain analytical or numerical solutions. In most cases, it is not
practical nor even possible to explicitly model the constituents within the global
structure. To write the MOS, the in-situ strain states need to be de-homogenized so
that they may be compared to the critical constituent material properties. There are
many ways to accomplish this, but the method addressed in this paper is that by
Ritchey et al. [7]. The process is roughly illustrated in Fig. 3.

The homogenization of composite material systems primarily involves the
effective elastic moduli, the effective Poisson’s ratios and the effective coefficients
of thermal expansion [8] (effective meaning of the ply or average). The resulting
homogenous strains are then de-homogenized for use in the writing of the MOS.
As shown in Fig. 3, there are two 3D unit cell models of interest, one for the least
efficient packing efficiency (uniform spacing of the fibers) and one for the most
efficient packing efficiency (hexagonal spacing of the fibers). These two extremes
tend to capture the spatial variability within composite material systems represented
in Fig. 3. Critical locations are identified within each of the unit cells for de-

Fig. 3 De-homogenization of the composite material system
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homogenization of the homogenous strain state for a given gauss point in the global
structure. The resulting strain invariants of greatest magnitude are retained to write
the MOS at the selected gauss point. The detailed procedure for de-homogenization
is provided in [7] and involves interrogation of all constituent phases within the
composite material system. The procedures provided in [7] have been investigated
by The Boeing Company, The MSC Software Company, The University of New
South Wales (Australia), Hanyang University (South Korea), Delft University (The
Netherlands), Purdue University (U.S.) and U.S. Naval Air Systems Command.

3 Classical Convergence of the Laminate Solution (Primarily
a Finite Element Solution)

Laminate systems have issues regarding convergence that homogenous systems
do not. In addition to convergence issues associated with changes in geometry
and applied loads with small footprints, laminate structure also has convergence
issues with respect to laminate free-edges (traction-free surfaces). Measures such
as distortion, stresses and strains normal to ply planes and transverse shear stresses
and strains tend to be vertically asymptotic as mesh discretization is refined near
the free-edge. If the trend towards vertically asymptotic behavior at the free-edge is
smooth, then there is no indication from the solution sets (sets defining convergence)
as to when to cease refining the mesh [9]. The two deformation modes are the
most appropriate set of measures to use to establish convergence when using the
Onset theory (2–4). The above argument suggests that de-homogenized dilatation
should be used to establish convergence since distortion tends to be either divergent
or convergent-divergent. Numerical experiments using halving [10] support this
assumption. The use of halving is illustrated in Fig. 4.

Halving is illustrated in Fig. 4 using a hole within a laminate. The critical element
dimension is that normal to the free-edge (in this case the free-edge is curved).
Halving is established on this dimension; all other dimensions are a function of
valid finite element design in mechanics. In 3D halving results in elements divided
into eighths. Most of the published literature regarding laminate convergence at a
free-edge involves long straight edges only. In this case, dilatation will converge
absolutely, and distortion will smoothly diverge. In practice dividing all elements

Fig. 4 Solution sets as a function of halving to establish convergence
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within a numerical model into eighths is not practical (however, the concept of
hmax → 0 is technically most accurate [10]) so local biasing is usually employed
[10]. Over-meshing should be avoided otherwise convergence may be established
but the limit may be incorrect (drifting) [10]. The authors have found that once
the convergence process results in less than a 5% change in the de-homogenized
dilatation at the free-edge the exercise can be terminated and the resulting distortion
accepted as well (this last assumption must be proven with analysis and test as
has been established by the authors). With curved free-edges, both measures may
converge at first and then; both diverge, one diverges, and the other does not,
or both converge. If both measures diverge then the measure that diverges first
establishes the mesh (divergence is an indication that the mathematical solution
to the partial differential is correct, but it may no longer have physical meaning
(example, measures of infinite value do not exist). If both measures converge then
the 5% rule from above is used. If one measure converges and the other does not,
then the mesh that establishes divergence is the mesh to use. In all cases, the cross-
section of the element at the free-edge must be square.

The above procedure to obtain the mesh for use in analysis is analogous to
the concepts of absolute and conditional convergence in functional analysis [11].
The above procedure uses conditional convergence to establish when a numerical
solution is no longer physically consistent or if drifting to an incorrect limit is
imminent.

The method produces a valid mesh for analysis by identifying numerical
pathologies and not allowing for mesh refinement in their presence (imminent
physical inconsistencies and solution drifting). The result is a derived mesh that
approximates the exact solution.

With de-homogenization and classical convergence procedures established the
topic of implementing the approach of writing the MOS using only critical material
properties of the composite constitutive materials can be addressed.

Since this paper was submitted, a more elegant solution to mesh dependency has
been developed. Here, an assigned error is not needed, and the target mesh is defined
by the onset of divergence in any of the 2n strain invariants (n being the number of
constituent materials within the composite system). Those interested in this new
method should contact the authors.

4 The Use of the Critical Properties to Write the MOS

So far, the basic requirements for implementing a physics-based approach to writing
MOS for composite structure have been identified; use only the critical material
properties of the constitutive materials of the composite system, derive converged
meshes when using numerical methods such as the finite element method and de-
homogenize the strain tensors prior to use in the MOS. Two topics remain; how
to obtain the critical material properties and how to use them in writing the MOS.
Each topic is beyond the scope of this paper therefore, a brief discussion of each
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will follow. Those interested in a deeper knowledge of these topics should contact
the authors.

4.1 Measuring the Critical Properties

Uniaxially tensile loaded unidirectional un-notched laminates are generally used
to numerically extract the critical properties of the constitutive material properties
of the composite system. Uni-directional laminate coupons consist of one ply
orientation and require significant care in their fabrication and testing. If the loading
direction is defined as the zero-degree fiber direction, then the coupon with a
zero-degree fiber orientation is analyzed at catastrophic failure to numerically
extract (with de-homogenization) the critical fiber distortional strain invariant. The
coupon with a ninety degree-degree fiber direction is analyzed at catastrophic failure
to numerically extract (with de-homogenization) the critical matrix dilatational
strain invariant and finally, a coupon with an off-axis fiber orientation (ten to
twenty-degrees) is analyzed at catastrophic failure to numerically extract (with de-
homogenization) the critical matrix distortional strain invariant. All meshes are
converged as discussed in Sect. 3. Specific procedures needed to ensure proper lam-
inate quality and appropriate testing methods can be made available by contacting
the authors. These procedures and methods are not standard, and they are needed
to establish that the properties extracted are the true material properties and not an
artifact of poor fabrication and inappropriate test methods.

4.2 Implementing the Critical Properties into the MOS Process

Once the homogenized strain tensors from a derived mesh have been de-
homogenized, the resulting in-situ strain invariants can be calculated, and their
values compared to the critical material properties of the constitutive materials. In
this paper we are concerned with composite structural details that are subject to
complex loading conditions (bi-axial, both in-plane and transverse shear loads).
This definition holds for both static and dynamic loading conditions. Structural
details will have been loaded as a function of a given load case the global structure
must resist (of which there are many). To write the MOS there are three material
reference states (assuming a composite system with two constituent materials)
within the structural detail that need to be identified for a given loading condition;
two for the matrix and one for the fiber.

With respect to complex loading conditions maximal fiber strains within each
ply will be either tensile or compressive. Collectively, there will plies with maximal
tensile fiber strains and other plies with maximal compressive fiber strains. Of those
plies with maximal tensile fiber strains the ply with the greatest maximal matrix
distortional strain invariant is scaled until this maximal value equals the critical
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matrix distortional strain invariant. Similarly, for those plies with maximal fiber
compressive strains, the ply with the maximal fiber distortional strain invariant is
scaled until this value is equal to the critical fiber distortional strain invariant. These
operations result in two different sets of gauss point strain tensors for the same
structural detail. Finally, the ply with the maximal dilatational strain invariant is
scaled to the critical dilatational strain invariant. These three sets of strains can then
be used with (1), or some form of (1), to write the MOS based on the material
reference states (relative to the complex loading condition of the current load case).

5 Implementation of the Generalized Finite Element Method
to Address Global Structural Assessments

Although submodels can be built to accept the local displacement boundary
conditions of the large global model (a vehicle, a device, etc.) to write MOS, the
large models are subject to many loads with many more structural details that need
MOS assessments. It would be desirable that coarse loads models be the source
of the information needed to write the MOS of the structural details of the global
structure. Loads models have very little detail, just enough to determine the local
loads for structural analysis. If finite elements at the locations of the structural details
could be replaced with generalized finite elements representing the structural detail
in 3D, then the loads model could be used to determine local loads and the MOS of
the structural details with the same efficiency as standard loads models [12]. This
concept is currently being investigated at the Fraunhofer Institute.

6 Concluding Remarks

The writing of MOS for composite structure has been based on the use of the
building block approach for several decades. Conversely, the writing of MOS for
metallic structure has taken a more fundamental approach by using the intrinsic
critical material properties of the constitutive materials. In this paper, it has been
proposed that it is now possible to use a more fundamental approach to writing
MOS for composite structure as well. Issues such as classical convergence, de-
homogenization and the use of generalized finite elements have been introduced
and discussed (although topics such as Sects. 4.1, 4.2 and 5 are beyond the scope of
this paper and require the reader to contact the authors for additional details). The
bottom line is, the use of advanced physics-based methods and advanced analysis
will allow for more efficient use of composite material systems in structural design
as well as allow for a practical approach towards expanding the design space, goals
that cannot be realized with the standard building block approach.
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Kernel-Based Reconstructions
for Parametric PDEs

Rüdiger Kempf, Holger Wendland, and Christian Rieger

Abstract In uncertainty quantification, an unknown quantity has to be recon-
structed which depends typically on the solution of a partial differential equation.
This partial differential equation itself may depend on parameters, some of them
may be deterministic and some are random. To approximate the unknown quantity
one therefore has to solve the partial differential equation (usually numerically) for
several instances of the parameters and then reconstruct the quantity from these
simulations. As the number of parameters may be large, this becomes a high-
dimensional reconstruction problem.

We will address the topic of reconstructing such unknown quantities using
kernel-based reconstruction methods on sparse grids. First, we will introduce into
the topic, then explain the reconstruction process and finally provide new error
estimates.

1 Introduction

In modern applied sciences dynamic processes are often modeled by partial
differential equations, whereby coefficient functions, representing certain material
parameters, and forcing terms serve as input. Often, these are obtained by certain
measurements or experiments and therefore are prone to being either inaccurate or
incomplete and consequently introduce an uncertainty to the model. For a general
overview on the topic, see, for example, the recent books [8–11].
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In this paper we construct a general framework for the solution of partial
differential equations with parametric coefficients. Applications could for example
come from problems in groundwater flow, heat transfer or electric fields. To
illustrate the general approach to such problems including randomness, we follow
[1, 2, 5] and hence restrict ourselves to a Dirichlet-Poisson problem where the
parametric diffusion coefficient is given by a function a : RNP × D → R. The
set RNP ⊂ R

NP serves as a finite dimensional parameter space and is, for the sake

of simplicity, the hyper-cube RNP :=×NP
j=1

(−rj , rj
) ⊂ (−1, 1)NP . The number

NP determines the dimension of the parameter space and will be large but finite, i.e.
1 � NP <∞, which is known in the literature as finite noise assumption.

The parametric partial differential equation is now given on a sufficiently regular
domain D ⊂ R

d and forG ∈ L2 (D) by

−∇ · (a(y, x)∇u(y, x)) = G(x) in RNP ×D, (1)

u(y, x) = 0 in RNP × ∂D,

giving rise to a solution u : RNP ×D → R. Obviously, the spatial derivatives are
only taken with respect to the spatial variable x.

Depending on the practical application, we are not interested in the solution u
directly but rather in a derived quantity of interest, which will be modeled by a
linear functional q acting on the solution space, i.e.

Q(y) := q (u(y, ·)) ∈ R, y ∈ RNP . (2)

Hence, Q : RNP → R is a function operating only on the parameter space. The
main task is now to reconstruct the map Q from sampled data {Q(yk)} at specific
parameter values yk ∈ YNS := {y1, . . . , yNS } ⊂ RNP , 1 ≤ k ≤ NS , where
from now on we denote the number of sampling points by NS ∈ N. To avoid any
confusion, we note here that NP and NS are uncorrelated.

By inserting the sampling points yk ∈ YNS into (1), solving the now determin-
istic Poisson-Dirichlet problem and applying the functional q , we obtain the values
{Q(yk)}. Except for only very few cases, these steps cannot be done analytically
but only numerically. Hence, we introduce a finite dimensional finite element space
Vh ⊂ V = H 1

0 (D), over which we solve

−∇ · (a(yk, x)∇uh(yk, x)
) = G(x) in D, (3)

uh(yk, x) = 0 on ∂D,

weakly, yielding an approximation uh(yk, ·) ∈ Vh to the true solution u(yk, ·) ∈ V

and consequently perturbed samples

Qh(yk) = q
(
uh(yk, ·)

) ≈ Q(yk) = q
(
u(yk, ·)

)
. (4)
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Note, that we assume that we can compute q exactly, i.e., without introducing an
additional numerical error. This assumption is made for simplicity and has no impact
on the error estimates in Sect. 5.

Choosing a standard finite element method (FEM) for solving (3) weakly,
yields well-known error estimates (see for example Brenner and Scott [3]) for the
quantities

εk :=
∥∥uh(yk, ·)− u(yk, ·)

∥∥
V

and ε := max
yk∈YNS

εk. (5)

In this paper, the FE method serves as a means to obtain the approximate solution
of (1) and can be exchanged with any other suitable PDE solver, in particular also a
meshfree solver, as long as there is a known estimate for εk .

As mentioned above, we have to choose a discrete sampling set YNS in the
high-dimensional space RNP . This set should on the one hand be dense enough
to represent RNP well and to allow a good reproduction ofQ, but on the other hand,
since we need to solve a partial differential equation for each element of YNS , has
to be sparse enough for our method to be applicable. Hence, a natural choice for our
set YNS is a sparse grid YNS := H(�,NP ) of level � in NP dimensions. However,
as our reconstruction technique is purely meshfree other choices are also possible.

The final task is then to reconstruct the high-dimensional function Q from
the data {(yk,Q(yk))} which carry an intrinsic error. Thus, we do not want to
use an interpolatory approach but rather a process from standard spline theory,
called smoothing splines or penalised least-squares, see for example [12] and the
references therein. The basic structure is a variational problem of the form

Q̃λ = arg min
s∈HK

NS∑

k=1

∣∣Qh(yk)− s(yk)
∣∣2 + λ‖s‖2

HK
, (6)

where HK denotes a reproducing kernel Hilbert space (RKHS) of real-valued
functions with kernelK and where λ > 0 denotes a penalising parameter.

With this set-up we are able to base our error analysis on a new sampling
inequality developed by Wendland and Rieger [6]. The main contribution of this
paper, after choosing a specific RKHS HKc , is the error estimate

∥∥Q− Q̃λ
∥∥
L∞(RNP )

≤ C
(
fNP ,k(NS)+

√
λgNP (NS)

)
‖Q‖HKc

+C
(

1√
λ
fNP ,k(NS)+ gNP (NS)

)
NSh

t max
1≤k≤NS

∣∣u(yk, ·)
∣∣
Ht+1(D)

where C = C(�,NP , k, q) > 0 is a constant, Q̃λ is given in (6), Q ∈ HKc is the
function from (2) defined by applying the functional q to the exact solution u of (1),
h is the discretisation parameter of the finite element mesh, t ≥ 1 and fNP ,k and
gNP are functions with known asymptotic behaviour, which are usually derived via
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so-called sampling inequalites. Examples for the behaviour of fNP ,k and gNP will
be given in Theorem 1. Furthermore, we derive conditions for λ and h such that

∥∥Q− Q̃λ
∥∥
L∞(RNP )

→ 0, NS →∞,

with the order of fNP ,k and by further sharpening the estimate we even get nearly
spectral convergence of the error.

As mentioned above, the setup described above closely follows in particular
Griebel and Rieger [5]. However, there are two significant differences to their
approach. On the one hand, we use a sparse grid as the sampling set YNS ⊂ R

NP ,
instead of a quasi-uniform data set as it is done in [5]. In the given, particular setting
this is of significance as we deal with a high-dimensional problem and choosing a
sparse grid helps to reduce the effect of the curse of dimensionality. On the other
hand, we use a penalised least-squares approach for reconstructing the function Q
instead of a support vector machine with Vapnik’s loss function, as it has been done
in [5]. However, the analysis carried out here for the penalised least-squares problem
can easily be replaced by a similar analysis for a support vector machine.

This paper is organised as follows. In Sect. 2 we will review the existence,
uniqueness and regularity of the solution of parametric partial differential equations
of type (1). In Sect. 3 we will briefly review the theory of reproducing kernel Hilbert
spaces (RKHSs), introduce the kernel and associated Hilbert space which we will
use throughout this paper and discuss the advantages of the penalised least-squares
reconstruction process. A justification for choosing sparse grids as our sampling
space YNS will be given in Sect. 4. Finally, in Sect. 5, we will state our main result,
the above mentioned error estimate on the reconstruction process, which will be
based upon a recently introduced sampling inequality for sparse grids.

We will use the following notation. We denote multi-indices by small, bold Greek
letters, e.g. ν ∈ N

d
0 , and set ν! = ∏d

j=1 νj ! and να = ∏d
j=1 νj

αj for α ∈ N
d
0 .

Furthermore, we use the notation ‖ν‖1 = ν1 + · · · + νd for ν ∈ N
d
0 .

Additionally, we will use two kinds of Sobolev spaces over domains � ⊆ R
d of

the form � = �1 × · · · ×�d with �j = (−1, 1) or �j = (−rj , rj ) ⊂ (−1, 1). On
the one hand we will employ the classical Sobolev space

W
k,2
1 (�) :=

{
f ∈ L2(�) : Dαf ∈ L2(�), ‖α‖1 ≤ k

}

equipped with norm

‖f ‖2
W
k,2
1 (�)

:=
∑

‖α‖1≤k

∥∥Dαf
∥∥2
L2(�)

.



Kernel-Based Reconstructions for Parametric PDEs 57

On the other hand, we will use the tensor product Sobolev space defined by

Wk,2∞ (�) :=
d⊗

j=1

Wk,2(�j )

=
{
f ∈ L2(�) : Dαf ∈ L2(�), ‖α‖∞ ≤ k

}

together with the norm

‖f ‖2
W
k,2∞ (�)

:=
∑

‖α‖∞≤k

∥∥Dαf
∥∥2
L2(�)

.

2 Parametric Partial Differential Equations

In this section, we will give an introduction to the theory of parametric partial
differential equations by looking at existence and uniqueness of the solutions of the
model problem (1). To this end, we need two domains. On the one hand we require
a high-dimensional parameter domain. In our case this will be the anisotropic
hyper-cube

RNP :=
NP×
j=1

(−rj , rj
) ⊂ (−1, 1)NP , (7)

where 1 � NP <∞.
On the other hand we need a spatial domain D ⊂ R

d , where usually d = 2, 3.
We will assume D to be a bounded, convex and polygonal domain. If G ∈ L2(D)
then the usual elliptic regularity theory holds for the weak formulation of (1), which
is, with the usual energy space V := H 1

0 (D), given by

∫

D
a(y, x)∇u(y, x) · ∇v(x) dx =

∫

D
G(x)v(x) dx, v ∈ V, y ∈ RNP . (8)

In this paper, we assume the coefficient function a to have the form

a(y, x) = a0(x)+
NP∑

k=1

φk(x)yk (9)

with given φk ∈ L∞(D), k ∈ N, and bounded a0. In general, the coefficient function
a is obtained by a Karhunen-Loève or polynomial chaos expansion which then has
to be truncated to give the form (9), so that the restriction to the first NP terms
introduces an additional error, which we will ignore throughout this paper.
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We now follow [4] and extend the usual Lax-Milgram theory to complex valued
coefficient functions ã : RNP × D → C. To this end, we introduce the so-
called uniform (complex) ellipticity assumption which requires the existence of two
constants R ≥ r > 0 such that

0 < r ≤ R (ã(y, x)) ≤ |ã(y, x)| ≤ R x ∈ D, y ∈ RNP . (10)

Here, R(·) denotes the real part of a complex number. By rearranging, we see
that (10) is satisfied for the function a from (9) if the bounds

NP∑

k=1

|φk(x)| ≤ R (min (a0(x)− r, R − a0(x)))

hold. Here, we have used that y ∈ RNP ⊂ (−1, 1)NP . While this assumption
already leads to solutions u(y, x), which are analytic as functions of y, we need
one additional assumption to also bound the coefficients of a Taylor expansion of
the function y �→ u(y, x). Following [4] again, we will call a sequence (ρk) of
positive numbers δ-admissible for the sequence (φk) if

∞∑

k=1

ρk |φk(x)| ≤ R (a0(x))− δ, (11)

For δ ≤ r , one can even have ρk ≥ 1 for all k ∈ N, see [4]. With this, we have the
following result from [4, Theorem 1.2, Lemma 2.4].

Proposition 1 Suppose that the uniform (complex) ellipticity assumption (10) holds
with parameters 0 < r ≤ R <∞. Then, the solution of (8) has the form

u(y, ·) =
∑

ν∈NNP
uν(·)yν . (12)

for uν ∈ V, where convergence of the infinite series is understood with respect to
the ‖ · ‖V-norm. Furthermore, if (ρk) is a δ-admissible sequence, then

‖uν(y, ·)‖V ≤ ‖G‖V∗
δ

NP∏

k=1

ρ
−νk
k , y ∈ RNP .

We now want to derive a parametric representation of the quantity of interest (2).
To this end, we introduce the notation R(λ) ∈ V for the Riesz representer of a linear
functional λ ∈ V

∗. Then we have, by (12),

Q(y) = q (u(y, ·)) =
〈
∑

ν∈NNP
uν(·)yν,R(q)

〉

V

=
∑

ν∈NNP
〈uν ,R(q)〉V yν,
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which shows that the function Q, under certain assumption on the functional q , is
also analytic. Later on, this representation of Q will guarantee that Q is indeed an
element of the reproducing kernel Hilbert space of our specific choice.

3 Reproducing Kernel Hilbert Spaces

The reconstruction problem (6) is at first sight an optimisation problem over an
infinite dimensional function space. However, basic linear algebra shows that the
solution must be contained in the span of the Riesz representers of the point
evaluation functionals δyk . These Riesz representers become particularly simple if
the underlying Hilbert space HK is a Hilbert space with a reproducing kernel. The
Hilbert space HK is a reproducing kernel Hilbert space with kernelK : �×�→ R

if K satisfies K(·, y) ∈ HK and f (y) = 〈f,K(·, y)〉HK
for all y ∈ � and all

f ∈ HK . Details on such spaces can be found, for example, in [13].

3.1 Taylor Spaces and Power Series Kernels

In this paper, we are interested in a particular reproducing kernel Hilbert space,
which consists of analytic functions and which was introduced in [14] and further
investigated in [15]. The results below are taken from [5].

Let ν ∈ N
NP
0 be a multi-index and (wν) be a sequence of positive numbers such

that the summability condition
∑

ν∈NNP0

wν

ν!2 < ∞ holds. Under these assumptions,

a power series kernel K : (−1, 1)NP × (−1, 1)NP → R, which is a kernel of the
form

K(x, y) :=
∑

ν∈NNP0

wν

ν!2 xνyν , x, y ∈ (−1, 1)NP , (13)

is well-defined and analytic in each variable. The so-defined kernel K is the
reproducing kernel of the Hilbert space HK of functions

HK :=

⎧
⎪⎨

⎪⎩
f : (−1, 1)NP → R : f (x) =

∑

ν∈NNP0

fνx
ν with ‖f ‖HK

<∞

⎫
⎪⎬

⎪⎭
,

(14)
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where the norm is defined by the inner product

〈f, g〉HK
:=

∑

ν∈NNP0

1

wν
Dνf (0)Dνg(0) =

∑

ν∈NNP0

ν!2
wν
fνgν , (15)

see [14]. The next two results are taken from [5] and illustrate the reason for using
such Taylor spaces HK in this context.

First, we consider the embedding constant of the embedding of HK into either of
both Sobolev spaces, the classical isotropic spaceWk,2

1 and the tensor product space

W
k,2∞ , i.e. we investigate the norm of the injection

Ws (k) : HK ↪→ Wk,2
s (RNP ), (16)

for s ∈ {1,∞}, which is given in the next lemma.

Lemma 1 Let RNP be defined by (7) Let s ∈ {1,∞}. Suppose that there is a
constant ĉ ∈ (0, 1) such that the weights wν satisfy wν ≤ ĉ‖ν‖1ν!2 for all ν ∈ N

NP
0 .

Then, there is a constant C > 0 such that the norm of the embedding operator (16)
can be bounded by

‖Ws (k)‖ ≤ exp

(
C

2
k

)
k!.

The second result which we require from [5] states that the function Q which
we want to reconstruct indeed belongs to a Taylor space HK if the weights wν are
chosen appropriately.

Lemma 2 Suppose that the uniform (complex) ellipticity assumption (10) holds
with parameters 0 < r ≤ R < ∞. Furthermore, let (ρk)k be a δ-admissible
sequence with 0 < δ < r and ρk > 1 for all k. Let c ∈ R

NP have components
cj with cj ∈ (ρ−1

j , 1), 1 ≤ j ≤ NP . Let K = Kc be defined by (13) with weights

wν = cνν!2. Then we haveQ ∈ HKc .

The space HKc is a special case of HK . With the given, specific weights, the
inner product becomes

〈f, g〉HKc
=

∑

ν∈NNP0

1

cνν!2D
νf (0)Dνg(0) =

∑

ν∈NNP0

1

cν
fνgν .

Furthermore, it is easy to see that this specific choice of weights leads to an explicit,
analytic form of the reproducing kernelKc given by

Kc(x, y) =
∑

ν∈NNP0

cνxνyν =
NP∏

k=1

1

1− ckxkyk . (17)
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3.2 Penalised Least Squares

A typical application of reproducing kernel Hilbert spaces HK are reconstruction
processes of the form

min
s∈HK

(
N∑

k=1

|f (xk)− s(xk)|2 + λ‖s‖2
HK

)
, (18)

where the given data {(xk, f (xk))}1≤k≤N consist of N samples, which are assumed
to come from an otherwise unknown function f ∈ HK . The parameter λ > 0 serves
as a moderator between the fit to the data and the smoothness of the reconstruction
s̃λ. In the RKHS setting, we have, by the well-known representer theorem, that
the solution of the minimisation s̃λ lies in the finite-dimensional space spanned by
K(·, xk), 1 ≤ k ≤ N , i.e. we have the representation

s̃λ =
N∑

k=1

αkK(·, xk).

Furthermore, the coefficients α = (α1, . . . , αN )
T can be computed by solving the

linear system

(K + λI )α = f ,

where K ij = K(xi , xj ), f i = f (xi ) and I is the identity matrix. It is well-
known that this system has a positive definite system matrix and hence a unique
solution. This also means that the least-squares problem (18) has a unique solution.
Hence, in our situation, when employing the kernel K = Kc in (6), these general
considerations give us a unique approximation Q̃λ toQ derived from the noisy data
Qh(yk), 1 ≤ k ≤ NS .

4 Sparse Grids

In this section, we demonstrate how we construct the sparse grid H(�, d) of level �
and dimension d . Here, we follow mainly Wendland and Rieger [6].

To obtain the d-dimensional grid, we start with univariate sets of Chebyshev
points. To do so we define a sequence of numbers (mi) by

m1 = 1,

mi = 2i−1 + 1, i > 1.
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Then, we define the Chebyshev point sets X(i) to be

X(1) := Xm1 = {0},

X(i) := Xmi =
{
x
(i)
j = − cos

(
π(j − 1)

mi − 1

)
: 1 ≤ j ≤ mi

}
, i > 1.

With these univariate point sets, we now define the sparse grid H̃ (�, d) of level �
and dimension d , � ≥ d , by

H̃ (�, d) =
⋃

i∈Nd‖i‖1=�

X(i1) × · · · ×X(id ). (19)

As mentioned in Sect. 1, we choose the sampling space YNS to be a sparse grid. As,
by construction, H̃ (�,NP ) ⊂ [−1, 1]NP is not a subset of RNP , we simply scale
its points with a component-wise factor rj (1 − μ), 0 < μ � 1, 1 ≤ j ≤ NP and
receive the scaled sparse grid

H(�,NP ) :=
{(
r1(1− μ)x1, . . . , rNP (1− μ)xNP

) : x ∈ H̃ (�,NP )
}
. (20)

Now, we choose YNS := H(�,NP ) ⊂ RNP , where � is a degree of freedom. For
statements on the error of the reconstruction process we need to know the number of
sampling points NS . Unfortunately, an explicit formula for this number is unknown
and there exist only lower and upper bounds, provided in [6],

2�−2NP+1 ≤ NS ≤ 2�−NP+1 �NP−1

(NP − 1)! .

Fortunately, as soon as we have created the sparse grid, we know exactly how many
points it contains. A selection is given in Table 1. Clearly, we can control the number
NS for a given dimensionNP by choosing the level � appropriately.

5 Error Estimates

We use this section to state the main results of this paper concerning error estimates
for the optimisation problem (6), whose definition we recall here. We use the
reproducing kernel Hilbert space HKc introduced in (14) with the power series
kernel Kc(x, y) = ∏NP

j=1
1

1−cj xj yj of (17). Next, we define JQh,λ : HKc → R,
where

JQh,λ(s) :=
NP∑

k=1

∣∣Qh(yk)− s(yk)
∣∣2 + λ‖s‖2

HKc
, s ∈ HKc,



Kernel-Based Reconstructions for Parametric PDEs 63

Table 1 Number of points NS of the grid H(�, d) for various space dimensions d and � ≥ d
�|d 2 3 4 5 6 7 8

2 1

3 5 1

4 13 7 1

5 29 25 9 1

6 65 69 41 11 1

7 145 177 137 61 13 1

8 321 441 401 241 85 15 1

9 705 1073 1105 801 389 113 17

10 1537 2561 2929 2433 1457 589 145

11 3329 6017 7537 6993 4865 2465 849

12 7169 13,953 18,945 19,313 15,121 9017 3937

13 15,361 32,001 46,721 51,713 44,689 30,241 15,713

14 32,769 72,705 113,409 135,073 127,105 95,441 56,737

15 69,633 163,841 271,617 345,665 350,657 287,745 190,881

and set

Q̃λ := arg min
s∈HKc

JQh,λ(s).

The main objective is now to reconstruct the function Q : RNP → R from
perturbed samples Qh(yk) = q(uh(yk, ·)), 1 ≤ k ≤ NS , where the yk ∈ H(�,NP )
and uh(yk, ·) ∈ Vh is a FEM approximation of the exact solution.

As the data we have are corrupted by numerical error, we cannot directly employ
the classic error estimates for penalised least-squares used in [6] since we cannot
assume the functionQh to be in the Hilbert space HKc . Nonetheless, we can assess
this error. To do so we use the quantity

εk = Qh(yk)−Q(yk) = q(uh(yk, ·))− q(u(yk, ·)) = q
(
uh(yk, ·)− u(yk, ·)

)
.

Hence we have the estimate

|εk| ≤ ‖q‖V∗‖uh(yk, ·)− u(yk, ·)‖V
which means that |εk| is bounded by the numerical error, which occurs in the
solution of equation (3). This error enjoys well-known bounds depending on the
smootheness of the solution. For example, we have from Brenner and Scott [3] the
following estimate.
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Lemma 3 Let the finite element space be made up of elements up to order t with
mesh width h. Assume that u(yk, ·) ∈ Hs+1(D), for an 1 ≤ s ≤ t and all 1 ≤ k ≤
NP . Then, there is a constant c > 0 such that

‖uh(yk, ·)− u(yk, ·)‖V ≤ chs |u(yk, ·)|Hs+1(D), 1 ≤ k ≤ NP . (21)

Another tool we require is a sampling inequality, which allows us to bound the
L∞-norm of a function by a weighted sum of a full Sobolev norm and an �∞-norm
over the discrete sampling set. The particular inequality we use is a new approach
tailored for sparse grids. It gives the weights in terms of the number of sampling
points and not in terms of the fill distance of the discrete set as it is usually done
in sampling inequalities. This is of particular importance when working with sparse
grids and in higher dimensions. The version we use in this paper is a special case of
the one presented in [6].

Theorem 1 Let H̃ (�,NP ), � ≥ NP , be the sparse grid of (19) with NS points.
Then, for every function a ∈ W

k,2∞
(
(−1, 1)NP

)
, k ∈ N, there exists a constant

c̃ := c̃(�,NP , k) such that

‖a‖L∞(
(−1,1)NP

) ≤ c̃
(
fNP ,k(NS)‖a‖Wk,2∞

(
(−1,1)NP

) + gNP (NS)‖a‖�∞(H̃ (�,NP ))
)
.

(22)

Here, the functions fNP ,k and gNP have for NS →∞ the asymptotic behaviour

fNP ,k(NS) = O
(
N
−k+ 1

2
S log(NS)

NP

(
k+ 5

2

)
−
(
k+ 1

2

))
, (23)

gNP (NS) = O
(

log(NS)NP
)
. (24)

In [6], the weight-functions fNP ,k, gNP : N → R are given explicitly, but for our
purposes the asymptotic behaviour is sufficient. Obviously, the function fNP ,k goes
to zero for NS →∞ while the function gNP grows logarithmically.

As (22) holds for the unscaled sparse grid H̃ (�,NP ) ⊂ [−1, 1]NP , we need to
modify it to fit into our framework, namely the scaled sparse gridH(�,NP ) of (20).
We scale the occuring functions by a simple coordinate transform, i.e., we scale the
arguments by the same factors we used in the construction of H(�,NP ) in Sect. 4.
In doing so, we arrive at

‖b‖L∞(
RNP

) ≤ c
(
fNP ,k(NS)‖b‖Wk,2∞

(
RNP

) + gNP (NS)‖b‖�∞(H(�,NP ))
)
, (25)

where b ∈ Wk,2∞
(
RNP

)
, fNP ,k and gNP are the functions of Theorem 1 and c :=

c(�,NP , k, μ, r) is a modified constant, depending additionally on μ and r .
As we can embed HKc into W

k,2∞
(
RNP

)
, see Lemma 1, (25) above holds

particularly for functions b ∈ HKc .
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With these tools we are now able to estimate the errorQ− Q̃λ in the L∞-norm.
We mainly follow the ideas employed in [5] with appropriate modifications. We start
by deriving two estimates for Q̃λ. The first one is based upon the bound

∣∣Qh(yk)− Q̃λ(yk)
∣∣2 ≤

NS∑

i=1

∣∣Qh(yi )− Q̃λ(yi )
∣∣2 + λ ∥∥Q̃λ

∥∥2
HKc

= JQh,λ
(
Q̃λ

)

≤ JQh,λ(Q),

where we introduced positive summands and used that Q̃λ is the minimiser of the
functional JQh,λ. This leads to

∣∣Qh(yk)− Q̃λ(yk)
∣∣ ≤

NS∑

i=1

∣∣Qh(yi )−Q(yi )
∣∣+√λ ‖Q‖HKc

. (26)

Here, we used that for any a, b ≥ 0 the estimate (a + b)1/2 ≤ a1/2 + b1/2 holds.
Next, we can estimate the consistency error, i.e. the point-wise error at the

sampling nodes. We have by applying the triangle inequality

∣∣Q(yk)− Q̃λ(yk)
∣∣ ≤ ∣∣Q(yk)−Qh(yk)

∣∣+ ∣∣Qh(yk)− Q̃λ(yk)
∣∣ ,

which, together with (26), leads to our first crucial estimate

∣∣Q(yk)− Q̃λ(yk)
∣∣ ≤ ∣∣Qh(yk)−Q(yk)

∣∣+
NS∑

i=1

∣∣Qh(yi )−Q(yi )
∣∣+√λ ‖Q‖HKc

.

The second estimate on Q̃λ follows from

λ
∥∥Q̃λ

∥∥2
HKc

≤ JQh,λ
(
Q̃λ

) ≤ JQh,λ(Q) ≤
NS∑

k=1

∣∣Qh(yk)−Q(yk)
∣∣2 + λ ‖Q‖2

HKc

and leads to

∥∥Q̃λ
∥∥2
HKc

≤ 1

λ

NS∑

k=1

∣∣Qh(yk)−Q(yk)
∣∣2 + ‖Q‖2

HKc
.

We collect these results in the following lemma.
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Lemma 4 The reconstruction Q̃λ from (6) of the functionQ satisfies the bounds

∣∣Q(yk)− Q̃λ(yk)
∣∣ ≤ ∣∣Qh(yk)−Q(yk)

∣∣+
NS∑

i=1

∣∣Qh(yi )−Q(yi )
∣∣+√λ ‖Q‖HKc

,

∥∥Q̃λ
∥∥2
HKc

≤ 1

λ

NS∑

i=1

∣∣Qh(yi )−Q(yi )
∣∣2 + ‖Q‖2

HKc
.

With these results we arrive at the following error estimate.

Theorem 2 Let H(�,NP ) with � ≥ NP be the scaled sparse grid from (20) with
NS points. Assume thatQ ∈ HKc , where HKc is as in (14) with K = Kc from (17)
satisfying the assumptions of Lemma 2. Then, for each sufficiently large k there is a
constant c := c(�,NP , k, μ, r) > 0 such that for Q̃λ = arg mins∈HKc

JQh,λ(s) the
error estimate

∥∥Q− Q̃λ
∥∥
L∞(RNP )

≤ c
(
fNP ,k(NS)+

√
λgNP (NS)

)
‖Q‖HKc

+c
(

1√
λ
fNP ,k(NS)+ gNP (NS)

) NS∑

i=1

∣∣Qh(yi )−Q(yi )
∣∣

holds, where fNP ,k and gNP are from (23) and (24).

Proof The modified sampling inequality (25) with b = Q−Q̃λ and Lemma 1 show

∥∥Q− Q̃λ
∥∥
L∞

(
RNP

) ≤ cfNP ,k(NS)
∥∥Q− Q̃λ

∥∥
W
k,2∞

(
RNP

)

+cgNP (NS)
∥∥Q− Q̃λ

∥∥
�∞(H(�,NP ))

≤ cfNP ,k(NS)
∥∥Q− Q̃λ

∥∥
HKc

+cgNP (NS)
∥∥Q− Q̃λ

∥∥
�∞(H(�,NP )) .

Next, Lemma 4 allows us to bound the terms
∥∥Q− Q̃λ

∥∥
�∞(H(�,NP )) and∥∥Q− Q̃λ

∥∥
HKc

separately. We have

∥∥Q− Q̃λ
∥∥
�∞(H(�,NP ))

≤ max
k=1,...,NS

∣∣Qh(yk)−Q(yk)
∣∣+

NS∑

i=1

∣∣Qh(yi )−Q(yi )
∣∣+√λ ‖Q|HKc

≤ 2
NS∑

i=1

∣∣Qh(yi )−Q(yi )
∣∣+√λ ‖Q‖HKc



Kernel-Based Reconstructions for Parametric PDEs 67

and

∥∥Q− Q̃λ
∥∥
HKc

≤ ‖Q‖HKc
+ ∥∥Q̃λ

∥∥
HKc

≤ 2 ‖Q‖HKc
+ 1√

λ

NS∑

i=1

∣∣Qh(yi )−Q(yi )
∣∣ .

Inserting these bounds into the above bound on
∥∥Q− Q̃λ

∥∥
L∞

(
RNP

) concludes the

proof. ��
Taking also the error bound (21) of the finite element approximation into account

yields the following corollary.

Corollary 1 Let the assumptions of Theorem 2 hold. Assume further that u(yi , ·) ∈
Ht+1(D), t ∈ N , for every yi ∈ H(�,NP ), 1 ≤ i ≤ NS . Then the error estimate

∥∥Q− Q̃λ
∥∥
L∞

(
RNP

) ≤ c(�,NP , k, μ, r)
(
fNP ,k(NS)+

√
λgNP (NS)

)
‖Q‖HKc

+c(�,NP , k, μ, r, q)
(

1√
λ
fNP ,k(NS)+ gNP (NS)

)
NSh

t max
1≤i≤NS

∣∣u(yi , ·)
∣∣
Ht+1(D)

holds. The functions fNP ,k and gNP are from (23) and (24).

Note that the constant depends on the smoothness k and that the error bounds
are for fixed but arbitrarily large k. Future research should address the precise
asymptotic behaviour of this constant with k→∞.

Next, we want to discuss the convergence behaviour of the estimate above. As it
is, this result is problematic since for NS → ∞ the function gNP tends to infinity.
Hence, to achieve convergence, we have to couple the penalisation parameter λ and
the mesh width h of the finite element grid to the number of pointsNS in our sparse
grid appropriately.

We start with the first term on the right-hand side of the bound in Corollary 1 .
Its behaviour is determined by

fNP ,k(NS)+
√
λgNP (NS),

To have this term to behave like fNP ,k(NS), which converges to zero for NS →∞,
we must choose

√
λ sufficiently small . However, as we have a 1/

√
λ in the second

term of the bound of Corollary 1, we cannot choose it too small. Hence, we choose
a proportional constant cp > 0 and let

λ = cp

(
fNP ,k(NS)

gNP (NS)

)2

. (27)
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With this choice, the bound in Corollary 1 becomes

∥∥Q− Q̃λ
∥∥
L∞

(
RNP

)

≤ c
(
fNP ,k(NS)‖Q‖HKc

+ gNP (NS)NSht max
1≤k≤NS

∣∣u(yk, ·)
∣∣
Ht+1(D)

)
.

Hence, in order to have convergence, we need to ensure that the factor
gNP (NS)NSh

t in the second summand also tends to zero. If we want to keep
the convergence order of size fNP ,k(NS) then we have to choose h to satisfy

h ≤
(
fNP ,k(NS)

NSgNP (NS)

) 1
t

. (28)

We summarise these results in the next corollary.

Corollary 2 Under the assumptions of Corollary 1 and with the choices (27) for the
smoothing parameter and (28) for the finite element mesh size, the reconstruction
error satisfies

‖Q− Q̃λ‖L∞(
RNP

) ≤ cfNP ,k(NS) = cN
−k+ 1

2
S log(NS)

NP

(
k+ 5

2

)
−
(
k+ 1

2

)

with a constant c = c(Q, u, k, �,NP ,μ, r) depending additionally onQ and u.

Comparing this result to the one obtained in [5] and by experience from classical
RKHS results, see [13], one would, in light of the analycity of the kernel, expect
spectral convergence of the reconstruction error, similar to [7]. And indeed, a more
thorough analysis of the occuring constants leads to the following result.

Corollary 3 Under the assumptions of Corollary 1 and with the choices (27) for the
smoothing parameter and (28) for the finite element mesh size, the reconstruction
error satisfies for sufficiently large NS the bound

∥∥Q− Q̃λ
∥∥
L∞

(
RNP

) ≤ c1NS
2e−c2NS

(
‖Q‖HKc

+ max
1≤k≤NS

∣∣u(yk, ·)
∣∣
Ht+1(D)

)
,

where c1, c2 > 0 are constants.

Proof Corollary 2, together with the embedding constant from Lemma 1, gives the
estimate

∥∥Q− Q̃λ
∥∥
L∞

(
RNP

)

≤ ck!e C2 kN−k+ 1
2

S log(NS)
NP

(
k+ 5

2

)
−
(
k+ 1

2

) (
‖Q‖HKc

+ max
1≤k≤NS

∣∣u(yk, ·)
∣∣
Ht+1(D)

)
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Using Stirling’s estimate k! ≤ ckk+ 1
2 e−k, k ≥ 1, and keeping in mind that the

logarithmic term log(NS) grows slower than any root of NS , especially slower than

NS
1

NP (k+5/2)−(k+1/2) , we obtain

∥∥Q− Q̃λ
∥∥
L∞

(
RNP

)

≤ ckk+
1
2 e−ke

C
2 kN

−k+ 1
2

S NS

(
‖Q‖HKc

+ max
1≤k≤NS

∣∣u(yk, ·)
∣∣
Ht+1(D)

)

= c
(
kNS

3
) 1

2
(
e1−C

2
NS

k

)−k (
‖Q‖HKc

+ max
1≤k≤NS

∣∣u(yk, ·)
∣∣
Ht+1(D)

)
. (29)

Next, for sufficiently large NS , we choose k as k = NS
ν

, where ν is a fixed constant

such that k ∈ N and e
C
2 −1 < ν ≤ NS holds. Inserting this particular choice of k

into (29) yields

∥∥Q− Q̃λ
∥∥
L∞

(
RNP

)

≤ cν−
1
2NS

2
(
νe1−C

2

)−NS
ν

(
‖Q‖HKc

+ max
1≤k≤NS

∣∣u(yk, ·)
∣∣
Ht+1(D)

)

= cν−
1
2NS

2
(
e

1
ν

(
1−C

2 +log ν
))−NS (

‖Q‖HKc
+ max

1≤k≤NS
∣∣u(yk, ·)

∣∣
Ht+1(D)

)

= c1NS
2e−c2NS

(
‖Q‖HKc

+ max
1≤k≤NS

∣∣u(yk, ·)
∣∣
Ht+1(D)

)
,

with c1 = c(�,NP ,μ, r, q)ν
− 1

2 > 0 and c2 = 1
ν

(
1− C

2 + log ν
)
> 0 for ν in the

given range. ��

6 Concluding Remarks and Future Work

We have recaptured the basics of the regularity theory of parametric elliptic partial
differential equations. One important result was that the solution, as a function of
the parameter, is analytic and hence so is the quantity of interest.

The analyticity of the function we wanted to reconstruct motivated the choice
of the specific reproducing kernel Hilbert space, a Taylor space, whose kernel is
a power series kernel and thus analytic itself. With these choices we employed a
regularised reconstruction process for approximating the smooth function from data
which are usually corrupted by a (numerical) error, which means that the data-giving
function is not an element of the approximation space.
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To alleviate the curse of dimensionality we employed sparse grids, and a new
type of sampling inequality which is expressed in the number of points rather than
the fill distance of the sampling set.

We used the two degrees of freedom at our disposal, namely the FEM mesh width
and the penalty parameter of the reconstruction process, to derive an overall error
estimate.

The next step is to verify the derived theoretical results numerically. This will be
pursued in the future.

Finally, the kernel we used is globally supported which will lead to dense system
matrices which should be avoided in practical applications, especially if the number
of sampling points, i.e. the dimension of the matrix, becomes large. Switching to
compactly supported kernels is subject of ongoing research. However, due to the
high-dimensional nature of the underlying domain, a compactly supported kernel
might not “see” enough information unless various scales are employed.

Acknowledgements Christian Rieger would like to thank the Deutsche Forschungsgemeinschaft
(DFG) for financial support through the CRC 1060, The Mathematics of Emergent Effects.
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Fluid Structure Interaction (FSI)
in the MESHFREE Finite Pointset
Method (FPM): Theory and Applications

Jörg Kuhnert, Isabel Michel, and Reiner Mack

Abstract Fluid Structure Interaction (FSI) and meshfree numerical methods are a
perfect couple. One often repeated strong argument is the almost natural coupling
of meshfree methods in a Lagrangian/ALE formulation with moving, flexible
structures.

Since 1996, Fraunhofer ITWM has been developing a Generalized Finite Differ-
ence Method (GFDM), a purely meshfree solver for fluid and continuum mechanics.
In the industrial context, this method is also referred to as Finite Pointset Method
(FPM). Currently, it is further developed to an integrated tool called MESHFREE
which combines the advantages of GFDM/FPM as well as SAMG, a fast solver for
large sparse linear systems developed by Fraunhofer SCAI. This synergy drastically
increases the applicability of the method since SAMG provides a robust and scalable
linear solver for a wide class of problems.

In this contribution, we classify fundamental FSI aspects in GFDM/FPM:
classical pressure–velocity coupling and alternative velocity–pressure coupling.
Each category will be illustrated by industrially relevant examples, with special
focus on Pelton turbine applications and flow in flexible tubes.

1 Introduction

The Finite Pointset Method (FPM) is a meshfree Generalized Finite Difference
Method (GFDM) in fluid and continuum mechanics. It solves partial differential
equations directly on a cloud of numerical points, i.e. it uses the strong formulation.
By default, the classical conservation equations (mass, momentum, and energy) in
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combination with general material models are solved. The approximation of spatial
partial differential operators is based on a specialized weighted moving least squares
procedure. Time derivatives are formed by simple finite differences (implicit time
integration). The point cloud moves according to the flow velocity, i.e. Lagrangian
coordinates are used.

The resulting advantages are: (i) efficient handling of moving geometries, free
surfaces, phase boundaries, or large deformations; (ii) low preprocessing costs (from
CAD to simulation); (iii) easy integration of different material and custom (user-
defined) models as well as refinement/coarsening criteria for the point cloud.

Details on the numerical scheme as well as the application of the method
to selected physical problems can be found in [1–5, 9, 10]. Currently, FPM is
further developed to an integrated tool called MESHFREE. It combines the above
mentioned advantages with the robust and scalable solvers for large sparse linear
systems of the SAMG library developed by Fraunhofer SCAI.

Due to their natural advantages, meshfree methods based on a Lagrangian
formulation are frequently used to simulate physical problems that are characterized
by Fluid Structure Interaction (FSI). In this contribution, we present different
types of FSI in the context of GFDM/FPM. Thereby, we focus on the classical
pressure–velocity coupling and the alternative velocity–pressure coupling to model
the interaction of two point clouds or a point cloud with (flexible/rigid) structures
(Sect. 3). The necessary approximation and integration strategies are described in
Sect. 2. In conclusion, we discuss two industrial examples in Sect. 4: water–air
coupling in Pelton turbines and flow in flexible tubes.

2 Basics of GFDM/FPM

In this section, we describe the approximation and integration strategies required
to perform the necessary projection of quantities during Fluid Structure Interaction
(FSI) applications in GFDM/FPM. Furthermore, the discretization of the computa-
tional domain by a cloud of numerical points is discussed.

2.1 Point Cloud

In contrast to other meshfree methods, the discretization in GFDM/FPM is based
on a cloud of numerical points that act as carrier of physical information (pressure,
velocity, temperature, etc.). This point cloud is generated and maintained in such
a way that it compactly covers the whole computational domain �. Its density is
given by a sufficiently smooth function in space and time which is called interaction
radius:

h = h(x, t). (1)
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In the first place, h is a user-given function defining the resolution of the point
cloud and, thereby, the quality of the simulation results. Currently, we work on local
adaptive refinement strategies for the point cloud, where h is constructed due to
error estimates.

Based on the interaction radius h, the computational domain � is defined to be
compactly covered by the point cloud if any ball with radius rhole · h contains at
least one point. For numerical reasons, rhole is chosen such that for a point xi of the
point cloud 20 . . .50 points are found within the interaction radius h(xi , t) which
directly determines the neighborhood of the point. rhole = 0.45 is a common choice
for practical applications.

Additionally, the distance between two points should not fall below a certain
minimum: rsmall · h, where rsmall = 0.1 . . .0.2.

The initial quality of the point cloud, which is ensured by the above criteria, has
to be maintained during a simulation. This is due to the movement of the point cloud
according to the flow velocity (Lagrangian framework) leading to accumulation or
scattering of points. On the one hand, points have to be clustered if their distance
is too small, i.e. the relevant points are merged according to specific rules (interior,
free surface, boundary points). On the other hand, new points have to be filled if
holes occur.

2.2 Generalized Finite Difference Approximation

The basic numerical idea of the FPM is a generalized Finite Difference (FD)
approach. If the point cloud represented a perfectly regular point grid, then the
approximation would work exactly like a classical FD method. As the point cloud
is, however, non-regular in most cases, a generalized FD approach is used here.

2.2.1 Generalized Finite Difference Operators

We assume some point cloud being sufficiently dense, consisting ofN points, whose
positions are given by

xi = (xi, yi, zi )
T, i = 1, . . . , N. (2)

Suppose furthermore that some arbitrary function f is represented by discrete
function values at those discrete locations, i.e.

fi ≡ f (xi ), f ≡ (f1, f2, . . . , fN )
T. (3)
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We call those vectors c∗i the numerical differential operators which provide an
approximation of some derivative (marked with *) in the sense

∂∗numf (xi ) = ∂̃∗f (xi ) = ∂̃fi =
N∑

j=1

c∗ij · fj = (c∗i )T · f. (4)

The differential operator has to be established for every point xi in the point
cloud. In the scheme presented here, the most frequently used operators are:

c0
i = the numerical operator for function approximation,
cxi = the numerical operator for the x-derivative,
cyi = the numerical operator for the y-derivative,
czi = the numerical operator for the z-derivative,
c�i = the numerical operator for the Laplacian.

(5)

The aim is the development of operators that are independent of the underlying
function values. Having operators that work generally for all given functions will
save a lot of computation time.

We also introduce a weight function that switches on the particular neighbors
close to some point xi by

Wij = w(r(xi , xj )) = w(rij ), (6)

where the distance function is given by

r(xi , xj ) = rij = 2 · ‖xi − xj‖
h(xi )+ h(xj ) . (7)

We require W(r ≥ 1) = 0 and sufficient smoothness of the weight function,
such that the weight function “switches on” only neighbors in a close distance. The
ansatz mostly used in our applications is

w(r) =
{(

1− r2
)γ

, if r < 1
0, otherwise

. (8)

The discrete weights are grouped in the so-called weight matrix

Wi =

⎛

⎜⎜⎜⎝

Wi1 0
Wi2

. . .

0 WiN

⎞

⎟⎟⎟⎠ (9)



FSI in the MESHFREE Finite Pointset Method (FPM) 77

having the discrete weights on its diagonal and zeros otherwise. Up to now, we have
established the basis of the GFDM. The next section shows how to provide values
to the differential operators.

2.2.2 Least Squares for Operator Generation

We are searching for the operator c∗i for any particular differentiation task. For
simplicity, we omit the star (*) and, instead of writing c∗i , we simply employ ci .
The operator has to satisfy the least squares criterion

1

2
· ‖W−1

i · ci‖2 = 1

2
· cT
i · (W−1

i )T ·W−1
i · ci != 1

2
· cT
i ·W−2

i · ci = min (10)

under the necessary consistency conditions

KT
i · ci = bi . (11)

2.2.2.1 General Remark

The “·”-operator is the general matrix-times-matrix operator, where a matrix can
also reduce to a vector or a scalar.

The matrix Ki represents column-wise, discrete test functions, for which the
numerical operator shall give a distinct value. For example, the numerical operator
for the x-derivative cxi shall deliver zero if operating on a constant function k1

i =
(1, 1, . . . , 1)T or a quadratic function k3

i = ((x1−xi)2, (x2−xi)2, . . . , (xN−xi)2)T,
but it shall deliver one if operating on the linear function k2

i = (x1 − xi, x2 −
xi, . . . , xN − xi)T. In other words, we have the conditions

(k1
i )

T · cxi = 0, (k2
i )

T · cxi = 1, (k3
i )

T · cxi = 0. (12)

In general, the columns of matrix Ki represent M discrete test functions in the
sense

Ki ≡ (k1
i k

2
i k

3
i . . . k

M
i
). (13)

Usually, a convenient choice for the kpi , p = 1, . . . ,M , is to use the monomials
up to a certain order, i.e. the numerical operator exactly reproduces these functions
or their derivatives. In addition to that, in FPM, we have found that it is also
necessary to determine the action of the operator on the delta function as well, i.e.
we choose

kM+1
i = ( δ1i δ2i . . . δNi )

T. (14)
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Similarly to (12), the required results would be

(kM+1
i )T · c0

i = C0 < 1, (kM+1
i )T · cxi = 0, (kM+1

i )T · cxxi = Cxx =O
(

1

h2

)
.

(15)

The constants C0 and Cxx have to be chosen adequately to gain optimal stability. In
our simulations, C0 = 0.7 and Cxx = 5

h2 are used.
The right hand side vector b consequently contains the corresponding values to

be delivered by the operator if applied to the test functions.
The minimization problem (10) together with the consistency conditions (11) can

be solved using Lagrangian multipliers in the sense

W−2
i · ci −

M(+1)∑

k=1

λik · kki = 0 (16)

which transforms to

ci =
M(+1)∑

k=1

λik ·W2
i · kki . (17)

This nicely shows that any differential operator is a linear combination of the
weight-scaled test functions.

Multiplication from left with the test matrix Ki yields

KT
i · ci = KT

i ·WT
i ·Wi ·Ki · λi (18)

which, by virtue of (11), provides

bi = KT
i ·WT

i ·Wi ·Ki · λi . (19)

Equation (19) provides an M ×M linear system to be solved for λi which then
serves for providing the solution

ci =W2
i ·Ki · λi . (20)

The most expensive part in terms of computation time is the generation of matrix
KT
i ·WT

i ·Wi ·Ki together with the solution of the linear system (19). There is one
inherent risk which lies in the fact that we produce the square of the matrix Wi ·Ki .
This matrix is usually well conditioned. Critical point cloud distortion might lead
to singular or badly shaped matrices. One way to avoid this is to decrease the order
of approximation (reduce the parameter M). On the other hand, better numerical
conditioning of the local system (11) is achieved by a least norm approach instead
of the Lagrange multiplier formulation presented above.
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The procedure sketched in this section will fail if the point cloud locally deforms
to a lower dimensional manifold, i.e. if (for a 3D computation) the points are nearly
placed in a plane or on a line, etc. This happens for example if water squirts off a
free surface. In this case, we strictly employ pseudo-inverse solutions to system (19)
in order to keep the differential operators in good shape.

2.2.3 Solving PDEs on a GFDM-Basis

After having established numerical, meshfree operators for derivatives, we can
provide strong form discretizations of partial differential equations. Our aim is to
solve mass, momentum, and energy equations, the Navier–Stokes equations being
a special form of them. For simplicity, let us have a look at a general convection
diffusion equation of the form

D

Dt
= η ·�+ q. (21)

The numerical idea is to find a solution of the equation for every point in the
point cloud. Using a time step size �t = tn+1 − tn, an explicit time integration
scheme would read

n+1
i −ni
�t

= η ·
M∑

j=1

c�ij ·nj + qi = η · (c�i )T ·�n + qi, (22)

�n+1 = (I+�t · η ·C�) ·�n +�t · q. (23)

The more convenient approach is the implicit time integration (25), as here, no
stability restriction on the time step size has to be taken into account:

�n+1 = �n +�t · η · C� ·�n+1 +�t · q, (24)

(I−�t · η ·C�) ·�n+1 = �n +�t · q. (25)

In order to solve (25) for �n+1, a sparse linear system of dimension N × N

has to be solved. Each row of the linear systems (23) resp. (25) represents the
collocated solution of the model PDE at one point in the cloud. If a point is located
at the boundary, the row has to be replaced by appropriate boundary conditions of
Dirichlet or Neumann type.

The matrix (I−�t · η ·C�) in (25) is invertible for all �t > 0 if the matrix has
M-character. The M-character itself depends on the local differential operators c�i ,
for which no a priori statement can be given. The use of the delta function as test
function (see (14)) forces the M-character.
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The implicit way of time integration can be applied to the Navier–Stokes
equations or other models in a particularly natural way within the FPM-framework.

2.3 Integration of Simulation Results over Geometrical Entities

For the task of Fluid Structure Interaction (FSI) discussed in Sect. 3, we will
require

• the mapping of function values, such as pressure or velocity, to the node points
of an FE-mesh (if coupling to a mesh based solver),

• the mapping of function values to another point cloud of FPM (if the interacting
structure is modeled also on a meshfree basis),

• the integration of function values over closed surfaces (such as rigid bodies) in
order to compute integrated forces or moments.

This motivates the two tasks of mapping function values from the point cloud to
(external) points and reduction of function values by integration.

2.3.1 Mapping Function Values

Suppose we need to map a function u, given by the discrete values ui , i = 1, . . . , N ,
to the external point location y. Our approach is using the approximation procedure
described in Sect. 2.2:

ũ(y) =
N∑

j=1

c0
j (y) · uj = (c0(y))T · u. (26)

Another notation used in this context is the mapping between two point clouds,
the first one denoted by I and the second one by II, respectively. The mapping is
marked in the following way:

• uI
i is the discrete function value at point xIi of phase I and uI is the vector

containing all discrete function values of this fluid phase.
• uII→I

i is the discrete function value at point xIi of phase II mapped to phase I and
uII→I is the vector containing all mapped discrete function values. The alternative
notation, in order to improve readability, is uII→I ≡ uII→I.

2.3.2 Reduction of Function Values by Integration

For some FSI-applications, such as coupling with rigid bodies, integrated forces
and/or moments are necessary to be mapped from the point cloud to the structure.
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The integrated force on a structure� is given by

F� =
∮

∂�

(p · n− S · n) d(∂�) (27)

which is approximated by the sum over all boundary points touching the surface of
�:

F� ≈
∑

i∈∂�
(pi · ni − Si · ni ) · Ai. (28)

This requires the knowledge of the area Ai represented by a boundary point.
We produce the boundary area entity of a boundary point by a local Voronoi
decomposition around this point and choose the area of the Voronoi face Ãi as a
first guess. This area is corrected in a least squares sense Ãi → Ai such that the
following consistency constraints are satisfied:

∑
xi∈∂�

Ai = A(∂�),

∑
xi∈∂�

(eT
x · ni )Ai =

∑
xi∈∂�

(eT
y · ni )Ai =

∑
xi∈∂�

(eT
z · ni )Ai = 0,

∑
xi∈∂�

((xi , 0, 0)T · ni )Ai = ∑
xi∈∂�

((0, yi , 0)T · ni )Ai = ∑
xi∈∂�

((0, 0, zi )T · ni )Ai = V (�),

(29)

where ex, ey, ez are the unit vectors in x-,y-,z-direction, respectively.

3 Fluid Structure Interaction (FSI) in GFDM/FPM

The interaction of a fluid/continuum with a structure can be modeled in two different
ways. Depending on the inertial forces of the structure, either a pressure–velocity
coupling or a velocity–pressure coupling can be used.

3.1 Pressure–Velocity Coupling

In the classical ansatz, the fluid/continuum provides its pressure and tension to
the structure. Then, the structure model is solved and provides back its kinematic
or dynamic behavior (i.e. velocity and position) as a boundary condition to the
fluid/continuum. According to the type of interaction zone, a surface–surface
coupling or a volume–volume coupling has to be chosen.
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3.1.1 Surface–Surface Coupling

If the fluid/continuum and the structure (or second fluid/continuum) interact by
a clearly defined common surface, the surface–surface coupling should be used.
An air bubble within a bath of water, a fluttering sheet of paper in the wind, or
a drilling tool entering a metal part could be representative examples of this type
of phenomenon. Some of our industrially relevant examples are described in the
following.

3.1.1.1 Explicit Approach

We consider classical airbag inflation simulations in car crash scenarios. Here,
GFDM/FPM models the gas dynamics inside of the airbag and produces pressure p
and turbulent tension τW at the airbag membrane, and some FE-solver integrates
the dynamic behavior of the airbag membrane based on the computed wall
pressure/tension values. Let us name the FPM-phase with the index I and the
structure phase by the index S. Then, the explicit scheme reads

{
(pI, vI, τ I

W)(t
n+1) = FPMsolver(�t;pI(tn), vI(tn)),

vI(tn+1)
∣∣
interface = vS→I(t

n),

vS(tn+1) = FEsolver(�t; vS(tn), pI→S(t
n), τW

I→S(t
n)),

(30)

where �t = tn+1 − tn is, us usual, the time step size. FPMsolver and FEsolver
contain the classical boundary conditions at the non-interface boundaries. The upper
two equations are solved first, then the lower one.

3.1.1.2 Implicit Approach

We model implicit coupling only within the framework of GFDM/FPM. Coupling
FPM with another code would mean to produce joint systems of equations, an
almost impossible task when coupling with commercial FE-codes.

The implicit coupling scheme consists of solving two phases separately on the
classical FPM-basis, with additional requirements at the surface–surface interface.
Let as name the two phases with the indices I and II, respectively. The implicit
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scheme can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pI, vI)(tn+1) = FPMsolver(�t;pI(tn), vI(tn)),

(pII, vII)(tn+1) = FPMsolver(�t;pII(tn), vII(tn)),

pI = pII→I

∣∣
interface ,

∂̃pII

∂̃n
= − ∂̃pI→II

∂̃n

∣∣∣∣
interface

,

∂̃vI

∂n
= − ∂̃vII→I

∂n

∣∣∣∣
interface

,

vII = vI→II

∣∣
interface .

(31)

Our typical example here is fuel–air coupling in tank-filling and tank-sloshing
scenarios. Of course, it can be applied only if the phase boundary between air and
fuel stays regular and does not spray out.

3.1.2 Volume–Volume Coupling

In case of two phases (fluids/continua) that are characterized by complex free
surfaces impeding the projection of the necessary quantities between the phases,
a volume–volume coupling can be used as an alternative to the above described
surface–surface coupling. Thereby, both phases interact by a volume overlap.

The basic idea of the volume–volume coupling is that the two phases as well
as the corresponding point clouds are separate and only exchange necessary infor-
mation by approximation/projection from one phase to the other phase. Thereby,
modeling the actual contact between the two phases as in the surface–surface
coupling is replaced by the following procedure: Only one phase models the
complex free surfaces (phase II), while the other is overlapping the more complex
one (phase I). For the coupling, the Brinkman model is used (see [8] and the
references therein).

3.1.2.1 Phase I

For the overlapping phase, the standard formulation of the conservation of momen-
tum in GFDM/FPM is extended to

dvI

dt
+ 1

ρ
· ∇pI = 1

ρ
· (∇TSI)T + g− η · (vI − vII→I), (32)

where ∇TSI is the divergence of the stress tensor in phase I and g is the vector of
body forces. The drag coefficient η and the reference velocity vref are determined
by phase II. In other words, the overlapping phase flows through a porous medium
whose properties are defined by the other phase. The computational domain of phase
I as well as phase II below is defined by the specific application.
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In the following, the influence of the local presence of phase II on the choice of
η is discussed:

• If there are no points of phase II in the local neighborhood of a point of phase I,
the flow is unobstructed by the other phase at this location and the drag coefficient
for this point is zero, i.e. η = 0 s−1.

• If the local neighborhood in phase II of a point in phase I is non-empty, the drag
coefficient depends on the type of neighborhood that is found.

– In case of a bulk-like neighborhood, the value of η is chosen appropriately
large at this location to model an impermeable medium, e.g. η = 104 s−1.

– In case of a spray-like free surface neighborhood, the drag is determined based
on the assumption of spheric droplets. For water, this leads to

η = 3

4
· αII→I · CD · ‖v

I − vII→I‖
d II→I

, (33)

where αII→I is the volume fraction and d II→I is the diameter of the droplets in

phase II mapped to phase I. Furthermore, we have CD = max
(

24
Re , 1

)
with

relative Reynolds number Re = ρI·‖vI−vII→I‖·d II→I
ηI .

3.1.2.2 Phase II

The physical model for phase II corresponds to the classical conservation equations
in GFDM/FPM. The momentum equation is given by

dvII

dt
+ 1

ρ
· ∇pII = 1

ρ
· (∇TSII)T + gII. (34)

Similar to the procedure described above, the influence of phase I is integrated
depending on the local configuration of the point cloud in phase II.

• In case of a bulk-like free surface configuration, i.e. phase II is like an
impermeable medium for phase I, the stagnation pressure of phase I acting on
the local free surface of phase II is used as Dirichlet boundary condition:

pII
∣∣∣
FS
= 1

2
· ρI→II ·

(
(vI→II − vII) · nII

)2
. (35)

• In case of a spray-like free surface configuration, additional forces act on
the single droplets which can be modeled by extending the body forces term
according to the procedure leading to (33):

gII = g− 3

4
· ρ

I→II

ρII
· CD · ‖v

I→II − vII‖
d II

· (vI→II − vII). (36)
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The coupling terms in (35) and (36) are based on projected values of phase I.
Industrially relevant applications for this type of coupling are manifold. Two

examples from automotive industry are given below.

Explicit Approach Water entering the air-intake of a car engine at deep-water
crossing of a vehicle.

Implicit Approach Spray/droplet clouds in the airflow around a vehicle.

3.2 Velocity–Pressure Coupling

If the structure (such as a membrane) tends to have zero inertial forces, the numerical
time step size dramatically drops and the classical pressure–velocity coupling
described in Sect. 3.1 becomes problematic. In this case, the alternative velocity–
pressure coupling is more stable. It can be considered as an enhanced surface tension
formulation: the fluid/continuum provides the movement of the structure, while
the state of inner stresses within the structure results in a boundary condition for
pressure to the fluid/continuum.

Explicit Approach
From the old time step, we inquire the resulting pressure of the structure and apply it
as a boundary condition to the pressure of the new time cycle. Let us name the FPM
phase with the index I, and the structure phase with the index S. Then, the explicit
scheme reads

{
(xI, pI, vI)(tn+1) = FPMsolver(�t; xI(tn), pI(tn), vI(tn)),

pI(tn+1)
∣∣
interface = pS

→I(t
n),

pS(tn+1) = FEsolver(�t; xI→S(t
n+1), vI→S(t

n+1)).

(37)

As the scheme of coupling is explicit, there is a time step constraint that depends
on the sensitivity of the structure (pressure changes induced) based on small changes
of the local positions along the interface. The time step constraint has the form

�t <

√
1

σ
· ρ · h3, (38)

where σ is the representative inner tension of the structure.
This approach can be industrially used for flows in textile liners, blood vessels,

or for blow-deformation processes in container production.

Implicit Approach
Equation (38) shows that the time step size becomes very small if the inner tension
of the structure becomes large and the numerical resolution becomes fine. In order
to gain larger time step sizes, an implicit approach would be required. One could
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iterate the scheme (37) and hope to find a fixed point. However, if there exists a
linearized approximation of the pressure change with respect to the position change

at the interface ∂pS

∂x , then an implicit formulation is possible:

⎧
⎪⎨

⎪⎩

(xI, pI, vI)(tn+1) = FPMsolver(�t; xI(tn), pI(tn), vI(tn)),

pI(tn+1)
∣∣
interface = pS→I(t

n)+�t · ∂pS

∂x · vI(tn+1),

pS(tn+1) = FEsolver(�t; xI→S(t
n+1), vI→S(t

n+1)).

(39)

The second line in the scheme can be linearly incorporated into the FPM-solver
in order to form an enhanced linear system.

Potential applications of the scheme are rain/water drops of small Weber-
numbers inside of complex geometries’ water drain simulations or membrane
pumps in medical applications.

4 Industrial Applications

In this section we focus on two specific applications in the context of FSI: Pelton
turbine applications and flow in flexible tubes. We discuss the main aims of the
respective simulations as well as the occurring challenges in terms of FSI.

Concerning the least squares operators, we use monomials up to second order as
well as the extension by the delta function in (11).

4.1 Water–Air Coupling in Pelton Turbines

Pelton turbines are impulse-type water turbines characterized by a free jet of water
impacting with the runner of the turbine. The main aim of simulations in this field
of application is to assist the turbine development during modernization projects of
existing hydropower plants. In this process, replacements of the runner and parts of
the housing have to meet contractual values. Different demands have to be met by
the simulations:

• modeling of single water droplets
• analysis of torques on specific parts of the geometry (runner, deflector, etc.)
• filling of a nozzle including the generation of the water jet
• coupling of water phase and air phase including an intelligent time stepping

criterion
• coupling of water phase and granular phase including an abrasion model

In the following, we solely focus on the coupling of water and air phase. This
problem can be modeled by the pressure–velocity coupling described in Sect. 3.1.
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Due to the complex free surfaces (water jet, water sheets, and single water droplets),
the volume–volume coupling approach is chosen.

The point clouds for the water and the air phase are generated and maintained
independently from each other. At any time, the seeding of points is based on a
discrete hole search according to the specified point cloud parameters (see Sect. 2.1).
A detailed description of the discrete hole search can be found in [6, 7].

• Water phase: Points on the circular inflow boundary are seeded initially starting
from the edge until the inside of the surface is filled. Based on these boundary
points, further points are seeded in order to represent a small initial water jet. This
is realized by duplicating and moving selected points in the normal direction of
the inflow boundary (free surface points) and, subsequently, filling the interior
(interior points).
In the course of the simulation, the points move according to the solution of
the Navier–Stokes equations and the defined boundary conditions. Additionally,
points are injected at the inflow boundary with the corresponding inflow velocity
based on the interaction radius h. The point cloud is maintained by regularly
checking for holes and accumulations.

• Air phase: Similarly, boundary points are first seeded on the housing, the nozzles
(including the inflow), the runner, and the built-ins of the turbine geometry.
Subsequently, the interior is filled with points.
In this case, the points move only due to the solution of the Navier–Stokes
equations. There is no injection at the inflow which is deemed as a standard wall
boundary.

For both phases, points leaving the turbine at the lower or the right-hand
boundary are deleted.

Decoupling the water and the air phase enables different solution strategies for
the two phases. For the water phase, conservation of mass and momentum can
be solved for the pressure and velocity in a coupled ansatz using a GFDM/FPM-
specific penalty formulation. In contrast to that, a classical segregated ansatz based
on Chorin’s projection idea is used to solve for pressure and velocity for the air
phase. See [3] for details on these solution strategies.

Furthermore, different point cloud resolutions h can be used—high density of
points in the water phase and lower density of points in the air phase. Since the
phase-specific time step sizes mostly depend on the chosen interaction radius h for
this kind of application, they may differ up to one order of magnitude. Here, the time
step size in the water phase is always smaller than the one in the air phase. Thus, an
intelligent time stepping criterion including a synchronization process between the
phases is needed. The global time step size �tglobal is defined by

�tglobal = min (�twater,�tair) = �twater, (40)
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Fig. 1 Schematic illustration of the synchronization process of the phase-specific time step sizes

Fig. 2 Horizontal Pelton turbine with one active inflow—simulation setup

where the phase-specific time step size for the air phase is synchronized to the one
of the water phase in case of tnwater + γ ·�twater > tnair +�tair,potential (γ > 1; here,
γ = 2):

�tair = tnwater +�twater − tnair (41)

with n denoting the current phase-specific time step level.1 In other words, a new
solution for the air phase is only triggered if the potential phase-specific time step
size of the air phase would lead to a phase-specific time that is larger but too close
to the one of the water phase. If no new solution of the air phase is triggered, the
water phase uses the air phase values of the previous air time step. This procedure
is illustrated in Fig. 1.

As example, we consider a horizontal Pelton turbine with two inflows of which
only one is active, see Fig. 2. The inflow velocity of the water phase is 43.4 m/s.
The initial velocity of the air phase is zero. During the simulation, the velocity
of the air phase increases due to the rotation of the runner and the coupling with
the water phase to approximately 30–45 m/s in the vicinity of the runner and
in the overlapping region with bulk-like water phase configurations, respectively.
Choosing constant interaction radii hwater = 0.006 m and hair = 0.06 m, the above
discussed time stepping procedure leads to solving for the air phase only every 5–10
water phase time steps.

1For reasons of readability, we write n instead of nwater and nair, respectively.
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Fig. 3 Horizontal Pelton turbine with one active inflow—simulation evolution (a) t = 0.015 s;
(b) t = 0.03 s; (c) t = 0.045 s; (d) t = 0.06 s

The temporal evolution of the simulation is illustrated in Fig. 3 (the points are
colored according to their current velocity). The two-way coupling of water and air
phase leads to the following effects: In the overlapping region with the bulk-like
water phase, the air phase is pulled along with the flow velocity of the water. In the
overlapping regions with sheet-like and spray-like water phase, the influence on the
air phase is a lot smaller. However, the behavior of the water phase is significantly
changed in these regions. Especially for the secondary flow moving from the runner
to the top of the housing, the influence of the air phase on the water phase is essential
to realistically evaluate the turbine based on the simulation. If this secondary flow
or part of it is pushed back onto the runner, the efficiency of the turbine is reduced.

This simulation is part of a feasibility study. Model validation based on a
comparison with video recording of a laboratory test is in progress.
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4.2 Flow in Flexible Structures

This section demonstrates the capability of FPM/GFDM regarding flows within
flexible structures and hulls, solved by the velocity–pressure coupling introduced
in Sect. 3.2. Potential applications are flow in blood vessels, inflation of textile
structures by foams such as car seats, light weight construction elements etc.

For the present showcase, we use a simple, cylindrical tube of radius r0 that
is bounded by an elastic membrane. This membrane changes its inner tension
depending on the radial deformation, i.e. τ = (τa, τb)

T = τ (r − r0). If n is the
normal direction of the membrane, a and b are the two mutually perpendicular
tangential directions. τa and τb are the tension components with respect to these
directions. Let us further suppose that we are able to compute the instantaneous
curvature components κa and κb of the membrane in the tangential directions. Then,
the pressure boundary condition, that is required for the explicit coupling (37) as
well as for the implicit scheme (39), is

pS = κa · τa + κb · τb. (42)

The inflow conditions are given as a pulsating velocity in the sense

vinflow = v0

2
·
(

cos

(
2πt

Tcycle

)
+ 1

)
, (43)

where Tcycle is the cycle time of the process and v0 the representative speed.
The generation and maintenance of the point cloud is performed analogously

to the one described in Sect. 4.1. First, points are seeded on the inflow and
outflow boundaries (boundary points) as well as the elastic membrane (free surface
points). Subsequently, the inside is filled from the boundaries. In the course of
the simulation, points are moved according to the solution of the Navier–Stokes
equations. Furthermore, points are injected at the inflow boundary.

At the inflow boundary (left in each frame in Fig. 4), the points are colored
according to the current inflow speed once they are injected. Red means an injection
speed of v0, blue means an injection speed of zero. After the initial coloring, the
color is kept fixed throughout the simulation. Thus, the flow in the flexible pipe (and
the history of the material transport) can be intuitively illustrated. The difference
between bulk transport inside the pipe and the sound waves of the pipe membrane
are obvious.
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Fig. 4 Transport of colorized material inside a flexible pipe—simulation evolution (a) t = 0;
(b) t = 0.25 × Tcycle; (c) t = 0.50 × Tcycle; (d) t = 0.75 × Tcycle; (e) t = 1.00 × Tcycle; (f) t =
1.25×Tcycle; (g) t = 1.50×Tcycle; (h) t = 1.75×Tcycle; (i) t = 2.00×Tcycle; (j) t = 2.25×Tcycle;
(k) t = 2.50 × Tcycle; (l) t = 2.75 × Tcycle
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Parallel Detection of Subsystems
in Linear Systems Arising
in the MESHFREE Finite Pointset
Method

Fabian Nick, Hans-Joachim Plum, and Jörg Kuhnert

Abstract The Finite Pointset Method (FPM) is a meshfree method for simulations
in the field of fluid dynamics and continuum mechanics (Tiwari and Kuhnert,
Finite pointset method based on the projection method for simulations of the
incompressible Navier–Stokes equations. Springer, Berlin, 2003). The key idea in
FPM is to discretize the necessary differential operators by using stencils generated
by a least squares approach on a pointcloud that is moving in every time step.

Applying Algebraic Multigrid Methods (AMG) to the linear systems arising in
FPM comes with various challenges, see our previous work Metsch et al. (Comput
Vis Sci, reviewed) and Nick et al. (Linear solvers for the finite pointset method.
In: Schäfer, M., Behr, M., Mehl, M., Wohlmuth, B. (eds.) Recent advances in
computational engineering. Springer, Cham, 2018). In Nick et al. (Linear solvers
for the finite pointset method. In: Schäfer, M., Behr, M., Mehl, M., Wohlmuth,
B. (eds.) Recent advances in computational engineering. Springer, Cham, 2018)
we limited ourselves to essentially irreducible matrices, saying that if a matrix
arising from FPM is not essentially irreducible, we can employ a parallel algorithm
in order to detect those subsystems that are essentially irreducible. This paper
introduces the algorithm that we use in order to detect independent parts of the
FPM pointcloud, which we call components. The algorithm that we propose has a
theoretical complexity of O(|V |) in the average case, where |V | is the number of
points in the pointcloud. Our experiments with a real world model however show
that in practice the complexity is much better.

The experiments also show that in order to guarantee a stable convergence of the
arising linear systems, detecting components is essential, as singular components
can occur in certain situations.
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Finally, we give an outlook on how our handling of the components could be
improved in the future.

1 Introduction

Like in other discretization methods, the linear solver in FPM can become the main
bottleneck for the performance of the overall method, if the problem either gets very
large or the linear system is close to a saddle point problem. The latter case can occur
for simulations with FPM using the coupled approach, see [20] for an introduction
to the method and [11] for an analysis of those systems. But even when using the
segregated approach the linear solver can become a bottleneck if the systems get
larger. This is mainly because classical one level iterative methods do not scale
linearly in the problem size. The BiCGStab(2) method [13] that serves as a baseline
in our studies is no different in this respect.

AMG is known to be a very fast solver for sparse linear systems arising from
elliptic PDEs and scales linearly in the problem size. In the setup phase, a hierarchy
of linear systems is built with information from the matrix itself only and this
hierarchy is used in the solving phase to solve the linear system.

As outlined in [12], applying AMG to the linear systems arising in FPM comes
with some challenges, one of which is that the FPM discretization might lead to
unwanted, independent subsystems (components) in the matrix that can be singular
in the worst case. Section 2 will introduce the basics and notation from graph theory
that we need to define what a component is. We will then touch on some related work
before explaining why we observe components in some simulations conducted with
FPM. The algorithm we give in Sect. 2.4 is tailored to the structure of the graphs we
are considering in this context and its complexity is analyzed in Sect. 2.5. Section 2.6
briefly states how we exploit the information gained from the components detection
in our linear solver before we give some numerical results from a real world example
in Sect. 2.7. Possible remedies for the main drawback that becomes apparent in this
section are discussed in Sect. 3.

2 Components

The dynamic character of a moving pointcloud implies a varying neighborhood
structure in time. The local changes in the neighborhoods can lead to groups (or
components, see Sect. 2.1) of points that are independent from the main pointcloud.
This means that there are no connections to or from those independent groups of
points. There are various reasons for this phenomenon, see Sect. 2.3. In the end,
in all cases we end up with a linear system that can be decomposed into multiple
subsystems that are also independent from each other. We can, or in some cases have
to, take advantage of that property when solving the linear system. To this end, we
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use the algorithm described in Sect. 2.4 which finds such independent subsystems,
even if they are distributed across multiple processes.

2.1 Graph Theory Basics and Notation

In order to detect independent groups of points within the pointcloudP, we examine
the graph Ḡ(A) associated to the matrix A that represents the linear system Ap = g

that is used to solve for one of the pressure fields needed in FPM [20]. A similar
analysis can be carried out for the systems corresponding to the velocity equations
in FPM. We make use of the special structure of those systems in our algorithm but
will not go into detail here in this work.

Definition 1 A graph is a pairG = (V ,E) of two sets V andE, where the elements
of V are called vertices and the elements of E are called edges, where

• E ⊂ {(v,w) : i, v ∈ V } for directed graphs and
• E ⊂ {{v, v} : v,w ∈ V } for undirected graphs

Another terminology from graph theory that we need is the definition of paths:

Definition 2 A vertex v in a digraph G = (V ,E) is connected to vertex w via a
path of length l if there exists a series of edges

e1, e2, . . . , el ek ∈ E (1)

where ek = (vk−1, vk), v0 = v, vl = w. For undirected graphs, we use the same
definition but with ek = {vk−1, vk}.

If such a path exists for some l > 0, then i is connected to j .

Definition 3 In the context of this work, edges do not have a weight assigned to
them, or equivalently, all edges have the weight 1. Hence, there exists a minimal
distance between two connected vertices, which is the length of a shortest path
between those two. The longest distance between any two vertices in G is called
the diameter diam(G) of G.

Remark 1 In directed graphs, the relation of connectivity is not symmetric, i.e.
vertex v can be connected to vertexw, but at the same timewmight not be connected
to v.

The notion of points that are connected to each other leads to a global property
of the graphG:

Definition 4 Let G = (V ,E) be an undirected or directed graph. Then G is called
a strongly connected graph if for any two vertices v ∈ V and w ∈ V , v is connected
to w and w is connected to v . In addition to that, a directed graph is called weakly
connected if for any pair of vertices v and w either v is connected to w or w is
connected to v.
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If a graphG is not connected, it might have subgraphs that are connected:

Definition 5 For a graph G = (V ,E), a subgraph G′ = (V ′, E′) consists of
a subset of vertices V ′ together with all edges that are defined on this subset of
vertices:

E′ = {
e ∈ E : v,w ∈ V ′} (2)

The combination of Definitions 4 and 5 gives the definition of a component:

Definition 6 If a subgraph G′ of G is a connected graph, and G′ is the largest
subgraph with this property, then G′ is called a component of G.

We can now define graphs G(A) and Ḡ(A) that are associated with a matrix A
in the following sense:

Definition 7 For A ∈ R
n×n we can define the associated graph G(A) = (V ,E)

with

V = {i ∈ N : 1 ≤ i ≤ n} and E = {
(i, j) : aij 
= 0

}
. (3)

In order to represent subsystems that are completely independent from the rest of
the linear system, i.e. there are no couplings to or from this subsystem, we need to
define the undirected associated graph Ḡ(A) = (V , Ē) by using

Ē = {{i, j } : aij 
= 0 ∨ aji 
= 0
}

(4)

for the set of edges.

In order to write down the Depth-First Search algorithm, we need another
definition:

Definition 8 The adjacency list A(v) of vertex v ∈ V in a graph G(V,E) is a list
of all vertices w ∈ V that can be reached from v via a path of length 1.

Now that we have clarified some definitions, let us turn to a basic algorithm that
is needed for the detection of components within a graph. Algorithm 1 introduces
an algorithm called Depth-First Search (DFS). Starting from some vertex s, the
algorithm moves on to one of the neighborsw of v that it has not yet visited. It then

Algorithm 1: Depth-first search (DFS) [18, 19]
1: Procedure MARK = DFS(G,s)
2: MARK(s) := true;
3: for all w ∈ A(s) do
4: if not MARK(w) then
5: DFS(w);
6: end if
7: end for
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continues to visit an unvisited neighbor of w and so one. Once it reaches a vertex z
that has no neighbors that have not been visited, it continues the search at the node
from which it has reached z. When the algorithm gets back to s and all neighbors
of s have been visited, the algorithm terminates. Algorithm 1 is a recursive version
of this method.

Applying DFS to a graph G with starting point s will yield an array MARK
where MARK(v) = true if and only if v can be reached from s, i.e. if there exists a
path from s to v.

Lemma 1 As, if G is strongly connected, every edge of the graph is touched in the
loop, DFS needs O(|E|) operations.

In the following, we will consider undirected graphs, if not stated otherwise.

Lemma 2 IfG is an undirected graph, then the subgraphG′(V ′, E′) with

V ′ = {v ∈ V : MARK(v) = true} (5)

E′ = {
e = {v,w} ∈ E : v,w ∈ V ′} (6)

is a component of G.

Proof

1. There is a path from s to every other vertex v in G′: By definition, there is a path
from s to all w ∈ A(s). For all w ∈ A(s) there exist paths to all w′ ∈ A(w) for
the same reason. Hence, for allw′ we have a path s → w→ w′. By applying this
argument recursively, we can find paths from s to all v with MARK(v) = true.

2. Since G is undirected, there also exists a path from v to s.
3. Every two other vertices v,w ∈ G′ are connected via a path v → · · · → s →
· · · → w.

In the case of undirected graphsG we can extend Algorithms 1 and 2 in order to
find all components of a graphG. To achieve that, the algorithm needs to re-start the

Algorithm 2: Depth-first search for components (DFS-C) [18]
1: Procedure COMPONENTS = DFS-C(G)
2: MARK(:) := false
3: MARK_OLD(:) := MARK(:)
4: for all v ∈ V do
5: MARK := DFS(v)
6: for all w ∈ V do
7: if MARK(v) 
= MARK_OLD(v) then
8: COMPONENTS(w) := v
9: end if

10: end for
11: MARK_OLD(:) := MARK(:)
12: end for
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DFS at every vertex that has not been reached by a previous DFS. When Algorithm 2
(DFS-C) terminates, every vertex has been visited, but the vertices have a label that
indicates in which DFS run they have been visited. All vertices that have the same
label belong to the same component of G.

If we integrate lines 6–10 from Algorithm 2 into the original DFS algorithm1

the complexity of DFS-C is O(|V | + |E|). In arbitrary undirected graphs G, the
worst case scenario would be |E| = |V |(|V | − 1)/2 which would be the case if
every vertex inG was connected to every other vertex. Such graphs are called dense
[8]. We are mainly interested in graphs associated with sparse matrices arising from
discretizations using pointclouds. In this case, |E| depends on the size of the local
neighborhoods in the pointcloud, which is significantly smaller than |V |. In fact,
the neighborhoods Ni in a pointcloud have sizes � 100 in our applications, i.e.
|E| ≈ c|V | with c � 100.

Definition 9 Undirected graphs with

|E| � |V |(|V | − 1)/2 (7)

are called sparse.

Lemma 3 Therefore, for the sparse graphs Ḡ(A) we are interested in, the complex-
ity of DFS-C is O(|V |).
Remark 2 Recall that for Ḡ(A) the number of vertices |V | is the number of rows in
the matrix A so that for these graphs DFS scales linearly in the number of points or
matrix rows.

2.2 Related Work

DFS is a serial algorithm and using it in parallel is not straight forward, see for
example [7] and more recently [2]. Also note that in FPM every process only holds
part of the matrixA and therefore the graphG(P), namely the part that is associated
with the part of the pointcloud that resides on that process.

Therefore, methods like the ones proposed in [4, 9] or [14] that assume access
to a shared memory cannot be used. The method McColl et al. [9] does have the
benefit of being designed specifically for graphs that change over time. Hong et al.
[5] consider directed graphs with the small world property, i.e. graphs with a small
diameter compared to their size. We are mainly interested in undirected graphs that
do not have the small world property. The FW-BW method and its extension FW-
BW-Trim introduced by Fleischer et al. in [3] and McLendon et al. [10] respectively,
implement a divide and conquer strategy. Their drawback is though that after every

1Which can be done by using writing the component label directly into the MARK array instead
of a binary true/false value.
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divide step, the remaining work needs to be redistributed across the participating
processors, if a proper load balancing shall be achieved.

2.3 Origin of Components in FPM

Now that we have clarified the notations and definitions used in the context of graph
theory, let us focus on the question why the linear systems arising in FPM may
decompose into multiple smaller linear systems. Section 2.3.1 will explain why the
pointcloud may decompose into multiple smaller pointclouds geometrically.

First of all, let us classify the types of components into those that can affect
the existence or uniqueness of a solution for the linear system and those that
cannot. Components in which both the pressure and the velocity are fixed through
appropriate boundary conditions at least one point each are well-posed components,
as the corresponding linear systems have a unique solution. This is not the case,
if either the velocity or the pressure is not fixed by applying the correct boundary
conditions. For example, this would be the case for a component that is confined
only by walls, which would mean that the boundary conditions for the pressure
all are of Neumann-type. Then, if p is a solution to the pressure in this particular
component, so is p+c for a constant c. Note however that this is not the case for the
full linear system comprised of all components. From the linear solver perspective
it can be crucial to know about the components whose solution is only prescribed
up to a constant, see Sect. 2.6.

2.3.1 The Geometric Case

Here we want to point out some situations that produce pointclouds that geometri-
cally induce graphs Ḡ(A) that decompose into components.

The simplest situation occurs when the simulation itself naturally introduces
components because two separate flow domains are being simulated. As an example,
consider simulating the flow through a valve that is closing over time. While there
is only one flow domain at the beginning when the valve is open, there are two flow
domains as soon as the valve has closed. As long as the simulation is set up in a
physically correct way, this case leads to well-posed components.

A similar situation occurs when parts of the fluid are separated from the main
part because of their velocity, i.e. when droplets of fluid are being formed. The
boundary points of such a droplet are detected as free surface boundary points which
means we impose Dirichlet boundary conditions for the pressure and free surface
boundary conditions for the velocities as described in [17] Section 5.3. Therefore,
the linear system is well-posed unless both gravity and inertia tend towards 0, which
would be the case for slowly moving droplets in zero gravity. This is a special case
however, in which the underlying Incompressible Navier–Stokes equations would
admit multiple solutions, that we are not considering with our method.



100 F. Nick et al.

Fig. 1 A valve that is almost closed. The left figure shows the whole valve while the right figure
shows a schematic zoomed in on the highlighted area

The most interesting case here is the case where components occur due to a fine
detail of the geometry that cannot be resolved properly by the pointcloud. This can
happen if the geometry itself is much finer than the resolution of the pointcloud from
the beginning, or if the geometry is moving and during this movement fine channels
in the geometry are created. An example for this would again be the closing valve.
Right before the valve actually closes, there is a very small gap that can be much
smaller in width than the average distance between two points of the pointcloud.

Figure 1 shows how a component is formed while the valve is closing. The left
part of the figure shows the full valve right before it is fully closed. On the right
hand side we see a zoomed in version of the upper right hand side part of the valve
shown as a schematic. The lines between two points are indicating that those points
are neighbors in the pointcloud. Red lines however indicate that the corresponding
points are not connected numerically, e.g. there is no connection between the
pressure unknowns in the linear system. In this case here, there is no numerical
connection because of the walls intersecting the direct lines between two points.
This means that the two points highlighted in bold form a component for themselves.
Note that these two points are not detected as free surface boundary points as they
have points in multiple directions within their neighborhood. The problem with that
is that since both points are considered “interior” points, there are no boundary
conditions posed on this small component at all. Therefore, the linear subsystem
for this component becomes singular because of the consistency conditions for the
least squares problem used to construct the stencils [20]. Analogously there is no
numerical coupling between the velocities of these two points and the velocities of
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the other points in the pointcloud. In Sect. 2.7 we will see that this situation leads to
severe problems in some linear solvers when not treated properly.

Situations like this are more of an issue of the discretization method rather
than they should be an issue for the linear solver to deal with. We were aiming
to improve the performance of a given linear solver (BiCGStab(2)) in this project
and BiCGStab(2) did not suffer from the occurring components whereas our AMG
method did. Therefore, we saw the need to deal with this situation within our AMG
method in order not to break the linear solver in models where it used to work before.
Also keep in mind that although detecting components only needs the knowledge
of the connectivity graph with respect to the numerical stencils, finding a way to
reconnect two components that should only be one component geometrically is a
different task. One idea here would be to introduce another point to the pointcloud
that serves as a connection between the small and the large component. It is easy
to see visually where a point like this should be located, but finding such a point
numerically in a 3D problem is not an easy task.

2.3.2 The Algebraic Case

Components in the linear system for solving for the velocity field can also occur
even if the linear system for the pressure does not decompose into components. This
can be the case when the velocities in the different directions are decoupled from
each other because the viscosity η is constant in the entire domain and the boundary
conditions also do not impose any couplings between the velocities. These cases are
somewhat rare though and will not be the focus of this work.

2.4 Detecting Components in Parallel

Let us concentrate on the geometric case of the previous section, i.e. we examine
the connectedness of the undirected sparse graph Ḡ(A) associated the linear system
for one of the pressure fields in FPM.

We use variation of an algorithm described by Donev in [1]. It also fits into the
framework used by Iverson et al. [6] whereas they use the term label propagation
for what we will call local diffusion.

In order to detect all components in Ḡ(A), Algorithm 3 is run on all processes
involved in parallel. Like the pointcloud, the graph Ḡ(A) we are looking at is
distributed across multiple processes. By V loc we denote those vertices v ∈ V of
the graph that are local to a process. Similarly,Eloc denotes all edges e = {v,w} for
which v ∈ V loc and w ∈ V loc. In contrast to that, Eremote denotes edges e = {v,w}
that satisfy v ∈ V loc or w ∈ V loc. Without loss of generality, in the following we
will assume v ∈ V loc for e ∈ Eremote. Algorithm 3 yields a label for each vertex
indicating to which component it belongs.
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Algorithm 3: Parallel detection of components
1: Procedure COMPONENTS = GET-CMP-Par(G)
2: // Find components locally
3: COMPONENTS := DFS-C

(
Gloc = (

V loc, Eloc
))

4: ROOTS:=COMPONENTS
5: // Condense remote edges to “root” of their component
6: for all e = (v,w) ∈ Eremote do
7: eR := (COMPONENTS(v),COMPONENTS(w))
8: end for
9: // Define reduced graph

10: Eloc
R := {eR}

11: V loc
R := {

v ∈ V loc : COMPONENTS(v) = v
}

12: // Local diffusion
13: while not convergence do
14: for all e ∈ Eloc

R do
15: COMPONENTS(v) := min (COMPONENTS(v),COMPONENTS(w))
16: end for
17: Update COMPONENTS vector
18: end while
19: // Update COMPONENTS label in full graph
20: for all v ∈ V loc \ V loc

R do
21: COMPONENTS(v) := COMPONENTS(ROOTS(v))
22: end for

Remark 3 Here we examine the graph Ḡ(A) rather than the graph G(A). We are
interested in independent linear systems within a larger linear system and Ḡ(A)
is a suitable representation for the connectivity of the larger system, see Sect. 2.
Although Ḡ(A) is an undirected graph by the means of Definition 7, in this
section we represent each undirected edge e = {v,w} through two directed edges
e1 = (v,w) and e2 = (w, v). This corresponds to the situation that we have when
implementing these algorithms in software, where we save adjacency lists for all
vertices, in which case an undirected edge is realized in the same fashion.

Remark 4 In this section and specifically in Algorithm 3 we use COMPONENTS
as a global array, i.e. we implicitly assume that every processes knows the value
of COMPONENTS(i) for every i, even for those vertices that reside on other
processes. In our specific implementation this is realized by using a local array for
the values of COMPONENTS(i) that correspond to local vertices and another array
for the values of non-local vertices that are actually needed. Thus there is no need
to have a global, synchronized array COMPONENTS. The update of the latter array
needs to be done at the appropriate places in the algorithms. In our description, we
omit these updates for simplicity.

The first step in finding all connected components globally is to find all local
components on every process first; that is, ignoring all edges that are connections
to vertices that reside on other processes. In the following, we will call the latter
remote edges. Finding the local components (line 3 of Algorithm 3) is done by
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Fig. 2 (a) The original graph. (b) After detecting local components. Component roots with two
circles. (c) With remote edges changed to start and end at root vertices. (d) The reduced graph. (e)
The reduced graph after one iteration of local diffusion. Updated values in bold. (f) The reduced
graph after two iterations of local diffusion. Updated values in bold. (g) The reduced graph after
three iterations of local diffusion. No values have been updated, so the algorithm stops. (h) After
updating the local edges with the new COMPONENTS label

the DFS-C algorithm (see Algorithm 2) introduced in Sect. 2.1. Here, we could
also use a different algorithm to detect the local components as long as it has the
same asymptotic performance. Figure 2b shows the original graph from Fig. 2a after
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finding the local components on all three processes, see Example 1. In line 4 we store
the information on the local components in the array ROOTS for later reference.

In the next step (lines 6–8; Fig. 2c) the algorithm examines all remote edges.
Assume that e = (v,w) is a remote edge where w is the remote vertex. We then
want to introduce an edge eR = (v′, w′) that connects the two vertices that represent
the local components that v and w belong to, i.e. v′ = COMPONENTS(v) and
w′ = COMPONENTS(w).

Lines 10–11 (Fig. 2d) define a reduced graph with

Eloc
R := {eR} and V loc

R :=
{
v ∈ V loc : COMPONENTS(v) = v

}
, (8)

where the vertices are representatives of the local components and edges indicates
connections across processes between those components. Obviously, if two local
components on different processes are connected in this reduced graph, they are
really one component that is spread across those two processes. This means that
these two local components should end up having the same global identifier, i.e.
they should be detected as one large component.

On the reduced graph, we perform a local diffusion algorithm in lines 13–18:
Every process checks for every remote edge eR = (v,w) if

COMPONENTS(w) < COMPONENTS(v). (9)

If (9) holds, COMPONENTS(v) is updated as

COMPONENTS(v) := COMPONENTS(w) (10)

Every process does this on its local copy of the COMPONENTS array
(cf. Remark 4). Therefore, after every process has done the update for its local
vertices, the COMPONENTS array needs to be synchronized. Then, (9) is checked
again for every remote edge. These steps are repeated until the COMPONENTS
array does not change any more. This way, the minimal labels COMPONENTS(u)
diffuse through the components of the reduced graph, see Fig. 2e–g.

We now have the final labels for all vertices that are part of the reduced graph.
The last step is to update the label for all other vertices (lines 20–22 of Algorithm 3).
An easy way of doing this is to store from which root vertex a vertex has been visited
during DFS-C (line 3 of Algorithm 3). We have already stored that information in
the ROOTS array after running DFS-C. Therefore, this final update comes down to
setting

COMPONENTS(v) := COMPONENTS(ROOTS(v)) (11)

for all v ∈ V loc \ V loc
R . After this, the COMPONENTS array contains the correct

label for every v ∈ V .
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Remark 5 In the reduced graph, we could remove duplicate edges. Those might
exist because two local components on two different processes can be connected
via multiple edges from different vertices in both components. For example, in
Fig. 2a both the vertex 5 and the vertex 6 that reside on process 2 are connected to
vertex 2 on process 1. Because both vertex 6 and vertex 5 belong to the same local
component, those two edges are reduced to edges eR and e′R connecting vertex 5 and
vertex 1 in the reduced graph, see Fig. 2d. One of those edges would be sufficient
for the local diffusion part of the algorithm to work correctly, however the second
edge does not cause a problem either. The loop in lines 14–16 performs one integer
comparison for each remote edge. We would not have to do this comparison for
the duplicate remote edges, if we removed them from the reduced graph. However,
finding those remote edges would require at least

O
(
|Eloc
R | log |Eloc

R |
) |Eloc

R |≤c|V loc
R |= O

(
|V loc
R | log |V loc

R |
)

(12)

operations for sorting all remote edges.
This would mean that the bound we will show in Sect. 2.5 would not hold any

more. Our experiments in Sect. 2.7 also show that the potential gain here is relatively
small as we do not perform many iterations of the local diffusion algorithm in
practice.

Example 1 The graph depicted in Fig. 2a shall serve as an example for Algorithm 3.
The vertex labels correspond to the value of the COMPONENTS label in the current
step, whereas the color of each vertex indicates the process on which the vertex
resides. Analogously, edges are colored according to the process on which they
originate. In some sense, this is a worst case example: The component that has label
“1” at the very end (see Fig. 2h) stretches across all three processes and the diffusion
of the minimum label “1” needs to pass all three processes before the algorithm
stops. Hence in this case we reach the theoretical maximum of P local diffusion
iterations that we will derive in Sect. 2.5.

2.5 Complexity of the Algorithm

In this section, we deal with the asymptotic complexity of our proposed algorithm
in the case of sparse graphs Ḡ(A). Performance considerations regarding runtime
will be the topic of Sect. 2.7.

Our argument is similar to the one in [6] but because of our more specific
knowledge of the graph Ḡ(A) we can give more specific estimates.

We begin by formulating some estimates regarding the relationships between the
number of vertices and the number of edges in various graphs involved here.
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Lemma 4

1.
⋃
V loc = V ,

∑
p |V loc| = |V |

2. |V loc| ≤ |V |, |Eloc| ≤ |E|
3. |E| ≤ c|V |, |Eloc| ≤ c|V loc| with c � 100
4. |V loc

R | ≤ |V loc|
Proof

1. Every point in the pointcloud and therefore every vertex in the graph we are
considering here is associated to exactly one process.

2. V loc and Eloc are subsets of V and E respectively
3. The number of edges in the graph Ḡ(A) is limited by the allowed neighborhood

size in the pointcloud. In FPM, we usually allow up to 40 neighbors, see for
example [16].

4. Vertices in the reduced graph represent local components and there cannot be
more local components than local vertices in the original graph.

Lemma 5 For sparse graphs and a set P of P processors, Algorithm 3 has an
asymptotic complexity of

O (|V | · P) (13)

in the worst case and

O (|V |) (14)

in the average case.

Proof As we have already seen in Lemma 3, DFS-C has an asymptotic complexity
of O(|V loc|) on every process. The assignment in line 4 of Algorithm 3 is also of
complexity O(|V loc|).

Finding Eremote which is needed in line 6 can be done in O(|Eloc).2 Because
of Lemma 4, this is also O(|V loc|). The loop in lines 6–8 needs Eremote iterations
which, by the same argument, is also bound by O(|V loc|).

Lines 10 and 11 are only notations that are not carried out in software, so we
omit those two in our considerations.

For the local diffusion part in lines 13–18 first consider the inner loop in lines
14–16. The number of iterations in this loop is |Eloc

R | and by Lemma 4 we have

|Eloc
R | ≤ c|VR| ≤ c|V | where VR =

⋃
V loc
R . (15)

2With an appropriate numbering of the local vertices versus the remote vertices or by labeling
those edges beforehand.
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It remains to examine how many local diffusion iterations are needed before
convergence is reached.

To this end, consider the reduced graph

GR =
(
VR,

⋃
Eloc
R

)
(16)

in which each vertex represents a local component. The components of GR then
yield the global components. In the worst case the minimum label in a component
inGR needs to propagate along the longest shortest path (diameter; see Definition 3)
in GR. Afterwards, another iteration is needed to notice that the local diffusion has
converged. This makes for a worst case iteration count of

I ≤ diam (GR)+ 1 (17)

Since the vertices in GR represent local components on each process, there are no
edges between two vertices in GR on the same process. Therefore

diam (GR) ≤ P − 1 (18)

which yields

I ≤ P (19)

Another assumption for the worst case would be that the vertices are spread
unevenly across the processes, i.e.

max
p∈P

|V loc| ≈ |V | (20)

In this case, all the local complexities in the previous steps of the algorithm become
O(|V |) and local diffusion needs P iterations of an O(|V |) loop, meaning the local
diffusion part has the highest complexity in this algorithm: O(|V | · P).

For the average case we assume that the vertices are spread evenly across the
processors, i.e.

max
p∈P

|V loc| ≈ |V |/P (21)

Then, the complexities in the local part of the algorithm become O(|V |/P ) and the
local diffusion part is

O(|V |/P · P) = O(|V |). (22)

Remark 6 Section 2.7 will show that this theoretical complexity is a pessimistic
estimate for many cases. The main bottleneck for the complexity is the number of
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iterations of the local diffusion part. In the proof above, we have estimated

I ≤ diam(GR)+ 1 ≤ P (23)

Note that the diameter of the reduced graph GR mainly depends on the partition
of the pointcloud onto the processes which in turn depends on the shape of the
computational domain. For example, consider a long and thin domain like a tube.
In this case, the partition would also follow this shape leading to a graph GR with
a large diameter like P − 1 in the worst case. If however the domain is a cube and
every process has an equal cubical part of the pointcloud to compute, then

diam(GR) ≈
√

3 3
√
P , (24)

so in this case the complexity of Algorithm 3 would be

O
(
|V | · P− 2

3

)
(25)

2.6 Dealing with Components in the Linear Solver

There are two main types of components that our AMG method distinguishes.
Parallel components that are solved in parallel. In order to determine which

components will be solved in parallel, we first find the P largest components. These
components are assigned to sets of processors of different sizes according to their
size. Specifically, we employ Algorithm 4 for this task.

Serial components that are solved on a single process. Every component that
does not belong to the P largest component and every component that has been
assigned only 1 processor in Algorithm 4 becomes a serial component. Those serial
components that are already located on a single processor will stay on this processor
and will be solved by the same processor after it has solved the parallel component
it was assigned to. Serial components that reside on more than one processor get
redistributed to a single processor in a round-robin fashion. Again, they are solved
by their assigned processor after it has solved its parallel component.

Algorithm 4: Algorithm to decide how many processors are assigned to a
component

1: Procedure ASSIGN
2: Nleft := N

3: PA := P

4: for icmp ∈ largest_cmp do
5: ASSIGN(icmp) := min

("Nicmp/Nleft(P − PA)+ 0.5#, (P − PA)
)

6: Nleft := Nleft − Nicmp
7: PA := PA − ASSIGN(icmp)
8: end for
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For serial components whose size is below a certain threshold, the default being
100 variables, we do not employ an AMG method but use a direct solver, MKL’s
PARDISO, right away.

Both PARDISO and our AMG method have special modes to solve a system only
up to an additive constant in the case of zero rowsum matrices.

2.7 Numerical Experiments

2.7.1 The Valve Case

Let us turn to the case of a closing valve again, see Sect. 2.3.1. In this real world
example, we find that at some point during the simulation, just before the valve
closes completely, a small component with 5 points is formed. Note that this is very
small compared to the overall size of the pointcloud, which is 380,641. Because
of the consistency conditions for the stencil [20], the row sums of the rows in the
pressure system for those 5 points are all zero. In this particular model, gravity is
disabled which means that the external body forces acting on these points is 0. At
the same time, the initial guess is zero, which means that the subsystem has the form

⎛
⎜⎜⎜⎜⎜⎝

1 − 1
4 − 1

4 − 1
4 − 1

4
− 1

4 1 − 1
4 − 1

4 − 1
4

− 1
4 − 1

4 1 − 1
4 − 1

4
− 1

4 − 1
4 − 1

4 1 − 1
4

− 1
4 − 1

4 − 1
4 − 1

4 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

(26)

Hence, the linear system is singular, but the initial guess is already a solution.
Consequently, both BiCGStab(2) and Gauss–Seidel solve the full linear system
without being affected by the singular subsystem, as both methods do not change the
values of the initial guess at the corresponding rows. In the one processor case, their
convergence rates are 0.947 and 0.999 respectively, so they need a lot of iterations to
solve the system up to the desired accuracy. But this observation is the same without
a singular subsystem, see [12].

On the other hand, our AMG method is affected severely by the singular
subsystem: Fig. 3 shows that except the for 1 and 128 processor case, the number
of AMG iterations is much higher when solving the full linear system, compared
to solving the system without the singular subsystem. In order to understand the
exceptions of the 1 and 128 processor case, we first need to look at why the other
cases need that many iterations.

We find that the coarse level solver is not finding an appropriate solution to the
coarse level problem in these cases, because the coarse level problem is singular.
This is simply because the singularity on the finest level was transferred down all
the way to the coarse level. In the serial case, this does not happen because when
constructing the second level, one of the five rows corresponding to the singular
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Fig. 3 Number of AMG
iterations when working on
the full matrix (red) and with
the solver being aware of
components (blue)
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subsystem is picked to be on the second level, while the others automatically become
fine level rows, because all the couplings are equal (−1/4) in the stencil at the
singular component. Therefore, all the couplings in every row are considered to be
strong couplings, see [15], so as soon as one of the five rows is chosen to be on the
coarse level, all others have to stay on the fine level. Then on the second level, the
former singular component is represented by only one single, independent variable.3

In this case, our AMG algorithm flags this variable to stay on the second level—as
the smoother will solve for this variable directly—before starting to construct the
third level. Consequently, the singular component is not represented any more from
the third level downwards.

The reason why this is not happening in most of the parallel cases is that in
our AMG method we consider couplings that couple rows that reside on different
processors to be weak couplings, no matter how large they are by absolute value.
I.e. the singular subsystem is not reduced to a single point and then not taken to
the next coarse level as in the serial case. Instead, if the singular subsystem resides
on more than one processor, it is reduced to a single point on every processor, but
it remains on all coarser levels because of its couplings to the other processors.
Note that, to this end, the 128 processor case is a special case where the five points
comprising the singular component happen to be all on one processor again.

With the component detection turned on, we only solve the main, regular linear
system with our AMG method and the small, singular linear system is passed to
MKL’s direct solver PARDISO, which solves this small system up to a constant.

3Note that if following the algorithm described in [15] closely, the diagonal entry in the
corresponding row would be 0, leading to a coarse level equation 0 = 0. Our AMG method
implements a check to avoid non-positive diagonals on coarse levels, that causes this entry to
be 1 instead.
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Fig. 4 Runtime when
working on the full matrix
(red) and with the solver
being aware of components
(blue)
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Note that since in FPM we are only interested in the pressure gradient ∇p anyway,
so knowing the solution to the small subsystem up to a constant is sufficient for our
purposes. For the performance of our AMG method on the main component, we
refer to [11] and [12].

Comparing the run times of both the AMG method with and without the detection
of independent components, we see that the benefit from finding the singular
component in terms of run time is smaller than the difference in iteration numbers
indicates, see Fig. 4. That is because the setup cost when solving the reduced system
without the singular component is between 31% and 64% of the overall solver run
time and this portion of the run time is the same whether the full system is solved
or just the non-singular part. Removing the singular component from the system
only speeds up the iteration part of the solving process by reducing the number of
iterations needed.

On the other hand though, finding the components and redistributing the system
according to Sect. 2.6 requires time that is not needed when solving the full system.
Figure 5 shows that the former task is achieved in less than 4% of the overall solver
run time. This is better than the theoretical estimate in Lemma 5 suggests. The
reason for that is that in Lemma 5 we assumed that the number of iterations of the
local diffusion algorithm can be up to P + 1, where P is the number of processes
involved.

However, Fig. 6 shows that even though the number of iterations is increasing
with the number of processes used, for 1024 processes, still only 9 iterations are
needed. This observation means that the local diffusion part of Algorithm 3 is
actually a lot less expensive than predicted and that Remark 6 is important here.
It is a best case addition to Lemma 5 and although the actual number of iterations
depends on the geometry of the given problem, many results are closer to the best
case than to the average case.
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Fig. 5 Time needed to determine the component structure of the graph relative to the overall time
needed to solve the system
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Fig. 6 Number of iterations of local diffusion for different numbers of processors

After the components have been found, we need to redistribute the system
according to Sect. 2.6. This task is much more expensive in terms of run time, as
Fig. 7 shows. In other words, while finding the components only takes less than 4%
of the overall run time, redistributing the matrix takes between 20% and 30%.
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Fig. 7 Time needed to
redistribute the matrix across
the processors relative to the
overall time needed to solve
the system
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3 Avoiding Redistribution

The results in Sect. 2 indicate that finding the components comes at a negligible cost
compared to redistributing the linear system. Thus, future work will be dedicated to
finding means to avoid or at least reduce the amount of redistribution that needs to
be done.

For the case of one large component and one or several very small ones, like in
the example of the closing valve, it would be beneficial to join the small components
with the large one but make sure that the variables corresponding to the small,
potentially singular, components stay on the finest level in the AMG hierarchy.
This way, they would only be affected by the smoother and the Krylov accelerator
which would mean they would be solved by a method comparable to the status
quo (BiCGStab(2)). In the case shown in the previous section, this method would
have worked and the redistribution could have been avoided altogether as only
one component would have been left, which our AMG method then would have
solved with the given partition across the processes. A variant of this method would
be to also add some large value to diagonal entries corresponding to the small
components. This would make sure that the small components do not affect the
convergence of the AMG method dramatically. The solution to these components
could then be computed separately after the main AMG method. Theoretically
this would come done to ignoring the small components and solving the large one
with AMG without redistributing it before and then solving the small components.
A third option is to treat the small components as a Schwarz block without any
couplings to the remainder block within the large component. Again, this would
remove the small components from the AMG method and solve them separately
without a need to redistribute the full linear system. Similarly, restricting the
redistribution to small components and solving the parallel component with the
given partition is an option.
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4 Conclusions

We have introduced an algorithm that can find components in a sparse graph in
parallel with a theoretical complexity of O(|V |) in the average case.

Our experiments have shown though that this is a fairly rough estimate and
that the measured performance is much better, because the local diffusion needs
less iterations than predicted theoretically. Overall, the time needed to detect
components is below 4% of the overall solver run time in the example shown here.

In the simulation of a closing valve, where a singular component occurs
right before the valve closes completely, our AMG method has shown a stable
convergence across multiple different numbers of processors when detecting and
treating the singular component separately, whereas the AMG method on the full
system showed a very unstable behavior.

Future efforts will try to reduce the time that is needed to redistribute the linear
system after the components have been found. Another option is to avoid the
redistribution completely, as pointed out in Sect. 3.
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Numerical Study of the RBF-FD Level
Set Based Method for Partial Differential
Equations on Evolving-in-Time Surfaces

Andriy Sokolov, Oleg Davydov, and Stefan Turek

Abstract In this article we present a Radial Basis Function (RBF)-Finite Differ-
ence (FD) level set based method for the numerical solution of partial differential
equations (PDEs) of the reaction-diffusion-convection type on an evolving-in-time
hypersurface �(t). In a series of numerical experiments we study the accuracy and
robustness of the proposed scheme and demonstrate that the method is applicable to
practical models.

1 Introduction

Numerical simulation of partial differential equations posed on an evolving-in-time
hypersurface �(t) is a rapidly growing branch of numerical mathematics, which
finds its applications in many industrial tasks. During the last decade many profound
finite-element-based methods for surface-defined PDEs were developed: parametric
methods [7–9], bulk-layer methods of the phase-field [21] and level-set [8, 23] types,
the trace FEM [19] and the space-time FEM [20], etc. All these methods are of the
finite element nature, meaning that one has to construct a mesh before any numerical
simulation begins. Very often, some largely CPU- and time-consuming work has to
be done with or related to the mesh during the simulation process.

On the other hand, kernel methods based on radial basis functions are becoming
increasingly popular for the numerical simulation of partial differential equations
due to their flexibility of working with scattered data nodes, high accuracy,
and significantly simpler implementation. These methods demonstrated promising
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results for various problems of PDEs in two- and three-dimensional domains, see,
e.g. [1, 2, 10, 18].

In the recently appeared works of G. Wright et al. [13, 22] the RBF-FD
methodology was applied to the simulation of surface PDEs of reaction-diffusion
type on stationary manifolds. In the current paper, with the help of the level set
technique, we extend the RBF-FD method to reaction-diffusion-convection partial
differential equations on evolving-in-time surfaces.

2 PDE on Evolving Hypersurface

2.1 Problem Formulation

We consider the following reaction-diffusion-convection equation

∂∗u
∂t

+ w · ∇�(t)u = D��(t)u+ g(u) on �(t) × T . (1)

Here, the constant D is the viscousity coefficient. �(t) is a compact, smooth,
connected and closed hypersurface in R

d , d = 2, 3; ∂
∗u
∂t

is a time-derivative, which
takes into account the evolution of �(t) and will be explained below, ��(t)u is the
Laplace-Beltrami term, w is some vector field which transports u along �(t) and
g(·) is a kinetic term. The corresponding initial and boundary (if any) conditions for
u have to be provided. We adopt the notation by writing vector fields in bold letters,
i.e., c = (c1, . . . , cn)

T . We assume that the solution u of (1) can be (naturally)
extended from �(t) to an ε-band �ε(t), see Fig. 1. The domain of interest or also
the calculational domain is � = �in ∪�out ∪�. For the sake of simplicity, we also
assume that �(t) ⊂ �ε(t) ⊂ � during the whole simulation time t ∈ [0, T ]. The
surface derivative

∂∗u
∂t

= ∂•t u+ u∇�(t) · v

Fig. 1 Geometric illustration

t

t

in

out



RBF-FD for Surface PDEs 119

can be obtained by the Leibniz formula

d

dt

∫

�(t)

u =
∫

�(t)

∂•t u+ u∇�(t) · v.

By ∂•t u = ∂tu + v · ∇u one denotes the covariant or advective surface material
derivative. The surface velocity v = Vn + vS can be decomposed into velocity
components in the normal direction V n, with n to be a surface outward normal
vector, and in the tangential direction vS . Using the relation

∇� · v = ∇�V · n+ V∇� · n+ ∇� · vS = V∇� · n+∇� · vS =
= −VH + ∇� · vS,

and therefore

v · ∇u = V n · ∇u+ vS · ∇u = V ∂u
∂n

+ vS · ∇u,

whereH is a mean curvature, we can rewrite (1) as

∂tu+ vS · ∇u− VHu+ V ∂u
∂n

+ u∇�(t) · vS + w · ∇�(t)u = D��(t)u+ g(u),

or, in terms of the surface material derivative, as

∂•t u+ u∇� · v + w · ∇�(t)u = D��(t)u+ g(u). (2)

2.2 Level Set Method

For the implicit prescription of a compact, smoothly connected and oriented
hypersurface �(t) ⊂ � we introduce a smooth level set function

φ(t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

< 0, if x is inside �(t),

= 0, if x ∈ �(t),
> 0, if x is outside �(t),

(3)

such that |∇φ| 
= 0. Then, an outward normal to �(t) at the point x is

n(x) = (n1, n2, . . . , nd)T = ∇φ(x)/|∇φ(x)| (4)

and the matrix

P� = I − nnT =
(
δij − ninj

)d
i,j=1

(5)
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is the projection onto the tangent space Tx�(t). For a scalar function η and a
tangential vector field η = (η1, η2, . . . , ηd)T on � extended into � we can define

∇�η := (P�∇) η =
⎧
⎨

⎩
∂η

∂xi
−

d∑

j=1

ninj
∂η

∂xj

⎫
⎬

⎭

d

i=1

, (6)

∇� · η =
d∑

i=1

⎛

⎝∂η
i

∂xi
−

d∑

j=1

ninj
∂ηi

∂xj

⎞

⎠ , (7)

the surface gradient ∇� and the surface divergence ∇� · operators, respectively.
Using this notation, the Laplace-Beltrami operator can be written as

��η = ∇� · ∇�η = P�∇ · P�∇ η. (8)

2.3 Discretization in Time

For the discretisation in time of the surface PDE

∂tu+ v · ∇u+ u∇�(t) · v + w · ∇�(t)u = D��(t)u+ g(u), (9)

we use the θ -scheme method. Given un and the time step �t = tn+1 − tn, solve for
u = un+1 (for the sake of simplicity we omit the index {n + 1} there it is possible,
e.g. t = tn+1)

u− un
�t

+ θ
(
v · ∇u+ u∇�(t) · v + w · ∇�(t)u−D��(t)u+ g(u)

)

= −(1− θ) (vn · ∇un + un∇�(tn) · vn
+ wn · ∇�(tn)un −D��(tn)un + g(un)

)
. (10)

If we denote corresponding discrete operators, whose RBF-FD construction will be
described in Sect. 3, by

L(t, �(t))u ≈ −��(t)u|X, (11)

K̃(t, v)u ≈ −v · ∇u|X, (12)

˜̃K(t,w, �(t))u ≈ −w · ∇�(t)u|X, (13)

G(t, �(t))u ≈ u∇�(t) · v|X, (14)
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where u = (u1, u2, . . . , uN )
T ≈ u|X = (

u(x1), u(x2), . . . , u(xN)
)T , with X =

{xj }Nj=1 ⊂ �, then the semi-discrete equation (10) can be rewritten in the following
matrix form:

[ I + θ�t
{
−K̃(t, v)− ˜̃K(t,w, �)+ L(t, �)+G(t, �)

}
] u

= [ I − (1− θ)�t
{
−K̃(tn, vn)− ˜̃K(tn,wn, �n)

+ L(tn, �n)+G(tn, �n) } ] un

+ θ�t g(u)+ (1− θ)�t g(un), (15)

For our numerical simulations we take either the Implicit-Euler scheme, which
corresponds to θ = 1, or the Crank-Nicolson scheme, which is obtained from (15)

by setting θ = 1

2
.

3 RBF-FD for PDEs on Evolving-in-Time Surfaces

3.1 Kernel Interpolation and Operator Approximation

Given a set of scattered nodes X = {xj }Nj=1 ⊂ � we are looking for a continuous
function u : �→ R as a kernel interpolant, those general form is

Iφu(x) =
N∑

j=1

cj(x, xj ), x ∈ �, (16)

such that its restriction u|�(t) is a solution of equation (2). Here,  is a positive
definite kernel called a radial basis function (RBF) with the property (x, y) =
ϕ(‖x − y‖). Denoting rj (xi ) = ‖xi − xj‖, the interpolation coefficients {cj }Nj=1
are determined by enforcing Iϕu|X = u|X as the following linear system:

AXcX = uX, (17)

where

AX =

⎡
⎢⎢⎢⎣

ϕ(r1(x1)) ϕ(r2(x1)) . . . ϕ(rN(x1))

ϕ(r1(x2)) ϕ(r2(x2)) . . . ϕ(rN(x2))
...

...
. . .

...

ϕ(r1(xN)) ϕ(r2(xN)) . . . ϕ(rN(xN))

⎤
⎥⎥⎥⎦ , cX =

⎡
⎢⎢⎢⎣

c1

c2
...

cN

⎤
⎥⎥⎥⎦ , uX =

⎡
⎢⎢⎢⎣

u(x1)

u(x2)
...

u(xN)

⎤
⎥⎥⎥⎦ .

For a positive definite ϕ, this system is positive definite and hence solvable.



122 A. Sokolov et al.

In the following we use the radial basis function finite difference (RBF-FD) method
for approximation of all linear differential operators, which arise through our
derivations. Let L be one of these linear operators. Then the approximation of Lu
at the point ζ is sought as a weighted sum of function values u(ξ j ) at the points
� = �ζ = {ξ1, ξ2, . . . , ξK } neighboring to ζ :

Lu(ζ ) ≈
K∑

j=1

ωju(ξ j ), ξ j ∈ �, (18)

where the approximation weights ω = (ω1, ω2, . . . , ωK)
T can be computed by

solving the linear system

A�ω = [Lϕ(rj (ζ ))]Kj=1 with A� := [ϕ(rj (ξ i ))]Ki,j=1. (19)

In general, a good choice of stencil points ξ i for the accurate approximation of
Lu(ζ ) is a nontrivial task which requires additional analysis [3, 5, 18]. In this
article, the set �ζ consists of the K = 9 points nearest to ζ in the Euclidean
distance, including ζ itself. Either Gaussian ϕ(r) = exp(−ε2r2) with ε > 0 close
to zero, or the polyharmonic radial basis function ϕ(r) = rγ with γ = 5 are
used in all presented numerical simulations. In the case of Gaussian we use a QR
preconditioning technique that allows stable computation of the weights for any
value of the shape parameter ε [4, 12, 17]. Polyharmonic RBF is only conditionally
positive definite and therefore the interpolant (16) is extended in this case by a
polynomial term of degree "γ /2#, see [10, 11] for details.

In the case of a vector-valued operator L the weights ωj are vectors, and ω is a
matrix. In particular, (18) is replaced by

∇u(ζ ) ≈ ω∇(ζ ,�)T u� (20)

for the gradient operator ∇, where each column of the matrix ω∇(ζ ,�) ∈ R
K×d is

obtained by solving (19) for the corresponding partial derivative operator. Clearly,
a gradient-type operator LAgradu = A∇u with components

∑d
j=1 aij

∂u
∂xj

, i =
1, . . . , d , where A : �→ R

d×d , can be discretized as

LAgradu(ζ ) ≈
[ K∑

i=1

ωij u(ξ i )
]d
j=1

= A(ζ )ωT∇(ζ ,�)u�, (21)

where ω := ω∇(ζ ,�)AT (ζ ). A simple calculation shows that the same weight
matrix ω = ω∇(ζ ,�)AT (ζ ) gives a discretization

LAdivu(ζ ) ≈
K∑

i=1

d∑

j=1

ωij uj (ξ i ) = trace
(
A(ζ )ωT∇(ζ ,�)u�

)
(22)
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of the divergence-type operator LAdivu = A∇ · u := ∑d
i,j=1 aij

∂ui
∂xj

, where u =
(u1, . . . , ud)

T is a vector-function, and u� = [uj (ξ i )]K,di,j=1.
Formulas (21) and (22) can be combined to obtain an approximation of the

anisotropic diffusion operator

�A,Bu := A∇ · B∇u = LAdivL
B
gradu, A,B : �→ R

d×d .

To this end, an auxiliary set of points � = {γ 1, . . . , γ L} is chosen in the
neighborhood of ζ , an approximation of the vector

u(γ s ) := LBgradu(γ s) ≈
[ K∑

i=1

ωij (γ s )u(ξ i )
]d
j=1

, ω(γ s ) := ω∇(γ s , �)BT (γ s ),

is obtained by (21) for each s = 1, . . . , L, and inserted into (22), where � is used
instead of �. Setting ω̃ := ω∇(ζ , �)AT (ζ ), we arrive at

�A,Bu(ζ ) ≈
K∑

i=1

ωiu(ξ i ), ωi =
L∑

s=1

d∑

j=1

ω̃sjωij (γ s), (23)

that is

ωi = trace
(
ω̃ [ωij (γ s )]d,Lj,s=1

)
, i = 1, . . . ,K.

In the case when A = B and ζ ∈ � = � the formulas for ωi in (23) can
be simplified since ω̃ coincides with one of the matrices ω(γ s ), see [13, 22]. We
however prefer to choose � closer to ζ , in order to obtain more reliable numerical
differentiation formulas for LBgradu(γ s). In this paper we use

γ j = (ζ + ξ j )/2, j = 1, . . . ,K, (24)

see Fig. 2, where ξ1 = ζ .

Fig. 2 Discretization of the
anisotropic diffusion operator
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3.2 RBF-FD Discretization in Space

We now describe the discrete operators in (11)–(14). After choosing a set of nodes
X = {xj }Nj=1 ⊂ �, we select for each ζ ∈ X a set of neighbors�ζ ⊂ X.

Thanks to (8), the value of the Laplace-Betrami operator −��(t)u(ζ ) can be
approximated according to (23) with −A = B = P�(t), and the weights ωi of this
formula become the nonzero entries of the ζ -row of the matrix L(t, �(t)) in (11).

For the generalized RBF-FD approximation of convection operators v · ∇u and
w · ∇�(t)u we make an assumption that both vector fields v and w can be extended
outside of �(t) to the whole domain �. In the case of the level set framework
this extension of the surface velocity v is straightforward as a velocity field of the
corresponding level set. Then by (6), ∇�(t)u = P�(t)∇u, and hence for example

(w · ∇�(t)u)(ζ ) ≈ wT (ζ )P�(t)(ζ )ωT∇(ζ ,�ζ )u�ζ

as in (21), leading to the weights for the ζ -row of ˜̃K(t,w, �(t)) in (13). Note that
for convection dominated flows this approximation cannot be used as it is because
of the stability issues: dominated convection terms may lead to the non-positiveness
of a given numerical scheme and in such a way cause the appearance of negative
values and give rise to nonphysical oscillations in the numerical solution. In this
article though we do not discuss this issue.

Construction of the RBF-FD approximation of the term u∇�(t) · v in (14) is done
by (22) in the form

(u∇�(t) · v)(ζ ) ≈ ωζu(ζ ), ωζ = trace
(
P�(t)(ζ )ωT∇(ζ ,�ζ )v�ζ

)
.

Hence,G(t, �(t)) in (14) is a diagonal matrix with the numbers ωζ on the diagonal.

4 Numerical Results

Here we demonstrate the applicability of the proposed RBF-FD scheme. In the
following subsections we validate the spatial convergence of our scheme by
considering an example of a heat equation on a curve. In the next subsections we
show that the scheme can be applied not only to the surface evolution in the normal
directions but also in the tangential one. In the last example we apply the RBF-
FD approximation to convection dominated problems to demonstrate that additional
stabilization techniques are required in this case.
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4.1 Example 1

In the first test case we will validate the performance of the scheme and measure
its accuracy by comparing with a given analytical solution. We solve the following
equation

∂∗u(x, t)
∂t

= D��(t)u(x, t) + g(x, t) on �(t), (25)

where �(t) is prescribed as the zero level set of the function

φ(x, t) = |x| − 1.0+ sin(4 t)(|x| − 0.5)(1.0− |x|). (26)

As a domain we choose � = {x ∈ R
2 : 0.5 ≤ |x| ≤ 1.0}. The boundary of the

domain ∂� is aligned with a curve from the family �r(t) = {x|φ(x, t) = r}. The
analytical solution is chosen to be

u(x, t) = e−t/|x|2 x1

|x| . (27)

Since �(t) is time-dependent, Eq. (25) transforms into

∂tu+ vS · ∇u+ V ∂u
∂n

− VHu+ u∇� · vS −��u = g, (28)

where H is the mean curvature of �(t) and therefore H = −1/|x|. Substituting
vS = 0 into (28) we get

∂tu+ V ∂u
∂n

− VHu−��u = g. (29)

The function u(x, t) from (27) solves

∂tu−��u = 0.

Therefore, one finds that

g = V
∂u

∂n
− VHu = V u

(
2 t

|x|3 +
1

|x|
)
.

As the initial condition we set uinit = u(x, t = 0). Here, we calculate numerical
solutions by the implicit scheme, θ = 1 in (10), and the Crank-Nicolson schemes,
θ = 1/2 in (10). The corresponding mesh, as well as initial condition and analytical
and numerical solutions are shown in Fig. 3a–d. Starting from t = 0, we calculate
until the time point T = 0.1 with the time step �t ≈ h2 by the Implicit-Euler
scheme, θ = 1 in (15), and �t ≈ h by the second-order Crank-Nicolson scheme,
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Fig. 3 Mesh, initial, analytical and numerical solutions. (a) Mesh, lev = 3. (b) Initial solution,
lev = 4. (c) Analytical solution, lev = 4. (d) Numerical solution, lev = 4

θ = 1/2 in (15). In Table 1 we measure the difference between the analytical and
numerical solutions and obtain orders of convergence for the Implicit-Euler and
Crank-Nicolson schemes. The corresponding error is defined as (cf. [6])

l2(�ε)-error =
⎛

⎝ 1

|d.o.f.|
∑

xi∈�ε

∣∣uanalyt(xi , T )− unum(xi , T )
∣∣2
⎞

⎠

1
2

,

One observes that the Crank-Nicolson scheme requires much fewer time steps in
order to reach accuracy of the second order as the Implicit-Euler scheme.
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Table 1 Convergence of the
Implicit-Euler and
Crank-Nicolson schemes

Lev. d.o.f Num. of time steps l2(�0.25)-error Order

Implicit scheme, �t ≈ h2

1 30 3 0.035854 –

2 100 10 0.009567 1.905

3 360 40 0.002602 1.878

4 1360 160 0.000748 1.798

5 5280 640 0.000213 1.812

Crank-Nicolson, �t ≈ h

1 30 5 0.040218 –

2 100 10 0.09203 2.127

3 360 20 0.002367 1.959

4 1360 40 0.000673 1.814

5 5280 80 0.000192 1.809

4.2 Example 2

As our second test case we take Example 2 from [6]: we solve Eq. (25) in the domain
� = {x ∈ R

2 : 0.5 ≤ |x| ≤ 1.0} on the stationary level sets of

φ(x, t) = |x| − 0.75.

Here, the initial solution is u0(x) = sin(4γ ), where γ ∈ [0, 2π) is the polar angle
and the tangential velocity of the surface � = {x|φ(x, t) = 0} is vS = 0. Since
γt = 0, the normal component of the surface velocity V is also zero. The mean value
of u0 vanishes on every level set �r , hence the solution tends to zero as time tends to
infinity. But this occurs at a rate which depends on the radius of the circle because
of the different diffusion coefficients on the different circles. Numerical solutions
at successive time instances are presented in Fig. 4. Here, the Implicit-Euler and
Crank-Nicolson schemes deliver the same numerical results, with the difference that
the Crank-Nicolson scheme requires much fewer time steps.

4.3 Example 3

In this test case we keep everything similar to the previous example in Sect. 4.2, but
the tangential velocity of the surface is defined as

vS = 10

(−φx2, φx1

)

|∇φ| . (30)

Numerical results at some instances of time intervals are shown in Fig. 5. This
example demonstrates that our approach is able to treat PDEs on time-dependent
surfaces which move not only in the normal, but also in the tangential direction.
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Fig. 4 Solution at various time instances, �t = 0.0001. (a) Initial solution. (b) At t = 0.02. (c)
At t = 0.05. (d) At t = 0.1

4.4 Example 4

In this example we consider a case, in which the evolution of a surface is with purely
normal velocity:

φ(x, t) = |x| − 0.75+ sin(8γ ) sin(4t) (r − 0.5) (1− r).

The initial solution is u0(x) = sin(8γ ). Values of u in the boundary nodes are
treated in the same way as in the inner ones. Figure 6a–c show evolutions of the
obtained solution and of the level set function at different time instances. Here, we
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Fig. 5 Solution at various time instances, �t = 0.0001. (a) Initial solution. (b) At t = 0.002. (c)
At t = 0.05. (d) At t = 0.1

use a mesh at the sixth level of refinement (which corresponds to 5280 d.o.f). The
time-step is�t = 0.0001. For this kind of numerical simulations a number of stencil
points and choice of their selection play an important role. For elliptic problems in
2D domains the corresponding study was done in works of Davydov et al. [3, 18].
For surface PDEs the relevant study is of a significant demand and is the aim of our
future work.



130 A. Sokolov et al.

Fig. 6 Evolution of the numerical solution (left) and the level set function (right)
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Fig. 7 The pure RBF-FD scheme for the transport problem. (a) Initial solution. (b) Numerical
solution, t = 1.0

4.5 Example 5

The RBF-FD approximations of operator make it possible to perform numerical
simulations for the pure transport equation:

∂tu+ v · ∇u = 0, in � = [0, 1]2, (31)

where v = (−y, x). As a simulation setting we choose �t = 0.001 and T = 3.0.
We place 6561 nodes in a Cartesian equidistant way inside �, which corresponds
to the 81-by-81 refinement of the unit square. Initial conditions are taken from the
solid-body rotation benchmark [14–16] and are shown in Fig. 7a.

The pure RBF-FD discretization for the transport problem does not guarantee
mass conservation and does not keep numerical solution nonnegative. As a result,
the nonphysical negative values of the numerical solution grow rapidly as time
evolves, which might lead to an abnormal termination of the simulation run. In
Fig. 7b we demonstrate the corresponding numerical solution at the time instance
t = 1.0.

One can try to avoid this problem in many ways: to add nodes into those parts of
the domain, where gradients of the numerical solution are large, to make the time-
step smaller, to add some hyperviscosity into the model, or to use other stabilization
techniques for the RBF-FD scheme. In Fig. 8b–d the numerical results which
are obtained by using FCT techniques from works of Kuzmin et al. [14–16] are
presented. The discussion about the applicability of the FCT methods for RBF-FD
schemes remain out of the scope of this work and will be discussed elsewhere.
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Fig. 8 The FCT stabilization technique for the RBF-FD scheme of the transport problem. (a)
Initial solution. (b) Numerical solution, t = 1.0. (c) Numerical solution, t = 2.0. (d) Numerical
solution, t = 3.0

5 Conclusion

In the current article we presented some methodology that allows the extension of
the Radial Basis Function (RBF)-Finite Difference (FD) scheme to the numerical
solution of partial differential equations (PDEs) of the reaction-diffusion type on
an evolving-in-time hypersurface �(t). Our numerical results confirm the reliability
of the proposed computational framework in terms of numerical convergence and
capturing of typical/expected solution profiles. We have thus developed an RBF-
FD approach that can be employed for practical applications that involve PDEs on
evolving surfaces.

The framework has a straightforward extension to three dimensional models
which is mandatory when considering real-life applications, though some compu-
tational and code optimization are required, since the computational and analytical
complexity significantly increases in three dimensional case. Detailed numerical
investigations are subject of forthcoming work.

We also demonstrated that for convection dominated problems additional imple-
mentation of some stabilization technique is required to guarantee positivity
preservation and non-oscillatory behavior of a numerical solution. In a follow-
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up paper we demonstrate that it is possible to efficiently adapt the Flux-corrected
transport (FCT) technique to the proposed RBF-FD numerical scheme.
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A Data-Driven Multiscale Theory
for Modeling Damage and Fracture
of Composite Materials

Modesar Shakoor, Jiaying Gao, Zeliang Liu, and Wing Kam Liu

Abstract The advent of advanced processing and manufacturing techniques has led
to new material classes with complex microstructures across scales from nanometers
to meters. In this paper, a data-driven computational framework for the analysis of
these complex material systems is presented. A mechanistic concurrent multiscale
method called Self-consistent Clustering Analysis (SCA) is developed for general
inelastic heterogeneous material systems. The efficiency of SCA is achieved via
data compression algorithms which group local microstructures into clusters during
the training stage, thereby reducing required computational expense. Its accuracy
is guaranteed by introducing a self-consistent method for solving the Lippmann–
Schwinger integral equation in the prediction stage. The proposed framework
is illustrated for a composite cutting process where fracture can be analyzed
simultaneously at the microstructure and part scales.

1 Introduction

The analysis and design of new materials with improved efficiency and perfor-
mance requires cutting edge process and material modeling theories. For instance,
new lightweight vehicles are being developed using lighter material systems
[8]. Conventional processing-structure-property-performance relationships must be
reconsidered to account for the microstructural complexity of new advanced materi-
als systems such as hierarchical materials [16]. In this aim, integrated computational
materials engineering approaches relying on predictive multiscale modeling theories
are being developed [2, 13, 17].
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In this paper, a data-driven multiscale modeling theory is presented and applied
to a problem involving a process-structure relationship. This relationship emerges
from microstructure modeling using computational homogenization and reduced
order modeling.

The first novelty of the proposed data-driven multiscale modeling theory is the
use of the so-called Self-consistent Clustering Analysis (SCA) [10]. This method
relies on the Fast Fourier Transform (FFT) based numerical method introduced in
Ref. [15], which formulates conventional balance equations with periodic boundary
conditions as a periodic Lippmann–Schwinger equation. The originality in SCA is
that the Lippmann–Schwinger equation is solved using a clustered discretization.
The voxel mesh Direct Numerical Simulation (DNS) model of the microstructure is
hence reduced into clusters of voxels, and degrees of freedom in the reduced model
are defined cluster-wise instead of voxel-wise.

Voxels clustering is performed using the k-means clustering method [12] applied
on a database of DNS results for the studied microstructure. These DNS results do
not need to include complex loading paths, as accurate predictions could be obtained
in a previous work using only proportional loading paths in 6 orthogonal directions
[10]. In fact, in this previous work DNS results were obtained using small strain
amplitudes for which material response remained in the linear elastic range.

The second novelty of the proposed data-driven multiscale modeling theory is its
capability to model damage and fracture at multiple scales [11]. A concurrent com-
putational homogenization scheme is developed in order to solve any macroscale
problem with material laws computed on the fly from microstructure information.
In this scheme, the macroscale problem is solved using the FE method, with the
particularity that conventional phenomenological constitutive equations are replaced
by micromechanical problems solved using SCA. These micromechanical models,
called Representative Volume Elements (RVEs), include enough microstructural
features to be statistically representative of the local microstructure around each
material integration point.

Damage modeling leads to well-known localization and pathological mesh
dependence issues. In the context of concurrent computational homogenization,
these issues arise at two scales. Indeed, pathological localization can occur within
arbitrary elements of the macroscale problem discretization, and also within arbi-
trary clusters of microscale problems discretizations. In the proposed data-driven
multiscale damage modeling theory [11], the damage variable is regularized at the
macroscale using non local integral averaging to avoid any localization between
RVEs, while at the microscale it is coupled to constitutive equations in an average
sense to avoid any localization within RVEs.

The paper is structured as follows. It starts with a presentation of SCA in Sect. 2,
followed by details on its exploitation for multiscale damage modeling in Sect. 3.
The relevance of the proposed data-driven multiscale modeling theory is illustrated
by applications in Sect. 4.

A multiscale simulation of the cutting of a Unidirectional (UD) Carbon Fiber
Reinforced Polymer (CFRP) composite is conducted to show how fracture can be
modeled simultaneously at two scales with the proposed theory.
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2 Self-consistent Clustering Analysis

In the Finite Element (FE) method, the displacement field is discretized at mesh
nodes, and material integration is conducted at integration points. Reducing the
number of displacement degrees of freedom does not directly reduce neither the
number of integration points nor the cost of material integration. Therefore, FE
based model order reduction methods must be coupled to material integration reduc-
tion techniques in order to be efficiently applicable to nonlinear materials [4–6].

In the FFT-based numerical method [15], the strain field is discretized voxel-
wise, and material integration is conducted voxel-wise as well. As a consequence,
reducing the number of strain degrees of freedom directly reduces the cost of both
Lippmann–Schwinger equation solution and material integration. In comparison to
FE based model order reduction methods [4–6], SCA is hence a more straightfor-
ward approach to reduced order modeling [10].

In the following, the superscript m indicates microscale variables that are
discretized voxel-wise in the FFT-based numerical method, and cluster-wise in
SCA. The RVE domain over which Eq. (2) is solved is denoted�m. The superscript
M indicates macroscopic variables that are homogeneous over the RVE.

2.1 Continuous Lippmann–Schwinger Equation

First order homogenization consists in defining the infinitesimal strain tensor field
in the RVE εm as the addition of the macroscopic (homogeneous) strain εM and
a microscopic (heterogeneous) fluctuation. As proved in Ref. [15], Hill’s lemma
enables to define the macroscopic Cauchy stress tensor σM as the average the
microscopic one σM = 1

|�m|
∫
�m
σm(x)dx.

Hill’s lemma requires (εm − εM) to verify compatibility, i.e., to derive from a
periodic displacement field, and σm to verify equilibrium, i.e. to be the solution of

∇.σm(x) = 0, x ∈ �m. (1)

It can be shown that Eq. (1) is equivalent to

εm(x) = −
∫

�m
0(x, x′) :

(
σm(x′)− C0 : εm(x′)

)
dx′ + ε0, x ∈ �m. (2)

Equation (2) is the Lippmann–Schwinger equation for first order homogenization.
The fourth rank tensor C0 is the stiffness tensor associated to an isotropic linear
elastic reference material. It will be determined in Sect. 2.2.2, as well as the far field
strain tensor ε0 and the periodic Green’s operator 0. The latter maps any tensor
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field τm to a compatible one:

∃u ∈ (H 1(�m))3, u periodic on �m,−0 ∗ τm = 1

2
(∇u+∇uT ). (3)

The combination of Eqs. (2) and (3) yields a microscopic infinitesimal strain
tensor εm that verifies compatibility and a Cauchy stress tensor σm that verifies
equilibrium.

2.2 Discrete Lippmann–Schwinger Equation

SCA consists in solving Eq. (2) cluster-wise instead of voxel-wise. Figure 1a shows
an example of voxel mesh for a single inclusion embedded within a matrix material.
This voxel mesh is clustered in Fig. 1b. The clustering method for the training stage
is presented in Sect. 2.2.1, including the construction of the database of DNS results.
The use of this database to compute the mechanical response by solving the discrete
Lippmann–Schwinger equation in the prediction stage is described in Sect. 2.2.2.

2.2.1 Training Stage

The aim of the training stage is to compute a cluster-wise discretization such as
shown in Fig. 1. The mechanical response obtained by solving the Lippmann–
Schwinger equation discretized cluster-wise should be as close as possible as that
obtained by solving it voxel-wise. This can be done a posteriori, by solving the
reduced order model for different trial configurations of clusters and searching
for the optimal one. It can also be done a priori, for instance by basing the
clustering algorithm on some mechanistic criterion such as the similarity in strain
concentration tensors [10]. The strain concentration tensor field Am is the fourth

a) b)
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Fig. 1 Example of microstructure discretized using: (a) voxels; (b) clusters



A Data-Driven Multiscale Damage and Fracture Modeling Theory 139

order tensor field defined by

εm(x) = Am(x) : εM, x ∈ �m. (4)

At a given instant T , the strain concentration tensor field depends on the applied
macroscopic strain εM and, for plastic materials, on the loading history

(
εMt

)
t≤T . It

is neither possible to compute the Am fields for all potential loading paths, nor is it
possible to apply clustering directly to data of such high dimensionality. Therefore,
the space of all possibleAm fields must be sampled down to a few loading paths [5].
The most cost-efficient way to do this is to consider only very small macroscopic
strains εM in the training stage [10]. For such strains, the mechanical response
is purely elastic and linear, and the single tensor field Am, which has only 36
independent components due to symmetries of εm and εM , can be computed by
conducting 6 DNS in 6 orthogonal loading directions.

The training data set hence consists in 36 values for each voxel of the DNS
mesh. A k-means clustering algorithm [12] is applied to this data set. Since
the microstructure is heterogeneous, clustering is done independently for each
of its components, so that a given cluster cannot contain voxels from different
components. The result of this training stage is a unique identifier I = 1 . . . k for
each voxel of the DNS mesh. Voxels with same identifier have a similar microscopic
response to macroscopic solicitations.

2.2.2 Prediction Stage

As a result of the training stage, the RVE domain �m is discretized into k subsets(
�mI

)
I=1...k . The degrees of freedom in the FFT-based numerical method [15]

are associated to the microscopic strain εm. In SCA [10], εm is discretized by a
cluster-wise constant approximation

(
εmI

)
I=1...k . As a consequence, the microscopic

Cauchy stress tensor is also approximated cluster-wise
(
σmI

)
I=1...k , and Eq. (2) can

be discretized:

εmI = −
∑

J=1...k

D0
IJ :

(
σmJ − C0 : εmJ

)
+ ε0, I = 1 . . . k (5)

whereD0 is the interaction tensor defined by

D0
IJ =

1

|�mI |
∫

�m
χmI (x)

∫

�m
χmJ (x

′)0(x, x′)dx′dx

= 1

|�mI |
∫

�mI

(
χmJ ∗0

)
(x)dx.

(6)

The characteristic functions χmI and χmJ are equal to 1 in, respectively, clusters I and
J , and 0 elsewhere. In the FFT-based numerical method [15], the periodic Green’s
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operator 0 depends on C0, and is known only in Fourier space. Because C0 is
associated to an isotropic linear elastic reference material, 0 can be expressed in
Fourier space as a function of the reference Lamé parameters λ0 and μ0. It is then
obtained in real space by using the inverse FFT. In particular, Eq. (6) can be written
in the form

D0
IJ = f 1(λ0, μ0)D1

IJ + f 2(λ0, μ0)D2
IJ ,

DiIJ =
1

|�mI |
∫

�mI

FFT−1
{

FFT{χmJ }̂i
}
(x)dx, i = 1, 2. (7)

The detailed expressions of f 1, f 2, ̂1 and ̂2 can be found in Refs. [9, 10, 15]
among others. Drastic computational cost reduction is enabled by SCA thanks to a
reduced number of degrees of freedom by clustering, and by the fact thatD1 andD2

can be precomputed in the training stage. Therefore, neither FFTs no inverse FFTs
are computed in the prediction stage, even if the reference material is changing.

In the present work, boundary conditions for Eq. (5) are purely kinematic. The
average of the microscopic strain tensor εm must be enforced to be equal to the
macroscopic strain tensor εM or, equivalently, the microscopic fluctuation must have
zero average. This can be done by adding the condition

∑

I=1...k

|�mI |εmI = |�m|εM

to Eq. (5).
As noted in Ref. [10], solutions of Eq. (5) are dependent on the choice of

reference material. An optimal choice can be computed in the prediction stage
by making the reference material consistent with the homogenized material. This
means that the far field strain tensor ε0 is an additional unknown that must be solved
for in SCA [10], as opposed to the FFT-based numerical method where ε0 ≡ εM

[15]. The self-consistent method consists in using a fixed-point iterative method
where, at each step, the reference Lamé parameters λ0 and μ0 are changed so that
||σM − C0 : ε0||2 is minimized.

2.2.3 Summary

To summarize, the training stage in SCA consists in using a k-means clustering
algorithm based on a mechanistic a priori clustering criterion computed using a
simple sampling of the loading space. This training stage also includes computing
all voxel-wise and computationally expensive operations such as FFTs and inverse
FFTs.

In the prediction stage, a self-consistent iterative algorithm is used to search
for the optimal choice of reference Lamé parameters. At each iteration of this
self-consistent loop, matrix assembly operations are accelerated because all voxel-
wise operations have been precomputed in the training stage and already reduced
to cluster-wise contributions. A Newton-Raphson iterative algorithm must be
embedded within each self-consistent iteration for nonlinear materials, in which
case the discrete Lippmann–Schwinger equation is linearized.
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The output from SCA are the microscopic variables’ cluster-wise approxima-
tions, and the macroscopic Cauchy stress tensor.

3 Multiscale Damage

Concurrent computational homogenization implies introducing a macroscopic
domain �M , which can be a specimen or an industrial part. In the present
work, the macroscale problem is solved using the FE method for the spatial
discretization and an explicit scheme for the time discretization. The use of
SCA as a material law is straightforward. Conventional constitutive equations
defining the macroscopic stress σM as a function of the macroscopic strain εM

are replaced by the theory described in Sect. 2. Although macroscopic variables
are constant in space at the microscale, they vary at the macroscale, namely,
σM = σM(x), εM = εM(x), x ∈ �M .

If the relation between macroscopic variables σM and εM included a softening
effect, then the macroscale problem would be ill-defined. Softening would localize
in a single arbitrary layer of elements, which would be dependent on the FE
mesh, and lead to zero dissipated energy for very fine meshes. This well-known
pathological mesh dependence problem when modeling softening materials can be
solved by using non local integral averaging on the macroscopic damage variable
[1]. The main issue in concurrent computational homogenization is that there is no
macroscopic damage variable, since damage is modeled within RVEs. While Hill’s
lemma allows to formulate σM as the average σm, there is no such result for internal
variables related to plasticity or damage.

As proposed in a recent work [11], non local integral averaging can be applied
directly on the microscopic damage variable dm. An additional difficulty when
damage is modeled within the RVE, is that the RVE problem itself becomes ill-
defined if damage localizes within the RVE. To avoid such situation, damage can be
uncoupled from the microscale problem, and considered only in an average sense.
These two steps are detailed in the following.

3.1 Macroscale Damage

The damage variable dm is defined at the microscale and discretized cluster-wise
along with the infinitesimal strain tensor and the Cauchy stress tensor. While these
microscale variables have been written as functions of microscale coordinates in
Sect. 2, they must now be written as functions of both macroscale and microscale
coordinates.

First, a RVE domain �m = �m(xM) is associated to each point xM of the
macroscale domain �M . Since the macroscale problem is solved using the FE
method, RVEs are attached to the integration points of the macroscale FE mesh.
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Second, microscale variables can be written as functions of both macroscale and
microscale coordinates. For instance, the microscale damage variable is discretized
as

dm(xM, xm) =
∑

I=1...k

dmI (x
M)χmI (x

M, xm), xM ∈ �M, xm ∈ �m(xM). (8)

Third, classic non local integral regularization [1] can be applied to the
microscale damage variable defined in Eq. (8), with the novelty that the averaging
is applied at two scales [11]. The non local microscale damage variable d

m
is hence

defined by

d
m
(xM, xm) =

∑

I=1...k

d
m

I (x
M)χmI (x

M, xm), xM ∈ �M, xm ∈ �m(xM),

d
m

I (x
M) =

∫

�M
w(||xM − yM ||2)dmI (yM)dyM, xM ∈ �M,

(9)

where w is the non local averaging kernel given by

w(r) = w∞(r)∫ +∞
0 w∞(r ′)dr ′

, r ∈ [0,+∞[,

w∞(r) =

⎧
⎪⎨

⎪⎩

(
1− 4

r2

l2c

)2

, r ≤ lc
0, r > lc

, r ∈ [0,+∞[.
(10)

The characteristic length scale lc is a material parameter associated to the width
of damage localization bands at the macroscale. As defined by Eqs. (9) and (10), the
non local damage variable is regularized at the macroscale and the macroscale FE
problem is hence well-defined. In particular, results will not pathologically depend
on the macroscale FE mesh. However, the non local damage variable may still
localize at the microscale and yield clustering-dependent results.

3.2 Microscale Damage

To prevent localization within RVEs, an averaging procedure is also applied at
the microscale. This procedure consists in uncoupling the damage model from the
plasticity model, and modeling softening only in an average sense.

First, the microscopic infinitesimal strain tensor εm is additively decomposed
into an elastic part εm,el and a plastic part εm,pl . The microscopic damage variable
dm is written as a function of the plastic strain dm = dm(εm,pl), but the plastic
strain itself is not a function of the damage variable. Equation (5) is hence solved
with a first definition of the microscopic Cauchy stress tensor that does not account
for softening.
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Second, the evolution of the damage variable is computed based on the stress
state and plastic strain computed in the first step. For the CFRP composite studied
in Sect. 4, the following power law is used to define the evolution of damage in the
epoxy matrix as a function of the von Mises equivalent plastic strain εm,pl,eq :

depoxy = 1− εm,pl,c

εm,pl,eq
exp

(
−100(εm,pl,eq − εm,pl,c)

)
(11)

This law involves the material parameter εm,pl,c = 0.13. The brittle fracture of
fibers is modeled by maximum stress theory [3]. Thus, the damage variable in fibers
can be equal only to 0 or 1.

Third, the effective macroscopic Cauchy stress tensor σM is computed by solving
Eq. (5) with a softening effect but no plasticity, namely, Cm being the microscopic
elastic stiffness tensor, σm = (1 − dm)Cm : εm,el . The applied macroscopic strain
for this third step is the macroscopic elastic strain computed by elastic relaxation
and averaging of the first step solution [11].

Although this averaging procedure requires two solutions of Eq. (5), only the first
one accounts for plasticity and material nonlinearity. Thus, the second solution has
a reduced cost. Furthermore, both solutions are accelerated thanks to SCA.

Because the microscopic plastic strain does not depend on damage, it can
not localize pathologically within a single layer of clusters. Then, the damage
variable being written as a function of the microscopic plastic strain, pathological
localization of this variable is not possible within the RVE. With the addition of the
macroscale non local integral averaging described in Sect. 3.1 that prevents patho-
logical localization and mesh dependence at the macroscale scheme, a regularized
multiscale damage theory is obtained.

4 Multiscale Carbon Fiber Reinforced Polymer Composite
Cutting Process Modeling

An example of concurrent simulation of the cutting process of a UD CFRP
composite is proposed in this section. Literature reports some progress made in
simulating CFRP cutting processes at the microscale [3, 7]. This is necessary
to observe microscale deformation, such as fiber distortion and matrix cracking
during this process. For a full scale cutting process, the material is generally
assumed homogeneous and modeled using phenomenological constitutive equations
to reduce the computational cost, but all microscale details are lost. The theory
presented in this paper opens a new window for structure scale simulation with
minimum loss of microscale details.

The cutting simulation is based on experimental work performed in a previous
study [3]. Details of the experimental setup can be found in the given reference.
To demonstrate the capabilities of the multiscale modeling theory presented in this
paper, a 3D transverse UD CFRP cutting simulation is performed on a domain of
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Fig. 2 Cutting simulation setup and geometry of UD CFRP part

length× weight× height of 1.25× 0.2× 1.25 mm. The cutting depth is 0.015 mm,
following the experimental setup. The model setup is shown in Fig. 2. The bottom
surface of the UD CFRP part is fixed to ensure that it stays in its position. Cutting
speed is set to 8 mm/s according to the experimental setup. The UD CFRP part is
modeled with 142,500 reduced integration cubic elements, where each element has
one integration point.

The UD CFRP material has fiber volume fraction of 60%. Fiber is assumed to
be of circular shape with a diameter of 7 μm, as shown in Fig. 3a. The RVE has
an identical length and width of 84 μm, and a depth of 14 μm. The RVE is meshed
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Fig. 3 Cross section of the UD CFRP RVE showing: (a) the random fibers arrangement; (b) the
clusters
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Table 1 Carbon fiber and epoxy matrix elastic properties

E1 E2 E3 v12 v13 v23 Em vm

240 GPa 19 GPa 19 GPa 0.28 0.28 0.32 3.8 GPa 0.387

with 740× 740× 5 voxels, which are then clustered using the method presented in
Sect. 2.2.1 into 16 clusters for the matrix, and 16 additional clusters for the fibers.
The result is shown in Fig. 3b.

Fiber and matrix elastic properties are given in Table 1. Fibers tensile and
compressive strengths follow the parameters listed in Ref. [3]. It is assumed that
excessive deformation of the matrix happens when the cutting tool is in compressive
contact with the material. Thus, matrix plasticity has been calibrated to the uniaxial
compression curve for epoxy in Fig. 1 of Ref. [14] with a simple J2 plasticity model.
The damage evolution law for the matrix has been given in Eq. (11).

Using the damage evolution law in Eq. (11) within the multiscale damage
modeling theory, the microscale damage variable might reach 1 in some clusters. In
such case, the material has completely lost its load carrying capacity. If this happens
for multiple clusters, the averaged load carrying capacity of some RVEs might be
significantly lost. With a criterion to measure this loss of averaged load carrying
capacity, element deletion could be triggered in the macroscale mesh to model

the cutting process. A macroscopic non local damage variable d
M

is introduced
to measure this loss of averaged load carrying capacity:

d
M = 1− ||σM : σMpl ||

||σMpl : σMpl ||
(12)

where σMpl is the average of the Cauchy stress tensor computed with the plasticity

model but no damage, while σM is the macroscopic Cauchy stress tensor computed
with the non local damage model but no plasticity. For each element of the UD

CFRP part FE model, element deletion is triggered when d
M = 0.25.

Simulation of concurrent UD CFRP cutting has been performed for 0.01 s using
ABAQUS CAE with the multiscale damage model. The average reaction force
obtained from concurrent cutting was 0.881 N. The comparison between numerical
result and experimental result is presented in Table 2. The simulated average
horizontal cutting force is 7.3% less than that measured in the experiment.

The main feature of the multiscale model is that it captures the microscale fiber
and matrix failure within UD RVEs at each integration point of the macroscale part.
Figure 4 shows the macroscopic part with RVEs at three selected integration points
where damage can be seen at different phases of the cutting process. At different

Table 2 Comparison of simulated cutting force against experimental data

Experimental data [3] Multiscale model Difference

Horizontal cutting force 0.946 N/m 0.881 N/m 7.3%
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Microscopic 
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−

Fig. 4 Macroscopic non local damage variable and microscopic damage variable at: (a)
5.125e−3 s; (b) 5.250e−3 s; (c) 5.5e−3 s
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time steps, it can be seen that different elements have different macroscopic non

local damage d
M

that can be traced back to the microscopic damage dm within
each cluster in RVEs. Here, the element embedding the second RVE fails after
the element embedding the first RVE, although it seems to have a higher total
damaged volume. This shows the effect of the element deletion criterion in Eq. (12),
which does not define the macroscopic damage variable just as the average of the
microscopic one, but as the actual loss of load carrying capacity. Additionally, the
local damage within damaged elements RVEs is transferred to neighboring elements
RVEs via non local averaging. This can be seen from the left column of Fig. 4, where
localized damage is being distributed to nearby elements from those contacting the
tool. As a consequence, some damage can be seen in the third RVE, but it does
not cause enough loss of load carrying capacity for the associated element to get
deleted.

5 Conclusions

Two main contributions were presented in this paper. A regularized multiscale
modeling theory was proposed to model multiscale damage and fracture processes
such as the fracture of material systems with heterogeneous microstructure. The
latter was modeled using the self-consistent clustering analysis method for data-
driven reduced order modeling.

To illustrate the capabilities of this data-driven multiscale damage and fracture
modeling theory, a simulation of a cutting process was conducted. The considered
material, a carbon fiber reinforced composite, exhibited a heterogeneous microstruc-
ture which failed by epoxy matrix damage and fiber breakage. The effect of
these microscale damage and fracture mechanisms on the macroscale behavior
was modeled using a material law computed on-the-fly by the multiscale modeling
theory instead of relying on conventional phenomenological constitutive equations.

For future work, the proposed theory is going to be extended to other material
and processes involving more complex damage and fracture mechanisms.
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Modeling the Friction Drilling Process
Using a Thermo-Mechanical Coupled
Smoothed Particle Galerkin Method

Cheng-Tang Wu, Youcai Wu, Wei Hu, and Xiaofei Pan

Abstract This paper presents an up-to-date Lagrangian particle method for the
analysis of a coupled thermo-mechanical problem in the friction drilling simulation.
The method is obtained by a modification of variational equations using the
penalized approach to avoid onerous stability problems in conventional Lagrangian
particle methods and to obtain semi-discrete equations that are amenable to temporal
and spatial integration using the staggered explicit time marching scheme. To deal
with the critical numerical limitation associated with large deformation and material
separation at the bushing forming stage, the method is furnished with an adaptive
anisotropic Lagrangian kernel and a bond-based failure criterion. Representative
simulation of a thermal-mechanical coupled friction drilling process is studied, and
results are compared with the experimental data to examine the validity of this study.

1 Introduction

Friction drilling is a nonconventional drilling process that utilizes the heat generated
by friction between the rotating tool and metal workpiece to soften the material
and create a hole [1]. Unlike traditional drilling, friction drilling is a chip-less and
dry manufacturing method that produces the hole in only one operation without
the material removal and lubricants. Friction drilling creates sturdy bushing on thin
walled structures such as sheet metal or tubing. The bushing created in the process is
usually two to three times thicker than the original workpiece allowing for mounting
of soldered and screw connections in a simple and efficient way. Friction drilling
can be performed on most metal materials using a high-speed rotating tool made
of conical tungsten carbide. Typical applications of friction drilling in automotive
industry include seat handle/frame, foot pedal, exhaust part, fuel rail, and among
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others. A growing interest on the study of friction drilling process has been shown
by many car companies motivated by the need to reduce manufacturing costs and
obtain the high quality of final product.

Numerical modeling is a necessary tool to understand the material flow, tem-
peratures, stresses and strains which are difficult to measure experimentally during
friction drilling [2]. Numerical simulation of friction drilling involves solving a
coupled thermo-mechanical system, a task that can turn out to be difficult when
considerable deformation and material separation are developed in bushing forming.
It has become one of the research topics of great interest in computational mechanics
over the last years. Since the Eulerian representation of a material has the difficulty
to capture the free surface flow in the simulation of bushing forming, Lagrangian
finite element methods [3] have been favored. While the Lagrangian finite element
method is used in combination with the r-adaptive re-meshing strategy [4, 5]
to handle large deformation problems in similar manufacturing processes such
as the friction stir spot welding (FSSW) and the friction stir welding (FSW)
[6, 7], modeling material separation in the friction drilling process has always
been problematic. This is because the r-adaptive re-meshing may become unstable
or unable to maintain the high quality mesh when some or lots elements are
deleted using the element erosion technique in mimicking the material separation
phenomenon during the forming of the metal bushing.

In comparison to Lagrangian finite element methods, Lagrangian particle meth-
ods are adventurous in modeling large deformation and material failure [8–10]
problems. Lagrangian particle methods were also found to be very effective on
reducing volumetric locking and shear locking in solid and structural analyses
[11, 12]. Smoothed Particle Hydrodynamics (SPH) method developed by Gingold
and Monaghan [13] and Lucy [14] in late 1970s for astrophysical problems has
been considered the earliest Lagrangian particle method. In early 1990s, Libersky
and Petschek [15] extended SPH to solid mechanics applications. In spite of its
popularity in simulating high-velocity impact/penetration and fluid flow problems
[16], SPH has limited success in solid mechanics applications due to several
numerical instabilities. Among them, tensile instability [17], spurious zero-energy
mode [18] and excessive straining [19] are critical to the simulation result and have
been the important research topics in the past two decades.

Intensive research work has been carried out to resolve those numerical insta-
bilities. For instance, the introduction of Lagrangian kernel [8, 20] or stress
points method [21] has been proven to effectively remove the tension instability
in Lagrangian particle methods. The origin of spurious zero-energy mode can
be explained by inspecting the system of equations of the particle method. A
pioneering approach to circumvent this numerical instability was demonstrated
by Beissel and Belytschko [22] using a residual-type stabilization procedure. A
variant of this stabilization approach includes the non-residual type of stabilization
methods [23, 24], stabilized conforming nodal integration (SCNI) method [25],
and variationally consistent integration methods [26]. The problem of excessive
straining emerges as a numerical instability in Lagrangian particle methods when
the strictly use of Lagrangian kernel is no more applicable in large deformation
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range. In order to enable the Lagrangian kernel in large deformation analyses, semi-
Lagrangian kernel [27] and adaptive anisotropic Lagrangian kernel [28] have been
developed. Nevertheless, very few studies [24, 29] have addressed all numerical
issues concurrently and comprehensively.

Smoothed Particle Galerkin (SPG) method motivated by Beissel and
Belytschko’s residual-type stabilization method [22] is one of the new Lagrangian
particle methods developed by Wu et al. [29] to deal with those numerical
instabilities. Another new Lagrangian particle method which is based on implicit
gradient expansion [30], strain gradient stabilization technique [25] and semi-
Lagrangian kernel [27] was proposed by Hillman and Chen [24] to sufficiently
control those numerical instabilities in severe deformation analysis. These two
Lagrangian particle methods share a common feature in augmenting the standard
quadratic energy functional by a non-residual term for stabilization. Since the
stabilization in those methods is accomplished without the use of the momentum
equation residual, dependence of artificial control parameters for stabilization can
be eliminated.

Modeling material separation in three-dimensional problem is another important
research topic for Lagrangian particle methods as well as a desirable feature
for industrial applications. However, the extant literature in Lagrangian particle
methods gives very few examples [9] in simulating the three-dimensional mate-
rial separation process. In essence, the development of 3D material separation
techniques for Lagrangian particle methods face formidable challenges in tracing
moving discontinuity surfaces and in dealing with the interaction of particles
affecting by the discontinuity. In order to avoid those numerical difficulties and meet
the current need in industrial applications, a bond-based failure criterion inspired by
the peridynamics method of Silling et al. [31] was introduced to SPG method by
Wu et al. [29] for material failure analysis. While the SPG method has been used to
model ductile failure in metals recently [32], its application to the coupled thermo-
mechanical problem in manufacturing applications remains to be developed.

The object of this study is to develop a thermo-mechanical coupled SPG method
to realistically simulate the friction drilling process involving large deformation
and material separation. The reminder of the paper is organized as follows: the
preliminaries and weak formulations for the coupled thermo-mechanical problem
are given in Sect. 2. In Sect. 3, the SPG formulation and semi-discrete equations
are provided. The computational procedures for thermal and mechanical induced
large deformation and material separation analyses are described in the Sect. 4.
One friction drilling simulation using the present method is given in Sect. 5, and
conclusions are made in Sect. 6.

2 Preliminaries

The highly coupled and nonlinear system in thermo-mechanical equations for the
friction drilling simulation is usually difficult to be solved by the simultaneous
time-stepping algorithm. In particular, the large and un-symmetric system in fully
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coupled thermo-mechanical equations inevitably involves the convergent problem
and is expensive to be solved implicitly in the presence of large deformation,
material separation, severe contact conditions and contact-induced thermal shock.
Additionally, because friction drilling is a very quick machining process, staggered
and explicit time-stepping schemes are considered in this study for the application of
interest. In the staggered time-steeping algorithm [33], the thermo-mechanical cou-
pled system of equations is partitioned into a thermal phase at fixed configuration,
followed by a mechanical phase at constant temperature.

In the thermal phase of the coupled system, we consider the transient heat
transfer response of a metal workpiece in three-dimensional case. We assume
linear dependence of heat flux on the temperature gradient which is known as
the Fourier’s law. We also assume isotropy of the material thermal conductivity.
Since the temperature range over which the workpiece is observed in experiments
is lower than the melting point, we presume the drilling process does not involve
the material phase change. We also presume the heat generation is only due to
plastic deformation and frictional contact between the drilling tool and workpiece.
If we neglect the thermal exchange due to surface convection and radiation in the
workpiece during the friction drilling, the standard variational formulation of the
thermal energy conservation equation can be written to find the temperature field
θ(X, t) ∈ � = {θ ∈ H 1(�) : θ = θd on ∂�d} such that for arbitrary variation
δθ ∈ �0 = {θ ∈ H 1(�) : θ = 0 on ∂�d} the following equation is satisfied

∫

�

ρCpθ̇δθ d�+
∫

�

k∇θ · ∇(δθ) d� =
∫

∂�n

qnδθ ds +
∫

�

Qδθ d�

+
∫

∂�c

hc(θ − θtool)δθ ds +
∫

∂�c

ητ · [u̇t] δθ ds.
(1)

In the above equation ρ is the mass density,Cp is the heat capacity, k is the isotropic
thermal conductivity, ∇ is the gradient operator with respect to current position
x, and “∇·” denotes the divergence operator. ∂�d describes a Dirichlet boundary
imposed by a temperature θd , and ∂�n is the Neumann boundary prescribed by a
normal heat flux qn = k(θ)∇θ · n, where n is the outward unit normal vector. We
also have Q denoting the internal heat generation rate per unit deformed volume
from plastic deformation and is defined by

Q := ηS : ε̇p (2)

where S and ε̇p are the deviatoric part of Cauchy stress and the rate of plastic
straining, respectively, and η is the Taylor-Quinney [34] coefficient that takes into
account the fraction of heat generated by plastic deformation energy dissipation.
The boundary ∂�c denotes the contact surface with a thermal exchange between the
tool and work piece. Subsequently, the third term on the right-hand side of Eq. (1)
designates the interfacial heat transfer where hc is the heat conductance on ∂�c, and
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θtool is the temperature of the tool. The last term on the right-hand side of Eq. (1)
represents the rate of frictional energy dissipation in which η is the fraction of heat
generated by the frictional contact, and τ is the Cauchy contact traction and

[
u̇t
]

is
the contact slip rate which is regarded as the jump in velocity across contact surface.

In the mechanical phase, the dynamic process of friction drilling process is
described by the equation of motion in the context of large strain analysis. During
the friction drilling process, the workpiece experiences different rates of heating
and cooling, and thus expansion and contraction. This leads to considerable thermal
strains and stresses which need to be taken into account in the mechanical analysis.
Using standard procedures, the variational equation for the mechanical problem in
friction drilling process is written to find the displacement field u(X, t) ∈ V =
{u ∈ H 1(�) : u = ug on ∂�g}, such that for arbitrary variation δu ∈ V0 = {u ∈
H 1(�) : u = 0 on ∂�g}, the following equation is satisfied:

∫

�

ρü · δu d�+
∫

�

δ

(
ε(u)

)T
: σ d� =

∫

�

b · δu d�+
∫

�h

h · δu ds +
∫

∂�c

γ · δu ds

(3)

where b is the body force vector and σ is the Cauchy stress obtained from the
constitutive law which is temperature dependent. The rate representation of strain
field ε̇ should consider the thermal effect which is described by

ε̇ = ε̇e + ε̇p + ε̇θ (4)

where ε̇e is elastic strain rate tensor, and ε̇θ = αθ̇ is the thermal strain rate
tensor with α denoting the thermal expansion coefficient. ∂�g denotes a Dirichlet
boundary imposed by a displacement ug , and ∂�h is the Neumann boundary
prescribed by a surface traction h. γ denotes the contact traction which is governed
by the unilateral contact conditions and Coulomb friction law [3]. Using Eq. (4)
and the isothermal assumption from the staggered time-steeping algorithm, the
corresponding rate form of the constitutive relation in mechanical phase can be
written as

σ̇ = C(θ) :
(
ε̇ − ε̇p − ε̇θ

)
(5)

where C is the temperature-dependent fourth-order isotropic elastic tensor.
Consequently, the thermal-mechanical problem in metal drilling process can be

stated by coupling the mechanical weak form in Eq. (3) with the thermal weak
form in Eq. (1) using the staggered time marching scheme. The coupled system of
equations is discretized using meshfree approximations and solved by the classical
explicit time-stepping approach which is described in the next section.
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3 Particle Formulation

3.1 Meshfree Approximation and Discretization

The standard meshfree Galerkin method [8] for the thermal problem is formulated
on a finite dimensional space�sh ⊂ � employing the thermal weak form of Eq. (1)
to find θh(t) ∈ �h such that
∫

�

ρCpθ̇
hδθ d�+

∫

�

k∇θh · ∇
(
δθh

)
d� =

∫

∂�n

qnδθ
h ds +

∫

�

Qδθh d�

+
∫

∂�c

hc

(
θh − θtool

)
δθh ds +

∫

∂�c

ητ ·
[
u̇t
]
δθh ds ∀δθh ∈ �h0

(6)

with initial condition

θh(X, 0) = θ0(X) in � (7)

where and �h = span{φaI : I ∈ ZI } and ZI is an index set. {φaI }I ∈ ZI
are meshfree shape functions constructed by the meshfree convex approximation
[35, 36] which is employed in this study to simplify the boundary condition
enforcement.

For a particle distribution denoted by an index set ZI = {XI }NPI=1 ⊂ R
3,

approximating the displacement field using the meshfree approximation gives

uh(X, t) =
∑

I∈ZI
φaI (X)u(XI , t) =

∑

I∈ZI
φaI ũ(t) ∀X ∈ � (8)

where NP is the total number of particles in discretization. φaI (X), I = 1, . . . , NP
can be interpreted as Lagrangian shape functions of the meshfree approximation for
the displacement field uh as well as the temperature field θh where the superscript
“a” denotes the support size of φaI (X).

In order to prevent the tensile instability caused by the Eulerian kernel, the
Lagrangian kernel approach [8] is considered in this development. Correspondingly,
Eq. (6) is rewritten by

∫

�

ρCpθ̇
hδθ d�+

∫

�

(
F−1 ·K · F−T · ∇0θh

)
· ∇0

(
δθh

)
d� =

∫

∂�n

qnδθ
h ds

+
∫

�

Qδθh d�+
∫

∂�c

hc

(
θh − θtool

)
δθh ds +

∫

∂�c

ητ ·
[
u̇t
]
δθh ds

∀δθh ∈ �h0
(9)
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where ∇0 denotes the gradient operator with respect to reference position X,
K = kI (2) is the thermal conductivity tensor with I (2) denoting the second-order
identity tensor, and F is the deformation gradient. We remark that although the
term tensile instability is reserved to describe the numerical instability of particle
methods in structural analysis, we take the term in this paper to address the similar
instability caused by the Eulerian kernel in the coupled thermo-mechanical analysis.
Consequently, discrete points from meshfree discretization that carry the primary
unknown variables are attached to the same set of material points throughout the
course of deformation in Lagrangian particle methods. Under this consideration,
the node set ZI = {XI , I = 1, . . . , NP } is the set of nodes defined in the
reference configuration. In practice, the set of meshfree nodes can be taken from the
finite element nodes created by a finite element mesh generator initially. Thus the
geometrical representation of� can be numerically approximated by� ≈⋃NP

I=1�I
where�I refers the volume of particle I which can be evaluated at time t = 0 using
the information from the finite element mesh. The resultant discrete equations are
then integrated using the direct nodal integration (DNI) scheme.

We can also formulate the mechanical weak form of Eq. (3) in similar fashion.
Nevertheless, an application of the DNI scheme to Lagrangian particle methods
leads to another numerical instability known as the zero-energy mode in structural
analysis. To suppress the zero-energy mode and stabilize the solution for friction
drilling simulation, the standard smoothed particle Galerkin (SPG) method [28, 29]
is employed with a consideration of the thermal effect. The essence of SPG method
in structural analysis is to augment the standard energy functional by a stabilization
term using the penalty approach. As opposed to the residual-type stabilization
method [22] which uses the residual of the momentum equation and artificial
control parameters to effect stabilization, SPG method introduces a projection of
displacement gradients on to a strain space leading to an additional term that
penalizes the difference in strain fields for stabilization. The penalty approach
modifies the DNI scheme and gives rise to a dual stress-points algorithm [28]
which can be easily implemented and parallelized for the large-scale computation
in industrial applications. The reader is refer to [28, 29] for detail information and
references on SPG method. The SPG method for mechanical part of the coupling
problem we considered is then as follows: find uh(X, t) ∈ V h such that

∫

�

ρüh ·δuh d�+
∫

�

σ :
(
F−1 · ∇0δuh

)
d�

︸ ︷︷ ︸
standard

+
∫

�

δ

(
F−1 ·∇0

(
F−1 ·∇0δuh

)
·λ
)T
: σ̃ d�

︸ ︷︷ ︸
stabilization

=
∫

�

b · δuh d�+
∫

�n

h · δuh ds +
∫

∂�c

γ · δuh ds ∀δuH ∈ V h0

(10)
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with initial conditions

uh(X, 0) = u0(X) (11)

u̇h(X, 0) = u̇0(X) (12)

where the stabilization term is composed of first-order strain gradients, stabilization
stresses σ̃ , and stabilization coefficient matrix λ(x) that can be found in [28, 29].

3.2 Semi-discrete Equations

The semi-discrete equations of the thermal problem can be expressed by the
following algebraic equations.

θ̃ +Hθ̃ = P (13)

where

CIJ =
∫

�x

ρ0Cp�I�J d�X (14)

HIJ =
∫

�

kF−1
il F

−T
lj �I,j�J,i d�+

∫

∂�c

hc�I�J ds (15)

PI =
∫

�

ηS : ε̇p�I d�+
∫

∂�n

qn�I ds +
∫

∂�c

(
hcθtool − ητ ·

[
u̇t
])
�I ds (16)

Thermal equation in Eq. (13) is marched through time using the forward difference
algorithm [3] which is given by

θ̃n+1 = θ̃n +�t ˙̃θn (17)

˙̃
θn = Cl

−1
(
Pn −HNθ̃n

)
(18)

where the thermal capacity matrix C is advantageously replaced by the lumped
matrix Cl for the explicit analysis. When the tool surface is in contact with the
workpiece, the standard Fourier’s law cannot be used to fully describe the heat
transfer phenomena because the contact surfaces do not physically match perfectly.
In this case, the heat resistance generally decreases as contact pressure increases.
For this reason, the heat conductance hc in the thermal contact is assumed to be a
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function of normal contact pressure, thermal conductivity of the gas, yielding stress
of the work piece and surface roughness as described in [37].

In a similar way, the semi-discrete equations of the mechanical problem are given
by

M
¨̃
U = F ext + Fc − F int − F stab (19)

where the mass matrix M , external force F ext, internal force F int, and stabilization
force F stab for the SPG method can be found in [28, 29, 32]. Fc is the contact force
which is given by

FcI =
∫

∂�c

γ φaI ds (20)

Since the tungsten carbide tool is also meshed by the finite element discretization,
the mechanical contact between the workpiece and drilling tool is modelled using
the standard node-to-surface penalty contact algorithm [3, 38].

It also suffices to integrate Eq. (19) by the central difference integration algorithm
and results in

˙̃
Un+1/2 = ˙̃

Un−1/2 + �tn+1 +�tn
2

¨̃
Un (21)

˙̃
Un+1 = Ũn +�tn+1

¨̃
Un+1/2 (22)

¨̃
Un = Ml−1

(
F ext
n + Fcn − F int

n − F stab
n

)
(23)

where Ml is the lumped mass matrix. Noting that the temperature remains constant
and material properties are temperature dependent during this mechanical phase.

The critical time step in the explicit method is governed by the Courant-
Friedrichs-Lewy (CFL) condition [3] which is given in the following for the thermal
and mechanical analysis respectively

�tθ ≤ Sc min

(
ρCpl

2

2k

)
, �tu ≤ Sc min

(
l

Cu

)
(24)

where the sound speed Cu gives the characteristic speed of the medium in
mechanical analysis. l is the support size of the kernel [8] for the particle system. A
scaling factor Sc = 0.15 is used in this study.
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4 Large Deformation and Material Separation Analyses

In this section, we discuss the computational procedures of the present method for
the analysis of large deformation and material separation problems in frictional
drilling simulation.

4.1 The Adaptive Anisotropic Lagrangian Kernel for Large
Deformation Analysis

As mentioned earlier in the Introduction, Lagrangian kernel has been utilized in
the particle method to remove the tension instability in the nonlinear structural
analysis. However, the Lagrangian particle methods experience the excessive
straining problem when the strictly use of Lagrangian kernel is no more applicable.
Specifically, the excessive straining during the large deformation friction drilling
simulation inevitably causes the numerical breakdown when the deformation
gradient computed at the particle ceases to become invertible.

In order to handle the excessive straining problem, an adaptive anisotropic
Lagrangian kernel is considered [28]. Using the chain rule, the calculation for the
deformation gradient at the particle can be rewritten [32] as

Fn+m = F̂ n+mFn (25)

where F̂ n+m(̂x) is the decomposed deformation gradient, from t = tn to tn+m,
computed based on the new reference configuration and is given by

F̂ n+mij (XJ ) = ∂x̂i

∂X̂j
=

NP∑

I=1

∂φaI (X̂J )

∂X̂j
x̂iI (X, tn+m)

=
NP∑

I=1

∂φaI (X̂J )

∂X̂j

(
X̂iI + ũiI (X, tn+m)

)

= δij +
NP∑

I=1

∂φaI (X̂J )

∂X̂j
ũiI (X, tn+m)

(26)

Here, x̂ = X̂ + ũ(X, tn+m) is a position vector defined in the new reference
configuration X̂=x(X,tn). A local X̂I -coordinate system in which the axes are parallel
to the global Cartesian coordinates and the origin is located at X̂I which is defined for
each particle I . In each new reference configuration, an ellipsoidal nodal support is
defined for the neighbor particle searching. The three-dimensional ellipsoidal cubic
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spline kernel function is defined in another local ̂̂XI -coordinate system by

ϕaI (X̂J ) = ϕ1

(̂̂XIJ
hn1

)
ϕ1

(̂̂Y IJ
hn2

)
ϕ1

(̂̂ZIJ
hn3

)
(27)

where φ1 is a standard one-dimensional cubic spline kernel function, hn1, hn2 and
hn3 are the current semi-major axes of the ellipsoid. The sizes of semi-major axes
can be considered the support sizes of the kernel and are updated according to
the deformation [28]. ̂̂XIJ , ̂̂Y IJ and ̂̂ZIJ are the projections of relative position vector
X̂J−X̂I on the local ̂̂XI -coordinate system respectively. The adaptive anisotropic
Lagrangian kernel is updated constantly over a period of time. The spherical
shape domain of cubic spline kernel function deforms and rotates according to the
Lagrangian motion between each two adaptive Lagrangian kernel steps. We address
the reader to reference [28] for a comprehensive description of the approach. For the
computational efficiency in explicit time integration method, the material derivatives
of meshfree shape functions are always computed and stored at the new reference
configuration and reused during the time stepping.

Since the operation of adaptive anisotropic Lagrangian kernel does not involve
remeshing, the stress-recovery techniques or remapping procedures are not neces-
sary. This unique property of present method leads to a relatively simple mathemat-
ical formulation for simulating the large strain problems.

4.2 The Bond-Based Failure Criterion for Material Separation
Analysis

Excessive straining also appears in the friction drilling process when the material
of workpiece starts to fail at the bushing forming stage. Precisely, the C1-continuity
assumption in Lagrangian particle methods is inadequate to describe the kinematic
discontinuity of displacement field in a continuous setting for the failure analysis
[19]. This makes Lagrangian particle methods even more challenging in friction
drilling simulation.

To further avoid the excessive straining problem due to the assumption of con-
tinuous displacement field in the friction drilling simulation, a bond-based failure
criterion [29, 31] is incorporated with the present coupled thermal-mechanical
formulations. The origins of this approach can be traced back to the bond failure in
peridynamics [31, 39] in which material failure is modeled through bond breakage.
In Lagrangian particle methods, the bond is a representation of a connection
between two particles. Given a length of the bond ‖XJ−XI ‖ for a particle pair
consisting of particles I and J in the initial configuration, the stretch ratio eIJ of
the bond is defined by

eIJ = ‖xJ − xI‖
‖XJ −XI‖ (28)
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For the friction drilling simulation, we restrict our attention to the material failure
in metals. In the bond-based failure criterion for ductile material, two neighbor
particles are considered disconnected during the neighbor particle sorting whenever
their averaged effective plastic strain and stretch ratio reach their respective critical
values. Accordingly, the three-dimensional ellipsoidal cubic spline kernel function
in Eq. (27) for a pair of particles I and J can be modified as:

φaI
(
X̂J

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if X̂J 
∈ supp
(
φaI

)

or
(
ε̄PIJ > ε̄

p
crit and eIJ > ecrit

)

φ1

(
̂̂X
I

J

hn1

)
φ1

(
̂̂Y
I

J

hn2

)
φ1

(
̂̂Z
I

J

hn3

)
, otherwise

(29)

where ε̄pij =
(
ε̄p

(
X̂J

))
/2, and ε̄p denoting the effective plastic strain. ε̄pcritis the

critical effective plastic strain for bond failure, and ecrit denotes the critical stretch
ratio. We consider ecrit ≥ 1.0 in our numerical analysis which implies that the bond
failure does not occur under compression. This implication is valid for most metal
failure process.

Because the effective plastic strain at each particle is monotonically increasing
during the course of deformation, the kinematic disconnection in a particle pair is
considered as a permanent and irreversible process. This is a substantial characteris-
tic for the present method in metal failure analyses since the non-physical material
self-healing and excessive straining issues can also be completely excluded from the
material failure simulation.

5 Numerical Example

A friction drilling process of AISI 304 stainless steel is modeled and compared with
the experimental data in this section. The normalized nodal support size of 1.9 is
used and the adaptive anisotropic Lagrangian kernel is updated every 50 time steps
in the explicit dynamic analysis.

The AISI 304 stainless steel specimen used in the friction drilling process has a
diameter of 18 mm and thickness of 1.5 mm [40]. The geometry of the tool is shown
in Fig. 1a. The tool, which rotates at 3000 rpm and plunges at 100 mm/min in the
test, is modeled by rigid material and meshed using tetrahedral finite elements. As
can be seen in Fig. 1b, the metal workpiece is discretized using 12,607 Lagrangian
particles. Finer discretization with a nodal distance of approximately 0.25 mm is
employed in the central portion of the specimen where large deformation and
material separation occurs. As such, the explicit time step size for thermal analysis
is 50 μs and for structural analysis is about 4 μs. The perimeter of the workpiece
is clamped. The stress flow in the AISI 304 steel is modeled by the Johnson-Cook
material law [41] (parameters: A = 205 MPa, B = 802.5 MPa, C = 0.08, m =
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Fig. 1 Friction drilling: (a) tool geometry, (b) discretization and boundary conditions

1.09, n = 0.622). The failure behavior of the steel is handled by the SPG bond
failure mechanism as described in Sect. 4.2 rather than the Johnson-Cook damage
law, and the effective plastic strain for bond failure is set to 0.4. According to efunda
(www.efunda.com), the Young’s modulus of the workpiece is set to 193 GPa. The
thermal properties of the AISI stainless steel are: coefficient of thermal expansion
0.0000184, heat capacity Cp 500 J/kg-K, and thermal conductivity k 16.2 W/m-K.
The coefficient of friction (COF) between the tool and the workpiece is set to 0.2
for the node-to-surface contact algorithm in the numerical analysis. The fraction of
heat generation η in the frictional contact is taken to be 0.5. The interfacial heat
transfer between the tool and the workpiece is neglected. The Taylor-Quinney [34]
coefficient η of 0.9 is considered in Eq. (2).

The comparison of thrust force and torque is presented in Fig. 2a and b,
respectively. Both the force and torque responses capture the basic profiles of
experimental data nicely. Further improvement in the force and torque results can
be made by tuning the coefficient of contact friction. But this is not within the scope
of this study and therefore not considered in this numerical example.

Fig. 2 Response of friction drilling: (a) thrust force, (b) torque

www.efunda.com
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s05.2=t@s52.1=t@

s00.5=t@s57.3=t@

s05.7=t@s52.6=t@

Fig. 3 Friction drilling: effective plastic strain distribution (red ≥ 0.4, blue: 0)

Figure 3 shows the evolution of the effective plastic strain in the workpiece while
only half of it is plotted. Red color indicates effective plastic strain level of 0.4
(which is the bond failure criterion) or more. It should be pointed out that bond
failure, i.e., material separation, only occurs when the effective plastic strain and
stretch ratio both reach their respective critical values. As shown in Fig. 3, material
failure occurs in a relatively small region and the bushing is qualitatively formed. It
is worthwhile to emphasize that the creation of bushing shape is one of the major
purposes of this type manufacturing process. However, it is not captured by any
other numerical technique by far.

Figure 4 shows the simulation result of temperature distribution during the
friction drilling process (back view). Red color indicates temperature rising of
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@ t=3.75 sec

Temperature statistics

@ t=5.00 sec

@ t=2.50 sec

@ t=6.25 sec @ t=7.50 sec

Fig. 4 Friction drilling: temperature field in workpiece (red: ≥ 100◦K, blue: 0◦K)
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100◦K or more, and blue color means no temperature rising. Due to the low thermal
conductivity in AISI 304 stainless steel, the temperature rising is less than 100◦K
for more than 90% of the particles. Very few particles (about 1%) directly in contact
with the tool have a temperature rising to 800◦K or more. The simulation result is
close to the measured temperature on the upper side of the disc at the contact zone
which was reported at 842◦K [40]. The heat wave did not propagate far away from
the tool-workpiece contact region because of the low thermal conductivity of the
workpiece and the fast machining process.

6 Conclusions

The main difficulty in finite element modeling of friction drilling process consists in
dealing with high levels of deformations involving in the complex material flow due
to frictional heating and material separation at the busing forming stage. Despite the
enormous progress achieved lately in computational mechanics, the development of
an advanced numerical tool for the robust and accurate friction drilling simulation
continues to be nowadays an emerging need for industry.

In this study, we have introduced a Lagrangian particle method that is suitable
for the three-dimensional thermo-mechanical analysis and can become a promising
alternative numerical tool for the friction drilling simulation. The present method
is developed to improve several numerical instabilities in conventional Lagrangian
particle methods. The numerical results in this study suggest that the present method
is able to produce the desired physics in the forming of a busing and generate
reasonable force and torque responses compared with the experimental data. To
the authors’ best knowledge, the existing literature has not been able to demonstrate
similar results. The extension of this method to other thermo-mechanical problems
that consider complex multi-physics behaviors such as phase transformation and
phase change will be the focus of our future development.

Acknowledgements The authors wish to thank Dr. John O. Hallquist of LSTC for his support to
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Global-Local Enrichments in PUMA

Matthias Birner and Marc Alexander Schweitzer

Abstract In this paper we present the global-local enrichment approach in a
general partition of unity method. Moreover, we propose an automatic scheme
of computing an optimal parameter in Robin boundary conditions for the local
problem. We present results of two dimensional fracture mechanics problems to
demonstrate the properties and performance of the resulting method.

1 Introduction

Numerical simulation of fracture mechanics problems is a widely used tool in
industry to predict the damage tolerance of a mechanical structure. To this end,
the finite element method (FEM) [3] has been used for decades in industrial scale
problems [20, 32]. Yet multi-scale problems, like small cracks in a relatively big
geometry, are to the disadvantage of FEMs: As the number of cracks increases, the
required computational power explodes [14]. This is due to the need of a strongly
refined mesh around the crack-fronts, in order to capture the singularities arising
there. Furthermore, the mesh has to be regenerated on every load-step when solving
crack growth problems [31], further increasing the time-to-solution. Partition of
unity methods [5, 16, 21] can overcome both drawbacks by being able to incorporate
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arbitrary basis functions, thereby requiring only a constant number of degrees of
freedom to resolve any crack or other localized feature, independent of its size
and geometry. This is achieved by having a partition of unity that covers the
computational domain and multiplying local approximation spaces to each partition
of unity function. These local spaces usually consist of a smooth, polynomial
part—as in finite elements—and an enrichment part, that includes problem specific
functions. In the simulation of fracture mechanics problems, we want to include
enrichments that resolve the singularities and discontinuities arising in vicinity of
the cracks. Unfortunately, analytic knowledge of such basis functions is limited
to two dimensions. A recent method to circumvent this limitation are global-local
enrichments [4, 7, 13, 15, 19], where the fundamental idea is to compute problem
specific basis functions on the fly during the simulation. This is achieved by setting
up local problems around geometric features with boundary data from an initial,
coarse global solution, that disregards those features. The solutions of these local
problems are then used as enrichment functions on the global problem, allowing
us to keep the global discretization coarse, while retaining resolution of fine scale
details. By this, we arrive at an approximation that has high local accuracy with only
adding a few degrees of freedom, as opposed to applying (adaptive) h-refinement
towards the crack [14].

There already exists an implementation of, and research on global-local enrich-
ments in the finite element based partition of unity method (GFEMgl) [7] by Duarte
and Babuška. In this paper we transfer those ideas to the meshfree and more
general partition of unity method (PUM) [21] and study the construction of optimal
boundary conditions for the local problems in this context, see also [4, 13]. The
fundamental assumption here is, that even though the initial global solution does
not capture the fine scale behavior near the cracks, it should be accurate enough
further away from them. Hence, applying a buffer zone [4], i.e., computing the local
enrichment functions on a larger subdomain compared to the area the enrichment
is used on, is a first approach to moderate the influence of inexact boundary
data. Another approach to improve the boundary data is to use multiple global-
local iterations [13], as this drastically improves the quality of the boundary data.
Furthermore, different kinds of boundary conditions imposed on the local problems
may vary in their sensitivity to inexact boundary data and material properties.

In the following we discuss these aspects of global-local enrichments in the
PUM context. The remainder of this paper is structured as follows. First, we shortly
review the PUM in Sect. 2.1 and the global-local enrichment scheme in Sect. 2.2.
The considered model problem and its respective formulation for the global-local
enrichment approach is presented in Sect. 3. Here we discuss the various choices
to improve the boundary data for the local-problem and propose a simple yet
very effective constructive approach to the identification of optimal parameters for
Robin type boundary conditions. In Sect. 4 we present the results of our numerical
experiments which clearly show the desired behavior. We conclude with some
remarks in Sect. 5.
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2 Prerequisites

2.1 Partition of Unity Method

Partition of unity methods (PUM) are a class of methods to numerically solve partial
differential equations (PDEs), introduced to overcome limitations in the choice of
basis functions [16] of classical finite element methods (FEM). The key concept of
PUMs is the use of a compactly supported partition of unity (PU), that covers the
computational domain �. To each PU function ϕi a local approximation space Vi
is attached, which yields a global, finite-dimensional space, that is then used in a
Galerkin approach. An advantage over classical FEMs is the ability to incorporate
arbitrary basis functions, where the intent is to use only a few problem specific basis
functions, thereby requiring less degrees of freedom to attain the desired global
accuracy. Well-known instances of the PUM are the generalized finite element
method (GFEM) by Duarte and Babuška [5] and the extended finite element method
(XFEM) by Moës, Dolbow and Belytschko [17]. The particular PUM employed in
this study was introduced in [11, 12, 21]. All computations in this study were carried
out using the PUMA software framework [9, 27] developed at Fraunhofer SCAI. In
the following we present only a very short review of this PUM and refer the reader
to [21] for details.

Given a computational domain �, we assume to have a partition of unity {ϕi}
with ϕi ≥ 0 and

∑

i

ϕi
(
x
) = 1 ∀x ∈ � (1)

that covers the domain. We call the support of a partition of unity function ϕi a
patch ωi := supp(ϕi). In the PUMA software framework, patches are constructed as
follows. First, we compute a cubic bounding-box C of the domain�. This bounding
box corresponds to discretization level zero. For level l, we sub-divide the bounding-
box l-times (uniformly) and obtain the cells

Ci =
d∏

k=1

(
cki − h, cki + h

)
, (2)

where the ci are the mid-points of the cells. We then obtain the patchesωi by scaling
the cells via

ωi :=
d∏

k=1

(
cki − αh, cki + αh

)
, α > 0. (3)

On these patches ωi we construct a Shepard partition of unity with the help of B-
spline weight functions. Details on this construction can be found in e.g. [21, 22].
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To construct a higher order basis, each PU function ϕi is multiplied with a local
approximation space

Vi = Pi ⊕ Ei = span
〈
ψsi , η

t
i

〉
, (4)

of dimension ni , where Pi are spaces of polynomials of degree dPi , and the
Ei denote so-called enrichment spaces of dimension dEi . The latter are arbitrary
functions locally incorporated into the simulation, which we can choose with respect
to the problem at hand. We either obtain the Ei from a-priori analytic knowledge
about the structure of the solution to a problem, as in 2D fracture mechanics
problems, where we have an analytic expansion of the solution around a crack
tip available. Or the enrichments themselves are results of other simulations, as
e.g. proposed in [1, 2, 26, 28] or in the global-local enrichment method [7] we
discuss here. The global approximation space then reads

VPU =
∑

i

ϕiVi =
∑

i

ϕiPi + ϕiEi . (5)

Observe, that we do not assume the discrete functions

uPU =
∑

i

ϕi

⎛

⎝
dPi∑

s=1

usi ψ
s
i +

dEi∑

t=1

ut+d
Pi

i ηti ,

⎞

⎠ (6)

i.e. the employed basis functions, to be interpolatory. That is, the coefficients uji do
not necessarily correspond to function values at specific points. We therefore use the
direct splitting of the local spaces Vi presented in [22] to enforce Dirichlet boundary
conditions.

2.2 Numerical Enrichment Functions

The PUM attains its approximation properties from the local approximation spaces
Vi . Thus, the choice of good approximation spaces is essential. If there is a-
priori analytic knowledge about the solution available, the choice of Vi is rather
simple, compare [25] and the references therein. However, the design of good local
approximation spaces without analytic information, i.e. by numerical computation
is an active research field and a number of different approaches have been proposed,
see e.g. [26] and the references therein. The global-local enrichment technique [7]
is such an approach, which we summarize in the following.

Preceding global-local enrichments in the GFEM was the attempt to compute
more universally applicable enrichments in [28]. There, Strouboulis et al. computed
enrichments by solving local problems for different predefined boundary conditions
that should mimic general load cases. Yet, the quality of the computed enrichment
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enrich with local solution

global problem

local problem

provide boundary data

Fig. 1 The basic global-local enrichment cycle. The global problem we ultimately want to solve
and a local problem set up around a crack. We first solve the (initial) global problem disregarding
the crack, to provide boundary data for the local problem. The solution of the local problem is then
used as a basis function on the global problem. Finally we solve the global problem again

then depends heavily on the prescribed boundary conditions, where there is no
analytical answer on which to choose. In [7] the approach was to compute more
problem related enrichments using boundary data from the global problem, thereby
introducing the GFEMgl.

An ancestor of global-local enrichments is the global-local finite element analysis
(FEMgl) [18] introduced in the 1970s, by which we specifically refer to the zooming
technique [8, 30]. The FEMgl addresses two-scale problems, where we have a small
area of interest, e.g. a crack, in a relatively large domain. To account for this, the
FEMgl separates the scales, by first solving the global problem on a rather coarse
mesh, and then setting up a finer local problem in the area of interest, where the
global solution is used as boundary data. The final solution then is obtained from
the direct combination of the global and the local solution.

Note that this procedure does not allow for any feedback from the local
solution to the global problem. An approach that accounts for such feedback are
global-local enrichments (GFEMgl) as introduced in [7] for the generalized finite
element method (GFEM) by Duarte and Babuška. The GFEMgl achieves this by
incorporating the local solution—computed just as in the FEMgl—as an enrichment
function into the global basis and solving the now enriched global problem again,
compare Fig. 1. We shortly review the precise problem formulation in the following
Section.

3 Model Problem and Global-Local Formulation

To this end, let us first introduce our general model problem, the equations of linear
elasticity. On the global domain �G we consider

∇ · σ = f in �G, (7)
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where f are the volume forces acting on the body, e.g. gravity, and σ is the Cauchy
stress tensor. The latter is computed from the linear strain tensor ε via Hooke’s law

σ = C : ε, (8)

where Hooke’s tensor C represents material parameters and the strain tensor is
computed from the displacement field u by

ε
(
u
) = 1

2

(
∇u+ (∇u

)T )
. (9)

To obtain a unique solution of (7) we impose boundary conditions

u = ū on �DG ⊂ ∂�G

σ · n = t̄ on �NG = ∂�G\�DG,
(10)

where n is the outward unit normal to �NG and ū and t̄ are the prescribed
displacement and traction, respectively.

The weak formulation of the global problem is then given by: Find uG ∈ VPU
G ⊂

H 1
�DG
(�G) such that

∫

�G

σ
(
uG

) : ε(vG
)

dx =
∫

�NG

t̄vG ds +
∫

�G

f vG dx (11)

for all test functions vG ∈ VPU
G that vanish on �DG , see [22] for details.

The global domain may have several areas in which we expect the solution to
have particularly fine grained behavior, like cracks, corners or holes. To improve the
approximation, we now set up a local problem for each such feature on a respective
subdomain �L ⊂ �G, compare Fig. 1. On this local domain, we now define a
local problem by restricting the global problem (7), i.e. (11), to the local domain
�L. Wherever possible we use the provided global boundary data (10) to define
boundary conditions for the local problem.

The boundary of the local domain �L := ∂�L however, can consist of two parts:
The, possibly empty, intersection with the global boundary �G := ∂�G and its
complement �L\�G in the interior of the global domain �G. On the former we
apply the given boundary conditions of the global problem (10). And on the latter we
use the computed global solution uG to define boundary data for the local problem.
Here we can choose whether to prescribe Dirichlet, Neumann or Robin boundary
conditions, where the latter depend on a parameter κ ≥ 0 and “interpolates” between
the first two types. Thus, we focus on Robin boundary conditions in the following.
For our local problem they read as

t
(
uL
)+ κuL = t

(
uG

)+ κuG on �L\�G, (12)
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where t
(
u
)

:= σ
(
u
) · n denotes the traction associated with a displacement field u.

Observe that for κ = 0 we get Neumann boundary conditions, and for large κ we
impose Dirichlet boundary conditions by (12).

Research on the GFEMgl in [14] finds that Robin boundary conditions in
general yield the best overall approximation. Furthermore, work on non-overlapping
Schwarz methods [10] suggests that Robin boundary conditions yield optimal
approximation results, especially with no or only small buffer zones. Yet, all this
depends on finding the right parameter κ . To this end, we propose the following
simple scheme.

Note that one term of the right-hand side of (12) contains the traction t
(
uG

)
,

i.e. the gradient ∇uG and the material parameters, where the other term depends on
the global solution uG and κ . From a stability point of view, we want both terms, or
ultimately both assembled vectors in the linear system, to be of comparable size.
Hence, we need to balance the global solution’s values with its traction, which
depends on the gradient of the global solution and further scales with the material
parameters. To this end, we assemble the vectors

MT

(
uG

) =
⎛
⎜⎝

∫

�L\�G
t
(
uG

)
vi ds

⎞
⎟⎠

n

i=1

and MD

(
uG

) =
⎛
⎜⎝

∫

�L\�G
uGvi ds

⎞
⎟⎠

n

i=1
(13)

where {vi}ni=1 is a basis of VPU
G as defined in (5) and define κ

(
uG, σ(uG)

)
by

κ
(
uG, σ(uG)

)
:=

∥∥MT

(
uG

)∥∥
l2∥∥MD

(
uG

)∥∥
l2

. (14)

In contrast, Kim et al. propose [14] using Young’s modulus divided by the
characteristic length of a global finite element along the local boundary, so κ ≈ E

h
.

In this case, κ scales with the material parameters and the global-level only.
Overall, the local problem with Robin boundary conditions then reads: Find uL ∈

VPU
L ⊂ H 1

�L∩�DG
(�L) such that

∫

�L

σ
(
uL
) : ε(vL

)
dx + κ

∫

�L\�G
uLvL ds =

∫

�L∩�NG

t̄ vL ds +
∫

�L\�G

(
t
(
uG

)+ κuG
)

vL ds +
∫

�L

f vL dx

(15)

for all vL ∈ VPU
L , where we typically set κ := κ

(
uG, σ(uG)

)
given in (14). Recall

however, that the choice of κ = 0 yields Neumann boundary conditions and κ →∞
models Dirichlet boundary conditions.
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Finally, we enrich the global space VPU
G with the local solution uL and solve

the global problem (11) again, compare Fig. 1. As we solve the initial global
problem without a computed enrichment, it provides inexact boundary data for the
local problem. In order to obtain an improved enrichment, we can repeat the cycle,
i.e. perform multiple global-local iterations.

With notation as in (4), the involved approximation spaces then evolve as follows:
We solve the initial (it = 0) global problem without enrichments, i.e. we use

VPU
G,0 =

∑

i

ϕi Pi , (16)

and all further global problems (it > 0) with the current local solution as an
enrichment

VPU
G,it =

∑

i

ϕi Pi +
∑

i∈L
ϕi Eit,gl (it > 0), (17)

where L are the indices of global patches ωG,i to be enriched with the local solution
and the enrichment space Eit,gl = span

〈
uL,it

〉
is given by the current solution of the

local problem. Through all iterations (it > 0) the local approximation space VPU
L is

given by

VPU
L,it =

∑

i

ϕi Pi +
∑

i∈C
ϕi Ecrack (18)

where the set C collects the indices of patches on which we use the crack
enrichments Ecrack defined in e.g. [23]. Furthermore, the Robin parameter κ in (14)
now also depends on the iteration κit , whereas in [14] it is fixed for all iterations
(it). Note, that an equally valid approach is to construct the local problem around
the crack tip only and consequently enrich all global problems with the Heaviside
function too.

4 Numerical Results

For all our 2D experiments the global computational domain �G is a cracked unit
square. The crack tip is located at (0.55, 0.34), from which the crack splits the
square in (−x1)-direction, compare Fig. 2. On this domain, we solve the equations
of linear elasticity (7). Unless stated otherwise, we use Poisson’s ratio ν = 0.3, and
Young’s modulus E = 10 as fixed material parameters.

To define two model problems, we use terms of the expansion of a linear elasticity
solution around a crack tip [5, 6]. Our first model problem is a simple mode I
problem, given by the first term of the mode I expansion u∗I . For our second model
problem, we add the second term of the mode I expansion, the first term of the mode



Global-Local Enrichments in PUMA 175

(0, 0)

(1, 1)2

1

N

Fig. 2 The geometry of our 2D model problems: A cracked unit square. Dirichlet boundary
conditions on the left and bottom boundary segments, Neumann boundary conditions on the top
and left boundary segments. A thinner box around the crack indicates the local domain, the dotted
box the local domain with a buffer zone. The dashed box is for computing errors around the tip

II expansion u∗II and an oscillating cosine given by

osc
(
x
)

:=
⎛

⎝
cos

(
8
∣∣x − xtip

∣∣
)

cos
(

8
∣∣x − xtip

∣∣
)

⎞

⎠ (19)

to define our analytic solution u∗M . We refer to this second problem as the mixed-
mode problem. We apply Dirichlet type boundary conditions on the bottom and left
boundaries of the unit square �G and Neumann type boundary conditions on the
right and top boundary segments. We apply Neumann boundary conditions on the
right and top boundary segments of the unit square �G and on the bottom and left
boundaries we apply Dirichlet boundary conditions.

In both model cases, we use a single local problem around the complete crack,
where the local domain is the rectangle defined by the corners (0, 0.48125) and
(0.39375, 0.64375), compare Fig. 2. As a consequence we have the true global
boundary data on the left boundary segment. For each experiment we report the
global and local discretization level lg and ll , as described in Sect. 2.1. Both
global and local problems are solved with linear polynomials as Pi for all patches.
Additionally, we use crack enrichments Ecrack on the local problems. We enrich
crack- but not tip-intersecting patches ωL,i with a Heaviside function and patches
ωL,i around the tip with the first term of both the mode I and mode II expansion (u∗I
and u∗II ). Here we enrich geometrically, i.e., we enrich every patch whose midpoint
is inside a box with edge length 0.06 around the tip. To prevent instabilities in the
basis, we apply the stable transformation [24] once on the local problem, and in
every iteration on the global problem, after enriching with the local solution. Before
enriching with a new local solution, we erase the old enrichment on the global
problem, compare (17). Note, that the crack on the global problem is only modeled
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by the computed enrichment. Therefore, we expect large errors on the initial global
problems, as we actually solve for the wrong physics there, i.e. an uncracked unit
square.

Throughout this paper we use two different norms to measure quantities of
interest. The first being theL2-norm and the second being theH 1-semi-norm, which
for simplicity we refer to as just the H 1-norm

‖u‖L2(�∗) =
⎛

⎜⎝
∫

�∗

|u|2 dx

⎞

⎟⎠

1
2

and |u|H 1(�∗) =
⎛

⎜⎝
∫

�∗

‖∇u‖2 dx

⎞

⎟⎠

1
2

(20)

evaluated on some subset�∗ ⊂ �G of the global computational domain�G. When
we report errors, we always compute the normalized global and local errors of
iteration it with respect to the true solution, i.e. we define

eitI/M,�∗ :=

∥∥∥u∗I/M − uitG

∥∥∥
�∗∥∥∥u∗I/M

∥∥∥
�∗

(21)

on some subset �∗ ⊂ �G of the global domain. We measure errors on the global
domain �G and on a small box with edge length 0.04 centered around the crack tip
�tip ⊂ �L, see Fig. 2, to check if our approximations capture the near tip behavior
correctly.

Example 1 For a first experiment we investigate the impact of the type of boundary
conditions chosen on the local problem. Here we are also interested in the impact
that the parameter κ in the Robin boundary conditions has on the overall accuracy.
Figure 3 shows the measured global H 1-error (21) on the first and second global-
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Fig. 3 Error on first and second iteration with Robin boundary conditions for various values of κ ,
Neumann (κ = 0) and Dirichlet (horizontal line) boundary conditions. Two vertical lines indicate
the computed κ by (14). The problems are solved on lg = 5 and ll = 4
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Algorithm 1: Global-local Iterations
Solve initial global problem (it = 0) for uG,0;
for it = 1 to max(it) do

Solve local problem (15) for uL,it with boundary data uG,it−1;
Clear global enrichments and enrich VPU

G with uL,it ;
Solve enriched global problem (11) for uG,it ;

local iteration plotted against different values of κ . Horizontal lines show the results
obtained for Dirichlet and Neumann boundary conditions. Furthermore we indicate
the values of κ computed by our scheme (14) by vertical lines. We can observe
that Robin outperform Dirichlet type boundary conditions in both iterations for
appropriate κ . Only if κ is too small, which includes Neumann boundary conditions,
they perform worse. As asserted, the optimal value of κ seems to depend on
properties of the solution, since the mixed-mode problem requires higher values
of κ . Obviously, our proposed scheme (14) for the automatic selection of κ yields
close to optimal results in both iterations (actually in all iterations) and both model
cases.

Example 2 Due to the approximation error of the computed global solution uG, we
apply inexact boundary data on the local boundary �L, i.e. uG instead of the true
solution u∗. In this experiment we are interested in two techniques to overcome this
limitation: Running multiple global-local iterations, see Algorithm 1 and adding a
buffer zone to the local domain �L. The question here is, whether we are able to
compute an enrichment with the boundary data from the global problem comparable
to one computed from the exact boundary data.

Using Caccioppoli’s inequality Gupta et al. [13] derive a bound on the difference
between the analytic solution of the local problem with exact boundary data uex and
the finite dimensional approximation with inexact boundary data uinexn . With uinex

denoting the analytic solution of the local problem with inexact boundary data, we
have

∥∥∥uex − uinexn

∥∥∥
E
(
�δL

) ≤ C inf
v∈Vn(�L)

∥∥∥uinex − v
∥∥∥
E(�L)

+ C1

δ

∥∥∥uex − uinex
∥∥∥
L2(�L)

.

(22)

Here �L is the local domain, �δL ⊂ �L a smaller subdomain and E denotes the
energy norm. The scalar δ := dist

(
�δL,�L

)
> 0 is called the buffer zone size. So

on �δL, where we want to use the local solution as an enrichment, this error has
two components: The discretization error of the local problem and the error in the
boundary data, where the latter can be reduced by solving the global problem more
accurately, but also by applying a buffer zone, i.e., computing the enrichment on
a larger domain than it is actually used on. For the buffer zone in this experiment,
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Fig. 4 Error over global-local iterations with and without buffer zone for Dirichlet and Robin
boundary conditions (κ computed by (14)). In the buffer zone case we have δ = 0.1625, which is
50% of the local domains width. A dotted line indicates a solution obtained with the true boundary
data in Robin boundary conditions. The problems are solved with lg = 5 and ll = 4

we expand the local domain in all four directions by 50% of its width, hence δ =
0.1625, compare Fig. 2. Besides increasing the global patch refinement level lg, we
can improve the boundary data by applying multiple global-local iterations. Here we
reduce the error by improving the computed enrichment, until we are again limited
by the applied discretization levels lg and ll . As in the previous experiment, we
can observe that Robin outperform Dirichlet type boundary conditions, especially
when we consider the error close to the tip, compare Fig. 4. They also require less
iterations to reach an equilibrium. Applying a buffer zone, however, has minimal
impact in combination with Robin boundary conditions. Yet a larger buffer zone
allows Dirichlet boundary conditions to close the performance gap. It is remarkable
that after some iterations we achieve accuracy comparable to applying the true
solution of the global problem as local boundary data. We conclude that overcoming
the problem of inexact boundary data requires multiple global-local iterations for
both boundary condition types, whereas Dirichlet boundary conditions additionally
require an enlarged local domain. Also, Robin type boundary conditions with the
proposed iteration dependent parameter κ (14) yields the fastest convergence.

Example 3 As a last experiment on the cracked unit square, we compare our global-
local scheme to a directly enriched global PUM applied to our mixed-mode problem.
If the employed enrichments capture all non-smooth components of the solution, we
expect to arrive at quadratic convergence (with respect to the patch size diam(ωi))
in L2-norm and linear convergence in H 1-norm. In Fig. 5, we can observe that both
methods yield exactly these rates. Besides that, the achieved accuracy is almost
identical. Only near the tip, the global-local scheme performs better in theH 1-norm
by a constant, most likely due to more accurately capturing the singularity in the
derivative.



Global-Local Enrichments in PUMA 179

3 4 5 6 7 8
level

10−2

10−1

H
1 -
er
ro
r

H1-rate

PUM: ΩG

PUM: Ωtip

Global-local: ΩG

Global-local: Ωtip

linear

3 4 5 6 7 8
level

10−4

10−3

10−2

10−1

L2
-e
rr
or

L2-rate

PUM: ΩG

PUM: Ωtip

Global-local: ΩG

Global-local: Ωtip

quadratic

Fig. 5 Comparison of convergence rates in the mixed-mode problem obtained by a directly
enriched global PUM and our global-local enrichment scheme. Dotted lines indicate optimal rates
in the respective norms. Solved with lg = ll

Example 4 In order to test our PUMgl on a more difficult problem, we assign two
different materials to the unit square domain: We use two linear elastic materials
with Poisson’s ratio ν = 0.3, where the upper half of the square has a Young’s
modulus of E = 10 and the lower half E = 1. A crack separates the materials from
(0.5, 0) to the tip at (0.5, 0.5). Again we apply boundary conditions according to
a known analytic solution of this type of problem, described in [29]. This problem
is more difficult in the sense that we need 12 enrichments, also described in [29],
to model the crack tip. However, these enrichments do not account for all effects
due to the different materials, thus we do not expect them to completely resolve
the crack tip singularity, compare the results in [29]. In addition to these singular
enrichments, we enrich crack- but not tip-intersecting patches with a Heaviside
function and patches at the interface of the materials with a ramp function. For
our global-local scheme we apply the latter two directly on the global problem and
construct the local problem to only cover a small area around the tip. Note that our
scheme (14) to compute κ for Robin boundary conditions now has the advantage of
respecting both material parameters along the local boundary without any changes.
Figure 6 shows that, as expected, in this bimaterial problem both the PUMgl and the
enriched PUM do not attain quadratic and linear convergence in L2- and H 1-norm
respectively. Essentially by providing h-refinement towards the tip, the global-local
enrichment scheme allows for lower errors by a constant in this setting.

Example 5 As a last example we compare the von Mises stress distribution in a
2D crack problem with either a single material or two material layers. To this end
we apply the same boundary conditions in both problems: We fix the bottom and
right edges of the unit square, i.e. apply Dirichlet zero boundary conditions and
pull on the left edge below the crack to the left and on the upper edge to the top
with unit force, i.e. apply Neumann boundary conditions. The solution is computed
with three global-local iterations on global-level lg = 6 and local-level ll = 5, with
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Fig. 6 Comparison of convergence rates in the bimaterial problem obtained by a global directly
enriched PUM and our global-local enrichment scheme. Dotted lines indicate optimal rates in
the respective norms. We and [29] do not achieve those, due to non-optimality of the employed
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Fig. 7 Von Mises stress in single (left) and bimaterial (right) problem, as computed in the third
iteration of our global-local enrichment scheme

additional h-refinement around the crack. On the local problem we again used Robin
boundary conditions with κ computed by (14). Figures 7 and 8 show the von Mises
stress distribution for this problem, once with a single material (left), where Young’s
modulus is globally E = 1 and on the right the bimaterial problem, where again the
upper half is stiffer, with E = 10. Observe that the simulation nicely captures the
increased stress along the material interface, as well as the difference in the stress
distribution around the tip.
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Fig. 8 Von Mises stress in single (left) and bimaterial (right) problem, as computed in the third
iteration of our global-local enrichment scheme. Zoom to the tip

5 Concluding Remarks and Future Work

We have presented the realization of the global-local enrichment approach [7]
for a general PUM and proposed an automatic scheme to identify the optimal
parameter κ in Robin boundary conditions for each local solve in a global-local
iteration. Our results show that the proposed scheme yields nearly optimal results
and that Robin boundary conditions with this parameter κ do not require any buffer
zone to attain fast convergence. We are currently working on efficient integration
of the computed enrichments, together with parallelizing the proposed scheme.
Moreover, we investigate re-using constant parts of the involved global and local
linear systems, to further improve performance.
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Stable and Efficient Quantum
Mechanical Calculations with PUMA
on Triclinic Lattices

Clelia Albrecht, Constanze Klaar, and Marc Alexander Schweitzer

Abstract In this paper we are concerned with the efficient approximation of
the Schrödinger eigenproblem using an orbital-enriched flat-top partition of unity
method on general triclinic cells. To this end, we generalize the approach presented
in Albrecht et al. (Comput. Meth. Appl. Mech. Eng. 342:224–239, 2018) via a
simple yet effective transformation approach and discuss its realization in the
PUMA software framework. The presented results clearly show that the proposed
scheme attains all convergence and stability properties presented in Albrecht et al.
(Comput. Meth. Appl. Mech. Eng. 342:224–239, 2018).

1 Introduction

The efficient treatment of the Schrödinger eigenproblem is an essential component
of quantum mechanical material calculations. Enriched Galerkin methods can sig-
nificantly reduce the number of degrees of freedom to attain the required chemical
accuracy [1, 11]. While the partition of unity finite element method (PUFEM) of
[11] provides this substantial reduction in the number of degrees of freedom and
exponential convergence, it suffers from stability issues, i.e. ill-conditioning, due to
the enrichment and requires the solution of a generalized eigenvalue problem which
adversely effects the overall time to solution. The flat-top partition of unity method
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(FT-PUM) of [1] on the other hand overcomes both these issues while maintaining
exponential convergence.

In this paper we generalize the approach presented in [1] to deal with arbitrary
triclinic lattices. To this end, we transform the weak formulation of the Schrödinger
eigenproblem on the triclinic cell back to the unit cube [0, 1]3 and then apply the
FT-PUM as derived in [1] for cuboid unit cells. This approach is easy to implement
as well as maintaining the advantages the FT-PUM provides, namely the stability
transformation and the variational mass lumping scheme, see [1] for details.

The remainder of this paper is structured as follows. First, we shortly review
the FT-PUM and its properties in Sect. 2 before we present its application to the
Schrödinger eigenproblem in Sect. 3. Then, we present the treatment of general tri-
clinic lattices with the FT-PUM we have realized in PUMA [4], a general PUM soft-
ware framework developed at Fraunhofer SCAI. The results of our numerical exper-
iments are presented in Sect. 4 before we conclude with some remarks in Sect. 5.

2 Partition of Unity Method

In this Section, we briefly summarize only the aspects of the flat-top partition
of unity method (FT-PUM) most important to its application to the Schrödinger
eigenproblem. A more detailed description in this context can be found in [1],
for more general details concerning the FT-PUM see [8]. All functionalities we
describe here are implemented within the PUMA software framework developed
at Fraunhofer SCAI [4].

The PUM is a generalization of classical finite element methods (FEM), devel-
oped to adapt this well-known spatial discretization technique for partial differential
equations (PDE) to take into account problem-dependent a priori knowledge and
thus overcome some disadvantages of classical FEM.

We start with the construction of a cover C� := {ωi} of the computational
domain �, by taking a uniformly refined mesh with mesh-width 2h and cells

Ci =
d∏

l=1

(oli − h, oli + h),

and rescale the cells to define overlapping patches ωi of our cover as

ωi :=
d∏

l=1

(oli − αh, oli + αh), with α ∈ (1, 2). (1)

Note that, as α > 1, the patches overlap, and with the choice of α, we can control
the size of the overlap. Furthermore, because we also have α < 2, on every patch
there exists a subset ω̃i ⊂ ωi with nonvanishing measure that is only covered by
this patch.
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On these patches, we define weight functions Wi : �→ R with supp(Wi) = ωi
by

Wi(x) =
{
W ◦ Ti(x), x ∈ ωi
0, otherwise

(2)

with the affine transforms Ti : ωi → [−1, 1]d and W : [−1, 1]d → R any non-
negative compactly supported function. By normalizing these weight functions we
obtain the partition of unity functions

ϕi(x) := Wi(x)∑
l∈Ci Wl(x)

, (3)

where Ci denotes the neighborhood of ωi . Due to this construction, we have ϕi ≡ 1
on the subset ω̃i of ωi , i.e. a “flat top” [8]. These flat-top PU functions constitute
the first ingredient of our FT-PUM. The second consists of local approximation
spaces Vi(ωi) := span〈ϑmi 〉dim(Vi)

m=1 defined on the patches ωi . These approximation
spaces, in general, consist of two parts: A smooth approximation space, for example
polynomials V P

i (ωi) := span〈πsi 〉, and a problem-dependent enrichment part
V E
i (ωi) := span〈ψti 〉. Thus, we can define the PUM space via

V PU :=
N∑

i=1

ϕiVi = span〈ϕiϑmi 〉; (4)

that is, the basis functions of a PUM space are simply defined as the products of the
PU functions ϕi and the local approximation functions ϑmi , which, as the Vi consist
of two parts, can be written as

span〈ϑmi 〉 = Vi(ωi) = V P
i (ωi)+ V E

i (ωi) = span〈πsi , ψti 〉. (5)

Periodic boundary conditions are enforced by a slightly more general definition
of patch neighborhoods Ci , see [1] for details. The global PUM space V PU (4)
attains its approximation properties essentially from the local spaces Vi . Thus,
without any problem-dependent enrichment, i.e. V E

i = ∅, the PUM yields compa-
rable error bounds as classical FEM [6, 8]. Yet, with appropriate enrichment spaces
the PUM provides exponential convergence independent of the regularity of the
solution, see e.g. [3, 9]. However, an arbitrary choice of V E

i independently of V P
i

(and the PU ϕi) can lead to stability problems and highly ill-conditioned system
matrices [2, 9, 11]. In our flat-top PUM, however, we can easily eliminate these
stability issues without compromising the improved approximation quality due to
enrichment with the help of a so-called stability transformation [9]. Thus, we only
need to identify appropriate enrichment spaces for the considered application and
attain a stable and highly accurate approximation with our flat-top PUM.
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3 FT-PUM for the Schrödinger Eigenproblem

To this end, let us shortly review the model problem we consider in this paper, the
one-electron Schrödinger equation in a periodic medium, which is represented by a
parallelepiped unit cell � ⊂ R

3 with primitive lattice vectors ad (d = 1, 2, 3). The
strong form reads as

− 1
2∇2ψ(x)+ Veff(x)ψ(x) = εψ(x) in �,

ψ(x + ad ) = exp(ik · ad)ψ(x) on �d,
∇ψ(x + ad ) · n̂(x) = exp(ik · ad)∇ψ(x) · n̂(x) on �d,

(6)

where (ψ, ε) denotes an eigenpair consisting of the respective wavefunction ψ and
its associated energy ε, n̂(x) is the outward unit normal at x and�d are the bounding
faces of the domain �. Due to the periodicity of the medium the effective potential
Veff(x) and the charge density ρ are periodic as well and satisfy

Veff(x +R) = Veff(x), ρ(x +R) = ρ(x), (7)

whereas the solution of Schrödinger’s equation ψ , the so-called wavefunction,
satisfies Bloch’s theorem

ψ(x + R) = ψ(x) exp(ik · R) (8)

for any lattice translation vector R = n1a1+n2a2+n3a3 with nd ∈ Z (d = 1, 2, 3)
and wavevector k.

As in [11], to derive the weak form of (6), we test the one-electron Schrödinger
equation with test functions v ∈ V with

V := {v ∈ H 1(�,C) : v(x + ad ) = v(x) exp(ik · ad) on �d, d = 1, 2, 3} (9)

and integrate by parts to obtain

a(v,ψ) = ε〈v,ψ〉L2 (�,C) for all v ∈ V, (10)

where

a(v,ψ) := 1

2

∫

�

(
∇v(x)∇ψ(x)+ v(x)Veff(x)ψ(x)

)
dx (11)

and

〈v,ψ〉L2(�,C) :=
∫

�

v(x)ψ(x) dx. (12)
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Thus, we enforce the value-periodic condition as an essential boundary condition
and the derivative-periodic condition as a natural one.

We use the flat-top PUM as described in Sect. 2 to construct a finite dimensional
subspace VM ⊂ V for the discretization of (10). To equip the discretization space
VM with potent approximation power we employ radial enrichment functions ψti
constructed from isolated-atom solutions, see [1, 11] for details. Due to the use of
our stability transform [9] the resulting discrete generalized eigenvalue problem

Hψ̃ = εSψ̃, (13)

where H = (Hij ) ∈ C
M×M denotes the discrete Hamiltonian and S = (Sij ) ∈

C
M×M is the so-called overlap (or consistent mass) matrix

Hij := a(φj , φi), and Sij := 〈φj , φi〉L2(�,C), (14)

involves well-conditioned matrices H and S and is thus in principle solvable.
Yet, the solution of generalized eigenvalue problems is rather expensive compared
with a standard eigenvalue, i.e. when S = I. Fortunately, there exists a general
variational mass lumping scheme [10] for the PUM that is applicable to arbitrary
enriched approximations and preserves the improved approximation properties due
to enrichment which allows us to transform (13) into a standard eigenvalue problem

Hũ = εũ, (15)

see [1] for details.

3.1 Transformation on a Triclinic Unit Cell

To handle a triclinic rather than a cuboid unit cell geometry using the PUM as
described in Sect. 2, we can pursue the following three approaches:

We can construct the triclinic unit cell geometry and cover it with axis-aligned
patches to then carry out all integrations on the intersection of the geometry and
the cover, cmp. Fig. 1. One of the problems with this procedure is, that the
implementation of periodic boundary conditions is not as straight-forward as for
axis-aligned domains presented in [1], because we can not guarantee in general that
patches copied to the opposite boundary retain the flat-top property.

The second option, with a more involved implementation, is to construct the
cover in a boundary-fitted way using triclinic cells, cmp. Fig. 1. In this case, we also
integrate on general triclinic and not axis-aligned integration cells but the realization
of periodic boundary conditions works analogously as for cuboid cells.

The third option, which was actually implemented for this paper, is to not use
a triclinic geometry explicitly, but to transform the basis functions to the unit cube
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Fig. 1 Schematic two-dimensional representation of possible transformation approaches for
triclinic cells not implemented for this paper. Left: Construct a cover of the triclinic cell with
axis-aligned patches. Right: Construct a cover fitted to the triclinic cell

AT

A−1
T

T

a1

a2

a3

ΩΩ

Fig. 2 Schematic representation of the transformation AT : � −→ �T. This (linear) transforma-
tion can be represented by the matrix AT = (a1, a2, a3), whose column vectors are the primitive
lattice vectors ad , d = 1, 2, 3 of �T

� = [0, 1]3 using the transformation theorem and carry out all integration on there.
This is the usual isoparametric approach also used in classical FEM approaches, see
e.g. [7]. The transformation theorem reads as

∫

(�)

f (y)dy =
∫

�

f ((x))|detD(x)|dx (16)

for a diffeomorphism  : � → (�) = �T. For our case, the transformation
maps the unit cube � to the triclinic unit cell �T, i.e. it is the matrix AT whose
column vectors are the primitive lattice vectors ad , d = 1, 2, 3 (see Fig. 2). The
basis functions in PUMA are defined on a reference patch ϑmi : �→ R, i.e points
have to be transformed from the triclinic unit cell to the unit cube via AT

−1 in order
to obtain the composite basis functions ϑmi ◦ AT

−1 : �T → R. In consequence,
when applying the transformation theorem (16), both transformations cancel each
other out, which leads to the transformed weak formulation

aT(v, ψ) = ε〈v,ψ〉T, L2(�,C) for all v ∈ V, (17)
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where

aT(v, ψ) := 1

2

∫

�

(
AT

−T∇v(x)AT
−T∇ψ(x)+ v(x)Veff(ATx)ψ(x)

)
|detAT| dx

(18)

and

〈v,ψ〉T, L2(�,C) :=
∫

�

v(x)ψ(x)|detAT| dx. (19)

Note that this approach is remarkably easy to realize within the PUMA software
framework where all functionalities as described in [1] are already implemented. We
only have to change the weak formulation to solve the Schrödinger eigenproblem
on a triclinic cell.

4 Numerical Results

In [1], we established that the flat-top PUM combined with radial enrichments for
solving (10) works on cuboid unit cells subject to periodic and Bloch-periodic
boundary conditions. Here, we concentrate on the numerical validation of the
transformed problem (17) under Bloch-periodic boundary conditions. As stated in
Sect. 2, we implemented this application of the flat-top PUM within the PUMA
software framework developed at Fraunhofer SCAI [4]. PUMA is parallelized using
MPI and for these experiments, we employed a simple tensor-product 6×6×6 Gauß
integration rule on subdivided cover cells [5, 8].

We consider a triclinic unit cell �T with primitive lattice vectors a1 :=
a(1, 0.02,−0.04), a2 := a(0.06, 1.05,−0.08) and a3 := a(0.10,−0.12, 1.10) and
lattice parameter a = 5. For our benchmark problem on a transformed cell, we once
again choose the periodic Gaussian potential, defined as

V (x) =
∑

R

Vg(|x − τ −R|), (20)

with

Vg(r) = −10 exp

(
− r2

2.25

)
, (21)

where we sum over the lattice translation vectors R = i1a1 + i2a2 + i3a3 with
id = −2, . . . , 2 (d = 1, 2, 3).

As described in Sect. 3.1, we transform this problem on the unit cube and
solve the transformed weak formulation (17) subject to Bloch-periodic boundary
conditions with k = (0.12, 0.23, 0.34) in reciprocal lattice coordinates. Thus this
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benchmark problem corresponds to the second benchmark problem discussed in [1]
on a skewed lattice.

For our numerical experiments, we measure the absolute error with respect to a
reference solution computed with classical cubic finite elements on a 64× 64× 64
mesh, which is accurate to 7 digits (with λref

1 = −5.9609433 Ha and
∑10
i=1 λ

ref
i =

−26.3292418 Ha). We first apply the flat-top PUM without any enrichments and
linear, quadratic and cubic polynomial spaces on uniformly refined covers. As for
cuboid unit cells, we expect convergence rates comparable to classical FEM [1]. For
the second experiment, we fix a uniformly refined cover and increase the enrichment
support radius for a single enrichment function, i.e. we enrich a patch on the unit
cube if its midpoint lies within a certain distance to the potential center on the
triclinic cell. The results of these experiments are shown in Fig. 3, where we can
indeed observe the anticipated convergence rates for the not-enriched case and
spectral convergence in the enriched case for the lowest state. As in [1], we see
that the benefits of enriching are striking: The typically desired accuracy of 10−3

Ha is achieved with just 135 for the linear enriched approximation on a 3 × 3 × 3
cover. Compared to that, we do not even achieve chemical accuracy when using
an approximation approach involving only linear polynomials with more that 107

DOFs, while the best polynomial approximation still needs 81,920 DOFs.
Furthermore, we examine the influence of the stretch factor α (1) on the accuracy

and convergence of the lumped eigenvalue problem. To this end, we use ten
enrichment functions and observe the convergence of the ten lowest states for
α = 1.1, 1.3, 1.5 (see Fig. 4). In this case, contrary to the observations we made
in [1] for the harmonic oscillator benchmark problem, the stretch factor does not
have a real influence on the monotonicity of the convergence of this more complex
problem.
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Fig. 3 Convergence history of the lowest eigenvalue λ1 for the gaussian oscillator potential
attained for different refinement schemes. We consider a purely polynomial approximation (p =
1, 2, 3) on a sequence of uniformly refined covers, which shows the expected 2p-convergence rates
(see [1]). Furthermore, we consider a refinement by increasing the enrichment radius with a single
enrichment function on a fixed uniform cover (top: 3×3×3, 7×7×7; bottom: 4×4×4, 8×8×8)
that is labeled by p = 1, 2, 3+ e ↑ re , where we observe spectral convergence
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Fig. 4 Convergence history of the sum of the ten lowest eigenvalues for the harmonic oscillator
potential obtained for different values of α = 1.1, 1.3, 1.5 (left to right) on uniformly refined
covers with ten enrichment functions employed on every patch ωi with a lumped overlap matrix.
The dashed line indicates the accuracy of the employed reference solution

5 Concluding Remarks

In this paper, we extended the implementation of the orbital-enriched flat-top
PUM for the Schrödinger eigenproblem to work on arbitrary triclinic cells. As
for cubic cells, we observe that our approach yields a stable and efficient way
to approximate the solution. Incorporating enrichment functions into the local
approximation drastically reduces the number of DOFs needed to achieve chemical
accuracy. This more complex problem does not show the same dependence on the
stretch factor α as we have observed for other benchmark problems—a good a priori
method to determine the maximum α for a given problem remains an open question.

We are currently working on the implementation of the full Kohn–Sham loop
and on the incorporation of nonlocal pseudopotentials. Another interesting question
would be how the transformation approach we used here compares to different
geometric transformation approaches we can realize within PUMA.
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