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Abstract. In this expository paper we give an overview of the statis-
tical properties of Hamilton-Jacobi Equations and Scalar Conservation
Laws. The first part (Sects. 2–4) is devoted to the recent proof of Menon-
Srinivasan Conjecture. This conjecture provides a Smoluchowski-type
kinetic equation for the evolution of a Markovian solution of a scalar con-
servation law with convex flux. In the second part of the paper (Sects. 5
and 6) we discuss the question of homogenization for Hamilton-Jacobi
PDEs and Hamiltonian ODEs with deterministic and stochastic Hamil-
tonian functions.

1 Introduction

The primary goal of these notes is to give an overview of the statistical properties
of solutions to the Cauchy problem for the Hamilton-Jacobi Equation

ut = H(x, t, ux) in R
d × (0,∞) (1.1)

u = u0 on R
d × {t = 0},

or, the scalar conservation law

ρt = H(x, t, ρ)x in R × (0,∞) (1.2)

ρ = ρ0 on R × {t = 0},

where either H or ρ0 = ρ0(x) is random. Note that if u satisfies (1.1) and d = 1,
then ρ = ux satisfies (1.2). As is well-known, the PDE (1.1) or (1.2) does not
possess classical solutions even when the initial data is smooth. In the case of
Eq. (1.1), we may consider viscosity solutions to guarantee the uniqueness under
some standard assumptions on the initial data and H. In the case of (1.2) with
d = 1, we consider the so-called entropy solutions.

We will be mostly concerned with the following two scenarios:

(1) d = 1, H(x, t, p) = H(p) is convex in p and independent of (x, t), with initial
data ρ0 that is either a white noise, or a Markov process.

(2) d ≥ 1, and H(x, t, p) is a stationary ergodic process in (x, t), and may not
be convex in p.
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Our aim is to give an overview of various classical and recent results and
formulate a number of open problems. Sections 2–4 are devoted to (1), where
we derive an evolution equation for the Markovian law of ρ as a function of
x or t. Sections 4 and 5 are devoted to (2), where we address the question of
homogenization for such Hamiltonian functions.

2 Scalar Conservation Law with Random Initial Data

We first recall the following important features of the solutions to (1.2) when
d = 1, H(x, t, p) = H(p) is convex in p, and independent of (x, t):

(i) If a discontinuity of ρ occurs at x = x(t), and ρ± = ρ(x(t)±, t) represent
the left and right limits of ρ at x(t), then for a weak solution of (1.2) we
must have the Rankin-Hugoniot Equation:

dx

dt
= −H[ρ−, ρ+] =: −H(ρ+) − H(ρ−)

ρ+ − ρ−
.

(ii) By an entropy solution, we mean a week solution for which the entropy
condition is satisfied. In the case of convex H, the entropy condition is
equivalent to the requirement

ρ− < ρ+.

(iii) If ρ0 has a discontinuity with ρ− > ρ+, then such a discontinuity disappears
instantaneously by inserting a rarefaction wave between ρ− and ρ+. That
is a solution of the form

G

(
x − c

t

)
,

where G = (H ′)−1.

We next state three results.

(i) (Burgers Equation with Lévy Initial Data)

When H(p) = 1
2p2, (1.2) is the well-known inviscid Burgers’ equation, which

has often been considered with random initial data. Burgers studied (1.2) in
his investigation of turbulence [5]. Carraro and Duchon [6] defined a notion
of statistical solution to Burgers’ equation and realized that it was natural to
consider Lévy process initial data. This statistical solution approach was further
developed in 1998 by the same authors [7] and by Chabanol and Duchon [8]. In
fact any (random) entropy solution is also a statistical solution, but the converse
is not true in general. In 1998, Bertoin [4] proved a closure theorem for Lévy
initial data.
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Theorem 1. Consider Burgers’ equation with initial data ρ0(x) which is a Lévy
process without negative jumps for x ≥ 0, and ρ0(x) = 0 for x < 0. Assume that
the expected value of ρ0(1) is non-positive, Eρ0(1) ≤ 0. Then, for each fixed
t > 0, the process x �→ ρ(x, t) − ρ(0, t) is also a Lévy process with

E exp
( − s(ρ(x, t) − ρ(0, t))

)
= exp(xψ(s, t)),

where the exponent ψ solves the following equation:

ψt + ψψs = 0. (2.1)

Remark 2.1(i) The requirement Eρ0(1) ≤ 0 can be relaxed with minor modi-
fications to the theorem, in light of the following elementary fact. Suppose that
ρ0(x) and ρ̂0(x) are two different initial conditions for Burgers’ equation, which
are related by ρ̂0(x) = ρ0(x) + cx. It is easy to check that the corresponding
solutions ρ(x, t) and ρ̂(x, t) are related for t > 0 by

ρ̂(x, t) =
1

1 + ct

[
ρ

(
x

1 + ct
,

t

1 + ct

)
+ cx

]
.

Using this we can adjust a statistical description for a case where Eρ0(1) > 0 to
cover the case of a Lévy process with general mean drift.

(ii) Sinai [26] and Aurell, Frisch, She [3] considered Burgers equation with Brow-
nian motion initial data, relating the statistics of solutions to convex hulls and
addressing pathwise properties of solutions. ��
(ii) (Burgers Equation with white noise initial data)

Groeneboom [15] considers the white noise initial data. In other words, take
two independent Brownian motions B±, and take a two sided Brownian motion
for the initial data

u0(x) =

{
B+(x) if x ≥ 0
B−(x) if x ≤ 0,

(2.2)

Theorem 2. Let ρ = ux, where u is a viscosity solution of the PDE ut = 1
2u2

x,
subject to the initial condition u(x, 0) = u0(x), with u0 given as in (2.2). Then
the process x �→ ρ(x, t) is a Markov jump process with drift −t−1 and a suitable
jump measure ν(t, ρ−, ρ+) dρ+.

We also refer to [13] for an explicit and simple formula expressing the one-
point distribution of ρ in terms of Airy functions.

(iii) A different particular case,

−H(p) =

{
0 if |p| ≤ 1,

∞ otherwise.

corresponds to the problem of determining Lipschitz minorants, and has been
investigated by Abramson and Evans [1].
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3 Menon-Srinivasan Conjecture

In 2007 Menon and Pego [19] used the Lévy-Khintchine representation for the
Laplace exponent and observed that the evolution according to Burgers’ equation
in (2.1) corresponds to a Smoluchowski coagulation equation [2], with additive
collision kernel, for the jump measure of the Lévy process ν(·, t). The jumps
of ν(·, t) correspond to shocks in the solution ρ(·, t). Regarding the sizes of the
jumps as the usual masses in the Smoluchowski equation, it is plausible that
Smoluchowski equation with additive kernel should be relevant.

It is natural to wonder whether this evolution through Markov processes
with simple statistical descriptions is specific to the Burgers-Lévy case, or an
instance of a more general phenomenon. The biggest step toward understanding
the problem for a wide class of H is found in a 2010 paper of Menon and
Srinivasan [20]. Here it is shown that when the initial condition ρ0 is a strong
Markov process with positive jumps only, the solution ρ(·, t) remains Markov for
fixed t > 0. The argument is adapted from that of [4] and both [20] and [4] use
the notion of splitting times (due to Getoor [14]) to verify the Markov property
according to its bare definition. In the Burgers-Lévy case, the independence and
homogeneity of the increments can be shown to survive, from which additional
regularity is immediate using standard results about Lévy processes. As [20]
points out, without these properties it is not clear whether a Feller process
initial condition leads to a Feller process in x at later times. Nonetheless, [20]
presents a very interesting conjecture for the evolution of the generator of ρ(·, t),
which has a remarkably nice form.

To prepare for the statement of Menon-Srinivasan Conjecture, we first exam-
ine the following simple scenario for the solutions of the PDE

ρt = H(ρ)x = H ′(ρ)ρx. (3.1)

Imagine that the initial data ρ0 satisfies an ODE of the form

dρ0

dx
(x) = b0

(
ρ0(x)

)
, (3.2)

for some C1 function b0 : R → R. We may wonder whether or not this feature
of ρ0 survives at later times. That is, for some function b(ρ, t), we also have

ρx(x, t) = b
(
ρ(x, t), t

)
, (3.3)

for t > 0. For (3.3) to be consistent with (3.1), observe

ρt = H ′(ρ)ρx = H ′(ρ)b(ρ, t),

and as we calculate mixed derivatives, we arrive at

ρxt = bρ(ρ, t)ρt + bt(ρ, t) = bρ(ρ, t)H ′(ρ)b(ρ, t) + bt(ρ, t),

ρtx = H ′′(ρ)b(ρ, t)ρx + H ′(ρ)bρ(ρ, t)ρx = H ′′(ρ)b2(ρ, t) + H ′(ρ)bρ(ρ, t)b(ρ, t).
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As a result b must satisfy

bt(ρ, t) = H ′′(ρ)b2(ρ, t). (3.4)

For a classical solution, all we need to do is solving the ODE (3.3) for the initial
data b(ρ, 0) = b0(ρ) for each ρ. When H is convex, the solution may blow up in
finite time. More precisely,

– If b0(ρ) ≤ 0, then b0(ρ) ≤ b(ρ, t) ≤ 0 for all t and there would be no blow-up.
– If b0(ρ) > 0, then there exists some finite T (ρ) > 0 such that b(ρ, t) is finite

in the interval [0, T (ρ)), and b(ρ, T (ρ)) = ∞.

In fact the Eq. (3.4) is really “the method of characteristics” in disguise, and the
blow-up of solutions is equivalent to the occurrence of shock discontinuity.

To go beyond what (3.4) offers, we now take a jump kernel f0(ρ, dρ∗)
and assume that ρ0(x) is a realization of a Markov process with infinitesimal
generator

L0h(ρ) = b0(ρ)h′(ρ) +
∫ ∞

ρ

(
h(ρ∗) − h(ρ)

)
f0(ρ, dρ∗).

In words, ρ0 solves the ODE (3.3), with some occasional random jumps with
rate f0. We are assuming that the jumps are all positive to avoid rarefaction
waves. We may wonder whether the same picture is valid at later times. That is,
for fixed t > 0, the solution ρ(x, t), as a function of x is a Markov process with
the generator

Lth(ρ) = b(ρ, t)h′(ρ) +
∫ ∞

ρ

(
h(ρ∗) − h(ρ)

)
f(ρ, dρ∗, t). (3.5)

Menon-Srinivasan Conjecture roughly suggests that if H is convex, and we
start with a Markov process with generator L0, then we have a Markov process at
a later time with a generator of the form Lt. Moreover, the drift of the generator
satisfies (3.4), and the jump kernel f(ρ, dρ∗, t) solves an integral equation. Before
we derive an equation for the evolution of f , observe that when we assert that
ρ(x, t) is a Markov process in x, we are specifying a direction for x. More precisely,
we are asserting that if ρ(a, t) is known, then the law of ρ(x, t) can be determined
uniquely for all x > a. We are doing this for all t > 0. In practice, we may try to
determine ρ(x, t) for x > a(t), provided that ρ(a(t), t) is specified. For example,
we may wonder whether or not we can determine the law of ρ(x, t) with the aid
of the following procedure:

– The process t �→ ρ(a(t), t) is a Markov process and its generator can be
determined. Using this Markov process, we take a realization of ρ(a(t), t),
with some initial choice for ρ(a(0), 0).

– Once ρ(a(t), t) is selected, we use the generator Lt, to produce a realization
of ρ(x, t) for x ≥ a(t).
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To materialize the above procedure, we need to make sure that for some choice of
a(t), the process ρ(a(t), t) is Markovian with a generator that can be described.
For a start, we may wonder whether or not we can even choose a(t) = a a
constant function. Put it differently, not only x �→ ρ(x, t) is a Markov process
for fixed t ≥ 0, the process t �→ ρ(x, t) is a Markov process for fixed x. As it
turns out, this is the case if H is also increasing. In general, if we can find a
negative constant c such that H ′(ρ) > c, then ρ̂(x, t) := ρ(x − ct, t) satisfies

ρ̂t = Ĥ(ρ̂)x,

for Ĥ(ρ) = H(ρ) − cρ, which is increasing. Hence, the process t �→ ρ̂(x, t) =
ρ(x − ct, t) is expected to be Markovian. In summary

– If H is increasing in the range of ρ, then ρ is also Markovian on vertical lines
x = constant.

– If H ′ is bounded below by a negative constant c, then ρ is Markovian on
straight lines that are titled to the right with the slope −c.

To simplify the matter, from now on, we make two assumptions on H:

H ′ > 0, H ′′ ≥ 0. (3.6)

The main consequences of these two assumptions are

– All the jump discontinuities are positive i.e. ρ− < ρ+.
– The speed of shocks are always negative.

We now argue that in fact the process t �→ ρ(x, t) is a (time-inhomogeneous)
Markov process with a generator Mt that is independent of x because the PDE
(3.1) is homogeneous (i.e. H is independent of x). Indeed

Mth(ρ) = H ′(ρ)b(ρ, t)h′(ρ) +
∫ ∞

ρ

(
h(ρ∗) − h(ρ)

)
H[ρ, ρ∗]f(ρ, dρ∗, t). (3.7)

To explain the form of Mt heuristically, observe that the ODE dρ
dx = b(ρ, t) leads

to the ODE
dρ

dt
= H ′(ρ)b(ρ, t).

On the other hand, if we fix x, then ρ(x, t) experiences a jump discontinuity
when a shock on the right of x crosses x. Given any t > 0, a shock would occur
at some s > t because all shock speeds are negative; it is just a matter of time
for a shock on the right of x to cross x. We can also calculate the rate at which
this happens because we have the law of the first shock on the right of x, and
its speed. Observe

– The process x �→ ρ(x, t) is a homogeneous Markov process with a generator
that changes with time.

– The process t �→ ρ(x, t) is an inhomogeneous Markov process with a generator
that does not depend on x. It is only the initial data ρ(x, 0) that is responsible
for the changes of the statistics of ρ(x, t), as x varies.
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We are now in a position to derive formally an evolution equation for the
generator Lt, under the assumption (3.6). Indeed if we define

w(x, t; ρ) = E
ρ(0,t)=ρh(ρ(x, T )),

for t < T , then we expect

wt = −Mtw, wx = Ltw.

Differentiating these equations yields

wtx = −Mtwx = −MtLtw, wxt =
dLt

dt
w + Ltwt =

dLt

dt
w − LtMtw.

As a result
dLt

dt
= LtMt − MtLt. (3.8)

As we match the drift parts of both sides of (3.8), we simply get (3.4). Matching
the jump parts yields a kinetic-type equation of the form

ft = Q(f, f) + Cf, (3.9)

for a quadratic operator Q and a linear operator C. The operator Q is indepen-
dent of b and is given by

Q(f, f)(ρ−, dρ+) =
∫ ρ+

ρ−

(
H[ρ∗, ρ+] − H[ρ−, ρ∗]

)
f(ρ−, dρ∗)f(ρ∗, dρ+)

+
∫ ∞

ρ+

(
H[ρ+, ρ∗] − H[ρ−, ρ+]

)
f(ρ+, dρ∗)f(ρ−, dρ+)

+
∫ ∞

ρ−

(
H[ρ−, ρ+] − H[ρ−, ρ∗]

)
f(ρ−, dρ∗)f(ρ−, dρ+).

If we set

λ(ρ−) = λ(f)(ρ−) =
∫ ∞

ρ−
f(ρ−, dρ+),

A(ρ−) = A(f)(ρ−) =
∫ ∞

ρ−
H[ρ−, ρ+]f(ρ−, dρ+),

then Q = Q+ − Q−, with

Q+(f, f)(ρ−, dρ+) =

∫ ρ+

ρ−

(
H[ρ∗, ρ+] − H[ρ−, ρ∗]

)
f(ρ−, dρ∗)f(ρ∗, dρ+, t)

Q−(f, f)(ρ−, dρ+) =
{
A(ρ+) − A(ρ−) − H[ρ−, ρ+]

(
λ(ρ+) − λ(ρ−)

)}
f(ρ−, dρ+).

(3.10)

To define the operator C we need to assume that f(ρ−, dρ+) = f(ρ−, ρ+)dρ+ has
a C1 density. With a slight abuse of notion, we write f(ρ−, ρ+) for the density
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of the measure f(ρ−, dρ+), and write C again for the action of the operator C
on the density f :

(Cf)(ρ−, ρ+) = b(ρ−, t)f(ρ−, ρ+)
(
H[ρ−, ρ+]

)
ρ−

+
[
H[ρ−, ρ+] − H ′(ρ−)

]
b(ρ−, t)fρ−(ρ−, ρ+)

+
[(

H[ρ−, ρ+] − H ′(ρ+)
)
b(ρ+, t)f(ρ−, ρ+)

]
ρ+

.

Menon-Srinivasan Conjecture has been established in [16] and [17]:

Theorem 3. Assume H is a C2 function that satisfies (3.6). Let ρ be an
entropic solution of (3.1) such that ρ(x, 0) = 0, for x ≤ 0, and ρ(x, 0) is a
Markov process with generator L0, for x ≥ 0. Assume that b and f satisfy (3.4)
and (3.9) respectively. Then the processes t �→ ρ(0, t) and x �→ ρ(x, t) are Markov
processes with generators Mt and Lt respectively.

The typical situation, for Smoluchowski and other kinetic equations is that
we have some (stochastic or deterministic) dynamics defined on a finite system,
and these kinetic equations emerge upon passage to a scaling limit. The dynam-
ics might not be definable for the infinite system, and the kinetic equation should
describe statistics only approximately for a large but finite system. In the set-
ting of Theorems 1, 2 and 3, the kinetic equations give statistics exactly without
passage to a rescaled limit. We view this unusual circumstance as demanding an
explanation. Further, our treatment in Sect. 4 below (tracking shocks as inelas-
tically colliding particles) seems quite at home in the kinetic context.

4 Heuristics for the Proof of Theorem 3

Let us write xi(t) for the location of the i-th shock and ρi(t) = ρ(xi(t)+, t).
We also write φx(m0; t) for the flow associated with the velocity b; the function
m(x) = φx(m0; t) satisfies

m′(x) = b(m(x), t), m(0) = m0.

We can readily find the evolution q = (xi, ρi : i ∈ Z), and q̂ = (zi, ρi : i ∈ Z),
with zi = xi+1 − xi:

–
ẋi = −vi := −H[ρ̂i−1, ρi], żi = −(vi+1 − vi),

where ρ̂i−1(t) = φzi−1(ρi−1(t), t).
–

ρ̇i = wi :=
(
H ′(ρi) − H[ρ̂i−1, ρi]

)
b(ρi, t).

– When zi becomes 0, the pair (ρi, zi) is omitted from q̂(t). The outcome after
a relabeling is denoted by q̂i(t).
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Write
Δ =

{
(zi, ρi : i ∈ Z) : zi > 0, ρi ∈ R for all i ∈ Z

}
.

We think of q̂(t) as a deterministic process that has an infinitesimal generator

AG =
∑
i∈Z

(
wiGρi

− (vi+1 − vi)Gzi

)
,

in the interior of Δ. We only take those G such that on the boundary face of Δ with
zi = 0, we have G

(
q̂
)

= G
(
q̂i

)
. This stems from the fact that we are interested in

the function ρ(x) = ρ(x; q̂) associated with q̂ (or q) that is defined by
∑

i

φzi
(xi;x − xi)11

(
x ∈ [xi, xi+1)

)
.

Note that ρ(x; q̂) = ρ(x; q̂i) whenever zi = 0.
We make an ansatz that the law of q̂(t) is of the form:

μ
(
dq̂, t

)
=

∞∏
i=−∞

e− ∫ zi
0 λ(φy(ρi;t),t)dy f

(
φzi

(ρi; t), ρi+1, t) dzidρi+1.

For this to be the case, we need to have

μ̇ = A∗μ. (4.1)

This equation should determine f and λ if our ansatz is correct. To determine
A∗, we take a test function G and carry out the following calculation: After some
integration by parts, we formally have

∫
G dA∗μ =

∫
AG dμ =

∫
G

∑
i

[
wiΩ1

i − wi
ρi

+ (vi+1 − vi)Ω2
i + vi+1

zi
− Ω3

i

]
dμ,

where

Ω1
i =

∫ zi

0

[
λ
(
φy(ρi; t), t

)]
ρi

dy −
[
f
(
ρ̂i, ρi+1, t

)]
ρi

f
(
ρ̂i, ρi+1, t

) − fρ+

(
ρ̂i−1, ρi, t

)
f
(
ρ̂i−1, ρi, t

) ,

Ω2
i = −λ

(
ρ̂i, t

)
+

[
f
(
ρ̂i, ρi+1, t

)]
zi

f
(
ρ̂i, ρi+1, t

) ,

Ω3
i =

∫ ρi

ρ̂i−1
H

(
ρ̂i−1, ρ∗, ρi

)
f
(
ρ̂i−1, ρ∗, t

)
f
(
ρ∗, ρi, t

)
dρ∗

f
(
ρ̂i−1, ρi, t

) ,

where Ω3
i represents the boundary contribution associated with zi = 0, and

H(a, b, c) := H[b, c] − H[a, b].

To explain the form of Ω3
i , observe that when zi = 0, we remove the ith-particle

and relabel the particles to its right. The expression f
(
ρ̂i−1, ρi, t

)
f
(
ρi, ρi+1, t

)
dρi,
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that appears in μ, can be rewritten as f
(
ρ̂i−1, ρ∗, t

)
f
(
ρ∗, ρi+1, t

)
dρ∗. The variable

ρi+1 becomes ρi after our relabeling, and its integral with respect to ρ∗ is a function
of

(
ρ̂i−1, ρi, t

)
. If we replace this function with f

(
ρ̂i−1, ρi, t

)
, we recover the mea-

sure μ.
On the other hand

μ̇ =
∑

i

[
Γ 1

i + Γ 2
i

]
μ =

∑
i

{[
f
(
φzi(ρi; t), ρi+1, t

)]
t

f
(
φzi(ρi; t), ρi+1, t

) −
∫ zi

0

[
λ
(
φy(ρi; t), t

)]
t
dy

}
μ.

To make the above formal calculation rigorous, we switch from the infinite
sum to a finite sum. For this, we restrict the dynamics to an interval, say [0, L].
The configuration now belongs to

ΔL = ∪∞
n=0Δ

L
n ,

with ΔL
n denoting the set

{
q =

(
(xi, ρi) : i = 0, 1, . . . , n

)
: x0 = 0 < x1 < · · · < xn < xn+1 = L, ρ0, . . . , ρn ∈ R

}
.

Again, what we have in mind is that ρi(t) = ρ(xi(t)+, t) with x1, . . . , xn denoting
the location of all shocks in (0, L). For our purposes, we need to come up with
a candidate for the law μ(t, dq) of q(t) in ΔL. The restriction of μ to Δn

L is
denoted by μn and is given by

�(dρ0, t) exp

{
−

n∑
i=0

∫ xi+1−xi

0
λ(φy(ρi; t), t)dy

}
n−1∏
i=0

f
(
φxi+1−xi(ρi; t), ρi+1, t) dxi+1dρi+1,

where f solves (3.9) and 	 is the law of ρ(0, t), which is a Markov process with
generator M = Mt:

	̇ = M∗	. (4.2)

To simplify the presentation, we assume

	(dρ0, t) = 	(ρ0, t) dρ0.

As for the dynamics of q, we have the following rules:

(i) So long as xi remains in (xi−1, xi+1), it satisfies

ẋi = −vi := −H[ρ̂i−1, ρi],

where ρ̂i−1(t) = φzi−1(ρi−1(t), t).
(ii) We have ρ̇0 = w0 := H ′(ρ0)b(ρ0, t) and for i > 0,

ρ̇i = wi :=
(
H ′(ρi) − H[ρ̂i−1, ρi]

)
b(ρi, t).

(iii) When zi = xi+1 − xi becomes 0, then q(t) becomes qi(t), that is obtained
from q(t) by omitting (ρi, xi).
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(iv) With rate
H[ρ̂n, ρn+1]f

(
ρ̂n, ρn+1, t),

the configuration q gains a new particle (xn+1, ρn+1), with xn+1 = L. This
new configuration is denoted by q(ρn+1).

We note that since H is increasing, all velocities are negative. Moreover, when
the first particle of location x1 crosses the origin, a particle is lost.

We wish to establish (4.1). We write Gn for the restriction of a smooth
function G : ΔL → R to ΔL

n . Recall that we only consider those test functions
G that cannot differentiate between q and qi (respectively q(ρn+1)), when xi =
xi+1 (respectively xn+1 = L). We need to verify

μ̇n =
(A∗μ

)n
, (4.3)

for all n ≥ 0. Here and below, we write νn for the restriction of a measure ν to
ΔL

n . Also, given H : ΔL → R, we write Hn for the restriction of the function H
to the set ΔL

n . To verify (4.3), we show
∫

Gn dμ̇n =
∫ (AG

)n
dμn, (4.4)

for every C1 function G. It is instructive to see why (4.3) (or its integrated
version (4.4)) is true when n = 0 and 1 before treating the general case. As we
will see below, the cases n = 0, 1 are already equivalent to the Eq. (3.9). As a
warm-up, we first assume that n = 0 and b = 0. In this case the Eq. (4.3) is
equivalent to the fact that the law 	 of ρ(0, ·) is governed by a Markov process
with generator Mt. The case n = 0 and general b leads to the general form of
Mt for the evolution of ρ(0, ·), and an equation for λ that is a consequence of
(3.9). The full Eq. (3.9) shows up when we consider the case n = 1.

The case n = 0 and b = 0. As it turns out, the function λ(ρ, t) = λ(ρ) is
independent of time when b = 0. We simply have

μ0(dρ0, t) = e−Lλ(ρ0)	(dρ0, t), μ0
t (dρ0, t) = e−λ(ρ0)L	t(dρ0, t). (4.5)

On the other hand, the right-hand side of (4.4) is of the form Ω1
0 + Ω2

0 , where
Ω1

0 comes from rule (i), and Ω2
0 comes from the stochastic boundary dynamics.

Indeed

Ω1
0 =

∫
H[ρ0, ρ1]G0(0, ρ1)e−λ(ρ1)Lf(ρ0, ρ1, t) dρ1 	(dρ0, t) (4.6)

−
∫

H[ρ0, ρ1]G1(0, ρ0, L, ρ1)e−λ(ρ0)Lf(ρ0, ρ1, t) dρ1 	(dρ0, t),

which we get from the boundary terms when we apply an integration by parts
to the integral

−
∫

H[ρ0, ρ1]G1
x1

(0, ρ0, x1, ρ1) e−λ(ρ0)x1−λ(ρ1)(L−x1)f(ρ0, ρ1, t) dρ1 	(dρ0, t) dx1.
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We note that the other terms of the integration by parts formula contribute to
the case n = 1 and do not contribute to our n = 0 case. Moreover,

Ω2
0 =

∫
H[ρ0, ρ1]f(ρ0, ρ1, t)

(
G1(0, ρ0, L, ρ1) − G0(0, ρ0)

)
e−λ(ρ0)L dρ1 	(dρ0, t).

From this and (4.6) we learn

Ω1
0 + Ω2

0 =
∫

H[ρ0, ρ1]G0(0, ρ1)e−λ(ρ1)Lf(ρ0, ρ1, t) dρ1 	(dρ0, t)

−
∫

H[ρ0, ρ1]f(ρ0, ρ1, t)G0(0, ρ0)e−λ(ρ0)L dρ1 	(dρ0, t)

=
∫

H[ρ1, ρ0]G0(0, ρ0)e−λ(ρ0)Lf(ρ1, ρ0, t) dρ0 	(dρ1, t)

−
∫

H[ρ0, ρ1]f(ρ0, ρ1, t)G0(0, ρ0)e−λ(ρ0)L dρ1 	(dρ0, t)

=
∫

G0(0, ρ0)e−λ(ρ0)L
(M∗

t 	
)
(dρ0, t) =

∫
G0(0, ρ0)e−λ(ρ0)L 	t(dρ0, t),

as desired. ��

The case n = 0 and general b. To ease the notation, we write

Γ (ρ, x, t) =
∫ x

0

λ(φy(ρ; t), t) dy.

When n = 0, the right-hand side of (4.4) equals
∫

G
0
(0, ρ0)

[
H

′
(ρ0)b(ρ0, t)�(ρ0, t)Γρ(ρ0, L, t) − (

H
′
(ρ0)b(ρ0, t)�(ρ0, t)

)
ρ0

]
e

−Γ (ρ0,L,t)
dρ0

+

∫
H[ρ0, ρ1]G

0
(0, ρ1)e

−Γ (ρ1,L,t)
f(ρ0, ρ1, t) dρ1 �(dρ0, t)

−
∫

H
[
φL(ρ0; t), ρ1

]
f

(
φL(ρ0; t), ρ1, t

)
G

1
(0, ρ0, L, ρ1)e

−Γ (ρ0,L,t)
dρ1 �(dρ0, t)

+

∫
H

[
φL(ρ0; t), ρ1

]
f

(
φL(ρ0; t), ρ1, t

)(
G

1
(0, ρ0, L, ρ1) − G

0
(0, ρ0)

)
e

−Γ (ρ0,L,t)
dρ1 �(dρ0, t)

This simplifies to
∫

G0(0, ρ0)
[
H′(ρ0)b(ρ0, t)�(ρ0, t)Γρ(ρ0, L, t) − (

H′(ρ0)b(ρ0, t)�(ρ0, t)
)
ρ0

]
e−Γ (ρ0,L,t) dρ0

+

∫
H[ρ∗, ρ0]G

0(0, ρ0)e
−Γ (ρ0,L,t)f(ρ∗, ρ0, t) dρ0 �(dρ∗, t)

−
∫

H
[
φL(ρ0; t), ρ1

]
f
(
φL(ρ0; t), ρ1, t

)
G0(0, ρ0)e

−Γ (ρ0,L,t) dρ1 �(dρ0, t)

=

∫
G0(0, ρ0)Λ(ρ0, t) e−Γ (ρ0,L,t) dρ0,

where Λ(ρ0, t) equals

H ′(ρ0)b(ρ0, t)�(ρ0, t)Γρ(ρ0, L, t) − (
H ′(ρ0)b(ρ0, t)�(ρ0, t)

)
ρ0

+

∫
H[ρ∗, ρ0]f(ρ∗, ρ0, t) �(dρ∗, t) −

∫
H

[
φL(ρ0; t), ρ1

]
f
(
φL(ρ0; t), ρ1, t

)
dρ1 �(ρ0, t).
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We need to match Λ(ρ0, t) with the corresponding term on left-hand side of
(4.4), which, by (4.2) takes the form

−Γt(ρ0, L, t) 	(ρ0, t) − (
H ′(ρ0)b(ρ0, t)	(ρ0, t)

)
ρ0

+
∫

H[ρ∗, ρ0]f(ρ∗, ρ0, t) 	(dρ∗, t) − A(ρ0, t) 	(ρ0, t),

where
A(ρ0, t) =

∫
H[ρ0, ρ∗]f(ρ0, ρ∗, t) dρ∗.

We are done if we can verify

Γt(ρ0, L, t) + H ′(ρ0)b(ρ0, t)Γρ(ρ0, L, t) = A
(
φL(ρ0; t), t

) − A(ρ0, t). (4.7)

Equivalently
∫ L

0

[
λ(φy(ρ0; t), t)

]
t

dy + H
′
(ρ0)b(ρ0, t)

∫ L

0

[
λ(φy(ρ0; t), t)

]
ρ0

dy =

∫ L

0

[
A

(
φy(ρ0; t), t

)]
y

dy.

For this, it suffices to check
[
λ(φy(ρ0; t), t)

]
t
+ H ′(ρ0)b(ρ0, t)

[
λ(φy(ρ0; t), t)

]
ρ0

=
[
A

(
φy(ρ0; t), t

)]
y
.

Note that if u(y, ρ) = A
(
φy(ρ; t), t

)
, then

uy(y, ρ0) = b(ρ0, t)uρ(y, ρ0).

Hence for (4.7), it suffices to show
[
λ(φy(ρ0; t), t)

]
t
+ H ′(ρ0)b(ρ0, t)

[
λ(φy(ρ0; t), t)

]
ρ0

= b(ρ0, t)
[
A

(
φy(ρ0; t), t

)]
ρ0

. (4.8)

To have a more tractable formula, let us write Tyh(m) = h(φy(m; t)). The family
of operators {Ty : y ∈ R}, is a group in y. Moreover, if (Bh)(m) = b(m, t)h′(m),
then

dTy

dy
= BTy = TyB. (4.9)

Using this, we may rewrite (4.8) as
[
λ(φy(ρ0; t), t)

]
t
+ H ′(ρ0)b(φy(ρ0; t), t)λρ(φy(ρ0; t), t) = b(φy(ρ0; t), t)Aρ

(
φy(ρ0; t), t

)
.

(4.10)
This for y = 0 takes the form

λt(ρ0, t) + H ′(ρ0)b(ρ0, t)λρ(ρ0, t) = b(ρ0, t)Aρ(ρ0, t). (4.11)

Because of our choice of λ, namely

λ(t, ρ−) =
∫ ∞

ρ−
f(ρ−, ρ+, t) dρ+, (4.12)
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we can deduce (4.10) from (3.9) after integrating both sides of (3.9) with respect
to ρ−. On account of (4.11), the claim (4.10) would follow if we can show

X(ρ0, y, t) :=
[
φy(ρ0; t)

]
t
− [

H ′(φy(ρ0; t)) − H ′(ρ0)
]
b(φy(ρ0; t), t) = 0. (4.13)

This is true for y = 0. Differentiating with respect to y yields

Xy(ρ0, y, t) =
[
b(φy(ρ0; t), t)

]
t
− [

H ′(φy(ρ0; t))
]
y
b(φy(ρ0; t), t)

− [
H ′(φy(ρ0; t)) − H ′(ρ0)

][
b(φy(ρ0; t), t)

]
y

= bt(φy(ρ0; t), t) + bρ(φy(ρ0; t), t)
[
φy(ρ0; t)

]
t
− H ′′(φy(ρ0; t))b

2(φy(ρ0; t), t)

− [
H ′(φy(ρ0; t)) − H ′(ρ0)

]
(bbρ)(φy(ρ0; t), t)

= bρ(φy(ρ0; t), t)
[
φy(ρ0; t)

]
t
− [

H ′(φy(ρ0; t)) − H ′(ρ0)
]
(bbρ)(φy(ρ0; t), t)

= bρ(φy(ρ0; t), t)X(ρ0, y, t),

where we used (3.4) for the third equality. As a result.

X(ρ0, y, t) = X(ρ0, 0, t) exp
[∫ y

0

bρ(φz(ρ0; t), t) dz

]
= 0.

This completes the proof of (4.2), when n = 0. ��

As we have seen so far, the case n = 0 is valid if (4.11), a consequence of the
kinetic equation (3.9), is true. On the other hand the case n = 1 is equivalent to
the kinetic equation. Before embarking on the verification of (4.3) for n = 1, let
us make some compact notions for some of the expressions that come into the
proof. Given a realization q =

(
0, ρ0, x1, ρ1, . . . , xn, ρn

) ∈ ΔL
n , we define

ρ
(
x, t;q

)
=

n∑
i=0

φx−xi

(
ρi; t

)
11
(
xi ≤ x < xi+1

)
,

Γ (q, t) =
∫ L

0

λ
(
ρ
(
y, t;q

))
dy =

n∑
i=0

Γ (ρi, xi+1 − xi, t),

ρ̂i−1 = ρ(xi−, t;q) = φxi−xi−1(ρi−1; t),

where λ is defined by (4.12). Note that by (4.13),

dρ̂i

dt
=

[
H ′(ρ̂i) − H ′(ρi)

]
b(ρ̂i, t). (4.14)

The case n = 1. We have μ̇1 = X1μ
1, where

X1(q, t) = −Γt(q, t) +
	t(ρ0, t)
	(ρ0, t)

+

[
f
(
ρ̂0, ρ1, t)

]
t

f
(
ρ̂0, ρ1, t)

.
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On the other hand (A∗μ)1 = Y1μ
1, with

Y1(q, t) =
7∑

j=1

Y1j(q, t) =
7∑

j=1

Y1j ,

where

Y11 = H ′(ρ0)b(ρ0, t)

[
Γρ(ρ0, x1, t) −

[
f
(
ρ̂0, ρ1, t

)]
ρ0

f
(
ρ̂0, ρ1, t

)
]
−

(
H ′(ρ0)b(ρ0, t)�(ρ0, t)

)
ρ0

�(ρ0, t)

Y12 =
(
H ′(ρ1) − H[ρ̂0, ρ1]

)
b(ρ1, t)Γρ(ρ1, L − x1, t)

Y13 =

[(
H[ρ̂0, ρ1] − H ′(ρ1)

)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

f
(
ρ̂0, ρ1, t

)

Y14 =

(
H

[
ρ̂0, ρ1

]
f
(
ρ̂0, ρ1, t

))
x1

f
(
ρ̂0, ρ1, t

) + H
[
ρ̂0, ρ1

] [
λ
(
φL−x1(ρ1; t), t

) − λ
(
ρ̂0, t

)]

Y15 =

∫
H(ρ∗, ρ0)f(ρ∗, ρ0, t) �(dρ∗, t)

�(ρ0, t)

Y16 = −
∫

H
[
φL−x1(ρ1; t), ρ∗

]
f
(
φL−x1(ρ1; t), ρ∗, t

)
dρ∗ = −A

(
φL−x1(ρ1; t), t

)

Y17 =

∫ (
H[ρ∗, ρ1] − H

[
ρ̂0, ρ∗

])
f
(
ρ̂0, ρ∗, t

)
f(ρ∗, ρ1, t) dρ∗

f
(
ρ̂0, ρ1, t

) .

Here,

– The term Y11 comes from an integration by parts with respect to the variable
ρ0. The dynamics of ρ0 as in rule (ii) is responsible for this contribution.

– The terms Y12 and Y13 come from an integration by parts with respect to the
variable ρ1. The dynamics of ρ1 as in rule (ii) is responsible for these two
contributions.

– The term Y14 comes from an integration by parts with respect to the variable
x1. The dynamics of x1 as in rule (i) is responsible for this contribution.

– The term Y15 comes from the boundary term x1 = 0 in the integration by
parts with respect to the variable x1 when there are two particles at x1 and
x2. This boundary condition represents the event that x1 has reached the
origin after which ρ0 becomes ρ1, and (x2, ρ2) is relabeled (x1, ρ1).

– The term Y16 comes from the boundary term x2 = L in the integration by
parts with respect to the variable x2, and the stochastic boundary dynamics
as in the rule (iv). The boundary term x2 = L cancels part of the contribution
of the boundary dynamics as we have already seen in our calculation in the
case n = 0.

– The rule (iii) is responsible for the term Y17. When n = 2, the particles at
x1 and x2 travel towards each other with speed H[ρ̂1, ρ2] − H[ρ̂0, ρ1]. As x2

catches up with x1, the particle x1 disappears and its density ρ1 = ρ̂1 is
renamed ρ∗, and is integrated out. We then relabel (x2, ρ2) as (x1, ρ1).

We wish to show that X1 = Y1. After some cancellation, this simplifies to

X ′
1 = Y ′

1 := Ŷ11 + Y12 + Y13 + Y14 + Y16 + Y17,
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where

X ′
1 = −Γt(q, t) − A(ρ0, t) +

[
f(ρ̂0, ρ1, t)

]
t

f(ρ̂0, ρ1, t)
,

Ŷ11 = H ′(ρ0)b(ρ0, t)

[
Γρ(ρ0, x1, t) −

[
f(ρ̂0, ρ1, t)

]
ρ0

f(ρ̂0, ρ1, t)

]
.

(The same cancellation led to the Eq. (4.7).) Observe that Γ (q, t) = Γ (ρ0, x1, t)+
Γ (ρ1, L − x1, t). Moreover, by (4.7),

Γt(ρ0, x1, t) + H ′(ρ0)b(ρ0, t)Γρ(ρ0, x1, t) = A(ρ̂0, t) − A(ρ0, t)

Γt(ρ1, L − x1, t) + H ′(ρ1)b(ρ1, t)Γρ(ρ1, L − x1, t) = A
(
φL−x1(ρ1; t), t

) − A(ρ1, t).

As a result,

−Γt(q, t) − A(ρ0, t) = H ′(ρ0)b(ρ0, t)Γρ(ρ0, x1, t) + H ′(ρ1)b(ρ1, t)Γρ(ρ1, L − x1, t)

− A
(
φL−x1(ρ1; t), t

)
+ A(ρ1, t) − A(ρ̂0, t

)
.

Using this, we learn that the equality X ′
1 = Y ′

1 is equivalent to the identity
[
f
(
ρ̂0, ρ1, t)

]
t
= H

[
ρ̂0, ρ1

] [
λ
(
φL−x1 (ρ1; t), t

) − λ
(
ρ̂0, t

)]
f
(
ρ̂0, ρ1, t

)
+

[
A

(
ρ̂0, t

) − A(ρ1, t)
]
f
(
ρ̂0, ρ1, t

)

+

∫ (
H[ρ∗, ρ1] − H

[
ρ̂0, ρ∗

])
f
(
ρ̂0, ρ∗, t

)
f(ρ∗, ρ1, t) dρ∗

+
[(

H[ρ̂0, ρ1] − H′(ρ1)
)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

− H′(ρ0)b(ρ0, t)
[
f
(
ρ̂0, ρ1, t)

]
ρ0

− H[ρ̂0, ρ1]b(ρ1, t)Γρ(ρ1, L − x1, t)f
(
ρ̂0, ρ1, t

)
+

(
H

[
ρ̂0, ρ1

]
f
(
ρ̂0, ρ1, t

))
x1

.

By the group property (4.9), we can assert that for any C1 function h,
[
h(ρ̂0)

]
x1

= b(ρ̂0, t)h′(ρ̂0) = b(ρ0, t)
[
h(ρ̂0)

]
ρ0

.

We use this and the definition of the quadratic operator Q in (3.10) to deduce
that X ′

1 = Y ′
1 is equivalent to the identity

[
f(ρ̂0, ρ1, t)

]
t
= Q(f, f)(ρ̂0, ρ1, t) + H

[
ρ̂0, ρ1

] [
λ
(
φL−x1 (ρ1; t), t

) − λ
(
ρ1, t

)]
f
(
ρ̂0, ρ1, t

)
+

[(
H[ρ̂0, ρ1] − H′(ρ1)

)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

− H′(ρ0)b(ρ̂0, t)fρ−
(
ρ̂0, ρ1, t) − H[ρ̂0, ρ1]b(ρ1, t)Γρ(ρ1, L − x1, t)f

(
ρ̂0, ρ1, t

)
+ b(ρ̂0, t)H[ρ̂0, ρ1]fρ− (ρ̂0, ρ1, t) + b(ρ̂0, t)Hρ− [ρ̂0, ρ1]f(ρ̂0, ρ1, t).
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Here we are acting the quadratic operator Q on functions because we are assum-
ing that f(ρ,dρ+, t) = f(ρ,ρ+, t) dρ+, is absolutely continuous with respect to
the Lebesgue measure. We now use (4.13) to assert that X ′

1 = Y ′
1 is equivalent

to the identity

ft(ρ̂0, ρ1, t) = Q(f, f)(ρ̂0, ρ1, t) + b(ρ̂0, t)Hρ− [ρ̂0, ρ1]f(ρ̂0, ρ1, t)

+ H
[
ρ̂0, ρ1

] [
λ
(
φL−x1(ρ1; t), t

) − λ
(
ρ1, t

)]
f
(
ρ̂0, ρ1, t

)
+

[
H[ρ̂0, ρ1] − H ′(ρ̂0)

]
b(ρ̂0, t)fρ−

(
ρ̂0, ρ1, t)

+
[(

H[ρ̂0, ρ1] − H ′(ρ1)
)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

− H[ρ̂0, ρ1]b(ρ1, t)Γρ(ρ1, L − x1, t)f
(
ρ̂0, ρ1, t

)
.

On the other hand, by the definition of Γ ,

b(ρ1, t)Γρ(ρ1, L − x1, t) =
∫ L−x1

0

b(ρ1, t)
[
λ
(
φy(ρ1; t), t

)]
ρ1

dy

=
∫ L−x1

0

[
λ
(
φy(ρ1; t), t

)]
y

dy (4.15)

= λ
(
φL−x1(ρ1; t), t

) − λ(ρ1, t),

where we used the group property (4.9) for the second equality. This leads to

ft(ρ̂0, ρ1, t) = Q(f, f)(ρ̂0, ρ1, t) + b(ρ̂0, t)f(ρ̂0, ρ1, t)Hρ− [ρ̂0, ρ1]

+
[
H[ρ̂0, ρ1] − H ′(ρ̂0)

]
b(ρ̂0, t)fρ−(ρ̂0, ρ1, t)

+
[(

H[ρ̂0, ρ1] − H ′(ρ1)
)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

,

which is exactly our kinetic equation! ��

General n. We write μ̇n = Xnμn. We have,

Xn = −Γt(q, t) +
	t(ρ0, t)
	(ρ0, t)

+
n∑

i=1

[
f(ρ̂i−1, ρi, t)]t
f(ρ̂i−1, ρi, t)

. (4.16)

By (4.7), and (4.15),

Γt(q, t) =
n∑

i=0

{(
A(ρ̂i, t) − A(ρi, t)

) − H ′(ρi)
(
λ(ρ̂i, t) − λ(ρi, t)

)}
.



Stochastic Solutions for Hamilton-Jacobi 223

From this, (4.14) and (3.10) we deduce

Xn =
	t(ρ0, t)
	(ρ0, t)

+
n∑

i=1

Q+(f, f)(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

+
n∑

i=1

(Cf)(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

+
n∑

i=0

{
H ′(ρi)

(
λ(ρ̂i, t) − λ(ρi, t)

)
+ A(ρi, t) − A(ρ̂i, t)

}

−
n∑

i=1

{
A(ρi, t) − A(ρ̂i−1, t) − H[ρ̂i−1, ρi]

(
λ(ρi, t) − λ(ρ̂i−1, t)

)}

+
n∑

i=1

[
H ′(ρ̂i−1) − H ′(ρi−1)

]
b(ρ̂i−1, t)

fρ−(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

=
	t(ρ0, t)
	(ρ0, t)

+
n∑

i=1

Q+(f, f)(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

+
n∑

i=1

(Cf)(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

+ H ′(ρ0)
(
λ(ρ̂0, t) − λ(ρ0, t)

)
+ A(ρ0, t) − A(ρ̂n, t)

+
n∑

i=1

{
H ′(ρi)

(
λ(ρ̂i, t) − λ(ρi, t)

)
+ H[ρ̂i−1, ρi]

(
λ(ρi, t) − λ(ρ̂i−1, t)

)}

+
n∑

i=1

[
H ′(ρ̂i−1) − H ′(ρi−1)

]
b(ρ̂i−1, t)

fρ−(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

.

For the right-hand side of (4.3) we write (A∗μ)n = Ynμn, where

Yn = Y ′
11 + Y ′′

11 + Y ′′′
11 + Yn2 + Yn3 + Y ′

n4 + Y ′′
n4 + Yn5 + Yn6 + Yn7, (4.17)

with Y15 independent of n and defined before, Yn6 = −A(ρ̂n, t), and

Y ′
11 = H ′(ρ0)b(ρ0, t)Γρ(ρ0, x1, t) = H ′(ρ0)

(
λ(ρ̂0, t) − λ(ρ0, t)

)

Y ′′
11 = −H ′(ρ0)b(ρ0, t)

[
f
(
ρ̂0, ρ1, t

)]
ρ0

f
(
ρ̂0, ρ1, t

)

Y ′′′
11 = −

(
H ′(ρ0)b(ρ0, t)	(ρ0, t)

)
ρ0

	(ρ0, t)

Yn2 =
n∑

i=1

(
H ′(ρi) − H[ρ̂i−1, ρi]

)
b(ρi, t)Γρ(ρi, xi+1 − xi, t)

=
n∑

i=1

(
H ′(ρi) − H[ρ̂i−1, ρi]

)(
λ(ρ̂i, t) − λ(ρi, t)

)
,
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Yn3 =

n−1∑
i=1

[(
H[ρ̂i−1, ρi] − H ′(ρi)

)
b(ρi, t)f(ρ̂i−1, ρi, t)f(ρ̂i, ρi+1, t)

]
ρi

f(ρ̂i−1, ρi, t
)
f(ρ̂i, ρi+1, t)

+

[(
H[ρ̂n−1, ρn] − H ′(ρn)

)
b(ρn, t)f(ρ̂n−1, ρn, t)

]
ρn

f(ρ̂n−1, ρn, t)
,

Y ′
n4 =

n−1∑
i=1

[
H

[
ρ̂i−1, ρi

]
f
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i, ρi+1, t

)]
xi

f
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i, ρi+1, t

) +

[
H

[
ρ̂n−1, ρn

]
f
(
ρ̂n−1, ρn, t

)]
xn

f
(
ρ̂n−1, ρn, t

) ,

Y ′′
n4 =

n∑
i=1

H
[
ρ̂i−1, ρi

] (
λ
(
ρ̂i, t

) − λ
(
ρ̂i−1, t

))
,

Yn7 =
n∑

i=1

Q+(f, f)
(
ρ̂i−1, ρi, t)

f
(
ρ̂i−1, ρi, t

) ,

where we used (4.15) for the first and fifth equality. We wish to show that
Xn = Yn. From

	t(ρ0, t)
	(ρ0, t)

= Y15 + Y ′′′
11 − A(ρ0, t),

and some cancellation, the equality Xn = Yn simplifies to X ′
n = Y ′

n, where

X
′
n(q, t) =

n∑

i=1

(Cf)(ρ̂i−1, ρi, t)

f(ρ̂i−1, ρi, t)
+

n∑

i=1

[
H

′
(ρ̂i−1) − H

′
(ρi−1)

]
b(ρ̂i−1, t)

fρ− (ρ̂i−1, ρi, t)

f(ρ̂i−1, ρi, t)

=
n∑

i=1

[(
H[ρ̂i−1, ρi] − H′(ρi)

)
b(ρi, t)f(ρ̂i−1, ρi, t)

]
ρi

f(ρ̂i−1, ρi, t
)

+

n∑

i=1

[
H[ρ̂i−1, ρi] − H

′
(ρi−1)

]
b(ρ̂i−1, t)

fρ− (ρ̂i−1, ρi, t)

f(ρ̂i−1, ρi, t)
+ b(ρ̂i−1, t)Hρ− [ρ̂i−1, ρi],

and Y ′
n = Y ′′

11 + Yn3 + Y ′
n4 . Observe that Y ′

n4 = Y ′
n41 + Y ′

n42 + Y ′
n43, and Yn3 =

Yn31 + Yn32, where

Y ′
n41 =

n∑
i=1

Hρ−
[
ρ̂i−1, ρi

]
b(ρ̂i−1, t),

Y ′
n42 =

n∑
i=1

H
[
ρ̂i−1, ρi

][
f
(
ρ̂i−1, ρi, t

)]
xi

f
(
ρ̂i−1, ρi, t

) ,

Y ′
n43 =

n−1∑
i=1

H
[
ρ̂i−1, ρi

][
f
(
ρ̂i, ρi+1, t

)]
xi

f
(
ρ̂i, ρi+1, t

) ,

Yn31 =
n∑

i=1

[(
H[ρ̂i−1, ρi] − H ′(ρi)

)
b(ρi, t)f(ρ̂i−1, ρi, t)

]
ρi

f(ρ̂i−1, ρi, t
) ,

Yn32 =
n−1∑
i=1

(
H[ρ̂i−1, ρi] − H ′(ρi)

)
b(ρi, t)

[
f(ρ̂i, ρi+1, t)

]
ρi

f(ρ̂i, ρi+1, t)
.



Stochastic Solutions for Hamilton-Jacobi 225

From these decompositions, we learn that X ′
n = Y ′

n is equivalent to X ′′
n = Y ′′

n ,
where

X ′′
n =

n∑
i=1

[
H[ρ̂i−1, ρi] − H ′(ρi−1)

]
b(ρ̂i−1, t)

fρ−(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

,

and Y ′′
n = Y ′′

11 + Yn32 + Y ′
n42 + Y ′

n43. By the group property (4.9),(
h(ρ̂i−1)

)
xi

= b(ρi−1, t)
(
h(ρ̂i−1)

)
ρi−1

,
(
h(ρ̂i)

)
xi

= −b(ρi, t)
(
h(ρ̂i)

)
ρi

,

This allows us to write

Y ′
n42 + Y ′

n43 =

n−1∑
i=1

H
[
ρ̂i−1, ρi

]
⎧⎨
⎩b(ρi−1, t)

[
f
(
ρ̂i−1, ρi, t

)]
ρi−1

f
(
ρ̂i−1, ρi, t

) − b(ρi, t)

[
f
(
ρ̂i, ρi+1, t

)]
ρi

f
(
ρ̂i, ρi+1, t

)
⎫⎬
⎭

+ H
[
ρ̂n−1, ρn

]
b(ρn−1, t)

[
f
(
ρ̂n−1, ρi, t

)]
ρn−1

f
(
ρ̂n−1, ρn, t

) .

Hence

Y ′′
n = −

n−1∑
i=0

H′(ρi)b(ρi, t)

[
f(ρ̂i, ρi+1, t)

]
ρi

f(ρ̂i, ρi+1, t)
+

n∑
i=1

H
[
ρ̂i−1, ρi

]
b(ρi−1, t)

[
f
(
ρ̂i−1, ρi, t

)]
ρi−1

f
(
ρ̂i−1, ρi, t

)

=

n∑
i=1

[
H

[
ρ̂i−1, ρi

] − H′(ρi−1)
]
b(ρi−1, t)

[
f
(
ρ̂i−1, ρi, t

)]
ρi−1

f
(
ρ̂i−1, ρi, t

)

=

n∑
i=1

[
H

[
ρ̂i−1, ρi

] − H′(ρi−1

]
b(ρ̂i−1, t)

fρ−
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i−1, ρi, t

) = X′′
n ,

as desired. For the third equality, we have used (4.9). This completes the proof.
��

So far, we have been able to formally show that the law of q(t) is μ(dq, t), by
verifying the forward Eq. (4.3) for every n (recall that n represents the number
of particles/shock discontinuities in the interval (0, L)). Our verification of (4.3)
is rather tedious but elementary. Our verification is formal at this point because
the evolution of q is governed by a discontinuous deterministic dynamics that is
interrupted by stochastic Markovian entrance of new particles at the boundary
point L. By selecting a pair 	 and f that are differentiable with respect to time, it
is not hard to justify our calculation for the left-hand side of (4.3), as it appeared
in (4.16). It is the justification of the right-hand side as in (4.17) that requires
additional work.

Writing Φt
s(q) for q(t) with initial condition q(s) = q, it suffices to show that

for every nice function G : ΔL → R,

d

ds
E G

(
Φt

s(q)
)

=
d

ds

∫
G

(
Φt

s(q)
)

μ(dq, s) = 0. (4.18)

Clearly (4.18) implies

EG(q(t)) = E

∫
G

(
Φt
0(q)

)
μ(dq, 0) =

∫
G(q) μ(dq, t),
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which means that the law of q(t) is given by our candidate μ(dq, t). For a rigorous
proof of this, we calculate the left time-derivative of E G

(
Φt

s(q)
)

by hand and
show that this left-derivative equals to

∞∑
n=0

∫
G(Xn − Yn) dμn.

The details can be found in [16] and [17].

5 Homogenizations for Hamiltonian ODEs

The Hamilton-Jacobi PDE may be used to model the growth of an interface
that is described as a graph of a height function. More precisely, the graph of a
solution

u : Rd × [0,∞) → R,

of the Hamilton-Jacobi equation

ut + H(x, ux) = 0, (5.1)

describes an interface at time t in microscopic coordinates. If the ratio of micro
to macro scale is a large number n, then

un(x, t) =
1
n

u(nx, nt),

is the corresponding macroscopic height function. In practice n is large and we
may obtain a simpler description of our model if the large n limit of un exists
and satisfies a simple equation. Indeed un satisfies

un
t + H

(
nx, un

x

)
= 0,

and this equation must be solved for an initial condition of the form un(x, 0) =
g(x), where g represents the initial macroscopic height function. Let us define

(Γng)(x) = ng
(x

n

)
;

the job of the operator Γn is to turn a macroscopic height function to its asso-
ciated microscopic height function. We also write Tt = TH

t for the semigroup
associated with the PDE (5.1). More precisely, Ttu

0(x) = u(x, t) means
{

ut + H(x, ux) = 0, t > 0,

u(x, t) = u0(x),
(5.2)

In terms of the operators Tt and Γn, we simply have un =
(
Γ−1

n ◦ Tnt ◦ Γn

)
(g).

Put it differently,
TH◦Γn

t = Γ−1
n ◦ TH

nt ◦ Γn, (5.3)
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where γn(x, p) = (nx, p). If we write T (H) for TH
1 , then in particular we have

T (H ◦ γn) = Γ−1
n ◦ T (H)n ◦ Γn.

The hope is that under some assumptions on H, the large n-limit of un

exists and the limit ū provides a reduced and simpler description of the growth
model under study. For example, when H is 1-periodic in x-variable, the high
oscillations of H ◦ γn, may result in the convergence of un to a function ū, that
solves the homogenized equation

ūt + H̄(ūx) = 0. (5.4)

When this happens, we write A(H) = H̄.
More generally, write H for the space of all C1 Hamiltonian functions and

define the natural translation operator

τaH(x, p) = H(x + a, p),

for every a ∈ R
d. We then take a probability measure P on H that is translation

invariant and ergodic. We wish to take advantage of the ergodicity to assert that
TH◦γn

t → T H̄
t , P-almost surely, as n → ∞. If this happens for a deterministic

function H̄, then we write A(P) = H̄. We note

– If P is supported on the set

A :=
{
τaH0 : a ∈ R

d
}
,

for some 1-periodic Hamiltonian function H0, then A is isomorphic to the
d-dimensional torus and we are back to the periodic scenario.

– If P is supported on the topological closure (with respect to the uniform
norm), of the set

A :=
{
τaH0 : a ∈ R

d
}
,

for some Hamiltonian function H0, and this closure is a compact set, then H0

is almost periodic and the homogenization would allow us to find the large
n-limit of TH◦γn

t → T H̄
t , for almost all choices of H in the compact support

of P. In this case Ā has the structure of an Abelian Lie group and P is the
corresponding Haar measure.

To explore the homogenization question further, we discuss the connection
between Hamiltonian ODE and Hamilton-Jacobi PDE. For a classical solution,
the method of characteristics suggests that at least for short times, we can solve
(5.2) in terms of the flow of the Hamiltonian ODE

ẋ = Hp(x, p), (5.5)
ṗ = −Hx(x, p).

Equivalently we write ż = J∇H(z), where z = (x, p), and

J =
[

0 I
−I 0

]
,
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with I denoting the d×d identity matrix. Writing φt = φH
t for the flow of (5.5),

we have

φH
t

{(
x,∇u0(x)

)
: x ∈ R

d
}

=
{(

x, ux(x, t)
)

: x ∈ R
d
}

, (5.6)

provided that the left-hand side remains a graph of a function. As we mentioned
earlier, the Eq. (5.2) does not possess C1 solutions in general. This has to do with
the fact that if φt folds the graph of ∇u0, then the left-hand side of (5.6) is no
longer a graph of a function and (5.6) has no chance to be true. One possibility
is that we trim the left-hand side (5.6) and hope for

φH
t

{(
x,∇u0(x)

)
: x ∈ R

d
} ⊇ {(

x, ux(x, t)
)

: x ∈ R
d
}

, (5.7)

For this to work, we have to give-up the differentiability of u. This geometric
and rather naive idea does not suggest how the trimming should be carried out.

Alternatively, we may add a small viscosity term of the form εΔu to the
right-hand side of (5.1) to guarantee the existence of a unique classical solution,
and pass to the limit ε → 0. The outcome is known as a viscosity solution (see
[12]). As it turns out, under some coercivity assumption on H, we can guarantee
the existence of a solution that is differentiable almost everywhere. We can now
modify the right-hand side of (5.7) accordingly and wonder whether or not

φH
t

{(
x,∇u0(x)

)
: x ∈ R

d
} ⊇ {(

x, ux(x, t)
)

: x ∈ R
d, ux(x, t) exists

}
, (5.8)

is true. The answer is affirmative if H is convex in p. However (5.8) may fail if we
drop the convexity assumption. To explain this in the case of piecewise smooth
solutions, we recall that if H is convex in p, the only discontinuity we can have is
a shock discontinuity. In this case, at every point (a, t), with t > 0, we can find a
solution (x(s), p(s) : s ∈ [0, t]) (the so-called backward characteristic) such that
x(t) = a. If ρ = ux is continuous at a, this backward characteristic is unique and
p(t) = ρ(a, t). If ρ is discontinuous at (a, t), then ρ(a, t) is multi-valued and for
each possible value p of ρ(a, t), there will be a solution to the Hamiltonian ODE
with (x(t), p(t)) = (a, p). In both cases, we still have (5.8).

The situation is far more complex when H is not convex. What may cause the
violation of (5.8) is the occurrence of a rarefaction type solutions. To explain this,
let us assume that d = 1, and H depends on p only. There are three momenta
(or densities) a1 < a2 < a3 such that

– The graph of H is convex and below its cord in [a1, a2].
– The graph of H is concave and above its cord in [a2, a3].
– The graph of H is below its cord in the interval [a1, a3].

Now imagine that we have two discontinuities at x(t) and y(t) with x(t) < y(t),
and both are shock discontinuities. Assume

– The left and right values of ρ at x(t) are a′
2(t) < a′

3(t).
– The left and right values of ρ at y(t) are a′

3(t) > a′
1(t).

– These two shock discontinuities meet at some instant t0 with a′
i(t0) = ai.
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As a result, at the moment t0 the two shock discontinuities are replaced with a
rarefaction wave. Now if we take a point (x, t) inside the fan of this rarefaction
wave (for which necessarily t > t0), then at such (x, t) the connection with the
initial data is lost and (x, ux(x, t)) does not belong to the left-hand side of (5.8).

Motivated by the failure of (5.8) for viscosity solutions, we formulate a
question.

Question 5.1: Is there a notion of generalized solution for (5.1) for which (5.8)
is always true?

Using some ideas from topology and symplectic geometry the notion of geo-
metric solution has been developed by Chaperon [9–11], Sikorav [25] and Viterbo
[27]. The main features of this solution is as follows:

(i) The geometric solution satisfies (5.8) always.
(ii) The geometric solution satisfies (5.2) at every differentiability point of u.
(iii) The geometric solution coincides with the viscosity solution when H is

convex in p.
(iv) Writing T̂tu

0 for the geometric solution of (5.2) with the initial condition
u0, we do not in general have T̂t ◦ T̂s = T̂t+s (except when H is convex
in p).

Needless to say the last feature of the geometric solution is a serious flaw
and does not provide a satisfactory answer for Question 5.1. Nonetheless the
geometric solution provides a useful notion that helps us to connect the Eq. (5.2)
to the Hamiltonian ODEs.

Because of the intimate relation between the Hamilton-Jacobi Equation and
the Hamiltonian ODE, we may wonder whether a homogenization phenomenon
occurs for the latter. More precisely, does the high-n limit of

φH◦γn

t = γ−1
n ◦ φH

nt ◦ γn,

exist in a suitable sense? Note that H◦γn has no pointwise limit and the existence
of pointwise limit of φH◦γn

t is not expected either. Writing φH for φH
1 , we may

wonder in what sense, if any, the sequence φH◦γn
has a limit. We note

φH◦γn
= γ−1

n ◦ φn
H ◦ γn =: Sn(φH).

We now discuss the existence of some interesting metric on the space H that is
weaker than uniform norm and is closely related to the flow properties of the
Hamiltonian ODEs. More importantly, there is a chance that H ◦ γn converges
with respect to such metrics.

There are two metrics on H that are well-suited for our purposes. These
metrics were defined by Hofer and Viterbo; the proofs of non-triviality of these
metrics are highly non-trivial. Let us write down a wish-list for what our metric
should satisfy.
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Let us write D for the space of maps ϕ such that ϕ = φH for some smooth
Hamiltonian function H : R2d × [0, 1] → R. (Any such map is symplectic as we
will see later.) Assume that there exists a function E : D → [0,∞) with the
following properties: For ϕ,ψ, τ ∈ D,

(i) E(ϕ) = E(ϕ−1).
(ii) E(ϕ) = E

(
τ−1ϕτ).

(iii) E(ϕψ) ≤ E(ϕ) + E(ψ).
(iv) E(ϕ) = 0 if and only if ϕ = id.
(v) E

(
γ−1

� ϕγ�

)
= 	−1E(ϕ), where γ�(x, p) = (	x, p) and 	 ∈ (0,∞).

Here and below we simply write ϕψ for ϕ ◦ ψ and think of D as a group with
multiplication given by the map composition.

From E, we build a metric D on D by D(ϕ,ψ) = E
(
ϕψ−1

)
. This metric has

the following properties:

Proposition 1. (i) D(ϕτ, ψτ) = D(τϕ, τψ) = D(ϕ,ψ) for ϕ,ψ, τ ∈ D.

(ii) For ϕ1, ψ1 . . . , ϕk, ψk, we have

D(ϕ1 . . . ϕk, ψ1 . . . ψk) ≤
k∑

i=1

D(ϕi, ψi).

(iii) For Sn(ϕ) = γ−1
n ◦ ϕn ◦ γn, we have

D
(
Sn(ϕ), Sn(ψ)

) ≤ D(ϕ,ψ).

In the case of a homogenization, we expect Sn(ϕ) → ϕ̄, where ϕ̄ = φH̄ , for
a Hamiltonian function H̄ that is independent of x. Write D0 for the space of
such ϕ̄. We note that Sn(ϕ̄) = ϕ̄. As a result, for any ϕ̄ ∈ D0,

D
(
Sn(ϕ), ϕ̄

)
= D

(
Sn(ϕ), Sn(ϕ̄)

) ≤ D
(
ϕ, ϕ̄

)
, (5.9)

by Proposition 1(iii). As was noted by Viterbo [28], (5.9) implies that the set of
limit points of the sequence (Sn(ϕ) : n ∈ N) is a singleton: If ϕ̄ and ψ̄ are two
limit points, then given δ > 0, we find n,m ∈ N such that

D(Sn(ϕ), ϕ̄) ≤ δ, D(Sm(ϕ), ψ̄) ≤ δ.

From this and (5.9) we learn,

D(Snm(ϕ), ϕ̄) ≤ δ, D(Snm(ϕ), ψ̄) ≤ δ,

because Snm = Sn ◦ Sm. Hence D(ϕ̄, ψ̄) ≤ 2δ. By sending δ → 0 we deduce that
ϕ̄ = ψ̄.

A natural question is whether we have homogenization with respect to such
a metric.

Question 5.2: Given ϕ ∈ D, does the large n limit of the sequence
{
Sn(ϕ)

}
exist with respect to a metric D as above? ��
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6 Lagrangian Manifolds and Viterbo’s Metric

The Question 5.2 has been answered affirmatively by Viterbo [28] when the
Hamiltonian H is periodic in x and the metric D is the Viterbo’s metric. We
continue with a brief discussion of Viterbo’s metric.

To simplify our presentation, let us assume that H is 1-periodic in x. We
may also regard u(·, t) as a function on the d-dimensional torus T

d.
To examine the left-hand side of (5.8), assume that the initially the solution

of the ODE (5.5) satisfies the relationship p = ∇u0(x), for some smooth function
u0. Whenever (5.6) is true, then at time t we have a similar relationship between
the components of φt(x, p). Let us write M t := φt(M0), where

M0 =
{
(x,∇u0(x)) : x ∈ T

d
}
.

To get a feel for M t = φH
t (M0), observe that M0 is a graph of a an exact

derivative. Let us refer to such manifolds as an exact Lagrangian graph. In general
if

M =
{
(x,X(x)) : x ∈ T

d
}
,

then vectors of the form

â :=
[

a
(DX)(x)a

]
,

are tangents to M at x. What makes M exact is that if X = ∇u, then the
matrix A = DX = D2u is symmetric. To state this directly in terms of the
tangent vectors, observe

Aa · b − a · Ab =
[
Aa
−a

]
·
[

b
Ab

]
= Jâ · b̂ =: ω̄(â, b̂).

Hence the symmetry of A is equivalent to ω̄ �M= 0 identically. (Here ω̄ is the
standard symplectic 2-form of R

2d.) Motivated by this we call a manifold M
Lagrangian if the restriction of ω̄ to M is identically 0. The point of this definition
is that if M0 is the graph of an exact derivative, then ϕ(M0) may not be a graph
of a function. However, when ϕ preserves the form ω̄, then ϕ(M0) is always a
Lagrangian. We say a map ϕ is symplectic if it preserves ω̄ in the following sense:

ω̄
(
(Dϕ)(x)a, (Dϕ)(x)b

)
= ω̄(a, b),

for every x ∈ T
d and every pair of vectors a, b ∈ R

2d.

It is well-known that the correct topology for the viscosity solution comes
from the uniform norm; this has to do with the fact the viscous approximation
of Hamilton-Jacobi Equation satisfies a maximum principle that survives as we
send the viscous term to 0. Since we are now interested in Hamiltonian ODE,
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we may try to define some kind of metrics on Lagrangian manifolds of the form
φH

t

(
M0

)
, where M0 is an exact Lagrangian. Let us write L0 for the set of exact

Lagrangian graphs, and define

H0 =
{
H : Td × R

d × [0, 1] → R : H is C1 and 1-periodic in x
}

L =
{
φH(M) : H ∈ H0, M ∈ L0

}
When M is the graph of ∇u, for some C1 function u : Td → R, we refer to u
as the generating function of M . When this is the case, we write G(M) = u.
We also write

L(u) :=
{
(x,∇u(x)) : x ∈ T

d
}
.

Viterbo defines a metric on L that is a generalization of the L∞-metric on
its generating function. In other words, the metric D is defined in such way that
if M0 and M1 are two exact Lagrangian graphs, then

D
(
M,M ′) = ‖G(M) − G(M ′)‖∞,

where by ‖ · ‖∞ we really mean the total oscillation:

‖u‖∞ = max u − min u.

This definition is quite natural because L(u) = L(u + c), for any constant c.
To guess how to extend the definition of this metric to L, we need to develop

a better understanding of the Hamiltonian ODEs. First, we claim that there
exists a functional I = IH on the space of the paths z(·) = (x, p)(·), such that
ż = J∇H(z, t) if and only if z(·) is a critical point of I. Writing the Hamiltonian
ODE as Jż +∇H(z, t) = 0, it is not hard to come up with an example for I; we
use a quadratic term to produce the linear part Jż, and H to produce ∇H. The
following function I : C1([0, 1];Td × R

d) → R, is the integral of the celebrated
Cartan-Poincaré form:

I(z) =
∫ 1

0

[p(t) · ẋ(t) − H(z(t), t)] dt.

Formally, ∂I(z) = −Jż − ∇H(z, t). More precisely, if η : [0, 1] → T
d × R

d,
satisfies η(0) = η(1) = 0, then ψ(δ) = I(z + δη) satisfies

ψ̇(0) = −
∫ 1

0

(
Jż(t) + ∇H(z(t), t)

) · η(t) dt.

We now use this to come up with a generating-like function for M1 = φH

(
M0

)
,

where M0 = G(u0). To this end, let us define

Γ :=
{
z : [0, 1] → T

d × R
d : z ∈ C1

}
, Γ (a) =

{
z = (x, p) ∈ Γ : x(1) = a

}
.

In words, Γ (a) consists of position/momentum paths with the position com-
ponent reaching a at time 1. We note that if z ∈ Γ (a) and η ∈ Γ (0), then
z + δη ∈ Γ (a) for all δ ∈ R. We then define Î : Γ (a) → R by

Î(z) = u0(x(0)) + I(z) = u0(x(0)) +
∫ 1

0

[p(t) · ẋ(t) − H(z(t), t)] dt.
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Since we want to use Î to build a generating function for M1, observe that Γ (0)
is an infinite dimensional vector space and any z ∈ Γ (a) can be written as

z(t) = (a, 0) + ξ(t),

with ξ ∈ Γ (0). If M1 is still a graph of function and has a generating function
u1, then what is happening is that we have a solution z satisfying ż = J∇H(z, t)
with

z(0) =
(
x(0),∇u0(x(0))

)
, z(1) =

(
x(1),∇u1(x(1))

)
.

Moreover, if u solves (1.1), then u1(x) = u(x, 1). Note that if w(t) = u(x(t), t),
then ẇ = p · ẋ − H(z, t), or

u1(x(1)) = u0(x(0)) +
∫ 1

0

[p(t) · ẋ(t) − H(z(t), t)] dt.

To separate x(1) from the rest of information in the path z(·), we define J :
T

d × Γ (0) → R, by
J (a; ξ) = Î(

(a, 0) + ξ
)
.

In other words, if z = (a, 0)+ξ = (x, p), and ξ = (x′, p), then x′(t) = x(t)−x(1) =
x(t) − a. Now, if we set

ψ̂(δ) = Î(z + δη) = J (a; ξ + δη),

for z ∈ Γ (a), and η = (x̂, p̂) ∈ Γ (0), then

dψ̂

dδ
(0) =

(∇u0(x(0)) − p(0)
) · x̂(0) −

∫ 1

0

(
Jż(t) + ∇H(z(t), t)

) · η(t) dt.

We can now assert

∂ξJ (a; ξ) = 0 ⇐⇒ p(0) = ∇u0(x(0)), and z = (a, 0) + ξ satisfies ż = J∇H(z, t).

On the other hand, if we set ψ̄(δ) = Î(
z + (δb, 0)

)
= J (a + δb; ξ), then

∂aJ (a; ξ) · b =
dψ̄

dδ
(0) = ∇u0(x(0)) · b −

∫ 1

0

Hx(z(t), t) · b dt.

As a result, if ∂ξJ (a; ξ) = 0, then

∂aJ (a; ξ) = ∇u0(x(0)) −
∫ 1

0

Hx(z(t), t) dt = ∇u0(x(0)) +
∫ 1

0

ṗ(t) dt = p(1).

From this we deduce

φH
(
M0

)
=

{(
a, ∂aJ (a, ξ)

)
: a ∈ T

d, ∂ξJ (a, ξ) = 0
}

,

where a = x(1) represents the position at time 1. We think of J (a; ξ) as
a generalized generating function (or in short GG function) of M = M1.
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The Lagrangian M1 is exact if for every (a, p) ∈ T
d × R

d, there is at most
one solution z to the Hamiltonian ODE with x(1) = a, p(1) = p. Our aim is to
associate a nonnegative number E(M) to M ∈ L that in the case of an exact
Lagrangian M = G(u),

E(M) = E+(M) − E−(M),

where E±(M) are two critical values of u, namely the maximum and minimum
of u. In the case of a non-exact M , we may use the functional J = JM to select
two critical points z± = (a±, ξ±) of the functional JM to define

E±(M) = JM (a±, ξ±) = Î(z±).

The main question now is how to select the critical paths z±. The classical theo-
ries of Morse and Lusternik-Schnirelman would provide us with systematic ways
of selecting critical values of a scalar-valued function on a manifold. (See for
example Appendix E of [21] for an introduction on LS Theory.) These theories
are applicable if the underlying manifold is finite-dimensional and their gener-
alizations to infinite dimensional setting are highly nontrivial. (Floer Theory is
a prime example of such generalization.) However in our setting it is possible to
approximate the functional I or J with a function that is defined on T

d × R
N

for a suitable N that depends on H and u0 and could be large. More precisely,
we may try to find a generating function S : Td × R

N → R such that

M =
{
(x, Sx(x, ξ)) : x ∈ T

d, ξ ∈ R
N , Sξ(x, ξ) = 0

}
,

In fact any manifold of this form is automatically a Lagrangian manifold, simply
because the tangent vectors at a point of the form (x, Sx(x, ξ)) are still of the
form

(
v,A(x, ξ)v

)
; v ∈ R

d, where A = Sxx is a symmetric matrix.
To explain the existence of such finite dimensional generating functions, we

need to make another observation about the flows of Hamiltonian ODEs.
We may regard the symplectic property of ϕ = φH

1 , as saying that its graph

Gr(ϕ) :
{
(x, ϕ(x)) : x ∈ T

d × R
d
}
,

is Lagrangian with respect to the 2-form ω ⊕ (−ω) in R
4d. This Lagrangian

manifold is an exact graph when the set Gr(ϕ) can be expressed as a graph of
the gradient of a scalar-valued function. But now because of the form of the
symplectic form ω ⊕ (−ω), this must be done in a twisted way. More precisely,
if ϕ(x, p) = (X,P ), then the generating function would depend for example on
(X, p). In the case of an exact symplectic map, we may find a scalar-valued
function S(X, p) such that

ϕ
(
Sp(X, p), p

)
=

(
X,SX(X, p)

)
.

The identity map has the generating function p · X. This suggests writing
S(X, p) = X · p − w(X, p) with w periodic in X. In terms of w,

ϕ
(
X − wp(X, p), p

)
=

(
X, p − wX(X, p)

)
.
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Now imagine that M = ϕ(M0), where both M0 and ϕ are exact with generating
functions u0 and S(X, p) = X · p − w(X, p). Then

Ŝ(X;x, p) = u0(x) + p · (X − x) − w(X, p) =: p · (X − x) − ŵ(X;x, p),

is a GG function for M1: If ξ = (x, p), then

Ŝξ(X; ξ) = 0 ⇐⇒ p = ∇u0(x), x = X − wp(X, p).

As a result
Ŝξ(X; ξ) = 0 =⇒ ϕ(x, p) =

(
X, ŜX(X; ξ)

)
,

because ŜX = p − wX(X, p) = P .
As we mentioned earlier, the identity map has a generating function. Using

Implicit Function Theorem, it is not hard to show that any symplectic map that
is C1-close to the identity also possesses a generating function. Now if ϕ = φH is
the time-one map associated with a smooth Hamiltonian, then we can find δ > 0
sufficiently small, such that the map ϕ = φH

δ is sufficiently close to the identity
map and possesses a generating function. In general, each φH can be expressed
as ϕ1 ◦ · · · ◦ ϕN with each ϕi possessing a generating function as above. If each
ϕi has a generating function of the form X · p − wi(X, p), then M = ϕ(M0) has
a generating function of the form

Ŝ
(
xN ; ξ

)
= Ŝ

(
xN ; x0, p0, . . . , xN−1, pN−1

)
:= u0(x0)+

N−1∑
i=0

[
pi·(xi+1−xi)−wi(xi+1, pi)

]
.

We refer to [22] and Chapter 9 of [21] for more details on generating functions.
So far we know that our Lagrangian manifolds possess finite-dimensional

generating functions. The next question to address is that how we can select
appropriate critical values E±(M) for Ŝ(X; ξ).

For the rest of this section, we assume that M is a Lagrangian manifold with
a generating function S(x, ξ). More precisely,

M =
{
(x, Sx(x, ξ)) : x ∈ T

d, ξ ∈ R
N , Sξ(x, ξ) = 0

}
, (6.1)

and S(x, ξ) is a nice perturbation of a quadratic function in ξ. By this we mean
that there exists a quadratic function B(ξ) = Aξ · ξ such that A is an invertible
symmetric matrix, and

sup
x,ξ

|S(x, ξ) − B(ξ)|, sup
x,ξ

|Sξ(x, ξ) − ∇B(ξ)| < ∞.

We wish to put a metric on the space L of such Lagrangians. For this, we first
wish to define the size E(M) of a Lagrangian manifold M . If M is an exact
Lagrangian graph with generating function u, we simply set

E(M) = max u − min u.

If M can be represented as in (6.1), then E(M) is defined by

E(M) = E+(M) − E−(M),
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where E−(M) and E+(M) are two critical values of the generating function S
that are the analog of min u and maxu. To explain our strategy for select-
ing E±(M), first imagine that S(x, ξ) = u(x) + B(ξ). Then we still have
E−(M) = min u = u(x−) and E+(M) = max u = u(x+), because both (x±, 0)
are critical points of S. After all 0 is a critical value for B. We may apply
Lusternik-Schnirelman (LS) Theory, to assert that the function S also has two
critical points that are very much the analogs of (x±, 0). (See [28] and Appendix
E of [21].) We are now ready to define a metric on the space Lagrangian manifolds
who possess generating function as in (6.1). If M and M ′ are two Lagrangian
manifolds with generating functions S and S′ respectively, then we define a new
generating function

(
S � S′)(x, ξ1, ξ2) = S(x, ξ1) − S′(x, ξ2).

This new generating function produces a new Lagrangian manifold

M � M ′ =
{
(x, Sx(x, ξ1) − S′

x(x, ξ2)) : x ∈ T
d, ξ ∈ R

N , ξ ∈ R
N′

, Sξ(x, ξ) = 0, S′
ξ(x, ξ2) = 0

}
=

{
(x, p − p′) : (x, p) ∈ M, (x, p′) ∈ M ′}.

This generating function is a bounded perturbation of
(
B � B′)(ξ1, ξ2) =

B(ξ1) − B(ξ2). We set
D(M,M ′) = E

(
S � S′).

We now would like to use the above metric to define a metric for Hamiltonian
functions or their corresponding flows that was defined by Viterbo:

D(H,H ′) = sup
{
D

(
φH(M), φH′(M)

)
: M ∈ L}

.

Theorem 4. (Viterbo [28]) The large n-limit of H ◦ γn exists with respect to
the Viterbo Metric D. Moreover, if the limit is denoted by B(H), then B satisfies
the following properties

(i) For every symplectic ϕ ∈ D, we have B(H ◦ ϕ) = B(H).
(ii) If {H,K} := J∇H · K = 0, then B(H + K) = B(H) + B(K).

This should be compared with the Lions-Papanicolaou-Varadhan [18] homog-
enization result.

Theorem 5. Assume that H(x, p) is a C1, x-periodic Hamiltonian function
with

lim
|p|→∞

inf
x

H(x, p) = ∞.

Then the large n limit of TH◦γn exists. The limit is of the form T H̄ , for a
Hamiltonian function A(H) := H̄ that is independent of x.
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In fact A(H) = B(H) when H is convex in p; otherwise they could be dif-
ferent. Moreover, Theorem 6.2 has been extended to the random ergodic setting
when H is convex in p in Rezakhanlou-Tarver [23] and Souganidis [24]. A natural
question is whether or not Theorem 6.1 can be extended to the random setting.

Question 6.1: Can we extend Viterbo’s metric (or Hofer’s metric) to the ran-
dom setting and does the large n limit of H ◦ γn exist for a stationary ergodic
Hamiltonian H? ��
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Mathématique 319, 855–858 (1994)
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