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Abstract. Thermodynamics makes definite predictions about the ther-
mal behavior of macroscopic systems in and out of equilibrium. Sta-
tistical mechanics aims to derive this behavior from the dynamics and
statistics of the atoms and molecules making up these systems. A key
element in this derivation is the large number of microscopic degrees
of freedom of macroscopic systems. Therefore, the extension of ther-
modynamic concepts, such as entropy, to small (nano) systems raises
many questions. Here we shall reexamine various definitions of entropy
for nonequilibrium systems, large and small. These include thermody-
namic (hydrodynamic), Boltzmann, and Gibbs-Shannon entropies. We
shall argue that, despite its common use, the last is not an appropri-
ate physical entropy for such systems, either isolated or in contact with
thermal reservoirs: physical entropies should depend on the microstate of
the system, not on a subjective probability distribution. To square this
point of view with experimental results of Bechhoefer we shall argue that
the Gibbs-Shannon entropy of a nano particle in a thermal fluid should
be interpreted as the Boltzmann entropy of a dilute gas of Brownian
particles in the fluid.

Keywords: Nonequilibrium thermodynamics · Statistical mechanics

1 Introduction

The role of probability in the statistical mechanical analysis of the thermal
behavior of individual physical systems is subtle. Indeed, it has frequently been
a source of confusion and controversy: note e.g. the conflict between Boltzmann
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and Zermelo about the H-theorem [1]. A crucial ingredient in the statistical
mechanical analysis of this problem by Maxwell, Thomson, Boltzmann, Gibbs
and Einstein is the “law of large numbers”, which permits “almost sure” predic-
tions, i.e. with probability approaching 1, when the number of quasi-independent
entities in the system become very large. This is clearly the case for macroscopic
systems (MS), which contain a large number of atoms or molecules, to which sta-
tistical mechanics was historically restricted. Thus the microcanonical ensemble
and the other equilibrium Gibbs ensembles make definite predictions for equi-
librium MS. We can therefore speak of the “typical” behavior of such a system1.
This restriction to MS was historically natural, since the notions of heat, entropy
and the second law were all developed in the nineteenth century for such sys-
tems. The subsequent development of statistical mechanics had as its aim to
describe and explain microscopically the observed thermal phenomena in such
MS. It therefore also considered only systems consisting of very large numbers
of particles.

In going beyond equilibrium, where the theory is fundamentally complete,
this disparity in sizes between microscopic and macroscopic also plays a critical
role. It forms the basis of the explanation by Boltzmann, Maxwell and Thomson
of how time-asymmetric behavior, as expressed for example by the second law
of thermodynamics, can originate from time-symmetric microscopic laws [2,3].
In particular, time-asymmetric macroscopic equations like the heat equation or
the Navier-Stokes equations, as well as the mesoscopic Boltzmann equation (to
which Zermelo objected), can be seen as being expressions of the law of large
numbers, valid in the limit of particle number N → ∞ [4]. Unfortunately, a rigor-
ous mathematical derivation of such equations from time-symmetric microscopic
dynamics is still beyond our reach for realistic systems. In fact, the only cases
for which hydrodynamic-type equations have been derived rigorously are sys-
tems with bulk stochastic interactions, like lattice gases [5–7]. Therefore, there
are still many open problems for nonequilibrium MS.

The reliance on the law of large numbers raises the issue of understanding the
thermal behavior of nanosystems (NS), in which there is currently much inter-
est. This interest is fueled by technological advances that make such systems
experimentally accessible. Nanosystems can be well isolated from their environ-
ment, or can be in contact with reservoirs. Here we will focus on the latter case,
an example being the recent work of Bechhoefer et al. [8], of a nanoparticle
immersed in a fluid (a talk by Bechhoefer triggered this work). Recent work on
such NS goes under the name of “stochastic thermodynamics”, see [9] and other
articles in that issue. Stochastic thermodynamics, as the name indicates, takes
explicit account of the stochastic modeling of the effective interactions between
the small system, such as a nanoparticle or a polymer, and the equilibrium ther-
mal reservoir that it is in contact with, usually a macroscopic fluid. There is also
much current interest in isolated quantum systems having only a few degrees of
freedom [10], but we shall not consider these here.

1 We are taking for granted here an assumed underlying (approximately) equal a priori
probability of different microstates for a specified macrostate.
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The consideration of thermal properties of NS raises the question of whether
and how the thermodynamic and statistical mechanics formalism can be
extended to systems with a small number of degrees of freedom. In the stochas-
tic thermodynamic extensions the Gibbs-Shannon (GS) entropy (defined in (9))
plays a central role. This raises the questions: does the GS entropy of a proba-
bility measure μ, when μ is not a Gibbs measure for an equilibrium macroscopic
system, have physical meaning? And when it does, what is that meaning? This
entropy has some very nice mathematical properties and it is very alluring to
consider it, as is generally done in the stochastic thermodynamic literature, as
the “proper entropy” of a nonequilibrium system. We shall argue against this
for MS. On the other hand the experiments of Bechhoefer, mentioned earlier,
actually have measured this quantity, more or less directly, for a nanoparticle
immersed in a liquid. We shall discuss our interpretation of these experiments at
the end of this note. Let us however start from the beginning and first consider
the statistical mechanical entropy for isolated MS. We shall then consider both
MS and NS in contact with thermal baths.

2 Thermodynamic and Boltzmann Entropy of a MS

The discovery by Clausius of the existence of an entropy function S(E, V,N)
for equilibrium macroscopic systems (with energy E, particle number N and
volume V ), and its central role in the time asymmetric evolution of the world,
as expressed by the second law, is one of the key events of nineteenth century
science, c.f. [11] and [12]. This discovery raised immediately the question of
how to define S as a function of the microstate X = (r1,p1, . . . , rN ,pN ) of
the particles composing the system, where ri ∈ V is the position and pi ∈ R

3

the momentum of the ith particle. The problem was compounded by the fact
that the time evolution X(t) in the phase space Γ , as given by the Hamiltonian
H(X), is time symmetric, c.f. [3].

The answer arrived at by Boltzmann was to identify S for a MS with

SB(X) = log |Γ (M(X))|. (1)

Here X is a phase point (microstate) in the energy shell, E ≤ H(X) ≤ E + ΔE
and M(X) is the macrostate of the system. This macrostate is defined, e.g., by
dividing V into N cells ωα, α = 1, . . . N , with 1 � N � N , and then specifying
the number, energy, and total momentum of the particles in each ωα with a
certain tolerance. |Γ (M)| is the Liouville (Lebesgue) volume of the phase space
region Γ (M) containing all microstates X belonging to the macrostate M , c.f.
[2,3] and also Sect. 7 of this work. (For classical systems there is an arbitrary
overall additive constant in the entropy coming from the unit of phase space
volume, but this has no impact on what we discuss here, so will be ignored.)
For a macroscopic system there is a special macrostate Meq, corresponding to
equilibrium, such that Γ (Meq) covers almost the whole surface of energy E. That
is, |Γ (Meq)| ∼ |ΓE |, the volume of the energy shell between E and E + ΔE.
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This definition of SB(X) assigns an entropy even to microstates X which do not
behave at all as expected from the second law, as discussed below after (2).

The Boltzmann entropy SB(Meq) agrees, to leading order in the size of the
system, with the experimentally determined equilibrium Clausius entropy S.
This was shown for a dilute gas by Boltzmann and for general systems by Gibbs.
To calculate this entropy Gibbs (and Boltzmann) introduced the microcanonical
ensemble μm, as the uniform probability density in the energy shell E ≤ H(X) ≤
E +ΔE for describing the almost sure properties of equilibrium MS with energy
E. They naturally equated the precisely defined logarithm of |ΓE |, the volume of
the energy shell which for MS is very close to |Γ (Meq)|, with the entropy S(E).

Time-Evolution: The time evolution of the microstate X(t) will induce a time
evolution of the macrostate M . Boltzmann then argued that SB(X(t)) will, for
a typical X in Γ (M), evolve in time according to the second law, i.e.

dSB(X(t))
dt

≥ 0, t > 0 (2)

see [4] and references there. This can be proven when one assumes that M(t)
evolves under an autonomous macroscopic equation, e.g. the Navier-Stokes or
diffusion equation, but the rigorous derivations of these equations from the micro-
scopic dynamics is not available at the present time.

Nota Bene: Equation (2) can only be true for typical microstates X, i.e. for
the overwhelming majority of the X’s with respect to Liouville measure in Γ (M):
there are special microstates for which it is definitely false. An example of such
a special state can be obtained by starting in a typical low-entropy state at some
time in the past, and then evolving that state in time to a higher-entropy state
in the present, followed by exactly reversing all velocities.

Hydrodynamic Time-Evolution: We now describe a class of nonequilibrium
systems for which the time evolution of the Boltzmann entropy is given by
hydrodynamic equations and satisfies the second law. Consider a system in a
macrostate M 	= Meq for which one can define a “smooth” energy and mass
density profile e(r) and n(r), where r ∈ V denotes different spatial points of the
system. For such systems SB(X) coincides to leading order with Sh({e(r), n(r)}),
the hydrodynamic entropy of systems in local thermal equilibrium (LTE) given
by [13]

Sh({e(r), n(r)}) =
∫

V

s(e(r), n(r))dr, (3)

where s(e, n) is the equilibrium entropy per unit volume, s = S/|V | (in the
thermodynamic limit). [We have assumed for simplicity that the local velocity
u(r) is zero, otherwise e(r) → [e(r) − 1

2n(r)|u(r)|2]. Note that Sh coincides with
the equilibrium entropy S(E, V,N) when e and n are independent of r.

As an example of the hydrodynamic time evolution of Sh, consider a system in
LTE with a temperature profile T (r, t). Starting then with the general equation
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for the time evolution of the entropy density of a system in LTE

∂s(r, t)
∂t

= −div j(r, t)
T (r, t)

= −div (j/T ) + j · ∇
(

1
T

)
, (4)

where j(r, t) is the energy flux vector, we get

dSh

dt
= −

∫
Q

j(q, t)
T (q)

·dq +
∫

V

j(r, t) · ∇
(

1
T (r, t)

)
dr. (5)

In (5) Q is the surface of V and dq is the (outward directed) surface area element.
The flux integrand vanishes on the parts of the surface which are insulated, the
whole surface if the system is isolated. There will, however, be a contribution
from the parts of the surface which are held at specified temperatures T (q) by
external reservoirs. The integral over Q can be identified with the entropy pro-
duction in the thermal reservoirs, d̄Sr/dt, which maintain the temperature T (q).
(Since we have idealized the reservoirs as infinite systems with fixed tempera-
tures, their entropy is formally infinite, but the rate of change in their entropies
is finite.) The second term in (5) corresponds to the hydrodynamic or Boltzmann
entropy change in the bulk of the MS,

σB(t) =
∫

V

j(r, t) · ∇
(

1
T (r, t)

)
dr ≥ 0, (6)

due to local “dissipation”. The integrand is in fact everywhere non-negative, an
expression of the second law: the component of the energy flux parallel to the
temperature gradient cannot be directed from ‘cold’ towards ‘hot’.

3 The Gibbs-Shannon Entropy

The entropy of the micro-canonical ensemble, S(E) = log |ΓE |, can also be writ-
ten as

S(E) = SG(μm) = −
∫

μm(X) log μm(X)dX. (7)

Using Legendre transforms, Gibbs showed that if one considers the canonical
ensemble with probability density μβ given by

μβ = Z−1 exp [−βH(X)] , (8)

with β = 1/T , then SG(μβ) also gives the equilibrium entropy of a MS as a
function of temperature. The same is true for the grand-canonical ensemble and
other equilibrium ensembles. They all agree to leading order in the size of the
system.

It is a natural step to extend this notion of entropy to general probability
measures with densities μ(X, t) which depend on X and t as

SG(μ) = −
∫

μ(X, t) log μ(X, t)dX. (9)
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The quantity SG(μ) is the Shannon entropy of an arbitrary measure μ on a space
Ω (relative to the measure dX). It plays a central role in information theory as
developed by Shannon [14]. However, as is well known, for an isolated physical
system evolving under Hamiltonian dynamics, μ changes in time according to
the Liouville equation, ∂μ/∂t = −{μ,H}, and the GS entropy SG(μ(t)) does
not change at all. Thus SG(μ(t)) cannot be identified with the thermodynamic
or hydrodynamic entropy Sh of an isolated macroscopic system which is not in
global thermal equilibrium, even if it is in local thermal equilibrium, a situation
in which Sh is unambiguous. (This was already noted by Gibbs and discussed by
P. and T. Ehrenfest in their 1916 article [15]). This raises the question of what is
the physical meaning of SG(μ) for any system for which μ is not an equilibrium
Gibbs measure of a MS.

The behavior of the GS entropy associated with a measure μ is very different
when the system is in contact with stochastic reservoirs. As will be seen below,
the rate of change of SG is no longer zero and is related to the thermodynamic
entropy change in the reservoirs. We shall discuss the physical significance, if
any, of this later, after we introduce the mathematical formalism to describe
such systems.

4 Model of System in Contact with Thermal Reservoirs

The formalism we shall use was developed by Bergmann and Lebowitz [16,17]
who studied the dynamics of a system evolving under the combined action of its
own Hamiltonian H(X) and of n thermal reservoirs at different temperatures
(and chemical potentials). These reservoirs were thought of as being infinite and
acting at the boundaries of the MS. To simplify matters the interaction with the
reservoirs was idealized as being of the collision type: when a collision occurs the
phase point of the system, X, jumps to X ′, while the reservoir particle goes off
to infinity, never to be seen again. The system thus sees an ever fresh stream of
reservoir particles with a Maxwellian distribution, at the temperature Tα = β−1

α

of that reservoir, α = 1, · · · , n. The time evolution of the system will thus be
given by a continuous time Markov process.

Denoting Kα(X,X ′)dX the transition rate from the phase point X ′ to the
phase space volume dX around X due to collisions with reservoir α, yields the
following stochastic Liouville master equation for the probability density μ(X, t),

∂μ(X, t)
∂t

+ {μ,H} =
n∑

α=1

∫
[Kα(X,X ′)μ(X ′, t) − Kα(X ′,X)μ(X, t)] dX ′,

(10)

where {μ,H} is the usual Poisson bracket describing the deterministic Hamilto-
nian evolution of the isolated system.

Using the time reversibility of the collision dynamics yields a condition for
each α,

Kα(X,X ′) = eβαH(X′)Lα(X,X ′) (11)
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with Lα(X,X ′) = Lα(X ′,X), where X corresponds to reversal of the velocity
coordinates of X. Some further simplifications give Lα(X ′,X) = Lα(X ′,X),
so that Lα(X,X ′) = Lα(X ′,X), corresponding to “detailed balance” for each
reservoir, i.e.

Kα(X,X ′)/Kα(X ′,X) = exp[−βα(H(X) − H(X ′))]. (12)

It was proven in [16], under quite general conditions on Lα(X,X ′) that,
as t → ∞, a system started in some arbitrary initial μ(X, 0) will approach a
stationary state

lim
t→∞ μ(X, t) = μs(X). (13)

This state is unique and is absolutely continuous with respect to Liouville mea-
sure. When there is only one reservoir at reciprocal temperature, βα, then clearly

μs(X) = μα(X) ≡ Z−1 exp [−βαH(X)] (14)

is the unique stationary state. When the temperatures β−1
α are different μs will be

a nonequilibrium stationary state (NESS), for which the dynamics do not satisfy
detailed balance. It was further shown that this NESS will satisfy the Onsager
reciprocal relations when all βα are close to some β, as well as a generalized
Kubo relation in the presence of an external field.

5 Time Evolution of Gibbs Entropy for a System
in Contact with Thermal Reservoirs

For a closed system, given the phase point X(t0), X(t) is determined for all t.
The only randomness expressed in μ(X, t) for a closed system is that introduced
initially, which could be due to ignorance. There is therefore no intrinsic physical
significance to μ(X, t) for an isolated system. On the other hand when the system
is in contact with a stochastic reservoir then X(t) is no longer determined by
X(t0), and μ(X, t) acquires some “objective” meaning. The GS entropy now
evolves in time in a non trivial way, which can be calculated from (10). It consists
of two contributions,

d
dt

SG(μ) =
n∑

α=1

Jα(t)/Tα + σG(t). (15)

In the first contribution Jα is the average energy flux from the αth reservoir into
the system, that is

Jα(t) =
∫

μ(X, t)
∫

Kα(X ′,X) [H(X ′) − H(X)] dX ′dX, (16)
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with
∑n

α=1 Jα(t) = d
dt

∫
H(X)μ(X, t)dX. The second contribution in (15) is

σG(t) =
1
2

n∑
α=1

∫ ∫
Lα(X,X ′) [να(X, t) − να(X ′, t)] log

[
να(X, t)
να(X ′, t)

]
dXdX ′ ≥ 0,

(17)

where

να(X, t) = μ(X, t) exp [βαH(X)] . (18)

Equation (15) can be rewritten in the suggestive form

σG(t) =
d̄Sr

dt
+

dSG

dt
≥ 0, (19)

where we have written d̄Sr/dt =
∑

α d̄Sα/dt and

d̄Sα

dt
= −Jα/Tα (20)

is the rate of change of the entropy of the αth reservoir caused by the energy
(heat) flow −Jα into that reservoir. Equation (19) is reminiscent of the second
law, and has therefore prompted the interpretation of SG(μ) for systems in con-
tact with thermal reservoirs as a physical entropy, despite the fact that it is not
so for an isolated system and is not specified by the microstate of the system,
c.f. Sect. 9.

We want to argue however that (19) does not justify the interpretation of
SG as the physical entropy of an open nonequilibrium system unless it agrees,
at least to leading order, with SB. In fact for a MS in contact with reservoirs
at its surface all the entropy production σG is caused, as can be seen from (17),
by the stochastic interactions at its surface. This is in contrast to the entropy
production σB, given in (6), which is due to the chaotic microscopic dynamics
in the bulk of the system, as it should be from a physical point of view.

We note further that, as is well known, for general Markov processes the GS
entropy relative to the stationary measure,

SG(μ|μs) = −
∫

Γ

μ(X, t) log
(

μ(X, t)
μs(X)

)
dX = SG(μ) +

∫
μ log μsdX, (21)

is monotone non decreasing [18]. We thus always have

d
dt

SG(μ) +
d
dt

∫
μ log μsdX ≥ 0, (22)

irrespective of whether the stochasticity comes from thermal reservoirs or
not. This time derivative coincides in our case with σG when the system is
in contact with only one reservoir and μs ∼ exp[−βαH]. When the system
is in contact with several reservoirs then in addition to (21) we also have
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d
dtSG(μ)+ d

dt

∑
α

∫
μ log μαdX ≥ 0. The positivity of σG is thus simply a conse-

quence of (22) and the detailed balance condition for each reservoir which gives
(12). Equation (22) would thus hold whatever the stationary states, μα, of the
system in contact with only one reservoir.

The relationship between SG and SB for open systems is an interesting ques-
tion. It may be considered in the following example in which a macroscopic
system is in contact with a single reservoir, e.g. a metal ball of radius 10 cm
immersed in a large tub of water. Consider the case when at t = 0 we have
μ(X, 0) = μβ0(X), i.e. the system is in equilibrium with a reservoir at the tem-
perature T0. At t = 0 the system is suddenly coupled to a thermal reservoir at
temperature Tf , with which it comes to equilibrium as t → ∞. We thus have
SG(0) = SB(0) and SG(∞) = SB(∞), but what about the times in between?
Under the very reasonable assumption of LTE, say T0 = 50 ◦C and Tf = 30 ◦C,
SB(t) can be computed for all t > t0 from the heat equation, but what about
SG(t)? Does it agree with SB(t) to leading order? Or do we have SG(t) < SB(t)
to leading order for some values of t? We do not know.

A similar question can be asked when the system is in contact with two (or
more) reservoirs at different temperatures on its surface. We expect that if the
system is macroscopic and chaotic, i.e. it satisfies Fourier’s law, then the energy
and density profile in the stationary state computed as an average over μs will
be that corresponding to LTE. The quantity σG will then be given by

σG = −
∑
α

Jα/Tα, (23)

since dSG(μs)/dt = 0, in (15). As long as the first integral in (5) can be identi-
fied with (23), there will be a similar expression for the hydrodynamic entropy
production σB in (5) and (6). This raises the following question: to what extent
does the stationary measure μs for a “chaotic” system correspond to a LTE state
when the only stochasticity is the one at the surface induced by the reservoirs. In
other words, does SG(μs) = SB in this scenario? For the particular case where
there are also bulk stochastic interactions which satisfy detailed balance this
has been proven [19–21]. However, for the more general case in which the bulk
dynamics is Hamiltonian this remains an open question.

In fact, it is not true that SG(μs) = SB when the reservoirs at the surface are
dissipative but deterministic, see [22]. There, it is considered a NESS produced
by driving the system via deterministic non Hamiltonian forces of the type used
in Gaussian thermostats at the surface. These yield a NESS, μs, which is singu-
lar with respect to Liouville measure. Its Gibbs entropy, SG(μs), is thus equal
to −∞. On the other hand molecular dynamics simulations of this model show
that it is in LTE, corresponding to shear flow, as far as thermodynamic quanti-
ties are concerned. Whether such a situation can also occur when the NESS is
produced by stochastic thermal reservoirs is an open question. This problem is
also discussed in Sect. 6 of [23] for different kinds of reservoirs.
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6 Small System in Contact with a Thermal Reservoir

Isolated small classical systems, such as a few particles in a box, and systems
with only a few relevant degrees of freedom, such as the center of mass motion of
a massive pendulum or the moon, are not thought to have any thermodynamic
functions, such as entropy, associated with them. For this reason the second
law is, as noted by Maxwell, constantly being violated in small systems [24]. It
is certainly no great surprise if an isolated box containing 10 Argon atoms is
frequently seen to have 8 or more particles in the right half of the box. Such a
percentage of particles on one side of an isolated system would certainly be a
violation of the second law if the system consisted of 1020 or more particles. Just
how large does the system have to be to rule out “ever” seeing such a violation in
an isolated system of N particles during a period of 100 years depends (strongly)
on the nature of the interaction between the particles, shape of the container,
initial state, and on whether we are considering classical or quantum dynamics.
Leaving quantum systems for a separate consideration, we will analyze now what
happens to a small classical system in contact with a thermal reservoir.

The Hamiltonian of such a small system in contact with a thermal reservoir
is given by

Htot = Hsys(X) + Hr(Y ) + V (X,Y ), (24)

where X describes the relevant part of the microstate of the small system with
Hamiltonian Hsys, Y that of the reservoir with Hamiltonian Hr, and V is the
interaction between system and reservoir. If the total system is in equilibrium
and is described by a microcanonical or canonical ensemble at a temperature
β−1, this induces a probability density for the system μ̃(X) =

∫
μβ(X,Y )dY ∼

exp[−β(Hsys(X)+ Ṽ (X,β))]. Note that Ṽ will generally be determined by both,
Hr and V , and can depend on β. This has to be taken into account when one
considers, for example, the collapse transition of a polymer in a solvent [25,26].

We note here that μ̃(X) no longer gives almost sure predictions about the
properties of the small system. We will presumably however get the same μ̃(X)
when the size of the reservoir is very large for all different Gibbs ensembles
describing the total system. Nevertheless, it is not clear how meaningful it is
to assign thermodynamic functions to the small system based on μ̃(X): see
discussion in [25]. We shall focus here on cases where the interaction V (X,Y )
can be taken to be of the impulsive type, as in Sect. 3, where Ṽ (X) can be
taken to be essentially independent of X and set equal to zero. The paradigm
of such a system is a Brownian particle [BP] immersed in an equilibrium fluid
at temperature T . The only relevant degree of freedom for such a (spherical)
particle is the location of its center of mass. The phase space Γ of the system is
thus six dimensional, X = (r,v), where we have set the mass of the BP equal to
unity so that p = v. Treating the fluid (approximately) as an infinite thermal
reservoir one obtains a stochastic Liouville equation of the form of Eq. (10) for
μ(r,v, t) with H(r,v) = 1

2 |v|2 +U(r), where U(r) is an external potential which
varies slowly on the microscopic spatial scale.
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For a sufficiently idealized fluid in thermal equilibrium at temperature β−1

one can obtain, in an appropriate limit, a Fokker-Planck equation for the time
evolution of the probability density of the BP μ(r,v, t)

∂μ

∂t
+ v · ∂μ

∂r
− ∂U

∂r
· ∂μ

∂v
= ξ

∂

∂v
·
[
μβ

∂

∂v
(μ/μβ)

]
, (25)

where μβ = Z−1 exp
{−β

[
1
2 |v|2 + U(r)

]}
, c.f. [27]. Thus within the approxi-

mate, but physically appropriate, scheme Eq. (25) treats the fluid as an infinite
thermal reservoir which exerts a stochastically stationary, delta-time correlated,
Gaussian force on the particle. The particle distribution then evolves towards its
stationary value μβ on a time scale T/ξ.

For the Fokker-Planck Eq. (25), one can formally follow the approach of
Sect. 5 [16,17] to calculate the corresponding change in the Gibbs-Shannon
entropy production. The result is given by

σG = ξ

∫
μ(r,v, t)

∣∣∣∣ ∂

∂v
log ν

∣∣∣∣
2

drdv =
dSG

dt
− J/T ≥ 0, (26)

where ν = μ/μβ as in Eq. (18) and J is the average energy flux from the fluid
to the Brownian particle J = d

dt

∫
( 12 |v|2 +U)μdrdv. One can take further limits

when the Fokker-Planck equation becomes a Langevin equation but we shall not
go into that here [30].

Equations (25) and (26) and their analogues play a central role in “stochastic
thermodynamics” where SG(μ) is generally taken for granted to represent a
thermodynamic entropy and thus (26) is considered to be an expression of the
second law [28,29]. There are in fact, as already noted, recent experiments which
give some support to this interpretation [8]. The question therefore naturally
arises of why this should be true for small systems in contact with thermal
reservoirs when, as argued above, this is not the case for isolated systems and
may not be true for MS in contact with reservoirs at their surfaces.

7 The Brownian Gas

We shall now attempt to justify the identification of SG(μ) of a nano-particle in
contact with a thermal reservoir, such as a BP in a fluid, with a thermodynamic
entropy. Consider a dilute gas of N such BP, N � 1, and call it a Brownian gas
[BG]. The gas is so dilute that interactions between the BP are negligible. This
BG is a macroscopic system in contact with a thermal reservoir not just at its
boundaries, but “everywhere”. Let γ be the 6 dimensional phase space of the
Brownian particle (in the older literature γ is called the μ−space, where μ stands
for molecule). Then, the phase space Γ of the BG will have 6N dimensions.

The (“meso”) macrostate of the Brownian gas is given by specifying the num-
ber of Brownian particles in each region drdv of the 6 dimensional γ space, to be
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Nf(r,v)drdv. This corresponds to a region Γf in the 6N dimensional phase space
Γ . The log of the Liouville volume |Γf | is given, up to constants, by 2

log |Γf | = −N

∫
f(r,v) log f(r,v)drdv + N. (27)

The Boltzmann entropy, SB(f), of this meso state is then given by (27), whose
right hand side coincides up to a constant term with NSG(μ). This is so even
though the physical interpretations of NSG(μ) and SB(f) are quite different.

The entropy production in a Brownian gas plus fluid is given by

σB = −N
d
dt

∫
f log fdrdv − JN/T ≥ 0, (28)

where JN is the flux of energy from the fluid to the Brownian gas, and −JN/T
is the rate of entropy change of the fluid at temperature T . The right side of
Eq. (28) is just N times the right hand side of Eq. (26) if one identifies JN = NJ .

We remark here that Boltzmann’s famous H−theorem shows the monotone
increase of − ∫

f log fdrdv for an isolated dilute gas evolving in time according to
the Boltzmann equation. Boltzmann interpreted this as a microscopic derivation
of the second law for SB({f}) and says [31]: “we have thus succeeded in defining
entropy for a system not in equilibrium”.

An important observation now is that, unlike an isolated gas, where some
interaction between the particles is essential to make the system satisfy the sec-
ond law (rather than behaving like an ideal gas), the Brownian gas gets thermal-
ized via its interaction with the fluid. Hence the behavior of a single Brownian
particle averaged over many trials will be the same as that of a Brownian gas. It
is therefore meaningful to consider the Gibbs-Shannon entropy of a single Brow-
nian particle as having a thermodynamic meaning, i.e. being equal to that of a
Brownian gas divided by the number of particles. This should be true both when
the Brownian gas is in global equilibrium, or in a meso (macro) state described
by f(r,v).

The above considerations will hold also in the case when the Brownian parti-
cle is acted on by a time dependent external potential U(r, t). The Brownian gas
will behave like a MS on which work is being done. In particular when U(r, t)
varies sufficiently slowly in time compared to the time it takes the Brownian
particle to relax to equilibrium with U(r, t), then the entropy will change adia-
batically and the right hand side of (26) will be an equality. The behavior of a
single Brownian particle will then be similar to that of the Brownian gas, with
vanishing fluctuations. This is what is observed in the experiments in [8] which
we discuss next.

2 The derivation of Eq. (27), due to Boltzmann, is straightforward. Divide the γ−space
into regions Δα, with α = 1, . . . , M , and let Nα be the number of particles in Δα.

Then, one has that |Γf | ∼ ∏ |Δα|Nα

Nα!
. Using Stirling’s formula, one obtains Eq. (27),

see [4] for details.
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8 Experiments on a Brownian Particle

An idealized version of the experiment in [8] is as follows: The thermal reservoir
fluid occupies a volume V which is divided into regions V1 and V2. At t = 0
the BP is in equilibrium with the fluid in V1 and a confining (infinite) external
potential U0(r) which excludes it from V2. At t = 0, U0(r) is changed to U1(r)
without any work being done, e.g. one suddenly removes the infinite potential
confining the particle to V1. One then waits until time t1 for the particle to
come to equilibrium with the fluid at the new potential U1(r), e.g. no confining
potential. One then changes U1 to U0 by gradually raising the height of the
potential in V2 over a time interval τ . During this time one does work W (τ) on
the particle.

We make the time variation of U(r, t) during τ very slow compared to the
relaxation time of the particle to its equilibrium distribution. Hence during the
time interval τ of a given realization the probability of the particle being in
position r with velocity v varies in a quasistatic way. From a thermodynamic
point of view the macro (meso) state of the corresponding Brownian gas is given
up to a factor N by

μβ(r,v, t) =
1

Z(t)
exp

(
−β

[
1
2
|v|2 + U(r, t)

])
(29)

with U(r, t1) = U1(r) and U(r, t1 + τ) = U(r, 0) = U0(r).
We can now use standard thermodynamics to calculate the work done by an

external agent that slowly manipulates the potential U(r, t). The work done per
unit time is ẇ(t) = −v · ∂U/∂r|r(t), where r(t) is the position of the BP at time
t. The total work done over the duration of the period (0, t1+τ) is then different
from zero only during the interval (t1, t1 + τ), and is given by

W (τ) =
∫ t1+τ

t1

ẇ(t)dt =
∫ t1+τ

t1

∂U(r, t)
∂t

dt, (30)

where it is important for the equality that the potential is the same at the
beginning and at the end of the protocol [32,33]. We can now relate the average
total work 〈W (τ)〉, where the average is taken with respect to μβ(r,v, t), with
the change of log Z during the period τ . More precisely

〈W (τ)〉 =
∫ (∫ t1+τ

t1

∂U(r, t)
∂t

μβ(r,v, t)dt

)
drdv

= −
∫ (∫ t1+τ

t1

1
βZ(t)

∂

∂t

[
e−β( 1

2 |v|2+U(r,t))
])

drdv

= T log[Z(t1)/Z(t1 + τ)]. (31)

To interpret this work as a change in Gibbs-Shannon entropy we can integrate
by parts in the definition of 〈W (τ)〉. This gives

〈W (τ)〉 = E(t1 + τ) − E(t1) − T [SG(t1 + τ) − SG(t1)], (32)
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where we have defined the average energy as E(t) = 〈12 |v|2 + U(r, t)〉. In the
actual experiment E(t1) = E(0) = E(t1 + τ). Hence measuring 〈W (τ)〉, which
was shown experimentally to have very little variance for large τ , lets one measure
SG(μβ(t1)) − SG(μβ(t1 + τ)) for different external potentials U(r, t), e.g. for
different confining volumes of U0(r).

Using the BG interpretation, the quantities in Eq. (32) can all be interpreted
as macroscopic quantities divided by the number of particles. Within this inter-
pretation SG coincides with the hydrodynamic entropy which changes in an
irreversible way. The entropy of the heat bath (here the fluid) has increased dur-
ing the cycle from 0 to t1 + τ by 〈W (τ)〉/T . When τ is not so large so that one
can not assume instantaneous equilibrium of the BG there will be extra entropy
production in the BG during this period. This work, obtained by averaging W (τ)
over repetitions of the experiment, was indeed found to be greater than the right
hand side of (32). In the analysis of the experiment and in stochastic thermody-
namics one goes beyond the simple equality or inequality of (32). One actually
computes the distribution of W (τ). We shall not go into that here. We thus con-
clude that the interpretation of SG(μ) as the thermodynamic Boltzmann entropy
per particle of a Brownian gas is consistent.

9 Concluding Remarks

The point of view taken in this note is that the entropy of a physical system
should be a property of the state of the individual system and thus it should be
possible to define the entropy of a system without referring to any ensembles,
see [3,4]. For a classical system the most detailed description of the physical
state of the system is that given by its microstate X ∈ Γ . Thus any physical
entropy S is a function of X. This is the case for the Boltzmann entropy SB(X)
of a macroscopic system in a well defined macrostate M (for which SB is in
fact the same for all X ∈ Γ (M)). Going beyond the hydrodynamic entropy (3),
appropriate only for systems in local thermal equilibrium, SB can be extended
to dilute gases not in local thermal equilibrium. For these the macro (meso)
state M is specified by the empirical distribution f(r,v, t), which is of course
determined by X, see [4]. In contrast the Gibbs-Shannon entropy (of a mea-
sure) not only fails to be determined by the microstate of the system – it also
fails to change in time for an isolated system, large or small, even for a large
isolated system that is undergoing (internally) dissipative relaxation and thus
producing thermodynamic entropy. Of course the Gibbs-Shannon entropy of the
microcanonical ensemble μm is meaningful for an isolated macroscopic system
in global thermal equilibrium, where it coincides with SB to leading order in the
size of the system.

The existence of a useful general notion of entropy for an isolated nanosystem
is not so clear. Such systems have been studied theoretically and experimentally
for quantum systems [10,34], which we have not discussed here. In fact our main
concern here has been with the significance of SG for systems large and small in
contact with heat baths. We have not resolved this issue for macroscopic systems,
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but have given a possible, to us plausible, answer for the case of a nanosystem
studied experimentally in [8].
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