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Abstract. Angiogenesis is a complex multiscale process by which dif-
fusing vessel endothelial growth factors induce sprouting of blood ves-
sels that carry oxygen and nutrients to hypoxic tissue. There is strong
coupling between the kinetic parameters of the relevant branching -
growth - anastomosis stochastic processes of the capillary network, at the
microscale, and the family of interacting underlying biochemical fields,
at the macroscale. A hybrid mesoscale tip cell model involves stochas-
tic branching, fusion (anastomosis) and extension of active vessel tip
cells with reaction-diffusion growth factor fields. Anastomosis prevents
indefinite proliferation of active vessel tips, precludes a self-averaging
stochastic process and ensures that a deterministic description of the
density of active tips holds only for ensemble averages over replicas of
the stochastic process. Evolution of active tips from a primary vessel to
a hypoxic region adopts the form of an advancing soliton that can be
characterized by ordinary differential equations for its position, velocity
and a size parameter. A short review of other angiogenesis models and
possible implications of our work is also given.
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1 Introduction

The growth of blood vessels out of a primary vessel or angiogenesis is a complex
multiscale process responsible for organ growth and regeneration, tissue repair,
wound healing and many other natural operations in living beings [1–5]. Angio-
genesis is triggered by lack of oxygen (hypoxia) experienced by cells in some
tissue. Such cells secrete growth factors that diffuse and reach a nearby primary
blood vessel. In response, the vessel wall opens and issues endothelial cells that
move towards the hypoxic region, build capillaries and bring blood, oxygen and
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nutrients to it. Once blood and oxygen have reached the hypoxic region, secre-
tion of growth factors stops, anti-angiogenic substances may be secreted and a
regular vessel network may have been put in place, after pruning capillaries with
insufficient blood flow. In normal functioning, angiogenic and anti-angiogenic
activities balance. Imbalance may result in many diseases including cancer [6].
In fact, after a tumor installed in tissue reaches some 2 mm size, it needs addi-
tional nutrients and oxygen to continue growing. Its hypoxic cells secrete growth
factors and induce angiogenesis. Unlike normal cells, cancerous ones continue
issuing growth factors and attracting blood vessels, which also supply them with
a handy transportation system to reach other organs in the body.

Tumor-induced angiogenesis research started with Folkman’s pioneering work
in 1971 [6]. In addition to vast experimental research [7], models and theory [8]
substantially contribute to understanding angiogenesis and developing thera-
pies. In angiogenesis, events happening in cellular and subcellular scales unchain
endothelial cell motion and proliferation and build millimeter scale blood sprouts
and networks thereof [2–5]. Models range from very simple to extraordinarily
complex and often try to illuminate some particular mechanism; see the review
[8]. Realistic microscopic models involve postulating mechanisms and a large
number of parameters that cannot be directly estimated from experiments, but
they often yield qualitative predictions that can be tested. An important chal-
lenge is to extract mesoscopic and macroscopic descriptions of angiogenesis from
the diverse microscopic models.

During angiogenesis, the relevant branching, growth and anastomosis (ves-
sel fusion) stochastic processes of the capillary network at the microscale are
strongly coupled to the interacting underlying biochemical and mechanical fields
at the macroscale. In Sect. 2, we consider a hybrid mesoscale tip cell model that
involves stochastic branching, anastomosis and extension of active vessel tip
cells with reaction-diffusion growth factor fields [9]. Numerical simulations of
the model show that anastomosis prevents indefinite proliferation of active ves-
sel tips [10]. Then fluctuations about the mean of the density of active tips are
not small and the stochastic process is not self-averaging. However, as shown
in Sect. 3, it is possible to obtain a deterministic description of the density of
active tips for ensemble averages over replicas of the stochastic process. The
deterministic description consists of an integro-partial differential equation for
the density of active vessel tips coupled to a reaction-diffusion equation for the
growth factor [9,10]. As shown in Sect. 4, the evolution of active tips from a
primary vessel to a hypoxic region adopts the form of an advancing soliton-like
wave that can be characterized by ordinary differential equations for its position,
velocity and a size parameter [11,12]. These results may pave the way to assess
optimal control of angiogenesis and therapies based on it.

What are the implications of our work? As described in Sect. 5, there are other
models related to ours in which the vessel extension is described by random walks
[13,14], and our methodology may be used to extract deterministic descriptions
for the density of active tips amenable to analysis. We could also seek to extend
microscopic cellular Potts models (described in Sect. 6) to mesoscales and study
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them using our methods. The role of blood flow in remodeling vascular networks
is briefly considered in Sect. 7. A quite different approach is presented in Sect. 8.
Reaction-diffusion equations for growth factors are coupled to a Cahn-Hilliard
type equation for a phase field that is fourth order in space. The phase field has a
potential with two minima corresponding to the extracellular matrix and to the
advancing blood vessels. There are conditions for the velocity of the capillaries
and to create new ones. Further remarks are included in our conclusions in
Sect. 9.

2 Langevin Tip Cell Models

Tip cell models assume that the tip cells are motile and non-proliferating whereas
stalk cells build the blood vessel following the trajectories of the former. Assum-
ing that the tip cells form point particles, their trajectories constitute the blood
vessels advancing toward the hypoxic region. In 1991, Stokes and Lauffenburger
considered the capillary sprouts as particles of unit mass subject to chemotac-
tic, friction and white noise forces [15,16]. The distribution of vessel endothelial
growth factors (VEGF) issuing from a small circular tumor (or from a small cir-
cular hypoxic region) is a known stationary non-uniform function. Associated to
each sprout, its cell density satisfies a rate equation that takes into account prolif-
eration, elongation, redistribution of cells from the parent vessel, branching and
anastomosis. They did not consider the depletion effect that advancing sprouts
would have on the VEGF concentration. Later tip cell models combined a con-
tinuum description of fields influencing cell motion (chemotaxis, haptotaxis, . . . )
with random walk motion of individual sprouts that experience branching and
anastomosis. Capasso and Morale [17] used ideas from these approaches to pro-
pose a hybrid model of Langevin-Ito stochastic equations for the sprouts under-
going chemotaxis, haptotaxis, branching and anastomosis coupled to reaction-
diffusion equations for the continuum fields. In this model, the evolution of the
continuum fields is influenced by the growing capillary network through smoothed
(or mollified) versions thereof [18]. Capasso and Morale also attempted to derive
a continuum equation for the density of moving tip cells from the stochastic equa-
tions but could not account for branching and anastomosis [17]. In what follows,
we present a simplified hybrid model that ignores haptotaxis and derive a deter-
ministic description for the density of active tips [9,10,19]. As in the Capasso-
Morale model, the influence of haptotaxis can be included by adding reaction-
diffusion equations for fibronectin and matrix-degrading enzymes [20]. The influ-
ence of blood circulation through the newly created blood vessels and secondary
branching therefrom can be modeled as in [21].

We shall consider a slab geometry as indicated in Fig. 1, which is the result of
a numerical simulation of the stochastic model. The extension of the ith capillary
sprout with position Xi(t) and velocity vi(t) is given by the nondimensional
Langevin-Ito stochastic equation

dXi(t) = vi(t) dt

dvi(t) = β
[−vi(t) + F

(
C(t,Xi(t))

) ]
dt +

√
β dWi(t) (1)
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Fig. 1. Network of blood vessels simulated by the stochastic model of tumor induced
angiogenesis. The level curves of the density of the tumor angiogenic factor (vessel
endothelial growth factor) are also depicted, [11].

for t > T i (T i is the random birth time of the ith tip). Here C(t,x) is the VEGF
concentration. At time T i , the velocity of the newly created tip is selected out
of a normal distribution with mean v0 and variance σ2

v , while the probability
that a tip branches from one of the existing ones during an infinitesimal time
interval (t, t + dt] is proportional to

N(t,ω)∑

i=1

α(C(t,Xi(t)))dt. (2)

Here N(t, ω) is the number of tips at time t for a realization ω of the stochastic
process and

α(C) =
AC

C + 1
, (3)

where A is a positive constant. We ignore secondary angiogenesis from newly
formed capillaries [21]. The tip i disappears at a later random time Θi, either by
reaching the hypoxic region or by anastomosis, i.e., by meeting another capillary.
At time t, anastomosis for the ith tip occurs at a point x such that Xi(t) = x
and Xj(s) = x for another tip that was at x previously, at time s < t. Anastomo-
sis reduces the importance of secondary angiogenesis, because: (i) newly formed
capillaries need some time to mature and issue tip cells from their walls, and (ii)
secondary branches appear in a crowded environment and their life before they



Stochastic Models of Blood Vessel Growth 417

anastomose is typically short. In (1), Wi(t) are i.i.d. Brownian motions, and β
(friction coefficient) is a positive parameter [9,10,12]. The chemotactic force F
controlling tip cell migration in response to the VEGF released by hypoxic cells is

F(C) =
δ1

1 + Γ1C
∇xC, (4)

where δ1, and Γ1 are positive parameters. The VEGF diffuses and is consumed
by advancing vessel tips according to [10]

∂C

∂t
(t,x) = κcΔxC(t,x) − χcC(t,x)

∣
∣
∣
∣
∣
∣

N(t,ω)∑

i=1

vi(t) δσx
(x − Xi(t))

∣
∣
∣
∣
∣
∣
. (5)

Here κc and χc are positive parameters, while δσx
is a regularized delta function

(e.g., a Gaussian with standard deviation σx). We are assuming that extending
the vessel consumes VEGF. As the vessel extends a length |vi(t)| dt during the
time interval between t and t + dt, the consumption should be proportional to
|vi(t)|. The resulting equation for the VEGF is then

∂C

∂t
(t,x) = κcΔxC(t,x) − χ̃cC(t,x)

N(t,ω)∑

i=1

|vi(t)| δσx
(x − Xi(t)). (6)

The difference between the more appropriate model equation (6) and (5) could be
considerable for situations where tip cells are moving in all directions. However,
for the parameters and the slab geometry considered in the numerical simulations
presented in this paper, this difference is negligible (it amounts to having χ̃c =
1.28χc in the previous equation). Initial and boundary conditions for the VEGF
field C have been proposed in [9,10].

The concentration of all vessels per unit volume in the physical space, at
time t (i.e., the vessel network X(t, ω)) is [10]

δ(x − X(t, ω)) =
∫ t

0

N(s,ω)∑

i=1

δσx
(x − Xi(s, ω)) ds. (7)

3 Deterministic Description

We shall see that we can understand the results of numerical simulations of
the stochastic process described in the previous section by first finding a deter-
ministic description of the density of active tips. The latter evolves in the form
of a slowly varying soliton-like wave that we can analyze. Without perform-
ing numerical simulations of the stochastic process, we could guess that such a
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deterministic description could hold whenever the number of active tips arising
from branching becomes very large. In such a case, we could use the law of large
numbers to achieve such a description. This was the point of view adopted in
the papers [9,17]. However, anastomosis kills off so many active vessel tips that
their number hardly grows to a hundred. Then we need a different point of view
in order to derive a deterministic description. The alternative is the Gibbsian
idea of considering an ensemble of replicas of the original stochastic process and
carrying out arithmetic averages over the number of replicas.

We can find a deterministic description of the stochastic model for the den-
sities of active vessel tips and the vessel tip flux, defined as ensemble averages
over a sufficient number N of replicas (realizations) ω of the stochastic process:

pN (t,x,v)=
1
N

N∑

ω=1

N(t,ω)∑

i=1

δσx
(x − Xi(t, ω)) δσv

(v − vi(t, ω)), (8)

p̃N (t,x)=
1
N

N∑

ω=1

N(t,ω)∑

i=1

δσx
(x − Xi(t, ω)), (9)

jN (t,x)=
1
N

N∑

ω=1

N(t,ω)∑

i=1

vi(t, ω)δσx
(x − Xi(t, ω)). (10)

As N → ∞, these ensemble averages tend to the tip density p(t,x,v), the
marginal tip density p̃(t,x), and the tip flux j(t,x), respectively.

Figures 2 and 3 show the outcomes of typical simulations of ensemble aver-
aged marginal densities: The two-dimensional lump shown in Fig. 2 is created
at the primary vessel at x = 0 and marches to the hypoxic region at x = 1. Its
profile along the x axis is the soliton-like wave shown in Fig. 3.

Reference [10] shows that the angiogenesis model has a deterministic descrip-
tion based on the following equation for the density of vessel tips, p(t,x,v),

∂p

∂t
(t,x,v) = α(C(t,x)) p(t,x,v)δσv (v − v0) − Γ p(t,x,v)

∫ t

0
p̃(s,x) ds

−v · ∇xp(t,x,v) − β∇v · [(F(C(t,x)) − v)p(t,x,v)] +
β

2
Δvp(t,x,v), (11)

p̃(t,x) =

∫
p(t,x,v′) dv′. (12)

The two first terms on the right hand side of (11) correspond to vessel tip
branching – from Eqs. (2) and (3) – and anastomosis, respectively. While the
branching term follows from (2) and (3) in a straightforward manner, deducing
the anastomosis integral term is the real breakthrough from past work achieved
in [9]. The anastomosis coefficient, Γ , has to be fitted by comparison of the
numerical solution of the deterministic equations and ensemble averages of the
stochastic description, [10]. The other terms on the right hand side of (11) are
in the Fokker-Planck equation that corresponds to the Langevin equation (1)
in the usual manner [22]. While the branching term follows directly from the
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Fig. 2. Marginal density of active vessel tips resulting from an average over 400 replicas
of the stochastic process according to Eq. (9) at four different times: (a) 12 h, (b) 24 h,
(c) 32 h, and (d) 36 h. At these times, the numbers of active tips are (a) 56, (b) 69,
(c) 72, and (d) 66, [10].
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Fig. 3. Marginal density of active vessel tips at the x axis resulting from an average
over 400 replicas of the stochastic process as in Fig. 2. The primary vessel at x = 0
issues a pulse that marches toward the hypoxic region at x = 1, [10].
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stochastic branching process, anastomosis occurs when a moving vessel tip at
time t > 0 encounters a preexisting vessel whose tip was at the same place at
an earlier time s < t. At time t, a moving vessel tip can reach an area dx about
x that is either unoccupied or occupied by another vessel. In the latter case, it
anastomoses. The occupation time density of the area dx about x is proportional
to

∫ t

0
p̃(s,x) ds - the ensemble average of the vessel network density (7). Then

the rate of anastomosis should be proportional to p(t,x,v) times this occupation
time density [10]. Equation (5) becomes

∂C

∂t
(t,x) = κcΔxC(t,x) − χcC(t,x) |j(t,x)|, (13)

where j(t,x) is the current density (flux) vector at any point x and any time
t ≥ 0,

j(t,x) =
∫

v′p(t,x,v′) dv′. (14)

Equation (6) becomes (13) in which
∫ |v′| p(t,x,v′) dv′ replaces |j(t,x)|.

Fig. 4. Marginal density of active vessel tips resulting from a numerical simulation of
the deterministic equations with appropriate boundary conditions for the same times
as in Fig. 2 [9,10]. Better agreement between both descriptions requires fine tuning of
the boundary conditions.

Figure 4 shows that the outcome of a numerical simulation of the determin-
istic description is similar to that of the stochastic process.

Carpio and collaborators have shown that the deterministic system of Eqs.
(11)–(13) together with appropriate boundary and initial conditions has a unique
solution that depends smoothly on parameters [23,24]. The proof that the deter-
ministic description (11) follows from ensemble averages of the stochastic process
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as described here is an important open problem. Anastomosis is a random event
that depends on the past history of each realization of the stochastic process.
Killing process with memory of this type have been studied formally before.
However, the densities (8)–(10) are ensemble averages over infinitely many dif-
ferent realizations, which are, by definition, independent from each other. This
could be important in a mathematical investigation of these processes.

In a recent paper [25], Capasso and Flandoli have proved an important con-
vergence result for the deterministic description. They consider an appropriately
modified stochastic process for d-dimensional angiogenesis on the whole space
that also includes secondary branching at random points of existing capillaries.
In the limit as the initial number of tips N0 tends to infinity, they prove that a
relative tip density (scaled with the initial number of tips) converges in proba-
bility. The limiting relative tip density satisfies in a weak sense a deterministic
integro partial differential equation. In this equation, integrals over time also
appear at the source term due to secondary angiogenesis. As explained before,
the memory source term due to secondary angiogenesis is likely to be small com-
pared to the local source term considered in (11). Capasso and Flandoli also
prove that the number of tips at any given time t ∈ [0, T ] is bounded by a factor
eλT N0, with λ > 0. It would be interesting to see whether the limit as N0 → ∞
can be replaced by ensemble averages at least in the 2D case. Similarly, com-
parison of numerical solutions of the deterministic description on an appropriate
geometry and averages of the stochastic process would help understanding the
implications of the rigorous results in [25].

4 Soliton and Collective Coordinates

In the overdamped limit of negligible inertia in (1), we obtain the simpler
Langevin-Ito equation: dXi(t) ≈ F(C(t,Xi(t))) dt+β−1/2dWi(t) [11]. By using
the Chapman-Enskog perturbation method whose details are explained in [12],
it is then possible to derive the following reduced equation for the marginal tip
density,

∂p̃

∂t
+ ∇x · (Fp̃) − 1

2β
Δxp̃ = μ p̃ − Γ p̃

∫ t

0

p̃(s,x) ds, (15)

μ =
α

π

[
1 +

α

2πβ(1 + σ2
v)

ln
(

1 +
1
σ2

v

)]
. (16)

The drift terms in Eq. (15) are those corresponding to the simpler Langevin-Ito
equation for Xi(t) that results in the overdamped limit. The birth and death
terms are obtained by integration of the corresponding ones on right hand side of
(11) over velocity. However, the perturbation procedure changes the coefficient
α(C) to the related function μ(C) in (16) [12]. Equation (15) has the following
soliton-like solution for constant F = (Fx, Fy), μ, and zero diffusion, 1/β = 0:

p̃s =
(2KΓ + μ2)c
2Γ (c − Fx)

sech2

[√
2KΓ + μ2

2(c − Fx)
(x − X(t))

]

, Ẋ ≡ dX

dt
= c, (17)
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where K is a constant. In fact [11], consider p̃s = ∂P (x − ct)/∂t = −c P ′(ξ),
ξ = x − ct, which, inserted in (15) with 1/β = 0, yields

(Fx − c)P ′′ = μP ′ − ΓPP ′ =⇒ (c − Fx)P ′ =
Γ

2
P 2 − K − μP.

Setting P = ν tanh(λξ)+μ/Γ , we find ν2 = (μ2+2KΓ )/Γ 2 and 2νλ(c−Fx)/Γ =
−ν2, thereby obtaining

P =
μ

Γ
−

√
2KΓ + μ2

Γ
tanh

[√
2KΓ + μ2

2(c − Fx)
(ξ − ξ0)

]

.

Here ξ0 is a constant of integration. Thus p̃s = ∂P/∂t = −cP ′ is given by (17).
Note that the source terms (branching and anastomosis) in Eqs. (11) and (16)

are crucial for the soliton solution (17) to exist. Their absence in all developments
previous to [9] explains that they could not go beyond numerical simulations of
the stochastic process.

Numerical simulations on a slab geometry show that the marginal tip density
evolves toward (17) after an initial stage [11,12]. It is an open problem to prove
this stability result even for a one-dimensional version of Eq. (15) on the whole
real line and having constant values of F and μ.

A small diffusion and slowly varying continuum field C produce a moving
soliton whose shape and speed are slowly changing. We can find them by deduc-
ing evolution equations for the collective coordinates K, c, and X [11,12]. Then
the marginal density profile at y = 0 can be reconstructed from (17) with spa-
tially averaged Fx and μ [12]. Note that p̃s is a function of ξ = x − X and also
of x and t through C(t,x),

p̃s = p̃s

(
ξ;K, c, μ(C), Fx

(
C,

∂C

∂x

))
. (18)

We assume that the time and space variations of C, which appear when p̃s is
differentiated with respect to t or x, produce terms that are small compared to
∂p̃s/∂ξ. As explained in [12], we shall consider that μ(C) is approximately con-
stant, ignore ∂C/∂t because the VEGF concentration varies slowly (the dimen-
sionless coefficients κc and χc appearing in the VEGF equation (13) are very
small according to Table 2 of [12]) and ignore ∂2p̃s/∂i∂j, where i, j = K, Fx. We
now insert (17) into (15), thereby obtaining

(
Fx − Ẋ

)∂p̃s

∂ξ
+

∂p̃s

∂K
K̇ +

∂p̃s

∂c
ċ − 1

2β

(
∂2p̃s

∂ξ2
+ 2

∂2p̃s

∂ξ∂Fx

∂Fx

∂x
+

∂p̃s

∂Fx
ΔxFx

)

+ p̃s∇x · F +
∂p̃s

∂Fx

(
∂Fx

∂t
+ F · ∇xFx

)
= μp̃s − Γ p̃s

∫ t

0

p̃sdt. (19)

Equation (15) with 1/β = 0 and constant F and μ has the soliton solution (17).
Using this fact, we can eliminate the first term on the left hand side of (19) and
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also the right hand side thereof. Equation (19) then becomes

∂p̃s

∂K
K̇ +

∂p̃s

∂c
ċ = A , (20)

A =
1
2β

∂2p̃s

∂ξ2
−p̃s∇x ·F− ∂p̃s

∂Fx

(
F·∇xFx− 1

2β
ΔxFx

)
+

1
β

∂2p̃s

∂ξ∂Fx

∂Fx

∂x
. (21)

We now find collective coordinate equations (CCEs) for K and c. As the lump-
like angiton moves on the x axis, we set y = 0 to capture the location of its
maximum. On the x axis, the profile of the angiton is the soliton (17). We
first multiply (20) by ∂p̃s/∂K and integrate over x. We consider a fully formed
soliton far from primary vessel and hypoxic region. As it decays exponentially
for |ξ| 
 1, the soliton is considered to be localized on some finite interval
(−L /2,L /2). The coefficients in the soliton formula (17) and the coefficients in
(21) depend on the VEGF concentration at y = 0, therefore they are functions
of x and time and get integrated over x. The VEGF concentration varies slowly
on the support of the soliton, and therefore we can approximate the integrals
over x by [12]

∫

I

F (p̃s(ξ;x, t), x)dx ≈ 1
L

∫

I

(∫ L /2

−L /2

F (p̃s(ξ;x, t), x)dξ

)

dx. (22)

The interval I over which we integrate should be large enough to contain most
of the soliton, of extension L . Thus the CCEs hold only after the initial soli-
ton formation stage. Near the primary vessel and near the hypoxic region, the
boundary conditions affect the soliton and we should exclude intervals near them
from I . We shall specify the integration interval I below. Acting similarly, we
multiply (20) by ∂p̃s/∂c and integrate over x. From the two resulting formulas,
we then find K̇ and ċ as fractions. The factors 1/L cancel out from their numer-
ators and denominators. As the soliton tails decay exponentially to zero, we can
set L → ∞ and obtain the following CCEs [12]

K̇ =

∫ ∞
−∞

∂p̃s

∂K A dξ
∫ ∞

−∞
(

∂p̃s

∂c

)2

dξ− ∫ ∞
−∞

∂p̃s

∂c A dξ
∫ ∞

−∞
∂p̃s

∂K
∂p̃s

∂c dξ

∫ ∞
−∞

(
∂p̃s

∂K

)2

dξ
∫ ∞

−∞
(

∂p̃s

∂c

)2

dξ−
(∫ ∞

−∞
∂p̃s

∂c
∂p̃s

∂K dξ
)2 , (23)

ċ =

∫ ∞
−∞

∂p̃s

∂c A dξ
∫ ∞

−∞
(

∂p̃s

∂K

)2

dξ− ∫ ∞
−∞

∂p̃s

∂K A dξ
∫ ∞

−∞
∂p̃s

∂K
∂p̃s

∂c dξ

∫ ∞
−∞

(
∂p̃s

∂K

)2

dξ
∫ ∞

−∞
(

∂p̃s

∂c

)2

dξ−
(∫ ∞

−∞
∂p̃s

∂c
∂p̃s

∂K dξ
)2 . (24)

In these equations, all terms varying slowly in space have been averaged over
the interval I . The last term in (21) is odd in ξ and does not contribute to the
integrals in (23) and (24) whereas all other terms in (21) are even in ξ and do
contribute. The integrals appearing in (23) and (24) are calculated in [12]. The
resulting CCEs are
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K̇ =
(2KΓ+μ2)2
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)
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)
, (25)

ċ = −7(2KΓ + μ2)

20β(c − Fx)

1 − 4π2

105(
1 − 4π2

15

)(
1 − Fx

2c

)+F·∇xFx − (c − Fx)∇x ·F − ΔxFx
2β

2 − Fx
c

, (26)

g(x, y) =
1

I

∫
I

g(x, 0) dx, (27)

in which the functions of C(t, x, y) have been averaged over the interval I after
setting y = 0. We expect the CCEs (25)–(26) to describe the mean behavior of
the soliton whenever it is far from primary vessel and hypoxic region.
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Fig. 5. Comparison of the marginal tip density profile p̃(t, x, 0) (obtained from the
stochastic description averaged over 400 replicas) to that of the moving soliton, [11].

Both deterministic or stochastic simulations show that the soliton is formed
after some time t0 = 0.2 (10 h) following angiogenesis initiation. To find the
soliton evolution afterwards, we need to solve the CCEs (25)–(26), in which the
spatial averages depend on an interval x ∈ I , which should exclude regions
affected by boundaries. We calculate the spatially averaged coefficients in (25)–
(26) by: (i) approximating all differentials by second order finite differences,
(ii) setting y = 0, and (iii) averaging the coefficients from x = 0 to 0.6 by
taking the arithmetic mean of their values at all grid points in the interval
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I = (0, 0.6]. For x > 0.6, the boundary condition at x = 1 influences the
outcome and therefore we leave values for x > 0.6 out of the averaging [12]. The
initial conditions for the CCEs are set as follows. X(t0) = X0 is the location of
the marginal tip density maximum, p̃(t0, x = X0, 0). We find X0 = 0.2 from the
stochastic description. We set c(t0) = c0 = X0/t0. K(t0) = K0 is determined so
that the maximum marginal tip density at t = t0 coincides with the soliton peak.
This yields K0 = 39. Solving the CCEs (25)–(26) with these initial conditions
and using (17), we obtain the curves depicted in Fig. 5.

5 Random Walk Tip Cell Models

These models describe the extension of blood vessels by random walks biased by
chemotaxis or haptotaxis instead of using Langevin equations. The first such
model, due to Anderson and Chaplain [13], is based on a reaction-diffusion
description of angiogenesis. They consider a continuity equation for the den-
sity of endothelial cells (ECs) n (with zero-flux boundary conditions) coupled
to equations for the VEGF and fibronectin densities, C and f , respectively. In
nondimensional form, these equations are [13]:

∂n

∂t
= DΔn − ∇·

(
χ

1 + αC
n∇C

)
− ∇·(ρn∇f), (28)

∂f

∂t
= βn − γnf, (29)

∂C

∂t
= −ηnC. (30)

Here all parameters are positive. The three terms on the right hand side of (28)
correspond to diffusion of ECs, chemotaxis and haptotaxis, respectively. Note
that chemotaxis has the same form in this equation as in (11) with p replaced
by n. Haptotaxis follows the gradient of fibronectin in the extracellular matrix.
Note that proliferation and death of ECs are not contemplated by (28). In the
next step, these equations are solved by an explicit Euler method in time and
finite differences. The resulting equation for n(t, x, y) ≈ nq

l,m,

nq+1
l,m = nq

l,mW0 + nq
l+1,mW1 + nq

l−1,mW2 + nq
l,m+1W3 + nq

l,m−1W4, (31)

has the same form as a master equation for a random walk [22], except that
the “transition probabilities” W0 (staying), W1 (moving to the left), W2 (mov-
ing to the right), W3 (moving downwards), and W4 (moving upwards) are not
normalized. However, this is easily fixed by defining

Wi =
Wi

∑4
j=0 Wj

, i = 0, 1, . . . , 4, (32)

as new transition probabilities. The random walk associated to these transition
probabilities represents extension of vessel tips and replaces the Langevin equa-
tion (1). Branching and anastomosis are introduced as in the Langevin tip cell
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model, except that the tips have to wait some maturity time after branching
before they are allowed to branch again. It should be straightforward to find
equations for the density of active vessel tips by using the theory described in
previous sections.

The Anderson-Chaplain idea is easy to implement starting from continuum
models of angiogenesis (and therefore it can be immediately generalized by
including more taxis mechanisms, influence of antiangiogenic factors [26], etc.),
but it has the drawback of having to rely on the finite difference grid or lattice.
Another drawback is that the transition probabilities extracted from a finite
difference code may not always be non-negative. A few years later, Plank and
Sleeman fixed both these drawbacks. They proposed non-lattice models inde-
pendent of the grid [14] using biased circular random walk models previously
introduced by Hill and Häder for swimming microorganisms [27]. If θ(t) is a
continuous random walk on the unit circle biased by chemo and haptotaxis [14],
the trajectory of the corresponding tip cell is

dx
dt

= v0 (cos θ(t), sin θ(t)). (33)

Thus the tip cells have the same speed v0, directions given by θ(t) and their
trajectories do not have to follow points on a lattice. While branching and anas-
tomosis are modeled as in Sect. 2, the extensions of vessel tips are described by
(33) and the biased circular random walk instead of Langevin equations. The
master equation for the circular random walk is [14]

dPn

dt
= τ̂+

n−1Pn−1 + τ̂−
n+1Pn+1 − (τ̂+

n + τ̂−
n )Pn, (34)

τ̂±
n = 2λ

τ
(
nδ ± δ

2

)

τ
(
nδ + δ

2

)
+ τ

(
nδ − δ

2

). (35)

As δ → 0 and n → ∞ so that nδ = θ, the master equation (34) becomes the
Fokker-Planck equation [14]

∂P

∂t
(t, θ) = D

∂

∂θ

[
P (t, θ)

∂

∂θ

(
ln

P (t, θ)
τ(θ)

)]
, (36)

with D = λδ2 for P (t, θ) = P (t, nδ) = Pn(t). Chemo and haptotaxis are included
in the model through the transition probability

τ(θ) =
exp[dC cos(θ − θC) + df cos(θ − θf )]

∫ π

−π
exp[dC cos(s − θC) + df cos(s − θf )] ds

, (37)

tan θC =
∇C

|∇C| , tan θf =
∇f

|∇f | . (38)

Here τ(θ) is the stationary probability density of the Fokker-Planck equation
(36).
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Fig. 6. Sketch of the geometry for angiogenesis from a primary blood vessel to a circular
tumor calculated by using the Anderson-Chaplain model.

An extension of these ideas to 2D random walks produces a system with
non-negative transition probabilities [14]. Instead of (34), we may write the 2D
master equation

dPn,m

dt
= τ̂H+

n−1,mPn−1,m + τ̂H−
n+1,mPn+1,m + τ̂V +

n,m−1Pn,m−1 + τ̂V −
n,m+1Pn,m+1

− (τ̂H+
n,m + τ̂H−

n,m + τ̂V +
n,m + τ̂V −

n,m)Pn,m, (39)

τ̂H±
n,m = 4λ

τ(wn± 1
2 ,m)

τ(wn+ 1
2 ,m) + τ(wn− 1

2 ,m) + τ(wn,m+ 1
2
) + τ(wn,m− 1

2
)
, (40)

τ̂V ±
n,m = 4λ

τ(wn,m± 1
2
)

τ(wn+ 1
2 ,m) + τ(wn− 1

2 ,m) + τ(wn,m+ 1
2
) + τ(wn,m− 1

2
)
. (41)

Here w = (C, f) and τ(w) = τ1(C)τ2(f), with

τ1(C) = (1 + αC)
χ

αD , τ2(f) = eρf/D. (42)

Clearly, these transition probabilities are positive and it can be proved that the
master equation (39) has (28) as a continuum limit [14]. Active tips, branch-
ing and anastomosis are treated as in the Anderson-Chaplain paper [13]. Com-
parisons between numerical simulations of the Anderson-Chaplain and Plank-
Sleeman models are carried out in [14]. Figure 6 shows one realization of the
Anderson-Chaplain stochastic process that includes vessel extension, branching
and anastomosis.
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The random walk models of this Section get their input from continuum equa-
tions for ECs, VEGF and fibronectin densities, but the moving vessel tips charac-
terized by the random walks do not affect the continuum fields. Their outcomes
are numerical simulations of the stochastic processes, without further elabora-
tion. In contrast to this somewhat artificial setting, the Langevin tip cell model
of Sect. 2 is a hybrid model in which active vessel tips and continuum fields are
fully coupled. Furthermore, we can derive an equivalent deterministic description
from the Langevin tip cell model and analyze it in terms of a soliton-like attrac-
tor. This latter elaboration has also been carried out for a Langevin tip cell model
that includes chemotaxis and haptotaxis [20]. Now, the master equation becomes
a Fokker-Planck equation (corresponding to a Langevin-Ito equation) in the con-
tinuum limit [22]. Then we may expect that the master equation with two added
source terms similar to those in Eq. (11) describes the stochastic process compris-
ing random walk, branching and anastomosis. This seems to be the case [28].

Fig. 7. Density of active vessel tips resulting from an average over 800 replicas of the
stochastic process corresponding to reinforced random walk, branching and anastomosis
with transition probabilities (40)–(41) at four different times: (a) 5 days, (b) 6 days,
(c) 7 days, and (d) 8 days.

When we add source terms to the master equation (39), it becomes the
following equation for the density of active vessel tips ρn,m(t):

dρn,m

dt
= τ̂H+

n−1,mρn−1,m + τ̂H−
n+1,mρn+1,m + τ̂V +

n,m−1ρn,m−1 + τ̂V −
n,m+1ρn,m+1

−(τ̂H+
n,m + τ̂H−

n,m + τ̂V +
n,m + τ̂V −

n,m)ρn,m + αn,m ρn,m − Γn,m ρn,m

∫ t

0
ρn,m dt. (43)
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Fig. 8. Density of active vessel tips calculated from the master equation (43) at times:
(a) 5 days, (b) 6 days, (c) 7 days, and (d) 8 days.

Figure 7 depicts the active vessel density (9) calculated from ensemble average
over replicas of the stochastic process (reinforced random walk, branching and
anastomosis) at four different times after angiogenesis starts. Figure 8 shows
the solution of the master equation (43) at the same times as in Fig. 7. Both
stochastic and deterministic descriptions produce similar results. In particular,
the velocity of the patch where most active tips are concentrated is about the
same in both descriptions. See [28] for details.

As in the case of the stochastic process including Langevin-Ito equations for
vessel extension of Sect. 2, it is an important open problem to deduce the master
equation (43) from a reinforced random walk process with added branching and
anastomosis.

6 Cellular Potts Models

In all the previous models, the cells are treated as point particles. For a more
precise view of haptotaxis, i.e., the motion of ECs over the extracellular matrix
(ECM), we need to consider adhesion and deformation of the cells. This requires
a more microscopic view than that offered by tip cell models or by more compli-
cated models that distinguish between tip and stalk ECs and add extra dynamics
for them [8].

Often times, ECs and ECM are modeled by a cellular Potts model (CPM)
with Monte Carlo dynamics coupled to continuum fields (elastic fields, VEGF,
. . . ) [29]. Space in these models consists of a lattice whose cells (lattice sites)
may be in finitely many different states, denoted by type τ and representing ECs,
matrix fibers, tissue cells and interstitial fluid. To account for individual entities
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(ECs, fibers, etc), each entity is further associated with a unique identifying
number, denoted by σ, that is assigned to every lattice site occupied by it. At
every Monte Carlo time step, the cell surface (represented by connected lattice
vertices) is updated according to a set of cell behavior rules (e.g., target cell
shape and size) that are translated in an energy change. Typically, we select
randomly a cell x, assign its type, τ(x), to a randomly chosen neighbor x′, and
update accordingly the total energy of the system, H. Using the Metropolis
algorithm, a given update is accepted with probability one if the change in the
total energy of the system, ΔH, is reduced and it is accepted with probability
e−βΔH otherwise (1/β is the Monte Carlo temperature). The energy in [29] is

H =
∑

sites

Jτ,τ ′(1 − δσσ′) +
∑

cells

γτ (aσ − Aσ)2 −
∑

cells

∑

sites

μσC(t,x). (44)

The first term in Eq. (44) is the contribution to total energy resulting from
cell-cell and cell-medium adhesion. The second term allows deformation of cells
with volume aσ about a target volume (area in 2D space) Aσ, depending on the
Potts parameters γτ . The target volume is twice that of the initial volume and
it corresponds to the volume at which a cell undergoes mitosis, thereby creating
a new cell. Thus cell proliferation is contemplated in this CPM. A variation of
the last term in (44) is

ΔHchem = −μσ[C(t,x) − C(t,x′)], (45)

where x and x′ are two randomly picked neighboring lattice cells, μσ > 0 is the
chemical potential, and Eq. (45) represents chemotaxis favoring motion directed
along the VEGF gradient. The VEGF concentration satisfies a reaction-diffusion
equation [29]. The parameters appearing in the model are chosen in such a
way that the progression of blood vessels occurs in the time scale observed in
experiments [29].

Under this framework, each entity (ECs, ECM, . . . ) has a finite volume, a
deformable shape and competes for space. ECs proliferate. Intercellular inter-
actions occur only at the cells surface and have a cell-type-dependent surface
(or adhesion) energy Jτ,τ ′ , which is a measure of the coupling strength between
the entities τ and τ ′. Other CPMs include an ECM strain-dependent term that
favors cell extension in the direction of principal strain (durotaxis). The force
exerted by the ECs on the ECM is calculated by finite elements [30]. In more
complicated models, each cell contains agents that signal to other cells and adhe-
sion is modeled by a CPM [31].

As in the case of random walk tip cell models, there is a connection between
CPM and a deterministic formulation for a density. In [32], Alber et al. have
written a discrete time master equation for the probability density P (t, r,L)
that a cell with its center of mass at r occupy a rectangle with sides L = (lx, ly)
at time t. It is based on a CPM with energy given by (44), but with a target
perimeter instead of the target area. The corresponding term in the energy is

Hperim =
∑

cells

[γx(lx − Lx)2 + γy(ly − Ly)2]. (46)
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Here cells are always rectangles and do not proliferate nor die. Assum-
ing that cells contain many lattice sites, they change little at each Monte
Carlo step. Assuming further that cell-cell interactions are always binary,
the authors derive a Fokker-Planck equation for P (t, r,L). These formu-
lations would have to be extended to CPMs that include cell prolifera-
tion and be connected to mesoscopic angiogenesis models: from cell den-
sities to densities of active vessel tip cells. It would be interesting to
study whether the concept of active vessel tips and related ones can be
used to derive deterministic descriptions in the spirit of Sects. 3 and 5.

7 Blood Flow and Vascular Network

Once a vascular network is being created, blood flows through the capillaries,
anastomosis enhances flow in some of them and secondary angiogenesis may
start in new vessels. Pries and coworkers have modeled blood flow in a vascular
network and the response thereof to changing conditions such as pressure differ-
ences and wall stresses [33,34]. This response may remodel the vascular network
by changing the radii of certain capillaries, and altering the distribution of blood
flow [33,34]. McDougall, Anderson and Chaplain [35] have used this formulation
to add secondary branching from new capillaries induced by wall shear stress to
the original random walk tip cell model [13]. Blood flows according to Poiseuille’s
law, mass is conserved, there are empirical expressions for blood viscosity and
for the wall shear stresses, and radii of capillaries adapt to local conditions. Sec-
ondary vessel branching may occur after the new vessel has reached a certain
level of maturation and before a basal lamina has formed about it [21,35]. During
such a time interval, the probability of secondary branching increases with both
the local VEGF concentration and the magnitude of the shear stress affecting the
vessel wall. McDougall et al.’s model can be used to figure out how drugs could be
transported through the blood vessels and eventually reach a tumor [21,35]. In
dense vessel networks, secondary branching may have little effect on the number
of active tips at a given time, as anastomosis could eliminate secondary branches
quickly. Thus we may ignore secondary branching when considering the density
of active tips in such networks. Of course we cannot ignore it when describing
blood flow and network remodeling.

One missing feature of angiogenesis models that take blood flow into account
seems to be pruning. It is known that capillaries with insufficient blood circu-
lation may atrophy and disappear. Pruning such blood vessels is an important
mechanism to achieve a hierarchical vascular network such as that observed in
retinal vascularization during development [3,4]. Global optimization and adap-
tation in developing networks has been recently shown to lead to highly opti-
mized transport vascular systems [36,37]. It would be interesting to adapt these
studies to angiogenesis.
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8 Phase Field Models

Phase field models are continuum models able to represent vascular networks.
For example, Travasso et al. [39,40] consider a reaction-diffusion equation for
the VEGF C(t,x) coupled to a continuum equation for the phase field φ(t,x):

∂C

∂t
(t,x) = κcΔxC(t,x) − χcC(t,x)φ(t,x)Θ(φ(t,x)), (47)

∂φ

∂t
(t,x) = MΔx[−φ(t,x) + φ3(t,x) − ε2Δxφ(t,x)]

+αφ(C(t,x))φ(t,x)Θ(φ(t,x)). (48)

Here M is the mobility coefficient for the endothelial cells, the proliferation rate
is αφ(C) = αφ[CΘ(Cp −C)+CpΘ(C −Cp)], ε is the width of the capillary wall,
and Θ(x) is the Heaviside unit step function. Proliferative and non-activated
cells are described by an order parameter φ which is equal to −1 at the ECM
outside the capillary and +1 inside it. Areas of high proliferation of endothelial
cells have φ > 1, which will lead to the widening of the capillary. The position
of the capillary wall made out of stalk cells is given by the level set φ(t,x) = 0.

In addition to the continuum equations, there are discrete equations for acti-
vated tip endothelial cells and criteria to distinguish them. The angiogenic factor
at the tip cell is only consumed at its surface receptors, therefore χC = 0 is set
in Eq. (47) at all points inside the tip cell. A tip cell moves chemotactically with
velocity v (proportional to the VEGF gradient ∇xC measured at the tip cell
center, xt(t)):

v(xt(t))=χv(|∇xC(t,xt)|)∇xC(t,xt), (49)

χv(g)=χv

[
Θ(g − gm) +

(
gM

g
− 1

)
Θ(g − gM )

]
, (50)

where χv is the chemotactic response of the endothelial cells (having radius Rc),
gM is the maximum VEGF gradient and χvgM is the maximum tip speed. An
activated cell moves only if gm < |∇xC(t,xt)|, with 0 < gm < gM . When these
conditions are met at the center of an endothelial stalk cell and C > Cc there, it
acquires the tip cell phenotype, with the caveat that cell-cell contact dependent
mechanisms (the Notch pathway) prevent the activation of two neighboring cells.
Only points for which there is a minimum distance of 4Rc to the centers of all
already existing tip cells can become centers of activated tip cells. As in the
biological system, when the chemotactic signal is small, C < Cc or |∇xC(t,xt)| <
gm, the endothelial cell returns to the stalk cell state. Simulations show that tip
cell velocity and stalk cell proliferation play important roles in vascular network
morphology [39]. An increase in stalk cell proliferation leads to a more branched
network constituted by thicker vessels, while a higher tip cell migration velocity
leads to a more branched network with thinner vessels [39].

More general phase field models incorporate force at the vessel tip and elas-
ticity [38] and haptotaxis [41]. They are included in the review paper [42].
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A study of the relation between morphology of the blood vessel network gener-
ated by phase field models, blood supply and obstructions can be found in [43].
Phase field models are thus a deterministic alternative to stochastic models.

9 Conclusions

Angiogenesis is a complex multiscale process by which diffusing vessel endothelial
growth factors induce sprouting of blood vessels that carry oxygen and nutri-
ents to hypoxic tissue. Cancerous tumor cells profit from this process to prosper,
grow and eventually migrate to other organs. Mathematical models contem-
plate different aspects of angiogenesis. Here we have reviewed recent work on a
simple tip cell model that encompasses vessel extension driven by chemotaxis
and described by Langevin equations, stochastic tip branching and vessel fusion
(anastomosis). From the stochastic description, we have derived a determinis-
tic integropartial differential equation for the density of active tip cells coupled
with a reaction-diffusion equation for the growth factor. The associated initial-
boundary value problem is well posed. It is important to note that anastomosis
prevents proliferation of active tips and therefore the deterministic description
is based on ensemble averages over replicas of the stochastic process. Numer-
ical simulations of both (deterministic and stochastic) descriptions show that
the density of active tips adopts the shape of a two-dimensional soliton-like
wave (angiton) after a formation stage. We have found an analytical formula
for the one-dimensional projection of the soliton and ordinary differential equa-
tions for variables that provide its velocity, position and size. These equations
also characterize the advance of the vessel network for single replicas. Much
more work needs to be carried out to solve mathematical issues arising from our
results, both from analysis of the deterministic description and from establish-
ing more precise conditions for its validity. The description of the soliton should
be extended to the true two-dimensional soliton (angiton) that appears in the
numerical simulations and to the case of a more general geometry than that of
the slab. Fluctuations cannot be ignored in the case of ensemble averages, and
future work predicting the evolution of a real vessel network should include con-
fidence bands about averages. Anti-angiogenic treatments need to be improved
[1,2], and, in this respect, having better models and theories about their solu-
tions should help. Therapies are related to optimal control of angiogenesis and
they require accurate mathematical models, validated by comparison with real
data (inverse problems - statistics of random geometric structures).

We have also related the specific model we study to other tip cells models in
the literature that describe vessel extension by reinforced random walks instead
of stochastic differential equations. Our methodology may be adapted to these
other models as Langevin equations arise from reinforced random walks in appro-
priate limits. All these models describe mesoscales in which cells are just point
particles, thereby ignoring their shapes and a microscopic description thereof.
Other models consider the evolution of individual endothelial cells of variable
shape and extension through cellular Potts models, but the continuation of these
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models toward the mesoscale has barely begun. Extending the analysis carried
out for our mesoscopic stochastic tip cell model to microscopic models is a chal-
lenge for the future. Blood circulation through the angiogenic network favors
certain vessels, others that do not have enough perfusion shrink and disappear
and secondary branching may occur. Future work could delve deeper in the top-
ics of vessel remodeling, pruning, formation of optimal vascular networks and
transport of medicals through them.

Apart from the specific application to angiogenesis, we have presented in
this paper methodological contributions for a sound mathematical modeling of
stochastic vessel networks: (a) the use of stochastic distributions, and their mean
densities, describing the vessels, which are random objects of Hausdorff dimen-
sion one, cf (7); (b) reduction of vessel distributions to integrals over time of
active tip distributions, which are random objects of zero Hausdorff dimension,
cf (8)–(10); (c) characterization of the attractor of the density of active tips as
a soliton whose position, velocity and size are given as solutions of ordinary dif-
ferential equations, cf (17), (23)–(24). In our system, which is strongly out of
equilibrium, this attractor plays a similar role to the stable stationary equilib-
rium distribution of many physical systems.
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