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Preface

In statistical mechanics, it is common practice to use models of large interacting
assemblies governed by stochastic dynamics. The trimester “Stochastic Dynamics
Out of Equilibrium”, held at the Institut Henri Poincaré (IHP) in Paris from April to
July 2017, focused on the “out-of-equilibrium” aspect. Indeed, non-reversible
dynamics have features which cannot occur at equilibrium and for which novel
methods have to be developed. The three domains relevant to this trimester were
(i) transport in nonequilibrium statistical mechanics; (ii) the design of more efficient
simulation methods; (iii) life sciences.

The trimester at IHP brought together physicists, mathematicians from many
domains, computer scientists as well as researchers working at the interface
between biology, physics and mathematics. Various events were scheduled during
the trimester: a pre-school in Marseille-Luminy, three workshops and several series
of courses and seminars; see the website of the trimester

https://indico.math.cnrs.fr/e/stoneq17
for complete information. Each chapter in this book corresponds to one of these
events.

Part I gathers lecture notes from the pre-school at the Centre International de
Recherche Mathématique (CIRM). This one-week event provided an introduction
to the domains listed above. It was intended especially for a junior audience (PhD
students and post-docs) but also for more senior researchers not familiar with some
of these domains.

Part II includes lecture notes for two of the seven mini-courses which took place
during the trimester. Each mini-course was a set of three sessions of one hour and a
half, with a first lecture sufficiently introductory to be understood by all the par-
ticipants of the trimester, and then more specialized sessions. A broad spectrum of
scientific fields, topics and techniques was covered by the speakers. Indeed, with a
balance depending on the speaker’s background, all lectures featured a mix of
rigorous mathematical arguments and more physically motivated derivations; they
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used, from the mathematical perspective, techniques from analysis, partial differ-
ential equations, probability theory and dynamical systems.

Part III corresponds to the workshop “Numerical aspects of nonequilibrium
dynamics”. The scientific motivation for this event was that many successful
approaches for the efficient simulation of equilibrium systems cannot be adapted as
such to nonequilibrium dynamics. This is the case for instance for standard variance
reduction techniques such as importance sampling or stratification. This three-day
workshop (held from Tuesday, April 25 to Thursday, April 27) was focused on the
developments of original numerical methods specifically dedicated to the simula-
tion of nonequilibrium systems, as well as their certification in terms of error
estimates.

Part IV corresponds to the workshop “Life sciences”. This three-day workshop
(held from Tuesday, May 16 to Thursday, May 18) gathered researchers coming
from different fields—mathematics, physics, life sciences—and working with dif-
ferent approaches and tools, ranging from researchers dealing directly with real data
to scientists interested in the theoretical aspects of the models. The aim was on one
hand to understand the impact that recent advances in nonequilibrium statistical
mechanics and PDE analysis can have on life sciences and, on the other hand, to
widen the spectrum of models and phenomenologies tackled by mathematicians and
physicists.

Part V corresponds to the workshop “Stochastic dynamics out of equilibrium”.
This one-week workshop (held from Monday, June 12 to Friday, June 16) was
oriented towards general aspects of nonequilibrium stochastic dynamics, with a
broad audience. The topics concerned interface dynamics and KPZ universality,
nonequilibrium fluctuations, thermal conductivity and superconductivity in one
dimension, connection to macroscopic thermodynamics and more.

Let us conclude by acknowledging the various institutions and persons who
contributed to the success of the trimester we organized, and who helped us in
producing this volume. Let us first thank the staff at the Centre Emile Borel of IHP
who was in charge of the administrative aspects of the organization and handled
them with a spectacular efficiency. The funding from CNRS (Centre National de la
Recherche Scientifique), as well as from IHP and CIRM (through labex CARMIN)
were crucial for hosting our visitors. We also benefited from additional fundings
from various institutions in Paris (Fondation des Sciences Mathématiques de Paris,
Institut des Hautes Etudes Scientifiques, Sorbonne Université, Université Paris Sud,
Université Paris Dauphine, Université Paris Descartes, Université Paris Diderot,
Inria Paris, etc.) and abroad (Technische Universität München, Italian–French
agreement LYSM, Portugal–France agreement), as well as individual grants from
French or European funding agencies (ANR COSMOS and LSD from Agence
Nationale de la Recherche, projects HyLEF and MsMaths funded by the European
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Research Council). Finally, we warmly thank the contributors to this volume and
the referees of the contributions, as well as the staff of Springer, in particular Elena
Griniari, for helping us in the editorial process.

November 2018 Giambattista Giacomin
Stefano Olla
Ellen Saada

Herbert Spohn
Gabriel Stoltz
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Stochastic Mean-Field Dynamics and
Applications to Life Sciences

Paolo Dai Pra(B)

Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Padua, Italy
daipra@math.unipd.it

1 Introduction

Although we do not intend to give a general, formal definition, the stochastic
mean-field dynamics we present in these notes can be conceived as the ran-
dom evolution of a system comprised by N interacting components which is:
(a) invariant in law for permutation of the components; (b) such that the con-
tribution of each component to the evolution of any other is of order 1

N . The
permutation invariance clearly does not allow any freedom in the choice of the
geometry of the interaction; however, this is exactly the feature that makes these
models analytically treatable, and therefore attractive for a wide scientific com-
munity.
Originally designed as toy models in Statistical Mechanics, the emergence of
applications in which the interaction is typically of very long range and not
determined by fundamental laws, have renewed the interest in models of this
sort. Applications include, in particular, Life Sciences and Social Sciences.
The goal of these lectures is to

– review some of the basic techniques allowing to derive the macroscopic limit
of a mean-field model, and provide quantitative estimates on the rate of con-
vergence;

– illustrate, without technical details, some applications relevant to life sciences,
in particular for what concerns the study of the properties of the macroscopic
limit.

2 Generalities

2.1 The Prototypical Model

Mainly inspired by [46], we introduce the topic by some heuristics on a simple
class of models.
Consider a system of N interacting diffusions on R

d solving the following system
of SDE:

dXi,N
t =

1
N

N∑

j=1

b(Xi,N
t ,Xj,N

t )dt + dW i
t

c© Springer Nature Switzerland AG 2019
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4 P. Dai Pra

where b : R
d × R

d is a Lipschitz function, (W i)i≥1 are independent standard
Brownian motions, and we assume (Xi,N

0 )N
i=1 to be i.i.d square integrable random

variables. In particular, the dynamical equation is well posed.
Note that, for t > 0, the random variables (Xj,N

t )N
j=1 will be, by permutation

invariance of the model, identically distributed, but the interaction will break
the initial independence. The following heuristics is based on the assumption
that a Law of Large Numbers for these random variables holds also for t > 0.
Thus, if we consider the evolution of a single component Xi,N , and let N → +∞,
it is natural to guess that Xi,N converges, as N → +∞, to a limit process X

i

solving

dX
i

t =
∫

b(X
i

t, y)qt(dy)dt + dW i
t

X
i

0 = Xi
0

(2.1)

where qt = Law(X
i

t). Once the nontrivial problem of well posedness of this last
equation is settled, one aims at showing that, for any given T > 0 and indicating
by X[0,T ] ∈ C([0, T ]) the whole trajectory up to time T , the following statement
holds: for any m ≥ 1

(X1,N
[0,T ],X

2,N
[0,T ], . . . , X

m,N
[0,T ]) → (X

1

[0,T ],X
2

[0,T ], . . . ,X
m

[0,T ])

in distribution as N → +∞. Note that the components of the process

(X
1

[0,T ],X
2

[0,T ], . . . ,X
m

[0,T ])

are independent. Thus, independence at time 0 propagates in time, at least in
the macroscopic limit N → +∞. This property is referred to as propagation of
chaos.

2.2 Propagation of Chaos and Law of Large Numbers

Propagation of chaos can be actually rephrased as a Law of Large Numbers. To
this aim, given a generic vector x = (x1, x2, . . . , xN ), denote by ρN (x; dy) :=
1
N

∑N
i=1 δxi

(dy) the corresponding empirical measure. The propagation of chaos
property stated above, is equivalent to the fact that the sequence of empiri-
cal measures ρN (XN

[0,T ]) converges in distribution to Q ∈ P(C([0, T ])), where
P(C([0, T ])) denotes the set of probabilities on the space of continuous functions
[0, T ] → R

d, provided with the topology of weak convergence and Q is the law
of the solution of (2.1). This is established in the following result (see also [46],
Proposition 2.2).

Proposition 1. Let (Xi,N : N ≥ 1, 1 ≤ i ≤ N) be a triangular array of random
variables taking values in a topological space E, such that for each N the law
of (Xi,N )1≤i≤N is symmetric (i.e. invariant by permutation of components).
Moreover let (X

i
)i≥1 be a i.i.d. sequence of E-valued random variables. Then

the following statements are equivalent:
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(a) for every m ≥ 1

(X1,N ,X2,N , . . . Xm,N ) → (X
1
,X

2
, . . . ,X

m
)

in distribution as N → +∞;
(b) the sequence of empirical measures ρN (XN ) converges in distribution to

Q := Law(X
1
) as N → +∞.

Proof. Denote by QN the joint law of (X1,N ,X2,N , . . . XN,N ) in EN , and
by ΠmQN its projection on the first m components, i.e. the law of
(X1,N ,X2,N , . . . Xm,N ). The statements in (a) is equivalent to: for each m ≥ 1

ΠmQN → Q⊗m (2.2)

weakly, where Q⊗m is the m-fold product of Q.
(a) ⇒ (b).
To begin with, let F : E → R be bounded and continuous. Writing 〈F, μ〉 for∫

Fdμ and denoting by E
QN the expectation w.r.t. QN :

E
QN
(〈F, ρN (x) − Q〉2) =

1
N2

N∑

i,j=1

E
QN [F (xi)F (xj)]

− 2
N

〈F,Q〉
N∑

i=1

E
QN [F (xi)] + 〈F,Q〉2

=
1
N

E
QN [F 2(x1)] +

N − 1
N

E
QN [F (x1)F (x2)]

− 2〈F,Q〉EQN [F (x1)] + 〈F,Q〉2,

where we have used the symmetry of QN . By Assumption (a) this last expression
goes to zero as N → +∞.

Now, let Φ : P(E) → R be continuous and bounded, where P(E) is the space
of probabilities on the Borel subsets of E, provided with the weak topology. By
definition of weak topology, given ε > 0 one can find δ > 0 and F1, . . . Fk : E → R

bounded and continuous such that if

U := {P ∈ P(E) : |〈P − Q,Fj〉| < δ for j = 1, . . . , k}

then P ∈ U implies |Φ(P ) − Φ(Q)| < ε. Thus
∣∣EQN [Φ(ρN (x))] − Φ(Q)

∣∣ ≤ εQN (ρN (x) ∈ U) + ‖Φ‖∞QN (ρN (x) �∈ U).

Therefore, to show (b), i.e.
∣∣EQN [Φ(ρN (x)] − Φ(Q)

∣∣ → 0 for every Φ bounded
and continuous, it is enough to show that

lim
N→+∞

QN (ρN (x) �∈ U) = 0.
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But, by what seen above and the Markov inequality,

QN (ρN (x) �∈ U) ≤
k∑

j=1

QN (|〈ρN (x) − Q,Fj〉| ≥ δ)

≤
k∑

j=1

E
QN
(〈Fj , ρN (x) − Q〉2)

δ2
→ 0.

(b) ⇒ (a).
It is enough to show that if F1, F2, . . . , Fm : E → R are bounded and continuous,
then

E
QN [F1(x1) · F2(x2) · · · Fm(xm)] →

m∏

j=1

E
Q[Fj(x)] (2.3)

Observe that
∣∣∣∣∣∣
E

QN [F1(x1) · F2(x2) · · · Fm(xm)] −
m∏

j=1

E
Q[Fj(x)]

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
E

QN [F1(x1) · F2(x2) · · · Fm(xm)] − E
QN

⎡

⎣
m∏

j=1

〈ρN (x), Fj〉
⎤

⎦

∣∣∣∣∣∣

+

∣∣∣∣∣∣
E

QN

⎡

⎣
m∏

j=1

〈ρN (x), Fj〉
⎤

⎦−
m∏

j=1

E
Q[Fj(x)]

∣∣∣∣∣∣
(2.4)

By (b), the last summand converges to 0. Using symmetry

E
QN

⎡

⎣
m∏

j=1

〈ρN (x), Fj〉
⎤

⎦ =
1

Nm
E

QN

⎡

⎣
∑

τ :{1,...,m}→{1,...,N}

m∏

j=1

Fj(xτ(j))

⎤

⎦

=
DN,m

Nm
E

QN [F1(x1) · F2(x2) · · · Fm(xm)]

+
1

Nm
E

QN

⎡

⎣
∑

τ not injective

m∏

j=1

Fj(xτ(j))

⎤

⎦ ,

where DN,m = N !
(N−m)! is the number of injective functions

{1, . . . , m} → {1, . . . , N}.

Since DN,m

Nm → 1, we obtain

E
QN

⎡

⎣
m∏

j=1

〈ρN (x), Fj〉
⎤

⎦→ E
QN [F1(x1) · F2(x2) · · · Fm(xm)]

which, by (2.4), completes the proof.
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Going back to the model in Sect. 2.1, once the propagation of chaos

(X1,N
[0,T ],X

2,N
[0,T ], . . . , X

m,N
[0,T ]) → (X

1

[0,T ],X
2

[0,T ], . . . ,X
m

[0,T ])

is shown, Proposition 1 implies that the empirical measure at time t, ρN (XN
t )

converges in distribution to qt = Law(X
1

t ), for every t ≥ 0. Moreover, being the
law of the solution of (2.1), qt solves the so-called McKean-Vlasov equation

∂

∂t
qt − ∇

[
qt

∫
b( · , y)qt(dy)

]
+

1
2
Δqt = 0.

2.3 Symmetry and Empirical Measures

Invariance by permutations of components is the main feature of mean-field
dynamics. In practice, for most of the models considered in the literature, per-
mutation invariance is obtained by assuming the characteristics of the dynamics,
e.g. the drift for diffusions, to be a function of the empirical measure ρN . Next
result provides sufficient conditions for a function which is invariant by per-
mutation to be asymptotically a function of the empirical measure. The main
assumption is that changing a single component produces variations of order 1

N
in the value of the function.

Proposition 2. Let K ⊆ R be a compact set, and, for N ≥ 1, fN : KN → R.
Assume the following conditions hold:

(i) the functions fN are invariant by permutations of components;
(ii) the functions fN are uniformly bounded, i.e. there is C > 0 such that

|fN (x)| ≤ C for every N ≥ 1 and x ∈ R
N ;

(iii) there is a constant C > 0 such that for every N ≥ 1, if x, y ∈ R
N and

xj = yj for all j �= i, then

|fN (x) − fN (y)| ≤ C

N
|xi − yi|.

Then there exists a continuous function U : P(K) → R and an increasing
sequence nk such that

lim
k→+∞

sup
x∈Knk

|fnk
(x) − U(ρnk

(x))| = 0.

Proof. Consider the Wasserstein metric on P(K)

d(ν, ν′) := inf
{∫

|x − y|Π(dx, dy) : Π has marginals ν and ν′
}

which, by compactness of K, induces the weak topology.
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We define the function UN : P(K) → R by

UN (μ) := inf
x∈KN

[fN (x) + Cd(μ, ρN (x))] ,

where C is a constant for which assumption (iii) holds. We claim that, for each
y ∈ KN

UN (ρN (y)) = fN (y). (2.5)

If not, there would be x ∈ KN with

fN (x) + Cd(ρN (y), ρN (x)) < fN (y),

in particular
|fN (y) − fN (x)| > Cd(ρN (y), ρN (x)). (2.6)

However a basic result in optimal transport states that

d(ρN (y), ρN (x)) = inf
σ∈SN

1
N

N∑

i=1

|xi − yσ(i)|,

where SN denotes the set of permutations of {1, 2, . . . , N}. This, the permutation
invariance of fN and assumption (iii) imply

|fN (y) − fN (x)| ≤ Cd(ρN (y), ρN (x)),

which contradicts (2.6), thus proving (2.5).
Now, let μ, ν ∈ P(K). By definition of UN , given ε > 0 there is x ∈ KN such
that

UN (ν) ≥ fN (x) + Cd(ν, ρN (x)) − ε.

Thus

UN (μ) ≤ fN (x) + Cd(μ, ρN (x)) ≤ UN (ν) + Cd(μ, ρN (x)) − Cd(ν, ρN (x)) + ε

≤ UN (ν) + Cd(μ, ν) + ε.

By symmetry this implies that

|UN (μ) − UN (ν)| ≤ Cd(μ, ν).

Therefore, the sequence of functions (UN ) is equicontinuous and, clearly, bounded
uniformly in N . By the Theorem of Ascoli-Arzelà there is a subsequence con-
verging uniformly to a function U . This, together with Claim 1, completes the
proof.

3 Propagation of Chaos for Interacting Systems

3.1 The Microscopic Model

In this section we introduce a wide class of R
d-valued interacting dynamics,

which includes the prototypical model above. The main aim is to introduce
quenched disorder, which accounts for inhomogeneities in the system, and jumps
in the dynamics; this allows to include processes with discrete state space. The
dynamics is determined by the following characteristics.
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– “Local” parameters (hi)N
i=1, drawn independently from a distribution μ on

R
d′

with compact support.
– A drift b(xi, hi; ρN (x, h)), where

ρN (x, h) =
1
N

N∑

i=1

δ(xi,hi),

and
b : Rd × R

d′ × P(Rd × R
d′

) → R
d.

– A diffusion coefficient σ(xi, hi; ρN (x, h))

σ : Rd × R
d′ × P(Rd × R

d′
) → R

d×n,

where n is the dimension of the driving Brownian Motion.
– A jump rate λ(xi, hi; ρN (x, h)) with

λ : Rd × R
d′ × P(Rd × R

d′
) → [0,+∞).

– A distribution for the jump f(xi, hi; ρN (x, h); v)α(dv) with

f : Rd × R
d′ × P(Rd × R

d′
) × [0, 1] → R

d

and α(dv) is a probability on [0, 1].

The dynamics could be introduced via generator and semigroup, but it will be
convenient to use the language of Stochastic Differential Equations (SDE). So let
(W i)i≥1 be a i.i.d. sequence of n-dimensional Brownian motions; moreover let
(N i(dt, du, dv))i≥1 be i.i.d. Poisson random measures on [0,+∞)×[0,+∞)×[0, 1]
with characteristic measure dt ⊗ du ⊗ α(dv). The microscopic model is given as
solution of the SDE for every given realization of the local parameters (hi):

Xi,N
t = Xi

0 +

∫ t

0
b
(
Xi,N

s , hi, ρ(X
N
s , h)

)
ds +

∫ t

0
σ

(
Xi,N

s , hi, ρ(X
N
s , h)

)
dW i

s

+

∫
[0,t]×[0,+∞)×[0,1]

f
(
Xi,N

s− , hi; ρN (XN
s− , h);α

)
1[

0,l
(

X
i,N

s− ,hi,ρ(XN
s− ,h)

)](u)N i(ds, du, dv)

(3.1)

It will be assumed, without further notice, that the initial states Xi
0 are i.i.d.,

square integrable, independent of both the local parameters (hi) and of the
driving noises (W i, N i).



10 P. Dai Pra

3.2 The Macroscopic Limit

At heuristic level it is not hard to identify the limit of a given component Xi,N

of (3.1) subject to a local field h. We omit the apex i on the process and of the
driving noises

Xt(h) =X0 +

∫ t

0
b
(
Xs(h), h, rs

)
ds +

∫ t

0
σ

(
Xs(h), h, rs

)
dWs

+

∫
[0,t]×[0,+∞)×[0,1]

f
(
Xs− (h), h; rs;α

)
1[0,λ(Xs− (h),h,rs)](u)N(ds, du, dv)

(3.2)

where rs = Law(Xs(h))⊗μ(dh). Choosing X0 = Xi
0, and driving noises W i, N i,

we indicate by X
i

the corresponding solution (3.2).

3.3 Well Posedness of the Microscopic Model: Lipschitz Conditions

We now give conditions that guarantee well posedness of (3.1) and (3.2); they
are far from being optimal, but allow a reasonable economy of notations. Weaker
conditions can be found, for instance in [1]. It is useful to work with probability
measures possessing mean value:

P1(Rd) :=
{

ν ∈ P(Rd) :
∫

|x|ν(dx) < +∞
}

which is provided with the Wasserstein metric

d(ν, ν′) := inf
{∫

|x − y|Π(dx, dy) : Π has marginals ν and ν′
}

.

– [L1] The function b(x, h, r) and σ(x, h, r), defined in R
d ×R

d′ ×P1(Rd ×R
d′

)
are continuous, and globally Lipschitz in (x, r) uniformly in h.

– [L2] The Lipschitz condition of the jumps is slightly less obvious. We assume
f : Rd ×R

d′ × P1(Rd ×R
d′

) × [0, 1] → R
d and λ : Rd ×R

d′ × P(Rd ×R
d′

) →
[0,+∞) are continuous, and obey the following condition

∫ ∣∣f(x, h, r, v)1[0,λ(x,h,r)](u) − f(y, h, r′, v)1[0,λ(x,h,r)](u)
∣∣ duα(dv)

≤ L [|x − x′| + d(r, r′)] (3.3)

for all x, y, r, r′, h.

Remark 1. The above assumptions imply that when one replaces r by the empir-
ical measure ρN (x, h), one recovers a Lipschitz condition in x. For instance, the
function b(xi, hi; ρN (x, h)) is globally Lipschitz in x uniformly in h.

Remark 2. Continuity, global Lipschitzianity and compactness of the support of
μ imply the linear growth conditions

|b(x, h, r)| ≤ C

[
1 + |x| +

∫
|y|r(dy, dh)

]

|σ(x, h, r)| ≤ C

[
1 + |x| +

∫
|y|r(dy, dh)

]

∫
|f(x, h, r, v)|λ(x, h, r)α(dv) ≤ C

[
1 + |x| +

∫
|y|r(dy, dh)

]
.

(3.4)
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Remark 3. Condition L2 is satisfied if both f and λ are continuous, bounded
and globally Lipschitz in x, r uniformly of the other variables. In the case f does
not depend on x, r but on h, v only, unbounded Lipschitz jump rate λ can be
afforded.

Using Remark 1, together with standard methods in stochastic analysis, one
obtains the following result. A detailed proof can be found e.g. in [30].

Proposition 3. Under L1 and L2, the system (3.1) admits a unique strong
solution.

3.4 Well Posedness of the Macroscopic Limit

The proof of the convergence of one component of (3.1) toward a solution of (3.2)
allows two alternative strategies. One consists in: (a) showing tightness of the
sequence of microscopic processes; (b) showing that any limit point solves weakly
(3.2); (c) showing that for (3.2) uniqueness in law holds true. We rather follow
the following approach, which is somewhat simpler and allows for quantitative
error estimates: (a) we show that (3.2) is well posed; (b) by a coupling argument
we show L1-convergence of one component of (3.1) to a solution of (3.2) driven
by the same noise.

Proposition 4. Under L1 and L2, the system (3.2) admits a unique strong
solution.

Proof. We sketch the proof of existence. We use a standard Picard iteration.
Define X

(0)
t (h) ≡ X0 and

X
(k+1)
t (h) = X0 +

∫ t

0

b
(
X(k)

s (h), h, r(k)s

)
ds +

∫ t

0

σ
(
X(k)

s (h), h, r(k)s

)
dWs

+
∫

[0,t]×[0,+∞)×[0,1]

f
(
X

(k)
s− (h), h; r(k)s ;α

)
1[

0,λ
(

X
(k)
s− (h),h,r

(k)
s

)](u)N(ds, du, dv)

(3.5)

where
r(k)s = Law

(
X(k)

s (h)
)

⊗ μ(dh).

We estimate

E
(k)
T :=

∫
E

[
sup

t∈[0,T ]

∣∣∣X(k+1)
t (h) − X

(k)
t (h)

∣∣∣

]
μ(dh). (3.6)

If we use (3.5) and subtract the equations for X(k+1) and X(k), take the supt∈[0,T ]

and use the triangular inequality, we obtain the sum of three terms.
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(A) The first term comes from the drift.

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

b
(
X(k)

s (h), h, r(k)s

)
ds −

∫ t

0

b
(
X(k−1)

s (h), h, r(k−1)
s

)
ds

∣∣∣∣

≤
∫ T

0

∣∣∣b
(
X(k)

s (h), h, r(k)s

)
− b
(
X(k−1)

s (h), h, r(k−1)
s

)∣∣∣ ds

≤ L

∫ T

0

(∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣+ d(r(k)s , r(k−1)

s )
)

ds

≤ L

∫ T

0

(∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣+
∫

E

∣∣∣X(k)
s (h′) − X(k−1)

s (h′)
∣∣∣μ(dh′)

)
ds

where the inequality

d(r(k)s , r(k−1)
s ) ≤

∫
E

∣∣∣X(k)
s (h′) − X(k−1)

s (h′)
∣∣∣μ(dh′) (3.7)

comes directly form the definition of the metric d, and we have used (L1).
Averaging:

∫
E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

b
(
X(k)

s (h), h, r(k)s

)
ds −

∫ t

0

b
(
X(k−1)

s (h), h, r(k−1)
s

)
ds

∣∣∣∣

]
μ(dh)

≤ 2L

∫ T

0

∫
E

∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣μ(dh) ≤ 2LTE

(k−1)
T .

(B) The second term comes from the diffusion coefficient.

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

σ
(
X(k)

s (h), h, r(k)s

)
ds −

∫ t

0

σ
(
X(k−1)

s (h), h, r(k−1)
s

)
dWs

∣∣∣∣ .

By the L1 Burkholder-Davis-Gundy inequality (see e.g. [42])

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

[
σ
(
X(k)

s (h), h, r(k)s

)
− σ

(
X(k−1)

s (h), h, r(k−1)
s

)]
dWs

∣∣∣∣

]

≤ CE

⎡

⎣
(∫ T

0

∣∣∣σ
(
X(k)

s (h), h, r(k)s

)
− σ

(
X(k−1)

s (h), h, r(k−1)
s

)∣∣∣
2

ds

) 1
2
⎤

⎦

≤ CLE

⎡

⎣
(∫ T

0

(∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣+ d(r(k)s , r(k−1)

s )
)2

ds

) 1
2
⎤

⎦

≤ CL
√

TE

[
sup

s∈[0,T ]

(∣∣∣X(k)
s (h) − X(k−1)

s (h)
∣∣∣+ d(r(k)s , r(k−1)

s )
)

ds

]
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Averaging over h and using (3.7) as before, we obtain

∫
E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

[
σ
(
X(k)

s (h), h, r(k)s

)
− σ

(
X(k−1)

s (h), h, r(k−1)
s

)]
dWs

∣∣∣∣

]
μ(dh)

≤ 2CL
√

TE
(k−1)
T .

(C) Finally, we have the term coming from the jumps.

sup
t∈[0,T ]

∣∣∣∣∣
∫
[0,t]×[0,+∞)×[0,1]

f
(
X

(k)

s− (h), h; r
(k)
s ; v

)
1[

0,λ
(

X
(k)
s− (h),h,r

(k)
s

)](u)N(ds, du, dv)

−
∫
[0,t]×[0,+∞)×[0,1]

f
(
X

(k−1)

s− (h), h; r
(k−1)
s ; v

)
1[

0,λ
(

X
(k−1)
s− (h),h,r

(k−1)
s

)](u)N(ds, du, dv)

∣∣∣∣∣
(3.8)

Let

F k
s := f

(
X

(k)
s− (h), h; r(k)s ; v

)
1[

0,λ
(

X
(k)
s− (h),h,r

(k)
s

)](u).

Since N is a positive measure, (3.8) is bounded above by,

∫ T

0

|F k
s − F k−1

s |N(ds, du, dv) =
∫ T

0

|F k
s − F k−1

s |dsduα(dv)

+
∫ T

0

|F k
s − F k−1

s |Ñ(ds, du, dv), (3.9)

where
∫ T

0
|F k

s − F k−1
s |Ñ(ds, du, dv) has mean zero, since dsduα(dv) is the com-

pensator of N(ds, du, dv). Thus averaging, we are only left with the term∫ T

0
|F k

s − F k−1
s |dsduα(dv), which is dealt with using (L2), and gives an upper

bound similar of that of part (A).
Summing up the contributions of (A), (B) and (C), we get, for a sufficiently

large constant C,
E

(k)
T ≤ C(T +

√
T )E(k−1)

T .

We now observe that the processes X(k), k ≥ 0, h ∈ R
d′

are progressively
measurable for the filtration generated by the initial condition and the driving
noise W,N , and satisfy

∫
E

[
sup

t∈[0,T ]

∣∣∣X(k)
t (h)

∣∣∣

]
μ(dh) < +∞.
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This can be seen by induction on k, replicating the steps above but using, rather
than the Lipschitz conditions, the linear growth conditions (3.4). If we denote by
M the space of progressively measurable, cadlag, Rd valued processes such that

‖X‖ := E

[
sup

t∈[0,T ]

|Xt|
]

< +∞,

and we take T sufficiently small, we have shown that
∑

k

∫
‖X(k+1)(h) − X(k)(h)‖μ(dh) < +∞,

and therefore for all h in a set F of μ-full measure
∑

k

‖X(k+1)(h) − X(k)(h)‖ < +∞.

The norm ‖ · ‖ is not complete in M, as the sup-norm is not complete in the
space of cadlag functions. To get a complete metric, we replace the distance in
sup-norm by the Skorohod distance dS (see [5]), i.e.

DS(X,Y ) := E [dS(X,Y )] .

Since the Skorohod distance is dominated by the distance in sup-norm, a Cauchy
sequence for ‖ · ‖ is also Cauchy for the metric DS . Thus, the limit X(h) of the
sequence X(k)(h) can be defined for all h ∈ F , where F is a set of measure one
for μ, and it is not hard to show (using also Proposition 1) that (3.2) holds for the
limit. X(h) can be then easily defined for h �∈ F just by imposing that (3.2) holds.

This establishes existence of solution in M for T small. Since the condition
on T does not involve the initial condition, the argument can be iterated on
adjacent time intervals, obtaining a solution on any time interval.

Establishing uniqueness would actually be easy by using similar arguments.
For us it is not actually needed, as uniqueness will follow from the convergence
result in next section (Theorem 1).

Remark 4. It is more customary to use L2 norms rather that L1 norms for con-
structing solutions to SDE. The main difference is in (C), where we estimate
(3.8). When estimating the mean of the square of (3.9), the martingale con-
tributes with ∫ T

0

|F k
s − F k−1

s |2dsduα(dv).

To complete the argument one needs a Lipschitz condition of the form
∫ ∣∣f(x, h, r, v)1[0,λ(x,h,r)](u) − f(y, h, r′, v)1[0,λ(y,h,r′)](u)

∣∣2 duα(dv)

≤ L
[|x − x′|2 + d22(r, r

′)
]
, (3.10)

where, in the whole argument, the distance

d2(ν, ν′) :=
(

inf{
∫

|x − y|2Π(dx, dy) : Π has marginals ν and ν′}
) 1

2
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would be used. The Lipschitz condition (3.10) is harder to check than (3.3), for
the simple reason that “squaring an indicator function does not produce any
square”.

3.5 Propagation of Chaos

Theorem 1. Suppose conditions L1 and L2 hold. For i ≥ 1 denote by X
i
(h)

the solution of (3.2) with the local parameter h and the same initial condition
Xi

0 of (3.1). Then for each i and T > 0

lim
N→+∞

∫
E

[
sup

t∈[0,T ]

∣∣∣Xi,N
t − X

i

t(hi)
∣∣∣

]
μ⊗N (dh) = 0

where μ⊗N is the N -fold product of μ.

Proof. As in the proof of Proposition 4 we subtract the two equations for Xi,N

and X
i
. Using the triangular inequality, we estimate supt∈[0,T ]

∣∣∣Xi,N
t − X

i

t(hi)
∣∣∣

as sum of three terms, corresponding respectively to drift, diffusion and jumps.
In this proof we only show how to deal with the drift term. The other two terms,
involving stochastic integrals, are reduced to terms with Lebesgue time integrals
as in the proof of Proposition 4, and then are estimated as the drift term.

We therefore give estimates for

∫
E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

b
(
Xi,N

s , hi, ρ(XN
s , h)

)
ds −

∫ t

0

b
(
X

i
s(hi), hi, rs

)
ds

∣∣∣∣
]

μ⊗N (dh)

≤
∫

E

[∫ T

0

∣∣∣b
(
Xi,N

s , hi, ρ(XN
s , h)

)
− b

(
X

i
s(hi), hi, rs

)∣∣∣
]

μ⊗N (dh) (3.11)

By (L1)
∣∣∣b
(
Xi,N

s , hi, ρ(XN
s , h)

)− b
(
X

i

s(hi), hi, rs

)∣∣∣

≤ L
[∣∣∣Xi,N

s − X
i

s(hi)
∣∣∣+ d

(
ρ(XN

s , h), rs

)]
. (3.12)

Now,

d
(
ρ(XN

s , h), rs

) ≤ d
(
ρ(XN

s , h), ρ(Xs, h)
)

+ d
(
ρ(Xs, h), rs

)
. (3.13)

We consider the two summands in the r.h.s. of (3.13) separately. By definition
of the metric d(·, ·)

d
(
ρ(XN

s , h), ρ(Xs, h)
) ≤ 1

N

N∑

j=1

∣∣∣Xj,N
s − X

j

s

∣∣∣ ,
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so, by symmetry,
∫

E
[
d
(
ρ(XN

s , h), ρ(Xs, h)
)]

μ⊗N (dh) ≤
∫

E

[∣∣∣Xi,N
s − X

i

s(hi)
∣∣∣
]
μ⊗N (dh).

(3.14)
For the second summand in (3.13) we observe that, under P⊗μ⊗∞, the random
variables

(
X

i

s(hi), hi

)
are i.i.d. with law rs ∈ P(Rd+d′

). By a recent version of
the Law of Large Number ([27], Theorem 1), there exists a constant C > 0, only
depending on d and d′, and γ > 0 (any γ < 1

d+d′ does the job) such that

∫
E
[
d
(
ρ(Xs, h), rs

)]
μ⊗N (dh) ≤ C

Nγ
. (3.15)

Inserting what obtained in (3.12), (3.13) and (3.14) in (3.11) we get for some
C > 0, which may also depend on T ,

∫
E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

b
(
Xi,N

s , hi, ρ(XN
s , h)

)
ds −

∫ t

0

b
(
X

i

s(hi), hi, rs

)
ds

∣∣∣∣

]
μ⊗N (dh)

≤ C

∫
E

[∫ T

0

∣∣∣Xi,N
s − X

i

s(hi)
∣∣∣

]
μ⊗N (dh) +

C

Nγ
.

Dealing similarly with all terms arising in supt∈[0,T ]

∣∣∣Xi,N
t − X

i

t(hi)
∣∣∣, if we set

Et :=
∫

E

[
sup

s∈[0,t]

∣∣∣Xi,N
s − X

i

s(hi)
∣∣∣

]
μ⊗N (dh)

we obtain

Et ≤ C

∫ t

0

Esds +
C

Nγ
,

which, by Gromwall’s Lemma and the fact that E0 = 0 yields

ET ≤ CT

Nγ

for some T -dependent constant CT , and this complete the proof.

4 Applications

In this section we review some classes of models that are relevant for life sciences.
Some key results will be stated, but no proofs are given.
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4.1 The Stochastic Kuramoto Model

Synchronization phenomena leading to macroscopic rhythms are ubiquitous in
science. Most (ab)used examples include

– applauses;
– flashing fireflies;
– protein concentration within cells in a multicellular system (reprissilators).

In these examples the systems are comprised by many units, each unit tending to
behave periodically. Under circumstances depending on how units communicate,
oscillation may synchronize, producing macroscopic pulsing. The (stochastic)
Kuramoto model [33] is perhaps the most celebrated stylized model to capture
this behavior.

In the Kuramoto model units are rotators, i.e. the state variable is an angle.
Denoting by Xi,N the angular variable (phase) of the i-th rotator, with i =
1, 2, . . . , N , the evolution is given by

dXi,N
t = hidt +

θ

N

N∑

j=1

sin
(
Xj,N

t − Xi,N
t

)
dt + dW i

t . (4.1)

Here hi is the characteristic angular velocity of the i-th rotator. The effect of the
interaction term is to favor phases to stay close. We assume the hi’s are i.i.d.,
drawn from a distribution μ on R with compact support. By possibly adding
a constant speed rotation, there is no further loss of generality to assume that
μ has mean zero. We further assume μ is symmetric, i.e. invariant by reflection
around zero.

Clearly all results in Sect. 3 apply, and we get the following macroscopic limit:

dXt(h) = hdt + θ

∫
sin(y − Xt)qt(dy;h′)μ(dh′)dt + dWt, (4.2)

where qt(dy;h′) is the law of Xt(h′). The flow of measures qt( · , h) solves (indeed
in the classical sense for the density w.r.t. the Lebesgue measure)

∂

∂t
qt(x;h) =

1
2

∂2

∂x2
qt(x;h) − ∂

∂x
[(h + θrqt sin(ϕqt − x)) qt(x, h)] =: M[qt](h),

(4.3)
where

rqte
iϕqt :=

∫
eixqt(dx;h)μ(dh).

Equation (4.3) describes the collective behavior of the system of rotators. rqt

captures the degree of synchronization of the system: rqt = 0 indicates total lack
of synchronization, while a perfectly synchronized systems has rqt = 1.

One is interested in the long time behavior of solutions of (4.3), in particular
stable equilibria. Note that, since the model is rotation invariant, if q(x;h) solves
M[q] = 0, then also q(x+x0;h) does; thus there is no loss of generality in looking
for equilibria satisfying ϕq = 0.

The proof of the following statement can be found in [7].
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Theorem 2. q∗ is a solution of M[q] = 0 with ϕq∗ = 0 if and only if it is of
the form

q∗(x;h) = (Z∗)−1 · e2(hx+θr∗ cos x)

[
e4πh

∫ 2π

0

e−2(hx+θr∗ cos x)dx

+(1 − e4πh)
∫ x

0

e−2(hy+θr∗ cos y)dy

]
, (4.4)

where Z∗ is a normalization factor and r∗ satisfies the consistency relation

r∗ =
∫

eix q∗(x, h)μ(dh) dx. (4.5)

r∗ = 0 is a solution of (4.5), and it corresponds to the incoherent solution

q∗(x;h) ≡ 1
2π

,

i.e. the phases of the rotators are uniformly distributed on the torus.

Linear stability of the incoherent solution depends in a highly nontrivial
way on θ and on the distribution μ of the local parameters. It is rather well
understood in some special cases [7,8,20].

Theorem 3. Denote by

θc =
[∫

μ(dh)
1 + 4h2

]−1

. (4.6)

(a) Suppose μ is unimodal, i.e. it has a (even) density decreasing on (0,+∞).
Then the incoherent solution is linearly stable if and only if θ < θc. At θc

one (circle of) synchronized solution (i.e. with rq > 0 bifurcates for the
incoherent solution.

(b) Suppose μ = 1
2 (δ−h0 + δh0) for some h0 > 0. Then the incoherent solution

is linearly stable if and only if θ < θc ∧2. For θc < 2 at θ = θc one (circle of)
synchronized solution (i.e. with rq > 0) bifurcates. For θc > 2 (which occurs
for h0 sufficiently large), at θ = 2 the incoherent solution loses stability
via a Hopf bifurcation: it is believed, but not rigorously proved, that stable
time-periodic solutions emerge.

It is not true in general that when the incoherent solution is stable then it is
unique. It is believed it is so in the unimodal case, but proved either for θ small,
or up to the critical point if μ is sufficiently concentrated around zero [37]. In the
binary case, for certain values of the parameters it is known that there are values
of θ smaller than the critical value for which two distinct circles of synchronized
solutions exists [37].

In general, when the support of μ is contained in a sufficiently small interval,
then synchronized solutions exist if and only if θ > θc, are unique up to rotation,
and are linearly stable [4,28].
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4.2 Interacting Fitzhugh-Nagumo Neurons

Designed as reduction of more realistic models (e.g. the Hodgkin-Huxley model),
the Fitzhugh-Nagumo model describes the evolution of the membrane potential
xt of a neuron through the following differential equation

ẋt = xt − 1
3
x3

t + yt + Iext
t

ẏt = ε(a + bxt − γyt)
(4.7)

where

– yt is a recovery variable obtained by reduction of other variables;
– Iext

t is the input current, assumed to be random and stationary. Without loss
of generality, choosing a properly, we can assume Iext

t has mean zero.
– b is the interaction strength between x and y, γ ≥ 0 is a dissipation param-

eter, and a is a kinetic parameter related with input current and synaptic
conductance.

The parameter ε can be used to separate the time scales of the evolutions of the
two variables. In what follows we assume dIext

t = σdWt for a Brownian motion W .
To begin with, consider the equation in absence of randomness in the input

current (σ = 0), and set b = −1, γ = 0 to make the analysis simpler. In this
case (4.7) has a unique equilibrium in (a,−a+a3/3), which is globally stable for
|a| < 1, is has a Hopf bifurcation at |a| = 1 and a stable periodic orbit emerges
for |a| > 1. Thus, the system can be excited by the input, producing, at least for
appropriate choice of the parameters, rapid variations of the potential (spikes)
which occur periodically.

There are various ways to make several neurons interact in a network, even
within the mean-field scheme, depending of how we model synapsis (see [2]). The
simplest, corresponding to electrical synapsis, leads to the following system. Here
Xi,N denotes the membrane potential of the i-th neuron. The local parameter
hi may be interpreted as the macroscopic location of the neuron, or its type.

dXi,N
t =

(
Xi,N

t − 1
3
(Xi,N

t )3 + Y i,N
t

)
dt

+
1
N

N∑

j=1

J(hi, hj)
(
Xi,N

t − Xj,N
t

)
dt + σdW i

t

dY i,N
t = ε(hi)

[
a(hi) + b(hi)X

i,N
t − γ(hi)Y

i,N
t

]
dt,

(4.8)

where the coupling parameters J(hi, hj) tune the interaction between pairs of
neurons.
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The model exhibits a richer behavior if one introduces a delay τ in the trans-
mission of informations between different neurons:

dXi,N
t =

(
Xi,N

t − 1
3
(Xi,N

t )3 + Y i,N
t

)
dt

+
1
N

N∑

j=1

J(hi, hj)
(
Xi,N

t − Xj,N
t−τ(hi,hj)

)
dt + σdW i

t

dY i,N
t = ε(hi)

[
a(hi) + b(hi)X

i,N
t − γ(hi)Y

i,N
t

]
dt.

(4.9)

Delay makes a bit more painful the well posedness analysis for both the model
and its macroscopic limit, but for propagation of chaos the same proof carries
through (see [48] for details), giving the following macroscopic limit

dXt(h) =
(

Xt(h) − 1
3
X

3

t (h) + Y t(h)
)

dt

+
∫

J(h, h′)
(
Xt(h) − y

)
qt−τ(h,h′)(dy;h′)μ(dh′)dt + σdWt

dY t(h) = ε(h)(a(h) + b(h)Xt(h) − γ(h)Y t(h))dt,

(4.10)

where qt(dx;h) denotes the law of Xt(h). Not much is known at this level of
generality, so we consider the simplest, homogeneous case in which h is constant,
γ = 0, b = −1 which gives

dXt =
[
Xt − 1

3
X

3

t + Y t + J(Xt − E(Xt−τ ))
]

dt + σdWt

dY t = ε(a − Xt)dt

(4.11)

A further simplification consists in letting the noise go to zero, in both the
diffusion and the initial condition. We obtain the deterministic system with
delay

ẋt = xt − 1
3
x3

t + yt + J(xt − xt−τ )

ẏ = ε(a − xt).
(4.12)

This system has been extensively studied in [32]. Here we assume J ≥ 0

– The point (a,−a + a3/3) is still the unique fixed point, and it is stable for
|a| >

√
1 + 2J and unstable for |a| < 1, no matter what τ is.

– For 1 < |a| <
√

1 + 2J loss of stability via a Hopf bifurcation can be obtained
by increasing τ : interaction and transmission delay may produce oscillations
even if single neurons are in the stability region.

Does noise play any role in exciting the neuronal network?
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This question has only partial answers (see e.g. [35,39,41,44]). Consider the
simplified system (4.11) and remove the delay.

dXt =
[
Xt − 1

3
X

3

t + Y t + J(Xt − E(Xt))
]

dt + σdWt

dY t = ε(a − Xt)dt

(4.13)

Some indications on the behavior of this system, confirmed by numerical simu-
lations, are obtained via the following heuristic argument. For a similar model
details can be found in [18]

– Writing down the equation for the moments of (Xt, Y t) and pretending the
system is Gaussian, we get at formal level a closed equation for the means
and the covariance matrix.

– This equation corresponds to a truly Gaussian process (X̃, Ỹ ), which can be
shown to be a good approximation of (X,Y ) for σ small.

The evolution of the law of (X̃, Ỹ ) can be studied at least locally around the
fixed point. It can be shown that for |a| > 1 but sufficiently close to 1, periodic
solutions for the law of (X̃t, Ỹt) emerge for moderate values of σ, i.e. within
some interval 0 < σ0 < σ < σ1: we therefore obtain noise-induced oscillations.
It should be remarked noise-induced oscillations were pointed out in similar
Gaussian models long time ago [45].

4.3 Interacting Hawkes Processes

The Fitzhugh-Nagumo model exhibits some qualitative features of neuronal
dynamics, in particular excitability. Periodicity of spikes for a single neuron is how-
ever unrealistic: spike trains are more effectively modeled by point processes. An
appropriate model in this context is obtained by using Hawkes processes [14–16].

Let Zi,N
t be the counting process that counts the spikes of neuron i, having

local parameter (position, type...) hi. It is assumed that Zi,N
t jumps with a rate

λN
i (t) of the form

λN
i (t) = f

⎛

⎝hi;
1
N

N∑

j=1

J(hi, hj)
∫

[0,t]

k(t − s)dZj,N
s

⎞

⎠

where f(h; · ) is a positive, increasing function, and k( · ) is a given positive
function modeling the memory of the system, including possible transmission
delay. If J(hi, hj) > 0 then spikes of neuron j tend to favor future spikes of
neuron i (excitatory link), while the opposites holds true (inhibitory link) when
J(hi, hj) < 0.

There are convenient choices for the kernel k( · ) which allow a simple “Marko-
vianization” of the system, namely the Erlang kernels: k(r) = c rm

m! e
−λr, c, λ > 0.

Note that for m ≥ 1 the function k attains its maximum at some positive
r∗ = τ , producing a“smoothed” form of delay. For simplicity, we deal here with
the case k(r) = e−λr, corresponding to no delay.
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Define
Xi,N

t :=
∫

[0,t]

k(t − s)dZi,N
s ,

the “discounted” number of spikes of neuron i before time t. The exponential
form of k( · ) yields

Xi,N
t = −λ

∫ t

0

Xi,N
s ds + Zi,N

t

= −λ

∫ t

0

Xi,N
s ds +

∫

[0,t]

1[0,f(hi,
1
N

∑N
j=1 J(hi,hj)X

j,N

s− ](u)N i(du, ds),
(4.14)

where the N i are i.i.d. Poisson random measures on [0,+∞) × [0,+∞) with
characteristic measure duds. The system is therefore in the form seen in Sect. 3.
Assuming f( · ) is Lipschitz, propagation of chaos holds, and we obtain the macro-
scopic limit

Xt(h) = −λ

∫ t

0

Xs(h)ds +
∫

[0,t]

1[0,f(h,
∫

J(h,h′)E[Xs− (h′)]μ(dh′)](u)N(du, ds).

(4.15)
Letting mt(h) := E[Xt(h)], we obtain from (4.15) a closed equation for mt:

ṁt(h) = −λmt(h) + f

(
h,

∫
J(h, h′)ms(h′)μ(dh′)

)
. (4.16)

If the support of μ is finite, this is a finite dimensional dynamical system. A case
considered recently [25] is that of the so-called cyclic negative feedback systems.

Theorem 4. Suppose μ is supported on the discrete torus Z/nZ, J(h, h′) = 0
unless h′ = h + 1 mod n. Set

δ :=
∏

h∈Z/nZ

J(h, h + 1).

If n ≥ 3, δ < 0 and |δ| is large enough, then (4.16) has at least one stable periodic
orbit. This orbit is unique for n = 3.

Although single neurons have no intrinsic tendency of spiking periodically,
the collective spike train may be periodic if

– the macroscopic geometry of the network is circular;
– at macroscopic level there is an odd number of inhibitory links;
– the interaction is sufficiently strong.

These conditions are quite unrealistic for a real network. This result suggests,
however, that the topology of the network and the competition between excita-
tory and inhibitory links are factors that may induce rhythmic behavior.
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5 Further Reading

These notes on mean field models have been essentially dealing with propaga-
tion of chaos and, for what applications are concerned, with the analysis of the
attractors of the macroscopic dynamics. We briefly mention here some further
developments, well aware of being far from exhaustive.

5.1 Long-Time Behavior of the Microscopic System

Theorem 1 states that if we fix the time interval [0, T ] then the microscopic and
the macroscopic systems are close if N is large enough. How large, for a given
error threshold, might indeed depend on T . In other words for a given large N ,
this “closeness” might deteriorate as time increases: the long time behavior of
the microscopic system is not necessarily reflected in the macroscopic one.

Whenever such “deterioration” does not occur, we say there is uniform prop-
agation of chaos. One consequence of uniform propagation of chaos is that sta-
tionary measures for the microscopic system are close to products of stationary
measures of the macroscopic one.

Uniformpropagation of chaos has been proven in cases inwhich themicroscopic
process satisfies very strong ergodicity properties, see e.g. [6,11,24,40,47,49].
When uniform propagation of chaos fails, it is of interest to identify the time
scale (possibly diverging with N) in which the limit macroscopic system still
approximate the microscopic one, and determine the behavior beyond this time
scale. In general this is a very delicate problem. Quite remarkable results for a
class of system inspired by the Kuramoto model are obtained in [29].

5.2 Fluctuations

We have seen (Proposition 1) that propagation of chaos is equivalent to a Law
of Large Numbers:

ρN (XN ) =
1
N

N∑

i=1

δXi,N −→ Q (5.1)

as N → +∞, where Q is the law of the macroscopic dynamics. It is therefore nat-
ural to consider a corresponding Central Limit Theorem, describing fluctuations
around the limit. In particular, one considers the distribution-valued process

ΦN
t :=

√
N

[
1
N

N∑

i=1

δXi,N
t

− qt

]
,

where qt is the marginal of Q at time t. One can prove, with remarkable general-
ity, that for any bounded time-interval [0, T ], the process ΦN converges weakly
to a distribution valued Gaussian process. Classical results in this direction can
be found in [19,20,26,31].

When quenched disorder is present, fluctuations of the disorder compete
with state fluctuations, producing phenomena which are not seen if the disorder
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is averaged out; the dynamics of state fluctuations are different for different
realizations of the disorder. Sharp results have been obtained for the Kuramoto
model in [36].

5.3 Critical Fluctuations

All examples we have treated undergo a phase transition: in the macroscopic
dynamics, the stationary solution that is unique for small interaction, loses its
stability as the interaction strength crosses a threshold, and is subject to bifur-
cation. At the critical point, the fluctuations process ΦN defined above exhibit,
if evaluated on certain observables, a peculiar space-time scaling, that typically
leads to non-Gaussian fluctuations. Literature on this subject has a long his-
tory, going back to [19,22]. Possible effects of quenched disorder are dealt with
in [17]. Recently, examples of mean field dynamics in which critical fluctuations
self-organize, i.e. do not require tuning parameters to critical values, are provided
in [13]

The results just cited apply to cases in which the bifurcation at the critical
point is of pitchfork type. Various interesting models, including the Kuramoto
model with large quenched disorder, undergoes a Hopf bifurcation. Some indi-
cations on how critical fluctuations look like in this case can be found in [21].

5.4 Large Deviations

A refinement of the Law of Large Numbers in (5.1) different from the Central
Limit Theorems consists in obtaining a Large Deviation Principle, i.e. the expo-
nential decay in N of probabilities of the form

P(ρN (XN ) ∈ U) for U �� Q.

The case of mean-field interacting diffusions with a constant diffusion coefficient
given by a multiple of the identity matrix dates back to [20,23], where spin-flip
dynamics have also been dealt with. Large deviation principles for system as
general as those in Sect. 3 of these note require more sophisticated tools, see [9].
In presence of quenched disorder, it would be desirable to obtain a Large devia-
tion Principle that holds for almost every realization of the disorder. For inter-
acting diffusions this is done in [38].

5.5 Generalizing Network’s Microscopic Geometry

In the models presented in these notes the quenched disorder is introduced via
the local parameters hi, one per each component. An interesting alternative way
of introducing disorder is to associate it with links, i.e. to pairs of components.
For instance, this would modify the prototypical model in Sect. 2 as

dXi,N
t =

1
N

N∑

j=1

b(hij ,X
i,N
t ,Xj,N

t )dt + dW i
t



Stochastic Mean-Field Dynamics and Applications to Life Sciences 25

where the hij are random parameters, describing the microscopic architecture
of the network. Model of this type, motivated by neurosciences, are dealt with
in [43]. We remark that these models are reminiscent of mean field spin-glass
dynamics (see e.g. [3]), but actually have very different nature: in spin glasses
the contribution of each pair scales as 1√

N
rather that as 1

N ; the thermodynamic
limit for spin glasses is in general much harder to analyze, and the resulting
dynamic behavior is quite different.

5.6 Mean-Field Games

In many applications, mainly in social science, collective dynamics are the result
of a competitive optimization procedure involving several entities (players). Each
player controls, to some extent, his own dynamics, and aims at maximizing
his utility; he is therefore taking part to a dynamic game. Under symmetry
conditions of the players, letting the number of players going to infinity, one
expect to obtain a macroscopic game, called mean field game.

Introduced in the seminal paper [34], the theory of mean field games has had
a tremendous development. The actual convergence of the microscopic dynamics
to the mean-field game has been however left open for several years, and recently
proved, under rather severe conditions, in [10,12]. In [12] fluctuations around the
limit and Large Deviations have also been studied.

Acknowledgement. The author is grateful to an anonymous referee for his careful
reading and the useful comments and corrections.
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39. Luçon, E., Poquet, C.: Emergence of oscillatory behaviors for excitable sys-
tems with noise and mean-field interaction, a slow-fast dynamics approach. arXiv
preprint arXiv:1802.06410 (2018)

40. Malrieu, F.: Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stochast.
Process. Appl. 95, 109–132 (2001)
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Abstract. The goal of these lecture notes is to present in a unified way
various models for the dynamics of aligning self-propelled rigid bodies
at different scales and the links between them. The models and methods
are inspired from [17,18], but, in addition, we introduce a new model
and apply on it the same methods. While the new model has its own
interest, our aim is also to emphasize the methods by demonstrating
their adaptability and by presenting them in a unified and simplified
way. Furthermore, from the various microscopic models we derive the
same macroscopic model, which is a good indicator of its universality.

Keywords: Self-propelled particles · Rotation matrix · Quaternions ·
Alignment · Velocity jumps · Generalized Collisional Invariants ·
Self-organized hydrodynamics

1 Introduction

Collective behavior arises ubiquitously in nature: fish schools, flocks of birds,
herds, colonies of bacteria, pedestrian dynamics, opinion formation, are just some
examples. One of the main challenges in the investigation of collective behavior
is to explain its emergent properties, that is, how from the local interactions
between a large number of agents, large-scale structures and self-organization
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arise at a much larger scale than the agents’ sizes. Kinetic theory provides a
mathematical framework for the study of emergent phenomena with the rig-
orous derivation of equations for the large-scale dynamics (called macroscopic
equations) from particle or individual-based models. The derivation of macro-
scopic equations establishes a rigorous link between the particle dynamics and
the large-scale dynamics. Moreover, the simulation of macroscopic equations
have the advantage of being, generally, computationally far more efficient than
particle simulations, especially as the number of agents grows large.

Tools for the derivation of macroscopic equations were first developed in
Mathematical Physics, particularly, in the framework of the Boltzmann equation
for rarefied gases [11,13,35]. However, compared to the case of classical equations
in Mathematical Physics, an additional difficulty arises here in the study of
living systems: the lack of conservation laws. In classical physical systems, each
macroscopic quantity corresponds to a conservation law (like the conservation
of the total mass, momentum and energy). However, in the models that we will
consider here, the number of conserved quantities is less than the number of
macroscopic quantities to be determined. To overcome this difficulty we will use
the methodological breakthrough presented in [21]: the Generalized Collision
Invariant (GCI). This new concept relaxes the condition of being a conserved
quantity, and has then been used in a lot of works related to alignment of self-
propelled particles [8,15–20,22–24,28]. The goal of this exposition is precisely
to clearly illustrate the application of this methodology to models for collective
dynamics based on alignment of the body position.

Specifically, in the models that will be considered in this exposition each agent
is described by its location in the three-dimensional space and the orientation
of its body, represented by a three-dimensional frame. Each agent perceives
(directly or indirectly) the orientations of the bodies of the neighboring agents
and tends to align with them. This type of collective motion can be found, e.g., in
sperm dynamics and animals (birds, fish), and it is a stepping stone to modeling
more complex agents composed of articulated bodies (corpora [12]). For more
examples and applications based on body attitude coordination see [33] and
references therein.

Our models are inspired by time-continuous versions of the Vicsek model,
introduced in the 90’s [37]. The Vicsek model is now a classic in the field of
collective motion: self-propelled particles move at constant speed while trying
to align their direction of movement with their neighbors up to some noise. We
consider time-continuous versions of the Vicsek model since they are more prone
to mathematical studies, as pointed out in [21]. However, there is no obvious
unique way of writing a time-continuous version. In [21] and then in [24], two
different continuous versions have been proposed that differ by the way agents
approach the aligned state: in the first one the particles’ velocities align gradually
over time towards an aligned state, and in the second one the velocities make
discontinuous jumps at discrete times towards an aligned state. Interestingly,
both models in [21] and in [24] give rise to the same hydrodynamic/macroscopic
limit (with different values for the constants in the equations). Inspired by this,
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here we will present two models for alignment of rigid bodies, one given by
a time-continuous gradual alignment (taken from the references [17,18]), and
another one for alignment based on a jump process on the velocities, that we
present here for the first time.

The reason for considering here these two types of models is the following. The
main difficulty in applying the Generalized Collision Invariant method to obtain
the macroscopic equations lays, precisely, on finding the explicit form of the Gen-
eralized Collision Invariants. Indeed, in [17,18] that was the main mathematical
difficulty. However, we will see that in the jump model it is straightforward to
obtain the GCI but, at the same time, the computation of the macroscopic limit
keeps the same structure as in the previous results [17,18]. Particularly, we will
obtain the same macroscopic equations (though with different values for the
coefficients). The jump model constitutes, therefore, an excellent framework for
a didactic exposition of the GCI methodology. With this, the proofs in [17,18]
will become more accessible to the reader.

Here, to model alignment of the orientations of the agents seen as rigid bodies
(and not only the alignment of their velocities as in the original Vicsek model), we
represent the body orientation of an agent as a three-dimensional frame, obtained
by the rotation of a fixed frame. Therefore, we will represent the orientations of
the agents as rotations. But, as we will see in Sect. 2, in the three-dimensional
space rotations can be equivalently represented by rotation matrices and uni-
tary quaternions. Using rotation matrices, the modeling at the individual-based
level is more natural and intuitive. However, in terms of numerical efficiency,
quaternions require less memory usage (it only requires storing 4 entries rather
than 9 entries for matrices) and are less costly to renormalize (while obtaining a
rotation matrix from an approximate matrix typically requires a polar decompo-
sition, obtaining a unit quaternion from an approximate quaternion only requires
dividing by the norm). We will also see that working with quaternions can give
rise to a better presentation of the macroscopic equations.

We conclude by noting that the study of collective behavior based on the
Vicsek model and its variations is a fertile field. Among many of the existing
mathematical works, we highlight [21] where the hydrodynamic limit has been
computed as well as [16], where the emergence of phase transitions is investi-
gated. Many refinements have been proposed to incorporate additional mech-
anism, such as, to cite only a few of them, volume exclusion [23], presence of
leaders [27] or polarization of the group [10]. We refer the interested reader
to [17,18] and the references therein for more on this topic. The description of
microscopic active particles by coarsed-grained macroscopic equations is also of
importance in the physics literature, and this has been tackled through vari-
ous aspects, such as statistical mechanics on collisional models or lattice models,
using for instance Chapman-Enskog approaches or large deviation principles. For
the reader interested in this perspective we refer for instance to the works [2–
5,31,32].

Let us now describe the structure of the document together with the method-
ology to link the models at the different scales, and the outcomes that we get.
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We start by introducing some notations and recalling some useful properties on
matrices, rotations and quaternions in Sect. 2. We present the individual-based
models in Sect. 3. From there we derive the mesoscopic models in Sect. 4. These
are mean-field models obtained in the limit of a large number of individuals,
which describe the evolution in time of the local density of individuals at a given
position and orientation. While still taking in account the spatial heterogeneity
of the population, these models are valid in the regime where the number of
particles interacting with one individual is large. Let us also mention that the
models we have chosen does not exhibit any phenomenon of phase transition from
disorder to collective motion in this regime, and therefore we are only focused on
the derivation of macroscopic model of collective motion. It is possible to study
a variation of this model which exhibits phase transition at this mesoscopic scale
and this is the object of future work [14]. For the reader interested in the physics
discussion whether the order of a transition is correctly given by these mean-field
limit or if we need to incorporate finite-densities correction, we refer the reader
to [26,34]. Finally, from these mesoscopic models, we perform a hydrodynamic
scaling in time and space and use the methodology of the Generalized Collisional
Invariants to compute the hydrodynamic limit as this scale parameter tends to
zero in Sect. 5. We obtain a macroscopic equation describing the evolution of the
local density and the local average orientation. Regarding the predictive interest
of this hydrodynamic model, the main question that we are interested in is to
know whether we can quantify the difference between simple velocity alignment
models such as the Vicsek model and models describing alignment of whole ori-
ented bodies. For instance can we say that body alignment introduce genuinely
new dynamics, or is it just similar to aligning the direction of motion, with frame
dynamics superimposed to this behavior? This is not easy to answer at the level
of the Individual-Based Model, but the macroscopic equations we obtain have a
term which is new compared to the macroscopic equation for the Vicsek model
alone, and we discuss it in the very end of Sect. 5. At the end of the document,
we briefly summarize and discuss all the results, in Sect. 6.

2 Preliminaries: Matrices, Rotations and Quaternions

We present in this section some notations and useful properties on matrices,
rotations, and quaternions. We first introduce some notations and present some
properties on matrices and rotation matrices. In a second subsection we detail
the link between rotations in R

3 and unit quaternions.
The main drawback in using quaternion to represent a rotation is that two

opposite quaternions represent the same rotation. In analogy with the theory
of rodlike polymers [25], where two opposite unit vectors represent the same
orientation, we also present in this first subsection the formalism of Q-tensors,
which will be helpful for the modeling. Most of the results will be given without
detailed proofs, which can be found in Section 5 of [18].
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2.1 Matrices, Rotation Matrices and R
3

We start by introducing a few notations. We will use the following matrix spaces:

– M is the set of three-by-three matrices,
– S is the set of symmetric three-by-three matrices,
– A is the set of antisymmetric three-by-three matrices,
– O3(R) is the orthogonal group in dimension three,
– SO3(R) is the special orthogonal group in dimension three.

For a matrix A ∈ M, we denote by AT its transpose, and we write Tr A its
trace, Tr A =

∑
i Aii. The matrix I is the identity matrix in M. We use the

following definition of the dot product on M: for A, B ∈ M,

A · B :=
1
2

3∑

i,j=1

AijBij .

The choice of this dot product (note in particular the factor 1
2 ) is motivated

by the following property: for any u = (u1, u2, u3) ∈ R
3, define the antisymmetric

matrix [u]× such that

[u]× :=

⎛

⎝
0 −u3 u2

u3 0 −u1

−u2 u1 0

⎞

⎠ ,

(or equivalently such that for any v ∈ R
3, we have [u]×v = u×v). Then we have

for any u, v ∈ R
3:

[u]× · [v]× = u · v.

The following properties will be useful in the sequel. We state them without
proof but the interested reader can find them in Ref. [17].

Proposition 1 (Space decomposition in symmetric and antisymmetric
matrices). We have

S ⊕ A = M and A ⊥ S.

Proposition 2 (Tangent space to SO3(R), and projection). For a
matrix A ∈ SO3(R), denote by TA the tangent space to SO3(R) at A. Then

M ∈ TA if and only if there exists P ∈ A s.t M = AP,

or equivalently the same statement with M = PA. Consequently, the orthogonal
projection of a matrix M on TA is given by

PTA
(M) =

1
2
(M − AMTA), (1)

and we have that M ∈ T⊥
A if and only if M = AS (or equivalently M = SA),

for some S ∈ S.

We end up by recalling the polar decomposition of a matrix.
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Proposition 3. Let M ∈ M. There exist A ∈ O3(R) and S ∈ S such that

M = AS.

Furthermore, if det M �= 0, then A and S are unique. In this case, we write

PD(M) := A.

2.2 Quaternions, Rotations and Q-Tensors

Besides rotation matrices, another common representation of rotations in R
3 is

done through the unit quaternions, which will be denoted by H1. Recall that
any quaternion q can be written as q = a + bi + cj + dk with a, b, c, d ∈ R.
Quaternions form a four dimensional (non commutative) division algebra, by
the rules i2 = j2 = k2 = ijk = −1. The real part Re(q) of the quaternion q is a
and its imaginary part, denoted Im(q) is bi+cj+dk. The three-dimensional space
of purely imaginary quaternions is then identified with R

3, therefore whenever
in the paper we have a vector in R

3 which is used as a quaternion, it should be
understood that it is a purely imaginary quaternion thanks to this identification.
For instance, the vector e1 ∈ R

3 (resp. e2, e3) is identified with the quaternion i
(resp. j, k). The conjugate of the quaternion q is given by q∗ = Re(q) − Im(q),
therefore we get qq∗ = |q|2 = a2 + b2 + c2 + d2 � 0.

We now explain how the group H1 (the unit quaternions q, such that |q| = 1)
provides a representation of rotations. Any unit quaternion q ∈ H1 can be written
in a polar form as q = cos(θ/2)+sin(θ/2)n, where θ ∈ [0, 2π) and n ∈ S

2 (a purely
imaginary quaternion with the previous identification). With this notation, the
unit quaternion q represents the rotation of angle θ around the axis given by
the direction n, anti-clockwise. More specifically, for any vector u ∈ R

3, the
vector quq∗ (which is indeed a pure imaginary quaternion whenever q ∈ H1

and u is a pure imaginary quaternion, so it can be seen as a vector in R
3) is the

rotation of u of angle θ around the axis given by the direction n (note that θ
and n are uniquely defined except when q = ±1: in this case the associated
rotation is the identity, and any direction n ∈ S

2 is suitable).
The underlying map from the group of unit quaternions to the group of

rotation matrices is then given by

Φ :
H1 → SO3(R)

q �→ Φ(q) :
R

3 → R
3

u �→ quq∗.
(2)

It is then straightforward to get that Φ is a morphism of groups: for any q and q̃
in H1, we have Φ(qq̃) = Φ(q)Φ(q̃) and Φ(q∗) = Φ(q)T.

An important remark is that two opposite unit quaternions represent the
same rotation:

∀q ∈ H1, Φ(q) = Φ(−q). (3)

More precisely, the kernel of Φ is given by {±1}, so that Φ induces an isomor-
phism between H1/{±1} and SO3(R).
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We finally briefly introduce the notion of Q-tensors. Indeed, since a unitary
quaternion and its opposite correspond to the same rotation matrix, we can
see an analogy with the theory of suspensions of rodlike polymers [25]. Those
polymers are also modeled using unit vectors (in this case, in R

3), and two
opposite vectors are describing the same orientation. Their alignment is called
nematic. One relevant object in this theory is the so-called Q-tensor associated
with the unit quaternion q, given by the matrix Q = q ⊗ q − 1

4 I4, where q is
seen as a unit vector in R

4, and I4 is the identity matrix of size four. This
object is a symmetric and trace free four by four matrix, which is invariant
under the transformation q �→ −q. We denote by S0

4 the space of symmetric
trace free 4 × 4 matrices (a vector space of dimension 9), and endow it with the
dot product known as “contraction of tensors”; more precisely if Q, Q̃ are in S0

4 ,
their contraction Q : Q̃ =

∑
i,j QijQ̃ij is the trace of QQ̃T. We then get a map

Ψ :
H1 → S0

4

q �→ q ⊗ q − 1
4 I4,

whose image can also be identified with H1/{±1}. Indeed, the preimage of Ψ(q)
is always equal to {q,−q}. We therefore have two ways to see H1/{±1} as a
submanifold of a nine-dimensional vector space: either as the image of Φ (in M),
which is exactly SO3(R), or as the image of Ψ (in S0

4 ). It appears that the dot
products on these spaces behave remarkably well, regarding the maps Φ and Ψ ,
as stated in the following proposition, from which we can also see that the images

are submanifolds of the spheres of radii
√

3
2 (in M) and

√
3
2 (in S0

4 ).

Proposition 4. For any unit quaternions q and q̃, we have
1
2
Φ(q) · Φ(q̃) = (q · q̃)2 − 1

4
= Ψ(q) : Ψ(q̃).

Proof. For the second equality, recall that for any quaternions q and q̃ we have
by definition (q ⊗ q̃)ii = qiq̃i, therefore Tr(q ⊗ q̃) = q · q̃ (this justifies the
fact that Tr(q ⊗ q − 1

4 I4) = 0 when q is a unit quaternion). Using the fact
that (q ⊗ q)(q̃ ⊗ q̃) = (q · q̃) q ⊗ q̃, we get, when q and q̃ are unit quaternions:

Ψ(q) : Ψ(q̃) = Tr((q ⊗ q − 1
4 I4)(q̃ ⊗ q̃ − 1

4 I4))

= Tr((q ⊗ q)(q̃ ⊗ q̃ − 1
4 I4)) = (q · q̃)2 − 1

4
.

For the first equality, we first prove that Tr(Φ(q)) = 4Re(q)2 − |q|2 for any
quaternion q. Indeed we first have that Tr(Φ(q)) =

∑3
i=1 ei · Φ(q)ei. Writing q

as a + bi + cj + dk and using the identifications between R
3 and the purely

imaginary quaternions, we get for instance that e1 ·Φ(q)e1 = Re(i(qiq∗)∗), which
after computations is a2 + b2 − c2 − d2. At the end, with similar computations
for e2 and e3, we get Tr(Φ(q)) = 3a2 − b2 − c2 − d2 = 4Re(q)2 − |q|2. Therefore,
if q and q̃ are unit quaternions, we get

2Φ(q) · Φ(q̃) = Tr(Φ(q)Φ(q̃)T )

= Tr(Φ(qq̃∗)) = 4Re(qq̃∗)2 − |qq̃∗|2 = 4(q · q̃)2 − 1.
�
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We will also make use of the two following properties regarding the differentia-
bility of the map Φ and the volume forms in SO3(R) and H1.

Proposition 5. The map Φ is continuously differentiable on H1. Denoting its
differential at q ∈ H1 by DqΦ : q⊥ −→ TΦ(q), we have that for any p ∈ q⊥,

DqΦ(p) = 2 [pq∗]× Φ(q).

Here, we wrote TA the tangent space of SO3(R) at A = Φ(q), and q⊥ the orthog-
onal of q.

Proposition 6. Consider a function g : SO3(R) → R, then
∫

SO3(R)

g(A) dA =
∫

H1

g(Φ(q)) dq,

where dq and dA are the normalized Lebesgue measures on the hypersphere H1

and on SO3(R), respectively. Furthermore, if B ∈ SO3(R), then
∫

SO3(R)

g(A) dA =
∫

SO3(R)

g(AB) dA =
∫

SO3(R)

g(BA) dA.

3 Individual Based Modeling: Alignment of Self-propelled
Rigid Bodies

Our goal is to model a large number N of particles described, for n = 1, . . . , N ,
by their positions Xn ∈ R

3 and their orientations as rigid bodies. The most
natural way to describe such an orientation is to give three orthogonal unit
vectors un, vn, and wn. For instance, one way to describe the full orientation of
a bird, would be to set the first vector un as the direction of its movement (from
the center to the beak), the second vector vn as the direction of its left wing
(from the center to the wing), and the last one wn as the direction of the back,
so that un, vn and wn form a direct orthogonal frame. Therefore the matrix An

whose three columns are exactly un, vn and wn is a special orthogonal matrix.
This rotation matrix An represents the rotation that has to be done between a
reference particle the orthogonal vectors of which are exactly the canonical basis
of R3 (denoted by e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1)), and the particle
number n. A particle can then be described by a pair (Xn, An) ∈ R

3 × SO3(R).
In the spirit of the Vicsek model [37], we want to include in the modeling the

three following rules:

– particles move at constant speed,
– particles try to align with their neighbors,
– this alignment is subject to some noise.

Up to changing the time units, we will consider that all particles move at
speed one. The first rule requires a direction of movement for each particle.
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Therefore, in the following, we will suppose that the first vector un = Ane1
of the matrix An represents the velocity of the particle number n. Then, the
evolution of the position Xn will simply be given by

dXn

dt
= Ane1. (4)

In the quaternion framework, if the quaternion qn represents the orientation
of particle number n (meaning that Φ(qn) = An) then the equation correspond-
ing to (4) reads:

dXn

dt
= qne1q

∗
n. (5)

We now want to describe the evolution of qn (or of the rotation matrix An),
taking into account the two remaining rules.

3.1 Defining the Target for the Alignment Mechanism

To implement the second rule in the modeling, in the spirit of the Vicsek model,
we need to provide for each particle a way to compute the “average orientation”
of the neighbors. In the Vicsek model, the idea was to take the sum of all the
velocities of the neighbors and to normalize it in order to have a unit target
velocity.

In our framework of rotation matrices, to apply the same procedure, if we
want the target orientation Ān (viewed from the particle number n) to be a
rotation matrix, we need a procedure of normalization which from any matrix
gives a matrix of SO3(R). Indeed, the sum of all rotations matrix Am of the
neighbors need not be a rotation matrix (nor a multiple of such a matrix). The
choice that had been done in [17] was to take the polar decomposition: we denote

J̄n =
1
N

N∑

m=1

K(Xm − Xn)Am (6)

Ān = PD(J̄n), (7)

where PD(J) (when det(J) �= 0) denotes the orthogonal matrix in the polar
decomposition (see Proposition 3) of a matrix J , and K is an observation kernel,
which weights the orientations of neighbors. A simple example is K(x) = 1
if 0 � |x| < R and K(x) = 0 if |x| � R. In that case all the neighbors located in
the ball of radius R and center Xn have the same influence on the computation
of the average matrix Ān, and all individuals located outside this ball have no
influence on this computation.

A first difficulty arises here when the polar decomposition is not a rotation
matrix, that is to say det(J̄n) � 0. Indeed, due to random effects, we can expect
that the polar decomposition is almost surely defined (that is to say det(J̄n) �= 0,
which happens on a negligible set), but we cannot expect that det(J̄n) > 0 almost
surely.
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In the framework of unitary quaternions, things are slightly more compli-
cated. Indeed, since a unitary quaternion and its opposite correspond to the
same rotation matrix (see Eq. (3)), the expression used to compute an “average
orientation” needs to be invariant by the change of sign of any of the quaternions
appearing in the formula. Using the Q-tensors as in the theory of suspensions of
rodlike polymers [25] is a good option. We are then led to averaging objects of
the form q ⊗ q − 1

4 I4 which are invariant under the transformation q �→ −q. The
average Q-tensor of the neighbors would then take the form

Q̄n =
1
N

N∑

m=1

K(Xm − Xn)(qm ⊗ qm − 1
4 I4). (8)

To define now an “average” quaternion from this Q-tensor Q̄n, we need a
procedure which provides a unit vector. We expect that if all quaternions qn are
all equal to a given q (or to −q), the procedures returns q or −q. Therefore, from
the form α(q ⊗ q − 1

4 I4), with α > 0, it should return q or −q. These two vectors
are precisely the unit eigenvectors associated to the maximal eigenvalue (which
is equal to 3

4 , the other eigenvectors, orthogonal to q, being associated to the
eigenvalue −1

4 ). Therefore, in [18], we defined

q̄n = one of the unit eigenvectors of Q̄n of maximal eigenvalue. (9)

Note that the direction of q̄n is uniquely defined when the maximal eigenvalue
is simple. Since symmetric matrices with multiple maximal eigenvalues are neg-
ligible, we can expect this definition to be well-posed almost surely.

The first unexpected link found in [18] between this framework of quaternions
and the previous framework of average matrices, is that these two averaging
procedures are actually equivalent (when the polar decomposition in formula (7)
actually returns a rotation matrix). This is due to the following observations [18]:

Proposition 7

(i) If M ∈ M is such that det(M) > 0, then the polar decomposition of M is a
rotation matrix, and it is the unique maximizer of the function A �→ A · M
among all matrices A in SO3(R).

(ii) A unit eigenvector corresponding to the maximal eigenvalue of a symmetric
matrix Q maximizes the function q �→ q ·Qq among all unit vectors q of H1.

(iii) If for all n we have Φ(qn) = An, and det(J̄n) > 0, then Φ(q̄n) = Ān,
where J̄n, Ān and q̄n are given by (6)–(7), and (8)–(9).

We therefore have now a good procedure to compute Ān thanks to the fol-
lowing maximization problem (instead of polar decomposition):

Ān = argmax {A ∈ SO3(R) �→ A · Mn} , (10)

where J̄n is defined in Eq. (6), and from now on we use this definition of Ān,
which ensures that it corresponds to the definition (9) of q̄n in the world of
quaternions.
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Since the next part of the modeling will include some random effects, we can
expect that the configurations for which the average is not well-defined will be
of negligible probability.

We now need to have evolution equations for the orientations (either the
rotation matrices An or the unit quaternions qn). In the spirit of the time discrete
Vicsek model, it would correspond to saying An(t + Δt) = Ān(t)+ “noise”,
or qn(t + Δt) = q̄n(t)+“noise”. However, as was pointed out in [21], in this
procedure Δt is actually a parameter of the model, and not a time discretization
of an underlying process: indeed, this parameter controls the frequency at which
particles change their orientation, and changing the value of this frequency leads
to drastic changes in the behavior of the model. Regarding the mathematical
study of this type of time-discrete models, it is far from being clear how to go
beyond observations of numerical simulations. However, it is possible to build
models in the same spirit as the Vicsek model which will be much more prone
to mathematical study, in particular if we want to derive a kinetic description
(when the number of particles is large) and macroscopic limit (when the scale
of observation is large). In the next two subsections we present two ways of
building such models. The first one corresponds to a time-continuous alignment
mechanism as was proposed in [21], in which the orientation of one particle
continuously tries to align with its target orientation, up to some noise. This
leads to the models presented in [17] (in the framework of rotation matrices)
and in [18] (in the framework of unit quaternions). The second one, as in the
Vicsek model, corresponds to a process in which orientations undergo jumps
as time evolves, but where the jumps are not synchronous: instead of taking
place every time step for all particles, they all have independent times at which
they change from their orientations to their target orientations, up to some
noise. This leads to a new model, which is different at the particle and kinetic
levels, but for which the derivation of the macroscopic model gives the same
system of evolution equations (up to the values of the constant parameters of the
model). This procedure was studied in [24] for the alignment mechanism of the
Vicsek model, and they also found that the macroscopic model corresponds to the
Self-Organized Hydrodynamic system of [21] (derived from the time continuous
alignment process).

3.2 Gradual Alignment Model

We first consider a time-continuous alignment mechanism. We have to take into
account the last two rules (particles try to align with their neighbors, and this
alignment is subject to some noise). For the sake of simplicity, we first present
the alignment dynamics without noise. We will add noise at the end of this
subsection.
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The alignment is modeled by a gradual alignment of an agent’s body orien-
tation towards its local average defined in the previous subsection. We express
the evolution towards the average as the gradient of a polar distance between
the agent and the average. It takes the form, in the world of rotation matrices

dAn

dt
= ∇An

[
An · Ān

]
,

and in the world of unit quaternions

dqn

dt
= ∇qn

[
1
2
(qn · q̄n)2

]

,

where the strength of alignment (or equivalently the relaxation frequency) has
been taken to be one (which can be done without loss of generality by chang-
ing time units), and ∇An

and ∇qn
represent the gradients on SO3(R) and H1

respectively. For the quaternions, we took the square of the norm to account for
the fact that only the directions of the vectors qn and q̄n, and not their sign,
should influence the alignment dynamics (this is called nematic alignment, and
it is analogous to the case of rodlike polymers, as described in Subsect. 3.1).

The alignment forces can be rewritten respectively as

∇An

[
An · Ān

]
= PTAn

Ān,

for the matrices, where PTAn
is the orthogonal projection on the tangent space

of SO3(R) at An, given by Eq. (1) (see Proposition 2), and

∇qn

[
1
2
(qn · q̄n)2

]

= Pq⊥
n

[(
q̄n ⊗ q̄n − 1

4 I4
)
qn

]
.

for the quaternions, where Pq⊥
n

= I4−qn ⊗qn is the projection on the orthogonal
of qn.

The second link found in [18] between the frameworks of quaternions and
rotation matrices, is that these alignment mechanisms are also equivalent.

Proposition 8. Consider the system, for all n = 1..N ,

dAn

dt
= ∇An

[
An · Ān

]
, (11)

A(t = 0) = A0
n ∈ SO3(R), (12)

with Ān defined in (10), and the system, for all n = 1..N ,

dqn

dt
= ∇qn

[
1
2
(qn · q̄n)2

]

, (13)

q(t = 0) = q0n ∈ H1, (14)

with q̄n defined in (9). If A0
n = Φ(q0n) for n = 1..N , then, for any solution (qn)n

of the Cauchy problem (13)–(14), the N -tuple (An)n := (Φ(qn))n is a solution
of the Cauchy problem (11)–(12).
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The proof of this proposition relies on two main properties: the equivalence
of the averaging procedures of Proposition 7 on one hand, and, on the other
hand, the computation of the differential of Φ in Proposition 5, which allows us
to write a link between the gradient operators on SO3(R) and on H1.

We finally describe the complete model by adding the third rule (the fact
that the alignment is subject to some noise). The natural way to introduce it
is to transform the ordinary differential equations (4)–(11) and (5)–(13), into
stochastic differential equations, which take the form of the two following sys-
tems: {

dXn = Ane1 dt,

dAn = PTAn
◦
[
Āndt + 2

√
D dB9,n

t

]
,

(15)

and {
dXn = qne1q

∗
n dt,

dqn = Pq⊥
n

◦
[(

q̄n ⊗ q̄n − 1
4 I4

)
qndt +

√
D/2 dB4,n

t

]
,

(16)

where (B9,n
t )n are matrices of M with coefficients given by standard independent

Brownian motions, and (B4,n
t )n are independent standard Brownian motions

on R
4, D > 0 representing the noise intensity. The stochastic differential equa-

tions have to be understood in the Stratonovich sense, which is well adapted to
write stochastic processes on manifolds [30].

Theorem 1 (Equivalence in law [18]). The processes (15) and (16) are equiv-
alent in law.

This theorem relies on the properties of the map Φ defined in (2), in the same
way as they are used to prove the equivalence of the alignment dynamics alone
in Proposition 8. However in that case the trajectories were exactly the same due
to the uniqueness of the solution of the Cauchy problem. Here, since the driving
Brownian motions do not belong to the same space (one is on a nine-dimensional
space, the other one in a four-dimensional one) we cannot easily give a sense to
some pathwise equivalence. However, the projection of these driving Brownian
motions on the tangent space of the manifold we consider produce process which
are actually three-dimensional, in the sense that their trajectories are contained
in a three-dimensional manifold. This is why the equivalence is at the level of
the law of the trajectories. Working on the partial differential equations satisfied
by the densities of the laws of the processes, and relying on the equivalence of
measures in Proposition 6, we can make further use of the differential properties
of Φ to write a link between the divergence and Laplacian operators on SO3(R)
and on H1. We obtain that these partial differential equation are equivalent,
which give the equivalence in law. More precise details on the law of such a
stochastic differential equation is given in Subsect. 4.1 for the case of a single
individual evolving in a given orientation field.

3.3 Alignment Model with Orientation Jumps

In this section we describe an alternative alignment mechanism where the ori-
entations of the particles make jumps at random times. For this, we attach a
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Poisson point process with parameter 1 to each particle n (for n = 1, . . . , N),
which corresponds to the times at which this particle updates its orientation.
The increasing sequence of positive times will be denoted by (tn,m)m�1, and can
be constructed by independent increments between two consecutive times, given
by exponential variables of parameter 1. This means that the unit of time has
been chosen in order that it corresponds to the average of the time between two
jumps of a given particle.

Next we need to define how the orientation (An or qn) of a particle changes
when there is a jump. Recall the definition of the averages Ān and q̄n in (10)
and (9) respectively. We want the new orientation to be drawn according to a
probability “centered” around Ān (resp. ±q̄n) and radially symmetric, that is,
it should have a density of the form A �→ MĀn

(A) (resp. q �→ M̃q̄n
(q)), which

only depends on the distance between A and Ān (resp. the distance between ±q
and ±q̄n). In the matrix world, the square of the norm of an orthogonal matrix
is 1

2 Tr(ATA) = 3
2 , therefore we have ‖A−Ān‖2 = 3−2A·Ān, we are thus looking

at a probability density only depending on A · Ān. Thanks to Proposition 4, in
the world of quaternions, it corresponds to a function only depending on (q · q̄n)2.

To fix the ideas, and to see analogies with the gradual alignment model,
we will take for MĀn

the von-Mises distribution centered around Ān and with
concentration parameter 1

D . We will indeed see that in this case, the results
of the computations for the macroscopic limits that were done in [17,18] can
directly be reused. Of course, the method that we present here still applies for
a generic smooth function of A · Ān.

The von-Mises distribution centered in Λ ∈ SO3(R) and with concentration
parameter 1

D is defined, for A in SO3(R), by

MΛ(A) =
1
Z

exp
(

1
D

A · Λ

)

,

∫

SO3(R)

MΛ(A) dA = 1, (17)

where Z = ZD < ∞ is a normalizing constant such that this function is a
probability density on SO3(R).

Analogously, we define the von-Mises distribution on H1 as

Mq̄(q) =
1
Z ′ exp

(
2
D

(

(q̄ · q)2 − 1
4

))

,

∫

H1

Mq̄(q) dq = 1, (18)

where Z ′ = Z ′
D is a normalizing constant. Thanks to Propositions 4 and 6, if q

is a random variable on H1 distributed according to Mq̄, then A = Φ(q) is a
random variable on SO3(R) distributed according to MΛ, where Λ = Φ(q̄).

A useful property of SO3(R) (or H1) is that the dot product is invariant by
multiplication: we have that MĀn

(A) = MI3(Ā
T
nA), since I3 · (ĀT

nA) = Ān · A.
Furthermore, the measure on SO3(R) is also left-invariant. We therefore only
need to be able to draw random variable according to MI3 , thanks to the follow-
ing proposition.

Proposition 9. If B ∈ SO3(R) is a random variable distributed according to
the density MI3 , then ĀnB is a random variable distributed according to the
density MĀn

.
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Analogously, if r ∈ H1 is a random variable distributed according to the den-
sity M1, then q̄nr is a random variable distributed according to the density Mq̄n

.

Proof. If U is a measurable set of SO3(R), then, by left invariance of the measure

P(ĀnB ∈ U) = P(B ∈ ĀT
nU)

=
∫

ĀT
nU

MI3(A)dA =
∫

U

MI3(Ā
T
nA)dA =

∫

U

MĀn
(A)dA.

Notice that this proof does not rely on the particular expression of the von-Mises
distribution, and still applies if MĀn

(A) is a generic function of Ān ·A. The proof
is analogous for the quaternion version. 
�

We are now ready to construct the stochastic process corresponding to the
evolution of positions and orientations of the particles.

Definition 1. We are given:

– a probability density MI3 on SO3(R), with the property that MI3(A) only
depends on I3 · A = 1

2Tr(A) (we will take the von-Mises distribution defined
in (17) in the following of the paper),

– some independent random variables Sn,m > 0 and ηn,m ∈ SO3(R), such that
for 1 � n � N and m ∈ N, Sn,m is distributed according to an exponential
law of parameter 1 and ηn,m is distributed according to MI3 ,

– some initial positions Xn,0 ∈ R
3 and initial body orientations An,0 ∈ SO3(R)

for 1 � n � N .

The variables (Sn,m)m∈N represent the intervals of time between consecutive
jumps for particle number n. Therefore we define tn,m =

∑
0��<m Sn,�, which

corresponds to the time at which particle number n changes its orientation
for the m-th time. The positions and orientations are then defined inductively
(almost surely, all times tn,m are distinct) by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xn(0) = Xn,0,

Xn(t) = Xn(tn,m) + (t − tn,m)An(t)e1, if t ∈ [tn,m, tn,m+1),
An(t) = An,0, if t ∈ [0, tn,1),
An(t) = Ān(t−n,m)ηn,m, if t ∈ [tn,m, tn,m+1),m � 1,

(19)

where Ān is the maximizer of the function A �→ A · 1
N

∑N
l=1 K(Xl − Xn)Al.

Since all the independent random variables ηn,m are distributed according to a
law which has a density with respect to the Lebesgue measure on SO3, and the
set of configurations for which this maximizer Ān is not well defined are included
in low dimensional manifolds (compared to the configuration space), we expect
that this process is almost surely well defined. We do not give a detailed proof
of this fact here since we are interested in derivation of kinetic models which
will share the same issues, therefore we will focus on the formal derivation of
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these model in the case where this maximizer is well defined everywhere. The
rigorous treatment of this issue is outside the scope of these lecture notes. It is
even far from being well understood, even in the case of the Vicsek model, for
which the only bad configurations are those with a zero average velocity. At the
kinetic level, the only known global existence of solutions requires very strong
assumptions of non-vanishing average velocity (which are not only assumptions
on the initial conditions) [29].

Analogously, we can define this process in the world of quaternions.

Definition 2. We are given:

– a probability density M1 on H1, with the property that M1(q) only depends
on (1 · q)2 = Re(q)2 (we will take the von-Mises distribution defined in (18)
in the following of the paper),

– some independent random variables Sn,m > 0 and ηn,m ∈ H1, such that
for 1 � n � N and m ∈ N, Sn,m is distributed according to an exponential
law of parameter 1 and ηn,m is distributed according to M1,

– some initial positions Xn,0 ∈ R
3 and initial body orientations qn,0 ∈ H1

for 1 � n � N .

Again, we define tn,m =
∑

0��<m Sn,�, which corresponds to the time at which
particle number n changes its orientation for the m-th time. The positions and
orientations are then defined inductively (almost surely, all times tn,m are dis-
tinct) by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xn(0) = Xn,0,

Xn(t) = Xn(tn,m) + (t − tn,m) qne1q
∗
n, if t ∈ [tn,m, tn,m+1),

qn(t) = qn,0, if t ∈ [0, tn,1),
qn(t) = q̄n(t−n,m)ηn,m, if t ∈ [tn,m, tn,m+1),m � 1,

(20)

where q̄n is defined in (8)–(9).

Once again, we expect this process to be defined almost surely, and as we
remarked, thanks to Proposition 4, these two definitions give rise to processes
which are equivalent in law, through the map Φ. A last remark is that these
processes are a particular case of Piecewise Deterministic Markov Processes
(PDMP’s): between two jumps, the configuration follows an Ordinary Differ-
ential Equation (which in our case is nothing else than free transport). More
comments on PDMP’s will be made in Subsect. 4.2.

4 Derivation of Kinetic Models

The aim of this section is to present a heuristic derivation of kinetic models
corresponding to the limit of the particle systems when the number of particles
is large. We present this derivation in the framework of rotation matrices, and
we will give the corresponding kinetic models in the framework of quaternions
at the end of this section.
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To this aim, we introduce the so-called empirical distribution fN of the par-
ticles as the measure

fN (x,A, t) =
1
N

N∑

i=1

δXi(t)(x) ⊗ δAi(t)(A),

that is to say that if ϕ is a continuous and bounded function from R
3 × SO3(R)

to R, the integral of ϕ with respect to this measure (at time t) is given by

∫

R3×SO3(R)

ϕ(x,A)fN (x,A, t)dxdA =
1
N

N∑

i=1

ϕ(Xi(t), Ai(t)). (21)

This function is independent of the change of numbering of particles, we say
that particles are indistinguishable.

Notice that the average orientation Ān defined in (10) can be constructed
through the empirical distribution: if we define, for a given probability density f ,
the functions JK

f and ΛK
f by

JK
f (x) =

∫

R3×SO3(R)

K(x − y)Af(y,A) dy dA, (22)

ΛK
f (x) is a maximizer on SO3(R) of A �→ A · JK

f , (23)

we get that the definition (6) can be written as J̄n = JK
fN (Xn). And therefore we

get Ān = ΛK
fN (Xn). Therefore we obtain that the interaction between particles

(which is only due to this target orientation Ān) corresponds to an interaction,
for each particle, with the field generated by the empirical distribution fN . The
type of limit we want to understand is called mean-field limit: when the number
of particles is large, correlations between finite numbers of particles tend to
vanish, and a kind of law of large numbers gives that the empirical distribution
is well approached by the law of one single particle. This phenomenon is linked
to the notion of propagation of chaos, and we refer to [36] for an introduction.
This type of limit has been rigorously shown to be valid in various models of
collective behavior, such as [7] in a regularized Vicsek model, and [6,9] in cases
with less regularity. In our model, it is not straightforward to apply this strategy
(due to the regularity issues for the definition of ΛK

f ), therefore we only present
a heuristic derivation of the mean-field limit one would obtain if the empirical
distribution fN converges to the law of one single particle when N is large.

Let us now focus for the moment on a single particle model aligning with a
given “target field” Λ(x, t) ∈ SO3(R), and subject to some noise, as in the models
given in the previous section. This corresponds to replacing Ān(t) by Λ(Xn, t)
in the models given by (15) (for the gradual alignment model) and (19) (for the
alignment model by orientation jumps).
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4.1 Gradual Alignment of a Single Individual in an Orientation
Field

We then consider the following stochastic differential equation, for the evolu-
tion of a particle at position Xt and body orientation At, in an orientation
field Λ(x, t) ∈ SO3(R):

{
dXt = Ate1 dt,

dAt = PTAt
Λ(Xt, t) dt + 2

√
D PTAt

◦ dB9
t ,

(24)

where B9
t is a matrix with independent coefficients given by 9 standard Brow-

nian motions on R, and the ◦ indicates that this has to be understood in the
Stratonovich sense. Let us see how this last fact ensures that the orientation A(t)
stays on SO3(R). Thanks to the classical chain rule satisfied by Stratonovich
SDE’s [30], for a smooth function ϕ(x,A), we have

ϕ(Xt, At) =ϕ(X0, A0)

+
∫ t

0

(
Dxϕ(Xs, As)[Ase1] + DAϕ(Xs, As)[PTAs

Λ(Xs, s)]
)
ds

+ 2
√

D

∫ t

0

(
DAϕ(Xs, As)[PTAs

(·)]) ◦ dB9
s ,

(25)

where Dx and DA are the differentials with respect to x ∈ R
3 and A ∈ M. Now,

if we take ϕ(x,A) = ATA−I3, we get that DAϕ(x,A)[H] = ATH+HTA. Thanks
to the formula (1), we then get that the linear operator DAϕ(x,A)[PTA

(·)]
(from M to M) is given by

DAϕ(X,A)[PTA
H] =

1
2
AT(H − AHTA) +

1
2
(HT − ATHAT)A

=
1
2
(ATHϕ(x,A) − ϕ(x,A)HTA).

Therefore, if we define the linear operator L(Y, t) : H �→ 1
2 (AT

t HY −Y HTAt)
and the process Yt = ϕ(Xt, At) = AT

t At − I3, Eq. (25) becomes

Yt = Y0 +
∫ t

0

L(Ys, s)[Λ(Xs, s)]ds + 2
√

D

∫ t

0

L(Ys, s) ◦ dB9
s ,

hence the process Yt satisfies a linear SDE with initial condition 0, therefore it
is 0 for all time, which means that At stays in SO3(R) for all time.

Moreover, it is shown in Chapter 3 of [30] that for a manifold N embedded
in the euclidean space R

d, the generator of the SDE equation dZt = σPTZt
◦dBd

t

(where PTy
is the orthogonal projection on the tangent space Ty of N at y)

is σ2

2 ΔN , where ΔN is the Laplace-Beltrami operator on N (the solution of this
SDE is called Brownian motion on N ). This means that for a smooth function ϕ
on N ,

E[ϕ(Zt)] = E[ϕ(Z0)] +
σ2

2
E

[∫ t

0

ΔN ϕ(Zs) ds

]

.
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Using the Stratonovich chain rule, this means that

E

[

σ

∫ t

0

DZϕ(Zt)[PTZt
(·)] ◦ dBd

t

]

=
σ2

2
E

[∫ t

0

ΔN ϕ(Zs) ds

]

.

In our case, if we write N = SO3(R), with the metric induced by the
euclidean metric in R

9, this would mean that the expectation of the last term
of (25) is 2D

∫ t

0
ΔN ϕ(Xs, As)ds. However, the metric we used for SO3(R) is

induced by the dot product (A,B) �→ 1
2 Tr(AT B), which is half of what cor-

responds to the euclidean dot product in R
9. The Riemannian metric is then

divided by 2, and the formula for the Laplace-Beltrami operator gives that it
is then multiplied by 2 (recall the condensed form Δgϕ = 1√

|g|∂i(
√|g|gij∂iϕ),

where gij are the coefficients of the inverse of the metric tensor (gij)i,j). There-
fore we get ΔAϕ = 2ΔN ϕ. Finally, for an arbitrary test function ϕ with values
in R, taking the expectation in Eq. (25), and using the gradient formulation
instead of the differential, we get

E[ϕ(Xt, At)] = E[ϕ(X0, A0)]

+E

[ ∫ t

0

[∇xϕ(Xs, As) · Ase1 + ∇Aϕ(Xs, As) · PTAs
Λ(Xs, s)

+ DΔAϕ(Xs, As)]ds

]

.

(26)

Finally, we denote by f(x,A, t) the law of such a particle at time t, which
is defined by the formula E[ϕ(Xt, At)] =

∫
R×SO3(R)

ϕ(x, a)f(x,A, t)dAdx. Then,
the fact that Eq. (26) holds for any test function ϕ, corresponds exactly to the
fact that f is a weak solution of the following linear evolution equation:

∂tf + (Ae1) · ∇xf = −∇A · (PTA
Λf) + DΔAf. (27)

4.2 Alignment by Orientation Jumps, for a Single Individual in a
Field

We now turn to the model of alignment by orientation jumps. We then con-
sider the following process: given some independent random variables Sm > 0
and ηm ∈ SO3(R), such that for m ∈ N, Sm is distributed according to an expo-
nential law of parameter 1 and ηm is distributed according to MI3 , an initial
position X0 ∈ R

3 and orientation A0 ∈ SO3(R), we define tm =
∑

0��<m S�,
and the position and orientation at time t are then defined inductively (almost
surely, all times tm are distinct) by

⎧
⎪⎨

⎪⎩

Xt = Xtm
+ (t − tm)Ate1, if t ∈ [tm, tm+1),

At = A0, if t ∈ [0, t1),
At = Λ(Xtm

, t−m)ηm, if t ∈ [tm, tm+1), with m � 1,

(28)
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Another way to describe this process (Xt, At) is to say that it is a (non
autonomous) Piecewise Deterministic Markov Process (PDMP) with jump
rate 1, with flow φ given by φ((X,A), t) = (X + tAe1, A) and with transition
measure Qt((X,A), ·) = δX ⊗MΛ(X,t). The only difference with classical descrip-
tion of PDMP’s (see for instance [1] for a review of recent results), except from
the fact that we work on a manifold rather than an open set of Rd, is that the
transition measure depends on time.

Let us explain how to derive the evolution equation for the law of the pro-
cess (Xt, At). We take once again a smooth test function ϕ(x,A), we fix a small
time interval δt, and we evaluate the expectation of ϕ(Xt+δt, At+δt). With prob-
ability 1 − δt + o(δt), there is no jump in (t, t + δt) and therefore At+δt = At,
and Xt+δt = Xt + δtAte1. With probability δt+ o(δt), there is exactly one jump
at time s in (t, o(δt)), and therefore At+δt = As which follows the distribu-
tion MΛ(Xs,s). Of course we have (t − s) = o(1). Finally, there are two or more
jumps in (t, t + δt) with probability o(δt). We therefore get

E[ϕ(Xt+δt,At+δt)] = (1 − δt + o(δt))E[ϕ(Xt + δtAte1, At)]

+ δtE

[∫

SO3(R)

ϕ(Xt + o(1), A′)MΛ(Xt+o(1),t+o(1))(A′)dA′
]

+ o(δt),

which gives, by smoothness of ϕ, and if we assume that Λ and Λ �→ MΛ are
smooth enough, that

1
δt

(

E[ϕ(Xt+δt,At+δt)] − E[ϕ(Xt, At)]
)

= E[∇xϕ(Xt, At) · Ate1] − E[ϕ(Xt, At)]

+ E

[∫

SO3(R)

ϕ(Xt, A
′)MΛ(Xt,t)(A

′)dA′
]

+ o(1),

that is to say

d
dt

E[ϕ(Xt, At)] = E

[

∇xϕ(Xt,At) · Ate1 − ϕ(Xt, At)

+
∫

SO3(R)

ϕ(Xt, A
′)MΛ(Xt,t)(A

′)dA′
]

.

(29)

Finally, as in the previous subsection, we denote by f(x,A, t) the law of such
a particle at time t, defined by E[ϕ(Xt, At)] =

∫
R×SO3(R)

ϕ(x, a)f(x,A, t)dAdx.
Now, the fact that Eq. (29) holds for any test function ϕ corresponds exactly to
the fact that f is a weak solution of the following linear evolution equation:

∂tf + (Ae1) · ∇xf = ρfMΛ − f, (30)

where
ρf (x, t) =

∫

SO3(R)

f(x,A, t)dA. (31)
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4.3 Kinetic Mean-Field Models of Alignment

Let us summarize the results of the two previous subsections: for the evolution
of a particle in an orientation field Λ(x, t) according to one of the models (24)
or (28), the law f of the particle is evolving according to one of the (linear)
kinetic equations (27) or (30) which is of the form:

∂tf + (Ae1) · ∇xf = ΓΛ(f), (32)

with

ΓΛ(f) =

{
−∇A · (PTA

Λf) + DΔAf in the gradual alignment model,
(ρfMΛ − f) in the jump model.

(33)

We are now ready to provide a formal derivation of the equation satisfied by
the law of one particle in the limit of a large number of particles. The heuristic
is as follows: if we consider that the empirical distribution fN of the particles
converges to a deterministic law f , either for the gradual alignment process (15)
or for the model with orientation jumps (19), then each particle will evolve in
the limit N → ∞ as a single particle in a orientation field Λ(x, t) corresponding
to ΛK

f(t,·)(x), given by the formulas (22)–(23). Therefore the evolution of the law
of one particle, in the limit N → ∞, is governed by the evolution equation (32)
where Λ is replaced by ΛK

f . This gives the following (now non-linear and non-
local) evolution equation:

∂tf + (Ae1) · ∇xf = ΓΛK
f

(f), (34)

where ΓΛ(f) is defined above in (33), and with

JK
f (x) =

∫

R3×SO3(R)

K(x − y)Af(y,A) dy dA,

ΛK
f (x) maximizes A �→ A · JK

f (x) on SO3(R).

This heuristic can be made rigorous if the map f �→ Λf is regular (which is not
the case here, as there are configurations for which it is not even well defined).
Let us quickly present the coupling method (see for instance [36]) to understand
how we can indeed use the law of large numbers for independent processes. The
idea is first to construct a nonlinear process (for one single particle) which is the
natural limit of the evolution of one particle in the particle system corresponding
to (15) or (19), and for which the law is following the evolution equation (34).
For the gradual alignment process, given a Brownian motion B9

t as in (24), it
would be defined as follows

⎧
⎪⎨

⎪⎩

dXt = Ate1 dt,

dAt = PTAt
Λf(t,·)(Xt) dt + 2

√
D PTAt

◦ dB9
t ,

f(t, ·) is the law of (Xt, At).
(35)
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For the orientation by jumps, given random variables tm and ηm as in (28), it
would be given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xt = Xtm
+ (t − tm)Ate1, if t ∈ [tm, tm+1),

At = A0, if t ∈ [0, t1),
At = Λf(tm,·)(Xtm

)ηm, if t ∈ [tm, tm+1), with m � 1,

f(t, ·) is the law of (Xt, At).

(36)

These constructions can be seen as fixed point problems for the laws of the
trajectories, and this is where the regularity of f �→ Λf can be used to prove
a contraction property in an appropriate space. Once these processes are well
defined, the second idea of the method of couplings is to introduce N of these
processes (35) or (36), for which the initial conditions and random variables
(Brownian motions B9

t , n or jump times tn,m and rotations ηn,m) are the same as
for the particle systems (15) and (19). By construction, these auxiliary nonlinear
processes (Xn(t), An(t)) are independent and identically distributed according
to the law f , solution of the kinetic equation (34). Therefore the last step of the
coupling method is to perform estimates of the differences between the trajec-
tories of the particle system and of the auxiliary process in order to let appear
quantities reminiscent of (21), but of the form

1
N

N∑

i=1

ϕ(Xi(t), Ai(t)), (37)

for which the law of large numbers applies.
Let us finish this subsection by presenting the kinetic equation we obtain

(exactly in the same manner) when working with unit quaternions instead of
rotation matrices. The formal mean-field limit of the particle system (16) or (20)
is given by the following evolution equation, for the density f(t, x, q) of finding a
particle at position x with orientation given by the unit quaternion q at time t:

∂tf + Φ(q)(e1) · ∇xf = ΓqK
f

f, (38)

with

Γq(f) =

{
−∇q · (Pq⊥(q ⊗ q)q f) + D

4 Δqf in the gradual alignment model,
(ρfMq − f) in the jump model,

(39)
where

ρf =
∫

H1

f(q)dq, (40)

QK
f (x) =

∫

R3×H1

K(x − y)(q ⊗ q − 1
4 I4)f(y, q)dy dq, (41)

qK
f (x) is an eigenvector of QK

f (x) of maximal eigenvalue. (42)
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5 Macroscopic Limit

In this section we derive the macroscopic dynamics for the kinetic equations (34)
and (38). This means that we are interested in the dynamics in the large time
as well as large-space scale. For this we first introduce a scaling with respect
to a small parameter ε. We then determine the local equilibria of the collision
operator, which depend on two macroscopic quantities, a density ρ and a local
orientation Λ. The final step is then the derivation of the evolution equations of
these macroscopic functions ρ and Λ. The first one comes from the conservation
of mass (a collision invariant), and the second one needs more work, and can
be derived using the concept of Generalized Collisional Invariants introduced
in [21]. The subsection presenting this concept and how to use it to obtain the
evolution equation for Λ is the main part of this section.

5.1 Scaling

We introduce the macroscopic temporal and spatial variables (t′, x′) given by

t′ = εt, x′ = εx,

where 0 < ε � 1 is a scale parameter. We also consider the following rescaling
for the interaction kernel:

Kε(x) =
1
ε3

K
(x

ε

)
.

This corresponds to localized interactions as ε → 0 (see Remark 1 below). Notice
that ∫

R3
Kε(x) dx =

∫

R3
K(x) dx = 1.

Define the function fε in the macroscopic variables as

fε(t′, x′, A) = f(t, x,A).

Our goal is to determine the dynamics for this function as ε → 0. Firstly, one
can check that the evolution equation for fε is given by

ε(∂tfε + (Ae1) · ∇xfε) = ΓΛKε
fε

(fε), (matrix formulation), (43)

ε(∂tfε + Φ(q)(e1) · ∇xfε) = Γq̄Kε
fε

(fε), (quaternion formulation), (44)

where the primes have been skipped. We recall that the definition of the oper-
ators ΓΛ and Γq̄ are given in (33) and (39) respectively, and the definitions
of the average orientations ΛKε

fε
and q̄Kε

fε
are given in (22)–(23) and (41)–(42)

respectively.
Next, we expand the collision operators in the parameter ε.
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Lemma 1 (Expansion for localized interactions). The following expan-
sion holds:

JKε

f = Kε ∗x Jf = Jf + O(ε2),

where Jf (x) takes in account the dependence of f on the variable A only:

Jf (x) =
∫

SO3(R)

Af(x,A) dA. (45)

Consequently, we can recast Eq. (43) as

ε(∂tfε + (Ae1) · ∇xfε) = ΓΛfε
(fε) + O(ε2), (46)

where
Λf maximizes A �→ A · Jf on SO3(R). (47)

Analogously, we have that

QKε

f = Kε ∗x Qf = Qf + O(ε2),

where
Qf (x) =

∫

R3×H1

(q ⊗ q − 1
4 I4)f(x, q) dq, (48)

and Eq. (44) is recast as

ε(∂tfε + Φ(q)(e1) · ∇xfε) = Γq̄fε
fε + O(ε2), (49)

where
q̄f is an eigenvector of Qf of maximal eigenvalue. (50)

Remark 1 (Localized interactions). Notice that in the leading order of the expan-
sion of Kε, we obtain a delta distribution in x. This is why we say that this kind
of rescaling corresponds to localized interactions in the limit ε → 0.

The proof of the expansions in Lemma 1 is straightforward using the Taylor
expansion and the fact that

∫

R3
xK(x) dx = 0,

for more details on this and the fact that Λf and q̄f are indeed defined as in
the lemma, the reader is referred to [17, Lem. 4.1] and [18, Lem. 4.2, Prop. 4.3],
respectively.

Our goal is to investigate the limit of fε as ε → 0. Firstly, notice that,
formally, from Eq. (46) we have that

if fε(t, x, ·) → f0(t, x, ·) as ε → 0 then f0(t, x, ·) ∈ ker(ΓΛf0(t,x,·)), (51)

in the matrix formulation, or

if fε(t, x, ·) → f0(t, x, ·) as ε → 0 then f0(t, x, ·) ∈ ker(Γq̄f0(t,x,·)), (52)

in the quaternion formulation. For this reason, we study next the kernel of the
operator ΓΛ (which is an operator acting on functions of A ∈ SO3(R) only) for
a fixed Λ ∈ SO3(R) (analogously Γq̄ for fixed q̄ ∈ H1) in the following section.
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5.2 Study of the Collision Operator Γ

The goal of this subsection is to show that both the jump model and the gradual
alignment model have the same type of equilibria. More precisely, we show the
following proposition.

Proposition 10 (Equilibria, matrix formulation). Recall the definition of
the operator ΓΛ in Eq. (33), and the definition of the von Mises distribution MΛ

in Eq. (17). Then, for any f ≥ 0, we have

ΓΛf
(f) = 0 ⇐⇒ f = ρMΛ, for some ρ ≥ 0, Λ ∈ SO3(R). (53)

Furthermore, any element f of the form f = ρMΛ, with ρ ≥ 0 and Λ ∈ SO3(R)
satisfies the consistency relations

ρf = ρ, Jf = ρc1Λ, Λf = Λ, (54)

where c1 ∈ (0, 1) is an explicit constant, and ρf , Jf and Λf are defined in
Eq. (31), Eq. (45), and Eq. (47), respectively.

As a consequence, both the gradual alignment model and the jump model have
the same equilibria, and therefore, the same type of (formal) limit as ε → 0: we
can write

f0(t, x,A) = ρ(t, x)MΛ(t,x)(A),

for some ρ(t, x) ≥ 0 and Λ ∈ SO3(R) satisfying furthermore the consistency
relations

ρf0(t, x) = ρ(t, x), Jf0(t, x) = ρ(t, x)c1Λ(t, x), Λf0(t, x) = Λ(t, x). (55)

Remark 2 (Variants in the jump-based model). In the jump-based model, the
result holds true formally if we replace (in the collision operator and in the result)
the von-Mises distribution by any distribution. Therefore, the jump-based model
can reproduce a great variety of behaviors in terms of equilibria.

The proof of Proposition 10 is done in [17] in the case of the gradual alignment
model. We summarize here the main ideas.

We first prove the consistency relations. Let us take a function f of the form

f = ρMΛ, (56)

for some ρ ≥ 0 and Λ ∈ SO3(R). Now, one can check by direct computation that
the following consistency relation holds for the average of MΛ (see proof in [17,
Lem. 4.4]):

∫

SO3(R)

AMΛ(A) dA = c1Λ, for some c1 ∈ (0, 1) explicit.

With this, integrating expression (56) against 1 and A in SO3(R) we obtain the
two first equalities of Eq. (54). To conclude the proof of Eq. (54), the last equality
is a consequence of the second one.
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Now, in the gradual alignment model, it is proved in [17] that the opera-
tor ΓΛf

can be recast as

ΓΛf
(f) = D∇A ·

(

MΛf
∇A

(
f

MΛf

))

. (57)

Using expression (57), one can obtain that

ker(ΓΛf
) = {ρMΛf

for any ρ = ρ(t, x)}

(see detailed proof of this statement in [17, Lem. 4.3]), which, thanks to the
consistency relations proved before, is equivalent to Eq. (53).

In the case of the jump model, from the definition of the operator ΓΛf
it is

straightforward that its kernel is given by the functions f such that

f = ρfMΛf
,

that is, since we have taken MΛ to be the von-Mises distribution, and using
again the consistency relations, exactly Eq. (53).

Therefore, for both models, we can use Eq. (51) to see that the limit f0 must
be of the form

f0(t, x,A) = ρ(t, x)MΛ(t,x)(A), (58)

for some ρ = ρ(t, x) and Λ = Λ(t, x) ∈ SO3(R) to be determined, and which
satisfy the consistency relations.

Analogously, we obtain the same kind of results for the formulation with
quaternions. We write only the result on the limiting function.

Lemma 2 (Equilibria, quaternion formulation). Recall the definition of
the operator Γq̄ in Eq. (39) and of the von Mises distribution Mq̄ in Eq. (18).
Then, both the gradual alignment model and the jump model have the same equi-
libria, and therefore, the same type of limit as ε → 0: we can write

f0(t, x, q) = ρ(t, x)Mq̄(t,x)(q),

for some ρ(t, x) ≥ 0 and q̄(t, x) ∈ H1 satisfying furthermore the consistency
relations

ρf0(t, x) = ρ(t, x), q̄f0(t, x) = q̄(t, x), (59)

where c1 ∈ (0, 1) is an explicit constant, and ρf and q̄f are defined in Eq. (40)
and Eq. (50), respectively.

The proof of this proposition is done in [18] in the case of the gradual align-
ment model. We only recall the main ideas here. First, the consistency relations
rely on the consistency relation satisfied by the von-Mises distribution on H1,
which is (see [18, Prop 4.4]):

the leading eigenvector of
∫

H1

(q ⊗ q − 1
4
I4)Mq̄ dq corresponds to q̄. (60)
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Therefore, if we take any f of the form

f = ρMq̄,

multiplying this expression by 1 and (q⊗q− 1
4 I4) and integrating on H1 we have

that
ρf = ρ, Qf = ρf

∫

H1

(q ⊗ q − 1
4
I4)Mq̄ dq,

where Qf is defined in Eq. (48). As a consequence of the last equality,

q̄f = q̄.

To compute the kernel of the collision operator, in the gradual alignment model
we use that the collision operator can be recast as

Γq̄f
(f) =

D

4
∇q ·

(

Mq̄f
∇q

(
f

Mq̄f

))

,

(proved in [18]). In the jump-based model the computation of the kernel is
straightforward.

We then use Eq. (52) to conclude the proposition.
In summary, we have seen that, formally, the limit of fε will be of the

form ρMΛ (or ρ̄Mq̄ for the quaternion case). We are left with determining the
dynamics of the functions ρ = ρ(t, x), ρ̄ = ρ̄(t, x), Λ = Λ(t, x) and q̄ = q̄(t, x)
(macroscopic quantities). This is done in the following section.

5.3 The Equation for the Density ρ

We first compute the evolution for the density ρ = ρ(t, x). We integrate the
rescaled kinetic equation (46) over SO3(R) and divide by ε to obtain

∂t

(∫

SO3(R)

fε dA

)

+ ∇x ·
(∫

SO3(R)

Ae1 fε dA

)

= 0.

Importantly, the right-hand side has vanished in the integration. This cancella-
tion reflects the fact that the total mass is conserved, i.e., the number of particles
is preserved through the interactions. Now we can take formally the limit ε → 0
and since we know the limit of fε in Eq. (58) we have that

∂t

(∫

SO3(R)

ρMΛ(A) dA

)

+ ∇x ·
(∫

SO3(R)

(Ae1) ρMΛ(A) dA

)

= 0,

which corresponds to
∂tρ + c1∇x · (ρΛe1) = 0, (61)

given the consistency relations (55). The equation for the density ρ in (61) cor-
responds to the continuity equation: the density of particles is transported with
a velocity equal to c1Λe1.
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In the formulation with quaternions, analogous computations give the same
equation for ρ̄ with Φ(q̄)(e1) instead of Λe1, that is,

∂tρ + c1∇x · (ρΦ(q̄)(e1)) = 0.

We are left with computing the evolution for Λ = Λ(t, x) and q̄ = q̄(t, x).
This is done in the following section.

5.4 The Equation for the Body Orientation Λ

The natural path to obtain an equation for Λ = Λ(t, x) is to multiply the rescaled
kinetic equation (46) by A; integrate this expression in SO3(R); and use the con-
sistency relations (55) at the limit ε = 0. First multiplying by A and integrating
we obtain

∂t

∫

SO3(R)

Afε dA +
∫

SO3(R)

[A (Ae1 · ∇x)fε] dA =
1
ε

∫

SO3(R)

AΓΛfε
(fε) dA + O(ε),

after dividing by ε on both sides. Notice that the limit of the first term indeed
will correspond to c1∂t(ρΛ) thanks to the second consistency relation in Eq. (55).
However, it is unclear how to deal with the ε−1 term on the right hand side as
we do not have enough information on the asymptotics of the integral (and the
same difficulty arises in the quaternion framework). In classical kinetic theory (in
Mathematical Physics), this difficulty does not arise: typically every macroscopic
quantity corresponds to what is called a conserved quantity or collision invariant.
We say that a function ψ is a collision invariant if for all f (in a reasonable class
of functions) ∫

SO3(R)

ψΓΛf
dA = 0.

We have already seen that ψ = 1 is a collision invariant corresponding to the total
mass being conserved. However, here the body orientation Λ is not a conserved
quantity. The same kind of non-conservative property arises in the Vicsek model
for the momentum of the particles. To sort out this problem we will relax the
condition of being a collision invariant taking into account the constraint given
by the second equality in Eq. (55) for the limiting function. This gives rise to
the concept coined as the Generalized Collision Invariant in Ref. [21] and that
we explain in the following.

The Generalized Collision Invariant. Consider the following definition:

Definition 3 (Generalised Collision Invariant). A function ψΛ0 is a Gen-
eralized Collision Invariant (GCI) associated with Λ0 ∈ SO3(R) of the opera-
tor Γ if it holds that

∫

SO3(R)

ΓΛ0(f)ψΛ0 = 0, for all f such that PTΛ0

(∫

SO3(R)

A f dA

)

= 0.
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We denote by GCI(Λ0) this set of Generalized Collision Invariants associated
with Λ0.

In the quaternion formulation, we say that a function ψq0 is a Generalized
Collision Invariant associated to q0 ∈ H1 of the operator Γ if it holds that
∫

H1

Γq0(f)ψq0 = 0, for all f such that Pq⊥
0

(∫

H1

(q ⊗ q − 1
4 I4)f(q) dq q0

)

= 0.

We also denote by GCI(q0) this set of Generalized Collision Invariants associated
with q0.

Remark 3 (On the constraints on the test functions). In the matrix formulation,
one can notice that the condition on the test functions f is equivalent to saying
that Jf ∈ T⊥

Λ0
, which is equivalent to Jf = Λ0S for some symmetric matrix S

(see Proposition 2). Taking S = ρc1I3 and Λ0 = Λf0 , we recover the second
equality in (55). That is, the limiting function f0 is an admissible test function
in the definition of the GCI (associated with Λf0). Something similar happens in
the case of the quaternions: the conditions on the test functions f is equivalent
to asking that Pq⊥

0
(Qf q0) = 0, which will hold true if q0 is an eigenvector

of Qf , which is what happens, in particular, for f = f0 and q0 = q̄f0 by the
second equality in (59). Therefore, the limiting function f0 is an admissible test
function in the definition of the GCI (associated with q̄f0).

Remark 4. It is straightforward to see that this notion extends the notion of
collision invariant. In particular, the mass ψ = 1, which is a collision invariant,
is also a GCI (associated with Λ0 for any Λ0 ∈ SO3(R) if we see ψ as a function
on SO3(R), and associated with q0 for any q0 ∈ H1 if we see ψ as a function
on H1). Note in particular that the definition of the GCI is non-empty.

We explain next how the GCI is useful. Multiplying Eq. (46) by a GCI asso-
ciated with Λfε

and integrating with respect to A we obtain

ε

∫ (
∂tfε + (Ae1 · ∇x)(fε)

)
ψΛfε

dA = 0.

Notice that, indeed, the right hand side vanishes since
∫

SO3(R)

ΓΛfε
(fε) ψΛfε

= 0,

given that fε satisfies the condition

PTΛfε

(∫

SO3(R)

Afε dA

)

= PTΛfε
Jfε

= PTΛfε
(SεΛfε

) = 0,

where Jfε
= SεΛfε

is the Polar Decomposition of Jfε
and Sε is a symmetric

matrix, therefore Jfε
∈ T⊥

Λfε
(see Proposition 2).
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Now, dividing by ε and then making ε → 0, using (58) we obtain
∫

SO3(R)

(
∂t(ρMΛf0

) + (Ae1) · ∇x(ρMΛf0
)
)

ψΛf0
dA = 0. (62)

Consequently, if we can compute the Generalized Collision Invariants in an
explicit form, then we will be able to make explicit the limit given in Eq. (62)
and we will be done. This is done in the following.

Description of the GCI. The explicit description of the GCI is given in the
following proposition. For this, we need to introduce h = h(r) the unique solution
(see Ref. [18]) of the following differential equation on (−1, 1):

(1 − r2)3/2 exp
(

2r2

d

)(−4
d

r2 − 3
)

h(r) +
d

dr

[

(1 − r2)5/2 exp
(

2r2

d

)

h′(r)
]

= r (1 − r2)3/2 exp
(

2r2

d

)

. (63)

The function h is odd : h(−r) = −h(r), and it satisfies for all r ≥ 0, h(r) ≤ 0 (by
maximum principle).

Proposition 11 (Description of the GCI). Let Λ0 ∈ SO3(R) and q0 ∈ H1.
Then, it holds that

GCI(Λ0) = span
{
1, ∪P∈AψP

Λ0

}
, (matrix formulation),

GCI(q0) = span
{
1, ∪β∈q0⊥ψβ

q0

}
, (quaternion formulation),

where, for P ∈ A and β ∈ q⊥
0 ,

ψP
Λ0

(A) = P · (ΛT
0 A) k̄(Λ0 · A), (matrix formulation),

ψβ
q0(q) := (β · q) h̄(q · q0), (quaternion formulation) (64)

with h̄ given by, for r ∈ (−1, 1),

h̄(r) =

{
h(r) in the gradual alignment model,

r in the jump model,

where h is the unique solution of the differential equation (63), and k̄ given by,
for r ∈ (−1/2, 3/2),

k̄(s) =
h̄(12

√
2s + 1)

1
2

√
2s + 1

. (65)

The function k̄ is designed so that k̄( 12 + cos θ) = h̄(cos θ
2 )

cos θ
2

. It is negative in the

gradual alignment model and a constant equal to k̄ = 1 in the jump model.

Remark 5. The relation between the functions k̄ and h̄ in Eq. (65) is related to
the relation between dot products, see Proposition 4.
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The first step to prove this proposition is a characterization of the GCI in
terms of the adjoint of the collision operator.

Lemma 3 (Characterization of the GCI). A function ψΛ0 : SO3(R) → R

(resp., ψq0 : H1 → R) is a GCI associated with Λ0 ∈ SO3(R) (resp., associated
with q0 ∈ H1) if and only if there exists P ∈ A (resp., β ∈ q⊥

0 ) such that ψΛ0

(resp., ψq0) is solution of

Γ ∗
Λ0

ψΛ0(A) = P · ΛT
0 A, for all A ∈ SO3(R) (matrix formulation),

Γ ∗
q0ψq0(q) = (β · q)(q · q0), for all q ∈ H1(quaternion formulation), (66)

where Γ ∗
Λ0

denotes the adjoint in L2(SO3(R)) of the operator ΓΛ0 (resp., and Γ ∗
q0

denotes the adjoint in L2(H1) of Γq0).

Proof. We show the proof here for the matrix formulation. For the quaternion
formulation it is done analogously. Given f : SO3(R) → R and Λ0 ∈ SO3(R), we
have the following equivalences (in the second equivalence we use Proposition 2):

PTΛ0

(∫

SO3(R)

A f dA

)

= 0 ⇔
∫

SO3(R)

A f dA ∈ T⊥
Λ0

,

⇔ (Λ0P ) ·
∫

SO3(R)

A f dA = 0 for all P ∈ A,

⇔
∫

SO3(R)

P · (ΛT
0 A) f dA = 0 for all P ∈ A,

⇔ f ∈ G⊥,

where

G = {g ∈ L2(SO3(R)) | g(A) = P · ΛT
0 A, for some P ∈ A}.

Starting from Definition 3, we then get, for ψΛ0 : SO3(R) → R:

ψΛ0 ∈ GCI(Λ0) ⇔
∫

SO3(R)

ΓΛ0(f)ψΛ0 = 0 for all f such that f ∈ G⊥,

⇔
∫

SO3(R)

fΓ ∗
Λ0

(ψΛ0) = 0 for all f such that f ∈ G⊥,

⇔ Γ ∗
Λ0

(ψΛ0) ∈ (G⊥)⊥ = G,

where Γ ∗
Λ0

is the adjoint of Γ ∗
Λ0

in L2(SO3(R)). The last equality comes from the
fact that the space G is a finite-dimensional subspace of L2. The last equivalence
therefore implies that ψΛ0 is a GCI if and only if there exists P ∈ P such that ψΛ0

is solution of (66). 
�
One can check that, in the matrix formulation, for ψ : SO3(R) → R, the

adjoint is given by

Γ ∗
Λ0

(ψ) =

{
D∇A · (MΛ0∇Aψ) (gradual alignment model),
∫

SO3(R)
ψ(A)MΛ0(A) dA − ψ (jump model),

(67)
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and in the quaternion formulation we have, for ψ̄ : H1 → R:

Γ ∗
q0(ψ̄) =

{
D∇q · (Mq0∇qψ̄) (gradual alignment model),
∫
H1

ψ̄(q)Mq0(q) dq − ψ̄ (jump model).

The end of the proof of Proposition 11 for the gradual alignment model relies
on the application of Lax-Milgram theorem. It is done in references [17] (for the
matrix formulation) and [18] (for the quaternion formulation). We do not repeat
it here.

In the case of the jump model, for the matrix formulation it is a direct check
that for any P ′ ∈ A, the function ψP ′

Λ0
defined by

ψP ′
Λ0

(A) = P ′ · ΛT
0 A,

satisfies Eq. (66) with P = −P ′ and is, therefore, a GCI. As noticed in Remark 4,
the constant function ψ = 1 is also a GCI. Conversely, using the explicit form (67)
of the adjoint operator Γ ∗

Λ0
, it is also direct to see that any solution ψΛ0 of

Eq. (66) for some P ∈ A satisfies

ψΛ0(A) = −P · ΛT
0 A +

∫

SO3(R)

ψΛ0(A
′) MΛ0(A

′) dA′ ∈ span
{
1, ψ−P

Λ0

}
.

Analogously, one can check that for any β′ ∈ q⊥
0 , the function ψ = ψβ′

q0
given in Eq. (64) is indeed a GCI using Eq. (66) with β = −β′ and the consis-
tency relation (60). Conversely, one can check that any solution ψ of Eq. (66) for
some β ∈ q⊥

0 belongs to span
{
1, ψ−β

q0

}
.

Limiting Equation. Now that we have an explicit form for the GCI, we can
go back to the limiting equation (62) (in the matrix formulation) and substitute
its value. This way we have that for all P ∈ A it holds:

∫

SO3(R)

(
∂t(ρMΛ) + (Ae1 · ∇x)(ρMΛ)

)
(P · ΛT A) dA = 0.

This is equivalent to:

P ·
[∫

SO3(R)

(
∂t(ρMΛ) + (Ae1 · ∇x)(ρMΛ)

)
ΛT A dA

]

= 0 for all P ∈ A,

which implies thanks to Proposition 1 that
∫

SO3(R)

(
∂t(ρMΛ) + (Ae1 · ∇x)(ρMΛ)

)
ΛT A dA ∈ S,

or, in other words,
∫

SO3(R)

(
∂t(ρMΛ) + (Ae1 · ∇x)(ρMΛ)

)
(ΛT A − AT Λ) dA = 0.



60 P. Degond et al.

It remains only to compute this expression. This expression is exactly the same
is in Ref. [17, Equation (4.25)] with the function ψ̄0 appearing in this reference to
be taken equal to one. Therefore, here we do not repeat again the computation
for this expression and put directly the result in Theorem2 (Eq. (70)) in the
following section.

5.5 Main Results

To introduce the results on the matrix formulation we need to introduce first
some notation: For a smooth function Λ from R

3 to SO3(R), and for x ∈ R
3, we

define the matrix Dx(Λ) such that

(w · ∇x)Λ = [Dx(Λ)w]×Λ, for any w ∈ R
3.

This matrix is well defined (see [17, Sec. 4.5]). With this, we define the following
first-order operators

δx(Λ) = Tr(Dx(Λ)), [rx(Λ)]× = Dx(Λ) − Dx(Λ)T .

In order to present the results on the quaternion formulation, we first intro-
duce the (right) relative differential operator on H1: for a function q = q(t, x)
where q(t, x) ∈ H1 and for ∂ ∈ {∂t, ∂x1 , ∂x2 , ∂x3}, let

∂relq := (∂q)q∗,
(

= Im((∂q)q∗)
)
, (68)

where ∂q belongs to the orthogonal space of q, and the product has to be under-
stood in the sense of quaternions. Notice that, effectively, ∂relq is a purely imag-
inary quaternion, since Re((∂q)q∗) = q · ∂q = 0 (by the fact that q is a unit
quaternion), and it can be identified with a vector in R

3. With this, we define
the (right) relative space differential operators

∇x,relq = (∂xi,relq)i=1,2,3 = ((∂xi
q)q∗)i=1,2,3 ∈ (R3)3 ⊂ H

3,

∇x,rel · q =
∑

i=1,2,3

(∂xi,relq)i =
∑

i=1,2,3

((∂xi
q)q∗)i ∈ R,

where ((∂xi
q)q∗)i indicates the i-th component of (∂xi

q)q∗.
With these notations, we can state the main result:

Theorem 2 ((Formal) macroscopic limit). The following results hold true
for both the jump model and the gradual alignment model. When ε → 0 in the
kinetic equations (46) (matrix representation) and (49) (quaternion representa-
tion) it holds (formally) that

fε → f = f(t, x,A) = ρMΛ(A), with Λ = Λ(t, x) ∈ SO3(R), ρ = ρ(t, x) ≥ 0,

fε → f = f(t, x, q) = ρ̄Mq̄(q), with q̄ = q̄(t, x) ∈ H1, ρ̄ = ρ̄(t, x) ≥ 0,
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for the matrix representation and the quaternion representation, respectively.
Moreover, if the convergence is strong enough and the pair functions (ρ, Λ), (ρ̄, q̄)
are regular enough, then they satisfy the following systems, respectively:

∂tρ + ∇x · (c1ρΛe1) = 0, (69)
ρ(∂tΛ + c2((Λe1) · ∇x)Λ)

+ [(Λe1) × (2c3∇xρ + c4ρrx(Λ)) + c4ρδx(Λ)Λe1]× Λ = 0, (70)

and

∂tρ̄ + ∇x · (c1e1(q̄)ρ̄) = 0, (71)
ρ̄(∂tq̄ + c′

2(e1(q̄) · ∇x)q̄)
+ c3 [e1(q̄) × ∇xρ̄] q̄ + c4ρ̄ [∇x,relq̄ e1(q̄) + (∇x,rel · q̄)e1(q̄)] q̄ = 0, (72)

where the (right) relative differential operator ∇x,rel is defined in Eq. (68); and

e1(q̄) = Im(q̄e1q̄∗),

and where ci, i = 1, . . . , 4 are explicit constants. To define them we use the
following notation: for two real functions g, w consider

〈g〉w :=
∫ π

0

g(θ)
w(θ)

∫ π

0
w(θ′)dθ′ dθ.

Then the constants are given by

c1 =
2
3
〈1/2 + cos θ〉m(θ) sin2(θ/2),

c2 =
1
5
〈2 + 3 cos θ〉m(θ) sin4(θ/2)h̄(cos(θ/2)) cos(θ/2),

c′
2 =

1
5
〈1 + 4 cos θ〉m(θ) sin4(θ/2)h̄(cos(θ/2)) cos(θ/2),

c3 =
D

2
,

c4 =
1
5
〈1 − cos θ〉m(θ) sin4(θ/2)h̄(cos(θ/2)) cos(θ/2),

where

m(θ) := exp
(

1
D

(
1
2

+ cos θ

))

,

with h̄ given by, for r ∈ (−1, 1),

h̄(r) =

{
h(r) in the gradual alignment model,

r in the jump model,

where h is the unique solution of the differential equation (63).
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Note that the matrix product in the fourth term of Eq. (72) has to be under-
stood as a matrix product, giving rise to a scalar product in H:

∇x,relq̄ e1(q̄) = ((∂xi,relq̄) · e1(q̄))i=1,2,3.

We now state the equivalence of the matrix formulation and the quaternion
formulation:

Theorem 3 (Equivalences of the equations [18]). Let ρ0 = ρ0(x) ≥ 0.
Let q̄0 = q̄0(x) ∈ H1 and Λ0 = Λ0(x) ∈ SO3(R) represent the same rotation,
i.e., Λ0(x) = Φ(q̄0(x)) for all x ∈ R

3. Then the system (69)–(70) and the sys-
tem (71)–(72) are equivalent (in the sense that any solution (ρ, Λ = Φ(q̄)) of the
system (69)–(70) is a solution (ρ̄, q̄) of (71)–(72)).

Therefore the equations in the matrix formulation and in the quaternion
formulation are equivalent. For an explicit term-by-term equivalence, the reader
is referred to [18, Sec. 5.3.3]. Moreover, we have the following corollary:

Corollary 1. The jump model and the gradual alignment model give rise to the
same macroscopic equations with different constants when the equilibria in the
jump model is given by a von-Mises distribution.

We conclude this section by giving a short interpretation of the macroscopic
equations obtained in Theorem2. For a full description and justification we refer
the reader to [17,18]. Since by Theorem3 we know that the systems (69)–(70)
and (71)–(72) are equivalent, we will restrict ourselves to interpreting the matrix
formulation (for more details on the quaternion formulation the reader is referred
to [18]).

Equation (69) is the continuity equation for ρ and ensures mass conservation.
The convection velocity is given by c1Λe1 and Λe1 gives the direction of motion.
Equation (70) gives the evolution of the mean orientation Λ. We remark that
every term in Eq. (70) belongs to the tangent space at Λ in SO(3); this is true
for the first term since (∂t + c2(Λe1) · ∇x) is a differential operator and it also
holds for the second term because it is the product of an antisymmetric matrix
with Λ (see Proposition 2).

The term corresponding to c3 in (70) gives the influence of ∇xρ (pressure
gradient) on the body attitude Λ. It has the effect of rotating the body around the
vector directed by (Λe1)×∇xρ at an angular speed given by c3

ρ ‖(Λe1)×∇xρ‖, so
as to align Λe1 with −∇xρ (for more details on this, see [17]). Therefore, the ∇xρ
term has the same effect as a pressure gradient in classical hydrodynamics. In
this case the pressure gradient has the effect of rotating the whole body frame.

If we had that c3 = c4 = 0, then we would recover the Self-Organized Hydro-
dynamic (SOH) model. The SOH model corresponds to the macroscopic equa-
tions of the Vicsek model [21]. The SOH model bears analogies with the com-
pressible Euler equations, where (69) is obviously the mass conservation equa-
tion and (70) is akin to the momentum conservation equation. There are however
major differences. The first one is that we preserve the constraint Λ(t) ∈ SO3(R)
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for all times and so the mass convection speed is |c1Λ(t)e1| = c1 for all times,
while the velocity in the Euler equations is an arbitrary vector. The second one
is that the convection speed c2 is a priori different from the mass convection
speed c1. This difference is a signature of the lack of Galilean invariance of the
system, which is a common feature of all dry active matter models.

The major novelty of the present model are the terms with constants c3
and c4. They influence the transport of the direction of motion Λe1. The over-
all dynamics tends to align the velocity orientation Λe1, not opposite to the
density gradient ∇xρ but opposite to a composite vector (c3∇xρ + c4ρ rx). The
vector rx gives rise to an effective pressure force which adds up to the usual
pressure gradient. In addition to this effective force, spatial inhomogeneities of
the body attitude also have the effect of inducing a proper rotation of the frame
about the direction of motion. This proper rotation is proportional to δx. For an
interpretation of rx, δx, see [17].

Finally, we add the following interpretation based on the quaternion for-
mulation. First, note that considering ∂ = ∂t the time derivative, for a func-
tion q = q(t, x) with values in H1 the vector ∂t,relq = ∂tq q−1 is half of the
angular velocity of a solid of orientation represented by q. By analogy, the vec-
tor ∂xi,relq = ∂xi

q q−1 for i = 1, 2, 3 is half of the angular variation in space of
a solid of orientation represented by q. Now, in the quaternion formulation the
evolution equation for the body attitude can be rewritten as

ρ̄(∂t,relq̄ + c2(e1(q̄) · ∇x,rel)q̄)
+ c3e1(q̄) × ∇xρ̄ + c4ρ̄ [∇x,relq̄ e1(q̄) + (∇x,rel · q̄)e1(q̄)] = 0,

simply by multiplying Eq. (72) by q̄−1 on the right. This equation lives in R
3

(since ∂relq̄ lives in R
3), and it only involves the following physical quantities:

the macroscopic density ρ (and its space gradient), the macroscopic direction of
movement e1(q̄), and the macroscopic angular time/space variations of the body
attitude 2∂relq̄.

6 Conclusion

In these notes, we have formally derived macroscopic models, starting from the
description of particle systems, and using an intermediate kinetic model to link
the two scales. The two limits (N → ∞ for the particle system, and ε → 0 for
the rescaled kinetic equations) are formal derivations, but some steps towards
a rigorous limit can be done. A way to recover a rigorous mean-field limit is
to change the model in such a way that the singular behavior of the alignment
is removed, as in [7], but it introduces a phenomenon of phase transition as
in [15,16]. The study of this phase transition is an ongoing work. Another issue
to have a better understanding of the limit ε → 0 is to have well-posedness of
the macroscopic system (69)–(70), so we need to study its hyperbolicity. This is
also an ongoing work.
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6. Bolley, F., Cañizo, J.A., Carrillo, J.A.: Stochastic mean-field limit: non-Lipschitz
forces & swarming. Math. Models Methods Appl. Sci. 21(11), 2179–2210 (2011)
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Abstract. We discuss fluctuations in stochastic lattice gas models from
a microscopic and mesoscopic perspective by using techniques from alge-
bra, in particular the use of symmetries and time-reversal. First we
present a generic method to derive rigorously duality functions. As appli-
cations we obtain detailed information about density fluctuations in the
symmetric simple exclusion process on any graph and about the micro-
scopic structure and fluctuations of shocks in the one-dimensional asym-
metric simple exclusion process. Then we use time reversal to prove a
general current fluctuation theorem from which celebrated fluctuation
relations such as the Jarzynski relation and the Gallavotti-Cohen symme-
try arise as corollaries and which can be straightforwardly generalized to
derive other fluctuation relations. Finally, going beyond rigorous results,
we describe briefly how nonlinear fluctuating hydrodynamics yields the
Fibonacci family of dynamical universality classes which has the diffusive
and Kardar-Parisi-Zhang universality classes as its first two members.

Keywords: Interacting particle systems · Duality · Shocks ·
Fluctuation theorems · Dynamical universality classes

1 Introduction

A major outcome of the research on driven diffusive systems in one dimension
is the insight that they exhibit remarkably rich stationary and dynamical prop-
erties even when interactions are only short-ranged. One observes in nonequi-
librium steady states anomalous transport, boundary-induced phase transitions,
spontaneous symmetry breaking, long-range order and phase coexistence which
have no equilibrium counterpart in one space dimension. The dynamics exhibit
intriguing shock-like discontinuities, universal non-diffusive dynamical scaling,
remarkable large deviation properties, and more. From a theoretical perspective
the main task is to characterize universal features of these phenomena and to
understand how they emerge from the microscopic dynamics, in particular, from
conservation laws and other kinetic constraints on the microscopic interactions.

A major contribution to this program has come from the study of stochastic
lattice gas models [11,12,26,60,67,68,93,94,100]. These are Markovian processes
for classical interacting particles subject to one or both of the following two
mechanisms that break time-reversal symmetry
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• Action of directed non-Hamiltonian random forces
• Particle exchange with boundary reservoirs at different densities

As a result of these mechanisms the particle system can support macroscopic
stationary currents that are odd under time-reversal, which is a hallmark of
nonequilibrium behaviour.

Further significant progress on the role of time-reversal has been made by
studying large deviations in Markov processes where the transition rates may
depend on time. It has been realized that time-reversal implies a relation between
the probability of a positive value of some fluctuating quantity to the probability
of the negative of that quantity [31,42,44,65,99] arbitrarily far from its mean
value. Prominent examples for such relations include the Jarzynski relation for
the distribution of nonequilibrium work [49] and the Gallavotti-Cohen theorem
[34] for the distribution of the entropy production in deterministic dynamics.
These and other fluctuation theorems provide further deep insight into many-
body systems far from thermal equilibrium.

Various exact and rigorous results along these lines have been obtained by
exploiting a very simple mathematical relation between the Markov generator
of such processes and the Hamiltonian operator of certain quantum systems
[69,93]. In some case the quantum Hamiltonian is amenable to treatment by
mathematical tools coming from linear and multilinear algebra, and the theory
of associative algebras. These tools can then be employed to solve probabilistic
problems, the quantum physics of the Hamiltonian being completely irrelevant
in this context. In these lectures we survey some of these methods which seem
somewhat alien to probability theory but are nevertheless useful, particularly on
the microscopic level of the model. No reference to actual quantum physics is
necessary and none will be made.

The usefulness of the correspondence to quantum Hamiltonians goes beyond
the algebraic properties and notably includes in some cases of interest the full
integrability of the quantum Hamiltonian where powerful techniques such as the
Bethe ansatz and random matrix theory come into play. The full correspondence
to quantum Hamiltonians has given rise to the study of integrable probability
[16]. The present notes may be useful as a stepping stone to this more advanced
application of the quantum Hamiltonian formalism.

1.1 Exclusion Processes

In order make these general ideas more concrete we introduce some basic Marko-
vian lattice gas models called exclusion processes. From a physics perspective
the importance of these models can hardly be understated:

Stochastic lattice gas models, in particular, exclusion processes,
are mathematical models amenable to rigorous and numerical
analysis which are of fundamental importance for understand-
ing nonequilibrium phenomena in driven diffusive systems.
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We start with the simplest model which consists of identical conserved particles
with hard-core interaction, viz., the asymmetric simple exclusion process (ASEP)
in one space dimension [104].

The Asymmetric Simple Exclusion Process: A Short Review. The
ASEP has become a paradigmatic example for a driven diffusive system and
has attained a status in the study of nonequilibrium systems somewhat simi-
lar to the role that the Ising model plays in equilibrium statistical mechanics.
The ASEP is a Markov process in continuous time which in its one-dimensional
version can be described informally as follows.

(a) State Space: Each site k of the integer lattice Λ is occupied by at most
one particle. This occupation is specified by the random variable ηk ∈ {0, 1}
indicating whether site k is vacant or occupied. The lattice Λ is a finite or infinite
contiguous subset of ZZ. The set of configurations η := {ηk : k ∈ Λ} is therefore
Ω = {0, 1}Λ. Sometimes these configurations are referred to a microstates.

(b) Bulk Dynamics: Particles hop randomly in continuous time to the right
neighboring site (clockwise in case of periodic boundary conditions) with rate
r and to the left (anticlockwise) with rate � respectively, provided the target
site is empty. Otherwise the attempted move is rejected. Hopping attempts take
place independently with an exponential waiting time distribution with mean
τw = 1/(r + �) (Fig. 1). We present this hopping rule as follows:

A0 → 0A with rate r

0A → A0 with rate �. (1.1)

Here the symbol A represents occupation by a single particle and 0 represents an
empty site. For definiteness we shall assume r ≥ � corresponding to an average
drift on positive lattice direction, or clockwise in case of a finite periodic lattice.
As a function of time, the occupation numbers ηk(t) describe a single history (i.e.,
realization) of the stochastic dynamics. We shall write out the time-dependence
only where necessary for avoiding confusion.

α

γ

δ

β

ASEP r   l

Fig. 1. Pictorial representation of the ASEP with open boundaries and bulk hopping
rates r to the right and l ≡ � to the left. Some but not all possible jumps are indicated.
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(c) Boundary Conditions: For a finite lattice with L sites one has to specify
boundary conditions. Most commonly studied are periodic boundary conditions,
reflecting boundaries (hopping confined to a box) [67,86], and open boundary
conditions [24,62,89] where particles may enter and exit the lattice at the bound-
ary sites 1 and L under the exclusion constraint with rates α, β, γ, δ as indicated
in Fig. 1. The parametrization α = rλ−ρ−, γ = �λ−(1 − ρ−) as left boundary
rates and β = rλ+(1 − ρ+), δ = �λ+ρ+ as right boundary rates may be inter-
preted as a connection to particle reservoirs with constant density ρ− at the
left boundary and density ρ+ at the right boundary, respectively. Physically, the
parameters λ± describe a hopping mechanism between the reservoirs and the
chain which differs from the hopping inside the chain unless λ± = 1.

Terminology: For � = 0 or r = 0 the process is called totally asymmetric simple
exclusion process (TASEP). For r = � one uses the term symmetric simple
exclusion process (SSEP or SEP). If the difference r − � is taken to zero in some
limiting procedure then one speaks of the weakly asymmetric simple exclusion
process (WASEP).

The ASEP was first proposed in an early biophysics context in 1968 as a
model to describe the kinetics of protein synthesis through ribosomes moving
along m-RNA templates [70,91]. Later it became the “mother” of lattice gas
models for automobile traffic [73], see [88] for a thorough discussion of these
developments and applications to real biological systems and traffic flow. From
a mathematical perspective perhaps the most significant feature is its intimate
link to the Kardar-Parisi-Zhang equation [56] for interface growth. Despite being
one-dimensional in its simplest formulation it also serves as a model to capture
features of driven noisy dynamics in zeolites, carbon nanotubes, artificial narrow
channels for colloidal particles, or, via various mappings, for interface dynamics
in two dimensions and polymer dynamics and flux lines in three dimensions [93].
As the ASEP has become a paradigmatic reference model we review some of its
basic features.

Stationary Distributions. For periodic boundary conditions the total particle
number N =

∑
k∈Λ ηk is conserved and the invariant measure for the process

with a fixed number of particles is easily seen to be uniform. This fact allows for
the construction of a family of invariant measures which are Bernoulli product
measures with parameter ρ = Eρηk which is the particle density. We note that
this measure is also an invariant measure for the ASEP defined on the infinite
lattice ZZ.

The particle number fluctuations in this product measure are captured by
the compressibility

K :=
∑

k∈Λ

Eρ [ηk(η0 − ρ)] = ρ(1 − ρ). (1.2)

The instantaneous current

j(t) := rηk(t)(1 − ηk+1(t)) − �(1 − ηk(t))ηk+1(t) (1.3)
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is a time-dependent random number with stationary expectation

j(ρ) := Eρjk(t) = (r − �)ρ(1 − ρ). (1.4)

This stationary current j tells us the net number of particle that flow across a
lattice bond 〈k, k+1〉 per infinitesimal time interval. The time-integrated current
is the random number

Jk(t) :=
∫ t

0

ds jk(s). (1.5)

Obviously, one has EρJk(t) = j(ρ)t.
The open ASEP is ergodic. The exactly known unique invariant measure

is non-trivial and exhibits an intriguing phase diagram as a function of the
reservoir densities ρ± (Fig. 2). The bulk density ρ undergoes a nonequilibrium
discontinuous transition along the line 0 < ρ− = 1 − ρ+ < 1/2 between a
low-density phase with bulk density ρ = ρ− to a high-density phase with bulk
density ρ = ρ+. There are nonequilibrium continuous transitions from both
phases to a maximal current phase with ρ = 1/2, which one has inside the
region 1/2 < ρ− ≥ 1, 0 ≤ ρ+ < 1/2 [23,25,62,66,70,89].

The microscopic density profiles are non-trivial in all phases [25,89]. At the
first-order transition line one has phase coexistence with a left domain of density
ρ− and a right domain of density ρ+, separated by a domain wall. On macro-
scopic scale this domain wall corresponds to a shock, i.e., a density disconti-
nuity. Inside the maximal current phase the local density decays algebraically
from the boundaries to its asymptotic bulk value 1/2. The theory of boundary-
induced phase transitions [61,75] explains that these phase transitions arise on
microscopic level from the interplay of the shock motion and the flow of local
perturbations as described by the so-called dynamical structure function. In this
way one understands and extends the hydrodynamic derivation of the phase dia-
gram, first proposed by Krug [62]. Recently, the theory was proved rigorously
by Bahadoran [3].

Dynamical Properties. On microscopic scale the local density ρk(t) := Eηk(t)
starting from some initial measure μ0 satisfies, due to particle number conser-
vation, away from the boundaries the lattice continuity equation

d
dt

ρk(t) = jk−1(t) − jk(t) (1.6)

where jk(t) = Ejk(t) is the expectation of the instantaneous current (1.3). This
equation does not allow for an explicit solution on microscopic level. However,
it can be proved that on macroscopic Eulerian scale the density profile of the
ASEP evolves according to the inviscid Burgers equation [85]

∂

∂t
ρ +

∂

∂x
j(ρ) =

∂

∂t
ρ + vc(ρ)

∂

∂x
ρ = 0 (1.7)
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ρ

LD

HD

−

ρ = ρ+

ρ = ρ ρ = 1/2

MC

0                             1/2                             1

1/2

coex

+
1

                          ρ−

Fig. 2. Phase diagram of the ASEP with open boundaries. LD (HD) denotes the low
(high) density phase, and MC the maximal current phase. The red coexistence line
marks a discontinuous phase transition between bulk densities ρ− and ρ+. The green
phase transition lines correspond to a continuous phase transition between bulk densi-
ties ρ± and 1/2.

where here ρ ≡ ρ(x, t) is the coarse-grained local density, j(·) is the stationary
current-density relation (1.4) and

vc(ρ) =
d
dρ

j(ρ) = (r − �)(1 − 2ρ) (1.8)

is the collective velocity, also known as speed of the characteristics, that plays a
prominent role in the dynamics of the ASEP.

The density develops a travelling shock discontinuity unless the initial density
profile is monotonously decreasing. The shock velocity of a shock with constant
left density ρ− and constant right density ρ+ > ρ− is given by the Rankine-
Hugoniot condition [63]

vs(ρ+, ρ−) =
j+ − j−
ρ+ − ρ−

(1.9)

with the stationary currents j± = j(ρ±) in the two branches of the shock. Look-
ing at diffusive scale into the vicinity of the moving shock position one finds
that the shock performs a diffusive motion around its mean position [33] with
diffusion coefficient

Ds(ρ+, ρ−) =
1
2

j+ + j−
ρ+ − ρ−

(1.10)

The shock has been shown to be sharp even on microscopic lattice scale [6,25,32].
More detailed information about fluctuations are captured by the dynamical

structure function
Sk(t) := Eρ (ηk(t)η0(0)) − ρ2 (1.11)
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that describes the flow and spreading of local fluctuations (Fig. 3). On large
scales it acquires for the ASEP a universal scaling form

S(x, t) =
κ

(Et)
1
z

fPS

(
x − vct

(Et)
1
z

)

(1.12)

with the universal Prähofer-Spohn scaling function fPS(·) [82], universal dynam-
ical exponent z = 3/2 characteristic for the universality of the celebrated Kardar-
Parisi-Zhang equation [40,56], the collective velocity vc = j′(ρ) (1.8) and the
non-universal constant E = |j′′|

√
2κ where κ is the static compressibility (1.2).

This scaling form implies means that the center of mass of a fluctuations trav-
els with collective velocity vc and spreads with a width that increases in time
superdiffusively as t1/z. The symmetric process (SSEP) with r = � is in the
diffusive universality class with dynamical exponent z = 2 and Gaussian scaling
function and will be discussed in more detail below.

Fig. 3. Schematic plot of the dynamical structure at two times t2 > t1 with center of
mass at lattice x0 at t = t1.

For completeness, and also because of the important connection with and
great current interest in the Kardar-Parisi-Zhang equation, we mention that
the time-integrated current, measured in a frame moving with the characteristic
velocity, also has a universal scaling form that depends on properties of the
initial distribution [2,9,17,18,46,54,64,81,87,107]. Its fluctuations around the
mean (1.4) exhibit the KPZ exponent z = 3/2.

Multispecies and Multilane Exclusion Processes. Models with more than
one conservation law are much less understood, but some exact results on sta-
tionary distributions and, in particular, numerical simulations and analytical
approximations indicate a wealth of intriguing behaviour. For an older review
we refer to [94]. Some recent numerical results will be discussed below and there-
fore we briefly describe some simple models.

The perhaps simplest particle system with more than one conserved species
of particles is a multi-species exclusion process where each lattice site can be
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found in three different states: empty, or occupied by either an A-particle or a
B-particle. Such an exclusion process is described by the six hopping rates

A0 → 0A with rate wA0

0A → A0 with rate w0A

B0 → 0B with rate wB0

0B → B0 with rate w0B (1.13)
AB → BA with rate wAB

BA → AB with rate wBA.

Since there are two conservation laws one has two evolution equations for the
two local densities

d

dt
ρA

k (t) = jA
k−1(t) − jA

k (t) (1.14)

d

dt
ρB

k (t) = jB
k−1(t) − jB

k (t) (1.15)

where jA,B
k are the expectations of the respective instantaneous currents. The

stationary distribution of this process and hence the current-density relations
jA(ρA, ρB) and jB(ρA, ρB) are known only on certain parameter manifolds [12,
94]. For

wAB + w0A + w0B = wA0 + wBA + wB0 (1.16)

the canonical measure with fixed particle numbers NA and NB is uniform which
allows for the construction of a product measure parametrized by densities ρA

and ρB [47,95].
The stationary currents are then given by

jA(ρA, ρB) = (wA0 − w0A)ρA(1 − ρA) − (wB0 − w0B)ρAρB (1.17)
jB(ρA, ρB) = (wB0 − w0B)ρB(1 − ρB) − (wA0 − w0A)ρAρB . (1.18)

The hopping asymmetry generates a coupling between the two densities, leading
to a non-trivial coupled system

∂

∂t
ρA +

∂

∂x
jA(ρA, ρB) = 0 (1.19)

∂

∂t
ρB +

∂

∂x
jB(ρA, ρB) = 0 (1.20)

of hyperbolic conservation laws for the coarse-grained local densities ρA,B(x, t).
If, however, e.g. wB0 = w0B the macroscopic evolution is known: The density of
the A-particles evolves autonomously as the in the single-species ASEP and the
B-particle density can be integrated straightforwardly [83].

A different way of constructing models with more than one conservation law
are coupled multi-lane models where hopping rates on one lane depend on the
particle configuration also of other lanes, but no particle exchange between lanes
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take place. An interesting class are models where the invariant measure is not
changed by the coupling to the other lanes. This can be realized e.g. in a two-
lane TASEP by making the rate of jump from site k to site k+1 proportional to
a linear function of the number of particles on site k and k + 1 in the adjacent
lane, i.e., for nα

k := ηα
k + ηα

k+1 one chooses rates r1(n2
k) for lane 1 and r2(n1

k) for
lane 2 given by [77]

r1(n2
k) = 1 + γn2

k/2, r2(n1
k) = b + γn1

k/2, (1.21)

see Fig. 4 for illustration. It is easy to see that a product of two Bernoulli product
measures is invariant under the stochastic dynamics of this process. One finds
the two stationary currents

j1(ρ1, ρ2) = ρ1(1 − ρ1)(1 + γρ2), j2(ρ1, ρ2) = ρ2(1 − ρ2)(b + γρ1). (1.22)

Notice that like (generically) in the single-lane multi-species process described
above the currents depend on both densities unless the interaction constant γ
vanishes.

Lane 2

r (2)
2

r (0)
1
r (1)

1

Lane1

Fig. 4. Two-lane TASEP without hopping between lanes. Some possible jumps and
their rates according to (1.21) are shown. The boxes drawn with broken lines indicate
on which sites in the neighbouring lane the jump rate depends.

The particle number fluctuations in the Bernoulli product measure are
described by the compressibility matrix with matrix elements

Kλμ :=
1
L

〈(Nλ − ρλL)(Nμ − ρμL)〉 (1.23)

Due to the factorized nature of the invariant measure K is diagonal with diagonal
elements Kλλ = ρλ(1 − ρλ) like in a single-lane TASEP. Two-lane exclusion
processes as well as their multilane generalizations serve as prototypical models
for studying universal fluctuations which, as will be argued below, are not always
diffusive or KPZ.
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1.2 Generator of Markov Processes in Matrix Form

We recall the definition of a Markov process ηt with state space Ω and transition
rates wη′,η for a transition from a configuration η ∈ Ω to a configuration η′ ∈ Ω
in terms of a generator L acting on suitably chosen functions f(η) through the
relation

Lf(η) =
∑

η′∈Ω\η
wη′,η[f(η′) − f(η)]. (1.24)

The transition rates can be viewed as matrix elements of the so-called intensity
matrix.

Definition 1. The negative intensity matrix H of the process ηt with state space
Ω is the matrix with elements

Hη′η =

⎧
⎨

⎩

−wη′,η η 
= η′
∑

η′∈Ω\η

wη′,η η = η′. (1.25)

Remark 1. The intensity matrix is often represented in transposed form and with
opposite sign and also called transition rate matrix. By definition of a transition
rate one has −Hη′η ∈ IR+

0 (positivity of rates) and
∑

η∈ΩHη′η = 0 (probability
conservation). We shall call any matrix with these properties an intensity matrix.

The link to quantum mechanical condensed matter systems mentioned above
is simple: In many cases of interest the intensity matrix is the same object as
the quantum Hamiltonian operator of some many-body quantum system. The
idea of exploiting this relationship is very simple:

One writes the generator of a Markov process in terms of the
intensity matrix of transition rates, expresses expectations as
bilinear forms, and uses tools from algebra and condensed mat-
ter theory for solving probabilistic problems.

Quantum mechanics as such plays no part in extracting information about prop-
erties of the intensity matrix, only the purely mathematical machinery developed
for many-body quantum systems comes into play. Here we focus on mathemati-
cal techniques from algebra that have proved useful in the treatment of quantum
Hamiltonian operators. Other useful techniques from condensed matter theory,
in particular the Bethe ansatz, are not discussed here.

The idea of formulating the master equation in terms of a many-body quan-
tum Hamiltonian is not new. Systematic treatments of various aspects of the
quantum Hamiltonian formalism go back to [1,28,37,55]. A mathematically rig-
orous account is given in [69,105] and a detailed (non-rigorous) review is [93].
The extension to infinite systems can usually be made without great difficulty if
the state space is countably infinite or by taking appropriate limits of expectation
values if the state space of the infinite system is not countable.
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Matrix Formulation of the Generator. To exhibit as clearly as possible
the essential ideas we shall consider mostly irreducible systems with finite state
space Ω. This allows us to straightforwardly adopt the strategy of describing the
time evolution of the process by a master equation for the probability measure
which is the differential form of the Chapman-Kolmogorov equation. Solving the
master equation, which is a first-order linear differential equation in the time
variable, yields the probability of finding any given state the system may take
given that it started from some initial state.

The defining Eq. (1.24) can be written in terms of the negative intensity
matrix H as

Lf(η) = −
∑

η′∈Ω

f(η′)Hη′η (1.26)

with summation over η on the r.h.s. included. This follows from splitting the sum
on the r.h.s. into two terms −(f(η)Hηη +

∑
η′∈Ω\η f(η′)Hη′η) from which one

recovers (1.24) by using (1.25). According to (A.2) the r.h.s. of (1.26) represents
the left multiplication of the matrix H with a row vector with components f(η′).

Taking the expectation Eμ under a measure μ, one gets from (1.26) (after
renaming dummy variables inside the sums)

d
dt

Eμt
f = Eμt

[Lf ] = −
∑

η′∈Ω

f(η′)
∑

η′′∈Ω

Hη′η′′μt(η′′) =
∑

η∈Ω

f(η)LT μt(η).

(1.27)
Choosing as f(η) the indicator function 1η : Ω → {0, 1}, ξ �→ 1η(ξ) = δη,ξ the
second equality yields

LT μ(η) = −
∑

η′∈Ω

Hηη′μ(η′) (1.28)

where the r.h.s. represents the right multiplication of the matrix H with a column
vector with components μ(ξ). The semigroup property of Markov processes then
implies for the time-evolving measure μt the master equation

d
dt

μt(η) = −
∑

η′∈Ω

Hηη′μt(η′) =
∑

η′∈Ω\η

(wηη′μt(η′) − wη′ημt(η)) (1.29)

which is the adjoint version of (1.26) for functions f(η). The quantity

jt(η′, η) := wη′ημt(η) − wηη′μt(η′) (1.30)

is called the probability current from η to η′.
The matrix multiplications (1.26) and (1.28) raise the question of choice of

basis for the intensity matrix in computations. We assume Ω to be countable so
that to each configuration η one can associate bijectively an integer ι(η) ∈ IN
that enumerates the configurations. We shall call ι(η) the enumeration function.
It is natural to choose the canonical basis vectors denoted by 〈 ei | (represented
as row vectors with components (ei)j = δi,j through the bijective map η �→
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〈 eι(η) | =: 〈 η | and to define also the column vectors | η 〉 := 〈 η |T . A given
enumeration function thus fixes uniquely the matrix H which without explicit
enumeration function would be fixed only up to permutations of the canonical
basis vectors.

With the canonical basis vectors and an enumeration function at hand we
define the function vector

〈 f | :=
∑

η∈Ω

f(η)〈 η | (1.31)

and the probability vector

|μ(t) 〉 :=
∑

η∈Ω

μt(η)| η 〉 (1.32)

for a time-dependent measure μ(t).
Observing biorthogonality one realizes that a function f can be expressed as

dual pairing f(η) = 〈f | η〉 and similarly μt(η) = 〈η|μ(t)〉. These observations
allow us to rewrite (1.24) in the form

Lf(η) = −〈 f |H| η 〉 (1.33)

and the master equation (1.29) can be written in vector form as

d
dt

|μ(t) 〉 = −H|μ(t) 〉. (1.34)

with
H = −

∑

η∈Ω

∑

η′∈Ω\η

wη′η

(
Eη′η − 1̂η

)
(1.35)

where
Eη′η := | η′ 〉〈 η |, 1̂η := | η 〉〈 η |. (1.36)

Integration then expresses the time-dependent measure

|μ(t) 〉 = e−Ht|μ 〉 (1.37)

in terms of an arbitrary initial measure μ = μ(0). In slight abuse of language we
shall call also the negative intensity matrix H the generator of the process. We
shall call the exponential exp (−Ht) the transition matrix at time t.1

Some comments on the spectrum of H for finite state space Ω are in place.
Obviously, dim(H) = |Ω|. Since H is real all eigenvalues are either real or come
in complex conjugate pairs. The negative sign for the off-diagonal elements is by
convention. It ensures, by the theorem of Gershgorin [36], that all eigenvalues of
H are either 0 or have strictly positive real part. Consequently, the eigenvalues
1 This equation has the form of a quantum mechanical Schrödinger equation in imag-

inary time, with H playing formally the role of the quantum Hamiltonian. This fact
has given rise to the notion “quantum Hamiltonian formalism”.
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of the transition matrix exp (−Ht) are either 1 or strictly inside the unit circle
in the complex plane for all times t ∈ IR+

0 . This rules out periodicity of the
process. If the process ηt is irreducible then the matrix H is also irreducible
and has unique lowest eigenvalue 0. By Perron-Frobenius [72] the corresponding
right and left eigenvector can be chosen to have strictly positive real components.
More generally, the following two statements on reducible chains are equivalent:
(i) Ω has exactly n mutually communicating subsets Ωα. (ii) The eigenvalue 0 of
H is n-fold degenerate. The process restricted to a single communicating subset
is ergodic since it is both aperiodic and irreducible.

Expectations. In order to work with this matrix reformulation of the generator
we introduce some further key objects. All summations run over the full set Ω
unless stated otherwise.

Definition 2 (a) The summation vector is the constant bra-vector

〈 s | :=
∑

η

〈 η |. (1.38)

(b) The function matrix f̂ for a function f : Ω → ZZ and the measure matrix μ̂
for a probability measure μ are the diagonal matrices

f̂ :=
∑

η

f(η)| η 〉〈 η |, μ̂ :=
∑

η

μ(η)| η 〉〈 η |. (1.39)

(c) The time-dependent function matrix f̂(t) is defined by

f̂(t) := eHtf̂e−Ht. (1.40)

If f̂(t) = f̂(0) for all t ∈ IR we say that f is conserved.

The function matrix for the indicator function 1η is the projector 1̂η =
| η 〉〈 η |, i.e. the dyadic product of the canonical basis vector | η 〉 with its trans-
pose. For a strictly positive measure any power μ̂α exists. Therefore, in partic-
ular, the inverse μ̂−1 exists.

Since by construction in each column of H all matrix elements sum up to
zero the summation vector is a left eigenvector of H with eigenvalue 0, i.e.,

〈 s |H = 0. (1.41)

This fact expresses conservation of probability since 〈s|μ(t)〉 = 〈 s |e−Ht|μ 〉 =
〈s|μ〉 = 1 with μ = μ0. For the function vector 〈 f | (1.31) we have trivially that

〈 s |f̂ = 〈 f |. (1.42)

This yields for the expectation of a function f(η) the various equivalent matrix
representations

Eμt
f ≡ 〈f〉μt

= 〈 s |f̂ |μ(t) 〉 = 〈 s |f̂e−Ht|μ 〉 = 〈 s |f̂(t)|μ 〉 ≡ 〈ft〉μ (1.43)
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where in the rightmost expression we use the notation ft(η) = f(ηt).
The expectation – which we shall denote by angular brackets – is an average

both over histories of the process and over the initial distribution μ. Of course, if
the initial distribution is concentrated on a particular configuration ξ, the brack-
ets reduce to an average over histories. For a process starting at a configuration
ξ the expectation of the indicator function 1η yields the conditional probability
(sometimes called propagator)

P (η, t|ξ, 0) = 〈 s |1̂ηe−Ht| ξ 〉 = 〈 η |e−Ht| ξ 〉 = 〈 ξ |e−HT t| η 〉. (1.44)

Multi-time expectations can be expressed analogously using the propagator and
the Chapman-Kolmogorov equation arising from the Markov property of the
process.

Stationarity. One of the most basic questions to ask is the behaviour at late
times of the stochastic evolution. If the process is ergodic then the measure in
the limit t → ∞ is independent of the initial state and one would like to know
for interacting particle systems quantities like the mean density, density fluctu-
ations, or the spatial structure of the particle distribution and its correlations.
For transition rates that are constant in time this asymptotic measure is invari-
ant under time translations and hence called stationary. We shall denote any
normalized stationary measure by μ∗, its associated probability vector by |μ∗ 〉
and the diagonal measure matrix by μ̂∗. From the considerations of the previous
subsections it is clear that |μ∗ 〉 is a right eigenvector of H with eigenvalue zero,

H|μ∗ 〉 = 0. (1.45)

Trivially, one has
|μ∗ 〉 = μ̂∗| s 〉 (1.46)

where | s 〉 := 〈 s |T has constant components sη = 1. If the process is ergodic
then μ∗ = μ∞ is unique and the diagonal matrix power (μ̂∗)α with diagonal
elements (μ∗(η))α exists for every α ∈ ZZ.

Symmetry

Definition 3. Let S : Ω×Ω → ZZ be a function and Ŝ be a matrix with elements
Sη,ξ = S(η, ξ). If Ŝ satisfies

[H , Ŝ] = 0. (1.47)

then S is called a symmetry of the process with generator H.

Conservation of f implies the commutation relation [H , f̂ ] = 0. Therefore a
conserved f is a symmetry of the process. Notice that conservation of f implies
〈 f |H = 0, which means that f is a harmonic function. The converse, however, is
not true: A function may be harmonic, but not conserved. Nevertheless, a non-
constant harmonic function implies existence of a conserved function S with the
property 〈 s |Ŝ = 〈 f |.
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1.3 Time Reversal

For every process with generator H one can define a time-reversed process as
follows.

Definition 4 (Reversed process and ground state transformation). Let μ be a
strictly positive stationary solution of the master equation (1.29) for a generator
H. Then

H∗ := μ̂HT μ̂−1 (1.48)

is called generator of the time-reversed (or simply reversed) process. The trans-
formation to the matrix H̃ defined by

H̃ := μ̂−1/2Hμ̂1/2 (1.49)

is called the ground state transformation.

The reversed process evidently has the same invariant measure as the original
process since H∗|μ 〉 = μ̂HT μ̂−1|μ 〉 = μ̂HT | s 〉 = 0 where the final equality
comes from probability conservation (1.41) of the original process with generator
H. Moreover, the reversed process has the same waiting time distribution for all
states and the same allowed transitions as the original process H, but with
different and often complicated non-local transition rates

wrev
η′,η = wη,η′

μ(η′)
μ(η)

. (1.50)

The notion of reversibility has its origin in the following property of equilib-
rium correlation functions.

Proposition 1. Let H be a generator with strictly positive invariant measure
μ and f1 and f2 measurable functions of the configurations η and let H∗ be the
generator of the reversed process. Then

〈f1(t)f2(0)〉μ = 〈f2(0)f1(−t)〉∗
μ (1.51)

where the asterisk denotes expectation under the reversed process.

Proof. By definition f̂1, f̂2, μ̂ are all diagonal and hence commute and are invari-
ant under transposition. Therefore

〈f2(t)f1(0)〉μ = 〈 s |f̂1e−Htf̂2|μ 〉
= 〈 s |f̂1e−Htμ̂f̂2| s 〉
= 〈 s |μ̂∗f̂1e−(H∗)T tf̂2| s 〉
= 〈 s |f̂2e−H∗tf̂1|μ 〉
= 〈f2(t)f1(0)〉∗

μ = 〈f2(0)f1(−t)〉∗
μ (1.52)

where the last equality follows from time-translation invariance of the stationary
distribution. �

Time-reversal symmetry can be extended straightforwardly to multi-time
correlators.
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1.4 Thermal Equilibrium

Often any stationary measure is called an equilibrium measure which is confusing
from a physics viewpoint where “equilibrium” has a much more specific meaning
than just stationarity. It is linked to the existence of some well-defined energy
and time reversal symmetry. In this supplementary section we try to clarify this
notion in terms of Markov processes.

In a physical systems defined by an energy U(η) of the microstate η the
notion of thermal equilibrium at temperature T refers to the situation where
stationary measure is the Boltzmann distribution

μ∗(η) =
1
Z

exp (−βU(η)) (1.53)

which is proportional to the Boltzmann weight exp (−βU(η)). Here β = 1/(kBT )
is proportional to the inverse temperature T , kB is the Boltzmann constant and

Z =
∑

η∈Ω

exp (−βU(η)) (1.54)

is the partition function, related to the free energy F by

F = −kBT ln Z. (1.55)

In order to construct a stochastic process for describing an equilibrium setting
one therefore has to assure that for a given energy function the Boltzmann
distribution (1.53) is stationary.

Stationarity of (1.53), however, is only a sufficient condition to justify the
interpretation of a process as an equilibrium process.

The notion of thermal equilibrium is strongly related to symmetry under
time reversal, which means that some time-reversed process should be the same
as the original forward process. In the following we explain what this reversed
process should be.

In classical mechanics governed by Newton’s equations of motion the concept
of time reversal refers to moving backward in time along a classical trajectory
Φ(t) in the phase space spanned by the coordinates and momenta of the particles,
but not along the same trajectory as in the forward time evolution, but along a
the trajectory with all momenta pi(t) replaced by −pi(t). On the other hand, in
an overdamped motion where acceleration can be neglected, phase space reduces
to the space spanned by the coordinates only. Hence in this case the time-reversed
trajectory is the same as the forward trajectory.

These notions have a natural analogue in the context of stochastic dynamics
where the phase space corresponds to the state space of the process and a tra-
jectory is a history ηt. Depending on the physical interpretation of the stochastic
variables the time-reversed trajectory may then be either the same with time
running backwards (if the image of any microstate under time-reversal is the
microstate itself like in an overdamped motion) or a different trajectory, if the
image of a microstate under time-reversal is some other microstate η̃. Clearly
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the time-reversal map C : Ω → Ω with C(η) = η̃ that mimics time reversal on
microstates satisfies C2(η) = η.

This mapping, be it the identity or not, has to be incorporated into the defi-
nition of a time-reversed process and thus into time-reversal symmetry necessary
for dealing with processes that are models of thermal equilibrium.

Detailed Balance. The simplest way to achieve a time-reversal symmetry is
to impose detailed balance, defined as follows.

Definition 5 (Detailed balance). A Markov process ηt with state space Ω and
transition rates w(η′, η) is said to satisfy detailed balance (or to be reversible) if
there exists a strictly positive measure π(η) such that

π(η)wη′,η = π(η′)wη,η′ ∀ η, η′ ∈ Ω. (1.56)

A measure π with this property is called reversible. If Z :=
∑

η π(η) < ∞ then
Z is called the partition function.

The equilibrium measure entering the detailed balance definition is an invari-
ant measure of the process. This follows immediately from the master equation
(1.29) since due to (1.56) each term in the sum over η′ on the r.h.s. of (1.29)
is equal to zero and therefore the time-derivative of π vanishes. In terms of
the time-reversed process H∗ defined in (1.48) detailed balance simply means
H∗ = H so that the time-reversal operation (1.51) of Proposition 1 becomes a
symmetry. Therefore, processes satisfying detailed balance are also called equi-
librium processes.

Detailed balance means for a Boltzmann distribution that the ratio of tran-
sition rates between two microstates η, η′ equals the exponential exp (−βΔU) of
the energy gain ΔU = U(η′)−U(η) incurred by the transition (Fig. 5). Thus the
transition rate ratio is the equilibrium ratio of the probabilities of finding these
states.

Fig. 5. Stochastic transitions between two states of different equilibrium energies U, U ′.
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In order to further elaborate on the link between detailed balance and time-
reversal symmetry we note the following for the generator H of a reversible
process.

Proposition 2. Let π be a strictly positive measure on the state space Ω. For
an ergodic process ηt with generator H the following statements are equivalent:

(i) The process satisfies detailed balance with reversible measure π.
(ii) HT = π̂−1Hπ̂, where HT is the transpose of H.
(iii) H can be written in the form H = F π̂−1 for some symmetric negative

intensity matrix F .

Proof

(a) Assume (i) is true. By strict positivity π−1 exists and the detailed balance
condition (1.56) can be recast as π−1(η′)w(η′, η)π(η) = w(η, η′). This is
assertion (ii) in terms of each matrix element.

(b) Assume (ii) is true. Writing out the matrix equation (ii) in terms of each
matrix element one gets (i). Moreover, (ii) can be recast as Hπ̂ = π̂HT =
(Hπ̂)T which implies that Hπ̂ is symmetric. That F := Hπ̂ is a negative
intensity matrix follows from the fact that F has non-positive off-diagonal
elements (meaning: non-negative transition rates) and 0 = 〈 s |Hπ̂ = 〈 s |F ,
which is conservation of probability. Thus (iii) follows from (ii).

(c) Assume (iii) is true. Since F is symmetric it follows that HT = π̂−1F =
π̂−1Hπ̂. Thus (ii) follows from (iii). �

With these notions Proposition 2 has a simple corollary that is worth noting.

Corollary 1. Let the process ηt with generator H be ergodic and reversible.
Then (i) H∗ = H and (ii) H̃ is symmetric.

Thus for a reversible ergodic process the spectrum of H is real and strictly
positive except for its unique lowest eigenvalue which is 0.2

Remark 2. Detailed balance means that all stationary probability currents (1.30)
vanish, thus exposing a direct link between probability currents and reversibility.
Notice, however, that a system that does not satisfy detailed balance for the
microscopic transition rates may nevertheless be reversible on macroscopic scales.
A simple example is a translation-invariant random walk whose increments have
zero mean and finite variance. Then by the central limit theorem the large scale
behaviour is that of a diffusive particle whose probability distribution satisfies the
reversible free diffusion equation, irrespective of whether or not the microscopic
increments satisfy detailed balance w.r.t. the stationary uniform measure.
2 On other words, detailed balance implies that the eigenvalues of the generator are

all real and that the related symmetrized generator obtained from the ground state
transformation can be interpreted as Hamiltonian of some quantum system. One
sees that the use of the term quantum Hamiltonian formalism is justified by more
than the formal analogy between Schrödinger equation and master equation.



Fluctuations 85

Generalized Detailed Balance Relation. Mathematically, the reversal of
time is encoded in the transposition of the generator. This corresponds to a
time-reversal operation where all microstates are mapped onto themselves. In
order to describe time-reversal symmetry where the action C on microstates is
not simply the identity for all η we must look for other solutions of the master
equations that generalize detailed balance. With the matrix formulation of the
master equation this problem is straightforward to solve.

Definition 6. A Markov process ηt with state space Ω and transition rates
w(η′, η) is said to satisfy detailed balance (or to be reversible) under conjuga-
tion C : Ω → Ω if C2(η) = η and if there exists a strictly positive measure π(η)
such that

π(η)wη′,η = π(η′)wC(η),C(η′) ∀ η, η′ ∈ Ω. (1.57)

A measure π with this property is called reversible under the conjugation C.

It is easy to see that π(η) is stationary: In matrix form the generalized
detailed balance condition reads

H = π̂ĈHT Ĉπ̂−1 (1.58)

where Ĉ with matrix elements Ĉη′η = δη′,C(η) is the matrix form of the conjugation
map. Since Ĉ| s 〉 = | s 〉 it follows that H|π 〉 = π̂ĈHT Ĉ| s 〉 = π̂ĈHT | s 〉 = 0.
Therefore also processes satisfying the generalized conjugation reversibility may
describe thermal equilibrium, provided that the conjugationC has a physical inter-
pretation as time reversal of the microstates.

2 Duality

Duality is a powerful tool in the study of some interacting particles as in some
cases it allows for expressing one problem in terms of a much simpler problem.
We discuss this property for the SSEP where it was first pointed out by Spitzer
in 1970 [104]. Later, by importing known results about quantum spin systems, it
was realized that this duality arises from a non-abelian symmetry of the gener-
ator [90] known as SU(2) symmetry and eventually extended to the ASEP [92]
which has a related symmetry that we shall not discuss in detail. The relation-
ship between symmetries and duality was brought into a neat and systematic
form by Giardinà et al. [35] which triggered renewed interest in duality, see also
[48] for a survey. The idea we intend to convey in this lecture is summarized as
follows.

The explicit form of the generator for lattice gas models in the
quantum Hamiltonian formalism, i.e., for a suitable choice of
tensor basis of the intensity matrix, often makes explicit non-
abelian symmetries that allow for the derivation of non-trivial
dualities.

We begin by defining duality and presenting it in matrix form [105].



86 G. M. Schütz

2.1 Duality and Symmetry

Definition 7. Let xt be a Markov process with countable state space Ξ and
negative intensity matrix G and ηt be a Markov process with countable state
space Ω and negative intensity matrix H. Furthermore, let D : Ξ ×Ω → IR be a
bounded measurable function. The processes xt and ηt are said to be dual w.r.t.
the duality function D if

ExD(xt, η) = EηD(x, ηt). (2.1)

The |Ω| × |Ξ| matrix

D̂ :=
∑

x∈Ξ

∑

η∈Ω

D(x, η)|x 〉〈 η | (2.2)

with matrix elements Dx,η = D(x, η) is called the duality matrix. For |Ω| = |Ξ| a
duality function of the form D(x, η) =

∑
x d(x)δx,η is called diagonal. If H = G

then the process is said to be self-dual w.r.t. D.

Remark 3. In terms of transition probabilities P (·|·) for xt and Q(·|·) for ηt the
defining relation (2.1) reads

∑

x′∈Ξ

D(x′, η)P (x′, t|x, 0) =
∑

η′∈Ω

D(x, η′)Q(η′, t|η, 0). (2.3)

This yields an equivalent formulation of duality in matrix form by taking the
time derivative at t = 0. With (1.44) one obtains [105]

D̂H = GT D̂. (2.4)

Remark 4. A process with strictly positive invariant measure and its reversed
are dual w.r.t. the diagonal duality function D∗(η, η′) =

∑
x μ−1(η)δη,η′ where

μ > 0 is the common invariant measure. This follows directly from the definition
(1.48) of the reversed process and the matrix representation D̂ = μ̂∗ of the
diagonal duality function.

Following [7,35] we show now that symmetries of a generator may lead to
non-trivial dualities.

Theorem 1. Let H be the negative intensity matrix of an ergodic Markov pro-
cess ηt with countable state space and Hrev be the negative intensity matrix of
the reversed process xt. Assume that there exists an intertwiner Ŝ such that

ŜH = HrevŜ. (2.5)

Then H is self-dual with duality function D(x, η) = Dx,η given by the matrix
elements of the duality matrix

D̂ = μ̂−1Ŝ. (2.6)

with the diagonal stationary distribution matrix of Definition 2.
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Proof. Given the hypothesis (2.5), self-duality with duality matrix (2.6) follows
from the chain of equalities

D̂H = μ̂−1ŜH = μ̂−1HrevŜ = μ̂−1Hrevμ̂D̂ = HT D̂. (2.7)

The first and the third equality are the definition (2.6), the second equality is
the hypothesis (2.5) of the theorem, and the fourth equality is the definition
(1.48) of the reversed process. �

Remark 5. It follows that if H is reversible then the hypothesis (2.5) reads ŜH =
HŜ, i.e. according to (1.47) Ŝ is a symmetry of H.

Corollary 2. Let H be the negative intensity matrix of an ergodic Markov pro-
cess ηt with countable state space and strictly positive invariant measure μ and
S be a symmetry of H. Then H and Hrev are dual w.r.t. the duality function
D(η, η′) = μ−1(η)S(η, η′).

2.2 The Symmetric Simple Exclusion Process

Above we have introduced in an informal fashion the ASEP on the one-
dimensional integer lattice. For symmetric hopping rates r = � =: w the process
randomly interchanges the occupation variables of a pair of sites. This has a nat-
ural generalization to arbitrary graphs and link-dependent hopping rates and can
then informally be described as follows. Let Γ = (Λ, Υ ) be a finite graph with
nodes k ∈ Λ and undirected links 〈k, l〉 ∈ Υ . A configuration of the SSEP is
denoted by η := {ηk : k ∈ Λ} with the L = |Λ| occupation numbers ηk ∈ {0, 1}.
Each link 〈k, l〉 carries a “clock” that rings after an exponentially distributed
random time with parameter wkl ≡ wlk. When the clock rings the occupation
numbers ηk and ηl are interchanged, corresponding to a particle jump across
bond 〈k, l〉 if one of the two sites is occupied and the other is empty.

We first derive the intensity matrix process for this general SSEP. From the
form of the intensity matrix (2.21) that is obtained in the tensor basis (2.13)
used below it becomes evident that this process has a non-Abelian symmetry
under the Lie algebra su(2). This implies that its generator H commutes with
a suitably chosen the representation matrices of the Lie algebra and thus allows
for the computation of duality functions.

Generator of the SSEP in Matrix Form

Definition 8. Let Λ be a finite set of cardinality L, ηj ∈ {0, 1} for j ∈ Λ
the occupation number of an exclusion process, ΩL = {0, 1}L, the state space
and η = {ηj : j ∈ Λ} be a configuration of an exclusion process. For a pair
〈k, l〉 ∈ Λ × Λ the 〈k, l〉-permutation of a configuration η ∈ ΩL is the mapping
πkl : ΩL → ΩL such that πkl(η) �→ ηkl with interchanged occupation numbers

ηkl
j = ηj + (ηk − ηl) (δj,l − δk,l) . (2.8)
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The informal description of the SSEP on the Graph Γ means that the tran-
sition rates are given by

wη ′,η =
∑

〈k,l〉∈Υ

wkl (ηk(1 − ηl) + (1 − ηk)ηl) δη ′,ηkl (2.9)

for all links 〈k, l〉. Thus the generator reads

Lf(η) =
∑

〈k,l〉∈Υ

wkl

[
f(ηkl) − f(η)

]
=

∑

η ′∈ΩL

∑

〈k,l〉∈Υ

wkl

(
δη ′,ηkl − δη ′,η

)
f(η′)

(2.10)
from which one reads off the matrix elements

Hη ′η = −
∑

〈k,l〉∈Υ

wkl

(
δη ′,ηkl − δη ′,η

)
(2.11)

of the negative intensity matrix H of the SSEP.
In order to fix the canonical basis vectors 〈η | = 〈 eι(η) | and |η 〉 = 〈η |T for

the intensity matrix we choose the enumeration function

ι(η) = 1 +
L∑

k=1

ηk2L−k. (2.12)

Thus ι(η) is the decimal value plus 1 of the binary number η1, η2, . . . , ηL. By
the definition of the Kronecker product Definition 13 this choice of enumeration
function corresponds to the tensor basis

〈η | = 〈 η1, . . . , ηL | ≡ 〈 η1 | ⊗ · · · ⊗ 〈 ηL | (2.13)

with the one-site basis vectors

〈 ηk | = (1 − ηk, ηk). (2.14)

This yields the constant summation vector in the tensor form

〈 s | = (1, 1)⊗L. (2.15)

In order to write the generator as a matrix it is useful to introduce the unit
matrix 1 and three Pauli matrices

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

, (2.16)

where i is the imaginary unit. From these we construct the so-called spin-lowering
and raising operator

σ+ =
1
2

(σx + iσy) =
(

0 1
0 0

)

, σ− =
1
2

(σx − iσy) =
(

0 0
1 0

)

(2.17)
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which are nilpotent of degree 2 and the projectors

n̂ =
1
2

(1 + σz) =
(

0 0
0 1

)

, v̂ =
1
2

(1 − σz) =
(

1 0
0 0

)

(2.18)

on a particle and vacancy vector respectively.
From the action of these matrices on the single-site basis vectors one reads

off
(1 + σ+

k σ−
l + σ−

k σ+
l − n̂kv̂l − v̂kn̂l)|η 〉 = |ηkl 〉. (2.19)

The orthogonality relations 〈η′|ηkl〉 = δη ′,ηkl and 〈η′|η〉 = δη ′,η then yields
from the matrix elements (2.11) the matrix representation

Hη ′,η = −
∑

〈k,l〉
wkl〈η′ |(σ+

k σ−
l + σ−

k σ+
l − n̂kv̂l − v̂kn̂l))|η 〉. (2.20)

of the generator of the SSEP in terms of spin operators. In quantum mechanics
this matrix is known as the Hamiltonian of the spin-1/2 Heisenberg ferromagnet.
We can write

H =
∑

〈k,l〉
wklhkl (2.21)

with the hopping matrices

hkl = −
(
σ+

k σ−
l + σ−

k σ+
l − n̂kv̂l − v̂kn̂l

)
(2.22)

= −1
2

(σx
kσx

l + σy
kσy

l + σz
kσz

l − 1) . (2.23)

Equilibrium Measures. Since H is symmetric it follows that |u 〉 = 〈 s |T is
a stationary measure. Moreover, the SSEP obviously satisfies detailed balance
(1.56) w.r.t. this measure. Thus the uniform measure

|u∗ 〉 :=
1

|ΩL| | s 〉 = 2−L| s 〉 (2.24)

is an equilibrium measure with trivial energy U(η) that does not depend on the
configuration η. Since particle number is conserved the SSEP defined on Ω is
trivially non-ergodic. However, since the dynamics is a sequence of permutations,
the SSEP restricted to the state space ΩL,N := {η ∈ ΩL :

∑
k∈Λ ηk = N} of fixed

particle number N ∈ {0, . . . , L} is ergodic. Since there are |ΩL,N | =
(

L
N

)
ways

of distributing N exclusion particles on L sites, the canonical uniform measure

|uL,N 〉 =
∑

η∈ΩL,N

|η 〉, |u∗
L,N 〉 =

1
Z

∑

η∈ΩL,N

|η 〉 (2.25)

with canonical partition function

ZL,N =
(

L

N

)

(2.26)



90 G. M. Schütz

is the unique equilibrium measure u∗
L,N on ΩL,N . One has for η ∈ ΩL

u∗
L,N (η) =

(
L

N

)−1

δN,N(η) (2.27)

where
N(η) =

∑

k∈Λ

ηk (2.28)

is the number of particles in the configuration η. The canonical partition function
(2.26) yields the canonical free energy

FL,N = − ln ZL,N . (2.29)

Clearly, any normalized convex combination of the unnormalized canonical
invariant measure uL,N (η) := δN,N(η) defines an equilibrium measure. Of par-
ticular importance is the grandcanonical measure

π∗
L,φ(η) :=

1
ZL(φ)

L∑

N=0

eϕNuL,N (η) (2.30)

with so-called chemical potential φ and grandcanonical partition function

ZL(φ) :=
∑

η∈ΩL

L∑

N=0

eφNuL,N (η) =
L∑

N=0

eφNZL,N =
(
1 + eφ

)L
. (2.31)

The simple form of this partition function comes from the fact that the grand-
canonical measure can be written in product form as

π∗
L,φ(η) :=

1
ZL(φ)

∏

k∈Λ

(
1 − ηk + eφηk

)
(2.32)

which is a Bernoulli product measure.
By construction the particle number N(η) in this grandcanonical ensemble

of configuration is not a fixed number even though for any given realization of
the process it is. Instead one has

ρ(φ) :=
〈N〉φ

L
=

1
L

∑

η∈ΩL

N(η)πL,φ(η) =
1
L

d
dφ

ln ZL(φ) =
eφ

1 + eφ
(2.33)

Defining the inverse function

φ(ρ) = ln ρ − ln (1 − ρ) (2.34)
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one finds for the composite function Z̃L(ρ) = (ZL ◦φ)(ρ) the density dependence

Z̃L(ρ) = ZL(φ(ρ)) = (1 − ρ)−L. (2.35)

of the grandcanonical partition function and the corresponding ρ-parametrization

π̃∗
L,ρ(η) := π∗

L,φ(ρ)(η) =
L∑

N=0

(1 − ρ)L−NρNuL,N (η) (2.36)

of the grandcanonical measure (2.30).
One realizes that – as expected – the grandcanonical free energy

G(L, φ) := − ln ZL,φ = −L ln (1 + eφ) (2.37)

is extensive in L. The associated canonical free energy defined by the Legendre
transform

F (L, ρ) = G(L, φ(ρ)) + Lρφ(ρ) = L [(1 − ρ) ln (1 − ρ) + ρ ln ρ] (2.38)

is given the thermodynamic limit (2.29)

lim
L→∞

1
L

FL,ρL = (1 − ρ) ln (1 − ρ) + ρ ln ρ (2.39)

of the canonical free energy density. This indicates the well-known equivalence of
the canonical ensemble with N = ρL particles and the grandcanonical ensemble
at density ρ in the thermodynamic limit.

The grandcanonical probability vector |π∗
L,φ 〉 is obtained from (2.25). Defin-

ing the unnormalized canonical stationary probability vector

|uL,N 〉 =
∑

η∈ΩL,N

|η 〉 (2.40)

and the particle number operator

N̂ =
∑

η∈ΩL

N(η)|η 〉〈η | (2.41)

one gets f(N)|uL,N 〉 = f(N̂)|uL,N 〉 since each component in |πL,N 〉 with non-
zero weight has exactly N particles which means that N |uL,N 〉 = N̂ |uL,N 〉.
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Thus

|π∗
L,φ 〉 = Z−1

L (φ)
L∑

N=0

eφN |uL,N 〉

= Z−1
L (φ)

L∑

N=0

eφN̂ |uL,N 〉

= Z−1
L (φ)eφN̂

L∑

N=0

∑

η∈ΩL,N

|η 〉

= Z−1
L (φ)eφ

∑L
k=1 n̂k |u 〉

= Z−1
L (φ)

L∏

k=1

(v̂k + eφn̂k)|u 〉

=
(
1 + eφ

)−L (
(1, eφ)T

)⊗L

=
1

(1 + eφ)L

(
1
eφ

)⊗L

=
(

1 − ρ(φ)
ρ(φ)

)⊗L

(2.42)

which is an L-fold tensor product.
This tensor structure of the grandcanonical probability vector makes the

computation of correlations trivial. From (A.17) one has

〈ηk1 . . . ηkm
〉φ = ρm(φ) (2.43)

when all ki are mutually different. Therefore one finds the static structure func-
tion

Ck,l := 〈ηkηl〉φ − ρ2(φ) = ρ(φ)(1 − ρ(φ))δk,l. (2.44)

This yields the compressibility

K(ρ) =
1
L

∑

k∈Λ

∑

l∈Λ

Ck,l =
1
L

〈(N − ρL)2〉 = ρ(1 − ρ). (2.45)

Of course, this result could directly have been obtained from the usual thermo-
dynamic relation

K̃(φ) =
d
dφ

ρ(φ) =
eφ

(1 + eφ)2
(2.46)

and using (2.34).

Duality Functions for the SSEP. From the structure of the hopping matrices
in (2.23) it is clear that the generator is symmetric under the action of the Lie-
algebra su(2) [5], i.e., H satisfies the commutation relations

[H , S±] = [H , Sz] = 0 (2.47)
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with the representation matrices

S± =
∑

k∈Λ

σ±
k , Sz =

1
2

∑

k∈Λ

σz
k (2.48)

which satisfy the su(2) commutation relations

[S+ , S−] = 2Sz, [Sz , S±] = ±S±. (2.49)

Using the symmetry approach to duality discussed above, the well-known self-
duality of the SSEP [67,104] restated and generalized in the following theorem
becomes a trivial corollary of the su(2) symmetry.

Theorem 2. The SSEP on a lattice Λ is selfdual w.r.t. the duality function

D(ζ,η) =
∏

k∈Λ

(α + βηk)γ+δζk (2.50)

for configurations η, ζ ∈ {0, 1}Λ and α, β, γ, δ ∈ IR, provided that N(η) < ∞ if
γ 
= 0 and N(ζ) < ∞ if δ 
= 0.

Remark 6. For γ = 0 the duality function (2.50) can be written in alternative
form as follows. Let x(ζ) := {k : ζk = 1} be the set of occupied sites xi ∈ Λ of the
configuration ζ and N(x) = |x| be the number of particles in the configuration x.
This mapping induces an obvious bijection between the state space Ω = {0, 1}Λ

and the coordinate set Ξ of possible distinct occupied sites and thus allows for
describing the SSEP in terms of the evolution xt of particle coordinates. With
a = αδ, b = (α + β)δ − αδ the duality function (2.50) then becomes

D̃(x,η) =
N(x)∏

i=1

(a + bηxi
) (2.51)

for all x ∈ Ξ and η ∈ Ω. For α = 0, β = δ = 1 corresponding to a = 0 and
b = 1 one recovers the well-known duality function formulated and proved in a
different way in [67] and which goes back to [104].

Proof. The su(2)-symmetry implies that the L-fold Kronecker product D̂ = A⊗L

is a symmetry operator for any ×2 matrix A. Since the SSEP is reversible with
uniform invariant measure (2.24) this yields the duality function D(ζ,η) =
〈 ζ |D̂|η 〉. The factorization of the symmetry operator and also of the dual pair-
ing (see (A.17)) yields

D(ζ,η) =
∏

k∈Λ

〈 ζk |A| ηk 〉 (2.52)

Explicit computation of the two-dimensional bilinear form

〈 ζk |A| ηk 〉 = (1 − ζk, ζk)
(

A11 A12

A21 A22

) (
1 − ηk

ηk

)

(2.53)

yields (α + βηk)γ+δζk with A11 = αγ , A12 = (α + β)γ , A12 = αγ+δ, A22 =
(α + β)γ+δ. �
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Remark 7. The duality function (2.50) is not unique. Any measurable function
of the symmetry operators S±,z (2.48) yields a duality function.

One realizes that the mapping to the quantum Hamiltonian immediately
reveals the well-known su(2) symmetry of the generator of the SSEP and there-
fore provides instantly self-duality functions. Moreover, the matrix formulation
reduces to proof of selfduality to elementary multilinear algebra. The su(2) sym-
metry allows for the derivation of similarly strong results for multi-time corre-
lation functions 〈ni1(t1) . . . nik

(tk)〉.

Remark 8. Any Markov process whose generator is a function of the hopping
matrices ek,l = σx

kσx
l + σy

kσy
l + σz

kσz
l − 1 is su(2) symmetric and therefore self-

dual w.r.t. the same duality functions as the SSEP.

Remark 9. The approach can be straightforwardly generalized to the symmet-
ric partial exclusion process [59,90]. The partial exclusion process is the spin-s
version of this model where each lattice site i can be occupied by at most 2si

particles and where single-particle hopping from site i to site j occurs with rate
ni(2sj − nj).

Density Profile and Dynamical Structure Function. We focus now on the
case α = γ = 0 and β = δ = 1 in the duality function (2.50). The self-duality
has the remarkable consequence that for any initial measure with support on
configurations with any number of particles the joint expectations of n occu-
pation numbers can be expressed in terms of transition probabilities for initial
states with only n particles. In particular, for the density profile ρk(t) = Eμt

ηk

one finds by inserting the duality function in the form (2.51) for N = 1 into
the definition (2.3) of duality. Inserting D(x,η) = ηx into the r.h.s. of (2.3) and
using the propagator representation (1.44) of the transition probability yields
for an initial configuration η

∑

η ′
ηx〈η′ |e−Ht|η 〉 =

∑

η ′
〈η′ |n̂xe−Ht|η 〉 = 〈 s |n̂xe−Ht|η 〉 (2.54)

since 〈η′ |n̂x = ηx〈η′ |. On the other hand, the l.h.s. of (2.3) becomes
∑

x′∈Λ

ηx′P (x′, t|x, 0) =
∑

x′∈Λ

〈 s |n̂x′ |η 〉P (x, t|x′, 0) (2.55)

since for a single particle one has Ξ = Λ and since the generator for the SSEP
is symmetric.

This yields for an arbitrary initial measure μ the density profile

ρx(t) = 〈 s |ηxe−Ht|μ 〉 =
∑

x′∈Λ

ρx′(0)P (x, t|x′, 0). (2.56)

This means that irrespective of the lattice and of the jump rates between lat-
tice points the time evolution of the local density in a system of any number
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of interacting particles is completely determined by the (non-interacting) time
evolution of a single particle. Specifically, on the d-dimensional hypercubic lat-
tice ZZd with translation-invariant nearest-neighbour hopping the single-particle
propagator satisfies a discrete diffusion equation which can be solved in explicit
form in terms of modified Bessel functions

In(t) =
1
2π

∫ π

−π

dp eipn−t cos p. (2.57)

On ZZd with hopping rates wi in each direction one then has for point x =
(x1, . . . , xd)

ρx(t) =
d∏

j=1

∑

x′
j∈ZZ

ρx′
j
(0)e−wjtIxj−x′

j
(wjt). (2.58)

As a corollary of (2.56) we note

〈 s |ηxe−Ht =
∑

x′∈Λ

P (x, t|x′, 0)〈 s |n̂x′ . (2.59)

For the dynamical structure function defined by

Sx,y(t) := Eρ (ηx(t)ηy(0)) − ρ2 (2.60)

this yields

Sx,y(t) = 〈 s |ηxe−Htηy| ρ 〉 − ρ2

=
∑

x′∈Λ

P (x, t|x′, 0)〈 s |n̂x′ n̂y| ρ 〉 − ρ2

=
∑

x′∈Λ

P (x, t|x′, 0)
(
ρ2 + ρ(1 − ρ)δx′,y

)
− ρ2

= ρ(1 − ρ)P (x, t|y, 0) (2.61)

where we have used reversibility of the SSEP and conservation of probability
which gives

∑
x′∈Λ P (x, t|x′, 0) =

∑
x′∈Λ P (x′, t|x, 0) = 1 for the single-particle

process.
On the translation-invariant hypercubic lattice with nearest-neighbour jumps

with rates wi in direction i the dynamical structure function Sx(t) := Sx,0(t)
becomes

Sx(t) =
d∏

j=1

e−2wjtIxj−x′
j
(2wjt). (2.62)

In the scaling limit xi(t) = ri

√
4wit and t → ∞ the modified Bessel function

becomes a Gaussian. Thus

d∏

j=1

√
4πwj lim

t→∞ td/2Sx(t)(t) = e− ∑d
j=1 r2

j . (2.63)
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We read off the dynamical exponent z = 2 and the universal Gaussian scaling
function with diagonal diffusion matrix Dij = 2wiδij .

Higher order correlation functions can be studied using the Bethe ansatz
[39,58,93]. One finds that all n-point correlation functions of the symmetric
exclusion process are, to leading order in time, identical to the same n-point
correlators of non-interacting particles. Corrections are of order 1/

√
t, see [19] for

a related rigorous result. Hence diffusive scaling with dynamical exponent z = 2
leaves finite-order correlation functions invariant up to an overall amplitude.

2.3 Selfduality of the 1-D ASEP

The ASEP on the graph Γ is the asymmetric generalization of the SSEP with
directed hopping rates wkl for jumps from site k to site l and wlk for the reversed
jump. Little is known about this process on general graphs where it does not have
a symmetry analogous to the su(2)-symmetry of the SSEP and where not even
the invariant measure is known. We restrict our attention to the most-studied
one-dimensional finite integer lattice Λ = [L−, L+] \ ZZ with nearest-neighbour
jumps with rates rk ≡ wkk+1 > 0, �k+1 ≡ wk+1k > 0 for constant hopping bias.

Periodic Boundary Conditions with Constant Rates. For constant bond
hopping rates rk = r, �k = � it is straightforward to prove that for periodic
boundary conditions the product measure (2.32) is a family of stationary dis-
tribution of the ASEP [104]. Therefore the stationary distribution is the same
as the equilibrium distribution of the SSEP, even though the ASEP does not
satisfy detailed balance and hence is not an equilibrium process. The lack of
reversibility is reflected in the fact that the stationary current

j = r〈ηk (1 − ηk+1)〉 − �〈ηk+1 (1 − ηk) = (r − �)ρ(1 − ρ) (2.64)

is non-zero.

Generator of the ASEP with Reflecting Boundaries. For reflecting
boundaries where hopping between the boundary sites L− and L+ is not allowed
it is convenient to define the parameters

q ≡ ef =
√

rk

�k+1
, wk =

√
rk�k+1 (2.65)

and define the system size

L = L+ + 1 − L−. (2.66)

With the local hopping rates

wkk+1(η) = wk

(
qηk(1 − ηk+1) + q−1(1 − ηk)ηk+1

)
, k ∈ {L−, . . . , L+ − 1}

(2.67)
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the transition rate from a configuration η to a configuration η′ is given by

wη ′,η =
L+−1∑

k=L−
wkk+1(η)δη ′,ηkk+1 . (2.68)

and the generator reads

Lf(η) =
L+−1∑

k=L−
wkk+1(η)[f(ηkk+1) − f(η)]. (2.69)

Using the Pauli matrices (2.16) one finds

H =
L+−1∑

k=L−
wkhk (2.70)

with non-symmetric hopping matrices

hk = −q
(
σ+

k σ−
k+1 − n̂kv̂k+1

)
− q−1

(
σ−

k σ+
k+1 − v̂kn̂k+1

)
. (2.71)

Grandcanonical Equilibrium Measure. The hopping matrices can be sym-
metrized by the ground state transformation

V := q
∑L+

k=L− kn̂k . (2.72)

One has

hT
k = V −2hkV 2 (2.73)

h̃k := V −1hkV = h̃T
k . (2.74)

This implies that this ASEP is reversible and together with particle number
conservation one concludes that

π∗
L,φ(η) =

1
ZL,φ

〈η |V 2|η 〉 =
1

ZL,φ
q2

∑L+

k=L− (k−κ(φ))ηk , κ(φ) = −φ/(2f)

(2.75)
is an equilibrium measure3 for any chemical potential φ ∈ IR, corresponding to
a linear potential energy

U(η) = −ε

L+
∑

k=L−
kηk (2.76)

with ε = 2kBTf . This is a product measure with grandcanonical partition func-
tion

ZL,φ =
L+
∏

k=L−

(
1 + q2k−2κ(φ)

)
. (2.77)

3 The measure (2.75) as well as all related measures and functions introduced below
depend both on L− and L+. In order to avoid heavy notation we indicate this
dependence only by the volume L.
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Correspondingly the associated probability vector is a tensor product

|π∗
L,φ 〉 =

1
ZL,φ

eφN̂V 2| s 〉 = | ρ1 〉 ⊗ · · · ⊗ | ρL 〉 (2.78)

with marginals

| ρk 〉 =
(
1 + q2k−2κ(φ)

)−1
(

1
q2k−2κ(φ)

)

. (2.79)

This is the blocking measure [67] restricted to Λ.
The stationary particle density is not uniform, but given by

ρk =
q2k−2κ(φ)

1 + q2k−2κ(φ)
=

1
2

(1 + tanh (f(k − κ(φ))) , (2.80)

see Fig. 6. This means that the stationary local density is approximately equal
to 1/2 near the lattice point k∗ = [κ(φ)] provided that k∗ ∈ Λ. The density
approaches 1(0) to the right(left) on a length scale of order 1/f . Thus on macro-
scopic scale the density has a shock discontinuity at x∗ = κ(φ)/L ∈ [b−, b+]
where b± = limL→∞ L±/L.

Fig. 6. Stationary density profile of the ASEP with reflecting boundaries with 100
sites. The position of the step is determined by the particle number, its width depends
on the driving field. Here we have chosen βf = 1/2, corresponding to q =

√
e.

Duality Functions for the 1-D ASEP. The process is symmetric under the
quantum algebra Uq[gl(2)] [74] which is the q-deformed universal enveloping alge-
bra of gl(2) [52,53]. This implies that the generator H given by (2.70) commutes
with the symmetry operators S±(q) and Sz where [92]

S+(q) =
L+
∑

k=L−
qN̂kσ+

k , S−(q) =
L+
∑

k=L−
q−V̂kσ−

k (2.81)

with the non-local particle balance operators

N̂k =
L+
∑

j=k+1

n̂k −
k−1∑

j=L−
n̂k, V̂k =

L+
∑

j=k+1

v̂k −
k−1∑

j=L−
v̂k, (2.82)
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The particle balance function

Nk(η) :=
L+
∑

j=k+1

ηk −
k−1∑

j=L−
ηk (2.83)

gives the difference between the number of particles to right and left of site k. Hence
Nk(ηt) − Nk(η0) is the integrated particle current across site k up to time t.

By the duality Theorem1 the ASEP with reflecting boundary conditions
defined by (2.70) is self-dual w.r.t.

Dgen(ζ,η) = π−1
L,0(ζ)〈 ζ |F (S+(q), S−(q), Sz)|η 〉 (2.84)

where F (S+(q), S−(q), Sz) is some bounded function of the symmetry operators
and π−1

L,0(ζ) = q−2
∑

k∈Λ ζk is the unnormalized equilibrium measure of the ASEP.
The computation of the matrix elements of F (S+(q), S−(q), Sz) is less for-

ward than in the su(2) case. We note [7].

Proposition 3. For all q ∈ ZZ \ 0 the symmetry operator

Y +(q) =
L∑

r=0

(S+(q))r

[r]q!
(2.85)

with the q-numbers

[x]q =
qx − q−x

q − q−1
, x ∈ ZZ, [n]q! =

n∏

k=1

[k]q, k ∈ IN (2.86)

has matrix elements

〈 ζ |Y +(q)|η 〉 =
L+
∏

k=L−
(Qk(η))ζk (2.87)

with Qk(η) = ηkq−Nk(η).

This result yields from (2.84) the duality function of [92] in the coordinate
representation x of the configuration ζ:

Corollary 3. The ASEP defined by (2.70) is selfdual w.r.t. the duality function

Dω(x,η) =
N(x)∏

i=1

ηxi
q−2

∑xi−1

k=L− (1−ηk)+ωN(η). (2.88)

To see this notice first that Proposition 3 together with (2.84) implies that

D̃(x,η) =
N(x)∏

i=1

q−2xiηxi
q−Nxi

(η) (2.89)
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is a duality function. Because of particle conservation this duality function can
be multiplied with any function of the particle numbers N(x) and N(η) to obtain
a new duality function. So in particular we have that

Dω(x,η) =
N(x)∏

i=1

q(1+ω)N(η)+2L−−1−2xiηxi
q−Nxi

(η)

= D̃(x,η)qN(x)((1+ω)N(η)+2L−−1) (2.90)

is also a duality function.

Microscopic Structure of Shocks in the ASEP. This duality function is
not local and therefore it cannot be used to compute the dynamical structure
of the ASEP. However, it carries non-trivial information about the distribution
of the time-integrated current [45] and for constant bond hopping rates wk = w
also about the microscopic structure and dynamics of shocks [6,8]. It turns out
that just as in the SSEP the time evolution of an n-point density correlation is
given by the transition probabilities of only n particles in the SSEP, the time
evolution of a shock measure for the ASEP defined on the infinite integer lattice
ZZ with n microscopic shocks is given by the transition probabilities of a modified
ASEP with only n particles. To be precise, we state the result of [6] for a single
microscopic shock where the modified ASEP reduces to a biased random walk.

Definition 9 (Shock measure). A shock measure νx on {0, 1}ZZ indexed by the
microscopic shock position x ∈ ZZ is the product measure given by the marginals

νx(ηk) =

⎧
⎨

⎩

1 k = x
ρ0δηk,1 + (1 − ρ−)δηk,0 k < x
ρ1δηk,n + (1 − ρ+)δηk,0 k > x

(2.91)

The restriction to Λ for x ∈ Λ

μL
x (η) :=

L+
∏

k=L−
νk

x(ηk) (2.92)

is also called shock measure with microscopic shock position x.

Then one has [4,6,8]:

Theorem 3. Let νx(t) denote the measure at time t of the ASEP on ZZ with
constant rates r = wq > 0, � = wq−1 > 0, starting from a shock measure νx

defined in Definition 9 with

ρ+(1 − ρ−)
ρ−(1 − ρ+)

= q2. (2.93)

Then, for any x ∈ ZZ

νx(t) =
∑

y∈ZZ

P (y, t|x, 0) νy (2.94)
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where P (y, t|x, 0) is the transition probability of a biased random walk with jump
rates

p± = (r − �)
ρ±(1 − ρ±)
ρ+ − ρ−

(2.95)

to the right (+) and left (−) respectively.

Corollary 4. The shock is microscopically sharp at all times and performs on
macroscopic scale a diffusive motion with drift velocity

vs = p+ − p− = (r − �)(1 − ρ+ − ρ−) (2.96)

and diffusion coefficient

Ds =
1
2

(p+ + p−) = (r − �)
ρ−(1 − ρ−) + ρ+(1 − ρ+)

ρ+ − ρ−
. (2.97)

Remark 10. The microscopic sharpness follows from the product structure of the
shock measure (2.92). One recognizes in the microscopic shock velocity (2.96)
the Rankine-Hugoniot velocities (1.9) since j± := w(q − q−1)ρ±(1 − ρ±) is the
expectation of the particle current to the right and to the left of shock. The
shock diffusion coefficients (2.97) are consistent with the general result (1.10) of
[33] on shock motion in the ASEP on diffusive scale.

We outline the proof and refer for the technical details to [6,8]. Al alternative
probabilistic proof is given in [4].

Consider first the finite lattice Λ. We recall (2.3) which reads for the duality
function (2.88) with a single-particle configuration ζ

∑

y∈Λ

Dω(y,η)P (y, t|x, 0) =
∑

η ′∈Ω

η′
xq−2

∑x−1
k=L− (1−η′

k)+ωN(η ′)〈η′ |e−Ht|η 〉

=
∑

η ′∈Ω

〈η′ |n̂xq−2
∑x−1

k=L− (1−n̂k)+ωN̂e−Ht|η 〉

= 〈 s |n̂xq−2
∑x−1

k=L− (1−n̂k)+ωN̂e−Ht|η 〉
= 〈η |e−HT tn̂xq−2

∑x−1
k=L− (1−n̂k)+ωN̂ | s 〉 (2.98)

On the other hand, for the l.h.s. we have

Dω(y,η) = ηyq−2
∑y−1

k=L− (1−ηk)+ωN(η) = 〈 η |n̂yq−2
∑y−1

k=L− (1−n̂k)+ωN̂(η)| s 〉
(2.99)

Next we observe that

n̂xq−2
∑x−1

k=L− (1−n̂k)+ωN̂(η)| s 〉 = Z−1
x | νx 〉 (2.100)

with densities
ρ− =

qω

q−2 + qω
, ρ+ =

qω

1 + qω
(2.101)



102 G. M. Schütz

and normalization constant

Zx =
(
q−2 + qω

)x−L−
(1 + qω)L+−x =

(1 + qω)L+

(q−2 + qω)L−

(
ρ+
ρ−

)x

(2.102)

Thus selfduality yields
∑

y∈Λ

Z−1
y | νy 〉P (y, t|x, 0) = e−HT tZ−1

x | νx 〉. (2.103)

or equivalently

∑

y∈Λ

| νy 〉
(

ρ+
ρ−

)x−y

P (y, t|x, 0) = e−HT t| νx 〉. (2.104)

Notice now the trivial random walk property that up to a boundary term
(

ρ+
ρ−

)x−y

P (y, t|x, 0) = e−λtP̃ (y, t|x, 0) (2.105)

where P̃ (y, t|x, 0) is the transition probability of a random walk with rates p̃± =
(qρ−/ρ+)±1 and λ = p+ + p− − q − q−1. Thus

∑

y∈Λ

P̃ (y, t|x, 0)| νy 〉 = e−(HT −λ)t| νx 〉. (2.106)

On the other hand, H̃ = HT −λ is, up to another boundary term, the generator
of the ASEP with inverse hopping asymmetry q−1. Using coupling arguments
it can be shown that in the thermodynamic limit these boundary terms are
irrelevant [6]. Thus we arrive at

∑

y∈ZZ

P̃ (y, t|x, 0)| νy 〉 = | νx(t) 〉� (2.107)

where the upper left-pointing triangle indicates the evolution under the ASEP
on ZZ with reversed bias.

The densities satisfy
ρ+(1 − ρ−)
ρ−(1 − ρ+)

= q−2. (2.108)

Therefore

q − q−1 = q(1 − q−2) =
p+
w

ρ− − ρ+
ρ+(1 − ρ+)

(2.109)

= q−1(q2 − 1) =
p−
w

ρ− − ρ+
ρ−(1 − ρ−)

(2.110)

which yields the transition rates

p± = (r − �)
ρ− − ρ+

ρ±(1 − ρ±)
(2.111)

for the random walk. Substituting q → q−1 then proves the theorem.
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2.4 Recipe for Constructing the Quantum Hamiltonian of Exclusion
Processes

To construct H for a given process without going through the explicit matrix
multiplications we note that any changes of the state of the system are repre-
sented by offdiagonal matrices. To be precise, they represent attempts rather
than actual changes: Acting on a state with an already occupied site with σ−

yields zero, i.e. no change in the probability vector. This reflects the rejection of
any attempt at creating a second particle on a given site. Thus the exclusion of
double occupancy is encoded in the properties of the Pauli matrices.

Simultaneous events are represented by products of Pauli matrices acting
on different sites. E.g. hopping of a particle from site i to site j is equivalent
to annihilating a particle at site i and at the same time creating one at site j.
Thus it is given by the matrix σ+

i σ−
j . The hopping attempt is successful only

if site i is occupied and site j is empty. Otherwise acting with σ+
i σ−

j on the
state gives zero and hence no change. The rate of hopping (or of any other
possible stochastic event) is the numerical prefactor of each hopping matrix
(or other attempt matrix). Of course, in principle the rate may depend on the
configuration of the complete system. Suppose the hopping rate is given by a
function w(η) where η is the configuration prior to hopping. In this case the
hopping matrix is given by σ+

i σ−
j ŵ where the diagonal operator ŵ is obtained

form the rate w(η) by replacing any ηi by the projector n̂i. If e.g. for some reason
hopping from site i to site j should occur only if a third site k is empty, then
the hopping matrix would be given by σ+

i σ−
j (1 − n̂k). For a hopping from site

i to site j with a rate that is proportional to the number of particles on some
set of S(i, j) sites one finds the matrix wσ+

i σ−
j

∑
k∈S(i,j) n̂k). The construction

of the attempt matrices for other processes or for n-states model is analogous.
For two-states models one notes the useful identities

〈 s |σ+
i = 〈 s |n̂i, 〈 s |σ−

i = 〈 s |(v̂i (2.112)

which follow immediately from the tensor structure of the summation vector
and the definition of the local Pauli matrices. With these relations it is easy to
construct the diagonal part of the quantum Hamiltonian in order ensure con-
servation of probability. To each off-diagonal attempt matrix one constructs a
diagonal matrix by replacing all σ+

i by n̂i and by replacing all σ−
i by v̂i. E.g.

to hopping from i to j with constant rate w represented by −wσ+
i σ−

j one adds
wn̂iv̂j . The (negative) sum of all attempt matrices minus their diagonal coun-
terparts is then the full generator. In the same way one constructs the diagonal
parts of n-states models by using the analogues of Eq. (2.112). Conservation of
probability (1.41) is then automatically satisfied.

3 Fluctuation Theorems for Currents

Fluctuation theorems relate the probability of a positive value of some observ-
able to the probability of the negative of that quantity [31,42,44,65,99] in a
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Markov process that can be time-inhomogeneous, i.e., where the transition rates
depend on time. The Gallavotti-Cohen theorem [34] for the distribution of the
entropy production in deterministic dynamics and a related result by Lebowitz
and Spohn for the particle current in stochastic interacting particle systems
[65] have been established in a mathematically rigorous fashion. A vast body of
work has been devoted to further develop fluctuation relations and to test them
experimentally. For relatively recent reviews we refer to [44,99].

It has become clear that currents which are odd under time-reversal play
an important role in understanding the nonequilibrium properties of a particle
system. Therefore we consider here fluctuation theorems that concern such time-
integrated currents like the current of particles in a particle system like the ASEP
(cf. (1.3)) and related time-integrated quantities that can be measured in an
experiment. To this end we keep track of the trajectory of a time-inhomogeneous
process, i.e., the whole sequence of transitions from an initial configuration η0 at
time 0 to a final state ηt at time t > 0. In a nutshell, what this lecture is about
can be summarized as follows.

Fluctuations relations for time-integrated currents follow from
a single fundamental fluctuation relation that arises from time-
reversal of a time-inhomogeneous process with a time-reversed
protocol of the time-dependent transition rates.

In order to make this precise we first need to introduce some more tools.

3.1 Tools

Counting Processes. The time-integrated particle current provides an exam-
ple of what we shall call a counting process Ct with state space IR, defined
informally by the following properties [42].

Property 1: The value of Ct changes only at a transition of an underlying process
ηt. It changes by an increment rη′,η ∈ IR for a transition η → η′.

Property 2: The transition rates wη′,η of the process ηt do not depend on Ct.

We also introduce the extended counting process by adding “boundary val-
ues” that do not depend on Ct:

Property 3: For given functions ri : Ω → IR, rF : Ω → IR the extended counting
process is the random number Rt = ri

η0
+ Ct + rf

ηt
.

Notice that in general a counting process Ct is not Markovian. The joint
process σt = (ηt, Ct) with state space Ξ = Ω × IR, however, is Markov with
generator

Sf(η, C) =
∑

η′∈Ω\η

wη′,η [f(η′, C + rη′,η) − f(η, C)] . (3.1)
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The values Ct, Rt of a counting process at time t can be regarded as a
functional of the trajectories of the underlying process ηt as we note in the
following proposition which is an immediate consequence of the definition of the
counting process, see Fig. 7 illustration.

Fig. 7. A stochastic trajectory στ with 0 ≤ τ ≤ t with the sequence of configura-
tions {σ0, σ1, σ2} where σt = σ2. Time points upwards, the horizontal direction is the
abstract space of configurations. The increment rσi,σj (τ) is abbreviated as ri,j and the

boundary values are ri = ln f(σ0) and rf = − ln g(σ2). Therefore Ct = r0,1 + r1,2 and
Rt = ln f(σ0) + r0,1 + r1,2 − ln g(σ2).

Proposition 4. Let ηt be a Markov process with finite state space Ω and C0 = 0.
Then for a trajectory η[0,t] of the process with nt ≥ 0 transitions at random times
tk ∈ (0, t), 1 ≤ k ≤ nt and ητ = ηtk

for tk ≤ τ < tk+1 ≤ t, 0 ≤ k < nt and
ητ = ηt for tnt

≤ τ ≤ t one has

Ct =
nt∑

k=1

rηtk
,ηtk−1

(3.2)

and

Rt = ri
η0

+
nt∑

k=1

rηtk
,ηtk−1

+ rf
ηt

. (3.3)

The physical scenario described by a counting process is the following. One
imagines that besides the physical random process described by ηt there is some
physical property such as the energy of a heat reservoir that can be measured
and whose value is Ct. This quantity does not directly depend on the state ηt but
changes by an amount rη′,η whenever the underlying transition η → η′ occurs.
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Moreover, it is assumed that this physical property does not perturb the dynam-
ics of the process. The extended counting process then yields a physical property
that depends also on the boundary states of the physical random process. Here
“boundary” refers to the temporal boundaries of the trajectory at times τ = 0
and τ = t (Fig. 7). Concrete examples of physical importance will be discussed
below.

As a direct consequence of (3.1) we note for a function g(η, C) of the form
g(η, C) = f(η)e−λC the factorization property

S
(
f(η)e−λC

)
= e−λCL̃λf(η) (3.4)

with the tilted generator

L̃λf(η) =
∑

η′∈Ω\η

wη′,η
[
e−λrη′,ηf(η′) − f(η)

]
. (3.5)

This factorization property of the generator has the important consequence that
for a factorized initial measure μ(η, C) = μ(η)δC,0 one has

〈fte−λCt〉μ = e−λC0
∑

η∈Ω

f(η)μ̃λ,t(η) (3.6)

where the tilted measure μ̃λ,t with μ̃λ,0 = μ derives from the time evolution of
the initial measure μ under the semigroup generated by the tilted generator L̃λ

[21].
In matrix form one has

H̃λ = −
∑

η∈Ω

∑

η′∈Ω\η

wη′η

(
e−λrη′,ηEη′η − 1̂η

)
(3.7)

with the transition matrix Eη′η defined in (1.36). Even though H̃ is not a stochas-
tic generator the evolution under H̃ has a straightforward stochastic interpre-
tation by appealing to the interpretation of Ct as a trajectory functional. Each
stochastic trajectory generated by the underlying process H gets weighted under
the evolution of H̃ by a factor e−λrη′,η whenever a transition η → η′ occurs.
Hence the tilted transition probability, or equivalently the generating function
(3.6) of the counter Ct for f(·) = 1η′(·) and initial measure concentrated on η,

Pλ(η′; t|η; 0) = 〈 η′ |e−H̃λt| η 〉 (3.8)

can be interpreted as a measure for the weighted trajectories from a configuration
η to a configuration η′ for a time interval of length t.

Thus, taking ft(η) = 1 and arbitrary initial measure μ(η) one obtains the
generating function

G(λ, t) := 〈e−λCt〉μ = 〈 s |e−H̃λt|μ 〉 (3.9)

of the counting function Ct. Likewise, the tilted correlation function

C12(λ, t) := 〈 s |f̂2e−H̃λtf̂1|μ 〉 (3.10)
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is the measure for the weighted trajectories drawn from an initial distribution
μ with boundary weights ri

η0
= ln (f1(η0)) and rf

ηt
= ln (f2(ηt)). Therefore,

choosing f1(η) = f−λ(η), f2(η) = gλ(η) and initial measure μ(η) = f(η)/Z
with partition function Z = 〈s| f〉, one thus finds for the extended counting
process

〈e−λRt〉f = 〈 s |ĝλe−H̃λtf̂−λ| f 〉 (3.11)

which means that the generating function of the extended counting process is a
tilted correlation function.

Time-Dependent Transition Rates. Above we have tacitly assumed that the
transition rates of the Markov process were independent of time. When we make
them explicitly time-dependent the finite-time transition matrix is no longer
exp (−Ht), but given by the time-ordered exponential T

[
exp (−

∫ t

0
dτH(τ))

]

defined for general square matrices as follows.

Definition 10. Let H(t) be a finite-dimensional square matrix parametrized by
time t. The time-ordered exponential of

∫ t

0
dτH(τ) is the infinite sum

T
[
e− ∫ t

0 dτH(τ)
]

=
∞∑

n=0

(−1)nGn(t) (3.12)

where the matrix Gn(t) is defined recursively by

Gn(t) :=
∫ t

0

dτH(τ)Gn−1(τ), n ≥ 1 (3.13)

and G0(t) = 1.

For illustration we write out explicitly the first few terms:

T
[
e− ∫ t

0 dτH(τ)
]

= 1 −
∫ t

0

dτH(τ) +
∫ t

0

dτ1H(τ1)
∫ τ1

0

dτ2H(τ2) − . . . (3.14)

Evidently one has d
dtGn(t) = H(t)Gn−1(t) for n ≥ 1 and d

dtG0(t) = 0. Thus,
with the short-hand notation

P (t) = T
[
e− ∫ t

0 dτH(τ)
]
, (3.15)

one has
d
dt

P (t) = −H(t)P (t). (3.16)

Since also limt↘0 P (t) = 1 we find that

|μ(t) 〉 = P (t)|μ 〉 (3.17)
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is the time-dependent measure satisfying the master equation

d
dt

|μ(t) 〉 = −H(t)|μ(t) 〉 (3.18)

of a time-inhomogeneous Markov process with time-dependent transition rates
wη′,η(t). Thus the time-ordered exponential yields the transition matrix of the
time-inhomogeneous Markov process. We shall refer to the time-dependence of
the rates as protocol of the process since we have in mind an experiment where
one changes a process in time in some specific way (called protocol) by means
of some technical device.

For a similarity transformation (not dependent on t) one has

AP (t)A−1 = T
[
e− ∫ t

0 dτAH(τ)A−1
]
. (3.19)

Notice that transposition yields

PT (t) = T
[
e− ∫ t

0 dτHT (t−τ)
]

(3.20)

with transposition and time-reversal of the protocol inside the exponential.
Since in defining the time-ordered exponential we have nowhere used that

H is the generator of a stochastic process the formulas (3.18)–(3.20) apply also
to the tilted generator, including the case where the increments are explicitly
time-dependent. We write rη′,η(t) to make such a dependence clear.

3.2 The Fundamental Fluctuation Relation

Loosely speaking, fluctuation relations arise from comparing the probability of a
trajectory of a process to the probability of a “time-reversed” trajectory. Here we
prove a single master fluctuation theorem from which many fundamental fluctu-
ation relations that have appeared in the literature follow as simple corollaries.
It turns out that with the machinery developed above the proof of this master
fluctuation theorem itself reduces to a mathematical triviality. The significance
of this master fluctuation relation and its famous corollaries is not mathematical
depth but lies in the rather general applicability in physics, the validity arbi-
trarily far from equilibrium, and a unifying description of the various fluctuation
theorems available for stochastic dynamics.

We are mostly interested in currents that change sign under time reversal
and therefore focus on antisymmetric increments satisfying rη′,η(t) = −rη,η′(t).
We denote the associated counting process by Jt. Since fluctuation theorems
arise from time reversal we differentiate between a forward process ηF

t and a
backward process ηB

t which are not to be confused with the definition of the
reversed process (1.48).

Definition 11 (Forward and backward process). Fix an observation time t > 0
and let ηF

τ be a Markov process with countable state space Ω and time-dependent
transition rates wF

η′η(τ) such that for all τ ∈ [0, t] and all η, η′ ∈ Ω × Ω either
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wF
η′η(τ)wF

ηη′(τ) > 0 or wη′η(τ) = wηη′(τ) = 0. We say that for τ ∈ [0, t] the
process ηB

τ with transition rates wB
η′η(τ) = wF

η′η(t − τ) is the backward process
associated to the forward process ηF

t and the set of functions wB
η′η(τ) is the

backward protocol associated with the forward protocol wF
η′η(τ).

Expectations for the forward and backward process w.r.t. some initial mea-
sure μ are denoted by EX

μ with X ∈ {F,B} indicating the process (forward or
backward). For expectations with initial measure μ(η) = δη,η0 concentrated on
a fixed initial configuration η0 we use the notation EX

η0
. Sums over such expec-

tations are denoted by
〈·〉X

f :=
∑

η0∈Ω

f(η0)EX
η0

(·) (3.21)

with a function f : Ω → IR. The central result from which many celebrated
fluctuation theorems derive is the following [42].

Theorem 4 (Fundamental fluctuation relation). Fix t > 0 and let ηX
τ with X ∈

{F,B} be forward and backward Markov processes according to Definition 11 with
finite state space Ω and associated counting processes JX

τ with antisymmetric
increments

rX
η′η(τ) = ln

(
wX

η′η(τ)
wX

ηη′(τ)

)

(3.22)

for transitions satisfying wX
η′η(τ)wX

ηη′(τ) > 0 and rX
η′η(τ) = 0 otherwise. Fur-

thermore, let

RF
t := ln f(ηF

0 ) + JF
t − ln g(ηF

t ), RB
t := ln g(ηB

0 ) + JB
t − ln f(ηB

t ) (3.23)

with f(η), g(η) 
= 0 for all η ∈ Ω be the associated extended counting processes
at time t. Then the generating functions

ΦF (λ, t) := 〈e−λRF
t 〉

F

f , ΦB(λ, t) := 〈e−λRB
t 〉

B

g (3.24)

of the trajectory functionals RF,B
t obey the symmetry

ΦF (λ, t) = ΦB(1 − λ, t) (3.25)

for all λ ∈ IR.

Proof. First we note the following lemma.

Lemma 1. Let HF be the generator of the forward process ηF
τ and HB be the

generator of the backward process ηB
τ according to Definition 11 and let JF,B

τ be
the associated counting processes with increments (3.22). Then tilted evolution
operators satisfy

(
P̃F

λ (τ)
)T

= P̃B
1−λ(τ). (3.26)

for all τ ∈ [0, t] and λ ∈ IR.
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Proof. For brevity we denote in the following
∑

η,η′
:=

∑

η∈Ω

∑

η′∈Ω\η

. (3.27)

Recall the matrix representation (3.7) from which one obtains for the time-
dependent case
(
H̃F

λ (t − τ)
)T

= −
∑

η,η′
wF

η′η(t − τ)
(
e−λrF

η′,η
(t−τ)Eηη′ − 1̂η

)

= −
∑

η,η′
wF

η′η(t − τ)

⎛

⎝

(
wF

ηη′(t − τ)
wF

η′η(t − τ)

)λ

Eηη′ − 1̂η

⎞

⎠

= −
∑

η,η′

⎛

⎝wF
ηη′(t − τ)

(
wF

ηη′(t − τ)
wF

η′η(t − τ)

)λ−1

Eηη′ − wF
η′η(t − τ)1̂η

⎞

⎠

= −
∑

η,η′

⎛

⎝wB
ηη′(τ)

(
wB

ηη′(τ)
wB

η′η(τ)

)λ−1

Eηη′ − wB
η′η(τ)1̂η

⎞

⎠

= −
∑

η,η′

⎛

⎝wB
ηη′(τ)

(
wB

η′η(τ)
wB

ηη′(τ)

)1−λ

Eηη′ − wB
η′η(τ)1̂η

⎞

⎠

= −
∑

η,η′
wB

η′η(τ)

⎛

⎝

(
wB

ηη′(τ)
wB

η′η(τ)

)1−λ

Eη′η − 1̂η

⎞

⎠

= −
∑

η,η′
wB

ηη′(τ)
(
e−(1−λ)rB

η′,η
(t−τ)Eη′η − 1̂η

)
. (3.28)

where we have used the antisymmetry of the increments. Thus
(
H̃F

λ (t − τ)
)T

= H̃B
1−λ(τ). (3.29)

The transposition property (3.20) of the time-ordered exponential then proves
the Lemma. �

Continuing with the proof of Theorem4 we include now the boundary terms.
We have

ΦF (λ, t) = 〈 s |ĝλP̃F
λ (t)f̂−λ| f 〉, ΦB(λ, t) = 〈 s |f̂λP̃B

λ (t)ĝ−λ| g 〉 (3.30)

with | f 〉 =
∑

η∈Ω f(η)| η 〉 and | g 〉 =
∑

η∈Ω g(η)| η 〉. By transposition we obtain

ΦF (λ, t) = 〈 f |f̂−λ
(
P̃F

t (λ)
)T

ĝλ| s 〉 = 〈 s |f̂1−λ
(
P̃F

t (λ)
)T

ĝ−(1−λ)| g 〉. (3.31)

Lemma 1 then concludes the proof. �
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Remark 11. We required the functions f and g to be non-vanishing for all η.
However, one can generalize Theorem 4 by introducing indicator functions 1X ,
1Y on subsets X,Y ∈ Ω. Going through the same steps as above one obtains for

ΦF
Y X(λ, t) := 〈IY (ηt)e−λRF

t IX(η0)〉
F

f , ΦB
Y X(λ, t) := 〈IX(ηt)e−λRB

t IY (η0)〉
B

g

(3.32)
the extended fluctuation theorem

ΦF
Y X(λ, t) = ΦB

XY (1 − λ, t) (3.33)

In particular, choosing X = | ηa 〉〈 ηa | and Y = | ηb 〉〈 ηb | one obtains a symme-
try relation for trajectories between fixed configurations ηa, ηb. This yields the
detailed fluctuation theorems introduced in [50].

3.3 Some Specific Fluctuation Theorems

In applications one thinks of a stochastic transition as being triggered by thermal
processes in the physical environment into which the system described by the
process is embedded. The choice of increments (3.22) then means that Jt is the
change of entropy ΔSenv of the physical environment along a trajectory of the
process [98]. Since for thermal systems at temperature T , the dissipated heat is
given by

Q = TΔSenv (3.34)

we can also think of this current Jt as defining a nonequilibrium heat term. Differ-
ent physical scenarios are then described an appropriate choice of the boundary
terms ri(η) and rf (η) in the extended process Rt. We list some well-known cases.

Integral Fluctuation Relations. Setting λ = 1 in (3.25) gives the “integral
fluctuation relation” [71]

〈e−RF
t 〉

F

f = 1 (3.35)

with any normalized choice of ri = ln f and rf = − ln g. The specific choice of
f and g determines the physical interpretation of RF

t .

(1) Jarzynski equality

Consider a process in which the rates obey detailed balance (1.56) at all times
w.r.t. a time-dependent distribution

μ∗
τ (η) = e−βUτ (η)/Zτ (3.36)

with temperature T = 1/β, internal energy Uτ (η) of the configuration η, parti-
tion function

Zτ =
∑

η∈Ω

e−βUτ (η) (3.37)

and free energy
Fτ = −T ln Zτ . (3.38)
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Now we imagine preparing an experiment in which we start with initial distri-
bution f(η) = μ∗

0(η) and measure at some fixed time t > 0 the quantity

g(η) = μ∗
t (η). (3.39)

Then (3.35) reads

〈e−RF
t 〉

F

f =
Z0

Zt
〈 s |e−βÛ P̃1(t)eβÛ |μ∗

0 〉 (3.40)

In this case RF
t is proportional to the dissipated work, which can be seen as

follows.
Using the Boltzmann form of the time-dependent pseudo-equilibrium distri-

bution μ∗
τ the boundary part of the functional RF

t becomes

ln f(η0) − ln g(ηt) =
ΔU

T
− ΔF

T
(3.41)

with the changes of internal energy ΔU := U(ηt)−U(η0) and free energy ΔF :=
Ft − F0 resp. during the experimental time span t. Since the current part Jt is
proportional to dissipated heat (3.34) one finds

RF
t =

Q

T
+

ΔU

T
− ΔF

T
(3.42)

According to the first law of thermodynamics the work is given by W = (Q +
ΔU)/T and hence RF

t is the dissipated work.
Thus (3.35) yields the Jarzynski relation [49]

〈e−W/T 〉 = e−ΔF/T . (3.43)

Notice that it is not assumed that the system during its time evolution is in its
time-dependent pseudo-equilibrium state μ∗

τ , not even at the final measurement
time τ = t. This is important as it implies one can measure equilibrium free
energies from an average of the nonequilibrium work performed. The Jarzynski
equality can also be related to some earlier work theorems [13–15]. A discussion
of the connections can be found in [51].

(2) Integral fluctuation theorem for entropy

Now consider a different experimental scenario. Prepare experimentally an initial
distribution μ = f and measure a quantity g chosen to correspond to the final
probability distribution of the process, i.e.,

g(η) = 〈 η |Pt| f 〉. (3.44)

Then the boundary term of RF
t can be written as

f(η0) − g(ηt) = lnμ(η0, 0) − ln μ(ηt, t) (3.45)

where μ(ηt, t) is the solution of the time-dependent master equation (3.18).



Fluctuations 113

Using the general definition

S = Eμ ln μ(η) =
∑

η∈Ω

μ(η) ln μ(η) (3.46)

of entropy these boundary terms can be interpreted as the change in “system”
entropy ΔSsys := Ssys(t) − Ssys(0) along a trajectory [98]. Hence in this case we
have

RF
t = ΔSenv + ΔSsys =: ΔStot, (3.47)

and (3.35) becomes an integral relation for the total entropy change [98]

〈e−ΔStot〉 = 1. (3.48)

Jensen’s inequality then implies 〈ΔStot〉 ≥ 0. In other words, the fluctuation
theorem is entirely consistent with the Second Law of Thermodynamics which,
properly interpreted, is a statement about averages, not individual trajectories.

Detailed Fluctuation Relations. For general λ the master Theorem 4 leads
to various “stronger” fluctuation relation. To fix the idea we write the generating-
function relation (3.25) formally as

∑

R

ProbF (RF
t = R)e−λR =

∑

R

ProbB(RB
t = R)e−(1−λ)R. (3.49)

where ProbF (RF
t = R) denotes the probability RF

t = R in the forward process
(with initial distribution μF ) and analogously for the backward process. This is
trivially equivalent to

∑

R

ProbF (RF
t = R)e−λR =

∑

R

ProbB(RB
t = R)e(1−λ)R. (3.50)

Validity for all λ ∈ IR implies

ProbB(RB
t = −R)

ProbF (RF
t = R)

= e−R (3.51)

which is time-reversal symmetry of the extended forward and backward count-
ing processes, or, equivalently, of the generating function of the forward and
backward trajectory functionals.

We point that if ri and rf are related by reversal of protocol, then RF
t and

RB
t measure the same physical quantity in forward and reverse processes (with

initial distributions f and g respectively). We can then denote this quantity by
Rt without subscript and write (3.51) in the simplified form

pB(−Rt)
pF (Rt)

= e−Rt (3.52)
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which is known as the transient fluctuation theorem, see [42] for a more detailed
discussion. Here pF (Rt) denotes the probability distribution for the physical
quantity R in the forward process and pB(Rt) is the corresponding distribution
for the backward process. We point out some examples.

(1) Crooks’ fluctuation theorem

Choose for rates obeying time-dependent detailed balance,

f(η0) = μ∗(η0) and g(ηt) = μ∗(ηt). (3.53)

which allows the identification of Rt as proportional to the dissipated work
Wd = Q + ΔU − ΔF . (3.52) then becomes the fluctuation theorem

pB(−Wd)
pF (Wd)

= e−Wd/T , (3.54)

which is due to [22].

(2) Evans-Searles fluctuation theorem

For constant rates the forward and reverse processes are obviously identical. If we
also take f = g then we can drop the subscripts on the probability distributions
pF (Rt) and pB(Rt) and one obtains the Evans-Searles fluctuation theorem [30,
31,97].

A special case corresponds to taking f = g = μ∗. Experimentally, this simply
means allowing a system (with time-independent rates) to relax to stationarity
before starting the measurement. In this case we can identify Rt with the total
entropy change. This yields a fluctuation theorem for entropy changes in the
steady state [98]

p(−ΔStot)
p(ΔStot)

= e−ΔStot , (3.55)

which is essentially a stochastic form of the original fluctuation theorem proposed
by [29].

Gallavotti-Cohen-Theorem for Stochastic Interacting Particle Sys-
tems. In this subsection we focus on time-independent rates (in which case
backward and forward processes are identical) and discuss the limit t → ∞ of
the fundamental fluctuation relation (3.33). For finite state space the result is
quite simple [65] and the analogue of the Gallavotti-Cohen theorem [34].

Theorem 5 (Gallavotti-Cohen symmetry). Let ηt be an ergodic Markov process
with finite state space Ω and transition rates wη′η satisfying either wη′ηwηη′ > 0
or wη′η = wηη′ = 0. Furthermore, let Jt be the associated counting processes
with antisymmetric increments

rη′η = ln
(

wη′η

wηη′

)

(3.56)
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for transitions where wη′ηwηη′ > 0 and rη′η = 0 otherwise and let

Rt := ln f(ηF
0 ) + Jt − ln g(ηF

t ) (3.57)

with f(η), g(η) 
= 0 for all η ∈ Ω be the associated extended counting process at
time t. Then for the generating function

Φμ(λ, t) := 〈e−λRt〉μ (3.58)

with any initial measure μ one has the asymptotic behaviour

lim
t→∞

1
t

ln Φμ(λ, t) = −E0(λ) ∀λ ∈ IR (3.59)

and the Gallavotti-Cohen symmetry

E0(λ) = E0(1 − λ) ∀λ ∈ IR (3.60)

where E0(λ) ∈ IR is the lowest eigenvalue of the tilted generator H̃λ.

Proof. By definition

Φμ(λ, t) = 〈 s |ĝλe−H̃λtf̂−λ|μ 〉. (3.61)

The spectral decomposition

e−H̃λt =
∑

k

e−Ek(λ)t|Φk(λ) 〉〈Ψk(λ) | (3.62)

into the dyadic product of biorthogonal left and right eigenvectors of H̃λ yields

Φμ(λ, t) = e−E0(λ)t
∑

k

e−(Ek(λ)−E0(λ))tak(λ)bk(λ) (3.63)

where E0(λ) denotes the lowest eigenvalue of H̃λ and

ak(λ) := 〈 s |ĝλ|Φk(λ) 〉, bk(λ) := 〈Ψk(λ) |f̂−λ|μ 〉. (3.64)

By Perron-Frobenius the lowest eigenvalue corresponding to index k = 0 in the
decomposition is unique. Thus �(Ek(λ)−E0(λ)) > 0 for all k 
= 0. Since in finite
state space ak(λ) and bk(λ) are bounded (3.59) is proved. The Gallavotti-Cohen
symmetry (3.59) then follows from (3.29) which here reduces to H̃T

λ = H̃1−λ. �

Remark 12. The assumption of finite state space is not a minor technicality, but
essential for the validity of the theorem. For infinite state space the coefficients
a0(λ) and/or b0(λ) may diverge so that (3.59) is not valid. A simple lattice gas
model where this happens is the zero-range process where each lattice site can
occupied by an arbitrary number of particles, see [41,43,84].
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Remark 13. If (3.59) holds then the symmetry relation (3.60) for the lowest
eigenvalue implies the more popular (but not precise) version of the Gallavotti-
Cohen symmetry

p(J, t)
p(−J, t)

= e−Jt (3.65)

for the probability density p(J, t) = Prob [Jt = J ] of the entropy production Jt.

Notice the independence of (3.59) and (3.60) of boundary terms. Heuristically
this corresponds to the intuition that Jt ∝ tα for large t with some positive power
α, while the boundary terms (which depend only one point in time) are bounded
as t → ∞.

As pointed out in [65] the existence of the limit (3.59) implies a large deviation
property for the probability distribution p(j, t) := Prob [ jt = j ] of the observed
“average” current jt = Jt/t. Specifically, the long-time limiting behaviour is
given by

p(j, t) ∼ e−tÊ(j) (3.66)

where the large deviation function Ê(j) is the Legendre transformation, i.e.,

Ê(j) = max
λ

{E0(λ) − λj}. (3.67)

of E0(λ).

4 Dynamical Universality Classes

In the SSEP we have seen that local perturbation spread diffusively with dynam-
ical exponent z = 2 while in the ASEP the spreading is superdiffusive and the
KPZ-universality class with dynamical exponent z = 3/2. For a long time, these
were the only universal dynamical exponents known to appear in driven diffusive
systems. However, based on numerical evidence and analytical results for other
types of models also a dynamical exponent z = 5/3 has been reported [20,108].
Thus the question arises which dynamical exponents can generally arise and
what universal scaling functions describe the dynamical structure function.

Of course, this question is posed rather imprecisely and very generally. We
shall narrow down the quest for an answer to lattice gas models and will arrive
at a surprisingly simple (albeit non-rigorous) conclusion:
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For n locally conserved species of particles and with dynam-
ics whose large scale behaviour is determined by the slow
relaxation of these conserved densities the theory of non-linear
fluctuating hydrodynamics, analysed non-rigorously with mode
coupling theory, predicts an infinite discrete family of dynami-
cal universality classes whose dynamical exponents are the suc-
cessive Kepler ratios of neighboring Fibonacci numbers, start-
ing either with diffusion (z = 2 = 2/1) or KPZ (z = 3/2) or
containing at least two dynamical exponents which are given
by the golden mean z = (1 +

√
5)/2. The scaling form of the

non-diffusive and non-KPZ-type modes are z-stable Lévy dis-
tributions.

These results are believed to be valid beyond lattice gas models. Indeed, the
simplest case prediction that does not involve the KPZ universality class, but a
Lévy universality class with z = 3/2, has been proved rigorously recently for a
harmonic chain with a certain type of conservative noise [10].

4.1 Multi-lane Exclusion Processes

We consider a two-lane asymmetric simple exclusion process on two parallel
chains with L sites each and periodic boundary conditions. Particles do not
change lanes. We denote the particle occupation number on site k in the first
(upper) lane by η

(1)
k ∈ {0, 1}, and on the second (lower) lane by η

(2)
k ∈ {0, 1}.

The total particle number is conserved in each lane and denoted Nλ.
The jump rates for particle on lane λ depend on the particle configuration

on the adjacent lane, somewhat similar to the two-lane model introduced in the
Introduction and illustrated in Fig. 4. Particles on lane λ jump from site k to
site k+1 with rate rλ(k, k+1) and from site k+1 to site k with rate �λ(k+1, k)
as given by [78]

r1(k, k + 1) = p1 + b1n
(2)
k + c1n

(2)
k+1 + d1n

(2)
k n

(2)
k+1

�1(k + 1, k) = q1 + e1n
(2)
k + f1n

(2)
k+1 + g1n

(2)
k n

(2)
k+1

r2(k, k + 1) = p2 + b2n
(1)
k + c2n

(1)
k+1 + d2n

(1)
k n

(1)
k+1

�2(k + 1, k) = q2 + e2n
(1)
k + f2n

(1)
k+1 + g2n

(1)
k n

(1)
k+1. (4.1)

In order to write the generator we choose the tensor basis for 2L sites and
introduce the local operators σ

(i)±
k , n̂

(i)
k and v̂

(i)
k = 1 − n̂

(i)
k with Pauli matrices

acting non-trivially on site k of chain i (chosen to correspond to the factor
2k + 1 − i in the 2L-fold tensor product). The generator H can be written in
term of the diagonal matrices r̂

(1)
k , �̂

(1)
k , r̂

(2)
k , �̂

(1)
k where

r̂
(1)
k := p1 + b1n̂

(2)
k + c1n̂

(2)
k+1 + d1n̂

(2)
k n̂

(2)
k+1 (4.2)

�̂k+1 := q1 + e1n̂
(2)
k + f1n̂

(2)
k+1 + g1n̂

(2)
k n̂

(2)
k+1 (4.3)
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(and similar for the other diagonal matrices) as

H = −
2∑

i=1

L∑

k=1

[(
σ
(i)+
k σ

(i)−
k+1 − n̂

(i)
k v̂

(i)
k+1

)
r̂
(i)
k

+
(
σ
(i)−
k σ

(i)+
k+1 − v̂

(i)
k v̂

(i)
k+1

)
�̂
(i)
k+1

]
. (4.4)

The invariant measures are easy to characterize for certain constraints on the
rates.

Theorem 6. Let b1 − e1 = c2 − f2, b2 − e2 = c1 − f1, d1 = g1 and d2 = g2. The
Bernoulli product measure

μ∗(η) =
L∏

k=1

2∏

i=1

[
(1 − ρi)

(
1 − η

(i)
k

)
+ ρiη

(i)
k

]
(4.5)

is invariant under the dynamics generated by H (4.4).

Proof. We need to show that H| ρ1, ρ2 〉 = 0 for the probability vector | ρ1, ρ2 〉
corresponding to the product measure (4.5). We observe that | ρ1, ρ2 〉 is a tensor
product, see appendix. Moreover, the diagonal matrices r̂

(i)
k , �̂

(i)
k commute with

the non-diagonal hopping matrices σ
(i)±
k σ

(i)∓
k+1 . Since

σ
(i)+
k | ρ1, ρ2 〉 =

ρi

1 − ρi
v̂
(i)
k | ρ1, ρ2 〉, σ

(i)−
k | ρ1, ρ2 〉 =

1 − ρi

ρi
n̂
(i)
k | ρ1, ρ2 〉 (4.6)

one finds

H| ρ1, ρ2 〉 = −
2∑

i=1

L∑

k=1

[(
v̂
(i)
k n̂

(i)
k+1 − n̂

(i)
k v̂

(i)
k+1

)
r̂
(i)
k

+
(
n̂
(i)
k v̂

(i)
k+1 − v̂

(i)
k v̂

(i)
k+1

)
�̂
(i)
k+1

]
| ρ1, ρ2 〉. (4.7)

The r.h.s. contains only diagonal matrices which due to the telescopic property
of the sum and periodic boundary conditions sum up to 0. �

Remark 14. Using the similar ideas one constructs multilane processes [77], for
a quite general three-lane generalization see [79].

Corollary 5. The canonical stationary distribution with fixed particle numbers
Ni in each lane is uniform.

Corollary 6. The fluctuation of the total particle number in the grand canonical
Bernoulli product measure described by the compressibility matrix K (1.23) where
λ, μ ∈ {1, 2} are given by

κλ := Kλλ = ρλ(1 − ρλ), κ̄ := K12 = 0. (4.8)
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The stationary current vector j has components

j1(ρ1, ρ2) = ρ1(1 − ρ1)(a + γρ2),
j2(ρ1, ρ2) = ρ2(1 − ρ2)(b + γρ1). (4.9)

where
a = p1 − q1, b = p2 − q2, γ = b1 + c1 − e1 − f1. (4.10)

For b = 1 we recover the totally asymmetric two-lane model of [76] which is
a special case of the multi-lane model of [77]. Interestingly, the current-density
relation (4.9) is of the same form (1.22) as for the totally asymmetric model
(1.21), but with constraint on the range of the parameters a, b, γ. We consider
a = 1, γ 
= 0.

4.2 Brief Outline of Nonlinear Fluctuating Hydrodynamics

In order to study fluctuations in this process we follow [102] and take the non-
linear fluctuating hydrodynamics approach together with a mode-coupling anal-
ysis of the non-linear equation. We summarize here the main ingredients of this
well-established description.

Let us denote microscopic time by the symbol τ rather than t as done in the
previous section. We begin by describing the large-scale dynamics of the process
under Eulerian scaling where the lattice spacing a is taken to zero such that the
macroscopic coordinate x = ka remains finite and where the microscopic time
τ is taken to infinity such that the macroscopic time t = τa is finite. One then
assumes the validity of a law of large numbers such that the local distribution
of particles can be described by a coarse-grained local density ρλ(x, t) of the
particle component λ. This leads the system of conservation laws [60,100]

∂

∂t
ρ(x, t) +

∂

∂x
j(x, t) = 0 (4.11)

which follow rigorously or heuristically from the microscopic local conservation of
the particle number. Here ρλ(x, t) is a component of the density vector ρ(x, t),
and jλ(x, t) is a component of the current vector j(x, t) which we regard as
column vectors.

According to the assumption of local stationarity the current is a function of
x and t only through its dependence on the local conserved densities. Therefore

∂

∂t
ρ(x, t) + J

∂

∂x
ρ(x, t) = 0 (4.12)

where J is the current Jacobian with matrix elements Jλμ = ∂jλ/∂ρμ. The
product JK of the Jacobian with the compressibility matrix (1.23) is symmetric
[38] which guarantees hyperbolicity of the system (4.12) [106]. The eigenvalues
vα of J are the characteristic velocities of the system. If v1 
= v2 the system is
called strictly hyperbolic.
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In order to extract information from this non-linear system of PDE’s one
expands the local densities ρλ(x, t) = ρλ + uλ(x, t) around their long-time sta-
tionary values ρλ. To linear order one gets

∂tu = −J∂xu. (4.13)

where J is now fixed at the values stationary values ρλ. We transform to normal
modes φ = Ru where RJR−1 = diag(vα) and the transformation matrix R is
normalized such that RKRT = 1. Thus we get, since we have a linear system,

φα(x, t) = φ0(x + vαt) (4.14)

with initial data φα(x, 0) = φ0(x). This result demonstrates the significance of
the eigenvalues of the current Jacobian which are called characteristic velocities
vα. They are the velocities at which perturbations of the flat stationary density
profile move.

In order to study the effect of the non-linearity we now expand to second
order. This yields

∂tu = −∂x

(

Ju +
1
2
uT Hu

)

(4.15)

where H is a column vector whose entries (H)λ = Hλ are the Hessians with
matrix elements Hλ

μν = ∂2jλ/(∂ρμ∂ρν). The term uT Hλu denotes the inner
product in component space. One recognizes in (4.15) a system of coupled Burg-
ers equations.

Finally, the effect of fluctuations, which occur on finer space-time scales where
t = τaz with dynamical exponent z > 1, can be captured by adding phenomeno-
logical diffusion matrix D and white noise terms ξi(x, t). For quadratic nonlin-
earities (4.12) then yields

∂tu = −∂x

(

Ju +
1
2
uT Hu − D∂xu + Bξ

)

. (4.16)

If the quadratic non-linearity is absent one has diffusive behaviour, up to possible
logarithmic corrections that may arise from cubic non-linearities [27]. In normal
modes one has

∂tφα = −∂x

(
vαφα + φT Gαφ − ∂x(D̃φ)α + (B̃ξ)α

)
(4.17)

with D̃ = RDR−1, B̃ = RB and

Gα =
1
2

∑

λ

Rαλ(R−1)T HλR−1 (4.18)

are the called the mode coupling matrices.
Consider now the dynamical structure matrix S̄k(t) of the microscopic model

defined on the lattice. Its matrix elements are the dynamical structure functions

S̄λμ
k (t) := 〈(n(λ)

k (t) − ρλ)(n(μ)
0 (t) − ρμ)〉 (4.19)
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which measure density fluctuations in the stationary state. In normal modes one
then has

Sαβ
k (t) = [RS̄k(t)RT ]αβ = 〈φα

k (t)φβ
0 (0)〉 (4.20)

where the transformation R acts on the lattice density vector.
We focus from now on strictly hyperbolic systems where all characteristic

velocities are different. Then one expects that the off-diagonal elements of S
decay quickly and for long times and large distances the diagonal elements which
we denote by

Sα(x, t) := Sαα(x, t) (4.21)

with initial value Sα(x, 0) = δ(x) remain significant. One expects the scaling
form

Sα(x, t) ∼ t−1/zαfα((x − vαt)zα/t) (4.22)

with a dynamical exponent zα that may be different for the different modes. The
exponent in the power law prefactor is determined by mass conservation.

The dynamical structure function can interpreted as describing the station-
ary two-time correlations of the local density fluctuations. Alternatively, it can
regarded as the expectation of the local density evolving from an initial distribu-
tion that is microscopically peaked around the origin k = 0 [78], corresponding
to a δ-peak on macroscopic scale. Thus the characteristic velocity describes the
velocity at which the center of mass of these peaks move [76] and the dynamical
exponent describes the spreading around the center of mass.

4.3 Fibonacci Universality Classes

In order to analyze the system of nonlinear stochastic PDE’s in more detail we
employ mode coupling theory [80,102]. The starting point for computing the
Sα(x, t) are the one-loop mode coupling equations

∂tSα(x, t) = (−vα∂x +Dα∂2
x)Sα(x, t)+

∫ t

0

ds

∫ ∞

−∞
dy Sα(x−y, t−s)∂2

yMαα(y, s)

(4.23)
with the diagonal element Dα := D̃αα of the phenomenological diffusion matrix
and the memory kernel

Mαα(y, s) = 2
∑

β,γ

(Gα
βγ)2Sβ(y, s)Sγ(y, s). (4.24)

The strategy is to rewrite this equation in terms of the Fourier transform

Ŝα(p, t) :=
1√
2π

∫ ∞

−∞
dx e−ipxSα(x, t). (4.25)

and then to plug into this equation the scaling ansatz

Ŝα(p, t) ∼ e−ivαptf̂α(pzαt). (4.26)
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Remarkably, the coupled system of equation then becomes exactly solvable [79,
80]. One obtains equations for the dynamical exponents arising from requiring
non-trivial scaling solutions and using the known results z = 3/2 for KPZ and
z = 2 for diffusion. In a next step one can then solve for the actual scaling
functions.

The scaling behaviour of the solutions of (4.23) is turns out to be determined
by the diagonal terms Gα

ββ of the mode coupling matrices Gα. We define the set

Iα := {β : Gα
ββ 
= 0} (4.27)

of non-zero diagonal mode coupling coefficients. This means that Iα is the set of
modes β that give rise to a non-linear term in the time evolution of the mode α
whose dynamical exponent and scaling function one wishes to compute.

The equations that determine the dynamical exponents for a system with n
modes are then:

zα =

⎧
⎪⎨

⎪⎩

2 if Iα = ∅
3/2 if α ∈ Iα

minβ∈Iα

[(
1 + 1

zβ

)]
else

(4.28)

and
1 < zα ≤ 2 ∀α (4.29)

Remarkably the solution to this non-linear recursion yields as possible dynamical
exponents the Kepler ratios of neighbouring Fibonacci numbers

zα = 2, 3/2, 5/3, 8/5, . . . (4.30)

or its limiting value which is the golden mean zα = (1 +
√

5)/2.
Specifically, if all self-coupling term Gα

αα vanish then mode α is diffusive
with zα = 2 and Gaussian scaling function (except for possible logarithmic
corrections).

If Gα
αα 
= 0 and there is no diffusive mode β such that Gα

ββ 
= 0 then the
mode is KPZ with zα = 3/2 and Prähofer-Spohn scaling function [81,82].

If Gα
αα 
= 0, but there is a diffusive mode β such that Gα

ββ 
= 0 then again
zα = 3/2, but the scaling function is unknown [103]. A lattice model with this
form of the mode coupling matrix has been proposed recently [96].

If the self-coupling Gα
αα = 0 but some Gα

ββ 
= 0 then the mode is a Lévy mode
where the scaling function is an asymmetric Lévy distribution [79,80,102]. The
lowest Fibonacci mode has z = 3/2 like KPZ, but is not KPZ. The scaling
function for this mode satisfies a fractional diffusion equation which has been
proved rigorously in a system of harmonic oscillators that are perturbed by a
conservative noise [10].

Thus non-linear hydrodynamics yields an infinite discrete family of dynamical
universality classes. The ubiquitous diffusive universality class and the celebrated
KPZ universality class are the lowest members of this family.
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4.4 Ballistic Universality Class in Conditioned Dynamics

Finally we consider the question whether one can have a “ballistic” universality
class with z = 1. Such a universality class indeed exists as shown by Spohn for
an exclusion process with long-range interactions [101]. No models with short-
range interactions and z = 1 are known. However, the model of Spohn arises
as “conditioned” dynamics of the usual ASEP, viz. the ASEP conditioned on
carrying a large current. This observation then points to the existence of a much
larger family of models with z = 1 with the conjecture that all stationary space-
time correlation functions can be predicted from conformal invariance [57]. This
conjecture arises from the mapping to quantum spin systems and then using
well-established properties of the quantum ground state which is known to be
described by conformal field theory.

5 Conclusions

It has been realized in recent years that the stochastic time evolution of many
stochastic interacting particle systems can be mapped to quantum spin systems,
and in special one-dimensional cases to integrable quantum chains. This insight
has made available the tool box of quantum mechanics for these interacting par-
ticle systems far from equilibrium. With these methods many new exact results
for their dynamical and stationary properties have been derived. It is also amus-
ing to note that the Hamiltonians for such systems are mostly not hermitian and
therefore from a quantum mechanical point of view not interesting. Stochastic
interacting particle systems which can be described in this way comprise a large
variety of phenomena in physics and beyond. In this way one obtains detailed
information about the microscopic properties and large-scale fluctuations of lat-
tice gas models with conserved particle species.

Going beyond these exact results we have shown that non-linear fluctuat-
ing hydrodynamics predicts an infinite discrete family of dynamical universal-
ity classes whose dynamical exponents are the Kepler ratios of neighbouring
Fibonacci numbers. This fact encourages the search for other discrete families
of nonequilibrium universality classes and asks for a formal mathematical proof
at least for some specific class of models.

A Some Linear and Multilinear Algebra

In order to obtain more information about stochastic lattice gas models it will
turn out to be convenient to write the generator of the process as a matrix which
is called intensity matrix. Many probabilistic operations and notions then have
a natural counterpart in linear algebra which we summarize here in elementary
form. Indeed, much of what is presented is trivial, but perhaps necessary to
write down in order to point out technically important subtleties and to intro-
duce notation for the less common applications such the Kronecker product of
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matrices, sometimes also called outer product, which is essential for the choice
of basis of the intensity matrix for lattice models.

In the following and throughout this work we use the Kronecker-symbol
defined by

δα,β =
{

1 if α = β
0 else (A.1)

for α, β from any set. Complex conjugation is denoted by a bar as e.g. in z.

Matrices and Vectors. A m × n matrix A is a number array

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11 A12 A13 . . .
A21 A22 A23 . . .
A31 A32 A33 . . .
A41 A42 A43 . . .
A51 A52 A53 . . .
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

with m ≥ 1 rows and n ≥ 1 columns and matrix elements Akl in row k and
column l. The matrix elements Akl will be mostly real numbers, but they can also
be complex in certain applications. Hence we shall generally assume Akl ∈ ZZ.
We discuss some special cases.

(a) If m = n = 1 the matrix reduces a single number and we shall not differentiate
between numbers and 1 × 1-matrices.
(b) If n = 1 and m > 1 a matrix Φ is a column array of m numbers. We call
such a matrix a ket-vector that we denote by the so-called ket-symbol |Φ 〉. The
matrix elements Φ1l with 1 ≤ l ≤ m will be denoted in simplified form by Φl

and called components of the ket-vector. Thus

|Φ 〉 =

⎛

⎜
⎜
⎜
⎝

Φ1

Φ2

...
Φm

⎞

⎟
⎟
⎟
⎠

.

The vector with Φi = δik is a canonical basis vector of the vector space ZZm

denoted by | ek 〉. The set Bm := {| ek 〉 : k ∈ {1, . . . , m}} spans ZZm and is
called the canonical basis.
(c) If m = 1 and n > 1 a matrix Ψ is a row array of n numbers. We call such a
matrix a bra-vector that we denote by the so-called bra-symbol 〈Ψ |. The matrix
elements Ψk1 with 1 ≤ k ≤ n will be denoted in simplified form as Ψk and called
components of the bra-vector. Thus

〈Ψ | = (Ψ1, Ψ2, . . . , Ψn) .

Defining 〈 ek | = | ek 〉T one realizes that the set B∗ := {〈 ek | : k ∈ {1, . . . , n}}
spans ZZn. Since any finite-dimensional vector space is isomorphic to its dual,
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we can think of the bra-vectors B∗
n as representing the canonical basis of the

dual space ZZn∗ ∼= Cn.
The letter or number inside the ket-symbol | · 〉 or the bra-symbol 〈 · | is not

to be understood as the argument of some function, but just as a symbol that
collectively represents the components of the vector. When we use the term
matrix we shall tacitly assume that m,n ≥ 2. The distinction between “proper”
matrices on the one hand and the two types of vectors or simple numbers on the
other hand is useful because many fundamental linear algebra operations can
be represented as products involving numbers, bra- and ket-vectors and proper
matrices with more than one column or row.

We usually denote proper matrices by capital letters or small letters with
circumflex accent as e.g. in â. The unit matrix of dimension n > 2 with com-
ponents Akl = δk,l is denoted by 1 and for n = 2 we use the notation 1. Since
multiplication of a vector with the unit matrix is the same as multiplication with
the scalar unity 1 of the field F we do not usually differentiate between the two
operations, i.e., in equations for matrices we often write a multiple x1 of the
unity matrix simply as x.

Addition and Multiplication of Matrices. Any two matrices A and B which
have the same number of rows and columns can be multiplied by a number and
added to form a matrix C = xA + yB with the rule that Ckl = xAkl + yBkl

where x, y ∈ ZZ. Square matrices with m = n form a ring with a multiplication
rule that can be generalized to non-square matrices as follows.

Definition 12 (Matrix product). For m,n, p ≥ 1 let A be a m×p-matrix and B
be a p×n-matrix, both with matrix elements in some field F . The matrix product
AB is an m × n matrix C with matrix elements Ckl ≡ (AB)kl ∈ F given by

Ckl =
p∑

j=1

AkjBjl, 1 ≤ k ≤ m, 1 ≤ l ≤ n. (A.2)

Square matrices A,B of the same dimension m = n = p satisfying

[A , B] := AB − BA = 0 (A.3)

are said to commute.

Notice that unless m = n the reverse product BA is not defined since the
number of columns in the first factor must be equal to the number of rows in
the second factor of any matrix product. For a square matrix A the pth power of
A is denoted Ap and is defined for strictly positive integers p ∈ IN by iteration
of (A.2). By convention A0 = 1.

We discuss separately the special cases where at least one of the three number
m,n, p is equal to one.

(a) If n = 1 and p,m > 1 the we can write the matrix B as a ket-vector |Φ 〉
with components Φk := Bk1, k ∈ {1, . . . , p}. Then also the matrix product C is
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a ket-vector (with m components given by (A.2)) and the matrix product can be
interpreted as a linear mapping |Φ 〉 �→ | Φ̃ 〉 given by | Φ̃ 〉 = A|Φ 〉, corresponding
to the standard right multiplication of a matrix A with the column vector |Φ 〉.
(b) Likewise, for m = 1 and p, n > 1 we can write A = 〈Ψ | as a bra-vector with
p components with components Ψl := A1l and find that the matrix product is
a linear mapping 〈Ψ | �→ 〈 Ψ̃ | that yields the bra-vector 〈 Φ̃ | = 〈Ψ |B with n
components given by (A.2), corresponding to the left multiplication of a matrix
B with the row vector 〈Ψ |.
(c) If p = 1 and m,n > 1 then the matrix product actually turns into a product
of two vectors. It maps a m-component ket-vector |Φ 〉 (=m × 1-matrix A) with
components Φk := Ak1 and an n-component bra-vector 〈Ψ | (=1 × n-matrix B)
with components Ψl := B1l into a proper m × n matrix

C = |Φ 〉〈Ψ | (A.4)

with matrix elements Ckl = ΦkΨl as given by (A.2). This mapping, called dyadic
product, is a special form of the Kronecker product discussed below.
(d) For m = n = 1 the matrix product reduces to a single number C = 〈Ψ ||Φ 〉 =
C11 ∈ F with

〈Ψ ||Φ 〉 =
p∑

i=1

ΨiΦi ≡ 〈Ψ |Φ〉. (A.5)

It defines a bilinear mapping (〈Ψ |, |Φ 〉) �→ C11 which can be interpreted as a
dual pairing d : V∗ × V → F , (〈Ψ |, |Φ 〉) �→ 〈Ψ |Φ〉 since it is natural to regard
the bra-vector to be an element of the vector space dual to the vector space to
which the ket-vector belongs. This motivates the simplified notation 〈Ψ |Φ〉 of
this matrix product with only one vertical bar.

Specifically, for the basis vectors we obtain from (A.5) the biorthogonality
relation

〈ei| ej〉 = δij . (A.6)

Notice the difference between the dual pairing (A.5) and the scalar product s :
V×V → F defined by the sesquilinear form (|Φ′ 〉, |Φ 〉) �→ 〈Φ′, Φ〉 :=

∑p
i=1 Φ

′
iΦi

which is linear in the second argument, but antilinear in the first. When 〈Φ′ | has
only real components (as is the case in most of our applications) this distinction
is irrelevant, but should nevertheless be kept in mind.

The Kronecker Product. The Kronecker product A ⊗ B is defined for arbi-
trary rectangular matrices (including vectors and numbers) as follows.

Definition 13 (Kronecker product). Let A and B be two finite-dimensional
matrices with mA ≥ 1 (mB ≥ 1) rows and nA ≥ 1 (nB ≥ 1) columns with
matrix elements Aij and Bkl respectively. The Kronecker product A ⊗ B is a
mAmB × nAnB-matrix C with matrix elements

C(i−1)mB+k,(j−1)nB+l = AijBkl (A.7)

with i ∈ {1, . . . , mA}, j ∈ {1, . . . , nA}, k ∈ {1, . . . , mB}, l ∈ {1, . . . , nB}.
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Alternatively we can write

A ⊗ B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A11B A12B A13B . . .
A21B A22B A23B . . .
A31B A32B A33B . . .
A41B A42B A43B . . .
A51B A52B A53B . . .

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Here each matrix “element” is itself a matrix, viz. the matrix B multiplied by
the number Aij . In general A ⊗ B 
= B ⊗ A. For p ∈ IN0 the p-fold Kronecker
product of a matrix A with itself is denoted by A⊗p with the convention that
A⊗1 := A and A⊗0 := 1 where 1 is the unit element of F and not the unit
matrix. We discuss special cases.

(a) Consider nA = nB = 1, i.e., the Kronecker product of ket-vectors |Φ1 〉, |Φ2 〉
with components Φ1

i where i ∈ {1, . . . , mA} and Φ2
k where k ∈ {1, . . . , mB}.

The tensor product |Φ1 〉 ⊗ |Φ2 〉 is a column vector of dimension mAmB

denoted by |Φ1, Φ2 〉 and has factorized components (|Φ1, Φ2 〉)(i−1)mB+k =
Φ1

i Φ
2
k. Specifically, for the canonical basis vectors one gets | ei 〉 ⊗ | ek 〉 ≡

| ei, ek 〉 = | e(i−1)mB+k 〉. Thus the Kronecker product of two canonical basis
vectors yields a canonical basis vector. The set BmAmB

:= {| e(i−1)mB+k 〉 :
(i, k) ∈ {1, . . . , mA}×{1, . . . ,mB}} forms the canonical basis of the tensor space
ZZmA ⊗ ZZmB ∼= ZZmAmB .
(b) Similarly, for mA = mB = 1, i.e., for bra-vectors 〈Ψ1 |, 〈Ψ2 | with components
Ψ1

j where j ∈ {1, . . . , nA} and Ψ2
l where l ∈ {1, . . . , nB} the tensor product

〈Ψ1 | ⊗ 〈Ψ2 | is a row vector of dimension nAnB denoted by 〈Ψ1, Ψ2 |. It has
factorized components (〈Ψ1, Ψ2 |)(j−1)nB+l = Ψ1

j Ψ2
l and for the canonical basis

vectors one gets 〈 ej , el | = 〈 e(j−1)nB+l |.
(c) For the Kronecker product of a bra-vector 〈Ψ | and a ket-vector |Φ 〉 the
Definition 13 yields

〈Ψ | ⊗ |Φ 〉 = |Φ 〉 ⊗ 〈Ψ | = |Φ 〉〈Ψ | (A.8)

with the dyadic product (A.4).
The Kronecker product is associative. Multiple Kronecker products of matri-

ces define multilinear maps of the multiple tensor product of vector spaces
defined by iterating the Kronecker product Definition 13. They satisfy the mul-
tiplication rule

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) (A.9)

where we assume that the matrix products AC and BD are defined by (A.2).
We note an important factorization property of the dual pairing of Kronecker

products of vectors which is an immediate consequence of the multilinearity of
the Kronecker product encoded in (A.7).

Proposition 5. Let 〈Ψk | (|Φk 〉) be a bra-vector (ket-vector) of dimension dk

with components Ψk
i ∈ ZZ (Φk

i ∈ ZZ) and 〈Ψ1, Ψ2, . . . , ΨL | = 〈Ψ1 |⊗〈Ψ2 |⊗· · ·⊗
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〈ΨL | (|Φ1, Φ2, . . . , ΦL 〉 = |Φ1 〉 ⊗ |Φ2 〉 ⊗ · · · ⊗ |ΦL 〉) be the L-fold Kronecker
product of these vectors. Then the dual pairing factorizes as

〈Ψ1, Ψ2, . . . , ΨL|Φ1, Φ2, . . . , ΦL〉 =
L∏

k=1

〈Ψk|Φk〉 (A.10)

with 〈Ψk|Φk〉 given by (A.5).

When 〈Ψk | = 〈Ψ | for all k ∈ {1, . . . , L} then we write 〈Ψ1, Ψ2, . . . , ΨL | =
〈Ψ |⊗L and analogously for ket-vectors and proper matrices A.

Finally we introduce local operators which act non-trivially only on compo-
nent k in an L-fold tensor space. For simplicity we assume equal dimensions
d := d1 = d2 = · · · = dL.

Definition 14 (Local operator). Let 1 be the d-dimensional unit matrix and A
be an arbitrary square matrix of dimension d ≥ 1. The local operator Ak is the
Kronecker product

Ak := 1⊗(k−1) ⊗ A ⊗ 1⊗(L−k). (A.11)

Notice the difference between the number 1 ∈ ZZ and the unit matrix 1 in
this definition. The expression “local operator” come from the fact that when
acting on a tensor vector |Φ1, . . . , ΦL 〉 only the kth factor is changed by the
action of Ak. More precisely,

Ak

(
|Φ1 〉 ⊗ · · · ⊗ |Φk 〉 ⊗ · · · ⊗ |ΦL 〉

)
= |Φ1 〉⊗ · · ·⊗ | Φ̃k 〉⊗ · · ·⊗ |ΦL 〉. (A.12)

where | Φ̃k 〉 = A|Φk 〉.
From (A.9) one finds

AkBk = (AB)k (A.13)

which is equal to BkAk if and only if AB = BA. On the other hand, by con-
struction one has for two square matrices A,B of dimension k the commutation
relation

AkBl = BlAk for k 
= l (A.14)

even when AB 
= BA. In order to avoid confusion concerning the role of the
indices we point out that for L = 2 and [A , B] 
= 0 we have

A ⊗ B = A1B2 = B2A1 
= B ⊗ A = B1A2 = A2B1. (A.15)

We also note that for matrices A(k) one has

A
(1)
1 A

(2)
2 . . . A

(L)
L = A(1) ⊗ A(2) ⊗ · · · ⊗ A(L). (A.16)

The upper index defines the matrix while the lower index defines its position in
the L-fold Kronecker product. We stress that A(k) is a matrix of dimension d

while A
(k)
k is a matrix of dimension dL.
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From Proposition 5 one finds for d-dimensional square matrices A(k) the fac-
torization property

〈Ψ1, Ψ2, . . . , ΨL |A(1)
1 A

(2)
2 . . . A

(L)
L |Φ1, Φ2, . . . , ΦL 〉 =

L∏

k=1

〈Ψk |A(k)|Φk 〉.

(A.17)
We write explicitly two special cases of particular importance:

〈Ψ1, Ψ2, . . . , ΨL |Ak|Φ1, Φ2, . . . , ΦL 〉
〈Ψ1, Ψ2, . . . , ΨL|Φ1, Φ2, . . . , ΦL〉

=
〈Ψk |A|Φk 〉

〈Ψk|Φk〉
(A.18)

(〈Ψ |)⊗L (|Φ 〉)⊗L = 〈Ψ |Φ〉L
. (A.19)

These computational properties of the matrix product (A.2) and of the Kro-
necker product defined in Definition 13 will be exploited throughout these notes.
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6. Belitsky, V., Schütz, G.M.: Diffusion and coalescence of shocks in the partially
asymmetric exclusion process. Electron. J. Prob. 7, 1–21 (2002). Paper No. 11
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Abstract. We consider the symmetric exclusion process with jumps
given by a symmetric, translation invariant, transition probability p(·).
The process is put in contact with stochastic reservoirs whose strength is
tuned by a parameter θ ∈ IR. Depending on the value of the parameter
θ and the range of the transition probability p(·) we obtain the hydro-
dynamical behavior of the system. The type of hydrodynamic equation
depends on whether the underlying probability p(·) has finite or infinite
variance and the type of boundary condition depends on the strength
of the stochastic reservoirs, that is, it depends on the value of θ. More
precisely, when p(·) has finite variance we obtain either a reaction or
reaction-diffusion equation with Dirichlet boundary conditions or the
heat equation with different types of boundary conditions (of Dirich-
let, Robin or Neumann type). When p(·) has infinite variance we obtain
a fractional reaction-diffusion equation given by the regional fractional
laplacian with Dirichlet boundary conditions but for a particular strength
of the reservoirs.

Keywords: Symmetric exclusion · Stochastic reservoirs ·
Heat equation · Regional fractional laplacian · Reaction-diffusion ·
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1 Introduction

These notes have been written based on material of the articles [1–3] which was
presented on a mini-course that the author gave while visiting Institut Henri
Poincaré in Paris in May 2017 for the trimester “Stochastic dynamics out of
equilibrium” that held from the 3rd of April to the 7th of July. The slides and
the videos of the mini-course can be seen in https://indico.math.cnrs.fr/event/
844/page/5.

The content of the notes is to explain how to derive partial differential equa-
tions with different types of boundary conditions from varied underlying micro-
scopic stochastic dynamics [15,20]. In the next coming sections we consider a
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macroscopic space, namely, the interval [0, 1] and we discretize it according to
a scaling parameter N giving rise to N intervals of size 1

N . To each q ∈ [0, 1]
belonging to the interval [ i

N , i+1
N ) we associate to it the point i

N and in the
discrete set of points {1, ..., i, ..., N −1} we will define a microscopic dynamics of
exclusion type which is Markovian. The discrete set of points {1, ..., i, ..., N − 1}
will be called the bulk and to it we will add two extra points x = 0 and x = N
which will act as reservoirs. The exclusion dynamics [19] ensures that there is
at most one particle per site in the bulk and the Markovian dynamics comes
from the fact that each particle waits for rings of random clocks exponentially
distributed and independent, after which the particle jumps from a site x in
the bulk to another site y in the bulk according to a probability transition rate
p : Z×Z → [0, 1], or the particle leaves the system through one of the reservoirs.
The reservoirs will be regulated by a parameter which has the role of slowing
or fasting the boundary dynamics. More precisely, particles can be injected in
the bulk from the site x = 0 (resp. x = N) to the site y at rate ακN−θp(y)
(resp. βκN−θp(N − y)) and can be removed from the bulk at the site y to the
site x = 0 (resp. x = N) at rate (1 − α)κN−θp(y) (resp. (1 − β)κN−θp(N − y)).
Above, α, β ∈ [0, 1], θ ∈ IR and κ > 0.

The goal in these notes is to derive the partial differential equations which
describe the space-time evolution of the density of particles in the system. The
type of these equations will depend on the finiteness of the variance of the under-
lying transition probability p(·) and the type of boundary conditions will depend
on the strength of the boundary dynamics, namely, the range of the parameter
θ. We note that in [10–13] similar models have been considered evolving on the
full line, that is, without the presence of stochastic reservoirs.

The goal is to analyse which type of equation and which type of boundary
conditions we can get and what is their dependence on the strength of the reser-
voirs. For that purpose, we split these notes into two main sections to distinguish
the case in which jumps are nearest-neighbor or not. Therefore in Sect. 2, we
consider the dynamics described above but with p : Z×Z → [0, 1] which satisfies
p(x, y) = p(y − x) = 0 if |x − y| > 1, p(0) = 0 so that p(1) = p(−1) = 1

2 . This
means that in the bulk particles can jump to one of their nearest-neighbors and
particles can be injected/removed in the bulk/from the bulk through the sites
x = 1 or x = N − 1. For these models we will derive the heat equation with
three different types of boundary conditions: non-homogeneous Dirichlet bound-
ary conditions when the reservoirs are fast (which corresponds to θ < 1) and
Neumann boundary conditions when the reservoirs are slow (which corresponds
to θ > 1). Linking the aforementioned two types of boundary conditions, for a
particular strength of the boundary dynamics (which corresponds to θ = 1), we
will derive the heat equation with a type of linear Robin boundary conditions.

In Sect. 3, we will consider the dynamics described above, but allowing long
jumps given by a transition probability p : Z × Z → [0, 1] such that p(x, y) =
p(y−x), which is symmetric, namely p(y−x) = p(x−y), and we will distinguish
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two cases: the first one where p(·) has finite variance and then the case where p(·)
has infinite variance. In the first case, we will obtain an extension of the results
of the model with only nearest-neighbor jumps, that is we will derive the heat
equation with the three types of boundary conditions mentioned above but for
a certain choice of the transition probability two new regimes appear when the
reservoirs are fast, namely, a reaction-diffusion equation and a reaction equation,
both endowed with non-homogeneous Dirichlet boundary conditions. In the case
where p(·) has infinite variance and for a particular strength of the reservoirs
(which corresponds to θ = 0), we will derive a collection of fractional reaction-
diffusion equations with non-homogeneous Dirichlet boundary conditions. For
the interested reader we note that when p(·) has infinite variance and when the
strength of the reservoirs is slow (which corresponds to θ > 0), we cannot say
anything about the equation nor its boundary conditions. In [2] a similar model
has been studied and some conjectures have been presented in the case where
the reservoirs are slow. We believe that the same conjecture should be true for
this model, but we leave this for a future problem to look at. We also note that
it would be very interesting to consider other types of boundary dynamics or
even more general type of bulk dynamics than the exclusion in order to obtain
other partial differential equations with various boundary conditions.

These notes are organized as follows: in Sect. 2 we derive the hydrodynamic
limit for the symmetric exclusion in contact with stochastic reservoirs but only
allowing jumps to nearest-neighbors and in Sect. 3 we derive the hydrodynamics
in the case where the system exhibits long jumps.

More precisely, in Sects. 2.1, 2.2 and 2.3 we present the dynamics of the
model; in Sect. 2.4 we present its stationary measures; in Sect. 2.5 we analyse the
empirical profile and the two point correlation function; in Sect. 2.6 we present
the hydrodynamic equations and the notion of their weak solutions; in Sect. 2.7
we state the hydrodynamic limit; in Sect. 2.8 we give an heuristic argument to
deduce the weak formulation of the solutions by means of auxiliary martingales
associated to the process; in Sect. 2.9 we prove tightness of the process of empir-
ical measures; in Sect. 2.10 we characterize the limit point of the tight sequence
and in Sect. 2.11 we prove the hydrostatic limit, which is the hydrodynamic limit
starting from the invariant measure of the system.

In Sect. 3 we analyse the hydrodynamics for the symmetric exclusion with
long jumps given by a transition probability which is symmetric. In Sect. 3.1
we describe the model; in Sect. 3.2 we present the case in which the underlying
transition probability has finite variance and in Sect. 3.3 we analyse the case in
which the transition probability has infinite variance.

In the Appendix we present some of the technical results that are needed
along the proofs regarding the derivation of the weak solution of the correspond-
ing hydrodynamic equations.
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2 Symmetric Simple Exclusion in Contact
with Reservoirs

2.1 The Model

In this section we describe the collection of models that we are going to consider
in these notes. First we start by fixing the notation which fits all the models
and then we particularize our choice of the parameters in such a way that we
treat each model, with its special features, separately. For that purpose, let N
be a scaling parameter, which will be taken to infinity later on and denote by
ΛN = {1, ..., N − 1} the discrete set of points to which we call the bulk.

The exclusion process in contact with stochastic reservoirs is a Markov pro-
cess, denoted by {ηt : t ≥ 0}, which has state space ΩN := {0, 1}ΛN . The
configurations of the state space ΩN are denoted by η, so that for x ∈ ΛN ,
η(x) = 0 means that the site x is vacant while η(x) = 1 means that the site x is
occupied. For an illustration of the dynamics let us first take N = 5 so that the
bulk is the discrete set of points {1, 2, 3, 4}:

1 2 3 4

Now, to describe a possible initial configuration we can do the following. Toss a
coin, if we get head we put a particle at the site 1 and if we get a tail we leave it
empty. Repeat this for each site of the discrete set Λ5 and suppose that we get
at the end to the configuration η0 = (0, 1, 0, 0) which can be represented as:

1 2 3 4

Now, we start to particularize our choice for the dynamics. We are going to add
one reservoir at each end point of the bulk. This means that in our construction,
we add the points x = 0 and x = N to the bulk. Going back to the picture
above, this means that we have now the set {0, 1, 2, 3, 4, 5} where particles can
be placed, but the sites x = 0 and x = 5 will act as reservoirs.

0 1 2 3 4 5

Note that the bulk stays unchanged, the role of the boundary points {0, N} is
to allow particles to get in and out of the bulk. So, for example, in the initial
configuration given above, now we have, in the figure below, the sites x = 0
and x = N occupied, representing the fact that in x = 0 and x = N there are
particles that can enter to the bulk and that can be removed from the bulk.

0 1 2 3 4 5
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Now we describe the time between jumps. For that purpose, for each pair of
sites (x, y) we associate a Poisson process of intensity p(x, y) = p(y − x). The
Poisson processes associated to different bonds are independent. Note that the
bonds in the bulk are not oriented. In the first dynamics that we are describing,
we consider p(y −x) = 0 if |x−y| > 1, p(1) = p(−1) = 1

2 so that jumps can only
occur to a nearest-neighbor position and for that reason the exclusion process
coins the name simple exclusion process. At the boundary points we associate two
Poisson processes to each bond containing a boundary point. More precisely, to
the bond {0, 1} (resp. {1, 0}) we associate a Poisson process of intensity ακN−θ

(resp. (1−α)κN−θ) and to the bond {N −1, N} (resp. {N,N −1}) we associate
a Poisson process of intensity (1 − β)κN−θ (resp. βκN−θ). Above we fix the
parameters α, β ∈ [0, 1], θ ∈ IR and κ > 0. The role of the parameter θ is to
regulate the slowness/fastness of the reservoirs. If θ > 0 and θ increases then the
reservoirs are slower and if θ < 0 and θ decreases then the reservoirs are faster.

We remark that another interpretation of the previous dynamics at the
boundary could be given as follows. Particles can either be created or annihilated
at the sites x = 1 and x = N − 1 according to the following rates:

- at site x = 1: - at site x = N − 1:
• creation rate ακN−θ, • creation rate βκN−θ,
• annihilation rate (1 − α)κN−θ, • annihilation rate (1 − β)κN−θ.

Note that in any case, the exclusion rule has to be respected. At most one particle
is allowed at each site of the bulk (recall that the state space is {0, 1}ΛN ) so that
particles can only be created (resp. removed) at the sites x = 1 or x = N − 1
if the corresponding site is empty (resp. occupied), otherwise nothing happens.
Before we proceed let us see an illustration of a possible realization of the Poisson
processes as given in the figure below.
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In the figure at the left hand side
we represent by “×” each mark of
a possible realization of the Poisson
processes associated to the bonds.
At the left hand side we put an
arrow going down which is repre-
senting the evolution of time and
each sign “−” means that a clock
has rung according to some Poisson
clock, so that at the corresponding
time, a jump from a particle might
have occurred.

We note that in this figure we
did not distinguish the marks of
the Poisson processes associated to
the oriented bonds at the boundary
because we believe that it is sim-
pler to analyse the dynamics at the
boundary by allowing particles to
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get in or get out according to the Poisson marks but also taking into account
the exclusion rule.

In order to give an example, let us see now all the configurations that we
obtain starting the dynamics from the configuration η0 = (0, 1, 0, 0) represented
above and the realization of the Poisson processes given in the previous figure.

η0
η1
η2
η3
η4
η5
η6
η7
η8
η9
η10
η11
η12
η13
η14
η15
η16
η17
η18
η19
η20

Fig. 1. Possible configurations starting
from (0, 1, 0, 0)

By abuse of notation, in the figure
at the left hand side, we numbered the
configurations that we obtained by the
number of the marks of the Poisson
processes (which in the example are
equal to 20) just to make the presenta-
tion simple. We note that the configu-
rations are indexed by time t which is
continuous and not discrete. Note that
the difference between η0 = (0, 1, 0, 0)
and η1 = (0, 0, 1, 0) is only at two sites
(this is always the case when we com-
pare two configurations which differ
by a jump of a particle in the bulk,
a jump in the bulk affects the occupa-
tion variables at two sites) and η1 is
obtained from η0 by shifting the par-
ticle at the site 2 in η0 to the site 3.
This is a consequence of the fact that
the first mark of the Poisson process
that occurs is associated to the bond
{2, 3} and that in η0 there is a particle
at the site 2. The next mark we see is
associated to the bond {4, 5} and since
in η1 = (0, 0, 1, 0) there is no particle
at the site x = 4, a particle is injected
in the bulk at the site 4, giving rise to
η2 = (0, 0, 1, 1) and so on. Note that
the boundary dynamics only changes
the configuration at one site (Fig. 1).

We also note that the ring of a clock does not imply that the configuration of
the system has changed. In the example above η3 = η4 = (0, 0, 1, 0) since the
corresponding Poisson mark is associated to the bond {1, 2} and since both sites
x = 1 and x = 2 are empty, nothing happens and particles wait a new ring of a
clock.

The first dynamics that we are going to consider in these notes, and which is
described in this section is completely characterized by now, but we note that in
Sect. 3 we are going to generalize the previous dynamics by allowing particles to
give long jumps according to some probability transition rate p : Z × Z → [0, 1]
such that p(x, y) = p(y −x) and which is symmetric, that is p(y −x) = p(x− y).
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In the latter dynamics, there is only one reservoir at each end point of the bulk
but particles can be injected from them to any site of the bulk or they can be
removed from any site of the bulk to one of the reservoirs. We will distinguish
two cases: when p(·) has finite variance and when p(·) has infinite variance.

2.2 Illustration of the Dynamics

In this section we draw some pictures to illustrate more easily the dynamics that
we defined in the previous subsection. The particles at the bulk are coloured in
gray and the particles at the two reservoirs are coloured in blue. We also added
the clocks only at the bonds where there are particles but we note that the clocks
are present in all bonds of the form {x, x + 1}. Whenever there is a ring of a
clock we see some red lines on top of the corresponding clock and the jump rates
are indicated above the corresponding jumps which are represented by arrows.

In the first picture below, we take N = 11 and the initial configuration is
η0 = (0, 0, 1, 0, 0, 1, 0, 0, 1, 0). Note that this initial configuration changes only if
one of the clocks associated to bonds containing the sites x = 3, 6, 9 rings (which
makes the corresponding particle to displace one position to the left or right of
it) or if the clocks at the boundary sites x = 0 (resp. x = 11) ring (which makes
a particle get into the system at the site x = 1 (resp. x = 10).

κβ/Nθ

κ(1 − β)/Nθ

κ(1 − α)/Nθ

κα/Nθ

1
2

1
2

Suppose that the first clock to ring is associated to the bond {6, 7}. Since
there is a particle at the site x = 6 it jumps to the site x = 7 with rate 1/2. See
the figure below.

κβ/Nθ

κ(1 − β)/Nθ

κ(1 − α)/Nθ

κα/Nθ
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Now let us suppose that the next clock to ring is associated to the oriented
bond {0, 1}.

κβ/Nθ

κ(1 − β)/Nθ

κ(1 − α)/Nθ

κα/Nθ

Since there is no particle at the site x = 1, a particle is injected into the
system at the site x = 1 with rate ακN−θ. See the figure below.

κβ/Nθ

κ(1 − β)/Nθ

κ(1 − α)/Nθ

κα/Nθ

Finally let us suppose that the next clock to ring is associated to the oriented
bond {N,N − 1}.

κβ/Nθ

κ(1 − β)/Nθ

κ(1 − α)/Nθ

κα/Nθ

Since there is no particle at the site x = N − 1, a particle is injected into the
system at the site x = N − 1 with rate βκN−θ. See the figure below.
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κβ/Nθ

κ(1 − β)/Nθ

κ(1 − α)/Nθ

κα/Nθ

We note that the bulk dynamics conserves the total number of particles in the
bulk, but the boundary dynamics destroys this quantity since it injects/removes
particles in/from the bulk.

2.3 Infinitesimal Generator

The dynamics described above is Markovian and can be completely characterized
by mean of its infinitesimal generator, see [17,18]. The Markov process {ηt : t ≥
0} whose dynamics we have just defined has infinitesimal generator denoted by
LN which is expressed as

LN = LN,0 + LN,b, (1)

where LN,0 and LN,b are given on functions f : ΩN → IR by

(LN,0f)(η) =
N−2∑

x=1

1
2

(
f(ηx,x+1) − f(η)

)
,

LN,b = L1
N,b + LN−1

N,b , (2)

where for x ∈ {1, N − 1}

(Lx
N,bf)(η) =

κ

Nθ
cx(η, r(x))

(
f(ηx) − f(η)

)
,

r(1) = α and r(N − 1) = β,

(ηx,y)(z) =

⎧
⎪⎨

⎪⎩

η(z), z �= x, y,

η(y), z = x,

η(x), z = y

, (ηx)(z) =

{
η(z), z �= x,

1 − η(x), z = x,
(3)

and for x ∈ {1, N − 1}

cx(η; r(x)) :=
1
2

[η(x) (1 − r(x)) + (1 − η(x))r(x)] . (4)

Note that the generator above splits into the sum of the generator LN,0

(which is related to the jumps in the bulk) and LN,b (which is related to the
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jumps from the boundary or from the reservoirs). We will refer to the first one
as the exchange dynamics and the latter one as the flip dynamics, because in
LN,0 we exchange the occupation variables η(x) and η(x+1) and in Lx

N,b we flip
the value of the occupation variable at η(x).

We consider the Markov process speeded up in the time scale Θ(N) and we
note that the process {ηtΘ(N) : t ≥ 0} has infinitesimal generator given by
Θ(N)LN . To see this relation, let L̃N be the generator of the process {ηtΘ(N) :
t ≥ 0}. By definition, for f : ΩN → IR, we have that

L̃Nf = lim
s→0

S̃sf − f

s
, (5)

where S̃s := SsΘ(N) is the semigroup associated to L̃N and Ss is the semigroup
associated to LN . Then,

Θ(N)LNf = lim
t→0

Θ(N)
Stf − f

t
= lim

s→0
Θ(N)

SsΘ(N)f − f

sΘ(N)
= L̃Nf, (6)

from where we conclude that L̃N := Θ(N)LN .
We note that ηtθ(N) depends on α, β, θ and κ but we will omit these indexes

in order to simplify notation. Fix T > 0 and θ ∈ IR. Let μN be a probability
measure in ΩN . We denote by IPμN

the probability measure in the Skorohod
space D([0, T ], ΩN ) induced by the Markov process {ηtΘ(N) : t ≥ 0} and the
initial probability measure μN and we denote by EIPμN

the expectation with
respect to IPμN

.
Our goal in these notes is to analyse the impact of changing the strength of

the reservoirs (by changing the value of θ) on the macroscopic behavior of the
system. More precisely, we want to obtain the hydrodynamic equations of the
process which will have different boundary conditions depending on the range
of the parameter θ which rules the strength of the reservoirs. Before proceeding,
in the next subsection we analyse the invariant measures for this model.

2.4 Stationary Measures

For ρ ∈ (0, 1) we denote by νN
ρ the Bernoulli product measure in ΩN with density

ρ, that is, for x ∈ ΛN :
νN

ρ {η : η(x) = 1} = ρ. (7)

According to this measure the occupation variables {η(x)}x∈ΛN
are independent

and for each x ∈ ΛN the random variable η(x) has Bernoulli distribution of
parameter ρ. When we restrict the parameters α and β such that α = β = ρ,
then these measures are invariant for the dynamics described above. In fact, a
stronger result is true, see the next lemma where we prove that these measures
are reversible.

Lemma 1. For α = β = ρ the Bernoulli product measures νN
ρ are reversible.
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Proof. Fix two functions f, g : ΩN → IR. To prove the lemma, we need to show
that ∫

ΩN

g(η)LNf(η)dνN
ρ =

∫

ΩN

f(η)LNg(η)dνN
ρ . (8)

Let us start with the exchange dynamics given by LN,0. In this case we need to
check that
∑

x∈ΛN

∫

ΩN

g(η)(f(ηx,x+1) − f(η))dνN
ρ =

∑

x∈ΛN

∫

ΩN

f(η)(g(ηx,x+1) − g(η))dνN
ρ .

For that purpose note that, for fixed x ∈ ΛN and performing a change of variables
ξ = ηx,x+1, we have that

∫

ΩN

g(η)f(ηx,x+1)dνN
ρ =

∑

η∈ΩN

g(η)f(ηx,x+1)νN
ρ (η)

=
∑

ξ∈ΩN

g(ξx,x+1)f(ξ)
νN

ρ (ξx,x+1)
νN

ρ (ξ)
νN

ρ (ξ).

Now note that
νN

ρ (ξ) =
∏

x∈ΛN

ρξ(x)(1 − ρ)1−ξ(x)

so that

– if ξ(x) = 1 and ξ(x + 1) = 0, denoting by ξ̃ the configuration ξ removing its
values at x and x+1 so that ξ = (ξ̃, ξ(x), ξ(x+1)), then νN

ρ (ξ) = νN
ρ (ξ̃)ρ(1−ρ)

and νN
ρ (ξx,x+1) = νN

ρ (ξ̃)(1 − ρ)ρ, so that

νN
ρ (ξx,x+1)
νN

ρ (ξ)
= 1. (9)

– if ξ(x) = 0 and ξ(x + 1) = 1, then νN
ρ (ξ) = νN

ρ (ξ̃)(1 − ρ)ρ and νN
ρ (ξx,x+1) =

νN
ρ (ξ̃)ρ(1 − ρ), so that (9) is also true.

Therefore, we obtain that
∫

ΩN

g(η)f(ηx,x+1)dνN
ρ =

∑

ξ∈ΩN

g(ξx,x+1)f(ξ)νN
ρ (ξ) =

∫

ΩN

g(ηx,x+1)f(η)dνN
ρ ,

which proves (8) for LN,0. For the flip dynamics given by LN,b we note, for the
left boundary, that

∫

ΩN

g(η)c1(η, α)f(η1)dνN
ρ

=
∑

η∈ΩN

g(η)(1 − η(1))αf(η1)νN
ρ (η) +

∑

η∈ΩN

g(η)(1 − α)f(η1)νN
ρ (η).
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By the change of variables ξ = η1, the previous expression can be written as

∑

ξ∈ΩN

f(ξ)
{

g(ξ1)ξ(1)α
νN

ρ (ξ1)
νN

ρ (ξ)
+ g(ξ1)(1 − ξ(1))(1 − α)

νN
ρ (ξ1)
νN

ρ (ξ)

}
νN

ρ (ξ).

A simple computation shows that if ξ(1) = 1, then νN
ρ (ξ1)

νN
ρ (ξ)

= 1−ρ
ρ so that the

previous expression can be written as

κ

Nθ

∑

ξ∈ΩN

f(ξ)
{

g(ξ1)ξ(1)α
1 − ρ

ρ
+ g(ξ1)(1 − ξ(1))(1 − α)

ρ

1 − ρ

}
νN

ρ (ξ),

from where we get, for α = ρ, that
∫

ΩN

g(η)c1(η, α)f(η1)dνN
ρ =

∫

ΩN

g(η1)c1(η1, ρ)f(η)dνN
ρ .

The same computation can be done if ξ(1) = 0, from where we conclude. We
can repeat the same computation for the right boundary and this proves (8) for
LN,b. This ends the proof of the lemma. ��

When α �= β, the Bernoulli product measures are not reversible nor invariant.
A simple way to check the non-invariance is to argue as follows. Suppose that
the measures νN

ρ are invariant. Then we know that for any function f : ΩN → IR
we have that ∫

ΩN

LNf(η)dνN
ρ = 0. (10)

But for f(η) = η(1), a simple computation shows that LN,0f(η) = 1
2 (η(2)−η(1))

and LN,bf(η) = κ
2Nθ [α − η(1)], so that

∫

ΩN

LNf(η)dνN
ρ =

κ

2Nθ
(α − ρ)

and this equals to 0 iff α = ρ. Analogously, repeating the same computations as
above for f(η) = η(N −1), we would conclude (10) iff β = ρ. But this contradicts
the fact that α �= β.

When α �= β, since we have a finite state irreducible Markov process, then
there exists a unique stationary measure that we denote by μss. A way to get
information about this measure is to use the matrix ansatz method introduced
in [6,7]. The idea behind the method is the following. Let

fN−1(η(1), · · · , η(N − 1))
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denote the weight of the configuration η := (η(1), · · · , η(N − 1)) with respect to
the stationary measure μss and let us suppose that

fN−1(η(1), η(2), · · · , η(N − 1)) = wT Xη(1)Xη(2) · · · Xη(N−1)v,

where
Xη(x) = η(x)D + (1 − η(x))E,

and D,E are matrices (which in general do not commute) and the vectors wT ,v
are present in order to convert the matrix product into a scalar. In the figure
below we take N = 6 and we present a possible configuration η = (0, 1, 0, 1, 1)
whose corresponding weight is given by fN−1(η) = wT EDEDDv.

↓
wT

↓
E

↓
D

↓
E

↓
D

↓
D

↓
v

Let P (η(1), η(2), · · · , η(N −1)) be the normalized weight of the configuration
η := (η(1), · · · , η(N −1)) with respect to the stationary state μss, which is given
by

P (η(1), η(2), · · · , η(N − 1)) =
fN−1(η(1), η(2), · · · , η(N − 1))

ZN−1
,

where ZN−1 is the sum of the weights of the 2N−1 possible configurations in
ΩN :

ZN−1 =
∑

η(1)∈{0,1}
· · ·

∑

η(N−1)∈{0,1}
fN−1(η(1), η(2), · · · , η(N − 1)).

From the definition of fN−1, we have that

P (η(1), η(2), · · · , η(N − 1)) =
wT Xη(1)Xη(2) · · · Xη(N−1)v

ZN−1
,

and the normalization can be written as

ZN−1 =
∑

η(1)∈{1,0}
· · ·

∑

η(N−1)∈{1,0}
wT Xη(1)Xη(2) · · · Xη(N−1)v

=
∑

η(1)∈{1,0}
· · ·

∑

η(N−2)∈{1,0}
wT Xη(1)Xη(2) · · · Xη(N−2)(D + E)v

= · · · = wT (D + E)N−1v.

(11)
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Let us now impose conditions on the matrices D and E. For that purpose, let
C = D+E. The expectation of the occupation variable at the site x, with respect
to the stationary state μss, is given by

ρN
ss(x) =

∫

ΩN

η(x)dμss

=

∑
η(1)∈{1,0} · · ·

∑
η(N−1)∈{1,0} η(x)fN−1(η(1), · · · , η(N − 1))

ZN−1

=
1

ZN−1

∑

η(1)∈{1,0}
· · ·

∑

η(N−1)∈{1,0}

[
wT

x−1∏

j=1

Xη(j)D
N−1∏

j=x+1

Xη(j)v
]

=
wT Cx−1DCN−1−xv

wT CN−1v
.

(12)

The function ρN
ss(·) is called the stationary empirical density profile since it is the

average with respect to the stationary measure μss, otherwise we refer to it as
the empirical density profile. Note that above the sum does not contain the factor
η(x) ∈ {1, 0} since the expectation is non-zero iff η(x) = 1. We can also compute
the expectation of the product of two point occupation variables at the sites x and
y, with respect to the stationary state μss, that is, for 1 ≤ x < y ≤ N − 1, we have
that
∫

ΩN

η(x)η(y)dμss =

=

∑
η(1)∈{0,1} · · ·

∑
η(N−1)∈{0,1} η(x)η(y)fN−1(η(1), · · · , η(N − 1))

ZN−1

=
wT Cx−1DCy−x−1DCN−1−yv

wT CN−1v
.

Therefore, the two point correlation function, with respect to the stationary
state μss, is given on 1 ≤ x < y ≤ N − 1 by

ϕN
ss(x, y) :=

∫

ΩN

(η(x) − ρN
ss(x))(η(y) − ρN

ss(y))dμss

=
wT Cx−1DCy−x−1DCN−1−yv

wT CN−1v

− wT Cx−1DCN−1−xv
wT CN−1v

.
wT Cy−1DCN−1−yv

wT CN−1v
.

(13)

A simple computation (see [5]) shows that for the dynamics that we are consider-
ing in this section, the matrices D,E and the vectors wT ,v satisfy the following
relations:

DE − ED = D + E = C,

wT

[
κα

2Nθ
E − κ(1 − α)

2Nθ
D

]
= wT ,

[
κ(1 − β)

2Nθ
D − κβ

2Nθ
E

]
v = v.

(14)
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We note that the equations above also show that

C(D + I) = (D + E)(D + I) = DD + D + ED + E,

and that C(D+I) = DD+DE = DC. Analogously we have that CD = (D−I)C.
Using (11), we obtain that ZN−1 is given by

ZN−1 =
1

(α − β)N−1

Γ (2Nθ + N − 1)
Γ (2Nθ)

,

where Γ (·) denotes the Gamma function. For the details on these computations
we refer the interested reader to [5]. Now, in (12), by writing DCN−1−x =
DCCN−2−x and using the fact that C(D + I) = DC we obtain

ρN
ss(x) =

wT Cx−1C(D + I)CN−2−xv
ZN−1

=
wT CxDCN−2−xv

ZN−1
+

wT CN−2v
ZN−1

.

Repeating the procedure above and using the explicit expression for ZN−1 given
above, we obtain a simple expression for ρN

ss(x) given by

ρN
ss(x) = β + (N − x)

α − β

2Nθ + N − 2
+ (Nθ − 1)

α − β

2Nθ + N − 2
. (15)

In fact last identity can be rewritten as

ρN
ss(x) =

κ(β − α)x
2Nθ + N − 2

+ α +
κ(β − α)x

2Nθ + N − 2

(Nθ

κ
− 1

)
.

Analogously, from a simple, but long computation (see [5]), we have that
∫

ΩN

η(x)η(y)dμss = βρN
ss(x) + (N − y + Nθ − 1)

α − β

2Nθ + N − 2
ρN−1

ss (x),

and from (15), we obtain
∫

ΩN

η(x)η(y)dμss = β

[
β(x + Nθ − 1) + α(N − x + Nθ − 1)

2Nθ + N − 2

]

+
(N − y + Nθ − 1)(α − β)

2Nθ + N − 2

[
β(x + Nθ − 1) + α(N − x + Nθ − 2)

2Nθ + N − 3

]
.

Putting together last expressions and doing simple, but long, computations we
conclude that

ϕN
ss(x, y) = − (α − β)2(x + Nθ − 1)(N − y + Nθ − 1)

(2Nθ + N − 2)2(2Nθ + N − 3)
. (16)

From the previous identity it follows that

max
x<y

|ϕN
ss(x, y)| =

⎧
⎨

⎩
O
(

Nθ

N2

)
, θ < 1,

O
(

1
Nθ

)
, θ ≥ 1,

→N→∞ 0. (17)

This means that as the size of the bulk tens to infinity, the two point correlation
function vanishes. In the next subsection we analyse the empirical profile and
the two point correlation function for more general initial measures.
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2.5 Empirical Profile and Correlations

Before stating the hydrodynamic limit result we explain here how to have a
guess on the form of the hydrodynamic equations by using the empirical profile,
which was defined above in the case of the measure μss. Now we generalize its
definition. For a measure μN in ΩN and for each x ∈ ΛN we denote by ρN

t (x)
the empirical profile at the site x, given by

ρN
t (x) = EIPμN

[ηtN2(x)].

We extend this definition to the boundary by setting

ρN
t (0) = α and ρN

t (N) = β , for all t ≥ 0 .

Note that since μss is a stationary measure the stationary empirical profile ρN
ss(·)

does not depend on time, but now since μN is a general measure the empirical
profile ρN

t (·) depends on time. From Kolmogorov’s backward equation we know
that ρN

t (·) is a solution of

∂tρ
N
t (x) = EIPμN

[LNηtN2(x)].

A simple computation shows that

LNη(x) = jx−1,x(η) − jx,x+1(η)

where for x ∈ ΛN , the quantity jx,x+1(η) denotes the microscopic current at the
bond {x, x + 1}, which is given by the difference between the jump rate from x
to x+1 and the jump rate from x+1 to x. Note that for x = 0 (resp. x = N −1)
jx,x+1 is equal to the creation rate minus the annihilation rate at the site x = 1
(resp. x = N − 1). Therefore

j0,1(η) =
κ

2Nθ
(α − η(1)),

jx,x+1(η) =
1
2
(η(x) − η(x + 1)),∀x ∈ {1, ..., N − 2}

jN−1,N (η) =
κ

2Nθ
(η(N − 1) − β).

(18)

A simple computation shows that ρN
t (·) is a solution of the equation

⎧
⎨

⎩

∂tρ
N
t (x) =

(
N2Bθ

NρN
t

)
(x) , x ∈ ΛN , t ≥ 0 ,

ρN
t (0) = α , t ≥ 0,

ρN
t (N) = β , t ≥ 0,

(19)

where the operator Bθ
N acts on functions f : ΛN ∪ {0, N} → IR as

⎧
⎨

⎩

N2(Bθ
Nf)(x) = 1

2ΔNf(x) , for x ∈ {2, ..., N − 2},

N2(Bθ
Nf)(1) = N2

2 (f(2) − f(1)) + κN2

2Nθ (f(0) − f(1)),
N2(Bθ

Nf)(N − 1) = N2

2 (f(N − 2) − f(N − 1)) + κN2

2Nθ (f(N) − f(N − 1)).
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Above ΔNf denotes the discrete Laplacian of f(·) which is given on x ∈ ΛN by

ΔNf(x) = f(x + 1) + f(x − 1) − 2f(x). (20)

Note that for θ = 0 the operator Bθ
N is basically the discrete laplacian but when

θ �= 0 we see some distortion at the boundary due to the mechanism of creation
and annihilation.

A simple computation shows that the stationary solution of (19) is given by

ρN
ss(x) = EIPμss

[ηtN2(x)] = aNx + bN

where the coefficients aN and bN are equal to

aN =
κ(β − α)

2Nθ + κ(N − 2)
and bN = aN

(Nθ

κ
− 1

)
+ α.

From this we get that

lim
N→∞

max
x∈ΛN

∣∣ρN
ss(x) − ρ̄( x

N )
∣∣ = 0, (21)

where for q ∈ (0, 1)

ρ̄(q) =

⎧
⎨

⎩

(β − α)q + α ; θ < 1,
κ(β−α)
2+κ q + α + β−α

2+κ ; θ = 1,
β+α
2 ; θ > 1.

(22)

Note that ρ̄(·) will be a stationary solution of the hydrodynamic equation that
we are looking for. See Fig. 3 for a representation of ρ̄(·).

Now we obtain information about the two point correlation function. Let

VN = {(x, y) ∈ {0, ..., N}2 : 0 < x < y < N},

and its boundary

∂VN = {(x, y) ∈ {0, ..., N}2 : x = 0 or y = N}.

See Fig. 2.
For x < y ∈ VN , let ϕN

t (x, y) denote the two point correlation function
between the occupation sites at x < y ∈ VN which is defined by

ϕN
t (x, y) = EIPμN

[(ηtN2(x) − ρN
t (x))(ηtN2(y) − ρN

t (y))]. (23)

Doing some simple, but long, computations we see that ϕN
t is a solution of

⎧
⎪⎨

⎪⎩

∂tϕ
N
t (x, y) = n2Aθ

Nϕn
t (x, y) + gN

t (x, y), for (x, y) ∈ VN , t > 0,

ϕN
t (x, y) = 0, for (x, y) ∈ ∂VN , t > 0,

ϕN
0 (x, y) = EμN

[η0(x)η0(y)] − ρN
0 (x)ρN

0 (y), for (x, y) ∈ VN ∪ ∂VN ,

(24)
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x0 1 2 N 1

1

2

N − 1

N

Fig. 2. The set VN and its boundary ∂VN

where Aθ
N is the linear operator that acts on functions f : VN ∪ ∂VN → IR as

(Aθ
Nf)(u) =

∑

v∈VN

cθ
N (u, v)

[
f(v) − f(u)

]
,

with

cθ
N (u, v) =

⎧
⎪⎨

⎪⎩

1, if ‖u − v‖ = 1 and u, v ∈ VN ,

N−θ, if ‖u − v‖ = 1 and u ∈ VN , v ∈ ∂VN ,

0, otherwise,

for θ ≥ 0. Note that Aθ
N is the generator of a random walk in VN ∪ ∂VN with

jump rates given by cθ
N (u, v), which is absorbed at ∂VN . Above ‖ · ‖ denotes the

supremum norm,
gN

t (x, y) = −(∇+
NρN

t (x))2δy=x+1

and
∇+

NρN
t (x) = N(ρN

t (x + 1) − ρN
t (x)). (25)

In this case, contrarily to the empirical profile, it is quite complicated to obtain
an expression for the stationary solution of (24). Nevertheless, we note that
a simple, but long, computation shows that the solution obtained in (16), in
the case where the starting measure is the stationary state μss, is in fact the
stationary solution of (24). We also observe that in [9] it was obtained the
following bound on the case θ = 1 for a general initial measure μN . There it was
proved that there exists a constant C > 0 such that

sup
t≥0

max
(x,y)∈VN

|ϕN
t (x, y)| ≤ C

N
, (26)

but we note that the bounds on the other regimes of θ are still open, apart the
case θ = 0 where the bound above is given by C/N2, see [16].
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2.6 Hydrodynamic Equations

From now on up to the rest of these notes we fix a finite time horizon [0, T ].
We denote by 〈·, ·〉μ the inner product in L2([0, 1]) with respect to a measure μ
defined in [0, 1] and ‖ · ‖L2(μ) is the corresponding norm. We note that when μ
is the Lebesgue measure we write 〈·, ·〉 and ‖ · ‖L2 for the corresponding norm.

We denote by Cm,n([0, T ]× [0, 1]) the set of functions defined on [0, T ]× [0, 1]
that are m times differentiable on the first variable and n times differentiable
on the second variable and with continuous derivatives. For a function G :=
G(s, q) ∈ Cm,n([0, T ] × [0, 1]) we denote by ∂sG its derivative with respect to
the time variable s and by ∂qG its derivative with respect to the space variable
q. For simplicity of notation we set ΔG := ∂2

qG. We will also make use of
the set Cm,n

c ([0, T ] × [0, 1]) of functions G ∈ Cm,n([0, T ] × [0, 1]) such that for
any time s the function Gs has a compact support included in (0, 1) and we
denote by Cm

c (0, 1) (resp. C∞
c (0, 1)) the set of all m continuously differentiable

(resp. smooth) real-valued functions defined on (0, 1) with compact support. The
supremum norm is denoted by ‖ · ‖∞. Finally, Cm,n

0 ([0, T ] × [0, 1]) is the set of
functions G ∈ Cm,n([0, T ] × [0, 1]) such that for any time s the function Gs

vanishes at the boundary, that is, Gs(0) = Gs(1) = 0.
Now we want to define the space where the solutions of the hydrodynamic

equations will live on, namely the Sobolev space H1 on [0, 1]. For that purpose,
we define the semi inner-product 〈·, ·〉1 on the set C∞([0, 1]) by

〈G,H〉1 =
∫ 1

0

(∂qG)(q) (∂qH)(q) dq, (27)

for G,H ∈ C∞([0, 1]) and the corresponding semi-norm is denoted by ‖ · ‖1.

Definition 1. The Sobolev space H1 on [0, 1] is the Hilbert space defined as the
completion of C∞([0, 1]) for the norm

‖ · ‖2H1 := ‖ · ‖2L2 + ‖ · ‖21.

Its elements elements coincide a.e. with continuous functions.
The space L2(0, T ;H1) is the set of measurable functions f : [0, T ] → H1

such that ∫ T

0

‖fs‖2H1ds < ∞.

We can now give the definition of the weak solutions of the hydrodynamic
equations that will be derived for the symmetric simple exclusion process in con-
tact with stochastic reservoirs. We start by giving the notion of a weak solution
to the heat equation with Dirichlet boundary conditions which will be the notion
that we will derive in the regime θ ∈ [0, 1). In what follows g : [0, 1] → [0, 1] is a
measurable function and it is the initial condition of all the partial differential
equations that we define below, that is ρ0(q) = g(q), for all q ∈ (0, 1).
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Definition 2. We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the
heat equation with Dirichlet boundary conditions

{
∂tρt(q) = 1

2Δρt(q), (t, q) ∈ [0, T ] × (0, 1),
ρt(0) = α, ρt(1) = β, t ∈ (0, T ],

(28)

starting from a measurable function g : [0, 1] → [0, 1], if the following two condi-
tions hold:

1. ρ ∈ L2(0, T ;H1);
2. ρ satisfies the weak formulation:

FDir :=

∫ 1

0
ρt(q)Gt(q) dq −

∫ 1

0
g(q)G0(q) dq

−
∫ t

0

∫ 1

0
ρs(q)

(1

2
Δ + ∂s

)
Gs(q) dq ds

+

∫ t

0

{ β

2
∂qGs(1) −

α

2
∂qGs(0)

}
ds = 0,

(29)

for all t ∈ [0, T ] and any function G ∈ C1,2
0 ([0, T ] × [0, 1]).

In the regime θ < 0 we will make use of another notion of weak solution to
the heat equation with Dirichlet boundary conditions which uses as input for
test functions elements in the set C1,2

c ([0, T ] × [0, 1]). Since functions in that
space have compact support, in order to get a proper notion of weak solution we
need to add an extra condition to Definition 2 (see 3. in Definition 3).

Definition 3. We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the
heat equation with Dirichlet boundary conditions given in (28), starting from a
measurable function g : [0, 1] → [0, 1], if the following three conditions hold:

1. ρ ∈ L2(0, T ;H1),
2. ρ satisfies the weak formulation:

F c
Dir :=

∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
(1

2
Δ + ∂s

)
Gs(q) dq ds = 0,

(30)

for all t ∈ [0, T ] and any function G ∈ C1,2
c ([0, T ] × [0, 1]),

3. ρt(0) = α, ρt(1) = β for all t ∈ (0, T ].

Remark 1. We note that (30) coincides with (29) by taking as input a test func-
tion G ∈ C1,2

c ([0, T ] × [0, 1]), since in this case ∂qGs(0) = ∂qGs(1) = 0, so that
the last term in (29) vanishes.

Now we introduce the notion of weak solution of the hydrodynamic equation
that we will derive in the case θ = 1. In this regime the boundary reservoirs are
so slow and as a consequence, a different boundary condition appears. In the
case of Dirichlet boundary conditions, the value of the profile ρt(·) is fixed to be
equal to α at 0 and β at 1. This is no longer the case when θ ≥ 1 as we will see
later on.
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Definition 4. We say that ρ : [0, T ] × [0, 1] → [0, 1] is a weak solution of the
heat equation with Robin boundary conditions

{
∂tρt(q) = 1

2Δρt(q), (t, q) ∈ [0, T ] × (0, 1),
∂qρt(0) = κ(ρt(0) − α), ∂qρt(1) = κ(β − ρt(1)), t ∈ (0, T ],

(31)

starting from a measurable function g : [0, 1] → [0, 1], if the following two condi-
tions hold:

1. ρ ∈ L2(0, T ;H1),
2. ρ satisfies the weak formulation:

FRob :=

∫ 1

0
ρt(q)Gt(q) dq −

∫ 1

0
g(q)G0(q) dq

−
∫ t

0

∫ 1

0
ρs(q)

(1

2
Δ + ∂s

)
Gs(q) ds dq +

1

2

∫ t

0
{ρs(1)∂qGs(1) − ρs(0)∂qGs(0)} ds

− κ

2

∫ t

0
{Gs(0)(α − ρs(0)) + Gs(1)(β − ρs(1))} ds = 0,

(32)

for all t ∈ [0, T ] and any function G ∈ C1,2([0, T ] × [0, 1]).

In the regime θ = 1 the boundary reservoirs are so slow so that a type of
Robin boundary condition appears. In this case it fixes the value of the flux
through the system as being proportional to the difference of concentration.
Note that, for example at q = 0, the value ∂qρt(0) corresponds to the flux of
particles through the left boundary and κ(ρt(0)−α) corresponds to the difference
of the concentration, since in this case, contrarily to what happens in the case
of Dirichlet boundary conditions, it is not true that ρt(0) = α (the value of the
profile at the boundaries is not fixed!)

Remark 2. Observe that in the case κ = 0 the equation above is the heat equa-
tion with Neumann boundary conditions and it is the hydrodynamic equation
that we will derive in the case θ > 1.

Remark 3. We observe that all the partial differential equations defined above
have a unique weak solution in the sense given above. We do not include the
proof of this result in these notes but we refer the interested reader to [2] for the
proof of the uniqueness in the case of Dirichlet boundary conditions and to [1]
for the proof of the uniqueness in the case of Robin boundary conditions.

Deriving the Weak Formulation: We note that the weak formulation given
in all the regimes above can be obtained from the formal expression of the corre-
sponding partial differential equation in the following way. Take a test function
G ∈ C1,2([0, T ] × [0, 1]) and multiply both sides of the equality

∂sρs(q) =
1
2
Δρs(q)
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by G and then integrate in the time interval [0, t] and in the space interval [0, 1]
to get ∫ 1

0

∫ t

0

∂sρs(q)Gs(q) ds dq =
∫ 1

0

∫ t

0

1
2
Δρs(q)Gs(q) ds dq. (33)

To treat the term at the left hand side of last display, we perform an integration
by parts in the time integral and we get to

∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq −
∫ t

0

∫ 1

0

ρs(q)∂sGs(q) ds dq. (34)

The term at the right hand side of (33) can be treated by doing an integration
by parts in the space integral and we get to

1
2

∫ t

0

{
∂qρs(1)Gs(1) − ∂qρs(0)Gs(0)

}
ds − 1

2

∫ t

0

∫ 1

0

∂qρs(q)∂qGs(q) ds dq.

Now, we do another integration by parts in the integral in space at the term on
the right hand side of last expression and we write the previous display as

1
2

∫ t

0

{
∂qρs(1)Gs(1) − ∂qρs(0)Gs(0)

}
ds

−1
2

∫ t

0

{
ρs(1)∂qGs(1) − ρs(0)∂qGs(0)

}
ds +

1
2

∫ t

0

∫ 1

0

ρs(q)ΔGs(q) ds dq.

(35)

Putting together (35) and (34) we obtain

∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq =
∫ t

0

∫ 1

0

ρs(q)
(1

2
Δ + ∂s

)
Gs(q) ds dq

+
1
2

∫ t

0

{
∂qρs(1)Gs(1) − ∂qρs(0)Gs(0)

}
ds

−1
2

∫ t

0

{
ρs(1)∂qGs(1) − ρs(0)∂qGs(0)

}
ds.

Now we obtain each one of the weak formulations given above. We start with the
case where G ∈ C1,2

0 ([0, T ]× [0, 1]) and we will derive (29). For that purpose note
that since G vanishes at the boundary of [0, 1] and since ρs(0) = α and ρs(1) = β,
the expression in the previous display becomes equivalent to FDir = 0.

On the other hand, if G ∈ C1,2
c ([0, T ]×[0, 1]), then G vanishes at the boundary

of [0, 1] and ∂qG also vanishes at the boundary of [0, 1], so that for ρ satisfying
the Dirichlet boundary conditions of (28), the expression in the display above
becomes equivalent to F c

Dir = 0.
Finally for G ∈ C1,2([0, T ]× [0, 1]) and for ρ(·) satisfying the Robin boundary

conditions of (31), the expression in the previous display becomes equivalent to
FRob = 0.
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Stationary Solutions: Now we deduce the stationary solutions for each one
of the equations given above. We start with (28). For that purpose note that,
denoting by ρ̄(·) the stationary solution we have that Δρ̄(t, q) = 0 implies that
ρ̄(q) = aq + b for a, b ∈ IR and q ∈ (0, 1). Imposing the Dirichlet boundary
conditions we arrive at

a = (β − α) and b = β,

so that
ρ̄Dir(q) = (β − α)q + α. (36)

On the other hand, imposing the Robin boundary conditions of (31) we arrive
at

a =
κ(β − α)

2 + κ
and b = α +

β − α

2 + κ
,

so that for q ∈ (0, 1)

ρ̄Rob(q) =
κ(β − α)

2 + κ
q + α +

β − α

2 + κ
. (37)

Finally, if we impose the Neumann boundary conditions, any constant solution
is a stationary solution of (31) with κ = 0 (which corresponds to the Neumann
regime). In this case we note that the stationary solution is not unique. Below we
draw the graph of these stationary solutions for a choice of α = 0.2 and β = 0.8
(Fig. 3).

Now we give the explicit expression for the solution of each hydrodynamic
equation.

Proposition 1. We have that:

1. The solution of (28) with initial condition g(·) is equal to

ρt(q) = ρ̄Dir(q) +
∞∑

n=1

e− (nπ)2

2 t2 sin(nπq).

2. The solution of (31) with initial condition g(·) is equal to

ρt(q) = ρ̄Rob(q) +
∞∑

n=1

Cne− λn
2 tXn(q),

where
Xn(q) = An sin(

√
λn q) + Anκ

√
λn cos(

√
λn q), (38)

An is a normalizing constant in such a way that Xn has unitary L2([0, 1])-
norm and

Cn =
∫ 1

0

(g(q) − ρ̄Rob(q))Xn(q)dq.
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θ > 1
θ = 1
θ < 1

1
20 1

β

α

α+β
2

(α+β)+ακ
κ+2

(α+β)+βκ
κ+2

Fig. 3. Stationary solutions of the hydrodynamic equations.

Proof. The solution ρ(·) to (28) starting from a profile g(·) is such that u =
ρ− ρ̄Dir is solution to (28) with homogeneous boundary conditions α = β = 0, i.e.

{
∂tut(q) = 1

2Δut(q), (t, q) ∈ [0, T ] × (0, 1),
ut(0) = 0 = ut(1), t ∈ [0, T ].

(39)

It is well known that ut(q) is given by

ut(q) =
∞∑

n=1

e− (nπ)2

2 t2 sin(nπq).

From the previous computations we conclude that the solution ρ(·) of (28) start-
ing from g(·) is given by

ρt(q) = (β − α)q + α +
∞∑

n=1

e− (nπ)2

2 t2 sin(nπq).

On the other hand, the solution ρ(·) of (31) starting from g(·) is such that
u = ρ − ρ̄Rob is solution to (31) with α = β = 0, i.e.

{
∂tut(q) = 1

2Δut(q), (t, q) ∈ [0, T ] × (0, 1),
∂qut(0) = κut(0), ∂qut(1) = −κut(1), t ∈ [0, T ].

(40)

It is well known that ut(q) is given by

ut(q) =
∞∑

n=1

Cne− λn
2 tXn(q),

where Xn(q) writes as

Xn(q) = An sin(
√

λnq) + Bn cos(
√

λnq),
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for some constants An and Bn. Then, the first boundary condition in (40) gives
Bn =

√
λnκAn. To avoid the null solution we consider An �= 0. The second

boundary condition in (40) gives

tan(
√

λn) =
2κ

√
λn

λnκ2 − 1
, (41)

whose solution λn satisfying (n − 1)π ≤
√

λn ≤ nπ is such that λn ∼ n2π2

as n → ∞. From the previous computations we get that Xn(q) is given by
(38) and there An is a normalizing constant in such a way that Xn has unitary
L2([0, 1])-norm. Moreover

Cn =
∫ 1

0

(g(q) − ρ̄Rob(q))Xn(q)dq.

From the previous computations we conclude that the solution ρ(·) of (31) start-
ing from g(·) is given by

ρt(q) =
κ(β − α)

2 + κ
q + α +

β − α

2 + κ
+

∞∑

n=1

Cne− λn
2 tXn(q).

2.7 Hydrodynamic Limit

In this section we want to state the hydrodynamic limit of the process {ηtN2 :
t ≥ 0} with state space ΩN and with infinitesimal generator N2LN defined in
(1). Note that here we are going to take Θ(N) = N2. Let M+ be the space
of positive measures on [0, 1] with total mass bounded by 1 equipped with the
weak topology. We can define a metric d(·, ·) in the space M+ by taking a
dense countable set {fn}n≥1 of real valued continuous functions defined in [0, 1]
through the following expression:

d(μ, ν) =
∑

n≥1

1
2k

|
∫

fndμ −
∫

fndν|
1 + |

∫
fndμ −

∫
fndν| . (42)

For any configuration η ∈ ΩN we define the empirical measure πN (η, dq) on [0, 1]
by

πN (η, dq) =
1

N − 1

∑

x∈ΛN

η(x)δ x
N

(dq) , (43)

where δa is a Dirac mass on a ∈ [0, 1], and

πN
t (η, dq) := πN (ηtN2 , dq).

This measure gives weight 1
N−1 to each occupied site of the configuration η.

Fix T > 0 and θ ∈ IR. Recall that IPμN
is the probability measure in the

Skorohod space D([0, T ], ΩN ) induced by the Markov process {ηtN2 : t ≥ 0}
and the initial probability measure μN and we denote by EIPμN

the expectation
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with respect to IPμN
. Now let {QN}N≥1 be the sequence of probability measures

on D([0, T ],M+) induced by the Markov process {πN
t : t ≥ 0} and by IPμN

.
At this point we need to fix an initial profile ρ0 : [0, 1] → [0, 1] which is mea-

surable and an initial probability measure μN ∈ ΩN . We are going to consider
the following set of initial measures:

Definition 5. A sequence of probability measures {μN}N≥1 in ΩN is associated
to the profile ρ0(·) if for any continuous function G : [0, 1] → IR and any δ > 0

lim
N→∞

μN

(
η ∈ ΩN :

∣∣∣
1

N − 1

∑

x∈ΛN

G
(

x
N

)
η(x)−

∫ 1

0

G(q)ρ0(q)dq
∣∣∣ > δ

)
= 0. (44)

Note that (44) states that

∫
G(q)πN (η, dq) −→N→∞

∫ 1

0

G(q)ρ0(q)dq, (45)

with respect to μN , which means that the empirical measure at time t = 0
converges, in probability with respect to μN , as N → ∞, to the deterministic
measure ρ0(q)dq, which is absolutely continuous with respect to the Lebesgue
measure and the density is the profile ρ0(·).

The hydrodynamic limit that we want to derive states that the previous
result is also true for any t ∈ [0, T ], that is, the empirical measure at time t
converges in probability with respect to the distribution of the system at time
t, as N → ∞, to the deterministic measure ρt(q)dq, where ρt(·) is a solution
(here in the weak sense) to some partial differential equation, the hydrodynamic
equation.

The first main result of these notes is summarized in the following theorem
(see also Fig. 4).

Theorem 1. Let g : [0, 1] → [0, 1] be a measurable function and let {μN}N≥1

be a sequence of probability measures in ΩN associated to g(·). Then, for any
t ∈ [0, T ],

lim
N→∞

IPμN

(
η· :

∣∣∣∣∣
1

N − 1

∑

x∈ΛN

G
(

x
N

)
ηtN2(x) −

∫ 1

0

G(q)ρt(q)dq

∣∣∣∣∣ > δ
)

= 0,

where ρt(·) is the unique weak solution of :

• (28) as given in Definition 3, if θ < 0;
• (28) as given in Definition 2, if θ ∈ [0, 1);
• (31), if θ = 1;
• (31) with κ = 0, if θ > 1.
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θ

θ = 0

θ = 1
Heat eq. & Robin b.c.

Heat eq. & Neumann b.c.

Heat eq. & Dirichlet b.c.

Fig. 4. The three hydrodynamic equations depending on θ.

Remark 4. We note that in [1] it was studied the case where the reservoirs are
slowed (which corresponds to the regime θ ≥ 0). In the previous theorem we
considered also the case where the reservoirs are fast (which corresponds to
θ < 0) but we note that the macroscopic behavior of the system is also given
by the heat equation with Dirichlet boundary conditions as happens in the case
θ ∈ [0, 1). To prove this result we note that the notion of weak solution in the
case θ < 0 is different from the notion of weak solution in the case θ ∈ [0, 1)
since it uses as input functions with compact support.

The proof of Theorem 1 proceeds as follows: We split the proof into showing
first the tightness of the sequence {QN}N≥1 and then we characterize uniquely
the limiting point Q of this sequence. These two results combined together, imply
the convergence of {QN}N≥1 to Q as N → ∞.

The next section is dedicated to the presentation of an heuristic argument
to deduce the hydrodynamic equations from the interacting particle system by
means of the Dynkin’s formula; in Sect. 2.9 we present the proof of tightness
and in Sect. 2.10 we characterize the limit point Q. We note that in order to
characterize the limit point Q, we prove in Sect. 2.10 that all limiting points
of the sequence {QN}N≥1 are concentrated on trajectories of measures that are
absolutely continuous with respect to the Lebesgue measure and that the density
ρt(·) is a weak solution of the corresponding hydrodynamic equation. From the
uniqueness of weak solutions of the hydrodynamic equations, see Remark 3, we
conclude that {QN}N≥1 has a unique limit point Q, and therefore we conclude
the convergence of the sequence to this limit point.

2.8 Heuristics for Hydrodynamic Equations

In this section we give the main ideas which are behind the identification of limit
points as weak solutions of the partial differential equations given in Sect. 2.6.



164 P. Gonçalves

Now we argue that the density ρt(·) is a weak solution of the corresponding
hydrodynamic equation for each regime of θ. We remark that we are not going
to prove here that the solution ρt(·) belongs to the space L2(0, T ;H1) but we
refer the reader to [1,2] for a complete proof of this fact. In order to prove that
ρt(·) satisfies the weak formulation we use auxiliary martingales associated to
the Markov process {ηt : t ≥ 0}. For that purpose, and to make the exposition
simpler, we fix a function G : [0, 1] → IR which does not depend on time and
which is two times continuously differentiable. If θ < 0 we will assume further
that it has a compact support included in (0, 1). First we recall Dynkin’s formula.

Theorem 2. Let {ηt : t ≥ 0} be a Markov process with generator L and with
countable state space E. Let F : IR+ × E → IR be a bounded function such that

– ∀η ∈ E,F (·, η) ∈ C2(IR+),
– there exists a finite constant C, such that for j = 1, 2

sup
(s,η)

|∂j
sF (s, η)| ≤ C.

For t ≥ 0, let

MF
t =F (t, ηt) − F (0, η0) −

∫ t

0

(∂s + L)F (s, ηs)ds,

NF
t =(MF

t )2 −
∫ t

0

{LF (s, ηs)2 − 2F (s, ηs)LF (s, ηs)}ds.

Then, {MF
t }t≥0 and {NF

t }t≥0 are martingales with respect to Ft = σ(ηs ; s ≤ t).

Let us fix a test function G : [0, 1] → IR and apply Dynkin’s formula with

F (t, ηt) = 〈πN
t , G〉 =

1
N − 1

∑

x∈ΛN

ηtN2(x)G
(

x
N

)
. (46)

Above
〈
πN

t , G
〉

represents the integral of G with respect the measure πN
t . Note

that F does not depend on time, only through ηt. A simple computation shows
that

N2LN 〈πN
s , G〉 = 〈πN

s ,
1
2
ΔNG〉

+
1
2

(
∇+

NG(0)ηsN2(1) − ∇−
NG(1)ηsN2(N − 1)

)

+
κ

2
N2−θ

N − 1
G
(

1
N

)
(α − ηsN2(1))

+
κ

2
N2−θ

N − 1
G
(

N−1
N

)
(β − ηsN2(N − 1)),

(47)
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from where we obtain that

MN
t (G) = 〈πN

t , G〉 − 〈πN
0 , G〉 −

∫ t

0
〈πN

s ,
1

2
ΔNG〉 ds

− 1

2

∫ t

0
∇+

NG(0)ηsN2 (1) − ∇−
NG(1)ηsN2 (N − 1) ds

− κ

2

∫ t

0

N2−θ

N − 1
G

(
1
N

)
(α − ηsN2 (1)) ds

− κ

2

∫ t

0

N2−θ

N − 1
G

(
N−1

N

)
(β − ηsN2 (N − 1)) ds,

(48)

is a martingale with respect to the natural filtration {Ft}t≥0, where for each
t ≥ 0, Ft := σ(ηs : s < t). Above, ΔN is the discrete laplacian defined in (20),
∇+

N is defined in (25) and

∇−
Nf(x) = N(f(x) − f(x − 1)).

Now we look at the integral terms in (48).

The Case θ ∈ [0,1): In this regime, we take a test function G : [0, 1] → IR
two times continuously differentiable such that G(0) = G(1) = 0. Then, we can
subtract G(0) (resp. G(1)) in the fifth term (resp. sixth term) at the right hand
side of (48) and then doing a Taylor expansion on G we get that

MN
t (G) = 〈πN

t , G〉 − 〈πN
0 , G〉 −

∫ t

0

〈πN
s ,

1
2
ΔNG〉ds

− 1
2

∫ t

0

∇+
NG(0)ηsN2(1) − ∇−

NG(1)ηsN2(N − 1)ds + O(N−θ).

If we can replace ηsN2(1) by α and ηsN2(N−1) by β, which will be a consequence
of Lemma 9 in Appendix A.4 (see Remark 19), then above we have

MN
t (G) = 〈πN

t , G〉 − 〈πN
0 , G〉 −

∫ t

0

〈πN
s ,

1
2
ΔNG〉ds

− 1
2

∫ t

0

∇+
NG(0)α − ∇−

NG(1)βds + O(N−θ)

plus a term that vanishes as N → +∞.
Taking the expectation with respect to PμN

in the expression above we get

1
N − 1

N−1∑

x=1

G
(

x
N

)(
ρN

t (x) − ρN
0 (x)

)
−
∫ t

0

1
N − 1

N−1∑

x=1

1
2
ΔNG

(
x
N

)
ρN

s (x)ds

− 1
2

∫ t

0

∇+
NG(0)α − ∇−

NG(1)βds + O(N−θ) = 0.
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Note that above we used the fact that the average of martingales is constant in
time and that MN

0 (G) = 0. Now, assuming that ρN
t (x) ∼ ρt( x

N ) and taking the
limit as N → ∞ we get that

∫ 1

0

ρt(q)G(q) − ρ0(q)G(q)dq −
∫ t

0

∫ 1

0

1
2
ΔG(q)ρs(q)dqds

− 1
2

∫ t

0

∂qG(0)α − ∂qG(1)βds = 0.

Note that the restriction θ ≥ 0 comes from the fact that the errors, which arise
from the Taylor expansion in G, have to vanish as N → ∞ and the restriction
θ < 1 comes from the replacement of the occupation variables η(1) and η(N −1)
by α and β, respectively, see Lemma 9 in Appendix A.4. At this point compare
the previous expression with the weak formulation given in (29) and note that
the test function G does not depend on time.

The Case θ < 0: In this regime we take a function G : [0, 1] → IR with compact
support and we note that the last three terms at the right hand side of (48) vanish
in this case. From this and the same arguments as above we get that

MN
t (G) = 〈πN

t , G〉 − 〈πN
0 , G〉 −

∫ t

0

〈πN
s ,

1
2
ΔNG〉ds.

Taking the expectation with respect to IPμN in the expression above and assum-
ing that ρN

t (x) ∼ ρt( x
N ), and then taking the limit as N → ∞ we get that

∫ 1

0

ρt(q)G(q) − ρ0(q)G(q)dq −
∫ t

0

∫ 1

0

1
2
ΔG(q)ρs(q)dqds = 0.

Again compare with the weak formulation given in (30) and note that the test
function G does not depend on time.

Remark 5. We remark here that in this particular case there is an extra condition
in Definition 3 with respect to the other notions of weak solutions where we only
have to check the weak formulation and to show that the solution belongs to a
Sobolev space. In this case we also need to show that the value of the profile
ρt(·) is fixed at the boundary. We leave this issue to Appendix A.4.

The Case θ = 1: In this case we consider an arbitrary function G : [0, 1] → IR
which is two times continuously differentiable and we get

MN
t (G) = 〈πN

t , G〉 − 〈πN
0 , G〉 −

∫ t

0

〈πN
s ,

1
2
ΔNG〉ds

− 1
2

∫ t

0

∇+
NG(0)ηsN2(1) − ∇−

NG(1)ηsN2(N − 1)ds

− κ

2
N

N − 1

∫ t

0

G
(

1
N

)
(α − ηsN2(1)) + G

(
N−1

N

)
(β − ηsN2(N − 1))ds.
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In this regime Lemma 9 in Appendix A.4 is no longer valid. Nevertheless, by
Remark 18 we can replace ηsN2(1) (resp. ηsN2(N − 1)) by the average in a box
around 1 (resp. N − 1):

−→η εN
sN2(1) :=

1
εN

1+εN∑

x=1

ηsN2(x), ←−η εN
sN2(N − 1) :=

1
εN

N−1−εN∑

x=N−1

ηsN2(x). (49)

Here we note that the sum above goes from 1 to 1+�εN� but for sake of simplicity
we write 1 + εN . By noting that

−→η εN
sN2(1) ∼ ρs(0) (resp. ←−η εN

sN2(N − 1) ∼ ρs(1)),

for details on this approximation see for example [1,2] - and repeating the same
arguments as above, we get to
∫ 1

0

ρt(q)G(q) − ρ0(q)G(q)dq −
∫ t

0

∫ 1

0

1
2
ΔG(q)ρs(q)dqds

− 1
2

∫ t

0

∂qG(0)ρs(0) − ∂qG(1)ρs(1)ds

+
κ

2

∫ t

0

G(0)(α − ρs(0)) − G(1)(β − ρs(1))ds = 0.

Again compare with the weak formulation given in (30) and note that the test
function G does not depend on time.

The Case θ > 1: This regime is quite similar to the previous one. We consider
again an arbitrary function G : [0, 1] → IR which is two times continuously
differentiable and we note that the last two terms at the right hand side of
(48) vanish since θ > 1. Then, repeating the same arguments as in the previous
section and noting that Remark 18 also applies to θ > 1 we obtain at the end
that ∫ 1

0

ρt(q)G(q) − ρ0(q)G(q)dq −
∫ t

0

∫ 1

0

1
2
ΔG(q)ρs(q)dqds

− 1
2

∫ t

0

∂qG(0)ρs(0) − ∂qG(1)ρs(1)ds = 0.

Again compare with the weak formulation given in (30) and note that the test
function G does not depend on time.

Remark 6. Note that the parameter κ that appears in the boundary dynamics
is only seen at the macroscopic level in the case θ = 1 which corresponds to the
heat equation with Robin boundary conditions.

2.9 Tightness

In this section we show that the sequence of probability measures {QN}N≥1,
defined in the beginning of Sect. 2.7, is tight in the Skorohod space D([0, T ],M+).
In order to do that, we invoke the Aldous’s criterium which says that
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Lemma 2. A sequence {PN}N≥1 of probability measures defined on D([0, T ],
M+) is tight if these two conditions hold:

a. For every t ∈ [0, T ] and every ε > 0, there exists Kt
ε ⊂ M+ compact, such

that
sup
N≥1

PN

(
πt /∈ Kt

ε

)
≤ ε,

b. For every ε > 0

lim
γ→0

lim sup
N→∞

sup
τ∈TT
θ≤γ

PN

(
d(πτ+θ, πτ ) > ε

)
= 0,

where TT denotes the set of stopping times with respect to the canonical filtration,
bounded by T and d is the metric in the space M+ defined in (42).

By Proposition 1.7 of Chap. 4 in [15] it is enough to show that for every func-
tion G in a dense subset of C([0, 1]), with respect to the uniform topology, the
sequence of measures that corresponds to the real processes 〈πN

t , G〉 is tight.
In our setting case, the first condition a. above translates by saying that:

lim
A→+∞

lim
N→+∞

IPμN

(
|〈πN

t , G〉| > A
)

= 0.

This is a consequence of Chebychev’s inequality and the fact that for the exclu-
sion type dynamics, the number of particles per site is at most one, we leave the
details on this to the reader. So, it remains to show condition b. In this context
and since we are considering the real process 〈πN

t , G〉, the distance d above is
the usual distance in IR. Then, we must show that for all ε > 0 and any function
G in a dense subset of C([0, 1]), with respect to the uniform topology, it holds
that

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

IPμN

(
η· :

∣∣∣〈πN
τ+τ̄ , G〉 − 〈πN

τ , G〉
∣∣∣ > ε

)
= 0. (50)

Above we assume that all the stopping times are bounded by T , thus, τ + τ̄
should be understood as (τ + τ̄) ∧ T .

Recall that it is enough to prove the assertion for functions G in a dense subset
of C([0, 1]) with respect to the uniform topology. We will use two different dense
sets, namely the space C1([0, 1]) in the case θ < 1 and the space C2([0, 1]) in the
case θ ≥ 1, which are both dense in C([0, 1]) with respect to the uniform topology.
For that purpose, we split the proof according to θ ≥ 1 and θ < 1. When θ ≥ 1
we prove (50) directly for functions G ∈ C2([0, 1]) and we conclude that the
sequence is tight. For θ < 1, we prove (50) first for functions G ∈ C2

c (0, 1) and
then we extend it, by a L1 approximation procedure which is explained below,
to functions G ∈ C1([0, 1]).
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Recall from (48) that MN
t (G) is a martingale with respect to the natural

filtration {Ft}t≥0. Then

IPμN

(
η· :

∣∣〈πN
τ+τ̄ , G〉 − 〈πN

τ , G〉
∣∣ > ε

)

=IPμN

(
η· :

∣∣∣MN
τ (G) − MN

τ+τ̄ (G) +
∫ τ+τ̄

τ

N2LN 〈πN
s , G〉ds

∣∣∣ > ε
)

≤IPμN

(
η· :

∣∣∣MN
τ (G) − MN

τ+τ̄ (G)
∣∣∣ >

ε

2

)

+IPμN

(
η· :

∣∣∣
∫ τ+τ̄

τ

N2LN 〈πN
s , G〉ds

∣∣∣ >
ε

2

)
.

Applying Chebychev’s inequality (resp. Markov’s inequality) in the first (resp.
second) term on the right hand side of last inequality, we can bound the previous
expression from above by

2
ε2

EIPμN

[(
MN

τ (G) − MN
τ+τ̄ (G)

)2]
+

2
ε
EIPμN

[∣∣∣
∫ τ+τ̄

τ

N2LN 〈πN
s , G〉ds

∣∣∣
]
.

Therefore, in order to prove (50) it is enough to show that

lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EIPμN

[∣∣∣
∫ τ+τ̄

τ

N2LN 〈πN
s , G〉ds

∣∣∣
]

= 0 (51)

and
lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EIPμN

[(
MN

τ (G) − MN
τ+τ̄ (G)

)2]
= 0. (52)

Let us start by proving (51). Given a test function G, we will show that there
exists a constant C such that

N2LN (〈πN
s , G〉) ≤ C (53)

for any s ≤ T . We start with the case θ ≥ 1. For that purpose, recall (47). Note
that, since |ηsN2(x)| ≤ 1 for all s ∈ [0, t] and since G ∈ C2([0, 1]), we have that
∣∣∣〈πN

s ,ΔNG〉 + ∇+
NG(0)ηsN2(1) − ∇−

NG(1)ηsN2(N − 1)
∣∣∣ ≤ 2‖G′′‖∞ + 2‖G′‖∞

and
∣∣∣κN1−θG

(
1
N

)
(α − ηsN2(1)) + κN1−θG

(
N−1

N

)
(β − ηsN2(N − 1))

∣∣∣

≤ 4κN1−θ‖G‖∞

≤ 4κ‖G‖∞.

This proves (53) for the case θ ≥ 1. In the case θ < 1, we take G ∈ C2
c ([0, 1])

and we see that in this case (47) reduces to 〈πN
s , 1

2ΔNG〉 whose absolute value
is bounded from above by ‖G′′‖∞ and this proves (53) for the case θ < 1.
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Let us now prove (52). Applying Dynkin’s formula with F (·, ·) given by (46)
we get that

(
MN

t (G)
)2 −

∫ t

0

N2
[
LN 〈πN

s , G〉2 − 2〈πN
s , G〉LN 〈πN

s , G〉
]
ds, (54)

is a martingale with respect to the natural filtration {Ft}t≥0. A simple compu-
tation shows that

N2
[
LN,0〈πN

s , G〉2 − 2〈πN
s , G〉LN,0〈πN

s , G〉
]

=
1

2N2

N−2∑

x=1

(ηsN2(x) − ηsN2(x + 1))2(∇+
NG( x

N ))2

and by using the fact that |ηsN2(x)| ≤ 1 for all s ∈ [0, t] last expression is
bounded from above by 2

N ‖G′‖2∞. On the other hand, we also have that

N2
[
LN,b〈πN

s , G〉2 − 2〈πN
s , G〉LN,b〈πN

s , G〉
]

=
κ

2Nθ

[
c1(ηsN2 , α)G( 1

N )2 + cN−1(ηsN2 , β)G(N−1
N )2

]

and by using the fact that |ηsN2(x)| ≤ 1 for all s ∈ [0, t] last expression is
bounded from above by 4κ

Nθ ‖G‖2∞.
This ends the proof of tightness in the case θ ≥ 1, since C2([0, 1]) is a

dense subset of C([0, 1]) with respect to the uniform topology. Nevertheless,
for θ < 1, since we considered functions G ∈ C2

c (0, 1), last display is equal to
zero. Therefore, we have proved (51) and (52), and thus (50), but for functions
G ∈ C2

c (0, 1) and, as mentioned above, we need to extend this result to functions
in C1([0, 1]). To accomplish that, we take a function G ∈ C1([0, 1]) ⊂ L1([0, 1]),
and we take a sequence of functions {Gk}k≥0 ∈ C2

c (0, 1) converging to G, with
respect to the L1-norm, as k → ∞. Now, since the probability in (50) is less or
equal than

IPμN

(
η· :

∣∣〈πN
τ+τ̄ , Gk〉 − 〈πN

τ , Gk〉
∣∣ >

ε

2

)

+ IPμN

(
η· :

∣∣〈πN
τ+τ̄ , G − Gk〉 − 〈πN

τ , G − Gk〉
∣∣ >

ε

2

)

and since Gk has compact support, from the computation above, it remains only
to check that the last probability vanishes as N → ∞ and then k → ∞. For that
purpose, we use the fact that

∣∣〈πN
τ+τ̄ , G − Gk〉 − 〈πN

τ , G − Gk〉
∣∣ ≤ 2

N

∑

x∈ΛN

∣∣(G − Gk)( x
N )
∣∣ , (55)
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and we use the estimate

1
N

∑

x∈ΛN

∣∣(G − Gk)( x
N )
∣∣ ≤

∑

x∈ΛN

∫ x+1
N

x
N

∣∣(G − Gk)( x
N ) − (G − Gk)(q)

∣∣ dq

+
∫ 1

0

|(G − Gk)(q)|dq

≤
1
N

‖(G − Gk)′‖∞ +
∫ 1

0

|(G − Gk)(q)|dq.

The result follows by first taking N → ∞ and then k → ∞.

2.10 The Limit Point

Here, we prove at first that all limit points Q of the sequence {QN}N≥1 are
concentrated on measures absolutely continuous with respect to the Lebesgue
measure, that are equal to g(q)dq at the initial time and finally that Q is con-
centrated on trajectories of measures satisfying πt(dq) = ρt(q)dq, where ρt(·) is
the weak solution of the corresponding hydrodynamic equation. Let Q be a limit
point of {QN}N≥1.

Characterization of Absolutely Continuity: We start by showing that Q
is concentrated on measures which are absolutely continuous with respect to the
Lebesgue measure. Fix a continuous function G : [0, 1] → IR. Since

sup
t∈[0,T ]

|〈πN
t , G〉| ≤ 1

N

∑

x∈ΛN

|G( x
N )|,

which is a consequence of the fact of having at most one particle per site, the
function that associates to each trajectory π., supt∈[0,T ] |〈πt, G〉| is continuous.
As a consequence, all limit points are concentrated in trajectories πt such that

|〈πt, G〉| ≤
∫ 1

0

|G(q)|dq.

In order to show that the measure πt is absolutely continuous with respect to
the Lebesgue measure, that we denote by Leb, we have to show that for each
set A such that Leb(A) = 0, then πt(A) = 0. With this purpose, we use last
estimate for a sequence of continuous functions {GN}N≥1 that converges to the
indicator function over the set A and the result follows. Concluding, we have
just proved that

Q
(
π· : πt(dq) = π(t, q)dq,∀t ∈ [0, T ]

)
= 1

i.e. πt(dq) is absolutely continuous with respect to the Lebesgue measure with a
density π(t, q).
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Characterization of the Initial Measure: Here we show that Q is con-
centrated on a Dirac measure equal to g(q)dq at time 0. For that purpose, fix
ε > 0. From the results of Sect. 2.9, we know, from the weak convergence over a
subsequence and Portmanteau’s Theorem, that:

Q
(∣∣∣

1
N

∑

x∈ΛN

G( x
N )η0(x) −

∫ 1

0

G(q)g(q)dq
∣∣∣ > ε

)

≤ lim inf
K→+∞

QNk

(∣∣∣
1
N

∑

x∈ΛN

G( x
N )η0(x) −

∫ 1

0

G(q)g(q)dq
∣∣∣ > ε

)

= lim inf
K→+∞

μNk

(∣∣∣
1
N

∑

x∈ΛN

G( x
N )η(x) −

∫ 1

0

G(q)g(q)dq
∣∣∣ > ε

)
.

This last limit is equal to zero, by the hypothesis of μN being associated to the
profile g(·), see Definition 5. This shows that

Q
(
π· : π0(dq) = g(q)dq

)
= 1.

Characterization of the Density π(t, q): Up to here we know that all limit
points Q of the sequence sequence {QN}N≥1 are concentrated on trajectories
πt(dq) which are absolutely continuous with respect to the Lebesgue measure,
that is, πt(dq) = π(t, q)dq. Moreover, we also know that all limit points Q of the
sequence {QN}N≥1 are such that the initial trajectory is a Dirac measure equal
to g(q)dq. Now we prove that all limit points are concentrated on trajectories of
measures of the form ρt(q)dq, that is we are going to show that π(t, q) = ρt(q) and
that ρt(·) is a weak solution of the corresponding hydrodynamic equation. For
that purpose, let Q be a limit point of the sequence {QN}N≥1, whose existence
follows from the computations of Sect. 2.9 and assume, without lost of generality,
that {QN}N≥1 converges to Q, as N → +∞.

Proposition 2. If Q is a limit point of {QN}N∈IN then

Q (π· : Fθ = 0,∀t ∈ [0, T ], ∀G ∈ Cθ ) = 1,

where

Fθ =

⎧
⎪⎨

⎪⎩

F c
Dir, if θ < 0,

FDir, if θ ∈ [0, 1),
FRob, if θ ≥ 1,

and Cθ =

⎧
⎪⎨

⎪⎩

C1,2
c ([0, T ] × [0, 1]), if θ < 0,

C1,2
0 ([0, T ] × [0, 1]), if θ ∈ [0, 1),

C1,2([0, T ] × [0, 1]), if θ ≥ 1.

Proof. We consider the case θ ≥ 1. Note that we need to verify, for δ > 0 and
G ∈ C1,2([0, T ] × [0, 1]), that

Q
(

π· ∈ D([0, T ],M+) : sup
0≤t≤T

|FRob| > δ

)
= 0, (56)
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Recall FRob from (32) and note that, due to the terms that involve ρs(1) and
ρs(0) and that appear in FRob, the set inside the probability in (56) is not an
open set in the Skorohod space, and as a consequence we cannot use directly
Portmanteau’s Theorem. To avoid this difficulty, we fix ε > 0 and we consider
two approximations of the identity given by

ι0ε(q) =
1
ε
1(0,ε)(q) and ι1ε(q) =

1
ε
1(1−ε,1)(q) (57)

and we sum and subtract to ρs(0) and to ρs(1) the mean

〈πs, ι
0
ε〉 = 1

ε

∫ ε

0

ρs(q)dq and 〈πs, ι
1
ε〉 = 1

ε

∫ ε

1−ε

ρs(q)dq, (58)

respectively. Above we used the fact that Q is concentrated on trajectories πt(dq)
which are absolutely continuous with respect to the Lebesgue measure: πt(dq) =
ρt(q)dq. Thus, we bound the probability in (56) from above by the sum of the
following terms

Q

(
sup

0≤t≤T

∣∣∣
∫ 1

0
ρt(q)Gt(q) dq −

∫ 1

0
ρ0(q)G0(q) dq

−
∫ t

0

∫ 1

0
ρs(q)

(1

2
Δ + ∂s

)
Gs(q) dqds − κ

2

∫ t

0
Gs(0)α + Gs(1)β ds

+
1

2

∫ t

0
〈πs, ι1ε〉

(
∂qGs(1) + κGs(1)

)
ds − 1

2

∫ t

0
〈πs, ι0ε〉

(
∂qGs(0) − κGs(0)

)
ds

∣∣∣ >
δ

4

)
,

(59)

Q
(∣∣∣

∫ 1

0

(ρ0(q) − g(q))G0(q) dq
∣∣∣ >

δ

4

)
, (60)

∑

j∈{0,1}
Q
(

sup
0≤t≤T

∣∣∣
1
2

∫ t

0

(ρs(j) − 〈πs, ι
j
ε〉) [κGs(j) − ∂qGs(j)] ds

∣∣∣ >
δ

4

)
, (61)

and we note that the terms in (61) converge to 0 as ε → 0 since we are comparing
ρs(0) and ρs(1) with the averages (58) around 0 and 1, respectively. Moreover,
(60) is equal to zero since Q is a limit point of {QN}N≥1 and QN is induced by
a measure μN which is associated to the profile g(·). Note that in (59) we still
cannot use Portmanteau’s Theorem, since the functions ι0ε and ι1ε are not contin-
uous. Nevertheless, by approximating each one of these functions by continuous
functions in such a way that the error vanishes as ε → 0 then, from Proposition
A.3 of [10] we can use Portmanteau’s Theorem and bound (59) from above by

lim inf
N→∞

QN

(
sup

0≤t≤T

∣∣∣
∫ 1

0
ρt(q)Gt(q) dq −

∫ 1

0
ρ0(q)G0(q) dq

−
∫ t

0

∫ 1

0
ρs(q)

(1

2
Δ + ∂s

)
Gs(q) dqds − κ

2

∫ t

0
Gs(0)α + Gs(1)β ds

− 1

2

∫ t

0
〈πs, ι0ε〉

(
∂qGs(0) − κGs(0)

)
ds +

1

2

∫ t

0
〈πs, ι1ε〉

(
∂qGs(1) + κGs(1)

)
ds

∣∣∣ >
δ

24

)
.

(62)
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Summing and subtracting
∫ t

0

N2LN 〈πN
s , Gs〉ds to the term inside the supremum

in (62), recalling (48) and (49), the definition of QN , we bound (62) from above
by the sum of the next two terms

lim inf
N→∞

IPμN

(
sup

0≤t≤T

∣∣MN
t (G)

∣∣ >
δ

25

)
, (63)

and

lim inf
N→∞

IPμN

(
sup

0≤t≤T

∣∣∣
∫ t

0
N2LN 〈πN

s , Gs〉 ds −
∫ t

0

∫ 1

0
ρs(q)

1

2
ΔGs(q) dqds

− κ

2

∫ t

0

−→η εN
sN2 (1)

(
∂qGs(0) − κGs(0)

)
ds +

1

2

∫ t

0

←−η εN
sN2 (N − 1)

(
∂qGs(1) + κGs(1)

)
ds

−κ

2

∫ t

0
Gs(0)α + Gs(1)β ds

∣∣∣ >
δ

25

)
.

(64)

Doob’s inequality together with the computations right below (54) show that
(63) goes to 0 as N → ∞. Finally, (64) can be rewritten as

lim inf
N→∞

IPμN

(
sup

0≤t≤T

∣∣∣
∫ t

0
N2LN 〈πN

s , Gs〉 ds −
∫ t

0
〈πN

s ,
1

2
ΔGs〉 ds

− 1

2

∫ t

0

−→η εN
sN2 (1)

(
∂qGs(0) − κGs(0)

)
ds +

1

2

∫ t

0

←−η εN
sN2 (N − 1)

(
∂qGs(1) + κGs(1)

)
ds

−κ

2

∫ t

0
Gs(0)α + Gs(1)β ds

∣∣∣ >
δ

25

)
.

(65)

Now, from (47) we can bound from above the probability in (65) by the sum of
the following terms

IPμN

⎛
⎝ sup

0≤t≤T

∣∣∣ 1

N

∫ t

0

∑
x∈ΛN

1

2
ΔNGs(

x
N
)ηsN2 (x)ds −

∫ t

0

〈
πN

s ,
1

2
ΔGs

〉
ds

∣∣∣ >
δ

26

⎞
⎠ , (66)

IPμN

(
sup

0≤t≤T

∣∣∣
1
2

∫ t

0

∇+
NGs(0)ηsN2(1) − −→η εN

sN2(1)∂qGs(0) ds
∣∣∣ >

δ

26

)
, (67)

and

IPμN

(
sup

0≤t≤T

∣∣∣κ

2

∫ t

0
N1−θGs

(
1
N

)
(α − ηsN2 (1)) − Gs(0)(α − −→η εN

sN2 (1))ds
∣∣∣ >

δ

26

)
(68)

and two other terms which are very similar to the two previous ones but related
to the action of the right boundary dynamics given by LN−1

N,b . Applying a Taylor
expansion on the test function G it is easy to show that (66) goes to 0 as N → ∞.
Also by Taylor expansion, (67) can be bounded from above by

IPμN

(
sup

0≤t≤T

∣∣∣
∫ t

0

∂qGs(0)(ηsN2(1) − −→η εN
sN2(1))ds

∣∣∣ >
δ

28

)
, (69)
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plus a term that vanishes as N → ∞. Using Lemma 7 we see that (69) vanishes
as N → ∞. The term (68) can be estimated using exactly the same argument
that we just used, that is: Taylor expansion on G plus Lemma 7. For the terms
related to the right boundary the argument is the same and with this we finish
the proof.

We leave the other case, namely θ < 1 for the reader. This case is even simpler
than the previous one and for the interested reader we refer to, for example, [1,2].

2.11 Hydrostatic Limit

In this section we prove that the hydrodynamic limit holds when we start the
system from the stationary measure μss, see Sect. 2.4. By looking at the state-
ment of Theorem 1 we see that, in fact, to conclude we only need to show the
next result.

Proposition 3. Let μss be the stationary measure for the Markov process
{ηtN2 : t ≥ 0} with generator N2LN . Then, μss is associated to the profile
ρ̄ : [0, 1] → [0, 1] given on q ∈ (0, 1) by (22), that is

ρ̄(q) =

⎧
⎨

⎩

(β − α)q + α ; θ < 1,
κ(β−α)
2+κ q + α + β−α

2+κ ; θ = 1,
β+α
2 ; θ > 1,

which is a stationary solution of the corresponding hydrodynamic equation, see
(36) and (37).

Proof. Recall from (44), that we need to prove:

lim
N→∞

μss

(
η ∈ ΩN :

∣∣∣
1
N

∑

x∈ΛN

G
(

x
N

)
η(x) −

∫ 1

0

G(q)ρ̄(q)dq
∣∣∣ > δ

)
= 0

for any continuous function G : [0, 1] → IR. By Markov’s and triangular inequal-
ities, we bound the previous probability from above by

1
δ
EIPμss

[∣∣∣
1
N

∑

x∈ΛN

G
(

x
N

) (
η(x) − ρN

ss(x)
)∣∣∣

+
∣∣∣
1
N

∑

x∈ΛN

G
(

x
N

)
ρN

ss(x) −
∫ 1

0

G(q)ρ̄(q)dq
∣∣∣
]

≤1
δ
EIPμss

[∣∣∣
1
N

∑

x∈ΛN

G
(

x
N

) (
η(x) − ρN

ss(x)
)∣∣∣
]

+
1
δ

∣∣∣
1
N

∑

x∈ΛN

G
(

x
N

)
ρN

ss(x) −
∫ 1

0

G(q)ρ̄(q)dq
∣∣∣.

(70)
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The last term can be bounded from above by

1
δ

∣∣∣
1
N

∑

x∈ΛN

G
(

x
N

) (
ρN

ss(x) − ρ̄
(

x
N

))∣∣∣

+
1
δ

∣∣∣
1
N

∑

x∈ΛN

G
(

x
N

)
ρ̄
(

x
N

)
−
∫ 1

0

G(q)ρ̄(q)dq
∣∣∣.

The term at the left hand side of last expression is bounded from above by

1
δ

1
N

∑

x∈ΛN

∣∣∣G
(

x
N

) ∣∣∣
∣∣∣ρN

ss(x) − ρ̄
(

x
N

)∣∣∣ ≤ ‖G‖∞
δ

max
x∈ΛN

∣∣∣ρN
ss(x) − ρ̄

(
x
N

)∣∣∣

where from (21) it vanishes as N → ∞, while the term at the right hand side also
vanishes as N → ∞ since we compare the Riemann sum with the corresponding
converging integral.

To finish the proof it remains to analyse the third term in (70). By
the Cauchy-Schwarz’s inequality the expectation appearing in that term can
bounded from above by

(∣∣∣
1

N2

∑

x∈ΛN

G
(

x
N

)
EIPμss

[
(η(x) − ρN

ss(x))2
]

+
2
N

∑

x<y

G
(

x
N

)
G
(

y
N

)
EIPμss

[
(η(x) − ρN

ss(x))(η(y) − ρN
ss(y))

]) 1
2

≤
(C‖G‖∞

N
+ 2‖G‖∞ max

x<y
ϕN

ss(x, y)
) 1

2
.

From (17) the previous expression vanishes as N → ∞. This finishes the proof.

Note that the proof presented above uses the information about the two point
correlation function which is not always easy to obtain. We refer the reader to [8]
for another proof of this results without using the knowledge on the correlations.

3 Symmetric Exclusion with Long Jumps in Contact
with Reservoirs

3.1 The Model

In this section we want to generalize the results of the previous section to the
case where particles can give jumps arbitrarily large. As in the previous section,
the bulk consists in the set of points ΛN = {1, ..., N − 1} and we artificially
add two end points x = 0 and x = N . Now, we explain the dynamics of the
models we consider and we start by describing the conditions on the jump rate.
For that purpose, let p : Z × Z → [0, 1] be a transition probability such that
p(x, y) = p(y − x) and which is symmetric. We are going to discuss two cases:
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the first one, when p(·) has finite variance and the second one when p(·) has
infinite variance. Note that since p(·) is symmetric it has mean zero, that is:

∑

z∈Z

zp(z) = 0.

We denote m =
∑

z≥1 zp(z). As an example we consider p(·) given by p(0) = 0
and

p(z) =
cγ

|z|γ+1
, (71)

for z �= 0, where cγ is a normalizing constant. For simplicity of the presentation
we stick to this choice of p(·) along this section but we note that many of our
results are true, in the case where p(·) has finite variance, in a more general
setting where we only assume p(·) to be translation invariant and mean zero.

We consider the process in contact with stochastic reservoirs at the left and
the right of the bulk. We fix four parameters α, β ∈ [0, 1], κ > 0 and θ ∈ IR, so
that particles can get in the bulk of the system from the site x = 0 to any site
y ∈ ΛN at rate ακN−θp(y) or leave the bulk from any site y ∈ ΛN to the site
x = 0 at rate (1 − α)κN−θp(y); and particles can get in the bulk to any site
y ∈ ΛN from the site x = N at rate βκN−θp(N − y) or leave the bulk from any
site y ∈ ΛN to the site x = N at rate (1 − β)κN−θp(N − y).

We define the dynamics of the process in the following way. We start with
the bulk dynamics. Each pair of sites of the bulk {x, y} ⊂ ΛN carries a Poisson
process of intensity p(y − x)/2. Poisson processes associated to different bonds
are independent. If for the configuration η, the clock associated to the bound
{x, y} rings, then we exchange the value of the occupation variables η(x) and
η(y) at rate p(y − x)/2. Now we explain the dynamics at the boundary. Each
pair of sites {0, x} with x ∈ ΛN carries two Poisson processes, all of them
being independent. If for the configuration η, the clock associated to the Poisson
process of the oriented bond {0, x} (resp. {x, 0}) rings, then we change the value
η(x) into 1 − η(x) with rate κN−θp(x)α(1 − η(x)) (resp. κN−θp(x)(1 − α)η(x)).
At the right boundary the dynamics is similar but instead of α the intensity
is given by β. Observe that the reservoirs (x = 0 and x = N) add and remove
particles on all the sites of the bulk ΛN , and not only at the boundaries x = 1 and
x = N −1 as happened in the model of Sect. 2, but with a rate that decreases as
the distance from the corresponding reservoir increases. We remark that as in the
previous section, we could do another interpretation of the previous dynamics
at the boundary, as follows. Particles can either be created or annihilated at any
site x ∈ ΛN according to the following rates:

– from the left reservoir, from x = 0 to y ∈ ΛN :
• creation rate: ακN−θp(y),
• annihilation rate: (1 − α)κN−θp(y).

– from the right reservoir, from x = N − 1 to y ∈ ΛN :
• creation rate: βκN−θp(N − y),
• annihilation rate: (1 − β)κN−θp(N − y).
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Let us see an illustration of the dynamics just described with N = 11 and the
configuration η = (1, 1, 0, 0, 0, 0, 1, 0, 1, 1):

κN−θβp(5)

κN−θ(1 − β)p(1)
κN−θ(1 − α)p(2)

κN−θαp(8)

The infinitesimal generator of the process is given by

LN = LN,0 + LN,b, (72)

where LN,0 and LN,b act on functions f : ΩN → IR as

(LN,0f)(η) =
1
2

∑

x,y∈ΛN

p(x − y)[f(ηx,y) − f(η)],

(LN,bf)(η) =
κ

Nθ

∑

y∈{0,N}

∑

x∈ΛN

p(y − x)cx(η, r(y))[f(ηx) − f(η)]
(73)

where the configurations ηx,y and ηx have been defined in (3), the rates
cx(η, r(y)) have been defined in (4) and r(0) = α and r(N) = β.

We consider the Markov process speeded up in the time scale tΘ(N) and note
that {ηtΘ(N) : t ≥ 0} has infinitesimal generator given by Θ(N)LN . Although
ηtθ(N) depends onα,β and θ, we shall omit these index in order to simplify notation.

As in Sect. 2.4 we can prove that the Bernoulli product measures νN
ρ as

defined in (7) are reversible when we consider α = β = ρ. The proof is quite
similar to the one given in Lemma 1 and for that reason it is omitted.

In the next section we analyse the case where p(·) has finite variance and we
denote it by σ2, so that

σ2 :=
∑

z∈Z

z2p(z) < ∞.

As an example we consider p(·) as in (71), that is p(0) = 0 and

p(z) =
cγ

|z|γ+1
,

for z �= 0, where cγ is a normalizing constant and we take γ > 2, so that p(·) has
finite variance. For simplicity of the presentation we stick to this choice of p(·)
whenever we mention to the case where p(·) has finite variance but we note that
many of our results are true in the more general setting where we just assume
p(·) to be translation invariant, mean zero and with finite variance.
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Remark 7. We note that for the choice of p with p(1) = 1
2 = p(−1) the dynamics

described above coincides with the one of the first section. In that sense many of
the results that we will derive here are a generalization of those obtained before.

In Sect. 3.3 we analyse the case where p(·) is as in (71) but we consider
γ ∈ (1, 2) so that p(·) has mean zero but infinite variance. We note that in
the case γ = 2 the transition probability p(·) also has mean zero and infinite
variance, but in this case the results are similar to those when p(·) has finite
variance, see Remark 12.

3.2 The Finite Variance Case

Hydrodynamic Equations: Recall the notation introduced in Sect. 2.6. We
can now give the definition of the weak solutions of the hydrodynamic equations
that will be derived in this section when p(·) is assumed to have finite variance.
In what follows g : [0, 1] → [0, 1] is a measurable function and it is the initial
condition of all the partial differential equations that we define below, that is
ρ0(q) = g(q), for all q ∈ (0, 1).

Definition 6. Let σ̂ ≥ 0 and κ̂ ≥ 0 be some parameters. We say that ρ :
[0, T ] × [0, 1] → [0, 1] is a weak solution of the reaction-diffusion equation with
Dirichlet boundary conditions
{

∂tρt(q) = σ̂2

2 Δρt(q) + κ̂
{

α−ρt(q)
qγ+1 + β−ρt(q)

(1−q)γ+1

}
, (t, q) ∈ (0, T ] × (0, 1),

ρt(0) = α, ρt(1) = β, t ∈ (0, T ],
(74)

starting from a measurable function g : [0, 1] → [0, 1], if the following three
conditions hold:

1. – ρ ∈ L2(0, T ;H1) if σ̂ > 0,
–
∫ T

0

∫ 1

0

{
(α−ρt(q))

2

qγ+1 + (β−ρt(q))
2

(1−q)γ+1

}
dq dt < ∞ if κ̂ > 0,

2. ρ satisfies the weak formulation:

FRD :=
∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
( σ̂2

2
Δ + ∂s

)
Gs(q) dq ds

− κ̂

∫ t

0

∫ 1

0

Gs(q)
(

α − ρs(q)
qγ+1

+
β − ρs(q)
(1 − q)γ+1

)
dq ds = 0,

(75)

for all t ∈ [0, T ] and any function G ∈ C1,2
c ([0, T ] × [0, 1]),

3. if σ̂ > 0 then ρt(0) = α, ρt(1) = β for all t ∈ (0, T ].

Remark 8. Observe that in the case σ̂ > 0 and κ̂ = 0 we recover the heat
equation with Dirichlet boundary conditions. If σ̂ = 0 the equation does not
have the diffusion term.
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Definition 7. Let σ̂ > 0 and m̂ ≥ 0 be some parameters. We say that ρ :
[0, T ]× [0, 1] → [0, 1] is a weak solution of the heat equation with Robin boundary
conditions

{
∂tρt(q) = σ̂2

2 Δρt(q), (t, q) ∈ [0, T ] × (0, 1),
∂qρt(0) = 2m̂

σ̂2 (ρt(0) − α), ∂qρt(1) = 2m̂
σ̂2 (β − ρt(1)), t ∈ [0, T ],

(76)

starting from a measurable function g : [0, 1] → [0, 1], if the following two condi-
tions hold:

1. ρ ∈ L2(0, T ;H1),
2. ρ satisfies the weak formulation:

FRob :=
∫ 1

0

ρt(q)Gt(q) dq −
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
( σ̂2

2
Δ + ∂s

)
Gs(q) dq ds

+
σ̂2

2

∫ t

0

{ρs(1)∂qGs(1) − ρs(0)∂qGs(0)} ds

− m̂

∫ t

0

{Gs(0)(α − ρs(0)) + Gs(1)(β − ρs(1))} ds = 0,

(77)

for all t ∈ [0, T ], any function G ∈ C1,2([0, T ] × [0, 1]).

Remark 9. Observe that in the case m̂ = 0 the equation above is the heat
equation with Neumann boundary conditions.

Hydrodynamic Limit: Recall the notion of the empirical measure given in
Sect. 2.6 and note that in this case we have

πN
t (η, dq) := πN (ηtθ(N), dq)

and we note that, in this case, the time scale θ(N) will change with the range
of θ, contrarily to what happens in the model of Sect. 2. As before, let IPμN

be the probability measure in the Skorohod space D([0, T ], ΩN ) induced by the
Markov process {ηtθ(N) : t ≥ 0} and the initial probability measure μN and
we denote by EIPμN

the expectation with respect to IPμN
. Let {QN}N≥1 be

the sequence of probability measures on D([0, T ],M+) induced by the Markov
process {πN

t ; t ≥ 0} and by IPμN
.

Remark 10. We note that due to the presence of long jumps in the system,
we cannot obtain information about the empirical profile nor the two point
correlation function in a simple way as we did in Sect. 2.5. We also note that the
matrix ansatz method described in Sect. 2.4 in this case does not give us any
information about the stationary measures for this model. This study is left for
a future work.
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Let g : [0, 1] → [0, 1] be a measurable function and let {μN}N≥1 be a sequence
of probability measures in ΩN associated to g(·), see (44). The first result in this
section is stated in the following theorem (see Fig. 7).

Theorem 3. Let g : [0, 1] → [0, 1] be a measurable function and let {μN}N≥1

be a sequence of probability measures in ΩN associated to g(·). Then, for any
0 ≤ t ≤ T ,

lim
N→∞

IPμN

(
η· :

∣∣∣∣∣
1

N − 1

∑

x∈ΛN

G
(

x
N

)
ηtθ(N)(x) −

∫ 1

0

G(q)ρt(q)dq

∣∣∣∣∣ > δ
)

= 0,

where the time scale is given by

Θ(N) =

{
N2, if θ ≥ 1 − γ,

Nγ+θ+1, if θ < 1 − γ,
(78)

and ρt(·) is the unique weak solution of:

• (74) with σ̂ = 0 and κ̂ = κcγ , if θ < 1 − γ;
• (74) with σ̂ = σ and κ̂ = κcγ , if θ = 1 − γ;
• (74) with σ̂ = σ and κ̂ = 0, if θ ∈ (1 − γ, 1);
• (76) with σ̂ = σ and m̂ = κ

2 , if θ = 1;
• (76) with σ̂ = σ and m̂ = 0, if θ > 1.

Remark 11. We note that for a transition probability p(·) which is symmetric and
with finite variance the last three regimes obtained above are in force (however
(74) with κ̂ = 0 is obtained for θ ∈ [0, 1)). We note that the two first regimes
depend on the specific choice of the transition probability p(·) that we have
assumed in (71). We also note that if we impose that the higher moments of p(·)
are finite then the regime (74) with κ̂ = 0 can be reached for θ ∈ [v, 1) where
v < 0 depends on the finiteness of the moments of p(·).

Remark 12. Despite, in the case γ = 2, the transition probability p(·) has infinite
variance, we obtain a very similar behavior to the one described above but the
time scale that one has to consider is N2/ log(N) instead of N2. We leave the
adaptation of the proof in this case as an exercise to the reader.

Remark 13. We note that the solution of the hydrodynamic equation depends
on the parameter κ which appears at the boundary dynamics in two different
regimes of θ, namely θ = 1 − γ and θ = 1.

Now note that as before, the stationary solutions of the hydrodynamic limits
in the case θ > 1 − γ are standard and for that reason they are ommited. On
the other hand, the form and properties of the stationary solutions in the case
θ ≤ 1 − γ are more complicated to obtain in the case θ = 1 − γ. This problem is
studied in more details in [14] for a slightly different dynamics. In Fig. 6 we only
present some graphs of the stationary solutions and refer the interested reader
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θ

γθ = −1, γ = 2

θ = 1, γ = 2

Reaction-Diffusion
eq. &

Dirichlet b.c.

Heat eq. & Robin b.c.

Heat eq. & Neumann b.c.

Heat eq. & Dirichlet b.c.

Reaction eq. & Dirichlet b.c.

θ = 1 − γ

Fig. 5. The five different hydrodynamic regimes in terms of γ and θ.

to [14] for a complete description on the behavior of those solutions. Below we
draw the graph of these stationary solutions for a choice of α = 0.2 and β = 0.8.

The proof of Theorem 3 is described in Sect. 2.7 below Fig. 4 and for that
reason many steps now are omitted. The proof of tightness of the sequence
{QN}N≥1 is quite similar to the one given in Sect. 2.9. The characterization
of limit points is also close to the one given in Sect. 2.10, the only difference

θ > 1
θ = 1

1− γ < θ < 1
θ = 1− γ

θ < 1− γ

1
20 1

β

α

α+β
2

(α+β)σ2+ακ
(κ+2σ2)

(α+β)σ2+βκ
(κ+2σ2)

Fig. 6. Stationary solutions of the hydrodynamic equations.
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comes at the level of the identification of the density as a weak solution of the
corresponding partial differential equation. For that purpose, the next section
is dedicated to the presentation of an heuristic argument to deduce the weak
formulation for the solution of the corresponding hydrodynamic equation. The
adaptation of the rest of the arguments to this new dynamics is left to the reader.

Heuristics for Hydrodynamic Equations: As in Sect. 2.8, the identifica-
tion of the density ρt(·) as a weak solution of the corresponding hydrody-
namic equation is obtained by using auxiliary martingales. Fix then a function
G : [0, 1] → IR which does not depend on time and which is two times con-
tinuously differentiable. As in Sect. 2.8, we use Dynkin’s formula and we note
that
∫ t

0

Θ(N)LN (〈πN
s , G〉) ds =

Θ(N)
N − 1

∫ t

0

∑

x∈ΛN

L̃NG( x
N )ηsθ(N)(x) ds

+
κΘ(N)

(N − 1)Nθ

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G( x
N )p(y − x)(r(y) − ηsθ(N)(x)) ds,

(79)

where for all x ∈ ΛN

(L̃NG)( x
N ) =

∑

y∈ΛN

p(y − x)
[
G( y

N ) − G( x
N )
]
. (80)

Now, we extend the first sum in (79) to all the integers so that we extend
the function G to IR in such a way that it remains two times continuously
differentiable. By the definition of L̃N , we get that

Θ(N)
N − 1

∫ t

0

∑

x∈ΛN

L̃NG( x
N )ηsθ(N)(x) ds

=
Θ(N)
N − 1

∫ t

0

∑

x∈ΛN

(KNG)( x
N )ηsθ(N)(x) ds

−
Θ(N)
N − 1

∫ t

0

∑

x∈ΛN

∑

y≤0

[
G( y

N ) − G( x
N )
]
p(x − y)ηsθ(N)(x) ds

−
Θ(N)
N − 1

∫ t

0

∑

x∈ΛN

∑

y≥N

[
G( y

N ) − G( x
N )
]
p(x − y)ηsθ(N)(x) ds,

(81)

where
(KNG)( x

N ) =
∑

y∈Z

p(y − x)
[
G( y

N ) − G( x
N )
]
. (82)

Now, we are going to analyse how the different boundary conditions appear on
the hydrodynamic equations given in Sect. 3.2 from this dynamics.
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The Case θ < 1−γ: Take a function G : (0, 1) → IR two times continuously
differentiable and with compact support in (0, 1), so that we can choose an
extension by 0 outside of the support of G. Since Θ(N) = Nγ+θ+1 (see the
statement of Theorem 3) a simple computation shows that the first term in (81)
vanishes for θ < 1 − γ. Indeed, by a Taylor expansion on G and the fact that
p(·) is mean zero, we have that

Nγ+θ+1
∑

y∈Z

(G(y+x
N ) − G( x

N ))p(y)

is of same order as

Nγ+θ−1G′′( x
N )

∑

y∈Z

y2p(y)

and since θ < 1 − γ last expression vanishes as N → ∞.
Now, the second and third terms in (81) vanish as N → ∞, since Θ(N) =

Nγ+θ+1 and θ < 1 − γ. Note that since G vanishes outside (0, 1), those terms
can be rewritten as

Θ(N)
N − 1

∫ t

0

∑

x∈ΛN

G( x
N )r−

N ( x
N )ηsNγ+θ+1(x) ds

+
Θ(N)
N − 1

∫ t

0

∑

x∈ΛN

G( x
N )r+N ( x

N )ηsNγ+θ+1(x) ds,

(83)

where
r−
N ( x

N ) =
∑

y≥x

p(y), r+N ( x
N ) =

∑

y≤x−N

p(y). (84)

We observe that, for any a ∈ (0, 1), uniformly in u ∈ (a, 1 − a), as N → ∞:

Nγr−
N ([uN ]) →N→+∞ cγγ−1u−γ := r−(u),

Nγr+N ([uN ]) →N→+∞ cγγ−1(1 − u)−γ := r+(u).
(85)

Now we note that we can bound from above, for example the term at the left
hand side in (83) by Nθ+1 times

1
N − 1

∫ t

0

∑

x∈ΛN

Nγr−
N ( x

N ) |G( x
N )|

because |ηsNγ+θ (x)| ≤ 1 for all s > 0. Since θ < −1 and since the previous sum
converges to the (finite) integral of |G|r− on (0, 1), by (85), the previous display
vanishes as N → ∞. Now we look at the boundary terms in (79), which can be
written, for the choice of Θ(N) = Nγ+θ+1, as:

κNγ+1

N − 1

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G
(

x
N

)
p(y − x)(r(y) − ηsNγ+θ+1(x)) ds
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which is equal to

κ

∫ t

0

〈α − πN
s , Gp〉 + 〈β − πN

s , Gp̃〉 ds,

where p̃(q) = p(1 − q), and can be replaced, thanks to the fact that G has
compact support, by

κ

∫ 1

0

G(q)
(
p(q)(α − ρs(q)) + p̃(q)(β − ρs(q))

)
dq

as N → ∞. The last convergence holds because G has compact support included
in (0, 1) so that Gp and Gp̃ are continuous function. From the previous compu-
tations we recognize the terms in (75) with κ̂ = κcγ and σ̂ = 0.

The Case θ = 1− γ: In this case we also take a function G : (0, 1) → IR
two times continuously differentiable and with compact support in (0, 1), so
that we can choose an extension by 0 outside of its support. In this case, since
Θ(N) = N2, by Lemma 3, which we state below, the first term in (81) can be
replaced, for N sufficiently big, by

1
N − 1

∫ t

0

∑

x∈ΛN

σ2

2 ΔG( x
N ) ηsN2(x) ds =

∫ t

0

〈πN
s , σ2

2 ΔG〉 ds.

Moreover, a similar computation to the one above shows that the second and
third terms in (81) vanish as N → ∞ (recall that Θ(N) = N2 and γ > 2).
Finally, the second term in (79) can be rewritten as

κNγ+1

(N − 1)

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G( x
N )p(y − x) (r(y) − ηsN2(x)) ds

and repeating the analysis we did in the previous case it converges, as N → ∞
to

κ

∫ t

0

∫ 1

0

G(q)
(
p(q)(α − ρs(q)) + p̃(q)(β − ρs(q))

)
dq ds.

As above, from the previous computations we recognize the terms in (75) with
κ̂ = κcγ and σ̂ = σ.

The Case θ ∈ (1− γ,1): Take again a function G : (0, 1) → IR two times
continuously differentiable and with compact support in (0, 1) and extend it by
0 outside (0, 1). As above, since Θ(N) = N2, by Lemma 3, which we prove below,
the first term in (81) can be replaced, for N sufficiently big, by

∫ t

0

〈πN
s , σ2

2 ΔG〉 ds.

Now, the second term in (79) equals to

κN2−θ

N − 1

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G( x
N )p(y − x)(r(y) − ηsN2(x)) ds
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and vanishes as N → ∞ since θ > 1 − γ. Now, the last two terms in (81) also
vanish because, for example, the second term in (81) can be written as

∫ t

0

N2

N − 1

∑

x∈ΛN

G( x
N )r−

N ( x
N )ηsN2(x) ds

which can be bounded from above by a constant times tN2−γ times a sum
converging to the integral of |G|r− on (0, 1), and since γ > 2 this term vanishes.
From this, we see the terms in (75) with κ̂ = 0 and σ̂ = σ.

Remark 14. We remark here that in the last three cases, similarly to what we
have seen in the case θ < 0 for the models of Sect. 2 (see Remark 5), there is
an extra condition in the definition of the weak solution of (74). In this notion
of solution we need to show that the value of the profile ρt(·) is fixed at the
boundary. This issue is analysed in Appendix A.4.

The Case θ = 1: In this case we consider a function G : [0, 1] → IR which
is two times continuously differentiable and we extend it on IR in a two times
continuously differentiable function with compact support which strictly contains
[0, 1]. Note that in this case G can take non-zero values at 0 and 1. As above,
since Θ(N) = N2, by Lemma 3, which we state below and which holds for
this new space of test functions, the first term in (81) can be replaced, for N
sufficiently big, by

∫ t

0

〈πN
s , σ2

2 ΔG〉 ds.

Now we look at the terms coming from the boundary, namely the last term
in (79). Then, in the term for y = 0 of (79) (resp. for y = N) we do at first
a Taylor expansion on G and then we replace η(x) by the average −→η εN (1) =
1

εN

∑1+εN
x=1 η(x) (resp. η(x) by ←−η εN (N − 1) = 1

εN

∑N−1
x=N−1−εN η(x)), which can

be done as a consequence of Lemma 7 as pointed out in Remark 17. Moreover,
note that for y = 0 and y = N it holds that

∑

x∈ΛN

p(y − x) −−−−−→
N→+∞

1
2
. (86)

Therefore, we can write the last term in (79) as

κ

2

∫ t

0

{(α − −→η εN
sN2(1))G(0) + (β − ←−η εN

sN2(N − 1))G(1)} ds,

plus terms that vanish as N → +∞. Since
−→η εN

sN2(1) ∼ ρs(0) and ←−η εN
sN2(N − 1) ∼ ρs(1)

last term writes as

κ

2

∫ t

0

{(α − ρs(0))G(0) + (β − ρs(1))G(1)} ds. (87)
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Now, we analyse the two last terms in (81). Since the function G has been
extended into a two times continuously differentiable function on IR, by a Taylor
expansion on G we can write those terms as

N

N − 1

∫ t

0

∑

x∈ΛN

G′( x
N )Θ−

x ηsN2(x) ds −
N

N − 1

∫ t

0

∑

x∈ΛN

G′( x
N )Θ+

x ηsN2(x) ds

(88)
plus terms that vanish as N → +∞. Above for x ∈ ΛN ,

Θ−
x =

∑

y≤0

(x − y)p(x − y) and Θ+
x =

∑

y≥N

(y − x)p(x − y).

Note that

1
N

∑

x∈ΛN

xΘ−
x −−−−−→

N→+∞
0 and

1
N

∑

x∈ΛN

xΘ+
x −−−−−→

N→+∞
0. (89)

Moreover, note that
∑

x∈ΛN

Θ−
x =

∑

x∈ΛN

∑

y≥x

yp(y) −−−−−→
N→+∞

σ2

2 ,

∑

x∈ΛN

Θ+
x =

∑

x∈ΛN

∑

y≥N−x

yp(y) −−−−−→
N→+∞

σ2

2 .
(90)

In order to prove the convergence of
∑

x∈ΛN
Θ−

x (or of
∑

x∈ΛN
Θ+

x in (90)) we
use Fubini’s theorem to get that

∑

x∈ΛN

Θ−
x =

∑

y∈ΛN

y∑

x=1

yp(y) +
∑

y≥N

∑

x∈ΛN

yp(y)

=
∑

y∈ΛN

y2p(y) + (N − 1)
∑

y≥N

yp(y),

and since γ > 2 the result follows. By another Taylor expansion on G we can
write (88) as

N

N − 1
G′(0)

∫ t

0

∑

x∈ΛN

Θ−
x ηsN2(x) ds −

N

N − 1
G′(1)

∫ t

s

∑

x∈ΛN

Θ+
x ηsN2(x) ds (91)

plus terms that vanish as N → +∞. From Lemma 7 we can replace in the term
on the left (resp. right) hand side of last expression ηsN2(x) by −→η εN

sN2(1) (resp.
←−η εN

sN2(N − 1)). Therefore, (91) can be replaced, for N sufficiently big and for ε
sufficiently small, by

∫ t

0

G′(0)σ2

2
−→η εN

sN2(1) − G′(1)σ2

2
←−η εN

sN2(N − 1) ds.
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Since −→η εN
sN2(1) ∼ ρs(0) and ←−η εN

sN2(N − 1) ∼ ρs(1), last term tends to

∫ t

0

G′(0)σ2

2 ρs(0) − G′(1)σ2

2 ρs(1) ds, (92)

as N → ∞.
Putting together (87) and (92) we see the boundary terms that appear at

the right hand side of (77).

The Case θ > 1: In this case we consider an arbitrary function G : [0, 1] → IR
which is two times continuously differentiable and we extend it on IR in a two
times continuously differentiable function with compact support. Its support
strictly contains [0, 1] since G can take non-zero values at 0 and 1. As in the last
case, since Θ(N) = N2, by Lemma 3, the first term in (81) can be replaced, for
N sufficiently big, by

∫ t

0

〈πN
s , σ2

2 ΔG〉 ds.

The last term in (79) vanishes, as N → ∞ since, we can bound it by a constant
times

N1−θ
∑

x∈ΛN

p(x).

Since γ > 2 last display vanishes if θ > 1, as N → +∞. Thus, we only need to
look at the expression (81). Therefore, in order to see the boundary terms that
appear in (77), we can use exactly the computations already done in the case
θ = 1 from which we obtain (92).

We finish this section with the statement of the lemma which is used above in
order to obtain the diffusion term in the equations above in the cases θ ≥ 1 − γ.
Its proof can be seen in [2].

Lemma 3. Let G : IR → IR be a two times continuously differentiable function
with compact support. We have

lim sup
N→∞

sup
x∈ΛN

∣∣∣∣∣∣
N2

∑

y∈Z

(G(y+x
N ) − G( x

N ))p(y) − σ2

2
ΔG( x

N )

∣∣∣∣∣∣
= 0.

3.3 The Infinite Variance Case

In this section we analyse the case in which p(·) is as in (71) but now γ ∈ (1, 2)
so that p(·) has mean zero but infinite variance. We also consider only the case
where θ = −1, but we note that in the regime θ < −1 the behavior of the system,
when we take the time scale Θ(N) = Nγ+θ+1 is the same as when θ < 1 − γ
and when p(·) has finite variance, that is, it is given by the weak solution of
(74) with σ̂ = 0 and κ̂ = κcγ . The other regimes are open and seem to be quite
challenging. Recall the infinitesimal generator given in (72) and (73) and since
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we are restricted to the case θ = −1, we consider the Markov process speeded up
in the time scale Θ(N) = Nγ , so that {ηtNγ : t ≥ 0} has infinitesimal generator
given by NγLN . As in Sect. 2.4 we can prove that the Bernoulli product measures
νN

ρ as defined in (7) are reversible when we consider α = β = ρ. The proof is
quite similar to the one given in Lemma 1 and for that reason it is omitted.

Hydrodynamic Equations: We can now give the definition of the weak solu-
tion of the hydrodynamic equation that will be derived in this section when p(·)
is assumed to have infinite variance.

Recall the notations introduced in the beginning of Sect. 2.6. We recall the
definition of the fractional Laplacian operator of exponent γ/2 denoted by
(−Δ)γ/2. It is a non-local operator which is defined on the set of functions
G : IR → IR such that ∫ ∞

−∞

|G(q)|
(1 + |q|)1+γ

dq < ∞ (93)

by

(−Δ)γ/2G (q) = cγ lim
ε→0

∫ ∞

−∞
1|q−v|≥ε

G(q) − G(v)
|q − v|1+γ

dv (94)

provided the limit exists, which is the case, for example, if G is in the Schwartz
space. Recall that cγ is fixed in (71). Up to a multiplicative constant, −(−Δ)γ/2

is the generator of a γ-Lévy stable process.
We define another operator L whose action is given on functions G ∈

C∞
c ((0, 1)), by

∀q ∈ (0, 1), (LG)(q) = cγ lim
ε→0

∫ 1

0

1|q−v|≥ε

G(v) − G(q)
|q − v|1+γ

dv.

The operator L is called the regional fractional Laplacian on (0, 1). The semi
inner-product 〈·, ·〉γ/2 is defined on the set C∞

c ((0, 1)) by

〈G,H〉γ/2 =
cγ

2

∫∫

[0,1]2

(H(q) − H(v))(G(q) − G(v))
|q − v|1+γ

dqdv. (95)

The corresponding semi-norm is denoted by ‖·‖γ/2. Observe that for any G,H ∈
C∞

c ((0, 1)) we have that

−
∫ 1

0

G(q)LH(q) dq = −
∫ 1

0

LG(q)H(q) dq = 〈G,H〉γ/2

and note that for all q ∈ (0, 1),

(LG)(q) = −(−Δ)γ/2G (q) + V1(q)G(q) (96)

where V1(q) = r−(q) + r+(q), see (85), that is, V1(·) is given on q ∈ (0, 1) by:

V1(q) = cγγ−1
( 1

qγ
+

1
(1 − q)γ

)
. (97)
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Definition 8. The Sobolev space Hγ/2 consists of all square integrable functions
g : (0, 1) → IR such that ‖g‖γ/2 < ∞. This is a Hilbert space for the norm ‖·‖Hγ/2

defined by
‖g‖2Hγ/2 := ‖g‖2 + ‖g‖2γ/2.

Its elements elements coincide a.e. with continuous functions.
The space L2(0, T ;Hγ/2) is the set of measurable functions f : [0, T ] → Hγ/2

such that ∫ T

0

‖ft‖2Hγ/2dt < ∞.

We now extend the definition of the regional fractional Laplacian on (0, 1) to
the space Hγ/2.

Definition 9. For ρ ∈ Hγ/2 we define the distribution Lρ by
∫ 1

0

Lρ(q)G(q) dq =
∫ 1

0

ρ(q)LG(q) dq, G ∈ C∞
c ((0, 1)).

Let Lκ be the regional fractional Laplacian on [0, 1] with zero Dirichlet
boundary conditions, indexed by κ, and taking the form

Lκ = L − κṼ1, (98)

where for q ∈ (0, 1),

Ṽ1(q) = p(q) + p̃(q) = cγ

( 1
qγ+1

+
1

(1 − q)γ+1

)
. (99)

Above p̃(q) = p(1 − q). Below g : [0, 1] → [0, 1] is a measurable function and it
is the initial condition of the partial differential equation that we obtain in this
section.

Definition 10. Let κ > 0 be some parameter. We say that ρκ : [0, T ] × [0, 1] →
[0, 1] is a weak solution of the regional fractional reaction-diffusion equation with
Dirichlet boundary conditions given by

{
∂tρ

κ
t (q) = Lκρκ

t (q) + κṼ0(q), (t, q) ∈ [0, T ] × (0, 1),
ρκ

t (0) = α, ρκ
t (1) = β, t ∈ [0, T ],

(100)

where
Ṽ0(q) = αp(q) + βp̃(q) = cγ

( α

q1+γ
+

β

(1 − q)1+γ

)
,

and starting from a measurable function g : [0, 1] → [0, 1], if:

1. ρκ ∈ L2(0, T ;Hγ/2).
2.

∫ T

0

∫ 1

0

{
(α−ρκ

t (q))
2

q1+γ + (β−ρκ
t (q))

2

(1−q)1+γ

}
dq dt < ∞.
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3. For all t ∈ [0, T ] and all functions G ∈ C1,∞
c ([0, T ] × (0, 1)) we have that

Fκ
Dir :=

∫ 1

0

ρκ
t (q)Gt(q) dq −

∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρκ
s (q)

(
∂s + Lκ

)
Gs(q) dqds

− κ

∫ t

0

∫ 1

0

Gs(q)Ṽ0(q) dq ds = 0.

(101)

Remark 15. We observe that the partial differential equation above has a unique
weak solution in the sense defined above. We do not include the proof of this
result in these notes but we refer the interested reader to [2] for the proof of the
uniqueness for a very similar equation. The same proof gives uniqueness in this
case.

Hydrodynamic Limit: Recall the notion of the empirical measure given in
Sect. 2.6 and note that in this case we have

πN
t (η, dq) := πN (ηtNγ , dq)

since the time scale now is equal to θ(N) = Nγ .
The second result of this section is stated in the following theorem.

Theorem 4. Let g : [0, 1] → [0, 1] be a measurable function and let {μN}N≥1

be a sequence of probability measures in ΩN associated to g(·). Then, for any
0 ≤ t ≤ T ,

lim
N→∞

IPμN

(
η· :

∣∣∣∣∣
1

N − 1

∑

x∈ΛN

G
(

x
N

)
ηtNγ (x) −

∫ 1

0

G(q)ρκ
t (q)dq

∣∣∣∣∣ > δ

)
= 0,

where ρκ
t (·) is the unique weak solution of (100) in the sense of Definition 10.

Heuristics for Hydrodynamic Equations: Fix G : [0, 1] → IR which does
not depend on time and has compact support included in (0, 1). Recall (79) and
(81) and recall that we assumed θ = −1, so that (3.2) now writes as
∫ t

0

NγLN (〈πN
s , G〉) ds =

Nγ

N − 1

∫ t

0

∑

x∈ΛN

(L̃NG)( x
N )ηsNγ (x)

+
κNγ+1

(N − 1)

∫ t

0

∑

y∈{0,N}

∑

x∈ΛN

G( x
N )p(y − x)(r(y) − ηsNγ (x)) ds.

(102)

Note that the first term on the right hand side in last display is equal to
∫ t

0

〈πN
s , L̃NG〉 ds.
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Since from Lemma 3.3 in [4], we can deduce that

lim
N→∞

Nγ(L̃NG)(q) = (LG)(q) (103)

uniformly in [a, 1 − a], for all functions G with compact support included in
[a, 1−a]. Therefore, the first term on the right hand side of (102) can be replaced
by ∫ t

0

∫ 1

0

(LG)(q)ρκ
s (q) dq ds, (104)

for N sufficiently big. Now, the second term on the right hand side in (102) is
equal to

κ

∫ t

0

〈α − πN
s , Gp〉 ds + κ

∫ t

0

〈β − πN
s , Gp̃〉 ds

and converges, as N → ∞, to

κ

∫ t

0

∫ 1

0

(α − ρκ
t (q))G(q)p(q)du + κ

∫ t

0

∫ 1

0

(β − ρκ
t (q))G(q)p̃(q)dq

= −κ

∫ t

0

∫ 1

0

ρκ
t (q)G(q)Ṽ1(q)dq + κ

∫ t

0

∫ 1

0

G(q)Ṽ0(q)dq.

(105)

Putting together (104) and (105) and using (98) we recognize the corresponding
terms in (101).

We finish this section by noting that in [3] it was studied a similar dynamics
to the one described above. There we considered the same bulk dynamics with
long jumps given by p(·) with the choice (71) and γ ∈ (1, 2) but the boundary
dynamics was different. In [3] instead of considering just one boundary at each
end point of the bulk, it was added infinitely many reservoirs at the left and at the
right of the bullk. As in the dynamics described above, particles can be injected
and removed from the system at any point of the bulk by any of the reservoirs
located at y ≤ 0 or y ≥ N . We note that in the case of this new dynamics
the results obtained in [3] are similar to those presented here, except that the
transitions occur for a different value of θ and for that reason, the potential Ṽ1

that appears in the definition of Lκ in the reaction-diffusion equation (100) has
a different power than the one that appears in the hydrodynamic equation in
[3]. It would be very interesting to analyse other types of boundary dynamics
superposed to the bulk dynamics that we defined above in order to see if we
can come up with new fractional reaction-diffusion equations with more tricky
boundary conditions than the Dirichlet boundary conditions that we obtained
here. And it would be very interesting to look at the case where θ > −1, the
slow boundary regime, when p(·) is given as above with γ ∈ (1, 2), see the area
coloured in rose in the figure below. This is a subject to pursue in the near
future. In the figure below we summarize the scenario of the hydrodynamic limit
for the models of this section.
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???

θ

γθ = −1

θ = 1

γ = 1 γ = 2

γ = 2

Reaction-Diffusion eq. &
Dirichlet b.c.

Heat eq. & Robin b.c.

Heat eq. & Neumann b.c.

Heat eq. & Dirichlet b.c.

Reaction eq. & Dirichlet b.c.
θ = 1 − γ

Fig. 7. Hydrodynamical behavior of the symmetric exclusion with long jumps.
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A Auxiliary results

In this section we establish some technical results that are needed in order to
prove the hydrodynamic limit for the models discussed in the previous sections.

A.1 Entropy bound

From now on, we suppose that α ≤ β. Let ρ : [0, 1] → [0, 1] be a function such
that α ≤ ρ(q) ≤ β, for all q ∈ [0, 1]. Let νN

ρ(·) be the Bernoulli product measure
on ΩN with marginals given by

νN
ρ(·){η : ηx = 1} = ρ

(
x
N

)
. (106)
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Given two functions f, g : ΩN → IR and a probability measure μ on ΩN , we
denote here by 〈f, g〉μ the scalar product between f and g in L2(ΩN , μ), that is,

〈f, g〉μ =
∫

ΩN

f(η)g(η) dμ.

Let HN (μ|νN
ρ(·)) be the relative entropy of a probability measure μ on ΩN with

respect to the probability measure νN
ρ(·) on ΩN . We claim that there exists a

constant C0 := C(α, β), such that

HN (μ|νN
ρ(·)) ≤ C0N. (107)

For that purpose note that, since νN
ρ(·) is product we have that

νN
ρ(·)(η) =

N−1∏

x=1

ρ( x
N )η(x)(1 − ρ( x

N ))1−η(x) ≥ (α ∧ (1 − β))N

from where we obtain that

H(μ|νN
ρ(·)) =

∑

η∈ΩN

μ(η) log

(
μ(η)

νN
ρ(·)(η)

)
≤

∑

η∈ΩN

μ(η) log

(
1

νN
ρ(·)(η)

)

≤ log

([
1

α ∧ (1 − β)

]N
)

∑

η∈ΩN

μ(η) ≤ N log
(

1
α ∧ (1 − β)

)
≤ C0N.

We remark here that below when we use as reference measure the Bernoulli
product measure given in (106) we have to restrict to α �= 0 and β �= 1 since in
last estimate the constant C0 = − log(α ∧ (1 − β)). We also note that when we
use the Bernoulli product measure with a constant parameter we do not need to
impose that restriction.

A.2 Estimates on Dirichlet forms

In this section we consider the model described in Sect. 3 since the results for the
model of Sect. 2 can be obtained easily from the ones we derive below. In any
case we present some remarks along the text about the corresponding results for
the model of Sect. 2.

For a probability measure μ on ΩN , x, y ∈ ΛN and a density function f :
ΩN → [0,∞) with respect to μ we introduce

Ix,y(
√

f, μ) :=
∫

ΩN

(√
f(ηx,y) −

√
f(η)

)2

dμ,

Ir(y)
x (

√
f, μ) :=

∫

ΩN

cx(η; r(y))
(√

f(ηx) −
√

f(η)
)2

dμ.

In last identity y ∈ {0, N} and r(0) = α and r(N) = β. We define

DN (
√

f, μ) := (DN,0 + DN,b)(
√

f, μ)



Hydrodynamics for Symmetric Exclusion 195

where

DN,0(
√

f, μ) :=
1
2

∑

x,y∈ΛN

p(y − x) Ix,y(
√

f, μ), (108)

DN,b(
√

f, μ) :=
κ

Nθ

∑

y∈{0,N}

∑

x∈ΛN

p(y − x) Ir(y)
x (

√
f, μ). (109)

Note that for the models of Sect. 2 the expressions above simplify to

DNN
N,0 (

√
f, μ) :=

∑

x∈ΛN

Ix,x+1(
√

f, μ), (110)

DNN
N,b (

√
f, μ) :=

κ

Nθ

(
Iα
1 (
√

f, μ) + Iβ
N−1(

√
f, μ)

)
. (111)

Our first goal is to express, for the measure μ = νN
ρ(·), a relation between the

Dirichlet form defined by −〈LN

√
f,

√
f〉νN

ρ(·)
and DN (

√
f, νN

ρ(·)). We claim that
for any positive constant B, there exists a constant C > 0 such that

1
BN

〈LN

√
f,
√

f〉νN
ρ(·)

≤ − 1
4BN

DN (
√

f, νN
ρ(·))

+
C

BN

∑

x,y∈ΛN

p(y − x)
(
ρ( x

N ) − ρ( y
N )
)2

+
Cκ

BN1+θ

∑

y∈{0,N}

∑

x∈ΛN

(
ρ( x

N ) − r(y)
)2

p(y − x).

(112)

Our aim is then to choose ρ(·) in order to minimize the error term, i.e. the two
last terms at the right hand side of the previous inequality.

Remark 16.

1. If p(·) has finite variance σ2, then:
– for ρ(·) Lipschitz and such that ρ(0) = α and ρ(1) = β, we get

1
BN

〈LN

√
f,
√

f〉νN
ρ(·)

≤ − 1
4BN

DN (
√

f, νN
ρ(·)) +

C

BN2
σ2

+
Cκ

BN3+θ

∑

y∈{0,N}

∑

x∈ΛN

(
y − x

)2
p(y − x)

≤ − 1
4BN

DN (
√

f, νN
ρ(·)) +

C

BN2
σ2 +

Cκ

BN3+θ
.

(113)
– for ρ(·) such that ρ(0) = α, ρ(1) = β, Hölder of parameter γ

2 at the
boundaries and Lipschitz inside, we get

1
BN

〈LN

√
f,
√

f〉νN
ρ(·)

≤ − 1
4BN

DN (
√

f, νN
ρ(·)) +

C

BN2
σ2 +

Cκ log(N)
BNγ+θ+1

.

(114)



196 P. Gonçalves

– for ρ(·) such that ρ(0) = α, ρ(1) = β, Hölder of parameter 1+γ
2 at the

boundaries and Lipschitz inside, we get

1
BN

〈LN

√
f,
√

f〉νN
ρ(·)

≤ − 1
4BN

DN (
√

f, νN
ρ(·)) +

C

BN2
σ2 +

Cκ

BNγ+θ+1
.

(115)
– for ρ(·) constant, equal to α or to β, we have

1
BN

〈LN

√
f,
√

f〉νN
α

≤ − 1
4BN

DN (
√

f, να) +
Cκ

BNθ+1
. (116)

2. If p(·) is such that p(1) = p(−1) = 1
2 , then:

– for ρ(·) Lipschitz and such that ρ(0) = α, ρ(1) = β and locally constant
at 0 and 1, we get

1
BN

〈LN

√
f,
√

f〉νN
ρ(·)

≤ − 1
4BN

DNN
N (

√
f, νN

ρ(·)) +
C

BN2
. (117)

Note that the choice of asking ρ(·) to be locally constant at 0 and 1 turns
the errors coming from the boundary dynamics to vanish.

– for ρ(·) constant, equal to α or to β, then we have exactly the same error
as in (116).

3. If p(·) has infinite variance, then:
– for ρ(·) Lipschitz and such that ρ(0) = α and ρ(1) = β, we get

1
BN

〈LN

√
f,
√

f〉νN
ρ(·)

≤ − 1
4BN

DN (
√

f, νN
ρ(·))

+
C

BN3

∑

x,y∈ΛN

1
|x − y|γ−1

+
Cκ

BN3+θ

∑

y∈{0,N}

∑

x∈ΛN

(
y − x

)2
p(y − x)

≤ − 1
4BN

DN (
√

f, νN
ρ(·)) +

C

BNγ
σ2 +

Cκ

BNγ+θ+1
.

(118)

In order to prove (112) we need some intermediate results. For that purpose we
recall from [2] the following two lemmas.

Lemma 4. Let T : η ∈ ΩN → T (η) ∈ ΩN be a transformation in the configura-
tion space and c : η ∈ ΩN → c(η) be a positive local function. Let f be a density
with respect to a probability measure μ on ΩN . Then, we have that

〈
c(η)[

√
f(T (η)) −

√
f(η)] ,

√
f(η)

〉

μ

≤ −1
4

∫
c(η)

([√
f(T (η))

]
−
[√

f(η)
])2

dμ

+
1
16

∫
1

c(η)

[
c(η) − c(T (η))

μ(T (η))
μ(η)

]2 ([√
f(T (η))

]
+
[√

f(η)
])2

dμ.

(119)



Hydrodynamics for Symmetric Exclusion 197

Lemma 5. There exists a constant C := C(ρ) such that for any N ≥ 1 and
density f be a density with respect to νN

ρ(·)

sup
x�=y∈ΛN

∫

ΩN

f(ηx,y) dνN
ρ(·) ≤ C, sup

x∈ΛN

∫

ΩN

f(ηx) dνN
ρ(·) ≤ C.

A simple consequence of the previous lemmas is the next two corollaries. Recall
the bulk generator LN,0 given in (73).

Corollary 1. There exists a constant C > 0 (independent of f(·) and N) such
that
〈
LN,0

√
f,
√

f
〉

νN
ρ(·)

≤ −1
4
DN,0(

√
f, νN

ρ(·)) + C
∑

x,y∈ΛN

p(y − x)
(
ρ( x

N ) − ρ( y
N )
)2

for any density f(·) with respect to νN
ρ(·).

Now we look at the generator of the boundary dynamics given in (73).

Corollary 2. Let θ ∈ IR be fixed. There exists a constant C > 0 (independent
of f(·) and N) such that

〈LN,b

√
f,
√

f〉νN
ρ(·)

≤ −1
4
DN,b(

√
f, νN

ρ(·))

+
Cκ

Nθ

∑

x∈ΛN

(
ρ( x

N ) − α
)2

p(x)

+
Cκ

Nθ

∑

x∈ΛN

(
ρ( x

N ) − β
)2

p(N − x)

(120)

for any density f(·) with respect to νN
ρ(·).

To prove the first corollary take c ≡ 1, T (η) = ηx,y and note that

|θx,y(η) − 1|2 ≤ C(ρ( x
N ) − ρ( y

N ))2.

To prove the second corollary we take for each y ∈ {0, N}, c(η) = cx(η; r(y))
and T (η) = ηx. From the two previous corollaries the claim (112) follows easily.
We leave the details of the gaps to the reader.

A.3 Replacement Lemmas

In this section we prove rigorously all the replacements that were mentioned
along the Sects. 2.8 and 3.2. We first recall Lemma 5.5 of [2] adapted to our
situation (with just one reservoirs at each end point of the bulk).

Lemma 6. For any density f(·) with respect to νN
ρ(·), any x ∈ ΛN , any y ∈

{0, N} and any positive constant Ax, there exists a constant C such that
∣∣∣〈η(x) − r(y), f〉νN

ρ(·)

∣∣∣ ≤ C

Ax
Ir(y)
x (

√
f, νN

ρ(·)) + CAx + C
∣∣∣ρ( x

N ) − r(y)
∣∣∣.
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The first replacement lemma that we prove is the one that is needed for the
model of Sect. 3 when p(·) has finite variance for the case θ ≥ 1.

Lemma 7. For any t > 0, for γ > 2 and for any θ ≥ 1 we have that

lim
ε→0

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

∑

x∈ΛN

Θ−
x (ηsN2(x) − −→η εN

sN2(1)) ds
∣∣∣

]
= 0,

lim
ε→0

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

∑

x∈ΛN

Θ+
x (ηsN2(x) − ←−η εN

sN2(N − 1)) ds
∣∣∣

]
= 0.

Proof. Below C is a constant than can change from line to line. Note that since
θ ≥ 1 we have θ(N) = N2. We present the proof for the first term, but we note
that the proof for the second one is analogous. Here we take as reference measure
the Bernoulli product measure with constant parameter (for example α) and we
recall (116), from where we see that

N

B
〈LN

√
f,
√

f〉να
≤ − N

4B
DN (

√
f, νN

α ) +
Cκ

B
N1−θ (121)

so that the error to change the Dirichlet form vanishes as N → ∞ for θ > 1 and
for θ = 1 it vanishes when B → +∞.

By the entropy and Jensen’s inequalities, the first expectation in the state-
ment of the lemma is bounded from above, for any constant B > 0, by

H(μN |νN
α )

BN
+

1
BN

log EIPνN
α

[
e
BN

∣∣∣ ∫ t
0

∑
x∈ΛN

Θ−
x (ηsN2 (x)−−→η εN

sN2 (1)) ds

∣∣∣
]
.

We can remove the absolute value inside the exponential since e|x| ≤ ex + e−x

and

lim sup
N→∞

N−1 log(aN + bN ) ≤ max
{

lim sup
N→∞

N−1 log(aN ), lim sup
N→∞

N−1 log(bN )
}

.

(122)
By (107), the Feynman-Kac’s formula and (116), last expression can be estimated
from above by

C0

B
+ t sup

f

{ ∑

x∈ΛN

Θ−
x 〈η(x) − −→η εN (1), f〉νN

α
− N

4B
DN (

√
f, να) +

Cκ

B
N1−θ

}
,

(123)
where the supremum is carried over all the densities f(·) with respect to νN

α .
Now we have to split the sum in x, depending on whether N − 1 ≥ x ≥ εN

or x ≤ εN − 1. We start by the first case and we have

〈η(x) − −→η εN (1), f〉νN
α

=
1

εN

1+εN∑

y=1

∫
(η(x) − η(y))f(η) dνN

α

=
1

1 + εN

εN∑

y=1

x−1∑

z=y

∫
(η(z + 1) − η(z))f(η) dνN

α .
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By writing the previous term as its half plus its half and by performing in one
of the terms the change of variables η into ηz,z+1, for which the measure νN

α is
invariant, we write it as

1
2εN

1+εN∑

y=1

x−1∑

z=y

∫
(f(η) − f(ηz,z+1))(η(z + 1) − η(z)) dνN

α .

By using the fact that (a − b) = (
√

a −
√

b)(
√

a +
√

b) for any a, b ≥ 0 and since

ab ≤ Aa2

2
+

b2

2A
for all A > 0, we have that

N−1∑

x=εN

Θ−
x 〈η(x) − −→η εN (1), f〉νN

α

≤
A

2

N−1∑

x=εN

Θ−
x

2εN

1+εN∑

y=1

x−1∑

z=y

∫
(
√

f(η) −
√

f(ηz,z+1))2dνN
α

+
1

2A

N−1∑

x=εN

Θ−
x

2εN

1+εN∑

y=1

x−1∑

z=y

∫
(
√

f(η) +
√

f(ηz,z+1))2(η(z + 1) − η(z))2dνN
α .

(124)
By neglecting the jumps of size bigger than one, we see that

∑

z∈ΛN

∫ (√
f(η) −

√
f(ηz,z+1)

)2

dνN
α ≤ C DN,0(

√
f, νN

α ).

Therefore, by using also (89), the first term at the right hand side of (124) can
be bounded from above by

A

4

N−1∑

x=εN

Θ−
x

∑

z∈ΛN

∫ (√
f(η) −

√
f(ηz,z+1)

)2

≤ CADN,0(
√

f, νN
α ). (125)

Recall (116) and observe that

DN (
√

f, νN
α ) ≥ DN,0(

√
f, νN

α ).

Then we choose the constant A in the form A = CN/B for some constant C.
Moreover, for this choice of A, we can bound from above the last term at the
right hand side of (124) by (use Lemma 5)

B

N

N−1∑

x=εN

Θ−
x

1
2εN

εN∑

y=1

x−1∑

z=y

∫
(
√

f(η) +
√

f(ηz,z+1))2(η(z + 1) − η(z))2dνN
α

≤ C
B

N

∑

x∈ΛN

xΘ−
x

(126)
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which vanishes as N → ∞ by (116). Note that the previous result holds for any
ε > 0. Now we analyse the case when x ≤ εN − 1. In that case, we write

〈η(x) − −→η εN (1), f〉νN
α

=
1

1 + εN

εN∑

y=1

∫
(η(x) − η(y))f(η) dνN

α

=
1

εN

x−1∑

y=1

x−1∑

z=y

∫
(η(z + 1) − η(z))f(η) dνN

α

− 1
εN

1+εN∑

y=x+1

y−1∑

z=x

∫
(η(z + 1) − η(z))f(η) dνN

α .

and the same estimates as before give that there exists a constant C > 0 such
that for any A > 0,

εN−1∑

x=1

Θ−
x 〈η(x) − −→η εN (1), f〉νN

α
≤ C

[
ADN (

√
f, νN

α ) +
εN

A

εN−1∑

x=1

Θ−
x

]
.

Recall (116) and (89). Then, we choose A = N/ 8CB and the result follows. ��

Remark 17. We note that above, if we change in the statement of the lemma
Θ−

x by r−
N (resp. Θ+

x by r+N ) then the same result holds by performing exactly
the same estimates as above, because what we need is that

∑

x∈ΛN

Θ±
x < +∞ and

1
N

∑

x∈ΛN

xΘ±
x →N→+∞ 0 (127)

which also holds for r±
N instead of Θ±

x since γ > 2.

Remark 18. Let us see now what the previous lemma says when p(1) = p(−1) =
1
2 . In this case we note that we have the same estimate as in (121), see 2. in
Remark 16 and also note that Θ−

x �= 0 for x = 1 and Θ−
x = 0 for x �= 1.

Moreover, Θ−
1 = p(1) = 1

2 , so that the result above reads as

lim
ε→0

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

(ηsN2(1) − −→η εN
sN2(1)) ds

∣∣∣
]

= 0.

lim
ε→0

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

(ηsN2(N − 1) − ←−η εN
sN2(N − 1)) ds

∣∣∣
]

= 0.

A.4 Fixing the Profile at the Boundary

Let Q be a limit point of the sequence {QN}N≥1 and assume, without lost of
generality, that {QN}N≥1 converges to Q, as N → +∞. In this section we prove
that for the model of Sect. 3 if θ ∈ [1 − γ, 1) (and also for the model of Sect. 2
when θ < 0) that the profile satisfies ρt(0) = α and ρt(1) = β for t ∈ (0, T ] a.e.
We present the proof for ρt(0) = α but the other case is completely analogous.
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Recall (49). Observe that

EIPμN

[∣∣∣
∫ t

0

(−→η εN
sN2(1) − α) ds

∣∣∣
]

= EQN

[∣∣∣
∫ t

0

(〈πs, ι
0
ε〉 − α) ds

∣∣∣
]

where ι0ε(·) = ε−1 1(0,ε)(·). Therefore we have that for any δ > 0,

QN

[∣∣∣
∫ t

0

(〈πs, ι
0
ε〉 − α) ds

∣∣∣ > δ

]
≤ δ−1 EIPμN

[∣∣∣
∫ t

0

(−→η εN
sN2(1) − α) ds

∣∣∣
]

.

Note that ι0ε is not a continuous function so the set

{
π ;

∣∣∣
∫ t

0

(〈πs, ι
0
ε〉 − α) ds

∣∣∣ > δ
}

is not an open set in the Skorohod topology, but, a simple argument as we
did in Sect. 2.10 allows to overcome the problem. Therefore, by Portemanteau’s
Theorem we conclude that

Q
[∣∣∣
∫ t

0

(〈πs, ι
0
ε〉 − α) ds

∣∣∣ > δ

]
≤ δ−1 lim inf

N→∞
EIPμN

[∣∣∣
∫ t

0

(−→η εN
sN2(1) − α) ds

∣∣∣
]

.

Now, if we are able to prove that the right hand side of the previous inequality is
zero, since we have that Q a.s. πs(dq) = ρs(q)dq with ρs(·) a continuous function
in 0 for a.e. s, by taking the limit ε → 0, we can deduce that Q a.s. ρs(0) = α
for s a.e. The result follows from the next lemma.

Lemma 8. For any t ∈ [0, T ] we have that

lim
ε→0

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

(−→η εN
sN2(1) − α) ds

∣∣∣
]

= 0,

lim
ε→0

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

(←−η εN
sN2(N − 1) − β) ds

∣∣∣
]

= 0.

To prove last lemma we use a two step procedure. First we replace, when inte-
grated in time, ηsN2(1) by α and then we replace ηsN2(1) by −→η εN

sN2(1). This is
the content of the next two lemmas.

Lemma 9. For γ > 1, for 1 − γ ≤ θ < 1 and for t ∈ [0, T ] we have that

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

(ηsN2(1) − α) ds
∣∣∣
]

= 0,

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

(ηsN2(N − 1) − β) ds
∣∣∣
]

= 0.

Proof. We give the proof for the first display, but we note that for the other one
it is similar. Fix a Lipschitz profile ρ(·) such that α = ρ(0) ≤ ρ(·) ≤ ρ(1) = β
and ρ(·) is γ

2 -Hölder at the boundary. From (114) that we know that

N

B
〈LN

√
f,
√

f〉νN
ρ(·)

≤ − N

4B
DN (

√
f, νN

ρ(·)) +
C

B
σ2 +

Cκ log(N)
BNγ+θ+1

. (128)
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By the entropy inequality, for any B > 0, the previous expectation is bounded
from above by

H(μN |νN
ρ(·))

BN
+

1
BN

log EIP
νN

ρ(·)

[
e
BN

∣∣∣ ∫ t
0 (ηsN2 (1)−α) ds

∣∣∣]
.

By (107), Jensen’s inequality and the Feynman-Kac’s formula and noting, as we
did in the last proof, that we can remove the absolute value inside the exponen-
tial, last display can be estimated from above by

C0

B
+ t sup

f

{
〈η(1) − α, f〉νN

ρ(·)
− N

4B
DN (

√
f, νN

ρ(·)) +
C

B
σ2 +

Cκ

BNγ+θ−1

}
,

(129)
where the supremum is carried over all the densities f(·) with respect to νN

ρ(·).
By Lemma 6, since ρ(·) is γ

2 -Hölder at the boundaries, for any A > 0, the first
term in the supremum in (129) is bounded from above by

C

[
1
A

Iα
1 (
√

f, νN
ρ(·)) + A +

1
Nγ/2

]

for some constant C > 0 independent of f(·) and A. Moreover from (114), since

DN (
√

f, νN
ρ(·)) ≥ DN,b(

√
f, νN

ρ(·))

and γ + θ − 1 > 0, by choosing A = 4C(p(1))−1BNθ−1, we get then that the
expression inside the brackets in (129) is bounded from above by

4C2 BNθ−1

p(1)
+

C

Nγ/2
+

C

B
.

Now if p(1) �= 0, then the proof follows by sending first N → ∞ and then
B → ∞. For γ + θ − 1 = 0 the same proof as above holds, the only difference
is that we use a Lipschitz profile ρ(·) such that α = ρ(0) ≤ ρ(·) ≤ ρ(1) = β and
ρ(·) is γ+1

2 -Hölder at the boundaries. From (115) that we know that

N

B
〈LN

√
f,
√

f〉νN
ρ(·)

≤ − N

4B
DN (

√
f, νN

ρ(·)) +
C

B
σ2 +

Cκ

B
, (130)

and with last bound and the previous argument the proof ends.

Remark 19. The previous lemma tells us that for the model of Sect. 2 and for
θ < 1 and t ∈ [0, T ] we have that

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

(ηsN2(1) − α) ds
∣∣∣
]

= 0,

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

(ηsN2(N − 1) − β) ds
∣∣∣
]

= 0.

Note that the previous proof follows since we have the bound (117) and in this
model p(1) = 1

2 .
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Remark 20. We note that for the case where p(1) = 0 above what we have to do
is to use the two step procedure with a point z such that p(z) �= 0, from where
we get that:

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

(ηsN2(z) − α) ds
∣∣∣
]

= 0

and the same result holds by changing α to β.

Now we prove the second part of the two step procedure.

Lemma 10. For 1 − γ ≤ θ < 1 and t > 0 we have that

lim
ε→0

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

−→η εN
sN2(1) − ηsN2(1) ds

∣∣∣
]

= 0,

lim
ε→0

lim
N→∞

EIPμN

[∣∣∣
∫ t

0

←−η εN
sN2(N − 1) − ηsN2(N − 1) ds

∣∣∣
]

= 0.

(131)

Proof. We present the proof of the first item, but we note that for the second
it is exactly the same. When γ + θ − 1 > 0, we fix a Lipcshitz profile ρ(·) such
that α = ρ(0) ≤ ρ(·) ≤ ρ(1) = β, and ρ(·) is γ

2 -Hölder at the boundaries, when
γ + θ − 1 = 0, the Holder regularity at the boundary is γ+1

2 . Since we imposed
the same conditions as in the previous lemma in the profile ρ(·) then in this case
(128) and (130) holds. From now on we suppose that γ + θ − 1 > 0, the other
case is completely analogous. By the entropy and Jensen’s inequalities, for any
B > 0, the previous expectation is bounded from above by

H(μN |νN
ρ(·))

BN
+

1
BN

log EIP
νN

ρ(·)

[
e
BN

∣∣∣ ∫ t
0

−→η εN
sN2 (1)−ηsN2 (1) ds

∣∣∣]
.

By (107), the Feynman-Kac’s formula, and using the same argument as in the
proof of the previous lemma, the estimate of the previous expression can be
reduced to bound

C0

B
+ t sup

f

{1

�

�+1∑
y=2

|〈η(y) − η(1), f〉νN
ρ(·)

| − N

4B
DN (

√
f, νN

ρ(·)) +
C

B
σ2 +

Cκ log(N)

BNγ+θ−1

}
, (132)

where � = εN . As above, the supremum is carried over all the densities f(·) with
respect to νN

ρ(·). Note that since y ∈ ΛN we know that

η(y) − η(1) =
y−1∑

z=1

(η(z + 1) − η(z)).

Observe now that
∫

(η(z + 1) − η(z))f(η)dνN
ρ(·) =

1
2

∫
(η(z + 1) − η(z))(f(η) − f(ηz,z+1))dνN

ρ(·)

+
1
2

∫
(η(z + 1) − η(z))(f(η) + f(ηz,z+1))dνN

ρ(·).
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By using the fact that for any a, b ≥ 0, (a − b) = (
√

a −
√

b)(
√

a +
√

b) and
Young’s inequality, we have, for any positive constant A, that

1
�

�+1∑

y=2

|〈η(y) − η(1), f〉νN
ρ(·)

|

≤ 1
2A�

�+1∑

y=2

y−1∑

z=1

∫
(η(z + 1) − η(z))2

(√
f(η) +

√
f(ηz,z+1)

)2

dνN
ρ(·)

+
A

2�

�+1∑

y=2

y−1∑

z=1

∫ (√
f(η) −

√
f(ηz,z+1)

)2

dνN
ρ(·)

+
1
2�

�+1∑

y=2

∣∣∣∣∣

y−1∑

z=1

∫ (
η(z + 1) − η(z)

) (
f(η) + f(ηz,z+1)

)
dνN

ρ(·)

∣∣∣∣∣ .

(133)
Now, we neglect jumps of size bigger than one as we did below (124), from where
we get that the second term on the right hand side of (133) is bounded from
above by CADN (

√
f, νN

ρ(·)) where C is a positive constant independent of A, �, f .
Then, for the choice A = N(4BC)−1 and since γ + θ − 1 ≥ 0, we can bound
from above (132) by

2BC

N�

�+1∑

y=2

y−1∑

z=1

∫
(η(z + 1) − η(z))2

(√
f(η) +

√
f(ηz,z+1)

)2

dνN
ρ(·)

+
1
2�

�+1∑

y=2

∣∣∣∣∣

y−1∑

z=1

∫ (
η(z + 1) − η(z)

) (
f(η) + f(ηz,z+1)

)
dνN

ρ(·)

∣∣∣∣∣+
C ′

B

≤C
(B�

N
+

1
B

+
1
2�

�+1∑

y=2

∣∣∣
y−1∑

z=1

∫ (
η(z + 1) − η(z)

) (
f(η) + f(ηz,z+1)

)
dνN

ρ(·)

∣∣∣
)

(134)
for some constant C. For the last inequality we used Lemma 5. Observe that
B�/N = Bε vanishes as ε → 0. It remains to estimate the third term on the right
hand side of the last inequality. For that purpose we make a similar computation
to the one of Lemma 6 from where we get that

y−1∑

z=1

∣∣∣∣
∫

(η(z + 1) − η(z))(f(η) + f(ηz,z+1))dνN
ρ(·)

∣∣∣∣ ≤ C

y−1∑

z=1

∣∣∣ρ
(

z+1
N

)
− ρ

(
z
N

))∣∣∣.

Since ρ(·) is Lipschitz, by (134), this estimate provides an upper bound for (132)
which is in the form of a constant times

B�

N
+

1
B

+
1

N�

�+1∑

y=2

y ≤ Bε + B−1 + ε

which vanishes, as ε → 0 and then B → ∞. This ends the proof. ��



Hydrodynamics for Symmetric Exclusion 205

References

1. Baldasso, R., Menezes, O., Neumann, A., Souza, R.: Exclusion process with slow
boundary. J. Stat. Phys. 167(5), 1112–1142 (2017)
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Abstract. In this expository paper we give an overview of the statis-
tical properties of Hamilton-Jacobi Equations and Scalar Conservation
Laws. The first part (Sects. 2–4) is devoted to the recent proof of Menon-
Srinivasan Conjecture. This conjecture provides a Smoluchowski-type
kinetic equation for the evolution of a Markovian solution of a scalar con-
servation law with convex flux. In the second part of the paper (Sects. 5
and 6) we discuss the question of homogenization for Hamilton-Jacobi
PDEs and Hamiltonian ODEs with deterministic and stochastic Hamil-
tonian functions.

1 Introduction

The primary goal of these notes is to give an overview of the statistical properties
of solutions to the Cauchy problem for the Hamilton-Jacobi Equation

ut = H(x, t, ux) in R
d × (0,∞) (1.1)

u = u0 on R
d × {t = 0},

or, the scalar conservation law

ρt = H(x, t, ρ)x in R × (0,∞) (1.2)

ρ = ρ0 on R × {t = 0},

where either H or ρ0 = ρ0(x) is random. Note that if u satisfies (1.1) and d = 1,
then ρ = ux satisfies (1.2). As is well-known, the PDE (1.1) or (1.2) does not
possess classical solutions even when the initial data is smooth. In the case of
Eq. (1.1), we may consider viscosity solutions to guarantee the uniqueness under
some standard assumptions on the initial data and H. In the case of (1.2) with
d = 1, we consider the so-called entropy solutions.

We will be mostly concerned with the following two scenarios:

(1) d = 1, H(x, t, p) = H(p) is convex in p and independent of (x, t), with initial
data ρ0 that is either a white noise, or a Markov process.

(2) d ≥ 1, and H(x, t, p) is a stationary ergodic process in (x, t), and may not
be convex in p.

c© Springer Nature Switzerland AG 2019
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Our aim is to give an overview of various classical and recent results and
formulate a number of open problems. Sections 2–4 are devoted to (1), where
we derive an evolution equation for the Markovian law of ρ as a function of
x or t. Sections 4 and 5 are devoted to (2), where we address the question of
homogenization for such Hamiltonian functions.

2 Scalar Conservation Law with Random Initial Data

We first recall the following important features of the solutions to (1.2) when
d = 1, H(x, t, p) = H(p) is convex in p, and independent of (x, t):

(i) If a discontinuity of ρ occurs at x = x(t), and ρ± = ρ(x(t)±, t) represent
the left and right limits of ρ at x(t), then for a weak solution of (1.2) we
must have the Rankin-Hugoniot Equation:

dx

dt
= −H[ρ−, ρ+] =: −H(ρ+) − H(ρ−)

ρ+ − ρ−
.

(ii) By an entropy solution, we mean a week solution for which the entropy
condition is satisfied. In the case of convex H, the entropy condition is
equivalent to the requirement

ρ− < ρ+.

(iii) If ρ0 has a discontinuity with ρ− > ρ+, then such a discontinuity disappears
instantaneously by inserting a rarefaction wave between ρ− and ρ+. That
is a solution of the form

G

(
x − c

t

)
,

where G = (H ′)−1.

We next state three results.

(i) (Burgers Equation with Lévy Initial Data)

When H(p) = 1
2p2, (1.2) is the well-known inviscid Burgers’ equation, which

has often been considered with random initial data. Burgers studied (1.2) in
his investigation of turbulence [5]. Carraro and Duchon [6] defined a notion
of statistical solution to Burgers’ equation and realized that it was natural to
consider Lévy process initial data. This statistical solution approach was further
developed in 1998 by the same authors [7] and by Chabanol and Duchon [8]. In
fact any (random) entropy solution is also a statistical solution, but the converse
is not true in general. In 1998, Bertoin [4] proved a closure theorem for Lévy
initial data.
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Theorem 1. Consider Burgers’ equation with initial data ρ0(x) which is a Lévy
process without negative jumps for x ≥ 0, and ρ0(x) = 0 for x < 0. Assume that
the expected value of ρ0(1) is non-positive, Eρ0(1) ≤ 0. Then, for each fixed
t > 0, the process x �→ ρ(x, t) − ρ(0, t) is also a Lévy process with

E exp
( − s(ρ(x, t) − ρ(0, t))

)
= exp(xψ(s, t)),

where the exponent ψ solves the following equation:

ψt + ψψs = 0. (2.1)

Remark 2.1(i) The requirement Eρ0(1) ≤ 0 can be relaxed with minor modi-
fications to the theorem, in light of the following elementary fact. Suppose that
ρ0(x) and ρ̂0(x) are two different initial conditions for Burgers’ equation, which
are related by ρ̂0(x) = ρ0(x) + cx. It is easy to check that the corresponding
solutions ρ(x, t) and ρ̂(x, t) are related for t > 0 by

ρ̂(x, t) =
1

1 + ct

[
ρ

(
x

1 + ct
,

t

1 + ct

)
+ cx

]
.

Using this we can adjust a statistical description for a case where Eρ0(1) > 0 to
cover the case of a Lévy process with general mean drift.

(ii) Sinai [26] and Aurell, Frisch, She [3] considered Burgers equation with Brow-
nian motion initial data, relating the statistics of solutions to convex hulls and
addressing pathwise properties of solutions. ��
(ii) (Burgers Equation with white noise initial data)

Groeneboom [15] considers the white noise initial data. In other words, take
two independent Brownian motions B±, and take a two sided Brownian motion
for the initial data

u0(x) =

{
B+(x) if x ≥ 0
B−(x) if x ≤ 0,

(2.2)

Theorem 2. Let ρ = ux, where u is a viscosity solution of the PDE ut = 1
2u2

x,
subject to the initial condition u(x, 0) = u0(x), with u0 given as in (2.2). Then
the process x �→ ρ(x, t) is a Markov jump process with drift −t−1 and a suitable
jump measure ν(t, ρ−, ρ+) dρ+.

We also refer to [13] for an explicit and simple formula expressing the one-
point distribution of ρ in terms of Airy functions.

(iii) A different particular case,

−H(p) =

{
0 if |p| ≤ 1,

∞ otherwise.

corresponds to the problem of determining Lipschitz minorants, and has been
investigated by Abramson and Evans [1].
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3 Menon-Srinivasan Conjecture

In 2007 Menon and Pego [19] used the Lévy-Khintchine representation for the
Laplace exponent and observed that the evolution according to Burgers’ equation
in (2.1) corresponds to a Smoluchowski coagulation equation [2], with additive
collision kernel, for the jump measure of the Lévy process ν(·, t). The jumps
of ν(·, t) correspond to shocks in the solution ρ(·, t). Regarding the sizes of the
jumps as the usual masses in the Smoluchowski equation, it is plausible that
Smoluchowski equation with additive kernel should be relevant.

It is natural to wonder whether this evolution through Markov processes
with simple statistical descriptions is specific to the Burgers-Lévy case, or an
instance of a more general phenomenon. The biggest step toward understanding
the problem for a wide class of H is found in a 2010 paper of Menon and
Srinivasan [20]. Here it is shown that when the initial condition ρ0 is a strong
Markov process with positive jumps only, the solution ρ(·, t) remains Markov for
fixed t > 0. The argument is adapted from that of [4] and both [20] and [4] use
the notion of splitting times (due to Getoor [14]) to verify the Markov property
according to its bare definition. In the Burgers-Lévy case, the independence and
homogeneity of the increments can be shown to survive, from which additional
regularity is immediate using standard results about Lévy processes. As [20]
points out, without these properties it is not clear whether a Feller process
initial condition leads to a Feller process in x at later times. Nonetheless, [20]
presents a very interesting conjecture for the evolution of the generator of ρ(·, t),
which has a remarkably nice form.

To prepare for the statement of Menon-Srinivasan Conjecture, we first exam-
ine the following simple scenario for the solutions of the PDE

ρt = H(ρ)x = H ′(ρ)ρx. (3.1)

Imagine that the initial data ρ0 satisfies an ODE of the form

dρ0

dx
(x) = b0

(
ρ0(x)

)
, (3.2)

for some C1 function b0 : R → R. We may wonder whether or not this feature
of ρ0 survives at later times. That is, for some function b(ρ, t), we also have

ρx(x, t) = b
(
ρ(x, t), t

)
, (3.3)

for t > 0. For (3.3) to be consistent with (3.1), observe

ρt = H ′(ρ)ρx = H ′(ρ)b(ρ, t),

and as we calculate mixed derivatives, we arrive at

ρxt = bρ(ρ, t)ρt + bt(ρ, t) = bρ(ρ, t)H ′(ρ)b(ρ, t) + bt(ρ, t),

ρtx = H ′′(ρ)b(ρ, t)ρx + H ′(ρ)bρ(ρ, t)ρx = H ′′(ρ)b2(ρ, t) + H ′(ρ)bρ(ρ, t)b(ρ, t).
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As a result b must satisfy

bt(ρ, t) = H ′′(ρ)b2(ρ, t). (3.4)

For a classical solution, all we need to do is solving the ODE (3.3) for the initial
data b(ρ, 0) = b0(ρ) for each ρ. When H is convex, the solution may blow up in
finite time. More precisely,

– If b0(ρ) ≤ 0, then b0(ρ) ≤ b(ρ, t) ≤ 0 for all t and there would be no blow-up.
– If b0(ρ) > 0, then there exists some finite T (ρ) > 0 such that b(ρ, t) is finite

in the interval [0, T (ρ)), and b(ρ, T (ρ)) = ∞.

In fact the Eq. (3.4) is really “the method of characteristics” in disguise, and the
blow-up of solutions is equivalent to the occurrence of shock discontinuity.

To go beyond what (3.4) offers, we now take a jump kernel f0(ρ, dρ∗)
and assume that ρ0(x) is a realization of a Markov process with infinitesimal
generator

L0h(ρ) = b0(ρ)h′(ρ) +
∫ ∞

ρ

(
h(ρ∗) − h(ρ)

)
f0(ρ, dρ∗).

In words, ρ0 solves the ODE (3.3), with some occasional random jumps with
rate f0. We are assuming that the jumps are all positive to avoid rarefaction
waves. We may wonder whether the same picture is valid at later times. That is,
for fixed t > 0, the solution ρ(x, t), as a function of x is a Markov process with
the generator

Lth(ρ) = b(ρ, t)h′(ρ) +
∫ ∞

ρ

(
h(ρ∗) − h(ρ)

)
f(ρ, dρ∗, t). (3.5)

Menon-Srinivasan Conjecture roughly suggests that if H is convex, and we
start with a Markov process with generator L0, then we have a Markov process at
a later time with a generator of the form Lt. Moreover, the drift of the generator
satisfies (3.4), and the jump kernel f(ρ, dρ∗, t) solves an integral equation. Before
we derive an equation for the evolution of f , observe that when we assert that
ρ(x, t) is a Markov process in x, we are specifying a direction for x. More precisely,
we are asserting that if ρ(a, t) is known, then the law of ρ(x, t) can be determined
uniquely for all x > a. We are doing this for all t > 0. In practice, we may try to
determine ρ(x, t) for x > a(t), provided that ρ(a(t), t) is specified. For example,
we may wonder whether or not we can determine the law of ρ(x, t) with the aid
of the following procedure:

– The process t �→ ρ(a(t), t) is a Markov process and its generator can be
determined. Using this Markov process, we take a realization of ρ(a(t), t),
with some initial choice for ρ(a(0), 0).

– Once ρ(a(t), t) is selected, we use the generator Lt, to produce a realization
of ρ(x, t) for x ≥ a(t).
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To materialize the above procedure, we need to make sure that for some choice of
a(t), the process ρ(a(t), t) is Markovian with a generator that can be described.
For a start, we may wonder whether or not we can even choose a(t) = a a
constant function. Put it differently, not only x �→ ρ(x, t) is a Markov process
for fixed t ≥ 0, the process t �→ ρ(x, t) is a Markov process for fixed x. As it
turns out, this is the case if H is also increasing. In general, if we can find a
negative constant c such that H ′(ρ) > c, then ρ̂(x, t) := ρ(x − ct, t) satisfies

ρ̂t = Ĥ(ρ̂)x,

for Ĥ(ρ) = H(ρ) − cρ, which is increasing. Hence, the process t �→ ρ̂(x, t) =
ρ(x − ct, t) is expected to be Markovian. In summary

– If H is increasing in the range of ρ, then ρ is also Markovian on vertical lines
x = constant.

– If H ′ is bounded below by a negative constant c, then ρ is Markovian on
straight lines that are titled to the right with the slope −c.

To simplify the matter, from now on, we make two assumptions on H:

H ′ > 0, H ′′ ≥ 0. (3.6)

The main consequences of these two assumptions are

– All the jump discontinuities are positive i.e. ρ− < ρ+.
– The speed of shocks are always negative.

We now argue that in fact the process t �→ ρ(x, t) is a (time-inhomogeneous)
Markov process with a generator Mt that is independent of x because the PDE
(3.1) is homogeneous (i.e. H is independent of x). Indeed

Mth(ρ) = H ′(ρ)b(ρ, t)h′(ρ) +
∫ ∞

ρ

(
h(ρ∗) − h(ρ)

)
H[ρ, ρ∗]f(ρ, dρ∗, t). (3.7)

To explain the form of Mt heuristically, observe that the ODE dρ
dx = b(ρ, t) leads

to the ODE
dρ

dt
= H ′(ρ)b(ρ, t).

On the other hand, if we fix x, then ρ(x, t) experiences a jump discontinuity
when a shock on the right of x crosses x. Given any t > 0, a shock would occur
at some s > t because all shock speeds are negative; it is just a matter of time
for a shock on the right of x to cross x. We can also calculate the rate at which
this happens because we have the law of the first shock on the right of x, and
its speed. Observe

– The process x �→ ρ(x, t) is a homogeneous Markov process with a generator
that changes with time.

– The process t �→ ρ(x, t) is an inhomogeneous Markov process with a generator
that does not depend on x. It is only the initial data ρ(x, 0) that is responsible
for the changes of the statistics of ρ(x, t), as x varies.
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We are now in a position to derive formally an evolution equation for the
generator Lt, under the assumption (3.6). Indeed if we define

w(x, t; ρ) = E
ρ(0,t)=ρh(ρ(x, T )),

for t < T , then we expect

wt = −Mtw, wx = Ltw.

Differentiating these equations yields

wtx = −Mtwx = −MtLtw, wxt =
dLt

dt
w + Ltwt =

dLt

dt
w − LtMtw.

As a result
dLt

dt
= LtMt − MtLt. (3.8)

As we match the drift parts of both sides of (3.8), we simply get (3.4). Matching
the jump parts yields a kinetic-type equation of the form

ft = Q(f, f) + Cf, (3.9)

for a quadratic operator Q and a linear operator C. The operator Q is indepen-
dent of b and is given by

Q(f, f)(ρ−, dρ+) =
∫ ρ+

ρ−

(
H[ρ∗, ρ+] − H[ρ−, ρ∗]

)
f(ρ−, dρ∗)f(ρ∗, dρ+)

+
∫ ∞

ρ+

(
H[ρ+, ρ∗] − H[ρ−, ρ+]

)
f(ρ+, dρ∗)f(ρ−, dρ+)

+
∫ ∞

ρ−

(
H[ρ−, ρ+] − H[ρ−, ρ∗]

)
f(ρ−, dρ∗)f(ρ−, dρ+).

If we set

λ(ρ−) = λ(f)(ρ−) =
∫ ∞

ρ−
f(ρ−, dρ+),

A(ρ−) = A(f)(ρ−) =
∫ ∞

ρ−
H[ρ−, ρ+]f(ρ−, dρ+),

then Q = Q+ − Q−, with

Q+(f, f)(ρ−, dρ+) =

∫ ρ+

ρ−

(
H[ρ∗, ρ+] − H[ρ−, ρ∗]

)
f(ρ−, dρ∗)f(ρ∗, dρ+, t)

Q−(f, f)(ρ−, dρ+) =
{
A(ρ+) − A(ρ−) − H[ρ−, ρ+]

(
λ(ρ+) − λ(ρ−)

)}
f(ρ−, dρ+).

(3.10)

To define the operator C we need to assume that f(ρ−, dρ+) = f(ρ−, ρ+)dρ+ has
a C1 density. With a slight abuse of notion, we write f(ρ−, ρ+) for the density
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of the measure f(ρ−, dρ+), and write C again for the action of the operator C
on the density f :

(Cf)(ρ−, ρ+) = b(ρ−, t)f(ρ−, ρ+)
(
H[ρ−, ρ+]

)
ρ−

+
[
H[ρ−, ρ+] − H ′(ρ−)

]
b(ρ−, t)fρ−(ρ−, ρ+)

+
[(

H[ρ−, ρ+] − H ′(ρ+)
)
b(ρ+, t)f(ρ−, ρ+)

]
ρ+

.

Menon-Srinivasan Conjecture has been established in [16] and [17]:

Theorem 3. Assume H is a C2 function that satisfies (3.6). Let ρ be an
entropic solution of (3.1) such that ρ(x, 0) = 0, for x ≤ 0, and ρ(x, 0) is a
Markov process with generator L0, for x ≥ 0. Assume that b and f satisfy (3.4)
and (3.9) respectively. Then the processes t �→ ρ(0, t) and x �→ ρ(x, t) are Markov
processes with generators Mt and Lt respectively.

The typical situation, for Smoluchowski and other kinetic equations is that
we have some (stochastic or deterministic) dynamics defined on a finite system,
and these kinetic equations emerge upon passage to a scaling limit. The dynam-
ics might not be definable for the infinite system, and the kinetic equation should
describe statistics only approximately for a large but finite system. In the set-
ting of Theorems 1, 2 and 3, the kinetic equations give statistics exactly without
passage to a rescaled limit. We view this unusual circumstance as demanding an
explanation. Further, our treatment in Sect. 4 below (tracking shocks as inelas-
tically colliding particles) seems quite at home in the kinetic context.

4 Heuristics for the Proof of Theorem 3

Let us write xi(t) for the location of the i-th shock and ρi(t) = ρ(xi(t)+, t).
We also write φx(m0; t) for the flow associated with the velocity b; the function
m(x) = φx(m0; t) satisfies

m′(x) = b(m(x), t), m(0) = m0.

We can readily find the evolution q = (xi, ρi : i ∈ Z), and q̂ = (zi, ρi : i ∈ Z),
with zi = xi+1 − xi:

–
ẋi = −vi := −H[ρ̂i−1, ρi], żi = −(vi+1 − vi),

where ρ̂i−1(t) = φzi−1(ρi−1(t), t).
–

ρ̇i = wi :=
(
H ′(ρi) − H[ρ̂i−1, ρi]

)
b(ρi, t).

– When zi becomes 0, the pair (ρi, zi) is omitted from q̂(t). The outcome after
a relabeling is denoted by q̂i(t).



214 F. Rezakhanlou

Write
Δ =

{
(zi, ρi : i ∈ Z) : zi > 0, ρi ∈ R for all i ∈ Z

}
.

We think of q̂(t) as a deterministic process that has an infinitesimal generator

AG =
∑
i∈Z

(
wiGρi

− (vi+1 − vi)Gzi

)
,

in the interior of Δ. We only take those G such that on the boundary face of Δ with
zi = 0, we have G

(
q̂
)

= G
(
q̂i

)
. This stems from the fact that we are interested in

the function ρ(x) = ρ(x; q̂) associated with q̂ (or q) that is defined by
∑

i

φzi
(xi;x − xi)11

(
x ∈ [xi, xi+1)

)
.

Note that ρ(x; q̂) = ρ(x; q̂i) whenever zi = 0.
We make an ansatz that the law of q̂(t) is of the form:

μ
(
dq̂, t

)
=

∞∏
i=−∞

e− ∫ zi
0 λ(φy(ρi;t),t)dy f

(
φzi

(ρi; t), ρi+1, t) dzidρi+1.

For this to be the case, we need to have

μ̇ = A∗μ. (4.1)

This equation should determine f and λ if our ansatz is correct. To determine
A∗, we take a test function G and carry out the following calculation: After some
integration by parts, we formally have

∫
G dA∗μ =

∫
AG dμ =

∫
G

∑
i

[
wiΩ1

i − wi
ρi

+ (vi+1 − vi)Ω2
i + vi+1

zi
− Ω3

i

]
dμ,

where

Ω1
i =

∫ zi

0

[
λ
(
φy(ρi; t), t

)]
ρi

dy −
[
f
(
ρ̂i, ρi+1, t

)]
ρi

f
(
ρ̂i, ρi+1, t

) − fρ+

(
ρ̂i−1, ρi, t

)
f
(
ρ̂i−1, ρi, t

) ,

Ω2
i = −λ

(
ρ̂i, t

)
+

[
f
(
ρ̂i, ρi+1, t

)]
zi

f
(
ρ̂i, ρi+1, t

) ,

Ω3
i =

∫ ρi

ρ̂i−1
H

(
ρ̂i−1, ρ∗, ρi

)
f
(
ρ̂i−1, ρ∗, t

)
f
(
ρ∗, ρi, t

)
dρ∗

f
(
ρ̂i−1, ρi, t

) ,

where Ω3
i represents the boundary contribution associated with zi = 0, and

H(a, b, c) := H[b, c] − H[a, b].

To explain the form of Ω3
i , observe that when zi = 0, we remove the ith-particle

and relabel the particles to its right. The expression f
(
ρ̂i−1, ρi, t

)
f
(
ρi, ρi+1, t

)
dρi,
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that appears in μ, can be rewritten as f
(
ρ̂i−1, ρ∗, t

)
f
(
ρ∗, ρi+1, t

)
dρ∗. The variable

ρi+1 becomes ρi after our relabeling, and its integral with respect to ρ∗ is a function
of

(
ρ̂i−1, ρi, t

)
. If we replace this function with f

(
ρ̂i−1, ρi, t

)
, we recover the mea-

sure μ.
On the other hand

μ̇ =
∑

i

[
Γ 1

i + Γ 2
i

]
μ =

∑
i

{[
f
(
φzi(ρi; t), ρi+1, t

)]
t

f
(
φzi(ρi; t), ρi+1, t

) −
∫ zi

0

[
λ
(
φy(ρi; t), t

)]
t
dy

}
μ.

To make the above formal calculation rigorous, we switch from the infinite
sum to a finite sum. For this, we restrict the dynamics to an interval, say [0, L].
The configuration now belongs to

ΔL = ∪∞
n=0Δ

L
n ,

with ΔL
n denoting the set

{
q =

(
(xi, ρi) : i = 0, 1, . . . , n

)
: x0 = 0 < x1 < · · · < xn < xn+1 = L, ρ0, . . . , ρn ∈ R

}
.

Again, what we have in mind is that ρi(t) = ρ(xi(t)+, t) with x1, . . . , xn denoting
the location of all shocks in (0, L). For our purposes, we need to come up with
a candidate for the law μ(t, dq) of q(t) in ΔL. The restriction of μ to Δn

L is
denoted by μn and is given by

�(dρ0, t) exp

{
−

n∑
i=0

∫ xi+1−xi

0
λ(φy(ρi; t), t)dy

}
n−1∏
i=0

f
(
φxi+1−xi(ρi; t), ρi+1, t) dxi+1dρi+1,

where f solves (3.9) and 	 is the law of ρ(0, t), which is a Markov process with
generator M = Mt:

	̇ = M∗	. (4.2)

To simplify the presentation, we assume

	(dρ0, t) = 	(ρ0, t) dρ0.

As for the dynamics of q, we have the following rules:

(i) So long as xi remains in (xi−1, xi+1), it satisfies

ẋi = −vi := −H[ρ̂i−1, ρi],

where ρ̂i−1(t) = φzi−1(ρi−1(t), t).
(ii) We have ρ̇0 = w0 := H ′(ρ0)b(ρ0, t) and for i > 0,

ρ̇i = wi :=
(
H ′(ρi) − H[ρ̂i−1, ρi]

)
b(ρi, t).

(iii) When zi = xi+1 − xi becomes 0, then q(t) becomes qi(t), that is obtained
from q(t) by omitting (ρi, xi).
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(iv) With rate
H[ρ̂n, ρn+1]f

(
ρ̂n, ρn+1, t),

the configuration q gains a new particle (xn+1, ρn+1), with xn+1 = L. This
new configuration is denoted by q(ρn+1).

We note that since H is increasing, all velocities are negative. Moreover, when
the first particle of location x1 crosses the origin, a particle is lost.

We wish to establish (4.1). We write Gn for the restriction of a smooth
function G : ΔL → R to ΔL

n . Recall that we only consider those test functions
G that cannot differentiate between q and qi (respectively q(ρn+1)), when xi =
xi+1 (respectively xn+1 = L). We need to verify

μ̇n =
(A∗μ

)n
, (4.3)

for all n ≥ 0. Here and below, we write νn for the restriction of a measure ν to
ΔL

n . Also, given H : ΔL → R, we write Hn for the restriction of the function H
to the set ΔL

n . To verify (4.3), we show
∫

Gn dμ̇n =
∫ (AG

)n
dμn, (4.4)

for every C1 function G. It is instructive to see why (4.3) (or its integrated
version (4.4)) is true when n = 0 and 1 before treating the general case. As we
will see below, the cases n = 0, 1 are already equivalent to the Eq. (3.9). As a
warm-up, we first assume that n = 0 and b = 0. In this case the Eq. (4.3) is
equivalent to the fact that the law 	 of ρ(0, ·) is governed by a Markov process
with generator Mt. The case n = 0 and general b leads to the general form of
Mt for the evolution of ρ(0, ·), and an equation for λ that is a consequence of
(3.9). The full Eq. (3.9) shows up when we consider the case n = 1.

The case n = 0 and b = 0. As it turns out, the function λ(ρ, t) = λ(ρ) is
independent of time when b = 0. We simply have

μ0(dρ0, t) = e−Lλ(ρ0)	(dρ0, t), μ0
t (dρ0, t) = e−λ(ρ0)L	t(dρ0, t). (4.5)

On the other hand, the right-hand side of (4.4) is of the form Ω1
0 + Ω2

0 , where
Ω1

0 comes from rule (i), and Ω2
0 comes from the stochastic boundary dynamics.

Indeed

Ω1
0 =

∫
H[ρ0, ρ1]G0(0, ρ1)e−λ(ρ1)Lf(ρ0, ρ1, t) dρ1 	(dρ0, t) (4.6)

−
∫

H[ρ0, ρ1]G1(0, ρ0, L, ρ1)e−λ(ρ0)Lf(ρ0, ρ1, t) dρ1 	(dρ0, t),

which we get from the boundary terms when we apply an integration by parts
to the integral

−
∫

H[ρ0, ρ1]G1
x1

(0, ρ0, x1, ρ1) e−λ(ρ0)x1−λ(ρ1)(L−x1)f(ρ0, ρ1, t) dρ1 	(dρ0, t) dx1.
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We note that the other terms of the integration by parts formula contribute to
the case n = 1 and do not contribute to our n = 0 case. Moreover,

Ω2
0 =

∫
H[ρ0, ρ1]f(ρ0, ρ1, t)

(
G1(0, ρ0, L, ρ1) − G0(0, ρ0)

)
e−λ(ρ0)L dρ1 	(dρ0, t).

From this and (4.6) we learn

Ω1
0 + Ω2

0 =
∫

H[ρ0, ρ1]G0(0, ρ1)e−λ(ρ1)Lf(ρ0, ρ1, t) dρ1 	(dρ0, t)

−
∫

H[ρ0, ρ1]f(ρ0, ρ1, t)G0(0, ρ0)e−λ(ρ0)L dρ1 	(dρ0, t)

=
∫

H[ρ1, ρ0]G0(0, ρ0)e−λ(ρ0)Lf(ρ1, ρ0, t) dρ0 	(dρ1, t)

−
∫

H[ρ0, ρ1]f(ρ0, ρ1, t)G0(0, ρ0)e−λ(ρ0)L dρ1 	(dρ0, t)

=
∫

G0(0, ρ0)e−λ(ρ0)L
(M∗

t 	
)
(dρ0, t) =

∫
G0(0, ρ0)e−λ(ρ0)L 	t(dρ0, t),

as desired. ��

The case n = 0 and general b. To ease the notation, we write

Γ (ρ, x, t) =
∫ x

0

λ(φy(ρ; t), t) dy.

When n = 0, the right-hand side of (4.4) equals
∫

G
0
(0, ρ0)

[
H

′
(ρ0)b(ρ0, t)�(ρ0, t)Γρ(ρ0, L, t) − (

H
′
(ρ0)b(ρ0, t)�(ρ0, t)

)
ρ0

]
e

−Γ (ρ0,L,t)
dρ0

+

∫
H[ρ0, ρ1]G

0
(0, ρ1)e

−Γ (ρ1,L,t)
f(ρ0, ρ1, t) dρ1 �(dρ0, t)

−
∫

H
[
φL(ρ0; t), ρ1

]
f

(
φL(ρ0; t), ρ1, t

)
G

1
(0, ρ0, L, ρ1)e

−Γ (ρ0,L,t)
dρ1 �(dρ0, t)

+

∫
H

[
φL(ρ0; t), ρ1

]
f

(
φL(ρ0; t), ρ1, t

)(
G

1
(0, ρ0, L, ρ1) − G

0
(0, ρ0)

)
e

−Γ (ρ0,L,t)
dρ1 �(dρ0, t)

This simplifies to
∫

G0(0, ρ0)
[
H′(ρ0)b(ρ0, t)�(ρ0, t)Γρ(ρ0, L, t) − (

H′(ρ0)b(ρ0, t)�(ρ0, t)
)
ρ0

]
e−Γ (ρ0,L,t) dρ0

+

∫
H[ρ∗, ρ0]G

0(0, ρ0)e
−Γ (ρ0,L,t)f(ρ∗, ρ0, t) dρ0 �(dρ∗, t)

−
∫

H
[
φL(ρ0; t), ρ1

]
f
(
φL(ρ0; t), ρ1, t

)
G0(0, ρ0)e

−Γ (ρ0,L,t) dρ1 �(dρ0, t)

=

∫
G0(0, ρ0)Λ(ρ0, t) e−Γ (ρ0,L,t) dρ0,

where Λ(ρ0, t) equals

H ′(ρ0)b(ρ0, t)�(ρ0, t)Γρ(ρ0, L, t) − (
H ′(ρ0)b(ρ0, t)�(ρ0, t)

)
ρ0

+

∫
H[ρ∗, ρ0]f(ρ∗, ρ0, t) �(dρ∗, t) −

∫
H

[
φL(ρ0; t), ρ1

]
f
(
φL(ρ0; t), ρ1, t

)
dρ1 �(ρ0, t).
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We need to match Λ(ρ0, t) with the corresponding term on left-hand side of
(4.4), which, by (4.2) takes the form

−Γt(ρ0, L, t) 	(ρ0, t) − (
H ′(ρ0)b(ρ0, t)	(ρ0, t)

)
ρ0

+
∫

H[ρ∗, ρ0]f(ρ∗, ρ0, t) 	(dρ∗, t) − A(ρ0, t) 	(ρ0, t),

where
A(ρ0, t) =

∫
H[ρ0, ρ∗]f(ρ0, ρ∗, t) dρ∗.

We are done if we can verify

Γt(ρ0, L, t) + H ′(ρ0)b(ρ0, t)Γρ(ρ0, L, t) = A
(
φL(ρ0; t), t

) − A(ρ0, t). (4.7)

Equivalently
∫ L

0

[
λ(φy(ρ0; t), t)

]
t

dy + H
′
(ρ0)b(ρ0, t)

∫ L

0

[
λ(φy(ρ0; t), t)

]
ρ0

dy =

∫ L

0

[
A

(
φy(ρ0; t), t

)]
y

dy.

For this, it suffices to check
[
λ(φy(ρ0; t), t)

]
t
+ H ′(ρ0)b(ρ0, t)

[
λ(φy(ρ0; t), t)

]
ρ0

=
[
A

(
φy(ρ0; t), t

)]
y
.

Note that if u(y, ρ) = A
(
φy(ρ; t), t

)
, then

uy(y, ρ0) = b(ρ0, t)uρ(y, ρ0).

Hence for (4.7), it suffices to show
[
λ(φy(ρ0; t), t)

]
t
+ H ′(ρ0)b(ρ0, t)

[
λ(φy(ρ0; t), t)

]
ρ0

= b(ρ0, t)
[
A

(
φy(ρ0; t), t

)]
ρ0

. (4.8)

To have a more tractable formula, let us write Tyh(m) = h(φy(m; t)). The family
of operators {Ty : y ∈ R}, is a group in y. Moreover, if (Bh)(m) = b(m, t)h′(m),
then

dTy

dy
= BTy = TyB. (4.9)

Using this, we may rewrite (4.8) as
[
λ(φy(ρ0; t), t)

]
t
+ H ′(ρ0)b(φy(ρ0; t), t)λρ(φy(ρ0; t), t) = b(φy(ρ0; t), t)Aρ

(
φy(ρ0; t), t

)
.

(4.10)
This for y = 0 takes the form

λt(ρ0, t) + H ′(ρ0)b(ρ0, t)λρ(ρ0, t) = b(ρ0, t)Aρ(ρ0, t). (4.11)

Because of our choice of λ, namely

λ(t, ρ−) =
∫ ∞

ρ−
f(ρ−, ρ+, t) dρ+, (4.12)
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we can deduce (4.10) from (3.9) after integrating both sides of (3.9) with respect
to ρ−. On account of (4.11), the claim (4.10) would follow if we can show

X(ρ0, y, t) :=
[
φy(ρ0; t)

]
t
− [

H ′(φy(ρ0; t)) − H ′(ρ0)
]
b(φy(ρ0; t), t) = 0. (4.13)

This is true for y = 0. Differentiating with respect to y yields

Xy(ρ0, y, t) =
[
b(φy(ρ0; t), t)

]
t
− [

H ′(φy(ρ0; t))
]
y
b(φy(ρ0; t), t)

− [
H ′(φy(ρ0; t)) − H ′(ρ0)

][
b(φy(ρ0; t), t)

]
y

= bt(φy(ρ0; t), t) + bρ(φy(ρ0; t), t)
[
φy(ρ0; t)

]
t
− H ′′(φy(ρ0; t))b

2(φy(ρ0; t), t)

− [
H ′(φy(ρ0; t)) − H ′(ρ0)

]
(bbρ)(φy(ρ0; t), t)

= bρ(φy(ρ0; t), t)
[
φy(ρ0; t)

]
t
− [

H ′(φy(ρ0; t)) − H ′(ρ0)
]
(bbρ)(φy(ρ0; t), t)

= bρ(φy(ρ0; t), t)X(ρ0, y, t),

where we used (3.4) for the third equality. As a result.

X(ρ0, y, t) = X(ρ0, 0, t) exp
[∫ y

0

bρ(φz(ρ0; t), t) dz

]
= 0.

This completes the proof of (4.2), when n = 0. ��

As we have seen so far, the case n = 0 is valid if (4.11), a consequence of the
kinetic equation (3.9), is true. On the other hand the case n = 1 is equivalent to
the kinetic equation. Before embarking on the verification of (4.3) for n = 1, let
us make some compact notions for some of the expressions that come into the
proof. Given a realization q =

(
0, ρ0, x1, ρ1, . . . , xn, ρn

) ∈ ΔL
n , we define

ρ
(
x, t;q

)
=

n∑
i=0

φx−xi

(
ρi; t

)
11
(
xi ≤ x < xi+1

)
,

Γ (q, t) =
∫ L

0

λ
(
ρ
(
y, t;q

))
dy =

n∑
i=0

Γ (ρi, xi+1 − xi, t),

ρ̂i−1 = ρ(xi−, t;q) = φxi−xi−1(ρi−1; t),

where λ is defined by (4.12). Note that by (4.13),

dρ̂i

dt
=

[
H ′(ρ̂i) − H ′(ρi)

]
b(ρ̂i, t). (4.14)

The case n = 1. We have μ̇1 = X1μ
1, where

X1(q, t) = −Γt(q, t) +
	t(ρ0, t)
	(ρ0, t)

+

[
f
(
ρ̂0, ρ1, t)

]
t

f
(
ρ̂0, ρ1, t)

.
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On the other hand (A∗μ)1 = Y1μ
1, with

Y1(q, t) =
7∑

j=1

Y1j(q, t) =
7∑

j=1

Y1j ,

where

Y11 = H ′(ρ0)b(ρ0, t)

[
Γρ(ρ0, x1, t) −

[
f
(
ρ̂0, ρ1, t

)]
ρ0

f
(
ρ̂0, ρ1, t

)
]
−

(
H ′(ρ0)b(ρ0, t)�(ρ0, t)

)
ρ0

�(ρ0, t)

Y12 =
(
H ′(ρ1) − H[ρ̂0, ρ1]

)
b(ρ1, t)Γρ(ρ1, L − x1, t)

Y13 =

[(
H[ρ̂0, ρ1] − H ′(ρ1)

)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

f
(
ρ̂0, ρ1, t

)

Y14 =

(
H

[
ρ̂0, ρ1

]
f
(
ρ̂0, ρ1, t

))
x1

f
(
ρ̂0, ρ1, t

) + H
[
ρ̂0, ρ1

] [
λ
(
φL−x1(ρ1; t), t

) − λ
(
ρ̂0, t

)]

Y15 =

∫
H(ρ∗, ρ0)f(ρ∗, ρ0, t) �(dρ∗, t)

�(ρ0, t)

Y16 = −
∫

H
[
φL−x1(ρ1; t), ρ∗

]
f
(
φL−x1(ρ1; t), ρ∗, t

)
dρ∗ = −A

(
φL−x1(ρ1; t), t

)

Y17 =

∫ (
H[ρ∗, ρ1] − H

[
ρ̂0, ρ∗

])
f
(
ρ̂0, ρ∗, t

)
f(ρ∗, ρ1, t) dρ∗

f
(
ρ̂0, ρ1, t

) .

Here,

– The term Y11 comes from an integration by parts with respect to the variable
ρ0. The dynamics of ρ0 as in rule (ii) is responsible for this contribution.

– The terms Y12 and Y13 come from an integration by parts with respect to the
variable ρ1. The dynamics of ρ1 as in rule (ii) is responsible for these two
contributions.

– The term Y14 comes from an integration by parts with respect to the variable
x1. The dynamics of x1 as in rule (i) is responsible for this contribution.

– The term Y15 comes from the boundary term x1 = 0 in the integration by
parts with respect to the variable x1 when there are two particles at x1 and
x2. This boundary condition represents the event that x1 has reached the
origin after which ρ0 becomes ρ1, and (x2, ρ2) is relabeled (x1, ρ1).

– The term Y16 comes from the boundary term x2 = L in the integration by
parts with respect to the variable x2, and the stochastic boundary dynamics
as in the rule (iv). The boundary term x2 = L cancels part of the contribution
of the boundary dynamics as we have already seen in our calculation in the
case n = 0.

– The rule (iii) is responsible for the term Y17. When n = 2, the particles at
x1 and x2 travel towards each other with speed H[ρ̂1, ρ2] − H[ρ̂0, ρ1]. As x2

catches up with x1, the particle x1 disappears and its density ρ1 = ρ̂1 is
renamed ρ∗, and is integrated out. We then relabel (x2, ρ2) as (x1, ρ1).

We wish to show that X1 = Y1. After some cancellation, this simplifies to

X ′
1 = Y ′

1 := Ŷ11 + Y12 + Y13 + Y14 + Y16 + Y17,
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where

X ′
1 = −Γt(q, t) − A(ρ0, t) +

[
f(ρ̂0, ρ1, t)

]
t

f(ρ̂0, ρ1, t)
,

Ŷ11 = H ′(ρ0)b(ρ0, t)

[
Γρ(ρ0, x1, t) −

[
f(ρ̂0, ρ1, t)

]
ρ0

f(ρ̂0, ρ1, t)

]
.

(The same cancellation led to the Eq. (4.7).) Observe that Γ (q, t) = Γ (ρ0, x1, t)+
Γ (ρ1, L − x1, t). Moreover, by (4.7),

Γt(ρ0, x1, t) + H ′(ρ0)b(ρ0, t)Γρ(ρ0, x1, t) = A(ρ̂0, t) − A(ρ0, t)

Γt(ρ1, L − x1, t) + H ′(ρ1)b(ρ1, t)Γρ(ρ1, L − x1, t) = A
(
φL−x1(ρ1; t), t

) − A(ρ1, t).

As a result,

−Γt(q, t) − A(ρ0, t) = H ′(ρ0)b(ρ0, t)Γρ(ρ0, x1, t) + H ′(ρ1)b(ρ1, t)Γρ(ρ1, L − x1, t)

− A
(
φL−x1(ρ1; t), t

)
+ A(ρ1, t) − A(ρ̂0, t

)
.

Using this, we learn that the equality X ′
1 = Y ′

1 is equivalent to the identity
[
f
(
ρ̂0, ρ1, t)

]
t
= H

[
ρ̂0, ρ1

] [
λ
(
φL−x1 (ρ1; t), t

) − λ
(
ρ̂0, t

)]
f
(
ρ̂0, ρ1, t

)
+

[
A

(
ρ̂0, t

) − A(ρ1, t)
]
f
(
ρ̂0, ρ1, t

)

+

∫ (
H[ρ∗, ρ1] − H

[
ρ̂0, ρ∗

])
f
(
ρ̂0, ρ∗, t

)
f(ρ∗, ρ1, t) dρ∗

+
[(

H[ρ̂0, ρ1] − H′(ρ1)
)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

− H′(ρ0)b(ρ0, t)
[
f
(
ρ̂0, ρ1, t)

]
ρ0

− H[ρ̂0, ρ1]b(ρ1, t)Γρ(ρ1, L − x1, t)f
(
ρ̂0, ρ1, t

)
+

(
H

[
ρ̂0, ρ1

]
f
(
ρ̂0, ρ1, t

))
x1

.

By the group property (4.9), we can assert that for any C1 function h,
[
h(ρ̂0)

]
x1

= b(ρ̂0, t)h′(ρ̂0) = b(ρ0, t)
[
h(ρ̂0)

]
ρ0

.

We use this and the definition of the quadratic operator Q in (3.10) to deduce
that X ′

1 = Y ′
1 is equivalent to the identity

[
f(ρ̂0, ρ1, t)

]
t
= Q(f, f)(ρ̂0, ρ1, t) + H

[
ρ̂0, ρ1

] [
λ
(
φL−x1 (ρ1; t), t

) − λ
(
ρ1, t

)]
f
(
ρ̂0, ρ1, t

)
+

[(
H[ρ̂0, ρ1] − H′(ρ1)

)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

− H′(ρ0)b(ρ̂0, t)fρ−
(
ρ̂0, ρ1, t) − H[ρ̂0, ρ1]b(ρ1, t)Γρ(ρ1, L − x1, t)f

(
ρ̂0, ρ1, t

)
+ b(ρ̂0, t)H[ρ̂0, ρ1]fρ− (ρ̂0, ρ1, t) + b(ρ̂0, t)Hρ− [ρ̂0, ρ1]f(ρ̂0, ρ1, t).
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Here we are acting the quadratic operator Q on functions because we are assum-
ing that f(ρ,dρ+, t) = f(ρ,ρ+, t) dρ+, is absolutely continuous with respect to
the Lebesgue measure. We now use (4.13) to assert that X ′

1 = Y ′
1 is equivalent

to the identity

ft(ρ̂0, ρ1, t) = Q(f, f)(ρ̂0, ρ1, t) + b(ρ̂0, t)Hρ− [ρ̂0, ρ1]f(ρ̂0, ρ1, t)

+ H
[
ρ̂0, ρ1

] [
λ
(
φL−x1(ρ1; t), t

) − λ
(
ρ1, t

)]
f
(
ρ̂0, ρ1, t

)
+

[
H[ρ̂0, ρ1] − H ′(ρ̂0)

]
b(ρ̂0, t)fρ−

(
ρ̂0, ρ1, t)

+
[(

H[ρ̂0, ρ1] − H ′(ρ1)
)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

− H[ρ̂0, ρ1]b(ρ1, t)Γρ(ρ1, L − x1, t)f
(
ρ̂0, ρ1, t

)
.

On the other hand, by the definition of Γ ,

b(ρ1, t)Γρ(ρ1, L − x1, t) =
∫ L−x1

0

b(ρ1, t)
[
λ
(
φy(ρ1; t), t

)]
ρ1

dy

=
∫ L−x1

0

[
λ
(
φy(ρ1; t), t

)]
y

dy (4.15)

= λ
(
φL−x1(ρ1; t), t

) − λ(ρ1, t),

where we used the group property (4.9) for the second equality. This leads to

ft(ρ̂0, ρ1, t) = Q(f, f)(ρ̂0, ρ1, t) + b(ρ̂0, t)f(ρ̂0, ρ1, t)Hρ− [ρ̂0, ρ1]

+
[
H[ρ̂0, ρ1] − H ′(ρ̂0)

]
b(ρ̂0, t)fρ−(ρ̂0, ρ1, t)

+
[(

H[ρ̂0, ρ1] − H ′(ρ1)
)
b(ρ1, t)f(ρ̂0, ρ1, t)

]
ρ1

,

which is exactly our kinetic equation! ��

General n. We write μ̇n = Xnμn. We have,

Xn = −Γt(q, t) +
	t(ρ0, t)
	(ρ0, t)

+
n∑

i=1

[
f(ρ̂i−1, ρi, t)]t
f(ρ̂i−1, ρi, t)

. (4.16)

By (4.7), and (4.15),

Γt(q, t) =
n∑

i=0

{(
A(ρ̂i, t) − A(ρi, t)

) − H ′(ρi)
(
λ(ρ̂i, t) − λ(ρi, t)

)}
.
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From this, (4.14) and (3.10) we deduce

Xn =
	t(ρ0, t)
	(ρ0, t)

+
n∑

i=1

Q+(f, f)(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

+
n∑

i=1

(Cf)(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

+
n∑

i=0

{
H ′(ρi)

(
λ(ρ̂i, t) − λ(ρi, t)

)
+ A(ρi, t) − A(ρ̂i, t)

}

−
n∑

i=1

{
A(ρi, t) − A(ρ̂i−1, t) − H[ρ̂i−1, ρi]

(
λ(ρi, t) − λ(ρ̂i−1, t)

)}

+
n∑

i=1

[
H ′(ρ̂i−1) − H ′(ρi−1)

]
b(ρ̂i−1, t)

fρ−(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

=
	t(ρ0, t)
	(ρ0, t)

+
n∑

i=1

Q+(f, f)(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

+
n∑

i=1

(Cf)(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

+ H ′(ρ0)
(
λ(ρ̂0, t) − λ(ρ0, t)

)
+ A(ρ0, t) − A(ρ̂n, t)

+
n∑

i=1

{
H ′(ρi)

(
λ(ρ̂i, t) − λ(ρi, t)

)
+ H[ρ̂i−1, ρi]

(
λ(ρi, t) − λ(ρ̂i−1, t)

)}

+
n∑

i=1

[
H ′(ρ̂i−1) − H ′(ρi−1)

]
b(ρ̂i−1, t)

fρ−(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

.

For the right-hand side of (4.3) we write (A∗μ)n = Ynμn, where

Yn = Y ′
11 + Y ′′

11 + Y ′′′
11 + Yn2 + Yn3 + Y ′

n4 + Y ′′
n4 + Yn5 + Yn6 + Yn7, (4.17)

with Y15 independent of n and defined before, Yn6 = −A(ρ̂n, t), and

Y ′
11 = H ′(ρ0)b(ρ0, t)Γρ(ρ0, x1, t) = H ′(ρ0)

(
λ(ρ̂0, t) − λ(ρ0, t)

)

Y ′′
11 = −H ′(ρ0)b(ρ0, t)

[
f
(
ρ̂0, ρ1, t

)]
ρ0

f
(
ρ̂0, ρ1, t

)

Y ′′′
11 = −

(
H ′(ρ0)b(ρ0, t)	(ρ0, t)

)
ρ0

	(ρ0, t)

Yn2 =
n∑

i=1

(
H ′(ρi) − H[ρ̂i−1, ρi]

)
b(ρi, t)Γρ(ρi, xi+1 − xi, t)

=
n∑

i=1

(
H ′(ρi) − H[ρ̂i−1, ρi]

)(
λ(ρ̂i, t) − λ(ρi, t)

)
,
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Yn3 =

n−1∑
i=1

[(
H[ρ̂i−1, ρi] − H ′(ρi)

)
b(ρi, t)f(ρ̂i−1, ρi, t)f(ρ̂i, ρi+1, t)

]
ρi

f(ρ̂i−1, ρi, t
)
f(ρ̂i, ρi+1, t)

+

[(
H[ρ̂n−1, ρn] − H ′(ρn)

)
b(ρn, t)f(ρ̂n−1, ρn, t)

]
ρn

f(ρ̂n−1, ρn, t)
,

Y ′
n4 =

n−1∑
i=1

[
H

[
ρ̂i−1, ρi

]
f
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i, ρi+1, t

)]
xi

f
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i, ρi+1, t

) +

[
H

[
ρ̂n−1, ρn

]
f
(
ρ̂n−1, ρn, t

)]
xn

f
(
ρ̂n−1, ρn, t

) ,

Y ′′
n4 =

n∑
i=1

H
[
ρ̂i−1, ρi

] (
λ
(
ρ̂i, t

) − λ
(
ρ̂i−1, t

))
,

Yn7 =
n∑

i=1

Q+(f, f)
(
ρ̂i−1, ρi, t)

f
(
ρ̂i−1, ρi, t

) ,

where we used (4.15) for the first and fifth equality. We wish to show that
Xn = Yn. From

	t(ρ0, t)
	(ρ0, t)

= Y15 + Y ′′′
11 − A(ρ0, t),

and some cancellation, the equality Xn = Yn simplifies to X ′
n = Y ′

n, where

X
′
n(q, t) =

n∑

i=1

(Cf)(ρ̂i−1, ρi, t)

f(ρ̂i−1, ρi, t)
+

n∑

i=1

[
H

′
(ρ̂i−1) − H

′
(ρi−1)

]
b(ρ̂i−1, t)

fρ− (ρ̂i−1, ρi, t)

f(ρ̂i−1, ρi, t)

=
n∑

i=1

[(
H[ρ̂i−1, ρi] − H′(ρi)

)
b(ρi, t)f(ρ̂i−1, ρi, t)

]
ρi

f(ρ̂i−1, ρi, t
)

+

n∑

i=1

[
H[ρ̂i−1, ρi] − H

′
(ρi−1)

]
b(ρ̂i−1, t)

fρ− (ρ̂i−1, ρi, t)

f(ρ̂i−1, ρi, t)
+ b(ρ̂i−1, t)Hρ− [ρ̂i−1, ρi],

and Y ′
n = Y ′′

11 + Yn3 + Y ′
n4 . Observe that Y ′

n4 = Y ′
n41 + Y ′

n42 + Y ′
n43, and Yn3 =

Yn31 + Yn32, where

Y ′
n41 =

n∑
i=1

Hρ−
[
ρ̂i−1, ρi

]
b(ρ̂i−1, t),

Y ′
n42 =

n∑
i=1

H
[
ρ̂i−1, ρi

][
f
(
ρ̂i−1, ρi, t

)]
xi

f
(
ρ̂i−1, ρi, t

) ,

Y ′
n43 =

n−1∑
i=1

H
[
ρ̂i−1, ρi

][
f
(
ρ̂i, ρi+1, t

)]
xi

f
(
ρ̂i, ρi+1, t

) ,

Yn31 =
n∑

i=1

[(
H[ρ̂i−1, ρi] − H ′(ρi)

)
b(ρi, t)f(ρ̂i−1, ρi, t)

]
ρi

f(ρ̂i−1, ρi, t
) ,

Yn32 =
n−1∑
i=1

(
H[ρ̂i−1, ρi] − H ′(ρi)

)
b(ρi, t)

[
f(ρ̂i, ρi+1, t)

]
ρi

f(ρ̂i, ρi+1, t)
.
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From these decompositions, we learn that X ′
n = Y ′

n is equivalent to X ′′
n = Y ′′

n ,
where

X ′′
n =

n∑
i=1

[
H[ρ̂i−1, ρi] − H ′(ρi−1)

]
b(ρ̂i−1, t)

fρ−(ρ̂i−1, ρi, t)
f(ρ̂i−1, ρi, t)

,

and Y ′′
n = Y ′′

11 + Yn32 + Y ′
n42 + Y ′

n43. By the group property (4.9),(
h(ρ̂i−1)

)
xi

= b(ρi−1, t)
(
h(ρ̂i−1)

)
ρi−1

,
(
h(ρ̂i)

)
xi

= −b(ρi, t)
(
h(ρ̂i)

)
ρi

,

This allows us to write

Y ′
n42 + Y ′

n43 =

n−1∑
i=1

H
[
ρ̂i−1, ρi

]
⎧⎨
⎩b(ρi−1, t)

[
f
(
ρ̂i−1, ρi, t

)]
ρi−1

f
(
ρ̂i−1, ρi, t

) − b(ρi, t)

[
f
(
ρ̂i, ρi+1, t

)]
ρi

f
(
ρ̂i, ρi+1, t

)
⎫⎬
⎭

+ H
[
ρ̂n−1, ρn

]
b(ρn−1, t)

[
f
(
ρ̂n−1, ρi, t

)]
ρn−1

f
(
ρ̂n−1, ρn, t

) .

Hence

Y ′′
n = −

n−1∑
i=0

H′(ρi)b(ρi, t)

[
f(ρ̂i, ρi+1, t)

]
ρi

f(ρ̂i, ρi+1, t)
+

n∑
i=1

H
[
ρ̂i−1, ρi

]
b(ρi−1, t)

[
f
(
ρ̂i−1, ρi, t

)]
ρi−1

f
(
ρ̂i−1, ρi, t

)

=

n∑
i=1

[
H

[
ρ̂i−1, ρi

] − H′(ρi−1)
]
b(ρi−1, t)

[
f
(
ρ̂i−1, ρi, t

)]
ρi−1

f
(
ρ̂i−1, ρi, t

)

=

n∑
i=1

[
H

[
ρ̂i−1, ρi

] − H′(ρi−1

]
b(ρ̂i−1, t)

fρ−
(
ρ̂i−1, ρi, t

)
f
(
ρ̂i−1, ρi, t

) = X′′
n ,

as desired. For the third equality, we have used (4.9). This completes the proof.
��

So far, we have been able to formally show that the law of q(t) is μ(dq, t), by
verifying the forward Eq. (4.3) for every n (recall that n represents the number
of particles/shock discontinuities in the interval (0, L)). Our verification of (4.3)
is rather tedious but elementary. Our verification is formal at this point because
the evolution of q is governed by a discontinuous deterministic dynamics that is
interrupted by stochastic Markovian entrance of new particles at the boundary
point L. By selecting a pair 	 and f that are differentiable with respect to time, it
is not hard to justify our calculation for the left-hand side of (4.3), as it appeared
in (4.16). It is the justification of the right-hand side as in (4.17) that requires
additional work.

Writing Φt
s(q) for q(t) with initial condition q(s) = q, it suffices to show that

for every nice function G : ΔL → R,

d

ds
E G

(
Φt

s(q)
)

=
d

ds

∫
G

(
Φt

s(q)
)

μ(dq, s) = 0. (4.18)

Clearly (4.18) implies

EG(q(t)) = E

∫
G

(
Φt
0(q)

)
μ(dq, 0) =

∫
G(q) μ(dq, t),
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which means that the law of q(t) is given by our candidate μ(dq, t). For a rigorous
proof of this, we calculate the left time-derivative of E G

(
Φt

s(q)
)

by hand and
show that this left-derivative equals to

∞∑
n=0

∫
G(Xn − Yn) dμn.

The details can be found in [16] and [17].

5 Homogenizations for Hamiltonian ODEs

The Hamilton-Jacobi PDE may be used to model the growth of an interface
that is described as a graph of a height function. More precisely, the graph of a
solution

u : Rd × [0,∞) → R,

of the Hamilton-Jacobi equation

ut + H(x, ux) = 0, (5.1)

describes an interface at time t in microscopic coordinates. If the ratio of micro
to macro scale is a large number n, then

un(x, t) =
1
n

u(nx, nt),

is the corresponding macroscopic height function. In practice n is large and we
may obtain a simpler description of our model if the large n limit of un exists
and satisfies a simple equation. Indeed un satisfies

un
t + H

(
nx, un

x

)
= 0,

and this equation must be solved for an initial condition of the form un(x, 0) =
g(x), where g represents the initial macroscopic height function. Let us define

(Γng)(x) = ng
(x

n

)
;

the job of the operator Γn is to turn a macroscopic height function to its asso-
ciated microscopic height function. We also write Tt = TH

t for the semigroup
associated with the PDE (5.1). More precisely, Ttu

0(x) = u(x, t) means
{

ut + H(x, ux) = 0, t > 0,

u(x, t) = u0(x),
(5.2)

In terms of the operators Tt and Γn, we simply have un =
(
Γ−1

n ◦ Tnt ◦ Γn

)
(g).

Put it differently,
TH◦Γn

t = Γ−1
n ◦ TH

nt ◦ Γn, (5.3)
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where γn(x, p) = (nx, p). If we write T (H) for TH
1 , then in particular we have

T (H ◦ γn) = Γ−1
n ◦ T (H)n ◦ Γn.

The hope is that under some assumptions on H, the large n-limit of un

exists and the limit ū provides a reduced and simpler description of the growth
model under study. For example, when H is 1-periodic in x-variable, the high
oscillations of H ◦ γn, may result in the convergence of un to a function ū, that
solves the homogenized equation

ūt + H̄(ūx) = 0. (5.4)

When this happens, we write A(H) = H̄.
More generally, write H for the space of all C1 Hamiltonian functions and

define the natural translation operator

τaH(x, p) = H(x + a, p),

for every a ∈ R
d. We then take a probability measure P on H that is translation

invariant and ergodic. We wish to take advantage of the ergodicity to assert that
TH◦γn

t → T H̄
t , P-almost surely, as n → ∞. If this happens for a deterministic

function H̄, then we write A(P) = H̄. We note

– If P is supported on the set

A :=
{
τaH0 : a ∈ R

d
}
,

for some 1-periodic Hamiltonian function H0, then A is isomorphic to the
d-dimensional torus and we are back to the periodic scenario.

– If P is supported on the topological closure (with respect to the uniform
norm), of the set

A :=
{
τaH0 : a ∈ R

d
}
,

for some Hamiltonian function H0, and this closure is a compact set, then H0

is almost periodic and the homogenization would allow us to find the large
n-limit of TH◦γn

t → T H̄
t , for almost all choices of H in the compact support

of P. In this case Ā has the structure of an Abelian Lie group and P is the
corresponding Haar measure.

To explore the homogenization question further, we discuss the connection
between Hamiltonian ODE and Hamilton-Jacobi PDE. For a classical solution,
the method of characteristics suggests that at least for short times, we can solve
(5.2) in terms of the flow of the Hamiltonian ODE

ẋ = Hp(x, p), (5.5)
ṗ = −Hx(x, p).

Equivalently we write ż = J∇H(z), where z = (x, p), and

J =
[

0 I
−I 0

]
,
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with I denoting the d×d identity matrix. Writing φt = φH
t for the flow of (5.5),

we have

φH
t

{(
x,∇u0(x)

)
: x ∈ R

d
}

=
{(

x, ux(x, t)
)

: x ∈ R
d
}

, (5.6)

provided that the left-hand side remains a graph of a function. As we mentioned
earlier, the Eq. (5.2) does not possess C1 solutions in general. This has to do with
the fact that if φt folds the graph of ∇u0, then the left-hand side of (5.6) is no
longer a graph of a function and (5.6) has no chance to be true. One possibility
is that we trim the left-hand side (5.6) and hope for

φH
t

{(
x,∇u0(x)

)
: x ∈ R

d
} ⊇ {(

x, ux(x, t)
)

: x ∈ R
d
}

, (5.7)

For this to work, we have to give-up the differentiability of u. This geometric
and rather naive idea does not suggest how the trimming should be carried out.

Alternatively, we may add a small viscosity term of the form εΔu to the
right-hand side of (5.1) to guarantee the existence of a unique classical solution,
and pass to the limit ε → 0. The outcome is known as a viscosity solution (see
[12]). As it turns out, under some coercivity assumption on H, we can guarantee
the existence of a solution that is differentiable almost everywhere. We can now
modify the right-hand side of (5.7) accordingly and wonder whether or not

φH
t

{(
x,∇u0(x)

)
: x ∈ R

d
} ⊇ {(

x, ux(x, t)
)

: x ∈ R
d, ux(x, t) exists

}
, (5.8)

is true. The answer is affirmative if H is convex in p. However (5.8) may fail if we
drop the convexity assumption. To explain this in the case of piecewise smooth
solutions, we recall that if H is convex in p, the only discontinuity we can have is
a shock discontinuity. In this case, at every point (a, t), with t > 0, we can find a
solution (x(s), p(s) : s ∈ [0, t]) (the so-called backward characteristic) such that
x(t) = a. If ρ = ux is continuous at a, this backward characteristic is unique and
p(t) = ρ(a, t). If ρ is discontinuous at (a, t), then ρ(a, t) is multi-valued and for
each possible value p of ρ(a, t), there will be a solution to the Hamiltonian ODE
with (x(t), p(t)) = (a, p). In both cases, we still have (5.8).

The situation is far more complex when H is not convex. What may cause the
violation of (5.8) is the occurrence of a rarefaction type solutions. To explain this,
let us assume that d = 1, and H depends on p only. There are three momenta
(or densities) a1 < a2 < a3 such that

– The graph of H is convex and below its cord in [a1, a2].
– The graph of H is concave and above its cord in [a2, a3].
– The graph of H is below its cord in the interval [a1, a3].

Now imagine that we have two discontinuities at x(t) and y(t) with x(t) < y(t),
and both are shock discontinuities. Assume

– The left and right values of ρ at x(t) are a′
2(t) < a′

3(t).
– The left and right values of ρ at y(t) are a′

3(t) > a′
1(t).

– These two shock discontinuities meet at some instant t0 with a′
i(t0) = ai.
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As a result, at the moment t0 the two shock discontinuities are replaced with a
rarefaction wave. Now if we take a point (x, t) inside the fan of this rarefaction
wave (for which necessarily t > t0), then at such (x, t) the connection with the
initial data is lost and (x, ux(x, t)) does not belong to the left-hand side of (5.8).

Motivated by the failure of (5.8) for viscosity solutions, we formulate a
question.

Question 5.1: Is there a notion of generalized solution for (5.1) for which (5.8)
is always true?

Using some ideas from topology and symplectic geometry the notion of geo-
metric solution has been developed by Chaperon [9–11], Sikorav [25] and Viterbo
[27]. The main features of this solution is as follows:

(i) The geometric solution satisfies (5.8) always.
(ii) The geometric solution satisfies (5.2) at every differentiability point of u.
(iii) The geometric solution coincides with the viscosity solution when H is

convex in p.
(iv) Writing T̂tu

0 for the geometric solution of (5.2) with the initial condition
u0, we do not in general have T̂t ◦ T̂s = T̂t+s (except when H is convex
in p).

Needless to say the last feature of the geometric solution is a serious flaw
and does not provide a satisfactory answer for Question 5.1. Nonetheless the
geometric solution provides a useful notion that helps us to connect the Eq. (5.2)
to the Hamiltonian ODEs.

Because of the intimate relation between the Hamilton-Jacobi Equation and
the Hamiltonian ODE, we may wonder whether a homogenization phenomenon
occurs for the latter. More precisely, does the high-n limit of

φH◦γn

t = γ−1
n ◦ φH

nt ◦ γn,

exist in a suitable sense? Note that H◦γn has no pointwise limit and the existence
of pointwise limit of φH◦γn

t is not expected either. Writing φH for φH
1 , we may

wonder in what sense, if any, the sequence φH◦γn
has a limit. We note

φH◦γn
= γ−1

n ◦ φn
H ◦ γn =: Sn(φH).

We now discuss the existence of some interesting metric on the space H that is
weaker than uniform norm and is closely related to the flow properties of the
Hamiltonian ODEs. More importantly, there is a chance that H ◦ γn converges
with respect to such metrics.

There are two metrics on H that are well-suited for our purposes. These
metrics were defined by Hofer and Viterbo; the proofs of non-triviality of these
metrics are highly non-trivial. Let us write down a wish-list for what our metric
should satisfy.
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Let us write D for the space of maps ϕ such that ϕ = φH for some smooth
Hamiltonian function H : R2d × [0, 1] → R. (Any such map is symplectic as we
will see later.) Assume that there exists a function E : D → [0,∞) with the
following properties: For ϕ,ψ, τ ∈ D,

(i) E(ϕ) = E(ϕ−1).
(ii) E(ϕ) = E

(
τ−1ϕτ).

(iii) E(ϕψ) ≤ E(ϕ) + E(ψ).
(iv) E(ϕ) = 0 if and only if ϕ = id.
(v) E

(
γ−1

� ϕγ�

)
= 	−1E(ϕ), where γ�(x, p) = (	x, p) and 	 ∈ (0,∞).

Here and below we simply write ϕψ for ϕ ◦ ψ and think of D as a group with
multiplication given by the map composition.

From E, we build a metric D on D by D(ϕ,ψ) = E
(
ϕψ−1

)
. This metric has

the following properties:

Proposition 1. (i) D(ϕτ, ψτ) = D(τϕ, τψ) = D(ϕ,ψ) for ϕ,ψ, τ ∈ D.

(ii) For ϕ1, ψ1 . . . , ϕk, ψk, we have

D(ϕ1 . . . ϕk, ψ1 . . . ψk) ≤
k∑

i=1

D(ϕi, ψi).

(iii) For Sn(ϕ) = γ−1
n ◦ ϕn ◦ γn, we have

D
(
Sn(ϕ), Sn(ψ)

) ≤ D(ϕ,ψ).

In the case of a homogenization, we expect Sn(ϕ) → ϕ̄, where ϕ̄ = φH̄ , for
a Hamiltonian function H̄ that is independent of x. Write D0 for the space of
such ϕ̄. We note that Sn(ϕ̄) = ϕ̄. As a result, for any ϕ̄ ∈ D0,

D
(
Sn(ϕ), ϕ̄

)
= D

(
Sn(ϕ), Sn(ϕ̄)

) ≤ D
(
ϕ, ϕ̄

)
, (5.9)

by Proposition 1(iii). As was noted by Viterbo [28], (5.9) implies that the set of
limit points of the sequence (Sn(ϕ) : n ∈ N) is a singleton: If ϕ̄ and ψ̄ are two
limit points, then given δ > 0, we find n,m ∈ N such that

D(Sn(ϕ), ϕ̄) ≤ δ, D(Sm(ϕ), ψ̄) ≤ δ.

From this and (5.9) we learn,

D(Snm(ϕ), ϕ̄) ≤ δ, D(Snm(ϕ), ψ̄) ≤ δ,

because Snm = Sn ◦ Sm. Hence D(ϕ̄, ψ̄) ≤ 2δ. By sending δ → 0 we deduce that
ϕ̄ = ψ̄.

A natural question is whether we have homogenization with respect to such
a metric.

Question 5.2: Given ϕ ∈ D, does the large n limit of the sequence
{
Sn(ϕ)

}
exist with respect to a metric D as above? ��
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6 Lagrangian Manifolds and Viterbo’s Metric

The Question 5.2 has been answered affirmatively by Viterbo [28] when the
Hamiltonian H is periodic in x and the metric D is the Viterbo’s metric. We
continue with a brief discussion of Viterbo’s metric.

To simplify our presentation, let us assume that H is 1-periodic in x. We
may also regard u(·, t) as a function on the d-dimensional torus T

d.
To examine the left-hand side of (5.8), assume that the initially the solution

of the ODE (5.5) satisfies the relationship p = ∇u0(x), for some smooth function
u0. Whenever (5.6) is true, then at time t we have a similar relationship between
the components of φt(x, p). Let us write M t := φt(M0), where

M0 =
{
(x,∇u0(x)) : x ∈ T

d
}
.

To get a feel for M t = φH
t (M0), observe that M0 is a graph of a an exact

derivative. Let us refer to such manifolds as an exact Lagrangian graph. In general
if

M =
{
(x,X(x)) : x ∈ T

d
}
,

then vectors of the form

â :=
[

a
(DX)(x)a

]
,

are tangents to M at x. What makes M exact is that if X = ∇u, then the
matrix A = DX = D2u is symmetric. To state this directly in terms of the
tangent vectors, observe

Aa · b − a · Ab =
[
Aa
−a

]
·
[

b
Ab

]
= Jâ · b̂ =: ω̄(â, b̂).

Hence the symmetry of A is equivalent to ω̄ �M= 0 identically. (Here ω̄ is the
standard symplectic 2-form of R

2d.) Motivated by this we call a manifold M
Lagrangian if the restriction of ω̄ to M is identically 0. The point of this definition
is that if M0 is the graph of an exact derivative, then ϕ(M0) may not be a graph
of a function. However, when ϕ preserves the form ω̄, then ϕ(M0) is always a
Lagrangian. We say a map ϕ is symplectic if it preserves ω̄ in the following sense:

ω̄
(
(Dϕ)(x)a, (Dϕ)(x)b

)
= ω̄(a, b),

for every x ∈ T
d and every pair of vectors a, b ∈ R

2d.

It is well-known that the correct topology for the viscosity solution comes
from the uniform norm; this has to do with the fact the viscous approximation
of Hamilton-Jacobi Equation satisfies a maximum principle that survives as we
send the viscous term to 0. Since we are now interested in Hamiltonian ODE,
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we may try to define some kind of metrics on Lagrangian manifolds of the form
φH

t

(
M0

)
, where M0 is an exact Lagrangian. Let us write L0 for the set of exact

Lagrangian graphs, and define

H0 =
{
H : Td × R

d × [0, 1] → R : H is C1 and 1-periodic in x
}

L =
{
φH(M) : H ∈ H0, M ∈ L0

}
When M is the graph of ∇u, for some C1 function u : Td → R, we refer to u
as the generating function of M . When this is the case, we write G(M) = u.
We also write

L(u) :=
{
(x,∇u(x)) : x ∈ T

d
}
.

Viterbo defines a metric on L that is a generalization of the L∞-metric on
its generating function. In other words, the metric D is defined in such way that
if M0 and M1 are two exact Lagrangian graphs, then

D
(
M,M ′) = ‖G(M) − G(M ′)‖∞,

where by ‖ · ‖∞ we really mean the total oscillation:

‖u‖∞ = max u − min u.

This definition is quite natural because L(u) = L(u + c), for any constant c.
To guess how to extend the definition of this metric to L, we need to develop

a better understanding of the Hamiltonian ODEs. First, we claim that there
exists a functional I = IH on the space of the paths z(·) = (x, p)(·), such that
ż = J∇H(z, t) if and only if z(·) is a critical point of I. Writing the Hamiltonian
ODE as Jż +∇H(z, t) = 0, it is not hard to come up with an example for I; we
use a quadratic term to produce the linear part Jż, and H to produce ∇H. The
following function I : C1([0, 1];Td × R

d) → R, is the integral of the celebrated
Cartan-Poincaré form:

I(z) =
∫ 1

0

[p(t) · ẋ(t) − H(z(t), t)] dt.

Formally, ∂I(z) = −Jż − ∇H(z, t). More precisely, if η : [0, 1] → T
d × R

d,
satisfies η(0) = η(1) = 0, then ψ(δ) = I(z + δη) satisfies

ψ̇(0) = −
∫ 1

0

(
Jż(t) + ∇H(z(t), t)

) · η(t) dt.

We now use this to come up with a generating-like function for M1 = φH

(
M0

)
,

where M0 = G(u0). To this end, let us define

Γ :=
{
z : [0, 1] → T

d × R
d : z ∈ C1

}
, Γ (a) =

{
z = (x, p) ∈ Γ : x(1) = a

}
.

In words, Γ (a) consists of position/momentum paths with the position com-
ponent reaching a at time 1. We note that if z ∈ Γ (a) and η ∈ Γ (0), then
z + δη ∈ Γ (a) for all δ ∈ R. We then define Î : Γ (a) → R by

Î(z) = u0(x(0)) + I(z) = u0(x(0)) +
∫ 1

0

[p(t) · ẋ(t) − H(z(t), t)] dt.



Stochastic Solutions for Hamilton-Jacobi 233

Since we want to use Î to build a generating function for M1, observe that Γ (0)
is an infinite dimensional vector space and any z ∈ Γ (a) can be written as

z(t) = (a, 0) + ξ(t),

with ξ ∈ Γ (0). If M1 is still a graph of function and has a generating function
u1, then what is happening is that we have a solution z satisfying ż = J∇H(z, t)
with

z(0) =
(
x(0),∇u0(x(0))

)
, z(1) =

(
x(1),∇u1(x(1))

)
.

Moreover, if u solves (1.1), then u1(x) = u(x, 1). Note that if w(t) = u(x(t), t),
then ẇ = p · ẋ − H(z, t), or

u1(x(1)) = u0(x(0)) +
∫ 1

0

[p(t) · ẋ(t) − H(z(t), t)] dt.

To separate x(1) from the rest of information in the path z(·), we define J :
T

d × Γ (0) → R, by
J (a; ξ) = Î(

(a, 0) + ξ
)
.

In other words, if z = (a, 0)+ξ = (x, p), and ξ = (x′, p), then x′(t) = x(t)−x(1) =
x(t) − a. Now, if we set

ψ̂(δ) = Î(z + δη) = J (a; ξ + δη),

for z ∈ Γ (a), and η = (x̂, p̂) ∈ Γ (0), then

dψ̂

dδ
(0) =

(∇u0(x(0)) − p(0)
) · x̂(0) −

∫ 1

0

(
Jż(t) + ∇H(z(t), t)

) · η(t) dt.

We can now assert

∂ξJ (a; ξ) = 0 ⇐⇒ p(0) = ∇u0(x(0)), and z = (a, 0) + ξ satisfies ż = J∇H(z, t).

On the other hand, if we set ψ̄(δ) = Î(
z + (δb, 0)

)
= J (a + δb; ξ), then

∂aJ (a; ξ) · b =
dψ̄

dδ
(0) = ∇u0(x(0)) · b −

∫ 1

0

Hx(z(t), t) · b dt.

As a result, if ∂ξJ (a; ξ) = 0, then

∂aJ (a; ξ) = ∇u0(x(0)) −
∫ 1

0

Hx(z(t), t) dt = ∇u0(x(0)) +
∫ 1

0

ṗ(t) dt = p(1).

From this we deduce

φH
(
M0

)
=

{(
a, ∂aJ (a, ξ)

)
: a ∈ T

d, ∂ξJ (a, ξ) = 0
}

,

where a = x(1) represents the position at time 1. We think of J (a; ξ) as
a generalized generating function (or in short GG function) of M = M1.
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The Lagrangian M1 is exact if for every (a, p) ∈ T
d × R

d, there is at most
one solution z to the Hamiltonian ODE with x(1) = a, p(1) = p. Our aim is to
associate a nonnegative number E(M) to M ∈ L that in the case of an exact
Lagrangian M = G(u),

E(M) = E+(M) − E−(M),

where E±(M) are two critical values of u, namely the maximum and minimum
of u. In the case of a non-exact M , we may use the functional J = JM to select
two critical points z± = (a±, ξ±) of the functional JM to define

E±(M) = JM (a±, ξ±) = Î(z±).

The main question now is how to select the critical paths z±. The classical theo-
ries of Morse and Lusternik-Schnirelman would provide us with systematic ways
of selecting critical values of a scalar-valued function on a manifold. (See for
example Appendix E of [21] for an introduction on LS Theory.) These theories
are applicable if the underlying manifold is finite-dimensional and their gener-
alizations to infinite dimensional setting are highly nontrivial. (Floer Theory is
a prime example of such generalization.) However in our setting it is possible to
approximate the functional I or J with a function that is defined on T

d × R
N

for a suitable N that depends on H and u0 and could be large. More precisely,
we may try to find a generating function S : Td × R

N → R such that

M =
{
(x, Sx(x, ξ)) : x ∈ T

d, ξ ∈ R
N , Sξ(x, ξ) = 0

}
,

In fact any manifold of this form is automatically a Lagrangian manifold, simply
because the tangent vectors at a point of the form (x, Sx(x, ξ)) are still of the
form

(
v,A(x, ξ)v

)
; v ∈ R

d, where A = Sxx is a symmetric matrix.
To explain the existence of such finite dimensional generating functions, we

need to make another observation about the flows of Hamiltonian ODEs.
We may regard the symplectic property of ϕ = φH

1 , as saying that its graph

Gr(ϕ) :
{
(x, ϕ(x)) : x ∈ T

d × R
d
}
,

is Lagrangian with respect to the 2-form ω ⊕ (−ω) in R
4d. This Lagrangian

manifold is an exact graph when the set Gr(ϕ) can be expressed as a graph of
the gradient of a scalar-valued function. But now because of the form of the
symplectic form ω ⊕ (−ω), this must be done in a twisted way. More precisely,
if ϕ(x, p) = (X,P ), then the generating function would depend for example on
(X, p). In the case of an exact symplectic map, we may find a scalar-valued
function S(X, p) such that

ϕ
(
Sp(X, p), p

)
=

(
X,SX(X, p)

)
.

The identity map has the generating function p · X. This suggests writing
S(X, p) = X · p − w(X, p) with w periodic in X. In terms of w,

ϕ
(
X − wp(X, p), p

)
=

(
X, p − wX(X, p)

)
.
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Now imagine that M = ϕ(M0), where both M0 and ϕ are exact with generating
functions u0 and S(X, p) = X · p − w(X, p). Then

Ŝ(X;x, p) = u0(x) + p · (X − x) − w(X, p) =: p · (X − x) − ŵ(X;x, p),

is a GG function for M1: If ξ = (x, p), then

Ŝξ(X; ξ) = 0 ⇐⇒ p = ∇u0(x), x = X − wp(X, p).

As a result
Ŝξ(X; ξ) = 0 =⇒ ϕ(x, p) =

(
X, ŜX(X; ξ)

)
,

because ŜX = p − wX(X, p) = P .
As we mentioned earlier, the identity map has a generating function. Using

Implicit Function Theorem, it is not hard to show that any symplectic map that
is C1-close to the identity also possesses a generating function. Now if ϕ = φH is
the time-one map associated with a smooth Hamiltonian, then we can find δ > 0
sufficiently small, such that the map ϕ = φH

δ is sufficiently close to the identity
map and possesses a generating function. In general, each φH can be expressed
as ϕ1 ◦ · · · ◦ ϕN with each ϕi possessing a generating function as above. If each
ϕi has a generating function of the form X · p − wi(X, p), then M = ϕ(M0) has
a generating function of the form

Ŝ
(
xN ; ξ

)
= Ŝ

(
xN ; x0, p0, . . . , xN−1, pN−1

)
:= u0(x0)+

N−1∑
i=0

[
pi·(xi+1−xi)−wi(xi+1, pi)

]
.

We refer to [22] and Chapter 9 of [21] for more details on generating functions.
So far we know that our Lagrangian manifolds possess finite-dimensional

generating functions. The next question to address is that how we can select
appropriate critical values E±(M) for Ŝ(X; ξ).

For the rest of this section, we assume that M is a Lagrangian manifold with
a generating function S(x, ξ). More precisely,

M =
{
(x, Sx(x, ξ)) : x ∈ T

d, ξ ∈ R
N , Sξ(x, ξ) = 0

}
, (6.1)

and S(x, ξ) is a nice perturbation of a quadratic function in ξ. By this we mean
that there exists a quadratic function B(ξ) = Aξ · ξ such that A is an invertible
symmetric matrix, and

sup
x,ξ

|S(x, ξ) − B(ξ)|, sup
x,ξ

|Sξ(x, ξ) − ∇B(ξ)| < ∞.

We wish to put a metric on the space L of such Lagrangians. For this, we first
wish to define the size E(M) of a Lagrangian manifold M . If M is an exact
Lagrangian graph with generating function u, we simply set

E(M) = max u − min u.

If M can be represented as in (6.1), then E(M) is defined by

E(M) = E+(M) − E−(M),
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where E−(M) and E+(M) are two critical values of the generating function S
that are the analog of min u and maxu. To explain our strategy for select-
ing E±(M), first imagine that S(x, ξ) = u(x) + B(ξ). Then we still have
E−(M) = min u = u(x−) and E+(M) = max u = u(x+), because both (x±, 0)
are critical points of S. After all 0 is a critical value for B. We may apply
Lusternik-Schnirelman (LS) Theory, to assert that the function S also has two
critical points that are very much the analogs of (x±, 0). (See [28] and Appendix
E of [21].) We are now ready to define a metric on the space Lagrangian manifolds
who possess generating function as in (6.1). If M and M ′ are two Lagrangian
manifolds with generating functions S and S′ respectively, then we define a new
generating function

(
S � S′)(x, ξ1, ξ2) = S(x, ξ1) − S′(x, ξ2).

This new generating function produces a new Lagrangian manifold

M � M ′ =
{
(x, Sx(x, ξ1) − S′

x(x, ξ2)) : x ∈ T
d, ξ ∈ R

N , ξ ∈ R
N′

, Sξ(x, ξ) = 0, S′
ξ(x, ξ2) = 0

}
=

{
(x, p − p′) : (x, p) ∈ M, (x, p′) ∈ M ′}.

This generating function is a bounded perturbation of
(
B � B′)(ξ1, ξ2) =

B(ξ1) − B(ξ2). We set
D(M,M ′) = E

(
S � S′).

We now would like to use the above metric to define a metric for Hamiltonian
functions or their corresponding flows that was defined by Viterbo:

D(H,H ′) = sup
{
D

(
φH(M), φH′(M)

)
: M ∈ L}

.

Theorem 4. (Viterbo [28]) The large n-limit of H ◦ γn exists with respect to
the Viterbo Metric D. Moreover, if the limit is denoted by B(H), then B satisfies
the following properties

(i) For every symplectic ϕ ∈ D, we have B(H ◦ ϕ) = B(H).
(ii) If {H,K} := J∇H · K = 0, then B(H + K) = B(H) + B(K).

This should be compared with the Lions-Papanicolaou-Varadhan [18] homog-
enization result.

Theorem 5. Assume that H(x, p) is a C1, x-periodic Hamiltonian function
with

lim
|p|→∞

inf
x

H(x, p) = ∞.

Then the large n limit of TH◦γn exists. The limit is of the form T H̄ , for a
Hamiltonian function A(H) := H̄ that is independent of x.
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In fact A(H) = B(H) when H is convex in p; otherwise they could be dif-
ferent. Moreover, Theorem 6.2 has been extended to the random ergodic setting
when H is convex in p in Rezakhanlou-Tarver [23] and Souganidis [24]. A natural
question is whether or not Theorem 6.1 can be extended to the random setting.

Question 6.1: Can we extend Viterbo’s metric (or Hofer’s metric) to the ran-
dom setting and does the large n limit of H ◦ γn exist for a stationary ergodic
Hamiltonian H? ��
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7. Carraro, L., Duchon, J.: Équation de Burgers avec conditions initiales à accroisse-
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Linear Analysis 15, 431–458 (1998)

8. Chabanol, M.-L., Duchon, J.: Markovian solutions of inviscid Burgers equation. J.
Stat. Phys. 114, 525–534 (2004)
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Abstract. We consider the Goldstein-Taylor model, which is a
2-velocity BGK model, and construct the “optimal” Lyapunov functional
to quantify the convergence to the unique normalized steady state. The
Lyapunov functional is optimal in the sense that it yields decay estimates
in L2-norm with the sharp exponential decay rate and minimal mul-
tiplicative constant. The modal decomposition of the Goldstein-Taylor
model leads to the study of a family of 2-dimensional ODE systems.
Therefore we discuss the characterization of “optimal” Lyapunov func-
tionals for linear ODE systems with positive stable diagonalizable matri-
ces. We give a complete answer for optimal decay rates of 2-dimensional
ODE systems, and a partial answer for higher dimensional ODE systems.

Keywords: Lyapunov functionals · Sharp decay estimates ·
Goldstein-Taylor model

1 Introduction

This note is concerned with optimal decay estimates of hypocoercive evolution
equations that allow for a modal decomposition. The notion hypocoercivity was
introduced by Villani in [16] for equations of the form d

dtf = −Lf on some
Hilbert space H, where the generator L is not coercive, but where solutions still
exhibit exponential decay in time. More precisely, there should exist constants
λ > 0 and c ≥ 1, such that

‖e−Ltf I‖
˜H ≤ c e−λt‖f I‖

˜H ∀ f I ∈ ˜H, (1.1)

where ˜H is a second Hilbert space, densely embedded in (ker L)⊥ ⊂ H.
The large-time behavior of many hypocoercive equations have been studied

in recent years, including Fokker-Planck equations [3,4,16], kinetic equations
[12] and BGK equations [1,2]. Determining the sharp (i.e. maximal) exponential
decay rate λ was an issue in some of these works, in particular [1,2,4]. But
finding at the same time the smallest multiplicative constant c ≥ 1, is so far
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an open problem. And this is the topic of this note. For simple cases we shall
describe a procedure to construct the “optimal” Lyapunov functional that will
imply (1.1) with the sharp constants λ and c.

For illustration purposes we shall focus here only on the following 2-velocity
BGK-model (referring to the physicists Bhatnagar, Gross and Krook [7]) for the
two functions f±(x, t) ≥ 0 on the one-dimensional torus x ∈ T and for t ≥ 0. It
reads

{

∂tf+ = −∂xf+ + 1
2 (f− − f+),

∂tf− = ∂xf− − 1
2 (f− − f+).

(1.2)

This system of two transport-reaction equations is also called Goldstein-Taylor
model.

For initial conditions normalized as
∫ 2π

0

[

f I
+(x) + f I

−(x)
]

dx = 2π, the solu-
tion f(t) = (f+(t), f−(t))� converges to its unique (normalized) steady state
with f∞

+ = f∞
− = 1

2 . The operator norm of the propagator for (1.2) can be
computed explicitly from the Fourier modes, see [14]. By contrast, the goal of
this paper and of [1,12] is to refrain from explicit computations of the solution
and to use Lyapunov functionals instead. Following this strategy, an explicit
exponential decay rate of this two velocity model was shown in [12, §1.4]. The
sharp exponential decay estimate was found in [1, §4.1] via a refined functional,
yielding the following result:

Theorem 1.1 ([1, Th. 6]). Let f I ∈ L2(0, 2π;R2). Then the solution to (1.2)
satisfies

‖f(t) − f∞‖L2(0,2π;R2) ≤ c e−λt‖f I − f∞‖L2(0,2π;R2), t ≥ 0,

with the optimal constants λ = 1
2 and c =

√
3.

Remark 1.2. (a) Actually, the optimal c was not specified in [1], but will be the
result of Theorem 3.7 below.

(b) As we shall illustrate in Sect. 5, it does not make sense to optimize these
two constants at the same time. The optimality in Theorem1.1 refers to first
maximizing the exponential rate λ, and then to minimize the multiplicative
constant c.

The proof of Theorem1.1 is based on the spatial Fourier transform of (1.2),
cf. [1,12]. We denote the Fourier modes in the discrete velocity basis {(11

)

,
(

1
−1

)}
by uk(t) ∈ C

2, k ∈ Z. They evolve according to the ODE systems

d
dt

uk = −Ck uk, Ck =
(

0 ik
ik 1

)

, k ∈ Z, (1.3)

and their (normalized) steady states are

u∞
0 =

(

1
0

)

; u∞
k =

(

0
0

)

, k 	= 0.
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In the main body of this note we shall construct appropriate Lyapunov func-
tionals for such ODEs, in order to obtain sharp decay rates of the form (1.1).
In the context of the BGK-model (1.2), combining such decay estimates for all
modes uk then yields Theorem 1.1, as they are uniform in k. We remark that
the construction of Lyapunov functionals to reveal optimal decay rates in ODEs
was already included in the classical textbook [6, §22.4], but optimality of the
multiplicative constant c was not an issue there.

In this article we shall first review, from [1,2], the construction of Lyapunov
functionals for linear first order ODE systems that reveal the sharp decay rate.
They are quadratic functionals represented by some Hermitian matrix P. As
these functionals are not uniquely determined, we shall then discuss a strategy
to find the “best Lyapunov” functional in Sect. 3—by minimizing the condition
number κ(P). The method of Sect. 3 always yields an upper bound for the min-
imal multiplicative constant c and the sharp constant in certain subcases (see
Theorem 3.7). The refined method of Sect. 4 covers another subclass (see The-
orem 4.1). Overall we shall determine the optimal constant c for 2-dimensional
ODE systems, and give estimates for it in higher dimensions. In the final Sect. 5
we shall illustrate how to obtain a whole family of decay estimates—with sub-
optimal decay rates, but improved constant c. For small time this improves the
estimate obtained in Sect. 3. After the completion of this article, we found out
that our results give insights to an open problem in system and control theory
[8, Problem 6.3].

2 Lyapunov Functionals for Hypocoercive ODEs

In this section we review decay estimates for linear ODEs with constant coeffi-
cients of the form

{

d
dtf = −Cf, t ≥ 0,

f(0) = f I ∈ C
n,

(2.1)

for some (typically non-Hermitian) matrix C ∈ C
n×n. To ensure that the origin

is the unique asymptotically stable steady state, we assume that the matrix C is
hypocoercive (i.e. positive stable, meaning that all eigenvalues have positive real
part). Since we shall not require that C is coercive (meaning that its Hermitian
part would be positive definite), we cannot expect that all solutions to (2.1)
satisfy for the Euclidean norm: ‖f(t)‖2 ≤ e−˜λt‖f I‖2 for some ˜λ > 0. However,
such an exponential decay estimate does hold in an adapted norm that can be
used as a Lyapunov functional.

The construction of this Lyapunov functional is based on the following
lemma:

Lemma 2.1 ([1, Lemma 2], [4, Lemma 4.3]). For any fixed matrix C ∈ C
n×n,

let μ := min{
(λ)|λ is an eigenvalue of C}. Let {λj |1 ≤ j ≤ j0} be all the
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eigenvalues of C with 
(λj) = μ. If all λj (j = 1, . . . , j0) are non-defective1,
then there exists a positive definite Hermitian matrix P ∈ C

n×n with

C∗P + PC ≥ 2μP , (2.2)

but P is not uniquely determined.
Moreover, if all eigenvalues of C are non-defective, examples of such matrices

P satisfying (2.2) are given by

P :=
n
∑

j=1

bj wj ⊗ w∗
j , (2.3)

where wj ∈ C
n (j = 1, . . . , n) denote the (right) normalized eigenvectors of C∗

(i.e. C∗wj = λ̄jwj), and bj ∈ R
+ (j = 1, . . . , n) are arbitrary weights.

For n = 2 all positive definite Hermitian matrices P satisfying (2.2) have
the form (2.3), but for n ≥ 3 this is not true (see Lemma 3.1 and Example 3.2,
respectively).

In this article, for simplicity, we shall only consider the casewhen all eigenvalues
of C are non-defective. For the extension of Lemma 2.1 and of the corresponding
decay estimates to the defective case we refer to [3, Prop. 2.2] and [5].

Due to the positive stability of C, the origin is the unique and asymptotically
stable steady state f∞ = 0 of (2.1): Due to Lemma 2.1, there exists a positive
definite Hermitian matrix P ∈ C

n×n such that C∗P + PC ≥ 2μP where μ =
min 
(λj) > 0. Thus, the time derivative of the adapted norm ‖f‖2P := 〈f, Pf〉
along solutions of (2.1) satisfies

d
dt

‖f(t)‖2P ≤ −2μ‖f(t)‖2P.

Hence the evolution becomes a contraction in the adapted norm:

‖f(t)‖2P ≤ e−2μt‖f I‖2P, t ≥ 0. (2.4)

Clearly, this procedure can yield the sharp decay rate μ, only if P satisfies (2.2).
Next we translate this decay in P-norm into a decay in the Euclidean norm:

‖f(t)‖22 ≤ (λP
min)

−1‖f(t)‖2P ≤ (λP
min)

−1e−2μt‖f I‖2P ≤ κ(P) e−2μt‖f I‖22 , t ≥ 0,
(2.5)

where 0 < λP
min ≤ λP

max are, respectively, the smallest and largest eigenvalues
of P, and κ(P) = λP

max/λP
min is the (numerical) condition number of P with

respect to the Euclidean norm. While (2.4) is sharp, (2.5) is not necessarily
sharp: Given the spectrum of C, the exponential decay rate in (2.5) is optimal,
but the multiplicative constant not necessarily. For the optimality of the chain
of inequalities in (2.5) we have to distinguish two scenarios: Does there exist an
1 An eigenvalue is defective if its geometric multiplicity is strictly less than its algebraic

multiplicity.
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initial datum f I such that each inequality will be (simultaneously) an equality
for some finite t0 ≥ 0? Or is this only possible asymptotically as t → ∞? We
shall start the discussion with the former case, which is simpler, and defer the
latter case to Sect. 4. The first scenario allows to find the optimal multiplicative
constant for C ∈ R

2×2, based on (2.5). But in other cases it may only yield an
explicit upper bound for it, as we shall discuss in Sect. 4.

Concerning the first inequality of (2.5), a solution f(t0) will satisfy ‖f(t0)‖22 =
(λP

min)
−1‖f(t0)‖2P for some t0 ≥ 0 only if f(t0) is in the eigenspace associated

to the eigenvalue λP
min of P. Moreover, the initial datum f I satisfies ‖f I‖2P =

λP
max‖f I‖22 if f I is in the eigenspace associated to the eigenvalue λP

max of P.
Finally we consider the second inequality of (2.5): If the matrix C satisfies, e.g.,

λj = μ > 0; j = 1, ..., n, with all eigenvalues non-defective, then we always
have

‖f(t)‖2P = e−2μt‖f I‖2P ∀t ≥ 0, (2.6)

since (2.2) is an equality then. This is the case for our main example (1.3) with
k 	= 0.

Since the matrix P is not unique, we shall now discuss the choice of P as to
minimize the multiplicative constant in (2.5). To this end we need to find the
matrix P with minimal condition number that satisfies (2.2). Clearly, the answer
can only be unique up to a positive multiplicative constant, since ˜P := τP with
τ > 0 would reproduce the estimate (2.5).

As we shall prove in Sect. 3, the answer to this minimization problem is very
easy in 2 dimensions: The best P corresponds to equal weights in (2.3), e.g.
choosing b1 = b2 = 1.

3 Optimal Constant via Minimization of the Condition
Number

In this section, we describe a procedure towards constructing “optimal”
Lyapunov functionals: For solutions f(t) of ODE (2.1) they will imply

‖f(t)‖2 ≤ c e−μt‖f I‖2 (3.1)

with the sharp constant μ and partly also the sharp constant c.
We shall describe the procedure for ODEs (2.1) with positive stable matri-

ces C. For simplicity we confine ourselves to diagonalizable matrices C (i.e. all
eigenvalues are non-defective). In this case, Lemma 2.1 states that there exist
positive definite Hermitian matrices P satisfying the matrix inequality (2.2).
Following (2.5),

√

κ(P) is always an upper bound for the constant c in (3.1).
Our strategy is now to minimize κ(P) on the set of all admissible matrices P.

We shall prove that this actually yields the minimal constant c in certain cases
(see Theorem 3.7). In 2 dimensions this minimization problem can be solved very
easily thanks to Lemmas 3.1 and 3.3:

Lemma 3.1. Let C ∈ C
2×2 be a diagonalizable, positive stable matrix. Then all

matrices P satisfying (2.2) are of the form (2.3).
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Proof. We use again the matrix W whose columns are the normalized (right)
eigenvectors of C∗ such that

C∗W = WD∗, (3.2)

with D = diag(λC
1 , λC

2 ) where λC
j (j ∈ {1, 2}) are the eigenvalues of C. Since W

is regular, P can be written as

P = WBW∗,

with some positive definite Hermitian matrix B. Then the matrix inequality (2.2)
can be written as

2μWBW∗ ≤ C∗WBW∗ + WBW∗C = W(D∗B + BD)W∗.

This matrix inequality is equivalent to

0 ≤ (D∗ − μI)B + B(D − μI). (3.3)

Next we order the eigenvalues λC
j (j ∈ {1, 2}) of C increasingly with respect to

their real parts, such that 
(λC
1 ) = μ. Moreover, we consider

B =
(

b1 β

β b2

)

where b1, b2 > 0 and β ∈ C with |β|2 < b1b2. Then the right hand side of (3.3) is

(D∗ − μI)B + B(D − μI) =
(

0 (λC
2 − λC

1 )β
(λC

2 − λC
1 )β 2b2
(λC

2 − λC
1 )

)

(3.4)

with Tr [(D∗ − μI)B + B(D − μI)] = 2b2
(λC
2 − λC

1 ) and

det[(D∗ − μI)B + B(D − μI)] = −∣∣λC
2 − λC

1

∣

∣

2|β|2 .

Condition (3.3) is satisfied if and only if Tr [(D∗ −μI)B+B(D−μI)] ≥ 0 which
holds due to our assumptions on λC

2 and b2, and det[(D∗−μI)B+B(D−μI)] ≥ 0.
The last condition holds if and only if

λC
2 = λC

1 or β = 0.

In the latter case B is diagonal and hence P is of the form (2.3). In the former
case, (3.2) shows that C = λC

1 I, and the inequality (2.2) is trivial. Now any
positive definite Hermitian matrix P has a diagonalization P = VEV∗, with
a diagonal real matrix E and an orthogonal matrix V, whose columns are –of
course– eigenvectors of C. Thus, P is again of the form (2.3). ��
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In contrast to this 2D result, in dimensions n ≥ 3 there exist matrices P satis-
fying (2.2) which are not of form (2.3):

Example 3.2. Consider the matrix C = diag(1, 2, 3). Then, all matrices

P(b1, b2, b3, β) =

⎛

⎝

b1 0 0
0 b2 β
0 β b3

⎞

⎠ (3.5)

with positive bj (j ∈ {1, 2, 3}) and β ∈ R such that 8b2b3 − 9β2 ≥ 0, are positive
definite Hermitian matrices and satisfy (2.2) for C = diag(1, 2, 3) and μ = 1.
But the eigenvectors of C∗ are the canonical unit vectors. Hence, matrices of
form (2.3) would all be diagonal. ��

Restricting the minimization problem to admissible matrices P of form (2.3)
we find: Defining a matrix W := (w1| . . . |wn) whose columns are the (right)
normalized eigenvectors of C∗ allows to rewrite formula (2.3) as

P =
n
∑

j=1

bj wj ⊗ w∗
j = W diag(b1, b2, . . . , bn)W∗

=
(

W diag(
√

b1,
√

b2, . . . ,
√

bn)
)(

W diag(
√

b1,
√

b2, . . . ,
√

bn)
)∗ (3.6)

with positive constants bj (j = 1, . . . , n). The identity

W diag(
√

b1,
√

b2, . . . ,
√

bn) = (
√

b1w1| . . . |
√

bnwn)

shows that the weights are just rescalings of the eigenvectors. Finally, the con-
dition number of P is the squared condition number of (W diag(

√
b1,

√
b2, . . . ,√

bn)). Hence, to find matrices P of form (3.6) with minimal condition number,
is equivalent to identifying (right) precondition matrices among the positive
definite diagonal matrices which minimize the condition number of W. This
minimization problem can be formulated as a convex optimization problem [10]
based on the result [15]. Due to [11, Theorem 1], the minimum is attained (i.e.
an optimal scaling matrix exists) since our matrix W is non-singular. (Note that
its column vectors form a basis of Cn.) The convex optimization problem can
be solved by standard software providing also the exact scaling matrix which
minimizes the condition number of P, see the discussion and references in [10].
For more information on convex optimization and numerical solvers, see e.g. [9].

We return to the minimization of κ(P) in 2 dimensions:

Lemma 3.3. Let C ∈ C
2×2 be a diagonalizable, positive stable matrix. Then

the condition number of the associated matrix P in (2.3) is minimal by choosing
equal weights, e.g. b1 = b2 = 1.

Proof. A diagonalizable matrix C has only non-defective eigenvalues. Up to a
unitary transformation, we can assume w.l.o.g. that the eigenvectors of C∗ are

w1 =
(

1
0

)

, w2 =
(

α√
1 − α2

)

for some α ∈ [0, 1). (3.7)
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This unitary transformation describes the change of the coordinate system. To
construct the new basis, we choose one of the normalized eigenvectors w1 as
first basis vector, and recall that the second normalized eigenvector w2 is only
determined up to a scalar factor γ ∈ C with |γ| = 1. The right choice for the
scalar factor γ allows to fulfill the above restriction on α.

We use the representation of the positive definite matrix P in (3.6):

P = W diag(b1, b2)W∗ with W =
(

1 α

0
√

1 − α2

)

. (3.8)

Since P and τP have the same condition number, we consider w.l.o.g. b1 = 1/b
and b2 = b. Thus, we have to determine the positive parameter b > 0 which
minimizes the condition number of

P(b) = W diag(1/b, b)W∗ =
(

1
b + bα2 bα

√
1 − α2

bα
√

1 − α2 b(1 − α2)

)

. (3.9)

The condition number of matrix P(b) is given by

κ(P(b)) = λP
+(b)/λP

−(b) ≥ 1,

where

λP
±(b) =

TrP(b) ±√

(TrP(b))2 − 4 detP(b)
2

are the (positive) eigenvalues of P(b). We notice that TrP(b) = b + 1/b is inde-
pendent of α and is a convex function of b ∈ (0,∞) which attains its minimum
for b = 1. Moreover, detP(b) = 1−α2 is independent of b. This implies that the
condition number

κ(P(b)) =
λP
+(b)

λP−(b)
=

1 +
√

1 − 4 detP(b)
(TrP(b))2

1 −
√

1 − 4 detP(b)
(TrP(b))2

attains its unique minimum at b = 1, taking the value

κmin =
1 + α

1 − α
. (3.10)

��
This 2D-result does not generalize to higher dimensions. In dimensions n ≥ 3

there exist diagonalizable positive stable matrices C, such that the matrix P with
equal weights bj does not yield the lowest condition number among all matrices
of form (2.3). We give a counterexample in 3 dimensions:

Example 3.4. For some C∗, consider its eigenvector matrix

W :=

⎛

⎝

1 1 1
0 1 1
0 0 1

⎞

⎠ diag

(

1,
1√
2
,

1√
3

)

, (3.11)
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which has normalized column vectors. We define the matrices P(b1, b2, b3) :=
W diag(b1, b2, b3)W∗ for positive parameters b1, b2 and b3, which are of
form (2.3) and hence satisfy the inequality (2.2). In case of equal weights
b1 = b2 = b3 the condition number is κ(P(b1, b1, b1)) ≈ 15.12825876. But
using [13, Theorem 3.3], the minimal condition number minbj

κ(P(b1, b2, b3)) ≈
13.92820324 is attained for the weights b1 = 2, b2 = 4 and b3 = 3. ��

Combining Lemmas 3.1 and 3.3 we have

Corollary 3.5. Let C ∈ C
2×2 be a diagonalizable, positive stable matrix. Then

the condition number is minimal among all matrices P satisfying (2.2), if P is
of form (2.3) with equal weights, e.g. b1 = b2 = 1.

This 2D-result does not generalize to higher dimensions. Extending the con-
clusion of Example 3.4, we shall now show that P does not necessarily have to
be of form (2.3), if its condition number should be minimal:

Example 3.6. We consider a special case of Example 3.4, with

˜C = (W∗)−1diag(1, 2, 3)W∗

with W, the eigenvector matrix of ˜C∗, given by (3.11). Then the matrices ˜C
and

˜P(b1, b2, b3, β) := WP(b1, b2, b3, β)W∗

with matrix P(b1, b2, b3, β) in (3.5) satisfy the matrix inequality (2.2) with μ =
1. But ˜P is not of form (2.3) if β 	= 0. Nevertheless, the condition number
κ(˜P(b1, b2, b3, β)) ≈ 5.82842780720132 for the weights b1 = 2, b2 = 4, b3 = 3, and
β = −2.45, is much lower than with β = 0 (i.e. κ(˜P(2, 4, 3, 0)) ≈ 13.92820324,
cf. Example 3.4). ��

Lemma 3.3 and inequality (2.5) show that
√

κmin from (3.10) is an upper
bound for the best constant in (3.1) for the 2D case. For matrices with eigen-
values that have the same real part it actually yields the minimal multiplicative
constant c, as we shall show now. Other cases will be discussed in Sect. 4.

For a diagonalizable matrix C ∈ C
2×2 with λC

1 = λC
2 it holds that ‖f(t)‖2 =

e−�λC
1 t‖f I‖2. And for the general case we have:

Theorem 3.7. Let C ∈ C
2×2 be a diagonalizable, positive stable matrix with

eigenvalues λC
1 	= λC

2 , and associated eigenvectors v1 and v2, resp. If the eigen-
values have identical real parts, i.e. 
λC

1 = 
λC
2 , then the condition number of

the associated matrix P in (2.3) with equal weights, e.g. b1 = b2 = 1, yields the
minimal constant in the decay estimate (3.1) for the ODE (2.1):

c =
√

κ(P) =

√

1 + α

1 − α
where α :=

∣

∣

∣

〈 v1
‖v1‖ ,

v2
‖v2‖

〉∣

∣

∣. (3.12)
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Proof. With the notation from the proof of Lemma3.3 we have

P(1) =
(

1 + α2 α
√

1 − α2

α
√

1 − α2 1 − α2

)

,

with the eigenvectors yP
+ = (

√
1 − α2, 1−α)�, yP

− = (
√

1 − α2,−1−α)�. Accord-
ing to the discussion after (2.5) we choose the initial condition f I = yP

+ . From
the diagonalization (3.2) of C we get

f(t) = (W∗)−1e−DtW∗f I .

Using (3.8) and W∗yP
± =

√
1 − α2

(

1
±1

)

we obtain directly that

f(t0) = e−λC
1 t0yP

− with t0 =
π

|�(λC
2 − λC

1 )| .

Hence, also the first inequality in (2.5) is sharp at t0. Sharpness of the whole
chain of inequalities then follows from (2.6), and this finishes the proof. ��

This theorem now allows us to identify the minimal constant c in Theorem 1.1
on the Goldstein-Taylor model: The eigenvalues of the matrices Ck, k 	= 0 from

(1.3) are λ = 1
2 ± i

√

k2 − 1
4 .The corresponding transformation matrices Pk with

b1 = b2 = 1 are given by P0 = I and

Pk =
(

1 − i
2k

i
2k 1

)

, with κ(Pk) =
2|k| + 1
2|k| − 1

, k 	= 0.

Combining the decay estimates for all Fourier modes uk(t) shows that the mini-
mal multiplicative constant in Theorem1.1 is given by c =

√

κ(P±1) =
√

3. For
a more detailed presentation how to recombine the modal estimates we refer to
§4.1 in [1].

4 Optimal Constant for 2D Systems

The optimal constant c in (3.1) for C ∈ C
2×2 with 
λC

1 = 
λC
2 was determined

in Theorem 3.7. In this section we shall discuss the remaining 2D cases. We start
to derive the minimal multiplicative constant c for matrices C with eigenvalues
that have distinct real parts but identical imaginary parts.

Theorem 4.1. Let C ∈ C
2×2 be a diagonalizable, positive stable matrix with

eigenvalues λC
1 and λC

2 , and associated eigenvectors v1 and v2, resp. If the
eigenvalues have distinct real parts 
λC

1 < 
λC
2 and identical imaginary parts

�λC
1 = �λC

2 , then the minimal multiplicative constant c in (3.1) for the
ODE (2.1) is given by

c =
1√

1 − α2
where α :=

∣

∣

∣

〈 v1
‖v1‖ ,

v2
‖v2‖

〉∣

∣

∣. (4.1)
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Proof. We use again the unitary transformation as in the proof of Lemma3.3,
such that the eigenvectors w1 and w2 of C∗ are given in (3.7). If f(t) is a solution
of (2.1), then f̃(t) := ei�λC

1 tf(t) satisfies

d
dt

f̃(t) = −˜Cf̃(t) , f̃(0) = f I , (4.2)

with
˜C := (C − i�λC

1 I) = (W∗)−1

(
λC
1 0

0 
λC
2

)

W∗.

The multiplication with ei�λC
1 t is another unitary transformation and does not

change the norm, i.e. ‖f(t)‖2 = ‖f̃(t)‖2. Therefore, we can assume w.l.o.g. that
matrix C has real coefficients and distinct real eigenvalues. Then, the solution
f(t) of the ODE (2.1) satisfies 
f(t) = fre(t) and �f(t) = fim(t) where fre(t)
and fim(t) are the solutions of the ODE (2.1) with initial data 
f I and �f I ,
resp. Altogether, we can assume w.l.o.g. that all quantities are real valued: Con-
sidering a matrix C ∈ R

2×2 with two distinct real eigenvalues λ1 < λ2 and real
eigenvectors v1 and v2, then the associated eigenspaces span{v1} and span{v2}
dissect the plane into four sectors

S±∓ := {z1v1 + z2v2 | z1 ∈ R
± , z2 ∈ R

∓}, (4.3)

see Fig. 1. A solution f(t) of ODE (2.1) starting in an eigenspace will approach
the origin in a straight line, such that

‖f(t)‖22 = e−2λC
j t‖f I‖22 ∀t ≥ 0. (4.4)

If a solution starts instead in one of the four (open) sectors S±∓, it will remain
in that sector while approaching the origin. In fact, since λC

1 < λC
2 , if f I =

z1(v1 + γv2) for some z1 ∈ R \ {0} and γ ∈ R, then the solution

f(t) = z1
(

e−λC
1 tv1 + γe−λC

2 tv2
)

= z1e
−λC

1 t
(

v1 + γe−(λC
2 −λC

1 )tv2
)

of the ODE (2.1) will remain in the sector

S±
γ := {z1(v1 + z2v2) | z1 ∈ R

± , z2 ∈ [min(0, γ),max(0, γ)]}, (4.5)

see Fig. 1. For a fixed f I = z1(v1 + γv2), let S be the corresponding sector S±
γ .

Then estimate (2.5) can be improved as follows

‖f(t)‖22 ≤ 1
λP
min, S

‖f(t)‖2P ≤ e−2μt

λP
min, S

‖f I‖2P ≤ cS(P) e−2μt‖f I‖22, t ≥ 0, (4.6)

where

λP
min, S := inf

x∈S
〈x, Px〉
〈x, x〉 , λP

init, S :=
〈f I , Pf I〉
〈f I , f I〉 , cS(P) :=

λP
init, S

λP
min, S

. (4.7)
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Fig. 1. The blue (black) lines are the eigenspaces span{v1} and span{v2} of matrix C.
The red (grey) curve is a solution f(t) of the ODE (2.1) with initial datum fI . The
shaded regions are the sectors S+

γ , S−
γ with the choice γ = 1/2. Note: The curves are

colored only in the electronic version of this article.

Note that, in the definition of λP
init, S the sector S ∈ {S±

γ

∣

∣γ ∈ R
}

also determines
corresponding initial conditions f I ∈ ∂S via f I = z1(v1 + γv2) (up to the
constant z1 	= 0 which drops out in λP

init, S).
For (4.6) to hold for all trajectories and one fixed constant on the right hand

side, we have to take the supremum over all initial conditions or, equivalently,
over all sectors S ∈ {S±

γ

∣

∣γ ∈ R
}

. Although f I = z2v2 is not included in any
sector S+

γ , its corresponding multiplicative constant 1 (see (4.4)) is still covered.
Then, the minimal multiplicative constant in (3.1) using (4.6) is

c̃ =
√

inf
P

sup
S

cS(P), (4.8)

where P ranges over all matrices of the form (2.3).

Step 1 (computation of λP
min, S+

γ
for γ fixed): To find an explicit expression for this

minimal constant c, we first determine cS(P) for a given admissible matrix P.
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As an example of sectors, we consider only S+
γ for fixed γ ≤ 0 and compute

λP
min, S+

γ
= inf

x∈S+
γ

〈x, Px〉
‖x‖2 = inf

z1∈R+, z2∈[γ,0]

〈z1(v1 + z2v2), P(z1(v1 + z2v2))〉
‖z1(v1 + z2v2)‖2

= inf
z2∈[γ,0]

〈v1 + z2v2, P(v1 + z2v2)〉
‖v1 + z2v2‖2 .

This also shows that λP
min, S+

γ
= λP

min, S−
γ

for any fixed γ ∈ R. Next, we use
the result of Lemma 3.1 and (3.6), stating that the only admissible matrices are
P = W diag(b1, b2)W∗ for b1, b2 > 0. Since cS(bP) = cS(P) for all b > 0, we
consider w.l.o.g. b1 = 1/b and b2 = b for b > 0. Then, we deduce

λP
min, S+

γ
= inf

z∈[γ,0]

〈v1 + zv2, P(v1 + zv2)〉
‖v1 + zv2‖2

= inf
z∈[γ,0]

〈W∗(v1 + zv2), diag(1/b, b)W∗(v1 + zv2)〉
‖v1 + zv2‖2 .

In our case of a real matrix C with distinct real eigenvalues, the left and right
eigenvectors are related as follows: Up to a change of orientation, 〈wj , vk〉 = δjk

(j, k ∈ {1, 2}). Considering 〈wj , vj〉 = 1 for j = 1, 2, implies that the vectors
wj and vj can be normalized simultaneously only if matrix C is symmetric.
Therefore, using a coordinate system such that the normalized eigenvectors of
C∗ are given as (3.7) and V := (v1|v2) = (W∗)−1 yields

v1 =
1√

1 − α2

(√
1 − α2

−α

)

, v2 =
1√

1 − α2

(

0
1

)

forα in (3.7).

Finally, we obtain

λP
min, S+

γ
= inf

z∈[γ,0]

〈W∗(v1 + zv2), diag(1/b, b)W∗(v1 + zv2)〉
‖v1 + zv2‖2 = inf

z∈[γ,0]
g(z)

and λP
init, S+

γ
= g(γ) with

g(z) :=
(1 − α2) (1b + bz2)

1 − 2αz + z2
. (4.9)

Step 2 (extrema of the function g): The function g has local extrema at

z± =
1

2αb

(

b − 1
b

±
√

(

b − 1
b

)2 + 4α2
)

which satisfy z− < 0 < z+. Writing g′(z) = h1(z)/h2(z) with h1(z) :=
(−2αbz2 +2

(

b− 1
b

)

z + 2
b α
)

and h2(z) := (1−2αz +z2)2/(1−α2) > 0, we derive

g′′(z±) =
h′
1(z±)

h2(z±)
= ∓2

1
h2(z±)

√

(

b − 1
b

)2 + 4α2 .
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In fact, the function g attains its global minimum on R (and on R
−
0 ) at z−, and

its global maximum on R at z+. The global supremum of g(z) on R
− exists and

satisfies

sup
z∈R−

g(z) =

⎧

⎪

⎨

⎪

⎩

g(0) = (1 − α2)/b if b ∈ (0, 1),
g(0) = limz→−∞ g(z) = 1 − α2 if b = 1,

limz→−∞ g(z) = (1 − α2)b if b ∈ (1,∞).

Step 3 (optimization of cS±
γ

(P) w.r.t. γ): We obtain

cS±
γ

(P(b)) =
g(γ)

λ
P(b)

min, S+
γ

=

{

1 if z− ≤ γ < 0,

g(γ)/g(z−) if γ ≤ z−.

Finally, we derive

sup
γ∈R−

cS±
γ

(P(b)) = lim
γ→−∞

g(γ)
g(z−)

=
(1 − α2)b

g(z−)
, (4.10)

and in a similar way,

sup
γ∈R+

cS±
γ

(P(b)) =
g(z+)
g(0)

=
bg(z+)
1 − α2

. (4.11)

To finish this analysis we note that cS±
0

(P(b)) = 1, due to (4.4) and f I = z1v1.

Step 4 (minimization of supS cS(P) w.r.t. P): We obtain

inf
P

sup
S

cS(P) = inf
b∈(0,∞)

sup
γ∈R

cS±
γ

(P(b)) = inf
b∈(0,∞)

max
{ (1 − α2)b

g(z−)
, 1,

bg(z+)
1 − α2

}

.

Taking into account the b-dependence of z±, the functions (1−α2)b
g(z−) and bg(z+)

1−α2

are monotone increasing in b, since

∂

∂b

(1 − α2)b
g(z−)

> 0,
∂

∂b

bg(z+)
1 − α2

> 0.

Therefore we have to study their limits as b → 0: We derive

lim
b→0

(1 − α2)b
g(z−)

= 1 using lim
b→0

z−(b) = −∞,

lim
b→0

bg(z+)
1 − α2

=
1

1 − α2
> 1 using lim

b→0
z+(b) = α.

(4.12)

Hence, infb∈(0,∞) supγ∈R
cS±

γ
(P(b)) is realized by the sector S±

γ with γ =
z+(b) > 0 and in the limit b → 0. Altogether we obtain

c̃ =
√

inf
P

sup
S

cS(P) =
1√

1 − α2
,
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where the first equality holds since we discussed all solutions. This finishes the
proof.

Step 5: Finally we have to verify that c̃ is minimal in (3.1). We shall show
that it is attained asymptotically (as t → ∞) for a concrete trajectory: For
fixed b ∈ (0,∞), the minimal multiplicative constant in (4.6) is attained for the
solution with initial datum f I = v1 + z+(b)v2 = y

P(b)
+ , which is the eigenvector

pertaining to the largest eigenvalue of P(b) (cp. to the proof of Theorem3.7).
The formula for f I holds since supS cS(P(b)) = bg(z+(b))/(1−α2). This can be
verified by a direct comparison of (4.10) and (4.11). For b small it also follows
from (4.12). In the limit b → 0, P(b) in (3.9) approaches a multiple of w1 ⊗ w∗

1

and
f I = v1 + z+(b)v2 −→ v1 + αv2 = w1.

The solution f(t) of the ODE (2.1) with f I = w1 satisfies

f(t) = e−Ctw1 = V
(

e−λ1t 0
0 e−λ2t

)

W∗w1 = e−λ1tv1 + αe−λ2tv2. (4.13)

This implies

e�λ1t ‖f(t)‖2
‖f I‖2 ≤ ‖v1 + αe−�(λ2−λ1)tv2‖2 t→∞−→ ‖v1‖2 = 1√

1−α2

and it finishes the proof. ��
After the analysis in Theorems 3.7 and 4.1, we are left with the case of a

matrix C ∈ C
2×2 with eigenvalues λ1 and λ2 such that the real and imaginary

parts are distinct. This case can not occur for real matrices C. The proof of
Lemma 3.3 gives an upper bound

√

1+α
1−α for the multiplicative constant in (3.1).

On the other hand, the solution f(t) of the ODE (2.1) with f I = w1 satis-
fies (4.13), hence,

‖f(t)‖2
2 = e−2�λ1t‖v1 + αe−(λ2−λ1)tv2‖2

2

= 1
1−α2 e−2�λ1t

(
1 − 2α2e−�(λ2−λ1)t cos

(�(λ2 − λ1)t
)

+ α2e−2�(λ2−λ1)t
)
.

The expression in the bracket is bigger than 1, e.g. at time t = π/�(λ2−λ1). Thus
the minimal multiplicative constant c is definitely bigger than 1√

1−α2 , which is
the best constant for �λ1 = �λ2 (see Theorem 4.1).

Next, we derive the upper and lower envelopes for the norm of solutions f(t)
of ODE (2.1) in order to determine the sharp constant c. For a diagonalizable
matrix C ∈ C

2×2 with λC
1 = λC

2 it holds that ‖f(t)‖2 = e−�λC
1 t‖f I‖2. And for

the general case we have:

Proposition 4.2. Let C ∈ C
2×2 be a diagonalizable, positive stable matrix with

eigenvalues λC
1 	= λC

2 , and associated eigenvectors v1 and v2, resp. Then the
norm of solutions f(t) of ODE (2.1) satisfies

h−(t)‖f I‖22 ≤ ‖f(t)‖22 ≤ h+(t)‖f I‖22 , ∀t ≥ 0,
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where the envelopes h±(t) are given by

h±(t) := e−2�λC
1 tm±(t)

with

m±(t) := ±e−γt
(

√

(

cosh(γt) − α2 cos(δt)
)2

(1 − α2)2
− 1 ±

(

cosh(γt) − α2 cos(δt)
)

1 − α2

)

,

where γ := 
(λC
2 − λC

1 ), δ := �(λC
2 − λC

1 ), α :=
∣

∣

∣

〈

v1
‖v1‖ , v2

‖v2‖
〉∣

∣

∣ and α ∈ [0, 1).

While the rest of the article is based on estimating Lyapunov functionals, the
following proof will use the explicit solution formula of the ODE.

Proof. We use again the unitary transformation as in the proof of Lemma3.3,
such that the eigenvectors w1 and w2 of C∗ are given in (3.7). If f(t) is a solution
of (2.1), then f̃(t) = eλC

1 tf(t) satisfies

d
dt

f̃(t) = −˜Cf̃(t), f̃(0) = f I , (4.14)

with
˜C = (C − λC

1 I) = (W∗)−1

(

0 0
0 λC

2 − λC
1

)

W∗.

The explicit solution f̃(t) of (4.14) is

f̃(t) = (W∗)−1

(
1 0

0 e−(γ+iδ)t

)
W∗fI =

(
fI
1

α√
1−α2

(e−(γ+iδ)t − 1)fI
1 + e−(γ+iδ)tfI

2

)
,

where γ = 
(λC
2 − λC

1 ) and δ = �(λC
2 − λC

1 ). If the initial data f I lies in R×C

then the solution will satisfy f̃(t) ∈ R × C for all t ≥ 0. The multiplication
with f I

1 /|f I
1 | is another unitary transformation and does not change the norm.

Therefore, to compute the envelope for the norm of solutions f̃(t) of ODE (4.14)
we assume w.l.o.g. that

f I
φ,θ =

(

cos(φ)
sin(φ)eiθ

)

∈ R × C, where φ, θ ∈ [0, 2π), (4.15)

such that ‖f I
φ,θ‖ = 1. We consider the solution f̃φ,θ(t) for (4.14) with f I = f I

φ,θ.
To compute the envelopes (for fixed t), we solve ∂φ‖f̃φ,θ‖2 = 0 and ∂θ‖f̃φ,θ‖2 = 0
in terms of φ and θ. Evaluating ‖f̃φ,θ(t)‖2 at φ = φ(t) and θ = θ(t) yields
the envelopes for the norm of solutions f̃(t) of ODE (4.14). Consequently,
we derive the envelopes h±(t)‖f I‖2 for the original problem, since ‖f(t)‖2 =
e−�λC

1 t‖f̃(t)‖2. ��
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Corollary 4.3. Let C ∈ C
2×2 be a diagonalizable, positive stable matrix. Then

the minimal multiplicative constant c in (3.1) for the ODE (2.1) is given by

c =
√

sup
t≥0

m+(t), (4.16)

where m+(t) is the function given in Proposition 4.2.

In general we could not find an explicit formula for supt≥0 m+(t).

5 A Family of Decay Estimates for Hypocoercive ODEs

In this section we shall illustrate the interdependence of maximizing the decay
rate λ and minimizing the multiplicative constant c in estimates like (3.1). For
the ODE-system (2.1), the procedure described in Remark 1.2(b) yields the opti-
mal bound for large time, with the sharp decay rate μ := min{
(λ)|λ is an
eigenvalue of C}. But for non-coercive C we must have c > 1. Hence, such a
bound cannot be sharp for short time. As a counterexample we consider the
simple energy estimate (obtained by premultiplying (2.1) with f∗)

‖f(t)‖2 ≤ e−μst‖f I‖2 , t ≥ 0,

with Cs := 1
2 (C + C∗) and μs := min{λ|λ is an eigenvalue of Cs}.

The goal of this section is to derive decay estimates for (2.1) with rates in
between this weakest rate μs and the optimal rate μ from (2.5). It holds that
μs ≤ μ. At the same time we shall also present lower bounds on ‖f(t)‖2. The
energy method again provides the simplest example of it, in the form

‖f(t)‖2 ≥ e−νst‖f I‖2 , t ≥ 0,

with νs := max{λ|λ is an eigenvalue of Cs}. Clearly, estimates with decay rates
outside of [μs, νs] are irrelevant.

We present our main result only for the two-dimensional case, as the best
multiplicative constant is not yet known explicitly in higher dimensions (cf.
Sect. 3):

Proposition 5.1. Let C ∈ C
2×2 be a diagonalizable positive stable matrix with

spectral gap μ := min{
(λC
j )| j = 1, 2}. Then, all solutions to (2.1) satisfy the

following upper and lower bounds:

(a)
‖f(t)‖2 ≤ c1(μ̃) e−μ̃t‖f I‖2 , t ≥ 0 , μs ≤ μ̃ ≤ μ, (5.1)

with
c21(μ̃) = κmin(β(μ̃))

given explicitly in (5.8) below. There, α ∈ [0, 1) is the cos of the (minimal)
angle of the eigenvectors of C∗ (cf. the proof of Lemma 3.3), and β(μ̃) =
max(−α,−β0), with β0 defined in (5.6), (5.7) below.
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Fig. 2. The red (grey) curves are the squared norm of solutions f(t) for ODE (2.1)
with matrix C = [1, −1; 1, 0] and various initial data fI with norm 1. The blue (black)
curves are the lower and upper bounds for the squared norm of solutions. Note: The
curves are colored only in the electronic version of this article.
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Fig. 3. Zoom of Fig. 2: The curves are the lower bounds for the squared norm of
solutions for ODE (2.1) with matrix C = [1, −1; 1, 0] and various initial data fI with
norm 1.This plot shows that these lower bounds do not intersect in a single point.
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Fig. 4. The red (grey) curves are the squared norm of solutions f(t) for ODE (2.1) with
matrix C = [19/20, −3/10; 3/10, −1/20] and various initial data fI with norm 1. The
blue (black) curves are the lower and upper bounds for the squared norm of solutions
derived from Proposition 5.1. The green (black) dash-dotted curve is the upper bound
for the squared norm of solutions derived from Theorem 4.1. Note: The curves are
colored only in the electronic version of this article.

(b)
‖f(t)‖2 ≥ c2(μ̃) e−μ̃t‖f I‖2 , t ≥ 0 , ν ≤ μ̃ ≤ νs, (5.2)

with ν := max{
(λC
j )| j = 1, 2}. The maximal constant

c22(μ̃) = κmin(β(μ̃))−1

is given again by (5.8), with α, β(μ̃) defined as in Part (a).

Proof. Part (a): For a fixed μ̃ ∈ [μs, μ] we have to determine the smallest con-
stant c1 for the estimate (5.1), following the strategy of proof from Sect. 3. To
this end, we use a unitary transformation of the coordinate system and write
P(μ̃) = WBuW∗ with

W =
(

1 α

0
√

1 − α2

)

, Bu =
(

1/b β(μ̃)
β̄(μ̃) b

)

, (5.3)

where we set w.l.o.g. b1 = 1/b, b2 = b with b > 0. Moreover, |β|2 < 1 has to
hold. Now, we have to find the positive definite Hermitian matrix Bu, such that
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the analog of (3.3), (3.4) holds, i.e.:

A :=
(

2(
(λC
1 ) − μ̃)/b (λ̄C

1 + λC
2 − 2μ̃)β

(λC
1 + λ̄C

2 − 2μ̃)β̄ 2(
(λC
2 ) − μ̃)b

)

≥ 0, (5.4)

As in the proof of Lemma 3.1, we assume that the eigenvalues of C are ordered
as 
(λC

2 ) ≥ 
(λC
1 ) = μ ≥ μ̃. Hence, TrA ≥ 0. For the non-negativity of the

determinant to hold, i.e.

detA = 4
(
(λC

1 ) − μ̃
)(
(λC

2 ) − μ̃
)− |λC

1 + λ̄C
2 − 2μ̃|2|β|2 ≥ 0, (5.5)

we have the following restriction on β:

|β|2 ≤ β2
0 :=

4
(
(λC

1 ) − μ̃
)(
(λC

2 ) − μ̃
)

|λC
1 + λ̄C

2 − 2μ̃|2 . (5.6)

If λC
1 + λ̄C

2 − 2μ̃ = 0, we conclude λC
1 = λC

2 and that we have chosen the sharp
decay rate μ̃ = μ. As the associated, minimal condition number κ(P) was already
determined in Lemma 3.3, we shall not rediscuss this case here. But to include
this case into the statement of the theorem, we set

β0 := 1 , if λC
1 = λC

2 and μ̃ = μ. (5.7)

From (5.6) we conclude that β0 ∈ [0, 1]. Note that β0 = 1 is only possible for
μ̃ = μ and λC

1 = λC
2 , i.e. the case that we just sorted out. For the rest of the

proof we hence assume that condition (5.6) holds with β0 ∈ [0, 1).
For admissible matrices Bu (i.e. with b > 0 and |β| ≤ β0) it remains to

determine the matrix

P(b, β) = WBuW∗ =
(

1
b + 2α
β + bα2 (β + bα)

√
1 − α2

(β̄ + bα)
√

1 − α2 b(1 − α2)

)

,

(with W and Bu given in (5.3)), having the minimal condition number
κ
(

P(b, β)
)

= λP
+(b, β)/λP

−(b, β). Here

λP
±(b, β) =

TrP(b, β) ±√

(TrP(b, β))2 − 4 detP(b, β)
2

are the (positive) eigenvalues of P(b, β).
As a first step we shall minimize κ

(

P(b, β)
)

w.r.t. b (and for β fixed),
since argminb>0κ

(

P(b, β)
)

will turn out to be independent of β. We notice that
TrP(b, β) = b + 2α
β + 1/b is a convex function of b ∈ (0,∞) which attains its
minimum for b = 1. Moreover, detP(b, β) = (1−α2)(1−|β|2) > 0 is independent
of b. This yields the condition number

κmin(β) =
λP
+(1, β)

λP−(1, β)
=

1 +
√

1 − (1−α2)(1−|β|2)
(1+α�β)2

1 −
√

1 − (1−α2)(1−|β|2)
(1+α�β)2

.
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As a second step we minimize κmin(β) on the disk |β| ≤ β0. To this end, the
quotient (1−α2)(1−|β|2)

(1+α�β)2 should be as large as possible. For any fixed |β| ≤ β0, this
happens by choosing β = −|β|, since α ∈ [0, 1). Hence it remains to maximize
the function g(β) := 1−β2

(1+αβ)2 on the interval [−β0, 0]. It is elementary to verify

that g is maximal at β̃ := max(−α,−β0). Then, the minimal condition number is

κmin(β̃) = κ
(

P(1, β̃)
)

=
1 +

√

1 − (1−α2)(1−β̃2)

(1+αβ̃)2

1 −
√

1 − (1−α2)(1−β̃2)

(1+αβ̃)2

. (5.8)

Part (b): Since the proof of the lower bound is very similar to Part (a), we shall
just sketch it. For a fixed μ̃ ∈ [ν, νs] we have to determine the largest constant
c2 for the estimate (5.2). To this end we need to satisfy the inequality

C∗P + PC ≤ 2μ̃P

with a positive definite Hermitian matrix P with minimal condition number
κ(P). In analogy to Sect. 2 this would imply

d
dt

‖f(t)‖2P ≥ −2μ̃‖f(t)‖2P,

and hence the desired lower bound

‖f(t)‖22 ≥ (λP
max)

−1‖f(t)‖2P ≥ (λP
max)

−1e−2μ̃t‖f I‖2P ≥ (κ(P))−1 e−2μ̃t‖f I‖22.

For minimizing κ(P), we again use a unitary transformation of the coordinate
system and write P as P(μ̃) = WBlW∗, with W from (5.3) and the positive
definite Hermitian matrix

Bl =
(

1/b β(μ̃)
β̄(μ̃) b

)

,

with b > 0 and |β|2 < 1. Then, the matrix A from (5.4) has to satisfy A ≤ 0.
Since we chose the eigenvalues of C to be ordered as 
(λC

1 ) ≤ 
(λC
2 ) = ν ≤ μ̃,

we have TrA ≤ 0. The necessary non-negativity of its determinant again reads
as (5.5).

In the special case λC
1 + λ̄C

2 −2μ̃ = 0, we conclude again λC
1 = λC

2 and μ̃ = ν.
Hence A = 0. Since β is then only restricted by |β| < 1, we can again set β0 = 1
and obtain the minimal κ(P) for β̃(ν) = −α, as in Part (a).

In the generic case, the minimal κ(P) is obtained for β̃ = max(−α,−β0)
with β0 given in (5.6). Hence, the maximal constant in the lower bound (5.2) is
c22(μ̃) = κmin(β̃)−1 where κmin is given by (5.8). This finishes the proof. ��

We illustrate the results of Proposition 5.1 with two examples.
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Example 5.2. We consider ODE (2.1) with the matrix

C =
(

1 −1
1 0

)

which has eigenvalues λ± = (1±i
√

3)/2, and some normalized eigenvectors of C∗

are, e.g.

w+ =
1√
2

(−1
λ−

)

, w− =
1√
2

(−λ−
1

)

. (5.9)

The optimal decay rate is μ = 1/2, whereas the minimal and maximal eigenvalues
of Cs are μs = 0 and νs = 1, respectively. To bring the eigenvectors of C∗ in the
canonical form used in the proof of Proposition 5.1, we fix the eigenvector w+,
and choose the unitary multiplicative factor for the second eigenvector w− as
in (5.9) such that 〈w+, w−〉 is a real number. Finally, we use the Gram-Schmidt
process to obtain a new orthonormal basis such that the eigenvectors of C∗ in
the new orthonormal basis are of the form (3.7) with α = 1/2. Then, the upper
and lower bounds for the Euclidean norm of a solution of (2.1) are plotted in
Figs. 2 and 3. For both the upper and lower bounds, the respective family of
decay curves does not intersect in a single point (see Fig. 3). Hence, the whole
family of estimates provides a (slightly) better estimate on ‖f(t)‖2 than if just
considering the two extremal decay rates. For the upper bound this means

‖f(t)‖2 ≤ min
μ̃∈[μs,μ]

c1(μ̃) e−μ̃t ‖f I‖2 ≤ min{1 , c1(μ) e−μt} ‖f I‖2 , t ≥ 0,

and for the lower bound

‖f(t)‖2 ≥ max
ν̃∈[ν,νs]

c2(ν̃) e−ν̃t ‖f I‖2 ≥ max{c2(ν) e−νt , c2(νs) e−νst} ‖f I‖2 , t ≥ 0.

Note that the upper bound
√

3e−t/2 with the sharp decay rate μ = 1
2 carries

the optimal multiplicative constant c =
√

3, as it touches the set of solutions (see
Fig. 2). But this is not true for the estimates with smaller decay rates (except
of μ̃ = 0). The reason for this lack of sharpness is the fact that the inequality
‖f(t)‖2P ≤ e−2μ̃t‖f I‖2P used in the proof of Proposition 5.1 is, in general, not an
equality (in contrast to (2.6)). ��

In the next example we consider a matrix C ∈ R
2×2 with 
λ1 	= 
λ2, which

corresponds to the case analyzed in Theorem 4.1. For such cases the strategy of
Proposition 5.1 (based on minimizing κ(P)) could be improved in the spirit of
Theorem 4.1, but we shall not carry this out here. Hence, the estimates of the
following example will not be sharp, see Fig. 4.

Example 5.3. We consider ODE (2.1) with the matrix

C =
(

19/20 −3/10
3/10 −1/20

)
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which has the eigenvalues λ1 = 1/20 and λ2 = 17/20, and some normalized
eigenvectors of C∗ are, e.g.

w1 =
1√
10

(

1
−3

)

, w2 =
1√
10

(

3
−1

)

.

The optimal decay rate is μ = 1/20, whereas the minimal and maximal eigen-
values of Cs are μs = −1/20 and νs = 19/20, respectively. Since the matrix
C and its eigenvalues are real valued, the eigenvectors of C∗ are already in the
canonical form used in the Gram-Schmidt process to obtain a new orthogonal
basis such that the eigenvectors of C∗ in the new basis are of the form (3.7) with
α = 3/5. Then, the upper and lower bounds for the Euclidean norm of a solution
of (2.1) are plotted in Fig. 4. Since μs < 0, solutions f(t) to this example may
initially increase in norm. ��
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with Forward-Backward Stochastic

Differential Equations
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Abstract. We describe an adaptive importance sampling algorithm for
rare events that is based on a dual stochastic control formulation of a
path sampling problem. Specifically, we focus on path functionals that
have the form of cumulate generating functions, which appear relevant in
the context of, e.g. molecular dynamics, and we discuss the construction
of an optimal (i.e. minimum variance) change of measure by solving
a stochastic control problem. We show that the associated semi-linear
dynamic programming equations admit an equivalent formulation as a
system of uncoupled forward-backward stochastic differential equations
that can be solved efficiently by a least squares Monte Carlo algorithm.
We illustrate the approach with a suitable numerical example and discuss
the extension of the algorithm to high-dimensional systems.

Keywords: Importance sampling · Rare events · Path sampling ·
Forward-backward SDE · Least squares Monte Carlo

1 Introduction

The simulation of rare events is among the key challenges in computational
statistical mechanics which involves fields such as molecular dynamics [16],
material science [11] or climate modelling [28]. Concrete examples include the
study of critical phase transitions in many-particle systems or the estimation of
small transition probabilities in protein folding. Estimating small probabilities
by Monte Carlo is tricky, because the standard deviation of the corresponding
statistical estimator is typically larger than the quantity to be estimated. One
technique to improve the efficiency of estimators for small probabilities is impor-
tance sampling. Here the idea is to sample from another distribution under which
the rare event is no longer rare and then correct (i.e. reweight) the estimator
with the appropriate likelihood ratio. Designing such a change of measure so
that the variance of the reweighted estimator stays bounded is not at all a triv-
ial task, and several methods have been developed to cope with this issue; for an
overview, we refer to the standard textbooks [1,24] and the references therein.
c© Springer Nature Switzerland AG 2019
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Here we consider adaptive importance sampling strategies where the change
of measure is mediated by an exponential tilting of the reference probability
measure. For stochastic differential equations, this exponential tilting can be
interpreted as a control that changes the drift of the stochastic dynamics. Adap-
tive importance sampling has been predominantly studied in the context of small
noise diffusions, for which the optimal control can be computed from the zero
viscosity limit of the corresponding dynamic programming equation [8,9,27]. In
this case the value function of the zero viscosity (deterministic) control prob-
lem is equal to the large deviations rate function that describes the exponential
tails of the rare events under consideration, and as a consequence, the change of
measure captures the rare events statistics and results in estimators that, under
certain assumptions, have uniformly bounded relative error.

Here we follow a different route, in that we do not resort to large deviations
asymptotics, but rather try to compute the zero-variance change of measure from
a suitable approximation of the dynamic programming equation that is under-
lying the stochastic control problem; in contrast to our previous works [16,29],
in which the change of measure has been obtained by solving the corresponding
variational problem directly, we here focus on the reformulation of the underlying
dynamic programming equation as a system of forward-backward stochastic dif-
ferential equations (see, e.g. [21,25]) that is solved by a least squares Monte Carlo
algorithm [4,13]. Our approach is partly inspired by related duality techniques
in financial mathematics [17,23], but exploits the specific duality structure of
the change of measure problem; see also [22] for a survey of related approaches
in financial mathematics.

The paper is organised as follows: In Sect. 2 we introduce our stochastic
dynamics, the corresponding path space free energy and its dual variational
characterisation. Section 3 deals with the formulation of the free energy sam-
pling problem and the (dual) optimal control problem as a forward-backward
stochastic differential equation (FBSDE, in short). The numerical solution of
the FBSDE that can be used to either directly compute the free energy or to
approximate the optimal control that generates the minimum variance impor-
tance sampling scheme is the topic of Sect. 4, with a simple numerical illustration
presented in Sect. 5. The article concludes in Sect. 6 with a short summary and
a discussion of open problems and future work.

2 Importance Sampling in Path Space

Let X = (Xs)s�0 be the solution of

dXs = b(Xs, s) ds + σ(Xs)dBs , X0 = x , (1)

where Xs ∈ R
d, b and σ are smooth drift and noise coefficients, and B is an m-

dimensional standard Brownian motion where in general m � d. Our standard
example will be a non-degenerate diffusion in an energy landscape,

dXs = −∇U(Xs)ds + σdBs , X0 = x , (2)
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with smooth potential energy function U and σ > 0 constant. We assume
throughout this paper that the functions b, σ, U are such that Eqs. (1) or (2)
have unique strong solutions for all s � 0. Now let W be a continuous functional

Wτ (X) =
∫ τ

0

f(Xs, s) ds + g(Xτ ) , (3)

of X up to some bounded stopping time τ where f, g are bounded and sufficiently
smooth, real valued functions.

Definition 1 (Path space free energy). Let X be the solution of Eq. (1) and
let Wτ = Wτ (X) be defined by Eq. (3). The quantity

γ = − logE [exp(−Wτ )] (4)

is called the free energy of Wτ where the expectation is understood with respect
to the realisations of (1) for given a initial condition X0 = x.

2.1 Donsker–Varadhan Variational Formula for the Free Energy

The adaptive importance sampling strategy described below is based on a varia-
tional characterization of (4) in terms of a change of measure. To make it precise,
we define P to be the probability measure on the space Ω = C([0,∞),Rn) of
continuous trajectories that is induced by the Brownian motion B in (1). We
denote the expectation with respect to P by E[·]. In abstract form, the Donsker–
Varadhan variational principle [10] states

γ = inf
Q�P

{EQ[Wτ ] + D(Q|P )} , (5)

where Q � P stands for absolute continuity of Q with respect to P , and

D(Q|P ) =

⎧⎨
⎩

∫
Ω

log
dQ

dP
(ω) dQ(ω) if Q � P

+∞ else .
(6)

denotes the relative entropy or Kullback–Leibler divergence between Q and P .
Note that D(Q|P ) = ∞ when Q is not absolutely continuous with respect to P ,
therefore it is sufficient to take the infimum in (5) over all path space measures
Q � P . If Wτ � 0, it is a simple convexity argument (see, e.g., [7]), which shows
that the minimum in Eq. (5) is attained at Q∗ given by

dQ∗

dP

∣∣∣∣
Fτ

= exp(γ − Wτ ) , (7)

where ϕ|Fτ
denotes the restriction of the path space density ϕ = dQ∗/dP to the

σ-algebra Fτ ⊂ E that is generated by the Brownian motion B up to time τ .1

1 More precisely, ϕ|Fτ is understood as the restriction of the measure Q∗ defined by
dQ∗ = ϕdP to the σ-algebra Fτ that contains all measurable sets E ∈ E , with the
property that for every t � 0 the set E ∩ {τ � t} is an element of the σ-algebra
Ft = σ(Xs : 0 � s � t) that is generated by all trajectories (Xs)0�s�t of length t.
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By the strict convexity of the exponential function, it holds that Q∗-a.s. [15]

E [exp(−Wτ )] = exp(−Wτ )

(
dQ∗

dP

∣∣∣∣
Fτ

)−1

(8)

or, equivalently,

γ = Wτ + log

(
dQ∗

dP

∣∣∣∣
Fτ

)
. (9)

That is, Q∗ defines a zero-variance change of measure. (Note that the inverse of
the Radon–Nikodym derivative in (8) exists since Wτ is bounded.)

2.2 Related Stochastic Control Problem

The only admissible change of measure from P to Q such that D(Q|P ) < ∞
results in a change of the drift in Eq. (1). Specifically, let u be a process with
values in R

m that is adapted to B and that satisfies

E
[
exp

(
1
2

∫ τ

0

|us|2 ds

)]
< ∞ . (10)

Further define the auxiliary process

Bu
t = Bt −

∫ t

0

us ds ,

so that (1) can be expressed as

dXs = (b(Xs, s) + σ(Xs)us) ds + σ(Xs)dBu
s , X0 = x . (11)

By construction, Bu is not a Brownian motion under P , but by Girsanov’s
Theorem (see, e.g., [19], Theorem 8.6.4) there exists a measure Q defined by

dQ

dP

∣∣∣∣
Fτ

= exp
(∫ t

0

us · dBu
s +

1
2

∫ t

0

|us|2 ds

)
(12)

so that Bu is a standard Brownian motion under Q. (The Novikov condition
(10) guarantees that Q is a probability measure.) Inserting (12) into (5), using
that Bu is a Brownian motion with respect to Q, it follows that (cf. [6,7]):

γ = inf
u

EQ

[∫ τ

0

f(Xs, s) +
1
2
|us|2 ds + g(Xτ )

]
, (13)

with X being the solution of Eq. (11). Since the distribution of Bu under Q is
the same as the distribution of B under P , an equivalent representation of the
last equation is

γ = inf
u

E
[∫ τ

0

f(Xu
s , s) +

1
2
|us|2 ds + g(Xu

τ )
]

. (14)
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where Xu is the solution of the controlled SDE

dXu
s = (b(Xu

s , s) + σ(Xu
s )us) ds + σ(Xu

s )dBs , Xu
0 = x , (15)

with B being a standard m-dimensional Brownian motion under the probability
measure P . The Donsker–Varadhan variational principle (5) and zero-variance
property (8) of the probability measure Q∗, for which equality in (5) is attained,
have the following stochastic control analogue (see [15, Thm. 3.1]):

Theorem 1. Let T > 0 and τO = inf{s > 0: Xu
s /∈ O} for an open and bounded

set O ⊂ R
n with smooth boundary ∂O. Further define τ = τO ∧ T and

Ψ(x, t) = E

[
exp

(
−

∫ τ

t

f(Xs, s) ds − g(Xτ )
) ∣∣∣∣∣Xt = x

]
(16)

as the exponential of the negative free energy, considered as a function of the
initial condition Xt = x with 0 � t � τ � T . Then, the path space measure Q∗

induced by the feedback control

u∗
s = σ(Xu∗

s )T ∇x log Ψ(Xu∗
s , s) (17)

and (15) yields a zero variance estimator, i.e.,

Ψ(x, 0) = exp
(

−
∫ τ

0

f(Xu∗
s , s) ds − g(Xu∗

τ )
) (

dQ∗

dP

∣∣∣∣
Fτ

)−1

Q∗ − a.s. (18)

3 From Dynamic Programming to Forward-Backward
SDE

Following the route taken by [6], it can be shown that the control u∗ in (17) is
the unique minimiser of the following stochastic control problem: minimise

J(u) = E
[∫ τ

0

f(Xu
s , s) +

1
2
|us|2 ds + g(Xu

τ )
]

(19)

over all measurable and square integrable Markovian controls u, such that the
controlled SDE (15) has a unique strong solution. Now let

V (x, t) = min
u

E
[∫ τ

t

f(Xu
s , s) +

1
2
|us|2 ds + g(Xu

τ )
∣∣∣∣ Xu

t = x

]
(20)

be the associated value function (or: optimal cost-to-go). Further define E =
O × [0, T ) and let ∂E+ = (∂O × [0, T )) ∪ (O × {T}) be the terminal set of the
augmented process (Xu

s , s)s�0, such that τ = τO ∧ T can be recast as

τ = inf{s > 0: (Xu
s , s) /∈ E} . (21)
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Assuming sufficient regularity of the coefficients b, σ, f, g and ∂O, a necessary
and sufficient condition for u = u∗ being optimal is that (see [12, Sec. VI.5])

u∗
s = −σ(Xu∗

s )T ∇xV (Xu∗
s , s) (22)

where V ∈ C2,1(E) ∩ C(∂E+) solves the dynamic programming equation

∂tV + LV + h(s, x, V, σT ∇xV ) = 0 inE

V = g on ∂E+ , (23)

with nonlinearity

h(s, x, y, z) = −1
2
|z|2 + f(x, s) (24)

and the infinitesimal generator of the control-free process Xt,

L =
1
2
σσT : ∇2

x + b · ∇x . (25)

For the derivation of (22)–(23) from the Feynman–Kac representation formula
for the free energy (4), we refer to [14, Sec. 6].

3.1 FBSDE Representation of the Dynamic Programming Equation

We will now recast the semi-linear, parabolic boundary value problem for V ∈
C2,1(E) ∩ C(∂E+). To this end, define the processes

Ys = V (Xs, s) , Zs = σ(Xs)T ∇xV (Xs, s) (26)

with X denoting the solution of the uncontrolled SDE (1) with infinitesimal
generator (25). Applying Ito’s formula to Y , using that V is a classical solution
to (23), we obtain the following backward SDE (BSDE)

dYs = −h(s,Xs, Ys, Zs)ds + Zs · dBs , Yτ = g(Xτ ) (27)

for the pair (Y,Z). Note that, by definition, Y is continuous and adapted to X,
and Z is predictable and a.s. square integrable, i.e.,

∫ τ

0

|Zs|2 ds < ∞ , (28)

in accordance with the interpretation of Zs as a control variable. Further note
that (27) must be understood as a backward SDE rather than a time-reversed
SDE, since, by definition, Ys at time s < τ is measurable with respect to the
filtration generated by the Brownian motion (Br)0�r�s, whereas a time-reversed
version of Ys would depend on Bτ via the terminal condition Yτ = g(Xτ ), which
would require a larger filtration.

By exploiting the specific form of the nonlinearity (24) that appears as the
driver h in the backward SDE (27) and the fact that the forward process X is
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independent of (Y,Z), we obtain the following representation of the solution to
the dynamic programming Eq. (23):

dXs = b(Xs, s)ds + σ(Xs) dBs , Xt = x

dYs = −f(Xs, s)ds +
1
2
|Zs|2 + Zs · dBs , Yτ = g(Xτ ) .

(29)

The solution to (29) now is a triplet (X,Y,Z), and since Y is adapted, it fol-
lows that Yt is a deterministic function of the initial data (x, t) only. Since g
is bounded, the results in [18] entail existence and uniqueness of (27); see also
[2,3]. As a consequence (see e.g. [20] or [5, Prop. 3.1]),

Yt = V (x, t) (a.s.) (30)

equals the value function of our control problem. Recalling Theorem 1, a straight
consequence of Eqs. (14) and (20) therefore is:

Proposition 1. The free energy (4) is equal to

γ = E[Y0] , (31)

where the expectation is over the initial conditions X0 in Y0 = V (X0, 0).

Remark 1. A remark on the role of the control variable Zs in the BSDE
is in order. In (27), let h = 0 and consider a random variable ξ that is
square-integrable and Fτ -measurable where Fs is the σ-Algebra generated by
(Br)0�r�s. Ignoring the measurability for a second, a pair of processes (Y,Z)
satisfying

dYs = Zs · dBs , Yτ = ξ . (32)

is (Y,Z) ≡ (ξ, 0), but then Y is not adapted unless the terminal condition ξ
is a.s. constant, because Yt for any t < τ is not measurable with respect to
Fs ⊂ Fτ . An adapted version of Y can be obtained by replacing Yt = ξ by its
best approximation in L2, i.e. by the projection Yt = E[ξ|Ft]. Since the thus
defined process Y is a martingale with respect to our filtration, the martingale
representation theorem asserts that Yt must be of the form

Yt = E[ξ] +
∫ t

0

Z̃s · dBs , (33)

for some unique, predictable process Z̃. Subtracting the last equation from Yτ =
ξ yields

Yt = ξ −
∫ τ

t

Z̃s · dBs , (34)

or, equivalently,
dYt = Z̃s · dBs , Yτ = ξ . (35)

Hence Zs = Z̃s in (32) is indeed a control variable that makes Y adapted.

Remark 2. The forward-backward SDE (or: FBSDE) (29) is called uncoupled
since the forward SDE does not depend on the solution to the associated BSDE,
a property that will be exploited in various ways later on.
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3.2 Importance Sampling in Path Space, Cont’d

The role of the process Z in the FBSDE representation of the dynamic pro-
gramming equation is not only to guarantee that Y in (29) is adapted, so that
Yt = V (x, t) is the value function, but it can be literally interpreted as a control
since Zt = σ(Xt)T ∇xV (Xt, t). We could compute the optimal control for the
zero-variance importance sampling estimator (18) by solving (29) with initial
condition Xt = Xu

t on-the-fly, in which case one has to compute the solution of
(29) in parallel to the solution of (15). Depending on the nature of the system (in
particular the state space dimension) this on-the fly-computation, though com-
putationally demanding, may be nonetheless a sensible alternative to numerical
schemes that seek to approximate the value function by globally supported basis
functions, which may be an ill-conditioned problem, e.g. if the majority of the
trajectories are known to reside inside a small set.

As an alternative that we discuss in detail later on, we suggest to define a
feedback control for the controlled SDE (15) by

ut = −σ(Xu
t )T ∇xVK(Xu

t , t) , (36)

where

VK(x, t) =
K∑

k=1

αk(t)φk(x) (37)

with αk ∈ R and continuously differentiable (e.g. radial) basis functions φk is an
approximation ansatz for the value function. Then, by Girsanov’s Theorem,

E [exp (−Wτ )] = EQ[exp(−Lu
τ − Wu

τ )] (38)

where Lu
τ = log(dQ/dP ) is the log likelihood of the change of measure from P to

Q on Fτ , as given by (12). By continuity of the functional (38), we expect that
any unbiased estimator of the right hand side of (38) will have a considerably
smaller variance than the plain vanilla estimator (based on independent draws
from P ), provided that VK ≈ V approximates the value function.

4 Least-Squares Monte Carlo

In this section we discuss the numerical discretisation of the uncoupled FBSDE
(29), following an approach that was first suggested by Gobet et al. [13] and
later on refined by several authors; here we suggest a semi-parametric approach
with radial basis functions based on the work by Bender and Steiner [4].

4.1 Time Stepping Scheme

The fact that the FBSDE (29) is decoupled implies that it can be discretised
by an explicit time-stepping algorithm. Here we utilise a variant of the least-
squares Monte Carlo algorithm proposed in [13]. The convergence of the numer-
ical schemes for an FBSDE with quadratic nonlinearities in the driver has been
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analysed in [26]. The least-squares Monte Carlo scheme is based on the Euler
discretisation of (29), specifically,

X̂n+1 = X̂n + Δt b(X̂n, tn) +
√

Δt σ(X̂n)ξn+1

Ŷn+1 = Ŷn − Δt h(X̂n, Ŷn, Ẑn) +
√

Δt Ẑn · ξn+1 ,
(39)

where (X̂n, Ŷn, Ẑn) denotes the numerical discretisation of the joint process
(Xs, Ys, Zs), where we set Xs ≡ XτO

for s ∈ (τO, T ] when τO < T , and (ξi)i�1

is an i.i.d. sequence of normalised Gaussian random variables. Now let

Fn = σ
({

B̂k : 0 � k � n
})

be the σ-algebra generated by the discrete Brownian motion B̂n :=
√

Δt
∑

i�n ξi.
By definition, the continuous-time process (Xs, Ys, Zs) is adapted to the filtration
generated by (Br)0�r�s. For the discretised process, this implies

Ŷn = E
[
Ŷn|Fn

]
= E

[
Ŷn+1 + Δth(X̂n, Ŷn, Ẑn)|Fn

]
, (40)

using that Ẑn is independent of ξn+1. In order to compute Ŷn from Ŷn+1, it is
convenient to replace (Ŷn, Ẑn) on the right hand side by (Ŷn+1, Ẑn+1), so that
we end up with the fully explicit time stepping scheme

Ŷn = E
[
Ŷn+1 + Δth(X̂n, Ŷn+1, Ẑn+1)|Fn

]
. (41)

Note that we can use the identification of Z with the optimal control (36) and
replace Ẑn+1 in the last equation by

Ẑn+1 = σ(X̂n+1)T ∇VK(X̂n+1, tn+1) , (42)

where VK is given by the parametric ansatz (37).

Remark 3. If an explicit representation of Ẑn such as (42) is not available, it
is possible to derive a time stepping scheme for (Ŷn, Ẑn) in the following way:
multiplying the second equation in (39) by ξn+1 ∈ R

m from the left, taking
expectations and using the fact that Ŷn is adapted, it follows that

0 = E
[
ξn+1

(
Yn+1 −

√
ΔtẐn · ξn+1

)∣∣Fn

]
(43)

or, equivalently,

Ẑn =
1√
Δt

E
[
ξn+1Yn+1

∣∣Fn

]
. (44)

Together with (41) or, alternatively, with

Ŷn = E
[
Ŷn+1 + Δt h(X̂n, Ŷn+1, Ẑn)|Fn

]
, (45)

we have a fully explicit scheme for (Ŷn, Ẑn).
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4.2 Conditional Expectation

We next address the question how to compute the conditional expectations with
respect to Fn. To this end, we recall that the conditional expectation can be
characterised as a best approximation in L2:

E
[
S|Fn

]
= argmin

Y ∈L2, Fn -measurable

E[|Y − S|2] .

(Hence the name least-squares Monte Carlo.) Here measurability with respect
to Fn means that (Ŷn, Ẑn) can be expressed as functions of X̂n. In view of the
ansatz (37) and Eq. (41), this suggests the approximation scheme

Ŷn ≈ argmin
Y =Y (X̂n)

1
M

M∑
m=1

∣∣∣Y − Ŷ
(m)
n+1 − Δth

(
X̂(m)

n , Ŷ
(m)
n+1 , Ẑ

(m)
n+1

)∣∣∣2 , (46)

where the data at time tn+1 is given in form of M independent realisations of
the forward process, X̂

(m)
n , m = 1, . . . ,M , the resulting values for Ŷn+1,

Ŷ
(m)
n+1 =

K∑
k=1

αk(tn+1)φk

(
X̂

(m)
n+1

)
, (47)

and

Ẑ
(m)
n+1 = σ

(
X̂

(m)
n+1

)T
K∑

k=1

αk(tn+1)∇φk

(
X̂

(m)
n+1

)
. (48)

At time T := NΔt, the data are determined by the terminal cost:

Ŷ
(m)
N = g

(
X

(m)
N

)
, Ẑ

(m)
N = σ

(
X̂

(m)
N

)T ∇g
(
X

(m)
N

)
(49)

Note that we have defined the forward process so that all trajectories have length
T , but the realisations may be constant between τO and the terminal time T .

The unknowns that have to be computed in every iteration step are the
coefficients αk, which makes them functions of time, i.e. αk = αk(tn+1). We call
α̂ = (α1, . . . , αK) the vector of the unknowns, so that the least-squares problem
that has to be solved in the n-th step of the backward iteration is of the form

α̂(tn) = argmin
α∈RK

‖Anα − bn‖2 , (50)

with coefficients
An =

(
φk

(
X̂(m)

n

))
m=1,...,M ;k=1,...,K

(51)

and data
bn =

(
Ŷ

(m)
n+1 + Δt h

(
X̂(m)

n , Ŷ
(m)
n+1 , Ẑ

(m)
n+1

))
m=1,...,M

. (52)

Assuming that the coefficient matrix An ∈ R
M×K , K � M defined by (51) has

maximum rank K, then the solution to (50) is given by

α̂(tn) =
(
AT

nAn

)−1
AT

n bn . (53)
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Algorithm 1. Least-squares Monte Carlo
Define K,M,N and Δt = T/M .
Set initial condition x ∈ R

d.
Choose radial basis functions {φk ∈ C1(Rd,R) : k = 1, . . . ,K}.
Generate M independent realisations X̂(1), . . . , X̂(M) of length N from

X̂n+1 = X̂n + Δt b(X̂n, tn) +
√

Δtσ(X̂n)ξn+1 , X̂0 = x .

Initialise BSDE by

Ŷ
(m)
N = g

(
X̂

(m)
N

)
, Ẑ

(m)
N = σ

(
X̂

(m)
N

)T ∇g
(
X̂

(m)
N

)
.

for n = N − 1: 1 do
Assemble linear system Anα̂(tn) = bn according to (50)–(52).
Evaluate Ŷ

(m)
n and Ẑ

(m)
n according to

Ŷ (m)
n =

K∑
k=1

αk(tn)φk

(
X̂(m)

n

)
, Ẑ(m)

n = σ
(
X̂(m)

n

)T
K∑

k=1

αk(tn)∇φk

(
X̂(k)

n

)
.

If necessary, adapt basis functions φk.
end for

The thus defined scheme that is summarised in Algorithm 1 is strongly con-
vergent of order 1/2 as Δt → 0 and M,K → ∞; see [13]. Controlling the
approximation quality for finite values Δt,M,K, however, requires a careful
adjustment of the simulation parameters and appropriate basis functions, espe-
cially with regard to the condition number of the matrix An, and we will discuss
suitable strategies to determine a good basis in the next section.

Remark 4. The accuracy of the solution to the backward SDE depends on wether
the distribution of the terminal condition g(Xτ ) is accurately sampled. If the
forward process is metastable, however, it may happen that g(Xτ ) is poorly
sampled. In this case, it is possible to change the drift of the forward SDE from
b to, say, b0 where b0 is chosen such that the forward trajectories densely sample
the statistic g(Xτ ), without affecting the value function or the resulting optimal
control: Assuming that the noise coefficient σ is square and invertible, it is easy
to see that the dynamic programming PDE (23) can be recast as

∂tV + L̃V + h̃(s, x, V, σT ∇xV ) = 0 inE

V = g on ∂E+ ,

where
L̃ = L − (b − b0) · ∇
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is the generator of a forward SDE with drift b0, and

h̃(x, y, z) = h(x, y, z) + σ(x)−1(b(x) − b0(x)) · z

is the driver of the corresponding backward SDE. Hence we can change the drift
of the forward SDE at the expense of modifying the running cost, without affect-
ing the optimal control. Changing the drift may be moreover advantageous in
connection with the martingale basis approach of Bender and Steiner [4] who
have suggested to use basis functions that are defined as conditional expectations
of certain linearly independent candidate functions over the forward process,
which makes the basis functions martingales. Computing the martingale basis,
however, comes with a large computational overhead, which is why the authors
consider only cases in which the conditional expectations can be computed ana-
lytically. Changing the drift of the forward SDE may thus be used to simplify
the forward dynamics so that its distribution becomes analytically tractable.

5 Numerical Illustration

We shall illustrate the previous considerations with a standard example. To
this end, we consider a one dimensional diffusion in the double-well potential
U(x) = (x2 − 1)2 that is governed by the equation

dXs = −∇U(Xs)ds + σdBs , X0 = x , (54)

and want to compute the probability of exiting from the left well O = {x < 0}
before time T < ∞. More specifically, we set f ≡ 0 and g(x) = − log (1∂O(x))
in Eq. (3) and define the bounded stopping time τ = τO ∧T to be the minimum
of the first exit time τO of the set O and the terminal time T . Note that τO

is a.s. finite since the potential U is growing sufficiently fast at infinity, so that
(Xs)s�0 is Harris recurrent.

For the equivalent stochastic control problem with the cost

J(u) = E
[
1
2

∫ τ

0

|us|2 ds − log (1∂O(Xu
τ ))

]
(55)

and the controlled process

dXu
s = (σus − ∇U(Xu

s )) ds + σdBs , Xu
0 = x , (56)

this means that the control u seeks to push the process towards the set boundary
∂O when s ≈ T and the process has not yet left the set O, for otherwise there
will an infinite cost to pay.

Since such an infinite terminal cost is numerically difficult to handle, we
consider a regularised control problem and replace g by gε = − log(1∂O(x) + ε);
for the numerical calculations, we choose ε = 0.01. The duality relation (5)
between the control value γε = minu J(u) for fixed initial data X0 = x and the
transition probability P (τO < T ) then reads

P (τO < T |X0 = x) = exp(−γε) − ε . (57)
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We will compare the results from the FBSDE solution for γε with a reference
solution that is obtained from numerically solving the linear PDE

(
∂

∂t
− L

)
ψ(x, t) = 0 , (x, t) ∈ O × [0, T ) (58)

together with the boundary conditions2

ψ(0, t) = 1 , t ∈ [0, T )
ψ(x, 0) = 0 , x ∈ O .

(59)

Then
ψ(x, T ) = P (τO < T |X0 = x) . (60)

Table 1 below shows the reference value V ε
ref (0, x) := − log (ψ(x, T ) + ε),

together with the corresponding FBSDE solution. The procedure to obtain the
FBSDE solution is described in Algorithm 1, and the table displays the results
for different values of K,M,N = �T/Δt�. As basis functions we choose

φμk,δ
k,n (x) = exp

(
− (μk − x)2

2δ

)
, (61)

where δ = 0.1 is fixed but μk = μk(n) varies with time such that the forward
process can be well covered by the basis functions. More precisely, the centres of
the basis functions are chosen by simulating K additional independent forward
trajectories X(k), k = 1, . . . ,K and letting μk(n) = X

(k)
n . We let the whole

algorithm run 20 times and compute empirical mean and variance of V ε, denoted
by V̄ ε and S2(V ε). The results are shown in the table.

Table 1. Numerical results for the FBSDE scheme described in Algorithm 1.

V ε
ref (0, x) V̄ ε(0, x) S2(V ε(0, x))

K = 8, M = 300, T = 5, Δt = 10−3,
x = −1, σ = 1

0.3949 0.3748 10−3

K = 5, M = 300, T = 1, Δt = 10−3,
x = −1, σ = 1

1.7450 1.6446 0.0248

K = 5, M = 400, T = 1, Δt = 10−4,
x = −1, σ = 0.6

4.3030 4.5779 10−3

K = 6, M = 450, T = 1, Δt = 10−4,
x = −1, σ = 0.5

4.5793 4.6044 5 · 10−4

2 For the numerical computation, we add reflecting boundary conditions at x = −L
for some L > 0, the precise value of which does not affect the results (assuming that
it is sufficiently large, say, L > 3) since the potential has a 4-th order growth.
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Overall we find that the FBSDE scheme results in a fairly good approxima-
tion of the value function and, as a consequence of the smoothness of the basis
functions, of the optimal control. Moreover, due to the adaptive choice of the
basis functions {φμk,δ}, the results do not seem to be very sensitive to the noise
intensity σ or the time horizon T . Speaking of which, we stress that increasing
the number of basis functions K is not always advisable, since the matrix A in
(51) can easily become rank deficient, especially if σ is small and the trajec-
tories stay close together. Therefore it is crucial to check the rank of A in the
simulation and to set K to the value of the maximally observed rank.

5.1 Computational Issues

Let us also discuss the fact that we set Xs ≡ XτO
for s ∈ (τO, T ] when τO < T

again in more detail. Setting the forward trajectories constant from the exit
time on, allows to include the terminal condition g(Xτ∧T ) into the least squares
problem at time T , i.e. into the initialisation step bN , for all backward trajec-
tories. It seems that this stabilises the solution of the backward trajectory Ŷ .
Another approach, following the equations more closely, would be to start each
backward trajectories individually from either τ or T depending on whether the
corresponding forward trajectory X̂ has made an exit or not. This approach
induces numerical problems, though, because the data vector (52)—that would
normally be dominated by the positive term Ŷn+1 when all backward trajectories
were starting from T—is now perturbed at the different exit times by the nega-
tive value − log(ε). This renders the solution α̂n of the linear Eq. (53) rougher,
which in turn leads to fluctuations in the solution of Ŷn and Ẑn which can build
up and eventually lead to an explosion of the solutions.

Let us further make suggestions how to efficiently treat the case when T is
large. We will resort to the ideas of Remark 4 here, which suggests to modify
the drift b to b0 such that under the new drift the event which determines
the stopping time τ is not rare anymore. Assume now, that for all trajectories
X̂(m),m = 1, . . . , M the family of stopping times

τm
O =

{
s > 0 : X(m)

s /∈ O
}

(62)

is dominated by T in the sense that

T̃ := max{τm
O : m = 1, . . . , M} � T . (63)

Then the terminal condition g is essentially known at time T̃ and the same is
true for the backward dynamics. Hence, we suggest in case that T is large to
modify the drift such that T̃ will be small and run the algorithm only up to time
T̃ . In this case we propose to start each backward trajectory individually from
the corresponding exit time on. The matrix An is then of size K × Mn where

Mn =
∣∣∣
{

m : X̂
(m)
n−1 ∈ O

}∣∣∣ (64)
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is the number of trajectories which have not left the set O up to time step n.
This ensures that A is not rank deficient at these times which would be the case
if we set all trajectory constant after the exit, due to the definition of An with

(An)k,m = φμk,δ
k,n (X̂(m)

n ) (65)

because the basis functions are evaluated at the same constant value for all
these trajectories. To the best of our knowledge, the approximation error of the
least squares Monte Carlo algorithms with random stopping times has not been
analysed so far, and we leave this topic for future work.

We want to add that in contrast to the complexity of numerically solving the
HJB equation, which grows exponentially in the dimension d, the complexity of
solving the FBSDE is determined by solving the SDE and linear equations, i.e.
is at most cubic in d and in the number K of basis functions.

6 Conclusion and Outlook

We have presented a numerical method to compute the free energy of path
space functionals of a diffusion process where the functionals may depend on
paths having a random length. Free energies of path space functionals appear in
connection with rare event simulation and, as a guiding example for this article,
we have considered exit probabilities that are relevant in the context of molecular
dynamics or risk analysis.

The approach for efficiently computing path space free energies is based on a
variational characterisation of the free energy as the value function of an optimal
control problem or, equivalently, as an adaptive importance sampling strategy
that is based on the optimal control of the aforementioned stochastic control
problem; as we have argued, the importance sampling estimator for the free
energy enjoys a minimum variance property under the optimal control. Our
numerical strategy for solving the underlying stochastic control problem is based
on the reformulation of the corresponding semi-linear dynamic programming
equation as a forward-backward stochastic differential equation, which can be
solved quite efficiently using a least squares Monte Carlo method. For our guiding
example, the reformulation of the adaptive importance sampling algorithm as a
forward-backward SDE showed promising results.

We have discussed several options that can help to improve the convergence of
the least squares algorithm. For example, we have discussed the option of chang-
ing the drift of the forward SDE by modifying the cost functional of the corre-
sponding control problem; while this does not change the dynamic programming
equation of the underlying control problem, the corresponding forward-backward
stochastic differential equations are different, and it is possible to control the
speed of convergence of the numerical method in this way, by controlling the
random length of the forward trajectories.

Another aspect that we have only briefly touched upon is the choice of the
basis functions for the least squares algorithm. A convenient choice are martin-
gale basis functions that, by definition, are non-parametric and adaptive. Eval-
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uating the martingale basis requires to compute on-the-fly conditional expecta-
tions and it is possible to change the drift of the forward SDE so as to avoid
numerically expensive computations of the conditional expectations. In this arti-
cle we used a semi-parametric approach, and future research should address the
non-parametric one. Another interesting topic concerns sampling problems on
an infinite time horizon, which can be represented by a stopping time for hitting
an impossible set, a set which the dynamics can never reach.

We believe that forward-backward SDE are an interesting numerical and ana-
lytical tool for applications in computational statistical mechanics that connects
such diverse topics as control, filtering and estimation. A specific feature of the
proposed method is that the corresponding forward-backward SDE are decou-
pled, which leaves room for combining the aforementioned tasks with coarse-
graining and model reduction techniques. We leave all this for future work.
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Abstract. We discuss the ergodic properties of quasi-Markovian
stochastic differential equations, providing general conditions that ensure
existence and uniqueness of a smooth invariant distribution and expo-
nential convergence of the evolution operator in suitably weighted L∞

spaces, which implies the validity of central limit theorem for the respec-
tive solution processes. The main new result is an ergodicity condition for
the generalized Langevin equation with configuration-dependent noise
and (non-)conservative force.
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1 Introduction

Generalized Langevin equations (GLE) arise from model reduction and have
many applications such as sampling of molecular systems [4–6,42,60], atom-
surface scattering [8], anomalous diffusion in fluids [19], modeling of polymer
melts [34], chromosome segmentation in e coli [29], and the modelling of coarse
grained particle dynamics [15,33]. The GLE is a non-Markovian formulation,
meaning that the evolution of the current state depends not only on the state
itself but on the state history. The system is typically formulated with memory
terms describing friction with the environment and stochastic forcing. The pres-
ence of memory complicates both the analysis of the equation and its numerical
solution. In this article, we recall the derivation of the GLE as the result of
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Mori-Zwanzig reduction of a large system to model the dynamics of a subset of
the variables. We consider the ergodicity of the equation (existence of a unique
invariant distribution and exponential convergence of the associated semigroup
in a suitably weighted L∞ space), providing conditions for its validity in case
the coefficients of friction and noise depend directly on the reduced position
variables.

1.1 The Generalized Langevin Equation

Consider the situation of an open system exchanging energy with a heat bath. If
there is a strong time scale separation between the dynamics of the heat bath and
the explicitly modelled degrees of freedom, the exchange of energy between these
two systems is well modelled by a Markovian process, i.e., dynamic observables
such as transport coefficients and first passage times can be well reproduced by
a simple Markovian approximation of the heat bath.

By contrast, if we consider a system consisting of a distinguished particle
surrounded by a collection of particles of approximately the same mass, then a
reduced model where the interaction between the distinguished particle and the
solvent particles is replaced by a simple Langevin equation would lead to a poor
approximation of the dynamics of the distinguished particle.

In such modelling situations it is necessary to explicitly incorporate memory
effects, i.e., non-Markovian random forces and history dependent dissipation.
The framework in which such models are typically formulated is that of the
generalized Langevin equation. In this article we consider two different types
of generalized Langevin equations, both of which are of the form of a stochas-
tic integro differential equation and as such can be viewed as non-Markovian
stochastic differential equation (SDE) models.

Let Ωq ∈ {Rn,Tn}, where T
n = (R/Z)n denotes the n-dimensional standard

torus.1 We first consider a generalized Langevin equation of the form

q̇ = M−1p,

ṗ = F (q) −
∫ t

0

K (t − s)M−1p(s)ds + η(t).
(1)

where the dynamic variables q ∈ Ωq ,p ∈ R
n denote the configuration variables

and conjugate momenta of a Hamiltonian system with energy function

H(q ,p) = U(q) +
1
2
pTM−1p, (2)

where the mass tensor M ∈ R
n×n is required to be symmetric positive definite

and U ∈ C∞(Ωq ,R) is a smooth potential function so that F = −∇U constitutes
a conservative force. K : [0,∞) → R

n×n is a matrix-valued function of t, which

1 The assumption that configurations are restricted to the torus eliminates several
technical complications and is motivated by the frequent applications of GLEs in
molecular modelling, where such a formulation is commonly used.
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is referred to as the memory kernel, and η is a stationary Gaussian process
taking values in R

n and which (in equilibrium) is assumed to be statistically
independent of q and p. We refer to η as the noise process or random force. We
further assume that a fluctuation-dissipation relation between the random force
η and the memory kernel holds so that
(i) the random force η is unbiased, i.e.,

E[η(t)] = 0,

for all t ∈ [0,∞).
(ii) the auto-covariance function of the random force and the memory kernel K

coincide up to a constant prefactor, i.e.,

E[η(s + t)η�(s)] = β−1K (t), β > 0,

where the constant β > 0 corresponds to the inverse temperature of the
system under consideration.

Position Dependent Memory Kernels and Non-conservative Forces.
To broaden the range of applications for our model, we also consider instances
of the generalized Langevin equation where:
(i) the force F is allowed to be non-conservative, i.e., it does not necessarily

correspond to the gradient of a potential function,
(ii) the random force is a non-stationary process.

More specifically, we consider the case where the strength of the random force
depends on the value of the configurational variable q , i.e.,

q̇(t) = M−1p(t),

ṗ(t) = F (q(t)) − K̃ (q , t) ∗ p + η̃(t).
(3)

where F ∈ C∞(Ωq ,R
n) is a smooth vector field, and the random force η̃ is

assumed to be of the form

η̃(t) = gT (q(t))η(t),

with η again satisfying (i) and (ii) and the convolution term, K̃ (q , t) ∗ p, is of
the form

K̃ (q , t) ∗ p = gT (q(t))
∫ t

0

K (t − s)g(q(s))p(s)ds,

with g ∈ C∞(Rn,Rn×n) and K as specified above. We motivate the above
described type of non-stationary random force and position dependent dissi-
pation term at the end of the following section.

The generic form of the above described GLEs can be derived using a Mori-
Zwanzig reduction of the combined Hamiltonian dynamics of an explicit heat
bath representation and the system of interest [40,62,63]. In what follows, we
briefly outline the Mori-Zwanzig formalism in a simplified setup following the
presentation in [15]. We will then consider the particular case of the Kac-Zwanzig
model and demonstrate how the above instances of the GLE can be derived from
this model.
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1.2 Formal Derivation of the Generalized Langevin Equation via
Mori-Zwanzig Projection

Consider an ordinary differential equation of the form

u̇ =f(u , v),
v̇ =g(u , v),

(4)

subject to the initial condition

(u(0), v(0)) = (u0, v0), (5)

where f, g are smooth functions, i.e., f ∈ C∞(Rnu×nv ,Rnu ), g ∈ C∞(Rnu×nv ,Rnv ),
withnv , nu beingpositive integers.Also, assume that there is a probabilitymeasure
μ(du ,dv) = ρ(u , v)dudv with smooth density ρ ∈ C∞(Rnu×nv , [0,∞)), which
can be associated with a stationary state2 of the system (4). Consider now the pro-
jection operatorP, which maps observables w( · , · ) onto the conditional expecta-
tion Pu �→ Eμ[w(u , v) | v ], i.e.,

(Pw) (u) =

∫
Rnv

ρ(u , v)w(u , v)dudv∫
Rnv

ρ(u , v)dudv
.

The Mori-Zwanzig projection formalism allows to recast the system (4) as an
integro-differential equation (IDE) of the generic form

u̇(t) = f̄(u(t)) +
∫ t

0

K(u(t − s), s)ds + η(u(0), v(0), t), (6)

where f̄ = Pf , K : R
nu × [0,∞) → R

nu is a memory kernel, and η is a
function of the initial values of u , v and the time variable t. It is important to
note that while η depends on the initial condition of both u and v in (4), the
remaining terms in the IDE (6) only depend explicitly on the dynamic variable
u . Similarly as in the stochastic IDEs (1) and (3) the convolution term in (6)
can, under appropriate conditions on f, g, be considered as a dissipation term.
Likewise, under the assumptions that u , v are initialized randomly according to
μ, the term η(u(0), v(0), t) in (6) can be interpreted as a random force.

A particularly well studied case is the situation where the functions f and g
are such that (fT , gT )T is a Hamiltonian vector field and (4) corresponds to the
equation of motion of a Hamiltonian system. In this case a natural choice for μ is
the Gibbs-Boltzmann distribution associated with the Hamiltonian. This choice
of μ allows us to interpret the degrees of freedom represented by the dynamical
variable v as a heat bath or energy reservoir. For example, let u = (q ,p) ∈ R

2n,
v = (q̃ , p̃) ∈ R

2m with 2n = nu , 2m = nv . We may consider the case where f
and g are derived from the Hamiltonian

H(q ,p, q̃ , p̃) = V (q) +
1
2
pTM−1p + Vc(q , q̃) + Vh(q̃) +

1
2
p̃TM̃

−1
p̃, (7)

2 In the sense that Lρ = 0, with L being the Liouville operator associated with (4).
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where V, Vc, Vh are smooth potential functions such that V +Vc +Vh is confining
and M ∈ R

n×n, M̃ ∈ R
m×m are symmetric positive definite matrices. In view of

(6) the variables (q ,p) correspond to the explicitly resolved part of the system;
the variables (q̃ , p̃) correspond to the part of the system which is “projected
out” and is replaced by the dissipation term and the fluctuation term, thus it
functions as the heat bath in the reduced model. The coupling between heat bath
and explicitly resolved degrees of freedom is encoded in the form of the coupling
potential Vc, and the statistical properties of the heat bath are determined both
by the form of the mass matrix M̃ and the form of the potential Vh.

Let P denote the projection (u , v) �→ u . The first step in the derivation of
the IDE (6) is to rewrite the first line in (4) as

u̇(t) = (Pf) (P (u(t), v(t))) + [f(u(t), v(t)) − (Pf) (P (u(t), v(t)))] . (8)

Obviously, the first term in (8) corresponds exactly to f̄(u(t)) in (6). Let

L = f(u , v) · ∇u + g(u , v) · ∇v

denote the Liouville operator associated with (4). Noting that

L (P (u , v)) = f(u , v),

the term in the square brackets in (8) can be rewritten in semi-group notation
as

f(u(t), v(t)) − (Pf) (u(t), v(t)) = etL(I − P)f(u(0), v(0))

= etL(I − P)LP (u(0), v(0)),
(9)

where etL denotes the flow-map operator associated with the solution of
(4), which is defined so that etLw(u(0), v(0)) = w(u(t), v(t)). The integro-
differential form (6) then follows by applying the operator identity

etL =
∫ t

0

e(t−s)LPLes(I−P )Lds + et(I−P )L,

which is known as Dyson’s formula [41], to the last line in (9) yielding

etL(I − P)LP (u(0), v(0)) =
∫ t

0

e(t−s)LPLes(I−P )L(I − P)LP (u(0), v(0))ds

+ et(I−P )L(I − P)LP (u(0), v(0)),
(10)

where the second term on the right hand side can be identified with η in (6),
and the first term in (10) corresponds to the integral term in (6). The form of
the last term in (10) suggests that η can be formally written as the solution of
a differential equation

∂

∂t
η(u(0), v(0), t) = (I − P)Lη(u(0), v(0), t),

η(u(0), v(0), 0) = f(u(0), v(0)) − (Pf)(u(0)),
(11)
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which is commonly referred to as the orthogonal dynamics equation [7,15].
A couple of remarks are in order. First, we reiterate that the above calcu-

lations are purely formal, i.e., the above expressions for the memory kernel K
and the fluctuation term η in general do not possess a closed form solution and
are therefore often considered as intractable. Moreover, the well-posedness of the
orthogonal dynamics Eq. (11) is not obvious and care needs to be taken regard-
ing the existence of solutions and the interpretation of the differential operator
L therein. We refer here to [14] for a rigorous treatment of this equation. We also
mention that the above choice of the projection operator P as a linear operator
which maps functions of (u , v) into the space of functions of u constitutes a spe-
cial case of the Mori-Zwanzig formalism. More general forms of the projection
operator P can be considered within the Mori-Zwanzig formalism. For example,
the Mori-Zwanzig formalism can be used to derive an IDE for the dynamics of
reaction coordinates (collective variables). The corresponding projection opera-
tor P is typically nonlinear in these cases, which can drastically complicate the
derivation and the form of the IDE. For a more general presentation of the Mori-
Zwanzig projection formalism we refer to the above mentioned papers [7,15] and
the references therein as well as the original papers by Mori [40] and Zwanzig
[62,63]. In particular the latter paper by Zwanzig considers nonlinear forms of
the projection operator P.

Secondly, we point out that in order to derive the stochastic IDEs (1) and (3)
an additional step is required. While (1) and (3) are of the form of a stochastic
IDE, i.e., they are IDEs driven by a (non-Markovian) stochastic process, the
Eq. (6) constitutes an IDE with random initial data, i.e., the system follows a
deterministic trajectory after initialization. In the physics literature it is com-
mon, in the situation where f, g define a Hamiltonian vector field, to establish
equivalence of these systems by virtue of an averaging argument which is con-
sidered valid when the system is in equilibrium and nv is sufficiently large (see
e.g. [25]).

Drawing a mathematically rigorous connection between (6) and a stochastic
IDE which resembles the form of (1) or (3) requires substantial work. As we
discuss in the section below, weak convergence as nv → ∞ of the trajectory of
u on finite time intervals to the solution of a stochastic integro-differential has
been shown in [27,28] for instances of the Ford-Kac model.

The Ford-Kac Model. We consider the Mori-Zwanzig projection formalism in
the situation where the ODE (4) corresponds to the equation of motion derived
from the Hamiltonian (7). We already mentioned above that the memory kernel
K and the fluctuation term in the IDE (6) in general do not possess a closed
form solution. A notable exception, however, is the situation of a linearly coupled
harmonic heat bath, e.g.,

Vc(q , q̃) = qTAcq̃ , (12)

with Ac ∈ R
n×m, and

Vh(q̃) =
1
2
q̃TAhq̃ , (13)
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with Ah ∈ R
m×m being a symmetric positive (semi-)definite matrix. Under this

choice of the potential functions Vc and Vh, the equations of motion associated
with (7) are of the form

q̇ = M−1p,

ṗ = −∇qV (q) + Acq̃ ,

˙̃q = M̃
−1

p̃,

˙̃p = −Ahq̃ + AT
c q .

(14)

The system (14) was first studied in [13] and is commonly referred to as Ford-Kac
model. Integrating the 3rd and 4th line of (14) we obtain

(
q̃(t)
p̃(t)

)
= etR

(
q̃(0)
p̃(0)

)
+
∫ t

0

e(t−s)R

(
0

AT
c q(s)

)
ds, (15)

where by R ∈ R
2m×2m we denote the matrix

R =

(
0 M̃

−1

−Ah 0

)
.

Partial integration of the integral term in (15) yields

(
q̃(t)
p̃(t)

)
= etR

(
q̃(0)
p̃(0)

)
+ R−1

(
0

AT
c q(t)

)
− R−1etR

(
0

AT
c q(0)

)
+

∫ t

0
e(t−s)R

(
0

AT
c p(s)

)
ds.

Substituting q̃ in the 2nd line by this expression we obtain an IDE of the form
(6) with the deterministic vector field f̄ being of the form

f̄(q ,p) =
(

M−1p

−∇qV (q) − AcAhA
T
c q

)
,

the memory kernel K being of the form

K(p(t − s), s) = −
(
0 0
0 A−1

c

)
e(t−s)R

(
0

AT
c p(s)

)
, (16)

and the fluctuation term being of the form

η(q̃(0), p̃(0), q(0), t) = etR

(
q̃(0)
p̃(0)

)
− R−1etR

(
0

AT
c q(0)

)
. (17)

The Thermodynamic Limit of the Ford-Kac Model. A detailed analysis
of the thermodynamic limit m → ∞ of an instance of the Ford-Kac model can
be found in [28]; see also [15,27]. The Hamiltonian of the system considered in
[28] comprises a single distinguished particle of unit mass, which is subject to an
external force associated with the confining potential function U ∈ C∞(R,R).
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The heat bath is modeled by m particles. Each of the heat bath particles is
attached by a linear spring to the distinguished particle. The heat bath parti-
cles are not subject to any additional force apart from the coupling force. The
corresponding Hamiltonian can be written3

H(q ,p, q̃ , p̃) =
1
2
p2 + U(q) +

1
2

m∑
j=1

p̃2
j

m̃j
+

1
2

m∑
j=1

kj(q̃ j − q), (18)

where kj > 0 corresponds to the stiffness constant of the spring attached to the
j-th heat bath particle and m̃j > 0 is the mass of the j-th heat bath particle.
For this system one finds that the terms (16) and (17) take a particular simple
form, so that the corresponding IDE can be written as

q̇ = p,

ṗ = −∂qU(q) −
∫ t

0

K(m)(t − s)p(s)ds + η(m)(q̃ i, p̃i, t),
(19)

where the memory kernel is of the form

K(m)(t) =
m∑

i=1

ki cos(ωit),

and the fluctuation term is of the form

η(m)(q̃ i, p̃i, t) =
m∑

i=1

√
ki

β

(
q̃ i(0) cos(ωit) + p̃i(0) sin(ωit)

)
,

with ωj =
√

kj/m̃j . If the initial conditions of the heat bath particles are
assumed to be distributed according to the Gibbs measure associated with (18)
and the statistical distribution of the values of kj and m̃j are controlled in a cer-
tain way as m → ∞, it can been shown that for any finite T > 0 the trajectories
of the solution of (19) converge weakly within the interval [0, T ] to solutions of
a stochastic IDE of the form (1); for a precise statement see [28, Theorem 4.1].

The Kac-Zwanzig Model. The Kac-Zwanzig model (see [63]) is a general-
ization of the Ford-Kac model, the heat bath is still harmonic, i.e., Vh has the
general form (13), but the coupling potential is such that the coupling force is
linear in q̃ but non-linear in q , i.e.,

Vc(q , q̃) = G(q)q̃ ,

where G ∈ C2(Rn,Rn×m). For such a system a closed form solution of the terms
in the Mori-Zwanzig projection (6) can still be derived (see [63] or [17] for a
3 One easily verifies that this Hamiltonian corresponds to a parametrization of (7)

as M = 1, ˜M = diag(m̃1, . . . , m̃m), V (q) = U(q) + 1
2

∑m
i=1 kiq

2, Vc(q , q̃) =
∑m

i=1 kiqq̃ i, Vh(q̃) = 1
2

∑m
i=1 kiq̃

2
i .
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detailed derivation). However, unlike in the situation of the Ford-Kac model the
closed form solution of the memory kernel K and the fluctuation term η are
functions of q . This observation motivates the study of GLEs of the form (3).
Instances of (3) which are derived from such a Kac-Zwanzig heat bath model
can be found for example in [25,43,44,56].

We note that an elegant alternative derivation of the GLE can be obtained
beginning from a model of an infinite-dimensional heat-bath. Such models have
been extensively studied in [21–23], and in a (non-equilibrium) context by Rey-
Bellet and coworkers in [11,12,49,51].

1.3 Main Results and Organization of the Paper

In this article we focus on instances of the GLEs (1) and (3) (or, more precisely,
(26)), which can be represented in an extended phase space as an Itô diffusion
process. We refer to such GLEs, which possess a Markovian representation in
an extended phase space as quasi-Markovian generalized Langevin equations
(QGLEs). We specify the extended variable formalism, i.e., the particular form
of the Itô diffusion processes which we consider for a Markovian representation
of GLEs, in the following Sect. 2. In that section we also review results from the
literature on the Markovian representation and approximation of generalized
Langevin equations. The main results of this article are contained in Theorems 1
to 4 which we present in Sect. 3. In these theorems we provide criteria which
ensure geometric ergodicity for the Markovian representation of GLEs of the
form (1) and (3). Since the extended variable formalism which we consider in
this article is in various ways more general than the extended variable formalisms
considered for ergodicity proofs in previous works in the literature our results
cover a wide class of GLEs, which have previously not been shown to be (geo-
metrically) ergodic and which are of high interest in applications (for a detailed
discussion see the notes at the end of Sect. 3.1). In particular, showing (geomet-
ric) ergodicity for QGLEs with non-conservative forces and/or stated dependent
memory kernels is a novel contribution of this paper. As a consequence of the
geometric ergodicity we can derive in a generic way the validity of a central limit
theorem (see Corollary 1) for the solution processes of the respective GLEs. For
the proofs of the Theorems 1 to 4 suitable Lyapunov functions must be con-
structed and the validity of a minorization condition ensured; see Sects. 3.3 and
3.4 for details, and AppendixB for a general overview of the employed frame-
work. For the proof on the existence of suitable Lyapunov functions we use a
similar ansatz as in previous works (compare in particular with [36,46]), but
we require additional linear algebra arguments due to increased generality of
our extended variable formalism. The proof of the validity of the minorization
condition in the case of position dependent coefficients requires a non-standard
alternation of the common techniques. We show the existence of a minorizing
measure by virtue of a Girsanov transformation.
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2 Markovian Representation of Generalized Langevin
Equations with Configuration Dependent Noise

In this section we derive a Markovian representation of the GLEs introduced in
Sect. 1. We start with an Itô diffusion process of the form

q̇ = M−1p,

ṗ = F (q) − Γ̃1,1(q)M−1p − Γ̃1,2(q)s + β−1/2Σ̃1(q)Ẇ ,

ṡ = −Γ̃2,1(q)M−1p − Γ̃2,2(q)s + β−1/2Σ̃2(q)Ẇ ,

with
(
q(0),p(0), s(0)

) ∼ μ0,

(20)

where M ,F , β are as previously defined. In particular F may correspond to the
negative gradient of a smooth and confining potential function U ∈ C∞(Ωq ,R),
i.e., F = −∇U . Furthermore,

(i) the auxiliary variable s(t) takes values in R
m with m ≥ n,

(ii) Ẇ = [Ẇi]1≤i≤n+m is a vector of (n+m) independent Gaussian white-noise
components, i.e., Ẇi ∼ N (0, 1) and E[Ẇi(t)Ẇj(s)] = δijδ(t − s).

(iii) Γ̃i,j , Σ̃i, i = 1, 2 are matrix valued functions so that for m ≥ n,

Γ̃ =

(
Γ̃1,1 Γ̃1,2

Γ̃2,1 Γ̃2,2

)
∈ C∞ (Ωq ,R

(n+m)×(n+m) ).

and

Σ̃ =

(
Σ̃1,1 Σ̃1,2

Σ̃2,1 Σ̃2,2

)
=

(
Σ̃1

Σ̃2

)
∈ C∞ (Ωq ,R

(n+m)×(n+m) ),

i.e.,

Γ̃1,1 ∈ C∞(Ωq ,R
n×n), Γ̃ T

2,1, Γ̃1,2 ∈ (Ωq ,R
n×m), Γ̃2,2 ∈ C∞(Ωq ,R

m×m),

and
Σ̃1 ∈ C∞(Ωq ,R

n×(n+m)), Σ̃2 ∈ C∞(Ωq ,R
m×(n+m)).

(vi) The probability measure μ0 is such that (q(0),p(0), s(0)) has finite first
and second moments. In particular,∫

Ωq×Rn+m

‖q‖22 + ‖p‖22 + ‖s‖22 μ0(dq ,dp,ds) < ∞.

Notation. In the sequel, we write xT := (qT ,pT , sT ), as well as zT := (pT , sT )
as shorthand notation for the phase space and auxiliary variables, and we use
Ωx := Ωq×Ωp×Ωs , and Ωz := Ωp×Ωs , where Ωp = R

n, Ωs = R
m, as shorthand

notation for the corresponding domains. With some abuse of notation we also
denote points in Ωx , Ωz , Ωq , Ωp , Ωs by x , z , q ,p, s, respectively.
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Associated Generator. We denote the generator of (20) by

LGLE = LH + LO, (21)

where LH and LO, which when considered as operators on C∞(Ωx ,R), have the
form

LH := F (q) · ∇p + M−1p · ∇q ,

and

LO := −Γ̃ (q)
(
M−1p

s

)
· ∇z +

β−1

2
Σ̃(q)Σ̃T (q) : ∇2

z ,

where

Σ̃(q)Σ̃T (q) : ∇2
z =

M∑
i=1

M∑
j=1

[
Σ̃(q)Σ̃T (q)

]
i,j

∂z i∂z j , M = n + m.

Derivation of the Associated Stochastic IDE. In what follows we relate
the system (20) to a non-Markovian stochastic IDE. Consider the following con-
volution functional

K̃
˜Γ (q , t) ∗ p = Γ̃1,1(q(t))M−1p(t)

− Γ̃1,2(q(t))
∫ t

0

exp
(

−
∫ t

s

Γ̃2,2(q(r))dr

)
Γ̃2,1(q(s))M−1p(s)ds,

(22)
and a random force of the form

η̃(t) = η̃w(t) + η̃c(t),

where
η̃w(t) := β−1/2Σ̃1(q(t))Ẇ (t), (23)

and
η̃c(t) := −Γ̃1,2(q(t))ηc(t), (24)

with ηc being the solution of the linear SDE

η̇c(t) = −Γ̃2,2(q(t))ηc(t) + β−1/2Σ̃2(q(t))Ẇ (t), ηc(0) = s(0). (25)

As shown in the following proposition, under this assumption, the SDE (20) can
be rewritten as a stochastic IDE of the form

q̇(t) = M−1p(t),

ṗ(t) = F (q(t)) − K̃
˜Γ (q , t) ∗ p + η̃(t).

(26)

Proposition 1. If a (weak) solution of (q(t),p(t), s(t)) of (20) exists for all
times t ≥ 0, the SDE (20) can be rewritten in the form (26).
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Proof. The solution for s in (20) can be written as

s(t) = Φ(t, 0, q)s(0) −
∫ t

0

Φ(t, s, q)Γ̃2,1(q(s))M−1p(s)ds

+
∫ t

0

Φ(t, s, q)Σ̃2(q(s))dW (s),
(27)

with

Φ(t, s, q) = exp
(

−
∫ t

s

Γ2,2(q(r))dr

)
. (28)

Substituting s(t) in the second equation of (20) by the right hand side of (27)
we obtain

ṗ(t) = F (q(t)) − Γ̃1,1(q(t))M−1p(t)

+ Γ̃1,2(q(t))
∫ t

0

Φ(t, s, q)Γ̃2,1(q(s))M−1p(s)ds − Γ̃1,2(q(t))Φ(t, 0, q)s(0)

− Γ̃1,2(q(t))
∫ t

0

Φ(t, s, q)Σ̃2(q(s))dW (s) + Σ̃1(q(t))dW (t).

As the solution of (25), ηc(t) can be written as

ηc(t) = Φ(t, 0, q)s(0) − Γ̃1,2(q(t))
∫ t

0

Φ(t, s, q)Σ̃2(q(s))dW (s),

and we find:

ṗ(t) = F (q(t)) − K̃
˜Γ (q , t) ∗ p + η̃w(t) − Γ̃1,2(q(t))ηc(t)

= F (q(t)) − K̃
˜Γ (q , t) ∗ p + η̃(t).

��
Example 1 (Quasi-Markovian GLE with constant coefficients). If we consider
the case where Γ̃ and Σ̃ are constant, i.e., Γ̃ ≡ Γ and Σ̃ ≡ Σ with Γ ,Σ ∈
R

(n+m)×(n+m), one finds that the convolution term simplifies to

K̃
˜Γ (q , t) ∗ p = −Γ1,1M

−1p(t) +
∫ t

0

Γ1,2e
−Γ2,2(t−s)Γ2,1M

−1p(s)ds,

and the noise terms become

η̃w(t) = Σ1Ẇ (t), η̃c(t) = −Γ1,2e
−Γ2,2ts(0) − Γ1,2

∫ t

0

e−Γ2,2(t−s)Σ2dW (s),

(29)
so that the stochastic IDE (26) resembles the form of the GLE (1) with

K (t) = δ(t)Γ1,1 + Γ1,2e
−Γ2,2(t−s)Γ2,1. (30)
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Example 2 (Quasi-Markovian GLE with position dependent noise strength). If
we consider the case where Γ̃2,2 and Σ̃2,2 are constant, i.e., Γ̃2,2 ≡ Γ2,2 and
Σ̃2,2 ≡ Σ2,2 with Γ̃ , Σ̃ ∈ R

m×m, the convolution term simplifies to

K̃
˜Γ (q , t) ∗ p = Γ̃1,2(q(t))

∫ t

0

e−Γ2,2(t−s)Γ̃2,1(q(s))M−1p(s)ds, (31)

and the random force terms η̃w and η̃c become

η̃w(t) = Σ̃1(q(t))Ẇ (t), (32)

and

η̃c(t) = −Γ̃1,2(q(t))e−Γ2,2ts(0) − Γ̃1,2(q(t))
∫ t

0

e−Γ2,2(t−s)Σ̃2(q(s))dW (s).

(33)
so that for m = n and Γ̃1,2 = −Γ̃ T

2,1, Σ̃1,2 = Σ̃T
2,1 ≡ 0, the stochastic IDE (26)

resembles the form of the GLE (3) with K (t) = e−Γ2,2t.

Remark 1 (Existence of solutions of (20)). A sufficient condition for (20) to
possess a unique strong solution x (t) for all times t ≥ 0, is that the right hand
side of the SDE (20) is Lipschitz in q ,p, s. Provided that the initial state μ0

is as specified in (iv), it directly follows by standard existence and uniqueness
results for SDEs (see e.g. [45, Theorem 5.2.1.]) that for any T > 0 there exists a
unique strong solution x (t), t ∈ [0, T ] of (20), which is continuous in t and

E

[∫ T

0

‖x (t)‖22dt

]
< ∞.

Since F , Γ̃ , Σ̃ are assumed to be smooth the Lipschitz condition is obviously
satisfied for Ωq = T

n. Similarly, for an unbounded configurational domain, i.e.,
Ωq = R

n, the Lipschitz condition for the right hand side of (20) follows directly
if the spectra of Γ̃ (q) and Σ̃(q) are uniformly bounded in q and F satisfies
certain asymptotic growths conditions (e.g., Assumption 3). We also note that
the existence of suitable Lyapunov functions as derived in, e.g., Lemma3 is
sufficient (see e.g. [50]) to ensure the existence of a weak solution (x (t))t≥0

under less strict asymptotic growth conditions on the force F .

2.1 Fluctuation-Dissipation Relation for Quasi-Markovian
Generalized Langevin Equations

The following assumption can be understood as a fluctuation dissipation relation
for the SDE (20):

Assumption 1. There exists a symmetric positive definite matrix Q ∈ R
m×m

such that for all q ∈ Ωq,

Γ̃ (q)
(
In 0
0 Q

)
+
(
In 0
0 Q

)
Γ̃ T (q) = Σ̃(q)Σ̃T (q). (34)
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As shown in Proposition 2, below, for a quasi-Markovian GLE with constant
coefficients (see Example 1), Assumption 1 implies that the random force is sta-
tionary with covariance function K as specified in (30).

Proposition 2. Let as in Example 1 Γ̃ and Σ̃ be constant, i.e., Γ̃ ≡ Γ and
Σ̃ ≡ Σ with Γ ,Σ ∈ R

(n+m)×(n+m). If Assumption 1 is satisfied and μ0 such
that s(0) ∼ N (0,Q), where Q ∈ R

m×m as specified in Assumption 1, then η̃ is a
stationary Gaussian process with vanishing expectation and covariance function
K as defined in (30).

Proof. Let

G(r) = Γ1,2

∫ r

0

e−Γ2,2(r−s)Σ2dW (s).

Without loss of generality we assume that t ≥ t′, and we find that the covariance
of η̃ is indeed of the form (30):

E
[
η̃(t)η̃T (t′)

]
= E

[
Σ1Ẇ (t)Ẇ (t′)T ΣT

1 ] − E[G(t)Ẇ
T
(t′)ΣT

1

]

+ E

[
Γ1,2e

−Γ2,2ts(0)s(0)T e−Γ T
2,2t′

Γ T
1,2

]

+ E

[(
Γ1,2

∫ t′

0

e−Γ2,2(t−s)Σ2dW (s)

)
GT (t′)

]

= δ(t − t′)(Γ1,1 + Γ T
1,1) − Γ1,2e

−Γ2,2(t−t′)(Γ2,1 + QΓ T
1,2)

+ Γ1,2e
−Γ2,2tQe−Γ T

2,2t′
Γ T
1,2

+ Γ1,2

∫ t′

0

e−Γ2,2(t−s)(Γ2,2Q + QΓ T
2,2)e

−Γ T
2,2(t

′−s)Γ T
1,2ds

= δ(t − t′)(Γ1,1 + Γ T
1,1) − Γ1,2e

−Γ2,2(t−t′)Γ2,1,

where expectations are taken over both μ0 and the path measure of the Wiener
process W . The last equality follows by partial integration of the integral term. ��

In the absence of a white-noise component in the random force, i.e.,
Γ̃1,1, Σ̃1,1 ≡ 0, together with the requirement of Γ̃ (q) to be stable for all q ∈ Ωq ,
Assumption 1 imposes a constraint on the form Γ̃1,2 and Γ̃2,1 as shown in the
following Proposition 3.

Proposition 3. Let Γ̃ , Σ̃,Q be such that the conditions of Proposition 4 are
satisfied. Γ̃1,1 ≡ 0 implies

∀ q ∈ Ωq : Γ̃1,2(q)Q = −Γ̃ T
2,1(q). (35)

Proof. Writing (34) in terms of the sub-blocks of Γ̃ we find
(

0 Γ̃1,2(q)Q + Γ̃ T
2,1(q)

QΓ̃ T
1,2(q) + Γ̃2,1(q) Γ̃2,2(q)Q + QΓ̃ T

2,2(q)

)
= Σ̃(q)Σ̃T (q). (36)
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By Lemma A.1 (iii) it follows that the left hand side of (36) is a positive semi-
definite matrix for all q ∈ Ωq if and only if (35) holds. ��

Equilibrium Generalized Langevin Equation. In the particular case of a
conservative force, i.e., F = −∇U , one can easily derive a closed form solution
for an invariant measure of the SDE (20) if Assumption 1 holds:

Proposition 4. Let F = −∇U , and let Assumption 1 hold. The SDE (20) con-
serves the probability measure μQ,β(dx) with density

ρQ,β(x) ∝ e−β[U(q)+ 1
2p

T M−1p+ 1
2 s

T Q−1s]. (37)

Proof. The statement follows by inspection of the stationary Fokker-Planck
equation associated with the SDE (20). ��

2.2 Non-equilibrium Quasi-Markovian Generalized Langevin
Equations Without Fluctuation-Dissipation Relation

In general one might also consider instances of (20), where a fluctuation dissipa-
tion relation in the form of Assumption 1 does not hold. Such situations might
appear in the modelling of temperature gradients or swarming/flocking phenom-
ena; see, e.g., [54] for Markovian variants of such models. For example, one may
consider an instance of (20), where Γ̃ and Σ̃ are of the form

Γ̃ =

⎛
⎜⎝

Γ̂
(1)
1,1 Γ̂

(1)
1,2 Γ̂

(2)
1,2

Γ̂
(1)
2,1 Γ̂

(1)
2,2 0

0 0 Γ̂
(2)
2,2

⎞
⎟⎠ , Σ̃ =

⎛
⎜⎝

Σ̂
(2)
1,1 0 0
0 0 0
0 0 Σ̂

(2)
2,2

⎞
⎟⎠ , (38)

where

Γ̂
(1)
1,1 , Σ̂

(1)
1,1 ∈ C∞(Ωq ,R

n×n), Γ̂
(1)
1,2 ,

(
Γ̂

(1)
2,1

)T

, Γ̂
(2)
1,2 ∈ C∞(Ωq ,R

n×m̂),

and
Γ̂

(1)
2,2 , Γ̂

(2)
2,2 , Σ̂

(2)
2,2 ∈ C∞(Ωq ,R

m̂×m̂),

with m̂ ∈ N such that m = 2m̂ and m̂ ≥ n. One can easily verify that in the
view of the corresponding non-Markovian form (26), the coefficients Γ̂

(1)
i,j , 1 ≤

i, j ≤ 2 determine the statistical properties of the dissipation, i.e., the form
of the convolution functional K̃

˜Γ (q , t) ∗ p, and the coefficients Γ̂
(2)
1,2 , Γ̂

(2)
2,2 and

Σ̂
(2)
1,1 , Σ̂

(2)
2,2 determine the statistical properties of the random force η̃. As a simple

example we mention the case where the coefficients Γ̂
(k)
i,j and Σ̂

(k)
i,j are constant,

i.e.,

Γ̂
(1)
1,1 , Σ̂

(1)
1,1 ∈ R

n×n, Γ̂
(1)
1,2 ,

(
Γ̂

(1)
2,1

)T

, Γ̂
(2)
1,2 ∈ R

n×m, Γ̂
(1)
2,2 , Γ̂

(2)
2,2 , Σ̂

(2)
2,2 ∈ R

m×m,
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with Σ̂
(2)
2,2 = Γ̂

(2)
2,2 +

(
Γ̂

(2)
2,2

)T

. Under suitable conditions on these matrices (com-
pare with the respective conditions stated in the preceding sections), it can then
be easily shown that the SDE (20) can be rewritten as

q̇ = M−1p,

ṗ = F (q) −
∫ t

0

K 1(t − s)p(s)ds + η̃,
(39)

where
K 1(t) = δ(t)Γ̂ (1)

1,1 − Γ̂
(1)
1,2 e−tΓ̂

(1)
2,2 Γ̂

(1)
2,1 , (40)

and η̃ is a stationary Gaussian process with covariance function K 2 of the form

K 2(t) = 2δ(t)Σ̂(2)
1,1 + Γ̂

(2)
1,2 e−tΓ̂

(2)
2,2

(
Γ̂

(2)
1,2

)T

. (41)

2.3 Markovian Representations of the GLE in the Literature

In the special case of Γ̃ , Σ̃ being constant (see Example 1), the Markovian rep-
resentation (20) is of similar generality to that presented in [6,30] and the steps
in the derivation are essentially the same (see also [47, Chapter 8]). Likewise, a
derivation of a Markovian representation of the form (20) can for example be
found in a slightly less general setup in [35]. We point out that besides the above
mentioned generic frameworks, there are many Markovian representations of the
GLE mentioned in the literature which are derived in the context of a particular
physical model or application. For example, the Markovian representations of the
GLE derived in [1,8,27,51] can be considered as special instances of the SDE (20)
with constant coefficients Γ̃ , Σ̃. Similarly, some of the non-equilibrium models
studied in [10–12,49,51] can be represented in the form of (20) with constant
coefficients Γ̃ , Σ̃. Markovian representations of the GLE with position depen-
dent memory kernels, which can be viewed as instances of the SDE (20) can be
found in [25,34,43,44].

Sufficient Condition for the Existence of a Markovian Representation.
Let η be a real-valued stationary Gaussian process with vanishing mean and
covariance function K ∈ C(R,R), i.e.,

∀s, t ∈ R, E[η(t)] = 0, K (t) = E[η(s + t)η(s)].

We denote by μ̂K the spectral measure of K , i.e.,

K (t) =
∫
R

eiktdμ̂K (k).

Note that the existence of the spectral measure is a direct consequence of the
following proposition, which is an adapted (and simplified) version of what is
commonly referred to as Bochner’s theorem.
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Proposition 5. A complex-valued function C with domain R is the covariance
function of a continuous weakly stationary4 random process on R

n with finite
first and second moments, if and only if it can be represented as

C(t) =
∫
R

eitkdμ(k),

where μ is a positive finite measure.

The above Proposition 5 is a simplified version of [55]. For a proof of the theorem
we refer to any standard text book in Fourier analysis, such as [53, Chapter 1].

Assume that μ̂K possesses a density with respect to the Lebesgue measure,
i.e.,

μ̂K (dk) = ρ̂K (k)dk.

It has been observed in [49] (see also [12,51] for similar results), that (ρ̂K (k))−1

being polynomial implies that η can be rewritten as a Markov process in an
extended phase space. This can be seen as a consequence of the following criteria
for Markovianity:

Proposition 6. If p(k) =
∑

m=1 cm(−ik)m is a polynomial with real coefficients
and roots in upper half plane then the Gaussian process with spectral density
|p(k)|−2 is the solution of the stochastic differential equation

p

(
−i

d
dt

)
η(t)dt = dW(t)

The above proposition is quoted from [51]. A simple and self-contained proof is
also provided in this reference. For a more comprehensive discussion, we refer to
[9].

As detailed in [51] the inverse density (ρ̂K (k))−1 being a polynomial indeed
implies the applicability of Proposition 6, as positivity of the measure μ̂K follows
from Bochner’s theorem. Therefore ρ̂K must be a positive function, i.e., a positive
polynomial of even degree, which in turn implies the existence of a suitable
polynomial p(k) =

∑
m=1 cm(−ik)m with properties as stated in Proposition 6.

Proposition 6 has been used extensively to derive finite dimensional Marko-
vian representations of the type of heat bath models used in [11,12,49,51]. Sim-
ilarly, Proposition 6 can also be used to derive suitable distributions for the
spring constants and the heat bath particle masses in the Ford-Kac model which
ensure that in the thermodynamic limit the path of the distinguished particle
converges weakly to the solution of a stochastic IDE which can be represented
in a Markovian form; see [15,27,28].

4 A stochastic process (X(t))t∈R with associated covariance function C is said to be
weakly stationary if E[X(t)] = E[X(t + s)] = 0 and C(0, s) = C(t, t + s) for all
t, s ∈ R. Since Gaussian processes are fully characterized by the mean and covariance
function, a Gaussian processes is weakly stationary if and only if it is stationary.



Generalized Langevin Equation 299

3 Ergodicity Properties

Let etLGLE denote the associated evolution operator of the process (20), i.e.,

∀ϕ ∈ C∞(Ωx ,R) : etLGLEϕ(x) = E[ϕ(x (t)) | x (0) = x], (42)

where the expectation is taken with respect to the Brownian motion W . In this
section we derive criteria for exponential convergence of etLGLE in some weighted
L∞ space as t → ∞. More precisely, define for a prescribed K ∈ C∞(Ωx , [1,∞))
with the property that K(x ) → ∞ as ‖x‖ → ∞ the set

L∞
K (Ωx ) :=

{
ϕ measurable : ‖ϕ‖L∞

K < ∞}
, (43)

where

‖ϕ‖L∞
K :=

∥∥∥∥ϕ

K
∥∥∥∥

∞
, ϕ : Ωx → R measureable, (44)

so that
(
L∞

K (Ωx ), ‖·‖L∞
K

)
can be verified to define a Banach space. Furthermore,

denote by

Eμϕ :=
∫

ϕ(x )μ(dx ), (45)

the expectation of an observable ϕ with respect to the probability measure μ.
We show under certain conditions on the coefficients Γ̃ , Σ̃ and the force F

that there exists a unique probability measure with smooth density μ(dx ) =
ρ(x )dx , such that

∃κ > 0, C > 0, ∀ϕ ∈ L∞
K ,

∥∥Eμϕ − etLGLEϕ
∥∥

L∞
K

≤ Ce−κt
∥∥Eμϕ − ϕ

∥∥
L∞

K
, (46)

for all t ≥ 0, and ∫
Ωx

K(x )μ(dx ) < ∞, (47)

where K is a suitable Lyapunov function whose exact properties we specify below.
In particular, if F = −∇U and Assumption 1 holds, then

μ(dx ) = μQ,β(dx ),

where μQ,β is as defined in Proposition 4. If the process (20) satisfies (46) for all
t ≥ 0, we say in the sequel that it is geometrically ergodic.

All results are derived using standard Lyapunov techniques (see e.g. [36,
38,39,50]), which we summarize in AppendixB. That is, we show that (i) the
minorization condition (AssumptionB.2) is satisfied and (ii) a suitable Lyapunov
function exists which satisfies Assumption B.1 (or more generally the existence of
a suitable class of Lyapunov functions of which each instance satisfies Assump-
tion B.1). We treat the cases Ωq = T

n and Ωq = R
n separately. In the situation

Ωq = R
n, we show geometric ergodicity for the case of constant coefficients, i.e.,

Γ̃ ≡ Γ , and Σ̃ ≡ Σ, which in the non-Markovian form (26) corresponds to
the situation of a stationary random force. For the case of a bounded domain
Ωq = T

n we can show geometric ergodicity also for the case where Γ̃ and Σ̃ are
not constant in q , i.e., the random force, η̃, in the corresponding non-Markovian
form (26) is non-stationary. In order to simplify presentation we assume for the
remainder of this article M = I n.
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3.1 Summary of Main Results

Let in the sequel g(x) = Θ(f(x)) indicate that the function f is bounded both
above and below by g asymptotically as ‖x‖ → ∞, i.e., there exist c1, c2 > 0
and x̃ ≥ 0, such that c1g(x) ≤ f(x) ≤ c2g(x) for all ‖x‖ ≥ x̃.

Results for Stationary Noise. We first present results for the constant coef-
ficient case, i.e., Γ̃ ≡ Γ , and Σ̃ ≡ Σ. Let for the remainder of this subsection
Γ ,Σ be such that

(i) −Γ is a stable matrix, i.e., the real parts of all eigenvalues of Γ are positive.
(ii) the SDE (20) satisfies the parabolic Hörmander condition both in the pres-

ence of the force term F as well as in absence of a force term, i.e., F ≡ 0. We
provide algebraic conditions on Γ ,Σ which imply the parabolic Hörmander
condition in Sect. 3.2.

(iii) Assumption 1 is satisfied so that for F = −∇U the measure μQ,β(dx ) =
ρQ,β(x )dx with ρQ,β as defined in (37) is an invariant measure of (20).

Theorem 1. Let Ωq = T
n, and Γ̃ , Σ̃ as specified above. There is a unique

invariant measure μ such that for any l ∈ N there exists Kl ∈ C∞(Tn × R
n+m)

with

Kl(q,p, s) = Θ(‖z‖2l), as ‖z‖ → ∞, z =
(
p
s

)
,

so that (46) and (47) hold for K = Kl. In particular, if F = −∇U , then μ =
μQ,β.

Proof. The validity of the minorization condition follows from Lemma2. The
existence of a suitable class of Lyapunov functions is shown in Lemma1. ��
In the case of an unbounded configurational domain, i.e., Ωq = R

n, we require
an additional assumption on the force F in order to construct a suitable class
of Lyapunov functions.

Assumption 2. There exists a potential function V ∈ C2(Ωq,R) with the fol-
lowing properties

(i) there exists G ∈ R such that

〈q,F (q)〉 ≤ −〈q,∇qV (q)〉 + G.

for all q ∈ Ωq.
(ii) the potential function is bounded from below, i.e., there exists umin > −∞

such that
∀q ∈ Ωq, V (q) ≥ umin.

(iii) there exist constants D,E > 0 and F ∈ R such that

∀q ∈ Ωq, 〈q,∇qV (q)〉 ≥ DV (q) + E‖q‖22 + F. (48)
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Theorem 2. Let Ωq = R
n, F satisfies Assumption 2, Γ̃ , Σ̃ as specified above

with rank(Σ) = n+m and rank(Γ1,1) = n. There is a unique invariant measure
μ such that for any l ∈ N there exists Kl ∈ C∞(R2n+m, [1,∞)) with

Kl(x) = Θ(‖x‖2l), as ‖x‖ → ∞,

such that (46) and (47) hold for K = Kl. In particular, if F = −∇U , then
μ = μQ,β.

Proof. The validity of a minorization condition follows from Lemma4. The exis-
tence of a suitable class of Lyapunov functions is shown in Lemma3. ��
The above theorem covers instances of the GLE with a non-degenerated white
noise component. In order to derive geometric ergodicity for GLEs without a
white noise component, i.e., Σ1 = 0 which is implied by Γ1,1 = 0 (see Proposi-
tion 3), we require the force F to satisfy the following assumption:

Assumption 3. Let the force F be such that

F (q) = F1(q) + F2(q),

where F1 ∈ C∞(Rn,Rn) is uniformly bounded in Ωq, i.e.,

sup
q∈Ωq

‖F1(q)‖∞ < ∞,

and
F2(q) = −Hq,

with H ∈ R
n×n being a positive definite matrix, i.e., min σ(H) = λH > 0.

Remark 2. Assumption 3 implies that there is H > 0 and h ∈ R so that

|〈g,F (q)〉| ≤ H|〈g, q〉| + h,

for all q , g ∈ R
n. Moreover, Assumption 3 implies Assumption 2 with the poten-

tial function V in Assumption 2 being of the form of a quadratic potential func-
tion, i.e.,

V (q) =
1
2
qT (H − εI n) q ,

with sufficiently small ε > 0.

The following theorem provides a sufficient condition for geometric ergodicity
of (20) for constant coefficients and Γ1,1 = 0.
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Theorem 3. Let Ωq = R
n, F satisfy Assumption 3, and Γ̃ , Σ̃ be as specified

above with Γ1,1 = 0. There exists a unique probability measure μ(dx) such that
for any l ∈ N there exists Kl ∈ C∞(R2n+m, [0,∞)) with

Kl(x) = Θ(‖x‖2l), as ‖x‖ → ∞,

such that (46) and (47) hold for K = Kl. In particular, if F = −∇U , then
μ = μQ,β.

Proof. The validity of the minorization condition follows from Lemma5. The
existence of a suitable class of Lyapunov functions is shown in Lemma3. ��

Results for Non-stationary Noise. For the case of a periodic configurational
domain Ωq = T

n we show geometric ergodicity for the SDE (20) for the general
case where Γ̃ and Σ̃ may not be constant. We focus on the case

Γ̃ (·) =

(
0 Γ̃1,2(·)

Γ̃2,1(·) Γ̃2,2(·)

)
∈ C∞(Ωq ,R

2n×2n).

where all non-vanishing sub-blocks are assumed to be invertible, i.e.,

Γ̃1,2(q), Γ̃2,1(q), Γ̃2,2(q), Σ̃2,2(q) ∈ GLn(R),

for all q ∈ Ωq , where by GLn(R) ⊂ R
n×n we denote the set of all invertible n×n-

matrices with real valued coefficients. Furthermore, we assume that −Γ̃ (q) is
a stable matrix for all q ∈ Ωq and that Γ̃ , Σ̃ are such that Assumption 1 is
satisfied, i.e., since Γ̃1,1 ≡ 0, it follows by Proposition 3 that

∀q ∈ Ωq , Γ̃1,2(q) = −QΓ̃2,1(q), (49)

holds. Moreover we assume

∃C ∈ R
(n+m)×(n+m) s.p.d., ∀ q ∈ Ωq : Γ̃ (q)C + C Γ̃ T (q) s.p.d., (50)

where the notation “s.p.d.” stands for “symmetric positive definite”. We expect
that our result can be easily extended to more general forms of Γ̃ , i.e., to the
case where Γ̃ (q) ∈ R

m×m with m �= n; see note N.5 at the end of this subsection.
We also point out that the case Γ̃1,1 �= 0 would not cause any additional diffi-
culties in the proof of the result as long as the identity (49) holds. (See e.g. [54]
for ergodicity results for under-damped Langevin equation with non-constant
coefficients.)

Theorem 4. Let Ωq = T
n. Under the assumptions on Γ̃ and Σ̃ described in

the preceding paragraph, there is a unique invariant measure μ such that there
exists for any l ∈ N a function Kl ∈ C∞(Tn × R

2n, [1,∞)) with

Kl(q,p, s) = Θ(‖z‖2l), as ‖z‖ → ∞, z =
(
p
s

)
,

such that (46) and (47) hold for K = Kl. In particular, if F = −∇U , then
μ = μQ,β.
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Proof. The validity of the minorization condition follows from Lemma7. The
existence of a suitable class of Lyapunov functions is shown in Lemma 10. ��
We provide a simple example of an instance of (20), which satisfies the condition
of Theorem 4:

Example 3. Let m = n = 1 and let Ωq = T. Consider the matrix-valued func-
tions Γ̃ , Σ̃ defined by

Γ̃ (q) =
(

0 −(2 + cos(2πq))
(2 + cos(2πq)) 1

)
, Σ̃(q) =

(
0 0
0 1

)
.

Obviously, a valid choice for Q in Proposition 4 is

Q =
(

0 0
0 1

)
.

Moreover,

C =
(

19/18 −(1/6)
−(1/6) 1

)
.

satisfies (50). This follows by virtue of Lemma A.1. We provide a plot of the
eigenvalues of the matrix

R(q) = Γ̃ (q)C + C Γ̃ T (q), (51)

as a function of q in Fig. 1.

0.2 0.4 0.6 0.8 1.0
q

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fig. 1. q vs. the eigenvalues of the matrix R(q) which is defined in (51).

Central Limit Theorem for Quasi-Markovian GLE Dynamics. A direct
consequence of the geometric ergodicity of the dynamics (20) is the validity
of a central limit theorem for certain observables. This result is of practical
importance as it justifies the use of GLE dynamics for sampling purposes as,
e.g., in [5,6,60].

Define the projection operator

Πϕ = ϕ − Eμϕ,
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and let L∞
K,0 := ΠL∞

K ⊂ L∞
K , be the subspace of L∞

K which is comprised of
observables with vanishing mean. Denote by ‖·‖B(L∞

K ) the operator norm

‖A‖B(L∞
K ) := sup

ϕ∈L∞
K

‖Aϕ‖L∞
K

‖ϕ‖L∞
K

.

induced by the norm ‖·‖L∞
K for operators A : L∞

K → L∞
K . The validity of (46)

for all t ≥ 0 immediately implies the inequality

‖ΠetLGLE‖B(L∞
K ) ≤ Cetκ. (52)

By [32, Proposition 2.1], LGLE considered as an operator on L∞
K,0 is invertible

with bounded spectrum. By [2] this implies a central limit theorem for observ-
ables contained in ϕ ∈ L∞

K as summarized in the following Corollary 1.

Corollary 1. Let the conditions of one of the Theorems 1 to 4 be satisfied and let
Kl for l ∈ N be a suitable Lyapunov function as specified therein. The spectrum
of L−1

GLEΠ is bounded in ‖·‖B(L∞
Kl

), i.e.,

‖L−1
GLEΠ‖B(L∞

Kl
) ≤ Cl

κl
, (53)

where Cl, κl > 0 are such that (46) holds for K = Kl, κ = κl, C = Cl. In
particular, a central limit theorem holds for the solution of (20), i.e.,

T−1/2

∫ T

0

[Eμϕ − ϕ(x(t))] dt ∼ N (0, σ2
ϕ), as T → ∞, (54)

for any ϕ ∈ L∞
Kl

, where μ denotes the unique invariant measure of x and

σ2
ϕ = −2

∫ (L−1
GLEΠϕ(x)

)
Πϕ(x)μ(dx).

Notes on Theorems 1 to 4:

N.1. Theorems 1 to 4 imply path-wise ergodicity in the sense that

lim
T→∞

1
T

∫ T

0

ϕ(x (t))dt = Eμϕ, (55)

almost surely for μ-almost all initializations of x (0) an almost all realizations
of the Wiener process W . We note that in the case that F = −∇U and
Assumption 1 is satisfied it is sufficient to show that the generator LGLE is
hypoelliptic in order to conclude uniqueness of the invariant measure and
path-wise ergodicity in the above sense. This follows directly from the argu-
ments in [26] as in this case the form of the invariant measure is known and
has a smooth positive density.
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N.2. The Lyapunov-based techniques on which the proofs of our ergodicity
results rely have been studied in the context of stochastic differential equa-
tions (see [36,38,50,58]) as well as in the context of discrete time Markov
chains (see e.g. [16,18,37,39]). In particular, we mention the application of
these techniques to prove geometric ergodicity of solutions of the under-
damped Langevin equation in [36,50,58]. As discussed in Sect. 2, the structure
of the SDE (20) resembles the structure of the under-damped Langevin equa-
tion and it is therefore not surprising that also the structure of the Lyapunov
functions constructed in the proofs of [36] resemble the structure of the Lya-
punov functions presented in the latter two references.

N.3. In [46] the authors construct a Lyapunov function for a Markovian refor-
mulation of the GLE with conservative force which in the representation (20)
corresponds to the case where Γ̃ , Σ̃ are constant with Γ̃ ≡ Γ such that
Γ1,1 = 0 and Γ1,2,Γ2,1,Γ2,2 ∈ R

n×n are diagonal matrices. In the same arti-
cle exponential convergence of the law to a unique invariant distribution μ
in relative entropy is shown and exponential decay estimates for the semi-
group operator etLGLE in weighted Sobolev space H1(μ) are derived using the
hypocoercivity framework by Villani (see [59]).

N.4. Ergodic properties of non-equilibrium systems which have a similar struc-
ture as the QGLE models considered here have been studied in a series of
papers [10–12,49,52]. These systems consist of a chain of a finite number of
oscillators whose ends are coupled to two different heat baths. In a simplified
version these systems can be written in the form

ṙ1 = −γ1r1 + λ1p1 +
√

2β−1γ1Ẇ1,

q̇1 = p1,

ṗ1 = −∂q1
U(q) − λ1r1,

q̇ i = pi, i = 2, 3, . . . , n − 1,

ṗi = −∂qi
U(q), i = 2, 3, . . . , n − 1,

q̇n = pn,

ṗn = −∂qn
U(q) − λ2r2,

ṙ2 = −γ2r2 + λ2pn +
√

2β−1γ2Ẇ2,

(56)

where

U(q) = U1(q1) + Un(qn) +
n∑

i=2

Ũ(q i − q i−1),

with U1, U2, Ũ ∈ C∞(R,R), γi > 0, λi > 0 for i = 1, 2, and W1,W2 are two
independent Wiener processes taking values in R. Under certain conditions
on the potential functions U1, Un and Ũ , the existence of an invariant mea-
sure (stationary non-equilibrium state) has been shown in [12]. Uniqueness
conditions were derived in [10,11], and exponential convergence to the invari-
ant state was shown in [52] (see also the review paper [51] and [3]). In the
latter reference slightly more general heat bath models are considered than
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above in (56)). Exponential convergence towards a unique invariant measure
is proven in [52] by showing the existence of a suitable Lyapunov function and
by showing hypoellipticity and controllability in the sense of AssumptionB.4.
The construction of a suitable control in the proof provided therein relies on
Ũ being strictly convex. We expect that the techniques which are used in [52]
to prove the existence of a suitable Lyapunov function and the controllabil-
ity of the SDE can be extended/modified to prove geometric ergodicity for a
wide range of GLEs which can be represented in the form (20) with constant
coefficients. In fact it has been demonstrated in [51] that controllability in the
sense of Assumption B.4 of a system consisting of a chain of oscillators which
are coupled to a single heat bath, can be proven by the same techniques as
used in [52].

N.5. We expect that Theorem 4 can be generalized to cover instances of (20),
where Γ̃ is of a form such that in the non-Markovian reformulation (26) the
memory kernel is of the form

K
˜Γ (q , t) = Γ̃1,1(q)δ(t) −

K∑
i=1

Γ̃
(i)
1,2(q)e−tΓ

(i)
2,2 Γ̃

(i)
2,1(q), K ∈ N,

where each Γ̃ (i),

Γ̃ (i)(q) =

(
0 Γ̃

(i)
1,2(q)

Γ̃
(i)
2,1(q) Γ

(i)
2,2

)

satisfies the same conditions as Γ̃ in Theorem 4.

3.2 Conditions for Hypoellipticity

Consider the case of constant coefficients in (20), i.e., Γ̃ ≡ Γ , Σ̃ ≡ Σ. In this
subsection we provide criteria in the form of algebraic conditions on Γ and Σ
which ensure that (20) satisfies the parabolic Hörmander condition, which by
Proposition B.2, implies that the differential operators

LGLE, L†
GLE, ∂t − LGLE, ∂t − L†

GLE,

are hypoelliptic. Let in the following Proposition 7 Σi, 1 ≤ i ≤ n + m denote the
column vectors of Σ, i.e.,

Σ = [Σ1, . . . Σm+n] ∈ R
(n+m)×(n+m).

Proposition 7. Let Γ̃ ≡ Γ ∈ R
(n+m)×(n+m) such that −Γ is stable and Σ̃ ≡

Σ ∈ R
(n+m)×(n+m). Any of the following conditions is sufficient for (20) to

satisfy the parabolic Hörmander condition.
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(i) F = Hq + h, where H ∈ R
n×n,h ∈ R, and for all q ∈ Ωq

R
2n+m = lin

({
Sk

(
0
Σi

)
: k ∈ N, 1 ≤ i ≤ n + m

})
, (57)

where

S := −
⎛
⎝ 0 −In 0

H Γ1,1 Γ1,2

0 Γ2,1 Γ2,2

⎞
⎠ ∈ R

(2n+m)×(2n+m).

(ii)

R
n+m = lin

⎛
⎝ ⋃

1≤i≤n+m

{
Γ kΣi : k ≤ ki

}
⎞
⎠ , (58)

where ki, 1 ≤ i ≤ n + m are defined as

ki := arg max
k∈N

Sk
0

(
0
Σi

)
∈ {0} × R

n+m, (59)

with

S0 := −
⎛
⎝0 −In 0

0 Γ1,1 Γ1,2

0 Γ2,1 Γ2,2

⎞
⎠ ∈ R

(2n+m)×(2n+m).

(iii) rank (Σ2) = m, and rank (Γ1,2) = n.

Proof. In relation to PropositionB.2 the coefficients bi are

b0(x ) = −G

(−F (q)
z

)
,

and

bi = β− 1
2

(
0
Σi

)
∈ R

2n+m, 1 ≤ i ≤ n + m,

with G ∈ R
(2n+m)×(2n+m) as defined in (70). Since for i > 0 the coefficients

bi are constant in x , we find [bi, bj ] = 0 and [b0, bi] = −∇xb0 bi for i, j > 0,
where ∇xb0 denotes the Jacobian matrix of b0, i.e.,

∇xb0 = −
⎛
⎝ 0 −I n 0

−∇F (q) Γ1,1 Γ1,2

0 Γ2,1 Γ2,2

⎞
⎠ ,

and ∇F (q) denotes the Jacobian of the force F . Therefore,

V1 = {−∇xb0 v : v ∈ V0} ∪ V0, (60)

where {(
0
Σi

)}n+m

i=1

,
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– In the case of (i) it follows that ∇xb0(x ) = S. In particular, since ∇xb0 is
constant in x , (60) generalizes to

Vi+1 = {S v : v ∈ Vi} ∪ Vi, i ∈ N. (61)

Since Vi consists only of constant functions, we have lin(Vi(x )) ≡ lin(Vi) for
all x ∈ Ωx , i ∈ N, thus (61) implies that (57) is a sufficient condition for the
SDE (20) to satisfy the parabolic Hörmander condition.

– Regarding (ii): Let kmax = max1≤i≤n+m ki. ki being as defined in (59)
together with (58) ensures that there is Ṽ ⊂ Vkmax such that all elements
in Ṽ are constant and

lin
(
Ṽ
)

≡
(

0
R

n+m

)
.

Therefore,
Vkmax+1 ⊃ {−∇b0 v : v ∈ Ṽ } ∪ Ṽ , (62)

thus for all x ∈ Ωx

lin (Vkmax+1(x ) ) = lin
(
{−∇b0(x )v(x ) : v ∈ Ṽ } ∪ Ṽ (x )

)
= R

2n+m,

where the latter equivalence is due to the fact that

lin ({−∇b0(x )v : v ∈ B} ∪ B) = R
2n+m,

for all x ∈ Ωx and any basis B ⊂ R
2n+m of {0} × R

n+m.
– Regarding (iii): Since lin(Σ2) = R

m and rank (Γ1,2) = n it follows that

{0} × R
n+m = lin

({(
0

ΓΣi

)
, 1 ≤ i ≤ n + m

})
,

thus the result follows by (ii).

��

3.3 Technical Lemmas Required in the Proofs of Ergodicity of (20)
with Stationary Random Force

In this subsection we provide the necessary technical lemmas to which we refer in
the proofs of Theorems 1 to 3, thus in the remainder of this subsection we assume
Γ̃ ≡ Γ , Σ̃ ≡ Σ. We begin by showing the existence of a class of suitable Lyapunov
functions in the case of a bounded configurational domain, i.e., Ωq = T

n.

Lemma 1. Let Ωq = T
n, −Γ ∈ R

(n+m)×(n+m) stable, then

Kl(q,p, s) =
(
zTCz

)l
+ 1, l ∈ N,

where C ∈ R
n+m is a symmetric positive definite matrix such that Γ TC + CΓ

is positive definite, defines a family of Lyapunov functions for the differential
operator LGLE, i.e., for each l ∈ N there exist constants al > 0, bl ∈ R, such
that for L = LGLE,K = Kl, AssumptionB.1 holds with a = al, b = bl.
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Proof. We show the existence of suitable constants ãl, b̃l so that the inequality
(93) is satisfied for K = K̃l := Kl − 1, and L = LGLE, a = ãl, b = b̃l, which
directly implies the statement of Lemma 1 for al = ãl and bl = b̃l + ãl. −Γ being
a stable matrix ensures that there indeed exists a symmetric positive definite
matrix C such that Γ TC + CΓ is positive definite. Without loss of generality
let min σ(C ) = 1, so that

‖z‖22 ≤ zTCz = K1(x ) − 1. (63)

Furthermore,

λ = sup
z∈Ωz ,‖z‖2=1

zT (Γ TC + CΓ )z
zTCz

,

so that
2zT ΓTCz ≥ λzTCz = λ(K1(x ) − 1). (64)

We first consider the case l = 1:

(LH + LO)K̃1(x ) = [2pTC 1,1 + 2sTC 1,2 − pT ]F (q) − 2zT Γ TCz

+ β−1
∑
i,j

[
CΣΣTC

]
i,j

≤ c1||z ||2 − 2zT Γ TCz + β−1
∑
i,j

[
CΣΣTC

]
i,j

≤ c1
ε1

+ ε1||z ||22 − 2zT Γ TCz + β−1
∑
i,j

[
CΣΣTC

]
i,j

,

where
c1 = max

q∈Ωq ,‖z‖2≤1
[2pTC 1,1 + 2sTC 1,2 − pT ]F (q).

Thus, by (63) and (64),

(LH + LO)K̃1(x ) ≤ c1
ε1

+ ε1K̃1(x ) − λK̃1(x ) + β−1
∑
i,j

[
CΣΣTC

]
i,j

= −ã1K̃1(x ) + b̃1,

with
ã1 := (λ − ε1), b̃1 :=

c1
ε1

+ (λ + ε1) + β−1
∑
i,j

[
CΣΣTC

]
i,j

,

so that ã1 > 0 for sufficiently small ε1 > 0.

For l > 1 we find:

(LH + LO)K̃l(x ) = lK̃l−1(x )
[LHK̃1(x ) + (−(Γ z ) · ∇z K̃1(x )) + β−1

∑
i,j

[
ΣΣTC

]
i,j

]

+ 2l(l − 1)β−1zTCΣΣTCz K̃l−2(x ).

(65)
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Let

λ̃ := sup
x∈Ωx ,‖z‖2=1

(
zTCΣΣTCz

K̃1(x )

)
,

so that
∀x ∈ Ωx , zTCΣΣTCz K̃l−2(x ) ≤ λ̃K̃l−1(x ).

Thus, with

cl := min

⎛
⎝0,−β−1

∑
i,j

[
CΣΣTC

]
i,j

+ β−1
∑
i,j

[
ΣΣTC

]
i,j

+ 2(l − 1)β−1λ̃

⎞
⎠ ,

we find

(LH + LO)K̃l(x ) ≤ lK̃l−1(x )
(
(LH + LO)K̃1(x ) + cl

)

≤ lK̃l−1(x )
(
−ã1K̃1(x ) + b̃1 + cl

)

≤ l

(
−ã1Kl(x ) +

b̃1 + cl

εl−1
l

+ εlKl(x )

)
= −ãlKl(x ) + b̃l,

(66)

with

ãl := l(ã1 − εl), b̃l := l
b̃1 + cl

εl−1
l

,

where εl > 0 is chosen sufficiently small so that ãl > 0. ��
We next show the existence of a minorization condition in the case of

Ωq = T
n. The idea of the proof is to decompose the diffusion process into an

Ornstein-Uhlenbeck process and a bounded remainder term, which then enables
us to conclude the existence of a minorizing measure by virtue of the fact that
the solution of Fokker-Planck equation associated with the Ornstein-Uhlenbeck
process is a non-degenerate Gaussian at all times t > 0 and thus has full support.
The idea of this approach is borrowed from [31] where it was used to show the
minorization condition for a discretized version of the under-damped Langevin
equation. Other applications of this trick can be found in [24,48].

Lemma 2. Let Ωq = T
n. If Γ ∈ R

(n+m)×(n+m) and Σ ∈ R
(n+m)×(n+m) are as

in Theorem1, then AssumptionB.2 (minorization condition) holds for the SDE
(20).

Proof (Proof of Lemma 2). Let q(0) = q0 and z (0) = z 0 with

(q0, z 0) ∈ Ωq × Cr,

where
Cr = {z ∈ Ωz : ‖z‖ < r},

for arbitrary but fixed r > 0.
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We can write the solution of (20) as

z (t) = z 0 + Dz (t) + Gz (t), q(t) = q0 + Dq (t) + Gq (t), (67)

with

Dz (t) =
∫ t

0

e−(t−s)Γ

(
F (q(s))

0

)
ds, Gz (t) =

∫ t

0

e−(t−s)Γ ΣdW (s),

and

Dq (t) =
∫ t

0

ΠpDz (s)ds, Gq (t) =
∫ t

0

ΠpGz (s)ds.

The variables Gq (t) and Gz (t) are correlated and Gaussian, i.e.,
(
Gq (t)
Gz (t)

)
∼ N (μt,Vt),

with some μt ∈ Ωx and Vt ∈ R
(2n+m)×(2n+m). More specifically, z̃ (t) = z (0) +

Gz (t) and q(0) + Gq (t) corresponds to the solution of of the linear SDE

˙̃q = p̃,

˙̃z = −Γ z̃ + ΣẆ ,
(68)

where z̃ (t) = (p̃(t), s̃(t)) ∈ Ωp ×Ωs . The law of q̃(t), z̃ (t) has full support for all
t > 0, provided that the covariance matrix Vt is invertible. This is indeed the case
since Γ and Σ are required to be such that (20) satisfies the parabolic Hörmander
condition. It follows that the system (68) satisfies the parabolic Hörmander
condition. By PropositionB.2, we conclude that the law of (q̃(t), z̃ (t)) has a
density with respect to the Lebesgue measure for any t > 0, which rules out the
possibility of Vt being singular.

Let C ∈ R
(n+m)×(n+m) be symmetric positive definite such that ΓC +CΓ T

is positive definite as well, and consider the norm ‖·‖C ,

‖·‖C := zTCz , z ∈ R
n+m.

The increment Dz (t) is uniformly bounded since

‖Dz (t)‖C ≤ ‖Γ −1‖B(C )‖F ‖L∞ < ∞,

where

‖Γ −1‖B(C ) := max
v∈R2n

‖Γ −1v‖C
‖v‖C =

1
2

min σ (Γ TC + CΓ ),

denotes the operator norm of Γ −1 induced by ‖·‖C . It follows that also Dq (t) is
bounded since

‖Dq (t)‖ ≤ t‖Dz (t)‖C < ∞.

Let μx0,t denote the law of (q(t), z (t)) and ρx0,t be the associated density.
For fixed t > 0, the terms Dq (t) and Dz (t) are bounded and the law of
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(q(0)+Gq (t), z (0)+Gz (t)) has full support, in particular the measure μx0,t(dx ) =
ρx0,t(x )dx of the superposition

(q(t), z (t)) = (q(0) + Dq (t) + Gq (t), z (0) + Dz (t) + Gz (t))

has full support. Now define ρ ∈ C(Ωx ,R+) as

ρ(x) := min
x0∈Cr

ρx0,t(x).

By construction the associated probability measure satisfies the properties of ν
in Assumption B.2. ��

We next consider the case Ωq = R
n. The following Lemma 3 shows the exis-

tence of a suitable class of Lyapunov functions.

Lemma 3. Let Ωq = R
n. If

(i) −Γ ∈ R
(n+m)×(n+m) is a stable matrix and Σ ∈ R

(n+m)×(n+m) such that

Γ2,2Q + QΓ T
2,2

is positive definite with Q as specified in Assumption 1,
(ii) the force F ∈ C∞(Rn,Rn) satisfies Assumption 2.

Furthermore, if either

(iii) Γ1,1 is positive definite,

or

(iv) the force F satisfies Assumption 3,

then

Kl(q,p, s) =
(
zTCA,Bz + ‖q‖22 + 2〈p, q〉 + BD(V (q) − umin) + 1

)l
, l ∈ N,

(69)
where

CA,B =
(

BIn AΓ T
2,1

AΓ2,1 BQ−1

)
∈ R

(n+m)×(n+m),

is a symmetric positive definite matrix for suitably chosen scalars A,B > 0,
and V ∈ C∞(Rn,R) as specified in Assumption 2, defines a family of Lyapunov
functions for the differential operator LGLE, i.e., for each l ∈ N there exist
constants al > 0, bl ∈ R, such that for L = LGLE,K = Kl, AssumptionB.1 holds
for a = al, b = bl.

Proof. Rewriting Kl as

Kl(q ,p, s) =
(
xT ĈA,Bx + BD(V (q) − umin) + 1

)l

, l ∈ N,
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where

ĈA,B =

⎛
⎝I n I n 0
I n BI n AΓ T

2,1

0 AΓ2,1 BQ−1

⎞
⎠ ∈ R

(n+m)×(n+m),

we find by successive application of Lemma A.1, that for any A′ ≥ 0 there exists
B′ > 0 so that for A = A′ and B ≥ B′ the matrix ĈA,B is positive definite and
thus Kl ≥ 1 and Kl(x ) → ∞ as ‖x‖ → ∞. We first consider the case l = 1.
Define

G :=

⎛
⎝ 0 −I n 0
I n Γ1,1 Γ1,2

0 Γ2,1 Γ2,2

⎞
⎠ ∈ R

(2n+m)×(2n+m), (70)

and

Q̃ :=
(
I n 0
0 Q

)
,

we find

LGLEK1(x ) = − (− [F (q)]T ,pT , sT )GT ĈA,Bx + DBI np · ∇qV (q)

+
β−1

2
∇z ·

(
ΣΣT ∇z (z Q̃

−1
z )
)

,

with

GTC = −
⎛
⎝ I n BI n Γ2,1

−I n + Γ1,1 −I n + BΓ1,1 + AΓ T
2,1Γ2,1 BQ−1Γ T

2,1

Γ T
1,2 Γ2,1Γ2,2 + BΓ T

1,2 Γ2,1Γ1,2 + BQ−1Γ T
2,2

⎞
⎠ .

Hence, by virtue of (48) and Assumption 2(i),

LGLEK1(x ) ≤

− xT

⎛
⎝ EI n 0 0

(−I n + Γ1,1) −I n + BΓ1,1 + AΓ T
2,1Γ2,1 BQ−1Γ T

2,1

Γ T
1,2 AΓ2,1Γ2,2 + BΓ T

1,2 AΓ2,1Γ1,2 + BQ−1Γ T
2,2

⎞
⎠

︸ ︷︷ ︸
=: ̂RA,B

x

− A∇qV (q)T Γ T
2,1s + F +

β−1

2

∑
i,j

[Q̃
−1

ΣΣT Q̃
−1

]i,j .

(71)
In order to show the existence of constants a1 and b1 such that the respective
Lyapunov inequality satisfied, one needs to show that the right hand side of
the above inequality (71) can be bounded from above by a negative definite
quadratic form.
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Case rank(Γ1,1) = n: Let A = 0. In this case it is sufficient to show that the
symmetric part

R̂S
A,B =

1
2

(
R̂A,B + R̂T

A,B

)

of R̂A,B is positive definite. The lower right block

[
R̂S

A,B

]
(n+1):(2n+m),(n+1):(2n+m)

= −I n +
B

2

(
Γ Q̃ + Q̃Γ T

)
∈ R

(n+m)×(n+m),

of R̂s
0,B is positive definite for sufficiently large B > 0. In particular

min σ

([
R̂S

A,B

]
(n+1):(2n+m),(n+1):(2n+m)

)
= O(B),

as B → ∞. Thus, by virtue of LemmaA.1 for E > 0 there is a B′ > 0 such that
R̂s

0,B is indeed positive definite for all B ≥ B
′
.

Case Γ1,1 = 0: If Assumption 3 holds, then by Remark 2 this implies that there
are values H > 0 and h ∈ R so that

|〈g,F (q)〉| ≤ H|〈g, q〉| + h.

Therefore, it is sufficient to show that there are constants A,B,E so that the
function

ϕ(x ) = max
(
−xT R̂A,Bx − AHqT Γ T

2,1s, − xT R̂A,Bx + AHqT Γ T
2,1s

)

= max
i=1,2

−xT R̃
(i)
A,B,Ex ,

(72)

can be bounded from above by a negative definite quadratic form. This means
that we have to show that for suitable constants A,B,E > 0 the symmetric part
of the matrix

R̃
(i)
A,B,E =

⎛
⎝EI n 0 (−1)iAHΓ T

2,1

−I n −I n + AΓ T
2,1Γ2,1 0

Γ T
1,2 AΓ2,1Γ2,2 AΓ2,1Γ1,2 + BQ−1Γ T

2,2

⎞
⎠ ,

is positive definite for i ∈ {0, 1}. (Note that we used Γ T
1,2 − Q−1Γ2,1 = 0 in the

derivation of the form of R̃i
A,B .) Since Γ T

2,1Γ2,1 is positive definite we can choose
A sufficiently large so that −I n + AΓ T

2,1Γ2,1 is positive definite. The positive

definiteness of the symmetric part of R̃
(i)
A,B,E , i ∈ {0, 1} follows for sufficiently

large B > 0 and E > 0 by successive application of Lemma A.1.
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For l > 1 we find:

(LH + LO)Kl(x ) = lKl−1(x )LHK1(x ) + lKl−1(x )(−Γ T z · ∇zK1(x ))

+ l
β−1

2
∇z · (ΣΣT ∇zK1(x )Kl−1(x )

)

= − lKl−1(x )(zT Γ T Q̃z ) + lβ−1
∑
i,j

[
ΣΣT Q̃

]
i,j

Kl−1(x )

+ 2l(l − 1)β−1zT Q̃ΣΣT Q̃zKl−2(x )
≤ − lKl−1(x ) ((LH + LO)K1(x ) + c2)
≤ lKl−1(x ) (−a1K1(x ) + b1 + c2)

≤ l

(
−a1Kl(x ) +

b1 + c2

εl−1
l

+ εlKl

)
= −alKl(x ) + bl,

(73)
with

c2 = −β−1
∑
i,j

[
Q̃ΣΣT Q̃

]
i,j

+ β−1
∑
i,j

[
ΣΣT Q̃

]
i,j

and
al := l(a1 − εl), bl := l

b1 + c2

εl−1
l

where εl > 0 sufficiently small so that al > 0. ��
��

We mention that Assumption 2 is commonly also required for the construction of
suitable Lyapunov functions in the case of the underdamped Langevin equation if
Ωq is unbounded. Assumption 3 is an additional constraint on the force function
F , which is not required in the case of the underdamped Langevin equation.
It is therefore not surprising that this assumption can be dropped if the noise
process η in the GLE contains a nondegenerate white noise component.

If Σ has full rank the minorization can be demonstrated using a simple
control argument.

Lemma 4. Let Ωq = R
n. If rank(Σ) = n+m, then (20) satisfies a minorization

condition (AssumptionB.2).

Proof. Note that by Proposition 7, (ii) rank(Σ) = n + m immediately implies
that the SDE satisfies the parabolic Hörmander condition. Since Σ is invertible,
we can easily solve the associated control problem which then by Lemma B.1
implies that a minorization condition is satisfied. The proof of the existence of
a suitable control is essentially the same as in the case of the under-damped
Langevin equation (see e.g. [36]): Let T > 0 and (q−,p−, s−), (q+,p+, s+) ∈
R

2n+m. We need to show that there exists u ∈ L1([0, T ],Rm), solving the control
problem

q̇ = p,

ṗ = F (q) − Γ1,1p + Γ1,2s + Σ1u,

ṡ = −Γ2,1p + Γ2,2s + Σ2u,

(74)
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subject to

(q(0),p(0), s(0)) = (q−,p−, s−), (q(T ),p(T ), s(T )) = (q+,p+, s+).

It is easy to verify that there exists a smooth path q̃ ∈ C2([0, T ],Rn) and s̃ ∈
C2([0, T ],Rm) such that

(q̃(0), ˙̃q(0)) = (q−,p−), (q̃(T ), ˙̃q(T )) = (q+,p+),

and
s̃(0) = s−, s̃(T ) = s+.

Rewrite (74) as a second order differential equation in q and s:

q̈ = −∇qU(q) − Γ1,2q̇ − Γ1,2s + Σ1u ,

ṡ = −Γ2,1q̇ − Γ2,2s + Σ2u ,

thus,

u(t) = Σ−1

(¨̃q(t) + ∇qU(q̃(t)) + Γ1,1
˙̃q(t) + Γ1,2s̃(t)

˙̃s(t) + Γ2,1
˙̃q(t) + Γ2,2s̃(t)

)
, (75)

is a solution of (74). ��
The following Lemma 5 shows that the minorization condition is satisfied in

the case of a GLE with unbounded configurational domain and Γ1,1 = 0.

Lemma 5. Under the same conditions as Theorem3 it follows that Assump-
tionB.2 is satisfied for (20).

Proof. By Assumption 3 the force F can be decomposed as

F (q) = F1(q) + F2(q),

where ‖F1(q)‖∞ is uniformly bounded in q ∈ R and

F2(q) = Hq ,

with H ∈ R
n×n being a positive definite matrix. Consider the dynamics

q̇a = pa,

ṗa = −Hqa − Γ1,2s
a,

ġa = −Γ2,1p
a − Γ2,2s

a +
β−1

2
Σ2Ẇ ,

with (qa(0),pa(0), sa(0)) = x 0,

(76)

where x 0 ∈ R
2n+m. The solution of (76) is Gaussian hence

μa
t (dx ) = N (dx ;μt,Vt),
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where μt ∈ R
2n+m and Vt ∈ R

(2n+m)×(2n+m). Moreover, by Proposition 7, (iii),
the SDE (76) is hypoelliptic, hence Vt is non-singular for all t > 0. As a conse-
quence

supp(μa
t ) = Ωx

for all t > 0. Moreover, we notice that

F1(q) = u(q)Σ2,

with
u(q) = −F1(q)I n,mΣ−1

2 ,

where
I n,m = (I n,0) ∈ R

n×m.

Using Lemma 9 it follows by the same chain of arguments as in the proof
of Lemma 8, that u satisfies Novikov’s condition and by virtue of Girsanov’s
theorem the support of the law μt of the solution of (20) with initial con-
dition x (0) = x 0 coincides with the law of μa

x0,t, i.e., supp(μt) = Ωx . Let
μx0,t(dx ) = ρx0,t(x )dx . As in the proof of Lemma 2 we can construct a minoring
measure η(dx) = ρ(x)dx, as

ρ(x) := min
x0∈Cr

ρx0,t(x).

where Cr ⊂ R
2n+m is a sufficiently large compact set. ��

Lemma 9 allows to conclude that Novikov’s condition is satisfied under the
assumptions of the preceding Lemma 5.

Lemma 6. Let
K̂θ(x) = e

θ
2 Kl(x), l = 1,

with K1 as defined in (69). Under the same conditions as in Lemma 3, and
provided that AssumptionB.1 holds for L = LGLE, K = K1, then also K̂θ satisfies
AssumptionB.1 for L = LGLE and sufficiently small θ > 0.

Proof. A simple calculation shows

LGLE
̂Kθ(x ) =

(

θLGLEK1(x ) +
β−1

2

(

θ
∑

i,j

[

(Q̃ − I n+m) ˜C
]

i,j
+ θ2zT

˜Cz
)

)

̂Kθ(x ),

with
C̃ = Q̃

−1
ΣΣT Q̃

−1
.

From Lemma 3 we know LGLEK1(x ) = Θ
(−‖x‖2), thus

LGLEK̂θ(x ) =
(−Θ

(
θ‖x‖2)+ Θ ((1 + θ)‖z‖) + Θ

(
θ2‖z‖2))Kθ(x ),

thus for sufficiently small θ > 0 and suitable b ∈ R,

LGLEK̂θ(x ) < −K̂θ(x ) + b.

��
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3.4 Technical Lemmas Required in the Proofs of Ergodicity of (20)
with Non-stationary Random Force

We first show that under the assumptions of Theorem4 a minorization condition
is satisfied for (20). For r > 0 let in the following Cr := {(q ,p, s) : ‖p, s‖2 < r}.

Lemma 7. Let Ωq = T
n and Γ̃1,2, Γ̃2,1, Γ̃2,2, Σ̃2 ∈ C∞(Ωq,GLn(R)), such that

−Γ̃ (q) is stable for all q ∈ Ωq. Let r > 0 and x0 ∈ Cr. For any t > 0 the law
μx0

t := etL†
δx0 of the solution x(t) of (20) with initial condition x(t) = x0 has

full support. In particular, AssumptionB.2 (minorization condition) holds.

Proof. Let x 0 = (q0,p0, s0) ∈ Cr and x̃ 0 = (q0,p0, g0) with g0 = Γ̃1,2(q0)s0.
Consider the following cascade of modifications of (20):

q̇c =pc,

ṗc = F (q) − gc

ġc =
n∑

i=1

pc
i

(
∂qi

Γ̃1,2(qc)
)

gc − Γ̃1,2(qc)Γ̃2,1(qc)pc

− Γ̃1,2(qc)Γ̃2,2(qc)Γ̃ −1
1,2 (qc)gc + Γ̃1,2(qc)Σ̃2(qc)Ẇ t,

with (qc(0),pc(0), gc(0)) = x̃ 0,

(77)

and
q̇b = pb,

ṗb = F (qb) − gb,

ġb = pb − gb + Γ̃1,2(q)Σ̃2(q b)Ẇ t,

with (q b(0),pb(0), gb(0)) = x̃ 0,

(78)

and
q̇a = pa,

ṗa = F (qa) − ga,

ġa = pa − ga + Ẇ ,

with (qa(0),pa(0), ga(0)) = x̃ 0.

(79)

Let μa
t , μb

t , μ
c
t denote the law of the solution of (79), (78) and (77), respectively.

We show that for any t > 0

(i) supp(μa
t ) = Ωx ,

(ii) supp(μb
t) = supp(μa

t ),
(iii) supp(μc

t) = supp(μb
t),

(vi) supp(μt) = supp(μc
t),

which then immediately implies that supp(μt) = Ωx for t > 0 and the minoriza-
tion condition follows by the same arguments as in the proof of Lemma2.
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– Regarding (i): the system (79) satisfies the condition of Lemma 2, hence for
sufficiently large t′ > 0 the law of (79) at times t ≥ t′ has full support.

– Regarding (ii): since Γ̃1,2(q)Σ̃2(q) is invertible, the controllability proper-
ties of (78) are identical to the controllability properties of (79), hence as a
consequence of the Strook-Varadhan support theorem [57] the law of (78)
and the law of (79) at time t′ coincide. In particular, together with (i)
supp(μc

t) = supp(μb
t) = Ωx .

– Regarding (iii): We show this using PropositionB.3 (Girsanov’s theorem).
The difference of the drift terms in (78) and (77) can be written as

Γ̃1,2(qc)Σ̃2(qc)u(q ,p, g),

with u(q ,p, g) as defined in (82). By Lemma 8 the function u satisfies
Novikov’s condition (101), which means that Proposition B.3 (Girsanov’s
theorem) is applicable and it follows that the support of the solution of
(78) at t′ coincides with the support of the solution of (77) at t′, i.e.,
supp(μc

t) = supp(μb
t) = Ωx .

– Regarding (iv): We first note that since (i)–(iii) holds, it trivially follows that
μc

t = Ωx . Applying the change of variables s = Γ̃ −1
1,2 (q)g to (77) we obtain

(20), which means that μt is the push-forward of μc
t under the map,

f :

⎛
⎝q
p
g

⎞
⎠ �→

⎛
⎝ q

p

Γ̃ −1
1,2 (q)g

⎞
⎠ ,

i.e.,
μt(A) = f(μc

t)(A) = μc
t

(
f−1(A)

)
, A ∈ B(Ωx ).

Since f is a smooth one-to-one mapping, in particular surjective, and
supp(μc

t) = Ωx we have

supp(μt) = supp (f(μc
t)) = Ωx .

��
The following lemma, Lemma 8, shows that Novikov’s condition is satisfied

for the function u required for the application of Girsanov’s theorem in the above
proof of Lemma 7.

Lemma 8. Let Ωq = T
n and Γ̃ and Σ̃ as in Lemma 7. Define

u1(q, p, g) =
(
Γ̃1,2(q)Σ̃2(q)

)−1 (
Γ̃1,2(q)Γ̃2,1(q)p − p − Γ̃1,2(q)Γ̃2,2(q)Γ̃

−1
1,2 (q)g + g

)

= G(q)

(
p
g

)
,

(80)

with

G(q) :=
(
Γ̃1,2(q)Σ̃2(q)

)−1 (
Γ̃1,2(q)Γ̃2,1(q) − In −Γ̃1,2(q)Γ̃2,2(q)Γ̃

−1
1,2 (q) + In

)
∈ R

n×2n,
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and

u2(q,p, g) = −
(
Γ̃1,2(q)Σ̃2(q)

)−1 n∑
i=1

pi

(
∂qi

Γ̃1,2(q)
)

g, (81)

The function
u(q,p, g) = u1(q,p, g) + u2(q,p, g) (82)

satisfies Novikov’s condition (101).

Proof (Proof of Lemma 8). Since

‖u1 + u2‖22 ≤ 2‖u1‖22 + 2‖u2‖22,

it is sufficient to show that Novikov’s condition holds for u1 and u2. We only
show the validity of Novikov’s condition explicitly for u1. 5

Since Γ̃1,2, Γ̃2,1, Γ̃2,2 and Σ̃2 are smooth functions of q and since Ωq is com-
pact, the spectrum of GT (q)G(q) is uniformly bounded from above in q , hence
there is λmax > 0 such that

λ2
max(‖p‖22 + ‖g‖2) ≥ (pT , gT )GT (q)G(q)

(
p
g

)
= ‖u1(q ,p, g)‖2, (83)

and therefore

E

[

exp(

∫ T

0

‖u1(q(t),p(t), g(t))‖dt)

]

≤ E

[

exp(

∫ T

0

λ2
max(‖p(t)‖2 + ‖g(t)‖2)dt)

]

,

for any T > 0. Let ε < 2θ̃/λ2
max, with θ̃ = θ/λ̃max and θ > 0, λ̃max as defined in

Lemma 9. We find

exp(
∫ T

0

λ2
max(‖p(t)‖2 + ‖g(t)‖2)dt) = exp(

1
ε

∫ T

0

ελ2
max(‖p(t)‖2 + ‖g(t)‖2)dt)

≤ 1
ε

∫ T

0

exp(ελ2
max(‖p(t)‖2 + ‖g(t)‖2))dt,

by Jensen’s inequality, thus

E

[

exp(

∫ T

0

‖u1(q(t),p(t), g(t))‖dt)

]

≤ E

[

1

ε

∫ T

0

exp(ελ2
max(‖p(t)‖2 + ‖g(t)‖2))dt

]

=
1

ε

∫ T

0

E
[

exp(ελ2
max(‖p(t)‖2 + ‖g(t)‖2))

]

dt,

5 The respective proof for u2 is essentially the same with the only difference that
in (83) we need to bound ‖u2‖2

2 by a term proportional to ‖p‖4
2 + ‖g‖4

2 instead of
bounding u2 by a term which is proportional to ‖p‖2

2 + ‖g‖2
2 as we do in the proof

for u1. By choosing l = 2 in (84) the remaining steps of the proof are then exactly
the same as for u1.
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by Tonelli’s theorem. Let for α > 0,

Kα := Kα,l, l = 1, (84)

with Kα,l as defined in (86). Using

exp(ελ2
max(‖p‖2 + ‖g‖2)) ≤ Kθ̃(z ), (85)

we conclude using Lemma 9, (87)

1

ε

∫ T

0
E

[
exp(ελ2

max(‖p(t)‖2 + ‖g(t)‖2))]dt ≤ 1

ε

∫ T

0
E

[Kθ̃(z (t))
]
dt

≤ 1

ε

∫ T

0
e−tKθ(p0, Γ̃1,2(q0)g0) + b(1 − e−t)dt

< ∞.

with b > 0 as specified in Lemma 9. ��
Lemma 9. Let Ωq = T

n and Γ̃ and Σ̃ as in Lemma 7 and let C ∈ R
2n×2n with

min σ(C) = 1,

be a symmetric positive definite matrix such that

Γ̃ T (q)C + CΓ̃ (q),

is positive definite for all q ∈ Ωq. For α > 0 and l ∈ N define

Kα,l(p, s) = e
α
2 (zT Cz)l

. (86)

There exists θ > 0 such that AssumptionB.1 is satisfied with K = Kθ,l and
L = LGLE. Moreover, for θ̃ = θ/λ̃max with

λ̃max := max
q∈Ωq

{
|λ| | λ ∈ σ

(
Γ̃ −1
1,2 (q)

)}

the expectation of Kθ̃,l as function of the solution (qc,pc, gc) of (77) can be
bounded as

E

[
Kθ̃,l(p

c, gc) | (pc(0), gc(0)) = (p0, g0)
]

≤ e−tKθ,l(p0, Γ̃1,2(q0)g0) + b(1 − e−t) + c(l, t),

(87)

where b > 0 as above and c(l, t) is a finite nonnegative constant which depends
on l and t with c(l, t) = 0 for l = 1 and all t ≥ 0.

Proof. We recall that the generator of (20) is of the form

LGLE = F (q) · ∇p + p · ∇q − Γ̃ (q)z · ∇z +
1
2
Σ̃(q)Σ̃T (q) : ∇2

p ,
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We show the result only for the case l = 1. For l > 1 the result follows by
induction. Let Kθ = Kθ,1. Applying the generator on Kθ we obtain

LKθ(p, s) = (θF (q) · (C 1,1p +C 1,2s))Kθ(p, s)

+

(
−θΓ̃ (q)z · Cz +

1

2

(
θtr

(
Σ̃(q)Σ̃T (q)C

)
+ θ2zTC Σ̃(q)Σ̃T (q)Cz

))
Kθ(p, s)

=
(−Θ

(
θ‖z‖2)

+ Θ ((1 + θ)‖z‖) + Θ
(
θ2‖z‖2)) Kθ(p, s)

< −Kθ(p, s) + b,

for sufficiently small θ > 0 and sufficiently large b > 0. Consequently, for θ̃ =
θ/λ̃max, we obtain

E
[Kθ̃(p

c(t), gc(t)) | (pc(0), gc(0)) = (p0, g0)
]

=E

[
Kθ̃(p(t), Γ̃ −1

1,2 (q(t))s(t)) | (p(0), s(0)) = (p0, Γ̃1,2(q0)g0)
]

≤E

[
Kθ̃(λ̃maxp(t), λ̃maxs(t)) | (p(0), s(0)) = (p0, Γ̃1,2(q0)g0)

]

=E

[
Kθ(p(t), s(t)) | (p(0), s(0)) = (p0, Γ̃1,2(q0)g0)

]

≤ e−tKθ(p0, Γ̃1,2(q0)g0) + b(1 − e−t).

��
The last Lemma 10 of this section provides conditions for the existence of suitable
Lyapunov functions with polynomial growth for (20).

Lemma 10. Let Ωq = T
n, −Γ ∈ R

(m+n)×(n+m) stable, and U ∈ C∞(Tn,R).
Moreover, assume that (50) holds and let C be as specified therein.

Kl(q,p, s) =
(
zTCz + U(q) − Umin + 1

)l
, l ∈ N,

defines a family of Lyapunov functions for the differential operator LGLE, i.e., for
each l ∈ N there exist constants al > 0, bl ∈ R, such that for L = LGLE,K = Kl,
AssumptionB.1 holds for a = al, b = bl.

Proof. The proof is very similar to the proof Lemma1. The existence of a suitable
matrix C as specified in (50) allows to extend all arguments in that proof with
only some very small adaptations. For this reason we skip a details of the proof
here. ��

4 Conclusion

In this article we have presented an integrated perspective on ergodic properties
of the generalized Langevin equation, for systems that can be written in the
quasi-Markovian form. Although the GLE was well studied in the case of con-
stant friction and damping and for conservative forces, our results indicate that
these can often be extended to nonequilibrium models with non-gradient forces
and non-constant friction and noise, thus providing a foundation for using GLEs
in a much broader range of applications.
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A Auxiliary Material on Linear Algebra

The following Lemma A.1 is repeatedly used in the proofs of Proposition 3 and
Lemma 3, as well as in Example 3 to show the positive (semi-)definiteness of
symmetric matrices.

Lemma A.1. Let A be a symmetric block structured matrix of the form

A :=
(

A1,1 A1,2

AT
1,2 A2,2

)
∈ R

n+m×n+m

(i) If A2,2 is positive definite, then A is positive (semi-)definite if and only if

A1,1 − A1,2A
−1
2,2A

T
1,2

is positive (semi-)definite
(ii) If A1,1 is positive definite, then A is positive (semi-)definite if and only if

A2,2 − AT
1,2A

−1
1,1A1,2

is positive (semi-)definite
(iii) Let Ag

2,2 denote a generalised inverse of A2,2, i.e., Ag
2,2 is a m × m matrix

which satisfies
A2,2A

g
2,2A2,2 = A2,2.

The matrix A is positive semi-definite if and only if the matrices A2,2 and
A1,1 − A1,2A

g
2,2A

T
1,2 are positive semi-definite, and

(I − A2,2A
g
2,2)A

T
1,2 = 0,

i.e., the span of the column vectors of A1,2 is contained in the span of the
column vectors of A1,1.

Proof. The statements (i) and (ii) follow from Theorem 1.12 in [61]. Statement
(iii) corresponds to Theorem 1.20 in the same reference. ��
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B Auxiliary Material on Stochastic Analysis

In this section we provide a brief overview of the general framework used in the
ergodicity proofs and derivation of convergence rate in Sect. 3. For a comprehen-
sive overview we refer to the review articles [32,36,50].

Consider an SDE defined on the domain Ωx = T
n1 × R

n2 , n = n1 + n2 ∈ N

which is of the form

dX = a(X)dt + b(X)dW , X(0) ∼ μ0, (88)

with smooth coefficients a ∈ C∞(Ωx ,Rn), b = [bi]1≤i≤n ∈ C∞(Ωx ,Rn×n), and
initial distribution μ0. In order to simplify the presentation we further assume
that the diffusion coefficient b is such that the Itô and Stratonovich interpreta-
tion of (88) coincide, i.e.,

∇ ·
(
b bT

)
− b ∇ · bT ≡ 0.

Let further L denote the associated infinitesimal generator of (88), i.e.,

L = a(X) · ∇ + b(X) : ∇2, (89)

when considered as an operator on the core C∞(Ωx ,R), and let L† denote the
formal adjoint of L, i.e., the Fokker-Planck operator associated with the SDE
(88). Furthermore, let etL, etL†

denote the associated semigroup operators of L,
and L†, respectively, i.e.,6

∀ϕ ∈ C∞(Ωx ,R) : etLϕ(x) = E[ϕ(X(t)) | X(0) = x], (90)

for (Lebesgue-)almost all x ∈ R
n, and

∫ (
etLϕ

)
(x)μ0(dx) =

∫
ϕ(x)

(
etL†

μ0

)
(dx).

Definition 1. For a given function K ∈ C∞(Ωx, [1,∞)) which is such that
K(x) → ∞ as ‖x‖ → ∞, define

‖ϕ‖L∞
K :=

∥∥∥∥ϕ

K
∥∥∥∥

∞
, ϕ : Ωx → R measureable. (91)

We denote by
L∞

K (Ωx) :=
{
ϕ measurable : ‖ϕ‖L∞

K < ∞}
(92)

the set of measurable functions for which the ratio ϕ
K is bounded.

6 The expectation is taken with respect to the Brownian motion W .
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It can be easily verified that ‖ϕ‖L∞
K defines a norm and that L∞

K (Ωx ) equipped
with the norm ‖ϕ‖L∞

K can be associated with a Banach space, which we denote
by

(
L∞

K (Ωx ), ‖·‖L∞
K

)
.

Throughout this article we use Lyapunov function techniques to show (geo-
metric) ergodicity of SDEs of the generic form (88). More specifically, we follow
the standard recipe for proofs of exponential convergences of the semigroup
operator etL in weighted L∞ spaces as outlined, e.g., in [32,36,38,50], that is we
show that a suitable Lyapunov condition (AssumptionB.1) and a minorization
condition (AssumptionB.2) are satisfied:

Assumption B.1 (Infinitesimal Lyapunov condition). There is a function
K ∈ C∞(Ωx, [1,∞)) with lim‖x‖→∞ K(x) = ∞, and real numbers a ∈ (0,∞), b ∈
R such that,

LK ≤ −aK + b. (93)

Assumption B.2 (Minorization condition). For some t′ > 0 there exists a
constant η ∈ (0, 1) and a probability measure ν such that

inf
x∈C

et′L†
δx(dy) ≥ ην(dy)

where C = {x ∈ Ωx : K(x) ≤ Kmax} for some Kmax > 1 + 2b/a, where a, b are
the same constants as in (93).

If the above assumptions are satisfied, then the following proposition, which fol-
lows from the arguments in [32] (see also the other above mentioned references),
allows to derive exponential decay estimates in the respective weighted L∞ space
associated with the Lyapunov function K.

Proposition B.1 (Geometric ergodicity, [32]). Let AssumptionsB.1 and
B.2 hold. The solution of the SDE (88) admits a unique invariant probability
measure π such that

(i) there exist positive constant λ, C̃ so that for any ϕ ∈ L∞
K (Ωx)∥∥etLϕ − Eπϕ

∥∥
L∞

K
≤ C̃e−tλ

∥∥ϕ − Eπϕ
∥∥

L∞
K

. (94)

(ii) ∫
Ωx

Kdπ < ∞. (95)

If for the solution of (88) the implications of PropositionB.1 hold we also say
that the solution X of (88) is geometrically ergodic. In the main body of this
article we use Proposition B.1 to derive exponential decay estimates of the form
(46) in Theorems 1 to 4. In these theorems Assumption B.1 can be directly shown
to hold by explicitly constructing a suitable Lyapunov function K satisfying (93)
(see Lemmas 1, 3 and 10). A very common way to show Assumption B.2 is by
showing (i) that the transition kernel associated with the SDE (88) is smooth as
specified in Assumption B.3, and (ii) that the SDE (88) is controllable as specified
in Assumption B.4. By virtue Lemma B.1 it then follows that a minorization
condition holds.
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Assumption B.3. For any t > 0 the transition kernel associated with the SDE
(88) possesses a density pt(x, y), i.e.,

∀x ∈ Ωx : (etL†
δx)(A) =

∫
A

pt(x, y)dy, A ⊂ Ωx, A measurable.

and pt(x, y) is jointly continuous in (x, y) ∈ Ωx × Ωx.

Assumption B.4. There is a tmax > 0 so that for any x−, x+ ∈ Ωx, there is a
t > 0, with t ≤ tmax, so that the control problem

˙̃X = a(X̃) + b(X̃)u, (96)

subject to
X̃(0) = x−, and X̃(t) = x+,

has a smooth solution u ∈ C1([0, tmax], Ωx).

Lemma B.1 ([36]). If AssumptionsB.3 and B.4 are satisfied, then also
AssumptionB.2 holds.

Assumption B.3 follows directly from hypoellipticity of the operator ∂t − L†

(see e.g. [47,50], for a precise definition of hypoellipticity). A common way to
establish hypoellipticity of a differential operators is via Hörmander’s theorem
([20], Theorem 22.2.1, on p. 353). The following proposition is an adaption of
Hörmander’s theorem to the parabolic differential operator ∂t − L†:

Proposition B.2. Let a and b be the drift coefficient and the diffusion coeffi-
cient of the SDE (88), respectively. Let b0 := a. Iteratively define a collection of
vector fields by

V0 = {bi : i ≥ 1}, Vk+1 = Vk ∪ {[v, bi] : v ∈ Vk, 0 ≤ i ≤ n}. (97)

where
[X,Y ] = (∇Y )X − (∇X)Y ,

denotes the commutator of vector fields X,Y ∈ C∞(Ωx,R
n) and (∇X), (∇Y )

their Jacobian matrices. If

∀x ∈ R
n, lin

{
v(x) : v ∈

⋃
k∈N

Vk

}
= R

n, (98)

we say that the SDE (88) satisfies the parabolic Hörmander condition, and it
follows that the operator ∂t − L† is hypoelliptic.

We use Lemma B.1 in the proof of Lemma 4 in Theorem 2. For some instances
of (20) it is not easy to construct a suitable control u such that Assumption B.4
is satisfied. In these cases we either show a minorization condition by explicitly
constructing the minorizing measure ν in Assumption B.2 if the right hand side
of (20) can be decomposed into a linear and a bounded part (see Theorem1), or
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by inferring the existence of a suitable minorizing measure by showing that the
support of the SDE under consideration is equivalent to the support of another
SDE satisfying a minorization condition via Girsanov’s theorem (Lemmas 5 and
7). Girsanov’s theorem provides conditions under which the path measures of
two Itô processes are mutually absolutely continuous, which in particular implies
that at any time t ≥ 0 the laws of these Itô processes are equivalent. We will
use Girsanov’s theorem in Sect. 3 in order to prove the minorization condition
for GLEs which in a Markovian representation possess coefficients which depend
on the configurational variable. Here we provide a version of Girsanov’s theorem
which is adapted to Itô-diffusion processes.

Proposition B.3 (Girsanov’s theorem, [45]). Consider the two Itô diffusion
processes

dX(t) = ax(X)dt + b(X)dW(t); X(0) = x0, (99)
dY (t) = ay(Y )dt + b(Y )dW(t); Y (0) = x0, (100)

where x0 ∈ Ωx, W is a standard Wiener process in R
n, and ax,ay : Ωx → R

n

and b : Ωx → R
n×m,m ∈ N, are such that there exist unique strong solutions

X,Y for (99) and (100), respectively. If there is a function u ∈ C(Ωx,R
n) such

that
ax − ay = bu

and u satisfies Novikov’s condition

E

[
exp

(
1
2

∫ T

0

‖u(X(t))‖22dt

)]
< ∞. (101)

then the path measures of X and Y on any finite time interval are equivalent.
In particular, the support of the law of X(t) and the support of the law of Y (t)
coincide for any t > 0.
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21. Jakǐsć, V., Pillet, C.-A.: Ergodic properties of the non-Markovian Langevin equa-
tion. Lett. Math. Phys. 41(1), 49–57 (1997)
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Abstract. In molecular dynamics, several algorithms have been
designed over the past few years to accelerate the sampling of the exit
event from a metastable domain, that is to say the time spent and the exit
point from the domain. Some of them are based on the fact that the exit
event from a metastable region is well approximated by a Markov jump
process. In this work, we present recent results on the exit event from
a metastable region for the overdamped Langevin dynamics obtained
in [22,23,56]. These results aim in particular at justifying the use of a
Markov jump process parametrized by the Eyring-Kramers law to model
the exit event from a metastable region.

Keywords: Exit event · Metastability · Eyring-Kramers ·
Overdamped Langevin

The objective of this note is to give motivations (Sect. 1) and outlines of the
proofs (Sect. 2) of results recently obtained in [22,23,56]. These results justify
the use of the Eyring-Kramers formulas together with a kinetic Monte Carlo
model to model the exit event from a metastable state for the overdamped
Langevin dynamics. Such results are particularly useful to justify algorithms and
models which use such formulas to build reduced description of the overdamped
Langevin dynamics.

1 Exit Event from a Metastable Domain and Markov
Jump Process

1.1 Overdamped Langevin Dynamics and Metastability

Let (Xt)t≥0 be the stochastic process solution to the overdamped Langevin
dynamics in R

d:
dXt = −∇f(Xt)dt +

√
h dBt, (1)

c© Springer Nature Switzerland AG 2019

G. Giacomin et al. (Eds.): Stochastic Dynamics Out of Equilibrium, PROMS 282, pp. 331–363, 2019.

https://doi.org/10.1007/978-3-030-15096-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15096-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-15096-9_9


332 T. Lelièvre et al.

where f ∈ C∞(Rd,R) is the potential function, h > 0 is the temperature
and (Bt)t≥0 is a standard d-dimensional Brownian motion. The overdamped
Langevin dynamics can be used for instance to describe the motion of the atoms
of a molecule or the diffusion of impurities in a crystal (see for instance [51,
Sections 2 and 3] or [10]). The term −∇f(Xt) in (1) sends the process towards
local minima of f , while thanks to the noise term

√
h dBt, the process Xt may

jump from one basin of attraction of the dynamics ẋ = −∇f(x) to another one.
If the temperature is small (i.e. h � 1), the process (Xt)t≥0 remains during a
very long period of time trapped around a neighborhood of a local minimum
of f , called a metastable state, before going to another region. For that reason,
the process (1) is said to be metastable. More precisely, a domain Ω ⊂ R

d is said
to be metastable for the probability measure μ supported in Ω if, when X0 ∼ μ,
the process (1) reaches a local equilibrium in Ω long before escaping from it. This
will be made more precise below using the notion of quasi-stationary distribu-
tion (see Sect. 1.5). The move from one metastable region to another is typically
related to a macroscopic change of configuration of the system. Metastability
implies a separation of timescales which is one of the major issues when try-
ing to have access to the macroscopic evolution of the system using simulations
made at the microscopic level. Indeed, in practice, many transitions cannot be
observed by integrating directly the trajectories of the process (1). To overcome
this difficulty, some algorithms use the fact that the exit event from a metastable
region can be well approximated by a Markov jump process with transition rates
computed with the Eyring-Kramers formula, see for example the Temperature
Accelerated Dynamics method [61] that will be described below.

1.2 Markov Jump Process and Eyring-Kramers Law

Kinetic Monte Carlo Methods. Let Ω ⊂ R
d be a domain of the configuration

space and let us assume that the process (1) is initially distributed according to
the probability measure μ (i.e. X0 ∼ μ) which is supported in Ω and for which
the exit event from Ω is metastable. Let us denote by (Ωi)i=1,...,n the surrounding
domains of Ω (see Fig. 1), each of them corresponding to a macroscopic state of
the system. Many reduced models and algorithms rely on the fact that the exit
event from Ω, i.e. the next visited state by the process (1) among the Ωi’s as
well as the time spent by the process (1) in Ω, is efficiently approximated by
a Markov jump process using kinetic Monte Carlo methods [8,25,59,60,66,67].
Kinetic Monte Carlo methods simulate a Markov jump process in a discrete state
space. To use a kinetic Monte Carlo algorithm in order to sample the exit event
from Ω, one needs for i ∈ {1, . . . , n} the transition rate ki to go from the state Ω
to the state Ωi. A kinetic Monte Carlo algorithm generates the next visited state
Y among the Ωi’s and the time T spent in Ω for the process (1) as follows:

1. First sample T as an exponential random variable with parameter
∑n

i=1 ki,
i.e.:

T ∼ E
( n∑

i=1

ki

)
. (2)
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2. Then, sample the next visited state Y independently from T , i.e

Y |= T (3)

using the following law: for all i ∈ {1, . . . , n},

P
[
Y = i

]
=

ki∑n
�=1 k�

. (4)

Fig. 1. Representation of the domain Ω, the surrounding domains (Ωi)i=1,...,4 of Ω,
the global minimum x0 of f in Ω and {zi} = argmin∂Ω∩Ωi

f (i ∈ {1, 2, 3, 4}).

Remark 1. Let us give an equivalent way to sample T and Y in a Monte Carlo
method. Let (τi)i∈{1,...,n} be n independent random variables such that for all
i ∈ {1, . . . , n}, τi is exponentially distributed with parameter ki. Then, the
couple (T, Y ) has the same law as (minj∈{1,...,n} τj , argminj∈{1,...,n}τj).

Eyring-Kramers Law. In practice, the transition rates (ki)i∈{1,...,n} are com-
puted using the Eyring-Kramers formula [29,66]:

ki = Ai e− 2
h (f(zi)−f(x0)), (5)

where x0 ∈ Ω is the unique global minimum of f in Ω and {zi} =
argmin∂Ω∩∂Ωi

f , see Fig. 1. We here assume for simplicity that the minimum
is attained at one single point zi but the results below can be generalized to
more general settings. If Ω is the basin of attraction of x0 for the dynamics
ẋ = −∇f(x) so that zi is a saddle point of f (i.e. a critical point of index 1),
then, for the overdamped Langevin dynamics (1), the prefactor Ai writes:

Ai =
|λ(zi)|

2π

√
detHess f(x0)

√|detHess f(zi)|
, (6)

where λ(zi) is the negative eigenvalue of the Hessian matrix of f at zi. Notice
that the formula (6) requires that x0 and zi are non degenerate critical points
of f . The formulas (5) and (6) have been first obtained in the small temperature
regime by Kramers [42] (see the review of the literature [29]).



334 T. Lelièvre et al.

Remark 2. In the Physics literature, the approximation of the macroscopic evo-
lution of the system with a Markov jump process with transition rates computed
with the Eyring-Kramers formula (5)–(6) is sometimes called the Harmonic Tran-
sition State Theory [47,63].

1.3 The Temperature Accelerated Dynamics algorithm

The temperature accelerated dynamics (TAD) algorithm proposed by Sørensen
and Voter [61] aims at efficiently approximating the exit event from a metastable
domain for the dynamics (1) in order to have access to the macroscopic evolution
of the system. We also refer to [1] for a mathematical analysis of this algorithm
in a one-dimensional setting.

The basic idea of the TAD algorithm is the following: the exit time from
the metastable domain Ω increases exponentially with the inverse of the tem-
perature, see indeed (2)–(5). The idea is then to simulate the process at higher
temperature to accelerate the simulation of the exit event. Let us assume that
the process (Xt)t≥0, evolving at the temperature hlow is at some time t0 ≥ 0
in the domain Ω ⊂ R

d which is metastable for the initial condition Xt0 ∈ Ω.
Following [61], let us assume that the process instantaneously reaches the local
equilibrium in Ω, i.e. that Xt0 is distributed according to this local equilibrium.
The existence and the uniqueness of the local equilibrium in Ω as well as the
convergence toward this local equilibrium is made more precise in Sect. 1.5 using
the notion of quasi-stationary distribution. To ensure the convergence towards
the local equilibrium in Ω, a decorrelation step may be used before running the
TAD algorithm, see step (M1) in [1, Section 2.2].

As in the previous section, one denotes by (Ωi)i=1,...,n the surrounding
domains of Ω (see Fig. 1), each of them corresponding to a macroscopic state of
the system and, for i ∈ {1, . . . , n}, {zi} = argmin∂Ω∩∂Ωi

f . To sample the next
visited state among the Ωi’s as well as the time T spent in Ω for the process (1),
the TAD algorithm proceeds as follows. Let us introduce Tsim = 0 (which is the
simulation time) and Tstop = +∞ (which is the stopping time), and iterate the
following steps.

1. Let (Yt)t≥Tsim
be the solution to the evolution equation (1) but for the tem-

perature hhigh > hlow, starting from the local equilibrium in Ω at temperature
hhigh. Let (Yt)t≥Tsim

evolve until it leaves Ω and denote by

Tsim + τ

the first exit time from Ω for the process (Yt)t≥Tsim
. Let j ∈ {1, . . . , n} be

such that YTsim+τ ∈ ∂Ωj ∩ ∂Ω. Then, set Tsim = Tsim + τ . If it is the first
time an exit from Ω through zj for the process (Yt)t≥0 is observed (else one
goes directly to the next step), set τj(hhigh) = Tsim and extrapolate the time
to τj(hlow) with the formula

τj(hlow) = τj(hhigh) e
2
(

1
hlow

− 1
hhigh

)
(f(zj)−f(x0))

, (7)
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where we recall x0 ∈ Ω is the unique global minimum of f in Ω. Then,
update the minimum exit time τmin(hlow) among the τj(hlow)’s which have
been observed so far. Finally, compute a new time Tstop so that there is a
very small probability (say α � 1) to observe an exit event from Ω at the
temperature hhigh which, using (7), would change the value of τmin(hlow).
We refer to [61] or [1] for the computation of Tstop.

2. If Tsim ≤ Tstop then go back to the first step starting from the local equilib-
rium in Ω at time Tsim, else go to the next step.

3. Set T = τmin(hlow) and Y = � where � is such that τ�(hlow) = τmin(hlow).
Finally, send Xt0+T to Ω� and evolve the process (1) with the new initial
condition Xt0+T .

Remark 3. In [61], when the process (Yt)t≥Tsim
leaves Ω, it is reflected back in Ω

and it is then assumed that it reaches instantaneously the local equilibrium in Ω
at temperature hhigh.

Remark 4. One can use a decorrelation step before running the TAD algorithm
and the sampling of YTsim

according to the local equilibrium in Ω at the begin-
ning of the step 1 to ensure that the underlying Markov jump process is justified,
see [1].

The extrapolation formula (7) which is at the heart of the TAD algorithm
relies on the properties of the underlying Markov jump process used to accel-
erate the exit event from a metastable state and where transition times are
exponentially distributed with parameters computed with the Eyring-Kramers
formula, see Remark 1 and Eq. (5). In the algorithm TAD, it is indeed assumed
that the exit event from Ω can be modeled with a kinetic Monte Carlo method
where the transition rates are computed with the Eyring-Kramers law (5)–(6).
Then, at high temperature, one checks that under this assumption, each τi(hhigh)

(i ∈ {1, . . . , n}) is an exponential law of parameter Ai e
− 2

hhigh
(f(zi)−f(x0)) (see

Remark 1). The formula (7) allows to construct for all i ∈ {1, . . . , n}, an exit
time τi(hlow) which is an exponential law of parameter Ai e

− 2
hlow

(f(zi)−f(x0)). By
considering the couple (mini∈{1,...,n} τi(hlow), argmini∈{1,...,n}τi(hlow)), one has
access to the exit event from Ω (see Remark 1).

Remark 5. There are other algorithms which use the properties of the underly-
ing Markov jump process to accelerate the simulation of the exit event from a
metastable state, see for instance [64,65].

Our objective is to justify rigorously that a Markov jump process with transi-
tion rates computed with the Eyring-Kramers formula (5) can be used to model
the exit event from a metastable domain Ω for the overdamped Langevin pro-
cess (1). Before, let us recall mathematical contributions on the exit event from
a domain and on the Eyring-Kramers formula (5).
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1.4 Mathematical Literature on the Exit Event from a Domain
and on the Eyring-Kramers Formulas

In the mathematical literature, there are mainly two approaches to the study
of the asymptotic behaviour of the exit event from a domain when h → 0: the
global approaches and the local approaches.

Global Approaches. The global approaches study the asymptotic behaviours
in the limit h → 0 of the eigenvalues of the infinitesimal generator

L
(0)
f,h = −h

2
Δ + ∇f · ∇ (8)

of the diffusion (1) on R
d. Let us give for example a result obtained in [6,7]. To

this end, let us assume that the potential f : Rd → R is a Morse function, has
m local minima {x1, . . . , xm} and that for h small enough

∫
Rd e− 2

h f < +∞. Let
us recall that φ : Rd → R is a Morse function if all its critical points are non
degenerate. For a Morse function φ : Rd → R, we say that x is a saddle point of
φ if x is a critical point of φ such that the Hessian matrix of φ at x has exactly
one negative eigenvalue (i.e. x is a critical point of φ of index 1). Then, from [35],
the operator L

(0)
f,h has exactly m exponentially small eigenvalues {λ1, λ2, . . . , λm}

when h → 0 with λ1 = 0 < λ2 ≤ . . . ≤ λm (i.e., when h → 0, for all i ∈
{1, . . . , m}, λi = O(e− c

h ) for some c > 0 independent of h). Moreover, sharp
asymptotic estimates can be derived for the eigenvalues {λ2, . . . , λm}. In [6,7],
the following results are obtained. Let us assume that {x1} = argmin

Rdf . For
k ∈ {2, . . . , m} and Bk = {x ∈ {x1, . . . , xm} \ {xk}, f(x) ≤ f(xk)} (i.e. Bk is
the set of local minima of f which are lower in energy than xk), one denotes
by P(xk, Bk) the set of curves γ ∈ C0([0, 1],Rd) such that γ(0) = xk and γ(1) ∈
Bk. Let us finally assume that:

1. For all k ∈ {2, . . . , m}, there exists a unique saddle point zk (i.e. a critical
point of f of index 1) such that f(zk) = infγ∈P(xk,Bk) supt∈[0,1] f(γ(t)).

2. The values
(
f(zk) − f(xk)

)
k∈{2,...,m} are all distinct.

These assumptions imply that the map xk ∈ {x2, . . . , xm} → zk is injective. The
set {x2, . . . , xm} is then labeled such that the sequence

(
f(zk)−f(xk)

)
k∈{2,...,m}

is strictly decreasing. The previous assumptions also imply the existence of a
cascade of events, which occur with different timescales, to go from one local
minimum xk of f to the global minimum x1 of f in R

d, see for instance Fig. 2.
Then, one has for k ∈ {2, . . . , m}, in the limit h → 0:

λk =
|λ(zk)|

2π

√
detHessf(xk)

|√detHessf(zk)|e
− 2

h (f(zk)−f(xk))(1 + o(1)), (9)

where λ(zk) is the negative eigenvalue of the Hessian matrix of f at zk. In the
articles [6,7], using a potential-theoretic approach, the sharp equivalent (9) is
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obtained and each of the eigenvalues λk (for k ∈ {2, . . . , m}) is shown to be the
inverse of the average time it takes for the process (1) to go from xk to Bk. We
also refer to [24] for similar results. In [30], another proof of (9) is given using
tools from semi-classical analysis. Let us also mention [53] for a generalization
of the results obtained in [30]. Notice that the results presented above do not
provide any information concerning the average time it takes for the process (1)
to go from the global minimum of f to a local minimum of f when h → 0. One
also refers to [43] for generalization of [6,7] for a class of non reversible processes
when f has two local minima, and to [11–13,37,54] for related results.

Fig. 2. Examples of two labelings of the local minima {x1, x2, x3} of f in dimension
one.

Remark 6. The global approaches have been used in [59,60] to construct a
Markovian dynamics by projecting the infinitesimal generator L

(0)
f,h of the diffu-

sion (1) with a Galerkin method onto the vector space associated with the m
small eigenvalues {λ1, . . . , λm}. This projection leads to a very good approxima-
tion of L

(0)
f,h in the limit h → 0. The question is then how to relate the transition

events (or the trajectories) of the obtained Markov process to the exit events (or
the trajectories) of the original one.
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Local Approaches. The local approaches consist in studying the asymptotic
behaviour when h → 0 of the exit event (τΩ ,XτΩ

) from a domain Ω ⊂ R
d, where

τΩ := inf{t ≥ 0,Xt /∈ Ω}.
One of the most well-known approaches is the large deviation theory devel-

oped by Freidlin and Wentzell in the 1970s. We refer to the book [26] which
summarizes their main contributions. This theory is based on the study of
small pieces of the trajectories of the process defined with a suitable increas-
ing sequence of stopping times. The rate function is fundamental in this theory:
it quantifies the cost of deviating from a deterministic trajectory when h → 0.
The rate functional was first introduced by Schilder [58] for a Brownian motion.
Some typical results from [26] (see Theorem 2.1, Theorem 4.1, and Theorem 5.1
there) are the following. Let Ω be a C∞ open and connected bounded subset
of R

d. Let us assume that ∂nf > 0 on ∂Ω (where ∂n is the outward normal
derivative to Ω) and that f has a unique non degenerate critical point x0 in Ω
such that f(x0) = minΩ f . Then, for all x ∈ Ω:

lim
h→0

h lnEx

[
τΩ

]
= 2
(
inf
∂Ω

f − f(x0)
)
.

The notation Ex stands for the expectation given the fact that X0 = x. Moreover,
let x ∈ Ω such that f(x) < inf∂Ω f . Then, for any γ > 0 and δ0 > 0, there
exist δ ∈ (0, δ0] and h0 > 0 such that for all h ∈ (0, h0) and for all y ∈ ∂Ω:

e− 2
h (f(y)−inf∂Ω f)e− γ

h ≤ Px

[|XτΩ
− y| < δ

] ≤ e− 2
h (f(y)−inf∂Ω f)e

γ
h .

The notation Px stands for the probability given the fact that X0 = x. Lastly,
if the infimum of f on ∂Ω is attained at one single point y0 ∈ ∂Ω, then for all
δ > 0:

lim
h→0

Px

[|XτΩ
− y0| < δ

]
= 1.

A result due to Day [14] (see also [48,49]) concerning the law of τΩ is the fol-
lowing. When h → 0, the exit time τΩ converges in law to an exponentially
distributed random variable and for all x ∈ Ω

lim
h→0

λhEx

[
τΩ

]
= 1,

where λh is the principal eigenvalue of the infinitesimal generator of the diffu-
sion (1) associated with Dirichlet boundary conditions on ∂Ω (see Proposition 2
below). The interest of this approach is that it can be applied to very general
dynamics. However, when it is used to prove that the Eyring-Kramers formu-
las (5) can be used to study the exit distribution from Ω, it only provides the
exponential rates (not the prefactor Ai in (5)) and does not give error bounds
when h → 0.

There are also approaches which are based on techniques developed for partial
differential equations. In [50,51], using formal computations, when ∂nf > 0
on ∂Ω and f has a unique non degenerate critical point x0 in Ω such that
f(x0) = minΩ f , the following formula is derived: for any F ∈ C∞(∂Ω,R) and
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x ∈ Ω, one has when h → 0:

Ex

[
F
(
XτΩ

)]
=

∫
∂Ω

F (z)∂nf(z) e− 2
h f(z) dz

∫
∂Ω

∂nf e− 2
h fdσ

+ o(1). (10)

The formal asymptotic estimate (10) implies that the law of XτΩ
concentrates on

points where f attains its minimum on ∂Ω. Moreover, an asymptotic equivalent
of Ex

[
τΩ

]
when h → 0 is also formulated in [55] through formal computations.

These results are obtained injecting formal asymptotic expansions in powers
of h in the partial differential equations satisfied by x ∈ Ω → Ex

[
F
(
XτΩ

)]

and x ∈ Ω → Ex

[
τΩ

]
. We also refer to [51], where using formal computations,

asymptotic formulas are obtained concerning both the concentration of the law
of XτΩ

on argmin∂Ωf and Ex

[
τΩ

]
when Ω is the union of basins of attraction of

the dynamics d
dtγ(t) = −∇f(γ(t)). When ∂nf > 0 on ∂Ω and f has a unique non

degenerate critical point x0 in Ω such that f(x0) = minΩ f , the formula (10) is
proved rigorously by Kamin in [40], and is extended to a non reversible diffusion
process (Yt)t≥0 solution to dYt = b(Yt) dt +

√
h dBt in [15,16,39,57] when Ω

contains one attractor of the dynamics d
dtγ(t) = b(γ(t)) and b(x) · n < 0 for

all x ∈ ∂Ω. However, the results [15,16,39,40,57] do not provide any information
on the probability to leave Ω through a point which is not a global minimum
of f on ∂Ω.

Finally, let us mention [20,21,31,37,45,48,49] for a study of the asymptotic
behaviour in the limit h → 0 of λh and uh (see Proposition 2 below). The reader
can also refer to [19] for a review of the different techniques used to study the
asymptotic behaviour of XτΩ

when h → 0 and to [2] for a review of the different
techniques used to study the asymptotic behaviour of τΩ when h → 0.

Remark 7. Some authors proved the convergence to a Markov jump process in
some specific geometric settings and after a rescaling in time. We refer to [41]
for a one-dimensional diffusion in a double well and [27,49] for a study in higher
dimension. In [62], assuming that all the saddle points of f are at the same
height, it is proved that a suitable rescaling of the time leads to a convergence
of the diffusion process to a Markov jump process between the global minima
of f .

The results presented in this work (see [22,23]) follow a local approach.
The quasi-stationary distribution of the process (1) on Ω is the cornerstone
of the analysis. They state that, under some geometric assumptions, the Eyring-
Kramers formulas (with prefactors) can be used to model the exit event from a
metastable state, and provide explicit error bounds.

1.5 Quasi-Stationary Distribution and Transition Rates

Local Equilibrium. Let Ω be a C∞ open bounded connected subset of R
d

and f ∈ C∞(Ω,R). Let us recall that τΩ := inf{t ≥ 0,Xt /∈ Ω} denotes the first
exit time from Ω. The quasi-stationary distribution of the process (1) on Ω is
defined as follows.
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Definition 1. A probability measure νh on Ω is a quasi-stationary distribution
of the process (1) on Ω if for all t > 0 and any measurable set A ⊂ Ω,

Pνh

[
Xt ∈ A

∣
∣t < τΩ

]
= νh(A).

The notation Pμ stands for the probability given the fact that the process (1)
is initially distributed according to μ i.e. X0 ∼ μ. The next proposition [9,44]
shows that the law of the process (1) at time t conditioned not to leave Ω on
the interval (0, t) converges to the quasi-stationary distribution.

Proposition 1. Let Ω be a C∞ open connected and bounded subset of Rd and
f ∈ C∞(Ω,R). Then, there exist a unique probability measure νh on Ω and c > 0
such that for any probability measure μ on Ω, there exist C(μ) > 0 and t(μ) > 0
such that for all t ≥ t(μ) and all measurable set A ⊂ Ω:

∣
∣Pμ

[
Xt ∈ A

∣
∣t < τΩ

]− νh(A)
∣
∣ ≤ C(μ)e−ct. (11)

Moreover, νh is the unique quasi-stationary distribution of the process (1)
on Ω.

Proposition 1 indicates that the quasi-stationary distribution νh can be seen
as a local equilibrium of the process (1) in Ω.

The quasi-stationary distribution νh can be expressed with the principal
eigenfunction of the infinitesimal generator L

(0)
f,h (see (8)) of the diffusion (1)

associated with Dirichlet boundary conditions on ∂Ω. To this end, let us intro-
duce the following Hilbert spaces L2

w(Ω) =
{
u : Ω → R,

∫
Ω

u2e− 2
h f < ∞} and

for q ∈ {1, 2},

Hq
w(Ω) =

{
u ∈ L2

w(Ω), ∀α ∈ N
d, |α| ≤ q, ∂αu ∈ L2

w(Ω)
}
. (12)

The subscript w in the notation L2
w(Ω) and Hq

w(Ω) refers to the fact that the
weight function x ∈ Ω → e− 2

h f(x) appears in the inner product. Moreover, let
us denote by H1

0,w(Ω) = {u ∈ H1
w(Ω), u = 0 on ∂Ω}. Let us recall the following

result [44].

Proposition 2. Let Ω be a C∞ open connected and bounded subset of R
d

and f ∈ C∞(Ω,R). Then, the operator L
(0)
f,h with domain H1

0,w(Ω) ∩ H2
w(Ω)

on L2
w(Ω), which is denoted by L

D,(0)
f,h , is self-adjoint, positive and has compact

resolvent. Furthermore, the smallest eigenvalue λh of L
D,(0)
f,h is non degenerate

and any eigenfunction associated with λh has a sign on Ω.

In the following, one denotes by uh an eigenfunction associated with λh. The
smallest eigenvalue λh of L

D,(0)
f,h is called the principal eigenvalue of L

D,(0)
f,h and uh

a principal eigenfunction of L
D,(0)
f,h . Without loss of generality, one assumes that

uh > 0 on Ω and
∫

Ω

u2
h e− 2

h f = 1. (13)
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Then, the quasi-stationary distribution νh of the process (1) in Ω is given by
(see [44]):

νh(dx) =
uh(x) e− 2

h f(x)

∫
Ω

uh e− 2
h f

dx. (14)

Moreover, the following result shows that when X0 ∼ νh, the law of the exit
event (τΩ ,XτΩ

) is explicitly known in terms of λh and uh (see [44]).

Proposition 3. Let us assume that X0 ∼ νh, where νh is the quasi-stationary
distribution of the process (1) in Ω. Then, τΩ and XτΩ

are independent.
Moreover, τΩ is exponentially distributed with parameter λh and for any open
set Σ ⊂ ∂Ω, one has:

Pνh

[
XτΩ

∈ Σ
]

= − h

2λh

∫

Σ

∂nuh(z)e− 2
h f(z)σ(dz)

∫

Ω

uhe− 2
h f

, (15)

where σ(dz) is the Lebesgue measure on ∂Ω.

Approximation of the Exit Event with a Markov Jump Process. Let us
now provide justifications to the use of a Markov jump process with transition
rates computed with the Eyring-Kramers formula (5) to model the exit event
from a metastable domain Ω. In view of (11), one can be more precise on the
definition of the metastability of a domain Ω given in Sect. 1.1. For a probability
measure μ supported in Ω, the domain Ω is said to be metastable if, when
X0 ∼ μ, the convergence to the quasi-stationary distribution νh in (1) is much
quicker than the exit from Ω. Since the process (1) is a Markov process, it is
then relevant to study the exit event from Ω starting from the quasi-stationary
distribution νh, i.e. X0 ∼ νh. As a consequence of Proposition 3, the exit time
is exponentially distributed and is independent of the next visited state. These
two properties are the fundamental features of kinetic Monte Carlo methods,
see indeed (2) and (3). It thus remains to prove that the transition rates can
be computed with the Eyring-Kramers formula (5). For that purpose, let us
first give an expression of the transition rates. Recall that (Ωi)i=1,...,n denotes
the surrounding domains of Ω (see Fig. 1). For i ∈ {1, . . . , n}, we define the
transition rate to go from Ω to Ωi as follows:

kL
i :=

1
Eνh

[
τΩ

]Pνh

[
XτΩ

∈ ∂Ω ∩ ∂Ωi

]
, (16)

where we recall, νh is the quasi-stationary distribution of the process (1) in Ω.
The superscript L in (16) indicates that the microscopic evolution of the sys-
tem is governed by the overdamped Langevin process (1). Notice that, using
Proposition 3, it holds for all i ∈ {1, . . . , n}:

Pνh

[
XτΩ

∈ ∂Ω ∩ ∂Ωi

]
=

kL
i∑n

�=1 kL
�

.
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Thus, the expressions (16) are compatible with the use of a kinetic Monte Carlo
algorithm, see (2) and (4). Indeed, starting from the quasi-stationary distribu-
tion νh, the exit event from Ω can be exactly modeled using the rates (16): the
exit time is exponentially distributed with parameter

∑n
�=1 kL

� , independent of
the exit point, and the exit point is in ∂Ωi ∩ ∂Ω with probability kL

i /
∑n

�=1 kL
� .

The remaining question is thus following: does the transition rate (16) satisfy
the Eyring-Kramers law (5) in the limit h → 0?

Notice that, using Proposition 3, for i ∈ {1, . . . , n}, the transition rate defined
by (16) writes:

kL
i = −h

2

∫

∂Ω∩∂Ωi

∂nuh(z) e− 2
h f(z)σ(dz)

∫

Ω

uh e− 2
h f

, (17)

where we recall, uh is the eigenfunction associated with the principal eigen-
value λh of L

D,(0)
f,h .

The remainder of this work is dedicated to the presentation of recent results
in [22,23,56] which aim at studying the asymptotic behaviour of the exit
event (τΩ ,XτΩ

) from a metastable domain Ω in the limit h → 0. In partic-
ular, the results give a sharp asymptotic formula of the transition rates (17)
when h → 0.

Remark 8. If one wants to recover the expression of the prefactor (6), one has
to multiply by 1

2 the expression (16). This can be explained as follows. Once the
process (1) reaches ∂Ω∩∂Ωi, it has, in the limit h → 0, a one-half probability to
come back in Ω and a one-half probability to go in Ωi. If zi is a non degenerate
saddle point of f , this result is not difficult to prove in dimension 1. Indeed, it
is proved in [56, Section A.1.2.2], that when reaching ∂Ω ∩ ∂Ωi, the probability
that the process (1) goes in Ωi is 1

2 + o(1) in the limit h → 0. To extend this
result to higher dimensions, one can use a suitable set of coordinates around zi.

2 Main Results on the Exit Event

In all this section, Ω ⊂ R
d is C∞ open, bounded and connected, and f ∈

C∞(Ω,R)1. The purpose of this section is to present recent results obtained
in [22,23]. Both [22] and [23] are mainly concerned with studying the asymptotic
behaviour when h → 0 of the exit law of a domain Ω of the process (1). In [22],
when Ω only contains one local minimum of f and ∂nf > 0 on ∂Ω, we obtain
sharp asymptotic equivalents when h → 0 of the probability that the process (1)
leaves Ω through a subset Σ of ∂Ω starting from the quasi-stationary distribution
or from a deterministic initial condition in Ω. Then, these asymptotic equivalents
are used to compute the asymptotic behaviour of the transition rates (16). In [23],

1 Actually, all the results presented in this section are proved in [22,23] in the more
general setting: Ω = Ω ∪ ∂Ω is a C∞ oriented compact and connected Riemannian
manifold of dimension d with boundary ∂Ω.
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we explicit a more general setting than the one considered in [22] where we
identify the most probable places of exit of Ω as well as their relative probabilities
starting from the quasi-stationary distribution or deterministic initial conditions
in Ω. More precisely, we consider in [23] the case when Ω contains several local
minima of f and |∇f | �= 0 on ∂Ω.

2.1 Sharp Asymptotic Estimates on the Exit Event from a Domain

In this section, we present the results of [22] which give sharp asymptotic esti-
mates on the law of XτΩ

and on the expectation of τΩ when h → 0. These results
give in particular the asymptotic estimates of the transition rates (kL

j )j=1,...,n

defined in (16).

Geometric Setting. Let us give the geometric setting which is considered in
this section:

– [H1]. The function f : Ω → R and the restriction of f to Ω, denoted by f |∂Ω ,
are Morse functions. Moreover, |∇f |(x) �= 0 for all x ∈ ∂Ω.

– [H2]. The function f has a unique global minimum x0 in Ω and

min
∂Ω

f > min
Ω

f = min
Ω

f = f(x0).

The point x0 is the unique critical point of f in Ω. The function f |∂Ω has
exactly n ≥ 1 local minima which are denoted by (zi)i=1,...,n. They are ordered
such that

f(z1) ≤ . . . ≤ f(zn).

– [H3]. ∂nf(x) > 0 for all x ∈ ∂Ω.

Under the assumption [H2], one denotes by n0 ∈ {1, . . . , n} the number of
global minima of f |∂Ω , i.e.:

f(z1) = . . . = f(zn0) < f(znn0+1) ≤ . . . ≤ f(zn).

On Fig. 3, one gives a schematic representation in dimension 2 of a function f
satisfying the assumptions [H1], [H2], and [H3], and of its restriction to ∂Ω,
in the case n = 4 and n0 = 2.

Remark 9. The assumption [H1] implies that f does not have any saddle point
(i.e. critical point of index 1) on ∂Ω. Actually, under [H1], [H2], and [H3], the
points (zi)i=1,...,n play geometrically the role of saddle points and are called gen-
eralized saddle points of f on ∂Ω, see [31, Section 5.2]. This can be explained by
the fact that, under [H1], [H2], [H3] and when f is extended by −∞ outside Ω,
the points (zi)i=1,...,n are geometrically saddle points of f (the extension of f by
−∞ is consistent with the Dirichlet boundary conditions used to define L

D,(0)
f,h )

in the following sense. For all i ∈ {1, . . . , n}, zi is a local minimum of f |∂Ω and
a local maximum of f |Di

, where Di is the straight line passing through zi and
orthogonal to ∂Ω at zi.
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Fig. 3. Schematic representation in dimension 2 of a function f satisfying the assump-
tions [H1], [H2], and [H3], and of its restriction f |∂Ω to ∂Ω. On the figure, n = 4
and n0 = 2.

Remark 10. Notice that under [H1], [H2], and [H3], extending f by reflection
outside Ω in a neighborhood of zi also implies that zi is a geometric saddle
point of f as defined in Remark 9. In dimension one, such a construction was
considered by Kramers in [42] to derive formulas for transition rates, as explained
in [52]. Moreover, as in Remark 8, it can be proved in dimension 1 (exactly as
in [56, Section A.1.2.2]), that when reaching ∂Ω ∩ ∂Ωi, the probability that the
process (1) goes in Ωi is 1

2 + O(h) when h → 0. To extend this result to higher
dimensions, one can use a suitable set of coordinates around zi.

Let us now define g : Ω → R
+ by

g(x) =
∣
∣∇f(x)

∣
∣ when x ∈ Ω and g(x) =

∣
∣∇T f(x)

∣
∣ when x ∈ ∂Ω, (18)

where ∇T f is the tangential gradient of f in ∂Ω. Let us recall that for x ∈ ∂Ω,
∇T f(x) is defined by ∇T f(x) = ∇f(x) − (∇f(x) · n)n, where n is the unit
outward normal to ∂Ω at x. The assumptions one needs to state the results in
this section depend on the Agmon distance in Ω between the points (zi)i=1,...,n.
The Agmon distance is defined as follows: for any x ∈ Ω and y ∈ Ω,

da(x, y) := inf
γ∈Lip(x,y)

L(γ, (0, 1)), (19)
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where Lip(x, y) is the set of Lipschitz curves γ : [0, 1] → Ω which are such that
γ(0) = x and γ(1) = y, and where for γ ∈ Lip(x, y),

L(γ, (0, 1)) =
∫ 1

0

g(γ(t))|γ′(t)|dt.

Remark 11. Let us give some common points and differences between the
quasipotential V introduced in [26, Section 2] and the Agmon distance (19).
Contrary to the quasipotential V , the Agmon distance (19) is symmetric. More-
over, let us consider x �= y ∈ Ω such that there exists a curve γ : [0, 1] → Ω with
d
dtγ(t) = −∇f(γ(t)), γ(0) = x and γ(1) = y. Then, the Agmon distance (19)
between x and y equals f(x) − f(y) = V (y, x) > 0 but V (x, y) = 0 �= da(x, y).

Finally, let us define the following sets. For i ∈ {1, . . . , n}, Bzi
is the basin

of attraction of zi for the dynamics d
dtx(t) = −∇T f

(
x(t)
)

in ∂Ω, i.e. Bzi
=

{y ∈ ∂Ω, limt→∞ x(t) = zi if x(0) = y} (see for instance Fig. 3). Moreover, one
defines for i ∈ {1, . . . , n}:

Bc
zi

:= ∂Ω \ Bzi
.

Main Results. Let us now give the main results of this section.

Proposition 4. Let uh be the eigenfunction associated with the principal eigen-
value λh of L

D,(0)
f,h which satisfies normalization (13). Let us assume that the

hypotheses [H1], [H2], [H3] are satisfied. Then, in the limit h → 0, one has:

λh =

√
det Hessf(x0)√

πh

n0∑

i=1

∂nf(zi)√
det Hessf |∂Ω(zi)

e− 2
h
(f(z1)−f(x0)) (1 + O(h)) (20)

and
∫

Ω

uh(x) e− 2
h f(x)dx =

π
d
4

(det Hessf(x0))
1/4

h
d
4 e− 1

h f(x0)(1 + O(h)). (21)

Furthermore, one obtains the following theorem on the asymptotic behaviour
of ∂nuh, which is one of the main results of [22].

Theorem 1. Let us assume that [H1], [H2], and [H3] are satisfied and that
the following inequalities hold:

f(z1) − f(x0) > f(zn) − f(z1) (22)

and for all i ∈ {1, . . . , n},
da(zi, B

c
zi

) > max[f(zn) − f(zi), f(zi) − f(z1)]. (23)

Let i ∈ {1, . . . , n} and Σi ⊂ ∂Ω be an open set containing zi and such that
Σi ⊂ Bzi

. Let uh be the eigenfunction associated with the principal eigenvalue
of L

D,(0)
f,h which satisfies (13). Then, in the limit h → 0:

∫

Σi

∂nuh e− 2
h f = Ci(h) e− 2f(zi)−f(x0)

h (1 + O(h)) , (24)
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where Ci(h) = − (det Hessf(x0))1/4∂nf(zi)2π
d−2
4

√
det Hessf |∂Ω(zi)

h
d−6
4 .

These results have the following consequences.

Corollary 1. Let us assume that all the assumptions of Theorem 1 are satisfied.
Let i ∈ {1, . . . , n} and Σi ⊂ ∂Ω be an open set containing zi and such that
Σi ⊂ Bzi

. Then, in the limit h → 0:

Pνh
[XτΩ

∈ Σi] =
∂nf(zi)√

det Hessf |∂Ω(zi)

(
n0∑

k=1

∂nf(zk)
√

det Hessf |∂Ω(zk)

)−1

× e− 2
h (f(zi)−f(z1))(1 + O(h)), (25)

where νh is the quasi-stationary distribution of the process (1) in Ω (see (14)).
Moreover, if Σi is the common boundary between the state Ω and a state Ωi,
then, when h → 0

kL
i =

1√
πh

∂nf(zi)

√
det Hessf(x0)

√
det Hessf |∂Ω(zi)

e− 2
h (f(zi)−f(x0))(1 + O(h)), (26)

where kL
i is the transition rate (16) to go from Ω to Ωi.

Notice that since zi is not a saddle point of f , the prefactor in (26) is not the
prefactor 1

2Ai (see Remark 10 for the explanation of the multiplicative term 1
2 ),

where Ai is defined by (6), but it is actually the expected prefactor for a gener-
alized saddle point of f (see Remarks 9 and 10).

The asymptotic estimate (25) is a consequence of Proposition 4, Theorem 1
together with (15), and (26) is a consequence of Proposition 4, Theorem 1
and (17). The main difficulty is to prove (24) which requires a sharp equiva-
lent of the quantity

∫
Σi

∂nuh e− 2
h f when zi is not a global minimum of f on ∂Ω,

i.e. when i ∈ {n0 + 1, . . . , n}.
In [22], numerical simulations are provided to check that (25) holds and

to discuss the necessity of the assumptions (23) to obtain (25). Furthermore,
in [22], the results (24) and (25) are generalized to sets Σ ⊂ ∂Ω which do not
necessarily contain a point z ∈ {z1, . . . , zn}: this is the other main results of [22]
which is not presented here. Moreover, with the help of “leveling” results on the
function x → Ex[F (XτΩ

)], we generalized (25) to deterministic initial conditions
in Ω (i.e. when X0 = x ∈ Ω) which are the initial conditions considered in the
theory of large deviations [26].

The proofs of Proposition 4 and Theorem 1 are based on tools from semi-
classical analysis and more precisely, they are based on techniques developed
in [31–35,45].

Starting Points of the Proofs of Proposition 4 and Theorem 1. Let us
recall that uh is the eigenfunction associated with the principal eigenvalue λh

of L
D,(0)
f,h which satisfies normalization (13). In view of (15) and in order to
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obtain (25), one wants to study the asymptotic behaviour when h → 0 of ∇uh

on ∂Ω. The starting point of the proofs of Proposition 4 and Theorem 1 is the
fact that ∇uh is solution to an eigenvalue problem for the same eigenvalue λh.
Indeed, recall that uh is solution to L

(0)
f,h uh = λhuh in Ω and uh = 0 on ∂Ω. If

one differentiates this relation, ∇uh is solution to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L
(1)
f,h∇uh = λh∇uh in Ω,

∇T uh = 0 on ∂Ω,
(

−h

2
div + ∇f ·

)

∇uh = 0 on ∂Ω,

(27)

where L
(1)
f,h = −h

2Δ + ∇f · ∇ + Hess f is an operator acting on 1-forms (namely

on vector fields). In the following the operator L
(1)
f,h with tangential boundary

conditions (27) is denoted by L
D,(1)
f,h . From (27), ∇uh is therefore an eigenform

of L
D,(1)
f,h associated with λh. For p ∈ {0, 1}, let us denote, by π

(p)
h the orthogonal

projector of L
D,(p)
f,h associated with the eigenvalues of L

D,(p)
f,h smaller than

√
h
2 .

Another crucial ingredient for the proofs of Proposition 4 and Theorem 1 is the
fact that, from [31, Chapter 3],

Ran π
(0)
h = Spanuh and dim Ranπ

(1)
h = n. (28)

Therefore, from (27), it holds

∇uh ∈ Ran π
(1)
h , (29)

and from (13) and the fact that 〈L(0)
f,h uh, uh〉L2

w
= h

2 ‖∇uh‖2L2
w
, one has

λh =
h

2
‖∇uh‖2L2

w
. (30)

Thus, to study the asymptotic behaviour when h → 0 of λh, uh and ∇uh, we
construct a suitable orthonormal basis of Ranπ

(1)
h . This basis is constructed

using so-called quasi-modes.

Sketch of the Proofs of Proposition 4 and Theorem 1. Let us give the
sketch of the proof of (25) which is the main result of [22]. Recall that from
Proposition 2, one works in the Hilbert space L2

w(Ω). The spaces L2
w(Ω) and

H1
w(Ω) (see (12)) extend naturally on 1-forms as follows

Λ1L2
w(Ω) :=

{
u = t(u1, . . . , ud) : Ω → R

d, ∀k ∈ {1, . . . , d},

∫

Ω

u2
ke− 2

h f < ∞
}

,

and

Λ1H1
w(Ω) :=

{
u = t(u1, . . . , ud) : Ω → R

d, ∀(i, k) ∈ {1, . . . , d}2, ∂iuk ∈ L2
w(Ω)

}
.
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In the following, one denotes by ‖.‖L2
w

(resp. ‖.‖H1
w
) the norm of L2

w(Ω) and of
Λ1L2

w(Ω) (resp. H1
w(Ω) and Λ1H1

w(Ω)). Finally, 〈., .〉L2
w

stands for both the scalar
product associated with the norm of L2

w(Ω) and with the norm of Λ1L2
w(Ω). In

view of (29) and (28), one has for all orthonormal basis (ψj)j∈{1,...,n} of Ranπ
(1)
h ,

in L2
w(Ω):

∇uh =
n∑

j=1

〈∇uh, ψj〉L2
w
ψj , (31)

and from (30), it holds

λh =
h

2

n∑

j=1

∣
∣〈∇uh, ψj〉L2

w

∣
∣2. (32)

In particular, one has for all k ∈ {1, . . . , n},

∫

Σk

∂nuh e− 2
h f =

n∑

j=1

〈∇uh, ψj〉L2
w

∫

Σk

ψj · n e− 2
h f , (33)

where we recall that Σk is an open set of ∂Ω such that zk ∈ Σk and Σk ⊂ Bzk
.

Step 1: Approximation of uh. Under [H1], [H2], and [H3], it is not difficult to
find a good approximation of uh. Indeed, let us consider,

ũ :=
χ

‖χ‖L2
w

, (34)

where χ ∈ C∞
c (Ω,R+) and χ = 1 on {x ∈ Ω, d(x, ∂Ω) ≥ ε} where ε > 0. In

particular, for ε small enough, χ = 1 in a neighborhood of x0 (which is assumed
in the following). Let us explain why ũ is a good approximation of uh. Since
L

D,(0)
f,h is self adjoint on L2

w(Ω), one has

∥
∥(1 − π

(0)
h )ũ

∥
∥2

L2
w

≤ C√
h

〈
L

D,(0)
f,h ũ, ũ

〉
L2

w
=

Ch

2
√

h

∫
Ω

|∇χ|2e− 2
h f

∫
Ω

χ2e− 2
h f

.

Since f(x0) = minΩ f < min∂Ω f and x0 is the unique global minimum of f on
Ω (see [H2]), one has using Laplace’s method (x0 is a non degenerate critical
point of f and χ(x0) = 1):

∫

Ω

χ2e− 2
h f =

(πh)
d
2

√
detHessf(x0)

e− 2
h f(x0)(1 + O(h)).

Therefore, for any δ > 0, choosing ε small enough, it holds when h → 0:
∥
∥(1 − π

(0)
h )ũ

∥
∥2

L2
w

= O(e− 2
h (f(z1)−f(x0)−δ)),

and thus:
π
(0)
h ũ = ũ + O(e− 1

h (f(z1)−f(x0)−δ)) in L2
w(Ω).
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From (28) and since χ ≥ 0, one has for any δ > 0 (choosing ε small enough),
when h → 0

uh =
π
(0)
h ũ

‖π
(0)
h ũ‖L2

w

= ũ + O(e− 1
h (f(z1)−f(x0)−δ)) in L2

w(Ω). (35)

Since ‖ũ‖L2
w

= 1, this last relation justifies that ũ is a good approximation of uh

in L2
w(Ω). Notice that (35) implies (21).

Step 2: Construction of a Basis of Ran π
(1)
h to Prove Theorem 1. In view of (33),

the idea is to construct a family of 1-forms (ψ̃j)j∈{1,...,n} which forms, when
projected on Ran π

(1)
h , a basis of Ran π

(1)
h and which allows to obtain sharp

asymptotic estimates on ∂nuh on all the Σj ’s when h → 0. In the literature,
such a 1-form ψ̃j is called a quasi-mode (for L

D,(1)
f,h ). A quasi-mode for L

D,(1)
f,h is

a smooth 1-form w such that for some norm, it holds when h → 0:

π
(1)
h w = w + o(1), (36)

To prove Theorem 1, one of the major issues is the construction of a
basis (ψ̃j)j∈{1,...,n} so that the remainder term o(1) in (36), when w = ψ̃k,
is of the order (see (23))

∥
∥(1 − π

(1)
h )ψ̃k

∥
∥

H1
w

= O
(
e− 1

h max[f(zn)−f(zk), f(zk)−f(z1)]
)
. (37)

This implies that
(
π
(1)
h ψ̃j

)
j∈{1,...,n} is a basis of Ran π

(1)
h and above all, after

a Gram-Schmidt procedure on
(
π
(1)
h ψ̃j

)
j∈{1,...,n}, when h → 0, that for all k ∈

{1, . . . , n} (see (33)):

∫

Σk

∂nuh e− 2
h f =

n∑

j=1

〈∇ũ, ψ̃j〉L2
w

∫

Σk

ψ̃j · n e− 2
h f + O

(
e− 2f(zk)−f(x0)+c

h

)
(38)

and (see (32))

λh =
h

2

n∑

j=1

|〈∇ũ, ψ̃j〉L2
w
|2 + O

(
e− 2

h (f(z1)−f(x0)+c)
)

(39)

for some c > 0 independent of h. Here, we recall, ũ (see (34)) is a good approx-
imation of uh (see (35)). Let us now explain how we will construct the fam-
ily
(
ψ̃j

)
j∈{1,...,n}in order to obtain (38) and (39). Then, we explain how the

terms
(∫

Σj

ψ̃j · n e− 2
h f
)

j∈{1,...,n}
and

(
〈∇ũ, ψ̃j〉L2

w

)

j∈{1,...,n}
appearing in (38)

and (39) are computed.

Step 2a: Construction of the Family (ψ̃j)j∈{1,...,n}. To construct each 1-form ψ̃j ,
the idea is to construct an operator L

(1)
f,h with mixed tangential Dirichlet and
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Neumann boundary conditions on a domain Ω̇j ⊂ Ω which is such that
({z1, . . . , zn} ∪ {x0}

) ∩ Ω̇j = {zj}. For j ∈ {1, . . . , n}, ψ̃j is said to be asso-
ciated with the generalized saddle point zj . The goal of the boundary conditions
is to ensure that when h → 0, each of these operators has only one exponentially
small eigenvalue (i.e. this eigenvalue is O

(
e− c

h

)
for some c > 0 independent of

h), the other eigenvalues being larger than
√

h. Then, we show that each of these
small eigenvalues actually equals 0 using the Witten complex structure associ-
ated with these boundary conditions on ∂Ω̇j . To construct such operators L

(1)
f,h

with mixed boundary conditions on Ω̇j , the recent results of [28,38] are used.
The 1-form ψ̃j associated with zj is then defined using an eigenform v

(1)
h,j associ-

ated with the eigenvalue 0 of the operator L
(1)
f,h associated with mixed boundary

conditions on Ω̇j :

ψ̃j :=
χj v

(1)
h,j

‖χj v
(1)
h,j‖L2

w

, (40)

where χj is a well chosen cut-off function with support in Ω̇j . Notice that for j ∈
{1, . . . , n}, the quasi-mode ψ̃j is not only constructed in a neighbourhood of zj :
it has a support as large as needed in Ω. This is a difference with previous
construction in the literature, such as [31]. We need such quasi-modes for the
following reasons. Firstly, we compute the probability that the process (1) leaves
Ω through open sets Σj which are arbitrarily large in Bzj

. Secondly, we use the
fact that the quasi-mode ψ̃j decreases very fast away from zj to get (37). This is
needed to state the hypothesis (23) in terms of Agmon distances, see next step.

Step 2b: Accuracy of the Quasi-mode ψ̃j for j ∈ {1, . . . , n}. To obtain a suffi-
ciently small remainder term in (36) (to get (37) and then (38)), one needs to
quantify the decrease of the quasi-mode ψ̃j outside a neighborhood of zj . This
decrease is obtained with Agmon estimates on v

(1)
h,j which allow to localize ψ̃j in

a neighborhood of zj . For j ∈ {1, . . . , n}, we prove the following Agmon estimate
on v

(1)
h,j : ∥

∥χj v
(1)
h,je

1
h da(.,zj)

∥
∥

H1
w

= O(h−N ), (41)

for some N ∈ N and where da is the Agmon distance defined in (19). To
obtain (41), we study the properties of this distance. The boundary of Ω intro-
duces technical difficulties. The Agmon estimate (41) is obtained adapting to
our case techniques developed in [31,45]. For all j ∈ {1, . . . , n}, using the fact
that

∥
∥(1 − π

(1)
h )ψ̃j

∥
∥2

L2
w

≤ C√
h

〈
L

D,(1)
f,h ψ̃j , ψ̃j

〉
L2

w
and (41), one shows that

∥
∥(1 − π

(1)
h )ψ̃j

∥
∥2

L2
w

≤ C h−q e− 2
h infsupp∇χj

da(.,zj),

for some q > 0. Thus, in order to get (37), the support of ∇χj has to be arbi-
trarily close to x0 and Bc

zj
. This explains the assumptions (22) and (23), and
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the fact that the quasi-mode ψ̃j is not constructed in a neighborhood of zj but
in a domain Ω̇j arbitrarily large in Ω. This is one of the main differences com-
pared with [31]. At the end of this step, one has a family (ψ̃j)j∈{1,...,n} which
satisfies (37). This allows us to obtain, in the limit h → 0 (see (38)), for some
c > 0 independent of h and for all k ∈ {1, . . . , n}:

∫

Σk

∂nuh e− 2
h f =

n∑

j=1

〈∇ũ, ψ̃j〉L2
w

∫

Σk

ψ̃j · n e− 2
h f + O

(
e− 2f(zk)−f(x0)+c

h

)
.

Etape 3: Computations of
(∫

Σj

ψ̃j · n e− 2
h f
)

j∈{1,...,n}
and

(
〈∇ũ, ψ̃j〉L2

w

)

j∈{1,...,n}
. In view of (38) and (39), for all j ∈ {1, . . . , n}, one

needs to compute the terms
∫

Σj

ψ̃j · n e− 2
h f and 〈∇ũ, ψ̃j〉L2

w
.

To do that, we use for all j ∈ {1, . . . , n} a WKB approximation of v
(1)
h,j , denoted

by v
(1)
zj ,wkb. In the literature we follow, v

(1)
zj ,wkb is constructed in a neighbor-

hood of zj (see [31,45]). To prove Theorem 1, we extend the construction
of v

(1)
zj ,wkb to neighbourhoods in Ω of arbitrarily large closed sets included in Bzj

(indeed, there is no restriction on the size of Σj in Bzj
). Then, the comparison

between v
(1)
h,j and v

(1)
zj ,wkb is also extended to neighbourhoods in Ω of arbitrarily

large closed sets included in Bzj
. Once the terms

( ∫
Σj

ψ̃j ·n e− 2
h f
)

j∈{1,...,n}
and

(
〈∇ũ, ψ̃j〉L2

w

)

j∈{1,...,n}
are computed, one concludes the proof of (20) using (39)

and the proof of (24) using (38).

2.2 Most Probable Exit Points from a Bounded Domain

Setting and Motivation. In this section, we present recent results from [23]
on the concentration of the law of XτΩ

on a subset of argmin∂Ωf = {z ∈
∂Ω, f(z) = min∂Ω f} when h → 0 in a more general geometric setting than the
one of Theorem 1. The main purpose of these results is to prove an asymptotic
formula when h → 0 for the concentration of the law of XτΩ

on a set of points
of argmin∂Ωf when Ω contains several local minima of f and when ∂nf is not
necessarily positive on ∂Ω.

Let Y ⊂ ∂Ω. We say that the law of XτΩ
concentrates on Y if for all neigh-

borhood VY of Y in ∂Ω, one has

lim
h→0

P [XτΩ
∈ VY ] = 1,
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and if for all x ∈ Y and all neighborhood Vx of x in ∂Ω, it holds:

lim
h→0

P [XτΩ
∈ Vx] > 0.

In [50,51,55], when ∂nf(x) = 0 for all x ∈ ∂Ω or when ∂nf(x) > 0 for all x ∈
∂Ω (and with additional assumptions on f), it has been shown that the law
of XτΩ

concentrates on points where f attains its minimum on ∂Ω (see (10)).
Later on, it has been proved in [15,16,39,40,57] when ∂nf > 0 on ∂Ω and f
has a unique non degenerate critical point in Ω (which is necessarily its global
minimum in Ω). Tools developed in semi-classical analysis allow us to generalize
this geometric setting. For instance, we consider several critical points of f in Ω
and we drop the assumptions ∂nf > 0 on ∂Ω (however we do not consider the
case when f has saddle points on ∂Ω). Assuming that f and f |∂Ω are Morse
functions, and |∇f | �= 0 on ∂Ω, we raise the following questions:

– What are the geometric conditions ensuring that, when X0 ∼ νh, the law
of XτΩ

concentrates on points where f attains its minimum on ∂Ω (or a
subset of these points)?

– What are the conditions which ensure that these results extend to some deter-
ministic initial conditions in Ω?

The results of [23] aim at answering these questions. Let us recall that when f
and f |∂Ω are Morse functions and when |∇f | �= 0 on ∂Ω, the elements of the set

{z is a local minimim of f |∂Ω} ∩ {z ∈ ∂Ω, ∂nf(z) > 0} (42)

are the generalized saddle points of f on ∂Ω and play the role of saddle points
of f on ∂Ω, see Remark 9. Before stating the main results of [23], let us discuss
the two questions above with one-dimensional examples.

Remark 12. The assumption that the drift term b in (1) is of the form b = −∇f
is essential here to the existence of a limiting exit distribution of Ω when h → 0.
If it is not the case and when for instance the boundary of Ω is a periodic orbit
of the dynamics d

dtx(t) = b
(
x(t)
)
, the phenomenon of cycling discovered by Day

in [17,18] prevents the existence of a limiting exit distribution when h → 0. We
also refer to [3–5] for the study of this phenomenon of cycling.

One-Dimensional Examples. To discuss the two questions raised in the pre-
vious section, one considers two one-dimensional examples.

Example 1. The goal is here to construct a one-dimensional example for which,
starting from the global minimum of f in Ω or from the quasi-stationary dis-
tribution νh, the law of XτΩ

does not concentrate on points where f attains its
minimum on ∂Ω. To this end, let us consider the function f represented in Fig. 4
for which one has the following result.
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Fig. 4. Example of a function f such that, starting from the global minimum x1 of f
in Ω or from the quasi-stationary distribution νh, the law of XτΩ concentrates on z2
whereas f(z2) > min∂Ω f = f(z1).

Proposition 5. Let z1 < z2 and f ∈ C∞([z1, z2],R) be a Morse function. Let
us assume that f(z1) < f(z2), {x ∈ [z1, z2], f ′(x) = 0} = {c, x1} with z1 < c <
x1 < z2 and f(x1) < f(z1) < f(z2) < f(c) (see Fig. 4). Then, for all x ∈ (c, z2],
there exists ε > 0 such that when h → 0:

Px[Xτ(z1,z2) = z1] = O(e− ε
h ) and thus Px[Xτ(z1,z2) = z2] = 1 + O(e− ε

h ).

Moreover, there exists ε > 0 such that when h → 0:

Pνh
[Xτ(z1,z2) = z1] = O(e− ε

h ) and thus Pνh
[Xτ(z1,z2) = z2] = 1 + O(e− ε

h ),

where νh is the quasi-stationary distribution of the process (1) in (z1, z2).

The proof of Proposition 5 is based on the fact that in one dimension, explicit
formulas can be written for x → Px[Xτ(z1,z2) = zj ] (j ∈ {1, 2}), see [56, Section
A.5.3.1] or [23]. According to Proposition 5, when h → 0 and when X0 = x ∈
(c, z2) or X0 ∼ νh, the process (1) leaves Ω = (z1, z2) through z2. However, the
generalized saddle point z2 (see (42)) is not the global minimum of f on ∂Ω. This
fact can be explained as follows: the potential barrier f(c)− f(x1) is larger than
the potential barrier f(z2) − f(x1). Thus, the law of XτΩ

when X0 = x ∈ (c, z2)
cannot concentrate on z1 since it is less costly to leave Ω through z2 rather than
to cross the barrier f(c) − f(x1) to exit through z1. Moreover, it can be proved
that the quasi-stationary distribution νh concentrates in any neighborhood of x1

in the limit h → 0, which explains why the law of XτΩ
when X0 ∼ νh also

concentrates on z2. Concerning the two questions raised in the previous section,
this example indicates that in the small temperature regime, there exist cases for
which the process (1), starting from the global minimum of f in Ω or from νh,
leaves Ω through a point which is not a global minimum of f |∂Ω .

This example also suggests the following. If one wants the law of XτΩ
to

concentrate when h → 0 on points in ∂Ω where f attains its minimum, one
should exclude cases when the largest timescales for the diffusion process in Ω
are not related to energetic barriers involving points of ∂Ω where f |∂Ω attains
its minimum. In order to exclude such cases, we will assume in the following that
the closure of each of the connected components of {f < min∂Ω f} intersects ∂Ω.
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Notice that if one modifies the function f in the vicinity of z1 such that
∂nf(z1) > 0 and argminΩf = {x1}, z1 is then a generalized order one saddle
point and the previous conclusions remain unchanged.

Example 2. Let us construct a one-dimensional example for which the concen-
tration of the law of XτΩ

on argmin∂Ωf is not the same starting from the global
minima of f in Ω or from the quasi-stationary distribution νh. For this purpose,
let us consider z1 > 0, z2 := −z1, z = 0 and f ∈ C∞([z1, z2],R) such that

f is a Morse and even function, {x ∈ [z1, z2], f ′(x) = 0} = {x1, z, x2}, (43)

where

z1 < x1 < z < x2 < z2, f(z1) = f(z2) > f(x1) = f(x2), f(z1) < f(z). (44)

A function f satisfying (43) and (44) is represented in Fig. 5. One has the
following result.

Fig. 5. One-dimensional example where (43) and (44) are satisfied.

Proposition 6. Let z1 > 0, z2 := −z1, z = 0 and f ∈ C∞([z1, z2],R) which
satisfies (43) and (44). Then, one has for all h > 0,

Pνh
[Xτ(z1,z2) = z1] =

1
2

and Pνh
[Xτ(z1,z2) = z2] =

1
2
, (45)

where νh is the quasi-stationary distribution of the process (1) in (z1, z2). More-
over, for all x ∈ (z1, z), there exists c > 0 such that when h → 0,

Px[Xτ(z1,z2) = z1] = 1 + O(e− c
h ) and Px[Xτ(z1,z2) = z2] = O(e− c

h ), (46)

and for all x ∈ (z, z2), there exists c > 0 such that when h → 0

Px[Xτ(z1,z2) = z1] = O(e− c
h ) and Px[Xτ(z1,z2) = z2] = 1 + O(e− c

h ). (47)

The asymptotic estimate (45) is a consequence of the fact that f is an even
function (see [23, Section 1]). The asymptotic estimates (46) and (47) are proved
exactly as Proposition 5, see [23, Section 1]. Let us also mention that Proposi-
tion 6 is a consequence of the results [46]. Concerning the two questions raised
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in the previous section, Proposition 6 shows that, when f satisfies (43) and (44),
the concentration of the law of XτΩ

on {z1, z2} is not the same starting from
x ∈ (z1, z2) \ {z} or from νh. This is due to the fact that in this case the quasi-
stationary distribution νh has an equal repartition in all disjoint neighborhoods
of x1 and x2, i.e. for every (a1, b1) ⊂ (z1, z) and (a2, b2) ⊂ (z, z2) such that
a1 < x1 < b1 and a2 < x2 < b2, it holds for any j ∈ {1, 2}, limh→0

∫ bj

aj
νh = 1

2

(see [46]). When X0 = x ∈ (z1, z2) \ {z}, the asymptotic estimates (46) and (47)
can be explained by the existence of a barrier f(z) − f(x1) which is larger than
f(z1) − f(x1). In order to exclude such cases, we will assume in the follow-
ing that there exists a connected component C of {f < min∂Ω f}, such that
argminΩf ⊂ C.

Main Results on the Exit Point Distribution. In this section, a simplified
version of the results of [23] is presented. The aim is to exhibit a simple geometric
setting for which, on the one hand, the law of XτΩ

concentrates on the same
points of ∂Ω when X0 ∼ νh or X0 = x ∈ Ω for some x ∈ {f < min∂Ω f} and, on
the other hand, this concentration occurs on generalized saddle points of f which
belong to argmin∂Ωf . To this end, let us define the two following assumptions:

– [H-Morse]. The function f : Ω → R is C∞. The functions f : Ω → R

and f |∂Ω are Morse functions. Moreover, |∇f |(x) �= 0 for all x ∈ ∂Ω.
– [H-Min]. The open set {f < min∂Ω f} is nonempty, contains all the local

minima of f in Ω and the closure of each of the connected components of {f <
min∂Ω f} intersects ∂Ω. Furthermore, there exists a connected component C
of {f < min∂Ω f} such that argminΩf ⊂ C.

Notice that under [H-Morse] and [H-Min], it holds min∂Ω f > minΩ f =
minΩ f . Under the assumptions [H-Morse] and [H-Min], one defines the set
of points {z1, . . . , zk0} by

C ∩ ∂Ω = {z1, . . . , zk0}. (48)

Remark 13. As already explained, the points z1, . . . ., zk0 are generalized saddle
points of f on ∂Ω (see (42)) since they satisfy

{z1, . . . , zk0} ⊂ {z ∈ ∂Ω, ∂nf(z) > 0} ∩ argmin∂Ωf. (49)

Remark 14. Under [H-Min], the normal derivative of f can change sign and
the function f can have saddle points in Ω higher than min∂Ω f , see for instance
Fig. 6.

As shown in the following theorem, the assumption [H-Min] ensures that
the quasi-stationary distribution νh concentrates in neighborhoods of the global
minima of f in C and, starting from x ∈ C or from νh, that the concentration
of the law of XτΩ

when h → 0 occurs on the set of generalized saddle points
{z1, . . . , zk0} (see (48)). Notice that the assumption [H-Min] is not satisfied in
the two examples given in the previous section (see Figs. 4 and 5).
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Fig. 6. A one-dimensional example where [H-Morse] and [H-Min] are satisfied, the
normal derivative of f changes sign and the function f has a saddle point in Ω higher
than min∂Ω f . In this example, {f < min∂Ω f} is connected and thus C = {f <
min∂Ω f}. Moreover, C ∩ ∂Ω = {z1}.

Theorem 2. Let us assume that the hypotheses [H-Morse] and [H-Min] are
satisfied. Let νh be the quasi-stationary distribution of the process (1) in Ω
(see (14)). Let V be an open subset of Ω. Then, if V ∩ argminCf �= ∅, one
has in the limit h → 0:

νh

(V) =

∑
x∈V∩argminCf

(
det Hessf(x)

)− 1
2

∑
x∈argminCf

(
det Hessf(x)

)− 1
2

(
1 + O(h)

)
.

When V ∩ argminCf = ∅, there exists c > 0 such that when h → 0:

νh

(V) = O
(
e− c

h

)
.

In addition, let F ∈ C∞(∂Ω,R). Then, when h → 0:

Eνh
[F (XτΩ

)] =
k0∑

i=1

F (zi) ai + O(h
1
4 ), (50)

where for i ∈ {1, . . . , k0},

ai =
∂nf(zi)√

det Hessf
∣
∣
∂Ω

(zi)

⎛

⎝
k0∑

j=1

∂nf(zj)√
det Hessf

∣
∣
∂Ω

(zj)

⎞

⎠

−1

. (51)

Finally, (50) holds when X0 = x ∈ C.

Remark 15. In [23], one also gives sharp asymptotic estimates of λh and ∂nuh

in a more general setting than the one of Theorem 2 (for instance, we study the
case when f has local minima higher than min∂Ω f). However, in [23], we do not
study the precise asymptotic behaviour of XτΩ

when h → 0 near generalized
saddle points z of f on ∂Ω which are such that f(z) > min∂Ω f as we did in [22]
(see Corollary 1). Finally, in [23], the optimality of the remainder term O(h

1
4 )

in (50) is discussed and improved in some situations.
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Ideas and Sketch of the Proof of Theorem 2. In this section, one gives the
sketch of the proof of (50) which is the main result of Theorem 2. Recall that
from (15), for F ∈ C∞(∂Ω,R)

Eνh

[
F (XτΩ

)
]

= − h

2λh

∫

Σ

F ∂nuhe− 2
h f

∫

Ω

uhe− 2
h f

,

where uh is the eigenfunction associated with the principal eigenvalue λh

of L
D,(0)
f,h . Therefore, to prove (50), one studies the asymptotic behaviour when

h → 0 of the following quantities

λh, ∂nuh and
∫

Ω

uhe− 2
h f . (52)

Under the assumptions [H-Morse] and [H-Min], one defines

m0 := Card
(
{z ∈ Ω, z is a local minimum of f}

)

and

m1 : = Card
(
{z is a local minimum of f |∂Ω} ∩ {z ∈ ∂Ω, ∂nf(z) > 0}

)

+ Card
(
{z is saddle point of f}

)
. (53)

The integer m1 is the number of generalized saddle points of f in Ω (see [31,
Section 5.2]). To study the asymptotic behaviour when h → 0 of the quantities
involved in (52), the starting point is to again observe that ∇uh is solution to
an eigenvalue problem for the same eigenvalue λh (as already explained at the
end of Sect. 2.1). Indeed, ∇uh is solution to (see (27))

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L
(1)
f,h∇uh = λh∇uh in Ω,

∇T uh = 0 on ∂Ω,
(

−h

2
div + ∇f ·

)

∇uh = 0 on ∂Ω,

(54)

where we recall that L
(1)
f,h = −h

2Δ + ∇f · ∇ + Hess f is an operator acting

on 1-forms. Let us also recall that the operator L
(1)
f,h with tangential boundary

conditions (54) is denoted by L
D,(1)
f,h . From (54), ∇uh is an eigenform of L

D,(1)
f,h

associated with λh.
The second ingredient is the following result: under the assumptions [H-

Morse] and [H-Min] and when h → 0, the operator L
D,(0)
f,h has exactly m0 eigen-

values smaller than
√

h
2 and L

D,(1)
f,h has exactly m1 eigenvalues smaller than

√
h
2

(see [31, Chapter 3]). Actually, all theses small eigenvalues are exponentially
small when h → 0, i.e. they are all O

(
e− c

h

)
for some c > 0 independent of h.
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In particular λh is an exponentially small eigenvalue of L
D,(0)
f,h and of L

D,(1)
f,h . Let

us denote by π
(0)
h (resp. π

(1)
h ) the orthogonal projector in L2

w(Ω) onto the m0

(resp. m1) smallest eigenvalues of L
D,(0)
f,h (resp. L

D,(1)
f,h ). Then, according to the

foregoing, one has when h → 0:

dim Ran π
(0)
h = m0, dim Ran π

(1)
h = m1

and
∇uh ∈ Ranπ

(1)
h .

Let us now explain how we prove Theorem 2. To this end, let us introduce the
set of local minima of f in Ω,

UΩ
0 := {x ∈ Ω, x is a local minimum of f},

and the set of generalized saddle points of f in Ω,

UΩ
1 =

(
{z is a local minimum of f |∂Ω} ∩ {z ∈ ∂Ω, ∂nf(z) > 0}

)

⋃
{z is a saddle point of f}.

Let us recall that m0 = Card
(
UΩ
0

)
and, from (53), that m1 = Card

(
UΩ
1

)
. The

first step to prove Theorem 2 consists in constructing two maps j̃ and j. The goal
of the map j is to associate each local minimum x of f with a set of generalized
saddle points j(x) ⊂ UΩ

1 such that

∀z, y ∈ j(x), f(z) = f(y),

and such that, in the limit h → 0, there exists at least one eigenvalue of L
D,(0)
f,h

whose exponential rate of decay is 2
(
f(j(x)) − f(x)

)
i.e.

∃λ ∈ σ
(
L

D,(0)
f,h

)
such that lim

h→0
h ln λ = −2

(
f(j(x)) − f(x)

)
.

The aim of the map j̃ is to associate each local minimum x of f with the connected
component of {f < f(j(x))} which contains x.

The second step consists in constructing bases of Ran π
(0)
h and Ranπ

(1)
h . To

this end, one constructs two families of quasi-modes, denoted by (ũk)k∈{1,...,m0}
and (ψ̃j)j∈{1,...,m1}, which are then respectively projected onto Ranπ

(0)
h and

Ran π
(1)
h . To construct the family of 1-forms (ψ̃j)j∈{1,...,m1}, we proceed as fol-

lows. For each saddle point z of f in Ω, following the procedure of [30], one
constructs a 1-form supported in a neighborhood of z in Ω. For a local mini-
mum z of f |∂Ω such that ∂nf(z) > 0, one constructs a 1-form supported in a
neighborhood of z in Ω as made in [31]. To construct the family of functions
(ũk)k∈{1,...,m0}, one constructs for each local minimum x of f a smooth func-
tion whose support is almost j̃(x) (this construction is close to the one made
in [30,31,36,45,53]).
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The next step consists in finding a sharp asymptotic equivalent for λh when
h → 0. The quantity 2

hλh equals the square of the smallest singular values of the
finite dimensional operator

∇ : Ran π
(0)
h → Ran π

(1)
h .

To study the asymptotic behaviour when h → 0 of this smallest singular value,
one uses the bases of Ran π

(0)
h and Ranπ

(1)
h which have been constructed pre-

viously. The analysis of this finite dimensional problem is inspired by [36] and
also yields the asymptotic equivalent of

∫
Ω

uh e− 2
h f when h → 0.

Then, we study the asymptotic behaviour of the normal derivative of uh

on ∂Ω when h → 0 to deduce that the law of XτΩ
concentrates when h → 0 on

C ∩ ∂Ω = {z1, . . . , zk0} when X0 ∼ νh.
Lastly, one proves “leveling” results on the function

x → Ex[F (XτΩ
)]

to obtain that when X0 = x ∈ C, the law of XτΩ
also concentrates when h → 0

on {z1, . . . , zk0}.
To conclude, the main results of [23] are the following:

1. One uses techniques from semi-classical analysis to study the asymptotic
behaviours of λh and ∂nuh when h → 0, and then, the concentration of
the law of XτΩ

on a subset of argmin∂Ωf when X0 ∼ νh.
2. One identifies the points of argmin∂Ωf where the law of XτΩ

concentrates
when X0 ∼ νh: this set of points is {z1, . . . , zk0}. Moreover, explicit formulas
for their relative probabilities are given (see indeed (51)) as well as precise
remainder terms.

3. One extends the previous results on the law of XτΩ
to a deterministic initial

condition in Ω: X0 = x where x ∈ C.
4. These results hold under weak assumptions on the function f and one-

dimensional examples are given to explain why the geometric assumptions
are needed to get them.

Conclusion. We presented recent results which justify the use of a kinetic Monte
Carlo model parametrized by Eyring-Kramers formulas to model the exit event
from a metastable state Ω for the overdamped Langevin dynamics (1). Our
analysis is for the moment limited to situations where |∇f | �= 0 on ∂Ω, which
does not allow to consider order one saddle points on ∂Ω. The extensions of [22]
and [23] which are currently under study are the following: the case when f has
saddle points on ∂Ω and the case when the diffusion process Xt = (qt, pt) is
solution to the Langevin stochastic differential equation

{
dqt = ptdt,

dpt = −∇f(qt)dt − γ ptdt +
√

hγ dBt,

where (qt, pt) ∈ Ω × R
d, Ω being a bounded open subset of Rd.
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moléculaire. Symétries. Perturbation. Annales de l’IHP Physique théorique 42(2),
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36. Hérau, F., Hitrik, M., Sjöstrand, J.: Tunnel effect and symmetries for Kramers-
Fokker-Planck type operators. J. Inst. Math. Jussieu 10(3), 567–634 (2011)

37. Holley, R.A., Kusuoka, S., Stroock, D.W.: Asymptotics of the spectral gap with
applications to the theory of simulated annealing. J. Funct. Anal. 83(2), 333–347
(1989)

38. Jakab, T., Mitrea, I., Mitrea, M.: On the regularity of differential forms satisfying
mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math.
J. 58(5), 2043–2071 (2009)

39. Kamin, S.: Elliptic perturbation of a first order operator with a singular point of
attracting type. Indiana Univ. Math. J. 27(6), 935–952 (1978)

https://springerlink.bibliotecabuap.elogim.com/journal/40818/5/1
https://springerlink.bibliotecabuap.elogim.com/journal/40818/5/1
http://arxiv.org/abs/1902.03270


362 T. Lelièvre et al.
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55. Naeh, T., Klosek, M.M., Matkowsky, B.J., Schuss, Z.: A direct approach to the
exit problem. SIAM J. Appl. Math. 50(2), 595–627 (1990)

56. Nectoux, B.: Analyse spectrale et analyse semi-classique pour la métastabilité en
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Abstract. We present the Multi-Particle-Collision (MPC) dynamics
approach to simulate properties of low-dimensional systems. In particu-
lar, we illustrate the method for a simple model: a one-dimensional gas
of point particles interacting through stochastic collisions and admit-
ting three conservation laws (density, momentum and energy). Motivated
from problems in fusion plasma physics, we consider an energy-dependent
collision rate that accounts for the lower collisionality of high-energy par-
ticles. We study two problems: (i) the collisional relaxation to equilibrium
starting from an off-equilibrium state and (ii) the anomalous dynamical
scaling of equilibrium time-dependent correlation functions. For problem
(i), we demonstrate the existence of long-lived population of suprather-
mal particles that propagate ballistically over a quasi-thermalized back-
ground. For (ii) we compare simulations with the predictions of nonlinear
fluctuating hydrodynamics for the structure factors of density fluctua-
tions. Scaling analysis confirms the prediction that such model belong to
the Kardar-Parisi-Zhang universality class.

Keywords: Multi-particle collision simulation · Anomalous transport

1 Introduction

Simulation of many-particle systems can be computationally very demanding,
even for simple models. This is challenging especially when trying to measure
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asymptotic properties like the celebrated long-time tails of correlation functions
in the thermodynamic limit [1]. Although molecular dynamics is the most nat-
ural choice, alternative approaches based on effective stochastic processes have
been proposed both for computational efficiency and also to get some insight in
the general properties of non-equilibrium systems. In this contribution we will
briefly review the Multi-Particle-Collision (MPC) approach which was originally
proposed by Malevanets and Kapral [2–4] in the context of mesoscopic dynam-
ics of complex fluids (e.g. polymers in solution, colloidal fluids). In essence, it
is based on a stochastic and local protocol that redistributes particle velocities,
while preserving the global conserved quantities such as total energy, momentum
and angular momentum.

In this contribution, we will illustrate the method referring to the simple case
of a one-dimensional fluid. Since we are interested to explore possible application
of the method as a tool to investigate fusion plasma, we will introduce an energy-
dependent collision rate that mimics Coulombian interaction in a simple manner.
We will consider two problems: (i) the relaxation to equilibrium from a non-
equilibrium initial state and (ii) the demonstration or dynamical scaling of time-
dependent correlation functions.

Thermalization of many-particle system is a classic problem of non-
equilibrium statistical mechanics and kinetic theory. In the context of fusion
plasma, the question is relevant in the low-collisionality regime where non-
equilibrium condition generate populations of suprathermal electrons and heavy
tails in the velocity distribution function [5,6]. These fast particles modify heat
and charge transport and thus the overall performance of magnetic confinement
devices [7].

On the other hand, transport and dynamical scaling in low-dimensional mod-
els have been long investigated in the recent literature [8–10]. The main findings
is that many-particle systems with one or two spatial degrees of freedom show
anomalous transport properties signaled by the divergence of transport coeffi-
cients, like the thermal conductivity in the thermodynamic limit [8–11]. A way to
detect this anomalous feature is to study dynamical scaling of equilibrium correla-
tion functions and the corresponding dynamical scaling exponent z (defined below)
and seek for deviations from the usual diffusive behavior. More recently, a com-
plete description has been put forward within the Nonlinear Fluctuating Hydrody-
namics (NFH) approach, proposed independently by van Beijeren [12] and Spohn
[13,14]. These authors have shown that the statistical properties of 1D nonlinear
hydrodynamics with three conservation laws (e.g. total energy, momentum and
number of particles) are essentially described by the fluctuating Burgers equation
which can be mapped onto the well-known Kardar-Parisi-Zhang (KPZ) equation
for the stochastic growth of interfaces [15]. As a consequence, correlations of spon-
taneous fluctuations are characterized by the KPZ dynamical exponent z = 3/2 in
one-dimension. The origin of the nontrivial dynamical exponents are to be traced
back to the nonlinear interaction of long-wavelength modes. The results depends
on the fact that the isolated system admits three conserved quantities whose fluc-
tuations are coupled. Models with a different number of conservation laws (e.g.
two like in Ref. [16]) may belong to other universality classes characterized by
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different dynamic exponents. A generalization to a arbitrary number of conserved
quantities has been discussed recently [17].

2 Multi-Particle-Collision Method

The MPC simulation scheme (see Refs. [18,19] for a detailed review) consists
essentially in partitioning the system of Np particles in Nc cells where the local
center of mass coordinates and velocity are computed and rotating particle veloc-
ities in the cell’s center of mass frame are around a random axis. The rotation
angles are assigned in a way that the invariant quantities are locally preserved
(see e.g. [18,20]). All particles are then propagated freely, or under the effect of
an external force, if present.

In the case of the one-dimensional fluid we are interested in, the above steps
can be carried on as follows [21]. Let us denote by mj and vj the mass and velocity
of the j-th particle and by Ni and the instantaneous number of particles inside
each cell i on which the system is coarse grained. The collision step amounts
to assign random values to the velocities inside each cell, under the constraint
of conserving, besides the particle number, the linear momentum Pi and the
kinetic energy Ki. In practice, we extract random samples wj from a Maxwellian
distribution at the kinetic temperature of each cell, and let vj,old → vj,new =
aiwj+bi, where ai and bi are the unknown cell-dependent coefficients determined
by the conditions

Pi =
Ni∑

j=1

mjvj,old =
Ni∑

j=1

mjvj,new =
Ni∑

j=1

mj(aiwj + bi);

Ki =
Ni∑

j=1

mj

v2
j,old

2
=

Ni∑

j=1

mj

v2
j,new

2
=

Ni∑

j=1

mj
(aiwj + bi)2

2
, (1)

Equations (1) constitute a system that can be solved for ai and bi analytically
[20,21]. Finally, the propagation step on the positions rj for a preassigned time
interval Δt is operated and the procedure repeats.

The above collision procedure assumes implicitly that the velocity exchange
is an instantaneous process that is not mediated by an effective potential. A
further physical ingredient can be added assuming that the collision occurs at
a given rate chosen to mimic some feature of the microscopic interaction. An
interesting example is encountered in the modelization of plasmas of charged
particles were the rate can be fixed to capture the essence of the Coulombian
scattering at low impact parameters (i.e. of the order of the cell size) [22]. In
the simulations presented here, we perform the above interaction step with a
cell-dependent Coulomb-like interaction probability [20,21,23]

Pi =
1

1 + Γ−2
i

, (2)
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where Γi is the plasma coupling parameter computed in cell i, relating the aver-
age Coulomb energy and the thermal energy NikBTi = 2Ki, defined by

Γi =
q2

4πε0akBTi
. (3)

In the expression above q is the particles charge, and a a mean inter-particle
distance related to the inverse of average number density n̄ and ε0 is the vacuum
permittivity.

Since the scope of this paper is to study and compare transport in low-
dimensional models, we mostly limit ourselves to consider only one dimensional
plasmas in a static neutralizing background with charge density ρb. In condi-
tions where the neutrality is violated (e.g. when the number density n is no
longer uniform), the self-consistent electrostatic potential Φ can be included by
simultaneously solving the 1D Poisson equation

∇2Φ(r) = −(qn(r) + ρb(r))/ε0 (4)

by some standard finite-differences method. The resulting electric field is used to
propagate the particles between each collision step. The dynamics can be further
generalized to higher-dimensional charged fluids in a straightforward manner.
For instance, in Ref. [24] a study of two-dimensional case has been considered in
detail. Moreover, the effects of the electromagnetic fields in higher dimensions can
be implemented via particle-mesh schemes solving self-consistently the Maxwell
equations on the grid.

3 Relaxation to Equilibrium

In this section we present simulations of collisional relaxation from non-thermal
initial states towards equilibrium. In a first set of numerical experiments we study
the evolution of systems characterized by so-called waterbag initial conditions,
whereby, positions and velocities r and v are initially distributed according to a
phase-space distribution function of the form

f0(r, v) = CnΘ(vm − |v|). (5)

In the expression above, Θ(x) is the Heaviside step function, n is the particle
number density constant over the periodic simulation domain [0, L], and the
normalization constant C is defined by the condition

∫ L

0

∫ vm

−vm

f0(r, v)dvdr = 1. (6)

In all simulations presented hereafter the times are expressed in units of t∗ =
2π/ΩP , where ΩP =

√
q2n/ε0m is the plasma frequency of the system and we

have used units such that q = m = ε0 = kB = 1. To quantify the collisionality
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Fig. 1. Velocity distribution f(v) at different times (thin lines) for a system of Np =
2.5 × 105 particles with waterbag initial conditions and Γ = 1 (panel a), a system
initially represented by the sum of a thermal and a waterbag distribution with an
average Γ = 1 (panel b), and a system initially represented by the sum of a thermal
and a waterbag distribution with an average Γ = 0.01 (panel c). In all cases the heavy
solid line marks the best fit thermal distribution in the final state (in all cases t = 1000).

Fig. 2. Evolution of the charge density ρ(r) for models characterized by an initially
bunched supra-thermal population in a thermalized background with Γ = 1 (panel a),
and Γ = 0.01 (panel b).

level within the fluid and compare different simulation protocols, we define the
global parameter Γ as the average of the Γi over all cells evaluated at t = 0.

In Fig. 1, panel (a) we show the evolution of the velocity distribution f(v)
for a system with a combination of density and kinetic energy yielding an aver-
age coupling parameter Γ = 1, and starting with a waterbag distribution. The
(multi-particle) collisions gradually evolve f(v) towards a Gaussian distribution
(marked in figure by the heavy solid) while, due to the imposed neutrality, the
tiny fluctuations of Φ play virtually no role. Remarkably, at intermediate times
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(here, t = 100) f(v) is characterized by high velocity thermal tails, while the
bulk of the distribution for −40 < v < 40 still bears memory of the step-like
initial f0(v). For larger values of Γ (not shown here), f(v) converges more and
more rapidly to a thermal distribution. On the contrary, in the low-collisionality
regime, for Γ < 0.01, the equilibrium is hardly reached on the simulation time.
Indeed, particles in the high-velocity tails tend to decouple those belonging to
the rest of the distribution and perform an almost ballistic motion.

In a second set of experiments we have studied the evolution of non-thermal
populations in an already thermalized background system. In panels (b) and
(c) of Fig. 1 we again show the evolution of f(v) starting from an initial state
constituted by two components one with f0 given by Eq. (3) and another with

f0(r, v) = Cn exp(−v2/2σ2). (7)

While in the moderately coupled case (panel b, Γ = 1) the two populations
rapidly equilibrate, in the weakly coupled case (panel c, Γ = 0.1) the final
(t = 1000) total velocity distribution features a low velocity region well fitted by
a Gaussian distribution (heavy solid line) and high velocity power-law fat tails.

Moreover, we have also tested the stability of an initially localized bunch of
mono-energetic particles in a thermalized background. In this set of numerical
experiments, the initial conditions for the two populations were sampled from a
thermal distribution like that of Eq. (7), and a spatially bunched distribution of
the form

f0(r, v) = C exp
[−(r − r∗)2/2s2

]
[δ(v − v∗) + δ(v + v∗)], (8)

where δ(x) is the Dirac delta function, r∗ is the centroid of the bunch, s its
width, and v∗ its velocity.

In Fig. 2 we show the evolution of the charge density profile for an initially
localized charge bunch placed in a periodic system of 106 particles with Γ = 1
(panel a) and 0.01 (panel b). In both cases, half of the 104 bunch particles are
initialized according to Eq. (8) with v = v∗ = 5σ and the other half with v = −v∗
in a gaussian bunch with s = L/100. As expected, in the less collisional cases
(Γ = 0.01, panel b), the bunch particles do not mix with the thermal background
and (the two halves of) the bunch remain essentially coherent (at least for t <
104, the simulation time), while for a more collisional system (Γ = 1) the bunch
is already completely dispersed at t = 5000 by the interplay of collisions and
mean field effects.

4 Dynamical Scaling

As mentioned in the introduction, we are also interested in the scaling properties
of time-dependent correlation functions evaluated in some equilibrium ensem-
ble (typically the microcanonical one). In the simulations aimed at computing
equilibrium correlation functions, the initial conditions on position and velocity
are extracted from Eq. (7) and a uniform neutralizing background is assumed.
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For such distribution the local coupling parameters, Eq. (2), are basically uniform
over the whole system Γi ≈ Γ . For this reason, and in order to save computa-
tional time, Γ is evaluated at the beginning of the simulation and used as the
single control parameter. Moreover, as in the limit of neutrality the electrostatic
field vanishes, we do not solve Eq. (4) and we simply impose ∇Φ(r) = 0.

The observables we will focus are the dynamical structure factors of the
conserved quantities defined at the resolution set by the cell partition. Denoting
ξl as a shorthand notation for energy, momentum or density in the l-th cell
(E , P, ρ respectively). It is defined by first performing the discrete space-Fourier
transform

ξ̂(k, t) =
1

Nc

Nc∑

l=1

ξl exp(−ıkl). (9)

The dynamical structure factors Sξ(k, ω) are defined as the modulus squared of
the subsequent temporal Fourier transform

Sξ(k, ω) = 〈|ξ̂(k, ω)|2〉. (10)

Since we are working with periodic boundary conditions, the allowed values of
the wave number k are always integer multiples of 2π/N , therefore in the rest
of the paper we will sometimes refer to the (integer) normalized wave number
k̃ = kN/2π.

To connect with transport problems, we also considered the correlation func-
tion of the currents Jξ, associated to the conserved quantity ξ. As above we
choose to define the currents on the simulation grid

Jξ(t) =
Nc∑

i=1

[
ξ′
i(t) − ξ′

i−1(t − Δt)
]
. (11)

Here, the prime is a shorthand notation to remind that only particles who moved
from cell i − 1 to i between successive time steps must be considered in each
term of the sum. We thus computed Cξ = 〈|J̃ξ(ω)|2〉 where the tilde denotes the
Fourier transform in the time domain.

According to the NFH theory [13], long-wavelength fluctuations are described
in terms of hydrodynamic modes: in a system with three conserved quantities
like chains of coupled oscillators with momentum conservation, the linear theory
would yield two propagating sound modes and one diffusing heat mode, all of the
three diffusively broadened. Nonlinear terms can be added and treated within the
mode-coupling approximation [13,25] that predicts that, at long times, the sound
mode correlations satisfy Kardar-Parisi-Zhang scaling, while the heat mode cor-
relations follow a Lévy-walk scaling. As a consequence, it is expected that Sξ

should be a combination of three modes correlations. For instance, for k → 0,
Sρ(k, ω) should display sharp peaks at ω = ±ωmax(k) that correspond to the
propagation of sound modes and for ω ≈ ±ωmax it should behave as

Sρ(k, ω) ∼ fKPZ

(
ω ± ωmax

λsk3/2

)
. (12)
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Remarkably, the scaling function fKPZ is universal and known exactly [13] albeit
not known in a closed form so that one has to be evaluate it numerically [26].
The nonuniversal coefficients λs are model-dependent and, in principle, can be
evaluated in terms of static correlators [13].

Another relevant signature of anomalous transport is the presence of long-
time tails in the correlations or, equivalently, of a low frequency singularity.
For instance, it is expected that CE should diverge, in the large-size and low-
frequency limits, as ω−1/3 [8–10].

For a chain of coupled anharmonic oscillators with three conserved quan-
tities like the Fermi-Pasta-Ulam chain, such theoretical predictions have been
successfully compared with the numerics [21,27]. Other positive tests have been
reported in Ref. [28]. We have performed a series of numerical test for the MPC
dynamics presented above. Figure 3 shows the structure factors of density and
energy for two strongly collisional cases with Γ = 10 and 2, corresponding to
relatively strong collisionality. Within statistical fluctuations the data display a
good data collapse and the lineshape fits with the KPZ-scaling function as pre-
dicted by Eq. (12). It should be also mentioned that the same type of agreement
has been shown to hold also for quasi-one-dimensional MPC dynamics, namely
in the case of a fluid confined in a box with a relatively large aspect ratio [24].
Another prediction of NFH is that the energy structure factors should display
a so-called Lévy peak at zero frequency [14]. However, the data reported in [21]
(see in particular Fig. 6) show that the contribution of the sound modes is pretty
large, thus hindering the direct test of the prediction at least on the timescales
of such simulations.

Fig. 3. Data collapse of the number density structure factors to the KPZ scaling func-
tion (solid line) of the Fourier spectra of the density profile modes with normalized
wave number k̃ = 2, 4, 8, and 16, for Γ = 10 (panel a), and 2 (panel b).
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Fig. 4. For thermalized systems with Γ = 10, 2, 1 and 0.25: Fourier spectra CE of the
energy current (panel a) and Fourier spectra of the charge density current Cρ (panel b).
The curves are averaged over 200 independent realizations. In all cases, the frequency ω
is rescaled to the plasma frequency. The cross-over from the ω−1/3 to the ω−2 behavior
of CE at around Γ = 2 is evident. To guide the eye, the dashed and solid black curves
with the two slopes −1/3 and −2 have been added to the plot.

In Fig. 4 we present the Fourier spectra CE (panel a), and Cρ (panel b) of
the energy and density currents, respectively, for four typical values of the ratio
Γ = 10, 2, 1 and 0.25, and for Np = 12000 particles distributed on Nc = 1200
cells. For strongly interacting systems (i.e. Γ ≥ 10) one recovers the ω−1/3

behavior of the energy correlator CE . Increasing the particle specific kinetic kBT
energy at fixed density n (i.e. reducing Γ and the collisionality of the system),
CE shows a more and more prominent flat region at low frequencies departing
form the ω−1/3 trend, and a high frequency tail with slope ω−2. The cross-over
from the ω−1/3 to the ω−2 behavior of CE is evident at around Γ = 2. A different
behavior is instead found for the density correlator Cρ, showing instead a ω−0.45

slope in the central part and a ω−2 tail at large ω.
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The presence of the flat portion in CE for ω → 0, could be naively interpreted
as the restoration of normal conductivity. A similar regime where the decay of
current correlations is faster (exponential) than the expected power-law decay
has been reported for arrays of coupled oscillators [29] and it was argued that
thermal conductivity could turn to a normal behavior in the low-energy regimes.
Later studies [30] actually showed that this may be rather due to strong finite-
size effects. We thus argue that also our results, should be interpreted as such,
although the physical origin of the effect is yet unexplained. It is also puzzling
that structure factors exhibit the scaling predicted by NFH over a wide range
of values of the control parameter Γ whereby a clear crossover is seen in the
current spectra upon reducing the collisionality of the particles (see again the
panel a of Fig. 4).

5 Conclusions

We have shown that the MPC method is a computationally convenient tool to
study nonequilibrium properties of many-particle systems. From the point of
view of statistical mechanics, the models are relatively simple to allow for a
detailed studies of basic problems like the ones discussed above. Despite its effi-
ciency, the one-dimensional models is still affected by sizeable finite-size effects,
particularly close to almost-integrable limits of weak collisionality.

Another attractive feature is that, introducing a suitable energy-dependent
collision probability allows to study, at least at a phenomenological level, some
interesting issues of confined plasmas, like the effect of suprathermal particles.
As a further development, interaction with external reservoirs exchanging energy
and particles can be included easily, thus allowing to study genuine nonequilib-
rium steady states.
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Abstract. The use of velocity jump Markov processes in MCMC algo-
rithms have recently drawn attention in various fields, such as statistical
physics or Bayesian statistics. The aim of this paper is to introduce these
processes and to give a few justifications on their interest.

Keywords: MCMC · PDMP · Lifted Markov chain

1 Introduction

1.1 Non-reversible MCMC

The sampling problem is the following: given a target probability measure μ on a
space E (say E = R

d), it is necessary in many applied fields (Bayesian statistics,
molecular dynamics. . . ) to compute quantities of the form

∫
f(x)μ(dx), where

f is a given observable. When μ admits a density proportional to exp(−U)
where the potential U : E → R is known but the normalization constant∫

exp(−U(x))dx is intractable, the MCMC method relies on the simulation of a
Markov process (Xt)t�0 which is ergodic with respect to μ, namely such that

1
t

∫ t

0

f(Xs)ds −→
t→∞

∫
f(x)μ(dx). (1)

It turns out that several Markov processes do this job. A classical one would
be the overdamped Langevin (or Fokker-Planck) diffusion, which is the process
solving the SDE

dXt = −∇U(Xt)dt +
√

2dBt, (2)

where B is a Brownian motion. Another process comes from the general
Metropolis-Hastings procedure, which is the following: suppose you are given
a Markov kernel q on E (say the Gaussian kernel q(x, y) ∝ exp

(− 1
2σ2 |x − y|2)

for some σ > 0). Starting from a point Xn ∈ R
d, draw a random variable Yn

according to the law q(Xn, ·) (in the Gaussian case, this means Yn = Xn + σG
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where G is a standard Gaussian variable independent from Xn). Then, with
probability

min
(

1,
q(y, x)e−U(y)

q(x, y)e−U(x)

)

,

set Xn+1 = Yn (we say we accepted the proposal Yn). Else, set Xn+1 = Xn (we
say we rejected the proposal). This defines a Markov Chain (Xk)k�0 such that,
under mild assumptions on U , (1) holds for discrete times t ∈ N.

Since there are several possibilities, there is a choice to be made. Which
μ-ergodic Markov process should be used in practice? What are the criteria
to decide, between two such processes, which one is the best? Ultimately, we
want, at a given numerical cost, the error (in some quantified sense) made by
approximating

∫
fdμ by the ergodic mean in (1), to be as small as possible.

Usually this is not easily tractable, so that alternative criteria may be considered,
such as the two following examples:

– Given that a Central Limit Theorem holds together with (1), we get that

√
t

(
1
t

∫ t

0

f(Xs)ds −
∫

f(x)μ(dx)
)

law−→
t→∞ N (0, σ2

f ) (3)

where N (a, σ2) is the normal distribution with mean a and variance σ2, and
the so-called asymptotic variance σ2

f depends on the observable f and on the
process X. Then, one wants to use a Markov process X such that σ2

f is small.
– At a given time t � 0, the bias of the estimator 1

t

∫ t

0
f(Xs)ds is given by

E

(
1
t

∫ t

0

f(Xs)ds

)

−
∫

f(x)μ(dx) =
1
t

∫ t

0

(

E (f(Xs)) −
∫

f(x)μ(dx)
)

ds,

which would vanish if we were able to sample X0 ∼ μ, in which case we would
have Xt ∼ μ for all t � 0. Since we are not able to do so, one wants to use a
Markov process X such that the convergence

Xt
law−→

t→∞ μ

is as fast as possible (which may be quantified by different (pseudo-)distances
over probability measure: total variation, L2 or Wasserstein distances, relative
entropy. . . ).

Other criteria include: the correlation length of the process (see [39] for instance),
which measures how far the chain is from an i.i.d. sequence; continuous scalings
(such as in [38]), which measure in some sense how many discrete steps are
needed to cover a given distance.

These different criteria may not be compatible; optimizing one of them may
lead to an inefficient process with respect to another. Nevertheless, in a sense,
they all tend to deal with the same general difficulty: the convergence in (1)
only occurs once a statistically significant part of the space have been explored.



Piecewise Deterministic Markov Samplers 377

The problem is thus to explore efficiently the unknown landscape (E,U) with
a local, memoryless (by definition of Markov processes) explorer X. Such an
amnesic explorer tends to go back repeatedly to places it has already seen, which
is inefficient.

To deal with this problem, several long-term memory process have been devel-
oped, in particular in molecular dynamics (see [26] and references within). The
present paper is concerned with a different (and complementary) direction of
research, non-reversible processes.

Let us first recall the definition of a reversible process. Let X be a Markov
Chain on E with transition kernel q, and μ be a law on E. Suppose that μ and,
for all x ∈ E, q(x, ·) admit a density with respect to a reference measure dx
(the counting measure if E is finite, the Lebesgue measure if E = R

d, etc.), still
denoted by μ and q(x, ·). We say that X is reversible with respect to μ if the
following detailed balance condition is met:

∀x, y ∈ E, μ(x)q(x, y) = μ(y)q(y, x),

which implies the global balance condition

∀y ∈ E,

∫
q(x, y)μ(x)dx = μ(y),

which means μ is invariant for X.
Formally, the detailed balance condition is equivalent to the fact that the

operators

Qf(x) =
∫

f(y)q(x, y)dy

Lf(x) = Qf(x) − f(x)

are self-adjoint in L2(μ). Recall L is called the infinitesimal generator of the
continuous-time chain Zt = XNt

(where Nt is a standard Poisson process inde-
pendent from X), and satisfies

Lf(z) = lim
t→0

E (f(Zt) | Z0 = z) − f(z)
t

(4)

whenever this limit exists. The limit (4), in fact, defines the generator L for
more general continuous-time processes, like diffusions. For instance, for the
overdamped Langevin diffusion (2),

Lf(x) = −∇U(x) · ∇f(x) + Δf(x).

Again, the process is said to be reversible when L is self-adjoint in L2(μ) (which
is formally the case in the overdamped Langevin case).

In the framework of reversible Markov chain, Peskun’s theorem [36] states
the following: given two irreducible μ-reversible Markov chains with transition
kernels q1 and q2 on a finite space E such that q1(x, x) � q2(x, x) for all x ∈ E,
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then for any observable f the asymptotic variance in the CLT (3) is smaller for
q1 than for q2. This is a concrete application of the fact one wants to explore
the space more efficiently, since staying at the same place is the worst way to
explore.

After ensuring that the process does not stay at the same position, the next
step is to ensure that it does not backtrack too much, meaning that for all n,
Xn+1 is unlikely to be equal to Xn−1. But then, there is no room of improvement
among reversible processes: indeed, the detailed balance condition implies that, if
there has been a probability to go from x to y, then there is a given probability
to go back from y to x. As a consequence, reversible chains typically have a
diffusive behaviour, taking N2 steps to cover a distance N . To decrease the
trend to backtrack, one should necessarily leave the reversible realm. Indeed,
Neal [35] proved that, given an irreducible reversible chain on a finite space
E, then there exist an irreducible non-reversible chain with the same invariant
measure, which backtrack less and such that the asymptotic variance in the CLT
is smaller than for the reversible chain.

There is also a spectral argument in favour of non-reversible processes: denot-
ing Ptf(x) = E (f(Zt) | Z0 = x) the semi-group associated to the generator L
(formally, Pt = etL), the distance of the law of Xt toward its equilibrium μ may
be quantified by the operator norm

‖Pt − μ‖L2(μ) := sup
f∈L2(μ)\{0}

‖Ptf − ∫
fdμ‖L2(μ)

‖f‖L2(μ)
.

When L is self-adjoint, it admits an orthonormal eigenbasis, so that

‖Pt − μ‖L2(μ) = e−λ1t,

with λ1 = min σ(−L) \ {0} the spectral gap of L.
Now, set L2 = L + L′ where L is skew adjoint in L2(μ), namely

∫
fL′gdμ =

− ∫
gL′fdμ for all f, g ∈ L2(μ). Denoting P ′

t = et(L+L′) and ft = P ′
tf − ∫

fdμ,
then

∂t

(‖ft‖L2(μ)

)
= 2

∫
ft(L + L′)ftdμ = 2

∫
ftLftdμ � −2λ1‖ft‖L2(μ).

Grönwall’s lemma yields

‖P ′
t − μ‖L2(μ) � e−λ1t = ‖Pt − μ‖L2(μ).

In other words, the spectral gap can only be improved when an anti-adjoint part
is added to a reversible chain.

This general argument has motivated studies in different directions. Concern-
ing, for instance, the question to define non-reversible diffusions with a given
target measure (for instance, by adding a skew adjoint part to the diffusion (2)),
we refer to [21,22,25]. Piecewise deterministic Markov samplers, which are the
topic of the present paper, have stemmed from another idea, popularized in [12],
which is the definition of lifted Markov chains on finite graphs.
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The general idea of lifted chains is the following: instead of considering a
Markov chain X on a space E, define a chain (X,Y ) on an extended space
E′ = E × F , such that the image of the invariant measure of (X,Y ) by the map
(x, y) ∈ E × F 
→ x ∈ E is the target μ. A particular case is given by second
order Markov chains [13,35], where E′ = E × E and the chain (X,Y ) is such
that for all n ∈ N, Yn+1 = Xn. In other words, in this case, the process (Xn)n�0

on E is not a Markov process, but (Xn−1,Xn) on E2 is. This is the simplest way
to add a memory in the exploration, and to avoid backtracking.

1.2 Scaling Limit of the Persistent Walk

Let us recall the definition of the persistent walk introduced in [13, Section 4].
The target μ is the uniform law on E = Z/NZ, N � 2. For α ∈ [0, 1], define the
Markov chain (X,Y ) on {(x, y) ∈ E2, |x − y| � 1} by the transitions

P ((Xn+1, Yn+1) = (x, y) | Xn, Yn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1+α
2

if y = Xn and x − Xn = Xn − Yn,

1−α
2

if y = Xn and x − Xn = −(Xn − Yn),

0 else.

In other words, Yn = Xn−1 for all n ∈ N, so that (Xn)n�0 is a second order
Markov chain which is more likely to repeat its previous step than to backtrack
(since α � 0). Alternatively, we can consider the chain (Xn, Vn) = (Xn,Xn −
Xn−1) on Z/NZ × {−1,+1}, whose transitions are given by

P (Vn+1 = Vn | Xn, Vn) =
1 + α

2

P (Vn+1 = −Vn | Xn, Vn) =
1 − α

2

and almost surely Xn+1 = Xn + Vn+1. Seeing X as a position on the discrete
circle Z/NZ, then the evolution V of the position is the velocity of the process.
For α = 0, Vn+1 is independent from (Xn, Vn), and X is a simple random walk.
For all odd N ∈ N and α ∈ [0, 1], the chain is non-periodic and irreducible with
equilibrium μN the uniform law on Z/NZ×{−1,+1}. Denote λN (α) its spectral
gap. As studied in [13,32], the maximal value of λN is reached at a positive value

αN =
1 − sin (π/N)
1 + sin (π/N)

,

in which case λN (αN ) = 1−√
αN , which is of order N−1. By comparison, λN (0)

is of order N−2. In other words, it takes O (
N2

)
steps to get close to equilibrium

with the simple reversible random walk, and only O (N) steps with an optimally
scaled persistent walk. Note that, in this simple case, the deterministic compu-
tation of an integral with respect to the uniform measure on Z/NZ is done in
exactly N steps.
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Seeing Z/NZ as N points equally distributed on the continuous torus T =
R/(2πZ), the simple random walk converges to the Brownian motion on T when
time is rescaled by a factor N2. Similarly, a properly scaled persistent walk
converges, when time is rescaled by a factor N , toward a continuous process on
T (see [32] for details). More precisely, note that, with the optimal choice α = αN ,
the number of steps between two changes of velocity is a r.v. with geometric law
of parameter (1−αN )/2, which is of order N−1. Since the distance on T between
two points of Z/NZ is also of order N−1, the mean distance covered between
two changes of the velocities is independent from N , and the law of the time
between these changes of velocity converges toward an exponential law.

As a consequence, the continuous process obtained in the limit is the so-
called (circular) telegraph process, whose study traces back to [20,23]. It is a
continuous time process (Xt, Vt)t�0 on E = T × {−1,+1}, with Vt = (−1)Nt

where N is a homogeneous Poisson process with a given intensity a > 0, and
Xt = X0 +

∫ t

0
Vsds. In other words, (X,V ) is a so-called Piecewise Deterministic

Markov process (PDMP): between two random jumps, it follows a deterministic
flow. More precisely, here, it is a velocity jump process, in the following sense:
first, the deterministic flow is (x, v)′ = (v, 0), which means X is the position and
V the (piecewise constant) velocity. Second, the jumps only affect the velocity
(here, v is changed to −v), and not the position.

The circular telegraph is ergodic with respect to μ the uniform measure on
E. It is not reversible, since its generator

Lf(x, v) = v · ∇xf(x, v) + a (f(x,−v) − f(x, v))

is not self-adjoint, but it is still simple enough for a spectral study to be con-
ducted in [32]. It is proven that Pt = etL converges exponentially fast toward μ
with a rate which is maximal for a = 1. In particular, for a = 1,

‖Pt − μ‖ = e−t

√
√
√
√1 +

2
√

1 + 1
t2 − 1

.

The prefactor is such that ‖Pt − μ‖ � 1 − t3/3 when t � 0. In other words,
for small times, the convergence is slower than in the reversible case, for
which ‖Pt − μ‖ scales as 1 − t/λ1. This may be understood in regard of the
lack of regularization properties of the dynamics. Nevertheless, for large times,
‖Pt − μ‖ � 2te−t. It is more delicate to compare this result with the speed of
convergence of the Brownian motion on the circle, than it was to compare the
persistent walk with the symmetric one.

The generalization in [33,34] of the circular telegraph process with a non-
constant rate of jump lead to velocity jump processes with arbitrary invariant
measure (see Sect. 2 below), suitable for sampling algorithms. Independently, a
similar scaling limit of a lifted Markov chain introduced for the Curie-Weiss spin
model [40] lead Bierkens and Roberts to the same kind of dynamics [5].

They also appeared in the physics literature: indeed, the use of so-called
event-driven MCMC, which may be seen as lifted chains, had been developed for
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the study of hard-sphere systems [1,30]. The general idea is to build Metropolis
chains for which, when a move is rejected, then an event (say, a collision) occurs,
instead of nothing. From this, Peters and de With [37] obtained a rejection-free
chain and, reasoning through infinitesimal steps, ended up with a similar velocity
jump process.

In parallel, these dynamics gained interest in the field of bio-mathematics,
where they model the motion of a bacterium [10,16,19].

Note that the present introduction does not pretend to be an exhaustive or
balanced review of all these works. It focuses on the few theoretical justifications
established so far of the interest of velocity jump sampler, with a bias toward
the works of the author.

2 Definition of the Processes

Let E = R
d × V, where V ⊂ R

d is the set of admissible velocities. The general
construction of a velocity jump process (X,V ) on E depends on two ingredients:
first, the jump rate λ : E → R+ and the jump kernel q : E → P (V), where P(F )
denotes the set of probability measures on F .

Given an initial condition (X0, V0), suppose the process (Xt, Vt)t∈[0,tn] has
been defined for some tn � 0. The next jump time is defined by

tn+1 = tn + inf
{

t > 0, S �
∫ t

0

λ (Xtn + sVtn , Vtn) ds

}

,

where S is a random variable with standard exponential law, independent from
(Xt, Vt)t∈[0,tn]. For t ∈ (tn, tn+1], set Xt = Xtn + (t − tn)Vtn . For t ∈ (tn, tn+1),
set Vt = Vtn . Finally, set Vtn+1 = W , where W is a r.v. with law q

(
Xtn+1 , Vtn

)
,

independent from the past. That way, the process is defined up to tn+1 and, by
induction, up to any jump time tk, k ∈ N.

Then, in order to get that the process is defined up to all time, one need
to prove that, almost surely, there isn’t infinitely many jumps in a finite time
interval. This is equivalent to say that the jump rate λ (Xt, Vt) is bounded on
finite time intervals. This is true for all the velocity jump processes introduced
up to now for sampling purpose. Indeed, for these processes, λ is continuous so
that, as long as the velocity is bounded, since in a finite time the position stays
in a compact ball, then the jump rate is bounded. When V is not compact, if
the rate at which the norm of the velocity is modified is bounded, the same
conclusion holds since, on a finite time interval, the velocity is bounded (by a
random but finite bound, see [14] for a precise proof).

Denoting Z = (X,V ), the generator L of Z, defined by (4) for smooth func-
tions, is

Lf(x, v) = v · ∇xf(x, v) + λ(x, v) (Qf(x, v) − f(x, v)) ,

where Qf(x, v) =
∫

f(x,w)q(x, v)(dw) (remark that, for (x, v) ∈ E, it is not
required that q(x, v) admits a density w.r.t the Lebesgue measure). Then, a
given target measure μ is invariant for Z if and only
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∫
Lf(x, v)μ(dx,dv) = 0 (5)

for all f in a core of L. Unfortunately, for PDMP’s, which lack regularization
properties, it is not easy to construct a core of the generator. In particular,
when λ is only continuous, sets of smooth functions are not left invariant by the
semi-group Pt. Nevertheless, by approximation (truncation and regularization)
arguments, in order to show that μ is invariant for Z, it is enough to check that
(5) holds for all f ∈ C1(E) with compact support (see [14] for details).

Choose a target measure μ(dx,dv) = e−U(x)dx ⊗ p(dv), where p ∈ P (V). In
that case, integrating by part, (5) reads

∀x ∈ R
d, (v · ∇U(x) − λ(x, v)) p(dv) +

∫
λ(x,w)q(x,w)(dv)p(dw) = 0 (6)

(this in an equality in the sense of measures on V). There are many choices of
λ, q and p which solves this equation. We refer to [41] for a longer discussion on
that matter. In fact, there are even more choices if we don’t restrict to velocity
jump processes, namely if we consider a PDMP for which the deterministic
flow between two random jumps is not simply (x, v)′ = (v, 0), in which case v
is no more a velocity, but a more general auxiliary variable. From an applied
perspective, all we need is this deterministic flow to have analytical solutions.

We now give two particular examples of velocity jump processes whose invari-
ant measure is μ, based on different decompositions of ∇U(x).

2.1 The Bouncy Particle Sampler

The Bouncy Particle Sampler (BPS) has been introduced in [34,37]. In that case,
V is a rotation-invariant subset of Rd, and p is a rotation-invariant probability
measure on V. For instance, V = R

d and p is a Gaussian law, or V = Sd−1

and p is the uniform law. The jump rate is λ(x, v) = (v · ∇U(x))+ + r, where
(·)+ = min(0, ·) denotes the positive part, and r � 0 is a constant. The jump
kernel is

Qf(x, v) =
(v · ∇U(x))+

λ(x, v)
f (x,R(x, v)) +

r

λ(x, v)

∫
f(x,w)p(dw),

where

R(x, v) = v − 2
v · ∇U(x)
|∇U(x)|2 ∇U(x)

is the orthogonal reflection of v with respect to ∇U . In other words, the generator
of the BPS is L = L1 + L2 where

L1f(x, v) = v · ∇xf(x, v) + (v · ∇U(x))+ (f(x,R(x, v)) − f(x, v)) (7)

L2f(x, v) = r

(∫
f(x,w)p(dw) − f(x, v)

)

. (8)
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For μ(dx,dv) = e−U(x)dx ⊗ p(dv),
∫

Lifdμ = 0 for all suitable f for both
i = 1, 2. The jump mechanism is a superposition of two mechanisms: at rate
(v·∇U(x))+, v jumps to R(x, v), which means the process bounces (i.e. undergoes
an elastic collision) on the level set U it has reached. Independently, at constant
rate r > 0, the velocity is refreshed with a whole new one with law p, independent
from both the current position and the previous velocity.

2.2 The Zig-Zag Process

The Zig-Zag process (ZZP) has been introduced in [4,5]. In that case, V =
{−1, 1}d and p is the uniform measure on V. The generator is

Lf(x, v) = v · ∇xf(x, v) +

d∑

i=1

(
(vi · ∇xiU(x))+ + r

) (
f

(
x, v(i)

)
− f(x, v)

)
(9)

where v(i) = (v1, . . . , vi−1,−vi, vi+1, . . . , vd) for all i ∈ �1, d�, and r � 0 is a
constant rate. In other words, the total jump rate is

λ(x, v) = rd +
d∑

i=1

(vi · ∇xi
U(x))+

and the jump kernel is

Qf(x, v) =
d∑

i=1

(vi · ∇xi
U(x))+ + r

λ(x, v)
f

(
x, v(i)

)
.

Again, (6) holds, so that μ(dx,dv) = e−U(x)dx ⊗ p(dv) is invariant.
Note that, in dimension 1, the ZZP coincides with the BPS with unit scalar

velocity (for which V = S0 = {−1, 1}).

2.3 Practical Implementation

The question of the efficient implementation of velocity jump processes is dis-
cussed in [11]. One of the main features of velocity jump processes is that, con-
trary to diffusions processes which have to be discretized, they can be exactly
simulated (see [2] for the exact simulation of a skeleton chain of a diffusion).
This is important since an additional discretization step would alter the invari-
ant measure, which would induce a bias in (1). This could be corrected by a
supplementary Metropolis-Hastings accept/reject step (such as in the MALA
algorithm [15] based on an Euler discretization of (2)), but then the resulting
process would be reversible.

Even though velocity jump processes are continuous-time processes, compu-
tations are only needed at jump times. Between two jumps, the deterministic
flow (x, v) 
→ (x + tv, v) is explicit. The remaining difficulty is thus to sample
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the jump times, which are first jump times of non-homogeneous Poisson pro-
cess. This is done through the thinning method [27,28]: starting from an initial
condition (x0, v0), let T be the first jump time, whose survival function is

P (T � t) = e− ∫ t
0 λ(x0+sv0,v0)ds.

Suppose that we are able to compute, from estimates on ∇U , an upper bound
ψ(t) of the jump rate λ(x+tv, v). Suppose moreover that we are able to simulate
exactly a random variable S with survival function

P (S � t) = e− ∫ t
0 ψ(s)ds := h(t).

This is for instance the case when ψ(t) = (a + tb)+ for some a, b ∈ R. Define
jump time proposal (tn)n�0 as follows: t0 = 0 and for all n ∈ N, tn+1 = tn + Sn

where Sn is a r.v. with survival function h, independent from Sk, k < n. Let
(Uk)k�0 be an i.i.d. sequence of variables with uniform law on [0, 1], independent
from (Sk)k�0 and

K = inf
{

k � 1,
λ(x + tkv, v)

ψ(tk)
� Uk

}

.

Then tK has the same law as T .
This method is in fact an accept/reject procedure, but contrary to the

Metropolis-Hastings algorithm, when a jump proposal is rejected, the process
is not frozen, it keeps moving and exploring the space.

Another practical interest with velocity jump processes is exact subsampling
[4,41]. In Bayesian statistics, given N observations, the potential U is of the form
U(x) =

∑N
i=1 Ui(x) where Ui depends on the ith observation. Hence, computing

∇U demands O(N) computations. A so-called local version of the BPS (the
same goes for the Zig-Zag process), with generator L′

1 +L2 where L2 is (8) and

L′
1f(x, v) = v · ∇xf(x, v) +

N∑

i=1

(v · ∇Ui)+ (f (x,Ri(x, v)) − f(x, v))

(where Ri(x, v) is the reflection of v with respect to ∇Ui(x)) may be simu-
lated only by considering one observation at a time. The invariant measure is
unchanged.

It is not completely obvious that this subsampling method improves the
computational cost: the cost to compute one jump time is now O(1), but the
number of jumps in a given time is O(N). Nevertheless, as studied in [4], when
associated with efficient bounds on the jump rates, this method may indeed yield
a significant acceleration.

3 Long-Time Behaviour

3.1 In Dimension 1

The convergence of the law of the ZZP in dimension 1 toward its equilibrium
μ(x, v) = e−U(x) ⊗ {−1, 1} has been established in several works. It is proven
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by coupling arguments in [18,19] that, when U is convex, convergence in total
variation distance is exponentially fast. The exponential convergence in L2(μ) is
established under more general assumptions on U in [34] thanks to hypocoercive-
type methods (see also [10]). The exponential rates obtained are explicit but not
sharp, which makes it unsuitable for efficiency comparison with respect to the
overdamped Langevin diffusion 2.

In [3], a Central Limit Theorem is obtained, in the case of a unimodal target
measure, with an explicit asymptotic variance. The following things are observed:
first, the asymptotic variance increases with the parameter r introduced in (9).
Second, there exist heavy tailed distributions for which a CLT holds with the
ZZP but not with the Langevin diffusion (2).

Asymptotically precise results may be obtained in the low temperature
regime. Suppose the target measure is exp (−βU0) with a large β > 0 (called
the inverse temperature). When U0 has several local minima, both the Langevin
diffusion and the Zig-Zag process are metastable: transitions from the vicinity
of a local minima to the vicinity of another one are rare events, since potential
barrier of size O(β) have to be overcome. When β → ∞, this energetic metasta-
bility (by contrast with entropic metastability, see [24] for more details) is the
leading cause of slow convergence.

More precisely, suppose U0 is decreasing from +∞ to a minimum x0, then
increasing up to a maximum x1 > 0. Suppose X0 = x0 in the Langevin case and
Z0 = (X0, V0) = (x0,−1) in the Zig-Zag case. In both cases, let τ = inf{t >
0,Xt = x1 + δ}, for a small δ > 0, be the escape time from the catchment
area of x0. The small-temperature behaviour of τ is given by so-called Eyring-
Kramers formulas. For the overdamped Langevin diffusion with potential U =
βU0, according to [8,9],

E [τ ] =
2π

β
√|U ′′

0 (x1)|U ′′
0 (x0)

eβ(U0(x1)−U0(x0))
(
1 + o

ε→0
(1)

)
. (10)

In the Zig-Zag case with potential U = βU0 and r = 0, according to [34],

E [τ ] =

√
8π

βU ′′
0 (x0)

eβ(U0(x1)−U0(x0))
(
1 + o

ε→0
(1)

)
. (11)

In both cases, for a fixed t > 0,

P (τ ≥ tE [τ ]) −→
β→∞

e−t,

which is typical of metastability: at a large scale, the processes behave as a
Markov chain over the set of local minima of U0.

It is delicate to use (10) and (11) to compare the processes. Different choices
of normalization would change the prefactors. Two things may be noted: first,
the Hessian U ′′(x1) does not intervene in the Zig-Zag case. This is consistent
with the fact the process has some inertia so that, in a flat landscape, it deter-
ministically crosses an interval from one edge to the other, which is not the
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case of the Brownian motion. Second, the leading term in both (10) and (11) is
the same exponential factor. Hence, at the exponential scale, both processes are
comparable.

It is not surprising that the addition of a short-term memory (the velocity)
is not enough to get rid of metastability, which is a large-time problem. This is
not in contradiction with the arguments in Sect. 1.2 in favour of the persistent
walk, which suggest that the ZZP may be more efficient in the local exploration
around each minima.

3.2 Irreducibility

In dimension larger than 1, it is not clear that the processes are irreducible. This
is essentially a deterministic control question: assuming that we can choose the
jump times as long as they occur when the jump rate is positive (i.e. we can
choose the exponential variables which are used to define the jump times), is it
possible, starting from a given z1 ∈ E, to reach any z2 ∈ E in a finite time?

This is simple to study for both the BPS and the ZZP when there is a non-
zero refreshment rate, i.e. if r > 0 in (8) or (9). Indeed, in that case, any velocity
v ∈ V may be chosen at any position x ∈ R

d, and thus the control problem is
easy to solve. Nevertheless, the case r > 0 corresponds to a more “diffusive”
behaviour of the process, so that one may want to avoid it.

When r = 0, in fact, the BPS may not be irreducible, as noted in [7]. Indeed,
the jump rate is zero as long as U(Xt) is decreasing along the trajectory. Suppose
the target measure is the standard Gaussian one (or more generally, is log-
concave and invariant by rotation) in dimension 2, so that the level sets of the
potential are the circle centered at the origin. Then, the BPS with r = 0, namely
the process with generator L1 defined by (7) will never enter a given disk (except
in the degenerate case where the initial condition (x, v) is such that x and v are
colinear, in which case both the position and the velocity will forever stay in
span(x)), see Fig. 1.

Fig. 1. Trajectory of the BPS with r = 0 and the standard Gaussian measure target.
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There exist versions of the BPS [31,41,42], slightly different from the
process introduced in Sect. 2.1, called BPS with randomized bounce, for which
irreducibility is true, even with r = 0. When these processes bounce, the velocity,
instead of jumping deterministically toward its reflexion with respect to ∇U(x),
takes a random value, according to an ad hoc law which admits a Lebesgue den-
sity. This additional randomness is enough to be able to reach any state (x, v)
from any initial condition (x0, v0).

The behaviour of the ZZP with r = 0 is different: Bierkens, Roberts and
Zitt proved in [6] that it is irreducible under mild assumption on U (it should
be C3 and grow at infinity at least like log(|x|)). The proof that every point
(x, v) may be reached from any other (x′, v′) is far from simple, due to the
very degenerate behaviour of the process. Some smoothness for U is necessary:
for instance, the ZPP is not irreducible for U(x1, x2) = max (|x1|, |x2|). Indeed,
from some starting points, it is impossible to reach (x, v) if x ∈ {x1 > |x2|} and
v = (−1,−1) (see [6] for details and more discussions on the difficulties of the
proof).

3.3 Geometric Ergodicity

Up to now, the only results establishing geometric ergodicity for velocity jump
samplers in dimension larger than 1 have used the classical Meyn-Tweedie app-
roach [29], which gives an estimate of the form

‖Law(Zt) − μ‖1 � C (Law(Z0)) e−ρt.

It relies on two ingredients: first, the construction of a suitable Lyapunov function
implies that the process tends to go back to compact sets. Second, a minoration
condition ensures that, starting from two different conditions in a compact set,
then two trajectories may couple in a finite time with positive probability.

The first result of geometric ergodicity for the BPS in [34], was restricted
to the compact case T

d × Sd−1. In that case, only a minoration condition is
necessary, which is more or less obtained from a reachability argument.

To extend this result to a non-compact setting, namely to find a Lyapunov
function, is not trivial. This has been done for the ZZP in [6], under the condition
that ∇U = o(U), ∇2U = o(U) and ∇U → ∞ at infinity. The BPS case has been
tackled in [11], but under somehow non completely satisfactory conditions, and
later in [14] (see also [17]).

Let us briefly explain the difficulties in the case of the BPS. Let L = L1 +L2

as defined in (7) and (8), with r > 0.
We want to construct a function W : R2d → R with W � 1 and, outside

of a compact, LW � −cW for some c > 0, which means that, on average,
away from a compact, W should tend to decrease along the trajectory. Remark
that, because of the operator f 
→ ∫

f(·, v)p(dv), the construction of W at a
point (x, y) influences the value of LW at all points {(x, v), v ∈ R

d}. Similarly,
the term f (x,R(x, y)) is non-local. This is different from the classical case of
diffusions, which are local Markov processes.



388 P. Monmarché

On the other hand, the reason why W should decrease is different depending
on the region the process is visiting, which accounts for the fact there are different
reasons to leave these regions: for instance, it is unlikely for the process to have
a very large velocity, because of refreshments; it is unlikely that v · ∇U(x) stays
large, because of bouncing. This leads to a definition of W as a combination of
several parts but, due to the non-local terms, the balance between these different
parts has to be tuned carefully. More precisely, the Lyapunov functions in [6,11]
are of the form

W (x, v) = e
1
2U(x)g (v · ∇U(x)) ,

where the function g is increasing. That way, as long as Vt · ∇U(Xt) � 0, U(x)
decreases along the trajectory, and so does W (provided g does not grow too
much in parallel). If Vt ·∇U(Xt) � 0, then the process has a positive probability
to jump, in which case g (v · ∇U(x)) decreases, and so does W (provided U
hasn’t grown too much in the meantime). In [14,17], the mechanism is similar.
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21. Guillin, A., Monmarché, P.: Optimal linear drift for an hypoelliptic diffusion. Elec-
tron. Commun. Probab. 21, 74 (2016)

22. Hwang, C.R., Hwang-Ma, S.Y., Sheu, S.J.: Accelerating Gaussian diffusions. Ann.
Appl. Probab. 3, 897–913 (1993)

23. Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mt. J.
Math. 4, 497–509 (1974)
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32. Miclo, L., Monmarché, P.: Étude spectrale minutieuse de processus moins indécis
que les autres. In: Séminaire de Probabilités XLV. Lecture Notes in Mathematics,
vol. 2078, pp. 459–481. Springer, Cham (2013)
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Abstract. We review results on the exponential convergence of multi-
dimensional Ornstein-Uhlenbeck processes and discuss notions of char-
acteristic time scales by means of concrete model systems. We focus,
on the one hand, on exit time distributions and provide explicit expres-
sions for the exponential rate of the distribution in the small-noise limit.
On the other hand, we consider relaxation time scales of the process
to its equilibrium measure in terms of relative entropy and discuss the
connection with exit probabilities. Along these lines, we study examples
which illustrate specific properties of the relaxation and discuss the pos-
sibility of deriving a simulation-based, empirical definition of slow and
fast degrees of freedom which builds upon a partitioning of the relative
entropy functional in connection with the observed relaxation behaviour.

Keywords: Multidimensional Ornstein-Uhlenbeck process ·
Exponential convergence · Relative entropy · Large deviations ·
Small noise asymptotics

1 Introduction

The characteristic time scales of a random dynamical system, e.g. a diffusion
process are often associated with the speed at which the dynamics reaches an
equilibrium state or samples its invariant measure. For dynamical systems with
several metastable equilibria (also: “metastable states”), such as molecular sys-
tems [45], chemical reaction networks [26], or earth and climate systems [28,31],
the speed of convergence is often related to the characteristic time scale of tran-
sitions between these equilibria.

In this work we are concerned with the speed of convergence of linear ergodic
diffusion processes to their unique stationary probability distribution, and we
review different concepts of the associated characteristic time scales in terms of
exponential estimates for entropy decay, exit probabilities and exit rates. Look-
ing at exit probabilities and exit rates is motivated by the observation that the
speed of convergence at which the dynamics reaches a generic multimodal invari-
ant distribution depends on the probability that the process leaves its basins of
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attraction. We focus on studying the convergence behavior on the basis of con-
crete case studies and on deriving explicit expressions for the exit probabilities.
Specifically, we confine our considerations to Ornstein-Uhlenbeck processes that
can be seen as local linearisations of a more complicated dynamics with mul-
timodal invariant distributions about a metastable equilibrium. Understanding
the characteristic time scales of a diffusion process is not only important in
statistical physics (to which the aforementioned applications belong), but it is
also relevant to assess the asymptotic properties of Markov chain Monte Carlo
(MCMC) algorithms [33], or failure probabilities in system reliability and risk
analysis [38], to mention just two more examples.

Even though this article is essentially a survey of well-known results, our
own contribution lies in putting these results into context with each other, with
the twofold aim of (a) revealing some relations between the aforementioned time
scale concepts and of (b) making a first step towards understanding these con-
cepts in the case of non-reversible and degenerate diffusions.

Relevant Work. The analysis of characteristic time scales and exponential
convergence to equilibrium is system specific, and various different approaches
have been developed in the past. We refrain from giving a complete list of ref-
erences (which would be difficult anyway), but focus on approaches that are
most relevant for statistical mechanics applications. Specifically, for reversible
and metastable Markov chains and diffusion processes that are relevant for the
modeling and the simulation of many-particle systems and critical phase transi-
tions, the analysis of the eigenvalues of the infinitesimal generator has become
a standard tool; see e.g. [6,24] and the references therein. For a certain class of
non-reversible diffusions, spectral properties have furthermore been analysed in
connection with small-noise limits; see e.g. [40,47] or [8] for a tutorial review.
Despite the limitation to reversible systems (satisfying detailed balance) or per-
turbations of such systems, the spectral approach is appealing, since it allows
for a hierarchical decomposition of the dynamics, based on the eigenvalues and
eigenfunctions of the associated semigroup or its generator [45]. The key observa-
tion here is that the eigenvalues close to the principal eigenvalue λ = 0 represent
characteristic time scales (sometimes called “implied time scales”) that can be
associated with the transitions between metastable sets [10,23]; related results
for small-noise diffusions that establish a link between dominant eigenvalues of
a diffusion and exit times are discussed in, e.g., [14,17].

A more global perspective to the relaxation dynamics is provided by entropy
estimates that can be used to prove exponential convergence to the station-
ary distribution. These approaches are based on certain functional inequalities
like the Poincaré and the (logarithmic) Sobolev inequality, and provide bounds
for the convergence to the stationary distribution in the L1 norm in terms of
relative entropy. These bounds utilise the celebrated Csiszár-Kullback-Pinsker
inequality, and for reversible systems with potentials that are growing quadrat-
ically at infinity, the use of logarithmic Sobolev constants and relative entropy
(or: Kullback-Leibler divergence) can be attributed to Bakry and Émery [7].
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These results have then been generalised to nonlinear [39], non-reversible [1]
and linear diffusions with degenerate noise [2], including generalisations of the
Csiszár-Kullback-Pinsker inequality to relative entropies beyond the Kullback-
Leibler divergence (see e.g. [3, Ch. 2.2]). For a survey of entropy techniques, func-
tional inequalities and exponential convergence estimates, with a special focus
on applications in molecular dynamics, we refer to [35]. An attempt to relate
entropy estimates and exit times in a hierarchical way, like it is done in spectral
approaches, has been undertaken in [37], but a truly hierarchical approach is, to
our knowledge, yet missing.

One motivation for studying exponential rates for the convergence to equilib-
rium is to devise MCMC methods that either sample the stationary distribution
at a higher exponential rate (e.g. [30]) or reduce the variance of certain statis-
tical estimators (e.g. [25]). Importance sampling and related variance reduction
methods are naturally connected to large deviations principles, in that they are
often applied in the context of small-noise diffusions [16,48], for which MCMC
methods are known to converge poorly, or ergodic sampling problems [13,43] that
can benefit from faster convergence to equilibrium; see also the seminal articles
[19,20] for a discussion of the theoretical connection between large deviations
and stochastic control from the viewpoint of viscosity solutions, and [29,46] for
applications in molecular dynamics.

Outline. The rest of the article is structured as follows: In Sect. 2 we introduce
the multidimensional Ornstein-Uhlenbeck (OU) process and briefly discuss its
asymptotic properties for large times. Section 3 is devoted to a review of relevant
entropy estimates for reversible, non-reversible and degenerate OU processes,
which is contrasted and linked with the Donsker-Varadhan and Freidlin-Wentzell
large deviations approaches to the corresponding exit problem in Sect. 4. Numer-
ical examples that illustrate the theoretical results are shown in Sect. 5, with
a special focus on degenerate diffusions of Langevin type and slow-fast sys-
tems. The discussion is summarised in Sect. 6, and an outlook to possible future
research directions is given.

2 Linear Systems

In this section we review some known results about linear stochastic differential
equations based on the works [2] and [49] and discuss some concrete specifications
for the problem at hand. For this we assume the following setting. Consider
an Ornstein-Uhlenbeck process (Xt)(t≥0) where for each t, Xt ∈ R

n which is
described by the SDE

dXt = AXt dt + C dWt. (1)

Here A ∈ R
n×n is referred to as drift matrix, C ∈ R

n×m as diffusion matrix and
Wt is a standard m-dimensional Brownian motion and m ≤ n.

The corresponding Fokker-Planck equation, which describes the time evolu-
tion of the probability density function ρt according to the dynamics given by
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(1), reads

∂tρt = −∇ · (Aρt) +
1
2
∇2 : (CCT ρt), (2)

where ∇2 is the Hessian matrix and A : B is the Frobenius inner product of two
matrices A and B.

In order to guarantee a unique invariant distribution for our process, we
impose the following assumptions on the matrices A and C.

Assumption 1. The drift matrix A is stable (Hurwitz), i.e. all eigenvalues of
A have strictly negative real part.

Assumption 2. No eigenvector v of AT is in the kernel of CT .

Assumption 1 guarantees asymptotic stability of the dynamics and entails posi-
tive recurrence, whereas Assumption 2 guarantees spreading of the noise in every
direction of state space (irreducibility). Assumption 2 has many equivalent for-
mulations, one of which is the complete controllability of the matrix pair (A,C);
given a controlled ODE ẋ(t) = Ax(t)+Cu(t) with A, C as before, controllability
means that there exists a bounded and measurable control u such that the origin
x = 0 can be reached from any point y ∈ R

n in finite time. For further details
we refer to [51, Thm. 1.2] or [4, Thm. 4.5].

With these assumptions at hand we are now ready to characterize the unique
invariant distribution of (1).

Proposition 1. Assume that Assumptions 1 and 2 hold true. Then the Fokker-
Planck Eq. (2) has a unique stationary state ρ∞, given by the probability density
function of the normal distribution N (0, Σ∞), with mean zero and covariance
Σ∞. Furthermore the covariance matrix Σ∞ is the unique positive definite solu-
tion to the Lyapunov equation

AΣ∞ + Σ∞AT = −CCT . (3)

We will also refer to ρ∞ as the invariant distribution of the process (Xt)(t≥0)

described by (1). For a detailed proof we refer the reader to [2, Thm. 3.1].

Here, we aim at giving an intuitive explanation of the result. Consider the
analytic solution to the SDE (1) for a deterministic initial condition X0 = x0,
i.e. the initial covariance Σ0 fulfils Σ0 = 0, which reads

Xt = eAtx0 +
∫ t

0

eA(t−s)C dWs.

The mean μt and covariance Σt of the process at time t are easily calculated.
They fully characterize the distribution of the process at time t, since the dynam-
ics are linear and hence the distributions will be Gaussian at all times. Mean
and covariance are calculated easily:
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μt = E(Xt) = eAtx0,

Σt = E
(
(Xt − μt)(Xt − μt)T

)
=

∫ t

0

eA(t−s)CCT eAT (t−s) ds.

Clearly, μt → 0 as t → ∞, since all eigenvalues of A have negative real part
according to Assumption 1. For Σt we first note that, again by Assumption 1,
limt→∞ Σt = Σ∞ is well-defined. Further we observe that limt→∞ Σt = Σ∞ is
equivalent to limt→∞ Σ̇t = 0. Now,

Σ̇t = AΣt + ΣtA
T + CCT

and thus
lim

t→∞ Σt = Σ∞ ⇔ AΣ∞ + Σ∞AT + CCT = 0.

The same calculation goes through when the initial condition is not deterministic
(i.e. when Σ0 �= 0), but follows an absolutely continuous probability distribution.
Uniqueness of the solution is not hard to prove either, and we refer to [51, Thm.
2.7] for the details. We will refer to the solution of (1) under the Assumptions 1
and 2 as ergodic Ornstein-Uhlenbeck (OU) process.

3 Entropy Decay

In this section we mainly review results by [2] who proved exponential conver-
gence to equilibrium for densities evolving according to (2) under Assumptions
1 and 2. To this end, we first sketch the general procedure how to prove such
results for the case of non-degenerate Fokker-Planck equations, which means
rank(C) = n in our case. Afterwards we explain how the procedure is modified
for the degenerate case, i.e. rank(C) < n and state the final result at the end of
the section.

3.1 Non-degenerate Case

We start with the non-degenerate case which corresponds to an SDE of the form

dXt = AXt dt + C dWt. (4)

where A fulfils Assumption 1 and rank(C) = n. We assume the Bakry-Émery
criterion

Σ−1
∞ ≥ 2λ D−1 (5)

to hold, where we introduced the shorthand notation D = CCT .
Exponential decay to equilibrium in relative entropy then follows from the

steps described in the sequel. In the first step the time derivative of relative
entropy is computed:

− I(ρt|ρ∞) :=
d
dt

H(ρt|ρ∞) = −1
2

∫ (
∇ log

ρt

ρ∞

)T

D

(
∇ log

ρt

ρ∞

)
ρt dx ≤ 0.

(6)
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The functional I is called Fisher information. One would like to find an estimate
of form −I(ρt|ρ∞) ≤ −λH(ρt|ρ∞) since integration of this inequality yields
exponential convergence of H(ρt|ρ∞) to zero with rate λ > 0. In the second
step—aiming at finding such an estimate—the time derivative of the Fisher
information is computed (for details see e.g. [1,3])

d
dt

I(ρt|ρ∞) = −1
2

∫ (
∇ log

ρt

ρ∞

)T

DΣ−1
∞ D

(
∇ log

ρt

ρ∞

)
ρt dx − F, (7)

where F ≥ 0. The third step consists of applying the Bakry-Émery condition (5)
to (7) which yields

d
dt

I(ρt|ρ∞) ≤ −λ

∫ (
∇ log

ρt

ρ∞

)T

D

(
∇ log

ρt

ρ∞

)
ρt = −2λI(ρt|ρ∞). (8)

Integrating the last inequality in time from 0 to t and using Gronwall’s Lemma,
we get exponential decay of the Fisher information I(ρt|ρ∞) ≤ e−2λtI(ρ0|ρ∞).
Integrating instead from t to ∞, using −I = dH/dt, we find

− I(ρt|ρ∞) ≤ −2λH(ρt|ρ∞), (9)

which is the sought inequality. Integration of (9) from 0 to t then yields

H(ρt|ρ∞) ≤ H(ρ0|ρ∞)e−2λt. (10)

3.2 Degenerate Case

In the degenerate case, i.e. rank(D) < n the usual Bakry-Émery condition (5)
cannot hold since D is not invertible. Also, due to the rank deficiency of D, I is
not strictly positive anymore but only positive semidefinite. Hence the decay in
relative entropy may not be strictly monotone, but can also exhibit plateaus.

In order to achieve strict monotonicity in the decay of relative entropy, the
Fisher information I is replaced by a modified Fisher information S where the
degenerate diffusion matrix D is replaced by a non-degenerate matrix P > 0

S(ρt|ρ∞) =
∫ (

∇ log
ρt

ρ∞

)T

P

(
∇ log

ρt

ρ∞

)
ρt dx.

The key ingredients in order to obtain exponential decay in relative entropy
are then to prove exponential decay of the functional S(ρt|ρ∞) and to see that
P ≥ cP

2 D for some positive constant cP , by which the exponential decay of the
Fisher information follows and hence (8).

In order to establish exponential decay of S(ρt|ρ∞) its time derivative is
computed, yielding (cf. [2, Prop. 4.5])

d
dt

S(ρt|ρ∞) = −
∫ (

∇ log
ρt

ρ∞

)T [
QP + PQT

](
∇ log

ρt

ρ∞

)
ρt dx − FP , (11)
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where Q := Σ∞AT Σ−1
∞ and FP ≥ 0. The result which replaces the Bakry-Émery

criterion (5) is given in [2, Lem. 4.3] and is indispensable for the proof. It yields
the existence of a positive definite matrix P such that

QP + PQT ≥ 2λP (12)

where either λ = ν = min {
(λ) : −Av = λv} > 0 if A is diagonalizable (i.e. if all
eigenvalues have the same geometric and algebraic multiplicity) or λ = ν − ε for
some ε > 0 if at least one eigenvalue is defective (i.e. if geometric and algebraic
multiplicity do not agree). Equations (11) and (12) then take the role of (7) and
(5), which yields the exponential decay of the functional S. Noting that we can
find a constant cP such that P ≥ cP

2 D, it follows that the Fisher information
decays exponentially, which entails the exponential decay of the relative entropy.
The results are summarized in the following Theorem (cf. [2, Thm. 4.9]).

Theorem 1. Consider the SDE (1) with associated Fokker-Planck Eq. (2), and
let Assumptions 1 and 2 hold. Define ν = min {
(λ) : −Av = λv} > 0 to be the
smallest eigenvalue of −A and suppose that H(ρ0|ρ∞) < ∞.

(i) If all eigenvalues of A are non-defective, then there exists a constant c ≥ 1
such that

H(ρt|ρ∞) ≤ cH(ρ0|ρ∞)e−2νt ∀t ≥ 0 .

(ii) If one or more eigenvalues are defective, then there exists a constant cε > 1
for all ε ∈ (0, ν), such that

H(ρt|ρ∞) ≤ cεH(ρ0|ρ∞)e−2(ν−ε)t ∀t ≥ 0 .

The actually observed relaxation behaviour is explored in Sect. 5 where we inves-
tigate the influence of temperature and the choice of initial conditions. Further,
we study the occurrence of plateaus in the decay and processes with multiple
time scales.

4 Exit Probabilities

If the principal eigenvalue of the drift matrix A in the SDE (1) is simple, then
the Csiszár-Kullback-Pinsker inequality together with the entropy estimate in
Theorem 1 implies that (see e.g. [11] and the references therein)

‖ρt − ρ∞‖L1(Rn) ≤
√

2cH(ρ0|ρ∞) e−νt, (13)

where ν is minus the real part of the principal eigenvalue of A and c ≥ 1 is
a constant. Note, however, that at low temperature (i.e. for small noise) the
stationary distribution ρ∞ of (1) shrinks to a point mass δ0 concentrated at
the origin x = 0, and as a consequence the upper bound in (13) degrades for
most initial data. In this case the above estimate may not be so informative, and
other techniques come into play, such as couplings based on Wasserstein distances
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[9], or spectral estimates [10]. Spectral estimates for reversible systems play a
huge role in analysing reversible molecular dynamics [45], climate modelling
[31], or computational statistics [12], and the reason for this is that the principal
eigenvalue of the generator of a reversible diffusion is conventionally associated
with the characteristic time scale of the corresponding process; the rationale is
that, for many nonlinear reversible systems at low noise, the principal eigenvalue
is approximately inversely proportional to the mean first exit time from the
deepest energy well, which defines the slowest time scale in the system.

The idea here is to discuss some connections between the dominant spectrum
of the generator, entropy decay rates and “local” quantities such as covariance
matrices or exit times for non-reversible ergodic OU processes that can be seen
as linearisations of more complicated dynamics.

Under the Assumptions 1 and 2 it is a known result from [36] that the
infinitesimal generator

L =
1
2
CCT : ∇2 + (Ax) · ∇ (14)

associated with (1) has a compact resolvent and therefore a discrete spectrum in
Lp(Rn, ρ∞) for 1 < p < ∞ that can be completely characterised in terms of the
eigenvalues of the matrix A; in particular, all eigenvalues of L have multiplicity
1 if and only if A is diagonalisable, and the eigenvalues are independent of p for
1 < p < ∞. (For p = 1, the spectrum of L is the closed left-half plane [36]).

For reversible systems with A = AT and C being a scalar multiple of the
identity In×n, the spectral properties of L imply exponential convergence of
the weighted density ηt = ρt/ρ∞ to η∞ = 1 in L2(Rn, ρ∞). It is easy to see,
however, that this setting requires that η0 ∈ L2(Rn, ρ∞) which is equivalent
to the assumption that ρ0 is in L2(Rn, ρ−1

∞ ); even in the simple situation at
hand, this is quite restrictive in that it excludes many standard cases, such as
sharp Gaussian or point-like initial conditions, besides that the arguments are
restricted to reversible systems only.

4.1 Large Deviations: Exit from a Set

Here we describe an alternative characterisation of the speed of convergence that
is based on large deviations arguments and that includes non-reversible systems.
To this end, we scale the diffusion matrix according to

C →
√

β−1C , β > 0. (15)

We are interested in the situation β � 1, and, specifically, we want to study the
probability that the process Xt = Xβ

t leaves a bounded and open set O that
contains the unique stable fixed point x = 0. To this end let

τ = inf{t > 0: Xt /∈ O} (16)

be the first exit time from the set O. As a consequence of the Donsker-Varadhan
large deviations principle [15], the quantity

γ = − lim
t→∞

1
t

log P (τ > t |X0 = x) (17)
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is the principal eigenvalue of −L equipped with homogeneous Dirichlet boundary
values on ∂O that we assume to be smooth. That is, γ > 0 is the smallest
eigenvalue such that

−Lϕ(x) = γϕ(x) , x ∈ O

ϕ(x) = 0 , x ∈ ∂O,
(18)

where it follows from, e.g. [5, Thm. 1.3] and the fact that L satisfies a weak
maximum principle that the principal eigenvalue is real; see also [21].

The interpretation of (17)–(18) is straightforward: the closer the principal
eigenvalue γ > 0 is to zero, the smaller is the probability to observe an exit
from the set O before time t, where the dependence is exponential in γ; in other
words, the exit time for large t is exponentially distributed with parameter γ.

The relationship between (17) and (18) can be formally derived using the
Feynman-Kac theorem for parabolic boundary value problems (e.g. [41, Chap-
ters 8–9]), together with the separation ansatz (cf. [46, Sec. 5.1])

P (τ > t|X0 = x) � ϕ(x) exp(−γt) as t → ∞, (19)

for some non-negative function ϕ. The ansatz is suggested by the asymptotic
formula (17) and the symbol “�” should be understood likewise; separation of
variables in the Feynman-Kac formula then shows that ϕ solves the eigenvalue
problem (18) where ϕ > 0 in the interior of the domain, as a consequence of the
Perron-Frobenius theorem and Assumptions 1 and 2.

Remark 1. For non-degenerate, reversible systems, the exit probability is exactly
exponential when the initial probability density for X0 is the solution of the
eigenvalue equation, with L being replaced by its formal L2 adjoint L∗. The
corresponding eigenfunction is called the quasi-stationary distribution, and it
has the property that exit times are exponentially distributed, which is relevant
in the context of parallelised molecular sampling algorithms [32].

4.2 Small-Noise Approximation of the Principal Eigenvalue

We seek a computable and easily interpretable expression for γ, and we will
argue that γ can be computed from the stationary covariance matrix Σ∞. To
this end, we exploit a specific stochastic control interpretation of the principal
eigenvalue that is along the lines of related work on non-degenerate diffusions by
Fleming and co-workers [18–20]. Specifically, using that the function ϕ in (18)
is strictly positive in the interior of the domain, it follows that v = −β−1 log ϕ
solves the nonlinear boundary value problem

Lv − 1
2
|∇v|2CCT = γ/β (20)

with |w|CCT =
√

wT CCT w denoting a weighted Euclidean pseudo-norm with
weight CCT ≥ 0 and the specification

v(x) → ∞ as dist(x, ∂O) → 0 (21)
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for the function v when its arguments approach the boundary of O. Noting that

− 1
2
|w|2CCT = min

a∈Rn

{
1
2
|a|2 + (Ca) · w

}
, (22)

we observe that (20) is the dynamic programming equation of an ergodic stochas-
tic control problem, which implies the following result:

Proposition 2. Under the previous assumptions, it holds that a.s.

γ = min
u∈U

lim
T→∞

β

T
E

(
1
2

∫ T

0

|ut|2 dt − log 1{τ>T}

)
(23)

where τ = τu is the first exit time of the set O under the controlled process

dXu
t = (Cut + AXu

t )dt +
√

β−1C dWt. (24)

and the minimisation is over all Markovian controls u ∈ U such that (24) has
a unique strong solution. Furthermore the minimum is unique and attained at
u∗

t = β−1CT ∇ log ϕ(Xu∗
t ) with ϕ ∈ C2(O) ∩ C(O) being the solution of (18).

Proposition 2 can be proved using a minor modification of the arguments in
[46, Sec. 3.1] and we refer the reader to this article; see also [27, Thm. 2.3] for
an existence and uniqueness theorem under more general assumptions.

What is important for us here is that, in the limit β → ∞, the corresponding
dynamic programming Eq. (20) can be explicitly solved. Let

Φ(x) = lim
T→∞

min
u

{
1
2

∫ T

0

|u(t)|2 dt : y(0) = 0, y(T ) = x

}
(25)

with y(t) = y(t; t0, y0) being the solution of

ẏ(t) = Ay(t) + Cu(t) , y(t0) = y0. (26)

Equations (25)–(26) are the deterministic counterpart of the stochastic control
problem (23)–(24). The corresponding dynamic programming equation that can
be formally derived from (20) by letting β → ∞ reads

(Ax) · ∇Φ − 1
2
|∇Φ|2CCT = 0 , Φ(0) = 0, (27)

where Φ is—in contrast to the solution of the dynamic programming Eq. (20)—
bounded on O, as a consequence of the complete controllability of the control
system (26). A simple calculation shows that

Φ(x) =
1
2
xT Σ−1

∞ x, (28)

with Σ∞ ∈ R
n×n being the unique symmetric and positive definite solution of

the Lyapunov equation AΣ∞ + Σ∞AT + CCT = 0. The next statement is a
straight consequence of the previous considerations and [50, Thm. 6]:
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Corollary 1. If O = {x ∈ R
n : |x| < 1}, then

lim
β→∞

β−1 log γ = −(2Λ)−1, (29)

where Λ > 0 is the largest eigenvalue of the asymptotic covariance matrix Σ∞.

We can interpret this result as follows: Recalling the Donsker-Vardhan large
deviations principle (17), we can conclude that the probability of observing an
exit from the n-dimensional unit sphere before time t behaves like

P (τ ≤ t|X0 = x) � 1 − exp
(

−t exp
(

− β

2Λ

))
, t, β → ∞ (30)

in the low-temperature regime where it can be readily seen that the limits t → ∞
and β → ∞ commute (cf. [50]). In other words, the probability of observing an
exit before time t is large whenever the system is “easily controllable” (i.e. has
large variance in some direction), whereas it is small if the system is “hardly
controllable” (i.e. has uniformly small variance in all degrees of freedom).

Remark 2. If one accepts the underlying small-noise assumption, then Corollary
1 can be seen as a rationalisation of the usual interpretation of the principal
eigenvalue of a reversible diffusion as a characteristic time scale, beyond the
reversible setting. The fact that the exit from the set O follows an exponential
distribution implies that the mean first exit time satisfies (cf. [50, Thm. 6])

E[τ ] � exp
(

β

2Λ

)
, β → ∞. (31)

For reversible, non-degenerate Ornstein-Uhlenbeck processes with A = AT and
C = In×n, the largest non-zero eigenvalue λ1 of the operator L with Dirichlet
boundary data satisfies [10, Thm. 1.2]

λ1 = −(E(τ))−1(1 + O(e−Mβ)) , β → ∞, (32)

for some constant M > 0, and, by comparing (29) and (31), we observe that this
is consistent with the situation for general ergodic Ornstein-Uhlenbeck processes.

Remark 3. The asymptotic formula (29) is furthermore consistent with the
related results by Kifer (e.g. [17, Thm. 2.1]) or Freidlin and Wentzell (e.g. [22,
Thms. 7.1 and 7.4]) for nonlinear, non-degenerate diffusions that state that

γ � e−βR as β → ∞, (33)

where R = min{Φ(x) : x ∈ ∂O}, with Φ being given by the solution of (27) or
an appropriate generalisation of it in the nonlinear setting.
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4.3 Relation to Entropy Decay Rates

We shall briefly discuss the relation between the two exponential time scales
ν = min {
(λ) : −Av = λv} and Λ = max {λ : Σ∞v = λv} that are determined
by the eigenvalues of the matrix A and the asymptotic covariance matrix Σ∞.

Proposition 3. Let A and C fulfil Assumptions 1 and 2, and let Σ∞ solve the
corresponding Lyapunov Eq. (3) for β = 1. Let w be the normalised eigenvector
of −AT which corresponds to ν, i.e. −AT w = νw. Introduce the splitting of
w = wKer + wIm, where wKer ∈ ker(D), D = CCT and wIm ∈ Im(D). Further
denote by λmin(D) the smallest non-zero eigenvalue of D. Then

ν ≥ λmin(D)
2Λ

|wIm|. (34)

Proof. First note, that due to Assumption 2 we have wIm �= 0, but wKer = 0
is possible. Multiplying the Lyapunov equation AΣ∞ + Σ∞AT = −D from the
left and right by wT and w we find that 2νwT Σ∞w = wT Dw.

Now, wT Σ∞w ≤ Λ and wT Dw = wT
ImDwIm ≥ λmin(D)|wIm| which together

yields the assertion.

The inequality (34) is sharp. In the reversible case with A = AT negative
definite and C = In×n, the matrix A = −∇2V can be interpreted as the Hessian
of a quadratic potential

V (x) = −1
2
xT Ax, (35)

such that the stationary distribution ρ∞ of (1) has a density proportional to
exp(−V/2). As a consequence, the Lyapunov equation AΣ∞ +Σ∞A+ In×n = 0
has an explicit solution with 2Σ∞ = −A−1, and thus

ν =
1

2Λ
. (36)

Remark 4. We stress that, even though the relation (34) is independent of the
parameter β, the interpretation of Λ as a characteristic time scale is not. In par-
ticular, (36) implies that the mean first exit time from the set O for a reversible
system grows exponentially with the “stiffness” ν, i.e. E(τ) � eνβ as β → ∞.

5 Numerical Examples

We will restrict ourselves to two and three dimensional examples, since the inten-
tion here is to only illustrate certain characteristics of the convergence behaviour
of the system. As in the previous section we consider processes described by a
SDE of the general form

dXt = AXt dt +
√

β−1C dWt (37)

where A and C fulfil the necessary Assumptions 1 and 2.
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We will first discuss general dependencies for a given system (A,C) with
respect to the temperature and initial conditions. Also, we shortly discuss the
occurrence of plateaus and at the end of the section the case where the system
has multiple time scales and suggest a purely data-based identification of slow
and fast degrees of freedom.

5.1 Dependencies on the Temperature and Initial Conditions

In order to study the influence which temperature has on our system we split up
the relative entropy into three different terms of which the first two correspond
to the relaxation of the covariance and the last one to the relaxation of the mean.

H(t) :=
∫

log
(

ρt

ρ∞

)
ρt dx

=
1
2

⎡
⎢⎣Tr(ΣtΣ

−1
∞ ) − n︸ ︷︷ ︸

=a(t)

+−(log det(ΣtΣ
−1
∞ ))︸ ︷︷ ︸

=b(t)

+μT
t Σ−1

∞ μt︸ ︷︷ ︸
=c(t)

⎤
⎥⎦ .

Specifically, we can interpret these terms in the following sense. The term a
embodies the relaxation of the covariance Σt to Σ∞, whereas b ensures the
normalization of the densities and finally c comprises the relaxation of the mean
μt to 0.

We consider the following example where drift and diffusion are given by

A = −
(

1 3
0 2

)
, C =

(
0 0
0 1

)
.

In Fig. 1 we illustrate temperature-effects. Recall that for a process given by
(37) and Σ0 = 0, the covariance Σt at time t is given by

Σt = β−1

∫ t

0

eA(t−s)CCT eAT (t−s) ds. (38)

Hence, the only term which is temperature dependent is c(t), due to Σ−1
∞ . Fur-

thermore c(t) grows as β → ∞, i.e. for small temperatures c(t) dominates the
relaxation behaviour. The terms a(t) and b(t) do not have any temperature
dependence because of the multiplication by another temperature dependent
term Σt, such that β and β−1 cancel. This means that for larger temperatures
the relaxation is governed by a and b, which describe the equilibration of the
covariance (see Fig. 1 right panel and Fig. 2 upper right panel). Note that a
and b always have opposite signs, and they change sign depending on whether
Σt > Σ∞ or Σt < Σ∞. In the first case, i.e. when Σt > Σ∞, a(t) is strictly
positive and contributes the most, in the second case it is b(t) that dominates.
For small temperature c(t) plays this role (see Fig. 1 left panel), and the overall
relaxation is mainly determined by the relaxation of the mean.

Figure 2 shows the strong influence of the initial conditions on the relax-
ation behaviour, which is the only parameter varied in this figure. If we choose
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Fig. 1. Temperature-effects: the initial conditions are fixed. Left: low temperature (β =
103), right: high temperature (β = 10−2).

an eigenvector of the drift matrix A as a deterministic initial condition, this
will yield exponential decay with the corresponding eigenvalue (left panel). The
initial conditions can also be chosen such that one observes a plateau where
Ḣ(t) = 0 (right panel). This also leads to the constant c of Theorem 1 being
strictly greater than 1. Which term contributes the most to the total relaxation
behaviour then depends on the choice of the initial covariance Σ0. If Σ0 > Σ∞
then a(t) is the governing term (if the temperature is not too low), otherwise
c(t) will take this role.
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Fig. 2. Influence of the initial conditions when the temperature is fixed β = 20.
Left: x0 = ( 20

3
, 10

3
)T (eigenvector of A corresponding to λ = 2); Right: x0 ∼

N ((0.3513, −0.5496)T , Σ0), Σ0 > 0.

5.2 Multiple Time Scales: Partitioning into Slow and Fast

We now split up the relative entropy into two terms, where one depends on con-
ditional distributions and the other on marginal ones. More specifically, consider
a process (Zt)(t≥0) which consists of two components Z = (X,Y ). We will think
of X being the slow component and Y the fast one. Denote by ρ(z) the den-
sity of the joint process, by ρ̄(x) the marginal density of X and by ρ̂(y;x) the
conditional density of Y where X = x is given. We can always do the following
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computation which yields a partition of the relative entropy into conditional and
marginal terms:

HZ(t) : = H(ρt|ρ∞)

=
∫ ∫

ρ̄t ρ̂t log
(

ρ̄t

ρ̄∞

)
dy dx +

∫ ∫
ρ̄t ρ̂t log

(
ρ̂t

ρ̂∞

)
dy dx

= H(ρ̄t|ρ̄∞) +
∫

H(ρ̂t|ρ̂∞)ρ̄t dx

= HX(t) + Eρ̄t
(HY |X=x(t)).

In the example of this section we investigate the contribution of the two terms,
namely the conditional and the marginal term, to the overall decay in relative
entropy. Note that, obviously a splitting into a marginal term HY and a condi-
tional term HX|Y =y is possible in the same way.

We consider our previous example, but introduce a timescale parameter 0 <
ε ≤ 1 such that the coefficients now read

A = −
(

1 3ε−1

0 2ε−2

)
, C =

(
0

ε−1

)
.

Note that for ε → 0, the first component of the dynamics approaches an SDE
with effective coefficients Ā = 1 and C̄ = 3

2 ; cf. [42].
Before we come to the numerical results, let us give the constants ν and

Λ that correspond to the convergence and exit time behavior of the system as
described in Sects. 3 and 4. The smallest eigenvalue of A is ν = 1. The covariance
matrix of the stationary solution which solves (3) is given by

Σ∞ =

(
9

4(2+ε2) − 3ε
4(2+ε2)

− 3ε
4(2+ε2)

1
4

)
,

and its largest eigenvalue is Λ = 11+ε2+
√
49+22ε2+ε4

8(2+ε2) ≤ 21
8 for ε ∈ (0, 1] and we

see that the statement of Proposition 3 is fulfilled.
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Fig. 3. Decay of the relative entropy in terms of conditional and marginal terms without
time scale separation, i.e. ε = 1 (left) and when there is a time scale separation ε = 0.1
(right) and initial condition z0 = (1, −0.0655)T .
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No Time Scale Separation. This case is depicted in Fig. 3 in the left panel. We
display both, the splitting into the HX , E(HY |X) (solid lines) and HY , E(HX|Y )
(squares). The marginal term HX is not monotonically decreasing in time, but
can in fact increase. This is due to the fact that when computing the time deriva-
tive of e.g. H(ρ̄t|ρ̄∞) one finds as usual the Fisher information, but additionally
another term appears which can be estimated by the empirical measure large
deviations rate functional ; see [44, Ch. 2]. The empirical measure large devi-
ations rate functional of ρ̄t and ρ̄∞ will in general be non-zero, since the time
evolution of ρ̄t is still described by the Fokker-Planck equation of the full process
which differs from the Fokker-Planck equation which has ρ̄∞ as equilibrium.

Note that the increase of the relative entropy in time cannot be traced back to
the irreversibility of the process, but can also be observed for reversible processes
with appropriate initial conditions.

We want to emphasise that in the case of no time scale separation no clear
judgement is possible as to which of the terms displays a fast or slow relaxation
behaviour. This is true for both splittings and will be contrasted with the case
of a clear time scale separation below.

Time Scale Separation. We introduce a time scale separation by setting
ε = 0.1 (see Fig. 3 right panel) and now refer to X as the slow process and
Y as the fast one. The a priori assignment of slow and fast degrees of free-
dom agrees with the observation in the plots: for ε → 0 the conditional term
HY |X=x(t) relaxes almost instantaneously to its equilibrium. Accordingly, the
marginal term HX(t) governs the long term behaviour of the overall relaxation.
For the other splitting, we observe the same behaviour. The marginal of Y con-
verges very fast whereas the conditional of X dominates the long term relaxation.
This observation suggests that we can use the partitioning of relative entropy
into conditional and marginal terms as a definition for fast and slow degrees of
freedom. Both splittings seem reasonable in our setting, but this is due to the
linearity of our system. In regard to applying this idea to nonlinear diffusions we
propose to use the marginal term for the slow and the conditional term for the
fast variable. To be more precise let us consider the nonlinear example given by
the SDE

dZ = −∇V (Z)dt + dBt, Z = (X,Y ) ∈ R
2,

V (x, y) = (x2 − 1)2 + ε−1 (1 + ex)−1
y2.

This SDE describes the diffusive motion of a particle in the potential energy
landscape V . In x direction there are two metastable states, given by the domains
around the minima at x = ±1 and in between there is a barrier to overcome. In
y direction the motion is confined by a quadratic potential with differing growth
which is minimal at x = 0. We expect that for each fixed x the conditional
distribution of Y will quickly approach its equilibrium, contrary to the marginal
of Y which needs the slow variable X to cross the barrier of the potential at
x = 0 in order to converge to its equilibrium distribution.

Furthermore, we observe that as ε → 0 all terms become monotonically
decreasing.



Time Scales and Exponential Convergence 407

6 Outlook and Discussion

In the previous section we have seen that relative entropy may be used as a
tool to define fast and slow degrees of freedom. That is, the fast variable is
defined via an almost immediate relaxation of its conditional density ρ̂t, with
the slow variable being fixed. At the same time the slow variable is defined
via the relatively slow relaxation of its marginal density ρ̄t. Furthermore, the
slow variable will govern the collective relaxation after very short time once
the fast one has relaxed. This definition of fast and slow agrees with the coarse-
graining concepts of averaging and homogenization in the reversible case and the
conditional expectation (cf. [34]) in the general case. These methods seek low
dimensional effective dynamics which are built by computing expectations of the
slow variables’ dynamics with respect to the conditional invariant distributions
of the fast variables given the slow ones. The underlying idea is that the fast
variables relax almost instantaneously such that their force on the dynamics is
well captured by the statistics of their invariant distribution.

In order to identify slow and fast sub-processes, one could argue that for
OU processes it is also possible to resort to the spectral decomposition of the
associated generator L defined in (14) which is explicitly known in this case
[36]. But even here, if the eigenvalues of the drift matrix A are complex and
hence the spectrum is not well interpretable, or else, in a more general setting,
if the generator or its spectrum is not known, other methods are needed. For
this we propose to use relative entropy as a purely data-based tool, which can
detect slow and fast degrees of freedom and furthermore might lead towards
an understanding between the different concepts of time scales for general non-
reversible and degenerate diffusions. To make this idea more precise recall that
in the case of a reversible diffusion described by

dXt = −∇V (Xt) dt +
√

β−1 dWt (39)

with V being a confinement potential which grows sufficiently fast at infinity, it
is known that, in the small temperature limit, the slowest processes—given by
mean first passage times across the highest energy barriers—can be associated
with the eigenvalues of the generator in a hierarchical manner [10]. Furthermore,
the eigenvalues describe the convergence to equilibrium in the ρ−1

∞ weighted L2

norm. This analysis is inherent to the reversible case but a natural generalisation
of convergence to equilibrium in L2 is given by convergence in relative entropy.
Hence, the question of whether one is able to formulate a hierarchical ordering of
the systems processes according to the relaxation time scales determined by the
convergence in relative entropy, for reversible as well as irreversible processes, is
relevant (cf. [37, Remark 2.16]). We leave these questions for future research.

Acknowledgements. This research has been partially funded by Deutsche
Forschungsgemeinschaft (DFG) through the grant CRC 1114 “Scaling Cascades in
Complex Systems”, Projects A05 “Probing scales in equilibrated systems by optimal
nonequilibrium forcing” and B05 “Origin of the scaling cascades in protein dynamics”.



408 L. Neureither and C. Hartmann

References

1. Arnold, A., Carlen, E., Ju, Q.: Large-time behavior of non-symmetric Fokker-
Planck type equations. Commun. Stoch. Anal. 2(1), 153–175 (2008)

2. Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric
Fokker-Planck equations with linear drift. arXiv preprint arXiv:1409.5425 (2014)

3. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev
inequalities and the rate of convergence to equilibrium for Fokker-Planck type
equations. Commun. Part. Differ. Equ. 26(1–2), 43–100 (2001)

4. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM,
Philadelphia (2005)

5. Birindelli, I., Demengel, F.: First eigenvalue and maximum principle for fully non-
linear singular operators. Adv. Differ. Equ. 11(1), 91–119 (2006)

6. Bovier, A., den Hollander, F.: Metastability: A Potential-Theoretic Approach.
Grundlehren der mathematischen Wissenschaften, vol. 351. Springer, New York
(2015)
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Mathématiques 14(3), 331–352 (2005)

12. Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo convergence diagnostics: a
comparative review. J. Am. Stat. Assoc. 91(434), 883–904 (1996)

13. Chetrite, R., Touchette, H.: Nonequilibrium Markov processes conditioned on large
deviations. Annales Henri Poincaré 16(9), 2005–2057 (2015)
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Schlick, T., Schütte, C., Skeel, R. (eds.) New Algorithms for Macromolecular Sim-
ulation, pp. 167–182. Springer, Heidelberg (2006)
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Abstract. Angiogenesis is a complex multiscale process by which dif-
fusing vessel endothelial growth factors induce sprouting of blood ves-
sels that carry oxygen and nutrients to hypoxic tissue. There is strong
coupling between the kinetic parameters of the relevant branching -
growth - anastomosis stochastic processes of the capillary network, at the
microscale, and the family of interacting underlying biochemical fields,
at the macroscale. A hybrid mesoscale tip cell model involves stochas-
tic branching, fusion (anastomosis) and extension of active vessel tip
cells with reaction-diffusion growth factor fields. Anastomosis prevents
indefinite proliferation of active vessel tips, precludes a self-averaging
stochastic process and ensures that a deterministic description of the
density of active tips holds only for ensemble averages over replicas of
the stochastic process. Evolution of active tips from a primary vessel to
a hypoxic region adopts the form of an advancing soliton that can be
characterized by ordinary differential equations for its position, velocity
and a size parameter. A short review of other angiogenesis models and
possible implications of our work is also given.

Keywords: Angiogenesis · Active vessel tip model ·
Stochastic differential equations · Reinforced random walk ·
Branching process · History-dependent killing process ·
Cellular Potts models ·
Integrodifferential equation for active tip density

1 Introduction

The growth of blood vessels out of a primary vessel or angiogenesis is a complex
multiscale process responsible for organ growth and regeneration, tissue repair,
wound healing and many other natural operations in living beings [1–5]. Angio-
genesis is triggered by lack of oxygen (hypoxia) experienced by cells in some
tissue. Such cells secrete growth factors that diffuse and reach a nearby primary
blood vessel. In response, the vessel wall opens and issues endothelial cells that
move towards the hypoxic region, build capillaries and bring blood, oxygen and
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nutrients to it. Once blood and oxygen have reached the hypoxic region, secre-
tion of growth factors stops, anti-angiogenic substances may be secreted and a
regular vessel network may have been put in place, after pruning capillaries with
insufficient blood flow. In normal functioning, angiogenic and anti-angiogenic
activities balance. Imbalance may result in many diseases including cancer [6].
In fact, after a tumor installed in tissue reaches some 2 mm size, it needs addi-
tional nutrients and oxygen to continue growing. Its hypoxic cells secrete growth
factors and induce angiogenesis. Unlike normal cells, cancerous ones continue
issuing growth factors and attracting blood vessels, which also supply them with
a handy transportation system to reach other organs in the body.

Tumor-induced angiogenesis research started with Folkman’s pioneering work
in 1971 [6]. In addition to vast experimental research [7], models and theory [8]
substantially contribute to understanding angiogenesis and developing thera-
pies. In angiogenesis, events happening in cellular and subcellular scales unchain
endothelial cell motion and proliferation and build millimeter scale blood sprouts
and networks thereof [2–5]. Models range from very simple to extraordinarily
complex and often try to illuminate some particular mechanism; see the review
[8]. Realistic microscopic models involve postulating mechanisms and a large
number of parameters that cannot be directly estimated from experiments, but
they often yield qualitative predictions that can be tested. An important chal-
lenge is to extract mesoscopic and macroscopic descriptions of angiogenesis from
the diverse microscopic models.

During angiogenesis, the relevant branching, growth and anastomosis (ves-
sel fusion) stochastic processes of the capillary network at the microscale are
strongly coupled to the interacting underlying biochemical and mechanical fields
at the macroscale. In Sect. 2, we consider a hybrid mesoscale tip cell model that
involves stochastic branching, anastomosis and extension of active vessel tip
cells with reaction-diffusion growth factor fields [9]. Numerical simulations of
the model show that anastomosis prevents indefinite proliferation of active ves-
sel tips [10]. Then fluctuations about the mean of the density of active tips are
not small and the stochastic process is not self-averaging. However, as shown
in Sect. 3, it is possible to obtain a deterministic description of the density of
active tips for ensemble averages over replicas of the stochastic process. The
deterministic description consists of an integro-partial differential equation for
the density of active vessel tips coupled to a reaction-diffusion equation for the
growth factor [9,10]. As shown in Sect. 4, the evolution of active tips from a
primary vessel to a hypoxic region adopts the form of an advancing soliton-like
wave that can be characterized by ordinary differential equations for its position,
velocity and a size parameter [11,12]. These results may pave the way to assess
optimal control of angiogenesis and therapies based on it.

What are the implications of our work? As described in Sect. 5, there are other
models related to ours in which the vessel extension is described by random walks
[13,14], and our methodology may be used to extract deterministic descriptions
for the density of active tips amenable to analysis. We could also seek to extend
microscopic cellular Potts models (described in Sect. 6) to mesoscales and study
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them using our methods. The role of blood flow in remodeling vascular networks
is briefly considered in Sect. 7. A quite different approach is presented in Sect. 8.
Reaction-diffusion equations for growth factors are coupled to a Cahn-Hilliard
type equation for a phase field that is fourth order in space. The phase field has a
potential with two minima corresponding to the extracellular matrix and to the
advancing blood vessels. There are conditions for the velocity of the capillaries
and to create new ones. Further remarks are included in our conclusions in
Sect. 9.

2 Langevin Tip Cell Models

Tip cell models assume that the tip cells are motile and non-proliferating whereas
stalk cells build the blood vessel following the trajectories of the former. Assum-
ing that the tip cells form point particles, their trajectories constitute the blood
vessels advancing toward the hypoxic region. In 1991, Stokes and Lauffenburger
considered the capillary sprouts as particles of unit mass subject to chemotac-
tic, friction and white noise forces [15,16]. The distribution of vessel endothelial
growth factors (VEGF) issuing from a small circular tumor (or from a small cir-
cular hypoxic region) is a known stationary non-uniform function. Associated to
each sprout, its cell density satisfies a rate equation that takes into account prolif-
eration, elongation, redistribution of cells from the parent vessel, branching and
anastomosis. They did not consider the depletion effect that advancing sprouts
would have on the VEGF concentration. Later tip cell models combined a con-
tinuum description of fields influencing cell motion (chemotaxis, haptotaxis, . . . )
with random walk motion of individual sprouts that experience branching and
anastomosis. Capasso and Morale [17] used ideas from these approaches to pro-
pose a hybrid model of Langevin-Ito stochastic equations for the sprouts under-
going chemotaxis, haptotaxis, branching and anastomosis coupled to reaction-
diffusion equations for the continuum fields. In this model, the evolution of the
continuum fields is influenced by the growing capillary network through smoothed
(or mollified) versions thereof [18]. Capasso and Morale also attempted to derive
a continuum equation for the density of moving tip cells from the stochastic equa-
tions but could not account for branching and anastomosis [17]. In what follows,
we present a simplified hybrid model that ignores haptotaxis and derive a deter-
ministic description for the density of active tips [9,10,19]. As in the Capasso-
Morale model, the influence of haptotaxis can be included by adding reaction-
diffusion equations for fibronectin and matrix-degrading enzymes [20]. The influ-
ence of blood circulation through the newly created blood vessels and secondary
branching therefrom can be modeled as in [21].

We shall consider a slab geometry as indicated in Fig. 1, which is the result of
a numerical simulation of the stochastic model. The extension of the ith capillary
sprout with position Xi(t) and velocity vi(t) is given by the nondimensional
Langevin-Ito stochastic equation

dXi(t) = vi(t) dt

dvi(t) = β
[−vi(t) + F

(
C(t,Xi(t))

) ]
dt +

√
β dWi(t) (1)
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Fig. 1. Network of blood vessels simulated by the stochastic model of tumor induced
angiogenesis. The level curves of the density of the tumor angiogenic factor (vessel
endothelial growth factor) are also depicted, [11].

for t > T i (T i is the random birth time of the ith tip). Here C(t,x) is the VEGF
concentration. At time T i , the velocity of the newly created tip is selected out
of a normal distribution with mean v0 and variance σ2

v , while the probability
that a tip branches from one of the existing ones during an infinitesimal time
interval (t, t + dt] is proportional to

N(t,ω)∑

i=1

α(C(t,Xi(t)))dt. (2)

Here N(t, ω) is the number of tips at time t for a realization ω of the stochastic
process and

α(C) =
AC

C + 1
, (3)

where A is a positive constant. We ignore secondary angiogenesis from newly
formed capillaries [21]. The tip i disappears at a later random time Θi, either by
reaching the hypoxic region or by anastomosis, i.e., by meeting another capillary.
At time t, anastomosis for the ith tip occurs at a point x such that Xi(t) = x
and Xj(s) = x for another tip that was at x previously, at time s < t. Anastomo-
sis reduces the importance of secondary angiogenesis, because: (i) newly formed
capillaries need some time to mature and issue tip cells from their walls, and (ii)
secondary branches appear in a crowded environment and their life before they
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anastomose is typically short. In (1), Wi(t) are i.i.d. Brownian motions, and β
(friction coefficient) is a positive parameter [9,10,12]. The chemotactic force F
controlling tip cell migration in response to the VEGF released by hypoxic cells is

F(C) =
δ1

1 + Γ1C
∇xC, (4)

where δ1, and Γ1 are positive parameters. The VEGF diffuses and is consumed
by advancing vessel tips according to [10]

∂C

∂t
(t,x) = κcΔxC(t,x) − χcC(t,x)

∣
∣
∣
∣
∣
∣

N(t,ω)∑

i=1

vi(t) δσx
(x − Xi(t))

∣
∣
∣
∣
∣
∣
. (5)

Here κc and χc are positive parameters, while δσx
is a regularized delta function

(e.g., a Gaussian with standard deviation σx). We are assuming that extending
the vessel consumes VEGF. As the vessel extends a length |vi(t)| dt during the
time interval between t and t + dt, the consumption should be proportional to
|vi(t)|. The resulting equation for the VEGF is then

∂C

∂t
(t,x) = κcΔxC(t,x) − χ̃cC(t,x)

N(t,ω)∑

i=1

|vi(t)| δσx
(x − Xi(t)). (6)

The difference between the more appropriate model equation (6) and (5) could be
considerable for situations where tip cells are moving in all directions. However,
for the parameters and the slab geometry considered in the numerical simulations
presented in this paper, this difference is negligible (it amounts to having χ̃c =
1.28χc in the previous equation). Initial and boundary conditions for the VEGF
field C have been proposed in [9,10].

The concentration of all vessels per unit volume in the physical space, at
time t (i.e., the vessel network X(t, ω)) is [10]

δ(x − X(t, ω)) =
∫ t

0

N(s,ω)∑

i=1

δσx
(x − Xi(s, ω)) ds. (7)

3 Deterministic Description

We shall see that we can understand the results of numerical simulations of
the stochastic process described in the previous section by first finding a deter-
ministic description of the density of active tips. The latter evolves in the form
of a slowly varying soliton-like wave that we can analyze. Without perform-
ing numerical simulations of the stochastic process, we could guess that such a
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deterministic description could hold whenever the number of active tips arising
from branching becomes very large. In such a case, we could use the law of large
numbers to achieve such a description. This was the point of view adopted in
the papers [9,17]. However, anastomosis kills off so many active vessel tips that
their number hardly grows to a hundred. Then we need a different point of view
in order to derive a deterministic description. The alternative is the Gibbsian
idea of considering an ensemble of replicas of the original stochastic process and
carrying out arithmetic averages over the number of replicas.

We can find a deterministic description of the stochastic model for the den-
sities of active vessel tips and the vessel tip flux, defined as ensemble averages
over a sufficient number N of replicas (realizations) ω of the stochastic process:

pN (t,x,v)=
1
N

N∑

ω=1

N(t,ω)∑

i=1

δσx
(x − Xi(t, ω)) δσv

(v − vi(t, ω)), (8)

p̃N (t,x)=
1
N

N∑

ω=1

N(t,ω)∑

i=1

δσx
(x − Xi(t, ω)), (9)

jN (t,x)=
1
N

N∑

ω=1

N(t,ω)∑

i=1

vi(t, ω)δσx
(x − Xi(t, ω)). (10)

As N → ∞, these ensemble averages tend to the tip density p(t,x,v), the
marginal tip density p̃(t,x), and the tip flux j(t,x), respectively.

Figures 2 and 3 show the outcomes of typical simulations of ensemble aver-
aged marginal densities: The two-dimensional lump shown in Fig. 2 is created
at the primary vessel at x = 0 and marches to the hypoxic region at x = 1. Its
profile along the x axis is the soliton-like wave shown in Fig. 3.

Reference [10] shows that the angiogenesis model has a deterministic descrip-
tion based on the following equation for the density of vessel tips, p(t,x,v),

∂p

∂t
(t,x,v) = α(C(t,x)) p(t,x,v)δσv (v − v0) − Γ p(t,x,v)

∫ t

0
p̃(s,x) ds

−v · ∇xp(t,x,v) − β∇v · [(F(C(t,x)) − v)p(t,x,v)] +
β

2
Δvp(t,x,v), (11)

p̃(t,x) =

∫
p(t,x,v′) dv′. (12)

The two first terms on the right hand side of (11) correspond to vessel tip
branching – from Eqs. (2) and (3) – and anastomosis, respectively. While the
branching term follows from (2) and (3) in a straightforward manner, deducing
the anastomosis integral term is the real breakthrough from past work achieved
in [9]. The anastomosis coefficient, Γ , has to be fitted by comparison of the
numerical solution of the deterministic equations and ensemble averages of the
stochastic description, [10]. The other terms on the right hand side of (11) are
in the Fokker-Planck equation that corresponds to the Langevin equation (1)
in the usual manner [22]. While the branching term follows directly from the
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Fig. 2. Marginal density of active vessel tips resulting from an average over 400 replicas
of the stochastic process according to Eq. (9) at four different times: (a) 12 h, (b) 24 h,
(c) 32 h, and (d) 36 h. At these times, the numbers of active tips are (a) 56, (b) 69,
(c) 72, and (d) 66, [10].
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Fig. 3. Marginal density of active vessel tips at the x axis resulting from an average
over 400 replicas of the stochastic process as in Fig. 2. The primary vessel at x = 0
issues a pulse that marches toward the hypoxic region at x = 1, [10].
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stochastic branching process, anastomosis occurs when a moving vessel tip at
time t > 0 encounters a preexisting vessel whose tip was at the same place at
an earlier time s < t. At time t, a moving vessel tip can reach an area dx about
x that is either unoccupied or occupied by another vessel. In the latter case, it
anastomoses. The occupation time density of the area dx about x is proportional
to

∫ t

0
p̃(s,x) ds - the ensemble average of the vessel network density (7). Then

the rate of anastomosis should be proportional to p(t,x,v) times this occupation
time density [10]. Equation (5) becomes

∂C

∂t
(t,x) = κcΔxC(t,x) − χcC(t,x) |j(t,x)|, (13)

where j(t,x) is the current density (flux) vector at any point x and any time
t ≥ 0,

j(t,x) =
∫

v′p(t,x,v′) dv′. (14)

Equation (6) becomes (13) in which
∫ |v′| p(t,x,v′) dv′ replaces |j(t,x)|.

Fig. 4. Marginal density of active vessel tips resulting from a numerical simulation of
the deterministic equations with appropriate boundary conditions for the same times
as in Fig. 2 [9,10]. Better agreement between both descriptions requires fine tuning of
the boundary conditions.

Figure 4 shows that the outcome of a numerical simulation of the determin-
istic description is similar to that of the stochastic process.

Carpio and collaborators have shown that the deterministic system of Eqs.
(11)–(13) together with appropriate boundary and initial conditions has a unique
solution that depends smoothly on parameters [23,24]. The proof that the deter-
ministic description (11) follows from ensemble averages of the stochastic process
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as described here is an important open problem. Anastomosis is a random event
that depends on the past history of each realization of the stochastic process.
Killing process with memory of this type have been studied formally before.
However, the densities (8)–(10) are ensemble averages over infinitely many dif-
ferent realizations, which are, by definition, independent from each other. This
could be important in a mathematical investigation of these processes.

In a recent paper [25], Capasso and Flandoli have proved an important con-
vergence result for the deterministic description. They consider an appropriately
modified stochastic process for d-dimensional angiogenesis on the whole space
that also includes secondary branching at random points of existing capillaries.
In the limit as the initial number of tips N0 tends to infinity, they prove that a
relative tip density (scaled with the initial number of tips) converges in proba-
bility. The limiting relative tip density satisfies in a weak sense a deterministic
integro partial differential equation. In this equation, integrals over time also
appear at the source term due to secondary angiogenesis. As explained before,
the memory source term due to secondary angiogenesis is likely to be small com-
pared to the local source term considered in (11). Capasso and Flandoli also
prove that the number of tips at any given time t ∈ [0, T ] is bounded by a factor
eλT N0, with λ > 0. It would be interesting to see whether the limit as N0 → ∞
can be replaced by ensemble averages at least in the 2D case. Similarly, com-
parison of numerical solutions of the deterministic description on an appropriate
geometry and averages of the stochastic process would help understanding the
implications of the rigorous results in [25].

4 Soliton and Collective Coordinates

In the overdamped limit of negligible inertia in (1), we obtain the simpler
Langevin-Ito equation: dXi(t) ≈ F(C(t,Xi(t))) dt+β−1/2dWi(t) [11]. By using
the Chapman-Enskog perturbation method whose details are explained in [12],
it is then possible to derive the following reduced equation for the marginal tip
density,

∂p̃

∂t
+ ∇x · (Fp̃) − 1

2β
Δxp̃ = μ p̃ − Γ p̃

∫ t

0

p̃(s,x) ds, (15)

μ =
α

π

[
1 +

α

2πβ(1 + σ2
v)

ln
(

1 +
1
σ2

v

)]
. (16)

The drift terms in Eq. (15) are those corresponding to the simpler Langevin-Ito
equation for Xi(t) that results in the overdamped limit. The birth and death
terms are obtained by integration of the corresponding ones on right hand side of
(11) over velocity. However, the perturbation procedure changes the coefficient
α(C) to the related function μ(C) in (16) [12]. Equation (15) has the following
soliton-like solution for constant F = (Fx, Fy), μ, and zero diffusion, 1/β = 0:

p̃s =
(2KΓ + μ2)c
2Γ (c − Fx)

sech2

[√
2KΓ + μ2

2(c − Fx)
(x − X(t))

]

, Ẋ ≡ dX

dt
= c, (17)
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where K is a constant. In fact [11], consider p̃s = ∂P (x − ct)/∂t = −c P ′(ξ),
ξ = x − ct, which, inserted in (15) with 1/β = 0, yields

(Fx − c)P ′′ = μP ′ − ΓPP ′ =⇒ (c − Fx)P ′ =
Γ

2
P 2 − K − μP.

Setting P = ν tanh(λξ)+μ/Γ , we find ν2 = (μ2+2KΓ )/Γ 2 and 2νλ(c−Fx)/Γ =
−ν2, thereby obtaining

P =
μ

Γ
−

√
2KΓ + μ2

Γ
tanh

[√
2KΓ + μ2

2(c − Fx)
(ξ − ξ0)

]

.

Here ξ0 is a constant of integration. Thus p̃s = ∂P/∂t = −cP ′ is given by (17).
Note that the source terms (branching and anastomosis) in Eqs. (11) and (16)

are crucial for the soliton solution (17) to exist. Their absence in all developments
previous to [9] explains that they could not go beyond numerical simulations of
the stochastic process.

Numerical simulations on a slab geometry show that the marginal tip density
evolves toward (17) after an initial stage [11,12]. It is an open problem to prove
this stability result even for a one-dimensional version of Eq. (15) on the whole
real line and having constant values of F and μ.

A small diffusion and slowly varying continuum field C produce a moving
soliton whose shape and speed are slowly changing. We can find them by deduc-
ing evolution equations for the collective coordinates K, c, and X [11,12]. Then
the marginal density profile at y = 0 can be reconstructed from (17) with spa-
tially averaged Fx and μ [12]. Note that p̃s is a function of ξ = x − X and also
of x and t through C(t,x),

p̃s = p̃s

(
ξ;K, c, μ(C), Fx

(
C,

∂C

∂x

))
. (18)

We assume that the time and space variations of C, which appear when p̃s is
differentiated with respect to t or x, produce terms that are small compared to
∂p̃s/∂ξ. As explained in [12], we shall consider that μ(C) is approximately con-
stant, ignore ∂C/∂t because the VEGF concentration varies slowly (the dimen-
sionless coefficients κc and χc appearing in the VEGF equation (13) are very
small according to Table 2 of [12]) and ignore ∂2p̃s/∂i∂j, where i, j = K, Fx. We
now insert (17) into (15), thereby obtaining

(
Fx − Ẋ

)∂p̃s

∂ξ
+

∂p̃s

∂K
K̇ +

∂p̃s

∂c
ċ − 1

2β

(
∂2p̃s

∂ξ2
+ 2

∂2p̃s

∂ξ∂Fx

∂Fx

∂x
+

∂p̃s

∂Fx
ΔxFx

)

+ p̃s∇x · F +
∂p̃s

∂Fx

(
∂Fx

∂t
+ F · ∇xFx

)
= μp̃s − Γ p̃s

∫ t

0

p̃sdt. (19)

Equation (15) with 1/β = 0 and constant F and μ has the soliton solution (17).
Using this fact, we can eliminate the first term on the left hand side of (19) and
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also the right hand side thereof. Equation (19) then becomes

∂p̃s

∂K
K̇ +

∂p̃s

∂c
ċ = A , (20)

A =
1
2β

∂2p̃s

∂ξ2
−p̃s∇x ·F− ∂p̃s

∂Fx

(
F·∇xFx− 1

2β
ΔxFx

)
+

1
β

∂2p̃s

∂ξ∂Fx

∂Fx

∂x
. (21)

We now find collective coordinate equations (CCEs) for K and c. As the lump-
like angiton moves on the x axis, we set y = 0 to capture the location of its
maximum. On the x axis, the profile of the angiton is the soliton (17). We
first multiply (20) by ∂p̃s/∂K and integrate over x. We consider a fully formed
soliton far from primary vessel and hypoxic region. As it decays exponentially
for |ξ| 
 1, the soliton is considered to be localized on some finite interval
(−L /2,L /2). The coefficients in the soliton formula (17) and the coefficients in
(21) depend on the VEGF concentration at y = 0, therefore they are functions
of x and time and get integrated over x. The VEGF concentration varies slowly
on the support of the soliton, and therefore we can approximate the integrals
over x by [12]

∫

I

F (p̃s(ξ;x, t), x)dx ≈ 1
L

∫

I

(∫ L /2

−L /2

F (p̃s(ξ;x, t), x)dξ

)

dx. (22)

The interval I over which we integrate should be large enough to contain most
of the soliton, of extension L . Thus the CCEs hold only after the initial soli-
ton formation stage. Near the primary vessel and near the hypoxic region, the
boundary conditions affect the soliton and we should exclude intervals near them
from I . We shall specify the integration interval I below. Acting similarly, we
multiply (20) by ∂p̃s/∂c and integrate over x. From the two resulting formulas,
we then find K̇ and ċ as fractions. The factors 1/L cancel out from their numer-
ators and denominators. As the soliton tails decay exponentially to zero, we can
set L → ∞ and obtain the following CCEs [12]

K̇ =

∫ ∞
−∞

∂p̃s

∂K A dξ
∫ ∞

−∞
(

∂p̃s

∂c

)2

dξ− ∫ ∞
−∞

∂p̃s

∂c A dξ
∫ ∞

−∞
∂p̃s

∂K
∂p̃s

∂c dξ

∫ ∞
−∞

(
∂p̃s

∂K

)2

dξ
∫ ∞

−∞
(

∂p̃s

∂c

)2

dξ−
(∫ ∞

−∞
∂p̃s

∂c
∂p̃s

∂K dξ
)2 , (23)

ċ =

∫ ∞
−∞

∂p̃s

∂c A dξ
∫ ∞

−∞
(

∂p̃s

∂K

)2

dξ− ∫ ∞
−∞

∂p̃s

∂K A dξ
∫ ∞

−∞
∂p̃s

∂K
∂p̃s

∂c dξ

∫ ∞
−∞

(
∂p̃s

∂K

)2

dξ
∫ ∞

−∞
(

∂p̃s

∂c

)2

dξ−
(∫ ∞

−∞
∂p̃s

∂c
∂p̃s

∂K dξ
)2 . (24)

In these equations, all terms varying slowly in space have been averaged over
the interval I . The last term in (21) is odd in ξ and does not contribute to the
integrals in (23) and (24) whereas all other terms in (21) are even in ξ and do
contribute. The integrals appearing in (23) and (24) are calculated in [12]. The
resulting CCEs are
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K̇ =
(2KΓ+μ2)2

4Γβ(c−Fx)2

4π2

75
+ 1

5
+

(
2Fx
5c

− 2π2

75
− 9

10

)
Fx
c(

1 − 4π2

15

)(
1 − Fx

2c

)2

− 2KΓ + μ2

Γc
(
2 − Fx

c

)
(

c∇x · F+F·∇xFx − ΔxFx

2β

)
, (25)

ċ = −7(2KΓ + μ2)

20β(c − Fx)

1 − 4π2

105(
1 − 4π2

15

)(
1 − Fx

2c

)+F·∇xFx − (c − Fx)∇x ·F − ΔxFx
2β

2 − Fx
c

, (26)

g(x, y) =
1

I

∫
I

g(x, 0) dx, (27)

in which the functions of C(t, x, y) have been averaged over the interval I after
setting y = 0. We expect the CCEs (25)–(26) to describe the mean behavior of
the soliton whenever it is far from primary vessel and hypoxic region.
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Fig. 5. Comparison of the marginal tip density profile p̃(t, x, 0) (obtained from the
stochastic description averaged over 400 replicas) to that of the moving soliton, [11].

Both deterministic or stochastic simulations show that the soliton is formed
after some time t0 = 0.2 (10 h) following angiogenesis initiation. To find the
soliton evolution afterwards, we need to solve the CCEs (25)–(26), in which the
spatial averages depend on an interval x ∈ I , which should exclude regions
affected by boundaries. We calculate the spatially averaged coefficients in (25)–
(26) by: (i) approximating all differentials by second order finite differences,
(ii) setting y = 0, and (iii) averaging the coefficients from x = 0 to 0.6 by
taking the arithmetic mean of their values at all grid points in the interval
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I = (0, 0.6]. For x > 0.6, the boundary condition at x = 1 influences the
outcome and therefore we leave values for x > 0.6 out of the averaging [12]. The
initial conditions for the CCEs are set as follows. X(t0) = X0 is the location of
the marginal tip density maximum, p̃(t0, x = X0, 0). We find X0 = 0.2 from the
stochastic description. We set c(t0) = c0 = X0/t0. K(t0) = K0 is determined so
that the maximum marginal tip density at t = t0 coincides with the soliton peak.
This yields K0 = 39. Solving the CCEs (25)–(26) with these initial conditions
and using (17), we obtain the curves depicted in Fig. 5.

5 Random Walk Tip Cell Models

These models describe the extension of blood vessels by random walks biased by
chemotaxis or haptotaxis instead of using Langevin equations. The first such
model, due to Anderson and Chaplain [13], is based on a reaction-diffusion
description of angiogenesis. They consider a continuity equation for the den-
sity of endothelial cells (ECs) n (with zero-flux boundary conditions) coupled
to equations for the VEGF and fibronectin densities, C and f , respectively. In
nondimensional form, these equations are [13]:

∂n

∂t
= DΔn − ∇·

(
χ

1 + αC
n∇C

)
− ∇·(ρn∇f), (28)

∂f

∂t
= βn − γnf, (29)

∂C

∂t
= −ηnC. (30)

Here all parameters are positive. The three terms on the right hand side of (28)
correspond to diffusion of ECs, chemotaxis and haptotaxis, respectively. Note
that chemotaxis has the same form in this equation as in (11) with p replaced
by n. Haptotaxis follows the gradient of fibronectin in the extracellular matrix.
Note that proliferation and death of ECs are not contemplated by (28). In the
next step, these equations are solved by an explicit Euler method in time and
finite differences. The resulting equation for n(t, x, y) ≈ nq

l,m,

nq+1
l,m = nq

l,mW0 + nq
l+1,mW1 + nq

l−1,mW2 + nq
l,m+1W3 + nq

l,m−1W4, (31)

has the same form as a master equation for a random walk [22], except that
the “transition probabilities” W0 (staying), W1 (moving to the left), W2 (mov-
ing to the right), W3 (moving downwards), and W4 (moving upwards) are not
normalized. However, this is easily fixed by defining

Wi =
Wi

∑4
j=0 Wj

, i = 0, 1, . . . , 4, (32)

as new transition probabilities. The random walk associated to these transition
probabilities represents extension of vessel tips and replaces the Langevin equa-
tion (1). Branching and anastomosis are introduced as in the Langevin tip cell
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model, except that the tips have to wait some maturity time after branching
before they are allowed to branch again. It should be straightforward to find
equations for the density of active vessel tips by using the theory described in
previous sections.

The Anderson-Chaplain idea is easy to implement starting from continuum
models of angiogenesis (and therefore it can be immediately generalized by
including more taxis mechanisms, influence of antiangiogenic factors [26], etc.),
but it has the drawback of having to rely on the finite difference grid or lattice.
Another drawback is that the transition probabilities extracted from a finite
difference code may not always be non-negative. A few years later, Plank and
Sleeman fixed both these drawbacks. They proposed non-lattice models inde-
pendent of the grid [14] using biased circular random walk models previously
introduced by Hill and Häder for swimming microorganisms [27]. If θ(t) is a
continuous random walk on the unit circle biased by chemo and haptotaxis [14],
the trajectory of the corresponding tip cell is

dx
dt

= v0 (cos θ(t), sin θ(t)). (33)

Thus the tip cells have the same speed v0, directions given by θ(t) and their
trajectories do not have to follow points on a lattice. While branching and anas-
tomosis are modeled as in Sect. 2, the extensions of vessel tips are described by
(33) and the biased circular random walk instead of Langevin equations. The
master equation for the circular random walk is [14]

dPn

dt
= τ̂+

n−1Pn−1 + τ̂−
n+1Pn+1 − (τ̂+

n + τ̂−
n )Pn, (34)

τ̂±
n = 2λ

τ
(
nδ ± δ

2

)

τ
(
nδ + δ

2

)
+ τ

(
nδ − δ

2

). (35)

As δ → 0 and n → ∞ so that nδ = θ, the master equation (34) becomes the
Fokker-Planck equation [14]

∂P

∂t
(t, θ) = D

∂

∂θ

[
P (t, θ)

∂

∂θ

(
ln

P (t, θ)
τ(θ)

)]
, (36)

with D = λδ2 for P (t, θ) = P (t, nδ) = Pn(t). Chemo and haptotaxis are included
in the model through the transition probability

τ(θ) =
exp[dC cos(θ − θC) + df cos(θ − θf )]

∫ π

−π
exp[dC cos(s − θC) + df cos(s − θf )] ds

, (37)

tan θC =
∇C

|∇C| , tan θf =
∇f

|∇f | . (38)

Here τ(θ) is the stationary probability density of the Fokker-Planck equation
(36).
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Fig. 6. Sketch of the geometry for angiogenesis from a primary blood vessel to a circular
tumor calculated by using the Anderson-Chaplain model.

An extension of these ideas to 2D random walks produces a system with
non-negative transition probabilities [14]. Instead of (34), we may write the 2D
master equation

dPn,m

dt
= τ̂H+

n−1,mPn−1,m + τ̂H−
n+1,mPn+1,m + τ̂V +

n,m−1Pn,m−1 + τ̂V −
n,m+1Pn,m+1

− (τ̂H+
n,m + τ̂H−

n,m + τ̂V +
n,m + τ̂V −

n,m)Pn,m, (39)

τ̂H±
n,m = 4λ

τ(wn± 1
2 ,m)

τ(wn+ 1
2 ,m) + τ(wn− 1

2 ,m) + τ(wn,m+ 1
2
) + τ(wn,m− 1

2
)
, (40)

τ̂V ±
n,m = 4λ

τ(wn,m± 1
2
)

τ(wn+ 1
2 ,m) + τ(wn− 1

2 ,m) + τ(wn,m+ 1
2
) + τ(wn,m− 1

2
)
. (41)

Here w = (C, f) and τ(w) = τ1(C)τ2(f), with

τ1(C) = (1 + αC)
χ

αD , τ2(f) = eρf/D. (42)

Clearly, these transition probabilities are positive and it can be proved that the
master equation (39) has (28) as a continuum limit [14]. Active tips, branch-
ing and anastomosis are treated as in the Anderson-Chaplain paper [13]. Com-
parisons between numerical simulations of the Anderson-Chaplain and Plank-
Sleeman models are carried out in [14]. Figure 6 shows one realization of the
Anderson-Chaplain stochastic process that includes vessel extension, branching
and anastomosis.
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The random walk models of this Section get their input from continuum equa-
tions for ECs, VEGF and fibronectin densities, but the moving vessel tips charac-
terized by the random walks do not affect the continuum fields. Their outcomes
are numerical simulations of the stochastic processes, without further elabora-
tion. In contrast to this somewhat artificial setting, the Langevin tip cell model
of Sect. 2 is a hybrid model in which active vessel tips and continuum fields are
fully coupled. Furthermore, we can derive an equivalent deterministic description
from the Langevin tip cell model and analyze it in terms of a soliton-like attrac-
tor. This latter elaboration has also been carried out for a Langevin tip cell model
that includes chemotaxis and haptotaxis [20]. Now, the master equation becomes
a Fokker-Planck equation (corresponding to a Langevin-Ito equation) in the con-
tinuum limit [22]. Then we may expect that the master equation with two added
source terms similar to those in Eq. (11) describes the stochastic process compris-
ing random walk, branching and anastomosis. This seems to be the case [28].

Fig. 7. Density of active vessel tips resulting from an average over 800 replicas of the
stochastic process corresponding to reinforced random walk, branching and anastomosis
with transition probabilities (40)–(41) at four different times: (a) 5 days, (b) 6 days,
(c) 7 days, and (d) 8 days.

When we add source terms to the master equation (39), it becomes the
following equation for the density of active vessel tips ρn,m(t):

dρn,m

dt
= τ̂H+

n−1,mρn−1,m + τ̂H−
n+1,mρn+1,m + τ̂V +

n,m−1ρn,m−1 + τ̂V −
n,m+1ρn,m+1

−(τ̂H+
n,m + τ̂H−

n,m + τ̂V +
n,m + τ̂V −

n,m)ρn,m + αn,m ρn,m − Γn,m ρn,m

∫ t

0
ρn,m dt. (43)
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Fig. 8. Density of active vessel tips calculated from the master equation (43) at times:
(a) 5 days, (b) 6 days, (c) 7 days, and (d) 8 days.

Figure 7 depicts the active vessel density (9) calculated from ensemble average
over replicas of the stochastic process (reinforced random walk, branching and
anastomosis) at four different times after angiogenesis starts. Figure 8 shows
the solution of the master equation (43) at the same times as in Fig. 7. Both
stochastic and deterministic descriptions produce similar results. In particular,
the velocity of the patch where most active tips are concentrated is about the
same in both descriptions. See [28] for details.

As in the case of the stochastic process including Langevin-Ito equations for
vessel extension of Sect. 2, it is an important open problem to deduce the master
equation (43) from a reinforced random walk process with added branching and
anastomosis.

6 Cellular Potts Models

In all the previous models, the cells are treated as point particles. For a more
precise view of haptotaxis, i.e., the motion of ECs over the extracellular matrix
(ECM), we need to consider adhesion and deformation of the cells. This requires
a more microscopic view than that offered by tip cell models or by more compli-
cated models that distinguish between tip and stalk ECs and add extra dynamics
for them [8].

Often times, ECs and ECM are modeled by a cellular Potts model (CPM)
with Monte Carlo dynamics coupled to continuum fields (elastic fields, VEGF,
. . . ) [29]. Space in these models consists of a lattice whose cells (lattice sites)
may be in finitely many different states, denoted by type τ and representing ECs,
matrix fibers, tissue cells and interstitial fluid. To account for individual entities
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(ECs, fibers, etc), each entity is further associated with a unique identifying
number, denoted by σ, that is assigned to every lattice site occupied by it. At
every Monte Carlo time step, the cell surface (represented by connected lattice
vertices) is updated according to a set of cell behavior rules (e.g., target cell
shape and size) that are translated in an energy change. Typically, we select
randomly a cell x, assign its type, τ(x), to a randomly chosen neighbor x′, and
update accordingly the total energy of the system, H. Using the Metropolis
algorithm, a given update is accepted with probability one if the change in the
total energy of the system, ΔH, is reduced and it is accepted with probability
e−βΔH otherwise (1/β is the Monte Carlo temperature). The energy in [29] is

H =
∑

sites

Jτ,τ ′(1 − δσσ′) +
∑

cells

γτ (aσ − Aσ)2 −
∑

cells

∑

sites

μσC(t,x). (44)

The first term in Eq. (44) is the contribution to total energy resulting from
cell-cell and cell-medium adhesion. The second term allows deformation of cells
with volume aσ about a target volume (area in 2D space) Aσ, depending on the
Potts parameters γτ . The target volume is twice that of the initial volume and
it corresponds to the volume at which a cell undergoes mitosis, thereby creating
a new cell. Thus cell proliferation is contemplated in this CPM. A variation of
the last term in (44) is

ΔHchem = −μσ[C(t,x) − C(t,x′)], (45)

where x and x′ are two randomly picked neighboring lattice cells, μσ > 0 is the
chemical potential, and Eq. (45) represents chemotaxis favoring motion directed
along the VEGF gradient. The VEGF concentration satisfies a reaction-diffusion
equation [29]. The parameters appearing in the model are chosen in such a
way that the progression of blood vessels occurs in the time scale observed in
experiments [29].

Under this framework, each entity (ECs, ECM, . . . ) has a finite volume, a
deformable shape and competes for space. ECs proliferate. Intercellular inter-
actions occur only at the cells surface and have a cell-type-dependent surface
(or adhesion) energy Jτ,τ ′ , which is a measure of the coupling strength between
the entities τ and τ ′. Other CPMs include an ECM strain-dependent term that
favors cell extension in the direction of principal strain (durotaxis). The force
exerted by the ECs on the ECM is calculated by finite elements [30]. In more
complicated models, each cell contains agents that signal to other cells and adhe-
sion is modeled by a CPM [31].

As in the case of random walk tip cell models, there is a connection between
CPM and a deterministic formulation for a density. In [32], Alber et al. have
written a discrete time master equation for the probability density P (t, r,L)
that a cell with its center of mass at r occupy a rectangle with sides L = (lx, ly)
at time t. It is based on a CPM with energy given by (44), but with a target
perimeter instead of the target area. The corresponding term in the energy is

Hperim =
∑

cells

[γx(lx − Lx)2 + γy(ly − Ly)2]. (46)
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Here cells are always rectangles and do not proliferate nor die. Assum-
ing that cells contain many lattice sites, they change little at each Monte
Carlo step. Assuming further that cell-cell interactions are always binary,
the authors derive a Fokker-Planck equation for P (t, r,L). These formu-
lations would have to be extended to CPMs that include cell prolifera-
tion and be connected to mesoscopic angiogenesis models: from cell den-
sities to densities of active vessel tip cells. It would be interesting to
study whether the concept of active vessel tips and related ones can be
used to derive deterministic descriptions in the spirit of Sects. 3 and 5.

7 Blood Flow and Vascular Network

Once a vascular network is being created, blood flows through the capillaries,
anastomosis enhances flow in some of them and secondary angiogenesis may
start in new vessels. Pries and coworkers have modeled blood flow in a vascular
network and the response thereof to changing conditions such as pressure differ-
ences and wall stresses [33,34]. This response may remodel the vascular network
by changing the radii of certain capillaries, and altering the distribution of blood
flow [33,34]. McDougall, Anderson and Chaplain [35] have used this formulation
to add secondary branching from new capillaries induced by wall shear stress to
the original random walk tip cell model [13]. Blood flows according to Poiseuille’s
law, mass is conserved, there are empirical expressions for blood viscosity and
for the wall shear stresses, and radii of capillaries adapt to local conditions. Sec-
ondary vessel branching may occur after the new vessel has reached a certain
level of maturation and before a basal lamina has formed about it [21,35]. During
such a time interval, the probability of secondary branching increases with both
the local VEGF concentration and the magnitude of the shear stress affecting the
vessel wall. McDougall et al.’s model can be used to figure out how drugs could be
transported through the blood vessels and eventually reach a tumor [21,35]. In
dense vessel networks, secondary branching may have little effect on the number
of active tips at a given time, as anastomosis could eliminate secondary branches
quickly. Thus we may ignore secondary branching when considering the density
of active tips in such networks. Of course we cannot ignore it when describing
blood flow and network remodeling.

One missing feature of angiogenesis models that take blood flow into account
seems to be pruning. It is known that capillaries with insufficient blood circu-
lation may atrophy and disappear. Pruning such blood vessels is an important
mechanism to achieve a hierarchical vascular network such as that observed in
retinal vascularization during development [3,4]. Global optimization and adap-
tation in developing networks has been recently shown to lead to highly opti-
mized transport vascular systems [36,37]. It would be interesting to adapt these
studies to angiogenesis.
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8 Phase Field Models

Phase field models are continuum models able to represent vascular networks.
For example, Travasso et al. [39,40] consider a reaction-diffusion equation for
the VEGF C(t,x) coupled to a continuum equation for the phase field φ(t,x):

∂C

∂t
(t,x) = κcΔxC(t,x) − χcC(t,x)φ(t,x)Θ(φ(t,x)), (47)

∂φ

∂t
(t,x) = MΔx[−φ(t,x) + φ3(t,x) − ε2Δxφ(t,x)]

+αφ(C(t,x))φ(t,x)Θ(φ(t,x)). (48)

Here M is the mobility coefficient for the endothelial cells, the proliferation rate
is αφ(C) = αφ[CΘ(Cp −C)+CpΘ(C −Cp)], ε is the width of the capillary wall,
and Θ(x) is the Heaviside unit step function. Proliferative and non-activated
cells are described by an order parameter φ which is equal to −1 at the ECM
outside the capillary and +1 inside it. Areas of high proliferation of endothelial
cells have φ > 1, which will lead to the widening of the capillary. The position
of the capillary wall made out of stalk cells is given by the level set φ(t,x) = 0.

In addition to the continuum equations, there are discrete equations for acti-
vated tip endothelial cells and criteria to distinguish them. The angiogenic factor
at the tip cell is only consumed at its surface receptors, therefore χC = 0 is set
in Eq. (47) at all points inside the tip cell. A tip cell moves chemotactically with
velocity v (proportional to the VEGF gradient ∇xC measured at the tip cell
center, xt(t)):

v(xt(t))=χv(|∇xC(t,xt)|)∇xC(t,xt), (49)

χv(g)=χv

[
Θ(g − gm) +

(
gM

g
− 1

)
Θ(g − gM )

]
, (50)

where χv is the chemotactic response of the endothelial cells (having radius Rc),
gM is the maximum VEGF gradient and χvgM is the maximum tip speed. An
activated cell moves only if gm < |∇xC(t,xt)|, with 0 < gm < gM . When these
conditions are met at the center of an endothelial stalk cell and C > Cc there, it
acquires the tip cell phenotype, with the caveat that cell-cell contact dependent
mechanisms (the Notch pathway) prevent the activation of two neighboring cells.
Only points for which there is a minimum distance of 4Rc to the centers of all
already existing tip cells can become centers of activated tip cells. As in the
biological system, when the chemotactic signal is small, C < Cc or |∇xC(t,xt)| <
gm, the endothelial cell returns to the stalk cell state. Simulations show that tip
cell velocity and stalk cell proliferation play important roles in vascular network
morphology [39]. An increase in stalk cell proliferation leads to a more branched
network constituted by thicker vessels, while a higher tip cell migration velocity
leads to a more branched network with thinner vessels [39].

More general phase field models incorporate force at the vessel tip and elas-
ticity [38] and haptotaxis [41]. They are included in the review paper [42].
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A study of the relation between morphology of the blood vessel network gener-
ated by phase field models, blood supply and obstructions can be found in [43].
Phase field models are thus a deterministic alternative to stochastic models.

9 Conclusions

Angiogenesis is a complex multiscale process by which diffusing vessel endothelial
growth factors induce sprouting of blood vessels that carry oxygen and nutri-
ents to hypoxic tissue. Cancerous tumor cells profit from this process to prosper,
grow and eventually migrate to other organs. Mathematical models contem-
plate different aspects of angiogenesis. Here we have reviewed recent work on a
simple tip cell model that encompasses vessel extension driven by chemotaxis
and described by Langevin equations, stochastic tip branching and vessel fusion
(anastomosis). From the stochastic description, we have derived a determinis-
tic integropartial differential equation for the density of active tip cells coupled
with a reaction-diffusion equation for the growth factor. The associated initial-
boundary value problem is well posed. It is important to note that anastomosis
prevents proliferation of active tips and therefore the deterministic description
is based on ensemble averages over replicas of the stochastic process. Numer-
ical simulations of both (deterministic and stochastic) descriptions show that
the density of active tips adopts the shape of a two-dimensional soliton-like
wave (angiton) after a formation stage. We have found an analytical formula
for the one-dimensional projection of the soliton and ordinary differential equa-
tions for variables that provide its velocity, position and size. These equations
also characterize the advance of the vessel network for single replicas. Much
more work needs to be carried out to solve mathematical issues arising from our
results, both from analysis of the deterministic description and from establish-
ing more precise conditions for its validity. The description of the soliton should
be extended to the true two-dimensional soliton (angiton) that appears in the
numerical simulations and to the case of a more general geometry than that of
the slab. Fluctuations cannot be ignored in the case of ensemble averages, and
future work predicting the evolution of a real vessel network should include con-
fidence bands about averages. Anti-angiogenic treatments need to be improved
[1,2], and, in this respect, having better models and theories about their solu-
tions should help. Therapies are related to optimal control of angiogenesis and
they require accurate mathematical models, validated by comparison with real
data (inverse problems - statistics of random geometric structures).

We have also related the specific model we study to other tip cells models in
the literature that describe vessel extension by reinforced random walks instead
of stochastic differential equations. Our methodology may be adapted to these
other models as Langevin equations arise from reinforced random walks in appro-
priate limits. All these models describe mesoscales in which cells are just point
particles, thereby ignoring their shapes and a microscopic description thereof.
Other models consider the evolution of individual endothelial cells of variable
shape and extension through cellular Potts models, but the continuation of these



434 L. L. Bonilla et al.

models toward the mesoscale has barely begun. Extending the analysis carried
out for our mesoscopic stochastic tip cell model to microscopic models is a chal-
lenge for the future. Blood circulation through the angiogenic network favors
certain vessels, others that do not have enough perfusion shrink and disappear
and secondary branching may occur. Future work could delve deeper in the top-
ics of vessel remodeling, pruning, formation of optimal vascular networks and
transport of medicals through them.

Apart from the specific application to angiogenesis, we have presented in
this paper methodological contributions for a sound mathematical modeling of
stochastic vessel networks: (a) the use of stochastic distributions, and their mean
densities, describing the vessels, which are random objects of Hausdorff dimen-
sion one, cf (7); (b) reduction of vessel distributions to integrals over time of
active tip distributions, which are random objects of zero Hausdorff dimension,
cf (8)–(10); (c) characterization of the attractor of the density of active tips as
a soliton whose position, velocity and size are given as solutions of ordinary dif-
ferential equations, cf (17), (23)–(24). In our system, which is strongly out of
equilibrium, this attractor plays a similar role to the stable stationary equilib-
rium distribution of many physical systems.
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Abstract. We consider a stochastic model for an evolving population.
We show that in the presence of genotype extinctions the population dies
out for a low mutation probability but may survive for a high mutation
probability. This turns upside down the widely held belief that above a
certain mutation threshold a population cannot survive.

Keywords: Stochastic model · Evolution · Mutation ·
Random environment

1 A Model with Genotype Extinctions

There seems to be a consensus in theoretical biology that mutations are helpful
for the survival of a population but that too many mutations are not, see [1–3].
We propose to use a stochastic model to challenge this belief. In fact, we will
show that there are situations where the population survives for large mutation
probability but dies out for small mutation probability! That is, we propose
to turn upside down the idea that too many mutations are necessarily bad for
survival.

We now describe our model. Let μ be a fixed continuous probability distribu-
tion with support contained in [0,∞) and let r ∈ [0, 1]. Start with one individual
at time 0, and sample a birth rate λ from the distribution μ. Individuals give
birth at rate λ and die at rate 1. Every time there is a birth there are two
possibilities,

(i) with probability 1 − r the new individual keeps the same birth rate λ as its
parent
or

(ii) with probability r the new individual is given a new birth rate λ′, sampled
independently of everything else from the distribution μ.

Furthermore, every time a new genotype appears (i.e. a new λ) we associate
the genotype to a time T (independently of everything else) sampled from a
fixed distribution ν. At time T all the individuals of this genotype are killed and
the genotype disappears from the population.

We think of r as the mutation probability and the birth rate of an individ-
ual as representing the genotype of the individual. Since μ is assumed to be
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continuous, a genotype cannot appear more than once in the evolution of the
population. Genotype extinctions happen when all the individuals with the same
genotype die. These so called background extinctions have been going on since
the beginning of life, see for instance [4].

We say that the population survives if there is a strictly positive probability
of having at all times at least one individual alive. Note that no genotype can
survive forever so the population may only survive if it generates infinitely many
genotypes.

Our first result is a necessary and sufficient condition for survival. We start
the population with a single individual.

Theorem 1. The population survives if and only if

m(r) = rE[Λ
∫ T

0

exp ((Λ(1 − r) − 1) s) ds] > 1,

where Λ has distribution μ and T has distribution ν.

We now use Theorem 1 to compute two limits.

Corollary 1. Assume that

E[Λ
∫ T

0

exp ((Λ − 1)s) ds] < +∞. (1)

Then,
lim

r→0+
m(r) = 0,

lim
r→1−

m(r) = E[Λ(1 − e−T )].

Note that hypothesis (1) holds true if for instance Λ and T have bounded
support.

Proof. For r in [0, 1] we have

exp
(
(Λ(1 − r) − 1)s

) ≤ exp
(
(Λ − 1)s

)
.

For fixed Λ and T the r.h.s. is Lebesgue integrable on [0, T ]. Hence, by the
Dominated Convergence Theorem

lim
r→0+

∫ T

0

exp
(
(Λ(1 − r) − 1)s

)
ds =

∫ T

0

exp ((Λ − 1)s) ds

and

lim
r→1−

∫ T

0

exp
(
(Λ(1 − r) − 1)s

)
ds =

∫ T

0

exp(−s)ds = 1 − exp(−T ).

Observe now that

Λ

∫ T

0

exp
(
(Λ(1 − r) − 1)s

)
ds ≤ Λ

∫ T

0

exp
(
(Λ − 1)s

)
ds.
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By (1) the r.h.s. is integrable. Hence, the Dominated Convergence Theorem
applies. We may interchange the limits in r and the expectation. This yields the
two limits and completes the proof of Corollary 1.

We have the following consequences of Corollary 1.

• Under hypothesis (1) there exists rc in (0, 1) such that if r < rc then m(r) < 1.
Hence, by Theorem 1 survival is not possible for r small.

• Assume hypothesis (1) holds and also that

E[Λ(1 − e−T )] > 1. (2)

By Corollary 1, there exists r′
c in (0, 1) such that if r > r′

c then m(r) > 1. Hence,
survival is possible for r > r′

c.

Remark 1. Under hypotheses (1) and (2) survival is not possible for a low muta-
tion probability but is possible for a high mutation probability. This goes exactly
opposite to what is widely believed in theoretical biology. This belief has impor-
tant practical consequences. One of the strategies to fight HIV has been to
develop drugs that increase the mutation rate of the virus, see [3]. This can be
futile or even counter productive if the virus can survive with increased mutation
rate.

Remark 2. Hypotheses (1) and (2) hold for a wide range of distributions. If for
instance Λ and T are uniformly distributed on (0, a) and (0, b), respectively, then
(1) is true and (2) holds if and only if

a

2
[1 − 1

b
(1 − e−b)] > 1.

In particular, for any a > 2 we can find b large enough so that the inequality
above holds.

Remark 3. If hypothesis (1) fails survival may be possible for r small enough.
Assume for instance that Λ is the constant λ and T is exponentially distributed
with rate δ. Moreover, assume that λ > 1 + δ. Then, the expected value in (1)
is infinite. Furthermore, for any

0 < r < 1 − δ + 1
λ

we have m(r) = +∞. In particular, survival is possible for r small enough.

2 No Genotype Extinctions

In this section we consider the model without genotype extinctions, everything
else remains the same. That is, the population starts with a single individual,
a birth rate is sampled from a fixed distribution μ and the death rate is 1.
For every new individual the same birth rate is kept with probability 1 − r or a
new birth rate is sampled with probability r.



440 R. B. Schinazi

With no genotype extinction a genotype can survive forever. In fact, if the
birth rate is λ for a particular genotype it will survive forever with positive
probability if and only if λ(1−r) > 1. This is so because the number of individuals
with a fixed genotype is a birth and death process with birth rate λ(1 − r) and
death rate 1. We will use this fact in the following result.

Theorem 2. Consider a population with no genotype extinction. If the popula-
tion has a positive probability of surviving for some probability mutation r > 0
then there exists rc in (0, 1] such that the population survives for all r < rc.

Comparing Theorem 2 to the results of Sect. 1 we see that genotype extinc-
tions change the behavior of the model in a drastic way.

Proof. Note first that if
μ{λ : λ ≤ 1} = 1

then the population dies out for all r in [0, 1]. This is so because we can couple
our population to a birth and death chain with constant birth rate equal to 1
and death rate equal to 1. Since all the birth rates we sample for the population
are below 1 it has less individuals than the birth and death chain with constant
rates. Since the birth and death chain is critical it dies out and so does the
population.

Assume now that our population has a positive probability of surviving for
some r > 0. Then we must have

μ({λ : λ > 1}) > 0

and therefore for some s > 0

μ({λ : λ(1 − s) > 1}) > 0.

Let rc be the supremum of all such s. As observed above if a genotype has a
birth rate λ such that λ(1− r) > 1 then this genotype has a positive probability
of surviving when the mutation probability is r. Hence, the population has a
positive survival probability for any r < rc.

This completes the proof of Theorem 2.

Remark 4. The model with no genotype extinctions was introduced in [5]. In
the particular case where the distribution μ is uniform the existence of a unique
critical value for r was proved. Below the critical value there is survival and
above it there is extinction. The existence of a unique critical value for a general
μ is unclear. We conjecture that the survival probability for both models (with
and without genotype extinctions) is not monotone in r. Hence, results such as
Corollary 1 are not enough to prove the existence of a unique critical value for r
for general μ.
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3 Proof of Theorem1

We use ideas from [5]. However, there the computation is done for the model
with no genotype extinctions. The main idea is the use of the genealogy tree of
genotypes from [6]. We now define this tree.

We say that the (unique) individual present at time zero has genotype 1, and
the kth type to appear will be called genotype k. Each vertex in the tree will be
labeled by a positive integer. There will be a vertex labeled k if and only if an
individual of genotype k is born at some time. We draw a directed edge from j
to k if the first individual of genotype k to be born had an individual of genotype
j as its parent. This construction gives a tree whose root is labeled 1 because
all genotypes are descended from genotype 1 that is present at time zero. Since
every genotype is eliminated eventually, the population survives if and only if
the genealogy tree just described has infinitely many vertices.

We claim that this genealogy tree of genotypes is a discrete time Galton-
Watson tree. This is so because offsprings of different individuals in the tree are
independent and have the same distribution. Let m(r) be the mean offspring of a
given genotype in this tree. We know this genealogy tree is infinite with positive
probability if and only if m(r) > 1, see for instance [7].

We now compute m(r). Recall that we start the population with a single
individual with a genotype that we label 1. We associate a birth rate Λ and a
death time T to this genotype. Recall that Λ and T are independent and sampled
from fixed distributions μ and ν, respectively.

Let Yt be the number of individuals born up to time t that are offspring
of genotype 1 individuals but whose genotype is not 1. Hence, YT is the total
number of genotypes that genotype 1 individuals gave birth to before genotype 1
died out. That is, YT is the offspring of genotype 1 in the genealogy tree. Hence,

m(r) = E(YT ).

By our assumption that T is independent of everything else in the process we
have

E(YT |T = t, λ) = E(Yt|λ).

Let Xt be the number of genotype 1 individuals present at time t. Genotype
1 individuals produce other genotype individuals at rate λr. Thus,

d

dt
E(Yt|λ) = λrE(Xt|λ).

Since Xt is a birth and death process with birth rate λ(1 − r) (genotype 1
individuals produce genotype 1 individuals at rate λ(1 − r)) and death rate 1,

E(Xt|λ) = exp ((λ(1 − r) − 1)t) .

Hence,

E(Yt|λ) = rλ

∫ t

0

E(Xs|λ)ds = rλ

∫ t

0

exp((λ(1 − r) − 1)s)ds.
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Since E(YT ) =
∫ ∫

E(Yt|λ)dμ(λ)dν(t), we have

E(YT ) =

∫
rλ

∫ t

0

E(Xs|λ)dsdμ(λ)dν(t) =

∫
rλ

∫ t

0

exp ((λ(1− r)− 1)s) dsdμ(λ)dν(t).

Hence,

m(r) = E(YT ) = rE[Λ
∫ T

0

exp ((Λ(1 − r) − 1)s) ds].

This completes the proof of Theorem 1.
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Abstract. In this paper, we study particle transport in a confined
ratchet which is constructed by combining a periodic channel with a
ratchet potential under colored Gaussian noise excitation. Due to the
interaction of colored noise and confined ratchet, particles host remark-
ably different properties in the transporting process. By means of the
second-order stochastic Runge-Kutta algorithm, effects of the system
parameters, including the noise intensity, colored noise correlation time
and ratchet potential parameters are investigated by calculating parti-
cle current. The results reveal that the colored noise correlation time
can lead to an increase of particle current. The increase of noise inten-
sity along the horizontal or vertical direction can accelerate the parti-
cle transport in the corresponding direction but slow down the particle
transport when there are the same noise intensities in both directions.
For potential parameters, an increase of the slope parameter results into
an increase of particle currents. The interactions of potential parameters
and correlation time can induce complex particle transport phenomena,
i.e. particle current increases with the increase of the potential depth
parameter for a smaller asymmetric parameter and non-zero correlation
time, while the tendency changes for a larger asymmetric parameter.
Accordingly, suitable system parameters can be chosen to accelerate the
particle transport and used to design new devices for particle transport
in microscale.

Keywords: Particle current · Confined ratchet · Colored noise ·
Particle transport

1 Introduction

Directed particle transport is a common phenomenon in many fields ranging from
physics to life science [1–4], where the transport in a ratchet potential is one of
the most interesting problems. In recent years, many papers have appeared to
demonstrate noise-induced transport. Some works focused on the structure of the
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ratchet potentials [5–9], including symmetric and asymmetric [5–7], rough and
smooth potentials [8,9]. Others mainly investigated the influences of different
kinds of noises, such as Gaussian white noise, correlated noise [10], Lévy noise
with large jumps [11], etc. Quantities like mean first passage time [3], stationary
probability distribution [6] and particle current [7] have been considered to eval-
uate the transport. Phenomena like negative mobility, multiple current reversals
under nonequilibrium state and stochastic resonance [12] have been observed in
the theoretical studies.

However, previous works are mostly limited to an open area without confined
boundaries. In fact, like ion channels, pores and zeolites [13–16], one has to take
the confined geometry into consideration, which will reduce the available motion
space and regulate the transport properties. For simplification and idealization,
a periodic channel is one of the popular models, based on which the Fick-Jacobs
(FJ) equation is developed to describe the particle transport [17–19]. The particle
current could be utilized in symmetric periodic channels where an external force
is applied on the particles [20,21]. Particle current also could be induced in
asymmetric channels without external force because of the non-equilibrium state
caused by the channel asymmetry [22,23]. Later, more meaningful factors were
introduced, such as periodic channel pore sizes [24], particle radios [25] and
shapes [26]. A number of interesting particle transport phenomena have been
discovered, for instance, directional transport [27] and current reversals [28].
The related implications were used in catalysis, particle separations [29–31] and
directed transport [2,32,33]. In addition, the investigated microscopic levels are
getting finer. It is possible to add the semicro-nano systems into confined areas
whose boundaries would have influences on the system behavior. Considering
this, the particle transport in a confined ratchet which consists of a ratchet
potential and a periodic channel under Gaussian white noise was studied [34].
Due to the interaction between the channel and the potential, particle current
may be induced, although both of them cannot induce the particle movement
when acting individually. This confined ratchet provided new ideas for the study
of particle transport and preparation of related devices.

Most of particle transport in the confined environment described the ran-
dom fluctuation as Gaussian white noise, which is considered as an ideal model.
However, perturbations in complex systems, such as ion channels in living bod-
ies, photon statistics of a dye-laser [35] and the motional narrowing of magnetic
resonance line shapes [36], are correlated. This correlation can affect the parti-
cle transport. In these cases, idealized Gaussian white noise cannot describe the
system noises and the effects of noise correlation time appropriately. Gaussian
colored noise with a non-vanishing correlation time becomes a proper tool to well
understand these disturbances. So, particle transport in a confined ratchet by
colored noise is essential. In the case of Gaussian white noise, particle transport
can be described by a FJ equation quite accurately [37]. However, in the presence
of correlation time, there is no explicit FJ equation to model the particle dynam-
ics in confined channels and potentials. Thus, in this paper, we consider random
fluctuations in a periodic channel as colored Gaussian noise with exponential
correlation time, to investigate the particle transport numerically.
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The influences of Gaussian colored noise on particle current in a confined
ratchet consisting of a potential and a periodic channel will be explored thor-
oughly. This paper is arranged as follows. In Sect. 2, the model of a particle in
a periodic channel and a ratchet potential, driven by Gaussian colored noise is
introduced. In Sect. 3, effects of system parameters, including noise intensity,
correlation time, potential slope parameter, depth parameter and asymmetric
parameter, on the particle current are presented. Finally, conclusions are given
in Sect. 4.

2 Model Description

We consider the particle transport in a ratchet potential within a periodic chan-
nel driven by Gaussian colored noise, and the model in this paper consists of
two parts.

The first part governs the dynamical equation of a particle with a ratchet
potential. In general, the dynamics of the particle under the assumption [20] can
be regarded as a Langevin equation, which reads

η
dx̂

dt̂
= −U ′ (x̂) +

√
ηKBTε1

(
t̂
)
, (1)

η
dŷ

dt̂
=

√
ηKBTε2

(
t̂
)
, (2)

where (x̂, ŷ) ∈ R2 is the particle position, t̂ ∈ R the real time, η the friction coef-
ficient, KB the Boltzmann constant and T the temperature. The prime on U(x̂)
is the derivation with respect to x̂. ε1(t̂) and ε2(t̂) are two independent noises.
ε1(t̂) denotes an exponentially correlated Gaussian colored noise with zero-mean
and the correlation function

〈
ε1(t̂)ε1(ŝ)

〉
= D1exp(

∣∣t̂ − ŝ
∣∣ /τ1)/τ1 with correla-

tion time τ1 > 0. ε2(t̂) represents a zero-mean Gaussian white noise with the
correlation function

〈
ε2(t̂)ε2(ŝ)

〉
= 2D2δ

(
t̂ − ŝ

)
. Di (i = 1, 2) is the noise inten-

sity, and δ (·) denotes the Dirac function. U (x̂) is a ratchet potential, which is
given by

U (x̂) =

{
−ax̂/L − b cos (π mod (x̂/L,L)/L1) , 0 ≤ x̂ < L1,

−ax̂/L + b cos (π(mod (x̂/L,L) − L1)/L2) , L1 ≤ x̂ < L,
(3)

where L > 0 is the period of U(x̂), L1 = (1 + q) L/2 > 0 and L2 = (1 − q) L/2 >
0 are lengths of left and right parts in one potential period satisfying L1+L2 = L,
in which q ∈ (−1, 1) can be viewed as the potential asymmetric parameter,
and mod (·) is the modulo function. The potential is symmetric for q = 0 and
asymmetric for q �= 0. a, b ∈ R are the slope and depth parameters to modify
the shape and depth of U (x̂), respectively.

The second part is the two-dimensional periodic channel, denoted by w (x̂).
It consists of the upper channel wall w+ (x̂) and the lower channel wall w− (x̂),
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which is symmetric about the x̂ axis, i.e. w+ (x̂) = −w− (x̂). The upper wall
w+ (x̂) satisfying

w+ (x̂) = m sin (2πx̂/L) + n, (4)

where m and n are parameters to control the channel shape with m < n ∈ R.
To simplify the model Eqs. (1–3), several dimensionless variables x = x̂/L,

y = x̂/L, τc = L2η/KBTroom are introduced [20], where Troom is a constant room
temperature. With these variables, Eqs. (1–3) can be rewritten in the following
non-dimensional form

dx

dt
= − T

Troom
U ′ (x) +

√
T

Troom
ε1 (t) , (5)

dy

dt
=

√
T

Troom
ε2 (t) , (6)

U (x) =
{−ax − b cos (π mod (x, 1) /L1) , 0 ≤ mod (x, 1) < L1,

−ax + b cos (π (mod (x, 1) − L1) /L2) , L1 ≤ mod (x, 1) < 1,
(7)

where t represents the dimensionless time. ε1 (t) is the dimensionless colored
noise with the correlation time τ = τ1/τc. U (x) is the dimensionless potential
with period L = 1, L1 = (1 + q) /2 and L2 = (1 − q) /2. The periodic channel
w (x̂) becomes w (x), with upper wall w+ (x) satisfying

w+ (x) = m sin (2πx) + n, (8)

and the corresponding lower channel wall w− (x) satisfying w− (x) = −w+ (x).
The dimensionless channel w (x) has maximum width 2 (m + n) and minimum
width 2 (n − m), with m = 1/ (2π), n = 1.02/ (2π) in this paper [21]. The channel
w (x) and potential U (x) work together to affect particle transport. Diagram of
w (x) and U (x) is illustrated in Fig. 1.

L=1

x

y

2(m+n)

w(x) 2(n−m)
U(x)

Fig. 1. Sketch of the periodic channel w(x) with period L = 1, the maximum width
2(m+n), and the minimum width 2(n−m). The blue line is U(x), with q = 0, a = 0.1,
b = 0.2.
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When transporting in w (x), particles will definitely hit the channel walls
sometimes. In the present work, we suppose that collisions between particles
and channel walls are elastic, i.e. the reflecting boundary condition is fulfilled at
the channel walls. Then, the available spaces for particles reduce to the inside
of the channel. The reduction of available spaces eventually results into changes
of particle transport properties. To explore these distinct transport phenomena,
particle current is calculated numerically. Moreover, considering the reflecting
conditions of channel walls, the particle transport in the y axis will always be
confined, so we only consider the particle current along the x direction, which is
defined as [25]

J = lim
t→∞

〈x (t) − x (0)〉
t

,

where x (t) is the particle position at time t, the bracket 〈·〉 represents the mean
value of samples.

3 Results and Discussion

Next, the influences of the parameters a, b, q, D1 and τ on J are discussed by
numerical simulation where the numerical results come from 5000 samples. Each
sample consists of 107 sample points. To ensure the influences of τ on J are not
ignored, the time step is fixed as Δt = 0.0001, much smaller than τ . Numerical
results are obtained by using the second-order stochastic Runge-Kutta algorithm
[38] as

x (i + 1) = x (i) + Δt(F1 + F2)/2,

ε1 (i + 1) = ε1 (i) + Δt(H1 + H2)/2 +
√

2D1Δt
/
τ12ψ1,

y (i + 1) = y (i) +
√

2D2Δtψ2, ψ2 ∼ N (0, 1) ,

where
F1 = f (x (i) , ε1 (i)) , H1 = h (ε1 (i)) ,

F2 = f

(
x (i) + ΔtF1, ε1 (i) + ΔtH1 +

√
2D1Δt

/
τ12ψ1

)
,

H2 = h

(
ε1 (i) + ΔtH1 +

√
2D1Δt

/
τ12ψ1

)
, ψ1 ∼ N (0, 1) ,

f (x, ε1) = −TU ′ (x) /Troom +
√

T/Troomε1, h (ε1) = −ε1/τ.
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3.1 Particle Current vs Correlation Time

First, the influences of τ on J are discussed. When τ = 0, the particle is driven by
the Gaussian white noise. In this case, its probability density function p(x, y, t)
in an open area without confined boundaries satisfies the FPK equation

∂p (x, y, t)
∂t

=
T

Troom

(
∂U ′ (x)

∂t
+

∂2D1

∂x2
+

∂2D2

∂y2

)
p (x, y, t) .
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Fig. 2. Dependences between J and τ . Other parameters are T/Troom = 0.2, b = 5,
q = 0, D1 = D2 = 1.

Then, taking the confinement and structure of w(x) that its length in the x-
axis is much larger than the y-axis into consideration, it is reasonable to assume
that the particles in the y-axis direction have fast equilibrium. The FPK equation
can then be reduced into

∂p (x, y, t)
∂t

=
T

Troom

(
∂U ′ (x)

∂t
+

∂2D1

∂x2

)
p (x, y, t) .

Then, by integrating the reduced FPK equation about y, FJ equation to describe
the particle dynamics in w(x) is obtained, which is

∂p (x, t)
∂t

=
∂

∂x

D1
(
1 + w′(x)2

)1/3
e−A(x) ∂

∂x
eA(x)p (x, t) .

From the FJ equation, we obtain the analytical expression of J , satisfying

J =
TD1

(
1 − ea/D1

)

Troom

∫ 1

0

∫ x+1

x
w(x)
w(z) ·

(
1 + w′(x)2

)1/3

· e(U(z)−U(x))/D1dzdx

.

This analytical J can be calculated by the Gaussian quadrature formula. When
τ �= 0, the particle is driven by colored noise. In this case, J is calculated by
numerical simulation.
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J under Gaussian white noise and colored case are compared in Fig. 2a.
First, we see that J is larger under Gaussian colored noise than white case. This
indicates that τ can accelerate the particle transport in the periodic channel and
enlarge J . Another interesting phenomenon is that J for τ = 0.005 is smaller
than the case τ = 0.0025 for a < 40. So, one can guess, the larger the correlation
time, the weaker the promoting effect on the particle transport. To prove this
conclusion, relations between J and τ for the cases a = 10, a = 15 and a = 20
are plotted in Fig. 2(b). As expected, in all cases of Fig. 2, with the increase of
non-zero τ , J decreases.

Thus, the following conclusions about the influences of τ on J are obtained.
First, the colored noise correlation time can promote particle transport compared
to the white case, lead to a bigger J . Second, promoting effects of τ decrease
with the increase of τ for a < 40.

3.2 Particle Current vs Slope Parameter and Noise Intensity

This subsection is to investigate the influences of potential slope parameter a
and noise intensities Di (i = 1, 2) on J .
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Fig. 3. Dependences between J and τ under different D1 are plotted at (a): D2 = 1;
(b): D2 = D1. Dependences between J and D1 under different a are plotted at (c):
D2 = 1; (d): D2 = D1. Other parameters are T/Troom = 0.2, b = 5, q = 0.
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Note that a has several impacts on the potential U (x). When a �= 0, U (x)
can be viewed as a titled potential, which can produce a net current [7]. Also, a
determines the descent rate of U (x) and affects the potential well depth to a cer-
tain degree. These impacts regulate the particle transport directly or indirectly.
This leads us to consider the influence of a on the particle transport, as shown
in Fig. 3(a–b). Our results in Fig. 3(a–b) indicate that the larger a is, the faster
J increases. As is well-known, when a is larger, for a particle driven by a greater
external force, its velocity is faster, which leads to a larger J . Figure 3(a–b) also
show that, J has the same direction with a. When a is positive, U (x) goes down
along the right direction, thus the stable left point in U (x) is always higher than
the stable right point in each of the two adjacent potential wells. In this way,
particles in potential wells are more likely to move along the right direction, and
thus J is positive.

The influences of Di (i = 1, 2) on J are studied in detail in Fig. 3(c–d). Influ-
ences for fixed D2 = 1 indicate that J increases with the increase of D1, i.e. the
increase of D1 can promote the particle transport in Fig. 3(c). However, when
D2 is not fixed, changing with D1, J shows different phenomena, just as shown
in Fig. 3(d) where the influences of the noise intensity are plotted. In this case, J
decreases faster and tends to zero eventually with the increase of D1. Phenom-
ena in Fig. 3(d) are caused by the increase of D2. For particles, the increase of
D2 leads to a larger movement along the y axis direction. It is easier for a parti-
cle to collide with the channel walls in this case. These collisions result into the
decrease of the movement in the x direction consequently. Above all, one can say
that the increase of either D1 or D2 is able to enlarge J in their corresponding
directions. However, when D1=D2, the increase of the noise intensities in both
directions slows down J .

3.3 Particle Current vs Asymmetric Parameter

The asymmetric parameter q determines the asymmetry of U (x). With q = 0,
L1 = L2 , U (x) is symmetric in each period, and with q < 0, L1 < L2 , U (x)
is asymmetric in one period. Particles in such an asymmetric potential suffer
different forces in the left and right side. It has been confirmed that particles in
an asymmetric potential can produce a net current [7]. So, we conclude that q
plays an important role to J in our present work.

The influences of q for different a on J are plotted in Fig. 4(a) with τ = 0.0025.
The interesting one is that J does not equal to 0 for a = 0 and q = 0. The
occurrence of this phenomenon is related to the particle initial position. In our
simulations, the initial position is set to be the potential well, i.e. (0, 0) here,
not in the channel cavity center, relatively close to the left channel pore and far
from the right pore. Thus, the particle has more chances to transport along the
right direction, which lead to positive, non-zero J , just as shown in the purple
curve in Fig. 4(a). Another phenomenon is, with the increase of q, J reaches to
the maximum value for q < 0, while it turns to slow down for smaller positive
q and eventually approaches to stabilize for larger positive values of q. At the
same time, J tends to the same value, although the values of a are different.
Detailed analysis about the changing of J at larger q is displayed in Fig. 5.
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The influences of q on J for different b are presented in Fig. 4(b). Now we
deal with the case b < 0 and the original position of the particle is located at
(0.5 (1 + q) , 0). When q = 0, the original position becomes (0.5, 0), at the right
side of the channel cavity. The available space on the left is larger than the right
in the channel cavity for the particle, which makes it easier to transport along
the left direction and brings about a left-directed J eventually, just as shown
in the red and black lines in Fig. 4(b). For q < 0, the particle still starts from
the right side of the channel cavity, which similarly leads to a particle current
in the left direction, and the potential is asymmetric. The left part length L1

and the right part length L2 in one period satisfy L1 < L2, i.e. the left side
is steeper. This asymmetric structure affects the particle transport, reduces the
probability for particles to transport along the left direction and produces a
right-directed particle current. J is the superposition of the left-directed and
the right-directed current mentioned above. With the increase of q, the initial
position of the particle moves to the right, which leads to a decrease of left
directed current. This part is viewed as the effect of the channel on particles.
The increase of q also leads to the increase of the left part length L1. Thus, the
steep degree of the potential left side decreases, which results in the decrease
of right-directed current. This part is the influences of the potential. For the
particle, the channel effect is the main aspect to regulate its transport. Thus, J
is left-directed and decreases.
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Fig. 4. J with respect to different parameters for D1 = D2 = 1, T/Troom = 0.2. (a):
J as functions of q for different a, at b = 5. (b): J with respect to q for different b, at
a = 0.

Then the case q > 0 is considered. In this situation, the original particle
position is in the right and closer to the right channel pore than for q ≤ 0.
The bigger the q is, the smaller the distance between the particle and the right
channel pore is. This induces a left-directed particle current. However, there are
two other items to affect the particle transport. One is the collisions between the



452 Y. Xu et al.

particle and the channel walls. When positive q increases, the smaller distance
makes more chances for the particle collide with the periodic channel walls,
which leads to the decrease of J . The other is the potential asymmetry. The
right side of the potential well is steep which results into a current directed to
the left direction. With the increase of q, these three parts regulate the particle
transport together, and lead to the decrease of J eventually. Another meaningful
phenomenon in Fig. 4(b) is that, when q > 1/2, J tends near to 0. In this case,
the initial position is almost in the channel pore, which makes great difficulties
for the particle to escape from the pore, although the asymmetric U (x) can
help the particle to move along the left direction. Thus, J is almost unchanged
ultimately at a larger q.

Moreover, Fig. 4(b) also demonstrates the influences of q for b > 0. Similar
to the case b < 0, with the increase of q, J possesses complex behaviors. As q
changes from negative to positive, J increases, then decreases, and tends to 0
at last. From Fig. 4(b), we can infer that, for given q and b > 0, when b takes a
larger value, J is bigger.

3.4 Particle Current vs Interactions of Depth Parameter,
Asymmetric Parameter and Correlation Time

The system parameters a, b and q determine the properties of U(x) and come
into play with particle transport. Thus, we focus our attention on the influences
of interactions among b with respect to different q and τ in Fig. 5. In Fig. 6, the
relationships between J and b under different Di (i = 1, 2) are presented.

J as functions of a are plotted in Fig. 5(a–c). There are three similarities in
them: (i) For any q and τ , J always increases with the increase of a. (ii) J has
the same direction as a. (iii) driven by Gaussian white noise is smaller than in
the colored Gaussian one. These phenomena are the same as Fig. 3, and reasons
have been explained in the corresponding Sect. 3.2. So, we do not repeat here.

There are also some differences between Fig. 5(a–b) and (c) when the particle
is driven by a Gaussian colored noise. In Fig. 5(a–b), when b changes from 1 to
10, J becomes bigger, i.e. a larger b leads to a bigger J for colored noise for
q = −0.7 and q = 0. However, J is smaller for b = 10 than in the cases b = 1 and
b = 5 in Fig. 5(c). This leads to a speculation that, when τ �= 0, the influences
of b on J for q = 0.7 is opposite to the cases q = −0.7 and q = 0. To understand
the different influences in detail, Fig. 5(d–f) are plotted then. In Fig. 5(d–e), J is
proportional to b with τ = 0.0025. While in Fig. 5(f), the tendency of J changes
for τ = 0.0025. The interactions of q and τ �= 0 bring about complicated or
opposite effects to J compared with white noise where τ = 0.

However, when τ = 0, i.e. the particle is driven by Gaussian white noise, the
results are relatively simple and J always decreases with the increase of b.

Next, we impose on cases of noise intensities Di(i = 1, 2) interacting with the
potential parameter b. The results are plotted in Fig. 6. In Fig. 6(a), the variation
tendency of J with respect to b is presented for different noise intensities at a = 5.
In Fig. 6(a), for a fixed D1, with the increase of b, J increases for τ = 0.0025,
while it decreases at τ = 0, although the variation range is so small to be ignored.
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Fig. 5. J with respect to a and b for different q at D1 = D2 = 1, T/Troom = 0.2. J as
functions of a for different b, at (a): q = −0.7, (b): q = 0, (c): q = 0.7. J with respect
to b for different a, at (d): q = −0.7, (e): q = 0, (f): q = 0.7.

This indicates that the influences of the interactions between Di(i = 1, 2) and
τ �= 0 are different from the white case. In Fig. 6(b), the influences of Di(i = 1, 2)
on J are plotted for different b and τ . We find that J decreases fast and tends to
a value near zero with increasing intensity D1 for τ = 0.0025. But as τ decreases
to 0, variation of J becomes very slow.
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Fig. 6. J with respect to D1 and b, for q = 0, D1 = D2, T/Troom = 0.2.

4 Conclusions

In this paper, transport properties of a particle in a confined ratchet driven
by a Gaussian colored noise are examined. The particle current is calculated
by numerical simulations. The influences of model parameters, like the noise
intensity, correlation time, potential slope and depth parameters and asymmetric
parameter, on the particle current are analyzed.

Our results indicate that the increase of the Gaussian colored noise intensity
enlarges the particle transport and induces a larger particle current. However,
with the increase of the colored and white noise intensities simultaneously, the
particle current decreases. In addition, influences of the correlation time on par-
ticle current are discussed in detail. The existence of a correlation time can
promote the particle transport, and lead to a larger particle current than the
Gaussian white case. Promoting effects of the Gaussian colored noise decreases
with the increase of the correlation time. For the slope parameter, it can pro-
mote the particle transport. A larger slope parameter induces a larger particle
current. What is more, we also find that the depth parameter has different effects
on the particle current in different cases under the Gaussian colored noise. For
small asymmetric parameters, the particle current increases with the increase of
the depth parameter. However, the relationship changes for a larger asymmetric
parameter. The particle current increases and then decreases with the increase of
the asymmetric parameter. Based on these transport phenomena, suitable sys-
tem parameters can be chosen and implemented in the design of new transport
control devices.
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Abstract. We give a complete study of the asymptotic behavior of a
simple model of alignment of unit vectors, both at the level of parti-
cles, which corresponds to a system of coupled differential equations,
and at the continuum level, under the form of an aggregation equation
on the sphere. We prove unconditional convergence towards an aligned
asymptotic state. In the cases of the differential system and of symmetric
initial data for the partial differential equation, we provide precise rates
of convergence.

Keywords: Alignment · Unit vectors · Aggregation equation

1 Introduction and Main Results

We are interested in a model of alignment of unit vectors. Our interest comes
from the mechanism of alignment of self-propelled particles presented by Degond
and Motsch in [9], which is a time-continuous model inspired from the Vicsek
model [17] (in which the alignment process is discrete in time). In these models,
the velocities of the particles, considered as unit vectors, try to align towards the
average orientation of their neighbors and are subject to some angular noise. We
want to study the simple case without spatial dependence and without noise.
More precisely, at the level of the particle dynamics, we consider the determin-
istic part of the spatially homogeneous model of [6], which corresponds to a
regularized version of [9]: the particles align with the average velocity of the
others (instead of dividing this average vector by its norm to get a averaged
orientation). It reads as

dvi

dt
= Pv⊥

i
J, with J =

1
N

N∑

j=1

vj , (1)

where (vi)1�i�N are N unit vectors belonging to S, the unit sphere of R
n,

and Pv⊥ is the projection on the orthogonal of a unit vector v ∈ S, given
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by Pv⊥u = u − (v · u)v for u ∈ R
n. This projection ensures that the veloci-

ties stay of norm one for all positive times. This system of equations can be seen
as alignment towards the unit vector pointing in the same direction as J (the
average of all velocities). Indeed the term Pv⊥J is equal to ∇v(J ·v), where ∇v is
the gradient operator on the unit sphere S. Therefore the dynamics of a particle
following the equation dv

dt = ∇v(v · J) corresponds to the maximization of this
quantity v · J , which is maximal when v is aligned in the same direction as J .

At the kinetic level, we are interested in the evolution of a probability mea-
sure f(t, ·) on S given by

∂tf + ∇v · (fPv⊥Jf ) = 0, with Jf =
∫

S

vfdv, (2)

where ∇v· is the divergence operator on the sphere S. The link between this
evolution equation and the system of ordinary differential equations (1), is that
if the measure f is the so-called empirical distribution of the particles (vi)1�i�N ,
given by f = 1

N

∑N
i=1 δvi

, then it is a weak solution of the kinetic equation (2) if
and only if the vectors (vi)1�i�N are solutions of the system (1) (see Remark 2).
This kinetic equation (2) corresponds to the spatially homogeneous version of
the mean-field limit of [6] in which the diffusion coefficient has been set to zero.
The case with a positive diffusion has been treated in detail in [12] by the
authors of the present paper, and it presents a phenomenon of phase transition:
when the diffusion coefficient is greater than a precise threshold, all the solutions
converge exponentially fast towards the uniform measure on the sphere S, and
when it is smaller, all solutions except those for which Jf is initially zero converge
exponentially fast to a non-isotropic steady-state (a von Mises distribution).
When the diffusion coefficient tends to zero, the von Mises distributions converge
to Dirac measures concentrated at one point of S. Therefore, we can expect that
the solutions of (2) converge to a Dirac measure. The main object of this paper
is to make this statement precise, in proving the following theorem:

Theorem 1. Let f0 be a probability measure on S of Rn, and f ∈ C(R+,P(S))
be the solution of (2) with initial condition f(0, v) = f0(v).

If Jf (0) �= 0, then t �→ |Jf (t)| is nondecreasing, so Ω(t) = Jf (t)
|Jf (t)| ∈ S is

well-defined for all times t � 0. Furthermore there exists Ω∞ ∈ S such that Ω(t)
converges to Ω∞ as t → +∞.

Finally, there exists a unique vback ∈ S such that the solution of the dif-
ferential equation dv

dt = Pv⊥Jf (t) with initial condition v(0) = vback is such
that v(t) → −Ω∞ as t → ∞. Then, if we denote by m the mass of the single-
ton {vback} with respect to the measure f0, we have m < 1

2 (which means that we
cannot have too much mass at the “back”) and f(t, ·) converges weakly as t → ∞
towards the measure (1 − m)δΩ∞ + mδ−Ω∞ .

In particular, this theorem shows that if the initial condition f0 has no atoms
(or only one atom of mass bigger than one half) and satisfies Jf0 �= 0, then the
measure f converges weakly to a Dirac mass at some Ω∞ ∈ S. Let us mention
that there is no rate of convergence in this theorem. In general, there is no
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hope to have such a rate for an arbitrary initial condition (see Proposition 6),
but under regularity assumptions, one can expect to have an exponential rate
of convergence (this is the case when the initial condition has some symmetries
implying that Ω(t) is constant, see Proposition 7).

We will also study in detail the system of ordinary differential equations (1).
Since this is a particular case of (2) in the case where f = 1

N

∑N
i=1 δvi

(see
Remark 2), we can apply the main theorem, but now the measure f has atoms,
and actually we will see that working directly with the differential equations
allows to have more precise results such as exponential rates of convergence. For
instance the quantity Ω(t) plays the role as a nearly conserved quantity, as it
converges to Ω∞ at a higher rate than the convergence of the (vi)1�i�n. More
precisely, we will prove the following theorem:

Theorem 2. Given N positive real numbers (mi)1�i�N with
∑N

i=1 mi = 1,
and N unit vectors v0

i ∈ S (for 1 � i � N) such that v0
i �= v0

j for all i �= j,
let (vi)1�i�N be the solution of the following system of ordinary differential equa-
tions:

dvi

dt
= Pv⊥

i
J, with J(t) =

N∑

i=1

mivi(t), (3)

with the initial conditions vi(0) = v0
i for 1 � i � N , and where Pv⊥

i
denotes the

projection on the orthogonal of vi.
If J(0) �= 0, then t �→ |J(t)| is nondecreasing, so Ω(t) = J(t)

|J(t)| ∈ S is well-
defined for all times t � 0. Furthermore there exists Ω∞ ∈ S such that Ω(t)
converges to Ω∞(t) as t → +∞, and there are only two types of possible asymp-
totic regimes, which are described below.

(i) All the vectors vi are converging to Ω∞. Then this convergence occurs at an
exponential rate 1, and Ω is converging to Ω∞ at an exponential rate 3.
More precisely, there exists ai ∈ {Ω∞}⊥ ⊂ R

n, for 1 � i � N such
that

∑N
i=1 miai = 0 and that, as t → +∞,

vi(t) = (1 − |ai|2e−2t)Ω∞ + e−tai + O(e−3t) for 1 � i � N,

Ω(t) = Ω∞ + O(e−3t).

(ii) There exists i0 such that vi0 converges to −Ω∞. Then mi0 < 1
2 (once

again, we cannot have too much mass on this “back” particle), and if we
denote λ = 1 − 2mi0 , the vector vi0 converges to −Ω∞ at an exponential
rate 3λ. Furthermore, all the other vectors vi for i �= i0 converge to Ω∞ at
a rate λ, and the vector Ω converges to Ω∞ at a rate 3λ. More precisely,
there exists ai ∈ {Ω∞}⊥ ⊂ R

n, for i �= i0 such that
∑

i�=i0
miai = 0 and

that, as t → +∞,

vi(t) = (1 − |ai|2e−2λt)Ω∞ + e−λtai + O(e−3λt) for i �= i0,

vi0(t) = −Ω∞ + O(e−3λt),

Ω(t) = Ω∞ + O(e−3λt).
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Notice that the original system (1) can be put as (3) with mi = 1
N , but the

assumption v0
i �= v0

j for i �= j may not be satisfied. Up to renumbering particles
and grouping those starting in the same position by setting mi = k

N where k
is the number of particles sharing the same initial condition, we can always fall
into the framework of (3) with distinct initial conditions. We can finally remark
that this system (3) is still a particular case of the kinetic equation (2) for a
measure given by f =

∑N
i=1 miδvi

(see once again Remark 2).
Let us conclude this introduction by saying that these models have also been

introduced and studied in different contexts from the one of self-propelled parti-
cles. Alignment on the sphere has been introduced as a model of opinion forma-
tion in [3,7]. Let us also mention some more evolved consensus mechanisms on
the sphere, such as with partial influence graphs [15]. The kinetic equation (2)
with a diffusion term corresponds to the evolution of rodlike polymers with dipo-
lar potential [10]. Finally the two-dimensional case, where S is the unit circle,
can correspond to the evolution of identical Kuramoto oscillators. The results we
present here were first exposed in detail (with the same proofs as in the present
paper) by the first author in the CIMPA Summer School “Mathematical Model-
ing in Biology and Medicine” in June 2016. They are somewhat similar to those
of [5] in dimension two, in the context of Kuramoto oscillators, a work that has
been raised to us during the presentation of Bastien Fernandez in the workshop
“Life Sciences” of the trimester “Stochastic Dynamics out of equilibrium” in
May 2017. Very recently, a work [13] on generalization of Kuramoto oscillators
in higher dimensions, the so-called Lohe oscillators, recovers the same kind of
results, although not using exactly the same techniques and not obtaining the
precise estimates of Theorem 2. The estimates given by Proposition 7 are also
new, as far as we know.

This paper is divided in two main parts. After this introduction, Sect. 2 is
devoted to the kinetic equation (2). It is divided in two subsections, the first one
being dedicated to the proof of Theorem1, and the second one giving more
precise estimates of convergence in case of symmetries in the initial condi-
tion. Section 3 concerns the system of differential equations (3) and the proof
of Theorem 2. Even if some conclusions can be drawn using Theorem1 thanks
to Remark 2, we try to make the two parts independent and the proofs self-
contained, so the reader interested in Theorem 2 can directly jump to this last
section.

2 The Continuum Model

2.1 Proof of Theorem1

We start with a proposition about well-posedness of the kinetic equation (2).
We proceed for instance as in [16]. We denote by P(S) the set of probability
measures on S. In this set we consider the Wasserstein distance W1 (also called
bounded Lipschitz distance) given by W1(μ, ν) = infϕ∈Lip1(S)

| ∫
S
ϕ dμ − ∫

S
ϕ dν|

for μ and ν in P(S), where Lip1 is the set of functions ϕ such that for all u, v
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in S, we have |ϕ(u) − ϕ(v)| � |v − u|. This distance corresponds to the weak
convergence of probability measures: W1(μn, μ) → 0 if and only if for any con-
tinuous function ϕ : S → R, we have

∫
S
ϕ dμn → ∫

S
ϕ dμ. The well-posedness

result is stated in the space C(R+,P(S)) of family of probability measures weakly
continuous with respect to time:

Proposition 1. Given T > 0 and f0 ∈ P(S), there exists a unique weak solu-
tion f ∈ C([0, T ],P(S)) to the Eq. (2) with initial condition f0, in the sense that
for all t ∈ [0, T ], and for all ϕ ∈ C1(S), we have

d
dt

∫

S

ϕ(v)f(t, v) dv =
∫

S

Jf(t,·) · ∇vϕ(v)f(t, v) dv, (4)

were we use the notation f(t, v) dv even if f(t, ·) is not absolutely continuous
with respect to the Lebesgue measure on S, and Jf(t,·) =

∫
S
vf(t, v) dv.

Proof. Notice that the term Pv⊥Jf · ∇vϕ that we obtain when doing a formal
integration by parts of (2) against a test function ϕ is replaced by Jf · ∇vϕ
in the weak formulation (4), since the gradient on the sphere at a point v is
already orthogonal to v. The proof of this proposition relies on the fact that
the linear equation corresponding to (2) when replacing Jf by an external given
“alignment field” J ∈ C(R+,Rn) is also well-posed. Indeed the solution to this
linear equation, namely

∂tf + ∇v · (Pv⊥J (t)f) = 0 with f(0, ·) = f0, (5)

is given by the image measure of f0 by the flow Φt of the differential equa-
tion dv

dt = Pv⊥J (t). In detail, if Φt is the solution of
{

dΦt

dt = PΦ⊥
t
J (t),

Φ0(v) = v,
(6)

then the solution f(t, ·) = Φt#f0 is characterized by the fact that

∀ϕ ∈ C(S),
∫

S

ϕ(v)f(t, v) dv =
∫

S

ϕ(Φt(v))f0(v) dv. (7)

Since the differential equation (6) satisfies the assumptions for which the Cauchy-
Lipschitz theorem applies, it is well-known (see for instance [1]) that the solution
of (5) is unique and given by Φt#f0.

Therefore, if, given J ∈ C([0, T ],Rn), we denote by Ψ(J ) the solution of
the linear equation (5), solving the nonlinear kinetic equation (2) corresponds to
finding a fixed point of the map f ∈ C([0, T ],P(S)) �→ Ψ(Jf ), or equivalently of
the map J ∈ C([0, T ], B) �→ JΨ(J ), where B is the closed unit ball of Rn (recall
that if f ∈ P(S), then |Jf | � 1). The space E = C([0, T ], B) is a complete metric
space if the distance is given by dT (J , J̄ ) = supt∈[0,T ] |J (t) − J̄ (t)|e−βt, for an
arbitrary β > 0. Using the fact that |(Pv⊥ − Pv̄⊥)u| � 2|v − v̄| if |u| � 1, by a
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simple Grönwall estimate, if J , J̄ ∈ E and Φt, Φ̄t are the associated flow given
by (6), we obtain

|Φt − Φ̄t| �
∫ t

0

|J (s) − J̄ (s)|e2(t−s)ds.

Finally, we get (using the notation Jf (t) = Jf(t,·))

|JΨ(J )(t) − JΨ(J̄ )(t)| =
∣∣∣∣
∫

S

v Ψ(J )(t, v) dv −
∫

S

v Ψ(J̄ )(t, v) dv

∣∣∣∣

=
∣∣∣∣
∫

S

[Φt(v) − Φ̄t(v)]f0(v) dv

∣∣∣∣

�
∫ t

0

|J (s) − J̄ (s)|e2(t−s)ds � dt(J , J̄ )
∫ t

0

e2(t−s)+βsds.

Therefore when β > 2 we get |JΨ(J )(t) − JΨ(J̄ )(t)|e−βt � 1
β−2dt(J , J̄ ), so if we

take β > 3, we get that the map J �→ JΨ(J ) is indeed a contraction mapping
from E to E, which gives the existence and uniqueness of the fixed point. 
�
Remark 1. The well-posedness of the kinetic equation (2) can also be established
in Sobolev spaces, by means of harmonic analysis on the sphere and standard
Galerkin method (see [12]).

Remark 2. Using the weak formulation (4) and the definition of the pushforward
measure (7), it is possible to show that a convex combination of Dirac masses,
of the form f(t, ·) =

∑N
i=1 miδvi

(t) with mi � 0 for 1 � i � N and
∑N

i=1 mi = 1
is a weak solution of (2) if and only if the (vi)1�i�N are solutions of the system
of differential equations (3).

We are now ready to prove some qualitative properties of the solution to the
kinetic equation (2). Without further notice, we will denote by f this solution,
and by Φt the flow (6) associated to J = Jf . The first property is a simple
lemma related to the monotonicity of |Jf |.
Lemma 1. If f is a solution of (2), then |Jf | is nondecreasing in time. There-
fore if Jf0 �= 0, the “average orientation” Ω(t) = Jf (t)

|Jf (t)| is well defined and

smooth. Furthermore its time derivative Ω̇ tends to 0 as t → ∞.

Proof. Notice that if Jf0 = 0, then f(t, ·) = f0 for all t. To compute the evolution
of Jf , we use (4) with ϕ(v) = v · e for an arbitrary vector e in R

n. We obtain,
using the fact that ∇v(v · e) = Pv⊥e:

e · dJf

dt
= Jf ·

∫

S

Pv⊥ef(t, v) dv = e · MfJf ,

where Mf is the matrix given by
∫
S
Pv⊥f(t, v) dv (it is a symmetric matrix with

eigenvalues in [0, 1], as convex combination of orthogonal projections). Since Mf
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is continuous in time, then Jf is C1, and by the same procedure we can compute
the evolution of Mf , which will depend on higher moments of f , to get that Jf

is smooth. More precisely, since any moment is uniformly bounded (the sphere is
compact and f(t, ·) is a probability density for all t), we get that all derivatives
of Jf are uniformly bounded in time. Since

1
2

d|Jf |2
dt

= Jf · MfJf =
∫

S

[|Jf |2 − (v · Jf )2]f(t, v) dv � 0,

we get the first part of the proposition.
From now on we suppose that Jf0 �= 0, therefore Ω(t) is well defined. The

function 1
2
d|Jf |2

dt = |Jf |2Ω · MfΩ being nonnegative, smooth, integrable in R+

(since |Jf | is bounded by 1), and with bounded derivative, it is a classical exercise
to show that it must converge to 0 as t → ∞ (this is known as Barbălat’s Lemma,
see [4]). This gives us that Ω · MfΩ → 0 as t → ∞. Let us now compute the
evolution of Ω. We get

Ω̇ =
1

|Jf |
dJf

dt
− d|Jf |

dt

Jf

|Jf |2 = MfΩ − (Ω · MfΩ)Ω = PΩ⊥(MfΩ). (8)

Since Mf has eigenvalues in [0, 1], we get that |MfΩ|2 = Ω · M2
f Ω � Ω · MfΩ,

therefore MfΩ → 0 as t → 0. So we get that Ω̇ → 0 as t → ∞. 
�
Remark 3. The fact that |Jf | is nondecreasing can be enlightened by the the-
ory of gradient flow in probability spaces [2]. Indeed, the kinetic equation (2)
corresponds to the gradient flow of the functional − 1

2 |Jf |2 for the Wasserstein
distance W2. Therefore the evolution amounts to minimizing in time this quan-
tity. We also remark that since |Jf | is nondecreasing, by an appropriate change
of time, we can recover the equation ∂tf + ∇v · (fPv⊥Ω) which corresponds to
the spatial homogeneous version of [9] without noise. This equation can also be
interpreted as a gradient flow [11].

The fact that Ω̇ → 0 is not sufficient to prove that Ω converges to some Ω∞,
we would need Ω̇ ∈ L1(R+) and we only have up to now Ω̇ ∈ L2(R+) (since we
have seen in the proof of Lemma 1 that |Jf |2Ω · MfΩ is integrable in time). To
fill this gap, one solution is to compute the second derivative of Ω, and more
precisely, to obtain an estimate on |Ω̇| corresponding to the assumption of the
following lemma, which mainly says that if g is integrable, then any bounded
solution of the differential equation y′ = y + g has to be integrable.

Lemma 2. Let y : R+ → R be a nonnegative function such that y2 is C1 and
bounded. We suppose that there exists a function g ∈ L1(R+) such that for
all t ∈ R, we have

1
2

d
dt

y2 = y2 + y g. (9)

Then y ∈ L1(R+).
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Proof. Let t � 0 such that y(t) > 0. We set T = sup{s � t, y > 0 on [t, s]} (we
may have T = +∞).

We have that y is C1, positive and bounded on [t, T ), and satisfies the differ-
ential equation y′ = y+g, therefore by Duhamel’s formula we have, for s ∈ [t, T ):

y(s)e−s − y(t)e−t =
∫ s

t

g(u)e−udu.

Letting s = T (resp. s → +∞ if T = +∞), since y(T ) = 0 (resp. y is bounded),
we obtain

y(t) = −
∫ T

t

g(u)et−udu �
∫ ∞

t

|g(u)|et−udu.

This equality being true for any t ∈ R+ (even if y(t) = 0), we have by Fubini’s
theorem that

∫ ∞

0

y(t)dt �
∫ ∞

0

∫ ∞

t

|g(u)|et−udu dt =
∫ ∞

0

|g(u)|(1 − e−u)du,

which is finite by integrability of g. 
�
We are now ready to prove the convergence of Ω.

Proposition 2. If Jf0 �= 0, then Ω̇ ∈ L1(R+), and therefore there exists Ω∞ ∈ S

such that Ω → Ω∞ as t → ∞.

Proof. We first compute the derivative of Mf . For convenience, we use the nota-
tion 〈ϕ(v)〉f for

∫
S
ϕ(v)f(t, v) dv. Therefore we have Jf = 〈v〉f and Mf = 〈Pv⊥〉f ,

and the weak formulation (4) reads

d
dt

〈ϕ(v)〉f = Jf · 〈∇vϕ(v)〉f .

We have, for fixed e1, e2 ∈ R
n:

e1 · Mfe2 = 〈e1 · Pv⊥e2〉f = e1 · e2 − 〈(e1 · v)(e2 · v)〉f .

Therefore, since ∇v(e · v) = Pv⊥e, we obtain

d
dt

(e1 · Mfe2) = −Jf · 〈(e2 · v)Pv⊥e1 + (e1 · v)Pv⊥e2〉f

= e1 · [−〈(e2 · v)Pv⊥Jf 〉f + 〈Jf · Pv⊥e2 v〉f ],

so the term in between the brackets is the derivative of Mfe2. We then get

d
dt

(MfΩ) = Mf Ω̇ − |Jf |〈(Ω · v)Pv⊥Ω〉f − |Jf |〈Ω · Pv⊥Ω v〉f

= Mf Ω̇ + 2|Jf |〈(Ω · v)2v〉f − |Jf |[〈(Ω · v)Ω + v〉f ]

= Mf Ω̇ + 2|Jf |〈(Ω · v)2v〉f − 2|Jf |2Ω. (10)
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Thanks to (8), we finally have

d
dt

Ω̇ =
d
dt

(MfΩ) − (Ω · MfΩ)Ω̇ − (Ω̇ · MfΩ)Ω − Ω · d
dt

(MfΩ)Ω

= PΩ⊥
d
dt

(MfΩ) − (Ω · MfΩ)Ω̇ − (Ω̇ · MfΩ)Ω.

Since Ω and Ω̇ are orthogonal, we have some simplifications by taking the dot
product with Ω̇ and using (10):

Ω̇ · d
dt

Ω̇ = Ω̇ · d
dt

(MfΩ) − (Ω · MfΩ)|Ω̇|2.
= Ω̇ · Mf Ω̇ − 2|Jf |[〈(Ω · v)2 Ω̇ · v〉f ] − (Ω · MfΩ)|Ω̇|2
= |Ω̇|2 − 〈(Ω̇ · v)2〉f − (Ω · MfΩ)|Ω̇|2 − 2|Jf |[〈(Ω · v)2 Ω̇ · v〉f ]. (11)

If we define u to be the unit vector Ω̇
|Ω̇| when |Ω̇| �= 0 and to be zero if |Ω̇| = 0,

and we set

g(t) = −|Ω̇|[〈(u · v)2〉f + (Ω · MfΩ)] − 2|Jf |〈(Ω · v)2)u · v〉f , (12)

we get that the formula (11) is written under the following form, corresponding
to (9) with y = |Ω̇|:

1
2

d
dt

|Ω̇|2 = |Ω̇|2 + |Ω̇|g(t).

Our goal is to show that g ∈ L1(R+) in order to apply Lemma 2. Indeed, thanks
to (8), we have that |Ω̇| � 1 (recall that Mf is a symmetric matrix with eigen-
values in [0, 1]), and |Ω̇|2 is C1.

As was remarked before in the proof of Lemma 1, the quantity |Jf |2Ω · MfΩ
is integrable in time, which gives that Ω · MfΩ = 〈1 − (Ω · v)2〉f is integrable.
Since u is colinear to Ω̇, which is orthogonal to Ω, we have that PΩ⊥u = u, and
therefore we get (using the fact that |u| � 1, since |u| is 1 or 0)

〈(u · v)2〉f = 〈(u · PΩ⊥v)2〉f � 〈|PΩ⊥v|2〉f = 〈1 − (Ω · v)2〉f .

This gives that the first term in the definition (12) of g is integrable in time.
Finally, since u · Ω = 0, we have that 〈u · v〉f = 0, and we get

|〈(Ω · v)2 u · v〉f | = |〈(1 − (Ω · v)2)u · v〉f | � 〈1 − (Ω · v)2〉f ,

since 1 − (Ω · v)2 � 0 and |u · v| � 1 for all v ∈ S. This gives that the last term
in the definition (12) of g is also integrable in time. In virtue of Lemma2, we
then get that |Ω̇| is integrable. Therefore Ω(t) = Ω(0) +

∫ t

0
Ω̇(s)ds converges

as t → +∞. 
�
In order to control the distance between f and δΩ∞ , we now need to under-

stand the properties of the flow of the differential equation dv
dt = Pv⊥Jf .
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Proposition 3. Let J be a continuous function R+ → R
n such that t �→ |J (t)|

is positive, bounded and nondecreasing, and Ω(t) = J (t)
|J (t)| converges to Ω∞ ∈ S

as t → ∞.
Then there exists a unique vback ∈ S such that the solution of the differential

equation dv
dt = Pv⊥J with initial condition v(0) = vback satisfies v(t) → −Ω∞

as t → +∞. Furthermore, for all v0 �= vback, the solution of this differential
equation with initial condition v(0) = v0 converges to Ω∞ as t → +∞.

Proof. The outline of the proof is the following: we first show that any solution
satisfies either v(t) → −Ω∞ or v(t) → Ω∞, then we construct vback, and finally
we prove that it is unique. We still denote by Φt the flow of the differential
equation (6).

We first notice that |J (t)| converges to some λ > 0, therefore J (t) converges
to λΩ∞ as t → ∞. Therefore the solution of the equation dv

dt = Pv⊥J with
initial condition v(0) = v0 is also the solution of a differential equation of the
form

dv

dt
= λPv⊥Ω∞ + rv0(t), (13)

where the remainder term rv0(t) converges to 0 as t → ∞, uniformly in v0 ∈ S.
Let us suppose that v(t) does not converge to −Ω∞ (that is to say v(t) · Ω∞
does not converge to −1), and let us prove that in this case v(t) → Ω∞. Taking
the dot product with Ω∞ in (13), we obtain

d
dt

(v · Ω∞) = λ[1 − (v · Ω∞)2] + Ω∞ · rv0(t), (14)

so we can use a comparison principle with the one-dimensional differential equa-
tion y′ = λ(1 − y2) − ε. Since λ(1 − y2) − ε is positive for |y| <

√
1 − ε

λ and
negative for |y| >

√
1 − ε

λ , any solution starting with y(t0) > −√
1 − ε

λ con-
verges to

√
1 − ε

λ as t → +∞. Since v(t) · Ω∞ does not converge to −1, there
exists δ > 0 such that v(t) · Ω∞ > −1 + δ for arbitrarily large times t. For
any ε > 0 sufficiently small (such that −√

1 − ε
λ < −1 + δ), there exists t0 � 0

such that v(t0) ·Ω∞ > −1+ δ and |Ω∞ · rv0(t)| � ε for all t � t0. By comparison
principle, we then get that lim inft→+∞ v(t) · Ω∞ �

√
1 − ε

λ . Since this is true
for any ε > 0 sufficiently small, we then get that v(t) · Ω∞ converges to 1, that
is to say v(t) → Ω∞ as t → +∞.

Let us now prove that if v(t) converges to Ω∞, then there exists a neigh-
borhood of v0 such that the convergence to Ω∞ of solutions starting in this
neighborhood is uniform in time. This is done thanks to the same comparison
principle. We fix δ > 0 and ε > 0 such that −1 + δ > −√

1 − ε
λ . We take t0 � 0

such that v(t0) · Ω∞ > −1 + δ and |Ω∞ · rṽ0(t)| � ε for any ṽ0 ∈ S and t � t0.
By continuity of the flow of the equation dv

dt = Pv⊥J , there exists a neighbor-
hood B of v0 in S such that for any ṽ0 ∈ B, the solution ṽ(t) = Φt(ṽ0) of this
equation with initial condition ṽ0 satisfies ṽ(t0) · Ω∞ > −1 + δ. We now look at
the equation y′ = λ(1 − y2) − ε starting with y(t0) = −1 + δ, which converges
to

√
1 − ε

λ > 1−δ. There exists T such that y(t) � 1−δ for all t � T . Therefore,
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by comparison principle with (14) (where v0 is replaced by ṽ0), we get that for
all ṽ0 ∈ B, the solution ṽ satisfies ṽ(t) · Ω∞ � 1 − δ for all t � T .

We are now ready to construct vback. We take (tn) a sequence of increas-
ing times such that tn → +∞ and define vn

back as the solution at time t = 0
of the backwards in time differential equation dvn

dt = P(vn)⊥J with terminal
condition vn(tn) = −Ω∞, that is to say vn

back = Φ−1
tn

(−Ω∞). Up to extracting
a subsequence, we can assume that vn

back converges to some vback ∈ S and we
set v(t) = Φt(vback). By the first part of the proof, we have that either v(t) → Ω∞
or v(t) → −Ω∞ as t → +∞. The first case is incompatible with the uniform
convergence in time. Indeed, in that case, we would have a neighborhood B
of vback and a time T such that for all t � T and all ṽ ∈ B, Φt(ṽ) · Ω∞ � 0 (by
taking δ = 1 in the previous paragraph). Since we can take n such that tn � T
and vn

back ∈ B, this is in contradiction with the fact that Φtn
(vn

back) = −Ω∞.
It remains to prove that vback is unique (which implies that Φ−1

t (−Ω∞) actu-
ally converges to vback as t → +∞, thanks to the previous paragraph). This is
due to a phenomenon of repulsion of two solutions v(t) and ṽ(t) when they are
close to −Ω(t). Indeed, they satisfy

d
dt

v · ṽ = v · Pṽ⊥J + ṽ · Pv⊥J = J · (v + ṽ)(1 − v · ṽ),

which can be written, since ‖v − ṽ‖2 = 2 (1 − v · ṽ) as

d
dt

‖v − ṽ‖2 = γ(t)‖v − ṽ‖2, (15)

where γ(t) = −J (t) · (v(t) + ṽ(t)). Let us suppose that both v(t) = Φt(v0)
and ṽ(t) = Φt(ṽ0) converge to −Ω∞ as t → +∞. Since J (t) → λΩ∞ as t → +∞,
we have γ(t) → 2λ > 0 as t → +∞. Therefore the only bounded solution of the
linear differential equation (15) is the constant 0, therefore we have v = ṽ, and
thus v0 = ṽ0. 
�

We are now ready to prove the last part of Theorem1.

Proposition 4. Let vback be given by Proposition 3 with J = Jf (we sup-
pose Jf0 �= 0). We denote by m =

∫
S
1v=vbackf0(v)dv the initial mass of {vback}.

Then m < 1
2 and W1(f(t, ·), (1 − m)δΩ∞ + mδ−Ω∞) → 0 as t → +∞.

Proof. We write f∞ = (1 − m)δΩ∞ + mδ−Ω∞ . Let ϕ ∈ Lip1(S). We have
∫

S

ϕ(v)f∞(v) dv = mϕ(−Ω∞) + (1 − m)ϕ(Ω∞)

= mϕ(−Ω∞) +
∫

S

1v �=vbackϕ(Ω∞)f0(v) dv,

and
∫
S
ϕ(v)f(t, v) dv =

∫
S
ϕ(Φt(v))f0(v) dv (recall that f(t, ·) = Φt#f0 is char-

acterized by (7), where Φt, defined in (6) is the flow of the differential equa-
tion dv

dt = Pv⊥J ). Therefore we get
∫

S

ϕ(v)f(t, v)dv = mϕ(Φt(vback)) +
∫

S

1v �=vbackϕ(Φt(v))f0(v) dv. (16)
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We then obtain
∣∣∣
∫

S

ϕ(v)f(t, v) dv −
∫

S

ϕ(v)f∞(v) dv
∣∣∣

� m|ϕ(Φt(vback)) − ϕ(−Ω∞)| +
∫

S

1v �=vback |ϕ(Φt(v)) − ϕ(Ω∞)|f0(v) dv

� m|Φt(vback) + Ω∞| +
∫

S

1v �=vback |Φt(v) − Ω∞|f0(v) dv,

since ϕ ∈ Lip1(S). We finally get

W1(f(t, ·), f∞) � m|Φt(vback) + Ω∞| +
∫

S

1v �=vback |Φt(v) − Ω∞|f0(v) dv. (17)

Now, by Proposition 3, as t → +∞ we have Φt(v) → Ω∞ for all v �= vback,
and Φt(vback) → −Ω∞. Therefore by the dominated convergence theorem, the
estimate (17) gives that W1(f(t, ·), f∞) → 0 as t → +∞. It remains to prove
that m > 1

2 , which comes from Proposition 2, which gives that Jf

|Jf | → Ω∞
as t → +∞. Indeed, applying (16) with ϕ(v) = v, we get

Jf (t) = mΦt(vback) +
∫

S

1v �=vbackΦt(v)f0(v) dv,

which gives by dominated convergence that, as t → +∞, we have

Jf (t) → −mΩ∞ +
∫

S

1v �=vbackΩ∞f0(v) dv = (1 − 2m)Ω∞.

Since Jf (t)
|Jf (t)| → Ω∞ as t → +∞, we get 1 − 2m > 0. 
�

2.2 Symmetries and Rates of Convergence

This subsection is dedicated to the study of rates of convergence, based on
somewhat explicit solutions in the case where Ω is constant in time, which is
the case when the initial condition has some symmetries.

Proposition 5. Let G be a group of orthogonal transformations under which f0
is invariant (that is to say f0 ◦g = f0 and all g ∈ G) and such that the only fixed
points on S of every element of G are two opposite unit vectors that we call ±en.
Then the solution f(t, ·) of the partial differential equation (2) is also invariant
under all elements of g. Furthermore if Jf0 �= 0, then Jf (t) = α(t)en with α
positive (up to exchanging en and −en), and Ω(t) is constantly equal to en.

Proof. The first part of the proposition comes from the fact that t �→ f(t, ·)◦g is
also a solution of (2) (which is well-posed) with the same initial condition. Then,
we have by invariance that gJf(t,·) =

∫
S
gvf0(v) dv =

∫
S
gvf0(gv) dv = Jf(t,·), for

all g ∈ G, and therefore Ω(t) is a fixed point of every element of g and must be
equal to ±en. 
�
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Let us mention two simple examples of these kind of symmetries: when f0(v)
only depends on v · en (G is then the set of isometries having en as fixed point),
or when f(sin θw + cos θen) = f(− sin θw + cos θen) (G is reduced to identity
and to v �→ 2en · v en − v).

Let us now do some preliminary computations in the case where Ω is constant
in time. We work in an orthogonal base (e1, . . . , en) of Rn for which Ω = en is
the last vector, and we write write Jf (t) = α(t)en, with t �→ α(t) positive and
nondecreasing. We will use the stereographic projection

s :
S \ {−en} → R

n−1

v �→ s(v) = 1
1+v·en

Pe⊥
n
v,

(18)

where we identify Pe⊥
n
v with its first n−1 coordinates. This is a diffeomorphism

between S \ {−en} and R
n−1, and its inverse is given by

p :
R

n−1 → S \ {−en} ⊂ R
n−1 × R

z �→ p(z) = ( 2
1+|z|2 z, 1−|z|2

1+|z|2 ).
(19)

If ϕ is an integrable function on S, the change of variable for this diffeomorphism
reads ∫

S

ϕ(v) dv = c−1
n

∫

Rn−1

ϕ(p(z))
(1 + |z|2)n−1

dz, (20)

where the normalization constant is cn =
∫
Rn−1

dz
(1+|z|2)n−1 . If v is a solution to

the differential equation dv
dt = α(t)Pv⊥en with v �= −en, a simple computation

shows that z = s(v) satisfies the differential equation dz
dt = −α(t)z. Therefore, if

we write λ(t) =
∫ t

0
α(τ) dτ , we have an explicit expression for the solution f of

the aggregation equation (5): the pushforward formula (7) is given, when f0 has
no atom at −en, by

∀ϕ ∈ C(S),
∫

S

ϕ(v)f(t, v) dv = c−1
n

∫

Rn−1

ϕ(p(ze−λ(t)))f0(p(z))
(1 + |z|2)n−1

dz. (21)

In particular, we have

1 − α(t) = 1 − Jf (t) · en =
∫

S

(1 − v · en)f(t, v) dv

= c−1
n

∫

Rn−1

2|z|2e−2λ(t)f0(p(z))
(1 + |z|2e−2λ(t))(1 + |z|2)n−1

dz. (22)

We are now ready to state the first proposition regarding the rate of conver-
gence towards Ω∞: in the framework of Theorem1, there is no hope to have a rate
of convergence of f(t, ·) with respect to the W1 distance without further assump-
tion on the regularity of f0, even if it has no atoms (in this case f(t, ·) → δΩ∞
as t → +∞). More precisely the following proposition gives the construction of a
solution decaying arbitrarily slowly to δΩ∞ , in contrast with results of local sta-
bility of Dirac masses for other models of alignment on the sphere [8], for which
as long as the initial condition is close enough to δΩ∞ , the solution converges
exponentially fast in Wasserstein distance.
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Proposition 6. Given a smooth decreasing function t �→ g(t) converging to 0
(slowly) as t �→ +∞, and such that g(0) < 1

2 , there exists a probability density
function f0 such that the solution f(t, ·) of (2) converges weakly to δΩ∞ , but
such that W1(f(t, ·), δΩ∞) � g(t) for all t � 0.

Proof. We will construct f0 as a function of the form f0(v) = h(|s(v)|), where
the stereographic projection s is defined in (18). Let us prove that the following
choice of h works, for ε > 0 sufficiently small:

h(r) = bn
(1+r2)n−1

rn−2

[
1−g(0)

ε 10<r<ε − g′(ln r)
r 1r�1

]
,

where the normalization constant is bn =
∫
R+

rn−2 dr
(1+r2)n−1 . First of all, f0 is a

probability density, since we have, thanks to (20)

∫

S

f0(v)dv =

∫
Rn−1

h(|z|) dz
(1+|z|2)n−1

∫
Rn−1

dz
(1+|z|2)n−1

=

∫ +∞
0

h(r)rn−2 dr
(1+r2)n−1

∫ +∞
0

rn−2 dr
(1+r2)n−1

= b−1
n

∫ +∞

0

h(r)rn−2 dr

(1 + r2)n−1

=
∫ ε

0

1−g(0)
ε dr −

∫ +∞

1

g′(ln r)
r dr = 1 − g(0) − [g(ln r)]+∞

1 = 1.

By symmetry, we have that Jf (t) = α(t)en. Let us check that α(0) > 0. We do
as in formula (22):

1 − α(t) = b−1
n

∫ +∞

0

2r2e−2λ(t)h(r)rn−2 dr

(1 + r2e−2λ(t))(1 + r2)n−1
.

We therefore get

1 − α(0) =
∫ ε

0

2(1 − g(0))r2dr

(1 + r2)ε
−

∫ +∞

1

g′(ln r)
2r

1 + r2
dr

� 2ε2

3
(1 − g(0)) − 2

∫ ∞

1

g′(ln r)
dr

r
= 2g(0) +

2ε2

3
(1 − g(0)),

which is strictly less than 1 as long as g(0) < 1
2 and ε is sufficiently small.

Therefore in this case we have α(0) > 0 (this shows that the restriction g(0) < 1
2

is somehow optimal, we cannot have W1(f(0, ·), δΩ∞) � 1
2 and f(t, ·) weakly

converging to δΩ∞ for this class of functions). This means that Ω(t) = en = Ω∞
for all time t, and thanks to Theorem 1, since f0 has no atoms, the solution f(t, ·)
converges weakly to δΩ∞ as t → +∞.

Let us also remark that W1(f(t, ·), δen
) =

∫
S
|v − en|f(t, v)dv (see the proof

of the forthcoming Proposition 7), and since we have 1 − v · en � |v − en|, we
obtain 1 − α(t) � W1(f(t, ·), δen

). Therefore, to prove that the convergence of f
towards δΩ∞ is as slow as g(t), it only remains to prove that 1 − α(t) � g(t).
We have λ(t) � t, and so when r � et, we get re−λ(t) � 1. Since x �→ 2x

1+x is

increasing, we get 2r2e−2λ(t)

1+r2e−2λ(t) � 1. We therefore get

1 − α(t) � −
∫ +∞

et

g′(ln r)
2re−2λ(t)

(1 + r2e−2λ(t))
dr � −

∫ +∞

et

g′(ln r)dr

r
= g(t),

which ends the proof. 
�
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We conclude this subsection by more precise estimates of the rate of con-
vergence in various Wasserstein distances when Ω is constant in time and when
the initial condition has a density with respect to the Lebesgue measure which
is bounded above and below. We write a(t) � b(t) whenever there exists two
positive constants c1, c2 such that c1b(t) � a(t) � c2b(t) for all t � 0. We recall
the definition of the Wasserstein distance W2, for two probability measures μ
and ν on S:

W 2
2 (μ, ν) = inf

π

∫

S×S

|v − w|2dπ(v, w),

where the infimum is taken over the probability measures π on S × S with first
and second marginals respectively equal to μ and ν.

Proposition 7. Suppose that f0 has a density with respect to the Lebesgue mea-
sure satisfying m � f0(v) � M for all v (for some 0 < m < M), with Jf0 �= 0
and such that Ω(t) = en is constant in time. Then we have

W1(f(t, ·), δen
) �

{
(1 + t)e−t if n = 2,

e−t if n � 3,

W2(f(t, ·), δen
) �

⎧
⎪⎨

⎪⎩

e− 1
2 t if n = 2,√

1 + t e−t if n = 3,

e−t if n � 4.

Proof. Let us first give explicit formulas for W1(f(t, ·), δen
) and W2(f(t, ·), δen

).
If ϕ ∈ Lip1(S), we have
∣∣∣∣
∫

S

ϕ(v)f(t, v) dv − ϕ(en)
∣∣∣∣ �

∫

S

|ϕ(v) − ϕ(en)|f(t, v) dv �
∫

S

|v − en|f(t, v) dv.

Therefore, by taking the supremum, we get W1(f(t, ·), δen
) �

∫
S
|v−en|f(t, v) dv.

Furthermore, by taking ϕ(v) = |v − en|, we get that this inequality is an equal-
ity. The explicit expression of W2(f(t, ·), δen

) comes from the fact that the only
probability measure on S× S with marginals f(t, ·) and δen

is the product mea-
sure μ ⊗ δv0 , and therefore we have W 2

2 (f(t, ·), δen
) =

∫
S
|v − en|2f(t, v) dv.

Using the fact that |v − en|2 = 2 − 2v · en and the definition (19) of p, we
get |p(z) − en| = 2|z|√

1+|z|2 . Finally, using (21), we obtain

W1(f(t, ·), δen
) = c−1

n

∫

Rn−1

2|z|e−λ(t)f0(p(z))√
1 + |z|2e−2λ(t)(1 + |z|2)n−1

dz, (23)

and, as in (22):

W 2
2 (f(t, ·), δen

) = 2(1 − α(t)) = c−1
n

∫

Rn−1

4|z|2e−2λ(t)f0(p(z)) dz

(1 + |z|2e−2λ(t))(1 + |z|2)n−1
. (24)
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Thanks to the assumptions on f0, from (23) we immediately get

W1(f(t, ·), δen
) �

∫ +∞

0

rn−1e−λ(t) dr√
1 + r2e−2λ(t)(1 + r2)n−1

,

and for n � 3, since λ(t) � 0, we get

0 <

∫ +∞

0

rn−1 dr√
1 + r2(1 + r2)n−1

�
∫ +∞

0

rn−1 dr√
1 + r2e−2λ(t)(1 + r2)n−1

�
∫ +∞

0

rn−1 dr

(1 + r2)n−1
< +∞,

which gives W1(f(t, ·), δen
) � e−λ(t). For n = 2, we have

∫ +∞

0

re−λ(t) dr√
1 + r2e−2λ(t)(1 + r2)

=
[

e−λ(t)

2
√

1−e−2λ(t)
ln

(√
1+r2e−2λ(t)−

√
1−e−2λ(t)√

1+r2e−2λ(t)+
√

1−e−2λ(t)

)]+∞

0

=
e−λ(t)

2
√

1 − e−2λ(t)
ln

(1 +
√

1 − e−2λ(t)

1 −
√

1 − e−2λ(t)

)
.

Since this last expression is equivalent to λ(t)e−λ(t) as λ(t) → +∞ and converges
to 1 as λ(t) → 0, we then get W1(f(t, ·), δen

) � (1 + λ(t))e−λ(t).
We proceed similarly for the distance W2. From the assumptions on f0

and (24) we get

W 2
2 (f(t, ·), δen

) � 1 − α(t) �
∫ +∞

0

rne−2λ(t) dr

(1 + r2e−2λ(t))(1 + r2)n−1
.

By the same argument of integrability, when n � 4, since
∫ +∞
0

rn dr
(1+r2)n−1 < +∞,

we obtain 1 − α(t) � e−2λ(t). For n = 2 we have

∫ +∞

0

r2e−2λ(t) dr

(1 + r2e−2λ(t))(1 + r2)
=

[
e−λ(t) tan−1(e−λ(t)r)−e−2λ(t) tan−1(r)

1−e−2λ(t)

]+∞

0

=
π e−λ(t)

2(1 + e−λ(t))
,

which gives 1 − α(t) � e−λ(t). For n = 3 we have

∫ +∞

0

r2e−2λ(t) dr

(1 + r2e−2λ(t))(1 + r2)2
= e−2λ(t)

2(1−e−2λ(t))2

[
ln

(
1+r2

1+r2e−2λ(t)

)
+ 1−e−2λ(t)

1+r2

]+∞

0

=
e−2λ(t)

2(1 − e−2λ(t))2
(2λ(t) − 1 + e−2λ(t)).

Since this last expression is equivalent to λ(t)e−2λ(t) as λ(t) → +∞ and con-
verges to 1

4 as λ(t) → 0, we then get 1 − α(t) � (1 + λ(t))e−2λ(t).
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In all dimensions, we have, since λ(t) =
∫ t

0
α(τ)dτ � α(0)t, that there

exists C > 0 such that 1 − α(t) � Ce−α(0)t. Therefore, integrating in time,
we obtain t − λ(t) � C̃e−α(0)t. This gives, since λ(t) � t, that e−λ(t) ∼ e−t

and 1+λ(t) � 1+ t. Combining this with all the estimates we obtain so far (and
reminding that W2(f(t, ·), δen

) � √
1 − α(t) ends the proof. 
�

Interestingly, the estimates given by Proposition 7 depend on the dimension
and on the chosen distance. We expect that these estimates still hold when Ω
depends on time, and, as in the result of Theorem2, we expect to have an even
better rate of convergence of Ω towards Ω∞.

3 The Particle Model

The object of this section is to prove Theorem 2, and we divide it into several
propositions. We take N positive real numbers (mi)1�i�N with

∑N
i=1 mi = 1,

and N unit vectors v0
i ∈ S (for 1 � i � N) such that v0

i �= v0
j for all i �= j. We

denote by (vi)1�i�N the solution of the system of differential equation (3):

dvi

dt
= Pv⊥

i
J, with J(t) =

N∑

i=1

mivi(t),

with the initial conditions vi(0) = v0
i for 1 � i � N .

Proposition 8. If J(0) �= 0, then |J | is nondecreasing, so Ω(t) = J(t)
|J(t)| ∈ S is

well-defined for all times t � 0. We have one of the two following possibilities:

– For all 1 � i � N , vi(t) · Ω(t) → 1 as t → +∞,
– There exists i0 such that vi(t) · Ω(t) → −1 as t → +∞, and for all i �= i0, we

have vi(t) · Ω(t) → 1 as t → +∞.

Furthermore, if we denote by λ > 0 the limit of |J(t)| as t → +∞, we have
for all i, j in the first possibility (resp. for all i �= i0, j �= i0 in the second
possibility), ‖vi(t) − vj(t)‖ = O(e−(λ−ε)t) (for any ε > 0).

Proof. Let us see the differential system as a kind of gradient flow of the following
interaction energy (this is reminiscent of the gradient flow structure of the kinetic
equation (2), see Remark 3):

E =
1
2

N∑

i,j=1

mimj‖vi − vj‖2 =
N∑

i,j=1

mimj(1 − vi · vj) = 1 − |J |2 � 0

Indeed, we then get ∇vi
E = −2

∑N
j=1 mimjPv⊥

i
vj = −2miPv⊥

i
J (using the

formula ∇v(u · v) = Pv⊥u). We therefore have dvi

dt = − 1
2mi

∇vi
E , and we obtain

d|J |2
dt

= −dE
dt

= −
N∑

i=1

∇vi
E · dvi

dt
= 2

N∑

i=1

mi

∣∣∣∣
dvi

dt

∣∣∣∣
2

� 0. (25)
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This gives that |J | is nondecreasing in time. So we can define Ω(t) = J(t)
|J(t)| and

rewrite (25) as

d|J |2
dt

= 2
N∑

i=1

mi|Pv⊥
i

J |2 = 2|J |2
N∑

i=1

mi(1 − (vi · Ω)2). (26)

We can compute the time derivative of this quantity and observe that all terms
are uniformly bounded in time. Therefore, since it is an integrable function of
time (since |J |2 � 1) with bounded derivative, it must converge to 0 as t → +∞.
Therefore we obtain that (vi(t) · Ω(t))2 → 1 for all 1 � i � N . Let us now
take 1 � i, j � N and estimate ‖vi − vj‖. We have

1
2

d
dt

‖vi − vj‖2 = − d
dt

(vi · vj) = −|J |(vj · Pv⊥
i

Ω + vi · Pv⊥
j
Ω)

= −|J | (Ω · vi + Ω · vj)(1 − vi · vj)

= −|J |Ω · vi + vj

2
‖vi − vj‖2. (27)

Therefore if vi ·Ω → 1 and vj ·Ω → 1, we get 1
2

d
dt‖vi −vj‖2 � −(λ−ε)‖vi −vj‖2

for t sufficiently large, and therefore we obtain ‖vi − vj‖2 = O(e−2(λ−ε)t).
Finally if vi · Ω → −1 and vj · Ω → −1, for t sufficiently large (say t � t0)

we obtain 1
2

d
dt‖vi − vj‖2 � (λ − ε)‖vi − vj‖2. This is the same phenomenon

of repulsion as (15) in the previous part, and the only bounded solution to
this differential inequality is when vi(t0) = vj(t0), which means, by uniqueness
that v0

i = v0
j and therefore i = j. This means that if there is an index i0 such

that vi0(t) · Ω(t) → −1, then for all i �= i0, we have vi(t) · Ω(t) → 1 as t → ∞,
and this ends the proof. 
�
Let us now study the first possibility more precisely.

Proposition 9. Suppose that vi(t) · Ω(t) → 1 as t → ∞ for all 1 � i � N .
Then there exists Ω∞ ∈ S and ai ∈ {Ω∞}⊥ ⊂ R

n, for 1 � i � N such
that

∑N
i=1 miai = 0 and that, as t → +∞,

vi(t) = (1 − |ai|2e−2t)Ω∞ + e−tai + O(e−3t) for 1 � i � N,

Ω(t) = Ω∞ + O(e−3t).

Proof. We first have |J(t)| = J(t) · Ω(t) =
∑

i mivi(t) · Ω(t) → 1 as t → ∞.
Therefore λ = 1, and thanks to the estimates of Proposition 8 (first possibility),
for all i, j we have 1 − vi · vj = 1

2‖vi − vj‖2 = O(e−2(1−ε)t). Summing with
weights mj , we obtain 1− vi ·J = O(e−2(1−ε)t). Plugging back this into (27), we
obtain

1
2

d
dt

‖vi − vj‖2 = −(
1 + O(e−2(1−ε)t)

)‖vi − vj‖2.

We therefore obtain ‖vi − vj‖2 = ‖v0
i − v0

j ‖2e− ∫ t
0 (1+O(e−2(1−ε)τ ))dτ = O(e−2t).

This is the same estimate as previously without the ε. Therefore, similarly, we
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get 1 − vi · J = O(e−2t), which gives 1 − |J |2 = O(e−2t) by summing with
weights mi. We finally obtain 1 − vi · Ω = 1 − vi · J + (|J | − 1)vi · Ω = O(e−2t),
therefore |Pv⊥

i
Ω|2 = |PΩ⊥vi|2 = 1 − (vi · Ω)2 = O(e−2t).

Let us now compute the evolution of Ω, as in (8). Since dJ
dt =

∑
i miPv⊥

i
J ,

we use (26) to get d|J|
dt = |J |∑i mi|Pv⊥

i
Ω|2 = O(e−2t), and we obtain

dΩ

dt
=

1
|J |

dJ

dt
− d|J |

dt

J

|J |2 =
∑

i

miPv⊥
i
Ω −

∑

i

mi|Pv⊥
i

Ω|2Ω

= −
∑

i

mi(vi · Ω)(vi − (vi · Ω)Ω) = −
∑

i

mi(vi · Ω)PΩ⊥vi.

Since
∑

i miPΩ⊥vi = PΩ⊥J = 0, we can then add this quantity to the previous
identity to get

dΩ

dt
=

∑

i

mi(1 − vi · Ω)PΩ⊥vi. (28)

We therefore get |dΩ
dt | �

∑
i mi(1 − vi · Ω)|PΩ⊥vi| = O(e−3t). Therefore Ω

converges towards Ω∞ ∈ S and we have Ω = Ω∞ + O(e−3t).
Finally, to get the precise estimates for the vi, we compute their second

derivative.

d2vi

dt2
=

d
dt

Pv⊥
i
J = Pv⊥

i

dJ

dt
− dvi

dt
· J vi − vi · J

dvi

dt
. (29)

We have Pv⊥
i

dJ
dt = d|J|

dt Pv⊥
i
Ω + |J |Pv⊥

i

dΩ
dt = O(e−3t), since Pv⊥

i
Ω = O(e−t)

and d|J|
dt = O(e−2t) thanks to (26). Then we notice that dvi

dt ·J = J ·Pv⊥
i
J = |dvi

dt |2
and that vi ·J dvi

dt = dvi

dt −(1−vi ·J)Pv⊥
i

J = dvi

dt +O(e−3t). At the end we obtain

d2vi

dt2
= −dvi

dt
−

∣∣∣
dvi

dt

∣∣∣
2

vi + O(e−3t). (30)

Considering first that |dvi

dt |2 = O(e−2t), the resolution of this differential equation
gives dvi

dt = −aie
−t + O(e−2t) with ai ∈ R

n. Integrating in time, we therefore
obtain vi(t) = Ω∞+aie

−t+O(e−2t), (we already know that vi(t) converges to Ω∞
since v(t) · Ω(t) → 1). The fact that |vi(t)| = 1 gives us ai · Ω∞e−t = O(e−2t)
and therefore ai ∈ {Ω∞}⊥. Summing all these estimations with weights mi and
using the fact that J − Ω∞ = O(e−2t), we obtain

∑
i miai = 0.

Finally, the more precise estimate for vi(t) up to order O(e−3t) given in
the proposition is obtained by plugging back |dvi

dt |2vi = |ai|2e−2tΩ∞ + O(e−3t)
into (30) and solving it again. 
�
Let us finally study the second possibility.

Proposition 10. Suppose there exists i0 such that vi0(t) ·Ω(t) → −1 as t → ∞.
Then we have λ = 1 − 2mi0 (which gives mi0 < 1

2), and there exists Ω∞ ∈ S
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and ai ∈ {Ω∞}⊥ ⊂ R
n for i �= i0 such that

∑
i�=i0

miai = 0 and that, as t → +∞,

vi(t) = (1 − |ai|2e−2λt)Ω∞ + e−λtai + O(e−3λt) for i �= i0,

vi0(t) = −Ω∞ + O(e−3λt),

Ω(t) = Ω∞ + O(e−3λt).

Proof. First of all we have |J(t)| = Ω(t)·J(t) =
∑

i mivi(t)·Ω(t) which converges
as t → ∞ towards λ =

∑
i�=i0

mi−mi0 = 1−2mi0 . The proof then follows closely
the one of Proposition 9, except for the case of vi0 . Indeed, Proposition 8 only
gives estimates on ‖vi − vj‖ (and therefore on vi · vj) when i �= i0 and j �= i0. To
estimate more precisely the quantity vi0 ·vi, let us prove that −vi0 must be in the
convex cone spanned by 0 and all the vi, i �= i0. The idea is that a configuration
which is in a convex cone stays in it for all time.

Let us suppose that all the vi (including i = i0) satisfy e · vi(t0) � c for
some c > 0, t0 � 0 and e ∈ S (the direction of the cone). We want to prove
that e · vi(t) � c for all i and for all t � t0. If not, we denote by t1 > t0 a time
such that e · vi(t) � 0 for all i on [t0, t1], but with e · vj(t1) < c for some j.
On [t0, t1], we have

d(e · vi)
dt

= e · J − (e · vi)(vi · J) � e · J − (e · vi), (31)

since vi · J � |J | � 1 and e · vi � 0 on [t0, t1]. Summing with weights mi, we
obtain d(e·J)

dt � 0. Therefore, since e · J(t0) � c, we obtain e · J(t) � c on [t0, t1],
and the estimation (31) becomes d(e·vi)

dt � c − (e · vi). By comparison principle,
this tells us that e · vi � c on [t0, t1] for all i, which is a contradiction.

Let us now fix t0 � 0. We want to prove that there exists αi � 0 for i �= i0
such that −vi0 =

∑
i�=i0

αivi (this means that −vi0 is in the convex cone spanned
by all other vi’s). This is the typical case where we will apply Farkas’ Lemma (see
for instance [14]): its precise conclusion is that it is equivalent to prove that this
is not possible to find e ∈ S such that e ·vi(t0) � 0 for all i �= i0 and e ·(−vi0) < 0
(which means separating the generators of the cone and the vector −vi0 by a
linear hyperplane).

By contradiction, if such a e exists, we would have e·J(t0) � mi0e·vi0 > 0 and
for i �= i0, as in (31), if e · vi(t0) = 0 we get d(e·vi)

dt |t=t0 = e · J(t0) > 0. Therefore
for δ > 0 sufficiently small, we have e · vi(t0 + δ) > 0 for all i (including i0,
and those for which e · vi(t0) > 0). Therefore there exists c > 0 such that for
all i, e ·vi(t0 +δ) � c, and by the previous paragraph, we get that e ·vi(t) � c for
all t � t0 + δ. We therefore get e · Ω(t) � 1

|J(t)|e · J(t) � c
|J(0)| for all t � t0 + δ.

Finally, since ‖vi0(t) + Ω(t)‖2 = 2(1 + vi0(t) · Ω(t)) → 0 as t → ∞, this is in
contradiction with the fact that e·(vi0 +Ω(t)) � (1+ 1

|J|(0) )c > 0 for all t � t0+δ.
In conclusion we have that for all t � 0, there exists αi(t) � 0 for i �= i0 such

that −vi0(t) =
∑

i�=i0
αi(t)vi(t). We thus obtain, for i �= i0

vi(t) · vi0(t) = −
∑

i�=i0

αi +
∑

j �=i0

αi(1 − vj(t) · vi(t)) � −1 + O(e−2(λ−ε)t), (32)
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since 1 = ‖vi0(t)‖ �
∑

i�=i0
αi‖vi(t)‖ =

∑
i�=i0

αi, and thanks to Proposition 8.
Since vi(t) · vi0(t) � −1, this gives vi(t) · vi0(t) = −1+O(e−2(λ−ε)t). From there,
we have, if i �= i0,

vi · J =
∑

i�=i0

mj vi · vj − mi0vi · vi0

=
∑

i�=i0

(mj + O(e−2(λ−ε)t) − mi0 + O(e−2(λ−ε)t) = λ + O(e−2(λ−ε)t).

Plugging this into (27), for i �= i0 and j �= i0, we obtain

1
2

d
dt

‖vi − vj‖2 = −(
λ + O(e−2(λ−ε)t)

)‖vi − vj‖2.

We therefore obtain, as in the proof of Proposition 9, 1 − vi · vj = O(e−2λt).
As in (32), we now get vi · vi0 = −1 + O(e−2λt). Finally, by summing with
weights mj , we obtain vi ·J = λ+O(e−2λt) for i �= i0 and vi0 ·J = −λ+O(e−2λt).
Therefore, by summing once again with weights mi, we get |J |2 = λ2+O(e−2λt).
This allows to get 1 − vi · Ω = O(e−2λt) and |Pv⊥

i
Ω| = O(e−λt) when i �= i0,

and 1+vi0 ·Ω = O(e−2λt). Unfortunately this is not enough to use (28) to obtain
a decay at rate 3λ: we obtain

∣∣∣
dΩ

dt

∣∣∣ � O(e−3λt) + mi0(1 − vi0 · Ω)|Pv⊥
i0

Ω|. (33)

However, since |Pv⊥
i0

Ω|2 = 1 − (vi0 · Ω)2 = (1 − vi0 · Ω)(1 + vi0 · Ω) = O(e−2λt),

we obtain at least |dΩ
dt

∣∣ � O(e−λt), which gives the existence of Ω∞ ∈ S such
that Ω(t) = Ω∞ + O(e−λt). To get the rate 3λ, we have to be a little bit more
careful, and use the same kind of trick as in Lemma 2 of the first part: if we have
a differential equation of the form y′ = y + O(e−βt), and furthermore that y is
bounded, then we must have y = O(e−βt). Indeed, by Duhamel’s formula, we
get y = y0e

t + O(e−βt) and the only bounded solution corresponds to y0 = 0.
We apply this to y = dvi0

dt . We have, as in (29)

d2vi0

dt2
= Pv⊥

i0

dJ

dt
− dvi0

dt
· J vi0 − vi0 · J

dvi0

dt

= Pv⊥
i0

dJ

dt
−

∣∣∣∣
dvi0

dt

∣∣∣∣
2

vi0 + λ
dvi0

dt
+ O(e−3λt). (34)

We have

Pv⊥
i0

dJ

dt
= Pv⊥

i0

[
J −

N∑

i=1

mi(vi · J)vi

]
= (1 − λ)Pv⊥

i0
J +

N∑

i=1

mi(λ − vi · J)Pv⊥
i0

vi.

The term for i = i0 in this last sum vanishes and we have λ − vi · J = O(e−2λt)
for i �= i0, as well as |Pv⊥

i0
vi|2 = 1 − (vi0 · vi)2 = O(e−2λt). We therefore
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obtain Pv⊥
i0

dJ
dt = (1 − λ)Pv⊥

i0
J + O(e−3λt), and writing y = Pv⊥

i0
J = dvi0

dt , the

formula (34) becomes y′ = y − |y|2 vi0 + O(e−3λt). We of course have that y
is bounded, and we even know that y = 1

|J|Pv⊥
i0

Ω = O(e−λt). We can then

apply the result once by replacing |y|2 with O(e−2λt) to get y = O(e−2λt),
and then apply it a second time to obtain y = O(e−3λt). This already pro-
vides the result vi0(t) = −Ω∞ + O(e−3λt), and looking back at (33), we get
that dΩ

dt = O(e−3λt) and therefore Ω(t) = −Ω∞ + O(e−3λt).
It remains to prove the more precise estimates for vi when i �= i0, and this

is done exactly as in the proof of Proposition 9, from formula (29) to the end of
the proof, now we know that dΩ

dt = O(e−3λt). The only difference is that vi · J
converges to λ instead of 1, together with the fact that all rates are multiplied
by λ. For instance, the main estimate (30) becomes

d2vi

dt2
= −λ

dvi

dt
−

∣∣∣
dvi

dt

∣∣∣
2

vi + O(e−3λt),

and the rest of the proof does not change. 
�
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Abstract. We study an oriented first passage percolation model for the
evolution of a river delta. This model is exactly solvable and occurs as the
low temperature limit of the beta random walk in random environment.
We analyze the asymptotics of an exact formula from [13] to show that, at
any fixed positive time, the width of a river delta of length L approaches a
constant times L2/3 with Tracy-Widom GUE fluctuations of order L4/9.
This result can be rephrased in terms of particle systems. We introduce
an exactly solvable particle system on the integer half line and show that
after running the system for only finite time the particle positions have
Tracy-Widom fluctuations.

Keywords: KPZ universality · First passage percolation ·
Exclusion processes · Tracy-Widom distribution · Integrable probability

1 Model and Results

1.1 Introduction

First passage percolation was introduced in 1965 to study a fluid spreading
through a random environment [37]. This model has motivated many tools in
modern probability, most notably Kingman’s sub-additive ergodic theorem (see
the review [5] and references therein); it has attracted attention from mathe-
maticians and physicists alike due to the simplicity of its definition, and the ease
with which fascinating conjectures can be stated.

The Kardar-Parisi-Zhang (KPZ) universality class has also become a central
object of study in recent years [27]. Originally proposed to explain the behavior
of growing interfaces in 1986 [39], it has grown to include many types of models
including random matrices, directed polymers, interacting particle systems, per-
colation models, and traffic models. Much of the success in studying these has
come from the detailed analysis of a few exactly solvable models of each type.

We study an exactly solvable model at the intersection of percolation theory
and KPZ universality: Bernoulli-exponential first passage percolation (FPP).
Here is a brief description (see Definition 1 for a more precise definition).
Bernoulli-exponential FPP models the growth of a river delta beginning at the
c© Springer Nature Switzerland AG 2019
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origin in Z
2
≥0 and growing depending on two parameters a, b > 0. At time 0,

the river is a single up-right path beginning from the origin chosen by the rule
that whenever the river reaches a new vertex it travels north with probability
a/(a + b) and travels east with probability b/(a + b) (thick black line in Fig. 1).
The line with slope a/b can be thought of as giving the direction in which the
expected elevation of our random terrain decreases fastest.

(0, 0)

Fig. 1. A sample of the river delta (Bernoulli-exponential FPP percolation cluster)
near the origin. The thick black random walk path corresponds to the river (percolation
cluster) at time 0. The other thinner and lighter paths correspond to tributaries added
to the river delta (percolation cluster) at later times.

As time passes, the river erodes its banks creating forks. At each vertex
which the river leaves in the rightward (respectively upward) direction, it takes
an amount of time distributed as an exponential random variable with rate a
(resp. b) for the river to erode through its upward (resp. rightward) bank. Once
the river erodes one of its banks at a vertex, the flow at this vertex branches to
create a tributary (see gray paths in Fig. 1). The path of the tributary is selected
by the same rule as the path of the time 0 river, except that when the tributary
meets an existing river it joins the river and follows the existing path. The full
path of the tributary is added instantly when the river erodes its bank.

In this model the river is infinite, and the main object of study is the set of
vertices included in the river at time t, i.e. the percolation cluster. We will also
refer to the shape enclosed by the outermost tributaries at time t as the river
delta (see Fig. 2 for a large scale illustration of the river delta).

The model defined above can also be seen as the low temperature limit of
the beta random walk in random environment (RWRE) model [13], an exactly
solvable model in the KPZ universality class. Bernoulli-exponential FPP is par-
ticularly amenable to study because an exact formula for the distribution of the
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percolation cluster’s upper border (Theorem 3 below) can be extracted from an
exact formula for the beta RWRE [13]. We perform an asymptotic analysis on
this formula to prove that at any fixed time, the width of the river delta satis-
fies a law of large numbers type result with fluctuations converging weakly to
the Tracy-Widom GUE distribution (see Theorem 2). Our law of large numbers
result was predicted in [13] by taking a heuristic limit of [13, Theorem 1.19];
we present this non-rigorous computation in Sect. 1.4. We also give other inter-
pretations of this result. In Sect. 1.6 we introduce an exactly solvable particle
system and show that the position of a particle at finite time has Tracy-Widom
fluctuations.

Fig. 2. The percolation cluster for 400×400 Bernoulli-exponential FPP at time 1 with
a = b = 1. Paths occurring earlier are shaded darker, so the darkest paths occur near
t = 0 and the lightest paths occur near t = 1.

1.2 Definition of the Model

We now define the model more precisely in terms of first passage percolation
following [13].
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Definition 1 (Bernoulli-exponential first passage percolation). Let Ee

be a family of independent exponential random variables indexed by the edges e
of the lattice Z

2
≥0. Each Ee is distributed as an exponential random variable with

parameter a if e is a vertical edge, and with parameter b if e is a horizontal edge.
Let (ζi,j) be a family of independent Bernoulli random variables with parameter
b/(a + b). We define the passage time te of each edge e in the lattice Z

2
≥0 by

te =

{
ζi,jEe if e is the vertical edge (i, j) → (i, j + 1),
(1 − ζi,j)Ee if e is the horizontal edge (i, j) → (i + 1, j).

We define the point to point passage time TPP(n,m) by

TPP(n,m) = min
π:(0,0)→(n,m)

∑
e∈π

te.

where the minimum is taken over all up-right paths from (0, 0) to (n,m). We
define the percolation cluster C(t), at time t, by

C(t) =
{
(n,m) : TPP(n,m) ≤ t

}
.

At each time t, the percolation cluster C(t) is the set of points visited by a
collection of up-right random walks in the quadrant Z

2
≥0. C(t) evolves in time

as follows:

– At time 0, the percolation cluster contains all points in the path of a directed
random walk starting from (0, 0), because at any vertex (i, j) we have passage
time 0 to either (i, j + 1) or (i + 1, j) according to the independent Bernoulli
random variables ζi,j .

– At each vertex (i, j) in the percolation cluster C(t), with an upward (resp.
rightward) neighbor outside the cluster, we add a random walk starting from
(i, j) with an upward (resp. rightward) step to the percolation cluster with
exponential rate (a) (resp. b). This random walk will almost surely hit the
percolation cluster after finitely many steps, and we add to the percolation
cluster only those points that are in the path of the walk before the first
hitting point (see Fig. 1).

Define the height function Ht(n) by

Ht(n) = sup{m ∈ Z≥0|TPP(n,m) ≤ t}, (1)

so that (n,Ht(n)) is the upper border of C(t).

1.3 History of the Model and Related Results

Bernoulli-exponential FPP was first introduced in [13], which introduced an
exactly solvable model called the beta random walk in random environment
(RWRE) and studied Bernoulli-exponential FPP as a low temperature limit of
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this model (see also the physics works [49,50] further studying the Beta RWRE
and some variants). The beta RWRE was shown to be exactly solvable in [13]
by viewing it as a limit of q-Hahn TASEP, a Bethe ansatz solvable particle
system introduced in [44]. The q-Hahn TASEP was further analyzed in [20,28,
54], and was recently realized as a degeneration of the higher spin stochastic six
vertex model [2,15,25,31], so that Bernoulli-exponential FPP fits as well in the
framework of stochastic spin models.

Tracy-Widom GUE fluctuations were shown in [13] for Bernoulli-exponential
FPP (see Theorem 1) and for Beta RWRE. In the Beta RWRE these fluctuations
occur in the quenched large deviation principle satisfied by the random walk and
for the maximum of many random walkers in the same environment.

The connection to KPZ universality was strengthened in subsequent works.
In [30] it was shown that the heat kernel for the time reversed Beta RWRE
converges to the stochastic heat equation with multiplicative noise. In [9] it was
shown using a stationary version of the model that a Beta RWRE conditioned
to have atypical velocity has wandering exponent 2/3 (see also [26]), as expected
in general for directed polymers in 1+1 dimensions. The stationary structure of
Bernoulli-exponential FPP was computed in [48] (In [48] Bernoulli-exponential
FPP is referred to as the Bernoulli-exponential polymer).

The first occurrence of the Tracy-Widom distribution in the KPZ universality
class dates back to the work of Baik, Deift and Johansson on longest increas-
ing subsequences of random permutations [7] (the connection to KPZ class was
explained in e.g. [45]) and the work of Johansson on TASEP [38]. In the past
ten years, following Tracy and Widom’s work on ASEP [51–53] and Borodin and
Corwin’s Macdonald processes [16], a number of exactly solvable 1 + 1 dimen-
sional models in the KPZ universality class have been analyzed asymptotically.
Most of them can be realized as more or less direct degenerations of the higher-
spin stochastic six-vertex model. This includes particle systems such as exclusion
processes (q-TASEP [10,22,33,43] and other models [6,12,36,54]), directed poly-
mers ([17,18,21,32,40,42]), and the stochastic six-vertex model [1,3,11,19,24].

1.4 Main Result

The study of the large scale behavior of passage times TPP(n,m) was initiated in
[13]. At large times, the fluctuations of the upper border of the percolation cluster
(described by the height function Ht(n)) has GUE Tracy-Widom fluctuations
on the scale n1/3.

Theorem 1 ([13, Theorem 1.19]). Fix parameters a, b > 0. For any θ > 0 and
x ∈ R,

lim
n→∞P

(
Hτ(θ)n − κ(θ)n

ρ̃(θ)n1/3
≤ x

)
= FGUE(x), (2)
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where FGUE is the GUE Tracy-Widom distribution (see Definition 3) and κ(θ),
τ(θ), ρ̃(θ) = κ′(θ)

τ ′(θ)ρ(θ) are functions defined in [13] by

κ(θ) :=
1
θ2 − 1

(a+θ)2

1
(a+θ)2 − 1

(a+b+θ)2

,

τ(θ) :=
1

a + θ
− 1

θ
+ κ(θ)

(
1

a + θ
− 1

a + b + θ

)
=

a(a + b)
θ2(2a + b + 2θ)

,

ρ(θ) :=
[

1
θ3

− 1
(a + θ)3

+ κ(θ)
(

1
(a + b + θ)3

− 1
(a + θ)3

)]1/3

.

Note that as θ ranges from 0 to ∞, κ(θ) ranges from +∞ to a/b and τ(θ)
ranges from +∞ to 0.

Remark 1. In [13] the limit theorem is incorrectly stated as

lim
n→∞P

(
mini≤n TPP(i, κ(θ)n) − τ(θ)n

ρ(θ)n1/3
≤ x

)
= FGUE(x),

but following the proof in [13, Section 6.1], we can see that the inequality and the
sign of x should be reversed. Further, we have reinterpreted the limit theorem
in terms of height function Ht(n) instead of passage times TPP(n,m) using the
relation (1).

In this paper, we are interested in the fluctuations of Ht(n) for large n but
fixed time t. Let us scale θ in (2) above as

θ =
(

na(a + b)
2t

)1/3

,

so that
τ(θ)n = t + O(n−1/3).

Let us introduce constants

λ =
(

a(a + b)
2t

)1/3

, d =
3a(a + b)

2bλ
, σ =

(
3a(a + b)λ

2b3

)1/3

. (3)

Then, we have the approximations

κ(θ)n =
a

b
n + dn2/3 + o(n4/9),

ρ̃(θ)n1/3 = σn4/9 + o(n4/9).

Thus, formally letting θ and n go to infinity in (2) suggests that for a fixed time
t, it is natural to scale the height function as

Ht(n) =
a

b
n + dn2/3 + σn4/9χn,

and study the asymptotics of the sequence of random variables χn.
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Our main result is the following.

Theorem 2. Fix parameters a, b > 0. For any t > 0 and x ∈ R,

lim
n→∞P

(
Ht(n) − a

b n − dn2/3

σn4/9
≤ x

)
= FGUE(x),

where FGUE is the GUE Tracy-Widom distribution.

Note that the heuristic argument presented above to guess the scaling expo-
nents and the expression of constants d and σ is not rigorous, since Theorem 1
holds for fixed θ. Theorem 1 could be extended without much effort to a weak
convergence uniform in θ for θ varying in a fixed compact subset of (0,+∞).
However the case of θ and n simultaneously going to infinity requires more care-
ful analysis. Indeed, for θ going to infinity very fast compared to n, Tracy-Widom
fluctuations would certainly disappear as this would correspond to considering
the height function at time τ(θ)n ≈ 0, that is a simple random walk having
Gaussian fluctuations on the n1/2 scale. We explain in the next section how we
shall prove Theorem 2.

The scaling exponents in Theorem 2 might seem unusual, although the pre-
ceding heuristic computation explains how they result from rescaling a model
which has the usual KPZ scaling exponents. A similar situation occurs for scal-
ing exponents of the height function of directed last passage percolation in thin
rectangles [8,14] and for the free energy of directed polymers [4] under the same
limit.

1.5 Outline of the Proof

Recall that given an integral kernel K : C2 → C, its Fredholm determinant is
defined as

det(1 + K)L2(C) :=
1

2πi

∞∑
n=0

1
n!

∫
Cn

det[K(xi, xj)]ni,j=1dx1...dxn.

To prove Theorem 2 we begin with the following Fredholm determinant formula
for P(Ht(n) < m), and perform a saddle point analysis.

Theorem 3. ([13, Theorem 1.18]).

P(Ht(n) < m) = det(I − Kn)L2(C0),

where C0 is a small positively oriented circle containing 0 but not −a − b, and
Kn : L2(C0) → L

2(C0) is defined by its integral kernel

Kn(u, u′) =
1

2πi

∫ 1/2+i∞

1/2−i∞

ets

s

g(u)
g(s + u)

ds

s + u − u′ , where (4)

g(u) =
(

a + u

u

)n(
a + u

a + b + u

)m 1
u

. (5)
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Remark 2. Note that [13, Theorem 1.18] actually states P(Ht(n) < m) = det(I+
Kn)L2(C0), instead of det(I − Kt,n)L2(C0) due to a sign mistake.

This result was proved in [13] by taking a zero-temperature limit of a similar
formula for the Beta RWRE obtained using the Bethe ansatz solvability of q-
Hahn TASEP and techniques from [16,22]. The integral (4) above is oscillatory
and does not converge absolutely, but we may deform the contour so that it
does. We will justify this deformation in Sect. 2.2.

Theorem 2 is proven in Sect. 2 by applying steep descent analysis to
det(1 − Kn), however the proofs of several key lemmas are deferred to later
sections. The main challenge in proving Theorem 2 comes from the fact that,
after a necessary change of variables ω = n−1/3u, the contours of the Fredholm
determinant are being pinched between poles of the kernel Kn at ω = 0 and
ω = −a−b

n1/3 as n → ∞. In order to show that the integral over the contour near
0 does not affect the asymptotics, we prove bounds for Kn near 0, and carefully
choose a family of contours Cn on which we can control the kernel. This quite
technical step is the main goal of Sect. 3. Section 4 is devoted to bounding the
Fredholm determinant expansion of det(1−Kn)L2(Cn), in order to justify the use
of dominated convergence in Sect. 2.

1.6 Other Interpretations of the Model

There are several equivalent interpretations of Bernoulli-exponential first passage
percolation. We will present the most interesting here.

A Particle System on the Integer Line. The height function of the percola-
tion cluster Ht(n) is equivalent to the height function of an interacting particle
system we call geometric jump pushTASEP, which generalizes pushTASEP (the
R = 0 limit of PushASEP introduced in [23]) by allowing jumps of length greater
than 1. This model is similar to Hall-Littlewood pushTASEP introduced in [36],
but has a slightly different particle interaction rule.

Definition 2 (Geometric jump pushTASEP). Let Geom(q) denote a geo-
metric random variable with P(Geom(q) = k) = qk(1 − q). Let 1 ≤ p1(t) <
p2(t) < ... < pi(t) < ... be the positions of ordered particles in Z≥1. At time
t = 0 the position n ∈ Z≥0 is occupied with probability b/(a + b). Each particle
has an independent exponential clock with parameter a, and when the clock cor-
responding to the particle at position pi rings, we update each particle position pj

in increasing order of j with the following procedure. (pi(t−) denotes the position
of particle i infinitesimally before time t.)

– If j < i, then pj does not change.
– pi jumps to the right so that the difference pi(t) − pi(t−) is distributed as

1 + Geom(a/(a + b))
– If j > i, then

• If the update for pj−1(t) causes pj−1(t) ≥ pj(t−), then pj(t) jumps right
so that pj(t) − pj−1(t) is distributed as 1 + Geom(a/(a + b)).
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• Otherwise pj does not change.
• All the geometric random variables in the update procedure are

independent.

Fig. 3. This figure illustrates a single update for geometric jump pushTASEP. The
clock corresponding to the leftmost particle rings, activating the particle. The first
particle jumps 2 steps pushing the next particle and activating it. This particle jumps
1 step pushing the rightmost particle and activating it. The rightmost particle jumps
3 steps, and all particles are now in their original order, so the update is complete.

Another way to state the update rule is that each particle jumps with expo-
nential rate a, and the jump distance is distributed as 1 + Geom(a/(a + b)).
When a jumping particle passes another particle, the passed particle is pushed
a distance 1 + Geom(a/(a + b)) past the jumping particle’s ending location
(see Fig. 3).

The height function Ht(n) at position n and time t is the number of unoccu-
pied sites weakly to the left of n. If we begin with the distribution of (n,Ht(n)) in
our percolation model, and rotate the first quadrant clockwise 45◦, the resulting
distribution is that of (n,Ht(n)). The horizontal segments in the upper border
of the percolation cluster correspond to the particle positions, thus

Ht(n) = pt(n) − n = sup{k : Ht(n + k) ≥ k}.

A direct translation of Theorem 2 gives:

Corollary 1. Fix parameters a, b > 0. For any t > 0 and x ∈ R,

lim
n→∞P

(
pt(n) − (

a+b
b

)
n − dn2/3

σn4/9
≤ x

)
= FGUE(x),

where FGUE(x) is the Tracy-Widom GUE distribution.

To the authors knowledge Corollary 1 is the first result in interacting particle
systems showing Tracy-Widom fluctuations for the position of a particle at finite
time.
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Degenerations. If we set b = 1, t′ = t/a, and a → 0, then in the new time
variable t′ each particle performs a jump with rate 1 and with probability going to
1, each jump is distance 1, and each push is distance 1. This limit is pushTASEP
on Z≥0 where every site is occupied by a particle at time 0. Recall that in
pushTASEP, the dynamics of a particle are only affected by the (finitely many)
particles to its left, so this initial data makes sense.

We can also take a continuous space degeneration. Let x be the spatial coor-
dinate of geometric jump pushTASEP, and let exp(λ) denote an exponential ran-
dom variable with rate λ. Choose a rate λ > 0, and set b = λ

n , x′ = x/n, a = n−λ
n ,

and let n → ∞. Then our particles have jump rate n−λ
n → 1, jump distance

Geom(1−λ/n)
n → exp(λ), and push distance Geom(1−λ/n)

n → exp(λ). This is a con-
tinuous space version of pushTASEP on R≥0 with random initial conditions such
that the distance between each particle position pi and its rightward neighbor
pi+1 is an independent exponential random variable of rate λ. Each particle
has an exponential clock, and when the clock corresponding to the particle at
position pi rings, an update occurs which is identical to the update for geo-
metric jump pushTASEP except that each occurrence of the random variable
1 + Geom(a/(a + b)) is replaced by the random variable exp(λ).

A Benchmark Model for Travel Times in a Square Grid City. The
first passage times of Bernoulli-exponential FPP can also be interpreted as the
minimum amount of time a walker must wait at streetlights while navigating a
city [29]. Consider a city, whose streets form a grid, and whose stoplights have
i.i.d exponential clocks. The first passage time of a point (n,m) in our model has
the same distribution as the minimum amount of time a walker in the city has
to wait at stoplights while walking n streets east and m streets north. Indeed
at each intersection the walker encounters one green stoplight with zero passage
time and one red stoplight at which they must wait for an exponential time.
Note that while the first passage time is equal to the waiting time at stoplights
along the best path, the joint distribution of waiting times of walkers along
several paths is different from the joint passage times along several paths in
Bernoulli-exponential FPP.

1.7 Further Directions

Bernoulli-exponential FPP has several features that merit further investigation.
From the perspective of percolation theory, it would be interesting to study how
long it takes for the percolation cluster to contain all vertices in a given region,
or how geodesics from the origin coalesce as two points move together.

From the perspective of KPZ universality, it is natural to ask: what is the
correlation length of the upper border of the percolation kernel, and what is the
joint law of the topmost few paths.

Under diffusive scaling limit, the set of coalescing simple directed random walks
originating from every point of Z2 converges to the Brownian web [34,35]. Hence
the set of all possible tributaries in our model converges to the Brownian web.
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One may define a more involved set of coalescing and branching random walks
which converges to a continuous object called the Brownian net ([41], [47], see
also the review [46]). Thus, it is plausible that there exist a continuous limit
of Bernoulli-Exponential FPP where tributaries follow Brownian web paths and
branch at a certain rate at special points of the Brownian web used in the construc-
tion of the Brownian net.

After seeing Tracy-Widom fluctuations for the edge statistics it is natural to
ask whether the density of vertices inside the river along a cross section is also
connected to random matrix eigenvalues and whether a statistic of this model
converges to the positions of the second, third, etc. eigenvalues of the Airy point
process.

1.8 Notation and Conventions

We will use the following notation and conventions.

– Bε(x) will denote the open ball of radius ε > 0 around the point x.
– Re[x] will denote the real part of a complex number x, and Im[x] denotes the

imaginary part.
– C and γ with any upper or lower indices will always denote an integration

contour in the complex plane. K with any upper or lower indices will always
represent an integral kernel. A lower index like γr, Cn, or Kn will usually
index a family of contours or kernels. An upper index such as γε, Cε, or Kε

will indicate that we are intersecting our contour with a ball of radius ε, or
that the integral defining the kernel is being restricted to a ball of radius ε.

2 Asymptotics

2.1 Setup

The steep descent method is a method for finding the asymptotics of an integral
of the form

IM =
∫

C
eMf(z)dz,

as M → ∞, where f is a holomorphic function and C is an integration contour
in the complex plane. The technique is to find a critical point z0 of f , deform
the contour C so that it passes through z0 and Re[f(z)] decays quickly as z
moves along the contour C away from z0. In this situation eMf(z0)/eMf(z) has
exponential decay in M . We use this along with specific information about our
f and C, to argue that the integral can be localized at z0, i.e. the asymptotics of∫

C∩Bε(z0)
eMf(z)dz are the same as those of IM . Then we Taylor expand f near z0

and show that sufficiently high order terms do not contribute to the asymptotics.
This converts the first term of the asymptotics of IM into a simpler integral that
we can often evaluate.

In Sect. 2.1 we will manipulate our formula for P(h(n) < m), and find a
function f1 so that the kernel Kn can be approximated by an integral of the form
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∫
λ+iR

en1/3[f1(z)−f1(ω)]dz. Approximating Kn in this way will allow us to apply
the steep descent method to both the integral defining Kn and the integrals over
C0 in the Fredholm determinant expansion.

For the remainder of the paper we fix a time t > 0, and parameters a, b > 0.
All constants arising in the analysis below depend on those parameters t, a, b,
though we will not recall this dependency explicitly for simplicity of notation.

We also fix henceforth

m =
⌊a

b
n + dn2/3 + n4/9σx

⌋
. (6)

We consider Kn and change variables setting z̃ = s + u, dz̃ = ds to obtain

K̃n(u, u′) =
1

2πi

∫ 1/2+u+i∞

1/2+u−i∞

et(z̃−u)

(z̃ − u)(z̃ − u′)
g(u)
g(z̃)

dz̃.

In the following lemma, we change our contour of integration in the z̃ variable
so that it does not depend on u.

Lemma 1. For every fixed n,

K̃n(u, u′) =
1

2πi

∫
n1/3λ+iR

et(z̃−u)

(z̃ − u)(z̃ − u′)
g(u)
g(z̃)

dz̃.

Proof. Choose the contour C0 to have radius 0 < r < min[1/4, λ]. This choice of
r means that we do not cross C0 when deforming the contour 1/2 + u + iR to
λ + iR. In this region K is a holomorphic function, so this deformation does not
change the integral provided that for M real,

1
2πi

∫ n1/3λ+iM

1/2+u+iM

et(z̃−u)

(z̃ − u)(z̃ − u′)
g(u)
g(z̃)

dz̃ −−−−−→
M→±∞

0.

This integral converges to 0 because for all z̃ ∈ [n1/3λ − iM, 1/2 + u − iM ] ∪
[n1/3λ + iM, 1/2 + u + iM ] we have∣∣∣∣ 1

(z̃ − u)(z̃ − u′)g(z̃)

∣∣∣∣ ∼ 1
M

,

as M → ∞.

Set

h̃n(z) = −n log
(

a + z

z

)
− m log

(
a + z

a + b + z

)
, so that eh̃n(z) =

z

g(z)
.

Then

Kn(u, u′) =
1

2πi

∫
n1/3λ+iR

etz̃+h̃n(z̃)

etu+h̃n(u)

z̃

u

dz̃

(z̃ − u)(z̃ − u′)
.
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Now perform the change of variables

z = n−1/3z̃, ω = n−1/3u, ω′ = n−1/3u′.

If we view our change of variables as occuring in the Fredholm determinant
expansion, then due to the dωis, we see that scaling all variables by the same
constant does not change the Fredholm determinant det(1 −Kn)L2(C). Thus our
change of variables gives

Kn(ω, ω′) =
1

2πi

∫
λ+iR

en1/3t(z−ω)

(z − ω)(z − ω′)
ehn(z)−hn(ω) z

ω
dz

where

hn(z) = h̃n(n1/3z) = −n log
(

a + n1/3z

n1/3z

)
− m log

(
a + n1/3z

a + b + n1/3z

)
.

Remark 3. The contour for ω, ω′ becomes n−1/3C0 after the change of variables,
but Kn(ω, ω′) is holomorphic in most of the complex plane. Examining of the
poles of the integrand for Kn(ω, ω′), we see that we can deform the contour for
ω, ω′ in any way that does not cross the line λ+ iR, the pole at −(a+b)/n1/3, or
the pole at 0, without changing the Fredholm determinant det(I−Kn)L2(n−1/3C0).

Taylor expanding the logarithm in the variable n gives

hn(z) = −n1/3

(
a(a + b)

2z2
− bd

z

)
− n1/9

(−bσx

z

)
+ rn(z).

Here rn(z) = O(1) in a sense that we make precise in Lemma 3. The kernel can
be rewritten as

Kn(ω, ω′) =

1

2πi

∫
λ+iR

exp(n1/3(f1(z) − f1(w)) + n1/9(f2(z) − f2(ω)) + (rn(z) − rn(ω)))

(z − ω)(z − ω′)
z

ω
dz

where

f1(z) = tz − a(a + b)
2z2

+
bd

z
, f2(z) =

bσx

z
. (7)

We have approximated the kernel as an integral of the form
∫

en1/3[f1(z)−f1(ω)]dz.
To apply the steep-descent method, we want to understand the critical points of
the function f1. We have

f
′
1(z) = t +

a(a + b)

z3
− db

z2
, f

′′
1 (z) = − 3a(a + b)

z4
+

2bd

z3
, f

′′′
1 (z) =

12a(a + b)

z5
− 6bd

z4
. (8)
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Where a, b are the parameters associated to the model. Let the constant λ be as
defined in (3), then 0 = f ′

1(λ) = f ′′
1 (λ) = 0, and

f ′′′
1 (λ) =

3a(a + b)
λ5

= 2
(

bσ

λ2

)3

= 2
(−f ′

2(λ)
x

)3

,

is a positive real number. σ is defined in Eq. (3).
Recall the definition of the Tracy-Widom GUE distribution, which governs

the largest eigenvalue of a gaussian hermitian random matrix.

Definition 3. The Tracy-Widom distribution’s distribution function is defined
as FGUE(x) = det(1 − KAi)L2(x,∞), where KAi is the Airy kernel,

KAi(s, s′) =
1

2πi

∫ e2πi/3∞

e−2πi/3∞
dω

1
2πi

∫ eπi/3∞

e−πi/3∞
dz

ez3/3−zs

eω3/3−ωs′
1

(z − ω)
.

In the above integral the two contours do not intersect. We can think of the
inner integral following the contour (e−πi/3∞, 1] ∪ (1, eπi/3∞), and the outer
integral following the contour (e−2πi/3∞, 0]∪ (0, e2πi/3∞). Our goal through the
rest of the paper is to show that the Fredholm determinant det(I−Kn) converges
to the Tracy-Widom distribution as n → ∞.

2.2 Steep Descent Contours

Definition 4. We say that a path γ : [a, b] → C is steep descent with respect
to the function f at the point x = γ(0) if d

dtRe[f(γ(t))] > 0 when t > 0, and
d
dtRe[f(γ(t))] < 0 when t < 0.

We say that a contour C is steep descent with respect to a function f at a
point x, if the contour can be parametrized as a path satisfy the above definition.
Intuitively this statement means that as we move along the contour C away from
the point x, the function f is strictly decreasing.

In this section we will find a family of contours γr for the variable z and so
that γr is steep descent with respect to Re[f1(z)] at the point λ, and study the
behavior of Re[f1]. The contours Cn for ω are constructed in Sect. 3.

Lemma 2. The contour λ + iR is steep descent with respect to the function
Re[f1] at the point λ.

Proof. We have that

d

dy
Re[f1(λ + iy)] = −Im[f ′

1(λ + iy)] = −Im

[
t +

a(a + b)
(λ + iy)3

− bd

λ + iy

]
.

Now using the relation 2bdλ = 3a(a + b) and computing gives

d

dy
Re[f1(λ + iy)] =

−4a(a + b)y3

(λ2 + y2)3
.

This derivative is negative when y > 0 and positive when y < 0.
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Fig. 4. The level lines of the function Re[f1(z)] at value Re[f1(λ)]. In this image we
take a = b = t = 1.

Now we describe the contour lines of Re[f1(z)] seen in Fig. 4. Re[f1] is the real
part of a holomorphic function, so its level lines are constrained by its singular-
ities, and because the singularities are not too complicated, we can describe its
level lines. The contour lines of the real part of a holomorphic function intersect
only at critical points and poles and the number of contour lines that intersect
will be equal to the degree of the critical point or pole. We can see from the
Taylor expansion of f1 at λ, that there will be 3 level lines intersecting at λ with
angles π/6, π/2, and 5π/6. From the form of f1, we see that there will be 2 level
lines intersecting at 0 at angles π/4 and 3π/4, and that a pair of contour lines
will approach i∞ and −i∞ respectively with Re[z] approaching f1(λ)/t. This
shows that, up to a noncrossing continuous deformation of paths, the lines in
Fig. 4 are the contour lines Re[f1(z)] = f1(λ). We can also see that on the right
side of the figure, tz will be the largest term of Re[f1(z)], so our function will
be positive. This determines the sign of Re[f1(z)] in the other regions.

Our contour λ + iR is already steep descent, but we will deform the tails, so
that we can use dominated convergence in the next section.

Definition 5. For any r > 0, define the contour γr = (e−2πi/3∞, λ − ri) ∪ [λ −
ri, λ + ri] ∪ (λ + ri, e2πi/3∞) and γε

r = γr ∩ Bε(λ). These contours appear in
Fig. 5.

Because for any fixed n, we have ehn(z) → 1 as |z| → ∞, z
ω(z−ω)(z−ω′) has

linear decay in z, and en1/3t(z−ω) has exponential decay in z, we can deform the
vertical contour λ + iR to the contour γr. Thus

Kn(ω, ω′) =
∫

γr

en1/3t(z−ω)

(z − ω)(z − ω′)
ehn(z)−hn(ω) z

ω
dz.

The function Re[f1] is still steep descent on the contour γr with respect to the
point λ. Lemma 2 shows that Re[f1] is steep descent on the segment [λ−ri, λ+ri],
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e−2πi/3∞

e2πi/3∞

0

λ + ir

λ − ir

λ

λ + iε

λ − iε

Fig. 5. The contour γr is the infinite piecewise linear curve formed by the union of the
vertical segment and the two semi infinite rays, oriented from bottom to top. The bold
portion of this contour near λ is γε

r .

and on (e−2πi/3∞, λ − ri) ∪ (λ + ri, e2πi/3∞) we inspect f ′
1(z) and note that for

z sufficiently large, the constant term t dominates the other terms. Because our
paths are moving in a direction with negative real component the contour γr is
steep descent.

Up to this point we have been concerned with contours being steep descent
with respect to Re[f1], but the true function in our kernel is exp(n1/3t(z − ω) +
hn(z)−hn(ω)). To show that γr is steep descent with respect to this function, we
will need to control the error term n1/3tz+hn(z)−n1/3f1(z) = n1/9f2(z)+rn(z).
The following lemma gives bounds on this error term away from z = 0.

Lemma 3. For any N, ε > 0 there is a constant C depending only on ε,N such
that

|f2(ω)| ≤ C and |rn(ω)| ≤ C, (9)

for all n ≥ N, and ω ≥ |a+b|+ε
N1/3 .

Similarly for any δ > 0, there exists Nδ and C ′ depending only on δ, such
that

|f ′
2(ω)| ≤ C ′ and |r′

n(ω)| ≤ C ′, (10)

for all n ≥ Nδ, and ω satisfying |ω| ≥ δ.

Lemma 3 is proved in Sect. 3.
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At this point we have a contour γr for the variable z, which is steep descent
with respect to Re[f1]. We want to find a suitable contour for ω. The following
lemma shows the existence of such a contour Cn, where property (c) below takes
the place of being steep descent. This lemma is fairly technical and its proof is
the main goal of Sect. 3. To see why observe that the function n1/3f1(ω) does not
approximate n1/3tω−hn(ω) well when ω is near 0. The fact that the contribution
near 0 is negligible is nontrivial because the function n1/3tω − hn(ω) has poles
at 0 and −a−b

n1/3 , and our contour Cn is being pinched between them; we will use
Lemma 4 to show that the asymptotics of det(1 −Kn)L2(Cn) are not affected by
these poles

Lemma 4. There exists a sequence of contours {Cn}n≥N such that:

(a) For all n, the contour Cn encircles 0 counterclockwise, but does not encircle
(−a − b)n−1/3.

(b) Cn intersects the point λ at angles −π/3 and −2π/3.
(c) For all ε > 0, there exists η,Nε > 0 such that for all n > Nε, ω ∈ Cn \ Cε

n

and z ∈ γr, we have

Re[n1/3t(z − ω) + hn(z) − hn(ω)] ≤ −n1/3η,

where Cε
n = Cn ∩ Bε(λ).

(d) There is a constant C such that for all ω ∈ Cn,

Re[n1/3t(λ − ω) + hn(λ) − hn(ω)] ≤ n1/9C.

The next lemma allows us to control Re[n1/3tz + hn(z)] on the contour γr.

Lemma 5. For all ε > 0, and for sufficiently large r, there exists C,Nε > 0,
such that for all ω ∈ Cn, and z ∈ γr \ γε

r , then

Re[hn(z) − hn(ω) + n1/3t(z − ω)] ≤ −n−1/3C.

Proof. We have already shown that γr is steep descent with respect to f1(z).
By Lemma 3, |rn| ≤ C, |f2| ≤ Cn1/9 away from 0. We have

hn(z) − hn(ω) + n1/3t(z − ω) =n1/3(f1(z) − f1(ω)) + n1/9(f2(z) − f2(ω)) + (rn(z) − rn(ω))

≤ n1/3(f1(z)−f1(ω)) + n1/9C + C ≤ n1/3(f1(z) − f1(ω) + δ),

for any sufficiently small δ > 0. Because f1(z) is decreasing as we move away
from λ, we have

n1/3tz + hn(z) < n1/3tλ + hn(λ) + Cn1/9.

Thus by 3, we have that for all ε > 0 there exists C such that for z ∈ γr \ γε
r ,

Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n1/3C.

By Lemma 4(d), we have

Re[hn(λ) − hn(ω) + n1/3t(λ − ω)] ≤ n1/9C,

for ω ∈ Cn. This completes the proof
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2.3 Localizing the Integral

In this section we will use Lemmas 4 and 5 to show that the asymptotics of
det(1 − Kn)L2(Cn) do not change if we replace Cn with Cε

n = Cn ∩ Bε(λ), and
replace the contour γr defining Kn with the contour γε

r = γr ∩ Bε(0).
First we change variables setting z = λ + n−1/9z, ω = λ + n−1/9ω, and

ω′ = λ + n−1/9z.

Definition 6. Define the contours D0 = [−i∞, i∞], and Dδ
0 = D0 ∩Bδ(0). (We

will often use δ = n1/9ε.)

Our change of variables applied to the kernel Kε
n gives

K
ε
n(ω, ω′) =

1

2πi

∫
Dn1/9ε

0

1

(z − ω)(z − ω′)
(λ + n−1/9z)

(λ + n−1/9ω)
en1/3f1(λ+n−1/9z)−f1(λ+n−1/9ω)

× en1/9f2(λ+n−1/9z)−f2(λ+n−1/9ω)ern(λ+n−1/9z)−rn(λ+n−1/9ω)dz. (11)

Definition 7. The contours C−1 and Cε
−1 are defined as C−1 = (e−2πi/3∞,−1)∪

[−1, e2πi/3∞) and Cε
−1 = C−1 ∩ Bn1/9ε(−1).

By changing variables, for each m we have

∫
(Cε

n)m

det(Kε
n(ωi, ωj))

m
i,j=1dω1...dωm =

∫
(Cn1/9ε

−1 )m

det(K
ε
n(ωi, ωj))

m
i,j=1dω1...dωm.

This equality follows, because after rescaling the contour Cε
n, we can deform it to

the contour Cn1/9ε
−1 without changing its endpoints. The previous equality implies

det(1 − Kε
n)L2(Cε

ε)
= det(1 − K

ε

n)
L2(Cn1/9ε

−1 )
.

We will make this change of variables often in the following arguments. Given a
contour such as Cn or γr, we denote the contour after the change of variables by
Cn or γr. Now we are ready to localize our integrals.

Proposition 1. For any sufficiently small ε > 0,

lim
n→∞ det(1 − Kn(ω, ω′))L2(C) = lim

n→∞ det(1 − Kε
n(ω, ω′))L2(Cε

n),

where

Kε
n =

1
2πi

∫
γε

r

en1/3t(z−ω)+hn(z)−hn(ω)

(z − ω)(z − ω′)
z

w
dz.

Proof. The proof will have two steps, and will use several lemmas that are proved
in Sect. 4. In the first step we localize the integral in the z variable and show
that limn→∞ det(1 − Kn)L2(Cε) = limn→∞ det(1 − Kε

n)L2(Cε) using dominated
convergence. In order to prove this, we appeal to Lemmas 12 and 13 to show
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that the Fredholm series expansions are indeed dominated. In the second step we
localize the integral in the ω, ω′ variables by using Lemma 14 to find an upper
bound for det(1 + Kn)L2(Cn) − det(1 + Kn)L2(Cε

n). Then we appeal to Lemma 15
to show that this upper bound converges to 0 as n → ∞.

Step 1: By Lemma 5, for any ε > 0, there exists a C ′, N > 0 such that if ω ∈ Cn

and z ∈ γr \ γε
r , then for all n > N ,

Re[hn(z) − hn(ω) + n1/3t(z − ω)] ≤ −n1/3C ′.

We bound our integrand on γr \ γε
r , ω, ω′ ∈ Cε

n,∣∣∣∣∣e
hn(z)−hn(ω)+n1/3t(z−ω)

(z − ω)(z − ω′)
z

ω

∣∣∣∣∣ ≤ C

δ2
ze−n1/3C′ pointwise−−−−−−→

n→∞ 0.

(the δ2 comes from the fact that |z − ω| ≥ δ). By Lemma 3, there exists a η > 0
such that for sufficiently large n,∣∣∣∣∣e

hn(z)−hn(ω)+n1/3t(z−ω)

(z − ω)(z − ω′)
z

ω

∣∣∣∣∣ <

∣∣∣∣∣e
n1/3(f1(z)−f1(ω)+η)

(z − ω)(z − ω′)
z

ω

∣∣∣∣∣ .
The linear term of f1(z) in (7) implies

1
2πi

∫
γr

∣∣∣∣∣e
n1/3(f1(z)−f1(ω)+η)

(z − ω)(z − ω′)
z

ω

∣∣∣∣∣ dz < ∞.

In the previous inequality we should write |dz| instead of dz. We will often
omit the absolute value in the dω portion of the complex integral when the
integrand is a positive real valued function.

So for each ω, ω′, by dominated convergence

1
2πi

∫
γr\γε

r

ehn(z)−hn(ω)+n1/3t(z−ω)

(z − ω)(z − ω′)
z

ω
dz → 0 as n → ∞,

So limn→∞ Kε
n(ω, ω′) = limn→∞ Kn(ω, ω′).

Now by Lemmas 12, and 13, both Fredholm determinant expansions det(1−
Kn)L2(Cε) and det(1 − Kε

n)L2(Cε), are absolutely bounded uniformly in n. Thus
we can apply dominated convergence to get

lim
n→∞ det(1 − Kn)L2(Cε) = lim

n→∞ det(1 − Kε
n)L2(Cε). (12)

Step 2: In the expansion

det(1 − Kn)L2(Cn) =
∞∑

m=0

1
m!

∫
(Cn)m

det(Kn(ωi, ω
′
j))

n
i,j=1dω1, ..., dωm.
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The mth term can be decomposed as the sum∫
(Cε

n)m

det(Kn(ωi, ωj))n
i,j=1dω1...dωm +

∫
Cm

n \(Cε
n)m

det(Kn(ωi, ωj))n
i,j=1dω1...dωm.

Lemma 14 along with Hadamard’s bound on the determinant of a matrix in
terms of it’s row norms, implies that when ω1 ∈ Cn \ Cε

n and ω2, ..., ωm ∈ Cn,

|det(Kn(ωi, ωj))m
i,j=1| ≤ mm/2Mm−1/2L4n

4/9e−n1/3η → 0 as n → ∞. (13)

Now let R be the maximum length of the paths Cn. The rescaled paths Cn will
always have length less than n1/9R. We have∫

Cm
n \(Cε

n)m

|det(Kn(ωi, ωj))m
i,j=1|dω1...dωm

≤ m

∫
Cn\Cε

n

dω1

∫
Cm−1

n

|det(Kn(ωi, ωj))m
i,j=1|dω2...dωm

≤ m

∫
Cn\Cε

n

dω1

∫
Cm−1

n

|det(Kn(ωi, ωj))m
i,j=1|dω2...dωm

≤
∫

Cn\Cε
n

dω1

∫
Cm−1

n

mm/2M (m−1)/2L4n
4/9e−n1/3ηdω2...dωm

≤ m(n1/9R)mmm/2M (m−1)/2L4n
4/9e−n1/3η

≤ e−n1/3η(n1/9)mm1+m/2(MR)mn4/9. (14)

The first inequality follows from symmetry of the integrand in the ωi. In the
second inequality, we change variables from ωi to ωi. In the third inequality we
use the first inequality of (13). In the fourth inequality, we use the fact that the
total volume of our multiple integral is less than (n1/9R)m. In the fifth inequality
we rewrite and use Mm > M (m−1)/2.

So we have
∞∑

m=1

1
m!

∫
Cm

n \(Cε
n)m

|det(Kn(ωi, ωj))m
i,j=1|dω1...dωm

≤
∞∑

m=1

1
m!

e−n1/3η(n1/9)mm1+m/2(MR)mn4/9

= n4/9e−n1/3η
∞∑

m=1

1
m!

(MRn1/9)mm1+m/2 (15)

Applying Lemma 15 with C = MRn1/9 gives.

n4/9e−n1/3η
∞∑

m=1

1

m!
(MRn1/9)mm1+m/2 ≤ n4/9e−n1/3

16(MRn1/9)4e2(MR)2n2/9 −−−−→
n→∞ 0.
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Thus
lim

n→∞ det(1 − Kn)L2(Cn) = lim
n→∞ det(1 − Kn)L2(Cε

n). (16)

Combining (12) and (16) concludes the proof of Proposition 1.

2.4 Convergence of the Kernel

In this section we approximate hn(z)−hn(ω)+n1/3t(z −ω) by its Taylor expan-
sion near λ, and show that this does not change the asymptotics of our Fredholm
determinant.

Proposition 2. For sufficiently small ε > 0,

lim
n→∞ det(1 − Kε

n)L2(Cε
ε)

= lim
n→∞ det(1 − K(x))L2(C−1),

where

K(x)(u, u′) =
1

2πi

∫
D′

es3/3−xs

eu3−xu

dz

(z − u)(z − u′)
,

and
D′ = (e−πi/3∞, 0) ∪ [0, eπi/3∞).

Proof. Let

K(ω, ω′) =
1

2πi

∫
D′

dz

(z − ω)(z − ω′)
ef ′′′

1 (λ)(z3−ω3)/6+f ′
2(λ)(z−ω), (17)

We have seen in Sect. 2.3 that

det(1 − Kε
n(ω, ω′))L2(Cε

ε)
= det(1 − K

ε

n(ω, ω′))
L2(Cn1/9ε

−1 )
.

The proof will have two main steps. In the first step we use dominated conver-
gence to show that

lim
n→∞ det(1 − K

ε

n(ω, ω′))
L2(Cn1/9ε

−1 )
= lim

n→∞ det(1 − K(x)(ω, ω′))
L2(Cn1/9ε

−1 )
.

In the second step we control the tail of the Fredholm determinant expansion to
show that

lim
n→∞ det(1 − K(x)(ω, ω′))

L2(Cn1/9ε
−1 )

= det(1 − K(x)(ω, ω′))L2(C−1).

In step 1 we will use Lemma 12 to establish dominated convergence.

Step 1: We have the following pointwise convengences

λ + n−1/9z

λ + n−1/9ω
→ 1,
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and for z = λ + n−1/9z̄, ω = λ + n−1/9ω,

n1/3(f1(z)− f1(ω))+n1/9(f2(z)− f2(ω))+ rn(z)− rn(ω) → 1

6
f ′′′
1 (λ)(z3 −ω3)+ f ′

2(λ)(z −ω).

(18)

Because z is purely imaginary, for each ω, ω′, the exponentiating the right hand
side of (18) gives a bounded function of z and z/ω ≤ |λ+ε|

|λ−ε| . The left hand side
of (18) can be chosen to be within δ/n1/9 of the right hand side by choosing ε
small by Taylor’s theorem, because all the functions on the left hand side are
holomorphic in Bε(λ). Thanks to the quadratic denominator 1

(z−ω)(z−ω′) , we can
apply dominated convergence to get

K
ε

n(ω, ω′)
pointwise−−−−−−→

n→∞
1

2πi

∫
iR

dz

(z − ω)(z − ω′)
ef ′′′

1 (λ)(z3−ω3)/6+f ′
2(λ)(z−ω). (19)

Because the integrand on the right hand side of (19) has quadratic decay in
z, we can deform the contour from γ0 to D′ without changing the integral, so
the right hand side is equal to K(ω, ω′) from 17. Now by Lemma 12 we can
apply dominated convergence to the expansion of the Fredholm determinant
det(1 − K

ε

n)
L2(Cn1/9ε

−1 )
, to get

lim
n→∞ det(1 − K

ε

n)
L2(Cn1/9ε

−1 )
= lim

n→∞ det(1 − K)
L2(Cn1/9ε

−1 )
.

Step 2: Now we make the change of variables s = −(f ′
2(λ)/x)z, u =

−(f ′
2(λ)/x)ω, and u′ = −(f ′

2(λ)/x)ω′. Keeping in mind that −2(f ′
2(λ)/x)3 =

f ′′′
1 (λ), we get

K(ω, ω′) = K(x)(u, u′) =
1

2πi

∫
D′

es3/3−xs

eu3/3−xu

ds

(s − u)(s − u′)
.

Recall the expansion:

det(1 − K(x))L2(Cε
−1)

=
∞∑

m=0

(−1)m

m!

∫
Cm

−1

det(K(x)(ωi, ωj))m
i,j=1dω1...dωm,

where C−1 = (e−2πi/3∞, 1] ∪ (1, e2πi/3∞), and Cm
−1 is a product of m copies of

C−1.

|det(1 − K(x))L2(C−1) − det(1 − K(x))L2(Cε
−1)

| ≤
∞∑

m=0

(−1)m

m!

∫
Cm

−1\(Cn1/9ε
−1 )m

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm,

so to conclude the proof of the proposition, we are left with showing that

∞∑
m=0

1
m!

∫
Cm

−1\(Cn1/9ε
−1 )m

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm −−−−→

n→∞ 0 (20)
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Note that∫
Cm

−1\(Cn1/9ε
−1 )m

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm ≤

m

∫
C−1\Cn1/9ε

−1

∫
Cm−1

−1

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm.

Set
M1 =

∫
D′

|zef ′′′
1 (λ)z3/6+f ′

2(λ)z|dz < ∞.

Then K(x)(ω, ω′) ≤ M1e
−|ω|3−x|ω|, and Hadamard’s bound gives

|det(K(x)(ωi, ωj))m
i,j=1| ≤ mm/2Mm

1

m∏
i=1

|e−ω3
i /3+xωi |.

We have∫
C−1\Cn1/9ε

−1

∫
Cm−1

−1

|det(K(x)(ωi, ωj))m
i,j=1|dω1...dωm

≤ M1

∫
C−1\Cn1/9ε

−1

∫
Cm−1

−1

m∏
i=1

|e−ω3
i /3+xωi |dω1...dωm

≤ m1+m/2Mm
1 Mm−1

2

∫
C−1\Cn1/9ε

−1

|e−ω3
1+xω1 |dω1, (21)

where M2 =
∫

C−1
|e−ω3−xω|dω < ∞ because −ω3 lies on the negative real axis.

(21) goes to zero because n1/9ε → ∞. So∫
C−1\Cn1/9ε

−1

∫
Cm−1

−1

∣∣det(K(x)(ωi, ωj))m
i,j=1

∣∣ dω1...dωm −−−−→
n→∞ 0.

Note also that

∫
Cm

−1\(Cn1/9ε
−1 )m

∣∣det(K(x)(ωi, ωj))
m
i,j=1

∣∣ dω1...dωm ≤
∫

Cm
−1

| det(K(x)(ωi, ωj))
m
i,j=1|dω1...dωm

≤ m1+m/2M1Mm
2 .

By Stirling’s approximation

∞∑
m=0

1
m!

m1+m/2Mm
1 Mm

2 < ∞.

So by dominated convergence (20) holds which concludes the proof of Pro-
position 2.
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2.5 Reformulation of the Kernel

Now we use the standard det(1 + AB) = det(1 + BA) trick [17, Lemma 8.6]
to identify det(1 − K(x))L2(C−1) with the Tracy-Widom cumulative distribution
function.

Lemma 6. For x ∈ R,

det(1 − K(x))L2(C−1) = det(1 − KAi)L2(x,∞).

Proof. First note that because Re[z −ω] > 0 along the contours we have chosen,
we can write

1
z − ω

=
∫
R+

e−λ(z−ω)dλ.

Now let A : L2(C−1) → L2(R+), and B : L2(R+) → L2(C−1) be defined by the
kernels

A(ω, λ) = e−ω3/3+ω(x+λ), (22)

B(λ, ω′) =
∫ eπi/3∞

e−πi/3∞

dz

2πi
ez3/3−z(x+λ)

z − ω′ . (23)

We compute

AB(ω, ω′) =
∫
R+

e−ω3/3+ω(x+λ)

∫ eπi/3∞

e−πi/3∞

dz

2πi
ez3/3−z(x+λ)

z − ω′

=
1

2πi

∫ eπi/3∞

e−πi/3∞

ez3/3−zx

eω3/3−ωx

dz

(z − ω)(z − ω′)
= K(x)(ω, ω′).

Similarly,

BA(s, s′) =
1

2πi

∫ e2πi/3∞

e−2πi/3∞
dω

1

2πi

∫ eπi/3∞

e−πi/3∞
dz

ez3/3−z(x+s)

eω3/3−ω(x+s′)
1

(z − ω)
= KAi(x + s, x + s′).

Because both A and B are Hilbert-Schmidt operators, we have

det(1 − K(x))L2(C) = det(1 − AB)L2(R+) = det(1 − BA)L2(R+)

= det(1 − KAi)L2(x,∞) = FGUE(x).

3 Constructing the Contour Cn

This section is devoted to constructing the contours Cn and proving Lemma 4.
We will prove several estimates for n1/3ω + hn(ω); then we will construct the
contour Cn, and prove it satisfies the properties of Lemma 4. We begin by proving
that we can approximate n1/3ω + hn(ω) by n1/3f1(ω) away from 0.
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3.1 Estimates Away from 0: Proof of Lemma 3

Both inequalities for |f2| = bσx
ω follow from the fact that f2 and f ′

2 are bounded
on C \ Bε(0). Let y = 1/ω, and let m = n−1/9. Define the function g(y,m) =
rn(ω). First we prove (9). Note that hn(ω) is holomorphic in y and m except
when n = ∞, n1/3ω = 0,−a − b. By Taylor expanding hn(ω), we see that
rn(ω) = g(y,m) is holomorphic in y and m, except at points (y,m) such that
n1/3ω = 0,−a − b, in particular there is no longer a pole when n = ∞. Thus
for any N , g(y,m) is holomorphic with variables y and m, in the region U =
{(y,m) : n > N,ω > |a + b|/N1/3}, because in this region n1/3ω > |a + b|. The
region Uε = {(y,m) : n > N,ω ≥ |a+b|+ε

N1/3 } is compact in the variables y and m,
and because Uε ⊂ U , the function g(y,m) is holomorphic in the region Uε. Thus
g(y,m) = rn(ω) is bounded by a constant C in the region Uε.

Now we prove (10). For any δ, pick an arbitrary ε and an Nδ large enough that
|a+b|+ε

N
1/3
δ

≤ δ. Because g(y,m) = rn(ω) is holomorphic in the variables y and m

in the compact set Uε, the function ∂
∂y g(y,m) = −ω2r′

n(ω), is also holomorphic
in y,m. So |ω2r′

n(ω)| ≤ C on Uε. We rewrite as |r′
n(ω)| ≤ C/|ω|2, and this gives

|r′
n(ω)| ≤ C

|δ|2 ≤ C ′, on the set Uε ∩ (N × Bδ(0)c). But by our choice of Nδ, we
have Uε ∩ (N × Bδ(0)c) is just the set {(y,m) : n ≥ Nδ, |ω| ≥ δ}.

3.2 Estimates Near 0

The function n1/3f1(ω) only approximates −n1/3tω−hn(ω) well away from 0. In
this section we give two estimates for −n1/3tω −hn(ω): one in Lemma 7 when ω
is of order n−1/3 and one in Lemma 8 when ω is of order nδ−1/3 for δ ∈ (0, 1/3).
Together with Lemma 3 which gives an estimate when ω is of order 1, this will
give us the tools we need to control −n1/3tω−hn(ω) along Cn. First to prove the
bound in Lemma 7, we choose a path which crosses the real axis at −a, between
the poles at 0 and −a − b before rescaling h̃n to hn. We show that after the
rescaling, we can bound Re[−n−1/3ω − hn(ω)] on this path for small ω.

Lemma 7. Fix any c0 > 1 and let s = c0(a + b). For C = log
(√

s2 + a2
) −

log(s) > 0, we have

lim sup
n→∞

1
n

sup
y∈[−s,s]

Re[hn(λ) − hn(in−1/3y − n−1/3a)] < −C.

Proof. Let y ∈ [−s, s] and expand eRe[hn(λ)−hn(iy−an−1/3)] to get(
y√

y2 + a2

)n(
y√

y2 + b2

)m(
n1/3λ

n1/3λ + a

)n(
a + b + n1/3λ

n1/3λ + a

)m

.
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The third factor is always less than 1. For sufficiently large n, the second
factor times the fourth factor is less than 1, because |y| ≤ |s| while n1/3λ → ∞.
We can bound the first factor by∣∣∣∣∣ y√

y2 + a2

∣∣∣∣∣
n

≤
(

s√
s2 + a2

)n

= e−nC ,

with C = log
(√

(s2 + a2)
)

− log(s).

Next we will prove the estimate for ω of order nδ−1/3. In this proof we will
consider ω of the form ω = −n−1/3a+ inδ−1/3c(a+b), choose c sufficiently large,
then let n → ∞. The largest term in the expansion of −n−1/3ω − hn(ω) will be
of order n1−2δ

c2 . We introduce the following definition to let us ignore the terms
which are negligible compared to n1−2δ

c2 uniformly in δ.

Definition 8. Let A and B be functions depending on n and c, we say A ∼δ B
or A is δ-equivalent to B, if for sufficiently large c and n,

|A − B| ≤ n2/3−2δ

c2
M1 +

n1−3δ

c3
M2 +

n4/9−δ

c
M3.

for some constants M1,M2,M3 independent of c and n.

Now we prove the estimate.

Lemma 8. For all δ ∈ (0, 1/3), setting ω = −n−1/3a + inδ−1/3c(a + b), gives

Re[n1/3tω + hn(ω)] ∼δ Re[n1/3f1(ω)] ∼δ M
n1−2δ

c2
,

where ∼δ is defined in Definition 8.

The proof of this Lemma 8 comes from Taylor expanding hn and keeping
track of the order of different terms with respect to n and c.

Proof. Recall that

hn(ω) = −n log
(
1 +

a

n1/3ω

)
+ m log

(
1 +

b

a + n1/3ω

)
. (24)

For |n1/3ω| > a and |a + n1/3ω| > b, we can Taylor expand in n1/3ω to get

hn(ω) = −n
∞∑

k=1

(−1)k+1

k

( a

n1/3ω

)k

+ m
∞∑

k=1

(−1)k+1

k

(
b

a + n1/3ω

)k

.

Let ω = −n−1/3a + inδ−1/3c(a + b) for δ ∈ (0, 1/3), so |n1/3ω|, |a + n1/3ω| >
nδc(a + b) > c(a + b), for a constant c to be determined later. If c > 2, we have

∞∑
k=1

∣∣∣∣
(

a

n1/3ω

)∣∣∣∣
k

≤
∞∑

k=1

(
b

nδc(a + b)

)k

≤ a

nδc(a + b)

∞∑
k=0

(
1

2

)k

≤ 2a

nδc(a + b)
=

n−δ

c
M,

(25)
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and

∞∑
k=1

∣∣∣∣
(

b

a + n1/3ω

)∣∣∣∣
k

≤
∞∑

k=1

(
a

nδc(a + b)

)k

≤ a

nδc(a + b)

∞∑
k=0

(
1

2

)k

=
2a

nδc(a + b)
=

n−δ

c
M.

(26)

In what follows, we will use (25) or (26) when we say that an infinite sum is
δ-equivalent to its first term.

We examine the first term in (24).

−n

∞∑
k=1

(−1)k+1

k

(
a

n1/3ω

)k

= −
(

a

n1/3ω

)
+

1

2

(
a

n1/3ω

)2

− n

∞∑
k=3

(−1)k+1

k

(
a

n1/3ω

)k

,

∼δ −
(

a

n1/3ω

)
+

1

2

(
a

n1/3ω

)2

.

where the δ−equivalence follows because
∣∣∣n∑∞

k=3
(−1)k+1

k

(
a

n1/3ω

)k
∣∣∣ ≤ n1−3δ

c3 M

for some M by (25).
Recall that

m

∞∑
k=1

(
b

a + n1/3ω

)k

=
[(a

b

)
n + dn2/3 + σxn4/9

] ∞∑
k=1

(
b

a + n1/3ω

)k

.

We decompose this series as three sums. First the
(

a
b

)
n term gives

a

b
n

∞∑
k=1

(−1)k+1

k

(
b

a + n1/3ω

)k

=

n
(a

b

)( b

a + n1/3ω

)
− n

2

(a

b

)( b

a + n1/3ω

)2

+
a

b
n

∞∑
k=3

(−1)k+1

k

(
b

a + n1/3ω

)k

∼δ n
(a

b

)( b

a + n1/3ω

)
− n

2

(
b

a + n1/3ω

)2

,

because
∣∣∣∣−a

b n
∑∞

k=1
(−1)k+1

k

(
b

a+n1/3ω

)k
∣∣∣∣ ≤ Mn1−3δ/c3 for some M . The second

term is

dn
2/3

∞∑
k=1

(−1)k+1

k

(
b

a + n1/3ω

)k

= dn
2/3

(
b

a + n1/3ω

)
− dn

2/3
∞∑

k=2

(−1)k+1

k

(
b

a + n1/3ω

)k

∼δ dn
2/3

(
b

a + n1/3ω

)

because
∣∣∣∣dn2/3

∑∞
k=2

(−1)k+1

k

(
b

a+n1/3ω

)k
∣∣∣∣ ≤ Mn2/3−2δ/c2 for some M . The

third term is

n4/9σx
∞∑

k=1

(−1)k+1

k

(
b

a + n1/3ω

)k

∼δ 0,
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because the full sum
∣∣∣∣n4/9σx

∑∞
k=1

(−1)k+1

k

(
b

a+n1/3ω

)k
∣∣∣∣ ≤ Mn4/9−δ

c for some M .

Now we have shown

− n log
(
1 +

a

n1/3ω

)
∼δ −n2/3 a

ω
+ n1/3 a2

2ω2
, (27)

m log
(

1 +
b

a + n1/3ω

)
∼δ

n
(a

b

)( b

a + n1/3ω

)
− n

( a

2b

)( b

a + n1/3ω

)2

+ dn2/3

(
b

a + n1/3ω

)
. (28)

Adding (27) and (28) together yields

hn(ω) ∼δ −n2/3 a

ω
+ n1/3 a2

2ω2
+ n

(a

b

)( b

a + n1/3ω

)

−n
( a

2b

)( b

a + n1/3ω

)2

+ dn2/3

(
b

a + n1/3ω

)
. (29)

Adding the first and third terms from (29) gives the following cancellation.

−n2/3 a

ω
+ n

(a

b

)( b

a + n1/3ω

)
=

−n2/3 a

ω
+ n2/3 a

ω

[
1 − a

n1/3ω
+

∞∑
k=2

(−1)k
( a

n1/3ω

)k
]

∼δ −n1/3 a2

ω2
,

thus

hn(ω) ∼δ −n1/3

(
a2

2ω2

)
− n

( a

2b

)( b

a + n1/3ω

)2

+ dn2/3

(
b

a + n1/3ω

)
.

When we expand b
a+n1/3ω

= b
n1/3ω

+
(

b
n1/3ω

)∑∞
k=1

( −a
n1/3ω

)k
, we see that because

n1/3ω ∼δ nδic(a + b), the sum is of order 1/c times the first term. So we can
take only the first terms in our expansion, just as when we Taylor expand. This
approximation leads the n2/3 terms to cancel giving

hn(ω) ∼δ −n1/3

(
a2 + ab

2ω2

)
+ dn1/3

(
b

ω

)
∼δ n1/3 (f1(ω) − tω) .

This implies that Re[n1/3tω + hn(ω)] ∼δ Re[n1/3f1(ω)]. Completing the first
δ-equivalence in the statement of Lemma 8.

Now observe that in

Re[n1/3f1(ω)] = Re

[
n1/3

(
tω − a(a + b)

2ω2
+

bd

ω

)]
,
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we can bound the first term |Re[n1/3tω]| ≤ nδM . We can bound the third
term by Re

[
n1/3 bd

ω

] ≤ M n2/3−δ

c . For the second term, we have
∣∣∣a(a+b)

2ω2

∣∣∣ ∼δ(
a(a+b)

2

)(
n1−2δ

c

)
. Thus

Re[n1/3f1(ω)] ∼δ

(
a(a + b)

2

)(
n1−2δ

c

)
.

This gives the second δ-equivalence in the statement of Lemma 8, and completes
the proof.

3.3 Construction of the Contour Cn

To construct the contour Cn we will start with lines departing from λ at angles
e±2πi/3, and with a vertical line −n1/3a + iR. We will cut both these infinite
contours off at specific values q and p respectively which allow us to use our
estimates from the previous section on these contours. We will then connect
these contours using the level set {z : Re[−f1(z)] = −f1(λ)−ε}. The rest of this
section is devoted to finding the values p and q, showing that our explanation
above actually produces a contour, and controlling the derivative of f1 on the
vertical segment near 0.

We note

f1(λ) = 3t2/3

(
a(a + b)

2

)1/3

> 0, (30)

and let

p =

√
1
3

(
a(a + b)

2t

)2/3

> 0. (31)

By simple algebra, we see that Re[−f1(±iy)] < Re[−f1(λ)] < 0, when y < p,
with equality at y = p.

Lemma 9. d
dyRe[−f1(n−1/3a + iy)] is positive for y ∈ [n−1/3|a + b|, p], and

negative for y ∈ [−n−1/3|a + b|,−p].

Proof. We compute

d

dy
Re[f1(n−1/3a + iy)] = − Im(Re[f1(n−1/3a + iy)]) (32)

= − y3a(a + b)
|n−1/3a + iy|6 +

a2(a + b)n−2/3y

|n−1/3a + iy|6 +
3a2(a + b)bn−1/3y

2bλ|n−1/3a + iy|4 . (33)

Note that for y ∈ [n−1/3|a+b|, p]∪[−n−1/3|a+b|,−p], we have |n−1/3a+iy| ∼ |y|,
so the first term of (33) is of order y−3 and the third term of (33) is of order
y−3n−1/3. So for large enough n, the third term of (33) is very small compared
to the first term. For y = ±n−1/3|a+ b|, we have |n−1a(a+ b)4| = |y3a(a+ b)| >
|a(a + b)n−2/3ay| = |a2(a + b)2n−1/3|, and the derivative of y3a(a + b) is larger
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than the derivative of a(a+b)n−2/3ay for y ∈ [n−1/3|a+b|, p]∪[−n−1/3|a+b|,−p],
so the first term of (33) has larger norm than the second term for y ∈ [n−1/3|a+
b|, p] ∪ [−n−1/3|a + b|,−p]. Thus the sign d

dyRe[−f1(n−1/3a + iy)] is determined
by the first term of (33) in these intervals.

Now we can define the contour Cn. We will give the definition, and then
justify that it gives a well defined contour.

Definition 9. Let q > 0 be a fixed real number such that for 0 < y ≤ q,
d
dyRe[−f1(λ ± ye±2πi/3)] < 0. Let

s = max
{
Re[−f1(λ + qe−2πi/3)],Re[−f1(λ + qe2πi/3)],

Re[−f1(n−1/3(a − i|a + b|))],Re[−f1(n−1/3(a + i|a + b|))]
}

. (34)

Let α be the contourline α = {ω : Re[−f1(ω)] = s}, and define the set

Sn = {λ + ye±2πi/3 : 0 ≤ y ≤ q} ∪ α ∪ [−an−1/3 − ip,−an−1/3 + ip].

For sufficiently large n, define the path Cn to begin where α intersects {λ +
ye−2πi/3 : 0 ≤ y ≤ q}, follow the path {λ + ye−2πi/3 : 0 ≤ y ≤ q} toward
y = 0, then follow the path {λ + ye2πi/3 : 0 ≤ y ≤ q} until it intersects α.
Cn then follows α in either direction (pick one arbitrarily) until it intersects
[−an−1/3 − ip,−an−1/3 + ip] in the upper half plane. Cn then follows the path
[−an−1/3 − ip,−an−1/3 + ip] toward −an−1/3 − ip until it intersects α in the
negative half plane. Then Cn follows α in either direction (pick one arbitrarily)
until it reaches its starting point where it intersects {λ + ye−2πi/3 : 0 ≤ y ≤ q}.
See Fig. 6

We see that the q in Definition 9 exists by applying Taylor’s theorem along with
the fact that f ′′′

1 (λ) > 0, and the f ′
1(λ) = f ′′

1 (λ) = 0.

Lemma 10. The sets {λ + ye2πi/3 : 0 ≤ y ≤ q} and {λ + ye−2πi/3 : 0 ≤ y ≤ q}
both intersect α at exactly one point. Lemmas 11 and 10 will show that Cn is a
well defined contour.

This follows from the definition of q and s.

Lemma 11. There exists N > 0 such that for all n > N , the sets [n−1/3 +
in−1/3|a+b|, n−1/3a+p] and [−an−1/3−n−1/3|a+b|,−an−1/3−p] both intersect
α exactly once.

Proof. This is true because

Re[−f1(−n−1/3(a ± i|a + b|))] < Re[−f1(λ)]. (35)

by the contour lines in Fig. 4. This in addition to Lemma 9, and (30) implies the
lemma.
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3.4 Properties of the Contour Cn : Proof of Lemma 4

Most of the work is used to prove part (c). The idea of this proof is to patch
together the different estimates from the beginning of Sect. 3. Away from 0 we
use Lemma 3 and the fact that the contour is steep descent near λ. Very near 0
on the scale n−1/3 we use Lemma 7. Moderately near 0 we use Lemma 8, and
our control of the derivative of f1 on the vertical strip of Cn near 0. This last
argument allows us to get bounds uniform in δ ∈ (0, 1/3) when ω is on the scale
n1/3−δ.

Proof (Proof of Lemma 4). (a) and (b) follow from the definition of Cn. By a
slight modification of the proof of Lemma 4, we see that for z ∈ γr,

Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ n1/9C, (36)

so to show (c) it suffices to show that for ω ∈ Cn \ Cε
n, we have

Re[hn(λ) − hn(ω) + n1/3t(λ − ω)] ≤ −n−1/3η. (37)

Fig. 6. Cn is the thick, colored piecewise smooth curve, the contour lines {z :
Re[−f1(z)] = f1(λ)} are the thin black curves. On the right side of the image we
see Cn as a thick blue curve sandwiched between the contour lines. On the left we
zoom in near 0 and see Cn pass the real axis as a dotted line to the left of zero. The
contour lines meet at the point 0 on the left and λ on the right. We will now describe
what section of the proof of Lemma 4 bounds hn(z)−hn(ω)+nt1/3(z −ω) on different
portions of Cn. The diagonal segments of Cn near λ are bounded in (ii). The curved
segments in the right image, and the solid dark blue vertical segments at the top and
bottom of the left image are bounded in (i). The dark red dashed segment that crosses
the real axis in the left image is distance O(n−1/3) from 0 and is bounded in (iii). The
green dotted segments in the left image are distance O(nδ−1/3) from 0 for δ ∈ (0, 1)
and are bounded in (iv).



514 G. Barraquand and M. Rychnovsky

Below we split the contour into 4 pieces and bound each separately. See Fig. 6.

(i) By Lemma 9 and the construction of Cn, we have Re[−f1(ω)] ≤ s <
Re[−f1(λ)] for ω ∈ Cn \ ({λ + ye±2πi/3 : 0 ≤ y ≤ q} ∪ [n−1/3(−a − i|a +
b|), n−1/3(−a + i|a + b|)]). So we can apply Lemma 3 and the fact that f2 is
bounded outside a neighborhood of 0 to show that for any c1 < 0, we have
Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n−1/3η for ω ∈ Cn \ ({λ + ye±2πi/3 :
0 ≤ y ≤ q} ∪ [−n−1/3a − ic1|a + b|,−n−1/3a + ic1|a + b|]).

(ii) By the definition of q, The contour {λ + ye±2πi/3 : 0 ≤ y ≤ q} is steep
descent with respect to the function f1 at the point λ, so we can apply
Lemma 3 and the fact that f2 is bounded outside a neighborhood of 0 to
show Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n−1/3η for ω ∈ {λ + ye±2πi/3 :
0 ≤ y ≤ q} \ Bε(λ).

(iii) By Lemma 7, for any c0, we have Re[hn(z)−hn(λ)+n1/3t(z−λ)] ≤ −n−1/3η
for all ω ∈ [n−1/3(−a − ic0|a + b|), n−1/3(−a − ic0|a + b|)].

(iv) Now we bound the Re[hn(z)−hn(λ)+n1/3t(z −λ)] on the last piece of our
contour [n−1/3(−a − ic0|a + b|),−n−1/3a + ic1|a + b|] ∪ [−n−1/3a − ic1|a +
b|, n−1/3(−a − ic0|a + b|)]. We will do this by fixing a constant c > c1,
and bounding the function on ω = n−1/3a + inδ−1/3c(a + b) for all pairs
n > N, δ ∈ (0, 1/3) such that n1/3 ≤ c1/c.
By Lemma 8, we have that when ω = n−1/3a + inδ−1/3c(a + b), there exist
constants M1,M2,M3, such that

Re[n1/3tω + hn(ω) − n1/3f1(ω)] ≤ n2/3−2δ

c2
M1 +

n1−3δ

c3
M2 +

n4/9−δ

c
M3,

and

f1(ω) ∼δ M
n1−2δ

c2
.

First we consider the case when δ ∈ (0, 1/3 − ε). In this case, for any r > 0
we can choose c and Nr large enough that for all n > Nr,

n2/3−2δ

c2 M1 + n1−3δ

c3 M2 + n4/9−δ

c M3

Re[n1/3f1(ω)]
< r/2,

uniformly for all δ ∈ (0, 1/3 − ε). In this case we also have that, by Lemma 3,

|Re[n1/3tz + hn(z)]| ≤ n1/3f1(λ) + n1/9f2(λ) + C.

By potentially increasing Nr, we have that for all n > Nr

|Re[n1/3tz + hn(z)]|
Re[n1/3f1(ω)]

≤ r/2.

By Lemma 9 and (35), for all pairs n, δ such that nδ−1/3 < c/c1, there is an
η > 0 such that

Re[−f1(ω)] ≤ Re[−f1(λ)] − 2η < −2η.
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setting r = 1/2 gives

Re[n1/3t(z − ω) + hn(z) − hn(ω)] ≤ Re[−n1/3f1(ω)] +
1

2
Re[n−1/3f1(ω)] < −ηn1/3.

Now we prove the case δ ∈ (1/3 − ε, 1/3). Note that in the expression

Re[n1/3tω + hn(ω) − n1/3f1(ω)] ≤ n2/3−2δ

c2
M1 +

n1−3δ

c3
M2 +

n4/9−δ

c
M3,

when n is sufficiently large, we can bound the right hand side by (M1 +
M2)n3ε ≤ (r/2)n1/3 for any r > 0. We also have

|Re[n1/3tλ − hn(λ) − n1/3f1(λ)]| ≤ n1/9f1(λ) + C ≤ (r/2)n1/3.

The first inequality comes from Lemma 3, and the second holds for large
enough n. By Lemma 9 and (35), for all pairs n, δ such that nδ−1/3 < c/c1,
there is an η > 0 such that

Re[−f1(ω)] ≤ Re[−f1(λ)] − 2η < −2η.

Setting r = η gives

Re[n1/3t(λ−ω)+hn(λ)−hn(ω)] ≤ n1/3Re[f1(λ)− f1(ω)]+n1/3η ≤ −ηn1/3.

The c1 in part (i) can be chosen as small as desired, the c in part (iv) has
already been chosen, and the c0 in part (iv) can be chosen as large as desired.
Choose c1 < c < c0 to complete the proof of (c).

Given inequalities (36) and (37), part (d) follows if we can show

Re[n1/3t(λ − ω) + hn(λ) − hn(ω)],

for ω ∈ Cε
n. Indeed this follows from Lemma 3 and the fact that the contour

{λ + ye±2πi/3 : 0 ≤ y ≤ q} is steep descent with respect to the function Re[−f1]
at the point λ.

4 Dominated Convergence

In this section we carefully prove that the series expansion for det(1−Kn)L2(Cε
n)

gives an absolutely convergent series of integrals bounded uniformly in n. This
allows us to use dominated convergence when we localize the integral in Propo-
sition 1, and again when we approximate the kernel by its Taylor expansion in
Proposition 2. First we zoom in on a ball of radius epsilon and show that we can
absolutely bound det(1 − Kε

n)L2(Cε
n) uniformly in n.

Lemma 12. For any sufficiently small ε > 0, and sufficiently large r, there
exists a function F (ω, ω′), such that for all ω, ω′ ∈ Cn1/9ε

−1 , z ∈ Dn1/9ε
0 , n > N

the integrand of K
ε

n(ω, ω′) in Eq. (11) is absolutely bounded by F (ω, ω′, z), and

∞∑
m=0

∫
(Cn1/9ε

−1 )m

∣∣∣∣∣∣det

(∫
Dn1/9ε

0

F (ωi, ωj , z)dz

)m

i,j=1

∣∣∣∣∣∣ dω1...dωm < ∞. (38)
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Proof. For ω, ω′ ∈ Cε
−1, and z ∈ Dε

0, we have

∣∣∣∣ λ + n−1/9z

λ + n−1/9ω

∣∣∣∣ ≤
∣∣∣∣λ + ε

λ − ε

∣∣∣∣ ,
and by Taylor approximation, we have the additional bounds

n1/3(f1(λ + n−1/9z) − f1(λ + n−1/9ω)) ≤ (f ′′′
1 (λ) + δ1)(z3 − ω3), (39)

n1/9(f2(λ + n−1/9z) − f2(λ + n−1/9(ω))) ≤ (f ′
2(λ) + δ2)(z − ω), (40)

rn(λ + n−1/9z) − rn(λ + n−1/9ω) ≤ Cn−1/9(z − ω) ≤ Cε ≤ δ3. (41)

Note that in these bounds we can make δ1, δ2, δ3 as small as desired by choosing
ε small. Equations (39) and (40) follow from the fact that f1, and f2 are holo-
morphic in the compact set Bε(λ). And Eq. (41) follows from Lemma 3. Note
that along D0, z is purely imaginary, so (39), (40), and (41) show that the full
exponential in the integrand in (11) is bounded above by

e2δ3e−(f ′′′
1 (λ)−δ1)ω

3−(f ′
2(λ)−δ2)ω. (42)

We choose ε small enough that δ1 < f ′′′
1 (λ), so that (42) has exponential decay

as ω goes to ∞ in directions e±2πi/3. Set

F (ω, ω′, z) =
∣∣∣∣
(

λ + ε

λ − ε

)
e2δ3e−(f ′′′

1 (λ)−δ1)ω
3−(f ′

2(λ)−δ2)
1

(z + 1)(z + 1)

∣∣∣∣ .
By the sentence preceding (42) F absolutely bounds the integrand of K

ε

n. Now
set L1 = |λ+ε|

|λ−ε|e
2δ3

∫
D0

1
(z+1)(z+1)dz so that 2e2δ3

∫
D0

1
(z−ω)(z−ω′)dz ≤ L1. Then

∫
Dε

0

F (ω, ω′, z) ≤ L1

∣∣∣e−(f ′′′
1 (λ)−δ1)ω

3−(f ′
2(λ)−δ2)

∣∣∣ , (43)

By Hadamard’s bound∣∣∣∣∣∣det

(∫
Dn1/9

0 ε

F (ωi, ω
′
j , z)dz

)m

i,j=1

∣∣∣∣∣∣ ≤ mm/2Lm
1

m∏
i=1

∣∣∣e−(f ′′′
1 (λ)−δ)ω3−(f ′

2(λ)−δ)ω
∣∣∣ .

Now because δ1 < f ′′′
1 (λ), we can set

S =
∫

Cn1/9ε
−1

∣∣∣e−(f ′′′
1 (λ)−δ)ω3−(f ′

2(λ)−δ)ω
∣∣∣ dω < ∞.

Then we have the bound,

∫
(Cn1/9ε

−1 )m

∣∣∣∣∣∣det

(∫
Dn1/9ε

0

F (ωi, ω
′
j , z)dz

)m

i,j=1

∣∣∣∣∣∣ dω1...dωm ≤ mm/2(SL1)m.
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So by Stirling’s approximation

∞∑
m=0

∫
(Cn1/9ε

−1 )m

∣∣∣∣∣∣det

(∫
Dn1/9ε

0

F (ωi, ωj , z)dz

)m

i,j=1

∣∣∣∣∣∣ dω1...dωm < ∞.

The next lemma completes our dominated convergence argument, by con-
trolling the contribution to det(I − Kn)L2(Cε

n) of z ∈ γr \ γε
r .

Lemma 13. For any sufficiently small ε > 0, and sufficiently large r, there is
a function G(ω, ω′, z), and a natural number N , such that for all ω, ω′ ∈ Cε

n and
z ∈ γr, n > N , the integrand of Kn(ω, ω′) is absolutely bounded by G(ω, ω′, z),
and

∞∑
m=0

1
m!

∫
(C

ε
)m

∣∣∣∣∣∣det

(∫
γr

G(ωi, ωj , z)dz

)m

i,j=1

∣∣∣∣∣∣ dωi...dωj < ∞, (44)

where γr and C
ε

n are the rescaled contours of γr and Cε
n respectively.

Proof. Let G = F for z ∈ γε
r . We decompose the integral along γr in three parts:

the integral along γε
r , the integral along (e−2πi/3∞,−r) ∪ (r, e2πi/3∞) and the

integral along [−r,−ε] ∪ [ε, r]. For z ∈ γr \ γε
r we have the following bounds

|en1/3t(z−ω)+hn(z)−hn(ω)| ≤ |en1/3(f1(z)−f1(ω))+n1/9C2+C3 |
≤ |en1/3(f1(z)−f1(ω)+δ)|
≤ |en1/3(f1(z)−f1(λ)+δ)||en1/3(f1(λ)−f1(ω))|. (45)

Where the first inequality follows from Lemma 3. If we choose δ < η/2, and
recall that if z ∈ γr\γε

r , then f1(z)−f1(λ) < −η, so f1(z)−f1(λ)+δ < −η/2 < 0.
So if we wish we can bound (45) by either of the following expressions

|en1/3(f1(λ)−f1(ω))| (46)

|en1/9(−tz+tλ)||en1/3(f1(λ)−f1(ω))| (47)

The bound (47) follows from the fact that we can choose r large enough so that
|f1(z) + tz| ≤ δ outside Br(0). Then because the exponent in the first factor of
(45) is negative, for large enough n we can remove the constant δ in return for
reducing n1/3 to n1/9.

Now for z ∈ [−r,−ε] ∪ [ε, r], we have

∣∣∣ z
ω

∣∣∣ ≤
∣∣∣∣r + λ

λ − ε

∣∣∣∣ ,
∣∣∣∣ 1
(z − ω)(z − ω′)

∣∣∣∣ ≤ 1.

So for z ∈ [−r,−ε] ∪ [ε, r], we set

G(ω, ω′, z) =
∣∣∣∣r + λ

λ − ε

∣∣∣∣
∣∣∣∣ 1
(z − ω)(z − ω′)

∣∣∣∣
∣∣∣en1/3(f1(λ)−f1(ω))

∣∣∣ .
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Using the above bounds and (46) we see that the integrand of Kn is absolutely
bounded by G in this region. Set L2 =

∫
iR

r+λ
λ−ε

1
(z+1)(z+1)dz so that the integral of

G on the rescaled contour of [−r,−ε]∪ [ε, r] is bounded by L2|en1/3(f1(λ)−f1(ω))|.
For z ∈ (e−2πi/3∞,−r) ∪ (r, e2πi/3∞), we have∣∣∣∣ 1

(z − ω)(z − ω′)

∣∣∣∣ ≤ 1.

So for z ∈ (e−2πi/3∞,−r) ∪ (r, e2πi/3∞), we set

G(ω, ω′, z) =
∣∣∣ z
ω

∣∣∣ ∣∣∣et(λ−z)
∣∣∣ ∣∣∣e(−f ′′′

1 (λ)+δ)ω
∣∣∣ .

Thus by (47), we can see that the integrand of Kn is absolutely bounded by G

in this region. Now let L3 =
∫
(e−2πi/3∞,−r]∪[r,e2πi/3∞)

∣∣∣λ+z
λ−ε

∣∣∣ |et(λ−z)|dz. For all

n, the integral of G over the rescaled contour (e−2πi/3∞,−r] ∪ [r, e2πi/3∞) is
bounded above by L3|e(−f ′′′

1 (λ)+δ)ω3 |.
Let γr be the rescaled contour γr in the variable z∫

γr

Gdz ≤ (L1 + L2 + L3)e(−f ′′′
1 (λ)+δ)ω3 ≤ Le(−f ′′′

1 (λ)+δ)ω3
, (48)

where the constant L comes from (43). Thus we have bounded
∫

γr
Gdz by a

constant times a term which has exponential decay as ω → e±2πi/3∞. The same
argument as in Lemma 12 shows that

∞∑
m=0

1
m!

∫
(Cε)m

∣∣∣∣∣∣det

(∫
γε

r

G(ωi, ωj , z)dz

)m

i,j=1

∣∣∣∣∣∣ dωi...dωj < ∞.

Lemma 14. Let ω1 ∈ Cn \Cε
n and ω2, .., ωm ∈ Cn. There exist positive constants

M,L4, η > 0 so that for sufficiently large n, we have

|Kn(ωi, ωj)| ≤ M

and
|Kn(ω1, ωi)| ≤ L4n

4/9e−n1/3η,

for all i, j.

Proof. By Lemma 4, for any ε > 0, there exists a N,C > 0, such that if v ∈
Cn \ Cε

n, and z ∈ γr, then for all sufficiently large n, we have

Re[hn(z) − hn(ω) + n1/3t(z − ω)] ≤ −n1/3η.

For z ∈ γr and ω, ω′ ∈ Cn \ Cε
n, n > N we have the following bounds:

1
(z − ω)(z − ω′)

≤
(

2
ε

)2

,
1
ω

≤ n1/3

a
,
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and

|en1/3t(z−ω)+hn(z)−hn(ω)| ≤ |en1/3(f1(z)−f1(ω)+δ)| (49)

≤ |en1/3(f1(z)−f1(λ)||en1/3(f1(λ)−f1(ω)+δ)| (50)

where (49) follows from (3) and the fact that f2 is bounded away from 0. Note
that for z ∈ γr, |f1(z)−f1(λ)| ≤ 0, and for ω, ω′ ∈ Cn\Cε

n, f1(λ)−f1(ω)+δ < −η,
so (50) is bounded above by

|e(f1(z)−f1(λ)||e−n1/3η|.

Thus if we set L4 = 22

aε2

∫
γr

|z||ef1(z)−f1(λ)|dz < ∞, we get

|Kn(ω, ω′)| ≤ L4n
1/3e−n1/3η.

So if we change the variable of integration to dz = n1/9dz gives.

|Kn(ω, ω′)| ≤ L4n
4/9e−n1/3η for ω, ω′ ∈ Cn \ Cε

n (51)

Let ω1 ∈ Cn \ Cε
n and ω2, .., ωm ∈ Cn, then for i = 1,

|Kn(ω1, ωi)| ≤ L4n
4/9e−n1/3η,

|Kn(ωi, ωj)| ≤ max[Le(−f ′′′
1 (λ)+δ)ω3

, L4n
4/9e−n1/3η] ≤ M. (52)

The first equality follows from (48) and the second inequality holds for large n,
when we set M = max[L4, L] because −f ′′′

1 (λ) + δ < 0.

The last thing we need to complete the proof of Theorem 2 is to bound (15)
from Proposition (2.3). We do so in the following lemma.

Lemma 15. For any C > 1, we have

∞∑
m=1

1
m!

Cmm1+m/2 ≤ 16C4e2C2
.

Proof. We have
m1+m/2

m!
≤ m2m/2

(�m/2�)! ,

so that
∞∑

m=1

1
m!

Cmm1+m/2 ≤
∞∑

m=1

m

(�m/2�)! (2C2)m/2

≤
∞∑

k=1

2k(2C2)k

k!
+

∞∑
k=1

(2k + 1)(2C2)k+1

k!

≤ 16C4e2C2
.
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1 Università degli Studi dell’Aquila, 67100 L’Aquila, Italy
demasi@univaq.it

2 DM-FCEN, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
{pferrari,nsloto}@dm.uba.ar

3 Gran Sasso Science Institute, 67100 L’Aquila, Italy
errico.presutti@gssi.infn.it

Abstract. The Branching Brownian Motion (BBM) process consists of
particles performing independent Brownian motions in R, and each par-
ticle creating a new one at rate 1 at its current position. The newborn
particles’ increments and branchings are independent of the other parti-
cles. The N -BBM process starts with N particles and, at each branch-
ing time, the left-most particle is removed so that the total number
of particles is N for all times. The N -BBM process has been origi-
nally proposed by Maillard, and belongs to a family of processes intro-
duced by Brunet and Derrida. We fix a density ρ with a left boundary
sup{r ∈ R :

∫ ∞
r

ρ(x)dx = 1} > −∞, and let the initial particles’ posi-
tions be iid continuous random variables with density ρ. We show that
the empirical measure associated to the particle positions at a fixed time
t converges to an absolutely continuous measure with density ψ(·, t) as
N → ∞. The limit ψ is solution of a free boundary problem (FBP).
Existence of solutions of this FBP was proved for finite time-intervals by
Lee in 2016 and, after submitting this manuscript, Berestycki, Brunet
and Penington completed the setting by proving global existence.

Keywords: Hydrodynamic limit · Free boundary problems ·
Branching Brownian Motion · Brunet-Derrida systems

1 Introduction

Brunet and Derrida [3] proposed a family of one dimensional processes with N
branching particles with selection. Start with N particles with positions in R. At
each discrete time t, there are two steps. In the first step, each particle creates a
number of descendants at positions chosen according to some density as follows:
if a particle is located at position x, then its descendants are iid with distribution
Y + x, where Y is a random variable with a given density. The second step is to
keep the N right-most particles, erasing the left-most remaining ones.

The study of N branching Brownian motions has been proposed by Maillard
[15,16] as a natural continuous time version of the previous process, also related
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with the celebrated BBM process. The particles of the N -BBM process move as
independent Brownian motions, and each particle at rate 1 creates a new particle
at its current position. When a new particle is created, the left-most particle is
removed. The number N of particles is then conserved.

The particles are initially distributed as independent random variables with
an absolutely continuous distribution whose density is called ρ. Let Xt =
{X1

t , . . . , XN
t } be the set of positions of the N particles at time t. Here and in

the sequel, we will consider multi-sets, allowing repetitions of elements. Denote
by |A| the cardinal of a multi-set A, elements being counted several times if
repetitions occur. The empirical distribution induced by Xt is defined by

πN
t [a,∞) :=

1
N

|Xt ∩ [a,∞)|,

the proportion of particles to the right of a at time t. Our main result is the
following hydrodynamic limit.

Theorem 1. Let ρ be a probability density function satisfying L∗ :=
supr

{ ∫ −∞
r

ρ(x)dx = 1
}

> −∞. Let X1
0 , . . . , XN

0 be independent identically dis-
tributed continuous random variables with density ρ. Let Xt be the positions at
time t of the N -BBM process starting at X0 = {X1

0 , . . . , XN
0 }. For every t ≥ 0,

there exists a density function ψ(·, t) : R → R
+ such that, for any a ∈ R, we

have
lim

N→∞

∫ ∞

a

πN
t (dr) =

∫ ∞

a

ψ(r, t)dr a.s. and in L1.

In Theorem 2 below, we identify the function ψ(r, t) as the solution u(r, t) of the
following free boundary problem.

Free Boundary Problem (FBP). For T > 0, find (u,L) ≡
(
(u(·, t), Lt) :

t ∈ [0, T ]
)

satisfying the following conditions:

ut =
1
2
urr + u in DL,T := {(r, t) : 0 < t < T,Lt < r}; (1)

u(r, 0) = ρ(r), r ∈ R; (2)
L0 = L∗;
u(Lt, t) = 0, t ∈ [0, T ]; (3)
∫ ∞

Lt

u(r, t)dr = 1, t ∈ [0, T ]. (4)

Berestycki, Brunet and Derrida [1] propose a family of free boundary problems
which include this one, and give, under certain conditions, an explicit relation
between ρ and L.

Suppose (u,L) is a sufficiently regular solution of the previous free boundary
problem. By the use of Leibniz’s integral rule, we can take time derivative in
condition (4) to obtain

∫ ∞

Lt

ut(r, t)dr = 0 (5)
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for every t ≥ 0. If in addition ur(r, t) vanishes as r → ∞, we have

1
2
ur(Lt, t) = −

∫ ∞

Lt

1
2
urr(r, t)dr

= −
∫ ∞

Lt

[
ut(r, t) − u(r, t)

]
dr

=
∫ ∞

Lt

u(r, t)dr = 1,

so the space derivative at the boundary L is constantly 2. A further use of
Leibniz’s integral rule, now applied to ur, gives

d

dt

[ ∫ ∞

Lt

ur(r, t)dr
]

= −2L̇t +
∫ ∞

Lt

∂tur(r, t)dr

= −2L̇t +
1
2
urr(Lt, t) +

∫ ∞

Lt

ur(r, t)dr.

This identity together with (5) gives us relation L̇t = − 1
2urr(Lt, t).

We define a classical solution to the FBP in the interval [0, T ] to be a pair
(u,L) with L ∈ C1([0, T ]) and u ∈ C

(
DL,T

)
∩ C2,1(DL,T ) satisfying conditions

(1)–(4). For (u,L) a classical solution, the Brownian representation formula
∫ ∞

a

u(r, t)dr = et

∫
ρ(r)P (Br

t > a, τ r,L > t)dr (6)

holds for every t ∈ [0, T ], where (Br
t : t ≥ 0) is the Brownian motion with

initial position Br
0 = r and τ r,L := inf{t ∈ [0, T ] : Br

t = Lt}. This representation
formula is the key to prove the following theorem.

Theorem 2. Suppose (u,L) is a classical solution to the FBP in the interval
[0, T ]. Then the function ψ defined in Theorem 1 coincides with u in that time
interval: ψ(·, t) = u(·, t), t ∈ [0, T ].

We observe that the previous result also gives a uniqueness criteria. About
existence, Lee [14] proves that if ρ is such that ρ ∈ C2

c ([L∗,∞)) and ρ′(L∗) = 2,
there exists T > 0 such that the FBP has a classical solution in [0, T ]. After
submitting this manuscript, Berestycki, Brunet and Penington [2] proved global
existence with general hypotheses over the initial condition and, in addition,
gave an alternative proof of uniqueness that is independent to the one we give
here. Summarizing, Theorem 2 together with the existence result imply that the
empirical measure of the N -BBM process starting with iid particles with density
ρ converges, in the sense of Theorem 1, to the solution to the FBP.

In the proof of Theorem 1, the presence of the free boundary at the left-
most particle spoils usual hydrodynamic proofs. We overcome the difficulty by
dominating the process from below and above by auxiliary more tractable pro-
cesses, a kind of Trotter-Kato approximation. Durrett and Remenik [11] use
an upper bound to show the analogous to Theorem 1 for a continuous time
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Brunet-Derrida model. The approach with upper and lower bounds is used by
three of the authors in [10], and by Carinci, De Masi, Giardina and Presutti
in [6] and [5]; see the survey [7]. A further example is [9]. Maillard [16] used
upper and lower bounds with a different scaling and scope. In [11], the left-most
particle motion is increasing and has natural lower bounds. The lower bounds
used in the mentioned papers do not work out-of-the-box here. We introduce
labelled versions of the processes and a trajectory-wise coupling to prove the
lower bound in Proposition 1 later.

Outline of the Paper. In Sect. 2, we introduce the elements of the proof of
hydrodynamics, based on approximating barriers that will dominate the solu-
tion from above and below. In Sect. 3, we construct the coupling to show the
dominations. In Sect. 4, we show the hydrodynamics for the barriers. Section 5
is devoted to the proof of the existence of the limiting density ψ. In Sect. 6, we
prove Theorem 1. In Sect. 7, Theorem 2 is proven. Finally, in Sect. 8, we state a
theorem for fixed N establishing the existence of a unique invariant measure for
the process as seen from the left-most particle and a description of the traveling
wave solutions for the FBP.

2 Domination and Barriers

We define the N -BBM process and the limiting barriers as functions of a ranked
version of the BBM process.

Ranked BBM. Denote by {B1,1
0 , . . . , BN,1

0 } the initial positions of N independent
BBM processes. The descendants of the same initial particle will be called a
family. Let N i

t be the size of the i-th BBM family (starting at Bi,1
0 ) at time t.

For 1 ≤ j ≤ N i
t , let Bi,j

t be the position of the j-th member of the i-th family,
ordered by birth time. Call (i, j) the rank of this particle, and denote

Bi,j
[0,t]

:= trajectory of the j-th offspring with

initial particle i in the interval [0, t],

with the convention that, before its birth time, the trajectory coincides with
those of its ancestors. Define the ranked BBM as

B :=
(
Bi,j

[0,∞) : i ∈ {1, . . . , N}, j ∈ N
)
. (7)

We define the BBM process as the positions occupied by the particles at time t:

Zt(B) = {Bi,j
t : 1 ≤ i ≤ N, 1 ≤ j ≤ N i

t}.

We drop the dependence on B in the notation when it is clear from the context.
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N-BBM as Function of the Ranked BBM. Let (τn)n∈N0 be the branching times
of the BBM process (we set N0 = {0, 1, . . .}). We iteratively define (L̂τn

)n∈N0

and the N -BBM process (Xt)t≥0 at the branching times. Let X0 = Z0, τ0 = 0
and L̂0 = min

{
X1

0 , . . . , XN
0

}
. For n ≥ 1, let

L̂τn
:= a ∈ Zτn

such that
N∑

i=1

Ni
τn∑

j=1

1{Bi,j
τn−1

∈ Xτn−1 , B
i,j
τn

≥ a} = N

Xτn
:= {Bi,j

τn
: Bi,j

τn−1
∈ Xτn−1 and Bi,j

τn
≥ L̂τn

},

with the convention that if the branching point at time τn is at L̂τn
and Bi,j

τn
=

Bi,j′
τn

, j > j′, are the two offsprings at that time, only Bi,j
τn

≥ L̂τn
while we

abuse notation by declaring Bi,j′
τn

< L̂τn
. Since superposition of particles occur

at branching times with zero probability, L̂τn
and Xτn

are well defined for every
n almost surely. The process

Xt(B) := {Bi,j
t : Bi,j

τn
≥ L̂τn

for all τn ≤ t}

is a version of the N -BBM process described in the introduction.

Stochastic Barriers. For every δ > 0, we define the stochastic barriers. These
are discrete-time processes denoted by Xδ,−

kδ and Xδ,+
kδ , k ∈ N0, with initial

configurations Xδ,±
0 = Z0. Iteratively, assume Xδ,±

(k−1)δ ⊂ Z(k−1)δ is defined. The
barriers at time kδ are selected points of Zkδ of cardinal at most N that are
defined as follows.

The Upper Barrier. The selected points at time kδ are the N right-most off-
springs of the families of the selected points at time (k − 1)δ. The cutting point
and the corresponding selected set at time kδ are

LN,δ,+
kδ := a ∈ Zkδ such that

N∑

i=1

Ni
kδ∑

j=1

1
{
Bi,j

(k−1)δ ∈ Xδ,+
(k−1)δ, Bi,j

kδ ≥ a
}

= N

Xδ,+
kδ :=

{
Bi,j

kδ : Bi,j
(k−1)δ ∈ Xδ,+

(k−1)δ and Bi,j
kδ ≥ LN,δ,+

kδ

}
. (8)

(In Sect. 4, we introduce some deterministic barriers called Lδ,+
kδ , without the

superscript N ; please do not confuse them.) The number of particles in Xδ,+
kδ is

exactly N for all k.

The Lower Barrier. The selection is realized at time (k − 1)δ. Cut particles from
left to right at time (k − 1)δ until the largest possible number non bigger than
N of particles is kept at time kδ. While cutting the particles, we also cut all
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their ancestors. The cutting point at time (k − 1)δ and the resulting set at time
kδ are given by

LN,δ,−
(k−1)δ

:= min
{

a ∈ Xδ,−
(k−1)δ :

N∑

i=1

Ni
kδ∑

j=1

1
{
Bi,j

(k−1)δ ∈ Xδ,−
(k−1)δ and Bi,j

(k−1)δ ≥ a
}

≤ N
}

Xδ,−
kδ :=

{
Bi,j

kδ : Bi,j
(k−1)δ ∈ Xδ,−

(k−1)δ and Bi,j
(k−1)δ ≥ LN,δ,−

(k−1)δ

}
. (9)

Since entire families are cut at time (k−1)δ, it is not always possible to keep
exactly N particles at time kδ. Nevertheless, for fixed δ, the number of particles
in Xδ,−

kδ is N − M δ
kδ, where M δ

kδ/N goes to zero almost surely and in L1. This
will be made precise in Lemma 3.

We have the following expression for the barriers as a function of the ranked
BBM B:

Xδ,−
kδ (B) =

{
Bi,j

kδ : Bi,j
�δ ≥ LN,δ,−

�δ , 0 ≤ � ≤ k − 1
}

(10)

Xδ,+
kδ (B) =

{
Bi,j

kδ : Bi,j
�δ ≥ LN,δ,+

�δ , 1 ≤ � ≤ k
}
.

Partial Order and Domination. Let X and Y be finite particle configurations
(multi-sets) and define

X � Y if and only if |X ∩ [a,∞)| ≤ |Y ∩ [a,∞)| ∀a ∈ R. (11)

In this case, we say that X is dominated by Y . If X and Y are random set
of particles, we say that X is stochastically dominated by Y if there exists a
random object (X̂, Ŷ ) (a coupling) such that its marginal distributions coincide
respectively with the distributions of X and Y , and X̂ � Ŷ almost surely.

In Sect. 3, we prove the following dominations.

Proposition 1. For every δ > 0, there exists a random element{(
X̂δ,−

kδ , X̂kδ, X̂
δ,+
kδ

)
: k ∈ N0

}
satisfying the following conditions:

1. for every k, the marginals of
(
X̂δ,−

kδ , X̂kδ, X̂
δ,+
kδ

)
have the same distributions

as Xδ,−
kδ , Xkδ and Xδ,+

kδ ;
2. for every k,

X̂δ,−
kδ � X̂kδ � X̂δ,−

kδ almost surely. (12)

In other words, Xkδ is stochastically between Xδ,−
kδ and Xδ,+

kδ .

Deterministic Barriers. For integrable u : R → R+, the Gaussian kernel Gt is
defined by

Gtu(a) :=
∫ ∞

−∞

1√
2πt

e−(a−r)2/2tu(r) dr,
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so that etGtρ is solution of the equation ut = 1
2urr + u with initial condition ρ.

For m > 0, the cut operator Cm is defined by

Cmu(a) := u(a)1
{∫ ∞

a

u(r)dr < m

}
, (13)

so that Cmu has total mass
( ∫

u
)

∧ m. For δ > 0 and k ∈ N0, define the upper
and lower barriers Sδ,±

kδ ρ at time δk as follows:

Sδ,±
0 ρ := ρ; Sδ,−

kδ ρ :=
(
eδGδCe−δ

)k
ρ; Sδ,+

kδ ρ :=
(
C1e

δGδ

)k
ρ. (14)

To obtain the upper barrier Sδ,+
δ ρ, first diffuse&grow for time δ, and then cut

mass from the left to keep mass 1. To get the lower barrier Sδ,−
δ ρ, first cut mass

from the left to keep mass e−δ, and then diffuse&grow for time δ (obtaining
mass 1 again). Iterate to get the barriers at times kδ. Since

∫
eδGδu = eδ

∫
u,

we have
∫

Sδ,±
kδ ρ =

∫
ρ = 1 for all k.

Hydrodynamics of δ-barriers. In Sect. 4, we prove that, for fixed δ, the empirical
measures converge as N → ∞ to the macroscopic barriers:

Theorem 3. Let πN,δ,±
kδ be the empirical measures associated to the stochastic

barriers Xδ,±
kδ with initial configuration X0. Then, for any a ∈ R, δ > 0 and

k ∈ N0,

lim
N→∞

∫ ∞

a

πN,δ,±
kδ (dr) =

∫ ∞

a

Sδ,±
kδ ρ(r)dr a.s. and in L1.

The same is true if we substitute Xδ,±
kδ by the coupling marginals X̂δ,±

kδ of
Proposition 1.

Convergence of Macroscopic Barriers. For integrable u, v : R → R
+, we write

u � v iff
∫ ∞

a

u(r)dr ≤
∫ ∞

a

v(r)dr ∀a ∈ R.

In Sect. 5, we fix t and take δ = t/2n to prove that, for the order �, the sequence
S

t/2n,−
t ρ is increasing, the sequence S

t/2n,+
t ρ is decreasing, and ‖S

t/2n,+
t ρ −

S
t/2n,−
t ρ‖1 −−−−−→

n→∞ 0. As a consequence, we get the following theorem.

Theorem 4. There exists a continuous function called ψ(r, t) such that, for any
t > 0,

lim
n→∞ ‖S

t/2n,±
t ρ − ψ(·, t)‖1 = 0.

The function ψ is obtained by a limiting procedure. Under certain conditions
over ρ and L, we can guarantee ψ is the unique solution of the FBP (Theorem 2),
but we do not have a proof of this fact if we assume weaker hypotheses.
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Sketch of Proof of Theorems 1 and 2. The coupling of Proposition 1 satisfies X̂δ,−
t �

X̂t � X̂δ,+
t . By Theorem 3, the empirical measures associated to the stochas-

tic barriers X̂δ,±
t converge to the macroscopic barriers Sδ,±

t ρ. By Theorem 4, the
macroscopic barriers converge to a function ψ(·, t) as δ → 0. Hence the empirical
measure of X̂t must converge to ψ(·, t) as N → ∞. This is enough to get Theorem 1.

In Sect. 6, we show that any solution of the FBP is in between the barriers
Sδ,±

kδ ρ; this is enough to get Theorem 2.

3 Domination Proof of Proposition 1

In this section, we construct versions of X(k+1)δ and Xδ,±
(k+1)δ conditioned to

knowing the positions of the particles at time kδ. In order to apply an inductive
argument, we suppose the particle configurations at time kδ upon which we are
conditioning are ordered in the sense of the partial order � defined in (11):
Xδ,−

kδ � Xkδ � Xδ,+
kδ . The property about this domination we will use is the

following one: if two particle configurations y = {y1 < . . . < yN} and x =
{x1 < . . . < xN} are such that y � x, then yi ≤ xi for every i. The resulting
processes at time (k + 1)δ will again respect the order they had in the previous
step. Once these constructions are done, one can easily construct a version of{
(Xδ,−

kδ ,Xkδ,X
δ,+
kδ ) : k ∈ N0

}
that makes the job of Proposition 1.

Stochastic Lower Bound. Fix a particle configuration x1 < . . . < xN . For
M ∈ N0, consider M particles yN−M+1 < yN−M+2 < . . . < yN , and suppose
that yi ≤ xi for every i ∈ {N − M + 1, N − M + 2, . . . , N}. Complete the y-
particles until getting N of them with particles at −∞: y1 = . . . = yN−M = −∞.
In such a way, we have yi ≤ xi for every i. As functions of N independent
BBM processes

{
{(Bi,j

t )t≥0 : j ∈ N}, i ∈ {1, . . . , N}
}

with initial positions
B1,1

0 = . . . = BN,1
0 = 0, we will construct the following four processes:

1. (X−
t )t≥0 with initial configuration X−

0 = {yN−M+1, . . . , yN};
2. (Yt)t≥0 with initial configuration Y0 = {y1, . . . , yN};
3.

(
(Ŷt, σt)

)
t≥0

with initial particle-configuration Ŷ0 = {y1, . . . , yN};
4.

(
(Xt, σt)

)
t≥0

with initial particle-configuration X0 = {x1, . . . , xN}.

In the last two processes, the second coordinates (σt)t≥0 are labels. (X−
t )t≥0

at time δ will have the same distribution as the lower barrier Xδ,−
kδ conditioned

to taking the value {yN−M+1, . . . , yN} at time (k − 1)δ. The particle-positions
Xt of the fourth process will have the same distributions than the N -BBM
process with initial positions {x1, . . . , xN}. (Yt)t≥0 and

(
(Ŷt, σt)

)
t≥0

will play
the role of auxiliary intermediate processes. (X−

t )t≥0 will be a subset of (Yt)t≥0,
the particle-positions (Ŷt)t≥0 of the third process will be dominated by (Xt)t≥0,
and (Yt)t≥0 will coincide with (Ŷt)t≥0; these three facts imply that (X−

t )t≥0 is
stochastically dominated by (Xt)t≥0. Once we have this, the first inequality in
(12) follows easily from an iterative procedure.
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1. As before, set N i
t to be the cardinal of the i-th BBM process at time t ≥ 0.

The process X−
t will not be Markovian. For every t ≥ 0, let L−

t := min{N −
M +1 ≤ � ≤ N :

∑N
i=� N �

t ≤ N} (with the convention min ∅ = ∞), and define

X−
t := {yi + Bi,j

t : i ≥ L−
t , 1 ≤ j ≤ N i

t}.

2. Let ≺ be the strict lexicographical order on the set of labels {1, . . . , N} × N:
(i, j) ≺ (i′, j′) if and only if i < i′, or i = i′ and j < j′. For t ≥ 0, Yt consists
of the N particles with ≺-highest labels: Yt :=

{
yi +Bi,j

t : 1 ≤ i ≤ N, 1 ≤ j ≤
N i

t , |{(i′, j′) : (i, j) ≺ (i′, j′)}| < N
}
. Since X−

t consists of the descendants at
time t of the maximal possible number of right-most particles at time 0 whose
total descendance at time t does not exceed N , we have X−

t ⊂ Yt, which in
turn implies

X−
t � Yt.

3. We define the fourth process before the third one. Let τ0 = 0 and (τn)n∈N

be the branching times of the family of BBM processes
(
(Bi,j

t )t≥0 : 1 ≤ i ≤
N, 1 ≤ j ≤ N i

t

)
. Set Xi

0 = xi and σi
0 = (i, 1) for every 1 ≤ i ≤ N . The label

σi
t indicates what Brownian motion the i-th particle is following to diffuse

at time t (they will have the same role in the process
(
(Ŷt, σt)

)
t≥0

). For
0 < s < τ1, let σi

s := (i, 1) and Xi
s := xi +Bi,1

s for every 1 ≤ i ≤ N . Let k ≥ 1
and suppose we have defined the process in the time interval [0, τk). Suppose
the branching at time τk occurs at the particle Bn,j

τk−, in which case the new
born particle will have label (n,Nn

τk− + 1). If (n, j) /∈ {σi
τk− : 1 ≤ i ≤ N},

i.e. if the branching particle is not in Xτk−, the particles continue with their

labels and increments: σi
s = σi

τk− and Xi
s = Xi

τk− + (Bσi
s

s − B
σi

s
τ1 ), 1 ≤ i ≤ N ,

s ∈ [τk, τk+1). Suppose (n, j) ∈ {σi
τk− : 1 ≤ i ≤ N}, and let m be the index

of the left-most X-particle: m := argmin1≤�≤N X�
τk−. For s ∈ [τk, τk+1), set

σm
s := (n,Nn

τk− + 1) and Xm
s := Xn

τk− + (Bσm
s

s − B
σm

s
τk ),

and σ�
s := σ�

τk− and X�
s := X�

τk− + (Bσ�
s

s − B
σ�

s
τk ) for every � �= m.

In words, the left-most particle Xm jumps over the branching one Xn, and
starts following the increments of the new-born particle on the family of BBM
processes.

4. The labels σt in the process
(
(Ŷt, σt)

)
t≥0

coincide with the labels in the pre-

vious one. In other words, the increments of the particle Ŷ i are coupled with
the ones of the particle Xi at all times. This information determines the
particle-positions for s ∈ [0, τ1): Ŷ i

s := yi + Bi,1
s . Suppose the process Ŷt has

been defined in the time-interval [0, τk), and let as before (n, j) be the label at
which the branching at time τk is carried out. If (n, j) /∈ {σi

τk− : 1 ≤ i ≤ N},

we change nothing: Ŷ i
s := Ŷ i

τk− + (Bσi
s

s − B
σi

s
τk ), 1 ≤ i ≤ N , s ∈ [τk, τk+1). If

(n, j) ∈ {σi
τk− : 1 ≤ i ≤ N}, let m as before be the index of the left-most

X-particle (recalling we had σm
s = (n,Nn

τk− +1), s ∈ [τk, τk+1)), and h be the
index of the lowest label (in the strict lexicographical order): σh

τk− ≺ σ�
τk− for

every � ∈ {1, . . . , N} \ {h}. There are two cases (see Figs. 1 and 2):
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(1) n /∈ {m,h}. Set Ŷ m
s := Ŷ n

τk− +(Bσm
s

s −B
σm

s
τk ) for s ∈ [τk, τk+1), and divide

in the following two sub-cases:
(1a) If h = m, let the remaining particles keep their positions and ranks:

Ŷ �
s := Ŷ �

τk− + (Bσ�
s

s − B
σ�

s
τk ), � �= m.

(1b) If h �= m, set Ŷ h
s := Ŷ m

τk−+(Bσh
s

s −B
σh

s
τk ) and Ŷ �

s := Ŷ �
τk−+(Bσ�

s
s −B

σ�
s

τk )
for � /∈ {m,h}. In words, the particle Ŷ h jumps over the position of
the particle Ŷ m at time τk−, and the rest ones keep their positions.

(2) n ∈ {m,h}. We have the following two sub-cases:
(2a) If n = h �= m, the particle Ŷ h jumps over Ŷ m, and the rest of the

particles keep their positions: for s ∈ [τk, τk+1), Ŷ h
s := Ŷ m

s + (Bσh
s

s −
B

σh
s

τk ) and Ŷ �
s := Ŷ �

s + (Bσ�
s

s − B
σ�

s
τk ) for � �= h.

(2b) If n = m �= h or n = h = m, all particles keep their positions:

Ŷ �
s := Ŷ �

τk− + (Bσ�
s

s − B
σ�

s
τk ) for every �.

Lemma 1. For every t ≥ 0, (a) Xt has the distribution of the N -BBM process
with initial positions {x1, . . . , xN}, (b) Ŷt coincide with Yt, and (c) Ŷt � Xt.

Proof. (a) Since the left-most particle jumps over the branching one, and since
this branches occurs at rate 1, (Xt)t≥0 has the distribution of the N -BBM process.

(b) The proof is only the observation that the distribution of both processes
(Yt)t≥0 and (Ŷt)t≥0 can be described as follows: at the beginning, we have N
particles with positions {y1, . . . , yN}; we say that the family name of the particle
that starts at yi is i; each particle diffuses independently; at rate N , one of
the N particles is uniformly chosen and a new one is created at that position,
inheriting its family name, and the oldest particle among all the ones with lowest
family name is killed; the new N particles start to diffuse independently, and
the procedure starts again.

before
jumps

after
jumps

m nh

m h n

n m

h

n mh

Fig. 1. Relative positions of particles at
branching time s for the case (1b). Each
X-particle is to the right of the Ŷ -particle
with the same label before and after the
branching. This order would be broken if
the hth Ŷ -particle jumped to the nth Ŷ -
particle, in this example.

m

n = h

m n = h

h m

h m

Xs−

Ŷs−

Xs

Ŷs

Fig. 2. Relative positions of particles at
branching time s for the case (2a).
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(c) The domination Ŷ �
t ≤ X�

t holds at time 0 and it is preserved between
branching events because the Brownian increments are the same. The domina-
tion persists after each branching event obviously in cases (1a) and (2b). In case
(1b), we have Ŷ m

τk
= Ŷ n

τk− ≤ Xn
τk− = Xm

τk
and Ŷ h

τk
= Ŷ m

τk− ≤ Xm
τk− ≤ Xh

τk− = Xh
τk

because Xm
τk− is the minimal Xτk−-particle and the h-th X particle does not

jump at τk. In case (2a), Xm
τk

= Xh
τk

= Xh
τk− ≥ Xm

τk− ≥ Ŷ m
τk− = Ŷ h

τk
= Ŷ m

τk
(see

Fig. 2).

Stochastic Upper Bound. Take again x1 < . . . < xN , and let z1 < . . . < zN

be another set of N points such that xi ≤ zi for every i. Take the same family
of BBM processes

{
{(Bi,j

t )t≥0 : j ∈ N}, i ∈ {1, . . . , N}
}

with initial positions
B1,1

0 = . . . = BN,1
0 = 0. Let (Xt)t≥0 be defined as above. We will define the

process (X+
t )t≥0 that will represent the process Xδ,+

(k+1)δ conditioned to Xδ,+
kδ =

{z1, . . . , zN}. Let L+
t ∈ {zi + Bi,j

t : 1 ≤ i ≤ N, 1 ≤ j ≤ N i
t} be the unique

element satisfying

N∑

i=1

Ni
t∑

j=1

1{zi + Bi,j
t ≥ L+

t } = N,

and let (X+
t )t≥0 consist of the N right most particles of the BBM processes

starting at {z1, . . . , zN}:

X+
t := {zi + Bi,j

t : zi + Bi,j
t ≥ L+

t , 1 ≤ i ≤ N, 1 ≤ j ≤ N i
t}.

Since Xt is a subset of {xi + Bi,j
t : 1 ≤ i ≤ N, 1 ≤ j ≤ N i

t}, the former set
is dominated by the N right-most particles of the latter one. Also condition
xi ≤ zi for every i implies that the set containing the N right-most particles of
{xi + Bi,j

t : 1 ≤ i ≤ N, 1 ≤ j ≤ N i
t} is dominated by X+

t . The last two facts
imply Xt � X+

t almost surely.

Proof of Proposition 1. For k = 0, the coupling (X̂δ,−
0 , X̂0, X̂

δ,+
0 ) is simply

defined as X̂δ,−
0 = X̂0 = X̂δ,+

0 = {X1
0 , . . . , XN

0 } (N independent particles with
law defined in terms of ρ).

Fix now a realization of the initial configuration X1
0 , . . . , XN

0 , whose points
we can suppose to be all different. After reordering their labels, we can identify
them with the set {x1, . . . , xN} introduced before. In this case, take M = 0 and
yi = xi = zi for every i. The construction of the pre and post-selection processes
gives the coupling (X̂δ,−

δ , X̂δ, X̂
δ,+
δ ) conditioned to having initial configuration

X1
0 , . . . , XN

0 (namely the marginal distributions of (X̂δ,−
δ , X̂δ, X̂

δ,+
δ ) respectively

coincide with the conditional distributions of Xδ,−
δ , Xδ and Xδ,+

δ with initial
condition X1

0 , . . . , XN
0 , and Xδ,−

δ � Xδ � Xδ,+
δ almost surely). Then make an

average of the initial condition weighted with the law of (X̂δ,−
0 , X̂0, X̂

δ,+
0 ) to get

the coupling (X̂δ,−
δ , X̂δ, X̂

δ,+
δ ).
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Suppose we have defined the coupling {(X̂δ,−
�δ , X̂�δ, X̂

δ,+
�δ ), 0 ≤ � ≤ k}.

Fix a realization of (X̂δ,−
kδ , X̂kδ, X̂

δ,+
kδ ). After reordering, the first, second and

third coordinates can be respectively identified with sets {yN−M+1, . . . , yN},
{x1, . . . , xN} and {z1, . . . , zN}, and the coupled conditional distributions of
(X̂δ,−

(k+1)δ, X̂(k+1)δ, X̂
δ,+
(k+1)δ) exists as before. Finally make an average of the con-

ditioning configurations at time kδ weighted with the law of (X̂δ,−
kδ , X̂kδ, X̂

δ,+
kδ )

to get the coupling (X̂δ,−
(k+1)δ, X̂(k+1)δ, X̂

δ,+
(k+1)δ).

4 Hydrodynamic Limit for the Barriers

In this section, we prove Theorem 3, namely that the stochastic barriers converge
in the macroscopic limit N → ∞ to the deterministic barriers. Recall that ρ is
a probability density on R with a left boundary L∗, and that the N -BBM starts
from X0 = (X1

0 , . . . , XN
0 ), iid continuous random variables with density ρ.

It is convenient to have a notation for the cutting points for the macroscopic
barriers Sδ,±

kδ defined in (14). For δ > 0 and natural number � ≤ k, denote

Lδ,+
�δ := sup

r

{∫ ∞

r

Sδ,+
�δ ρ(r′)dr′ = 1

}
Lδ,−

�δ := sup
r

{∫ ∞

r

Sδ,−
�δ ρ(r′)dr′ = e−δ

}
.

(15)

Let B0 be a continuous random variable with density ρ. Let B[0,t] = (Bs : s ∈
[0, t]) be a Brownian motion starting from B0, with increments independent of
B0. Let Nt be the random size at time t of a BBM family starting with one
member. We have ENt = et. Recall etGtρ is the solution of ut = 1

2urr + u
with u(·, 0) = ρ. With this notation, we have the following representation of
etGtρ and the macroscopic barriers as expectation of functions of the Brownian
trajectories.

Lemma 2. For every bounded measurable test function ϕ : R → R and every
t > 0, we have

∫
ϕ(r)etGtρ(r) dr = etE[ϕ(Bt)]. (16)

Furthermore

∫
ϕ(r)Sδ,+

kδ ρ(r) dr = ekδE
[
ϕ(Bkδ)1

{
B�δ > Lδ,+

�δ : 1 ≤ � ≤ k
}]

(17)
∫

ϕ(r)Sδ,−
kδ ρ(r) dr = ekδE

[
ϕ(Bkδ)1

{
B�δ > Lδ,−

�δ : 0 ≤ � ≤ k − 1
}]

.

Proof. Immediate.

Recall the definition of B in (7). In particular, the trajectory Bi,j
[0,t] is distributed

as B[0,t] for all i, j, and the families (Bi,j
[0,t] : j ∈ {1, . . . , N i

t}), for i ∈ {1, . . . , N},
are iid.
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Proposition 2. Let t > 0 and g : C([0, t],R) → R be a bounded measurable
function, and define

μN
t g :=

1
N

N∑

i=1

Ni
t∑

j=1

g(Bi,j
[0,t]).

Then

lim
N→∞

μN
t g = etEg(B[0,t]) a.s. and in L1. (18)

Proof. By the many-to-one Lemma (see [18], for instance), we have

EμN
t g = ENt Eg(B[0,t]) = etEg(B[0,t]).

This is enough to get the strong law of large numbers (18).

Recall we have defined Mkδ as N − |Xδ,−
kδ |.

Lemma 3. For every k ∈ N0, M δ
kδ/N −−−−−→

N→∞
0 almost surely and in L1.

Proof. M δ
0 = 0 almost surely. For k ≥ 1, M δ

kδ is non-negative and its law con-
verges as N → ∞ to the law of the Age of a renewal process with inter-renewal
intervals distributed as Nδ, the one-particle family size at time δ. The Age law
is the size-biased law of Nδ. Since Nδ has all moments finite, we can conclude.

Corollary 1 (Hydrodynamics of the BBM). For measurable bounded ϕ :
R → R and t > 0, we have

lim
N→∞

1
N

N∑

i=1

Ni
t∑

j=1

ϕ(Bi,j
t ) = etEϕ(Bt) = et

∫
ϕ(r)Gtρ(r)dr a.s. and in L1.

Proof of Theorem 3. Recalling (10), we have

πN,δ,+
kδ ϕ =

1
N

N∑

i=1

Ni
kδ∑

j=1

ϕ(Bi,j
kδ )1{Bi,j

�δ ≥ LN,δ,+
�δ : 1 ≤ � ≤ k}

πN,δ,−
kδ ϕ =

1
N

N∑

i=1

Ni
kδ∑

j=1

ϕ(Bi,j
kδ )1{Bi,j

�δ ≥ LN,δ,−
�δ : 0 ≤ � ≤ k − 1}.

We want to apply Proposition 2, but do not have an explicit expression for
EπN,δ,±

kδ ϕ because of the random boundaries in the right hand side. We can use
instead the deterministic boundaries Lδ,±

�δ by defining

g+ϕ (B[0,kδ]) := ϕ(Bkδ)1{B�δ ≥ Lδ,+
�δ : 1 ≤ � ≤ k}

g−
ϕ (B[0,kδ]) := ϕ(Bkδ)1{B�δ ≥ Lδ,−

�δ : 0 ≤ � ≤ k − 1}.
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By (18) and (17), we have

lim
N→∞

μN
kδg

±
ϕ = ekδEg±

ϕ (B[0,kδ]) =
∫

ϕ(r)Sδ,±
kδ ρ(r) dr.

To conclude, it suffices to show that πN,δ,±
kδ ϕ−μN

kδg
±
ϕ converges to 0. To get this,

observe that, by Proposition 3 below,
∣
∣πN,δ,−

kδ ϕ − μN
kδg

−
ϕ

∣
∣

=
∣
∣
∣
1
N

N∑

i=1

Ni
kδ∑

j=1

ϕ(Bi,j
kδ )

(k−1∏

�=0

1
{
Bi,j

�δ ≥ LN,δ,−
�δ

}
−

k−1∏

�=0

1
{
Bi,j

�δ ≥ Lδ,−
�δ

})∣
∣
∣

≤ ‖ϕ‖∞
1
N

N∑

i=1

Ni
kδ∑

j=1

∣
∣
∣
k−1∏

�=0

1
{
Bi,j

�δ ≥ LN,δ,−
�δ

}
−

k−1∏

�=0

1
{
Bi,j

�δ ≥ Lδ,−
�δ

}∣
∣
∣ −→

N→∞
0

a.s. and L1.

The same argument works for the upper barrier. ��
By Definitions (8) and (9) of the microscopic cutting points LN,δ,±

�δ and
Lemma 3, we have

1
N

N∑

i=1

Ni
kδ∑

j=1

k∏

�=1

1{Bi,j
�δ ≥ LN,δ,+

�δ } = 1

1
N

N∑

i=1

Ni
kδ∑

j=1

k−1∏

�=0

1{Bi,j
�δ ≥ LN,δ,−

�δ } = 1 − O(1/N). (19)

Proposition 3. For k ∈ N, we have

1
N

N∑

i=1

Ni
kδ∑

j=1

∣
∣
∣

k∏

�=1

1
{
Bi,j

�δ ≥ LN,δ,+
�δ

}
−

k∏

�=1

1
{
Bi,j

�δ ≥ Lδ,+
�δ

}∣
∣
∣ −→

N→∞
0 (20)

1
N

N∑

i=1

Ni
kδ∑

j=1

∣
∣
∣
k−1∏

�=0

1
{
Bi,j

�δ ≥ LN,δ,−
�δ

}
−

k−1∏

�=0

1
{
Bi,j

�δ ≥ Lδ,−
�δ

}∣
∣
∣ −→

N→∞
0 (21)

a.s. and in L1.

Proof. We first treat the lower barrier, i.e. the “−” quantities. Since at time zero
the families have only one element, for the lower barrier at k = 0, the left hand
side of (21) reads

1
N

N∑

i=1

∣
∣
∣1

{
Bi,1

0 ≥ LN,δ,−
0

}
− 1

{
Bi,1

0 ≥ Lδ,−
0

}∣
∣
∣.
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Recalling that all the trajectories Bi,j
[0,δ] start at the same point Bi,1

0 , we can
bound the above expression by

1
N

N∑

i=1

Ni
δ∑

j=1

∣
∣
∣1

{
Bi,j

0 ≥ LN,δ,−
0

}
− 1

{
Bi,j

0 ≥ Lδ,−
0

}∣
∣
∣ (22)

=
∣
∣
∣
1
N

N∑

i=1

Ni
δ∑

j=1

1
{
Bi,j

0 ≥ LN,δ,−
0

}
− 1

N

N∑

i=1

Ni
δ∑

j=1

1
{
Bi,j

0 ≥ Lδ,−
0

}∣
∣
∣ −→

N→∞
0,

a.s. and L1. (23)

The identity holds because the differences of the indicator functions in (22) have
the sign of LN,δ,−

0 −Lδ,−
0 for all i, j. The limit (23) holds because (a) by (19) the

first term in (23) converges to 1 and (b) the limit of the second term is also 1
by definition (15) of Lδ,−

0 and Proposition 2.
For the upper barrier at k = 1, put again the sums between the absolute

values to get that in this case the left hand side of (20) reads

∣
∣
∣
1
N

N∑

i=1

Ni
δ∑

j=1

1
{
Bi,j

δ ≥ LN,δ,+
δ

}
− 1

N

N∑

i=1

Ni
δ∑

j=1

1
{
Bi,j

δ ≥ Lδ,+
δ

}∣
∣
∣ −→

N→∞
0,

a.s. and in L1, (24)

because the first term is 1 by definition of LN,δ,+
δ and the second one converges

to 1 by the definition of Lδ,+
δ and Proposition 2.

For the induction step denote

AN,δ,+
kδ (i, j) :=

k∏

�=1

1
{
Bi,j

�δ ≥ LN,δ,+
�δ

}
Aδ,+

kδ (i, j) :=
k∏

�=1

1
{
Bi,j

�δ ≥ Lδ,+
�δ

}

AN,δ,−
kδ (i, j) :=

k−1∏

�=0

1
{
Bi,j

�δ ≥ LN,δ,−
�δ

}
Aδ,−

kδ (i, j) :=
k−1∏

�=0

1
{
Bi,j

�δ ≥ Lδ,−
�δ

}
.

Assume (20) holds for � = k − 1 and write the left hand side of (20) for the
upper barrier at � = k as

1
N

N∑

i=1

Ni
kδ∑

j=1

∣
∣
∣AN,δ,+

(k−1)δ(i, j)1
{
Bi,j

kδ ≥ LN,δ,+
kδ

}
− Aδ,+

(k−1)δ(i, j)1
{
Bi,j

kδ ≥ Lδ,+
kδ

}∣
∣
∣

≤
∣
∣
∣
1
N

N∑

i=1

Ni
kδ∑

j=1

AN,δ,+
(k−1)δ(i, j)1

{
Bi,j

kδ ≥ LN,δ,+
kδ

}
(25)
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− 1

N

N∑

i=1

Ni
kδ∑

j=1

AN,δ,+
(k−1)δ(i, j)1

{
Bi,j

kδ ≥ Lδ,+
kδ

}∣
∣
∣

+
1

N

N∑

i=1

Ni
kδ∑

j=1

∣
∣
∣AN,δ,+

(k−1)δ(i, j)1
{
Bi,j

kδ ≥ Lδ,+
kδ

} − Aδ,+
(k−1)δ(i, j)1

{
Bi,j

kδ ≥ Lδ,+
kδ

}∣
∣
∣, (26)

where the inequality is obtained by summing and subtracting the same expression
and then taking the modulus out of the sums in (25) as all the indicator function
differences have the same sign, as before.

By dominated convergence and the induction hypothesis, the expression in
(26) converges to zero as N → ∞. In turn, this implies that the second term in
(25) has the same limit as the second term in (27) below. Hence we only need
to show that expression

∣
∣
∣
1
N

N∑

i=1

Ni
kδ∑

j=1

AN,δ,+
(k−1)δ(i, j)1

{
Bi,j

kδ ≥ LN,δ,+
kδ

}

− 1
N

N∑

i=1

Ni
kδ∑

j=1

Aδ,+
(k−1)δ(i, j)1

{
Bi,j

kδ ≥ Lδ,+
kδ

}∣
∣
∣ (27)

vanishes. To see this, since the first term is 1 and the second one converges to
1, we can use the same arguments we used in (24). The same argument shows
that the limit (21) for the lower barrier at � = k is zero if the expression

∣
∣
∣
1
N

N∑

i=1

Ni
kδ∑

j=1

AN,δ,−
(k−1)δ(i, j)1

{
Bi,j

δ ≥ LN,δ,−
(k−1)δ

}

− 1
N

N∑

i=1

Ni
kδ∑

j=1

Aδ,−
(k−1)δ(i, j)1

{
Bi,j

(k−1)δ ≥ Lδ,−
kδ

}∣
∣
∣

goes to 0; this follows with the same argument as (23).

5 Existence of the Limit Function ψ

In this Section, we prove Theorem 4, namely the existence of the function ψ at
which the N -BBM process converges. We start with the following Proposition
whose proof is similar to the one given in Chapters 4, 5 and 6 of [5].

Proposition 4. The following properties hold for every integrable u, v : R → R
+

and t,m > 0.

(a) If u � v, then Cmu � v for every m > 0.
(b) If u ≤ v point wise, then Gtu ≤ Gtv, Gtu � Gtv.
(c) Cm and Gt preserve the order: if u � v, then Cmu � Cmv and Gtu � Gtv.
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(d) ‖Cmu − Cmv‖1 ≤ ‖u − v‖1.
(e) ‖Gtu − Gtv‖1 ≤ ‖u − v‖1.
(f) If ‖u‖1 = 1,

∣
∣ d
drGtu(r)

∣
∣ ≤ c

t for every r ∈ R.

Proof. (Proof of Proposition 4). Items (a), (b), (e) and (f) are simple and we
omit their proofs.
Proof of (c). We start with Cm and assume m < ‖u‖1 ∧ ‖v‖1 since the other
case is trivial. For a ∈ R, we have to prove that

∫ ∞
a

Cmu ≤
∫ ∞

a
Cmv. Denote

the cutting points by

qm(w) := sup
{

r ∈ R :
∫ ∞

r

w = m
}

.R :
∫ L

−∞
v > m

}
. (28)

We suppose qm(u)∧qm(v) < a < qm(u)∨qm(v) since the other case is trivial.
If qm(v) < a < qm(v), we have

∫ ∞

a

Cmu =
∫ ∞

a

u ≤
∫ ∞

qm(v)

u = m =
∫ ∞

qm(v)

v =
∫ ∞

a

Cmv;

if qm(v) < a < qm(u),
∫ ∞

a

Cmu =
∫ ∞

qm(u)

u ≤
∫ ∞

qm(u)

v ≤
∫ ∞

a

v =
∫ ∞

a

Cmv.

Suppose now ‖u‖1 < ‖v‖1 and let m := ‖v‖1 − ‖u‖1. It is easy to see that
u � Cmv. Since ‖u‖1 = ‖Cmv‖1, we can apply the previous case to get Gtu �
GtCmv. We conclude by observing that, because of item (b) and the point-wise
dominance Cmv ≤ v, we have GtCmv � Gtv.
Proof of (d). We assume m < ‖u‖1 ∧ ‖v‖1 since the other case is trivial. Define
qm(u) and qm(v) as in (28), and suppose qm(u) ≥ qm(v) without loss of gener-
ality. Then

‖Cmu − Cmv‖1 =
∥
∥u1x≥qm(u) − v1x≥qm(v)

∥
∥
1

=
∫ qm(u)

qm(v)

v −
∫ qm(u)

−∞
|u − v| + ‖u − v‖1. (29)

Also
∫ qm(u)

qm(v)

v =
∫ qm(v)

−∞
v −

∫ qm(u)

−∞
u +

∫ qm(u)

qm(v)

v =
∫ qm(u)

−∞
(v − u) ≤

∫ qm(u)

−∞
|u − v|.

(30)

Item (d) follows from (29) and (30).

Proposition 5. For every integrable u : R → R
+, δ > 0 and natural number

k ≥ 0, we have

Sδ,−
kδ u � Sδ,+

kδ u (31)

Sδ,−
kδ u � S

δ/2,−
kδ u (32)

Sδ,+
kδ u � S

δ/2,+
kδ u. (33)
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Furthermore, there exists a constant c > 0 such that
∥
∥
∥Sδ,+

kδ u − Sδ,−
kδ u

∥
∥
∥
1

≤ cδ. (34)

Proof. Inequality (31) is a consequence of Theorem 3 and Proposition 1.
To prove inequalities (32) and (33), we call H−

δ := eδGδCe−δ and H+
δ :=

C1e
δGδ, and prove below that

H−
δ v �

(
H−

δ/2

)2
v (35)

H+
δ v �

(
H+

δ/2

)2
v. (36)

Now we deduce (32) from (35) by induction. The case k = 1 is (35). Assume
the assertion holds for k − 1, and write

(
H−

δ

)k
u = H−

δ

(
H−

δ

)k−1
u. Call v :=

(
H−

δ

)k−1
u and use the case k = 1 to infer

(
H−

δ

)k
u �

(
H−

δ/2

)2(
H−

δ

)k−1
u. By

the inductive hypothesis and the fact that
(
H−

δ/2

)2 preserves the order, conclude

that
(
H−

δ

)k
u �

(
H−

δ/2

)2k
u, which is (32). The way to deduce (33) from (36) is

similar.
Proof of (35). We first prove that, for a ∈ R,

∫ ∞

a

eδ/2Gδ/2Ce−δv ≤
∫ ∞

a

Ce−δ/2H−
δ/2v. (37)

Let q := qe−δ/2(H−
δ/2v). If a ≤ q, identity (37) is satisfied because

∫ ∞

a

eδ/2Gδ/2Ce−δv ≤
∫ ∞

−∞
eδ/2Gδ/2Ce−δv = e−δ/2 =

∫ ∞

a

Ce−δ/2H−
δ/2v.

If a > q, inequality (37) becomes
∫ ∞

a

eδ/2Gδ/2Ce−δv ≤
∫ ∞

a

H−
δ/2v,

which follows from Ce−δv � Ce−δ/2v and from (c) of Proposition 4 applied to
eδ/2Gδ/2.

From (37), we then have that eδ/2Gδ/2Ce−δv � Ce−δ/2H−
δ/2v. Since eδGδ =

eδ/2Gδ/2e
δ/2Gδ/2 and eδ/2Gδ/2 preserves the order, we get (35).

Proof of (36). We have to prove that C1Ceδ/2eδ/2Gδ/2w � C1e
δ/2Gδ/2C1w for

w := eδ/2Gδ/2v. From (c) of Proposition 4, this follows if we prove

Ceδ/2eδ/2Gδ/2w � eδ/2Gδ/2C1w.

Denote q := qeδ/2

(
eδ/2Gδ/2w

)
. If a ≤ q,

∫ ∞

a

Ceδ/2eδ/2Gδ/2w = eδ/2 =
∫ ∞

−∞
eδ/2Gδ/2C1w ≥

∫ ∞

a

eδ/2Gδ/2C−1w.
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For a > q, since w ≤ C1w point-wise, we get
∫ ∞

a

eδ/2Gδ/2w ≥
∫ ∞

a

eδ/2Gδ/2C1w.

We now prove (34). Let k := t/δ and define uk := eδGδ

(
H+

δ

)k−1
u and

vk := Sδ,−
t u. Using that ‖uk‖1 = eδ and assuming δ small enough, we get
∥
∥
∥Sδ,+

t u − Sδ,−
t u

∥
∥
∥
1

= ‖C1uk − vk‖1 ≤ ‖C1uk − uk‖1 + ‖uk − vk‖1
=

(
eδ − 1

)
+ ‖uk − vk‖1 ≤ 2δ + ‖uk − vk‖1. (38)

By items (d) and (e) of Proposition 4,

‖uk − vk‖1 ≤ eδ‖C1uk−1 − Ce−δvk−1‖1
≤ eδ‖C1uk−1 − Ce−δuk−1‖1 + eδ‖Ce−δuk−1 − Ce−δvk−1‖1
≤ eδ

[(
eδ − 1

)
−

(
1 − e−δ

)]
+ eδ‖uk−1 − vk−1‖1

≤ 3δ2 + eδ‖uk−1 − vk−1‖1.

Iterating and using that ‖u1 − v1‖1 ≤ eδ‖u − Ce−δu‖1 = eδ
(
1 − e−δ

)
≤ 2δ,

we get

‖vk − uk‖1 ≤ 3δ2
k−2∑

j=0

eδj + ‖u1 − v1‖1eδ(k−1)

≤ 3δ2
eδ(k−1) − 1

eδ − 1
+ 2δet ≤ 3δ

(
et − 1

)
+ 2δet = c1δ.

We conclude by replacing in (38).

In order to prove Theorem 4, we fix u : R → R+ integrable and 0 < t0 < T .
Call

Tn := {k2−n, k ∈ N},

and define the function ρn : R × [t0, T ] → R+ as

ρn(r, t) := S2−n,−
t u if r ∈ R and t ∈ [t0, T ] ∩ Tn,

and by linear interpolation in the rest of the cases.
We will apply Ascoli-Arzelá Theorem, which requires point-wise boundedness

and equi-continuity. The first requirement is immediate because, since we are
away from t = 0, we have a uniform bound:

there exists c = c(u, t0, T ) such that |ρn(r, t)| ≤ c

for every (r, t) ∈ R × [t0, T ] and every n.
(39)

For the second requirement, we will need to prove space and time equi-
continuity separately in Propositions 6 and 7 below.

We will use the following Lemma.
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Lemma 4. Given δ > 0, let t, s ∈ δN with s < t, and let

vδ
s,t := Sδ,−

t u − et−sGt−sS
δ,−
s u.

Then

∥
∥vδ

s,t

∥
∥

∞ ≤ 2eT
√

t − s√
2π

. (40)

Proof. Under definition wδ
t′ := Sδ,−

t′ u − Ce−δSδ,−
t′ u, we have

Sδ,−
t u = eδGδS

δ,−
t−δu − eδGδw

δ
t−δ. (41)

Call m and h the integers such that s = mδ and t = hδ, and iterate (41) to get

Sδ,−
t u = et−sGt−sS

δ,−
s u −

h−1∑

k=m

eh−kG(h−k)δw
δ
kδ.

Since ‖Gt′w‖∞ ≤ ‖w‖1/
√

2πt′ for any t′ > 0 and any integrable w : R → R,
using that

∥
∥wδ

kδ

∥
∥
1

= 1 − e−δ ≤ δ, we get

∥
∥vδ

s,t

∥
∥

∞ ≤
h−1∑

k=m

∥
∥eh−kG(h−k)δw

δ
kδ

∥
∥

∞ ≤
h−1∑

k=m

e(h−k)δ
∥
∥wδ

kδ

∥
∥
1√

2π(h − k)δ
≤ eT

√
δ√

2π

h−1∑

k=m

1√
h − k

≤ eT
√

δ√
2π

2
√

h − m =
2eT

√
t − s√
2π

,

that let us conclude.

Proposition 6 (Space equi-continuity). For any ε > 0, there exist n0 and
ζ > 0 such that

|ρn(r, t) − ρn(r′, t)| < ε (42)

for any n > n0, any t ∈ [t0, T ], and any r, r′ ∈ R such that |r − r′| < ζ.

Proof. Fix ε > 0. Choose n0 such that δ0 := 2−n0 < t0 and 4eT √
δ0√

2π
< ε/2.

Choose ζ > 0 such that 2c1c2eδ0

δ0
ζ < ε/2, where c1 is the constant of item (f) of

Proposition 4, and c2 is the uniform bound given in (39). We take δ = 2−n with
n > n0, and suppose that t = hδ ∈ [t0, T ] observing that it is enough to prove
(42) for t of this form since ρn is defined by linear interpolation. For s := t − δ0
and vδ

s,t := Sδ,−
t u − et−sGt−sS

δ,−
s u, we have

∣
∣
∣Sδ,−

t u(r) − Sδ,−
t u(r′)

∣
∣
∣

=
∣
∣et−sGt−sS

δ,−
s u(r) − et−sGt−sS

δ,−
s u(r′)

∣
∣ +

∣
∣vδ

s,t(r) − vδ
s,t(r

′)
∣
∣.
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For r, r′ ∈ R as in (42), and by the choice of ζ, we have

∣
∣et−sGt−sS

δ,−
s u(r) − et−sGt−sS

δ,−
s u(r′)

∣
∣ ≤ 2c1c2e

δ0ζ

δ0
< ε/2.

By the choice of δ0 and from (40), we get
∣
∣vδ

s,t(r) − vδ
s,t(r

′)
∣
∣ ≤ 2

∥
∥vδ

s,t

∥
∥

∞ < ε/2,
which concludes the proof.

Proposition 7 (Time equi-continuity). For any ε > 0, there exist n0 and
ζ > 0 such that, for any n > n0 and any r ∈ R,

|ρn(r, t) − ρn(r, t′)| < ε ∀t, t′ ∈ [t0, T ] such that |t − t′| < ζ. (43)

Proof. Fix ε > 0 and let ζ ′ and n0 be the parameters given by Proposition 6

associated to ε′ := ε/4. Take ζ such that
2eT

√
2π

√
ζ < ε/4,

2
√

ζeT

√
2πζ ′ e− (ζ′)2

2ζ < ε/4

and
(
eζ − 1

)
eT ‖u‖∞ < ε/4. Let n > n0 and δ := 2−n. We first consider t, t′ ∈

[t0, T ] ∩ δN such that t < t′ < t + ζ. We have to prove that
∣
∣
∣Sδ,−

t′ u(r) − Sδ,−
t u(r)

∣
∣
∣ =

∣
∣
∣vt,t′ + et′−tGt′−tS

δ,−
t u(r) − Sδ,−

t u(r)
∣
∣
∣ < ε. (44)

Using (40), we get
∣
∣
∣Sδ,−

t′ u(r) − Sδ,−
t u(r)

∣
∣
∣

≤ ε

4
+

∣
∣
∣t′ − tGt′−tS

δ,−
t u(r) − Sδ,−

t u(r)
∣
∣
∣

≤ ε

4
+

∣
∣
∣t′ − tGt′−tS

δ,−
t u(r) − Gt′−tS

δ,−
t u(r)

∣
∣
∣ +

∣
∣
∣Gt′−tS

δ,−
t u(r) − Sδ,−

t u(r)
∣
∣
∣.

(45)

We have
∣
∣
∣t′ − tGt′−tS

δ,−
t u(r) − Gt′−tS

δ,−
t u(r)

∣
∣
∣ ≤ (et′−t − 1)

∥
∥
∥Gt′−tS

δ,−
t u

∥
∥
∥

∞
≤ (et′−t − 1)eT ‖u‖∞ < ε/4. (46)

We next estimate

∫ ∞

−∞
Gt′−t(r, r′)

∣
∣
∣Sδ,−

t u(r′) − Sδ,−
t u(r)

∣
∣
∣dr′ ≤ ε

4
+ eT

∫

|r′−r|≥ζ′
Gt′−t(r, r′)dr′

≤ ε

4
+ ≤ 2

√
ζ√

2πζ ′ e
− (ζ′)2

2ζ . (47)

Inserting estimates (46) and (47) in (45), we get (44).
For generic t, t′ ∈ [t0, T ] such that t < t′ < t + ζ, we consider δ = 2−n as

before, and t−, t+ ∈ δN such that t− ≤ t < t− + δ and t+ − δ < t ≤ t+. Then

|ρn(r, t′) − ρn(r, t)| ≤ max
t1,t2∈[t−,t+]∩δN

∣
∣
∣Sδ,−

t2 u(r) − Sδ,−
t1 u(r)

∣
∣
∣.

From (44), we get (43).
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Proof of Theorem 4. For any integrable function w : R → R, we define

F (r;w) :=
∫ ∞

r

w(r′)dr′.

From Ascoli-Arzelá Theorem, we have convergence by subsequences of (ρn)n≥1.
Let ψ be any such a limit point. Observe that, for each t ∈ [t0, T ] ∩ Tn, we have
that ρn = S2−n,−

t u ∈ L1. Since F (r;S2−n,−
t u) is a non increasing function of

n —see Proposition 5—, it converges as n → ∞. Then, by dominate convergence,
we have that

lim
n→∞ F (r;S2−n,−

t u) = F (r;ψ(·, t)) (48)

for any r ∈ R and t ∈ [t0, T ] ∩ Tn. Thus all limit functions ψ(r, t) agree on
t ∈ [t0, T ] ∩ Tn, and hence on the whole [t0, T ] since they are continuous. Then
the sequence ρn(r, t) converges in sup-norm in compact subsets as n → ∞ to a
continuous function ψ(r, t) (and not only by subsequences). Observe that, from
(48), we also have F (r;S2−n,−

t u) ≤ F (r;ψ(·, t)) for any n and t ∈ Tn. ��

6 Proof of Theorem 1

Fix t > 0, choose δ ∈ {2−nt, n ∈ N} and k such that kδ = t. Take X0 as in
Theorem 1, that is, iid continuous random variables with density ρ. By
Proposition 1, there is a coupling between the barriers and N -BBM such that, for
increasing and bounded ϕ,

π̂N,δ,−
t ϕ ≤ π̂N

t ϕ ≤ π̂N,δ,+
t ϕ, (49)

where π̂ are the empiric measures associated to the coupled processes X̂ of
Proposition 1 with initial condition X0 in the three coordinates. In Theorem 3,
we have proven that, under this initial conditions, πN,δ,±

t ϕ converge to
∫

ϕSδ,±
t ρ

almost surely and in L1. We can conclude that the same convergence holds for
the hat-variables.

On the other hand, by (49),
∣
∣πN

t ϕ − π̂N,δ,±
t ϕ

∣
∣ ≤

∣
∣πN,δ,+

t ϕ − π̂N,δ,−
t ϕ

∣
∣ ≤ ‖ϕ‖ cδ,

by (34). We can conclude using Theorem 3 that

lim
N→∞

∣
∣πN

t ϕ −
∫

ϕSδ,±
t ρ

∣
∣ ≤ ‖ϕ‖ cδ, a.s. and in L1.

Taking δ → 0 along dyadics, we get a function
∫

ϕψ := limδ→0

∫
ϕSδ,±

t ρ
in L1 and

lim
N→∞

∣
∣πN

t ϕ −
∫

ϕψ
∣
∣ a.s. and in L1. ��
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7 Proof of Theorem 2

Fix a density ρ and assume there is a continuous curve L = (Lt : t ≥ 0) and
density functions u = (u(r, t) : r ∈ R, t ≥ 0) such that (u,L) solves the FBP.
Actually, the only thing we use about being a solution is the representation
formula (6). It is convenient to stress the semigroup property of the solution so
we call the solution Stρ := u(·, t) and notice that the operator St is a semigroup.
The following theorem shows that the solution is in between the barriers.

Theorem 5. Let (u,L) be a solution of the FBP in (0, T ]. Let t ∈ (0, T ] and
δ ∈ {2−nt : n ∈ N}. Then

Sδ,−
t ρ � Stρ � Sδ,+

t ρ, t = kδ. (50)

We show (50) first for time δ = 2−nt and then use induction to extend to
times kδ.

Proposition 8. For all r ∈ R, we have

F (r;Sδρ) ≤ F (r;Sδ,+
δ ρ) (51)

F (r;Sδρ) ≥ F (r;Sδ,−
δ ρ). (52)

Proof. If r ≤ Lδ,+
δ , by definition of Lδ,+

δ , we have F (r;Sδ,+
δ ρ) = F (Lδ,+

δ ; ρ) =
1 ≥ F (r;Sδρ). If r > Lδ,+

δ , using the Brownian motion representation (6) of Stρ
with τL = inf{t > 0 : Bt ≤ Lt}, we get

F (r;Sδ,+
δ ρ) = eδ

∫
ρ(x)Px

(
Bδ ≥ r

)
dx ≥ eδ

∫
ρ(x)Px

(
Bδ ≥ r; τL > δ

)
dx

= F (r;Stρ).

This shows (51).
To show (52), recall the cut operator (13), and denote ρ0 := Ce−δρ and

ρ1 := ρ − ρ0. We then have
∫

ρ0(r)dr = e−δ and

F (r;Sδ,−
δ ρ) = eδ

∫
ρ0(x)Px

(
Bδ ≥ r

)
dx. (53)

We have

F (r;Stρ) = eδ

∫
ρ(x)Px

(
Bδ ≥ r; τL > δ

)
dx

= eδ

∫
ρ0(x)Px

(
Bδ ≥ r

)
dx − eδ

∫
ρ0(x)Px

(
Bδ ≥ r; τL ≤ δ

)
dx

+ eδ

∫
ρ1(x)Px

(
Bδ ≥ r; τL > δ

)
dx.
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Thus, recalling (53), it suffices to show

eδ

∫
ρ0(x)Px

(
Bδ ≥ r; τL ≤ δ

)
dx ≤ eδ

∫
ρ1(x)Px

(
Bδ ≥ r; τL > δ

)
dx. (54)

We have that

eδ

∫
ρ0(x)Px(τL ≤ δ)dx = eδ

∫
ρ1(x)Px(τL > δ)dx, (55)

where the last identity follows from subtracting identities

eδ

∫
(ρ0(x) + ρ1(x))Px(τL > δ)dx =

∫
Sδρ(x)dx = 1

eδ

∫
ρ0(x)dx = eδ

∫
Ce−δρ(x)dx = 1.

We rewrite (54) as
∫

ρ0(x)

∫ δ

0

hL
x (ds)PLs,s

(
Bδ ≥ r

)
dx ≤

∫
ρ1(x)Px(τL ≥ δ)Px

(
Bδ ≥ r|τL > δ

)
dx,

(56)
where Py,s denotes the law of a Brownian motion starting from y at time
s, and hL

x denotes the cumulative distribution function of τL under Px,0. In
Section10.3.2 of [7], it has been proved that if L is a continuous curve then, for
every r,

PLt;t

(
Bδ ≥ r

)
≤ Px

(
Bδ ≥ r

∣
∣ τL > δ

)
, x > L0, t ∈ [0, δ).

From this and from (55), inequality (56) easily follows.

Remark. Dividing (54) by (55), we have proven the inequality

Pρ1(Bδ ≥ r|τL > δ) − Pρ0(Bδ ≥ r|τL ≤ δ) ≥ 0,

where Pρi
is the law of Brownian motion with initial distribution

Pρi
(B0 ∈ A) = ‖ρi‖−1

1

∫

A

ρi(x)dx.

Proof (Proof of Theorem 5). Recalling the definitions of Cm and Gt, Proposition
8 shows the following inequalities for n = 1:

(
eδGδCe−δ

)n
ρ � Snδρ �

(
C1e

δGδ

)n
ρ. (57)

Apply (57) with n = 1 to Snδρ to get

(eδGδC1−e−δ)Snδρ � SδSnδρ � (Ceδ−1e
δGδ)Snδρ. (58)

Apply each inequality in (57) to the corresponding side in (58) to obtain

(eδGδCe1−δ)n+1ρ � (eδGδCe−δ)Snδρ � S(n+1)δρ � (C1e
δGδ)Snδρ

� (C1e
δGδ)n+1ρ,

where we have used that both Gδ and Cm are monotone, by Proposition 4.
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8 Traveling Waves

Traveling waves. Fix N and let Xt be N -BBM. Let X ′
t := {x−min Xt : x ∈ Xt}

be the process as seen from the left-most particle. In this process there is always
a particle at the origin. The following theorem has been proven by Durrett and
Remenik [11] for a related Brunet-Derrida process. The proof in this case is very
similar so we skip it.

Theorem 6. N -BBM as seen from the left-most particle is Harris recurrent.
Denote νN its unique invariant measure. Under νN the process has an asymptotic
speed αN given by

αN = (N − 1) νN

[
min(X \ {0})

]
,

that is the rate of branching of the N − 1 right-most particles times the expected
distance between the left-most particle an the second left-most particle.

N -BBM starting with an arbitrary configuration converges in distribution to
νN and

lim
t→∞

min Xt

t
= αN .

Furthermore, αN converges to the asymptotic speed of the first particle in BBM
with a finite initial configuration:

lim
N→∞

αN =
√

2. (59)

The analogous to limit (59) was proven by Berard and Gouéré [4] and Durrett
and Mayberry [8] for Brunet-Derrida systems.

The traveling wave solutions of the FBP (2) (3) (4) are of the form u(r, t) =
w(r − αt), where w must satisfy

1
2
w′′ + αw′ + w = 0, w(0) = 0,

∫ ∞

0

w(r)dr = 1.

Groisman and Jonckheere [12,13] observed that for each speed α ≥ αc =
√

2
there is a solution wα given by

wα(x) =

{
Mα xe−αx if α =

√
2

Mα e−αx sinh
(
x
√

α2 − 2
)

if α >
√

2

where Mα is a normalization constant such that
∫

wα = 1. In fact wα is the
unique quasi stationary distribution for Brownian motion with drift −α and
absorption rate w′(0) = 1; see Proposition 1 of Mart́ınez and San Mart́ın [17].
More precisely, calling Lαw = 1

2w′′+αw′, we have that wα is the unique eigenvec-
tor for Lα with eigenvalue −1. See [12] for the relation between quasi stationary
distributions for absorbed Brownian motion and traveling wave solutions for the
FBP.
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Let Xt be the N -BBM process with initial configuration sampled from the
stationary measure νN . Show that the empirical distribution of Xt converges to a
measure with density w√

2(·− t
√

2), as N → ∞. This would be a strong selection
principle for N -BBM [12,16]; the weak selection principle is already contained
in (59), the stationary speed for the finite system converges to the minimal
speed in the macroscopic system. A way to show this limit would be to control
the particle-particle correlations in the νN distributed initial configuration. If
instead we start with independent particles with distribution w√

2, then we can
use Theorem 1 and the fact that w√

2(r − t
√

2) is a strong solution of the FBP
to prove converge of the empirical measure to this solution.
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1D Mott Variable-Range
Hopping with External Field
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University La Sapienza, P.le Aldo Moro 2, Rome, Italy
faggiona@mat.uniroma1.it

Abstract. Mott variable-range hopping is a fundamental mechanism for
electron transport in disordered solids in the regime of strong Anderson
localization. We give a brief description of this mechanism, recall some
results concerning the behavior of the conductivity at low temperature
and describe in more detail recent results (obtained in collaboration with
N. Gantert and M. Salvi) concerning the one-dimensional Mott variable-
range hopping under an external field.

Keywords: Random walk in random environment ·
Mott variable-range hopping · Linear response · Einstein relation

1 Mott Variable-Range Hopping

Mott variable range hopping is a mechanism of phonon-assisted electron trans-
port taking place in amorphous solids (as doped semiconductors) in the regime
of strong Anderson localization. It has been introduced by N.F. Mott in order
to explain the anomalous non-Arrhenius decay of the conductivity at low tem-
perature [20–23,25].

Let us consider a doped semiconductor, which is given by a semiconductor
with randomly located foreign atoms (called impurities). We write ξ := {xi}
for the set of impurity sites. For simplicity we treat spinless electrons. Then,
due to Anderson localization, a generic conduction electron is described by a
quantum wavefunction localized around some impurity site xi, whose energy is
denoted by Ei. This allows, at a first approximation, to think of the conduction
electrons as classical particles which can lie only on the impurity sites, subject
to the constraint of site exclusion (due to Pauli’s exclusion principle). As a
consequence, a microscopic configuration is described by an element η ∈ {0, 1}ξ,
where ηxi

= 1 if and only if an electron is localized around the impurity site xi.
The dynamics is then described by an exclusion process, where the probability
rate for a jump from xi to xj is given by (cf. [1])

1(ηxi
= 1, ηxj

= 0) exp{−2ζ|xi − xj | − β{Ej − Ei}+} . (1)

Above β = 1/kT (k being the Boltzmann’s constant and T the absolute tem-
perature), while 1/ζ is the localization length. A physical analysis suggests that
the energy marks {Ei} can be modeled by i.i.d. random variables. In inorganic
doped semiconductors, when the Fermi energy is set equal to zero, the common
c© Springer Nature Switzerland AG 2019
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distribution ν of Ei is of the form c |E|αdE on some interval [−A,A], where c is
the normalization constant and α is a nonnegative exponent.

At low temperature (i.e. large β) the form of the jump rates (1) suggests
that long jumps can be facilitated when the energetic cost {Ej − Ei}+ is
small. This facilitation leads to an anomalous conductivity behavior for d ≥ 2.
Indeed, according to Mott’s law, in an isotropic medium the conductivity matrix
σ(β) can be approximated (at logarithmic scale) by exp

(−c β
α+1

α+1+d
)
1, where 1

denotes the identity matrix and c is a suitable positive constant c with negligible
temperature-dependence.

The mathematical analysis of the above exclusion process presents several
technical challenges and has been performed only when ξ ≡ Z

d (absence of geo-
metric disorder) and with jumps restricted to nearest-neighbors (cf. [7,24]). This
last assumption does not fit with the low temperature regime, where anomalous
conductivity takes place.

To investigate Mott variable range hopping at low temperature, in the regime
of low impurity density some effective models have been proposed. One is given
by the random Miller-Abrahams resistor network [1,19]. Another effective model
is the following (cf. [9]): one approximates the localized electrons by classical
non–interacting (independent) particles moving according to random walks with
jump probability rate given by the transition rate (1) multiplied by a suitable
factor which keeps trace of the exclusion principle. To be more precise, given
γ ∈ R, we call μγ the product probability measure on {0, 1}ξ with μγ(ηxi

) =
e−β(Ei−γ)

1+e−β(Ei−γ) . Then it is simple to check that μγ is a reversible distribution for the
exclusion process. In the independent particles approximation, the probability
rate for a jump from xi to xj is given by

μγ(ηxi
= 1, ηxj

= 0) exp{−2ζ|xi − xj | − β{Ej − Ei}+} . (2)

It is simple to check that at low temperature, i.e. large β, (2) is well approximated
by (cf. [1])

exp{−2ζ|xi − xj | − β

2
(|Ei − γ| + |Ej − γ| + |Ei − Ej |)} . (3)

In what follows, without loss of generality, we shift the energy so that the Fermi
energy γ equals zero, we take 2ζ = 1 and we replace β/2 by β. Since the above
random walks are independent, we can restrict to the analysis of a single random
walk, which we call Mott random walk.

2 Mott Random Walk and Bounds on the Diffusion
Matrix

We give the formal definition of Mott random walk as random walk in a random
environment. The environment is given by a marked simple point process ω =
{(xi, Ei)} where {xi} ⊂ R

d and the (energy) marks are i.i.d. random variables
with common distribution ν having support on some finite interval [−A,A].
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Given a realization of the environment ω, Mott random walk is the continuous-
time random walk Xω

t with state space {xi} and probability rate for a jump
from xi to xj �= xi given by

rxi,xj
(ω) = exp {−|xi − xj | − β(|Ei| + |Ej | + |Ei − Ej |)} . (4)

As already mentioned, one expects for d ≥ 2 that the contribution to the trans-
port of long jumps dominates as β → ∞. In [3] a quenched invariance principle
for Mott random walk has been proved. Calling D(β) the diffusion matrix of
the limiting Brownian motion, in [8,9] bounds in agreement with Mott’s law
have been obtained for the diffusion matrix. More precisely, under very general
conditions on the isotropic environment and taking ν of the form c |E|αdE for
some α ≥ 0 and on some interval [−A,A], it has been proved that for suitable
β-independent positive constant c1, c2, κ1, κ2 it holds

c1 exp
{

−κ1 β
α+1

α+1+d

}
1 ≤ D(β) ≤ c2 exp

{
−κ2 β

α+1
α+1+d

}
1 . (5)

We point out that for a genuinely nearest–neighbor random walk D(β) would
have an Arrenhius decay, i.e. D(β) ≈ e−cβ1, thus implying that (5) is determined
by long jumps.

In dimension d = 1 long jumps do not dominate. Indeed, the following has
been derived for d = 1 in [2] when ω is a renewal marked simple point process.
We label the points in increasing order, i.e. xi < xi+1, take x0 = 0 and assume
that E[x2

1] < ∞. Then the following holds [2]:

(i) If E[ex1 ] < ∞, then a quenched invariance principle holds and the diffusion
coefficient satisfies

c1 exp {−κ1 β} ≤ D(β) ≤ c2 exp {−κ2 β} , (6)

for β–independent positive constants c1, c2, κ1, κ2;
(ii) If E[ex1 ] = ∞, then the random walk is subdiffusive. More precisely, an

annealed invariance principle holds with zero diffusion coefficient.

We point out that the above 1d results hold also for a larger class of jump
rates and energy distributions ν [2]. Moreover, we stress that the above bounds
(5) and (6) refer to the diffusion matrix D(β) and not to the conductivity matrix
σ(β). On the other hand, believing in the Einstein relation (which states that
σ(β) = βD(β)), the above bounds would extend to σ(β), hence one would recover
lower and upper bounds on the conductivity matrix in agreement with the physi-
cal Mott law for d ≥ 2 and with the Arrenhius–type decay for d = 1. The rigorous
derivation of the Einstein relation for Markov processes in random environment
is in general a difficult task and has been the object of much investigation also
in the last years (cf. e.g. [10,11,13–18]). In what follows, we will concentrate on
the effect of perturbing 1d Mott random walk by an external field and on the
validity of the Einstein relation. Hopefully, progresses on the Einstein relation
for Mott random walk in higher dimension will be obtained in the future.
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3 Biased 1D Mott Random Walk

We take d = 1 and label points {xi} in increasing order with the convention
that x0 := 0 (in particular, we assume the origin to be an impurity site). It is
convenient to define Zi as the interpoint distance Zi := xi+1 − xi (Fig. 1).

−2

E E E−2 0 1 2

x−2 x
0

x 2

E

x −1

E−1

1
x

=0
Z
0

Z−1Z Z1

Fig. 1. Points xi, energy marks Ei and interpoint distances Zi.

We make the following assumptions:

(A1) The random sequence (Zk, Ek)k∈Z is stationary and ergodic w.r.t. shifts;
(A2) E[Z0] is finite;
(A3) P(ω = τ�ω) is zero for all  ∈ Z \ {0};
(A4) There exists some constant d > 0 satisfying IP(Z0 ≥ d) = 1.

Note that we do not restrict to the physically relevant energy mark distribu-
tions ν which are of the form c |E|αdE on some interval [−A,A].

Given λ ∈ [0, 1) we consider the biased generalized Mott random walk Xω,λ
t

on {xi} with jump probability rates given by

rλ
xi,xj

(ω) = exp {−|xi − xj | + λ(xj − xi) − u(Ei, Ej)} , xi �= xj , (7)

and starting at the origin. Above, u is a given bounded and symmetric function.
Note that we do not restrict to (4). The special form (4) is relevant when studying
the regime β → ∞, on the other hand here we are interested in the system at
a fixed temperature (which is included in the function u) under the effect of an
external field.

In the rest, it is convenient to set rλ
x,x(ω) ≡ 0. We also point out that one

can easily prove that the random walk Xω,λ
t is well defined since λ ∈ [0, 1).

The following result, obtained in [5], concerns the ballistic/sub–ballistic
regime:

Proposition 1 [5]. For P–a.a. ω the random walk Xω,λ
t is transient to the right,

i.e. limt→∞ Xω,λ
t = +∞ a.s.

Theorem 1 [5]. Fix λ ∈ (0, 1).

(i) If E
[
e(1−λ)Z0

]
< ∞ and u is continuous, then for P–a.a. ω the following

limit exists

vX(λ) := lim
t→∞

Xω,λ
t

t
a.s.

and moreover it is deterministic, finite and strictly positive.
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(ii) If E
[
e−(1+λ)Z−1+(1−λ)Z0

]
= ∞, then for P–a.a. ω it holds

vX(λ) := lim
t→∞

Xξ,λ
t

t
= 0 a.s.

As discussed in [5], the condition E
[
e(1−λ)Z0

]
= ∞ does not imply that

vX(λ) = 0. On the other hand, if (Zk)k∈Z are i.i.d. (or even if Zk, Zk+1 are
independent for every k) and u is continuous, then the above two cases (i) and
(ii) in Theorem 1 are exhaustive and one concludes that E

[
e(1−λ)Z0

]
< ∞ if and

only if vX(λ) > 0, otherwise vX(λ) = 0.
The above Theorem 1 extends also to the jump process associated to Xω,λ

t ,
i.e. to the discrete time random walk Y ω,λ

n with probability pλ
xi,xk

(ω) of a jump
from xi to xk �= xi given by

pλ
xi,xk

(ω) =
rλ
xi,xj

(ω)
∑

k rλ
xi,xk

(ω)
.

In particular, if E
[
e(1−λ)Z0

]
< ∞ and u is continuous then the random walk Y ω,λ

n

is ballistic (vY (λ) > 0), while if E
[
e−(1+λ)Z−1+(1−λ)Z0

]
= ∞ then the random

walk Y ω,λ
n is sub–ballistic (i.e. vY (λ) = 0). We point out that indeed the result

has been proved in [5] first for the random walk Y ω,λ
n and then extended to the

continuous time case by a random time change argument.
We write τxω for the environment ω translated by x ∈ R, more precisely we

set τxω := {(xj−x,Ej)} if ω = {(xj , Ej)}. We recall that the environment viewed
from the walker Y ω,λ

n is given by the discrete time Markov chain (τY ω,λ
n

ω)n≥0.
This is the crucial object to analyze in the ballistic regime. The following result
concerning the environment viewed from the walker Y ω,λ

n is indeed at the basis
of the derivation of Theorem 1–(i) as well as the starting point for the analysis
of the Einstein relation.

Theorem 2 [5,6]. Fix λ ∈ (0, 1). Suppose that E
[
e(1−λ)Z0

]
< ∞ and that u

is continuous. Then the environment viewed from the walker Y ω,λ
n admits an

invariant and ergodic distribution Qλ mutually absolutely continuous w.r.t. P.
Moreover, it holds

vY (λ) = Qλ

[
ϕλ

]
and vX(λ) =

vY (λ)

Qλ

[
1/(

∑
k rλ

0,xk
)
] ,

where ϕλ denotes the local drift, i.e. ϕλ(ω) :=
∑

i xip
λ
0,xi

(ω).

We point that for λ = 0 the probability distribution Q0 defined as

dQ0 =

∑
k rλ=0

0,xk

E[
∑

k rλ=0
0,xk

]
dP

is indeed reversible for the environment viewed from the walker Y ω,λ=0
n , and

that vY (0) = vX(0) = 0. In what follows, when λ = 0 we will often drop λ from
the notation (in particular, we will write simply rxi,xj

(ω), pxi,xk
(ω), Xω

t , Y ω
n ).
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The proof of Theorem 2 takes inspiration from the paper [4]. The main
technical difficulty comes from the presence of arbitrarily long jumps, which
does not allow to use standard techniques based on regeneration times. Following
the method developed in [4] we have considered, for each positive integer ρ, the
random walk obtained from Y ω,λ

n by suppressing jumps between sites xi, xj with
|i − j| > ρ [5]. For this ρ-indexed random walk, under the same hypothesis of
Theorem 2, we have proved that there exists a distribution Q

(ρ)
λ which is invariant

and ergodic for the associated environment viewed from the walker, and that Q(ρ)
λ

is mutually absolutely continuous w.r.t. P. In particular, the methods developed

in [4] provide a probabilistic representation of the Radon–Nykodim dQ
(ρ)
λ

dP , which
(together with a suitable analysis based on potential theory) allows to prove that
Q

(ρ)
λ weakly converges to Qλ, and that Qλ has indeed the nice properties stated

in Theorem 2.

4 Linear Response and Einstein Relation for the Biased
1D Mott Random Walk

Let us assume again (A1), (A2), (A3), (A4) as in the previous section. The

probabilistic representation of the Radon–Nykodim derivative dQ
(ρ)
λ

dP mentioned
in the above section is the starting point for the derivation of estimates on the
Radon–Nykodim derivative dQλ

dQ0
:

Proposition 2 [6]. Suppose that for some p ≥ 2 it holds E
[
epZ0

]
< +∞. Fix

λ0 ∈ (0, 1). Then

sup
λ∈[0,λ0]

∥
∥
∥

dQλ

dQ0

∥
∥
∥

Lp(Q0)
< ∞ .

The above proposition allows to prove the continuity of the expected value
Qλ(f) of suitable functions f :

Theorem 3 [6]. Suppose that E[epZ0 ] < ∞ for some p ≥ 2 and let q be the
conjugate exponent of p, i.e. q satisfies 1

p + 1
q = 1. Then, for any f ∈ Lq(Q0)

and λ ∈ [0, 1), it holds that f ∈ L1(Qλ) and the map

[0, 1) � λ �→ Qλ(f) ∈ R (8)

is continuous.

Without entering into the details of the proof (which can be found in [6]) we give
some comments on the derivation of Theorem 3 from Proposition 2. To this aim,
we take for simplicity p = 2. Hence we are supposing that E(e2Z0) < ∞ and that
f ∈ L2(Q0), and we want to prove that f ∈ L1(Qλ) and that the function in (8)
is continuous. For simplicity, let us restrict to its continuity at λ = 0. The fact
that f ∈ L1(Qλ) follows by writing Qλ(f) = Q0(dQλ

dQ0
f) and then by applying

Schwarz inequality and Proposition 2. The proof of the continuity at λ = 0
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is more involved. We recall that by Kakutani’s theorem balls are compact for
the L2(Q0)–weak topology. Hence, due to Proposition 2, the family of Radon–
Nykodim derivatives dQλ

dQ0
, λ ∈ [0, λ0], is relatively compact for the L2(Q0)–weak

topology. In [6] we then prove that any limit point of this family is given by
1. As a byproduct of the representation Qλ(f) = Q0(dQλ

dQ0
f) and of the weak

convergence dQλ

dQ0
⇀ 1, we get the continuity of (8) at λ = 0.

We now move to the study of ∂λ=0Qλ(f). To this aim we introduce the
operator L0 : L2(Q0) → L2(Q0) as

L0f(ω) =
∑

k

p0,xk
(ω)[f(τxk

ω) − f(ω)] , f ∈ L2(Q0) .

We recall that a function f belongs to L2(Q0) ∩ H−1 if there exists C > 0 such
that

|〈f, g〉| ≤ C〈g,−L0g〉1/2 ∀g ∈ L2(Q0) .

Above 〈·, ·〉 is the scalar product in L2(Q0). Due to the theory developed by Kip-
nis and Varadhan [12], for any f ∈ L2(Q0)∩H−1, we have the weak convergence

1√
n

(n−1∑

j=0

f(ωj),
n−1∑

j=0

ϕ(ωj)
) n→∞→ (Nf , Nϕ)

for a suitable 2d gaussian vector (Nf , Nϕ). Above ϕ denotes the local drift ϕλ

with λ = 0 (cf. Theorem 2) and ωj = τY ω
j

ω, i.e. (ωn)n represents the environment
viewed from the walker Y ω

n .
Finally, we need another ingredient coming from the theory of square inte-

grable forms in order to present our next theorem. We consider the space Ω ×Z

endowed with the measure M defined by

M(v) = Q0

[ ∑

k∈Z

p0,xk
v(·, k)

]
, ∀v : Ω × Z → R Borel, bounded .

A generic Borel function v : Ω × Z → R will be called a form. L2(M) is known
as the space of square integrable forms. Given a function g = g(ω) we define

∇g(ω, k) := g(τxk
ω) − g(ω) . (9)

If g ∈ L2(Q0), then ∇g ∈ L2(M). The closure in M of the subspace {∇g : g ∈
L2(Q0)} is the set of the so called potential forms (its orthogonal subspace is
given by the so called solenoidal forms).

Take again f ∈ H−1 ∩ L2(Q0) and, given ε > 0, define gf
ε ∈ L2(Q0) as the

unique solution of the equation

(ε − L0)gf
ε = f . (10)

As discussed with more details in [6] as ε goes to zero the family of potential
forms ∇gf

ε converges in L2(M) to a potential form hf :

hf = lim
ε↓0

∇gf
ε in L2(M) . (11)
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Theorem 4 [6]. Suppose E(epZ0) < ∞ for some p > 2. Then, for any f ∈
H−1 ∩ L2(Q0), ∂λ=0Qλ(f) exists. Moreover the following two probabilistic rep-
resentations hold with h = hf (see (11)):

∂λ=0Qλ(f) =

{
Q0

[∑
k∈Z

p0,xk
(xk − ϕ)h(·, k)

]

−Cov(Nf , Nϕ)
. (12)

We point out that a covariance representation of ∂λ=0Qλ(f) as the second one
in (12) appears also in [11] and [18].

We give some comments on the derivation of Theorem 4 up to the first
representation in (12). Fix f ∈ H−1 ∩ L2(Q0), thus implying that Q0(f) = 0.
Given ε > 0 take gε ∈ L2(Q0) as the unique solution of the equation (ε−L0)gε =
f , i.e. gε = gf

ε with gf
ε as in (10). Then we can write

Qλ(f) − Q0(f)
λ

=
Qλ(f)

λ
=

εQλ(gε)
λ

− Qλ(L0gε)
λ

. (13)

The idea is to take first the limit ε → 0, afterwards the limit λ → 0. By the
results of Kipnis and Varadhan [12] we have that εQλ(gε) is negligible as ε → 0.
Hence we have ∂λ=0Qλ(f) = − limλ→0

Qλ(L0gε)
λ if the latter exists. On the other

hand we have the following identity and approximations for ε, λ small:

−Qλ[L0gε]
λ

= Qλ

[ (Lλ − L0)gε

λ

]
= Qλ

[ ∑

k∈Z

pλ
0,xk

− p0,xk

λ
(gε(τxk

·) − gε)
]

≈ Qλ

[ ∑

k∈Z

∂λ=0p
λ
0,xk

h(·, k)
]

≈ Q0

[ ∑

k∈Z

∂λ=0p
λ
0,xk

h(·, k)
]

(14)

= Q0

[∑

k∈Z

p0,xk
(xk − ϕ)h(·, k)

]
,

where Lλf(ω) =
∑

k pλ
0,xk

(ω)[f(τxk
ω) − f(ω)] and h = hf (see (11)). Roughly,

the first identity in (14) follows from the stationary of Qλ for the environment
viewed from Y ω,λ

n , the first approximation in the second line follows from (11),
the second approximation in the second line follows from Theorem 3, the identity
in the third line follows from the equality ∂λ=0p

λ
0,k = p0,xk

(xk − ϕ).
The above steps are indeed rigorously proved in [6]. Since, as already

observed, ∂λ=0Qλ(f) = − limλ→0
Qλ(L0gε)

λ , the content of Theorem 4 up to the
first representation in (12) follows from (14).

We conclude this section with the Einstein relation. To this aim we denote by
DX the diffusion coefficient associated to Xω

t and by DY the diffusion coefficient
associated to Y ω

n . DX is the variance of the Brownian motion to which Xω
t

converges under diffusive rescaling, and a similar definition holds for DY .

Theorem 5 [6]. The following holds:

(i) If E[e2Z0 ] < ∞, then vY (λ) and vX(λ) are continuous functions of λ;
(ii) If E[epZ0 ] < ∞ for some p > 2, then the Einstein relation is fulfilled, i.e.

∂λ=0vY (λ) = DY and ∂λ=0vX(λ) = DX . (15)
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If we make explicit the temperature dependence in the jump rates (7) we would
have

rλ
xi,xj

(ω) = exp {−|xi − xj | + λβ(xj − xi) − βu(Ei, Ej)} ,

where λ is the strength of the external field. Then Einstein relation (15) takes
the more familiar (from a physical viewpoint) form

∂λ=0vY (λ, β) = βDY (β) and ∂λ=0vX(λ, β) = βDX(β) .

We conclude by giving some ideas behind the proof of the Einstein relation
for vY (λ) in Theorem 5. We do not fix the details, but only the main arguments.
By applying Theorem 4 with f := ϕ and using the first representation in the
r.h.s. of (12), one can express ∂λ=0Qλ[ϕ] as a function of h = hϕ:

∂λ=0Qλ[ϕ] = Q0

[∑

k∈Z

p0,xk
(xk − ϕ)h(·, k)

]
.

Recall that vY (λ) = Qλ

[
ϕλ

]
(cf. Theorem 2) and that vY (0) = 0. In [6] we have

proved the following approximations and identities (for the last identity see the
conclusion of Sect. 9.1 in [6]):

vY (λ) − vY (0)
λ

=
vY (λ)

λ
=

Qλ[ϕλ]
λ

= Qλ

[ϕλ − ϕ

λ

]
+

Qλ[ϕ] − Q0[ϕ]
λ

≈ Q0

[
∂λ=0ϕλ] + ∂λ=0Qλ[ϕ]

= Q0

[
∂λ=0ϕλ] + Q0

[∑

k∈Z

p0,xk
(xk − ϕ)h(·, k)

]

= Q0

[∑

k∈Z

p0,xk
(xk − ϕ)(xk + h(·, k))

]
= DY .
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Abstract. We discuss coupled KPZ (Kardar-Parisi-Zhang) equations.
The motivation comes from the study of nonlinear fluctuating hydrody-
namics, cf. [11,12]. We first give a quick overview of results of Funaki and
Hoshino [6], in particular, two approximating equations, trilinear condi-
tion (T) for coupling constants Γ , invariant measures and global-in-time
existence of solutions. Then, we study at heuristic level the role of the
trilinear condition (T) in view of invariant measures and renormaliza-
tions for 4th order terms. Ertaş and Kardar [2] gave an example which
does not satisfy (T) but has an invariant measure. We finally discuss the
cross-diffusion case.

Keywords: Coupled KPZ equation · Invariant measure ·
Renormalization · Trilinear condition

1 Multi-component Coupled KPZ Equation

We consider an R
d-valued KPZ equation for h(t, x) = (hα(t, x))d

α=1 defined on
a one-dimensional torus T = [0, 1):

∂th
α = 1

2∂2
xhα + 1

2Γα
βγ∂xhβ∂xhγ + σα

β ξβ . (σ, Γ )KPZ

Here, we use Einstein’s convention and ξ(t, x) = (ξα(t, x))d
α=1

(
sometimes written

as Ẇ (t, x)
)

is an R
d-valued space-time Gaussian white noise with covariance

structure:
E[ξα(t, x)ξβ(s, y)] = δαβδ(x − y)δ(t − s).

The coupled KPZ equation is ill-posed, since the noise is irregular and
doesn’t match with the nonlinear term. Note that h ∈ C

1
4−, 12−([0,∞) × T) ≡

∩δ>0C
1
4−δ, 12−δ ([0,∞) × T) a.s. when Γ = 0. Therefore, we need to intro-

duce approximations with smooth noises and renormalizations for the equation
(σ, Γ )KPZ. Indeed, one can introduce two types of approximations: one is sim-
ple and commonly used, the other is suitable to study the invariant measures.
When d = 1, the second type of approximation was introduced by Funaki and
Quastel [7].
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The coupling constants Γα
βγ of the nonlinear term satisfy, by the form of the

equation, the bilinear condition:

Γα
βγ = Γα

γβ for all α, β, γ,

and sometimes additionally the trilinear condition:

Γα
βγ = Γα

γβ = Γ γ
βα for all α, β, γ, (T)

cf. Ferrari, Sasamoto and Spohn [3], Kupiainen and Marcozz [10]. The noise
strength matrix σ = (σα

β ) is always invertible.
Since σ is invertible, ĥ = σ−1h transforms the equation (σ, Γ )KPZ to another

equation (I, Γ̂ = σ ◦ Γ )KPZ, where σ ◦ Γ is defined by

(σ ◦ Γ )α
βγ := (σ−1)α

α′Γα′
β′γ′σ

β′
β σγ′

γ .

In this way, the KPZ equation with σ = I can be considered as a canonical form.
Note that the operation (coordinate change) Γ �→ σ ◦Γ keeps the bilinearity,

but not the trilinearity. We should say (σ, Γ ) satisfies the trilinear condition, if
and only if Γ̂ := σ ◦ Γ satisfies the condition (T). In the following, we assume
σ = I. See [5] for related random interfaces.

2 Two Coupled KPZ Approximating Equations

Two approximations are discussed in [7] when d = 1, and extended to the coupled
equations in [6]. Let η ∈ C∞

0 (R) be a usual convolution kernel such that η(x) ≥
0, η(−x) = η(x) and

∫
R

η(x)dx = 1. We set ηε(x) := 1
εη(x

ε ), 0 < ε < 1, and
replace the noise by smooth one.

Approximating equation-1 (usual approximation): Let hα = hε,α be the solu-
tion of the equation

∂th
α = 1

2∂2
xhα + 1

2Γα
βγ(∂xhβ∂xhγ − cεδβγ − Bε,βγ) + ξα ∗ ηε, (1)

where cε = 1
ε‖η‖2L2(R)(= O( 1ε )) and Bε,βγ (= O(log 1

ε ) in general) is another
renormalization factor.

Approximating equation-2 (suitable to study invariant measures): Let h̃α =
h̃ε,α be the solution of the equation

∂th̃
α = 1

2∂2
xh̃α + 1

2Γα
βγ(∂xh̃β∂xh̃γ − cεδβγ − B̃ε,βγ) ∗ ηε

2 + ξα ∗ ηε, (2)

with a renormalization factor B̃ε,βγ , where ηε
2 = ηε ∗ ηε.

The idea behind (2) is the fluctuation-dissipation relation. The renormaliza-
tion factor cε(≡ ) = O( 1ε ) comes from the second order terms in the Wiener
chaos expansion, while the renormalization factors Bε,βγ and B̃ε,βγ = O(log 1

ε )

are from the fourth order terms involving Cε(= ) and Dε(= ); see Sect. 4.2.
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3 Quick Overview of Results on Coupled KPZ Equation

In this section, we summarize the results of Funaki and Hoshino [6].

• The convergence of hε and h̃ε as ε ↓ 0 and the local well-posedness of the cou-
pled KPZ equation (σ, Γ )KPZ were shown by applying the paracontrolled cal-
culus due to Gubinelli, Imkeller and Perkowski [8]; see Theorem 1 in Sect. 3.1
below. Note that the Cole-Hopf transform does not work for the coupled
KPZ equation in general. In scalar-valued case [7], we used it and showed the
Boltzmann-Gibbs principle; see Sect. 3.2.

• The second approximation (2) fits to identify the invariant measure under the
trilinear condition (T); see Theorem 2-(2) in Sect. 3.2.

• The global solvability for a.s.-initial data under an invariant measure is shown
under the condition (T); see Theorem 3 in Sect. 3.3.

• The global well-posedness (existence, uniqueness) for all initial values are
established under the condition (T) by combining the strong Feller property
shown by Hairer and Mattingly [9] and the global solvability for a.s.-initial
values; see Sect. 3.3. The ergodicity and the uniqueness of invariant measure
also follow.

• A priori estimate for the first approximation (1), which is available under the
condition (T), plays a role.

3.1 Convergence of hε and h̃ε and Local Well-Posedness

We state more precisely the results on the convergence of hε and h̃ε and local
well-posedness of the coupled KPZ equation (I, Γ )KPZ. We do not need the
condition (T). Recall that we take σ = I. Let Cκ = (Bκ

∞,∞(T))d, κ ∈ R denote
R

d-valued Besov space on T; cf. [6,8].

Theorem 1. (1) Assume h0 ∈ ∪δ>0Cδ, then a unique solution hε of the Eq. (1)
exists up to some T ε ∈ (0,∞] and T̄ = lim infε↓0 T ε > 0 holds. With a proper
choice of Bε,βγ , hε converges in probability to some h in C([0, T ], C 1

2−δ) for every
δ > 0 and 0 < T ≤ T̄ .
(2) Similar result holds for the solution h̃ε of the Eq. (2) with some limit h̃. Under
proper choices of Bε,βγ and B̃ε,βγ , we can actually make h = h̃.

3.2 Results Under the Trilinear Condition (T)

Under the condition (T), we have cancellation in logarithmic renormalization
factors and invariance of the Wiener measure under the time evolution, and one
can compute explicitly the difference of two limits.

Theorem 2. Assume the trilinear condition (T).
(1) Then, Bε,βγ , B̃ε,βγ = O(1) so that the solutions of the Eq. (1) with B = 0
and the Eq. (2) with B̃ = 0 converge. In the limit, we have

h̃α(t, x) = hα(t, x) + cαt, 1 ≤ α ≤ d,
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where
cα =

1
24

∑

γ,γ′
Γα

α′α′′Γα′
γγ′Γα′′

γγ′ .

(2) Moreover, the distribution of (∂xB)x∈T, where B is a periodic d-dimensional
Brownian motion, is invariant under the tilt process u = ∂xh. Or, one can say
that the periodic Wiener measure on the quotient space C 1

2−δ/∼, where h ∼ h+c
for all constants c ∈ R, is invariant for the height process h considered under
such identification.

When d = 1 (i.e., for the scalar-valued equation), the condition (T) is auto-
matically satisfied. [7] showed that stationary solutions of two approximating
equations without logarithmic renormalization factors satisfy

lim
ε↓0

h̃ε = lim
ε↓0

hε +
t

24

(
= hCH +

t

24

)
.

Note that hCH := limε↓0 hε is called the Cole-Hopf solution of (scalar-valued)
KPZ equation. Theorem 2 extends this result for d ≥ 1 and in non-stationary
setting.

3.3 Global Existence for a.s.-Initial Values Under Stationary
Measure

We assume the trilinear condition (T) and that the initial value h(0) is given by
h(0, 0) = 0 and u(0) := ∂xh(0) law= (∂xB)x∈T, where B is a periodic d-dimensional
Brownian motion. Then, by a similar method to Da Prato and Debussche [1] for
two-dimensional stochastic Navier-Stokes equation, one can show the following
theorem for u = ∂xh:

Theorem 3. Assume the condition (T). Then, for every T > 0, p ≥ 1, κ > 0,
we have

E

[

sup
t∈[0,T ]

‖u(t;u0)‖p

− 1
2−κ

]

< ∞.

In particular, Tsurvival(u(0)) = ∞ (i.e., no explosion occurs for the solution) for
a.a.-u(0).

In the scalar-valued case, the global existence of solutions for all given u(0)
is immediate, since the limit is the Cole-Hopf solution. Hairer and Mattingly [9]
proved the global well-posedness for the coupled equation by showing the strong
Feller property on the space Cα−1, α ∈ (0, 1

2 ).

4 Role of the Trilinear Condition (T)

4.1 Ertaş and Kardar’s example

We give an example that the cancellation of logarithmic renormalization factors
and the existence of an invariant measure hold without the condition (T).
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Ertaş and Kardar [2] considered the following coupled KPZ equation with
d = 2:

∂th
1 = 1

2∂2
xh1 + 1

2{λ1(∂xh1)2 + λ2(∂xh2)2} + ξ1, (EK)

∂th
2 = 1

2∂2
xh2 + λ1∂xh1∂xh2 + ξ2,

where λ1, λ2 ∈ R. The coupling constant Γ satisfies the trilinear condition (T)
only when λ1 = λ2.

Under the transform ĥ = sh with s =
( λ1 (λ1λ2)

1/2

λ1 −(λ1λ2)
1/2

)
, the equation (EK) is

transformed into

∂tĥ
α = 1

2∂2
xĥα + 1

2 (∂xĥα)2 + sα
βξβ . (EKT )

Namely, Γ̂ = s ◦ Γ in (EKT ) is given by Γ̂α
αα = 1,= 0 otherwise, so that Γ̂

satisfies the condition (T). But, this has no special meaning, since (EK) is the
canonical form (with σ = I) and not the equation (EKT ).

The equation (EK) does not satisfy the trilinear condition (T) if λ1 �= λ2.
However, since the nonlinear term is decoupled in (EKT ), the Cole-Hopf trans-
form Zα := exp ĥα works for each component ĥα so that the global well-
posedness holds even for the coupled equation (EKT ) and therefore (EK). This
also implies that the logarithmic renormalization factors are unnecessary for
this equation. Moreover, the equation (EKT ) has an invariant measure whose
marginals are Wiener measures, but the joint distribution of such invariant mea-
sure is unclear (presumably non-Gaussian). Indeed, one can easily check the
tightness on the space Cδ−1

0 /∼ of the Cesàro mean μT = 1
T

∫ T

0
μ(t)dt of the

distributions μ(t) of ∂xĥ(t) having an initial distribution ⊗αμα. In fact, this is
seen from the tightness of two marginals of μT , so that the limit of μT as T → ∞
exists and is an invariant measure of the equation (EKT ). Thus, the equation
(EK) also has an invariant measure.

4.2 Cancellation of Logarithmic Renormalization Factors

We first give concrete formulas of renormalization factors Bε,βγ , B̃ε,βγ in the
Eqs. (1) and (2):

Bε,βγ = F βγCε + 2GβγDε, B̃ε,βγ = F βγC̃ε + 2GβγD̃ε,

where
F βγ = Γ β

γ1γ2
Γ γ

γ1γ2
, Gβγ = Γ β

γ1γ2
Γ γ1

γγ2
,

Cε + 2Dε = − 1
12 + O(ε), C̃ε + 2D̃ε = 0.
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Indeed, Cε,Dε appearing above and cε appearing in the Eqs. (1) and (2) are
sometimes denoted as

cε = , Cε = , Dε = .

One can show that the trilinear condition (T) is equivalent to “F = G”,
which is further equivalent to B, B̃ = O(1). But, for cancellation of logarithmic
renormalization factors, what we really need is: “ΓB, ΓB̃ = O(1)”. This holds
if ΓF = ΓG, which is weaker than the trilinear condition (T).

The condition “ΓF = ΓG” holds if and only if Γ satisfies the condition

Γα
βγΓ β

γ1γ2
Γ γ

γ1γ2
= Γα

βγΓ β
γ1γ2

Γ γ1
γγ2

,

for all α. This holds under (T) and also for Ertaş and Kardar’s example.
We can summarize the above arguments as follows:

(T) ⇐⇒ “F = G”
=⇒ “ΓF = ΓG”
⇐⇒ Cancellation of log-renormalization factors

4.3 Infinitesimal Invariance

In order to explain the role of the trilinear condition (T) from a viewpoint of
the invariant measure, let us discuss the infinitesimal invariance; cf. [4]. The
arguments are rather heuristic, for instance, derivatives of hα(x) appear in the
computations though they do not really exist. To be precise, we need to dis-
cuss at the level of the discrete approximation (cf. [7]) or at the level of the
approximating equation-2 (cf. [4]).

Let L = L0+A be the generator of the coupled KPZ equation (I, Γ )KPZ with
σ = I. Here, L0 is the generator of the Ornstein-Uhlenbeck part, while A is that
of the nonlinear part (as we mentioned above, we ignore the renormalization
factors):

L0Φ =
1
2

∑

α

{∫

T

D2
hα(x)Φ dx +

∫

T

ḧα(x)Dhα(x)Φ dx

}
, (3)

AΦ =
1
2

∑

α,β,γ

Γα
βγ

∫

T

ḣβ(x)ḣγ(x)Dhα(x)Φ dx, (4)

for Φ = Φ(h), where Dhα(x),D
2
hα(x) are functional derivatives and ḣβ(x) :=

∂xhβ(x), ḧα(x) := ∂2
xhα(x).

We say that the infinitesimal invariance (ST )L holds for ν if
∫

LΦdν = 0,

holds for all Φ (though this statement is already heuristic).
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If the invariant measure ν is Gaussian, (ST )L0 is the condition for the second
order Wiener chaos of Φ, while (ST )A is that for the third order Wiener chaos
of Φ. Therefore, the condition (ST )L is separated into two conditions:

(ST )L ⇐⇒ (ST )L0 + (ST )A. (5)

Since L0 is an Ornstein-Uhlenbeck operator, from the condition (ST )L0 , ν must
be the Wiener measure.

4.4 (T) is Necessary and Sufficient for Wiener Measure ν to Satisfy
(ST )A

We have the integration-by-parts formula for the Wiener measure ν (actually we
need to discuss at approximating level as we mentioned above):

∫
AΦdν = −1

2
Γα

βγcβγ
α ,

where

cβγ
α ≡ cβγ

α (Φ) := Eν

[
Φ

∫

T

ḣβ(x)ḣγ(x)ḧα(x)dx

]
.

One easily see that the constants cβγ
α satisfy the following two conditions:

(1) (bilinearity) cβγ
α = cγβ

α ,
(2) (integration by parts on T) cβγ

α + cγα
β + cαβ

γ = 0.
In particular, we have cαα

α = 0 for all α. When d = 1, this implies (ST )A:∫ AΦdν = 0 for all Φ.
If Γ satisfies the trilinear condition (T), by the above condition (2) for cβγ

α ,
we have

Γα
βγcβγ

α =
1
3
Γα

βγ(cβγ
α + cγα

β + cαβ
γ ) = 0.

Therefore, the condition (T) implies (ST )A. This was shown in [4] (at approxi-
mating level).

Conversely, (ST )A implies (T). In fact, by the condition (2) for cβγ
α , one can

rewrite as

−2
∫

AΦdν =
∑

α�=β

(Γα
ββ − Γ β

αβ)cββ
α

+ 2
∑

α>β>γ

(Γα
βγ − Γ γ

αβ)cβγ
α + 2

∑

β>α>γ

(Γα
βγ − Γ γ

αβ)cβγ
α .

If the left hand side is 0, noting that cββ
α , cβγ

α (α > β > γ, β > α > γ) move
freely, we obtain the trilinear condition (T).
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Ertaş and Kardar’s example does not satisfy (T), but has an invariant mea-
sure. This should be “non-separating class” (i.e., (5) does not hold) and the
invariant measure is presumably non-Gaussian (but has Gaussian marginals).

5 Cross-diffusion Case

Let us consider the following coupled KPZ equation on T as a generalization of
the equation (σ, Γ )KPZ:

∂th
α = 1

2dα
β∂2

xhβ+ 1
2Γα

βγ∂xhβ∂xhγ+σα
β ξβ , (D,σ, Γ )KPZ

with a cross-diffusion matrix D = (dα
β ). We assume σ = I and D is symmetric

and positive definite. Note that the cross-diffusion system

∂th
α = 1

2dα
β∂2

xhβ ,

is well-posed under these conditions on D, since D is diagonalizable: PDP−1 =
diag(d1, . . . , dd) with dα > 0 and ĥ := Ph is decoupled.

5.1 Invariant Measure of Ornstein-Uhlenbeck Part

Dropping the nonlinear term and taking σ = I, we have a linear stochastic
partial differential equation:

∂th
α = 1

2dα
β∂2

xhβ + ξα, (6)

and its generator is given as a modification of (3)

L0Φ =
1
2

∑

α

⎧
⎨

⎩

∫

T

D2
hα(x)Φ dx +

∑

β

dα
β

∫

T

ḧβ(x)Dhα(x)Φ dx

⎫
⎬

⎭
.

Then, for V = V (h),

e−V L∗
0e

V =
1
2

∑

α

∫

T

{
D2

hα(x)V + (Dhα(x)V )2
}

dx

− 1
2

∫

T

⎧
⎨

⎩

∑

α

dα
αδ′′

x(x) +
∑

α,β

dα
β ḧβ(x)Dhα(x)V

⎫
⎬

⎭
dx.

If we choose
V (h) = −1

2
vββ′

∫

T

ḣβ(y)ḣβ′
(y)dy

with a symmetric matrix (vββ′) = (dβ
β′), one can show that e−V L∗

0e
V = 0. This

determines the invariant measure ν ≡ νD = eV dh of the Ornstein-Uhlenbeck
part. Note that νD is considered as the distribution of

√
D

−1
B with a periodic

d-dimensional Brownian motion B in the sense of Theorem 2-(2). This fact is
easily seen also by diagonalizing the Eq. (6) by the orthogonal matrix P .
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5.2 Trilinear Condition for Cross-diffusion Coupled KPZ Equation

The generator A of the nonlinear part is the same as (4), so that (ST )A holds
for ν = νD(= eV dh) if and only if

0 = e−V A∗eV = −1
2

∑

α,β,γ

Γα
βγ

∫

T

ḣβ(x)ḣγ(x)Dhα(x)V dx

= −1
2

∑

α,β,γ,β′
Γα

βγdβ′
α

∫

T

ḣβ(x)ḣγ(x)ḧβ′
(x) dx,

since Dhα(x)V = vαβ′ ḧβ′
(x) =

∑
β′ dβ′

α ḧβ′
(x). Thus, the condition for νD to

satisfy (ST )A is that
Γ̃α

βγ := dα
α′Γα′

βγ

satisfies the trilinear condition (T).
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Abstract. Exploring the possibility of describing a fluid flow via a time-
reversible equation and its relevance for the fluctuations statistics in
stationary turbulent (or laminar) incompressible Navier-Stokes flows.

1 Introduction

Studies on non equilibrium statistical mechanics progressed after the introduc-
tion of thermostats, [1]. Finite thermostats have not only permitted a new series
of simulations of many particle systems, but have been essential to clarify that
irreversibility and dissipation should not be identified.

Adopting the terminology of [2] it is convenient to distinguish the finite
system of interest, i.e. particles forming the test system in a container C0, from
the thermostats. The thermostats T1,T2, . . . are also particle systems, forming
the interaction systems, acting on the test systems: they are in infinite containers
and, asymptotically at infinity, are always supposed in equilibrium states with
given densities ρ1, ρ2, . . . and temperatures T1, T2, . . ..

The thermostats particles in each thermostat may interact with each other
and with the particles of the test system but not directly with the particles of
the other thermostats. The test system and the interaction systems, together,
form a Hamiltonian system (classical or quantum) that can be symbolically
illustrated as in Fig. 1: Finite thermostats have been introduced recently and
fulfill the main function of replacing, [1], the above test systems and “perfect
thermostats”, consisting of infinite systems of particles in a state in a well defined
equilibrium state at infinity, with finite systems suitable for simulations.

The perfect thermostats, being infinite, are not suited in simulations, while
the finite ones have the drawback that their equations of motion contain
“unphysical forces”.

The basic idea is that, asymptotically e.g. for large number of particles
(“thermodynamic limit”), most statistical properties of the “test” system do not
depend on the particular thermostat model but only on its equilibrium param-
eters defined at infinity.

Several finite thermostats employed in simulations are governed by reversible
equations of motion: denoting u → Stu, t ∈ R the time evolution of a point u in
phase space F , this means that the map u → Iu in which all velocities in u are
c© Springer Nature Switzerland AG 2019
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T1
T2

T3

C0

Fig. 1. The “test” system are particles enclosed in C0 while the external Cj systems
are thermostats at respective temperatures Tj (marked in the figure) or, following the
terminology of Feynman–Vernon, [2], “interaction” systems.

reversed is such that StI = IS−t, so that if u(t), t ∈ R is a possible solution of
the equations of motion also I u(−t), t ∈ R is a possible one.

If u describes the state of a system in which dissipation occurs, i.e. in which
external forces perform work on the test subsystem, it might be thought that,
unless the interaction systems are infinite, the motion is not reversible: this has
been clearly shown to be not true by the many simulations performed since the
early ’80s, reviewed in [1]. And the simulations have added evidence that the
same physical phenomenon occurring in the test system is largely independent
of several (appropriate) realizations of thermostat models (reversible or not).

A remarkable instance is an example of a system of particles interacting
with a single thermostat at temperature β−1 = T which has a stationary state
described by a probability distribution μ(du) which is different from the canon-
ical distribution (say) but which is nevertheless equivalent to it in the sense, [3],
of the theory of ensembles, i.e. in the thermodynamic limit, see [1].

In the different context of turbulence theory a similar example can be found
in the simulation in [4]: where viscosity is set = 0 but “unphysical forces” are
introduced to constrain the energy value on each “energy shell” to fulfill the OK
“ 5
3 law”. The stationary distribution of the velocity field for many observables,

e.g. the large scale velocity components, remains the same as in the viscous
unconstrained system and in the reversible new one, at very large Reynolds
number.

Then one is led to think that the root of the equivalence between very dif-
ferent equations of motion for the same physical system lies in the fundamental
microscopic reversibility of the equations of motion, [5,6], and to a precise formu-
lation of the “conjecture” that “in microscopically reversible (chaotic) systems
time reversal symmetry cannot be spontaneously broken, but only phenomeno-
logically so” and a program to test it, was proposed, [7]. The program has been
followed so far in a few works, [8,9], with results apparently not always satisfac-
tory [10].

Here, after a general discussion of the conjecture and its precise formulation,
several tests will be proposed, on the statistical properties of the stationary
states of the 2D incompressible Navier-Stokes equation, and performed with
results described in some detail.
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2 Irreversible and Reversible ODE’s

More generally an ODE ẋ = h(x) on the “phase space” RN has a time reversal
symmetry I if the solution operator x → Stx, x ∈ RN , and the map I are such
that I2 = 1, StI = IS−t.

Non trivial examples are provided, as mentioned, by many Hamiltonian equa-
tions, but there are also interesting examples not immediately related to Hamil-
tonian systems, as the equations of the form ẋj = fj(x), ν > 0, j = 1, . . . , N
with fj(x) = fj(−x), like the Lorenz96 model at ν = 0:

ẋj = xj−1(xj+1 − xj−2) + F − νxj , (2.1)

with F = const and periodic b.c. x0 = xN .
Another example is provided by the GOY shell model, [11,12], given by:

u̇n = −νk2
nun + gδn,4

+ikn

( − 1
4
un−1un+1 + un+1un+2 − 1

8
un−1un−2

)

where kn = 2n, un = un,1 + iun,2, with un = 0 for n = −1, 0 or n > N , if ν = 0.
A reversible equation often evolves initial data x into functions x(t) which

are unbounded as t → ∞. The case of Hamiltonian systems with bounded energy
surfaces are an important exception. Therefore, particularly in problems dealing
with stationary states in chaotic systems, the equations contain additional terms
which arise by taking into account that the systems under study are also subject
to stabilizing mechanisms forcing motions to be confined to some sphere in phase
space.

A typical additional term is −νxj or −ν(Lx)j with ν > 0 and L a positive
defined matrix: such extra terms are often introduced empirically. This is the case
in the above two examples. And they can be thought as empirical realizations
of the action of thermostats acting on the systems.

At this point it is necessary to distinguish the models in which
(1) the equations ẋ = h(x) − νLx arise, possibly in some limit case, from a

system of particles, as the one of the Feynman-Vernon system in Sect. 1, Fig. 1, or
(2) the equations are not directly related to a fundamental microscopic

description of the system.
The above Lorenz96 and GOY models are examples of the second case, while

the Navier-Stokes equations, since the beginning, were considered macroscopic
manifestations of particles interacting via Newtonian forces, [13, Eq. (128)].

The success of the simulations using artificial thermostat forces with finite
thermostats and the independence of the results from the particular choice of
the thermostats used to contain energy growth in nonequilibrium, [1], induces
to think that there might be alternative ways to describe the same systems via
equations that maintain the time reversal symmetry shown by the non ther-
mostatted equations. A first proposal that seems natural is the following.
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Consider an equation

ẋ = h(x) − νLx, with h(x) = h(−x) (2.2)

time reversible if ν = 0, for the time reversal Ix = −x; suppose that |x · h(x)| ≤
G|x|. Then the motions will be asymptotically confined, if ν > 0, to the ellipsoid
(x · Lx) ≤ G

ν and the system will be able to reach a stationary state, i.e. an
invariant probability distribution μC

1
ν

of the phase space points. Frequently, if ν

is small enough, the motions will be chaotic and there will be a unique stationary
distribution, the “SRB distribution”, [14].

The family of stationary distributions forms what will be called the “viscosity
ensemble” FC whose elements are parameterized by ν (and possibly by an index
distinguishing the extremal distributions which can be reached as stationary
states, for the same ν, from different initial data); then consider the new equation

ẋ = h(x) − α(x)Lx, α(x) =
(Lx · h(x))
(Lx · Lx)

(2.3)

where α has been determined so that the observable D(x)
def
= (x · Lx) is an exact

constant of motion. For each choice of the parameter E the evolution will deter-
mine a family μM

E of stationary probability distributions parameterized by the
value E that D takes on the initial x generating the distribution. The col-
lection FM of such distributions will be called “reversible viscosity ensemble”
because the distributions are stationary states for Eq. (2.3) which is reversible
(for Ix = −x).

Also in this case if E is large the evolution Eq. (2.3) is likely to be chaotic
and for each such E the distribution μM

E is unique: if not extra parameter needs
to be introduced the identify each of the extremal ones.

Suppose for simplicity that 1
ν , E are large enough and the stationary states

μC
1
ν

, μM
E are unique. Then say that μC

1
ν

and μM
E are correspondent if

μM
E (α) =

1
ν

, or if μC
1
ν
(D) = E (2.4)

Then the following proposal appears in [5,6] about the properties of the fluctu-
ations of “K-local observables”, i.e. of observables F (x) depending only on the
coordinates xi with i < K

If 1
ν and E are large enough so that the motions generated by the equations

Eqs. (2.2) and (2.3) are chaotic, e.g. satisfy the “Chaotic hypothesis”, [15,16],
then corresponding distributions μC

1
ν

, μM
E give the same distribution to the fluc-

tuations of a given K-local observable F in the sense that

μM
E (F ) = μC

1
ν
(F )(1 + o(F, ν)) (2.5)

with o(F, ν)−−−−→1
ν →∞ 0.
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There have been a few attempts to check this idea, [8,9] and more recently
in [17].

3 Reversible Viscosity

The ideas of the preceding section will next be studied in the case of the Navier-
Stokes equation. This is particularly interesting because the equation can be
formally derived as an equation describing the macroscopic evolution of micro-
scopic Newtonian particles (i.e. point masses interacting via a short range force),
[13]. Hence the equation belongs to the rather special case (1) in Sect. 2.

The incompressible Navier-stokes equations with viscosity ν for a velocity
field v(x, t) in a periodic container of size L and with a forcing F = Fg acting
on large scale, i.e. with Fourier components Fk �= 0 only for a few |k|. To fix the
ideas in 2 dimensions choose Fk �= 0 only for the single mode k = ± 2π

L (2,−1)
with ||F||2 = F (i.e. g±k = e±iϑ√

2
for some phase ϑ).

The equations can be written in dimensionless form: introduce rescaling
parameters V, T for velocity and time, and write v

˜
(x, τ) = V u

˜
(x/L, τ/T ). Define

V = (FL)
1
2 , T = ( L

F )
1
2 and fix TV

L = 1 and FT
V = 1; then the equation for u(x, t)

can be written as, “I-NS”:

u̇
˜

+ (u · ∂)u =
1
R

Δu
˜

+ g − ∂p, ∂ · u = 0 (3.6)

where R ≡ LV
ν ≡ (FL3

ν2 )
1
2 and p is the pressure. In this way the inverse of

the viscosity can be identified with the dimensionless parameter R, here called
“Reynolds number” (often called, in this specific case, “Grashof number”).

The units for L,F will be fixed so that F = 1 and L = 2π: hence the modes k
will be pairs of integers k = (k1, k2). The reality conditions uk = u−k, Fk = F−k

implies that only the components with

k = (k1, k2) ∈ I+
def
= {k1 > 0 or k1 = 0, k2 ≥ 0} (3.7)

are independent components (and it is assumed that u0 = 0).
We shall consider the case of 2 dimensional incompressible fluids to avoid the

problem that the 3 dimensional equations have not yet been proved to admit
a (classical or even just constructive) solution. In spite of this, below, the 3
dimensional case, and the vortex stretching present only in 3D, will also be
commented and essentially everything that will be presented in the 2 dimensional
case turns out also relevant in 3 dimensions.

Proceeding as in Sect. 2, define the family FC of stationary probability dis-
tribution μC

R(du) on the fields u corresponding to the stationary state for the
Eq. (3.6).

Consider, alternatively, the equation (reversible for the symmetry Iu = −u),
“R-NS”:

u̇
˜

+ (u · ∂)u
˜

= α(u
˜
)Δu

˜
+ F

˜
− ∂

˜
p , ∂

˜
· u
˜

= 0 (3.8)
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in which the viscosity ν = 1
R , c.f.r. Eq. (3.6), is replaced by the multiplier α(u)

which is fixed so that

D(u) =
∫

|∂
˜
u(x)|2dx = exact const. of motion (3.9)

Therefore, if the space dimension is 2, the multiplier α(u) will be expressed, in
terms of the Fourier transform uk (defined via u(x) =

∑
k e2πik·xuk) as:

α(u) =
∑

k k
2gk · uk∑

k k4|uk|2 ≡
∑

k∈I+ k2(gr
ku

r
k + gi

ku
i
k)

2
∑

k∈I+ k4|uk|2 (3.10)

and the stationary distribution for Eq. (3.10) with the value of D(u) fixed to E ,
will be denoted μM

E (du). The expression for α is slightly more involved (see [6,
Eq. (1.11)]).

The collection of all stationary distributions μC
R as R varies and of all sta-

tionary distributions μM
E as E varies will be denoted FC and FM and called

viscosity ensemble, as in Sect. 2, and, respectively, enstrophy ensemble.
Call K-local an observable f(u) which depends on the finite number of com-

ponents uk with |k| < K, of the velocity field; then in the above cases the
conjecture proposed in [5,6] becomes
In the limit of large Reynolds number the distribution μC

R attributes to any given
K-local observable f(u) the same average, in the sense of Eq. (2.5) with R ≡ 1

ν ,
as the distribution μM

E if

E =
∫

μC
R(du)D(u) (3.11)

Remarks: (1) The size of R might (see however Sect. 4) depend on the observable
f , i.e. on how many Fourier modes are needed to define f .
(2) Therefore locality in Fourier space is here analogous to locality in space in
the equivalence between equilibrium ensembles.
(3) The notations μC

R , μM
E have been used to evoke the analogy of the equiva-

lence between canonical and microcanonical ensembles in equilibrium statistical
mechanics: the viscosity ensemble can be likened to the canonical ensemble,
with the viscosity ν = 1

R corresponding to β, and the enstrophy ensemble to the
microcanonical one, with the enstrophy corresponding to the total energy.
(4) The equivalence has roots in the chaotic hypothesis, [16]: if the motion is
sufficiently chaotic, as expected if R or E are large, [14,18], the multiplier α(u)
fluctuates in time and the conjecture is based on a possible “self-averaging” of α
implying homogenization of α(u) in Eq.(3.8) to a constant value, namely ν = 1

R .
(5) the latter remark, if μC

R is equivalent to μM
E (e.g. if μC

R(D) = E , see Eqs. (2.4)
and (3.11)), leads to expect a relation like:

μM
R (α) =

1
R

(1 + o(
1
R

)), (3.12)

(6) The property α(u) = −α(−u) implies that the evolution defined by Eq. (3.8)
is time reversible, so that α(u) can be called “reversible viscosity”.
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4 Regularization

In Eqs. (2.5) and (3.12) the question on how large should R be for equivalence
is implicitly raised. An answer, which may become relevant in simulations, that
it would be interesting to investigate, is that the equivalence might hold much
more generally, at least in the cases (1) in Sect. 2 above: therefore for the Navier
Stokes equations in dimension 2 (and 3, see below).

The Navier-Stokes equation in 2D is known to admit unique evolution of
smooth initial data, [3]. The same question has not yet been studied for the
reversible viscosity case. In both cases, however, simulations impose that the field
u must be represented by a finite number of data, i.e. it must be “regularized”,
to use the language of field theory, [19].

Here the regularization will simply be enforced by considering Eqs. (3.6) and

(3.8) with fields with uk �= 0 only if k ∈ IN
def
= {|kj | ≤ N}. Consequently all

statements will depend on the cut-off value N . In particular the conjecture of
equivalence will have to be studied also as a function of N and for a fixed local
observable.

Pursuing the analogy with equilibrium statistical mechanics, SM, of a sys-
tem with energy E, temperature β−1 and observables localized in a volume V0,
mentioned above, consider.

(a) the cut-off N as analogous to the total volume in SM,
(b) K–local observables (defined before Eq. (2.4)) as analogous to the observables

localized in a volume V0 = K in SM
(c) the enstrophy D(u) as analogous to the energy in SM

Furthermore the incompressible Navier Stokes equations (as well as the Euler
equations or the more general transport equations) can be regarded, if N = ∞,
as macroscopic versions of the atomic motion: the latter is certainly reversible (if
appropriately described together with the external interactions) and essentially
always strongly chaotic.

Therefore, for N = ∞ and at least for 2 dimensions, no matter whether R is
small or large, the equivalence should not only remain valid but could hold in
stronger form. Let μM

E,N , μC
R,N be the stationary distributions for the regularized

Navier-Stokes equations, then

Fixed K let F be a K-local observable; suppose that the equivalence condition
μC

R,N (D) = E(or μM
E,N (α) = 1

R ) holds, then:

(a) μC
R = limN→∞ μC

R,N , μM
E = limN→∞ μM

E,N exist (4.13)

(b) μC
R(F ) = μM

E (F ), for all R, E
Remarks: (1) The statement is much closer in spirit to the familiar thermody-
namic limit equivalence between canonical and microcanonical ensembles.
(2) Since the basis is that the microscopic motions that generate the Navier-
Stokes equations are chaotic and reversible the limit N → ∞ is essential.
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(3) The truncated or full Navier stokes equations at low Reynolds number admit,
for the same R, fixed point solutions, periodic solutions or even coexisting chaotic
solutions, [20–23], and the condition of equivalence must be interpreted as mean-
ing that when there are several coexisting stationary ergodic distributions then
there is a one-to-one correspondence between the ones that in the two ensembles
FC ,FM obey the equivalence condition and the averages of local observables
obey Eq. (4.14).
(4) The possibility of coexisting stationary distributions actually observed in
truncated NS equations in [20–22], (see also [3, (4.4.8)]), or predicted and
observed at high turbulence, [24,25], is analogous to the phase coexistence in
equilibrium statistical mechanics (and in that case too the equivalence can hold
only in the thermodynamic limit).
(5) It is remarkable that above conjecture really deals only with the regularized
equations: therefore it makes sense irrespective of whether the non regularized
equations dimensionality is 2 or 3.
Of course in the 3–dimensional equation the α(u) has a somewhat different form,
due to the presence of vortex stretching [3,26]; furthermore in the developed
turbulence regimes, in dimension 3, the picture may become simpler: this is so
because of the natural cut-off due to the OK41 5

3 -law: namely |kj | ≤ N = R
3
4 ε ,

ε > 0, [3].
(6) The equivalence also suggests that there might be even some relation between
the “T-local Lyapunov exponents” of pairs of equivalent distributions. Here T–
local exponents are defined via the Jacobian matrix MT (u) = ∂ST (u) and its
RU -decomposition: they are the averages of the diagonal elements lj(u) of the
R-matrix over T time steps of integration, [27]. Although the “local exponents”
cannot be considered to be among the K-local observables it is certainly worth
to compare the two spectra.
(7) A suggestion emerges that it would be interesting to study the R-NS equa-
tions with α(u) replaced by a stochastic process like a white noise centered at
1
R with the reversibility taken into account by imposing the width of the fluc-
tuations to be also 1

R , as required by the fluctuation relation, see below. As R
varies stationary states describe a new ensemble which could be equivalent to
EC in the sense of the conjecture.
(8) A heuristic comment: if the Chaotic hypothesis, [16], is assumed for the
evolution in the regularized equations the fluctuation relation, see below, should
also hold, thus yielding a prediction on the large fluctuations of the observable
“divergence of the equations of motion” σN (u) in the distributions μM

E,N which,
in the 2-dimensional case, is:

σN (u) = −
∑

h∈IN
(h2)2Re(gh · uh) − 2αE6

E4
− α

∑

h∈IN

h2 (4.14)

where IN
def
= {|kj |} ≤ N, E2m =

∑
h∈IN

(h2)m |uh|2 which follows, if gh
def
= gr

h +
i gi

h, from
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∂α

∂ub
h

=
h2gb

h

E4
− 2α

h4ub
h

E4
, b = r, i (4.15)

Notice that the cut-off N is essential to define σN (u) as the last (and main)
term in Eq. (4.14) would be, otherwise, infinite.

If σN,+ is the infinite time average of σN (Stu), i.e. σ+,N ≡ ∫
μM

R (du)σN (u)
and if pτ (u) = 1

τ

∫ τ

0
σN (Stu)

σN,+
dt then the variable pτ (u) satisfies the fluctuation

relation in μM
En,N if, asymptotically as τ → ∞,

μM
En,N (pτ (u) ∼ p)

μM
En,N (pτ (u) ∼ −p)

= epσN,+τ+o(τ) (4.16)

The average σN,+ becomes infinite in the limit N → ∞: which implies that the
probability of |p − 1| > ε tends to 0 (exponentially in N4, i.e. proportionally
to ε2

∑
|k|<N k2) so that the reversible viscosity (proportional to α ∼ σ

σ+
) will

have probability tending to 0 as N → ∞ (if the large deviation function has
a quadratic maximum at p = 1 or faster if the maximum is steeper). Large
fluctuations of the reversible viscosity away from 1

R are still possible if N < ∞
but not observable, [28, Eq. (5.6.3)].

Some of the questions raised in the remarks in the above sections will now be
analyzed in a series of simulations in the Appendix. They are very preliminary
tests and are meant just to propose tests to realize in the future to test valid-
ity, dependence/stability of the results as N,R vary. Source-codes (in progress)
available on request

Acknowledgements. This is an extended version of part of my talk at and includes
only the material prepared to propose simulations to the attending postdocs during my
stay at the Institut Henri Poincaré - Centre Emile Borel during the trimester Stochastic
Dynamics Out of Equilibrium. I am grateful to the organizers for the support and hos-
pitality and also for the possibility of starting and performing the presented simulations
on the IHP computer cluster; I thank also L. Biferale for providing computer facilities
to improve the graphs. I am grateful for long critical discussions with L. Biferale, M.
Cencini, M. De Pietro, A. Giuliani and V. Lucarini: they provided hints and stimulated
the ideas here.

A Appendix: Reversible Viscosity and Reynolds Number

We first analyze the evolution and distribution of the reversible viscosity α(u)
defined in Eq. (3.10) considered as an observable for the evolution Eq. (3.6), i.e.
for the irreversible NS2D evolution.

Consider the NS2D with regularization (2N + 1) × (2N + 1). For N = 3
a simulation gives the running average of the value of Rα(u) (drawn every 5
data to avoid a too dense a figure), the actual fluctuating values of Rα(u) and
the straight line at quota 1. It shows that Rα(u) fluctuates strongly, yet Rα(u)
averages to a value close (∼2%) to 1, i.e. α(u) averages to the viscosity value:
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Fig. 2. The modes are in the 7×7 box centered at the origin, corresponding to a cut-off
N = 3; the Reynolds number is R = 211; the time step is 2−14 and the time axis is in
units of 214 (i.e. the evolution history is obtained via 224 time steps).

the analogy, mentioned earlier in Eq. (3.12), with equilibrium thermodynamics
would suggest checking that at large R, μC

R,N (α) = 1
R (1+oR,N ) with oR,N small.

A check is also necessary because α(u) is not a K-local observable.
The same data considered in Fig. 1 for R = 2014 and 226 integration steps of

size 2−15 drawn every 10 · 215 yield:

Fig. 3. At 960 modes and R = 2048: the evolution of the observable “reversible viscos-
ity”, i.e. α(u) in Eq. (3.10) in the I-NS: the time average of α should be 1

R
(1 + o( 1

R
)).

Represents the fluctuating values of α every 5 · 216 integration steps; the middle line is
the running average of α and it is close to 1

R
(horiz. line).

It would be interesting to present a few more recent results on the closeness of
the Lyapunov spectra of the R-NS and I-NS but the analysis requires further work.

References

1. Evans, D.J., Morriss, G.P.: Statistical Mechanics of Nonequilibrium Fluids. Aca-
demic Press, New York (1990)



Reversible Viscosity 579

2. Feynman, R.P., Vernon, F.L.: The theory of a general quantum system interacting
with a linear dissipative system. Ann. Phys. 24, 118–173 (1963)

3. Gallavotti, G.: Foundations of Fluid Dynamics, 2nd edn. Springer, Berlin (2005)
4. She, Z.S., Jackson, E.: Constrained Euler system for Navier-Stokes turbulence.

Phys. Rev. Lett. 70, 1255–1258 (1993)
5. Gallavotti, G.: Equivalence of dynamical ensembles and Navier Stokes equations.

Phys. Lett. A 223, 91–95 (1996)
6. Gallavotti, G.: Dynamical ensembles equivalence in fluid mechanics. Physica D

105, 163–184 (1997)
7. Gallavotti, G.: Breakdown and regeneration of time reversal symmetry in nonequi-

librium statistical mechanics. Physica D 112, 250–257 (1998)
8. Gallavotti, G., Rondoni, L., Segre, E.: Lyapunov spectra and nonequilibrium

ensembles equivalence in 2d fluid. Physica D 187, 358–369 (2004)
9. Gallavotti, G., Lucarini, V.: Equivalence of non-equilibrium ensembles and repre-

sentation of friction in turbulent flows: the Lorenz 96 model. J. Stat. Phys. 156,
1027–1065 (2014)

10. Rondoni, L., Mejia-Monasterio, C.: Fluctuations in nonequilibrium statistical
mechanics: models, mathematical theory, physical mechanisms. Nonlinearity 20,
R1–R37 (2007)

11. Benzi, R., Paladin, G., Parisi, G., Vulpiani, A.: Multifractal and intermittency in
turbulence. In: Benzi, R., Basdevant, C., Ciliberto, S. (eds.) Nova Science Publish-
ers, Commack (1993)

12. Biferale, L.: Shell models of energy cascade in turbulence. Ann. Rev. Fluid Mech.
35, 441–468 (2003)

13. Maxwell, J.C.: On the dynamical theory of gases. In: Niven, W.D. (ed.) The Sci-
entific Papers of J.C. Maxwell, vol. 2, pp. 26–78. Cambridge University Press,
Cambridge (1986)

14. Ruelle, D.: Turbulence, Strange Attractors and Chaos. World Scientific, New York
(1995)

15. Gallavotti, G., Cohen, D.: Dynamical ensembles in nonequilibrium statistical
mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)

16. Gallavotti, G., Cohen, D.: Dynamical ensembles in stationary states. J. Stat. Phys.
80, 931–970 (1995)

17. De Pietro, M.: Nonlinear helical interactions in Navier-Stokes and shell models for
turbulence. Ph.D. thesis, Università Tor Vergata, Roma, pp. 1–102 (2017)
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Abstract. Thermodynamics makes definite predictions about the ther-
mal behavior of macroscopic systems in and out of equilibrium. Sta-
tistical mechanics aims to derive this behavior from the dynamics and
statistics of the atoms and molecules making up these systems. A key
element in this derivation is the large number of microscopic degrees
of freedom of macroscopic systems. Therefore, the extension of ther-
modynamic concepts, such as entropy, to small (nano) systems raises
many questions. Here we shall reexamine various definitions of entropy
for nonequilibrium systems, large and small. These include thermody-
namic (hydrodynamic), Boltzmann, and Gibbs-Shannon entropies. We
shall argue that, despite its common use, the last is not an appropri-
ate physical entropy for such systems, either isolated or in contact with
thermal reservoirs: physical entropies should depend on the microstate of
the system, not on a subjective probability distribution. To square this
point of view with experimental results of Bechhoefer we shall argue that
the Gibbs-Shannon entropy of a nano particle in a thermal fluid should
be interpreted as the Boltzmann entropy of a dilute gas of Brownian
particles in the fluid.

Keywords: Nonequilibrium thermodynamics · Statistical mechanics

1 Introduction

The role of probability in the statistical mechanical analysis of the thermal
behavior of individual physical systems is subtle. Indeed, it has frequently been
a source of confusion and controversy: note e.g. the conflict between Boltzmann
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and Zermelo about the H-theorem [1]. A crucial ingredient in the statistical
mechanical analysis of this problem by Maxwell, Thomson, Boltzmann, Gibbs
and Einstein is the “law of large numbers”, which permits “almost sure” predic-
tions, i.e. with probability approaching 1, when the number of quasi-independent
entities in the system become very large. This is clearly the case for macroscopic
systems (MS), which contain a large number of atoms or molecules, to which sta-
tistical mechanics was historically restricted. Thus the microcanonical ensemble
and the other equilibrium Gibbs ensembles make definite predictions for equi-
librium MS. We can therefore speak of the “typical” behavior of such a system1.
This restriction to MS was historically natural, since the notions of heat, entropy
and the second law were all developed in the nineteenth century for such sys-
tems. The subsequent development of statistical mechanics had as its aim to
describe and explain microscopically the observed thermal phenomena in such
MS. It therefore also considered only systems consisting of very large numbers
of particles.

In going beyond equilibrium, where the theory is fundamentally complete,
this disparity in sizes between microscopic and macroscopic also plays a critical
role. It forms the basis of the explanation by Boltzmann, Maxwell and Thomson
of how time-asymmetric behavior, as expressed for example by the second law
of thermodynamics, can originate from time-symmetric microscopic laws [2,3].
In particular, time-asymmetric macroscopic equations like the heat equation or
the Navier-Stokes equations, as well as the mesoscopic Boltzmann equation (to
which Zermelo objected), can be seen as being expressions of the law of large
numbers, valid in the limit of particle number N → ∞ [4]. Unfortunately, a rigor-
ous mathematical derivation of such equations from time-symmetric microscopic
dynamics is still beyond our reach for realistic systems. In fact, the only cases
for which hydrodynamic-type equations have been derived rigorously are sys-
tems with bulk stochastic interactions, like lattice gases [5–7]. Therefore, there
are still many open problems for nonequilibrium MS.

The reliance on the law of large numbers raises the issue of understanding the
thermal behavior of nanosystems (NS), in which there is currently much inter-
est. This interest is fueled by technological advances that make such systems
experimentally accessible. Nanosystems can be well isolated from their environ-
ment, or can be in contact with reservoirs. Here we will focus on the latter case,
an example being the recent work of Bechhoefer et al. [8], of a nanoparticle
immersed in a fluid (a talk by Bechhoefer triggered this work). Recent work on
such NS goes under the name of “stochastic thermodynamics”, see [9] and other
articles in that issue. Stochastic thermodynamics, as the name indicates, takes
explicit account of the stochastic modeling of the effective interactions between
the small system, such as a nanoparticle or a polymer, and the equilibrium ther-
mal reservoir that it is in contact with, usually a macroscopic fluid. There is also
much current interest in isolated quantum systems having only a few degrees of
freedom [10], but we shall not consider these here.

1 We are taking for granted here an assumed underlying (approximately) equal a priori
probability of different microstates for a specified macrostate.
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The consideration of thermal properties of NS raises the question of whether
and how the thermodynamic and statistical mechanics formalism can be
extended to systems with a small number of degrees of freedom. In the stochas-
tic thermodynamic extensions the Gibbs-Shannon (GS) entropy (defined in (9))
plays a central role. This raises the questions: does the GS entropy of a proba-
bility measure μ, when μ is not a Gibbs measure for an equilibrium macroscopic
system, have physical meaning? And when it does, what is that meaning? This
entropy has some very nice mathematical properties and it is very alluring to
consider it, as is generally done in the stochastic thermodynamic literature, as
the “proper entropy” of a nonequilibrium system. We shall argue against this
for MS. On the other hand the experiments of Bechhoefer, mentioned earlier,
actually have measured this quantity, more or less directly, for a nanoparticle
immersed in a liquid. We shall discuss our interpretation of these experiments at
the end of this note. Let us however start from the beginning and first consider
the statistical mechanical entropy for isolated MS. We shall then consider both
MS and NS in contact with thermal baths.

2 Thermodynamic and Boltzmann Entropy of a MS

The discovery by Clausius of the existence of an entropy function S(E, V,N)
for equilibrium macroscopic systems (with energy E, particle number N and
volume V ), and its central role in the time asymmetric evolution of the world,
as expressed by the second law, is one of the key events of nineteenth century
science, c.f. [11] and [12]. This discovery raised immediately the question of
how to define S as a function of the microstate X = (r1,p1, . . . , rN ,pN ) of
the particles composing the system, where ri ∈ V is the position and pi ∈ R

3

the momentum of the ith particle. The problem was compounded by the fact
that the time evolution X(t) in the phase space Γ , as given by the Hamiltonian
H(X), is time symmetric, c.f. [3].

The answer arrived at by Boltzmann was to identify S for a MS with

SB(X) = log |Γ (M(X))|. (1)

Here X is a phase point (microstate) in the energy shell, E ≤ H(X) ≤ E + ΔE
and M(X) is the macrostate of the system. This macrostate is defined, e.g., by
dividing V into N cells ωα, α = 1, . . . N , with 1 � N � N , and then specifying
the number, energy, and total momentum of the particles in each ωα with a
certain tolerance. |Γ (M)| is the Liouville (Lebesgue) volume of the phase space
region Γ (M) containing all microstates X belonging to the macrostate M , c.f.
[2,3] and also Sect. 7 of this work. (For classical systems there is an arbitrary
overall additive constant in the entropy coming from the unit of phase space
volume, but this has no impact on what we discuss here, so will be ignored.)
For a macroscopic system there is a special macrostate Meq, corresponding to
equilibrium, such that Γ (Meq) covers almost the whole surface of energy E. That
is, |Γ (Meq)| ∼ |ΓE |, the volume of the energy shell between E and E + ΔE.
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This definition of SB(X) assigns an entropy even to microstates X which do not
behave at all as expected from the second law, as discussed below after (2).

The Boltzmann entropy SB(Meq) agrees, to leading order in the size of the
system, with the experimentally determined equilibrium Clausius entropy S.
This was shown for a dilute gas by Boltzmann and for general systems by Gibbs.
To calculate this entropy Gibbs (and Boltzmann) introduced the microcanonical
ensemble μm, as the uniform probability density in the energy shell E ≤ H(X) ≤
E +ΔE for describing the almost sure properties of equilibrium MS with energy
E. They naturally equated the precisely defined logarithm of |ΓE |, the volume of
the energy shell which for MS is very close to |Γ (Meq)|, with the entropy S(E).

Time-Evolution: The time evolution of the microstate X(t) will induce a time
evolution of the macrostate M . Boltzmann then argued that SB(X(t)) will, for
a typical X in Γ (M), evolve in time according to the second law, i.e.

dSB(X(t))
dt

≥ 0, t > 0 (2)

see [4] and references there. This can be proven when one assumes that M(t)
evolves under an autonomous macroscopic equation, e.g. the Navier-Stokes or
diffusion equation, but the rigorous derivations of these equations from the micro-
scopic dynamics is not available at the present time.

Nota Bene: Equation (2) can only be true for typical microstates X, i.e. for
the overwhelming majority of the X’s with respect to Liouville measure in Γ (M):
there are special microstates for which it is definitely false. An example of such
a special state can be obtained by starting in a typical low-entropy state at some
time in the past, and then evolving that state in time to a higher-entropy state
in the present, followed by exactly reversing all velocities.

Hydrodynamic Time-Evolution: We now describe a class of nonequilibrium
systems for which the time evolution of the Boltzmann entropy is given by
hydrodynamic equations and satisfies the second law. Consider a system in a
macrostate M 	= Meq for which one can define a “smooth” energy and mass
density profile e(r) and n(r), where r ∈ V denotes different spatial points of the
system. For such systems SB(X) coincides to leading order with Sh({e(r), n(r)}),
the hydrodynamic entropy of systems in local thermal equilibrium (LTE) given
by [13]

Sh({e(r), n(r)}) =
∫

V

s(e(r), n(r))dr, (3)

where s(e, n) is the equilibrium entropy per unit volume, s = S/|V | (in the
thermodynamic limit). [We have assumed for simplicity that the local velocity
u(r) is zero, otherwise e(r) → [e(r) − 1

2n(r)|u(r)|2]. Note that Sh coincides with
the equilibrium entropy S(E, V,N) when e and n are independent of r.

As an example of the hydrodynamic time evolution of Sh, consider a system in
LTE with a temperature profile T (r, t). Starting then with the general equation
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for the time evolution of the entropy density of a system in LTE

∂s(r, t)
∂t

= −div j(r, t)
T (r, t)

= −div (j/T ) + j · ∇
(

1
T

)
, (4)

where j(r, t) is the energy flux vector, we get

dSh

dt
= −

∫
Q

j(q, t)
T (q)

·dq +
∫

V

j(r, t) · ∇
(

1
T (r, t)

)
dr. (5)

In (5) Q is the surface of V and dq is the (outward directed) surface area element.
The flux integrand vanishes on the parts of the surface which are insulated, the
whole surface if the system is isolated. There will, however, be a contribution
from the parts of the surface which are held at specified temperatures T (q) by
external reservoirs. The integral over Q can be identified with the entropy pro-
duction in the thermal reservoirs, d̄Sr/dt, which maintain the temperature T (q).
(Since we have idealized the reservoirs as infinite systems with fixed tempera-
tures, their entropy is formally infinite, but the rate of change in their entropies
is finite.) The second term in (5) corresponds to the hydrodynamic or Boltzmann
entropy change in the bulk of the MS,

σB(t) =
∫

V

j(r, t) · ∇
(

1
T (r, t)

)
dr ≥ 0, (6)

due to local “dissipation”. The integrand is in fact everywhere non-negative, an
expression of the second law: the component of the energy flux parallel to the
temperature gradient cannot be directed from ‘cold’ towards ‘hot’.

3 The Gibbs-Shannon Entropy

The entropy of the micro-canonical ensemble, S(E) = log |ΓE |, can also be writ-
ten as

S(E) = SG(μm) = −
∫

μm(X) log μm(X)dX. (7)

Using Legendre transforms, Gibbs showed that if one considers the canonical
ensemble with probability density μβ given by

μβ = Z−1 exp [−βH(X)] , (8)

with β = 1/T , then SG(μβ) also gives the equilibrium entropy of a MS as a
function of temperature. The same is true for the grand-canonical ensemble and
other equilibrium ensembles. They all agree to leading order in the size of the
system.

It is a natural step to extend this notion of entropy to general probability
measures with densities μ(X, t) which depend on X and t as

SG(μ) = −
∫

μ(X, t) log μ(X, t)dX. (9)
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The quantity SG(μ) is the Shannon entropy of an arbitrary measure μ on a space
Ω (relative to the measure dX). It plays a central role in information theory as
developed by Shannon [14]. However, as is well known, for an isolated physical
system evolving under Hamiltonian dynamics, μ changes in time according to
the Liouville equation, ∂μ/∂t = −{μ,H}, and the GS entropy SG(μ(t)) does
not change at all. Thus SG(μ(t)) cannot be identified with the thermodynamic
or hydrodynamic entropy Sh of an isolated macroscopic system which is not in
global thermal equilibrium, even if it is in local thermal equilibrium, a situation
in which Sh is unambiguous. (This was already noted by Gibbs and discussed by
P. and T. Ehrenfest in their 1916 article [15]). This raises the question of what is
the physical meaning of SG(μ) for any system for which μ is not an equilibrium
Gibbs measure of a MS.

The behavior of the GS entropy associated with a measure μ is very different
when the system is in contact with stochastic reservoirs. As will be seen below,
the rate of change of SG is no longer zero and is related to the thermodynamic
entropy change in the reservoirs. We shall discuss the physical significance, if
any, of this later, after we introduce the mathematical formalism to describe
such systems.

4 Model of System in Contact with Thermal Reservoirs

The formalism we shall use was developed by Bergmann and Lebowitz [16,17]
who studied the dynamics of a system evolving under the combined action of its
own Hamiltonian H(X) and of n thermal reservoirs at different temperatures
(and chemical potentials). These reservoirs were thought of as being infinite and
acting at the boundaries of the MS. To simplify matters the interaction with the
reservoirs was idealized as being of the collision type: when a collision occurs the
phase point of the system, X, jumps to X ′, while the reservoir particle goes off
to infinity, never to be seen again. The system thus sees an ever fresh stream of
reservoir particles with a Maxwellian distribution, at the temperature Tα = β−1

α

of that reservoir, α = 1, · · · , n. The time evolution of the system will thus be
given by a continuous time Markov process.

Denoting Kα(X,X ′)dX the transition rate from the phase point X ′ to the
phase space volume dX around X due to collisions with reservoir α, yields the
following stochastic Liouville master equation for the probability density μ(X, t),

∂μ(X, t)
∂t

+ {μ,H} =
n∑

α=1

∫
[Kα(X,X ′)μ(X ′, t) − Kα(X ′,X)μ(X, t)] dX ′,

(10)

where {μ,H} is the usual Poisson bracket describing the deterministic Hamilto-
nian evolution of the isolated system.

Using the time reversibility of the collision dynamics yields a condition for
each α,

Kα(X,X ′) = eβαH(X′)Lα(X,X ′) (11)
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with Lα(X,X ′) = Lα(X ′,X), where X corresponds to reversal of the velocity
coordinates of X. Some further simplifications give Lα(X ′,X) = Lα(X ′,X),
so that Lα(X,X ′) = Lα(X ′,X), corresponding to “detailed balance” for each
reservoir, i.e.

Kα(X,X ′)/Kα(X ′,X) = exp[−βα(H(X) − H(X ′))]. (12)

It was proven in [16], under quite general conditions on Lα(X,X ′) that,
as t → ∞, a system started in some arbitrary initial μ(X, 0) will approach a
stationary state

lim
t→∞ μ(X, t) = μs(X). (13)

This state is unique and is absolutely continuous with respect to Liouville mea-
sure. When there is only one reservoir at reciprocal temperature, βα, then clearly

μs(X) = μα(X) ≡ Z−1 exp [−βαH(X)] (14)

is the unique stationary state. When the temperatures β−1
α are different μs will be

a nonequilibrium stationary state (NESS), for which the dynamics do not satisfy
detailed balance. It was further shown that this NESS will satisfy the Onsager
reciprocal relations when all βα are close to some β, as well as a generalized
Kubo relation in the presence of an external field.

5 Time Evolution of Gibbs Entropy for a System
in Contact with Thermal Reservoirs

For a closed system, given the phase point X(t0), X(t) is determined for all t.
The only randomness expressed in μ(X, t) for a closed system is that introduced
initially, which could be due to ignorance. There is therefore no intrinsic physical
significance to μ(X, t) for an isolated system. On the other hand when the system
is in contact with a stochastic reservoir then X(t) is no longer determined by
X(t0), and μ(X, t) acquires some “objective” meaning. The GS entropy now
evolves in time in a non trivial way, which can be calculated from (10). It consists
of two contributions,

d
dt

SG(μ) =
n∑

α=1

Jα(t)/Tα + σG(t). (15)

In the first contribution Jα is the average energy flux from the αth reservoir into
the system, that is

Jα(t) =
∫

μ(X, t)
∫

Kα(X ′,X) [H(X ′) − H(X)] dX ′dX, (16)
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with
∑n

α=1 Jα(t) = d
dt

∫
H(X)μ(X, t)dX. The second contribution in (15) is

σG(t) =
1
2

n∑
α=1

∫ ∫
Lα(X,X ′) [να(X, t) − να(X ′, t)] log

[
να(X, t)
να(X ′, t)

]
dXdX ′ ≥ 0,

(17)

where

να(X, t) = μ(X, t) exp [βαH(X)] . (18)

Equation (15) can be rewritten in the suggestive form

σG(t) =
d̄Sr

dt
+

dSG

dt
≥ 0, (19)

where we have written d̄Sr/dt =
∑

α d̄Sα/dt and

d̄Sα

dt
= −Jα/Tα (20)

is the rate of change of the entropy of the αth reservoir caused by the energy
(heat) flow −Jα into that reservoir. Equation (19) is reminiscent of the second
law, and has therefore prompted the interpretation of SG(μ) for systems in con-
tact with thermal reservoirs as a physical entropy, despite the fact that it is not
so for an isolated system and is not specified by the microstate of the system,
c.f. Sect. 9.

We want to argue however that (19) does not justify the interpretation of
SG as the physical entropy of an open nonequilibrium system unless it agrees,
at least to leading order, with SB. In fact for a MS in contact with reservoirs
at its surface all the entropy production σG is caused, as can be seen from (17),
by the stochastic interactions at its surface. This is in contrast to the entropy
production σB, given in (6), which is due to the chaotic microscopic dynamics
in the bulk of the system, as it should be from a physical point of view.

We note further that, as is well known, for general Markov processes the GS
entropy relative to the stationary measure,

SG(μ|μs) = −
∫

Γ

μ(X, t) log
(

μ(X, t)
μs(X)

)
dX = SG(μ) +

∫
μ log μsdX, (21)

is monotone non decreasing [18]. We thus always have

d
dt

SG(μ) +
d
dt

∫
μ log μsdX ≥ 0, (22)

irrespective of whether the stochasticity comes from thermal reservoirs or
not. This time derivative coincides in our case with σG when the system is
in contact with only one reservoir and μs ∼ exp[−βαH]. When the system
is in contact with several reservoirs then in addition to (21) we also have
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d
dtSG(μ)+ d

dt

∑
α

∫
μ log μαdX ≥ 0. The positivity of σG is thus simply a conse-

quence of (22) and the detailed balance condition for each reservoir which gives
(12). Equation (22) would thus hold whatever the stationary states, μα, of the
system in contact with only one reservoir.

The relationship between SG and SB for open systems is an interesting ques-
tion. It may be considered in the following example in which a macroscopic
system is in contact with a single reservoir, e.g. a metal ball of radius 10 cm
immersed in a large tub of water. Consider the case when at t = 0 we have
μ(X, 0) = μβ0(X), i.e. the system is in equilibrium with a reservoir at the tem-
perature T0. At t = 0 the system is suddenly coupled to a thermal reservoir at
temperature Tf , with which it comes to equilibrium as t → ∞. We thus have
SG(0) = SB(0) and SG(∞) = SB(∞), but what about the times in between?
Under the very reasonable assumption of LTE, say T0 = 50 ◦C and Tf = 30 ◦C,
SB(t) can be computed for all t > t0 from the heat equation, but what about
SG(t)? Does it agree with SB(t) to leading order? Or do we have SG(t) < SB(t)
to leading order for some values of t? We do not know.

A similar question can be asked when the system is in contact with two (or
more) reservoirs at different temperatures on its surface. We expect that if the
system is macroscopic and chaotic, i.e. it satisfies Fourier’s law, then the energy
and density profile in the stationary state computed as an average over μs will
be that corresponding to LTE. The quantity σG will then be given by

σG = −
∑
α

Jα/Tα, (23)

since dSG(μs)/dt = 0, in (15). As long as the first integral in (5) can be identi-
fied with (23), there will be a similar expression for the hydrodynamic entropy
production σB in (5) and (6). This raises the following question: to what extent
does the stationary measure μs for a “chaotic” system correspond to a LTE state
when the only stochasticity is the one at the surface induced by the reservoirs. In
other words, does SG(μs) = SB in this scenario? For the particular case where
there are also bulk stochastic interactions which satisfy detailed balance this
has been proven [19–21]. However, for the more general case in which the bulk
dynamics is Hamiltonian this remains an open question.

In fact, it is not true that SG(μs) = SB when the reservoirs at the surface are
dissipative but deterministic, see [22]. There, it is considered a NESS produced
by driving the system via deterministic non Hamiltonian forces of the type used
in Gaussian thermostats at the surface. These yield a NESS, μs, which is singu-
lar with respect to Liouville measure. Its Gibbs entropy, SG(μs), is thus equal
to −∞. On the other hand molecular dynamics simulations of this model show
that it is in LTE, corresponding to shear flow, as far as thermodynamic quanti-
ties are concerned. Whether such a situation can also occur when the NESS is
produced by stochastic thermal reservoirs is an open question. This problem is
also discussed in Sect. 6 of [23] for different kinds of reservoirs.
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6 Small System in Contact with a Thermal Reservoir

Isolated small classical systems, such as a few particles in a box, and systems
with only a few relevant degrees of freedom, such as the center of mass motion of
a massive pendulum or the moon, are not thought to have any thermodynamic
functions, such as entropy, associated with them. For this reason the second
law is, as noted by Maxwell, constantly being violated in small systems [24]. It
is certainly no great surprise if an isolated box containing 10 Argon atoms is
frequently seen to have 8 or more particles in the right half of the box. Such a
percentage of particles on one side of an isolated system would certainly be a
violation of the second law if the system consisted of 1020 or more particles. Just
how large does the system have to be to rule out “ever” seeing such a violation in
an isolated system of N particles during a period of 100 years depends (strongly)
on the nature of the interaction between the particles, shape of the container,
initial state, and on whether we are considering classical or quantum dynamics.
Leaving quantum systems for a separate consideration, we will analyze now what
happens to a small classical system in contact with a thermal reservoir.

The Hamiltonian of such a small system in contact with a thermal reservoir
is given by

Htot = Hsys(X) + Hr(Y ) + V (X,Y ), (24)

where X describes the relevant part of the microstate of the small system with
Hamiltonian Hsys, Y that of the reservoir with Hamiltonian Hr, and V is the
interaction between system and reservoir. If the total system is in equilibrium
and is described by a microcanonical or canonical ensemble at a temperature
β−1, this induces a probability density for the system μ̃(X) =

∫
μβ(X,Y )dY ∼

exp[−β(Hsys(X)+ Ṽ (X,β))]. Note that Ṽ will generally be determined by both,
Hr and V , and can depend on β. This has to be taken into account when one
considers, for example, the collapse transition of a polymer in a solvent [25,26].

We note here that μ̃(X) no longer gives almost sure predictions about the
properties of the small system. We will presumably however get the same μ̃(X)
when the size of the reservoir is very large for all different Gibbs ensembles
describing the total system. Nevertheless, it is not clear how meaningful it is
to assign thermodynamic functions to the small system based on μ̃(X): see
discussion in [25]. We shall focus here on cases where the interaction V (X,Y )
can be taken to be of the impulsive type, as in Sect. 3, where Ṽ (X) can be
taken to be essentially independent of X and set equal to zero. The paradigm
of such a system is a Brownian particle [BP] immersed in an equilibrium fluid
at temperature T . The only relevant degree of freedom for such a (spherical)
particle is the location of its center of mass. The phase space Γ of the system is
thus six dimensional, X = (r,v), where we have set the mass of the BP equal to
unity so that p = v. Treating the fluid (approximately) as an infinite thermal
reservoir one obtains a stochastic Liouville equation of the form of Eq. (10) for
μ(r,v, t) with H(r,v) = 1

2 |v|2 +U(r), where U(r) is an external potential which
varies slowly on the microscopic spatial scale.
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For a sufficiently idealized fluid in thermal equilibrium at temperature β−1

one can obtain, in an appropriate limit, a Fokker-Planck equation for the time
evolution of the probability density of the BP μ(r,v, t)

∂μ

∂t
+ v · ∂μ

∂r
− ∂U

∂r
· ∂μ

∂v
= ξ

∂

∂v
·
[
μβ

∂

∂v
(μ/μβ)

]
, (25)

where μβ = Z−1 exp
{−β

[
1
2 |v|2 + U(r)

]}
, c.f. [27]. Thus within the approxi-

mate, but physically appropriate, scheme Eq. (25) treats the fluid as an infinite
thermal reservoir which exerts a stochastically stationary, delta-time correlated,
Gaussian force on the particle. The particle distribution then evolves towards its
stationary value μβ on a time scale T/ξ.

For the Fokker-Planck Eq. (25), one can formally follow the approach of
Sect. 5 [16,17] to calculate the corresponding change in the Gibbs-Shannon
entropy production. The result is given by

σG = ξ

∫
μ(r,v, t)

∣∣∣∣ ∂

∂v
log ν

∣∣∣∣
2

drdv =
dSG

dt
− J/T ≥ 0, (26)

where ν = μ/μβ as in Eq. (18) and J is the average energy flux from the fluid
to the Brownian particle J = d

dt

∫
( 12 |v|2 +U)μdrdv. One can take further limits

when the Fokker-Planck equation becomes a Langevin equation but we shall not
go into that here [30].

Equations (25) and (26) and their analogues play a central role in “stochastic
thermodynamics” where SG(μ) is generally taken for granted to represent a
thermodynamic entropy and thus (26) is considered to be an expression of the
second law [28,29]. There are in fact, as already noted, recent experiments which
give some support to this interpretation [8]. The question therefore naturally
arises of why this should be true for small systems in contact with thermal
reservoirs when, as argued above, this is not the case for isolated systems and
may not be true for MS in contact with reservoirs at their surfaces.

7 The Brownian Gas

We shall now attempt to justify the identification of SG(μ) of a nano-particle in
contact with a thermal reservoir, such as a BP in a fluid, with a thermodynamic
entropy. Consider a dilute gas of N such BP, N � 1, and call it a Brownian gas
[BG]. The gas is so dilute that interactions between the BP are negligible. This
BG is a macroscopic system in contact with a thermal reservoir not just at its
boundaries, but “everywhere”. Let γ be the 6 dimensional phase space of the
Brownian particle (in the older literature γ is called the μ−space, where μ stands
for molecule). Then, the phase space Γ of the BG will have 6N dimensions.

The (“meso”) macrostate of the Brownian gas is given by specifying the num-
ber of Brownian particles in each region drdv of the 6 dimensional γ space, to be
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Nf(r,v)drdv. This corresponds to a region Γf in the 6N dimensional phase space
Γ . The log of the Liouville volume |Γf | is given, up to constants, by 2

log |Γf | = −N

∫
f(r,v) log f(r,v)drdv + N. (27)

The Boltzmann entropy, SB(f), of this meso state is then given by (27), whose
right hand side coincides up to a constant term with NSG(μ). This is so even
though the physical interpretations of NSG(μ) and SB(f) are quite different.

The entropy production in a Brownian gas plus fluid is given by

σB = −N
d
dt

∫
f log fdrdv − JN/T ≥ 0, (28)

where JN is the flux of energy from the fluid to the Brownian gas, and −JN/T
is the rate of entropy change of the fluid at temperature T . The right side of
Eq. (28) is just N times the right hand side of Eq. (26) if one identifies JN = NJ .

We remark here that Boltzmann’s famous H−theorem shows the monotone
increase of − ∫

f log fdrdv for an isolated dilute gas evolving in time according to
the Boltzmann equation. Boltzmann interpreted this as a microscopic derivation
of the second law for SB({f}) and says [31]: “we have thus succeeded in defining
entropy for a system not in equilibrium”.

An important observation now is that, unlike an isolated gas, where some
interaction between the particles is essential to make the system satisfy the sec-
ond law (rather than behaving like an ideal gas), the Brownian gas gets thermal-
ized via its interaction with the fluid. Hence the behavior of a single Brownian
particle averaged over many trials will be the same as that of a Brownian gas. It
is therefore meaningful to consider the Gibbs-Shannon entropy of a single Brow-
nian particle as having a thermodynamic meaning, i.e. being equal to that of a
Brownian gas divided by the number of particles. This should be true both when
the Brownian gas is in global equilibrium, or in a meso (macro) state described
by f(r,v).

The above considerations will hold also in the case when the Brownian parti-
cle is acted on by a time dependent external potential U(r, t). The Brownian gas
will behave like a MS on which work is being done. In particular when U(r, t)
varies sufficiently slowly in time compared to the time it takes the Brownian
particle to relax to equilibrium with U(r, t), then the entropy will change adia-
batically and the right hand side of (26) will be an equality. The behavior of a
single Brownian particle will then be similar to that of the Brownian gas, with
vanishing fluctuations. This is what is observed in the experiments in [8] which
we discuss next.

2 The derivation of Eq. (27), due to Boltzmann, is straightforward. Divide the γ−space
into regions Δα, with α = 1, . . . , M , and let Nα be the number of particles in Δα.

Then, one has that |Γf | ∼ ∏ |Δα|Nα

Nα!
. Using Stirling’s formula, one obtains Eq. (27),

see [4] for details.
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8 Experiments on a Brownian Particle

An idealized version of the experiment in [8] is as follows: The thermal reservoir
fluid occupies a volume V which is divided into regions V1 and V2. At t = 0
the BP is in equilibrium with the fluid in V1 and a confining (infinite) external
potential U0(r) which excludes it from V2. At t = 0, U0(r) is changed to U1(r)
without any work being done, e.g. one suddenly removes the infinite potential
confining the particle to V1. One then waits until time t1 for the particle to
come to equilibrium with the fluid at the new potential U1(r), e.g. no confining
potential. One then changes U1 to U0 by gradually raising the height of the
potential in V2 over a time interval τ . During this time one does work W (τ) on
the particle.

We make the time variation of U(r, t) during τ very slow compared to the
relaxation time of the particle to its equilibrium distribution. Hence during the
time interval τ of a given realization the probability of the particle being in
position r with velocity v varies in a quasistatic way. From a thermodynamic
point of view the macro (meso) state of the corresponding Brownian gas is given
up to a factor N by

μβ(r,v, t) =
1

Z(t)
exp

(
−β

[
1
2
|v|2 + U(r, t)

])
(29)

with U(r, t1) = U1(r) and U(r, t1 + τ) = U(r, 0) = U0(r).
We can now use standard thermodynamics to calculate the work done by an

external agent that slowly manipulates the potential U(r, t). The work done per
unit time is ẇ(t) = −v · ∂U/∂r|r(t), where r(t) is the position of the BP at time
t. The total work done over the duration of the period (0, t1+τ) is then different
from zero only during the interval (t1, t1 + τ), and is given by

W (τ) =
∫ t1+τ

t1

ẇ(t)dt =
∫ t1+τ

t1

∂U(r, t)
∂t

dt, (30)

where it is important for the equality that the potential is the same at the
beginning and at the end of the protocol [32,33]. We can now relate the average
total work 〈W (τ)〉, where the average is taken with respect to μβ(r,v, t), with
the change of log Z during the period τ . More precisely

〈W (τ)〉 =
∫ (∫ t1+τ

t1

∂U(r, t)
∂t

μβ(r,v, t)dt

)
drdv

= −
∫ (∫ t1+τ

t1

1
βZ(t)

∂

∂t

[
e−β( 1

2 |v|2+U(r,t))
])

drdv

= T log[Z(t1)/Z(t1 + τ)]. (31)

To interpret this work as a change in Gibbs-Shannon entropy we can integrate
by parts in the definition of 〈W (τ)〉. This gives

〈W (τ)〉 = E(t1 + τ) − E(t1) − T [SG(t1 + τ) − SG(t1)], (32)
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where we have defined the average energy as E(t) = 〈12 |v|2 + U(r, t)〉. In the
actual experiment E(t1) = E(0) = E(t1 + τ). Hence measuring 〈W (τ)〉, which
was shown experimentally to have very little variance for large τ , lets one measure
SG(μβ(t1)) − SG(μβ(t1 + τ)) for different external potentials U(r, t), e.g. for
different confining volumes of U0(r).

Using the BG interpretation, the quantities in Eq. (32) can all be interpreted
as macroscopic quantities divided by the number of particles. Within this inter-
pretation SG coincides with the hydrodynamic entropy which changes in an
irreversible way. The entropy of the heat bath (here the fluid) has increased dur-
ing the cycle from 0 to t1 + τ by 〈W (τ)〉/T . When τ is not so large so that one
can not assume instantaneous equilibrium of the BG there will be extra entropy
production in the BG during this period. This work, obtained by averaging W (τ)
over repetitions of the experiment, was indeed found to be greater than the right
hand side of (32). In the analysis of the experiment and in stochastic thermody-
namics one goes beyond the simple equality or inequality of (32). One actually
computes the distribution of W (τ). We shall not go into that here. We thus con-
clude that the interpretation of SG(μ) as the thermodynamic Boltzmann entropy
per particle of a Brownian gas is consistent.

9 Concluding Remarks

The point of view taken in this note is that the entropy of a physical system
should be a property of the state of the individual system and thus it should be
possible to define the entropy of a system without referring to any ensembles,
see [3,4]. For a classical system the most detailed description of the physical
state of the system is that given by its microstate X ∈ Γ . Thus any physical
entropy S is a function of X. This is the case for the Boltzmann entropy SB(X)
of a macroscopic system in a well defined macrostate M (for which SB is in
fact the same for all X ∈ Γ (M)). Going beyond the hydrodynamic entropy (3),
appropriate only for systems in local thermal equilibrium, SB can be extended
to dilute gases not in local thermal equilibrium. For these the macro (meso)
state M is specified by the empirical distribution f(r,v, t), which is of course
determined by X, see [4]. In contrast the Gibbs-Shannon entropy (of a mea-
sure) not only fails to be determined by the microstate of the system – it also
fails to change in time for an isolated system, large or small, even for a large
isolated system that is undergoing (internally) dissipative relaxation and thus
producing thermodynamic entropy. Of course the Gibbs-Shannon entropy of the
microcanonical ensemble μm is meaningful for an isolated macroscopic system
in global thermal equilibrium, where it coincides with SB to leading order in the
size of the system.

The existence of a useful general notion of entropy for an isolated nanosystem
is not so clear. Such systems have been studied theoretically and experimentally
for quantum systems [10,34], which we have not discussed here. In fact our main
concern here has been with the significance of SG for systems large and small in
contact with heat baths. We have not resolved this issue for macroscopic systems,



Nonequilibrium Entropy 595

but have given a possible, to us plausible, answer for the case of a nanosystem
studied experimentally in [8].
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Abstract. We investigate disorder relevance for the pinning of a renewal
when the law of the random environment is in the domain of attraction of
a stable law with parameter γ ∈ (1, 2). Assuming that the renewal jumps
have power-law decay, we determine under which condition the critical
point of the system is altered by the introduction of a small quantity
of disorder. In an earlier study of the problem [20] we have shown that
the answer depends on the value of the tail exponent α associated to
the distribution of renewal jumps: when α > 1 − γ−1 a small amount of
disorder shifts the critical point whereas it does not when α < 1 − γ−1.
The present paper is focused on the boundary case α = 1−γ−1. We show
that in this case, the critical point is shifted, and obtain an estimate for
the intensity of this shift.

Keywords: Pinning model · Disorder relevance · Stable laws ·
Harris criterion

1 Introduction

The renewal pinning model has been developed as a toy model to understand
phenomena like wetting in two dimensions [1] and pinning of a polymer to a
defect line [11]. Due to its simplicity and the fact that the critical exponent
associated to the localization transition can be tuned to any value just by mod-
ifying one parameter (the tail exponent of the renewal process in (2.1)), it has
also been employed as benchmark to test prediction concerning the effect of dis-
order obtained by non-rigorous renormalization group arguments. We refer to
the monographs [13,14] for a complete introduction to the subject.

More precisely a rich literature has been developed (see [2,3,5–7,17,19,21]
and references therein) to establish rigorously that the sensibility of the system
to disorder is determined by the sign of the critical exponent associated to the
specific heat as predicted by Harris [18]. More precisely it was shown that when
the specific-heat exponent is positive (which corresponds to α > 1/2 for the
exponent in (2.1)) disorder even of small intensity shifts the critical point and
modifies the critical exponent, while when it is negative (α < 1/2) the critical
point and the critical exponent of the localization transition are conserved.
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The criterion developed by Harris does not yield any prediction when the
specific heat exponent vanishes: this corresponds to a tail exponent α = 1/2 for
the renewal process. This case is of special importance in the case of pinning
as it corresponds to the original random walk pinning model (see e.g. [10]). A
more detailed renormalization group analysis in [7] yielded that in this so-called
marginal case, disorder should also be relevant (a prediction conflicting with
others made in the literature e.g. [12], see the introduction of [15] for a more
detailed account on the controversy). This conjecture was proved in [15] (see
also [4,16]).

As most heuristics concerning disorder relevance rely on second moment
expansion, a natural question is:

“Is Harris criterion valid when the disorder has infinite variance?”

The issue was raised for pinning model in [20] and it was shown that when
the disorder is in the domain of attraction of a γ-stable law with γ ∈ (1, 2),
Harris criterion is not satisfied. More precisely we showed that the critical point
is shifted when α > 1 − γ−1 and that critical points and exponents are not
perturbed by a small amount of disorder when α < 1 − γ−1.

In the present work we investigate the marginal case α = 1 − γ−1 for which
we prove disorder relevance. It presents strong analogies with the Random Walk
pinning model treated in [7,15]. While the methods used to resolve it are clearly
inspired by those used in the marginal case with second moment [4,15,16], they
also incorporate new ingredients which are necessary to deal with heavier-tail
disorder.

2 Model and Results

2.1 Disordered Pinning and Phase Transition

Consider τ = (τn)n � 0 a recurrent integer valued renewal process, that is a
random sequence starting from τ0 = 0 whose increments (τn+1 − τn) are inde-
pendent, identically distributed (IID) positive integers. We let P denote the
associated probability distribution and assume that the inter-arrival distribu-
tion has power-law decay or more precisely

K(n) := P[τ1 = n] n→∞∼ CKn−(1+α), α ∈ (0, 1), (2.1)

where CK > 0 is an arbitrary constant. Note that τ can alternatively be con-
sidered as an infinite subset of N and in our notation {n ∈ τ} is equivalent to
{∃k ∈ N, τk = n}.
We consider a sequence of IID random variables (ωn)n≥0, with law denoted by
P, which satisfies E[ω1] = 0 and for some a ∈ (0, 1)

P[ω1 ≥ −a] = 1. (2.2)
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We work under the assumption that ω is in the domain of attraction of a γ-stable
law, or more precisely we assume that for some CP > 0 we have

P[ωn ≥ x] x→∞∼ CPx
−γ , γ ∈ (1, 2). (2.3)

Given β ∈ [0, 1], h ∈ R, and N ∈ N, we define a modified renewal measure Pβ,ω
N,h

whose Radon-Nikodym derivative with respect to P is given by

dPβ,ω
N,h

dP
(τ) =

1

Zβ,ω
N,h

⎛
⎝ ∏

n∈[1,N ]∩τ

eh(βωn + 1)

⎞
⎠ 1{N∈τ}, (2.4)

where

Zβ,ω
N,h = E

⎡
⎣
⎛
⎝ ∏

n∈[1,N ]∩τ

eh(βωn + 1)

⎞
⎠ 1{N∈τ}

⎤
⎦ . (2.5)

In the case β = 0, we retrieve the homogeneous pinning model which, setting
δn := 1{n∈τ}, is defined by

dPN,h

dP
(τ) :=

1
ZN,h

eh
∑N

n=1 δnδN and ZN,h := E
[
eh

∑N
n=1 δnδN

]
. (2.6)

We investigate the behavior of τ under Pβ,ω
N,h using the notion of free energy

per monomer, which is defined as the asymptotic growth rate of the partition
function

f(β, h) := lim
N→∞

1
N

log Zβ,ω
N,h

P−a.s.= lim
N→∞

1
N E

[
log Zβ,ω

N,h

]
< ∞. (2.7)

We refer to [13, Theorem 4.1] for a proof of existence of f(β, h). Note that
f(β, h) is non-negative, and that h �→ f(β, h) is non-decreasing and convex (as
a limit of non-decreasing convex functions). By exchanging limit and derivative,
as allowed by convexity, we obtain that the derivative of f w.r.t. h corresponds
to the asymptotic contact fraction

∂hf(β, h) := lim
N→∞

1
N

Eβ,ω
N,h [|τ ∩ [1, N ]|] . (2.8)

In particular, if one sets

hc(β) := inf{h ∈ R : f(β, h) > 0}, (2.9)

we have

lim sup
N→∞

1
N

Eβ,ω
N,h [|τ ∩ [1, N ]|] = 0 if h < hc(β),

lim inf
N→∞

1
N

Eβ,ω
N,h [|τ ∩ [1, N ]|] > 0 if h > hc(β).

(2.10)

We say in the first case that τ is delocalized and in the second one that it is
localized. It can be proved using simple inequalities (see below or [13, Proposition
5.1]), that hc(β) /∈ {−∞,∞} meaning that this phase transition really occurs.
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2.2 Annealed Comparison and Disorder Relevance

Using Jensen’s inequality and the assumption that the ωs have zero mean we have

E

[
log Zβ,ω

N,h

]
≤ logE

[
Zβ,ω

N,h

]
= log ZN,h. (2.11)

Hence
∀β ∈ (0, 1], f(β, h) ≤ f(h), (2.12)

Our assumption (2.2) also implies that f(β, h) ≥ f(h + log(1 − aβ)).
The localization transition is easier to analyze when β = 0, and this makes

the inequality (2.12) more interesting: f(h) is the solution of an explicit inverse
problem

f(h) =

{
0 if h ≤ 0,

g−1(h) if h > 0,
(2.13)

where g is defined on R+ by

g(x) := − log

( ∞∑
n=1

e−nxK(n)

)
.

In particular we have hc(0) = 0 and from a closer analysis of g (see
[13, Theorem 2.1]) we obtain

f(h) h→0+∼
(

αh

CKΓ (1 − α)

) 1
α

.

A natural question is to ask whether the annealed comparison (2.12) is sharp,
in the following sense:

(A) Is the critical value of h preserved when disorder is introduced:
Do we have hc(β) = 0?

(B) Is the critical exponent for the phase transition preserved:
Do we have f(h, β) ≈ h1/α in some sense?

If these two property hold, it means that the introduction of disorder in the
system does not change its property and this situation is referred to as irrelevant
disorder. In the case where the critical properties of the system are changed
disorder is said to be relevant.

2.3 Harris Criterion and Former Results

Harris [18] developed a criterion in order to predict disorder relevance. For one
dimensional systems such as the one studied in the present paper, it can be
interpreted as follows: If the critical exponent for free-energy of the pure (i.e.
β = 0) model is larger than 2 then disorder is irrelevant for small values of β,
whereas disorder is always relevant in the case when the exponent is larger than
2. In the case of pinning model, this means that disorder is irrelevant for α < 1/2
and relevant for α > 1/2.
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The validity of the Harris criterion has been confirmed in various cases for
the pinning model, in the case where the environment has finite second moment
E[ω2

1 ] < ∞ (see [2,19,21] for the irrelevant disorder case, and [3,6,17] in the rel-
evant case). This assumption is far from being only technical as Harris heuristics
is based on a second moment expansion at the vicinity of the critical point in
order to test stability.

For this reason we suspected that with an environment with an heavier tail
distribution, Harris criterion may not be valid. This has been confirmed in [20]
where we have shown that disorder is irrelevant when α < 1 − γ−1 and relevant
for α > 1 − γ−1.

Theorem A (From Theorems 2.3 and 2.4 in [20]).

(A) If α < 1 − γ−1, then there exists β0 such that for all β ∈ (0, β0] we have
hc(β) = 0 and furthermore

lim
h→0+

log f(β, h)
log(h)

=
1
α

. (2.14)

(B) If α > 1 − γ−1, then for all β we have hc(β) > 0 and

lim
β→0+

log hc(β)
log β

=
αγ

1 − γ(1 − α)
. (2.15)

These results indicate that Harris criterion has to be reinterpreted in the case
where the environment is heavy-tailed. A question which has been left open in
[20] is the case α = 1 − γ−1 which we refer to as the marginal case.

2.4 Main Result

The main achievement of this paper is to prove that disorder shifts the critical
point for all values of β also in the marginal case α = 1 − γ−1. The result bears
some similarity with the one proved in [15], when it is shown that under finite
second moment assumption for ω ([15] actually only treats the case of Gaussian
environment but the generalization can be found in [16]), disorder is relevant
when the renewal exponent satisfies α = 1/2.

Theorem 1. Assume that (2.1) and (2.3) are satisfied for α = 1 − γ−1. Then,
for any β ∈ [0, 1], hc(β) > 0 and furthermore, there exists a constant A > 0 such
that

∀β ∈ (0, 1], hc(β) ≥ exp(−Aβ−2γ). (2.16)

Remark 2. We are discussing in this paper only the case where the inter-arrival
distribution K(·) has a pure power-law behavior, cf. (2.1). When a slowly varying
function is introduced instead of the constant CK , the picture gets slightly more
complicated and a necessary and sufficient condition for disorder relevance was
proved in [4] under the finite second moment assumption. For γ-stable environ-
ment we refer to [20, Section 2.5.1] for a conjecture.
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Remark 3. We do not believe that this lower bound on hc(β) is optimal but we
know from [20, Proposition 6.1] that hc(β) is smaller than any power of β at
the vicinity of 0. This contrasts with the case α > 1 − γ−1, cf. (2.15). It seems
plausible that improving the technique presented in the present paper in the same
spirit as what is done in [4], we can bring the exponent in the exponential in
(2.16) from 2γ down to γ, which could be the optimal answer. We would not
know however how to obtain a matching upper bound.

2.5 Organization of the Paper

The proof of our main statement is divided into three main steps: In Sect. 3
we present a sequence of inequalities which combines coarse graining ideas (in
a very similar spirit with what has been done e.g. in [4,15]) and a change of
measure which penalizes environment which displays atypical “dual peaks”. This
reduces the problem to estimating the coarse-grained partition function under
the penalized measure (Proposition 4), provided we control the “cost” of the
penalization procedure (Proposition 3). In Sect. 4, Proposition 3 is proved while
Proposition 4 is reduced to a one block estimate (Proposition 5), which is itself
proved in Sect. 5.

3 Fractional Moments, Coarse Graining and Change
of Measure

3.1 Fractional Moments

Let us consider θ ∈ (0, 1). A more efficient bound than (2.11) can be achieved
on the free-energy by applying Jensen’s inequality in a different manner.

E

[
log Zβ,ω

N,h

]
=

1
θ
E

[
log
(
Zβ,ω

N,h

)θ
]

≤ 1
θ

logE
[(

Zβ,ω
N,h

)θ
]

. (3.1)

In particular we can prove that f(β, h) = 0 if we have

lim inf
N→∞

1
N

logE
[(

Zβ,ω
N,h

)θ
]

= 0. (3.2)

We set
hβ := exp

(−Aβ−2γ
)
, (3.3)

where A > 0 is a sufficiently large constant, and consider a special length

�β := h−1
β . (3.4)

In the remainder of the paper, we often drop the superscript β when referring to
� for readability’s sake. We consider a system whose size N = m� is an integer
multiple of �. In view of (3.2) the proof of Theorem 1 can be reduced to that of
the following statement.
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Proposition 1. Given θ ∈
(

γ
2γ−1 , 1

)
, if A is chosen sufficiently large, we have

for all β ∈ (0, 1]

lim sup
m→∞

E

[(
Zβ,ω

m	β ,hβ

)θ
]

< ∞. (3.5)

In particular we have
hc(β) ≥ hβ .

The proof of the proposition goes in two steps: Firstly, we use a kind of
bootstrapping argument in order to reduce the problem to estimates of parti-
tion functions of systems of size smaller or equal to �. Secondly, to control the
partition function of these smaller system we introduce a change of measure
procedure which has the effect of penalizing some atypical environments whose
contribution to the annealed partition function is significant.

The approach adopted in [20] to prove disorder relevance when α > 1 − γ−1

used a finite volume criterion from [6], and penalized environments for which
uncommonly large values of ω appeared. This approach fails to give any result
in the present case and we need to perform a finer analysis to catch the critical
point shift.

We introduce two improvements with respect to the method used in [20]:
The first is to replace [6, Proposition 2.5] by a finer coarse graining. This is not
a new idea and is very similar to the method applied e.g. in [22]. The second
improvement is the main novelty of this paper and concerns the type of penal-
ization considered in the change of measure procedure: we design a new form
of penalization which involves considering pairs of site where ω displays high
values.

This approach contrasts with what has been done in the marginal case under
finite second moment assumption: In the case of Gaussian environment, a penal-
ization that would induce a change of the covariance structure was considered
[15], and more generally for an environment with finite second moment a tilting
by a quadratic form, or a multi-linear form of higher order [4,16] was used in
order to prove marginal disorder relevance. Under assumption (2.3) quadratic
forms in ω seems trickier to analyze and we need to select another function of ω
which is easier to manipulate. We decide to look only for extremal values in ω
and to penalize environments which present two high-peaks close to each other.
The exact threshold that we use is determined by a function of the distance
between the two sites.

3.2 The Coarse Graining Procedure

For the sake of completeness let us repeat in full details the coarse graining
procedure from [4]. We split the system into blocks of size �, we define for i ∈
�1,m�

Bi := ��(i − 1) + 1, �i�. (3.6)

Given I = {i1, . . . , i|I|} ⊂ �1,m� we define the event

EI :=
{{

i ∈ �1,m� : τ ∩ Bi �= ∅} = I
}

, (3.7)
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and set ZI to be the contribution to the partition function of the event EI ,

ZI := Zβ,ω
N,h(EI) = Zβ,ω

N,hE
β,ω
N,h[EI ]. (3.8)

Note that ZI > 0 if and only if m ∈ I. When τ ∈ EI , the set I is called the
coarse-grained trajectory of τ . As the EI are mutually disjoint events, Zβ,ω

N,h =∑
I⊂�1,m� ZI and thus using the inequality (

∑
ai)θ �

∑
aθ

i for non-negative
ai’s, we obtain

E

[(
Zβ,ω

N,h

)θ
]

≤
∑

I⊂{1,...,m}
E

[(
ZI)θ] . (3.9)

We therefore reduced the proof to that of an upper bound on E

[(
ZI)θ], which

can be interpreted as the contribution of the coarse grained trajectory I to the
fractional moment of the partition function.

Proposition 2. Given η > 0, and θ ∈ (0, 1), if A is sufficiently large then for
all β ∈ (0, 1] there exists a constant Cβ such that for all m ≥ 1 and I ⊂ �1,m�

E

[(
ZI)θ] ≤ C	

|I|∏
k=1

η

(ik − ik−1)(1+α)θ
, (3.10)

where by convention we have set i0 := 0.

Proof (Proof of Proposition 1 from Proposition 2). Note that by Jensen’s inequal-
ity we just have to prove the statement for θ close to one. We choose θ < 1 which
satisfies

(1 + α)θ > 1.

Using (3.9) and Proposition 2 for all m > 0 we have

E

[(
Zβ,ω

N,h

)θ
]

≤ Cβ

∑
I⊂�1,m�

m∈I

|I|∏
k=1

η

(ik − ik−1)(1+α)θ
. (3.11)

By considering the sum over all finite subsets of N with cardinal at most m
instead of subsets of �1,m� and reorganizing the sum we obtain that

E

[(
Zβ,ω

N,h

)θ
]

≤ Cβ

m∑
j=1

⎛
⎝η
∑
n≥1

n−(1+α)θ

⎞
⎠

j

. (3.12)

We can check that choosing

η =

(
2

∞∑
n=1

n−(1+α)θ

)−1

, (3.13)

the l.h.s. of (3.12) is smaller C	.
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3.3 Penalization of Favorable Environments

Let us now introduce the notion of penalization of the environment in a cell,
which is the main tool to prove Proposition 2.
Given GI(ω) a positive function of (ωn)n∈⋃

i∈I Bi
, using Hölder’s inequality, we

have
E

[(
ZI)θ] �

(
E

[
GI(ω)− θ

1−θ

])1−θ (
E
[
GI(ω)ZI])θ . (3.14)

We decide to apply this inequality with GI , which is a product of functions of
(ωn)n∈Bi

, for i ∈ I. More precisely, given g : R	 → R
d we set

GI(ω) :=
∏
i∈I

g(ωi(	−1)+1, . . . , ωi	) =:
∏
i∈I

gi(ω). (3.15)

We decide to use (3.14) for some g that takes values in [0, 1], which should be
equal to 1 for “typical environments” but close to zero for environments that
gives too much contribution to ZI . The difficulty lies in finding a function g

such that the cost for introducing the penalization E

[
GI(ω)− θ

1−θ

]
is not too

big, and such that E
[
GI(ω)ZI] is much smaller than E

[
ZI] (so that we get a

large benefit out of it).
Let us now introduce our choice for the function g. Instead of giving a fixed

penalty (i.e multiplication by some factor smaller than 1) for each ωn above a
certain threshold (something of order �γ−1

) like in [20], which would not give any
conclusive result in the case presently studied, we decide to introduce a g that
penalizes the presence of “dual peaks in the environment” (ωn)n∈�1,	�. Given M
a large constant, we set

g(ω1, . . . , ω	) := exp (−M1A�
) , (3.16)

where

A	 :=
{∃i, j ∈ �1, ��, i �= j, min(ωi, ωj) ≥ V (M, �, i − j)

}
, (3.17)

and
V (M, �, n) = V (n) := eM2

(�(log �)n)
1
2γ . (3.18)

We are going to prove that with this choice for g, the benefits of the penalization
overcome the cost. This is the object of the two following results, whose proofs
are postponed to the next section.
Proposition 3. Given θ, if M > M0(θ) is sufficiently large then we have (for
all �, m and I)

E

[
GI(ω)− θ

1−θ

]
≤ 2|I|. (3.19)

Proposition 4. Given η > 0, and M , there exists A such that for all β ∈ (0, 1]
we have (for all �, m and I)

E
[
GI(ω)ZI] ≤ Cβη|I|

∏|I|
j=1 |ij − ij−1|1+α

. (3.20)

It is quite straightforward using (3.14) to check that Proposition 2 is a consequence
of Propositions 3 and 4 with adequate changes for the value of η and C	.
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4 The Costs and Benefits of the Penalization Procedure

4.1 The Proof of Proposition 3

Using the fact that the environment is IID and the block structure of GI , it is
sufficient to show that

E

[
g(ω1, . . . , ω	)− θ

1−θ

]
≤ 2. (4.1)

We have
E

[
g(ω1, . . . , ω	)− θ

1−θ

]
≤ 1 + e

Mθ
1−θ P[A	]. (4.2)

Using a union bound and the tails distribution of the ω (2.3) (recall also (3.18))
the probability above can be bounded as follows

P [A	] ≤
∑

1≤i<j≤	

P [min(ωi, ωj) ≥ V (j − i)]

≤ C
e−2γM2

�(log �)

∑
1≤i<j≤	

1
(j − i)

≤ C ′e−2γM2
.

(4.3)

Hence if M is sufficiently large, the second term in (4.2) is sufficiently small and
we can conclude.

��

4.2 The Proof of Proposition 4

For any couple of integers a < b we define

Zh
[a,b] := E

⎡
⎣ ∏

n∈τ∩[a,b]

eh(1 + βωn)

∣∣∣∣∣∣
a, b ∈ τ

⎤
⎦ . (4.4)

We have

Zh
[a,b] =

E
[∏

n∈τ∩[0,b−a] e
h(1 + βωa+n)1{b−a∈τ}

]

u(b − a)
, (4.5)

where u(n) := P[n ∈ τ ]. Let us mention an asymptotic equivalent of u(n) [8,
Theorem 1], which holds under assumption 2.1 and is used in the rest of the
proof

u(n) n→∞∼ α sin(πα)
πCK

(n + 1)α−1. (4.6)

The main tool to prove Proposition 4 is the following result which quantifies how
the multiplication by g affects the expected value of the partition functions in a
single block. Its proof is detailed in the next section.
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Proposition 5. Given η ∈ (0, 1), if M and A are chosen sufficiently large then
for any β ∈ (0, 1], and (d, f) ∈ �1, ��2 satisfying (f − d) ≥ η�, we have

E

[
g(ω1, . . . , ω	)Z0

[d,f ]

]
≤ η. (4.7)

Proof (Proof of Proposition 4 from Proposition 5). We decompose ZI according
to the first and last contact points in each block (Bi)i∈I where I := {i1, . . . , il}.
We have

ZI :=
∑

d1,f1∈Bi1
d1 � f1

· · ·
∑

dl∈Bil
fl=N

K(d1)u(f1 − d1)Zh
[d1,f1]

K(d2 − f1)

· · · K(dl − fl−1)u(N − dl)Zh
[dl,N ]. (4.8)

Then we use the fact that, due to our choice for the value of h, we have Zh
d,f ≤

e	hZ0
d,f = eZ0

d,f , for any d and f such that (f − d) ≤ �. We obtain thus using
the product structure of GI (3.15)

E

[
GI(ω)ZI

]
≤ e|I| ∑

d1,f1∈Bi1
d1 � f1

· · ·
∑

dl∈Bil
fl=N

K(d1)u(f1 − d1)E
[
gi1 (ω)Z

0
[d1,f1]

]
K(d2 − f1)

· · · K(dl − fl−1)u(N − dl)E
[
gil

(ω)Z0
[dl,N ]

]

≤ e|I| ∑
d1,f1∈Bi1

d1 � f1

· · ·
∑

dl∈Bil
fl=N

K(d1)u(f1 − d1)
[
η + (1 − η)1{(f1−d1)≤η�}

]
K(d2 − f1)

· · · K(dl − fl−1)u(N − dl)
[
η + (1 − η)1{(fl−dl)≤η�}

]
, (4.9)

where in the last line we used Proposition 5, and when (fj − dj) ≤ η�, the fact
that

E

[
gij

(ω)Z0
[dj ,fj ]

]
≤ E

[
Z0
[dj ,fj ]

]
= 1. (4.10)

Now we only need to obtain a bound on the r.h.s of (4.9). Using (2.1) and (4.6),
we can replace K(n) and u(n) by n−(α+1) and (n + 1)1−α (the quantity n + 1 is
present instead of n because we also consider u(0)) at the cost of losing a constant
factor per cell. Thus we need to prove that given δ > 0, if η is sufficiently small,
we have for some constant C	

∑
d1,f1∈Bi1

d1 � f1

· · ·
∑

dl∈Bil
fl=N

(d1)
−(1+α)(f1 − d1 + 1)α−1[η + (1 − η)1{(f1−d1)≤η�}](d2 − f1)

−(1+α)

· · · (dl − fl−1)
−(1+α)(N − dl + 1)α−1[η + (1 − η)1{(fl−dl)≤η�}]

≤ C�δ
|I|

l∏
j=1

|ij − ij−1|− 1+α
2 . (4.11)
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For the remainder of the proof, δ > 0 is fixed and η is chosen sufficiently small in
a way that depends on η. To obtain the bound, we proceed as in the computation
[4, Equations (4.25) to (4.37)]. We observe that the l.h.s. in (4.11) is bounded
above by

∑
d1,f1∈Bi1

d1 � f1

· · ·
∑

dl∈Bil
fl=N

(d1)
− (1+α)

2

×
l−1∏
j=1

(
(dj − fmax

j−1 )
− (1+α)

2 (fj − dj + 1)α−1[η + (1 − η)1{(fi−di)≤η�}](dmin
j+1 − fj)

− (1+α)
2

)

× (dl − fmax
l−1 )−

(1+α)
2 , (4.12)

where fmax
j−1 is the maximal element of Bij−1 (fmax

0 = 0 by convention) and dmin
j+1

is the minimal element of Bij+1 and we decide to bound each term in the product
separately. We are going to prove that for all j ∈ {1, . . . , l−1} we have, provided
that η is sufficiently small

∑
dj ,fj∈Bij

dj≤fj

(dj − fmax
j−1 )

− (1+α)
2 (fj − dj + 1)α−1[η + (1 − η)1{(fi−di)≤η�}](dmin

j+1 − fj)
− (1+α)

2

≤ δ [(ij − ij−1)(ij+1 − ij)]
−(1+α) . (4.13)

Additionally we need two additional inequalities to bound the contribution of
the first and last jump respectively. The reader will readily check that

(d1)− (1+α)
2 ≤ i

− (1+α)
2

1 ,
∑

dl∈Bm

(dl − fmax
l−1 )− (1+α)

2 ≤ �(m − il−1)− (1+α)
2 .

(4.14)

Equation (4.11) follows by multiplying the three inequalities given in (4.13) and
(4.14).

Let us now prove (4.13): we split the set of indices {dj , fj ∈ Bij
: dj ≤ fj}

in the r.h.s. of (4.13) into three subsets by adding an extra condition:

(i) {dj , fj ∈ Bij
: (ij − 3/4)� ≤ dj ≤ fj},

(ii) {dj , fj ∈ Bij
: dj ≤ fj ≤ (ij − 1/4)�},

(iii) {dj , fj ∈ Bij
: fj ≥ dj + �/2}.

It is easy to check that the union of these (non disjoint) subsets give us back the
original set. We estimate the contribution of each set separately, the idea being
that each condition in (i) − (iii) allows to replace one of the variable factors by
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an asymptotic equivalent which does not depend on di nor fi. This makes the
computation easier. First we can bound the contribution (i) as follows

∑

dj,fj∈Bij
(ij−3/4)�≤dj≤fj

. . .

≤ [	(ij − ij−1)/4]
− (1+α)

2
∑

dj,fj∈Bij
dj≤fj

(fj − dj + 1)
α−1

[η + (1 − η)1{(fj−dj)≤η�}](d
min
j+1 − fj)

− (1+α)
2

(4.15)

Then considering the sum over dj separately, we obtain that the remaining dou-
ble sum is smaller than⎛

⎝
η	∑

a=1

aα−1 + η

	∑
a=η	

aα−1

⎞
⎠

⎛
⎝ ∑

fj∈Bij

(dj+1 − fj)− (1+α)
2

⎞
⎠ . (4.16)

The first factor is smaller than ε�α where ε can be made arbitrarily small by
considering small η, and the second factor is of order |ij+1 − ij |− (1+α)

2 �
1−α
2 . All

the powers of � cancel out and we obtain (provided ε is sufficiently small) that
∑

dj ,fj∈Bij

(ij−3/4)	≤dj≤fj

· · · ≤ δ

3
[(ij − ij−1) (ij+1 − ij)]

− (1+α)
2 , (4.17)

where the term in the sum is the same as in (4.13). We obtain similarly by
symmetry

∑
dj ,fj∈Bij

dj≤fj≤(ij−1/4)	

· · · ≤ δ

3
[(ij − ij−1) (ij+1 − ij)]

− (1+α)
2 . (4.18)

Finally in the case fj − dj ≥ �/2 we have, provided η < 1/2,

[η + (1 − η)1{(fj−dj)≤η	}](fj − dj + 1)α−1 ≤ η(�/2 + 1)α−1

and thus∑
dj ,fj∈Bij

fi≥dj+	/2

· · · ≤ δ(�/2+1)α−1
∑

dj ,fj∈Bij

(dj−fmax
j−1 )− (1+α)

2 (dmin
j+1−fj)− (1+α)

2 . (4.19)

The double sum factorizes and can be shown to be of order

�1−α [(ij − ij−1) (ij+1 − ij)]
− (1+α)

2 .

This yields (when η is sufficiently small)
∑

dj ,fj∈Bij

fj≥dj+	/2

· · · ≤ δ

3
[(ij − ij−1) (ij+1 − ij)]

− (1+α)
2 . (4.20)

This concludes the proof of (4.13) and thus of Proposition 4.
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5 Proof of Proposition 5

5.1 Reduction to a Simpler Statement

The aim of this section is to reduce the proof of Proposition 5 to the estimation
of the probability of some nice event for the environment ω. As E

[
Z0
[d,f ]

]
= 1,

Z0
[d,f ] can be considered as a probability density. To prove (4.7) we must thus

show that the probability of A	 under the probability Z0
[d,f ](ω)P[ dω] is close to

one, whenever (f − d) ≥ η�.
More precisely, given a fixed realization of τ , with a, b ∈ τ we define P

a,b
τ

dPd,f
τ

dP
(ω) :=

∏
n∈τ∩�d,f�

(1 + βωn). (5.1)

We have

E
[
g(ω1, . . . , ω	)Zh

d,f

]
= e−M + (1 − e−M )E

[
P

d,f
τ (A�

	 ) | d, f ∈ τ
]
. (5.2)

We notice that under Pd,f
τ , the ωns are still independent, but they are not iden-

tically distributed anymore, as for n ∈ [d, f ] ∩ τ , the distribution of ωn has been
tilted and thus peaks are more likely to appear on those sites. In order to bound
the probability of A	 we are going to check only sites with tilted environment.
Let us consider the alternative event (recall (3.18))

A(d, f, τ) := {∃i, j ∈ τ ∩ [d, f ], i �= j, min(ωi, ωj) ≥ V (j − i)} (5.3)

As A(d, f, τ) is clearly included in A	, it is sufficient for us to obtain a bound
on P

d,f
τ (A(d, f, τ)�). If we let P̃ denote the probability obtained by tilting all the

variables: the ωns are IID and with distribution

P̃[ω1 ∈ dx] = (1 + βx)P[ω1 ∈ dx], (5.4)

then we have
P

d,f
τ (A(d, f, τ)) = P̃ (A(d, f, τ)) .

Hence we can prove Proposition 5 provided we show

E
[
P̃(A(d, f, τ)�) | d, f ∈ τ

]
≤ ε, (5.5)

for an arbitrary ε. Without loss of generality, let us assume that d = 0. We set
for notational simplicity r := η�/4 and we define a new event B(r, τ) satisfying
B(r, τ) ⊂ A(0, f, τ) for all f ≥ η,

B(r, τ) :=
{

∃(i, j) ∈ �1, r� × �1, rα/4�, i ∈ τ, i + j ∈ τ, min(ωi, ωi+j) ≥ V (j)
}

.

(5.6)
Furthermore it is measurable with respect to τ ∩ σ([0, f/2]). We want to use
this assumption to drop the conditioning in τ present in (5.5). The reason to
consider only dual peaks with relatively small distance (≤ rα/4) is not of crucial
importance but it notably simplifies the computation (cf. (5.29)).
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Lemma 1. There exists a constant such that for all N > 0 for any function F
measurable with respect to σ(τ ∩ [0, N/2]) we have

E[F (τ) | N ∈ τ ] ≤ CE[F (τ)] (5.7)

Proof. If we let XN := max{τ ∩ [0, N/2]}, the left-hand side can be rewritten as

N/2∑
i=0

E[F (τ) | XN = i,N ∈ τ ]P[XN = i | N ∈ τ ]

=
N/2∑
i=0

E[F (τ) | XN = i]P[XN = i | N ∈ τ ],

(5.8)

where the equality comes from the Markov property for the renewal τ . With this
formulation, (5.7) is simply a consequence of [6, Equation (A.15)].

As a consequence of the lemma we have

E
[
P̃(A(0, f, τ)�) | f ∈ τ

]
≤ E

[
P̃(B(r, τ)�) | f ∈ τ

]
≤ CE

[
P̃(B(r, τ)�)

]
(5.9)

Hence to conclude the proof we only need to show the following which we do
in the next section.

Lemma 2. Recall that r = η�/4. If A is chosen sufficiently large (depending on
η, M and ε), we have for all β ∈ (0, 1]

E
[
P̃ [B(r, τ)]

]
≥ 1 − ε. (5.10)

5.2 Proving Lemma 2

For i, j, k in N let δi, δi,j and δi,j,k be the indicator function of the respective
events {i ∈ τ}, {i, i+ j ∈ τ} and {i, i+ j, i+ j + k ∈ τ}. Using the independence
of renewal jumps we have (recall the definition of u(n) above (4.6))

E[δi] = u(i), E[δi,j ] = u(i)u(j), and E[δi,j,k] = u(i)u(j)u(k). (5.11)

Let us also set (recall (3.18))

W (i, j) := 1{min(ωi,ωi+j)≥V (j)} (5.12)

We define

Y (ω, τ) :=
r∑

i=1

rα/4∑
j=1

W (i, j)δi,j . (5.13)
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With this notation we have B(r, τ) = {Y (ω, τ) ≥ 1}. We are going to prove the
lemma by controlling the two first moments of Y w.r.t measure P̃.

We are going to use repeatedly the following estimates which can be deduced
from the assumption (2.3), the definition of the size biased measure and the value
chosen for �: There exists a constant (depending on M) such that for every value
of i, j and β ∈ (0, 1] chosen we have (recall α = 1 − γ−1)

(CM )−1β (�(log �)n)− α
2 ≤ P̃[ω1 ≥ V (n)] ≤ CMβ (�(log �)n)− α

2 (5.14)

From now on, all the constants displayed in the equation might depend on
M and η but not on other parameters. Using (5.14) we have for some c > 0

Ẽ[Y ] ≥ cβ2(� log �)−α
r∑

i=1

rα/4∑
j=1

j−αδi,j . (5.15)

To compute the variance, we ignore after developing Y 2 =
∑r

i=1

∑rα/4

j=1∑r
i′=1

∑rα/4

j′=1 . . . all the terms which have covariance zero. We are left with the
diagonal terms but also terms for which |{i, i + j} ∩ {i′, i′ + j′}| = 1 (three cases
must be considered). Reordering the sum this gives the following estimate

Var
P̃
[Y (τ, ω)] ≤ Ẽ

⎡
⎣

r∑
i=1

rα/4∑
j=1

W (i, j)δi,j

⎤
⎦

+ 2Ẽ

⎡
⎣

r∑
i=1

∑

1≤j<k≤rα/4

[W (i, j)W (i, k) + W (i, k)W (i + j, k − j)] δi,j,k−j

⎤
⎦

+ 2Ẽ

⎡
⎣

r∑
i=1

rα/4∑
j=1

rα/4∑
k=1

W (i, j)W (i + j, k)δi,j,k

⎤
⎦ (5.16)

Using (5.14) to control all the expectation we obtain

Var
P̃
[Y (τ, ω)] ≤ Cβ2(� log �)−α

r∑
i=1

rα/4∑
j=1

j−αδi,j

+ Cβ3(� log �)−3α/2

(
r∑

i=1

∑

1≤j<k≤rα/4

(
j−α/2k−α + k−α/2(k − j)−α

)
δi,j,k−j

+
r∑

i=1

rα/4∑
j=1

rα/4∑
k=1

j−α/2k−α/2 max(j, k)−α/2δi,j,k

)
. (5.17)

To conclude the proof of Lemma 2 we use the following estimates proved in the
next section.
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Proposition 6. The following estimates hold for some universal constant C

(i) E[
∑r

i=1

∑rα/4

j=1 j−αδi,j ] ≤ Crα(log r).
(ii) There exists ε > 0 such that for all r sufficiently large

P

⎡
⎣r−α(log r)−1

r∑
i=1

rα/4∑
j=1

j−αδi,j ≥ ε

⎤
⎦ ≥ 1 − ε,

(iii)

E

⎡
⎣

r∑
i=1

∑
1≤j<k≤rα/4

(
j−α/2k−α + k−α/2(k − j)−α

)
δi,j,k−j

⎤
⎦ ≤ Cr3α/2(log r),

E

⎡
⎣

r∑
i=1

rα/4∑
j=1

rα/4∑
k=1

j−α/2k−α/2 max(j, k)−α/2δi,j,k

⎤
⎦ ≤ Cr3α/2(log r).

(5.18)

From (ii) and (5.15) we obtain directly that provided ε is sufficiently small (how
small can depend on η and M) we have

P
[
Ẽ[Y (τ, ω)] ≥ εβ2(log �)γ−1

]
≥ 1 − ε (5.19)

From (i) and (iii) and (5.16), we obtain a bound on E[Var
P̃
[Y (ω, τ)]]. Then

applying Markov inequality we obtain that with P-probability larger than 1 − ε
we have

Var
P̃
[Y (ω, τ)] ≤ C(η,M)ε−1

[
β2(log �)γ−1

+ β3(log �)γ−1−α/2
]
. (5.20)

With our choice � = eAβ−2γ

with probability larger than (1 − 2ε) we have

Ẽ[Y (τ, ω)] ≥ εAγ−1
,

Var
P̃
[Y (τ, ω)] ≤ C(η,M)ε−1Aγ−1

(1 + O(β1+αγ)).
(5.21)

Thus by choosing A sufficiently large (depending on η, M and ε), using
Chebychev inequality we conclude that

EP̃ [Y (τ, ω) ≥ 1] ≥ 1 − 3ε.

��

5.3 Proof of Proposition 6

We start with point (i) and (iii) which are simpler to prove. Using (5.11) to
rewrite the sum in (i) and (4.6) to estimate it, we obtain

r∑
i=1

rα/4∑
j=1

u(i)u(j)j−α ≤ C

r∑
i=1

iα−1
rα/4∑
j=1

j−1, (5.22)
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For (iii) let us perform the computation only for the first of the three sum we
have to control since the two other cases similar. Using (5.11) and (4.6) we have

r∑
i=1

∑
1≤j<k≤rα/4

u(i)u(j)u(k − j)j−α/2k−α

≤ C
r∑

i=1

iα−1
rα/4∑
j=1

j−α/2−1
rα/4∑

k=j+1

(k − j)−1 ≤ C ′r3α/2 log r.

(5.23)

Let us now consider the more delicate point (ii). We set

X1
r := r−α

r∑
j=1

δi,

X2
r :=

⎛
⎝

rα/4∑
k=1

k−αu(k)

⎞
⎠

−1

r−α
r∑

i=1

rα/4∑
j=1

j−αδi,j .

(5.24)

Note that as
(∑rα/4

k=1 k−αu(k)
)−1

is of order log r, X2
r is asymptotically equiva-

lent to the expression appearing in (ii). Hence it is sufficient to prove that

lim
r→∞P

[
X2

r ≥ ε
] ≥ 1 − ε. (5.25)

We are going to show that X2
r converges in law and that the limit distribution

does not give any mass to zero. First we notice that as n−1/ατ
n� converges to
an α-stable subordinator (see e.g. [9, Chap. 16]) X1

r converges to the first hitting
time of [1,+∞) for this limiting process. This hitting time is strictly positive
with probability 1. Hence we conclude the proof using the following technical
lemma, which readily implies that X2

r converges in distribution to the same
random variable.

Lemma 3. We have
lim

r→∞E
[
(X1

r − X2
r )2
]

= 0. (5.26)

Proof. We have

rα

⎛
⎝

rα/4∑
k=1

k−αu(k)

⎞
⎠ (X2

n − X1
n) =

r∑
i=1

δi

⎛
⎝

rα/4∑
j=1

j−α (δi+j − u(j))

⎞
⎠ =:

r∑
i=1

Ui.

(5.27)
Hence we have

E
[
(X2

n − X1
n)2
] ≤ Cr−2α(log r)−2

r∑
i1,i2=1

E[Ui1Ui2 ]. (5.28)
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We are going to show that we have

E[U2
i ] ≤ Crα/2iα−1. (5.29)

and
|i1 − i2| ≥ rα/4 ⇒ E[Ui1Ui2 ] = 0, (5.30)

Using these estimates we obtain that

r∑
i1,i2=1

E[Ui1Ui2 ] ≤
r∑

i=1

E[U2
i ] + 2

r∑
i1=1

max(r,i1+rα/4)∑
i2=(i1+1)

E[Ui1Ui2 ]

≤ (1 + 2rα/4)
r∑

i=1

E[U2
i ] ≤ Cr3α/4)

r∑
i=1

iα−1 ≤ Cr7α/4,

(5.31)

which in regards of (5.28) allows to conclude.
The inequality (5.29) is simple to obtain. We have

∣∣∣∣∣∣
rα/4∑
j=1

j−α (δi+j − u(j))

∣∣∣∣∣∣
≤ rα/4,

and hence
E[U2

i ] ≤ rα/2E[δi] ≤ Crα/2iα−1.

For (5.30), we assume that i1 is the smallest index. Note that with the assumption
i2 − i1 ≥ rα/4, Ui1 is measurable w.r.t. σ(τ ∩ [0, i2]). Hence we have

E[Ui1Ui2 | τ ∩ [0, i2]] = Ui1δi2

rα/4∑
j=1

j−αE [δi2+j − u(j) | τ ∩ [0, i2]]

= Ui1δi2

rα/4∑
j=1

j−αE [δi2+j − u(j) | i2 ∈ τ ] = 0.

(5.32)

To obtain the second equality, we observe that both terms are equal to zero if
i2 /∈ τ and that conditionally to i2 ∈ τ , τ ∩ [0, i2] and τ ∩ [i2,∞) are independent.
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Our paper [2] considers the Frederickson-Andersen model (FA model) on a gen-
eral class of graphs of bounded degree. Given a graph G = (V,E) we write x ∼ y
for x, y ∈ V if {x, y} is in E. The FA model with parameter q ∈ (0, 1) is a spin
system on {0, 1}V with flip rates at a site x given by

c(x, η) =
{

q if η(x) = 0,
∑

y∼x η(y) �= 0 ,

1 − q if η(x) = 1,
∑

y∼x η(y) �= 0 ,

and is otherwise zero.
It can be thought of equivalently as a process where if, for site x, the con-

dition
∑

y∼x η(y) �= 0 is satisfied, then at rate 1 the value η(x) is replaced by
Bernoulli(q) random variables independent of the process up to this time.

We note that the condition for a strictly positive rate at x depends only on
neighbouring spins but not on η(x) itself. Thus while it is immediate that δ0,
i.e. the point mass at the identically zero configuration 0, is invariant for the
process, it is also true that if η0 �= 0 then 0 can never be attained by the process
(ηt : t ≥ 0) corresponding to these flip rates.

Another consequence is that, by detailed balance, the measure γq on {0, 1}V

for which all variables (η(x))x∈V are iid Bernoulli(q) is an equilibrium.
The starting point for our work was the article of Blondel, Cancrini,

Martinelli, Roberto and Toninelli [1] concerning the speed convergence to γq

for initial distributions satisfying for some c > 0

sup
x

E[ecd(x,η0)] < ∞ , (1)

where d(x, η0) = inf{d(x, y) : η0(y) = 1}. The parameter q was required to
be strictly greater than 1

2 . The graphs allowed were connected but completely
general except that a growth condition was required:

Md : ∃C < ∞ so that ∀ x ∈ V |B(x, r)| ≤ Crd

where as usual B(x, r) = {y ∈ V : d(x, y) < r}. It is natural to view the inf of
the d′s for which this condition holds as the “dimension” of the graph.

c© Springer Nature Switzerland AG 2019
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Under these minimalistic conditions it was shown that for all cylinder func-
tion f there exists a constant Cf , depending upon f , and the “dimension” d so
that

|Ef(ηt) − νq(f)| ≤
{

Cfe−t/Cf , d = 1,

Cfe−( t
log t )

1
d /Cf , d > 1.

So only in the special case d = 1 the convergence rate is exponential. The
techniques used were sophisticated log-Sobolev estimates and exploitation of
spectral gap estimates for clever choices of auxiliary finite Markov chains.

Our result, obtained using contact processes and oriented percolation tech-
niques is the following.

Theorem 1. Let G = (V,E) be a countable connected graph of bounded degree
satisfying the growth condition ∃M < ∞ and ε > 0 so that for every x ∈ V, r ∈
Z+ |B(x, r)| ≤ Mer1−ε

. For q sufficiently close to one, ∃c = c(q, ε,M) > 0 such
that for any non null η0 and cylinder function f there exists C = C(f, c, η0) so
that ∣∣Eη0

[
f(ηt)

] − γq(f)
∣∣ ≤ Ce−ct .

Our result took a fixed η0 �≡ 0 and a function f rather than the condition
(1). This is apparently more general but this is illusory. In order to replicate
the results of [1], i.e. obtain the constant C in the statement depending only on
the size of the support of the cylinder function of f and not on its location, we
would need to pass to their condition. It is also worth noting (see discussion of
parameter q below) that the condition (1) is quite reasonable given our process.
So for this part of the hypotheses there is no difference. On the other hand
our formulation makes clear that under our conditions δ0 and γq are the only
extremal equilibria, which we do not see as obvious or simple.

The condition of a finite dimensional graph was replaced by the sub geometric
growth condition (on a connected graph)

∃ C < ∞, t > 0 so that ∀ x |B(x, r)| ≤ Cer1−ε

This condition represents a substantial loosening of conditions. Not only does
it include graphs of infinite “dimension” but also it treats all graphs of finite
dimension equally rather than providing a bound which is progressively worse
as the dimension increases.

Our condition on parameter q is radically inferior to [1]. The bounds on how
close q is required to be to 1 can be calculated in terms of M and ε if need be
but will typically be very close to 1. In addition the condition q > 1

2 used by [1]
seems more likely to be loosened than the constraints we demand.

On the other hand the bound we provide is qualitatively the correct one we
believe. (We do not establish lower bounds.)

We do believe (but cannot show) that there is no medium regime where
exponential convergence does not take place.

Our approach started from a common idea: we compared our process ηt

(starting from a given η0) with a process ηq
t starting from γq but generated by
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the same Harris system. It would be sufficient to show that for x fixed in V

P (ηt(x) = ηq
t (x)) ≥ 1 − Ce−ct

for fixed C, c. To do this we considered dual paths associated with (x, t). A key
observation was that if ηt(x) �= ηq

t (x) then there must be a dual path down from
(x, t) to V × {0} on which ηs(y) �= ηq

s(y), 0 ≤ s ≤ t. Our argument was based
on showing that this was not possible.

Our proof used the contact process (or discrete contact-process-like processes)
as tools: the first step consisted of using the observation of [1] that for q > 1

2 and
any x0 ∈ V the process d(x0, ηt) was stochastically dominated by a reflecting
nearest neighbour random walk on Z+ which jumped up at rate 1 − q and down
(unless at 0) at rate ε. This enabled us to say that outside exponentially small
probability the process η at time t

4 , say, had produced many 1′s.
The second step consisted in showing that for every space time point (y, s)

with t/2 ≤ s ≤ t we could define an oriented percolation structure (with time
flowing in reverse direction to the flow of the original process) so that if it sur-
vived for order t amount of time then outside exponentially in t small probability

(I) it would survive for ever,
(II) at time of order t it would have of order t sites belonging to it.

It would also have the property that if at dual time one of the sites in this
percolation structure was occupied then necessarily ηs(y) = 1. It is important
to realize that this dual is entirely a function of the generating Harris system
over the relevant time interval; the dual is the same for processes generated by
the given Harris system, though of course a site in the dual may have value 1
for one process and 0 for another. Given the result of the first step this meant
that survival would (outside exponential probability) guarantee the existence of
a site for which ηs(y) = ηq

s(y) = 1. Of course any oriented percolation process
may die out no matter how high the (nontrivial) connection probabilities but
high connection probabilities ensured that there were many “percolation points”
(y, s). This, it is argued, leads to the conclusion that any dual path (in the sense
of step one) cannot avoid one of the “percolating points”. This means that there
cannot be a dual path of any length on which η and ηq are different.

Thirdly we showed that any dual path must hit percolation points (outside
exponentially small probability). This argument used a coarse graining and it
was there that our below exponential growth condition was used.

We have shown exponentially fast convergence to equilibrium for q close to
1 (for graphs with below exponential growth) but in fact we believe that the
convergence should be exponentially fast for every non zero q (for this class of
graphs).

A reason for believing this is that if we consider q very small then we expect
particles to be fairly isolated. As such at small rate q birth is given to a particle
at a neighbouring site. Then at rate 1 (outside probability q) one of these two
particles will die. If it is the new particle then essentially nothing has happened
but if the original dies then effectively our particle has performed the step of a
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random walk. Thus we can view the process as a branching random walk where
particles move at rate q and give birth at rate q2 to particles separated by 1.

As such it is believable that on a graph with polynomial growth we can have
an embedded process on V , (Xt : t ≥ 0) so that ηt(Xt) = 1 ∀ t and so that Xt

is attracted towards a given site. This is suggestive of exponential convergence
but by no means a compelling argument. But in particular we believe there are
only two extremal equilibria for every q for graphs of below exponential growth.

It is easy to convince oneself that for regular graphs of high degree if q is small
then there need not be convergence, let alone more exponential convergence for
all non zero η0, and perhaps here the passage from below to above exponential
growth is critical.

It also seems to be the case that for these high degree graphs there exist
equilibria that are not combinations of δ0 and γq.

However it still seems reasonable to guess that for a graph of exponential
growth it is still the case that if q is sufficiently large then we have exponential
convergence but our methods do not extend to this case.
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Abstract. We start from the observation that, anytime two Markov
generators share an eigenvalue, the function constructed from the prod-
uct of the two eigenfunctions associated to this common eigenvalue is
a duality function. We push further this observation and provide a full
characterization of duality relations in terms of spectral decompositions
of the generators for finite state space Markov processes. Moreover, we
study and revisit some well-known instances of duality, such as Siegmund
duality, and extract spectral information from it. Next, we use the same
formalism to construct all duality functions for some solvable examples,
i.e., processes for which the eigenfunctions of the generator are explicitly
known.

1 Introduction

Stochastic duality is a technique to connect two Markov processes via a so-
called duality function. This connection, interesting in its own right, turns out
to be extremely useful when the dual process is more tractable than the original
process.

Several applications of stochastic duality may be found in the context of
interacting particle systems [28] as, for instance, in the study of hydrodynamic
limits and fluctuations [9,10,23], characterization of extremal measures [28,33],
derivation of Fourier law of transport [3,24] and correlation inequalities [17].
Other fields rich of applications are population genetics, where the coalescent
process arises as a natural dual process (see [11] and references therein) and
branching-coalescing processes [13]. Duality and related notions have already
been used in the study of spectral gaps and convergence to stationarity by several
authors, see e.g. [6,12,14,29,32].

Part of the research about stochastic duality deals with the problem of finding
and characterizing duality functions relating two given Markov processes. This
means that, for a given pair of Markov generators, one wants to find all duality
functions or, alternatively, a basis of the linear space of duality functions. See,
for instance, in this direction [30] in the context of population genetics, while for
particle systems the works [1,2,15,33] for symmetric and [4,5,34] for asymmetric
processes. For Markov processes, algebraic constructions of duality relations for
specific classes of models have also been provided (see e.g. [1,4,16,19,26]).
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In this paper we first show that, viewing a duality relation as a spectral rela-
tion among the associated Markov generators, duality functions can be obtained
from linear combinations of products of eigenfunctions associated to a com-
mon eigenvalue. Secondly, we establish this connection with the general aim of
characterizing all possible dualities in terms of eigenfunctions and generalized
eigenfunctions of the generators involved. To this purpose, our discussion mainly
focuses on continuous-time finite-state Markov chains for which no reversibility
is assumed but canonical eigendecompositions of Jordan-type of the generators
are available.

We emphasize that this connection between duality and eigenfunctions goes
both ways: not only eigenfunctions of a shared spectrum give rise to duality
functions, but also the existence of duality relations carries information about the
spectrum of the generators. Here we can already see a clear distinction between
the notion of self-duality and integrability : knowing certain linear combinations of
products of eigenfunctions (self-duality) rather than knowing the eigenfunctions
themselves (integrability).

The rest of the paper is organized as follows. In Sect. 2 we provide all pre-
liminary notions of stochastic duality for continuous-time Markov chains. After
an introductory study of self-duality and duality in the reversible setting in
Sects. 3 and 4, in Sect. 5, via Jordan canonical decompositions, we make precise
to which extent spectrum and eigenstructure of generators in duality are shared.
In fact, the assumed orthonormality of the eigenfunctions in Sects. 3 and 4 has
the only role of simplifying the exposition at a first reading. There, products
of orthonormal eigenfunctions are a natural tensor basis w.r.t. which express
duality functions; this fact allows a direct description of the linear subspace of
duality functions in terms of this tensor basis. In Sect. 5, we show how, by drop-
ping reversibility of the generators and thus orthonormality of the associated
eigenfunctions, a tensor basis in terms of product of generalized eigenfunctions
is always possible.

We further investigate the connection between eigenfunctions and particular
instances of dualities that typically appear in the context of interacting particle
systems, see e.g. [15,33], in Sects. 3 and 4. In Sect. 5.4 we revisit the notion
of intertwining (see e.g. [21]) in this setting and provide an application to the
symmetric exclusion process in Sect. 5.5. In Sect. 6 we provide an alternative way
of proving and characterizing Siegmund duality [21,36] in the finite context.

2 Setting and Notation

Let Ω be a finite state space with cardinality |Ω| = n. We consider an irreducible
continuous-time Markov process {Xt, t ≥ 0} on Ω, with generator L given by

Lf(x) =
∑

y∈Ω

�(x, y)(f(y) − f(x)),
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where f : Ω → R is a real-valued function and � : Ω × Ω → [0,+∞) gives the
transition rates. For x ∈ Ω, we define the exit rate from x ∈ Ω as

�(x) =
∑

y∈Ω\{x}
�(x, y).

In the finite context we can identify L with the matrix, still denoted by L, given
by

L(x, y) = �(x, y) for x �= y, L(x, x) = −�(x).

Given two state spaces Ω, Ω̂ of cardinalities |Ω| = n, |Ω̂| = n̂, and two Markov
processes with generators L, L̂, we say that they are dual with duality function
D : Ω̂ × Ω → R if, for all x ∈ Ω and x̂ ∈ Ω̂, we have

L̂leftD(x̂, x) = LrightD(x̂, x), (1)

where “left”, resp. “right”, refers to action on the left, resp. right, variable. If
the laws of the two processes coincide, we speak about self-duality. The same
notion in terms of matrix multiplication, where D also denotes the matrix with
entries {D(x̂, x), x̂ ∈ Ω̂, x ∈ Ω}, is expressed as

∑

ŷ∈ ̂Ω

L̂(x̂, ŷ)D(ŷ, x) =
∑

y∈Ω

L(x, y)D(x̂, y),

or, shortly, as
L̂D = DLT, (2)

where the symbol T denotes matrix transposition, i.e., for a matrix A,

(AT)(x, y) = A(y, x), x, y ∈ Ω.

More generally, we define two operators L̂ and L dual with duality function D
if relation (1), or equivalently (2) in matrix notation, holds.

3 Self-duality from Eigenfunctions: Reversible Case

As in Sect. 2, let Ω be a finite set of cardinality |Ω| = n, and let L be a generator
of an irreducible reversible Markov process on Ω w.r.t. the positive measure μ.
This measure then satisfies the detailed balance condition

μ(x)L(x, y) = μ(y)L(y, x), (3)

for all x, y ∈ Ω. This relation can be rewritten as a self-duality with self-duality
function the so-called cheap self-duality function:

Dcheap(x, y) =
δx,y

μ(y)
. (4)
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The reversibility of μ implies that L is self-adjoint in L2(μ) and, as a consequence,
there exists a basis {u1, . . . , un} of eigenfunctions of L with u1(x) = 1/

√
n

corresponding to eigenvalue zero and {u1, . . . , un} orthonormal, i.e., 〈ui, uj〉μ =
δi,j where 〈·, ·〉μ denotes inner product in L2(μ). We denote by {λ1, . . . , λn} the
corresponding real eigenvalues with

0 = λ1 > λ2 ≥ . . . ≥ λn.

The following proposition then shows how to obtain and characterize self-duality
functions in terms of this orthonormal system. The last statement recovers an
earlier result from [16].

Proposition 1. (i) For a1, a2 . . . , an ∈ R, the function

D(x, y) =
n∑

i=1

aiui(x)ui(y) (5)

is a self-duality function.
(ii) Every self-duality function has a unique decomposition of the form

D(x, y) =
∑

i,j:λi=λj

aijui(x)uj(y). (6)

(iii) If a function of the form D(x, y) = f(x)g(y) is a non-zero self-duality func-
tion, then f and g are eigenfunctions corresponding to the same eigenvalue.

(iv) The L2(μ) inner product of self-duality functions produces self-duality func-
tions, i.e., if D and D′ are self-duality functions, then

〈D(x, ·),D′(x′, ·)〉μ = D′′(x, x′) (7)

defines a self-duality function D′′.

Proof. For (i), by definition of eigenfunction Lui = λiui with λi ∈ R, we obtain

LleftD(x, y) =
n∑

i=1

aiLui(x)ui(y) =
n∑

i=1

aiλiui(x)ui(y)

=
n∑

i=1

aiui(x)λiui(y) =
n∑

i=1

aiui(x)Lui(y) = LrightD(x, y),

hence (1).
For (ii), start by noticing that every function D : Ω ×Ω → R can be written

in a unique way as

D(x, y) =
n∑

i,j=1

ai,jui(x)uj(y),

Now using the duality relation (1), it follows that
∑

i,j

ai,jλiui(x)uj(y) =
∑

i,j

ai,jλjui(x)uj(y),
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which implies that, for all i, j = 1, . . . , n,

ai,jλi = ai,jλj .

For item (iii), first write

f(x)g(y) =
n∑

i,j=1

aijui(x)uj(y).

Then we find aij = 〈f, ui〉μ〈g, uj〉μ =: αiβj . From self-duality we conclude, for
all i, j = 1, . . . , n,

αiβj(λi − λj) = 0.

Now use that f(x)g(y) is not identically zero to conclude that there exists i
with αi �= 0. Then if λj �= λi we conclude βj = 0, which implies that g is an
eigenfunction with eigenvalue λi. Because g is not identically zero, we can reverse
the argument and conclude.

For (iv), by exchanging the order of summations and using 〈uj , ul〉μ = δj,l,
the l.h.s. of (7) reads

∑

y∈Ω

D(x, y)D(x′, y)μ(y)

=
∑

y∈Ω

⎛

⎝
∑

i,j:λi=λj

ai,jui(x)uj(y)

⎞

⎠

⎛

⎝
∑

k,l:λk=λl

ak,luk(x′)ul(y)

⎞

⎠ μ(y)

=
n∑

j=1

⎛

⎝
∑

i:λi=λj

ai,jui(x)

⎞

⎠

⎛

⎝
∑

k:λk=λj

ak,juk(x′)

⎞

⎠ .

By noting that, for all j = 1, . . . , n, the function u′
j =

∑
i:λi=λj

ai,jui is either
vanishing or is an eigenfunction of L associated to λj , the proof is concluded.


�
In the next propositions we study particular instances of self-duality func-

tions. More precisely, by using Proposition 1, we recover the cheap self-duality
function in (4), while in Proposition 3 we characterize orthogonal self-duality
functions (cf. (11)–(12) below).

Proposition 2 (Cheap self-duality)

(i) For the choice a1 = a2 = . . . = an = 1 in (5), we obtain the cheap self-
duality function, i.e.,

Dcheap(x, y) =
δx,y

μ(y)
=

n∑

i=1

ui(x)ui(y). (8)



626 F. Redig and F. Sau

(ii) Conversely, if {v1, . . . , vn} is a basis of L2(μ) and satisfies

n∑

i=1

vi(x)vi(y) =
δx,y

μ(y)
(9)

for all x, y ∈ Ω, then {v1, . . . , vn} is an orthonormal basis of L2(μ).

Proof. To show (8), by the positivity of μ, we need to show that, for all f : Ω → R

and x ∈ Ω,
∑

y∈Ω

n∑

i=1

ui(x)ui(y)μ(y)f(y) = f(x).

Now note, by interchanging the sum over i with the sum over y, that the l.h.s.
equals

n∑

i=1

ui(x)〈ui, f〉μ = f(x),

and hence we obtain (i).
For (ii) we need to show that for all f : Ω → R and x ∈ Ω

f(x) =
n∑

i=1

vi(x)〈vi, f〉μ =
n∑

i=1

∑

y∈Ω

vi(x)vi(y)f(y)μ(y). (10)

We conclude by interchanging the order of the two summations in the r.h.s.
above and using (9), we indeed obtain (10). 
�

Remark that the cheap self-duality function is the only, up to multiplicative
constants, diagonal self-duality, and that it is orthogonal in the sense that, for
all x, x′ ∈ Ω,

〈Dcheap(x, ·),Dcheap(x′, ·)〉μ = δx,x′ 〈Dcheap(x, ·),Dcheap(x, ·)〉μ, (11)

and similarly, for all y, y′ ∈ Ω,

〈Dcheap(·, y),Dcheap(·, y′)〉μ = δy,y′ 〈Dcheap(·, y),Dcheap(·, y)〉μ. (12)

The next proposition shows how to find all orthogonal self-duality functions.

Proposition 3 (Orthogonal self-duality)

(i) If {ũ1, . . . , ũn} is an orthonormal system in L2(μ) of eigenfunctions of L,
corresponding to the same eigenvalues {λ1, . . . , λn}, then

D(x, y) =
n∑

i=1

ũi(x)ui(y) (13)

is an orthogonal self-duality function. More precisely, for all x, x′ ∈ Ω,

〈D(x, ·),D(x′, ·)〉μ =
δx,x′

μ(x′)
. (14)
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(ii) The self-duality functions of the form (13) are the only, up to a multiplica-
tive factor, orthogonal self-duality functions.

Proof. For (i), we compute, for all k = 1, . . . , n and x ∈ Ω, the following quantity
∑

x′∈Ω

〈D(x, ·),D(x′, ·)〉μũk(x′)μ(x′).

By 〈ui, uj〉μ = 〈ũi, ũj〉μ = δi,j , the line above rewrites as follows:

∑

x′∈Ω

∑

y∈Ω

(
n∑

i=1

ũi(x)ui(y)

) ⎛

⎝
n∑

j=1

ũj(x′)uj(y)

⎞

⎠ μ(y)ũk(x′)μ(x′)

=
n∑

i=1

n∑

j=1

ũi(x)

⎛

⎝
∑

y∈Ω

ui(y)uj(y)μ(y)

⎞

⎠
(

∑

x′∈Ω

ũj(x′)ũk(x′)μ(x′)

)

=
n∑

i=1

n∑

j=1

ũi(x)δi,jδj,k = ũk(x).

This together with Proposition 2 concludes the proof of part (i).
For (ii), by starting from a general self-duality function

D(x, y) =
∑

i,j:λi=λj

ai,jui(x)uj(y),

the l.h.s. of (14) rewrites as

n∑

j=1

u′
j(x)u

′
j(x

′),

where {u′
1, . . . , u

′
n} is defined as

u′
j(x) =

∑

i:λi=λj

ai,jui(x).

By remarking that either u′
j = 0 or u′

j is an eigenfunction of L associated to λj

and applying Proposition 2, we have that

〈u′
i, u

′
j〉μ = δi,j ,

and that the self-duality function D has the form (13) with ũi = u′
i. 
�

4 Duality from Eigenfunctions: Reversible Case

Now we consider two generators L, L̂ on the same finite state space Ω with
reversible measures μ, μ̂ respectively, and orthonormal systems of eigenfunc-
tions {u1, . . . , un}, {û1, . . . , ûn} corresponding to the same real eigenvalues
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{λ1, . . . , λn}, i.e., we assume that L and L̂ are self-adjoint in L2(μ), resp. in
L2(μ̂), and that they are iso-spectral.

In what follows we state - without proofs - analogous relations between dual-
ity functions and orthonormal systems of eigenfunctions of L and L̂.

Proposition 4. (i) For a1, . . . , an ∈ R the function

D(x̂, x) =
n∑

i=1

aiûi(x̂)ui(x)

is a duality function for duality between L̂ and L.
(ii) Every duality function has a unique decomposition of the form

D(x̂, x) =
∑

i,j:λi=λj

aij ûi(x̂)uj(x).

(iii) If a function of the form D(x̂, x) = f(x̂)g(x) is a non-zero duality function,
then f and g are eigenfunctions of L̂, resp. L, corresponding to the same
eigenvalue.

(iv) The L2(μ) and L2(μ̂) inner products of duality functions produce self-duality
functions, i.e., if D and D′ are duality functions, then

〈D(x̂, ·),D′(x̂′, ·)〉μ = D̂(x̂, x̂′)

defines a self-duality function D̂ for L̂, and similarly

〈D(·, x),D′(·, x′)〉μ̂ = D̃(x, x′)

determines a self-duality function D̃ for L.

Proposition 5 (Orthogonal duality)

(i) If {ũ1, . . . , ũn} is an orthonormal system in L2(μ̂) of eigenfunctions of L̂
corresponding to the same eigenvalues {λ1, . . . , λn}, then

D(x̂, x) =
n∑

i=1

ũi(x̂)ui(x) (15)

is an orthogonal duality function, i.e.,

〈D(x̂, ·),D(x̂′, ·)〉μ =
δx̂,x̂′

μ̂(x̂′)

and
〈D(·, x),D(·, x′)〉μ̂ =

δx,x′

μ(x′)
.

(ii) These are the only, up to multiplicative constants, orthogonal dualities
between L̂ and L.
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5 Duality from Eigenfunctions: Non-reversible Case

Working in the non-reversible context, i.e., whenever there does not exist a
probability measure μ on Ω for which the generator L is self-adjoint in L2(μ), a
spectral decomposition of the generator in terms of real non-positive eigenvalues
and orthonormal real eigenfunctions is typically lost. In recent years, the study
of the eigendecomposition of non-reversible generators has received an increas-
ing attention [6–8,32,37] and duality-related notions have been introduced to
relate spectral information of one process, typically a reversible one, to another,
typically non-reversible [14,29].

However, regardless of the spectral eigendecomposition of the generators,
in principle interesting dualities can still be constructed from eigenfunctions,
either real or complex, and generalized eigenfunctions of the generators involved.
The key on which this relation builds up, in the finite context, is the Jordan
canonical decomposition of the generators. A relation between duality and the
Jordan canonical decomposition has already been used in the context of models
of population dynamics in [30].

Below, before studying the most general result that exploits the Jordan form
of the generators, we treat some special cases reminiscent of the previous sections.
In the sequel, for a function u : Ω → C, we denote by u∗ : Ω → C its complex
conjugate.

5.1 Duality from Complex Eigenfunctions

A first feature that typically drops as soon as one moves to the non-reversible sit-
uation is the appearance of only real eigenvalues. Indeed, given a non-reversible
generator L of an irreducible Markov process on Ω, pairs of complex conju-
gates eigenvalues {λ, λ∗} and eigenfunctions {u, u∗} may arise as in the following
example.

Example 1. The continuous-time Markov chain on the state space Ω = {1, 2, 3}
and described by the generator L, which, viewed as a matrix, reads

L =

⎛

⎝
−1 1 0
0 −1 1
1 0 −1

⎞

⎠ ,

represents a basic example of this situation. Indeed, the Markov chain is irre-
ducible, the eigenvalues {λ1, λ2, λ3} are

λ1 = 0, λ2 = λ∗
3 = −3

2
+ i

√
3
2

,

while the associated eigenfunctions {u1, u2, u3} are, for x ∈ {1, 2, 3},

u1(x) =
1√
3
, u2(x) = u∗

3(x) = e(i
2
3π)x.


�



630 F. Redig and F. Sau

Let us, thus, consider two irreducible non-reversible generators L, L̂ on the
same state space Ω. We investigate the situation in which there exist λ ∈ C\R
and functions u, û : Ω → C such that

Lu = λu, L̂û = λû. (16)

Remark that, as L, L̂ are real operators, this implies that

Lu∗ = λ∗u∗, L̂û∗ = λ∗û∗. (17)

A real duality function arising from a shared pair of complex eigenvalues is
obtained in the following proposition.

Proposition 6. For a ∈ R, the function

D(x̂, x) = aû(x̂)u(x) + aû∗(x̂)u∗(x)

takes values in R and is a duality function between L̂ and L.

Proof. It is clear that D(x̂, x) is in R. Then, by using (16) and (17), we obtain

L̂leftD(x̂, x) = a(L̂û)(x̂)u(x) + a(L̂û∗)(x̂)u∗(x)
= aλû(x̂)u(x) + aλ∗û∗(x̂)u∗(x) = aû(x̂)λu(x) + aû∗(x̂)λ∗u∗(x)
= aû(x̂)(Lu)(x) + aû∗(x̂)(Lu∗)(x) = LrightD(x̂, x).


�

5.2 Duality from Generalized Eigenfunctions

A second feature that may be lacking is the existence of a linear independent
system of eigenfunctions. However, if L is an irreducible non-reversible gen-
erator on the state space Ω with real non-negative eigenvalues {λ1, . . . , λn},
there always exists a linearly independent system of so-called generalized eigen-
functions, i.e., for each eigenvalue λi, there exists a set of linearly independent
functions {u

(1)
i , . . . , u

(mi)
i } such that mi ≤ n,

Lu
(1)
i = λiu

(1)
i

and, for 1 < k ≤ mi,
Lu

(k)
i = λiu

(k)
i + u

(k−1)
i .

We refer to u
(k)
i as the k-th order generalized eigenfunction associated to λi.

Moreover, if λi �= λj , then the set {u
(1)
i , . . . , u

(mi)
i , u

(1)
j , . . . , u

(mj)
j } is linearly

independent and any arbitrary function f : Ω → R can be written as linear
combination of functions in {u

(k)
i , i = 1, . . . , n; k = 1, . . . , mi}.
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Example 2. The irreducible generator L on the state space Ω = {1, 2, 3, 4} given
by

L =

⎛

⎜⎜⎝

− 1
2

1
2 0 0

0 −1 1
2

1
2

1
2 0 −1 1

2
0 1

2
1
2 −1

⎞

⎟⎟⎠ ,

represents a basic example of this situation. Indeed, the eigenvalue λ = −1 has
u(1) given by

u(1)(x) =
(−1)x

2
, x ∈ {1, 2, 3, 4},

as eigenfunction and

u(2)(x) = cos
(π

2
(x + 1)

)
, x ∈ {1, 2, 3, 4},

as a second order generalized eigenfunction, i.e.,

Lu(2) = −u(2) + u(1).


�
In this situation, in case of two generators L, L̂ sharing a real eigenvalue

λ with associated generalized eigenfunctions {u(1), . . . , u(m)}, {û(1), . . . , û(m)},
the main idea is that a duality function is readily constructed from sums of
products of generalized eigenfunctions whose order is, nevertheless, reversed.
This connection is the content of the following proposition.

Proposition 7. The function

D(x̂, x) =
m∑

k=1

û(k)(x̂)u(m+1−k)(x)

is a duality function between L̂ and L.

Proof. By using the definition of k-th order generalized eigenfunction, we obtain

L̂leftD(x̂, x) =
m∑

k=1

(L̂û(k))(x̂)u(m+1−k)(x)

=
m∑

k=1

λû(k)(x̂)u(m+1−k) +
m∑

k=2

û(k−1)(x̂)u(m+1−k)(x)

=
m∑

k=1

λû(k)(x̂)u(m+1−k) +
m−1∑

k=1

û(k)(x̂)u(m−k)(x)

=
m∑

k=1

û(k)(x̂)(Lu(m+1−k))(x) = LrightD(x̂, x).


�
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5.3 Duality and the Jordan Canonical Decomposition: General Case

In this section we provide a general framework that allows us to cover all
instances of duality encountered so far in the finite setting. The standard strat-
egy of decomposing generators - viewed as matrices - into their Jordan canonical
form builds a bridge between dualities and spectral information of the generators
involved. In particular, this linear algebraic approach is useful for the problem
of existence and characterization of duality functions: on one side, the existence
of a Jordan canonical decomposition for any generator leads, for instance, to
the existence of self-dualities; on the other side, dualities between generators
carry information about a common, at least partially, spectral structure of the
generators.

Before stating the main result, we introduce some notation. Given a generator
L on the state space Ω with cardinality |Ω| = n, L is in Jordan canonical form
if it can be written as

L = UJU−1,

where J ∈ C
n×n is the unique, up to permutations, Jordan matrix [20, Definition

3.1.1] associated to L and U ∈ C
n×n is an invertible matrix. Recall that columns

{u1, . . . , un} of U consists of (possibly generalized) eigenfunctions of L, while the
rows {w1, . . . , wn} of U−1 the (possibly generalized) eigenfunctions of LT, chosen
in such a way that

〈wi, uj〉 =
∑

x∈Ω

wi(x)u∗
i (x) = δi,j .

For all Jordan matrices J ∈ C
n×n of the form

J =

⎛

⎜⎜⎜⎜⎝

Jm1(λ1) · · · 0

Jm2(λn)
...

...
. . .

0 · · · Jmk
(λk)

⎞

⎟⎟⎟⎟⎠
,

with m1+. . .+mk = n and Jordan blocks Jm(λ) of size m associated to eigenvalue
λ ∈ C, we define the matrix BJ ∈ R

n×n as follows

BJ =

⎛

⎜⎜⎜⎜⎝

Hm1 · · · 0

Hm2

...
...

. . .
0 · · · Hmk

⎞

⎟⎟⎟⎟⎠
,

where, for all m ∈ N, the matrix Hm ∈ R
m×m is defined as

Hm =

⎛

⎜⎜⎜⎜⎝

0 · · · 1
... . . .

. . .
...

1 · · · 0

⎞

⎟⎟⎟⎟⎠
,
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i.e., in such a way that BT
J = B−1

J = BJ and JBJ = BJJT. Moreover, we say that
two matrices L ∈ R

n×n, L̂ ∈ R
n̂×n̂ are r-similar for some r = 1, . . . ,min{n, n̂}

if there exist Jordan canonical forms

L = UJU−1, L̂ = Û ĴÛ−1, (18)

matrices Sr ∈ R
n̂×n and Ir ∈ R

r×r of the form

Sr =
(

Ir 0
0 0

)
, Ir =

⎛

⎜⎝
1 · · · 0
...
. . .

...
0 · · · 1

⎞

⎟⎠ ,

and permutation matrices P̂ ∈ R
n̂×n̂ and P ∈ R

n×n such that

Tr = P̂SrP

and
ĴTr = TrJ. (19)

Of course, if two matrices are r-similar, then they are necessarily r′-similar, for
all r′ = 1, . . . , r and if r = n = n̂ then we simply say that they are similar.

In the following theorem we establish a general connection between duality
relations and Jordan canonical forms for generators L, L̂.

Theorem 1. The following statements are equivalent:

(i) There exists a duality function D(x̂, x) of rank r between L̂ and L.
(ii) L and L̂ are r-similar.

If either condition holds, any duality function is of the form

D = ÛTrBJUT. (20)

In particular if L = L̂, for any r = 1, . . . , n, there always exists a self-duality
function D of rank r and it must be of the form (20).

Proof. We start with proving that (ii) implies (i). By using the property of
r-similarity (19) with Jordan decompositions as in (18), with the choice (20) of
the candidate duality function D, we obtain

L̂ÛTrBJUT = Û ĴTrBJUT = ÛTrJBJUT = ÛTrBJJTUT = ÛTrBJUTLT,

i.e., the duality relation (2) in matrix form.
For the other implication, as the matrices U , Û in (18) and BJ are invertible,

the following chains of identities are equivalent:

L̂D = DLT ⇐⇒ Û ĴÛ−1D = D(U−1)TJTUT

⇐⇒ Ĵ Û−1D(U−1)T = Û−1D(U−1)TJT

⇐⇒ Ĵ Û−1D(U−1)TBJ = Û−1D(U−1)TBJJ.
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Moreover, if D has rank r, then Û−1D(U−1)TBJ must have rank r as well. The
last relation is of the form

ĴA = AJ,

where A = Û−1D(U−1)TBJ is a matrix of rank r. Therefore, we conclude that
there exists a permutation matrix P ∈ R

n×n such that

ĴSr = SrPJP−1,

i.e., L and L̂ are r-similar according to the Jordan canonical decompositions

L = Ũ J̃Ũ−1, L̂ = Û ĴÛ−1,

with Ũ = UP−1 and J̃ = PJP−1. 
�
Remark 1. (a) In words, the theorem above states that there exists a rank-

r duality matrix if and only if the generators L̂ and L have r eigenvalues
(with multiplicities) in common with “compatible” structure of eigenspaces.
Additionally, Eq. (20) provides the most general form of the duality function
D in terms of matrices U , Û . In particular, if J is diagonal (i.e., BJ is the
identity matrix) all duality functions D(x̂, x) of rank r read as

D(x̂, x) =
r∑

i=1

aiûi(x̂)ui(x),

for a1, . . . , an ∈ R \ {0}, given {u1, . . . , un}, {û1, . . . , ûn̂} are the columns
of U , Û , invertible matrices in the Jordan decompositions (18) satisfying
(19) with Tr = Sr. Note the analogy with the duality function described in
Propositions 1, 4 and 6. If J is non-diagonal, all duality functions D have a
similar form up to some index permutations as in Proposition 7.

(b)We note that the constant duality function is always a trivial duality function
between any two generators L, L̂ on Ω, Ω̂. Indeed, λ = 0 is always an
eigenvalue for both L and L̂ with associated constant eigenfunctions u : Ω →
R, û : Ω̂ → R, i.e., for all x ∈ Ω and x̂ ∈ Ω̂,

u(x) = 1, û(x̂) = 1,

are eigenfunctions for L, L̂ associated to λ = 0.
(c) Another consequence, as already mentioned in [18], is that in the finite context

self-duality functions always exist. In fact, a generator L, viewed as a matrix,
is always similar to itself. Hence, viewing duality relations between genera-
tors as similarity relations among matrices allows one to transfer statements
about existence of Jordan canonical decompositions to statements regarding
the existence of duality relations, even when neither any explicit formula of
the duality functions nor reversible measures for the processes are known.
However, Theorem 1 above provides information on how to construct any
self-duality matrix. Indeed, given any two Jordan decompositions of L, say

LU = UJ, LŨ = ŨJ,
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the matrix D constructed from U, Ũ and J as in (20), namely

D = ŨBJUT, (21)

turns out to be a self-duality function for L and, viceversa, any self-duality
matrix D for L is of the form (21).

Typically, to find the eigenvalues and eigenfunctions of the generator asso-
ciated to a Markov chain is a much more challenging task than establishing
duality relations. However, we have seen that the knowledge of the eigenfunc-
tions leads to a full characterization of duality and/or self-duality functions. This
is, indeed, the case of the example below, in which we exploit the knowledge of
eigenfunctions of two generators to characterize the family of self-duality and
duality functions.

Example 3 (One-dimensional symmetric random walks on a finite grid). Let
us introduce the symmetric random walk on Ω = {1, . . . , n} reflected on the left
and absorbed on the right. We describe the action of the generator L on functions
f : Ω → R as

Lf(x) = (f(x + 1) − f(x)) + (f(x − 1) − f(x)), x ∈ Ω \ {1, n},

while for x ∈ {1, n} we have

Lf(1) = 2(f(2) − f(1)), Lf(n) = 0.

Similarly, we denote by L̂ the generator of the symmetric random walk on Ω
reflected on the right and absorbed on the left. Namely,

L̂f(x) = (f(x + 1) − f(x)) + (f(x − 1) − f(x)), x ∈ Ω \ {1, n},

and
L̂f(1) = 0, L̂f(n) = 2(f(n − 1) − f(n)).

As an application of Theorem 1, we prove the following dualities: self-duality
of L, self-duality of L̂ and duality between L and L̂. The key is to explicitly
find eigenvalues and eigenfunctions of the generators. Indeed, the eigenvalues
{λ1, . . . , λn} of L and L̂ read as follows:

λ1 = 0, λi = 2(cos(θi) − 1), θi =
i − 1

2

n − 1
π, i = 2, . . . , n. (22)

The eigenfunctions {u1, . . . , un} of L are, for x ∈ Ω,

u1(x) =
1√
n

, ui(x) =
1√
n
cos(θi(x − 1)), i = 2, . . . , n,

while the eigenfunctions {û1, . . . , ûn} of L̂ are, for x ∈ Ω,

û1(x̂) =
1√
n

, ûi(x̂) =
1√
n
sin(θi(x̂ − 1)), i = 2, . . . , n.

Hence, we conclude the following:
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(a) Self-duality functions for L. For all values a1, . . . , an ∈ R, the function

D(x, y) =
n∑

i=1

aiui(x)ui(y) =
a1

n
+

n∑

i=2

ai

n
cos(θi(x−1)) cos(θi(y−1)) (23)

is a self-duality function for L and all self-duality functions are of this form.
(b) Self-duality functions for L̂. For all a1, . . . , an ∈ R,

D̂(x̂, ŷ) =
n∑

i=1

aiûi(x̂)ûi(ŷ) =
1
n
+

n∑

i=2

ai

n
sin(θi(x̂−1)) sin(θi(ŷ −1)) (24)

is a self-duality function for L̂ and all self-duality functions are of this form.
(c) Duality functions between L and L̂. For all a1, . . . , an ∈ R,

D′(x̂, x) =
a1

n
+

n∑

i=2

ai

n
sin(θi(x̂ − 1)) cos(θi(x − 1)), (25)

is a duality function between L and L̂ and all duality functions are of this
form. 
�
We can now provide an analogue of Proposition 2 beyond the reversible

context. To fix notation, let L be a generator on Ω, with |Ω| = n. Lacking
reversibility, we have seen that complex eigenvalues and generalized eigenfunc-
tions of the generator may arise. However, in the irreducible case, i.e., in case
there exists a unique stationary measure μ > 0 for which the adjoint of L in
L2(μ), say L†, is itself a generator, a trivial duality relation between L and L†

is available. Indeed, from the adjoint relation

〈L†f, g〉L2(μ) = 〈f, Lg〉L2(μ), f, g : Ω → R,

it follows that the diagonal function D : Ω × Ω → R given by

D(x, y) =
δx,y

μ(y)
, x, y ∈ Ω, (26)

is a duality function for L†, L. In analogy with (4), we refer to it as cheap duality
function, also D = Dcheap.

From Theorem 1, the above duality tells us that, beside the fact that the
generators L and L† are indeed similar as matrices, the cheap duality func-
tion Dcheap in (26) should be represented in terms of functions {u1, . . . , un}
and {ũ1, . . . , ũn}, which, up to suitably reordering, are indeed the generalized
eigenfunctions of L and L†, respectively.

As a consequence of the following lemma, which we use in the proof of Theo-
rem 5, we obtain that a relation of bi-orthogonality w.r.t. μ among the generalized
eigenfunctions of L and those of L† can be derived from the duality w.r.t. Dcheap.
For the proof, we refer back to the proof of Proposition 2.
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Proposition 8. Let L be a generator, μ a positive measure on Ω (not neces-
sarily stationary for L) and let L† be the adjoint operator of L in L2(μ). Let
the spans of the generalized eigenfunctions of L and L†, say {u1, . . . , un} and
{ũ1, . . . , ũn}, both coincide with L2(μ). Then the following statements are equiv-
alent:

(i) Cheap duality from generalized eigenfunctions. For x, y ∈ Ω,

n∑

i=1

ũi(x)ui(y) =
δx,y

μ(y)
.

(ii) Bi-orthogonality of generalized eigenfunctions. For all i, j = 1, . . . , n,

〈ũi, u
∗
j 〉μ =

∑

x′∈Ω

ũi(x′)uj(x′)μ(x′) = δi,j . (27)

Two families {u∗
1, . . . , u

∗
n}, {ũ1, . . . , ũn} satisfying condition (27) are also said

to be bi-orthogonal w.r.t. the measure μ.

5.4 Intertwining Relations, Duality and Generalized Eigenfunctions

Symmetries of the generators or, more generally, intertwining relations have
proved to be useful in producing new duality relations from existing ones, e.g.
cheap dualities [4,33]. Here, we analyze this technique and revisit [33, Theorem
5.1] from the point of view of generalized eigenfunctions.

Theorem 2 (Intertwining relations and duality). Let L, L̃ and L̂ be three
generators on Ω, Ω̃ and Ω̂ respectively. We assume that L and L̃ are intertwined,
i.e., there exists a linear operator Λ : L2(Ω) → L2(Ω̃) such that, for all f ∈
L2(Ω), we have

L̃Λf = ΛLf. (28)

Moreover, we assume that L and L̂ are dual with duality function D : Ω̂×Ω → R,
i.e.,

L̂leftD(x̂, x) = LrightD(x̂, x).

Then, the function ΛrightD : Ω̂ × Ω̃ → R is a duality function for L̃ and L̂, i.e.,

L̂leftΛrightD(x̂, x̃) = L̃rightΛrightD(x̂, x̃).

Proof. We observe that the intertwining operator Λ maps eigenspaces of L to
eigenspaces of L̃. More formally, if there exists a subset {u(1), . . . , u(m)} of L2(Ω)
such that, for some λ ∈ C,

Lu(1) = λu(1), Lu(k) = λu(k) + u(k−1), k = 2, . . . , m, (29)

then, by (28), the subset {Λu(1), . . . , Λu(m)} in L2(Ω̃) satisfy the same identities
as in (29) up to replace L by L̃:

L̃Λu(1) = λΛu(1), L̃Λu(k) = λΛu(k) + Λu(k−1), k = 2, . . . , m. (30)
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By Theorem 1, the duality function is given by

D(x̂, x) =
n∑

i=1

ûi(x̂)ui(x),

where {u1, . . . , un}, {û1, . . . , ûn} are sets of (possibly generalized) eigenfunctions
of L, L̂. Then, by applying the intertwining operator Λ on the right variables,
we obtain

ΛrightD(x̂, x̃) =
n∑

i=1

ûi(x̂)(Λui)(x̃).

We conclude from the considerations in (30), (29) and Theorem 1. 
�
Typical examples of intertwining relations occur when either Λ is a symmetry

of a generator, i.e., L̃ = L in (28) (see e.g. [4]) or when Λ is a positive contractive
operator such that Λ1 = 1, i.e., viewed as a matrix, it is a stochastic matrix from
the space Ω̃ to Ω (see e.g. [21]). A particular instance, which recovers the so-
called lumpability, of this last situation is when Λ is a “deterministic” stochastic
kernel, i.e., induced by a map from Ω̃ to Ω.

5.5 Intertwining of Exclusion Processes

In this section we provide an application of Theorem 2 above. Indeed, after
finding suitable intertwining relations between a particular instance of the sym-
metric simple exclusion process and a generalized symmetric exclusion process,
we obtain as in Theorem 2 a large class of self-duality functions for the latter
process from self-duality functions of the former. In what follows, we fix γ ∈ N,
a finite set V of cardinality |V | = m and a function p : V × V → R+ such that
p(x, x) = 0 for all x ∈ V .

The γ-ladder-SEP is the finite-state Markov process on Ω̃ = {0, 1}V ×{1,...,γ}

with generator L̃ acting on functions f̃ : Ω̃ → R as

L̃f̃(η̃) =
∑

x,y∈V

p(x, y)

[
γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b)) (f̃(η̃(x,a),(y,b)) − f̃(η̃))

+ η̃(y, b)(1 − η̃(x, a)) (f̃(η̃(y,b),(x,a)) − f̃(η̃))

]
, η̃ ∈ Ω̃,

where η̃(x,a),(y,b) denotes the configuration obtained from η̃ by removing a parti-
cle at position (x, a) and placing it at (y, b). As already mentioned, this process
may be considered as a special case of a simple symmetric exclusion process on
the set Ṽγ = V × {1, . . . , γ} where p̃ : Ṽ × Ṽ → R+ is such that

p̃((x, a), (y, b)) = p(x, y), (x, a), (y, b) ∈ Ṽγ .
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The SEP(γ) is the finite-state Markov process on Ω = {0, . . . , γ}V with
generator L acting on functions f : Ω → R as

Lf(η) =
∑

x,y∈V

p(x, y) [η(x)(γ − η(y)) (f(ηx,y) − f(η))

+ η(y)(γ − η(x)) (f(ηy,x) − f(η))], η ∈ Ω.

It is well known (see e.g. [18]) that L and L̃ are intertwined via a determinis-
tic intertwining operator Λ : L2(Ω) → L2(Ω̃). The intertwining operator Λ is
defined, given the mapping π : Ω̃ → Ω such that

π(η̃) = (|η̃(1, ·)|, . . . , |η̃(n, ·)|) ∈ Ω, |η̃(x, ·)| :=
γ∑

a=1

η̃(x, a),

as acting on functions f : Ω → R as

Λf(η̃) = f(π(η̃)), η̃ ∈ Ω̃.

The intertwining relation then reads, for all f : Ω → R, as

L̃Λf(η̃) = ΛLf(η̃),

for η̃ ∈ Ω̃. Given any self-duality for L with self-duality function D(ξ, η), we
can build a duality function, namely D′(ξ, η̃) = ΛrightD(ξ, η̃) for L and L̃ and,
furthermore, a self-duality function D′′(ξ̃, η̃) = ΛleftΛrightD(ξ̃, η̃) for L̃.

However, we ask whether there exists an “inverse” intertwining relation, i.e.,
Λ̃ : L2(Ω̃) → L2(Ω) such that, for f̃ : Ω̃ → R,

Λ̃L̃f̃(η) = LΛ̃f̃(η), η ∈ Ω. (31)

In what follows, we say that η̃ ∈ Ω̃ is compatible with η ∈ Ω or, shortly, η̃ ∼ η,
if π(η̃) = η.

Proposition 9. The operator Λ̃ : L2(Ω̃) → L2(Ω) defined as

Λ̃f̃(η) =

(
∏

x∈V

1(
γ

η(x)

)
)

∑

η̃∼η

f̃(η̃), η ∈ Ω, (32)

is the inverse intertwining in (31). Moreover, the intertwining operator above is
a stochastic intertwining.

Proof. Without loss of generality, we consider V = {x, y}. By expanding the
l.h.s. of (31) with Λ̃ as in (32), we obtain four terms:

�1 = − 1(
γ

η(x)

) 1(
γ

η(y)

)
∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b))f̃(η̃)
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�2 =
1(
γ

η(x)

) 1(
γ

η(y)

)
∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b))f̃(η̃(x,a),(y,b))

�3 = − 1(
γ

η(x)

) 1(
γ

η(y)

)
∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(y, b)(1 − η̃(x, a))f̃(η̃)

�4 =
1(
γ

η(x)

) 1(
γ

η(y)

)
∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(y, b)(1 − η̃(x, a))f̃(η̃(y,b),(x,a)).

By doing the same thing with the r.h.s., we obtain:

r1 = − 1(
γ

η(x)

) 1(
γ

η(y)

)η(x)(γ − η(y))
∑

η̃∼η

f̃(η̃)

r2 =
1(
γ

η(x)−1

) 1(
γ

η(y)+1

)η(x)(γ − η(y))
∑

η̃∼ηx,y

f̃(η̃)

r3 = − 1(
γ

η(x)

) 1(
γ

η(y)

)η(y)(γ − η(x))
∑

η̃∼η

f̃(η̃)

r4 =
1(
γ

η(x)+1

) 1(
γ

η(y)−1

)η(y)(γ − η(x))
∑

η̃∼ηy,x

f̃(η̃).

Note that �1 = r1 because, for all η̃ ∼ η,
γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b)) = η(x)(γ − η(y)),

and similarly for �3 = r3. For �2 = r2 it is enough to verify that, for each
η̃∗ ∼ ηx,y,

∑

η̃∼η

γ∑

a=1

γ∑

b=1

η̃(x, a)(1 − η̃(y, b))1l{η̃(x,a),(y,b) = η̃∗} = (η(y) + 1)(γ − η(x) + 1).

This last identity indeed holds, as the configurations η̃ ∼ η can be obtained
from η̃∗ by picking one of the η(y)+ 1 particles on y ∈ V and putting it back on
one of the γ − η(x) + 1 holes of x ∈ V . Analogously for �4 = r4. 
�

As a consequence of this proposition, by starting from self-duality of the
γ-ladder-SEP, we can produce duality functions for L̃ and L and self-duality
functions for L. We use the following result of [35, Theorem 2.8] to obtain a
large class of “factorized” self-duality functions for L̃.

Theorem 3 ([35]). The simple symmetric exclusion process {η̃t, t ≥ 0} on the
vertex set V × {1, . . . , γ} is self-dual w.r.t. the duality function

D̃(ξ̃, η̃) =
∏

(x,a)∈V ×{1,...,γ}
(α + βη̃(x, a))ε+δ˜ξ(x,a), ξ̃, η̃ ∈ Ω̃, (33)

for all α, β, ε and δ ∈ R.
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Now, we apply the intertwining operator Λ̃ first on the right and then on the
left variables of D̃ above.

Theorem 4. All self-duality functions for SEP(γ) derived from self-duality
functions of γ-ladder-SEP as in (33) are all in factorized form, i.e.,

D(ξ, η) = Λ̃leftΛ̃rightD̃(ξ, η) =
∏

x∈V

dα,β,ε,δ
x (ξ(x), η(x)).

Moreover, the single-site self-duality functions dα,β,ε,δ
x (k, n), for k, n ∈

{0, . . . , γ}, are in one of the following forms: either the classical polynomials

d0,β,0,δ
x (k, n) = (βδ)k

(γ − k)!
γ!

n!
(n − k)!

1l{n ≥ k},

the orthogonal polynomials

dα,β,ε,δ
x (k, n) = (−1)δkαεγ−εn+δk(α + β)εn2F1

[−k − n
; 1 −

(
1 + β

α

)δ

−γ

]
,

or other degenerate functions:

dα,β,ε,0
x (k, n) = (α + β)εnαε(γ−n)

d0,β,ε,δ
x (k, n) = βεγ+δk1l{n = γ}

dα,0,ε,δ
x (k, n) = αεγ+δk

dα,−α,ε,δ
x (k, n) = αεγ+δk1l{n = 0}.

Proof. First thing to note is that the factorized structure of D is preserved under
Λ̃. Indeed, if we use the notation

d(k, n) = (α + βn)ε+δk,

then

Λ̃rightD(ξ̃, η) =
∏

x∈V

⎛

⎝ 1(
γ

η(x)

)
∑

η̃(x,·)∼η(x)

γ∏

a=1

d(ξ̃(x, a), η̃(x, a))

⎞

⎠ .

Hence we compute only what is inside the parenthesis (which will see does depend
on ξ̃(x, ·) only through |ξ̃(x, ·)|):

dα,β,ε,δ
x (ξ(x), η(x))

= (α + β)εη(x)αε(γ−η(x)) 1(
γ

η(x)

)
∑

η̃(x,·)∼η(x)

γ∏

a=1

(α + βη̃(x, a))δ˜ξ(x,a). (34)
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The last summation

1(
γ

η(x)

)
∑

η̃(x,·)∼η(x)

γ∏

a=1

(α + βη̃(x, a))δ˜ξ(x,a)

clearly does not depend on ξ̃(x, ·) but only on ξ(x) = |ξ̃(x, ·)| and equals

1(
γ

η(x)

)
ξ(x)∑

�=0

(
ξ(x)

ξ(x) − �

)(
γ − ξ(x)

η(x) − (ξ(x) − �)

)
(α + β)δ(ξ(x)−�)αδ�. (35)

If δ = 0, this last expression in (35) by Chu-Vandermonde identity equals 1,
hence

dα,β,ε,0
x (ξ(x), η(x)) = (α + β)εη(x)αε(γ−η(x)).

If δ �= 0 and α = 0, expression (35) rewrites as

1(
γ

η(x)

)
(

γ − ξ(x)
η(x) − ξ(x)

)
βδξ(x)1l{η(x) ≥ ξ(x)}

= (βδ)ξ(x)
(γ − ξ(x))!

γ!
η(x)!

(η(x) − ξ(x))!
1l{η(x) ≥ ξ(x)},

and hence, for ε = 0, (34) becomes

d0,β,0,δ
x (ξ(x), η(x)) = (βδ)ξ(x)

(γ − ξ(x))!
γ!

η(x)!
(η(x) − ξ(x))!

1l{η(x) ≥ ξ(x)},

i.e., the classical single-site self-duality functions, while, for ε �= 0,

d0,β,ε,δ
x (ξ(x), η(x)) = βεγ+δξ(x)1l{η(x) = γ}.

If δ �= 0 and α �= 0 and β = 0, then again we get some trivial:

dα,0,ε,δ
x (ξ(x), η(x)) = αεγ+δξ(x).

The most interesting case is when δ �= 0, α �= 0, β �= 0 and α �= −β. In this case
the quantity in (35) equals

(α + β)δξ(x) 1(
γ

η(x)

)
ξ(x)∑

�=0

(
ξ(x)

ξ(x) − �

)(
γ − ξ(x)

η(x) − (ξ(x) − �)

) (
α

α + β

)δ�

,

which rewrites, by using two known relations in [31, p. 51], as

(−α)δξ(x)
2F1

⎡

⎣
−ξ(x) − η(x)

; 1 −
(
1 + β

α

)δ

−γ

⎤

⎦ ,

leading to

dα,β,ε,δ
x (ξ(x), η(x))

= (−1)δξ(x)αεγ−εη(x)+δξ(x)(α + β)εη(x)2F1

[−ξ(x) − η(x)
; 1 −

(
1 + β

α

)δ

−γ

]
,
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i.e., we recover the orthogonal polynomial single-site self-duality functions for
the SEP(γ), namely families of Kravchuk polynomials. If α = −β, then we have

dα,−α,ε,δ
x (ξ(x), η(x)) = αεγ+δξ(x)1l{η(x) = 0}.


�

6 Siegmund Duality

This connection between duality functions and eigenfunctions enables us to
recover another special instance of duality, the so-called Siegmund duality. Sieg-
mund duality, which arises in the context of totally ordered state spaces Ω = Ω̂,
was first established by Siegmund [36] for pairs of absorbed/reflected-at-0 pro-
cesses on the positive real line and on the positive integers. Further applications
and generalizations of Siegmund dualities were studied by many authors, see for
instance [25,27,28].

What we focus here on is a finite-context characterization of Siegmund dual-
ity already obtained via an intertwining relation in [21]. However, by using a
representation of duality in terms of generalized eigenfunctions of the gener-
ators, the characterization result of Siegmund duality that we obtain, besides
simplifying the proof of an analogous result in [36, Theorem 3], adds spectral
information to the proof in [21].

Moreover, as Siegmund duality can be seen as a full-rank duality between
two processes, cf. Theorem 1, a spectral approach provides a strategy to find
other duality relations in the presence of Siegmund duality.

6.1 Characterization of Siegmund Duality

On the totally ordered state space Ω = {1, . . . , n}, two generators L, L̂ are said
to be Siegmund dual if

L̂leftDS(x, y) = LrightDS(x, y), (36)

with duality function DS : Ω × Ω → [0, 1] given by

DS(x, y) = 1l{x ≥ y}. (37)

Note that the duality relation (36) with duality function DS (37) reads out
n∑

x′=y

L̂(x, x′) =
x∑

y′=1

L(y, y′). (38)

From (38), a necessary relation between two Siegmund dual generators L and L̂
reads as follows:

L(y, x) =
n∑

x′=y

L̂(x, x′) − L̂(x − 1, x′), x, y ∈ Ω, (39)

with the convention L̂(0, ·) = 0. As (39) implies (38), this condition is indeed
also sufficient.
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Remark 2 (Sub-generators and monotonicity). If we require that only L̂ is a gen-
erator, the operator L as defined in (39) is not necessarily a generator. However,
the following implications hold:

(a) If L̂ is a generator and L(y, x) ≥ 0 for all x �= y, then L is a sub-generator
on Ω, i.e.,

L(y, x) ≥ 0, x �= y and
n∑

x=1

L(y, x) ≤ 0, y ∈ Ω. (40)

The proof goes as follows:
n∑

x=1
L(y, x) =

n∑

x′=y

n∑

x=1
L̂(x, x′) − L̂(x − 1, x′) =

n∑

x′=y

L̂(n, x′)

≤
n∑

x′=1

L̂(n, x′) = 0,

where we used (39) in the first equality and the last inequality is a conse-
quence of L̂ being a generator.

(b) Note that, by [22, Theorem 2.1],

n∑

x′=y

L̂(x, x′) − L̂(x − 1, x′) ≥ 0, x �= y, (41)

is equivalent to require that the continuous-time Markov chain with gener-
ator L̂ is monotone (see [28]).

As a consequence, L is a sub-generator if and only if L̂ is associated to a monotone
process on Ω.

In the following theorem, we study the relation between eigenfunctions of
Siegmund dual (sub-)generators and how the Siegmund duality function DS in
(37) is constructed from the eigenfunctions.

Theorem 5. (i) Let L and L̂ be Siegmund dual (sub-)generators in the sense
of (36). If ŵ is a k-th order generalized eigenfunction of L̂T associated to
eigenvalue λ, then

u(x) =
n∑

y=x

ŵ(y), x ∈ Ω, (42)

is a k-th order generalized eigenfunction of L associated to the eigenvalue λ.
(ii) In the same context as in item (i), given a set {ŵ1, . . . , ŵn} of (generalized)

eigenfunctions of L̂T whose span coincides with L2(Ω), if {û1, . . . , ûn} are
(generalized) eigenfunctions of L̂ such that

〈ŵi, û
∗
j 〉 =

n∑

x=1

ŵi(x)ûj(x) = δi,j , (43)
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and {u1, . . . , un} are defined in terms of {ŵ1, . . . , ŵn} as in (42), then the
function

D(x, y) =
n∑

i=1

ûi(x)ui(n), x, y ∈ Ω,

is the Siegmund duality function DS.
(iii) Let L and L̂ be (sub-)generators on Ω. If for any k-th order generalized

eigenfunction ŵ of L̂T associated to eigenvalue λ, u as defined in (42) is a
k-th order generalized eigenfunction of L associated to the same eigenvalue
λ, then L and L̂ are Siegmund dual and DS is obtained as in item (ii).

Proof. Let ŵ and u be as in item (i). Then,

n∑

x=1

L(y, x)u(x) =
n∑

x=1

⎛

⎝
n∑

x′=y

L̂(x, x′) − L̂(x − 1, x′)

⎞

⎠ u(x)

=
n∑

x′=y

n∑

x=1

(
L̂T(x′, x)u(x) − L̂T(x′, x − 1)u(x)

)
,

which, by noting that ŵ(n) = u(n), reads as

n∑

x′=y

n∑

x=1

L̂T(x′, x)ŵ(x) =
n∑

x′=y

λŵ(x′) = λ

n∑

x′=y

ŵ(x′) = λu(y),

thus, u is eigenfunction with eigenvalue λ. For the generalized eigenfunctions,
the proof follows the same line.

For item (ii) and (iii), from the sets {ŵ1, . . . , ŵn} and {u1, . . . , un} of gener-
alized eigenfunctions of L̂T and L related as in (42), by Theorem 1 the function

D(x, y) =
n∑

i=1

ûi(x)ui(y) =
n∑

i=1

ûi(x)
n∑

x′=y

ŵi(x′) =
n∑

x′=y

n∑

i=1

ûi(x)ŵi(x′)

(44)

is a full-rank duality for L and L̂. By Proposition 8 and condition (43), by passing
to the conjugates, we obtain

n∑

i=1

ûi(x)ŵi(x′) = δx,x′ ,

and hence the function D(x, y) in (44) writes as

D(x, y) =
n∑

x′=y

δx,x′ = 1l{x ≥ y} = DS(x, y).
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In this final example, by using item (iii) of Theorem 5, we show how to
obtain Siegmund duality from the knowledge of eigenvalues and eigenfunctions of
(sub-)generators. The example we consider here concerns two symmetric random
walks on Ω = {1, . . . , n}.
Example 4 (Blocked vs absorbed random walks on a finite grid). The first sym-
metric nearest-neighbor random walk is blocked at the boundaries, namely the
generator L̂ is described, for f : Ω → R, as

L̂f(x) = (f(x + 1) − f(x)) + (f(x − 1) − f(x)), x ∈ Ω \ {1, n},

and, on the boundaries,

L̂f(1) = f(2) − f(1), L̂f(n) = f(n − 1) − f(n).

The second random walk is absorbed at the boundaries, i.e., it is a sub-Markov
process on Ω = {1, . . . , n} with sub-generator L which acts on functions f : Ω →
R as

Lf(x) = (f(x + 1) − f(x)) + (f(x − 1) − f(x)), x ∈ Ω \ {1, n},

and
Lf(1) = 0, Lf(n) = f(n − 1) − 2f(n),

i.e. x = 1 is an absorbing point, while at x = n the random walk either jumps
to the left at rate 1 or “exits the system” at rate 1.

To explicitly obtain eigenfunctions and eigenvalues in this setting we use the
following ansatz :

fa,b,c,θ(x) = a cos(θx + c) + b sin(θx + c), x ∈ Ω,

where a, b, c and θ ∈ R are the parameters to be determined. Regarding the
eigenvalues {λ1, . . . , λn}, in both cases we have

λ1 = 0, λi = 2(cos(θi) − 1), θi =
i − 1

n
π, i = 2, . . . , n.

Hence, all eigenvalues are distinct. The eigenfunctions {û1, . . . , ûn} of L̂ are, for
x ∈ {1, . . . , n} and i = 2, . . . , n,

û1(x) =
1√
n

,

and

ûi(x) =
1√

n(1 − cos(θi))
(− sin(θi) cos(θi(x − 1)) + (1 − cos(θi)) sin(θi(x − 1))).

The eigenfunctions {u1, . . . , un} of L are given, for x ∈ {1, . . . , n} and i =
2, . . . , n, by

u1(x) =
n + 1 − x√

n
, ui(x) =

1√
n(1 − cos(θi))

sin(θi(x − 1)).
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Hence, we note that:

(a) By Theorem 1, L and L̂ are dual and any duality function is of the form

D(x, y) =
n∑

i=1

aiûi(x)ui(y), (45)

for a1, . . . , an ∈ R.
(b) By denoting by ν the counting measure on Ω = {1, . . . , n}, the generator L̂

is self-adjoint in L2(ν) and is, as a matrix, symmetric, i.e., L̂T = L̂. As a
consequence, {û1, . . . , ûn} are eigenfunctions of both L̂ and L̂T.

(c) For all i = 1, . . . , n,

ui(x) =
n∑

y=x

ûi(y), x ∈ Ω,

i.e., the eigenfunctions {u1, . . . , un} are related to {û1, . . . , ûn} as in (42).
(d) The eigenfunctions û1, . . . , ûn are normalized in L2(ν), i.e., for all i, j =

1, . . . , n,
〈ûi, ûj〉L2(ν) = δi,j .

As a consequence, by Theorem 5, for the choice a1 = . . . = an = 1, the dual-
ity function D(x, y) in (45) is the Siegmund duality function DS(x, y) in (37),
namely, for all x, y ∈ Ω,

n + 1 − y

n

+
n∑

i=2

sin(θi(y − 1))
n(1 − cos(θi))

(− sin(θi) cos(θi(x − 1)) + (1 − cos(θi)) sin(θi(x − 1)))

= 1l{x ≥ y}.

As a final remark, we note that, by adding the cemetery state Δ = {n + 1}
accessible at rate 1 only from the state {n}, the absorbed sub-Markov random
walk associated to L becomes a proper Markov process with {1} and {n + 1}
as absorbing states. If we denote by Lext the generator on the extended space
Ω ∪ Δ, it follows that the eigenvalues of Lext remain unchanged, while the new
eigenfunctions {uext

1 , . . . , uext
n , uext

n+1} are such that

uext
n+1(x) = 1, x ∈ Ω ∪ Δ,

and, for all i = 1, . . . , n,

uext
i (n + 1) = 0, uext

i (x) = ui(x), x ∈ Ω.

Hence, the function

Dext
S (x, y) =

n∑

i=1

ûi(x)uext
i (y), x ∈ Ω, y ∈ Ω ∪ Δ,

equals 1l{x ≥ y}. 
�



648 F. Redig and F. Sau

Acknowledgments. The authors thank Institut Henri Poincaré, where part of this
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