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Abstract. Biogeography based Optimization (BBO) is a new evolutionary
optimization algorithm based on the science of biogeography for global opti-
mization. However, its direct-copying-based migration and random mutation
operators make it easily possess local exploitation ability. To enhance the per-
formance of BBO, we propose an improved BBO algorithm called imBBO.
A hybrid migration operation is designed to further improve the population
diversity and enhance the algorithm exploration ability. Empirical results
demonstrate that our imBBO effectively gains the high optimization perfor-
mance by comparing with the original BBO and three BBO variants for 23 out
of 30 CEC’2017 benchmarks. Moreover, our imBBO presents a faster conver-
gence speed.

Keywords: Hybrid migration + Biogeography-based Optimization -
Global optimization

1 Introduction

Optimization problems are of increasing importance in modern science and engineering
fields, especially for the global continuous optimization problem. During the past
decade, they have turned to be more complicated and diversified commensurate with
the unceasing progress of science and technology [41]. The major challenge of the
global continuous optimization is that the problems to be optimized may have many
local optima. This issue is particularly challenging when the dimension is high [15].
Thus, numerous optimization techniques have been advanced to handle these problems
[2, 20]. Currently, the most popular method is meta-heuristics, such as Genetic
Algorithms (GAs) [6], Evolution Strategy (ES) [42], Particle Swarm Optimization
(PSO) [21], Differential Evolution (DE) [40], Ant Colony Optimization (ACO) [9] and

Biogeography-based Optimization (BBO) [36].
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Biogeography-based Optimization (BBO) proposed by Dan Simon in 2008 is a
novel Evolutionary Algorithm (EA) for global optimization based on the equilibrium
theory of island biogeography. Different from other population-based algorithms, in
BBO, poor solutions can improve their qualities by accepting new features from good
ones [19]. Concretely, a habitat in BBO algorithm is called an island and a group of
habitats construct the ecosystem. The habitat suitability index (HSI) presents the
habitability of an island, which can be analogized as the fitness values to evaluate the
problems. The HSI is always determined by a series of independent decision variables
called Suitability Index Variable (SIV), such as the features of temperature, disease and
earthquake in real world. Specially, the most important characteristics in BBO are
migration and mutation operation. The migration, including immigration and emigra-
tion process, is designed to conditionally share the SIV information among habitats in
an ecosystem. The mutation is a probabilistic operation that can randomly modify the
habitat SIVs based on the a priori probability of the habitat.

Similar to other EAs, the BBO algorithm has also some certain weaknesses. The
probabilistic migration can make the population share different information among
solutions to guide good exploitation ability [14]. However, its directcopying-based
migration and random mutation operators make BBO lack enough exploration ability
and cannot improve the diversity of population [15, 41]. Although its convergence
speed is relatively fast at the beginning of the evolutionary process, it easily falls into
local optima. To mitigate these weakness, an improved BBO variant (called imBBO) is
proposed in this paper.

Our contributions of this paper are summarized as follows:

e An imBBO algorithm is proposed to mitigate part weakness of BBO for global
optimization problems, which is composed of a hybrid migration operation and a
scalable direction mutation operation.

e A hybrid migration operation is designed based on the combination of the DE
theory and a scalable method, which helps our imBBO to improve the population
diversity and enhance the algorithm exploration ability.

e We conduct an optimization performance comparison among our imBBO, the
original BBO and three BBO variants. Empirical results demonstrate that our
algorithm effectively outperforms the competitors for 23 out of 30 CEC’2017
benchmarks. Moreover, our imBBO presents a faster convergence speed.

The rest of this paper is organized as follows. Related works are discussed in
Sect. 2. Section 3 defines the problem formulation. Section 4 proposes our imBBO
algorithm. We describe our experimental setup in Sect. 5 and present the results in
Sect. 6. Section 7 discusses our experimental results by answering two research
questions. Section 8 concludes the paper.
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2 Related Work

For global optimization problem, many references have showed that meta-heuristic
algorithms [30], including the categories of nature-inspired meta-heuristic algorithms,
physics-based algorithms and swarm-based methods, become much more popular to
solve these problems or various engineering applications [28]. Part of typical
algorithms include the first category of Genetic Algorithms (GAs) [6], Genetic Pro-
gramming (GP) [29] and Biogeography-based Optimization (BBO) [36], the second
category of Simulated Annealing (SA) [5], Gravitational Search Algorithm (GSA) [33]
and Artificial Chemical Reaction Optimization Algorithm (ACROA) [1] and the third
category of Particle Swarm Optimization Algorithm (PSO) [21], Ant Colony Opti-
mization (ACO) [9] and Atrtificial Bee Colony Algorithm (ABC) [18].

This paper focuses on the Biogeography-based Optimization [36], which shows the
excellent performance on various unconstrained or constrained benchmarks [7]. During
the last decade, more BBO variants are proposed and are available in literature [8, 24, 37].
On the one hand, Mehmet et al. proposed an oppositional Biogeography-based Opti-
mization [11] which is composed of the opposition based learning and migration rates of
original BBO in 2009. To enhance the mutation operation, a real coded BBO algorithm
[15] was proposed in 2010. Similarly, there are some additional BBO variants that the
migration operation is also modified, such as the literatures [13, 17, 19, 20, 22, 41].
Moreover, Haiping Ma analyzed the equilibrium of migration models [23]. Haiping Ma
and Dan Simon discussed migration models using Markov theory [25] and the blended
BBO [26] for constrained optimization. Considering the random initial generation
of population, Simon et al. focused on the re-initialization and local search in
Linearized BBO [38].

On the other hand, Wenyin et al. proposed a combination DE/BBO [14] that
combines the DE algorithm with BBO to improve the searching capability. Moreover, a
hybrid BBO [27] was proposed in 2014, which combine the various EAs with BBO in
different ways. That is, two types of hybridization named as iteration-level
hybridization and algorithm-level hybridization are used.

Naturally, BBO has been widely applied to solve the real-world and engineering
problems, such as the sensor selection [36], power system optimization [32], economic
load dispatch [4] and antenna design [12, 39].

3 Problem Definition

For the different areas of engineering or scientific application, the optimization problems
should be solved to achieve approximate optimal solutions. However, different prob-
lems may have the special constraints and conflicting objectives. So an effective method
is to design a global search algorithm to find these optimal or near-optimal solutions.
Without loss of generality, the mathematical expression presents that the uncon-
strained continuous global minimization problem can formulize as a pair (S, f), where
the SCR” is a bounded set based on R” and f : § — R is a Ddimensional real-valued
function. Finally, the purpose of these problems is to find a point X* € S [15] and the
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X* belongs to a D-dimensional (D € {1,2,3,---}) vector. Thus, the f(X*) value is the
global minimum on S[1]. More specifically, it is required to find an X* € S, as the
formula 1:

VX €S f(X) <F(X) (1)

Note that the function f does not need to be continuous but it must be bounded.
Moreover, the different variables contain the different bound in realworld constraint
optimization problems. We only consider the unconstrained and continuous functions
optimization in this paper.

As mentioned in above, the major challenge in global continuous optimization
problem is that the optimization problems to be solved may easily lead EAs to trap into
local optima. These issues are particularly challenging when the problem has the high
dimension. So, one of the effective methods is that different EAs adopt the special
search and modification method for different optimization problems.

4 QOur Approach

In this section, we firstly introduce our algorithm implementation in Algorithm 1. Then,
a hybrid migration operation is discussed in detail.

Algorithm 1. The main algorithm structure of inBBO
Input: objectives, constraint condition, maximum iterations and migration rate,

population size NP, different algorithm parameters, etc.
Qutput: the optimal objective fitness, solutions and iteration optimum curves
1: Begin
2: Generating the initial population
Setting relevant algorithm Parameters

3

4 Evaluating fitness values for each individual in NP
5 while the halting criterion is not satisfied do

6: Elites inheritance operation

7: for each individual do

8 modifying the number of species

9

: end

10: Calculating migration rate 4, and g, for each habitat X,

11: Modifying the population size with a hybrid migration operation
shown in Section 4.2

12: Enhancing exploration with the mutation operation
referring from [34]

13: Other mechanisms, such as data validation and boundary checking

14: Evaluating the fitness for each individual in NP

15: Elites selection operation

16: end

17: end
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4.1 The Structure of imBBO

Our algorithm structure is showed in Algorithm 1, which is mainly composed of a
hybrid migration operation introduced in Sect. 4.2 and a scalable direction mutation
operation derived from our previous work [34].

Concretely, the hybrid migration operation combines the DE theory with a scalable
method to further improve the population diversity, exploit the population information
and enhance the algorithm exploration ability. Moreover, considering the excellent
algorithm performance of iCPBBOCO [34], we still try to adopt the same mutation
operation into our imBBO algorithm.

To make a fair comparison, all parameters values of our algorithm are set by
referring to [14, 34, 36], which is shown in Table 1. The modification of migration and
mutation operation are marked from Line 11 to Line 12 in Algorithm 1.

4.2 Hybrid Migration Operation

A hybrid migration operation is deployed in our imBBO algorithm, which combines
the DE theory [14, 31] with the component of migration operation from our previous
iCPBBOCO algorithm [34]. The core idea of this proposed method is that good
solutions would be less destroyed, while poor solutions can accept a lot of new features
from good solutions. Furthermore, the implementation is listed in formula 2, which is
composed of the relevant DE theory and a scalable method in formula 3 and formula 4,
respectively. To enhance the diversity, we define a parameter ¢ to further guide the
specific migration operation.

Formual 3 rand <&
Formual 4 rand > ¢

Migraiton{ (2)

For operations of the DE theory, the main mathematical principle is illustrated in
formula 3. Recently, the DE algorithm is used for global permutation based combi-
natorial optimization problems [14], successfully. It is good at exploring the search
space and locating the region of global minimum. It uses the distance and direction
information from the current population and the characteristics of problem to guide the
further search. So, we try to adopt it to our migration operation.

. U()+h«di+foxdy rand <k
)= { Ui(j) —fi*xds —f*dy rand >k
di = Ur(j) = Uy, (j), d> = Uy, (j) = Uy (j)
ds = Unp(j) = Uy (j)

3)

To inherit the excellent performance, we define the standard parameters setting of
DE theory in our algorithm. In formula 3, the variable U;(j) presents the j — th decision
variable in i — th solution. According to the principle of DE theory [14, 16, 31], we
randomly select three additional population ry, r, and r3, where r; # r, # r3. A series of
variables, such as dj, d» and ds, are the difference values of corresponding populations.
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Then, two scale factors of fi and f, are related with the lower/upper bound for immi-
gration probability per individual, which indicates that how much amount of differential
variation [10] will influence on target. Similarly, we also define the guide parameter x.

I* Ui(j) + (1 — 0) x U;(j) rand < ¢
UiG) = { (1-0)xU(j)+ 0= U(j) rand > ¢ )

In description of formula 4, it is an additional method to perform the migration
operation. The new offspring solution comes from a different combination of the source
solution of U; and a target solution of U;. We define a scalable factor 0 to decide the
migration size of individuals. To maintain the stability, we exchanges the scalable
coefficient 0 among each other. That is, the purpose is to apply for asymmetrical
migration, further enhance potential population diversity and exploit the population
information.

5 Experimental Setup

In this section, we describe settings of our conducted experiments to evaluate oural-
gorithm performance. Concretely, we detail the benchmarks, the performance criteria
and algorithms setting.

5.1 Benchmark Functions

To evaluate the performance of the proposed algorithm, 30 benchmarks from
CEC’2017 [3] which is the latest set of benchmarks are employed in our experiments.
These benchmarks are divided into four categories, including unimodal functions
(FO1-F03), simple multimodal functions (F04-F10), hybrid functions (F11-F20) and
composition functions (F21-F30). The more complex benchmarks in evaluation pro-
cess, the better performance superiority of competition will be shown.

Currently, these benchmarks from CEC’2017 [3] are related with the real-parameter
single objective optimization without making use of the exact equations of the test
functions. Some benchmarks are developing with novel features such as new basic
problems, composing test problems by extracting features dimension-wise from several
problems, graded level of linkages, rotated trap problems, and so on.

5.2 Performance Mertrics

We evaluate the performance of our algorithm in terms of two aspects [14, 34], which
are described as follows in detail.

e Error: The error value of a solution X is defined as f(X) — f(X*), where X* is the
standard, global optimization of the objective. The minimum average error is
recorded when the maximum number of fitness function evaluations (maxFEs)
reached in 30 independent runnings. Moreover, we also calculate the average
median values.
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e Convergence graphs: We present the convergence speed of our algorithm com-
pared to the competitors. In order to observably demonstrate differences, we
recalculate all of error values by the logarithm (log) function.

5.3 Algorithm Settings

Table 1 lists the values of key parameters of imBBO. To enable a fair performance
comparison to the competitors, we use the same settings as the ones reported by
[14, 15, 19, 20, 34, 36]. All of algorithms are developed by Matlab. We generate the
initial population by uniform random initialization within the search space. According
to [3], we set the problem dimension D = 100. That is, the search rang is [—100, 100].
Moreover, we define the maxFEs is 10000 * 10. All algorithms need to be terminated
when reaching maxFEs or the error value is smaller than 1078,

Table 1. Overview of parameters setting of imBBO and BBO variants.

Parameter (imBBO and Variant BBOs) | Default
Population size: NP 100
Habitat modification probability 1.0
Mutation probability 0.005
Maximum migration rate: I&E 1.0& 1.0
Number of elites 2
Migration scaling factor: 0 0.3
Migration guide parameter of &, x, @ | 0.5

The competitors in our experiments include original BBO [36] and three BBO
variants. They are the MOBBO [20], the PBBO [19] and the RCBBO [15] algorithms.

5.4 Measurement Settings

All measurements of each algorithm are performed on Windows 7 (64bit) Machine
with Intel Core i5-4690 K CPU 3.5 GHz and 16 GB RAM. Each algorithm variant is
compute-bound and not memory intensive.

To reduce measurement fluctuations caused by randomness (e.g., the randomness
of performing migration and mutation), we independently execute each algorithm
30 times. We take both the median and mean values of the measurements for analysis.
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6 Results

In this section, we report the experiment results in detail. we aim at answering the
following two research questions.

RQ1: What is the performance of our imBBO, compared to the BBO and three
BBO variants? (Section 6.1)
RQ2: How fast is the convergence speed of our imBBO? (Section 6.2).

6.1 Performance Results

Table 2 records the experimental results of the comparison between our imBBO
algorithm and competitors when applied to 30 CEC’2017 benchmarks in reaching to
maxFEs. The columns BBO, imBBO, MOBBO, PBBO and RCBBO list the measured
results of each algorithm. We report the median and mean values for 30 executions of
each algorithm. The rows of the table record the measured details for each benchmark.
Moreover, we highlight the median and mean values in bold, which are the best for
each benchmark.

Our experimental results reveal that our imBBO outperforms the competitors for
23 out of 30 CEC’2017 benchmarks, except for F1, F3, F4, F7, F12, F17 and F24.
Analyzing the experimental results, our algorithm achieve the better algorithm per-
formance of the hybrid and composition functions by comparing with the unimodal and
simple multimodal functions. Hence, we conjecture that the components of our imBBO
make an effect to be the complex searching.

6.2 Convergence Speed

It is interesting to understand the convergence speed of our approach compared to the
others. The convergence is an important metric to illustrate whether or not a algorithm
has reached to the steady state.

Our experimental results demonstrate that the convergence speed of imBBO is
much faster than other competitors, that part of representative curves are shown in
Fig. 1 (blue line).
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Fig. 1. The convergence curves of imBBO algorithm and four competitors (BBO, MOBBO,
PBBO and RCBBO) for F02, F10, F15, F18, F19, F21, F28 and F30 benchmarks. The X-axis
shows the number of iteration (NFFEs). The Y-axis presents the algorithm values of each
iteration (log-error). (Color figure online)
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7 Discussion

In this section, we answer the research question according to the above experimental
results. Moreover, we further analyze the experimental results.

7.1 Research Questions

Regarding RQ1, we compare the algorithm performance of our imBBO with the
original BBO and three BBO variants. The statistical results show that our algorithm
works better than the competitors for 23 out of 30 CEC’2017 benchmarks.

Regarding RQ2, we present part of functions convergence speed of our imBBO
and the competitors in Fig. 1 when the evolution running reaches to the maxFEs. The
experimental results indicate that our algorithm quick converges to a relatively stable
state (the blue line in Fig. 1).

7.2 Results Analyzing

Although our imBBO algorithm outperforms the other competitors, the final algorithm
results present some differences compared with standard optimization values from
CEC’2017. Thus, we analyze the reasons as follows: (1) The functions from CEC’2017
are the latest test benchmarks. Much more complex functions are introduced, especially
for hybrid functions and composition functions. Thus, these conditions take the
potential probability to influence the algorithm performance. (2) Our global is to verify
our imBBO for mitigating part of issues of exploration ability and diversity. We focus
on the performance superiority by comparing with other popular BBO variants,
especially for the latest CEC’2017 benchmarks set. (3) We insist upon our own view
that different exploration methods should be involved into algorithm for different
objectives. That is, different characteristics of objectives should be analyzed at the
begin of evolution process. Since it is the first time to do the test in CEC’2017, there is
no special consideration of objectives in our imBBO algorithm. Furthermore, more
components should be developed in future.

8 Conclusion

In this paper, an improved BBO variant called imBBO, is proposed to solve the global
optimization problems. Concretely, a hybrid migration operation is designed to further
improve the algorithm exploration ability and exploit the population information,
which conditionally combines the DE theory with a scalable method to increase the
diversity of population in formula 4. Moreover, the mutation operation in our imBBO
derives from our previous work because it has been proved its performance
successfully.

To evaluate the algorithm performance of imBBO, we conduct the comparison by
evaluating our algorithm to the original BBO and three BBO variants based on
30 CEC’2017 benchmarks [3] with different characteristics. Empirical experimental
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results demonstrate that our algorithm effectively outperforms the competitors for
23 out of 30 benchmarks.

In future work, the influence of population size, other parameters tuning and the
problem dimension will be further studied. Additional, this research just focus on the
unconstrained global numerical optimization problems. Another work will extend our
imBBO to address some constrained, real-world optimization problems, such as virtual
machine consolidation problems [35, 43].
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