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Prologue

This book presents contributions to a workshop dedicated to Prof. Gerd Gudehus on
occasion of his 80th birthday. The workshop was organized within the
China-Europe Conference on Geotechnical Engineering at the Universität für
Bodenkultur, Vienna, Austria. There was a cocktail dinner given by Prof. Gudehus
for the workshop participants on 13 August 2018. The workshop lasted for three
full days from 14 to 16 August 2018 with presentations and subsequent discussions.
The workshop also attracted many conference participants. The lively discussions
reminded me of the good old times with Gerd in Karlsruhe.

The book title “Desiderata Geotechnica” was suggested by Gerd, who has been
opposing trivialization and canonization in research because such mind-setting may
eventually undermine any development in our profession. In his own contribution
and the epilogue in this book, Gerd draws our attention to the so-called critical
phenomena and their fractal nature, which are highly relevant for many problems in
geo-engineering and geoscience. The research is challenging yet rewarding, and
may bring about a paradigm change in our perception for safety and the observa-
tional method. In this sense, our workshop offered an excellent opportunity for a
much desired discourse.

All workshop participants deserve my heartfelt thanks for their contributions and
their diligence to deliver their publications on time. I am indebted to the workshop
chairs Prof. Alexander Scheuermann (Queensland, Australia) and Prof. Torsten
Wichtmann (Weimar, Germany), and to Prof. Dimitrios Kolymbas (Innsbruck,
Austria) for his laudation. The articles in this book, many written by former stu-
dents, friends, and colleagues of Gerd, cover a diverse range of topics that reflect
the breadth and depth of geomechanics research. The cocktail dinner was sponsored
in part by the foundation engineering contractor Keller Grundbau, Germany, rep-
resented by their CEO Dr. Venu Raju. This book is a humble tribute to Prof.
Gudehus, who has made such a profound impact on our profession.
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Gerd Gudehus was born on 23 July 1938 in Hamburg, Germany. His father was
an electrical engineer and his mother an artist. Gerd read civil engineering at the
Technical University Berlin and obtained his diploma and Dr.-Ing. there. In 1968,
Gerd joined the soil mechanics group of Karlsruhe University in South Germany,
now Karlsruhe Institute of Technology. Only some five years later in 1973, the then
35-year-old Gudehus was offered the chair professor of soil mechanics in
Karlsruhe. He set a record as the youngest chair professor of geotechnical engi-
neering in the history of German universities. Since then, Gerd was at the helm
of the largest research institute in geotechnical engineering for more than three
decades until his retirement in emeritus status in 2006. In its prime time, the
institute had up to 100 people on staff. The leadership of the large institute of strong
individuals called for hard work and ingenuity. Besides the position as head of the
institute, Gerd served as the dean of the faculty of civil engineering and as the vice
president for research of the university.

This reads like a storybook career. However, Gudehus is no ordinary man.
Ordinary people make career themselves, and extraordinary people establish a
school of thought with profound impact on a whole generation. Gerd, with his
passion for rational mechanics, established the Karlsruhe school of soil mechanics
with the hallmark of rational approach to geotechnical engineering, an otherwise
much empiricism-dominated engineering discipline. In spite of his management
responsibilities, Gerd’s research output has been very impressive. More impressive
is his ability to inspire young fellows at various stages of their career. During the
past 33 years as chair professor, Gerd supervised some 75 theses leading to the
degree of Dr.-Ing. and Dr. Sci. (habilitation). This set another record of most
supervised theses of our trade. Those who have ever worked under his tutelage were
instilled with the Karlsruhe esprit of passion and rationale for research to follow one
day his footsteps and pursue an academic career. Some 16 of his students became
chair professors in Germany and abroad. Yet another record! This is phenomenal

Gudehus with Wichtmann during the Workshop
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and serves as a testament to the enormous impact of Gerd and his Karlsruhe school
in our community.

Over the years, the institute developed into a powerhouse for both fundamental
and applied research with a superb laboratory. Gerd acquired, as PI and as main
applicant, 7 SFBs (large research projects funded by the German Research
Foundation with a budget of double digit millions Euros for each project).
However, I choose to leave out the many groundbreaking achievements in funda-
mental research in Karlsruhe, for which the institute is well known, and mention
instead his capacity in delivering bespoke solutions to problems from engineering
practice. A perusal of the publication series of the institute shows the great diversity
of the research topics from practice, such as soil nailing, jet grouting, ground
freezing, slope stabilization with piles, soil dynamics in high-speed railway,
granular flow in silos, soil improvement with bacteria, open pit mine, and preser-
vation of historical monuments, covering virtually the whole spectrum of
geotechnical engineering. Many of these research works were pioneering and the
outcome often found itself later in norms and standards. In passing, Gerd served as
the ombudsman of the German Standard DIN 1054 under the Eurocode EC7 on
stability analysis in geotechnical engineering, where he could draw on his wealth of
experience from previous projects.

Gerd is well known for his frank sincerity, often straight to the point without
frills. This is by no means a lack of empathy. On the contrary, Gerd is an
unshakable humanist. He fostered close contact with the scholars from the Eastern
bloc countries long before the fall of the iron curtain, e.g. GDR, Poland,
Czechoslovakia, Soviet Union, and China. Gerd invited them to carry out joint
research in his institute and provided them with much-needed financial support. On
a personal note, I myself, as one of the invitees from the then communist countries,
owe him as much for his advice and inspiration in research as for his help and
encouragement in difficult times. Give credit where credit is due. For his
unremitting effort in promoting scientific cooperation between Germany and
Poland, Gerd was awarded an honorary doctorate by the Politechnika Gdańska,
Poland, in 1995.

With the emeritus status in 2006 came the turning point in Gerd’s life. However,
you are dead wrong if you assume that he would mothball his research and indulge
in his hobbies. And Gerd has many hobbies. He is a passionate piano player and a
talented painter with love for pencil sketch. Besides his mother tongue, Gerd speaks
English, Russian, Greek, and French. However, none of these seems to exert
stronger attraction than his passion for geomechanics research. Exempted from his
management responsibility, Gerd has become even more productive. A monograph
with the title “Physical Soil Mechanics” was published in 2011, a massive tome
with daunting 800 pages. A search in the Scopus database brings out some 20
publications after 2006, which makes about two publications a year. Many of his
papers are published in peer-reviewed journals. His latest work with the title: “On
the stability of geotechnical systems and its fractal progressive loss” was published
in Acta Geotechnica this year. Obviously, this man is still at the forefront of
research. As you can see, Gerd is on a good way to set yet another record of most
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publications by an emeritus professor, and we wish him success onwards and
upwards!

To paraphrase Aristotle, man is at his best when he is doing his best at what he
likes doing best. No doubt, Gerd was and is at his best, because he believes that
“Soil is matter of its own right” (the very first sentence from his book “Physical Soil
Mechanics”). We wish him many happy returns of the day, and we all look forward
to being inspired by his contributions to geomechanics research for many more
years to come!

October 2018 Wei Wu
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Modelling Grain Fragmentation
in Hypoplasticity

Erich Bauer(B)

Institute of Applied Mechanics, Graz University of Technology,
8010 Graz, Austria

erich.bauer@tugraz.at

Abstract. The focus of the present paper is on constitutive modelling
of the influence of grain fragmentation on the mechanical behaviour of
cohesionless granular materials like sand, gravel or broken rock. To this
end the so-called solid hardness of a grain assembly is defined within a
continuum description and is a key parameter for modelling the effect of
both grain fragmentation and grain rearrangement. While in the original
version by Bauer the solid hardness is a constant parameter, an extended
concept has recently been proposed where the solid hardness is consid-
ered as a state dependent quantity. The general format of the evolution
equation for the solid hardness allows the modelling of the influence of
various factors on grain fragmentation. Such factors are, for instance, an
increase in the mean stress, the deviatoric stress and the rotation resis-
tance of particles and also a time dependent process caused by progres-
sive weathering. The embedding of the solid hardness into hypoplasticity
follows the consistency condition originally proposed by Gudehus. In this
paper the consistency condition is also applied to proposed constitutive
equations for time independent as well as rheological material properties.
The performance of these different models is verified with experiments.

1 Introduction

Grain fragmentation leads to changes in the particle size distribution and the
internal structure of the granular material. Various concepts for analysing exper-
imental investigations and for mathematical modelling have been proposed in the
literature, e.g. [2,3,12,15–17,19,20,28,36,41–43,51]. The results of experimental
investigations reveal that the amount of grain fragmentation in the form of grain
abrasion and grain breakage strongly depends on the grain hardness, the grain
shape, the grain size distribution, the packing density and the loading path
[47,48]. Enhanced experimental tools allow a deeper insight into the interac-
tion between load states and grain breakage on the micro-level and also provide
new opportunities to trace the evolution of grain breakage. For instance, recent
investigations with the help of X-ray tomography indicate that under deviatoric
loading grain fragmentation becomes dominant within the localized zone [2].
Moreover, grain fragmentation in shear zones can also be detected under lower
pressures [49]. The grain hardness is not only a question of the mineralogical
c© Springer Nature Switzerland AG 2019
W. Wu (Ed.): Desiderata Geotechnica, SSGG, pp. 1–20, 2019.
https://doi.org/10.1007/978-3-030-14987-1_1
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2 E. Bauer

composition of the solid material, but also influenced by the state of weathering.
The time dependent process of weathering leads to a degradation of the solid
hardness which is related to the local evolution of environmental conditions.
Depending on the state of weathering of the material the abrasion and breakage
resistance of grains can be different for dry or moist states, i.e. the disintegration
of the material under higher stresses due to water-induced stress corrosion can
be accelerated [46]. Thus, the change of the moisture content of the grain mate-
rial may have an important influence on the long term behaviour of weathered
granular materials. Progressive weathering caused by hydro-chemical reactions
and the progressive propagation of micro-cracks is a time dependent process
leading to phenomena such as collapse settlements, creep and stress relaxation.
For coarse grained and moisture sensitive materials such a mechanical behaviour
cannot be explained based on the concept of effective stresses. Grain fragmen-
tation causes a change of the grading, the grain shape, the limit void ratios and
the critical void ratio [4,23,39,50].

The focus of the present paper is on constitutive modelling of the influence of
grain fragmentation on the mechanical response of cohesionless granular materi-
als like sand, gravel or broken rock. To this end the so-called solid hardness of a
grain assembly is defined within a continuum description and is a key parameter
for modelling the effect of both grain fragmentation and grain rearrangement.
This solid hardness is a parameter in the compression law by Bauer [5,6] and
can be applied to an unlimited pressure range. The concept of the solid hard-
ness was embedded into non-polar constitutive models, e.g. [8,9,24,29,44,53],
and into micro-polar models, e.g. [18,26,31,32,52]. While in the original ver-
sion by Bauer the solid hardness is a constant parameter, an extended concept
has recently been proposed where the solid hardness is considered as a state
dependent quantity [10,12,14,34]. The general format of the evolution equation
for the solid hardness allows to account for the influence of various factors on
grain fragmentation. In the present paper factors of influence are divided into
rate independent factors and rheological factors. Another distinction is made
between the description of non-polar and micro-polar effects on grain fragmen-
tation.

The paper is organized as follows: In Sect. 2 the definition of the solid hard-
ness in the sense of a continuum description is summarized first for the original
version with a constant solid hardness and second for an extension to a pressure
dependent fictitious solid hardness formulation. The latter allows the application
of the concept of the soild hardness to cases where experimental data are avail-
able only for a limited range of pressures. The embedding of the solid hardness
into a hypoplastic constitutive model with help of the consistency condition by
Gudehus is outlined in Sect. 3. Section 4 deals with the modelling of the time
dependent process of degradation of the solid hardness caused by progressive
weathering. The performance of the model is demonstrated by simulation of tri-
axial compression tests and creep tests under different confining pressures and
different deviatoric stresses using only a single set of constants. The numerical
results are compared with experiments of a moisture sensitive broken sandstone.
An extension of the concept of the solid hardness to account for also micro-polar



Modelling Grain Fragmentation in Hypoplasticity 3

effects on grain fragmentation is presented in Sect. 5. In order to illustrate the
reduction of the mean grain size depending on particle rotation, shearing of a
granular strip under a constant normal stress is investigated using the extended
micro-polar hypoplastic model and the finite element method.

Throughout the paper, indices on vector and tensor components refer to an
orthonormal Cartesian basis and the symbol δik denotes the Kronecker delta.
The summation convention by Einstein over repeated indices is employed. A
superimposed dot indicates the material time derivative. Compressive stress and
strain and their rates are negative as in the sign convention of rational continuum
mechanics.

2 Continuum Description of the Solid Hardness

Compression tests carried out with various granular materials show a qualita-
tively similar behaviour. At lower pressures the reduction of the void ratio is
caused by a reorientation of the grains within the grain skeleton while under
higher pressures the additional compaction is related to progressive grain crush-
ing. In Fig. 1 it is clearly visible that for different initial void ratios the distance
between the compression curves becomes smaller with an increase in the mean
pressure. At very high pressures the curves merge together, which means that
the memory of the material of the initial density is erased as a result of both
grain crushing and a reorientation of particles into a denser state. In a semi-
logarithmic representation the compression curves show an S-shape, where the
point of inflection is related to the pressure level where grain crushing becomes
dominant. Experiments show that the pressure at the point of inflection mainly
depends on the mineral composition and the state of weathering of the solid
material. Such a behaviour can also be observed for arbitrary granular materials
and it is also verified by numerical simulations with the discrete element method,
e.g. [22,36]. As the point of inflection shows no noticeable influence on the initial
density, it is a well defined state and an appropriate parameter for a constitutive
model.

In the following the pressure, hs = −σmm, where the point of inflection
appears is termed “solid hardness” and is a material parameter in the compres-
sion law by Bauer [5,6]. In particular, the compression law models the reduction
of the maximum void ratio ei under monotonic isotropic compression according
to the following exponential function:

ei = ei0 exp
{

−
(

3 p

hs

)n}
. (1)

In Eq. (1) p = −σmm/3 denotes the mean pressure. Parameter ei0 denotes the
maximum void ratio for p ≈ 0 and n is related to the inclination of the com-
pression curve at the point of inflection. For p → ∞ the void ratio ei → 0,
as illustrated in Fig. 2(a) the compression law (1) reflects the history of grain
reorientation and the effect of fragmentation within the whole pressure range in
a phenomenological manner.
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(a) (b)

Fig. 1. Oedometric compression experiments by Yamamuro, Bopp and Lade [56] on
sands starting from different initial void ratios: (a) Cambra sand; (b) Gybsum sand

It should be noted that for the quantity hs in the compression law (1) different
names are used in the literature. For instance, hs is termed: “granulate hardness”
by Gudehus [24], Herle and Gudehus [29], “granular hardness” by Bauer [5,6]
and by Niemunis and Herle [44], and “granular stiffness” by von Wolfferdorff [53].
Already in the paper by Gudehus [24] a distinction is made between “granulate
hardness” and “argotropic granulate hardness” for the rate-independence and
rate-dependence of granular materials, respectively. Later Gudehust [25] and
Gudehus [27] introduced the term “solid hardness” to refer to a rate-dependent
hs. The term “solid hardness” was adopted by Bauer [10] for modelling the time
dependent process of degradation of hs, which can be relevant, for instance, for
weathered and moisture sensitive rockfill materials. In any case the parameter
hs in Eq. (1) is related to the grain aggregate under isotropic compression in the
sense of a continuum description and should be distinguished from the hardness
of an individual grain. For the sake of simplicity the term “solid hardness” is
used uniformly in the present paper for both the rate-independent and rate-
dependent hs.

For unweathered granular materials the pressure required to reach the point
of inflection is high and it cannot usually be achieved with standard test equip-
ment available for isotropic compression experiments in soil mechanics labora-
tory. On the other hand oedometer tests under high pressure are more easier
to carry out. Investigations show that the solid hardness can also be calibrated
with sufficient accuracy if data are used which are obtained from an oedome-
ter test instead of an isotropic test. However, oedometer devices, which allow
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(a)
hs

point of inflection

compression curve
ei0

e

(3p)
(b)

e
ei0

ec0

ed0

ei

ec

ed

(3p)

Fig. 2. (a) Monotonic isotropic compression law in a semi-logarithmic representation;
(b) pressure dependence of the maximum void ratio ei , the critical void ratio ec , and
of the minimum void ratio ed

measuring the lateral stress in addition to the vertical stress are rare [35]. With
the vertical stress σv from a standard oedometer device the mean pressure p
can be estimated with help of the coefficient of the earth pressure at rest Ko, i.e.
p = −σv (1 + 2Ko)/3, where K0 can be approximated using the formula given
by Jaky [33], i.e. Ko ≈ 1 − sin ϕc. Herein ϕc denotes the critical friction angle.

With respect to the time derivative of the compression law (1)

ėi =
d ei

d t
= −ei n

ṗ

p

(
3 p

hs

)n

(2)

and the general relation between the rate of the void ratio ė and the volume
strain rate ε̇mm:

ė = (1 + e)ε̇mm (3)

a pressure dependent compression modulus can be derived, i.e.

d p

d εv
= − hs

3n

(
1
ei

+ 1
) (

3 p

hs

)1−n

. (4)

As discussed by Herle and Gudehus [29] and Bauer and Herle [7] the compression
modulus obtained in Eq. (4) formally resembles the oedometric compression law
proposed by Ohde [45]:

d p

d εv
= −ξ

(
− p

pr

)η

. (5)

Herein pr is negative and a reference pressure, e.g. the atmospheric pressure.
With η = 1 − n Eq. (5) can also be represented as:

d p

d εv
= −ξ

(
− hs

3 pr

)1−n (
3 p

hs

)1−n

. (6)
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The comparison of relation (4) with (6) yields for the parameter ξ:

ξ =
hs

3n

(
1
ei

+ 1
) (

−3 pr

hs

)1−n

. (7)

In contrast to formula (5) for the compression modulus by Ohde the parameter
ξ in Eq. (7) is not constant as it depends on the void ratio ei. Consequently, the
compression modulus obtained from the law by Bauer can only be approximated
with the law by Ohde for a small range of void ratios.

2.1 Pressure Dependent Solid Hardness

If experimental data from compression tests are only available for a lower pres-
sure range, the calibration using Eq. (1) will lead to an overestimation of the
solid hardness. That is justified by the fact that under lower pressures the solid
material does not reveal its intrinsic ultimate strength, i.e. the particles behave
like rigid bodies and densification is only related to the reorientation of grains.
For instance, for medium quartz sand a solid hardness of hs = 5800 MPa was
reported by Herle and Gudehus [29], which reflects the experimental data for a
low pressure range. For the same material a value of hs = 190 MPa was identified
for the data obtained from a high pressure test by Bauer [6]. It is obvious that the
pressure range considered in experiments has a great influence on the adaptation
of hs using Eq. (1). If the maximum pressure applied in the experiment does not
reach the point of inflection, only a fictitious value of hs can be obtained. In
order to model a smooth transition of the compression behaviour from the lower
to the higher pressure range the constant solid hardness hs in Eq. (1) is replaced
by the pressure dependent quantity hsp. The evolution of the solid hardness with
increasing mean pressure can be computed from the following equation:

ḣsp = − ṗ

p

(
3 p

bp

)np

hsp for ṗ > 0. (8)

Herein ḣsp denotes the rate of the solid hardness, i.e. ḣsp = dhsp/dt , ṗ is the rate
of the mean pressure, i.e. ṗ = dp/dt , and bp and np are material parameters.
Relation (8) also permits the adaptation of the solid hardness to an arbitrary
range of experimental data available, provided that the pressure range is relevant
to the practical application. It is worth noting that although Eq. (8) is of the
rate type, the reduction of the solid hardness is rate independent. With respect
to the initial state, i.e. hsp(p = p0) = hs0, the integration of Eq. (8) yields for
the pressure dependent solid hardness hsp:

hsp = hs0 exp
{

− 1
np

[(
3 p

bp

)np

−
(

3 p0
bp

)np
] }

. (9)

Relation (8) is also part of the more extended concept for modelling grain frag-
mentation outlined in Sect. 5.
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3 Embedding the Solid Hardness into Hypoplasticity

The strategy implementing of the concept of solid hardness into the framework of
hypoplasticity is demonstrated for a particular non-polar hypoplastic constitu-
tive model proposed by Bauer [6] and Gudehus [24]. The constitutive equations
for the components of the objective stress tensor have the following form:

σ̊ij = fs

[
â2 ε̇ij + (σ̂kl ε̇kl) σ̂ij + fd â (σ̂ij + σ̂d

ij)
√

ε̇kl ε̇kl

]
. (10)

The relation between the rate of the void ratio ė, the current void ratio e,
and the volume strain rate ε̇v = ε̇mm reads:

ė = (1 + e) ε̇mm. (11)

The quantities in Eq. (10) are defined as:
σ̊ij ... objective stress rate,
ε̇ij ... rate of deformation,
σij ... Cauchy stress,
σ̂ij ... normalized Cauchy stress σij , i.e. σ̂ij = σij/σkk,
σ̂d

ij ... deviatoric part of σ̂ij , i.e. σ̂d
ij = σ̂ij − δij/3,

â ... critical stress state factor,
fd ... pressure dependent relative density factor,
fs ... stiffness factor.

The critical stress state factor â can be adjusted to arbitrary stress limit
conditions with a conical shape in the principal stress space and is generally a
function of the stress deviator and the so-called critical friction angle ϕc [6]. In
the present paper the adaptation of â to the stress limit condition by Matsuoka
and Nakai [40] is considered, i.e. [8]:

â =
sin ϕc

3 − sin ϕc

⎡
⎢⎣

√√√√√8/3 − 3 σ̂d
kl σ̂d

kl + g
√

(3/2) (σ̂d
kl σ̂d

kl)3

1 + g
√

(3/2) σ̂d
kl σ̂d

kl

−
√

σ̂d
kl σ̂

d
kl

⎤
⎥⎦ (12)

with:

g = −
√

6 σ̂d
kl σ̂d

lm σ̂d
mk(

σ̂d
pq σ̂d

pq

)3/2
.

The density factor fd is a function of the current void ratio e, the critical
void ratio ec and the minimum void ratio ed, i.e.:

fd =
(

e − ed

ec − ed

)α

, (13)

where α is a material parameter. The critical void ratio ec and the minimum
void ratio ed are pressure dependent and related to the maximum void ratio ei

according to the postulate by Gudehus [24], i.e.:

ei

ei0
=

ed

ed0
=

ec

ec0
= exp

{
−

(
3 p

hs

)n}
, (14)
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where the material parameters n and hs are defined according to Eq. (1). The
values of the corresponding material parameters ei0, ed0 and ec0 are related to
p ≈ 0. Although the equations for the pressure dependency of ec and ed are
affine to the one for ei, it is worth noting that only the pressure dependency of
the maximum void ratio ei is related to the monotonic isotropic compression.
Moreover, the isotropic compression relation (1) defines the upper bound of
possible void ratios. Compared to previous constitutive models for the density
factor fd, e.g. [54,55], the enhanced version of fd by Bauer [5] together with
the postulate by Gudehus expressed in Eq. (14) has two advantages. First, the
definition of the range of possible void ratios depending on the mean pressure
is defined consistently as illustrated in Fig. 2(b) and, second, the number of
material parameters required is reduced.

The stiffness factor fs is the product of three parts, i.e.:

fs = fe fσ fb . (15)

Herein the density dependent part fe is defined as the ratio of the maximum
void ratio ei to the current void ratio e, i.e.

fe =
(ei

e

)β

, (16)

where β is a material parameter. In relation (15) factor fσ was suggested by von
Wolfferdorff [53] and takes into account a decrease in the incremental stiffness
with an increase in σ̂klσ̂kl, i.e.

fσ =
1

σ̂klσ̂kl
. (17)

Factor fb in Eq. (15) is called barotropy factor and is obtained from a consistency
condition as outlined in the following section.

3.1 Consistency Condition by Gudehus

For embedding the compression Eq. (1) into the hypoplastic constitutive Eq. (10)
the response of both equations must coincide for a monotonic isotropic compres-
sion starting from the pressure dependent maximum void ratio ei. This require-
ment can be fulfilled using the consistency condition proposed by Gudehus [24].
In particular, for isotropic compression the rates of the mean pressures obtained
from the compression law, i.e. ṗ (comp − law), and from the hypoplastic con-
stitutive equation, i.e. ṗ (hypo − isotrop), must coincide. Thus, the consistency
condition by Gudehus reads:

ṗ (comp − law) = ṗ (hypo − isotrop). (18)

For a constant solid hardness hs the time derivative of the compression law
(1) yields:

ṗ (comp − law) = − ėi

ei

hs

3n

(
3 p

hs

)1−n

. (19)
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For isotropic compression, i.e. σ11 = σ22 = σ33 , ε̇11 = ε̇22 = ε̇33 and σ̇11 =
σ̇22 = σ̇33 , fe(e = ei) = 1 , fσ(σ11 = σ22 = σ33) = 3 , fd(e = ei) = [(ei0 −
ed0)/(ec0 − ed0)]α , and with respect to ėi = (1 + ei)ε̇mm , the rate of the mean
pressure calculated from the constitutive Eq. (10) reads:

ṗ (hypo − isotrop) = − σ̇kk/3 = −fb hi
ėi

3 (1 + ei)
(20)

with the constant quantities

hi = 3 â2
o + 1 −

√
3 âo

(
ei0 − ed0

ec0 − ed0

)α

and

âo = â(σ11 = σ22 = σ33) =

√
8
3

sin ϕc

3 − sin ϕc
.

As the barotropy factor fb is the only free quantity in Eq. (20) it can be deter-
mined with help of the consistency condition. Substituting Eqs. (19) and (20)
into the consistency condition (18) yields:

fb =
hs

n hi

(
1 + ei

ei

) (
3 p

hs

)1−n

. (21)

Herein ei denotes the pressure dependent maximum void ratio according to
Eq. (1). It can be noted that for a solid hardness hs, which is not a material
constant, the barotropy factor fb may differ from Eq. (21) as discussed in the
following sections.

3.2 Barotropy Factor for the Pressure Dependent Solid Hardness

In order to determine the barotropy factor fb relevant to the pressure dependent
solid hardness given in Eq. (9), the equation for the rate of the mean pressure,
i.e. ṗ (comp − law) , must be updated before the consistency condition (18) can
be applied. Replacing the constant solid hardness hs in Eq. (1) with the pressure
dependent solid hardness hsp of Eq. (9), the time derivative of the compression
law yields:

ṗ (comp − law) = − ėi

ei

hsp

3n

(
3 p

hsp

)1−n [
1 +

(
3 p

bp

)np
]−1

. (22)

Substituting Eqs. (22) and (20) into the consistency condition (18) yields the
relevant barotropy factor:

fb =
hsp

n hi

(
1 + ei

ei

) (
3 p

hsp

)1−n [
1 +

(
3 p

bp

)np
]−1

, (23)

where ei is the pressure dependent maximum void ratio depending on hsp.
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4 Degradation of the Solid Hardness Caused
by Weathering

Grain fragmentation not only depends on the load applied. Even under constant
load progressive weathering of the solid material can lead to degradation of the
strength of the solid grains and consequently to grain breakage. The reduction
of the solid hardness is a time dependent process and it is influenced by the
state of weathering and the evolution of environmental conditions. Depending
on the state of weathering the abrasion and breakage resistance of grains can
be different for dry or water-saturated states. Experiments and field observation
show that a change of the moisture content can accelerate the degradation of
the solid hardness due to water-induced stress corrosion at micro-cracks, which
subsequently leads to grain breakage and so-called wetting deformations, e.g.
[37,38,48]. For coarse-grained materials like sandy gravel and rockfills the effect
of capillary forces on the effective stresses are negligibly small and not considered
in the following. In order to model the time dependent reduction of the strength
of the solid material the constant solid hardness hs in the compression law (1) is
replaced by the state dependent solid hardness hst. The degradation of the solid
hardness is assumed to be irreversible and modelled by the following evolution
equation proposed by Bauer [10]:

ḣst = −1
c

(hst − hsw). (24)

Herein ḣst denotes the rate of the solid hardness, hst is the current value of the
solid hardness, hsw denotes the value of the solid hardness in the asymptotic
state, and c scales the velocity of degradation and has the dimension of time.
Parameter hsw and c may depend on the evolution of the environmental con-
ditions and are usually not material constants. For a more complex evolution
history the proposed concept of the solid hardness can also be extended to drying
and wetting cycles.

Equation (24) can be integrated and, with respect to the initial state hst(t =
0) = hso, one obtains:

hst = hsw + (hso − hsw) exp
[
− t

c

]
. (25)

For general 3-D problems the state dependent solid hardness hst was imple-
mented into hypoplasticity. To this end the hypoplastic constitutive Eq. (10) was
extended with an additional term depending on the current stresses σij , the solid
hardness hst and its rate ḣst, i.e.

σ̊ij = fs

[
â2 ε̇ij + (σ̂kl ε̇kl) σ̂ij + fd â (σ̂ij + σ̂d

ij)
√

ε̇kl ε̇kl

]

+
ḣst

hst

(
1
3
σkk δij + κ σd

ij

)
. (26)
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With ḣst in the second term on the right-hand side of Eq. (26) the hypoplas-
tic constitutive equation is rate dependent, i.e. the mechanical response is also
influenced by the loading velocity. In the second term the stress is decomposed
into its isotropic part and its deviatoric part. The latter, scaled with parameter
κ , allows a refined modelling of creep strain and stress relaxation [10,21]. For
states where the degradation of the solid hardness has been completed, i.e. for
ḣst = 0, the rate independent hypoplastic model (10) for a constant solid hard-
ness is obtained. It is obvious that the constitutive model (26) captures both the
behaviour of the material under dry and wet condition.

The corresponding barotropy factor fb can again be determined from the
consistency condition (18). Replacing in Eq. (1) the constant solid hardness hs

with the state dependent solid hardness hst of Eq. (25), the time derivative of
the compression law yields:

ṗ (comp − law) = p

[
ḣst

hst
− ėi

n ei

(
3 p

hst

)−n
]

. (27)

For isotropic compression, the rate of the mean pressure calculated from the
constitutive Eq. (26) reads:

ṗ (hypo − isotrop) = − σ̇kk/3 = −fb hi
ėi

3 (1 + ei)
+ p

ḣst

hst
. (28)

Substituting Eqs. (27) and (28) into the consistency condition (18) yields:

fb =
hst

n hi

(
1 + ei

ei

) (
3 p

hst

)1−n

, (29)

where ei is the maximum void ratio depending on the state dependent solid
hardness hst.

To demonstrate the performance of the hypoplastic model (26) the experi-
mental results carried out by Li [37] for a moisture sensitive broken sandstone
under triaxial compression are compared with the numerical simulations [11]. For
the calibration of the dry material the hypoplastic model for a constant solid
hardness can be considered. The following set of material parameters is obtained:
ϕc = 40◦ , hso = 47MPa , n = 0.3 , eio = 0.59 , eco = 0.48 , edo = 0.20 ,

α = 0.18 and β = 2.50 . After water saturation degradation of the solid hardness
takes place and the second part on the right-hand side of Eq. (26) is also active.
The material parameters for modelling the degradation of the solid hardness
according to Eqs. (25) and (26) are: hsw = 11.5MPa , κ = 0.7 and c= 72 h. With
the same set of material parameters numerical simulations are carried out for the
dry and wet states of the material and for two different lateral stresses. Figure 3
shows the comparison of the numerical results with experiments, i.e. Figure 3(a)
and (b) show the results for a lateral stress of −100 kPa and Fig. 3(c) and (d)
show the results for a lateral stress of −1000 kPa. The mechanical behaviour
under monotonic triaxial compression is shown in Fig. 3(a) and (c) for both the
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dry and water saturated states of the material. For the water saturated case the
degradation of the solid hardness has already been completed under the corre-
sponding initial isotropic state befor deviatoric loading starts. As can be seen in
Fig. 3(a), the deviatoric stress (σ11 − σ33) and the volumetric strain εv against
the axial strain ε11 is different for the dry and the water saturated materials.
In particular the compaction at the beginning of deviatoric loading are signif-
icantly higher for the water saturated material, while the maximum deviatoric
stress is higher for the dry material. Moreover, the subsequent dilation is con-
siderably lower for the saturated material, which can be attributed to the more
pronounced particle disintegration. Creep behaviour after water saturation is
investigated under different deviatoric stress states as shown in Fig. 3(b) and
(d). As can be seen, the axial creep deformation is more pronounced for a higher
deviatoric stress while the volume strain curve is steeper under a lower devia-
toric stress. The creep paths are almost linear and in good agreement with the
experimental results.

5 Micropolar Extension of the Concept of Solid Hardness

To take into account micropolar effects like abrasion under large shearing and
grain crushing caused by the rotation resistance of grains the concept of mod-
elling grain fragmentation has recently been extended. Within a micropolar con-
tinuum description the change of the grading can also be reflected in a simplified
manner by the reduction of the mean grain diameter d50, which enters the present
constitutive model as the characteristic length. Consequently, an evolution equa-
tion for the reduction of the mean grain diameter d50 is required in addition to
the evolution equation for the solid hardness hst. According to the concept pro-
posed by Bauer et al. [12] a more refined modelling of the evolution equation for
the change of the mean grain diameter and the solid hardness can be outlined
as:

ḋ50 = −
[

bκ

√
κ̇ij κ̇ij + bω

√
(ω̇c

ij − ω̇ ij) (ω̇c
ij − ω̇ ij) (30)

+ bdp
ṗ

p

(
3p

hst

)ndp

+ bdd

√
˚̂σ

ds

ij
˚̂σ

ds

ij

√
σ̂ds

kl σ̂ds
kl

]
d50,

ḣst = −
[

b∗
κ

√
κ̇ij κ̇ij + b∗

ω

√
(ω̇c

ij − ω̇ ij) (ω̇c
ij − ω̇ ij) (31)

+
ṗ

p

(
3p

bp

)np

+ bd

√
˚̂σ

ds

ij
˚̂σ

ds

ij

√
σ̂ds

kl σ̂ds
kl

]
hst,

The quantities in Eqs. (30) and (31) are defined as:
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(a) (b)

(c) (d)

Fig. 3. Response of rockfill material under triaxial compression: dashed curves and
solid curves are numerical responses for the dry and the water saturated specimens,
respectively [11]; shapes denote the experimental data by Li [37]
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κ̇ij ... normalized rate of curvature, i.e. κ̇ij = d50 κ̇ij ,
ω̇c

ij ... rate of the micro-rotation,
ω̇ij ... rate of the macro-rotation,
σ̊c

ij ... objective stress rate of the non-symmetric Cauchy stress σc
ij ,

σ̊cd
ij ... deviatoric part of σ̊c, i.e. σ̊cd

ij = σ̊c
ij − σ̊c

kkδij/3,
˚̂σ

cd

ij ... normalized deviatoric part of σ̊c
ij , i.e. ˚̂σ

cd

ij = σ̊cd
ij /σc

mm,
˚̂σ

ds

ij ... symmetric part of ˚̂σ
cd

ij , i.e. ˚̂σ
ds

ij = (̊σ̂
cd

ij +˚̂σ
cd

ji )/2,
σcd

ij ... deviatoric part of σc
ij , i.e. σcd

ij = σc
ij − σc

kkδij/3,
σ̂cd

ij ... normalized deviatoric part of σc
ij , i.e. σ̂cd

ij = σcd
ij /σc

mm,
σ̂ds

ij ... symmetric part of σ̂cd, i.e. σ̂ds
ij = (σ̂cd

ij + σ̂cd
ji )/2.

The scalar factors bκ, bω, bp b∗
κ, b∗

ω and bη are material parameters. Equa-
tions (30) and (31) are slightly modified versions of the one proposed in [14].
In both equations the first two terms are related to micropolar effects and the
third and fourth terms consider an increase in the stress. In particular, the first
term is related to an increase in the curvature, the second term is relevant for
abrasion under large particle rotation even under low stresses, and the third and
fourth take into account an increase in the mean pressure and the stress devi-
ator, respectively. As grain fragmentation is irreversible, a reduction of hst and
d50 takes place only for ḣst < 0 and ḋ50 < 0. In both functions the third term
only leads a contribution for ṗ > 0, while the second term takes into account an
increase in the deviatoric stress. This distinction also allows an easier calibration
of the material parameters involved.

For applications the proposed evolution equations for d50 and hst must be
included into an appropriate constitutive model which is based on a micropolar
continuum. To this end the following micropolar hypoplastic model by Huang
et al. [31] is considered in the present paper:

σ̊c
ij = fs

[
â2 ε̇c

ij + (σ̂c
kl ε̇

c
kl + μ̂kl κ̇kl) σ̂c

ij (32)

+fd (σ̂c
ij + σ̂cd

ij )
√

â2ε̇c
kl ε̇c

kl + a2
mκ̇kl κ̇kl

]
,

μ̊ij = fs d50

[
a2

m κ̇ij + μ̂ij (σ̂c
kl ε̇c

kl + μ̂kl κ̇kl (33)

+ 2 fd

√
â2ε̇c

kl ε̇c
kl + a2

mκ̇kl κ̇kl )
]
.

The quantities in Eqs. (32) and (33) are defined as:
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σ̊c
ij ... objective stress rate (non-symmetric)

μ̊ij ... objective couple stress rate
σc

ij ... Cauchy stress (non-symmetric)
σ̂c

ij ... normalized stress, i.e. σ̂c
ij = σc

ij/σc
mm

σ̂cd
ij ... normalized deviatoric part of σc

ij , i.e. σ̂cd
ij = σ̂c

ij − δij/3
ε̇c
ij ... rate of deformation (non-symmetric)

κ̇ij ... normalized rate of curvature, i.e. κ̇ij = d50 κ̇ij

μ̂ij ... normalized couple stress, i.e. μ̂ij = μij/(d50 σkk)
am ... micro-polar constant
â ... critical stress state factor according to Eq. (12), but with respect to

the symmetric part of σ̂cd
ij , i.e. σ̂ds

ij = (σ̂cd
ij + σ̂cd

ji )/2.

5.1 Simplified Version

For particular loading paths and in cases where experimental data are limited,
it could be convenient to consider a simplified version of Eq. (30) and Eq. (31)
as discussed for instance by Bauer et al. [12] and Bauer [13]. In the simplified
version the reduction of hs is directly linked to the reduction of d50 according
to the following evolution equation:

ḣst = bs
ḋ50
d50

hst for ḋ50 < 0, (34)

where bs is a material parameter. With respect to the initial state, i.e.
hst(d50 0) = hs0, the integration of Eq. (34) leads to hst as a function of d50:

hst = hs0

(
d50

d50 0

)bs

. (35)

The current value of d50 depends on the history of grain fragmentation and can
be obtained for instance by the numerical integration of Eq. (30).

As an example of micropolar effects in shear zones, plane shearing of a lat-
eral infinite granular strip under a constant vertical load is considered in the
following. It is assumed that the granular layer is located between two parallel
very rough walls, so that no sliding and no particle rotation can occur along the
bottom and top boundaries [12]. With respect to an initially homogeneous state
of the granular material, the state quantities are independent of the coordinate
in the direction of shearing [32]. For a larger shear displacement, the change of
the stress is small, so that the first, third and forth terms in Eq. (30) will be
neglected in the present study. Then the evolution equation for the mean grain
diameter reduces to:

ḋ50 = − bω

√
(ω̇c

ij − ω̇ ij) (ω̇c
ij − ω̇ ij) d50 . (36)

For the numerical simulation a four node plane strain Cosserat element devel-
oped by Huang [30] and the present set of micropolar constitutive equations
were implemented into the finite element program ABAQUS [1]. The material
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h
h0 u1T/h0 = 0.08

u1T/h0 = 0.25
u1T/h0 = 0.50
u1T/h0 = 1.00

u1/h0
(a)

h
h0

ωc

(b)

h
h0

h
h0

d50[mm](c) e(d)

Fig. 4. Mechanical response of micro-polar effects shown across the normalized height
h/h0 in a laterally infinite granular strip under monotonic shearing (solid curves and
dashed curves represent the response obtained with grain fragmentation and without
grain fragmentation, respectively): (a) displacement field for different horizontal shear
displacements uT prescribed at the top of the shear layer; (b) distribution of the micro-
rotation ωc ; (c) reduction of the mean grain diameter d50 ; (d) distribution of the void
ratio e

parameters relevant to the constitutive Eqs. (32, 33, 34, 35, 36) are: ϕc = 30◦ ,
eio = 1.02, eco = 0.82, edo = 0.51, α = 0.14, β = 1.05, n = 0.35, hs0 = 104 MPa,
am = 0.8, bω = 2.0, bs = 5.0 and d50 0 = 0.5mm. The initial height of the gran-
ular strip is ho = 4 cm, and the value of the initial void ratio is e = 0.62 . At the
top surface a constant vertical stress of −1 MPa is applied. Shearing is initiated
by horizontal node displacements prescribed at the top surface, while the dis-
placements and rotations of the nodes at the bottom are locked. Micro-rotations
of the top nodes are also locked. The numerical results obtained are shown in
Fig. 4. To visualize the effect of grain fragmentation on the mechanical behaviour,
the solid curves and dashed curves represent the response obtained with grain
fragmentation and without grain fragmentation, respectively. At the beginning
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of shearing the displacement field is almost linear as it is in the non-polar con-
tinuum. From Fig. 4(a) it is clearly visible that for larger shear displacements
of the top surface the shear deformation within the granular layer localizes and
the displacement field becomes non-linear across the height of the granular strip.
Because of the symmetric boundary conditions for the rough surfaces at the top
and at the bottom, shear strain localization occurs in the middle of the granular
layer. It is obvious that shear strain-localization is combined with large micro-
rotations ωc (Fig. 4(b)) and a pronounced reduction of the mean grain diameter
d50 (Fig. 4(c)). A similar behaviour can also be observed in experiments. For
instance, under large shearing in a ring shear device, grain breakage is concen-
trated in the shear band while almost no grain damage occurs outside the shear
band [50]. Within the shear band a higher void ratio is visible due to pronounced
dilatancy of the initially medium dense specimen as shown in Fig. 4(d). How-
ever, as a consequence of grain fragmentation during shearing, the void ratio is
somewhat smaller compared to the results obtained with constant values of the
solid hardness and the mean grain diameter. For a more realistic quantification
of the constitutive parameters involved appropriate experimental methods are
needed to analyse the distribution of grain crushing across the shear band.
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26. Gudehus, G., Nübel, K.: Evolution of shear bands in sand. Géotechnique 54, 187–
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Abstract. The evolution of interfacial failure between different materials such
as concrete and soil has the nonlocal feature. As a result, local constitutive
models cannot predict the real physics associated with the interfacial failure
evolution. Since its first journal paper was published in 1994, the Material Point
Method (MPM, http://en.wikipedia.org/wiki/Material_Point_Method), which is
a spatial discretization extension from computational fluid dynamics to solid
dynamics, has evolved with applications to different areas in Simulation-Based
Engineering Science (SBES). We are developing a particle-based computer test-
bed for multiscale and multiphysics modeling and simulation to advance SBES,
with a focus on the multiphase interactions involving failure evolution. In this
conference, the very recent results in improving the MPM will be presented with
applications to nonlocal failure events, and future research and development
directions will be discussed to promote international collaboration.

Keywords: Nonlocal failure � Interface � Material point method

1 Introduction

Multi-phase (solid-liquid-gas) or multi-material (soft-hard material interfacial) inter-
actions play an important role in geotechnical engineering applications such as drilling,
hydrofracturing, impact and penetration into geologic media. It has been shown that the
evolution of interfacial failure between different materials has the nonlocal feature
[4, 5], namely, the stress state at a material point depends on the strain distribution
around that point in a representative volume of certain size. Hence, local constitutive
models cannot predict the real physics associated with interfacial failure evolution.

Higher order continuum models, such as nonlocal integral or strain gradient
models, have been formulated to predict the evolution of localized failure with
applications to interfacial problems, as reviewed by Chen and Schreyer [5]. However,
the use of higher order models yields higher order governing equations with the
ambiguity in the physics behind additional boundary conditions and with the difficulty
in large-scale computer simulations. On the other hand, it has been demonstrated that
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the jumps of certain kinematic variables in a complete failure process can be related to
the transition between local governing equations of different types [2]. By taking the
initial point of material failure as one at which the change of local governing equation
type occurs (e.g., a hyperbolic type to an elliptic one for dynamic problems or an
elliptic type to another one for quasi-static problems), a moving material surface of
discontinuity can be defined through the jump forms of conservation laws across the
surface. Jumps in mass density, velocity, strain and stress can be determined on this
moving surface of discontinuity between two material domains. As a result, both
continuum-based and discontinuity-based approaches could be employed to model the
evolution of localization, with different types of applicability and limitation for dif-
ferent cases, depending on the scale of the problem and the degrees of discontinuity
considered [1].

Since the discontinuous bifurcation identifies the transition from continuous to
discontinuous failure modes, it appears that a local continuum elastoplasticity/damage
model in combination with a decohesion model via discontinuous bifurcation analysis
could be sound in physics and efficient in computation [6, 13]. Thus, the gap between
the continuous and discontinuous approaches could be bridged to simulate a complete
failure evolution process without invoking higher order terms in space. To effectively
simulate localized large deformations and discontinuities of various types, however, a
robust spatial discretization procedure is a necessity to accommodate both continuous
and discontinuous modeling approaches in a single computational domain.

Due to the use of master/slave nodes at the contact surface of (assumed) zero
thickness, the mesh-based methods such as the finite element method (FEM) and finite
difference method (FDM) cannot describe the real physics involved in the nonlocal
interfacial problems, in addition to re-meshing as required for the simulation of failure
evolution. To better simulate the multi-material interactions, such as those in impact,
explosion and penetration, the material point method (MPM) has evolved over the last
two and a half decades, and been applied to many areas of Simulation-based Engi-
neering Science (SBES) since its first journal paper was published [11]. The MPM is an
extension to solid dynamics problems of a hydrodynamics code called FLIP which, in
turn, evolved from the particle-in-cell Method for computational fluid dynamics. The
essential idea is to take advantage of both the Eulerian and Lagrangian methods while
avoiding the shortcomings of each so that it could effectively integrate computational
fluid dynamic with solid dynamics. In comparison with the other recently developed
numerical procedures, the MPM appears to be less complex with a cost factor of at
most twice that associated with the use of corresponding finite elements. In addition,
the use of the single-valued mapping functions in the MPM results in a natural no-slip
contact/impact scheme such that no inter-penetration would occur. The slip condition
could also be implemented based on the physics involved in the interfacial failure
evolution without invoking master/slave nodes at the contact surface. Furthermore, the
MPM and FEM could be easily combined in a single computational domain for effi-
cient large-scale computer simulation because both methods are developed based on
the same weak formulation of continuum mechanics.

Because the MPM has the common feature of both discrete [such as molecular
dynamics (MD) and smoothed particle hydrodynamics (SPH)] and mesh-based (such as
FEM and FDM) spatial discretization procedures, a particle-based multiscale
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simulation approach has been proposed via the mapping-remapping process within the
MPM framework, in which MD at nano scale is linked with dissipative particle
dynamics (DPD) at meso scale hierarchically, and the DPD and MPM at microscale are
employed concurrently in a single computational domain [3, 9]. It has been shown that
the MPM mapping-remapping process could effectively coarse-grain the DPD, and that
the multi-phase interactions under extreme loading conditions could be simulated at
different scales. The recent MPM book provides a comprehensive review of the
research and development efforts made by many international teams to promote the
MPM in the evolution of SBES [14].

2 Proposed Approach

To improve the solution accuracy for large deformation cases, very recent efforts have
been made to enhance the MPM with B-spline basis functions [7], and time-
discontinuous mapping operation [10] with additional computational expenses. Based
on the conservation laws of mass, momentum and energy, the generalized interpolation
material point (GIMP) method has also been improved for simulating and evaluating
the fully coupled thermomechanical responses, such as the failure evolution in a snowy
slope [12]. The fully coupled thermomechanical GIMP method (CTGIMP) considers
the effects of both the temperature on deformation and the deformation on temperature
so that geothermal problems might be better treated with high fidelity. However, the
CTGIMP remains to be validated against experimental data.

Each spatial discretization procedure has its own strength and limitation so that a
robust model-based simulation tool for multiscale and multiphysics problems should
take advantage of the strengths of different procedures for different problem domains.
We are developing the smoothed MPM by integrating the strengths of SPH and MPM
to better handle the impact problems, in which the smoothed MPM mapping operation
is employed only around the impact surface without invoking master/slave nodes while
either the MPM or SPH could be used in other parts of the problem domain [8]. As a
result, no artificial viscosity is required to eliminate the problem-specific choice for
simulating transient problems. As the smoothed mapping operation is in fact a nonlocal
process, it might be feasible for us to combine nonlocal interfacial constitutive mod-
eling with the smoothed operator for efficient multiscale model-based simulation.

3 Conclusion

In this workshop, recent advances in improving the MPM for better simulating non-
local failure evolution will be presented, with applications to the nonlocal failure
evolution in heterogeneous materials that includes complex microstructure such as
cement-based materials. Future research and development directions will also be
discussed.
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Abstract. A nonlinear wave propagation model, which is based on the theory of
Hypoplasticity developed at the Institute of Soil Mechanics and Rock Mechanics
at the KIT (former TU Karlsruhe) under the guidance of Prof. Gudehus, is applied
for the simulation of the dynamic response of slopes during strong earthquakes.
The model captures the main features of mechanical behavior of coarse and fine-
grained soils under seismic-induced alternating shearing and is an alternative to
the Newmark method, which simply assumes ideal-plastic Coulomb-friction
sliding, for the estimation of earthquake-induced displacements of buildings and
slopes during earthquakes. After a short introduction and validation, the capa-
bilities of the model to predict the magnitude of permanent displacements as a
function of the slope inclination, the intensity of the seismic excitation and the
drainage conditions of the slope are shown exemplarily.

Keywords: Ground response analysis � Earthquake � Slope �
Dynamic soil behavior

1 Introduction

During the course of history, earthquake-induced landslides have been responsible for
as much, or even more damage than all other seismic hazards combined. In spite of
scientific advances in the theory and applications of numerical methods and constitu-
tive modeling of soil behavior in the past, pseudo-static limit equilibrium analyses and
sliding block analyses are the most frequently applied methods in practice to judge the
stability and to estimate the motion of slopes under earthquake excitation, respectively.

The main shortcomings of the pseudo-static limit equilibrium analysis in the case of
strong earthquakes are the choice of the ground acceleration to evaluate the pseudo-static
seismic forces and the choice of the shear strength of the soil, which is not a soil constant as
it is often assumed. In the sliding block analysis proposed by Newmark [4], slope sliding
starts when the inertial forces cause driving forces to exceed the available shear strength at
the slip surface. Themotion of the slope is driven by the unbalanced force until the driving
forces drop below the resisting forces and the relative velocity between the sliding mass
(rigid body) and the underlying ground vanishes. By integration of the equation ofmotion
of a rigid block for a given ground acceleration and friction angle at the failure surface, the
displacement of the block induced by the earthquake can be calculated.

Newmark’s approach assumes that a slip surface develops at the beginning of the
earthquake. Furthermore, the block slides on this slip surface with the interface behaviour
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prescribed by the Coulomb friction law. Nevertheless, as the shear strength changes
during a strong earthquake, e.g. due to pore pressure generation, an objective evaluation
of the friction angle to be used in the analysis is not possible. In addition, it is not clear
whether the calculated displacements correspond to the displacement at the ground
surface or at any point within the slope. Therefore, both approaches can only very
roughly take into account the real mechanisms controlling earthquake-induced slope
displacements and the onset of landslides. An evaluation of slope behavior based on these
methods appears to be insufficient for the case of strong earthquakes. To overcome these
shortcomings, an effective-stress ground response analysis for layered soils developed by
Osinov [6] and validated by Cudmani et al. [1] has been extended to the case of an infinite
slope. In the following, the original and the extended models are called (HGSM: Hori-
zontal Ground Surface Model) and (ISM: Infinite Slope Model), respectively.

2 The Wave Propagation Model

The HGSM and ISM are shown in Fig. 1. The unknown variables are the horizontal
and vertical material velocities, the non-zero components of the stress tensor
(r11, r22, r33, s12) and the pore pressure. These variables are functions of the depth
and time. The governing system of equations consists of the equation of motion, the
constitutive equations for the solid skeleton and the pore fluid and the mass balance
equation. The constitutive equation for the pore pressure considers the compressibility
of the pore fluid, which depends on the degree of saturation. Both drained and
undrained conditions can be considered in the calculations. In the numerical simula-
tions, seepage is taken into account by using the so-called u-p formulation [7], which
assigns different velocities but same accelerations to the solid and fluid phases. The
initial vertical stresses and the initial pore pressures result from the densities of the solid
and fluid phases and gravity. The initial horizontal stress is related to the vertical stress
via the earth pressure coefficient at rest. The upper surface is assumed to be free of
traction. In the case of saturated soil, the pore pressure at the water table and above is
assumed to be zero and the lower boundary is assumed to be impermeable.

In order to consider an infinite slope, the equations of motions for the soil skeleton
and the pore fluid were modified to account for the component of gravity acting in the
direction of the slope. This component is controlled by the angle of the slope 0 and the
acceleration of gravity g.

To solve the dynamic boundary-value problems sketched in Fig. 1, the soil layers
are discretised into sublayers with lumped masses. The constitutive parameters, initial
void ratios, initial stresses and hydraulic permeability are assigned to each discrete
sublayer. The differential equations are solved with the Finite Difference Method. The
calculation is carried out in two stages. In the first stage, the driving force q � g � z � sin#
is applied to the soil, while inertial forces are switched off. In the second stage, hori-
zontal (in-plane, anti-plane) and vertical velocities are prescribed at the base of the
model to simulate the earthquake. In the case of the ISM, the results are transformed to
the rotated Cartesian coordinate system with x-axis parallel to the slope for better
visualization of the slope motion.
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3 Constitutive Models

Two hypoplastic constitutive relations are employed in the present study. One
describes the rate-independent behaviour of granular soils (e.g. sand), and the other one
takes into account viscous effects and is used for the modelling of clayey soils. Both
relations describe plastic deformations of a solid skeleton under monotonic as well as
cyclic loading for drained and undrained conditions. They incorporate the critical state
concept of soil mechanics and the dependence of the stiffness on the current stress,
density and history of deformation.

As it is known from elastoplasticity theories, the description of the plastic defor-
mation through hypoplasticity does not require the introduction of a yield surface and a
flow rule, and the decomposition of the deformation into elastic and plastic parts.
A detailed description of the hypoplastic relations can be found in Niemunis [5]. The
solution of a boundary value problem requires both material parameters and initial
values of the state variables. The constitutive equation contains 13 model parameters.
They are independent of the state variables, that is, the material behaviour can be
modelled in a wide range of stresses and densities with the same set of parameters.

4 Validation of the Wave Propagation Model

The wave propagation model was validated by comparing measured and calculated
ground responses during strong earthquakes for well-documented sites [1, 3]. For each
considered site, a 1D-ground model that included the soil layers, the ground water
table, the initial density and stress state as well as the parameters was developed based
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Fig. 1. Wave propagation models (a) HGSM (b) ISM.
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on available field investigations and laboratory tests. Thereafter, the earthquake was
simulated by applying three velocity components (two horizontal and one vertical) at
the base of the model simultaneously, which are obtained by integration of the actual
ground acceleration records. In all cases, the base of the model was set at the deepest
point in which the acceleration was recorded during the earthquake. Exemplarily,
Fig. 2 shows the comparison between the experimental and predicted velocities at two
different depths for Port Island during the 1995 Kobe earthquake.

5 Shaking-Induced Slope Displacement

In order to investigate the behavior of an infinite slope using the model Fig. 1(b), the
same base excitation as before was used. The subsoil data from the Sunamachi
experimental site close to the Tokyo Bay [2] and the acceleration recorded in the depth
of 18.3 m in December 17, 1987, during the Chiba-Toho-Oki earthquake (magnitude
M = 6.7) were used. The subsoil data and the idealized soil profile are presented in
Fig. 3.

In Fig. 4, the permanent displacement induced by the earthquake in N-S-direction
are shown for inclinations of 0°, 5°, 10°, 15° and 20° (slope in N-S (in-plane)
direction).

The permanent displacements in the slope direction (N-S) increase with increasing
slope inclination. It almost reaches 3 cm at the end of the earthquake for an inclination
of 5°. For the inclinations 10°, 15° and 20°, the permanent displacements increase to

Fig. 2. Port Island: real (a) and idealized (b) soil profiles; (c) measured and predicted velocities
at the surface and at depth and 32 m in the North-South direction [1].
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approximately 7 cm, 11 cm and 36 cm, respectively. The pronounced jump of per-
manent displacements when increasing the slope inclination from 15° to 20° shows that
the permanent displacements increase above average when the inclination approaches
the value leading to the failure of the slope.
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Silty sand
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10
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(a) (b)

Fig. 3. (a) Typical soil profile at the Sunamachi test site [2]; (b) ground model considered in the
numerical simulation.

Fig. 4. Displacements in N-S direction for inclinations of 0°, 5°, 10°, 15° and 20°.
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Figure 5 compares the response of the slope for dry and fully saturated subsoil
conditions. The larger displacements for the condition of fully saturation result from the
excess pore pressure induced by the shear waves, which causes a decay of the mean
effective stresses and a reduction of shear strength and shear stiffness in comparison
with the soil response of the dry slope. However, the inclination of the slope and the
initial stress state affect the dynamic response of the slope as well as the location of soil
liquefaction. Therefore, there is no simple correlation between the initial slope incli-
nation and the induced displacements.

(a) Water table at the surface 

(b) Subsoil without ground water 

Fig. 5. Permanent displacements in N-S direction at the end of the earthquake
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6 Conclusions

In comparison with the Newmark’s sliding block analyses, which assumes a rigid soil
mass and perfectly plastic shear failure at the sliding interface, the proposed 1D- wave
propagation model takes into account the actual soil behaviour much more realistically,
allowing a soil mechanically reliable assessment of the permanent displacements of
infinite slopes induced by strong earthquakes.
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Abstract. The ISA-Hypoplasticity corresponds to an extended version of con-
ventional Hypoplasticity to enable the simulation of some observed effects on
cyclic loading. This extension offers novel features compared to the intergranular
strain theory by Herle and Niemunis [4], including the incorporation of an elastic
strain amplitude, to separate the elastic and plastic response, and the ability to
reduce the plastic accumulation rate upon a larger number of cycles (N > 10).
In the present work, a modification to the ISA-hypoplastic model is described
in order to enable the simulation of cyclic mobility effects exhibited by granular
materials. The modification is based on a new state variable, able to detect paths at
which the cyclic mobility effect is activated. With this information, some factors
of the ISA-hypoplastic model are modified to deliver the proper response on paths
showing cyclic mobility effects. Simulations examples are given to illustrate the
new mechanism and a short analysis of the new parameters is also included.

1 Introduction

The Intergranular Strain Anisotropy (ISA) can be considered as a mathematical exten-
sion of conventional Hypoplasticity for sands [9] or clays [3,7], to improve cyclic load-
ing simulations. Originally, it was proposed to consider three observed effects on cyclic
paths [2]: a strain amplitude dividing the plastic and elastic regime, the increase of the
stiffness upon reversal loading and the reduction of the plastic strain rate under the
same conditions. Successful simulations of cyclic loading for a low number of cycles
(N < 10) were achieved [2]. Nevertheless, some inspections on the formulation revealed
the weakness of the model to predict the behavior of the accumulated plastic behavior
upon a higher number of repetitive cycles (N > 10). This motivated Poblete et al. [5]
to modify the model to account for the effect of repetitive cycles. For a large number
of cycles (N > 10), the new relations were now able to simulate the observed reduc-
tion of the plastic accumulation rate, and showed to work well, not only on undrained
cyclic triaxial tests, but also on complex multidimensional cyclic loading under drained
conditions [5]. Despite of all these achievements, some issues related to the absence
of cyclic mobility effects, and thus the liquefaction analysis, were not addressed by
the existent relations given the fact, that this effect were considered to be related to the
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reference hypoplastic equation, and not to the extension provided by ISA. As a matter of
fact, despite the vast amount of works studying hypoplastic models under several cyclic
tests, scarce works are devoted to propose relations encompassing the cyclic mobility
effect.

The current work describes an extension of an ISA-hypoplastic model to enable the
simulation of the cyclic mobility effect, and thus to permit the analysis of liquefaction
under undrained conditions. To that end, a strain-type sate variable z is introduced to
detect paths at which the cyclic mobility effect is activated. This information is then
considered to modify some factors of the constitutive equation. It will be shown, that
the modifications presented herein permit the simulation of cyclic mobility, without
altering other former capabilities of hypoplastic models related to the stress-dilatancy
behavior under drained conditions.

2 New Modifications of the ISA-Hypoplastic Model

The equations of the reference model are described in the appendices. It corresponds to
the Hypoplastic equation by Wollfersdorff [9] extended by the ISA relations according
to [2,5]. Evaluation of the model capabilities under cyclic loading can be found in [5].
Its extension to consider cyclic mobility effects is described in the following lines.

In order to detect paths at which the cyclic mobility effect is activated, we introduce
a new state variable, denoted with z, with an evolution equation similar to [1]:

ż= cz〈η/(Mc fd0F)−1〉(N− z)‖ε̇εε‖ (1)

whereby cz is a new material parameter controlling the rate of z, Mc = 6sin(ϕc)/(3−
sinϕc) is the critical state slope, η = q/p is the stress ratio, and the factors F and fd0
are scalar functions, the first described in the appendices, and the second defined in the
sequel. Let denote z the scalar function defined as:

z= 〈z : N〉 (2)

where N is a unit tensor (‖N‖ = 1) providing information about the intergranular strain
rate direction, see Eq. 8. According to Eq. 2, factor z is bounded by 0≤ z≤ 1. A value of
z= 0 indicates that the effect of the cyclic mobility is not accounted by the model, while
a value of z= 1 means that it is fully considered. Intermediate values of 0< z< 1 intend
to simulate a transition between these two states. For the case of z= 1, we propose that
the model reproduces a contractant behavior as by looses states e ≈ ec. Specifically, we
propose to consider the following characteristics:
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• For z= 1, the scalar factors fe and fd are set to one, i.e. fe = fd = 1. This is equiva-
lently to evaluate these factors at e= ec.

• For the same condition (z = 1), the strain amplitude Δεεε at which the intergranular
strain effect is reproduced is reduced.

The first requirement is considered through the introduction of the following modifica-
tions to the scalar factors fe and fd :

fe = fe0 − z〈 fe0 −1〉, with fe0 =
(ec
e

)β
(3)

fd = fd0+ z〈1− fd0〉, with fd0 =
(

e− ed
ec − ed

)α
(4)

Note that for z= 1, they give fe = fd = 1. For the second requirement, we propose that
the former parameter βh is converted into a function:

βh = βmax+(β0 −βmax)(1− z) (5)

which now depends on parameters β0 and βmax. For z= 0, it gives βh = β0, coinciding
with its original definition. On the other hand, the relation βh = βmax holds for z = 1
conditions. At that state (z = 1), the new parameter βmax allows to control the strain
amplitude ‖Δεεε‖ at which the intergranular strain effect is considered. Hence, simulation
of the cyclic mobility effect requires the calibration of the new parameters cz and βmax.

We now present some simulations examples. The Karlsruhe fine sand parameters
reported in [5] are borrowed for the following simulations (emax = 1.054, emin = 0.677).
Consider a drained triaxial test with constant mean pressure p = constant, such as the
tests by [6]. The test is performed under p= 100kPa (constant), with an initial void ratio
of e0 = 0.6 (dense state). Three different simulations are presented in Fig. 1, whereby
the variation of the parameter cz = {0,100,300} is considered. From the results one may
see, that for higher values of cz, a higher degradation of the shear stiffness accompanied
with an increase of the compressive volumetric strains are obtained. Hence, cz may be
calibrated by trial and error, to provide accurate simulations of these effects under cycles
of large strain amplitudes (‖Δεεε‖ > 0.001). Notice that the stress-dilatancy response
exhibited in Fig. 1d, is not spoiled by the current modification.

A cyclic undrained triaxial test with constant deviator stress amplitude (qamp =
40kPa) is shown in Fig. 2. For this simulation, cz is set to cz = 300. The results show
that the model is able to reproduce the cyclic mobility effect observed on the last cycles.
This is better noted on Fig. 3, whereby the simulation of the reference model lacking
of the current extension is included. The proposed extension assesses to simulate the
“butterfly-type” paths in the p−q, see Fig. 3a, while the accumulation of the pore water
pressure pw upon the number of cycles N is well reproduced, see Fig. 3b.
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Fig. 1. Simulation of a p= const triaxial test under drained conditions. Karlsruhe fine sand param-
eters. p= 100kPa.

Closure
The present work described an extended version of the ISA-hypoplastic model able to
simulate cyclic mobility effects. To that end, an additional state variable z has been
introduced, able to detect paths at which the cyclic mobility effect is activated. This
information is used on factors fe and fd of the hypoplastic model, and on factor βh

from the ISA model. The proposed methodology requires the calibration of two param-
eters, namely, cz which controls the rate of z and βmax controlling the strain amplitude
upon cyclic mobility wherein the intergranular strain influences the response. The cur-
rent extension is simple, and provides fair simulations of cyclic undrained tests while
keeping its capabilities on the stress-dilatancy response under drained conditions.
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Fig. 2. Simulation of a cyclic undrained triaxial test. Deviator stress amplitude of qamp = 40kPa.
Experiment using Karlsruhe fine sand, data by [8]
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Fig. 3. Accumulated pore pressure pw against number of cycles N. Parameters of Karlruhe fine
sand
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Notation and Conventions
The notation and convention of the present work is as follows: italic fonts denote scalar
magnitudes (e.g. a,b), bold lowercase letters denote vectors (e.g. a,b), bold capital let-
ters denote second-rank tensors (e.g. A,σσσ ), and special fonts are used for fourth-rank
tensors (e.g. E,L). Indicial notation can be used to represent components of tensors
(e.g. Ai j), and their operations follow the Einstein’s summation convention. The Kro-
necker delta symbol is represented by δi j, i.e. δi j = 1 when i = j and δi j = 0 other-
wise. The symbol 1 denotes the Kronecker delta tensor (1i j = δi j). The unit fourth-rank
tensor for symmetric tensors is denoted by I, where Ii jkl = 1

2

(
δikδ jl +δilδ jk

)
. Multipli-

cation with two dummy indices (double contraction) is denoted with a colon “:” (e.g.
A : B = Ai jBi j). The symbol “⊗” represents the dyadic product (e.g. A⊗B = Ai jBkl).
The brackets ‖ ⊔ ‖ extract the Euclidean norm (e.g. ‖ A ‖= √

Ai jAi j). Normalized ten-

sors are denoted by
−→⊔

=
⊔

‖⊔‖ , or in general as 	→. The superscript
⊔dev extracts the

deviatoric part of a tensor (e.g. Adev =A− 1
3 (trA)1). Components of the effective stress

tensor σσσ or strain tensor εεε in compression are negative. Roscoe variables are defined as

p=−σii/3, q=
√

3
2‖σσσdev‖, εv =−εii and εs =

√
2
3‖εεεdev‖. The stress ratio η is defined

as η = q/p. The deviator stress tensor is defined as σσσdev = σσσ + p1 and the stress-ratio

tensor with r= σσσdev/p=
√

2
3 η

−−→
σσσdev.

Appendix 1

Appendix 1 presents a summary of the constitutive equations of the ISA-hypoplastic
model. Details of the equations below are found in [2,5,9].

σ̇σσ =M : ε̇εε (6)

M=
{
[mR+(1−mR)yh](Lhyp+ρχNhyp ⊗N) for FH ≥ 0
mRL

hyp for FH < 0
(7)

ḣ= ε̇ − λ̇HN, with N=
h− c
R/2

(8)

λ̇H =
〈N : ε̇〉

1−
(

∂FH
∂c

)
: c̄

(9)

ċ= λ̇H c̄, with c̄= βh(cb − c)/R, and cb = (R/2)
−→̇
εεε (10)

ρ = 1− ‖hb −h‖
2R

, with hb = RN (11)

yh = ρχ〈N :
−→̇
εεε 〉 (12)
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m= mR+(1−mR)yh (13)

ε̇acc =
Ca

R
(1− yh − εacc)‖ε̇εε‖ (14)

χ = χ0+ εacc(χmax − χ0) (15)

The set of parameters are R, χ0, χmax, mR, β0, βmax and Ca.

Appendix 2

In the present appendix, the remaining equations of the reference hypoplastic model [9]
are given:

Lhyp = fb fe
1

σ̂σσ : σ̂σσ
(F2I+a2σ̂σσσ̂σσ) (16)

Nhyp = fd fb fe
Fa

σ̂σσ : σ̂σσ
(σ̂σσ + σ̂σσdev) (17)

fe =
(ec
e

)β

fb =
hs
nB

(
1+ ei
ei

)(
ei0
ec0

)β (
− trσσσ

hs

)1−nB
[
3+a2 −

√
3a

(
ei0 − ed0
ec0 − ed0

)β
]−1

fd =
(

e− ed
ec − ed

)α

(18)

F =

√
1
8
tan2(ψ)+

2− tan2(ψ)
2+2

√
2tan(ψ)cos(3θ)

− 1

2
√
2tan(ψ)

(19)

a=
√
3(3− sin(ϕc))
2
√
2sin(ϕc))

tanψ =
√
3‖σ̂σσdev‖

cos(3θ) =
√
6
tr(σ̂σσdevσ̂σσdevσ̂σσdev)

(σ̂σσdev : σ̂σσdev)3/2

(20)

ei = ei0 exp(−(3p/hs)
nB)

ed = ed0 exp(−(3p/hs)
nB)

ec = ec0 exp(−(3p/hs)
nB)

(21)

The set of parameters are ϕc, hs, nB, ei0, ec0, ed0, α and β .
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Abstract. The cognition of natural soil and rock, called geomatter as
it is not a simple material, is impeded by opaqueness and wild random-
ness so that Aristoteles’ induction and Popper’s demarcation of theories
are seemingly insufficient. This can be attributed to critical phenom-
ena with seismogeneous chain reactions which exhibit fractal features,
leave back permanent traces and elude mathematical treatment in gen-
eral. In the stable range of grain fabrics buckling force chains cause a
heat-like micro-seismicity which activates redistributions and can be cap-
tured mathematically. This is no more possible for chain reactions due
to a positive feedback by seismic waves and pore water diffusion, with
sizes from sand-boxes to subduction zones. Successions of them can be
captured probabilistically by power laws with lower and upper bounds,
which should be estimated in a rational way for keeping the geotechnical
risk acceptably low. For this aim one should reduce deficits and avoid
defects of cognition.

1 Introduction

The similarity of sand and rock can get visible at the beach (e.g. Fig. 1). It
implies self-similar roughness, i.e. geometrical fractality. One could estimate frac-
tal dimensions of rims, profiles and surfaces with Mandelbrot’s [20] box-counting,
but this is left aside as generating mechanisms elude yet mathematical treatment.
I focus on internal mechanisms which are intricate enough because of their triple
fractality, viz.

• spatial: the solid mass ms in a cube increases with its length d by ms =
msr(d/dr)3α with an exponent ca. 0.9 < α < 1 as the pore system (πóρoς =
passage) is geometrically fractal;

• temporal: seismic spectra tend often to v2 ∝ 1/f2β with ca. 0.9 < β < 1;
• episodic: successions of collapses with released energy E or more occur often

with a number N = Nr(E/Er)−γ and an exponent γ near 1.

This holds true approximately within lower and upper cutoffs, and the fractal
exponents are not constant. Spatial and temporal distributions of geomechanical
quantities may be continuous, but are not differentiable so that gradients and
rates do not properly exist. Sets of events are wildly random [21] so that a single
event can matter as much as the sum of all smaller ones [22]. Geomatter is not
a simple material in [35] sense, and geomechanics is no continuum mechanics:
c© Springer Nature Switzerland AG 2019
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Fig. 1. Self-similarly rough sand structures of ca. 0.3 m height at the beach: (a) moun-
tain ridge (photo R. Gudehus), (b) cliff (photo M. Poblete)
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• the solid partial stress, spatially distributed in fractal force chains via contact
flats of grains or rock fragments, is no force density in Cauchy’s sense;

• rearrangements of the solid fabric are no deformations as displacements are
not differentiable, and as there are no unique reference configurations except
for the vicinity of solids;

• capillary effects enable metastable fractal fabrics of grains and rock fragments;
• even in a stable range constitutive relations for solid and pore fluid in the

usual sense cannot strictly hold true for lack of gradients and rates;
• fractal pore systems force an anomalous diffusion of masses, energies and

momentum already in the stable range;
• at the verge of stability geomatter passes through phase transitions in wildly

random chain reactions;
• there are no initial states and boundaries in a classical sense.

Nevertheless there are systematic features with the aid of which geotechnical
engineers can and should reduce the risk of operations. This is outlined first for
the stable range of grain fabrics where a mean-field theory suffices as long as
fractal relics matter little (Sect. 2), then for sand deposits with shear bands or liq-
uefaction (Sect. 3). The outline is continued for rock from samples to subduction
zones where conventional concepts fail more often (Sect. 4). I turn then to ran-
dom successions of critical phenomena and to the geomechanical risk (Sect. 5),
thereafter my desiderata refer to cognition deficits and defects (Sect. 6).

2 Sand in the Stable Range

Fabrics of grains, called granular solids by physicists, exhibit fractally distributed
stress fields with force chains as no two grains are equal. At equilibrium they
have a specific elastic energy we, depending on invariants of the elastic strain
εe
ij and the void ratio e, which is the potential of stress by σ′

ij = ∂we/∂εe
ij

[11]. Deforming a fabric causes buckling of force chains in a random succession,
e.g. Fig. 2. Audible collapses occur practically synchronous with the drive, i.e.
the response is rate-independent, and get more marked with an increasing stress
ratio. Up to a critical point each one is accompanied by a minute rearrangement,
then a noisy bulging indicates an avalanche-like succession of buckling force
chains so that a new equilibrium is attained only after a big rearrangement.

The micro-seismicity, with frequencies from an audible part up to eigenvalues
of grains, is incoherent in the stable range. It goes over into heat instead of
being conserved as the interaction of grains is not conservative like the one of
molecules. Coming in jerks due to an imposed deformation or load, it activates
rearrangements with a relaxation of elastic energy. This is missed in discrete
element simulations with an artificial viscosity, whereas physicists calculated
seismic energies and fluctuating parts of elastic energies at equilibrium by means
of event algorithms [16]. Thus the force-roughness means a latent seismicity [3]
which is waked by deformations imposed to the grain fabric.

The dynamics of granular solids is determined by elastic and micro-seismic
energies which go over into heat at dislocating grain contacts. In their ‘granular
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Fig. 2. (a) Rubber mould enclosing corundum grains under vacuum, (b) acoustic emis-
sion due to axial loading [10]

solid hydrodynamics’ (GSH) [12] proposed a relaxation of elastic energy with
a rate proportional to a granular temperature Tg by means of a factor λ, and
obtained a hypoplastic relation for monotonous deformations. In a subsequent
paper [6] we showed that deformations with cyclic portions cause a kind of plas-
tic flow like in the high cycle accumulation (HCA) model by [27]. However, the
differential response at reversals is always elastic as the half-life of Tg is far
shorter than the pause of deformation during a reversal. Thus GSH underesti-
mates hysteretic and cumulative effects in general, and numerical simulations
with it are intricate.

I propose instead evolution equations with a hidden state variable χ named
eutaraxy (ευ = favouring, τάραξις = disturbance) [5]. Therein Tgλ of GSH is
replaced by χdε/dt, with an amount of stretching ε, for the relaxation of εe

ij

so that its evolution is rate-independent. The evolution equation of χ has a
term for driving and a second one for halting, both proportional to dε/dt, with a
switch function depending on the sign of d2ε/dt2. Thus χ can reach a hypoplastic
limit for monotonous deformations and can approach zero for non-monotonous
ones with small amplitude. Rates of fabric stress are related with the ones of εe

ij

by an elastic energy we and a transfer factor α almost like in GSH, but we has
a critical point at emax instead of emin and α depends on χ instead of Tg.

This constitutive model, named GSD-EH for brevity, captures the observed
sand behavior in the stable range up to its verge with few parameters which can
be determined with triaxial tests - but why and how far? The micro-seismicity
- observable as crackling noise - arises in fact alongside with an imposed defor-
mation and does not depend on σ′

ij and e. It activates intergranular dislocations
which are aligned by εe

ij , i.e. by σ′
ij via we and α, and with a rate in proportion

to the one of strain and to the propensity for micro-seismicity, i.e. to χdε/dt.
The transfer factor α is the same for motions and forces, like in a bicycle with
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a belt instead of a chain connecting discs instead of toothed wheels. Due to an
erratic stick-slip the drive is transferred with a loss factor 0 ≤ α < 1 both kine-
matically and statically. With driving χ grows up to a saturation value in the
hypoplastic range so that it gets constant. An isochoric continuation leads to a
critical state with a mean effective pressure p′(e), but no more for e → emax as
then a granular solid collapses into a granular fluid.

Halting of an imposed deformation means a reduction of χ due to its relax-
ation by the dwindling χdε/dt. The simultaneous reduction of the transfer factor
α and the elastic pressure pe = 1

3∂we/∂εe
v keeps the fabric pressure p′ = (1−α)pe

constant, this leads to α ∝ χ. χ → 0 requires a halting deformation which is
hardly achieved after a hypoplastic state. However, repeated reversals with a
small amplitude lead to χ near zero so that the response gets nearly elastic,
except a cumulative part like in the HCA model of [27]. Cyclic attractors - i.e.
asymptotic state cycles [3] - are also captured, particularly butterfly-like ones
for isochoric cyclic deformations and lenticular ones for isochoric ratchetting.

GSD-EH works at best up to the verge of convexity of we as then critical
phenomena arise (Sect. 3), but no more with relics of critical phenomena. Those
with shear bands mean fractal spatial fluctuations of the void ratio e, which
are hardly ironed out by seismic actions (σείω = to shake) via attractors in the
large [3]. Therefore wave propagations in the stable range are accompanied by
an energy diffusion [7] so that power spectra tend to v2 ∝ f−2α with a fractal
exponent α just below 1. Fractional derivatives employed in this theory are
expected values of classical ones. If relics of critical phenomena are less ironed out
the average χ is higher so that the subsequent response is less elastic. As initial
χ-fields are unknown in general the eutaraxy in the large causes an inevitable
fuzziness of predictions already in the stable range.

The pore system imposes its fractality to the pore water already at and near
stable equilibria. As water and grain mineral are neutral with respect to changes
of pore water pressure pw the effective or solid partial pressure is p′ = p − pw in
case of full saturation. Thus water and solid are isochoric, and so is a grain fabric
without drainage. At equilibrium the hydraulic energy height h ≡ hg + pw/γw,
with geometrical height hg and specific weight γw of water, is constant. Slow
deviations are usually captured with Darcy’s relation vwi = kf∇ih of seepage
velocity with the hydraulic gradient. However, the thus presumed derivatives do
not properly exist with a fractal pore system. Like with the wave propagation
indicated above constitutive relation and mass balance of pore water should
be written with fractional operators which represent expected values of classical
ones in a fractal random set. Then solutions can represent an anomalous diffusion
without inadequate notions like laminarity and tortuosity.

The fractality of granular pore systems matters more with capillary effects. In
case of multiply-connected pore gas Bishop’s heuristic relation for p′ can still be
proven with equilibrium thermodynamics [13], and the authors capture now also
the capillary hysteresis. Like with full saturation the transport of pore water and
gas could be modelled with fractional derivatives. If pore gas is enclosed its spatial
distribution - known as fingering and gas islands - gets less regular so that fractal
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random sets require fractional images already at equilibrium. Capillary bridges
enable grain fabrics with aggregates and macropores which are metastable for e >
emax as they collapse into a suspension after flooding (Sect. 3).

Robust geotechnical systems enable indifferent limit equilibria, i.e. dissipative
transitions to infinitesimally neighbored configurations with the same overall
potential energy. Apart from geometrical effects as with toppling or pull-out,
then limit equilibria with a realistic set of mechanisms and with ductile shear
resistances τf are not only necessary, but also sufficient for overall stability [8].
For undrained loose water-saturated sand τf is at least the one determined by
GSD-EH from critical states with (emax − e)/(emax − emin) and ϕc. Drained
sand has at least τf = σ′ tan ϕc, but fabric pressures σ′ can be estimated at best
for slopes and retaining structures. There are no indifferent limit equilibria for
piles, tunnel roofs and similarly confined configurations as pressure fields are far
from statically determinate. The bound theorems of ideal plasticity fail also in
case of shaking with insufficient drainage, e.g. during earthquakes or offshore.

3 Critical Phenomena with Sand

At the local verge of stability of a grain fabric its elastic energy is at a saddle
point with respect to εe

ij . This is a necessary condition for the loss of equilibrium,
which is evident with two invariants of εe

ij , e.g. Fig. 3. Like with a sphere on the
wrist of your hand there are two opposite directions with a maximal release of
kinetic energy; a collapse occurs with one of them if there is no constraint. An
isobarically driven grain fabric dilates then in shear bands, thus polar quanti-
ties arise with σ′

ij-alignment. Quasi-static simulations with hypoplastic relations,
including polar degrees of freedom, yield shear band patterns which come aston-
ishingly close to observed ones [3]. The simulated extension of a dense sand layer
yields a fractally hatched shear band pattern and a warped surface, e.g. Fig. 4.

This quasi-static simulation could not be continued beyond the second con-
figuration as the equations got ill-posed. This would also happen with a polar
extension of GSD-EH, whereas fictitious viscous terms would constitute a non-
physical regularization. Inertial effects should be taken into account, but as yet
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Fig. 3. Blow-up of the elastic energy versus first and second invariants of the elastic
energy at a critical point with a tangential plane



46 G. Gudehus

Fig. 4. Simulated quasi-static extension of an initially 10 cm long sand strip with ca.
1 mm grain size and polar quantities. State at the right boundary as at the left one
with reflected orientation, configurations after 10% (left) and 20% extension (right),
black zones dense, white bands dilated [28]

nobody did that. Fortunately there is an evidence of kinetic effects in model
tests. Darwin [1] - second son of Charles Darwin, astronomer and mathemati-
cian - checked earth pressure theories by means of a box filled with dry flint
powder (Fig. 5). Releasing a wall with hinges by a string he measured the result-
ing force with a spring balance up to a critical point. This was indicated by a
‘hissing noise’ and a sudden ‘settling’ after a slow ‘unsettling’ during the release.
He asked Clerk Maxwell for advice, who stated that ‘a historical element would
enter largely into the nature of the limiting equilibrium of sand’, and concluded
that this would ‘essentially elude mathematical treatment’.

Darwin demonstrated that this ‘capricious’ behaviour refuted the earth pres-
sure theories of Rankine and Boussinesq. His ‘unsettling’ was rediscovered by
Reynolds as dilatancy, while his conclusions were ignored until present. His
hissing noise indicates a coherent seismicity with frequencies of at least ca.
cs/d ≈ 1000/s with cs ≈ 100m/s and d ≈ 0.1m. This arose in a contractant
chain reaction within a Coulomb-like shear zone, where the sand got close to
critical points with equal stress alignment by the release of the wall. Like with
dominoes on a table with equal alignment and suitable distances pressure waves
produced a positive feedback towards critical points. This occurred up to a sur-
roundings with less uniform alignment and lower stress ratio. Thus limit stress
states arose one after another, not simultaneously in a region as often assumed
since Rankine’s times.

Model tests with dry sand in a box are irreplaceable for understanding tec-
tonic deformations [23]. For sand these are localized in shear bands with stress
alignment via a Mohr-Coulomb condition, and they occur similarly with faults
in the lithosphere. Initial and boundary conditions in sand-box tests are debat-
able as the lithosphere has no onset and no walls with imposed displacements.
Thus the extension of a sand layer, e.g., can produce lithosphere-like fractal
patterns [37], but with lateral artefacts for lack of antimetric boundaries like in
Fig. 4. Model tests with periodic boundary conditions are more adequate and
yield likewise spatial fractality [31]. One could track contractant chain reactions
like those in Darwin’s experiments by successive location of seismic sources in
a sand-box, though with an inevitable haziness because of energy diffusion [7].
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Fig. 5. Model test setup by Darwin [1]

Such investigations could clarify the interplay of slow and fast tectonic processes,
and could foster calculation models of seismogeneous chain reactions.

Loose flooded sand deposits demonstrate that seismogeneous chain reactions
are also enhanced by the diffusion of pore water [4]. Gas-filled macropores enable
metastable grain fabrics with an average void ratio ē > emax which collapse into
a suspension after minute disturbances. A collapse front spreads laterally by
P-waves up to more than 100 m width so that surface waves arise which are
registered up to 100 km away. As the pore pressure pw attains the total pressure
p in the liquefied zone pw rises in the vicinity by the combination of seepage and
compression of enclosed gas, i.e. a kind of diffusion. Thus a next collapse front
arises with a progression of ca. 10 m/s, and further ones as far as the deposit is
metastable. Combined with a humid cover this led to avalanches with en-échelon
offsets (e.g. Fig. 6) with released energies up to ca. 109 kNm.
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Fig. 6. Loose partly flooded sand deposit from lignite mining after flow slides (courtesy
LMBV)

Similar technogeneous avalanches occurred in building and mining sites with
released energies from about 104 kNm to 1010 kNm. Collapses of flooded sand into
excavations or tunnels release smaller energies, but can also cause considerable
damages. Their ‘capricious’ dynamics eludes again as yet mathematical treat-
ment. Bigger avalanches of flooded granular solids with gas inclusions occurred
naturally. The one triggered at the volcano Huascaran (Peru) 1962 erased a town
with 20.000 inhabitants and released about 1014 kNm. Another one triggered at
the Norwegian continental shelf about 8000 years ago (Storegga) released ca.
1016 kNm and produced a tsunami.

4 Critical Phenomena with Rock

For employing the similarity of sand and rock indicated with Fig. 1, I begin
with triaxial test results by [18]. Critical points of a cemented grain fabric were
attained by axial shortening or lengthening plus increase of pore water pressure
pw. If the effective radial pressure σ′

3 was higher than the tensile strength c′ a
shear band pattern arose at a Mohr-Coulomb limit, Fig. 7 above. It resembles
the ones in triaxial tests with sand, and also the simulated one in Fig. 4. The
few minutes required for getting a uniform pw suit to the estimated time needed
for a diffusion of pore water [3], and the permeability decreased due to the
comminution in shear bands. The confined chain reaction could be tracked by
locating seismic sources, also in a series of such experiments, this could help
develop mathematical models for such critical phenomena.
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Fig. 7. Shear bands (above) and cracks (below) of water-saturated sandstone samples
after triaxial tests with high or low effective radial pressure, respectively (winding-up
photographs by Lempp et al. [18])
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Critical points with σ′
3 < c′ led to opening cracks, e.g. Fig. 7 below, and thus

to a dramatic increase of the overall permeability. This kind of splitting or discing
by axial shortening or extension, respectively, resembles a Griffith [2] fracture,
but eludes as yet mathematical treatment because of its wild randomness. The
permeability with cracks is not Darcy-like as temporal and spatial derivatives
do not exist, but could be calculated for the linear hydraulic range with a given
pore system and boundary conditions. The evolution of crack systems is a more
difficult task as the equations for the solid degenerate at critical points, and as
random sets of such events should be constructed. Such an approach could help
understand rock collapses in situ at so low depths that cracks get wider.

Features like in Fig. 7 could also be obtained with humid sand samples at
low pressures. Then condensate bridges are no more solid and brittle, but liq-
uid and determined by the vapor pressure so that they dwindle by dilation.
The potential energy has an elastic and a capillary part, and at critical points
localized state variables come into play. Seismogeneous chain reactions prograde
by P-waves and by diffusion of pore water, the latter also via vapor in case of
humid geomatter. Like with Darwin’s conclusions the loss of stability cannot be
captured by conventional limit equilibria because the historical element eludes
as yet mathematical treatment. A localized dilation can go over into a crack if
the potential energy is at a saddle point like in Griffith’s [2] theory, but with
spatial and temporal fractality.

The striking similarity of small humid sand structures, e.g. those in Fig. 1,
with rock slopes and mountains can be explained and employed without cal-
culations. Parts of a steep slope or a cliff collapse suddenly after weathering
up to a critical point. Limit equilibria - as conventionally proposed with humid
sand and water-filled cracks - may be snapshots, but are insufficient for the
judgment of stability [8]. Simulations with finite elements are even more mis-
leading if localizations including capillarity and chain reactions with seismic and
hydraulic feedback are not taken into account. This holds also true with erosion
and avalanches. A seismo-hydraulic monitoring could serve as early warning if
collapse mechanisms are understood with the aid of model and field tests, which
could lead to realistic calculation models including the ever-present fractality.

This argument can also be applied to cavities. The caving in of boreholes is
usually investigated by means of numerical simulations with radial symmetry,
but thus the wild randomness of chain reactions with an ever-present fractality
is missed. Further damage can arise with erosion along boreholes if this leads
to eruptions of mud, gas and/or oil. Natural eruptions from gas inclusions with
excess pressure and collapses of sinkholes elude likewise mathematical treat-
ment. The same holds true for excavated cavities, particularly with tunnelling.
Limit states are not sufficient for the proof of stability because the shearing
resistance is not perfectly plastic as needed for the bound theorems. Presently
employed quasi-static finite element simulations require stability so that this can-
not be proven with them. Temporal extrapolations of measured displacements
and forces are futile as the required differentiability gets lost with the fractality
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of critical phenomena. Again a seismo-hydraulic monitoring could serve instead
for early warning if the mechanisms are properly understood.

The fractality matters also for the identification of seismic sources. In clas-
sical models point sources are conceived as momentum tensors with assumed
spatio-temporal distribution for getting far-field spectra, and this procedure is
tentatively inverted [19]. The classical Green function for a point source can rep-
resent speeds and polarizations of wave crests so that the ray approximation is
legitimate for far-fields in spite of the energy diffusion due to an inherent fractal-
ity in the stable elastic range [7]. Thus momentum tensor inversions can convey
at best a diffuse image of propagating dislocations. As outlined further above
seismogeneous chain reactions differ from evolutions of regular cracks, and usual
stick-slip models are tribologically contestable [9,29].

Fig. 8. Cross section of Chile with seismic sources [17]

A possible way out of this conceptual blockade is the transfer of findings
with sand to the lithosphere, in particular to subduction zones. The biggest one
exists under Chile, shown e.g. with a cross section near its capital in Fig. 8. The
dots representing seismic sources accumulate in a rather fractal manner in three
regions. The Nazca plate (d) dips with a trench (fosa) and hits the continen-
tal plate in a thrust zone (a). This may be considered as a passive Coulomb
zone with a continued drive. Differently from Darwin’s [1] experiments chain
reactions - with positive feedback by seismic waves and pore water diffusion -
arise repeatedly. The continued shearing of the oceanic plate past the continental
one is no more sand-like at bigger depths (b) due to a kind of melting. There
mineralogical phase transitions occur in shear bands without pores, but again
in a ‘capricious’ succession of critical points. The horizontally compressed plate
under the mountain ridge reaches critical points preferably under its rim (c) due
to spreading forces.
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5 Successions of Critical Phenomena
and Geomechanical Risk

Figure 9 depicts numbers N of earthquakes for the cross section of Fig. 8 which
exceed a certain magnitude M . The regression lines confirm the Gutenberg-
Richter relation with a negative slope or b-value near 1. M is defined as the
logarithm of the energy E released in a seismic episode, expressed in energy
units. I leave aside the determination of E and M , presuming that disputable
details matter little for the sequel. One can represent the straight lines by

N = Nr(E/Er)−b;Er ≤ E ≤ Em (1)

with a reference number Nr, a lower cutoff Er serving also as a reference value,
and an upper cutoff Em. Normalizing N by Nr leads to the cumulative proba-
bility

P≥E = (E/Er)−b;Er ≤ E ≤ Em (2)

that an earthquake releases at least the energy E if it happens in a region where
E ranges from Er to Em. So why does (2) hold, and why with b ≈ 1?
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Fig. 9. Seismicity of central Chile [17]: logarithm of number of earthquakes with mag-
nitude M or more. Upper line interplate (thrust), middle one intraplate (subductive
shear), lower one crustal (under mountains)

We consider random successions of seismic episodes with released energy E
as stable Lévy processes [9]. E comes in jumps versus time t as the duration
of an episode is far smaller than its recurrence time. Subsequent jumps have
variable sizes with a wildly random [21] distribution which changes with time.
This property is called ‘infinite divisibility’, and if the probability distribution is
not changed by superimposing distributions of different observation times it is
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called ‘stable’. Then the cumulative probability P (ξ, τ) of events with ξ ≡ E/Er

or more at a dimensionless time τ ≡ t/tr satisfies the relations

P (ξ, aτ) = P (a1/γξ, τ) (3)

and
P ∝ τξ−γ for ξ/τ1/γ > 1. (4)

The wild randomness means that P (ξ, τ) does not depend on the one of any
previous time, which is seemingly at variance with the historical element of
seismogeneous chain reactions. However, any subsequent chain reaction occurs
in another site than the preceding one as this led to a stabilization so that a
continued magma drive leads first other sites close to critical points. This occurs
in such a way that the correlation of successive chain reactions arising at different
sites gets lost.

If the lithosphere response to the magma drive is rate-independent (cf. Fig. 2)
P is not changed if either the energy threshold E or the registration time t
changes by a certain factor. This means γ = 1 by (3) and (4), then the stable
cumulative Lévy distribution simplifies to the Cauchy distribution

P (ξ, τ) = 1 − 2
π

arctan(ξ/τ). (5)

Its log-log plot (Fig. 10) exhibits a kind of plateau due to P → 1 for ξ/τ → 0, a
bend near ξ/τ = 1 and a straight line with a slope −1 right of it by (4). Expected
value and variance related with (5) diverge, this cannot occur physically and is
avoided with an upper cutoff, as assumed also in Fig. 10. A smooth cutoff function
instead of an abrupt one widens the range of distributional stability and enables
an objective scaling [32]. The convergence to a normal distribution for sums of
truncated Lévy distributions is extremely slow [25].

The comparison of (2) and (4) supports a stationary Gutenberg-Richter rela-
tion with b = 1. An upper bound Em of released energy is determined by the
biggest possible chain reaction in a considered region. It could be estimated as
Em ≈ Fmum by means of the length and depth of a thrust zone with uniform
alignment, leading to a Coulomb-like resisting force Fm, and the biggest possi-
ble sudden tectonic displacement um. This leads to E ≈ 1018 kNm like for the
Valdivia event 1960 with M = 9.6, the biggest earthquake ever registered. Due
to their long recurrence times such events are rarely observed and hardly rep-
resentative in a statistical sense. An objective lower cutoff Er could be related
with the log-log bend of an observed distribution near ξ/τ = 1 (cf. Fig. 10).
It is inevitably hazy as the theoretical bend is smooth, which corresponds to
indiscernible events of a background noise.

b = 1 is legitimate if the tectonic conditions are stationary and the lithosphere
responds to them without delay, whereas thermally activated dislocations and
changing tectonic conditions lead to an instationary Gutenberg-Richter relation.
Stable Lévy distributions with γ above or below 1 can be approximated by
series expansions [24]. With γ �= 1 the cumulative probability can again be
approximated by (2) due to (4), while it tends to 1 for (E/Er)/(t/tr)1/γ → 0.
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Fig. 10. Log-log plot of a stable cumulative Lévy distribution with γ = 1. Cumulative
probability P versus ξ/τ , cutoffs for ξ/τ → 0 and ξ/τ → ∞

Thus the total of released energies beyond a certain E does not grow with the
same factor as the registration time. The substitute distribution (2) requires
therefore time-dependent bounds Er and Em, and the reference number Nr in (1)
is no more proportional to the velocity of the magma drive and the registration
time.

The Gutenberg-Richter relation with b ≈ 1 is empirically well established so
that it can be used for the validation of stable Lévy processes with γ around
1. Seismically less active regions are left aside as the events constitute a kind
of noise which cannot as clearly be related with tectonic mechanisms as with
subduction zones. There are other successions of geomechanical chain reactions
which are seismogeneous and wildly random so that the theory of stable Lévy
processes can be of use. Their size, given by the released and dissipated energy,
ranges again from a rather diffuse lower cutoff to an upper one which is several
orders of magnitudes bigger. This holds true also for collapses of and eruptions
from natural cavities, slope collapses from rock falls to avalanches, rupture of
retaining structures for excavations and slopes, toppling of high-rise buildings
and offshore structures, and combinations of such cases.

A common feature of such mechanisms is an ever-present spatial and tempo-
ral fractality, and the impossibility to capture them with presently used computer
models. For quantifying the related geomechanical risk R, i.e. the expected value
of damage D, probabilities of such events and the exposition of men and objects
to them is needed. In the simplest rational approach the probability density
derived from (2) with b = γ = 1, and the ansatz D = V E with a constant
vulnerability V , leads to the expected value

R ≡ D̄ = V Er ln(Em/Er), (6)
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and with Em 	 Er to the variation coefficient

VD = VE =

√
Em/Er

ln(Em/Er)
. (7)

An insurance fee is obtained from R by adding an amount for administration
and risk of the insurer. The latter is higher than with normal distributions as
the law of big numbers works only for at least n = VD cases [25]. The need of
keeping V low and of confining the worst case with D = V Em is trivial. Less
evident is the control of the lower bound Em so that, alongside with the expenses
for reducing it and V , the overall expenses are minimal.

This scheme enables the construction of fractal random sets with a minimal
number of scenarios. The episodic fractal exponent is γ = 1 if the geomechanical
systems reacts to a drive - from excavation and erosion to tectonic shift - within
a time which is several orders of magnitude shorter than the recurrence time.
γ > 1 is adequate if thermally activated relaxation reduces the propensity for
chain reactions, e.g. in zones of slow thrust, and the opposite holds true e.g.
for excavations in ground with soft mineral. γ < 1 is also adequate in case of
hydraulically activated softening or erosion, and if the damage increases by a
delay of remedies.

Systematic estimates of γ �= 1 are beyond the present reach, so one should
first focus on the cutoffs for γ = 1. The lower one provides an objective scaling
by (6) and works as a kind of background noise which can trigger chain reactions.
The expected value of released energy Ē = Er ln(Em/Er) refers to cases where
a trigger with Er is imposed, while the number of events equals the one of such
triggers. The vulnerability V depends on exposition, sheltering and monitoring
with an erratic component which is but indirectly related with the complexity of
geomatter. A paramount objective of geomechanics is the realistic estimation of
upper cutoffs Em or worst cases. As stated further above they cannot be captured
by quasi-static computer models as these require stability for being feasible. It
is indispensable to take into account inertial effects for modelling seismogeneous
chain reactions. Numerical models could be checked and improved by means of
sand-box tests with location of seismic sources.

The eutaraxy in the large is a bigger challenge. As outlined in Sect. 2 the
eutaraxy which has been captured mathematically represents the force-roughness
of grain fabrics in the stable range, i.e. the propensity for an incoherent micro-
seismicity due to imposed deformations. This works heuristically as long as relics
of former critical phenomena are sufficiently ironed out, but precisely speaking
this is a contradiction in terms. Force-roughness means fractal spatial fluctua-
tions so that classical intensive and extensive quantities are objectionable. The
postulate of locality for simple materials [35] gets invalid with critical phenomena
as then correlation lengths diverge. Thermodynamic critical phenomena yield
already fractality, but seismogeneous chain reactions are more intricate as geo-
matter conserves traces of former critical phenomena as long as they are not
swept out - this is Maxwell’s historical element. For lack of ergodicity there
is a configurational entropy which differs from the entropy by Boltzmann and
Shannon as fluctuations are rather Lévy- than Gauss-like.
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6 Conclusion

The objective of research is to reduce cognition deficits. This requires induc-
tion (επαγωγή) in Aristoteles’ sense, i.e. hypotheses and logic with empirically
limited validity. Popper [30] calls theories nets thrown out for catching parts
of reality, emphasizes their refutability and proposes a probabilistic frame for
random phenomena. Geomatter is a complex part of reality as it is less continu-
ous than classical solids and fluids, and as its opaqueness impedes observations.
In TA ΦYΣIKA Aristoteles mentions that a heap of fragments does not react
to an action (ενέργεια) like continuous matter. Müller [26] calls natural rock
a discontinuum and points to the self-similarity of crack patterns, Mandelbrot
[20] stresses the fractality of earthquakes and the intricacy of Lévy’s theory,
Turcotte [36] doubts the ‘self-organized critically’ with cellular automata, Wu
and Aki [38] and Shapiro [33] tried to relate wave scattering with the geomet-
rical fractality of geomatter, Tarasov [34] proposed a fractional hydrodynamics
for fissured rock. So I am standing on the shoulders of giants in Newton’s sense,
but their diversity is sometimes frustrating.

My list of contra-continuum arguments (Sect. 1) appears likewise frustrating
- so what should and could be done? Maxwell’s historical element is a com-
monplace in geosciences, but does it elude the mathematical treatment of limit
equilibria for ever? Small deviations from stable equilibria of solid and pore water
with fractality can be captured with the fractional calculus, but how do fractal
pore systems evolve? And how to manage the risk even if cumulative probabil-
ities can be captured with truncated power laws or stable Lévy distributions?
Briefly speaking: how to cope with the ever-present fractality in geomechanics
for research and practice?

One may speak of a new paradigma, but there is no easy answer. Before work-
ing out calculation models one should realize how the stability of geomechanical
systems gets lost in chain reactions with fractality before, during and after them.
Single events should be observed in boxes with sand - dry and water-saturated -
and seismometers, and simulated numerically with seismic waves and pore water
diffusion. Polar quantities and initial fluctuations should be taken into account.
Systematic variations of initial and boundary conditions should reveal expected
values and variances of chain reactions, and more generally a data set which is
indispensable for developing fractional images of fractal random sets. The range
between mild and wild randomness [20,21] is wide and yet hardly explored.

Capillary effects, fracture and erosion including fractality could also be clar-
ified by means of sand-box tests. Kadanoff [14] doubted hydrodynamic theories
for sand, Jiang and Liu [12] presented a promising one, I replace their ‘hydro’
by means of a ‘eutaraxy’. Both models cannot yet capture critical phenom-
ena with growing fractality, but extensions should be attempted alongside with
sand-box tests. As long as there is no general energetics for fractal phenomena
this procedure is inevitably heuristic, but what counts is always the strength
of hypotheses. Model experiments with sand and structures can also help to
understand the robustness of geotechnical systems, i.e. the ability of harmless
redistributions in case of inevitable extreme actions. Model tests with sensitive
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systems and location of prograding seismic sources could help to clarify not only
tectonic evolutions, but also early warning systems for geotechnical operations.

An objective of psychology is to reveal cognition defects. Kahnemann [15]
showed that human beings - including scientists and engineers - tend to see
patterns even if there are none in reality, and are weak in estimating probabilities
even of simple events. No wonder therefore that in geomechanics

• the illusion of limit stress fields and rigid sliding blocks survived until present;
• geotechnical systems with varying arrangement are confused with structures

for which the degrees of freedom do not change;
• the probability of failure is considered as sufficiently low by means of safety

factors although the then required robustness is not given in general;
• finite element simulations are used for the assessment of stability although

the latter is needed for making the former feasible;
• observational methods are used for maintaining stability even if the employed

extrapolation gets impossible due to the temporal fractality of stability losses;
• quasi-static finite and discrete element simulations are made with a fictitious

viscous damping so that crucial seismic effects are excluded;
• cellular automata are employed for getting look-alikes instead of realistic

images of successive events;
• after disasters mysterious anomalies are invented instead of real mechanisms

in order to avoid liability suits.

Instead of thus producing or accepting ‘alternative realities’ and ‘fake news’ one
should go on with Aristoteles’ induction by means of an open-minded discourse
like in his peripatetic school.
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Abstract. Prediction of failure in soil tests is considered based on hypoplastic
modelling of soil behavior and bifurcation analysis. With a comprehensive
hypoplastic model for granular soils, a bifurcation condition is formulated for
general stress state. The possibility of localized failure in true triaxial tests is
investigated by examining the bifurcation condition in element tests following
different stress paths. Three situations depending on stress path, including no
bifurcation, bifurcation in softening regime and bifurcation in hardening regime,
are predicted. Concerning shear localization, the predicted failure surfaces dif-
fers significantly in shape from the implemented critical state surface.

Keywords: Granular soils � Hypoplasticity � Triaxial test � Failure �
Bifurcation

1 Introduction

The granular soils are typical cohesionless frictional materials, whose strengths are
usually characterized by a friction angle in term of the Mohr-Coulomb (M-C) failure
criterion, or of a more sophisticated failure criterion such as the Matsuoka-Nakai (M-N)
criterion which takes into account the influences of the intermediate principal stress. In
triaxial tests of soils, two types of failure may be observed, namely, the uniform diffuse
failure and the localized failure. In the former cases, soil sample maintains a uniform
deformation in a test, reflected by a stress-strain curve with a smooth peak followed by
a gradual strain-softening regime, leading to an asymptotic value. In the latter cases, a
shear band develops in soil samples, resulting in a relative sharp peak on the stress-
strain curves with a more pronounced softening rate.

In constitutive modeling of soil behavior, the critical friction angle is commonly
regarded as a material property. By employing the critical friction angle as a strength
parameter, the density-dependent peak strengths can be obtained as model predictions.
Moreover, by implementing a pre-defined critical state surface (CSS) in the model,
prediction of similarly-shaped failure surfaces is assumed. In doing so, the effect of
shear localization is usually not considered.

The present work discusses the influence of shear localization on the predicted
failure in hypoplastic modelling of granular soils on the basis of bifurcation analysis.
Hypoplasticity is a framework for constitutive description of soil behavior developed in
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Karlsruhe [1, 2]. A comprehensive hypoplastic model for sand-like granular soils
formulated by Gudehus [3] and Bauer [4] is used for this discussion. This model can
capture the main features of the density-dependent compressibility and the pressure-
and density-dependent shear behavior of granular soils. In particular, the concept of the
critical state is incorporated. Like many other elastoplastic models for soils, it is also
calibrated against experimental data from basic soil tests, namely the oedometer test
and the conventional triaxial test. In this paper, the condition for shear bifurcation
formulated for the hypoplastic model following the approach by Rudnicki and Rice [5]
is presented. The possibility of shear localization is determined by examining the
bifurcation condition along various stress paths for true triaxial tests. Path-dependent
failure of granular soils in laboratory tests is discussed in the light of prediction of shear
bifurcation.

2 Description of the Constitutive Model

The hypoplastic model employed for this analysis is basically as described in [3, 4],
which takes the following form:

_rij ¼ fsðp; eÞ½Lijkl _ekl þ fdðp; eÞNij

ffiffiffiffiffiffiffiffiffiffiffiffiffi
_ekl : _ekl

p
�; ð1Þ

with Lijkl ¼ â2dikdjl þ r̂ijr̂kl and Nij ¼ âðr̂ij þ ŝijÞ. Here dij is the Kronecker delta, r̂ij ¼
rij=rmm is the normalized stress and ŝij ¼ r̂ij � 1=3 its deviator. The model perfor-
mances are governed by the stiffness factor fs and the density factor fd , which depend
on the mean stress p and the void ratio e. In particular, fd is a power function of the
relative void ratio

re ¼ ðe� edÞ=ðec � edÞ: ð2Þ

Here ec and ed represent, respectively, the pressure-dependent critical and densest void
ratio. Factor fs is basically determined based on consistence condition with the com-
pression law and is amended considering density and deviatoric stress effects as
described in [3]. The model contains 8 parameters, which can be determined from basic
laboratory tests, as discussed in [4, 6].

For a monotonic shear test, the model predicts a critical state which is characterized
by e ¼ ec and stress satisfying the following critical state condition:

wcðrijÞ ¼ ŝijŝij � â2 ¼ 0: ð3Þ

Equation (3) describes a cone-shaped critical state surface in the stress space. Pre-
defined critical state surfaces may be implemented in the model by expressing â as a
relevant function of an intermediate principal stress parameter [7]. In this work, this is
done alternatively by using the stress transformation technique following Huang et al.
[8], i.e., by replacing r̂ij in tensors Lijkl and Nij with the following transformed stress:

Hypoplastic Prediction of Path-Dependent Failure in True Triaxial Tests 61



r̂�ij ¼ ½rhdikdjl � 1
3
ð1� rhÞdijdkl�r̂kl: ð4Þ

Here the transformation factor rh is a function of angle h, which is determined with
cos 3h ¼ ffiffiffi

6
p ðr̂ijr̂jkr̂kiÞ=ðr̂mnr̂nmÞ. For instances, a CSS defined by the M-N or the M-

C failure criterion is implemented with the following respective representations for rh:

rh ¼ 1� ffiffiffiffiffiffiffiffi
3=2

p
ŝk k cosð3hÞ

1� 3
2 ŝk k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
8

ŝk k2 þ 1� 3
2 ŝk k2

1� ffiffiffiffiffiffiffiffi
3=2

p
ŝk k cosð3hÞ

s
þ

ffiffiffi
3
8

r
ŝk k

 !
; ð5Þ

rh ¼
ffiffiffi
8
3

r
sinðhþ p=3Þ

½ ffiffiffi2p þ ffiffiffi
3

p
ŝk k cosðhþ p=3Þ� � ŝk k sinðhþ p=3Þ : ð6Þ

3 Prediction of Stress Path-Dependent Failure

In this section, prediction of possible uniform diffuse failure or localized failure in true
triaxial tests is discussed based on the bifurcation analysis with the above described
constitutive model.

3.1 Condition for Shear Bifurcation

In modeling uniformly stressing or straining of soil samples in triaxial tests, a con-
stitutive model may allow non-uniform deformation in the form planar weak discon-
tinuity to enter the solution. For a well-developed constitutive model, such shear
bifurcation marks the incipience of shear localization in soil samples in an ideal con-
dition. As a weak discontinuity plane (shear plane) starts to appear, crossing it the
velocity gradient exhibits a jump, which can be expressed by the normal vector of the
plane ni and a vector gi characterizing the relative shear. Correspondingly, the strain
rate also exhibits a jump which can be expressed by

½½_eij�� ¼ 1
2
ðginj þ nigjÞ: ð7Þ

By considering the equilibrium condition on the discontinuity plane together with the
constitutive relation, an equation which should be satisfied by vector gk is obtained:

Qikgk ¼ kfdBi: ð8Þ

where Qik ¼ ð1=2ÞðLijkl þ LijlkÞnjnl, Bi ¼ �Nijnj, k ¼ ½½ ffiffiffiffiffiffiffiffiffiffiffiffiffi_emn _emn
p ��. Note that tensor Qik

is positive definite and k ¼ 0 is equivalent to gk ¼ 0. Equation (9) is hence a nonlinear
homogenous equation for vector gk. Non-trivial solution exists in case the following
condition is fulfilled [9]:
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wbðrij; e; niÞ ¼
f 2d
2
½Q�1

ij BjQ
�1
ik Bk þðQ�1

ij niBjÞ2� � 1� 0: ð9Þ

3.2 Condition for the Peak State

For automatic determination of the smooth peak point on the stress-strain curve in
modelling a shear test, a mathematical representation describes the peak state is pro-
vided here. This is derived from the constitutive equation by setting:

_rij ¼ 0 for
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_ekl : _ekl

p
6¼ 0 with fd\1

which leads to the following condition for identifying smooth peak states in shear tests:

wpðrij; eÞ ¼
f 2d
â2

½g2r̂�ijr̂�ij þð2g� 1Þŝ�ijŝ�ij� � 1 ¼ 0; ð10Þ

with g ¼ ðâ2 � ŝ�klŝ
�
klÞ=ðâ2 þ r̂�klr̂

�
klÞ.

3.3 Prediction of Stress Path-Dependent Bifurcation

The possibility of localized failure in triaxial tests is now investigated by checking the
bifurcation condition through element tests along various stress paths starting with an
initial state defined by rij;0 ¼ �p0dij and e0 ¼ ed þ re0ðec � edÞ. That is, the constitutive
equation is integrated along each stress path with condition (9) being checked at each
increment step. Note that the maximum value of function wb is searched with respect to
the varying orientation vector ni, and the bifurcation point is identified for wb;max ¼ 0.

In Fig. 1, some results obtained from a plane strain biaxial compression test are
presented. The model with the CSS defined by M-N criterion is used for testing. The
stress-strain curve is obtained for p0 ¼ 100 kPa and re0 ¼ 0:4. The values of function
wb are computed at three marked points and presented against b, the angle between the
normal of the searched plane and the maximum compressive stress, which illustrates
the dependence of wb on the orientation of the potential discontinuity plane. Point B is
on the stress-strain curve is identified as the (earliest) bifurcation point, as wb;max ¼ 0 is
obtained at this point for some particular values of angle b. The orientation of the
discontinuity plane is indicated by b values at which wb;max is achieved.

Figure 2 presents the main results obtained from tests along different stress paths for
true triaxial test. The peak and bifurcation points are presented in Fig. 2(a) in terms of
the mobilized friction angle /m against stress path parameter b ¼ ðr̂2 � r̂3Þ= ðr̂1 � r̂3Þ.
Three situations can be noted. For tests along stress paths with zero or small values of b
or h, no bifurcation point is obtained. Next to this range there is a narrow band for b ðhÞ,
along the stress paths bifurcation points are obtained in the soften regime after a peak.
For a larger range with greater b ðhÞ value, bifurcation points are obtained in the
hardening regime before peak. These results agree in general with the experimental
observations by Wang and Lade [10] and Sun et al. [11]. These three different situations
are further illustrated in Fig. 3, where three stress-strain curves obtained for tests along
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stress paths with h ¼ 0�; 14� and 30� respectively are presented with variation of cor-
responding Wb;max against the maximum strain. It can be seen that in the test for stress
path h ¼ 0�, the value ofWb;max never reaches zero, while in other two tests,Wb;max hits
zero value in the softening and the hardening regime, respectively.

The normal of the predicted shear plane is found to be always perpendicular to the
intermediate principal stress. The shear plane inclination, characterized by b, the angle
between the normal of the shear plane and the maximum compressive stress, varies
with the stress path parameter b as shown in Fig. 2(b). Influence of soil density is
reflected by three curves obtained for different initial relative void ratio.

Tests are also performed for the same hypoplastic model with a different CSS
defined by the M-C criterion. The predicted peak points and bifurcation points for
different stress paths are presented in Fig. 4 as loci in the deviatoric stress plane, and
compared with the results for the model with CSS defined by M-N criterion. Though
different in shape, the bifurcation loci in relation to the peak loci for two cases are quite
similar. This highlights that bifurcation is basically a model property.

Fig. 1. Shear bifurcation in a biaxial compression test: (a) stress-strain curve and (b) function wb
calculated at three marked points (right).

Fig. 2. (a) Path-dependent peak and bifurcation points for true triaxial tests and (b) inclination of
the discontinuity for bifurcation.
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4 Concluding Remarks

For hypoplastic description of granular soils, the possibility of localized failure in true
triaxial tests has investigated based on a bifurcation condition, which is formulated for
general stress condition. Three situations are predicted in element tests following dif-
ferent stress paths: bifurcation does not occur, occurs in the softening regime after peak
or occurs in the hardening regime, depending on stress path. For conventional triaxial
test or the stress paths close to that, uniform diffused failure is predicted. For stress
paths with relative greater value of h or b, including triaxial extension, localized failure
is the prediction. Thus, with the present hypoplastic model, the predicted failure surface
differs significantly in shape from the CSS. Then how to predict a targeted failure
surface in a model may need a further consideration.

Fig. 3. Illustration of three situations in shear tests: (a) three stress-strain curves with peak and
bifurcation points marked; (b) variation of wb;max in three tests.

Fig. 4. Predicted peak and the bifurcation loci on the deviatoric stress plane by the model with
the CSS defined (a) by the M-N criterion and (b) by the M-C criterion.
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It should be noted that the model prediction of bifurcation refers to tests of soils in
ideal conditions. Laboratory test results may be affected by many factors. In general,
due to the inevitable heterogeneity of soil samples, shear localization may be more
prone to occur. Should shear bifurcation occur in a laboratory test, interpretation of the
test result is no longer straightforward. Neither can the result be used for model
calibration. Fortunately, the conventional triaxial test is the most stable one among all
tests considered in this work and the uniform diffuse failure is achievable in such tests,
which is meaningful for model development. However, in a wide range of true triaxial
tests, localization failure may not be avoidable. Cautiousness is also needed in appli-
cation of the experimental data from those tests.
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Abstract. Geogrids are the geosynthetics of choice for soil reinforcement
applications. To evaluate the efficiency of geogrid reinforcement, several methods
are used including field tests, laboratory tests and numerical modeling. Field
studies consume long period of time and conducting these investigations may
become highly expensive because of the need for real-size structures. Laboratory
studies present also significant difficulties: large-size testingmachines are required
to accommodate realistic geogrid designs. The discrete element method (DEM)
may be used as a complementary tool to extend physical testing databases at lower
cost. Discrete element models do not require complex constitutive formulations
and may be fed with particle scale data (size, strength, shape) thus reducing the
number offree calibration parameters. Discrete elementmodels also arewell suited
to problems inwhich large displacements are present, such as geogrid pullout. This
paper reviews the different approaches followed to model soil-geogrid interaction
in DEM and presents preliminary results from pull-out conditions.

Keywords: Discrete element method (DEM) � Soil reinforcement � Geogrids

1 Introduction

1.1 Geogrids

Geosynthetics are synthetically manufactured products used with soil, rock, and earth
so overcome civil engineering problems. Geosynthetics can be used in a wide spectrum
of fields such as transportation, geotechnical, environmental, hydraulics, and private
development [1].

Geogrids are one of the types of geosynthetics that are quickly growing in usage. Its
structure consists of plastic ribs forming big apertures. Due to its open-like structure, it
can be used for reinforcement and stabilization. Transverse and longitudinal ribs of the
geogrids are manufactured from high-modulus polymers; therefore, the strength of
geogrid ribs is higher than the strength of geotextiles. Transverse members of the
geogrids serve as an abutment or anchor due to their location parallel to the face of
structure. Therefore, the main function of longitudinal ribs is to keep the transverse ribs
in position [2]. The opening size of geogrids is sufficient enough to allow soil contact
and interlocking between particles. Geogrid reinforcement provides higher shear
strength of soil mass and higher load bearing capacity. Geogrids are also helpful in
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preventing soil erosion. Moreover, use of geogrids in construction reflects other
advantages such as ease of construction, high durability, resistance to environmental
issues, availability of the material, and low cost [3].

1.2 Geogrid Modeling Methods

Modeling of geogrids can be categorized as soil-inclusion problems. Applying finite
element method (FEM) for such case is widely practiced [4, 5]. However, using FEM
to model soil-inclusion problems faces difficulties in the definition of crucial param-
eters that represent grid-soil interaction. Application of discrete element method
(DEM) may be useful, particularly for cases involving large sized granular materials.
There are several studies that describe conventional method of modeling representing
soil and soil inclusion as rigid spherical particles [6]. Some studies develop soil-
inclusion model by using mix of methods: where soil was modeled by discrete element
(DE) and geogrid was modeled by finite element (FE) [7]. A summary example of
geogrid modeling methods is given in Table 1.

2 Numerical Modeling

2.1 Numerical Modeling Method

A method to model geogrid-soil interactions through representing geogrids as
deformable cylinders according to the concept by Minkowski sum has been recently
proposed by Thoeni et al. [8]. Main components of Minkowski sum include rigid

Table 1. Summary of geogrid modeling methods.

# Modeling approaches Applications Refs.

1 Model by using FEM: where
both soil and geogrid was
modeled by finite element

Pull-out behavior of the model
was investigated

Sugimoto and
Alagiyawanna [4];
Khedkar and
Mandal [5]

2 DEM model representing soil
and soil inclusion as rigid
spherical particles

Cyclic triaxial loading
simulation with spherical
ballast particles

McDowell et al.
[6]

3 DEM-FEM models: where soil
was modeled by spherical
discrete element and geogrid
was modeled by finite element
(FE)

Pull-out test was performed to
define relationships between
pull-out force and
displacements

Tran et al. [7]

4 DEM model by representing
geogrids as deformable
cylinders according to the
Minkowski sum concept and
representing soil as spherical
particles

Pull-out test was performed in
order to check effectiveness of
the model

Thoeni et al. [8]
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spheres (Fig. 1a) and cylinders represented by sphere and line (Fig. 1b). Each rib of the
grid can be modeled by one or more cylinders depending on geometry of grid.

Contacts between each component are treated as sphere-sphere interconnection
allowing to use basic mathematical formulation for contact forces.

2.2 Inter-particle Contact Law

A linear contact stiffness law and Mohr-Coulomb friction were used in the software to
describe inter-particle interaction. This law implements the classical linear elastic-
plastic law from Cundall Strack [9]. The normal force is (with the convention of
positive tensile forces) Fn = min (knun, 0), where un is the normal distance between two
spheres. The shear force is Fs = ksus, where us is the relative shear displacement. The
plasticity condition defines the maximum value of the shear force: Fs maxð Þ ¼ Fn
tanðuÞ, with u the friction angle. The linear contact model stiffness is derived from the
normal and shear stiffness kn and ks assigned to the contacting objects. Linear contact
model represents two contacting objects to be in series; hence, normal secant stiffness
of contact is defined by following equation:

kn ¼ kn1kn2
kn1 þ kn2

¼ 2E1R1E2R2

E1R1 þE2R2

where, kn1, kn2 = normal stiffness of contacting objects. Whereas shear tangent stiff-
ness of the contact is defined by:

(a)                                              (b)

Fig. 1. Minkowski sum components: (a) sphere and (b) cylinder [8]

(a) (b)

Fs

Fig. 2. Contact forces between components: (a) sphere-sphere and (b) sphere and virtual sphere
of cylinder or pfacet [8]
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ks ¼ ks1ks2
ks1 þ ks2

¼ 2E1R1m1E2R2m2
E1R1m1 þE2R2m2

where, ks1, ks2 = shear stiffness of contacting objects, E1, E2 = Young’s modulus, R1,
R2 = radii of the contacting spheres, and m1, m2 = Poisson’s ratio. When a soil particle
contacts a grid component the same formulas apply, but the grid is assigned the radius
of the virtual inscribed sphere (see Fig. 2(b)).

3 Results and Discussion

Ongoing work is directed to apply the discussed geogrid modeling technique in real-
istic laboratory configurations. A pull-out test was initially modeled in order to observe
the potential of the approach chosen. The contact properties of soil and geogrid
material are assumed to be the same (Table 2). Note that, for simplicity, no rolling
friction was included in the contact model. Square grid mesh of 9.5 cm � 9.5 cm
dimensions with 1 cm openings was introduced to the model (Fig. 3a). Pull-out of the
grid for cubic soil matrix with sides of 10 cm was performed applying a constant
velocity of 0.06 m/s to the grid. All numerical simulation was performed using Yade
software [10].

Table 2. Summary of material properties.

Parameter Value

Young’s modulus, E 5000 kPa
Density, q 2650 kg/m3

Poisson’s ratio, t 0.3
Friction angle, u 20°

(a) (b)

Fig. 3. Geogrid mesh: (a) rectangular and (b) triangular
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Figure 4 shows a pull-out test at several stages, with the grid at different positions.
Figure 4(a) shows when the displacement of a grid at the initial stage (Dx = 0), while
Fig. 4(b) and (c) present pull-out at the intermediate stage (Dx = 4.75 cm) and total
pullout (Dx = 9.5 cm) respectively. The entrapment of soil particles can be observed as
grey soil columns became mixed with green columns as geogrid is being pulled-out.
This is indicative of the interlocking properties of the grid because soil particles are
captured in the grid openings and while it is pulled out, the particles move along the
movement direction.

A parametric study was conducted, in which the grid pull-out was performed under
different conditions. The parameters explored included the vertical confining pressure
at the top wall of the box, size of soil particles and the shape of the grid pulled out. The
corresponding values of the parameters are presented in Table 3. It is noted that a
uniform sized particle distribution was used in all cases. The schematic view of
10 cm � 8.7 cm triangular geogrid can be seen in Fig. 3(a) and its geometry is more
complex compared to the rectangular. Triangles of the grid are equilateral with the
sides of 1.43 cm and vertical components at both sides of the grid are 1.24 cm.

(a)                                                    (b)

(c)

Fig. 4. Pull-out of a grid: (a) Dx = 0, (b) Dx = 4.75 cm and (c) Dx = 9.5 cm
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The resultant graph of pull-out force versus displacement is given in Fig. 5 for
various confining pressure conditions. This case considers rectangular geogrid with
middle (0.0015 m) soil particle dimension. The figure shows that pull-out response
slightly increases with increasing vertical confining stress of 75 kPa, 150 kPa and
300 kPa. Average values of pull-out force are 20.11 N, 28.05 N and 31.20 N
respectively. Interestingly there seems to be very little effect on the pullout force of the
reduction of inserted grid length in the specimen; as long as there is one transversal rib
in the box the pull-out force average is closely maintained.

Another figure was built to illustrate variance of response of geogrid pull-out
according to different shapes of geogrid. Figure 6 represents the case with vertical
confining stress of 150 kPa and with soil grain radius of 0.0025 m. The figure shows
that pull-out response for the rectangular grid is higher than triangular grid case, at least
until a large displacement has been achieved. Average pull-out forces for rectangular
and triangular grid shapes are 36.66 N and 28.05 N respectively.

Table 3. Range of parameters considered in the study.

Parameter Value

Confining pressure, P (kPa) 75, 150 and 300
Radius of soil grains, r (m) 0.001, 0.0015 and 0.0025
Shape of geogrid Rectangular and triangular
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Fig. 5. Pull-out response of square geogrid: r = 0.0015 m
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Average pull-out force values for each case in the study are shown in Table 4. As
expected, for all sizes of soil grains the pull-out response of the grid is higher for
increased vertical confinement. In order to quantify variation of the pull-out response
results, coefficient of variation values were estimated. Table 5 includes coefficient of
variation for different particles sizes and for varied vertical confining stress. As a result,
variation coefficient decreases with the decreasing particle size for each confinement
scenario. This indicates that variation of the pull-out response is smaller for smaller
grain size which leads to more precise results. As the model becomes more continuous
the variance of the results related to the average value diminishes.
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Fig. 6. Pull-out of geogrids: P = 150 kPa and r = 0.0025 m

Table 4. Average pull-out force values with different parameters.

Confining
pressure (kPa)

Radius of soil particles (m) Triangular shape
(r = 0.0025 m)0.0025 0.0015 0.0010

75 26.29 20.11 41.32 20.11
150 36.66 28.05 42.41 28.05
300 43.56 31.20 44.51 39.23

Table 5. Coefficient of variation of pull-out force with different parameters.

Confining pressure (kPa) Radius of soil particles (m)
0.0025 0.0015 0.0010

75 0.543 0.445 0.242
150 0.434 0.381 0.234
300 0.413 0.406 0.230
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4 Conclusions

To conclude, basic soil-geogrid models have been built using the method of repre-
senting grids as deformable cylinders defined by Minkowsky sums, as implemented in
the Yade open-source DEM code. In order to verify the application of the model, pull-
out test was performed. As a result, rearrangement of the particles is noted due to
interlock of them within grid openings. Furthermore, several simulations of a pull-out
test were performed. The results indicated that pull-out response will increase with the
increasing vertical confining stress. It was also deduced that with varying geometry of
geogrid, pull-out response will change. As a result, pull-out force is higher for rect-
angular shape compared to the triangular grid. Moreover, it was estimated that variation
of the pull-out response is smaller for smaller grain size which was defined by cal-
culating coefficient of variation for the obtained data. Further tests are planned to verify
the accuracy of the model before proceeding to further investigations including triaxial
testing.
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Abstract. This exposition is dedicated to Professor Gert Gudehus on his 80th

Birthday, who was among the first to realise the potential of GSH, presciently
and more clearly than we did. In what follows, we shall first generalising the
notion of rate-independence to invariance under a scale transformation in time.
We then demonstrate this invariance of GSH (granular solid hydrodynamics) at
typical shear rates of soil-mechanical experiments, for both slowly varying and
suddenly changing rates, and in the presence of shear bands. Scale invariance is
lost, and rate-dependence appears, at higher shear rates such as given in chute
flows.

Granular phenomena are frequently rate-independent, the observed stress remains
the same, however fast the experiment is executed. This has led to the wide-spread
believe that rate-independence (RI) is a basic feature of granular media. Hence, con-
structing constitutive relations, one needs to start from it. Such approaches are efficient,
but they prevent an understanding of why RI holds, and where it does (i.e., to what
range RI is limited). Moreover, such approaches preclude the construction of consti-
tutive relations that remain valid outside the RI regime, in phenomena such as chute
flows.

To get a better understanding of RI, it is useful to first recognise the difference in
RI between that of elasticity and hypoplasticity. They are different because the first is a
static property, and the second a dynamic one. In elasticity, the strain εi j is a state vari-
able, and both the elastic energy w and the stress πi j ≡ −∂w/∂εi j are unique functions
of it. This is the reason the stress remains the same for a given strain, πi j = πi j(εkl), how-
ever fast εi j is built up, whatever the shear rate ε̇i j is. Dynamics does not enter this con-
sideration. (Of course, if the Cauchy stress has a viscous contribution, σi j = πi j −ηε̇i j,
the stress is not rate-independent.)

In hypoplasticity, the strain εi j is not a state variable, because the Cauchy stress
σi j is not a unique function of it – think of “incremental nonlinearity”. Here, RI is
connected to the dynamics, more specifically to the structure of the evolution equation
for σi j. Taking σ̇i j as a function of the shear rate ε̇i j, the stress σi j and density ρ , it is

σ̇i j = Hi jkl ε̇kl +Λi j

√
ε̇kl ε̇kl , (1)

with the two tensors Hi jkl ,Λi j functions of σi j and ρ . (For simplicity, here and below,
we always set ε̇kk ≡ 0.) As a result, the stress σi j remains the same for any given path
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εkl ≡ ∫
ε̇kl(t)dt, whatever the rate ε̇kl(t) is. (We note Eq. (1) is not of the most general

form, because terms such as
√

ε̇ikε̇k j or 3
√

ε̇ikε̇kl ε̇l j would retain RI.)
Mathematically speaking, Eq. (1) is invariant under a transformation rescaling the

time,
t → t/A, (2)

because all three terms of Eq. (1) get multiplied by the same constant factor A. There-
fore, the solution for the stress also needs to be scale invariant and cannot depend on ε̇kl
alone, but may depend on εkl ≡ ∫

ε̇kl(t)dt.
More generally, the dynamics of neither elasticity nor hypoplasticity is scale invari-

ant. Consider for instance momentum conservation, in which ρ v̇i scales as A2, and ∇ jσi j

as A0. Therefore, wave phenomena are never rate-independent. And when one speaks
of RI in the context of resonance column experiments, one needs to carefully spell out
what is implied.

GSH (granular solid hydrodynamics [1–3]) is a continuum-mechanical theory capa-
ble of qualitatively accounting for a wide range of granular behavior, from elasto-plastic
motion to fast dense flow, including shear bands and elastic waves [4,5]. To render GSH
quantitatively useful, values for its material parameters are needed. We are at present
discussing the complete set of calibrating experiments for obtaining these parameters.
And as for any type of grains, part of these experiments are as yet lacking, we infer them
from the hypoplastic model and the granular kinetic theory employing some extrapolat-
ing assumptions. This work will be reported in a forthcoming publication.

In the present exposition, we discuss when and why GSH is rate-independent, or
rather scale invariant. As we shall see, GSH reduces to hypoplasticity, Eq. (1), for con-
stant (or slowly varying) shear rates [6]. GSH is trivially rate-independent then, as
hypoplasticity is. If the shear rate oscillates, such as in cyclic loading, GSH is more
complicated than hypoplasticity, as more terms appear. As we shall see, it is then less
plastic but remains rate-independent. Moreover, the gradient term accounting for shear
bands is also scale-invariant and maintains RI.

A minimalist version of GSH is given here [7]. (The complete version renders the
description of granular phenomena more realistic. Yet it suffices to consider the former
since all conclusions on RI drawn below remain valid for the latter.) The state vari-
ables of any granular system are the density ρ , the momentum density ρvi, the granular
entropy density sg (accounting for granular jiggling), and the elastic strain εei j (account-
ing for the deformation of grains). Their close set of equations is

∂tρ +∇i(ρvi) = 0, (3)

∂t(ρvi)+∇i(σi j+ρviv j) = ρgi, (4)

σi j = πi j+PTδi j −η1Tgε̇i j, (5)

πi j(εei j) ≡ −∂w/∂εei j, PT ≡ −∂ (w/ρ)/∂ (1/ρ), (6)

∂tTg = −RT [Tg(1−ξ 2
T∇2

i )Tg − f 2ε̇i j ε̇i j], (7)

∂tεe∗i j = ε̇i j −λTgεe∗i j , ∂tεekk = −α1εe∗i j ε̇i j −λ1Tgεekk, (8)

where εe∗i j is the traceless part of the elastic strain, and ε̇kk = 0 is again assumed. Equa-
tion (3) is the continuity equation, Eq. (4) the momentum balance, with the Cauchy
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stress σi j explicitly given if the free energy w= w(ρ,Tg,εei j) is known. (As the specific
form of the free energy we employ is irrelevant to the discussion about RI, it is not
reproduced here.)

Equation (7) is the balance of the granular entropy, and Eq. (8) are the evolution
equations for the elastic strain. The seven scalar coefficients: λ ,λ1,α1, RT ,ξT , f ,η1 are
functions of the density alone, providing the only leeway GSH has for fitting experi-
mental data.

For ε̇kk = 0, Eq. (3) is redundant. Excluding acceleration, ∂t(ρvi) = 0, and wave
propagation leaves the dynamics given by Eqs. (7, 8) alone. They are, as we shall see,
invariant under the scale transformation of Eq. (2).

Note first that in the stationary limit, ∂tTg = 0, and for uniform samples, ξ 2
T∇2

i Tg = 0,
we have

Tg = f
√

ε̇i j ε̇i j. (9)

Inserted into Eq. (8), this expression yields two equations of hypoplastic structure,
implying RI of the elastic strain. Next, we go an important step further. Equation (9)
implies that Tg scales with A, same as ε̇i j. Then, clearly, under the scale transformation
of Eq. (2), every single term of Eq. (7) scales with A2, and every one of Eq. (8) with A.
This leaves both equations scale invariant. As above, we again conclude that no solution
for the elastic strain εei j may depend on ε̇i j or Tg alone, though

∫
ε̇kl(t)dt or

∫
Tgdt are

fine.
In the Cauchy stress of Eq. (5), both the viscous contribution and the pressure PT ∼

T 2
g are not scale invariant. However, they are important only at higher shear rates, such

as in chute flows or the μ(I)-rheology. At lower shear rates, they may be neglected,
rendering the Cauchy stress a function of the elastic strain alone, σi j = πi j(εekl), scale
and rate invariant.

In cyclic loading, both Tg and ε̇i j vary with time. If the amplitude is too small for Tg
to reach the stationary limit, the term ∂tTg = 0 becomes important, typically rendering
Tg smaller than given by Eq. (9). This reduces the plasticity that is accounted for by the
terms ∼ Tg in Eq. (8), and is how GSH accounts for cyclic loading rate-independently. A
forthcoming paper shows the agreement thus achieved with the data by Wichtmann [8].
Similarly, the term Tgξ 2

T∇2
i Tg in Eq. (7) accounts for shear bands rate-independently.

For thermodynamic consistency, GSH must reduce to elasticity at the very low end
of shear rates [4,5], with the transition starting presumably at a shear rate somewhere
between 10−5 and 10−6/s. Such a transition is necessarily rate-dependent. To account
for this, we substitute f 2 with f 2/(1+T0/Tg) in Eq. (7), and α1 with α1/(1+T0/Tg)
in Eq. (8). This keeps all above results for Tg � T0, but replace Eq. (9) with Tg =
f 2ε̇i j ε̇i j/T0 for Tg � T0, implying Tg is quadratically small and hence negligible. At
the same time, Eq. (8) become fully elastic. However, with the present technology, any
rate-dependency is hard to observe, because it represents only a tiny portion of the
cyclic loading: If the maximal amplitude of the shear rate is 10−2/s, the rate-dependent
portion is between 0.1% and 0.01% of a period.
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Abstract. The mathematical model of structurally inhomogeneous rock mass,
describing the property of rocks to accumulate and release elastic energy is used
in the study. The finite element algorithm and programs for solving plane
boundary-value problems are developed. The authors solve a problem on
deformation of rock mass with a disjunction. It is shown that driving of hori-
zontal tunnel nearby the disjunction can provoke the accumulated elastic energy
release, which affects stress state of rock mass around the tunnel.

Keywords: Rock � Internal structure � Internal self-balancing stresses �
Modeling � Tunnel � Disjunction

1 Introduction

One of the priority trends in the modern geomechanics is concerned with the studies
into internal structure of soil and rock. In the mechanics of soil and granular material,
the granular structure governs internal friction, cohesion and dilatancy. During defor-
mation, such properties may give rise to an increase in the pressure applied to enclosing
structures, as well as to localization of shears and generation of isolated slip surfaces
[1–3]. In the mechanics of rocks, the occurrence of discontinuities and the block
structure determine essential nonlinearity and anisotropy of rock mass behavior [4–6].

One of the important properties of rock mass is the capacity to accumulate energy
of external forces in the form of internal self-balancing stresses. This property is
connected with the hierarchical block structure of rocks, having numerous equilibrium
states [7]. Some areas in rock mass can accumulate energy and later, under certain
conditions, to release it, i.e. such areas function as energy sources. The energy release
process can either be stable relaxation or unstable disaster [8–10].

There exist many approaches to taking into account the hierarchical structure and
internal self-balancing stresses of rock mass. Among them there are, for instance, the
mathematical apparatus and models with internal variables [11, 12], the approach based
on the methods of the non-Archimedean mathematical analysis [13], the discrete ele-
ment method [14, 15], etc. In this study we used the approach from [11] and the
mathematical model from [12] to analyze numerical deformation of rock mass sur-
rounding a horizontal tunnel.
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2 Mathematical Model

We choose a two-scale model of self-stress rock mass [11, 12] (plane strain defor-
mation). The microscale elastic particles (grains) occur at the points of a square lattice.
The pore space is filled with a binding material having elastic characteristics other than
the properties of the grains (Fig. 1). In-between the particles plastic shears develop by
the nonlinear law, including stages of strengthening, softening and residual strength.
The diagram of microslip between grains, connecting tangential microstress t12 and
microshears eRij (in the general case, it is assumed that eR12 6¼ eR21), is shown in Fig. 2
(piece-wise linear approximation).

The conditions for the slip between grains are approximated by the piecewise-linear
diagram (Fig. 2), and for the increments in the microstresses and microshears are given
by

DeR12 ¼ Dt12
�
Gs

1; De
R
21 ¼ Dt12

�
Gs

2 ð1Þ

The parameters Gs
1;G

s
2 in Eq. (1) are the preset moduli of slip for each family of

contacts. The moduli Gs
i are defined by the preset constants c�i ; c

��
i ; smax

i ; sresi , where
i ¼ 1; 2 is the number of the family of contacts

Gs
i ¼

Ge
i ; 0� ci\c�i

�Gp
i ; c�i � ci\c��i

0; c��i � ci

8<
:

where, c1 ¼ eR12; c2 ¼ eR21.
The constitutive relations at the macroscale of the model connect the increments of

the macrostresses Drij with the increments of the macrostrains Deij:

Fig. 2. Diagram of inter-grain slipFig. 1. Internal microstructure of packing
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The coefficients in Eq. (2) depend on the microproperties of grains (matrix T), pore-
filling material (matrix P), moduli of contact slip between grains (matrix R) and on the
angle a (see Fig. 1), governing the orientation of regular grain packing in the Cartesian
coordinates (matrix W ¼ W að Þ).

The forces appearing in grains cause deformation of the grains and inter-grain
shearing, which results in the deformation of the pore structure. Compression of the
pore space is balanced by the tangential forces at the inter-grain contacts, and, in this
way, even at zero external stresses, the internal self-balancing stresses can be con-
siderably high. The condition of compatibility of micro- and macroparameters make it
possible to connect the macrostresses r�ij (in the coordinates of regular grain packing,
see Fig. 1) and microstresses of grains tij and pore-filling material pij in the form of:

r�ij ¼ tij þ 2m � pij; i; j ¼ 1; 2 ð3Þ

where the dimensionless value 0\m\ 1 acts as a parameter of areal porosity [11].
The conditions (3) mean that one and the same macrostresses r�ij can agree with the

multitude different stress states of grains tij and pore-filing material pij. In this regard,
zero macrostresses do not imply the absence of the internal microstresses. The
microstresses in grains and in pore-filling material may have different signs and may
completely balance each other.

The constitutive relations (2) in combination with the Cauchy relations, connecting
strains and displacements, is closed by the equations of equilibrium (in terms of
increments):

@Dr11
@x1

þ @Dr12
@x2

þDX1 ¼ 0;
@Dr12
@x1

þ @Dr22
@x2

þDX2 ¼ 0: ð4Þ

The formulated quasi-static problem is numerically solved with a help of finite
element method by steps of loading with regard to the changing properties of the
medium in the course of deformation: rkþ 1

ij ¼ rkij þDrkij; e
kþ 1
ij ¼ ekij þDekij, where the

superscript k is the number of iteration.
The analysis of the type of the system (2), (4) shows that if the slope of the

descending branch of the microslips at the inter-grain contact is less than a critical value
(depends on the shear modulus and Poisson’s ratio of grains, lt, vt, and pore-filling
material, lp, vp), the system of equations is elliptical. In this case, deformation is a
stable process of microstrength loss without jumps. The examples of the numerical
calculations in the given range of parameters are discussed below.
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3 Numerical Modeling Results

The computational domain is set in the neighborhood of a horizontal tunnel with an
arch cross-section (Fig. 3). The initial macrostress state is chosen as the linear distri-
bution according to Dinnik:

r022 ¼ �c H � x2ð Þ; r011 ¼ nr022; r
0
12 ¼ 0; where c is the specific weight of

rocks, H is the depth of the tunnel occurrence, n is the lateral earth pressure coefficient.
Alongside with the macrostresses, it is required to determine initial distribution of
microstresses such that satisfy the relations (3). We select distribution of microstresses

as function of the parameters qi : t011 ¼ 0:5r011; t
0
22 ¼ 0:5r022; t

0
12 ¼ �qsmaxi ; p0ij ¼

r0ij � t0ij
� �

=2m; i, j = 1, 2 and consider two different problems. In the first problem, it

is set that in the whole computational domain the shear microstresses of grains and,
accordingly, pore-filling material, are zero:qi ¼ 0; i ¼ 1; 2. In the diagram of
shearing (see Fig. 2), this state corresponds to the point O. The second problem
includes a disjunction nearby the tunnel (grey-colored zone in Fig. 3), and it is assumed
that the shear microstresses of grains in the disjunction make a certain portion of the
critical value, e.g.qi = 0.9 while qi ¼ 0; i ¼ 1; 2 in the surrounding rock mass. This
state in the shearing diagram conforms with the points A or B depending on the sign of
the shear microstress (see Fig. 2). In this manner, one and the same initial macros-
tresses are set in the two problems, and the difference is the distribution of the
microstresses of the structural elements.

The boundary values are set as a sequential reduction in stresses at the tunnel
boundary: DrnjC0

¼ �Ddk � r0n; Dsn
��
C0
¼ �Ddk � s0n; where Drn; Dsn are the

increments in the normal and shear macrostress, respectively;r0n, s
0
n – initial normal and

shear macrostresses; C0 is the boundary of the tunnel;0 � D dk � 1 is the increment in

Fig. 3. Computational domain, disjunction is grey-colored
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the dimensionless loading parameter at a kth step. The condition
P
k
Ddk ¼ 1 means

complete relieving of the tunnel boundary. The external boundary C1 is assumed
immobile: DuijCi

¼ 0; i ¼ 1; 2.
The input dimensionless parameters (all values of the dimension of stresses are

related to the value of the maximum shear microstress smax1 at the peak of the diagram in
Fig. 2) are: lt ¼ 3:75 � 103; vt ¼ 0:2; lp ¼ 0:635 � 103 : vp ¼ 0:3; c�1 ¼ c�2 ¼
0:5� 10�3; c��1 ¼ c��2 ¼ 10�3; smax1 ¼ smax2 ¼ 1; sres1 ¼ sres2 ¼ 0:5; cH ¼ 33:75;
DX1 ¼ DX2 ¼ 0; n ¼ 0:42; m ¼ 0:5; a ¼ 0; H=R ¼ 100. The calculations are
continued till complete relieving of the tunnel boundary.

(a) (b)

Fig. 4. Calculated zone of plastic deformation: (a) without disjunction, (b) considering the
disjunction

(a) (b)

Fig. 5. Calculation data of the problem without the disjunction: (a) contour lines of the
maximum tangential stress s0, (b) contour lines of the maximum shear c0
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Figures 4a and 5 depict the results of the first problem solution without the fracture.
Figure 4a illustrates evolution of plastic deformation zones (light-grey are the zones of
local softening-the descending branch; dark-grey are the residual strength zones-
horizontal branch in Fig. 2). Figures 5a, b show contour lines of the maximum tangential

stress s0 ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11 � r22ð Þ2 þ 4r212

q
, maximum shear c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e11 � e22ð Þ2 þ 4e212

q
,

respectively. Apparently, plastic shears initiate from the natural stress raisors at the tunnel
boundary and propagate in rock mass predominantly in the vertical direction (since the
preset gravity stresses exceed the tectonic stresses).

Figures 4b and 6 present the results of the second problem solution with regard to
the disjunction. It is seen (Fig. 4b) that during deformation the material inside the
disjunction zone relatively rapidly passes to plastic state and exerts influence on the
stress state of surrounding rocks (Figs. 6a and b).

Overall, under the same initial macrostresses, the release of the accumulated energy
in a relatively narrow section of the disjunction in the course of the tunnel driving
induces macroshear of the fracture edges and the related change in the macrostress state
of surrounding rock mass. The influence of the disjunction will even more increase in
case of unstable deformation, when the release of the accumulated elastic energy will
have the uncontrollable dynamic behavior.

4 Conclusions

– The developed approach enables problems on deformation of structurally inho-
mogeneous geo-materials to be solved regarding internal self-balancing stresses.

– Driving of a tunnel nearby a disjunction can result in relief of internal self-balancing
stresses, which affects stress state of surrounding rock mass.

(a) (b)

Fig. 6. Calculation data of the problem taking into account the disjunction: (a) contour lines of
the maximum tangential stress s0, (b) contour lines of the maximum shear c0
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Abstract. Particulate systems like powders, soil or granular matter are discrete,
disordered systems displaying dynamic and static, fluid - and solid-like states.
The transients between fluid - and solid-like behavior can be intermittent and
sometimes both states coexist in steady-state. Bridging the gap between the
particulate, microscopic picture (velocities, forces) on the particle scale and their
continuum description (strain and stress) via a so-called micro-macro transition
is the goal of this paper. The generalized local constitutive relation for the stress
in critical state granular flows involves not only density and strain rate but also
the jamming-density and the granular temperature.

Keywords: Particle models � Micro-macro transition � Continuum rheology

1 Introduction

Particulate systems are interesting and challenging for academia and of practical rel-
evance for industry, civil engineering and geo-sciences. Molecular dynamics-like
discrete particle simulations provide in-depth microscopic insight and allow to extract
scalar fields like density or granular temperature, vector fields like the flow velocity, or
tensors like stress, strain-rate, and structure (fabric) [1–13]. Either one carries out many
simulations of a homogeneous representative volume element (REV) for each state-
point [7] or one performs local micro-macro coarse graining on an inhomogeneous
system, in which case a few simulations might be sufficient. Given satisfactory
statistics, such data-sets can have a quality that allows deriving constitutive relations
that describe the local rheology and flow behavior of fluids (e.g. atoms confined in a
nano-scale channel [4]) or granular systems, which are non-Newtonian, with particular
relaxation behavior, anisotropy, etc. [1–3, 5, 6]. Attractive forces, like van-der Waals
adhesion or liquid-bridges, lead to macro-cohesion added on top of the already non-
trivial dynamics of granular matter [2, 6, 8, 9]. Dependent on the energy input (e.g.,
through an applied shear-rate), the particles can flow like a fluid, jam or un-jam, or be
solid with interesting anisotropic structure (contact-and force-networks) [10, 11, 13].

The goal of the present paper is by using particle simulation data and the local
coarse graining (micro-macro transition) procedure proposed by Isaac Goldhirsch [12,
13] to determine three-dimensional local rheology laws (in steady state shear in a split-
bottom ring shear cell [1, 2, 5, 6, 8, 9]) that go beyond the classical l(I)-rheology [14].
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This constitutive relation can predict surprisingly well (neglecting all but one non-
Newtonian mechanism [3] and not accounting for very small strain-rates [5, 15]) the
steady-state flow behavior of rigid, cohesionless particles, where the inertial number is
the only relevant dimensionless number relating shear-rate to the confining pressure
time-scale. However, for real particles also the effect of large confining stress or,
inversely, softness has to be taken into account as additional control parameter [5–9].
As new ingredients to the generalized rheology that complements the static contribu-
tions to stress, also the dynamic time-scale set by the so-called granular temperature [7]
or fluidity [16–18] has to be considered. For a discussion of many of the relevant time-
scales of the involved micro-mechanisms and the dimensionless numbers formed by
ratios of those see Refs. [9, 19], and for experiments see Ref. [20] and references
therein.

In granular systems, the interplay between strain, stress and microstructure (in-
cluding anisotropy) is one micro-mechanism that can lead to dilatancy [21–23], related
to the ‘memory’ of the packing. The transitions of granular systems from (jammed)
solid to fluid and, oppositely, from un-jammed to (shear) jammed was studied in detail
in Refs. [7, 23]. The evolution of the steady state anisotropy (micro-structure) is
independent from the direction-dependency (“anisotropy”) of stress, both in rates as
well as in principal directions, i.e., tensorial eigen-system orientations [3–5]. In steady
state, a certain proportionality and relative orientation of the tensors establishes, which
is subject of ongoing research [5, 6].

Besides the anisotropy of the micro-structure [11, 23] an additional (isotropic)
state-variable was identified as a necessary ingredient to describe the slow, quasi-static
transitions between fluid - and solid-like states. As mind-changing concept, the tran-
sition point itself was proposed as the new state-variable [22, 23]; however, it could be
related to various other possible variables like contact/coordination number, isotropic
fabric, or the fraction of rattlers [23] and is thus not a unique choice but rather a
question of convenience and matter of taste which variable one choses to use.

Starting from a static, dense packing, shear motion is only possible if the grains
“unlock” from their dense, jammed arrangement. Shearing for long time, the initial
state is forgotten and a steady state (critical state) is reached. The dynamics of the tails
of shear bands involves a very slow approach to steady state due to the small strain rate
[5, 9, 15]. The local steady state rheology was shown to be valid also in transient states
[24] but requires corrections for very small strain rates [5, 9, 25].

In a particular geometry, i.e., the split bottom ring shear cell, see Refs. [1, 2, 5, 6, 8,
9] and references therein, the fields are functions of position (height and radial distance
from the symmetry axis), so that a wide range of local densities, strain-rates and
pressures are covered by data from a single (inhomogeneous) simulation [5, 6, 8, 9].
Having available this information, the next step is to formulate general, local consti-
tutive relations [9] that allow to predict the systems flow behavior in more general
inhomogeneous systems and applications. Similar methods and approaches can also be
applied to solid-like systems [11] – all are based on the original ideas of coarse-
graining from micro-to-macro [3, 12, 13], following the ideas of Isaac Goldhirsch [12].
Macroscopic data can then be related to microscopic particle - and contact-properties
like particle size distributions, stiffness, friction as well as system state parameters like
strain-rate (the scale of which is set by the externally applied shear-rate).
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2 Theory

In the following, a short summary of recent results and some new insights on for-
mulating a generalized local granular rheology are presented, starting with the shear
rheology, but then focusing more on the hydrostatic stress, density, jamming density,
strain-rate and granular temperature. Note that the rheology (constitutive relations) are
expressed in dimensionless form to make them generally applicable. When parameters
are given in dimensional form, those are input parameters for the simulations and to
give an indication of what physical experiments the simulations are supposed to model.

When formulating a granular rheology, the starting point is the surprisingly simple
and elegant so-called lðIÞ-rheology [5, 14] that relates – in a sheared particulate system
– the so-called macroscopic (bulk) friction, i.e., the shear-stress to pressure ratio
l ¼ s=p, to the inertial number, i.e., the dimensionless strain-rate I ¼ _c d0=

ffiffiffiffiffiffiffiffiffi
p0=q

p
with

local shear rate _c, diameter d0 = 0.0022 m, particle mass-density q ¼ 2000 kg=m3, and
dimensional pressure p′. The relation that describes nicely a surprisingly wide variety of
flows [14] of rigid and cohesion-less particles at various strain rates is:

lðIÞ ¼ l0 þðl1 � l0Þ
1

1þ I0=I
ð1Þ

where l0 ¼ 0:15 and l1 ¼ 0:42 represent the zero and infinite strain rate limits,
respectively, and the characteristic dimensionless strain-rate, where inertial effects
considerably kick in, is I0 = 0.06. Note that the simulations presented below only
concern particle simulations with a very small coefficient of particle contact friction,
lp = 0.01; the dependence of the coefficients in Eq. (1) on friction are considered
elsewhere [21].

Corrections to the lðIÞ-rheology become necessary for soft particles and/or high
confining stress, as shown by Singh et al. [5]; originally, linear terms were added to the
above rheology for small strain-rates [5], however, these can better be re-phrased as
multiplicative correction factors [9] allowing for more elegant mathematical treatment
so that the original rheology is modified by multiplicative forms that tend to f*1 if the
respective mechanism is not active. The pressure/softness correction fp appears as:

l I; pð Þ ¼ l Ið Þfp pð Þ ¼ l Ið Þ exp � p
p0

� �1=2
 !

ffi l Ið Þ 1� p
p0

� �1=2
 !

ð2Þ

with the dimensionless pressure p = p′ d0/k (corresponding to the typical overlap/
deformation of particles relative to their diameter), the characteristic pressure atwhich this
correction becomes considerable, p0 = 0.9, and the particle contact stiffness
k = 100 N/m. In Ref. [5], where the linear correction was calibrated by local ring-shear
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cell data, it was shown that this correction accounts for awide range of particle stiffness (or
softness), but also for different magnitudes of gravity, as in a centrifuge or on the moon.1

Note that the pressure dependent correction function, in its linear form, has an
unreasonable zero-crossing; this is avoided by the exponential form in Eq. (2); both
forms are identical in first order and thus practically identical for all values of confining
pressures considered in the particle simulations [5, 9]; a decision about the functional
form is not really possible with the available data and remains an open issue for future
research. Several additional corrections functions f were presented in Ref. [9] but are
dropped here for the sake of brevity; also cohesion involves a dimensionless number, the
so-called Bond-number (Bo), as studied elsewhere [6, 7, 9, 19] and ignored in the
following. The two dimensionless numbers in Eq. (2) can be expressed as ratios of time-

scales, namely I ¼ tp=t _c and p ¼ tc=tp
� �2, where the subscripts refer to strain-rate, _c,

pressure, p, and contact duration, c, respectively [19]. There are many ways of con-
structing the dimensionless numbers that control the flow behavior and to implement the
correction terms they are responsible for, however, here we choose multiplicative
functions that are in first order proportional additive corrections, as shown in Ref. [5].

In order to complete the rheology for soft, compressible particles, a relation for the
density as function of pressure and shear rate is missing:

/ I; pð Þ ¼ /c 1þ p
pc/

 !
1� I

Ic/

 !
ð3Þ

with the critical or steady state density under shear, in the limit of vanishing pressure
and inertial number, /c ¼ 0:648, valid for a given material with a certain polydispersity
[9, 19], the strain rate for which dilation would turn to fluidization, Ic/ ¼ 0:85, and the
typical pressure level for which softness leads to huge densities, pc/ ¼ 0:33. Note that
both correction terms in Eq. (5) were first determined as additive corrections [5],
identical to the multiplicative form for sufficiently small arguments. Too large inertial
numbers are not allowed since they would lead to negative densities; large I would
fully fluidize the system so that the rheology should be that of a granular fluid, for
which standard kinetic theory applies [7]. Too large pressures would lead to enormous
deformations/overlaps (or even breakage), for which the contact model and the particle
simulation become questionable.

Two small adaptations of the correction functions in Eq. (3) remove the invalidity for
large I, and uses an analogous but not necessarily plausible correction form for pressure,
p, while remaining identical to first order Taylor expansion for small arguments:

/ I; pð Þ ¼ /c exp
p
pc/

 !
exp � I

Ic/

 !
ð4Þ

1 Using either one of the correction terms alone, without the other, leads to slightly different
coefficients in Eqs. (1) and (2), e.g., when the I-dependence is neglected for the case of very small
gravity and thus very small confining stress, one observes a slightly different l0 ¼ 0:17 due to the
considerable inertial number at small p, see Eq. (14) and Fig. 5 in Ref. [5]. Thus, correction
functions should always be applied together!
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This new form, Eq. (4), allows for an elegant rephrasing (inversion) and express
pressure as a function of density, critical state density, and inertial number, yielding:

p ¼ p /; Ið Þ ¼ pc/ log
/
/c

� �
� � I

Ic/

 ! !
¼ pc/eV þ

I
Ip

ð5Þ

with the implicit definition of the (virtual, elastic) volumetric strain, eV ¼ log /=/cð Þ,
and the dynamic strain-rate non-Newtonian pressure dilatancy coefficient Ip ¼ Ic/=p

c
/.

The volumetric (elastic) strain eV in the first term is defined relative to the stress-free
reference state, where /c, is also termed the critical state density (in the zero-pressure
limit of a very slowly sheared system in steady state). The factor pc/ �/C hides its
dependence on the coordination number and can be seen as the dimensionless bulk
modulus in the static limit. For the dimensional pressure p0 ¼ pk=d0, all contributions
should in fact be additive, which allows for further contributions (anisotropy is not
considered here, but discussed in detail elsewhere [6, 11, 23]) as, e.g., the pressure from
standard kinetic theory, p

0
SKT /; Tg
� �

, proportional to the granular temperature, Tg [7]:

p0 /;/c; I; Tg
� � ¼ p0 /;/c; Ið Þþ p0SKT /;/c; Tg

� � ð6Þ

When the system is left at rest, I = 0, for vanishing Tg, the SKT correction vanishes,
and the first term in Eq. (5) survives, for /[/c representing a linearly elastic stress-
strain relation, as introduced in Ref. [21] for non-sheared systems, and confirmed later
in [10, 11, 23] under shear. For I > 0, the second term in Eq. (5) represents the (non-
Newtonian) pressure-dilatancy, i.e., an over-pressure due to the applied shear, as
defined for dense fluids in Ref. [4]; for more details see references therein. Note that the
rheological property dilatancy (decrease of density or increase of volume) in pressure-
controlled systems, is equivalent to this pressure-dilatancy in a volume-controlled
system. The dependence of the last term in Eq. (6) on the softness was studied in Ref.
[7], but is not visible here, as it is subject to ongoing research.

3 Conclusions

Particle scale simulations and the micro-macro transition can guide the development of
new rheological constitutive models that include and combine various mechanisms as
quantified by dimensionless numbers. The original rheology for hard, cohesionless
particles [14] was generalized to include the effect of large confining stress or softness
(or compressibility) [5] as well as various other effects [9]. Both density and shear
stress ratio are well predicted by the improved, inertial - and pressure-dependent rhe-
ology model, at least in the center of the shear band [5, 6, 9]. In the tails, however,
deviations still occur, which can be due to several reasons: (i) the statistics is much
worse in areas where the strain rate is small, (ii) the system has not yet reached the true
steady state – as reported in Refs. [5, 9, 15], (iii) there can be non-local effects as
encompassed, e.g., by a “fluidity” variable, as used in Refs. [16–18, 25], or there are
additional local corrections needed, as proposed in Refs. [9, 21–24] and reported as
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relevant for the present system in Refs. [5, 9]. The present paper was adding a kinetic
contribution to the hydrostatic stress that allows to link the elastic regime to the
standard kinetic theory of collisional granular gases in the respective dense/static/solid
and dilute/collisional/fluid cases.

Ongoing research is aiming at finding and calibrating all the necessary additional
corrections for very small strain rates [5, 9, 21], for very small pressure close to the free
surface [9, 19], and also for cohesive particles [9, 19]. The next step is the imple-
mentation of such multi-purpose, generalized scalar flow/rheology models into con-
tinuum solvers. The final challenge is the development of fully tensorial flow models,
as shown in Refs. [3, 4], that are needed to account for a variety of non-Newtonian
aspects of atomistic, particulate and granular matter and include not only the
microstructure (fabric) tensor [5, 11] but also the granular temperature [7] as introduced
above, as well as other ratios of time-scale or other combinations of dimensionless
numbers in the correction functions.
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Abstract. Summary of a coupled thermo-hydro-mechanical model based on
hypoplasticity principles combined with the concept of double structure, aimed
to predict bentonite behaviour in the simulations of planned nuclear waste
repositories, is presented in this paper. The model has been developed by Mašín
[11] by a hierarchical enhancement of the earlier model from [9], which did not
consider the effects of temperature. That model, in turn, was a double structure
enhancement of earlier models for unsaturated and saturated soils. Predictive
performance of the model is presented by comparing model predictions with
experiments.

Keywords: Bentonite � Clay � Hypoplasticity � Waste disposal

1 Background

Bentonite is considered as a buffer material in most design versions of planned nuclear
waste repositories, separating canister with spent nuclear fuel from the host rock. It has
been selected for its favourable sealing and self-healing properties: very low perme-
ability ensures slow radionuclide migration; high swelling tendency ensures self-
healing of any technological gaps or other disturbances caused by geological move-
ments during lifetime of the repository. For this reason, bentonite represents a high-
priority application of geomechanical models internationally. It is, however, also
remarkably complex, as bentonite is compacted at partially saturated states, it is
thermally loaded by the heat generated by the spent nuclear fuel and it is being
saturated by water entering the system from the host rock. The hydraulic, thermal and
mechanical properties influence each other (thermo-hydro-mechanical coupling). In
this paper, a model for bentonite based on hypoplasticity principles is described to
demonstrate capabilities of this modelling approach.

The model has been developed using a double-structure framework originally
proposed by Gens and Alonso [3], who introduced the double structure concept, and
Alonso et al. [1], who developed a complete constitutive model. Double-structure
models are based on an assumption, supported by various micro-mechanical studies,
that in expansive soils one can identify two levels of structure: a macrostructure, which
represents an assembly of silt-size aggregates of the clay particles, and a microstruc-
ture, which represents the internal structure of these aggregates. A conceptual sketch of
these two levels of structure is shown in Fig. 1. In the model by Mašín [9], separate
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models are considered for the mechanical and hydraulic responses of the microstructure
and of the macrostructure. These responses are coupled at each structural level, and the
behavior of the two structural levels is linked through the double-structure coupling
function. A schematic of the adopted modeling approach is in Fig. 1. The individual
models are denoted as GM, Gm, HM, and Hm, respectively.

The mechanical behavior of the macrostructure (GM) was described using the
model for unsaturated soils developed by Mašín and Khalili [2], which itself was based
on a hypoplastic model for saturated clays from Mašín [6, 8, 10]. The hydraulic
response of the macrostructure (HM) was based on the void ratio–dependent water
retention model from Mašín [7]. The microstructure has always been considered as
fully saturated (thus the Hm model is very simple), with its mechanical behavior (Gm)
reversible volumetric, governed by the Terzaghi effective stress principle (see Mašín
and Khalili [13] for a thorough discussion). The GMHM coupling was accomplished by
the dependency of HM on volume change and by the dependency of the effective stress
on degree of saturation of the macrostructure SrM. The GmHm coupling was introduced
through the adoption of the Terzaghi effective stress for the mechanical behavior of the
microstructure. Finally, the double-structure coupling was controlled by a function of
relative void ratio, which evolved from the original proposition by Alonso et al. [1].

The model by Mašín [11] evolved from the Mašín [9] model by including the
thermal component. To accomplish this task, additional thermal dependency has been
introduced for water retention curves, volumetric behaviour of microstructure and
normal compression behaviour of macrostructure. The final model is a comprehensive
model capable of predicting complex THM behaviour of bentonites.

2 Mathematical Formulation

Mathematical formulation of the model is based on the principles of hypoplasticity,
combined with the effects of partial saturation, temperature and double structure. The
primary rate equation of the model reads:

Fig. 1. Schematic representation of double structure concept (Mašín [9, 11]).
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r
�M ¼ fs L : _ε� fm _ε

mð Þþ fd N_ε� fm _ε
mk k½ � þ fu Hs þHTð Þ ð1Þ

In Eq. (1), the primary structure of hypoplastic equation follows from critical state-
based model by Gudehus [4], while the main additional components are as follows:

Behaviour of macrostructure is defined using the hypoplastic approach. Thus,

Eq. (1) defines the effective stress rate of macrostructure r
�M

. It is defined using Bishop
equation, in which the factor v is equal to the degree of saturation of macrostructure.

rM ¼ rnet � 1SMr s ð2Þ

where rnet is net stress, s is suction and SMr is degree of saturation of macrostructure
defined using a hysteretic macrostructural void ratio-dependent water retention model
of Brooks and Corey [2] type.

Behaviour of microstructure is defined using elastic volumetric model, which can
be written as

_εm ¼ 1
3

as _T � jm
pm

_pm
� �

ð3Þ

where _εm is microstructural strain, _T is temperature rate, pm is microstructural mean
effective stress and as and jm are parameters. Microstructure is always assumed to be
fully saturated and its behaviour governed by the Terzaghi effective stress, that is

rm ¼ rnet � 1s ð4Þ

The double structure coupling is accomplished through the factor fm appearing in
Eq. (1). This factor depends or relative density, such that for the most dense state
fm ¼ 1 and for the most loose state fm ¼ 0. These values mean that at the loose state
microstructural strain does not cause any macrostructural deformation, because
microstructural units (aggregates) swell into the macrovoids. Contrary, at the densest
possible state macrostructure is basically closed, and any microstructural strain causes
equivalent strain macrostructural. The factor fm is defined as

fm ¼ 1� remð Þm ð5Þ

where m is a parameter and rem is relative void ratio defined as

rem ¼ e� ed
ei � ed

ð16Þ

where ed is minimum void ratio (equal to microstructural void ratio) and ei is maximum
void ratio (equal to the void ratio at the isotropic normal compression line).

Equation (1) contains two tensors Hs and HT and a scalar factor fu. The factors Hs

and HT are denoted as wetting- and heating-induced compaction (“collapse”) factors,
calculated to ensure that during wetting and heating of specimen whose state is close to
the isotropic normal compression line (NCL), its state remains at NCL and thus
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wetting- and heating-induced compaction is predicted. The factor fu depends on relative
density and decreases the effect of Hs and HT for higher overconsolidation ratios.

Last, Eq. (1) contains two scalar factors fs and fd . These are denoted as barotropy-
and pyknotropy factors and they control the effect of stress and void ratio on
macrostructural soil stiffness. They were taken over from the basic hypoplastic model
for clays from Mašín [6].

3 Examples of Model Predictions

Model performance for experiments relevant for modelling of bentonite in nuclear
waste repository facilities is demonstrated in this section. Figure 2 shows simulations
of oedometric wetting-drying tests at various initial densities and vertical loads. This
figure is taken over from Mašín [9] and represents the behaviour of compacted Boom
clay (data by Romero [14]). The model predicts increase of swelling strains with
decrease of vertical load and increase of swelling potential with increasing relative
density. For very loose samples, wetting-induced compaction is predicted instead of
swelling.

Fig. 2. Simulations of oedometric wetting-drying tests at various initial densities and vertical
loads. Model performance compared with experimental data on Boom clay (Romero [14]).
Figure from Mašín [9].
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Dependency of swelling pressure on the initial dry density is shown in Fig. 3
representing the data on Czech B75 bentonite (data by Hausmannová, [5]). Swelling
pressures are very well reproduced.

Finally, Fig. 4 shows heating-cooling experiments at various suctions and mean
stresses, simulated by Mašín [11] and compared with experimental data by Tang et al.
[15] on MX80 bentonite. The thermally-induced strains depend on both suction and
stress levels. The samples at lowest suction exhibit initial thermally-induced com-
paction, whereas the other samples exhibit thermally-induced expansion. During
cooling, all the samples contract.

Fig. 3. Predictions of the dependency of swelling pressures on the initial void ratio (dry
density). Experimental data on B75 bentonite by Hausmannová [5].

Fig. 4. Volume change during isotropic tests due to heating-cooling cycles at various suctions
and mean net stresses. Experimental data by Tang et al. [15], figure from Mašín [11].
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Abstract. Barodesy is a frame for constitutive modeling of soils based
on their asymptotic properties. This frame allows to derive the consti-
tutive relation by reasoning on general properties of granular materials.
The so obtained constitutive relation is a single tensorial equation that
expresses the evolution of stress in dependence of the deformation. Com-
mon concepts of soil mechanics, such as critical states, barotropy (i.e. the
dependence of stiffness and strength on the stress level), pyknotropy
(i.e. the dependence of stiffness and strength on density) and a stress-
dilatancy relation are comprised in the presented model.

1 Introduction

Compared with elastoplasticity, barodesy is an alternative frame of constitutive
models for soils. The structure of the theory and a simple calibration procedure
are outlined in this article, and some results of simulations of element tests
are also presented. Barodesy holds, with small adjustments, for both types of
soil, sand and clay. Clay, being also a particulate material consisting of minute
particles has a behavior very similar to sand. Both exhibit critical states. In
addition, an asymptotic behavior similar to the one described by Goldscheider
for sand (see Sect. 4) was observed by Topolnicki in experiments with Kaolin clay
in a Hambly type biaxial apparatus [25]. However, there are some differences that
mainly arise from the fact that the stiffness of sand in monotonic compression is
much higher than that of normally consolidated clay. In other words, sand has
the tendency to jam at monotonic compression.

2 On the Name ‘barodesy’

Usually the word ‘plasticity’ is used with prefixes such as hypo-, para-, hyper-
etc. to denote the various constitutive models. For granular materials, however,
the words ‘elasticity’ and ‘plasticity’ (to the extend the latter is associated with
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notions such as yield surface, elastic regime etc., originally created for met-
als) can be avoided. Yield surfaces and the other concepts of plasticity theory
may prejudice our perception and sometimes obscure soil mechanics, which suf-
fers from a long lasting fragmentation in constitutive modelling [12]. The name
‘barodesy’ has therefore been coined by Kolymbas motivated by the fact that
granular materials gain their stiffness (δέσις = bond, hence stiffening, harden-
ing) from externally applied pressure (βάρoς). Thus, the names ‘barodesy’ and
‘barodetic’ are proposed for granular materials to distinguish them from what
traditionally is denoted as ‘elastic’ or ‘plastic’.

2.1 Barodesy and Hypoplasticity

As in hypoplasticity [1,2,7,9–11,15,20,21,27–29], the barodetic constitutive
equation has the general form

T̊ = h(T ,D, e) (1)

to describe the co-rotational stress rate T̊ as a function of stress T , stretching
D and void ratio e. However, barodesy has a different design than hypoplastic-
ity. In the original versions of hypoplasticity published by Kolymbas, trial and
error was applied by general principles of objectivity and representation the-
orems for tensor-valued functions. In barodesy, the amount of trial and error
has been reduced in favour of reasoning on asymptotic behaviour of granulates.
Asymptotic states matter not only from conceptual reasons but also from the
experimental viewpoint: With long monotonic deformations, initial disturbances,
related e.g. with sample preparation, fade out and do no more influence the
results.

3 Symbols and Notation

As usual in mechanics, the symbols σ and T denotes the stress, and ε denotes
the strain. Tensors are usually denoted either in the index notation or in the
symbolic notation with boldface letters. Compared to the index notation, the
symbolic notation facilitates insight into the prevailing relationships. Therefore,
in this paper the symbolic notation, as introduced in [26], is mainly followed.
Table 1 summarizes the symbols and notation used in this article.
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Table 1. Symbols and notation

Symbol Description

T Cauchy-stress. Its components are σij . Its principal components
are denoted as σ1, σ2, σ3

D Stretching tensor, i.e. the symmetric part of the velocity gradient
∇v. It can be set approximately equal to the strain rate, Dij ≈ ε̇ij

trD Trace of D is the scalar quantity trD = D11 + D22 + D22, which
denotes the rate of volume change: trD = ε̇v = ε̇11 + ε̇22 + ε̇33

e Void ratio, i.e. the ratio Vp/Vs, where Vp and Vs are the volumes of
pores and solids (grains), respectively

‖A‖ The value of a tensor is its Euclidean norm: ‖A‖=
√

trA2

A0 Normalized tensor, i.e.A0 = A/‖A‖. Clearly, A0 is a unit tensor
with ‖A0‖= 1

δ = trD0 This quantity is a measure of dilatancy

T̊ Objective stress rate

ci Constants. It facilitates reading to clearly denote the constants in
mathematical functions as such and to distinguish them from
quantities that depend on other variables

4 Empirical Basis of Barodesy

Of basic importance for the following is the notion of a proportional path. Pro-
portional stress and strain paths are characterized by constant ratios of the
principal values σ1 : σ2 : σ3 and ε1 : ε2 : ε3, respectively.

There are two basic experimental findings for sand:

1. Starting from the stress-free state, proportional strain paths lead to propor-
tional stress paths.

2. Starting from a non-vanishing stress state and applying a proportional strain
path leads asymptotically to the proportional stress path that would be
obtained starting from the stress-free state.

These two rules are inferred by Goldscheider from his test results obtained
with rectilinear extensions of sand [6] (cf. also [16]). These tests have been car-
ried out in a so-called true triaxial apparatus, which allows to apply rectilinear
extensions (i.e. motions without rotation of the principal axes of deformation)
independently in all three directions of space.

5 Virgin Proportional Paths

We first consider proportional strain paths starting form the stress-free state.
Such paths can be volume-decreasing (we will call them ‘consolidations’), char-
acterized by trD < 0, or volume preserving (‘isochoric’ or ‘undrained’), charac-
terized by trD = 0, or volume increasing, characterized by trD > 0. Clearly,
the latter are not feasible with cohesionless sand.
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Let us denote with R a tensor that has the direction of a proportional stress
path. The question arises, how does R depend on the direction of the corre-
sponding proportional strain path? The latter is characterized by the direction
of stretching D, i.e. by the normalized stretching D0. How can we determine
the relation R(D0)? This question can be easily answered if we observe that
all consolidations are mapped into a specific part of the principal stress space,
which is formed by the stress components σ1, σ2 and σ3. This part is the octant,
where all principal stresses are compressive, i.e. negative. Hence, the product
σ1σ2σ3 must also be negative. Now, for a proportional stress path we have
σi = μRi(D), i = 1, 2, 3, where μ simply denotes the proportionality of σi and
Ri.1 With R(Di) := Ri, the following condition must hold:

R(D1)R(D2)R(D3) < 0 for trD = D1 + D2 + D3 < 0 (2)

This implies that the product R(D1)R(D2)R(D3) must be a function of the sum
D1 + D2 + D3, a requirement which is fulfilled by the exponential mapping

R(D) = − exp(aD0) (3)

a depends on dilatancy δ, and for δ = 0 it obtains the value a0. It should be
added that Goldscheider’s rules have, as every rule, some exceptions in detail.
Thus, it is known that stress paths obtained with oedometric deformation are
not strictly proportional, i.e.K0 := σ2/σ1 is not strictly constant. Such ‘details’
can be captured by slight modifications of barodesy [4], but they are omitted
here for simplicity.

5.1 Critical State Surface

Equation (3) maps all volume-reducing (trD < 0) proportional strain paths
into a cone in the stress space with appex at T = 0, which can be called the
R-cone. Its boundary corresponds to paths with trD = 0 and is thus the critical
state surface. Consider the intersection of the R-cone with a plane trT = const,
as shown in Fig. 1. This curve expresses the critical limit state in a so-called
deviatoric plane of the stress space. The mathematical representation of this
curve can be easily derived from Eq. (3): Eliminating D0 from (3) we obtain:

D0 =
1
a

ln(−R) . (4)

The requirement trD0 = 0 results in ln(−R1R2R3) = 0 or R1R2R3 = −1. From
the additional requirement ‖D0‖= 1 we obtain:

[ln(−R1)]
2 + [ln(−R2)]

2 + [ln(−R3)]
2 = a2

0 . (5)

1 Herein, Ri(D) are the principal values of R(D) .
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Fig. 1. Critical stress states in the deviatoric plane (trT = −500 kPa): normally
consolidated San Francisco Bay Mud (•, ϕc = 30.6◦) [14] is compared with Matsuoka-
Nakai, Mohr-Coulomb and barodesy. Barodesy and Matsuoka-Nakai practically coin-
cide [5].

For the here considered proportional paths holds: T = μR, 0 < μ < ∞, hence
we can replace in this equation R by T /μ and obtain finally the equation of
critical states in the stress space2:

(
ln

σ1

3
√

σ1σ2σ3

)2

+
(

ln
σ2

3
√

σ1σ2σ3

)2

+
(

ln
σ3

3
√

σ1σ2σ3

)2

= a2
0 . (6)

Equation (6) is homogeneous of the 0-th degree in T and describes thus a conical
surface in the stress space with apex at T = 0. Its intersection with a plane
trT = const is shown in Fig. 1. Its shape practically coincides [5] with the curve
obtained by the well-known expression of Matsuoka & Nakai:

(σ1 + σ2 + σ3)(σ1σ2 + σ1σ3 + σ2σ3)
σ1σ2σ3

= const . (7)

Equation (3) maps not only isochoric but also volume-reducing and volume
increasing proportional strain paths to the corresponding proportional stress
paths. It proves that this mapping gets more realistic if we let a depend on
dilatancy δ, e.g. as

a(δ) = −30 + c3

∣∣δ − √
2
∣∣c2(

1 + |δ − √
2|)c1 . (8)

This modification does not affect isochoric (i.e. undrained) proportional strain
paths with δ = 0. Thus, we replace Eq. (3) by equation

R(D) = − exp

[(
−30 + c3

∣∣δ − √
2
∣∣c2(

1 + |δ − √
2|)c1

)
D0

]
. (9)

2 From σ1σ2σ3 = −1/μ3 we obtain μ = −1/ 3
√

σ1σ2σ3 and replace in Eq. (5) Ri by
Ti/μ.
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This equation is capable to map arbitrary proportional paths (cf. Fig. 2).
For the calibration of c1, c2 and c3 the stress ratios K = σ1/σ2 from

the oedometer test (e.g. Jáky’s law K0 = 1 − sin ϕc), the critical state(
Kc = 1−sinϕc

1+sinϕc

)
and a dilatant stress state (e.g. according to Chu and Lo [3])

can be used (marked with circles in Fig. 2). All these stress states can be calcu-
lated with the critical friction angle ϕc. For a critical friction angle of 30◦ the
constants yield c1 = 0.1005, c2 = 0.0782 and c3 = 30.9483.

In Fig. 2, results of (9) are compared with the relation found by Chu and
Lo [3]

η =
q

p′ = M +
M

3
tan β with M =

6 sin ϕc

3 − sin ϕc
(10)

Here tan β = −ε̇11
ε̇v

is an alternative measure of dilatancy with

δ =
tan β√

1 + (1+tan β)2

2

. (11)

This relationship is experimentally well proofed.

Fig. 2. Comparison of the stress-dilatancy relation from Chu and Lo with results
obtained with the R-function for ϕc = 23◦ (a) and ϕc = 36◦ (b).

6 Proportional Paths and Fading Memory

Now we start from a stress state T �= 0 and apply the stretching D. In
order to asymptotically approach the corresponding proportional stress path
T = μR(D), the stress rate T̊ must be oriented towards a point of the propor-
tional stress path with the direction R(D), i.e.

T + λT̊ = μ1R(D), (12)
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where the positive constants μ, μ1 and λ need not be further specified at the
moment. If we eliminate T̊ we obtain an evolution equation for the stress:

T̊ = ν1R(D) + ν2T (13)

with scalar quantities ν1 and ν2. Equation (13) is already the general form of
the barodetic constitutive relation. To comply with barotropy (i.e. dependence
on σ), pyknotropy (i.e. dependence on e) and rate independence, ν1 and ν2 can
be further specified, such that the barodetic constitutive equation obtains the
following specific form:

T̊ = h · (fR0 + gT 0) · ‖D‖ . (14)

where R is given by Eq. (9). The quantities f and g will be specified below.
h is responsible for the stiffness and depends on ‖T ‖. Subsequently it will be
shown how all known concepts of soil mechanics can be cast in the frame given
by Eq. (14).

7 Limit States and Peaks

At limit states the stress rate vanishes:

T̊ = 0. (15)

Limit states are manifested either as peak or residual (critical) limit states, where
the stress-strain curves obtain a horizontal slope. In barodesy, Ṫ = 0 implies:

fR0 + gT 0 = 0. (16)

This tensorial equation implies3:

R0 = T 0 (17)
f + g = 0 (18)

Interestingly, Eq. (17) contains a flow rule, i.e. a stress-dilatancy relation for peak
states. Critical limit states are obtained with δ = 0 and e = ec, whereas peak
limit states are obtained with δ > 0 and e < ec.

8 Incremental Non-linearity

Different stiffnesses at loading and unloading and, consequently, irreversible or
hysteretic mechanical behaviour imply incremental non-linearity. Both, elasto-
plastic and hypoplastic relations exhibit incremental non-linearity. The elasto-
plastic approach consists in introducing (at least) two different stiffnesses, one
3 The other two possibilities, (i) R0 = −T 0 and f − g = 0, as well as (ii) f = 0 and

g = 0, can be excluded, because R always points to the compression octant, and f
and g cannot vanish simultaneously, see Eqs. 20 and 21.
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for loading and one for unloading. A criterion has to be added to distinguish
loading from unloading. In the frame of hypoplasticity and barodesy, a unique
expression for the stress rate (or stiffness) is used, and the distinction between
loading and unloading is accomplished by the non-linearity of this equation. In
barodesy, the difference of stiffness at loading and unloading is modelled by the
fact that the second term (i.e. gT 0) in Eq. (14) is not changed if D is switched
to −D, whereas the first term (i.e. fR0) undergoes a change.

9 Barodetic Constitutive Equations

The main equation of barodesy is given by Eq. 14. The scalar functions h, f and
g obtain different representation for sand and clay.

9.1 Sand

For sand the scalar functions h, f and g of the barodetic constitutive equation
are [13]:

h = −c4 + c5‖T ‖
e − emin

(19)

f = δ + c6ec (20)
g = −c6e (21)

ec is a stress-dependent critical void ratio. Further details are given in [13]. The
calibration must take into account the critical state line ec(p), the determination
of which is still extremely difficult for sand.

9.2 Clay

In the open access article [19] a detailed description of the equations of barodesy
for clay can be found. The scalar functions h, f and g in Eq. (14) are:

h = c4‖T ‖ (22)

f = c6 · β · δ − 1
2

(23)

g = (1 − c6) · β · δ +
(

1 + e

1 + ec

)c5

− 1
2

(24)

with ec = exp
(

N − λ∗ ln
2 p

σ∗

)
− 1 (25)

and β = − 1
c4Λ

+
1√
3
2c5λ∗ − 1√

3
(26)

with Λ = −λ∗ − κ∗

2
√

3
δ +

λ∗ + κ∗

2
(27)
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The constants ci can be calibrated on the basis of the critical state soil
mechanics parameters ϕc, N , λ∗ and κ∗.

Isotropic loading and unloading of Weald clay is shown in Fig. 3. The cali-
bration of the parameters N , λ∗ and κ∗ is illustrated in the ln(1 + e) - ln p′ plot
Fig. 3(b). The critical friction angle ϕ′

c is calibrated by a normally consolidated
CU test. The four soil parameters N , λ∗, κ∗ and ϕ′

c are sufficient to calibrate
barodesy for clay [18,19].

10 Simulation of Element Tests

In this section simulations of element tests with and without rotation of prin-
cipal axes are shown. Element tests in general are idealizations and, in reality
inhomogenities occur. Especially with shearing, localization takes place and the
loss of homogeneity is unavoidable.

10.1 Rectilinear Extensions

Proportional Paths
Applying various proportional strain paths starting at a non-vanishing stress
state produces a fan of curved stress paths, all of which have to stay within the
allowed range (fan) in the stress space. The corresponding graph (Fig. 4) is a
visualisation of the performance of a constitutive equation.

Fig. 3. Isotropic loading and unloading: Experimental results of Weald clay ([17], data
from [8]) and numerical simulation with barodesy.
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Fig. 4. Stress paths (b) corresponding to proportional strain paths (a) starting from a
non-vanishing stress state. Note that stress paths asymptotically approach correspond-
ing proportional stress paths. Weald clay (ϕc = 24◦) is simulated.

Drained Triaxial Tests
In Figs. 5 and 6 simulations of drained triaxial tests with barodesy are shown.
The highly overconsolidated/dense samples dilate to reach the critical state line.
The normal and slightly overconsolidated/loose samples contract to reach the
CSL. In Fig. 6 the highly overconsolidated samples (gray backed area) reach peak
friction angles which are higher than the critical friction angle of ϕc = 24◦.

Fig. 5. Simulations with barodesy of drained triaxial tests
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Fig. 6. Simulations with barodesy of drained triaxial tests of London clay (ϕc = 24◦).

10.2 Rotation of Principal Stress and Strain Axes

Figures 7 and 8 present a simulation from [19] of a simple shear test with a
constant vertical stress of σy = −100 kPa. The evolution of the shear stress
τxy is plotted over the shear strain γ. The angle ασ denotes the inclination of
major principal stress to the horizontal direction x, and αD is the inclination of
major principal stretching. In Fig. 7a Weald clay sample with initial stress T =⎛
⎝Tini 0 0

0 K0 · Tini 0
0 0 K0 · Tini

⎞
⎠ is sheared. The major principal stress direction ασ is

90◦ at zero shear strain and decreases to ≈ 45◦ with ongoing shear strain. The
difference between the angles αD and ασ, i.e., the angle of non-coaxiality αD−ασ

becomes very small,4 i.e., ασ ≈ αD ≈ 45◦ at the critical state. Similar results
with hypoplasticity and an elasto-plastic model are shown in [23]. Experiments
on sand according to [22] and DEM simulations [24,31] yield similar results, cf.
[30].

Fig. 7. Simple shear test with a constant vertical stress of σy = −100 kPa, the initial
radial stress is σx = (1 − sin ϕc) · σy = −59.33 kPa. In (b) directions of principal
stress ασ and principal stretching αD are shown. Weald Clay with an initial void ratio
eini = 0.68 is simulated with barodesy. Figure from [19].

4 At critical states αD −ασ ≈ 0.5◦. Neglecting the Zaremba/Jaumann terms −WT +
WT yields Ṫ = T̊ . It follows that αD − ασ = 0◦ at failure.
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In Fig. 8, the evolution of the angle of non-coaxiality with ongoing shear
strain is shown for different initial K0 values. In Fig. 8(a), DEM simulations
from [24,31] show that the angle of non-coaxiality is small for K0 = 1. For
K0 = 2, the angle of non-coaxiality decreases with ongoing shear strain to ≈ 0◦;
and for K0 = 0.5 it increases to ≈ 0◦. Zhang [31] states that non-coaxiality is
significant before 10% shear strain. The predictions with barodesy in Fig. 8(b)
are in good agreement with the DEM simulations in Fig. 8(a), which indicates
that barodesy is applicable for general deformation, i.e., rotation of principal
stress and strain axes.

Fig. 8. Evolution of the angle of non-coaxiality in a simple shear test with different
initial K0 values: in (a), DEM simulations from [24,31] are shown, in (b), Weald Clay
with eini = 0.68 is simulated with barodesy. Figure from [19].

11 Conclusions

In total, barodesy may be considered as attractive for its simplicity and elegance
but has still potential for improvement, which should however preserve simplicity.

The present version of barodesy cannot cover all aspects of soil behavior.
The memory of past loading is stored only in the actual stress T and the actual
porosity e, and this is not sufficient to cover all aspects of re-loading, in particular
the so-called aspects of ‘small strain stiffness’. Though, it is interesting to note
how many aspects of memory can be covered with T and e only.

Acknowledgements. The first author is supported by a research grant of the Austrian
Science Fund (FWF): P 28934-N32
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Abstract. Computational simulations of trap door flow in cohesive frictional,
materials are presented. We focus on flows where the extraction volume is
generated by dilatancy. The dilatancy is caused by micro-cracking associated
with the loss of cohesion at the onset of flow and/or the transition of the
granulate into a more mobile, more loose packing order. The material behavior
is modelled as a non-Newtonian fluid including rigid plastic behavior as a limit
case. A rate dependent cohesion term considers the fluid like behavior if col-
lisions dominate the intergranular momentum transfer. The simulations are
based on an implicit particle-in-cell finite element code [1] developed by the
second author. The implementation of the model equations is benchmarked
against an analytical solution for gravity driven flow in an infinite chute.

Keywords: Dilatancy � Rate dependent granular flow �
Moving particle method � Plasticity

1 Introduction

Granular flow from man-made or natural containers occurs in numerous industrial
applications related to bulk materials handling, silo flows and mass mining techniques
such as block caving. In this paper the focus is on the case where the discharge volume
is not provided by surface subsidence or other external sources but by inelastic volume
expansion the so called dilatancy observed in dense granular materials (e.g. Gudehus
[3]; Hejko and Tejchman [9]). The situation is nicely illustrated in the experiment
depicted in Fig. 1. A rectangular container with a trapdoor at the bottom surface is
filled with dense granular material. As the trapdoor is lowered (Fig. 1a) two narrow
zones of intense shearing develop forming roughly a triangle above the outlet. The
dilatancy associated with the shearing produces the extraction volume corresponding to
the trapdoor displacement. As the volume produced by dilatancy is exhausted, con-
tinued lowering of the trapdoor requires propagation of the dilatant deformation zone as
depicted in Fig. 1b, c. In the following section we propose a simple, rigid plastic, non-
associated plasticity model.

The model forms the basis for a numerical simulation of the trapdoor problem
(Sect. 3) in which the influence of the model parameters on the evolution of the
deformation pattern and the extraction volume is investigated.
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2 Granular Flow

In granular flows such as flows from containers, silos or, on a larger scale, in caving
operations (mining), particle movements are large and are associated with large velocity
gradients in zones between active and stagnant flow. Elastic deformations are unim-
portant in such a situation and the deformation can be described, in principle, by a
rigid-plastic model. The internal boundary value problem associated with a strictly
rigid-plasticity model however is difficult to solve for non-trivial problems. Conforming
to tradition, then, we weaken the rigidity constraint by keeping elastic- or introducing
viscous terms whereby the elastic moduli or viscosities play the role of penalty
parameters, penalizing, (i.e. suppressing) non-plastic contributions to the deformation.

We describe the non-plastic part of the flow as an isotropic, viscous fluid with shear
viscosity g and bulk viscosity gB. The viscous formulation turns out to be more robust
(no stress advection) computationally than the usual elastic models. Our viscous-plastic
model for rigid-plastic flow reads:

Dij ¼
r0ij
2g

� p
9gB

dij þ _cpðr
0
ij

2s
þ m

3
dijÞ ð1Þ

In Eq. (1), Dij designates the stretching, rij the stress, p ¼ �1=3rkk is the pressure,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=2r0ijr
0
ij

q

is the equivalent stress deviator, m is the dilatancy parameter, and the

prime denotes the deviator of a tensor The equivalent plastic strain rate reads _cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D0p
ij D

0p
ij

q

and the total equivalent strain rate _c is defined accordingly. In combination

with (1) we assume a Drucker-Prager type yield criterion:

F ¼ s� lp� sY � 0: ð2Þ

Fig. 1. Evolving deformation pattern as trap door is lowered (Experimental results by
Vardoulakis 2002, private communication)

114 H.-B. Muhlhaus and L. N. Moresi



The friction and the dilatancy function l and m as well as the cohesive strength sY
may depend on the equivalent plastic strain and strain rate cp and _cp respectively. While
the focus in engineering geo-mechanics is mainly on rate independent behavior, rate
dependence is considered in geophysics mainly in the context of earthquake research
(key word: rate and state friction, e.g. Rice [6]). There is a significant, mainly theo-
retical literature in physics and engineering on fast granular flows (e.g. [7, 8], Gudehus
[4]) inspired by the mathematical theories of non-uniform gases by Chapman and
Cowling [2]. These theories lead to relationships similar to the rheology of a thermo-
viscous fluid. Rate dependence of l in the context of granular flow down an incline was
considered by Jop et al. [5]. In the present case, fluid-like granular behavior needs to be
included into the constitutive model in order to capture the flow in the vicinity of the
outlet (the trapdoor, assumed open, allowing free outflow) in the simulations presented
here. The simplest possibility to introduce fluid-like behavior in our model is to assume
rate dependence of the cohesive strength by assuming

sY ¼ s0ðcpÞþ gp _cp ð3Þ

The plastic viscosity gp, assumed as constant for simplicity, is related to the
intergranular collisions in the vicinity of the trapdoor. Viscous effects in the friction-
and dilatancy functions are not considered. Specific forms are considered in Sect. 3.
From Eqs. 1 and 2 we derive

_c ¼ s=gþ _cp ð4Þ

_cp ¼ Fv gð1þ gp=gÞþ lmgBð Þ�1 where Fv ¼ g _cþ lgBDkk � s0 ð5Þ

In (4) the equivalent plastic strain rate is positive if Fv [ 0. Combining (1)–(5) the
constitutive relationships may be written as:

r0ij ¼ 2 lpþ sYð Þ _c�1D0
ij; p ¼ �gBðDkk � m_cpÞ for Fv [ 0 and ð6Þ

r0ij ¼ 2gD0
ij; p ¼ �gBDkk for Fv � 0 ð7Þ

Insertion of (3) into the first of the relations (6) yields:

r0ijð1þ gp=gÞ ¼ 2 lpþ s0ð Þ _c�1D0
ij þ 2gpD0

ij ð8Þ

In our trapdoor application, the viscous term in (8) is important only in the vicinity
of the trapdoor where p and s0 approach zero so that fluid like behavior prevails. The
effective shear viscosity geff ¼ s=_c approaches an upper bound geff ¼ g for _c ! 0 and
the lower bound geff ¼ gp is obtained as _c ! 1.
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3 Trap Door Flow

Trap door models may serve as an analogue for gravity induced fracture and flow in the so-
called cave mining methods, gravity flow induced by chemical erosion at depth (e.g. sink
holes) or deformation of soft structures such as pipelines through the overburden load.

The geometry, boundary and initial conditions of the trapdoor model considered
here are shown in Fig. 2. The ratio of the height to trapdoor width is assumed large
enough to ensure that the outflow volume is provided mainly by dilatancy and not by
surface deformation.

As indicated in Fig. 2 we consider free flow from an open trapdoor. In preparation
for the computational simulations we consider rigid plastic, granular flow in a vertical
(direction of gravity) chute. The solution of this problem provides us with useful time
and velocity scales for the computational simulation. The flow in the infinite chute
ð x1j j\W=2; x2j j\1Þ is similar to the one in a trap door problem in a sufficient distance
from the trap door and the propagating flow front (e.g. Fig. 3E, F). The fields depend on
x1 only. The velocity field is divided in two shear zones adjacent to the boundaries
x1j j ¼ W=2 of width WS each and rigid zone x1j j\W=2�WS where v2;1 ¼ 0 and
v2 ¼ �v2max ¼ const. Within the shear zones the strain rate varies linearly between 0
and �v2;1max on the boundaries. From Eqs. (6, 7) and stress equilibrium

2WS=W ¼ 1� 2lp=ðqgWÞ; v2;1max ¼ qgWS=g and v2max ¼ qgW2
S=2g: ð9Þ

Fig. 2. Gravity flow from open trap door: geometry and boundary conditions. Grid lines shown
are not identical to finite element grid

116 H.-B. Muhlhaus and L. N. Moresi



Gravity flow is possible if WS [ 0, or 0\lp\qgW=2. For the definition of time
and velocity scales we substitute p ¼ qgW=4l.

The model equations of the computational simulation are based on an implicit,
moving particle method and solved by means of a geometric multi grid solver (Moresi
et al. [1]). The pressure sensitivity, dilatancy and the rate independent part of the
cohesive strength (cp. Eq. 3) decrease linearly with cp from the initial values l0, m0 and
s0 resp. until, for c

p � c0res the residual values lres, 0 and 0 resp. are reached. It turns out
that the smaller initial the dilatancy m0 the larger (wider) the active flow domain has to
be in order to provide the outflow volume necessary to maintain continuous flow.

4 Conclusions

In the main application of this paper we considered the gravity driven transformation of
the static deformation of an initially cohesive-frictional material into a flowing gran-
ular, purely frictional material. The domain considered is a rigid container filled with
the initially cohesive-frictional material with a free flow boundary condition at the
bottom center (open trap door). The breakdown of the cohesive strength was initiated
by gradually lowering the trap door pressure from overburden stress level to zero.

Fig. 3. Successive stages of gravity flow from open trap door. Top row (A–C), m ¼ 0:1 second
row (D–F) m ¼ 0:35
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The main observations are:

– The smaller the initial dilatancy m0 the larger (wider) the active flow domain has to
be in order to provide the outflow volume necessary to maintain continuous flow

– The mass flux at the trap door scales with �v ¼ qgW2=8g.

The modeling scenario considered clearly represents a strong simplification of real
mining operations: In cave mining for instance often an air gap forms between the cave
front and the mobile, granular domain. This happens if the volume provided by dilatancy
doesn’t match the volume extracted at the draw point. This case is not considered here.
Also important, but not considered here is the fact that the cave front has a finite width,
the so called seismic zone. This effect may be considered by including a diffusion like
term-e.g. proportional to the Laplacian of the equivalent plastic strain- into the dilatancy
constraint. This would introduce a length scale, scaling the seismic zone as well as an
additional time scale, beside the one introduced by the rate dependent cohesion in (3).
These effects will be considered in the full version of this extended abstract.
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Abstract. Apparatus regularly used for extraction of stress – strain
response of soils all contain internal variations of strain and stress.
The inhomogeneous state is the natural state of many soils. Where the
repeated cell size of heterogeneities is uniform it is simple to define a
reference volume element. Study of triaxial samples, however, reveals
mechanisms which are not individually axially symmetric.

Keywords: Laboratory testing · Heterogeneities ·
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1 Introduction

What are the desirable geotechnical findings which would improve the quality
of our geotechnical research life without achieving so much progress that we are
left wise and useful with no further challenges?

Perhaps the most desirable geotechnical advance might be to have a consti-
tutive model or suite of constitutive models which are generally accepted and
which can be reliably deployed for most of the soils that we encounter. Such
a group of models would desirably be constructed around a series of plausible
and comprehensible and refutable hypotheses. These models would require the
availability of experimental data sufficient in quantity and quality to tune the
parameters of our models and to support the modelling hypotheses. A subsidiary
desirable geotechnical advance would be the identification of one or more ideal
configurations for laboratory element tests with which to gather reliable data
of soil behaviour. Some testing configurations have some desirable features, but
are likely to remain research apparatus - true triaxial and directional shear cell
fall into this category.

Possible candidates might be: conventional triaxial, simple shear, hollow
cylinder apparatus.

In summary, our list of geotechnical desirables becomes: perfect element test-
ing; elegant constitutive models, data from well-controlled laboratory or full scale
1g or multiple gravity boundary value problems. Is that such an unreasonable
list?
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2 Triaxial Test

The conventional triaxial apparatus tests a cylindrical sample. We know that the
sample is subjected to an all-round pressure supplied by a pressurised cell fluid,
together with an axial displacement though an axial loading ram. However, if we
interpret the observations through conventional measures of stress and strain:
axial stress σa and radial stress σr, axial strain εa and radial strain εr, then it has
been found convenient to divide perturbations and response into volumetric and
distortional components: volumetric stress p = (σa + 2σr)/3, distortional stress
q = σa − σr and corresponding work-conjugate strain increments: volumetric
strain increment δεp = δεa+2δεr and distortional strain increment δεq = 2(δεa−
δεr)/3. Each of these variables combines one part of which we are confident with
one part which is more speculative.

Fig. 1. (a) (left) Volumetric strain variations in triaxial sample ; (b) (right) distortional
strain variations in triaxial sample

Scanning procedures are improving rapidly and with each step of improve-
ment new surprises become visible. The x-ray imaging of Desrues [4] revealed
patterns of dilation bands which combined to form clear mechanisms of defor-
mation, some of which were directly consistent with an overall axisymmetric
interpretation but most of which were not (Fig. 1a). The dilation bands indicate
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a series of shearing mechanisms controlled by the boundaries of the sample and
the constraints that the boundaries impose.

Other scanning techniques have been used recently [3] to reveal the variation
of distortional strains within triaxial samples (Fig. 1b). The lack of significant
correspondence between the deformation mechanisms and the supposed axial
symmetry is clear.

3 Plane Strain Probing

There are various devices that can be used for plane testing of granular materi-
als and which permit the full-field determination of displacements. The Grenoble
1γ2ε apparatus can be used for plane stress testing of a Schneebeli rod material
with the possibility of controlling all three plane strain components,and per-
mitting rotation of principal axes of strain. Photographic techniques can follow
the movements of individual rods to discover a pattern of shear and volumetric
deformation which has a clear structure and regularity (Fig. 2) [5]. It is clearly
legitimate to speculate on the size of sample needed to provide a homogeneous
heterogeneity for which the unit of observation is the cell formed by neighbouring
shear or dilation bands rather than by individual particles (rods) being tested.
Such speculation is evidently out of place for the mechanisms observed in the
triaxial sample. The heterogeneity is not the result of a regular patterning but
is a response to the boundaries.
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Fig. 2. Distortional strain variations in 1γ2ε sample
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4 Torsional Hollow Cylinder Test Apparatus

The torsional hollow cylinder apparatus has, in principle the desirable ability
to impose controlled variation of four stress components out of six. These com-
ponents are imposed through axial force applied over the whole cross-section
of the hollow cylinder; through internal and external pressures; and through a
torque applied at the upper boundary. There are evidently challenges in creating
the sample for testing - carving the sample to the correct geometry or raining
a granular material into the space between the outer and inner walls. There
are inevitable variations of shear strain with radius: the thinner the walls of
the hollow cylinder the better but thin walls produce other difficulties. Differ-
ences between internal and external pressures obviously imply a radial variation
of radial stress and some control of circumferential stress. The apparatus is a
boundary value problem which we can use to compare with finite element sim-
ulations but cannot be interpreted as a test on a single homogeneous element.

5 Caterpillar Continuous Shearing Device

A variant of the simple shear apparatus is provided by Allersma’s caterpillar
device in which a continuous toothed belt - rather like the caterpillar tracks of
a site vehicle - completely contains the sample (Fig. 3) [1,2]. Pulling the lower
part of the belt to one side while maintaining a vertical pressure on the top
of the sample develops a continuous simple shearing of the sample. Allersma
tested crushed glass. Immersing the material in a fluid of the same refractive
index as the glass and then observing the sample with polarised light provides
the unique possibility of obtaining some information concerning the stress state
in the sample using the photoelastic properties of the granular material. Photo-
graphic observation can be used to produce a continuous field of displacements.

Fig. 3. Caterpillar continuous shearing device.
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6 Desiderata: Incremental Data - Infinite Possibilities

Soils are in general nonlinear and history dependent in their mechanical response.
The gathering of experimental data needs to cover a wide range of stress histories
and paths, relying on the constitutive framework to fill in the gaps.

7 Yielding and Response Envelopes

Response envelopes - describing incremental response to a series of strain or stress
probes from a common history serves two purposes. The variation of incremental
stiffness with history provides basic data to test the simulatory abilities of the
constitutive model. Response envelopes can also be inspected to seek evidence
for (or against) constitutive conjectures. For example, it becomes quickly evident
that any region of high incremental stiffness - which might be interpreted as a
region of elastic response enclosed within a yield surface - is very local to the
current stress state. Plasticity is kinematic (Fig. 4) [6].
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Fig. 4. Response envelopes in true triaxial shearing of sand.

8 Conclusion

The success of the models in simulating geotechnical performance needs to be
demonstrated against well-controlled boundary value problems - field trials or
centrifuge modelling of typical geotechnical configurations.
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Significance and Usefulness of the tij Concept
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Abstract. Constitutive models formulated using the stress invariants (p and
q) cannot describe uniquely the deformation and strength of geomaterials under
three principal stresses [1]. Then, the concept of tij has been proposed to
describe uniquely the stress-strain behaviors in general three-dimensional (3D)
stress conditions [2]. This concept was found out from the idea that the frictional
law essentially governs soil behavior. Since the formulation of elastoplastic
model using this concept was described in the previous papers [3, 4], the
meaning of this concept and its usefulness are presented in this paper.

Keywords: Constitutive modeling � Spatially mobilized plane � Concept of tij

1 Stress Invariants in 2D Condition

Figure 1 shows the Mohr’s stress circle on s-r plane in two-dimensional (2D) con-
dition. Now, 2D soil models are usually formulated using the normal stress r45°(=s)
and shear stress s45°(=t) on the plane where shear stress is maximized (called smax plane
or 45o plane). On the other hand, Murayama [5] paid his attention not to this plane but
to the plane where the shear normal stress ratio is maximized (called (s/rN)max plane or
mobilized plane), because it is considered appropriate that soil behavior during shear is
governed by the frictional law. The shear normal stress ratios on these planes are
expressed as follows:

s45o

r45o
¼ t

s
¼ sin/mo ¼

r1 � r3
r1 þ r3

ð1Þ

s
rN

¼ tan/mo ¼
r1 � r3
2
ffiffiffiffiffiffiffiffiffiffi
r1r3

p ð2Þ

3σ

1σ

1σ

3σ

1σ3σ
moφ σ

τ

O

o90

( )maxNτ σ
maxτ

moφ

Fig. 1. Two reference planes (smax plane and (s/rN)max plane) expressed on Mohr’s stress circle
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It is noticed that when the principal stress ratio r1/r3 changes from 1 to infinite (the
mobilized angle ɸmo changes from 0o to 90o), the stress ratio s/rN in Eq. (2) can take a
value of 0 to infinite, but the value of stress ratio s45°/r45° expressed by Eq. (1) should
be between 0 and 1. Although 2D model can be formulated using stress invariants, it is
necessary that the stress ratio s45°/r45°(=t/s) is less than 1 when the model is formulated
by the stresses on 45o plane.

2 Octahedral Plane and Spatially Mobilized Plane

In 3D condition, threeMohr’s stress circles between respective two principal stresses can
be drawn. So, there are three 45o planes on which the shear stresses are maximized
between two principal stresses as shown in Fig. 2(a). The plane where these three 45o

planes are combined is called the octahedral plane, which has been usually employed as
the reference plane in constitutive modeling of metals and geomaterials [1]. On the other
hand, three mobilized planes where shear normal stress ratio is maximized between
respective two principal stresses are also described as shown in Fig. 2(b). The specially
mobilized plane (SMP) is defined as the combined plane of these three mobilized planes
[6]. Although the direction cosines of octahedral plane are given by 1

� ffiffiffi
3

p
; 1
� ffiffiffi

3
p

;
�

1
� ffiffiffi

3
p Þ, the direction cosines of SMP are given as a function of stress ratio by

a1; a2; a3ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3= I2r1ð Þ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3= I2r2ð Þ

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3= I2r3ð Þ

p� �
ð3Þ

Here, I2 and I3 are the second and third invariants of the Cauchy stress rij. Also, the
unit symmetric tensor, aij, whose principal values are given by these direction cosines,
can be defined.
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Fig. 2. (a) Octahedral plane and (b) Spatially mobilized plane (SMP)
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3 Formulation of 3D Elastoplastic Models

3.1 Ordinary Modeling Using Stress Invariants (p and q) [1]

The mean stress p and the deviatoric stress q correspond to the normal and in-plane
components of the stress with respect to the octahedral plane as shown in Fig. 3, and
are expressed by Eq. (4) using three principal stresses.

p ¼
ffiffi
1
3

q
ON = 1

3 r1 þ r2 þ r3ð Þ ¼ roct

q ¼
ffiffi
3
2

q
NP ¼ 1ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 � r2ð Þ2 þ r2 � r3ð Þ2 þ r3 � r1ð Þ2

q
¼ 3ffiffi

2
p soct

0
B@ ð4Þ

The yield function (plastic potential) f = 0 is formulated using these stress
invariants, and the plastic strain increments is calculated assuming flow rule (normality
condition) in the Cauchy stress rij.

dep
ij
¼ K

@f
@rij

¼ K
@f
@p

@p
@rij

þ @f
@g

@g
@rij

� �
where g¼q=pð Þ ð5Þ

Figure 4 shows the yield surface and normality rule in (p, q) plane under triaxial
compression (r1 > r2 = r3; upper half) and triaxial extension (r1 = r2 > r3; lower
half). The yield surface is symmetric with respect to p-axis. Also, stress condition
without tension stress is limited in gray color area. Then, some normal stress becomes
negative when stress ratio q/p becomes larger than the broken lines (r3 = 0) during
elastic deformation or elastoplastic deformation, even if p is positive.
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Fig. 3. Definitions of (p and q)
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3.2 Modeling Based on tij Concept [2]

The modified stress tensor tij is defined by the product of aik and rkj as follows:

tij ¼ aikrkj ð6Þ
Its principal values are given by

t1 ¼ a1r1; t2 ¼ a2r2; t3 ¼ a3r3 ð7Þ

The invariants of modified stress (tN and tS) used in tij concept are defined as the
normal and in-plane components of tij to the SMP as shown in Fig. 5.

tN ¼ ON = t1a1 þ t2a2 þ t3a3 ¼ 3I3=I2

tS ¼ NT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt1a2 � t2a1Þ2 þðt2a3 � t3a2Þ2 þðt3a1 � t1a3Þ2

q 
ð8Þ

The yield function f = 0 based on the tij concept is formulated using the stress
invariants (tN and tS) instead of (p and q).

dep
ij
¼ K

@f
@tij

¼ K
@f
@tN

@tN
@tij

þ @f
@X

@X
@tij

� �
where X ¼ tS=tNð Þ ð9Þ

Figure 6 shows schematically the yield surface in tN − tS plane under triaxial
compression (upper half) and triaxial extension (lower half) in the same way as Fig. 4.
The yield surface is symmetric with respect to the tN-axis. The area where tension stress
does not occur is indicated by gray color area, because r3 is always positive in case of
tN > 0 (see Eq. (8)). Also, there is no tension zone inside of the yield surface. This is
because r3 = 0 condition is satisfied on the vertical axis (tS axis) in Fig. 6.
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4 Meaning of tij Concept

From microscopic observation, Oda [7] showed that, as the stress ratio increases, the
average directions normal to the inter-particle contacts gradually concentrate in the
same direction as the major principal stress (r1). Satake [8] pointed out that the
principal values (u1, u2) of the so-called fabric tensor uij, which represents the relative
distribution of the number of vectors normal to the inter-particle contacts, is approx-
imately proportional to the square root of the corresponding principal stresses.

u1

u2
� r1

r2

� �0:5

ð10Þ

Employing a fabric tensor, Satake [9] also proposed a modified stress tensor r�ij

r�ij ¼
1
3
u�1
ik rkj ð11Þ

Figure 7(a) shows schematically the distribution of inter-particle contacts in 2D
condition. Considering an equivalent continuum, such material exhibits anisotropy
since the stiffness in the r1 direction should be larger than that in the r2 direction with
the increase of stress ratio (see diagram (b)). When adopting an elastoplastic theory, it
is reasonable to treat the soil as an isotropic material by introducing the modified stress
tij in which induced anisotropy is already considered. This is because the normality rule
should hold in the isotropic space, like the transformed space used to analyze seepage
problems in anisotropic ground and others. From Eq. (3), the principal values of aij are
inversely proportional to the square root of the principal stresses, therefore:

a1 : a2 ¼ 1=
ffiffiffiffiffi
r1

p
: 1=

ffiffiffiffiffi
r2

p ð12Þ

It can be noted that aij corresponds to the inverse of the fabric tensor in Eq. (10),
and tij defined by Eq. (6) corresponds to the modified stress in Eq. (11). As shown in
diagram (c), the stress ratio t1/t2 in the modified stress space is smaller than stress ratio
r1/r2 in the ordinary stress space. Then, it is reasonable to assume that the flow rule
(normality condition) holds not in the rij space but in the tij space, because the

Granular material Anisotropic continuum Isotropic continuum

Fig. 7. Induced anisotropy during shear loading and meaning of tij concept
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condition of the anisotropic material in diagram (b) can be considered to be the same as
that of the isotropic material in diagram (c).

5 Verification by Test Data

Figure 8 shows the observed results (dots) of drained triaxial compression and
extension tests on normally consolidated clay and the corresponding calculated results
(curves) based on tij concept. Although models using (p, q) invariants cannot describe
the difference between triaxial compression and extension tests, the model based on tij
concept describes well the observed results. The unique relation between dN*/dS* and
tS/tN in Fig. 9, which is independent of intermediate principal stress, means that the
shape of yield surface is symmetric with respect to tN axis as shown in Fig. 6. Fig-
ure 10 shows the observed and calculated directions of the shear strain increments on
the octahedral plane for true triaxial (r1 > r2 > r3) tests. The calculated directions

σ1

σ3

σ2

Fig. 10. Observed and calculated directions of shear strain increment on octahedral plane

Fig. 8. Stress-strain relation Fig. 9. Observed stress-dilatancy relation
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describe well the observed tendency that the direction of the shear strain increments
deviates leftward from that of shear stress (radial direction) with the increase in stress
ratio under three different principal stresses. On the other hand, the calculated direc-
tions by ordinary (p, q) model are always radial.
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Abstract. The neohypoplastic model [12] eliminates several shortcomings of
the hypoplastic vW-HP model [17]. The most important improvements are
presented here. The general form of the constitutive equation σ̇ = Ē : (ε̇ +
mY‖ε̇‖) is slightly modified by two additional terms in brackets. The functions
E(σ ,e),m(σ ,e) and Y (σ ,e) are completely reformulated in order to deal with
numerous problems of the old model: perpetuum mobile of the second kind, too
small dilatancy during triaxial tension paths, poor predictions of peak stress and
inconsistent behaviour of the model at the upper density limit. A new state vari-
able z similar to the one from the Sanisand model [3] is introduced. The hitherto
used state variables: the stress and the void ratio are preserved, of course. More-
over, a new kind of nonlinearity is proposed: the rotation of the deviatoric stress
response. The problems connected to the extension intergranular-strain extension
are not discussed here.

1 Hyperelastic Response

The most important deficiencies of the linear part of the vW-HP model are:

• non-conservative (hypoelastic) stiffness
• too small ratio of shear stiffness to volumetric stiffness

The new hyperelastic stiffness of the model is based on an expression ψ̄(σ) for the com-
plementary energy. The strain function εi j(σ) and the complianceCi jkl(σ) are obtained
as partial derivatives,

εeli j =
∂ψ̄
∂σi j

and ε̇eli j =
∂ 2ψ̄

∂σi j∂σkl
σ̇kl =Ci jklσ̇kl (1)

In geotechnical materials, the tangential complianceCi jkl(σ) should decrease with pres-
sure. For sand we postulate that the tangential stiffness Ei jkl =C−1

i jkl is a homogeneous
stress function of order n ≈ 0.6, i.e. ∀λ > 0 : E(λσ) = λ nE(σ), and hence Ci jkl(σ) is
homogeneous of order −n.
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Analogously to Euler’s theorem mψ̄ = (∂ψ̄/∂σ) : σ , for the first derivative of an
m-th order homogeneous function, we formulate1 a similar relation with the second
derivative,

m(m−1)ψ̄ = σ :
∂ 2ψ̄

∂σ∂σ
: σ = σ : C : σ (2)

Judging by the product on the right-hand side of (2) our potential ψ̄ should be homoge-
neous of order 2− n. This condition is sufficient (but not necessary) for the n-th-order
homogeneous stiffness. The related degrees of homogeneity are given in the following
table

Function E(σ) C(σ) E(ε) C(ε) ε(σ) σ(ε) ψ̄(σ) ψ̄(σ) ψ(ε) ψ(ε)
Degree of homogeneity n −n n

1−n
−n
1−n 1−n 1

1−n 2−n 2−n 2−n
1−n

2−n
1−n

The complementary energy formulas of the general form

ψ̄(σ) = ∑
α
cαP

αR2−n−α with α ∈ R (3)

have been tested because degree of homogeneity of each summand is 2−n, is desired.
The Vermeer’s hyperelasticity [16] can be obtained as a special case with just one sum-
mand and with α = 0. After numerous experiments with fine sand [5,10], we could
simplify (3) to just a single summand

ψ̄ = cPαR2−n−α with
n c α
0.6 1.517 ·10−4 0.100 (4)

The total elastic strain εeli j is

εeli j =
∂ψ̄
∂σi j

= cαPα−1R2−n−α(−δ i j)+ c(2−n−α)PαR1−n−α σ i j (5)

and the compliance is C= (∂ 2ψ̄/∂σ∂σ), viz.

Ci jkl = Aδ i jδ kl +B(δ i jσ kl +σ i jδ kl)+Cσ i jσ kl +DIi jkl , (6)

wherein

A = c(α −1)αPα−2R2−n−α (7)

B = −cα(2−n−α)Pα−1R1−n−α (8)

C = c(2−n−α)(−n−α)PαR−n−α (9)

D = c(2−n−α)PαR−n−α (10)

1 We substitute τ = σλ into ψ̄ and then differentiate the equation ψ̄(τ) = λmψ̄(σ) twice with

respect to λ using the chain rule on the left-hand side. The resulting equation σ :
∂ 2ψ̄(τ)
∂τ∂τ

:

σ = m(m− 1)λm−2ψ̄(σ) holds for any λ . In particular, it holds for λ = 1 and hence (2) can
be concluded.
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1.1 Scaling of Stiffness for Transversal Isotropy (TI)

Graham and Houlsby [6] introduced a simplified version of the TI stiffness claiming
that three material constants (instead of the usual five ones) are sufficient for soils.
They proposed a TI stiffness Hi jkl with two additional assumptions

a= Gh/Gv = (Eh/Ev)1/2 = (νh/νvh) (11)

leaving us with just three material constants a,Ev,νh (note that Gh = Eh/(2+ 2νh)
holds). After some manipulations one may notice that the simplified TI stiffness Hi jkl

from [6] can be obtained from a special scaling transformation of the isotropic elastic
stiffness Eabcd , namely

Hi jkl = Qi jabEabcdQcdkl , (12)

where Qi jkl = μikμ jl with μi j =
√
aδi j+(1−√

a)mimj (13)

and where mi is the unit vector along the sedimentation axis. The scaling (12) has one
major advantage over (11): it can be applied to any hyperelastic stiffness. From the exis-
tence of the function, ψ̄(σ), and from the 1-1 elastic relation σ(ε)we may conclude the
existence of the elastic energy ψ(ε) = σi j(ε) εi j − ψ̄(σ(ε)) with the help of Legendre
transformation. The scaling (12) can be interpreted in the following way: we define a
scaled strain with

ε̄i j = Qi jklεkl = μikεklμl j (14)

and we write the elastic energy with the new argument ψ(ε̄). Using twice the chain
rule (∂�/∂εi j) = (∂�/∂ ε̄ab)(∂ ε̄ab/∂εi j) we obtain (12). The function ψ(ε̄) is a new
potential taking into accound a and mi. The advantage of the above method is that we
can ”add” some a-type anisotropy to an arbitrary hyperelastic stiffness a posteriori,
without spoiling the conservation of energy etc.

2 Nonlinear Part fdY

The following deficiencies have been revealed testing the vW-HP model:

1. At max. density, e= ed i.e. for fd = 0 the elastic response allows for tension.
2. Tension could be reached even if fd < 0.66 for ϕ = 30◦.
3. Peak strength corresponds to axial strain εa ≈ 1% (instead of at least 5%) in the

conventional triaxial compression despite well calibrated initial stiffness.
4. Extreme densities e< ed beyond the validity of the model can be numerically arrived

at.
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The new nonlinearity function fd(p,e)Y (σ) →Y (e,σ) uses the following stress invari-
ant

H(σ) = σii σ−1
j j −9 H(σ) ∈ (0,∞), (15)

The yield criterion by Matsuoka and Nakai [11] takes with H(σ) a simple form

FM−N(σ) = H(σ)−φ ≤ 0 with φ = 8tan2 ϕ (16)

If any principal stress vanishes, σi = 0, then H(σ) = ∞. The ansatz Y = H/φ(e, p)
is insufficient although Y = 0 for the hydrostatic stress, Y = 1 corresponds to (16) as
desired and φ = φ(e, p) could easily match the barotropy and pycnotropy of the peak
friction angle ϕpeak. The third deficiency requires more sophisticated description: we
need a longer range of h = Q/P for which the degree of nonlinearity is close to unity,
say Y ∈ (0.9,1). Hence the degree of nonlinearity is proposed in the following form

Y (x) = AY exp(−1/(BY xnY +CY )) (17)

with x= H/φ(e,P) and Y (1) = 1

From four material constants AY ,BY ,CY ,nY only three BY ,CY ,nY are available for fitting
whereas AY is determined from the constraint Y (1) = 1, i.e. from AY = exp(1/(BY +
CY )). A reasonable first guess could be BY = 20,CY = 0.3, nY = 2. The function φ(e, p)
can be related to the peak friction angle. Here it is simply interpolated between three
values

Loose Critical Dense

Max. friction angle ϕi = 32 ϕc = 33 ϕd = 50

Void ratio ei0 = 1.1 ec0 = 1.0 ed0= 0.6

using the void ratio e and pressure dependent characteristic void ratios, viz (Fig. 1).

φ(e, p) = 8tan2[ϕ(e, p)] where ϕ(e,P) = ϕc+

⎧
⎪⎨

⎪⎩

(ϕd −ϕc)
ec − e
ec − ed

(ϕc −ϕi)
e− ec
ei − ec

(18)

and choosing the positive fraction. The characteristic void ratios ei(p),ec(p),ed(p) are
found from the Bauer’s [1] compression line e�(P) = e�0 exp [−(3p/hs)nB ] with � =
d, i,c known from the vW-HP model. The material constants [7] are ei0 = 1.1, ec0 = 1.0,
ed0 = 0.6, hs = .8 ·105, nB = 0.28.

3 Flow Rule mi j

The most striking deficiency of the vW-HP model is too little dilatancy on the side of
triaxial extension, no matter how dense the soil is or how large friction angle is mobi-
lized. All FE calculations of a strip foundation on the dense subsoil showed punching
failure. Lateral bulging of soil could never be reproduced.
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Fig. 1. Peak friction angles reached in drained tests at different void ratios, data provided by T.
Wichtmann

The hypoplastic flow rule is described by the unit tensormi j. It dictates the dilatancy.
First, the flow rule is formulated for three special cases

mi j =

⎧
⎪⎪⎨

⎪⎪⎩

ma
i j = (∂H/∂σi j)→ =

[
δi j σ−1

kk −σkk σ−2
i j

]→
if H ≥ φa

mc
i j =

[
δi j σ−1

kk −σkk σ−2
i j

]∗→
if H = φc

mi
i j = (δi j)→ if H = 0

(19)

corresponding to AFR, isochoric flow and purely volumetric flow, respectively. Next,
the interpolation rules with respect to H are defined

m= xmc+(1− x)mi with x= (H/φc)n1 (20)

m= xma+(1− x)mc with x= [(H −Hc)/(φa −φc)]n2 , (21)

with the following material constants ϕa = 36, n1 = 0.1, n2 = 1.0 Note that the exten-
sion mi j(σ) → mi j(σ ,e) would not be difficult if high quality experimental data were
available.

3.1 Density Limit

The flow rule in neohypoplasticity is extended by the termmdYd‖ε̇‖

σ̇ = E :
(

ε̇ −m Y‖ε̇‖−mdYd‖ε̇‖
)

with md = 1 (22)

in order to prevent e< ed(p) i.e. the surpassing of upper density limit. It turns out that a
long monotonic isotropic extension or some stress cycles could violate this condition. It
became evident in numerical test of thermodynamic admissibility of the neohypoplas-
ticity in which only positive energy dissipation was allowed for upon an arbitrary closed
cycle in state space.
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4 Rotation of Elastic Deviatoric Response

Experimental evidence shown in [12] suggests that after a long monotonic shearing the
elastic deviatoric response of sand is rotated on the isometric P−Q plane.

{
Ṗ
Q̇

}

=
{
Ṗel

0

}

+
[
c −s
s c

]

·
{

0
Q̇el

}

(23)

In the general case we need an operator Ri jkl that rotates the stress rate σ̇∗
i j as if it was

a vector in 9 dimensional space, i.e. the Frobenius norm ‖R : σ̇∗‖ = ‖σ̇∗‖ does not
change. However, neither the eigenvectors nor the eigenvalues of σ̇∗

i j are preserved.
Rotation can be generalized using operators

Ai jkl = δ i jδ kl and Di jkl = Ii jkl −Ai jkl (24)

which extract the hydrostatic part A : σ and the deviatoric part D : σ from a 2nd rank
tensor σ , respectively. The rotation operator σ̇∗ is obtained using an analogy to the
Rodriguez formula

Ri jkl = Ii jkl +(c−1)(ui jukl + vi jvkl)−
√
1− c2(ui jvkl − vi jukl), (25)

Q

P





−δσ
ij

ij

ij*

σ*

wherein ui j = −δ i j and vi j = σ∗
i j are perpendicular unit

tensors and c = cosβ is the cosine of the rotation angle
β . Tensor Ri jkl rotates from ui j to vi j, i.e. from P-axis via
currentQ towards −P. In particular, the same strain incre-
ment is rotated counterclockwise at Q> 0 and clockwise
at Q< 0 in the P,Q plane. The rotation is objective andR
is a 4th rank tensor. The stiffness is rotated for the devia-
toric portion only using Erot = A : E+R : D : E. In the
elastic case (Fig. 2)

σ̇ = (A : E+R :D : E) : ε̇ = Ē : ε̇ (26)

The idea of rotation of the deviatoric response is illustrated in Fig. 3. The rotation
of the deviatoric portion of stress rate only is justified by the test, Fig. 3-left. Identical
dense sand samples as described in [12], Sect. 3.1, are subjected to different isotropic
compression cycles 1–2 after a long undrained shearing path 0–1. The corresponding
strain increments, Fig. 3-right, are only slightly rotated off the isotropic direction.

The rotation is applied depending on the length of the monotonic deformation2 and
on the density.

5 Phase Transition and Rolling of Grains

Modelling of cyclic mobility and the butterfly-like stress path observed in undrained
cycles can be simulated introducing an additional contractancy at the cost of an addi-
tional tensorial state variable z. Some authors, e.g. [4], attribute this contractancy effect

2 Given by the new state variable z which decays upon cyclic loading.
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Fig. 2. Modifications of an isotropic elastic (Poisson number 0.2 shown in all pictures) response
envelope in the PQ-diagram. Red point corresponds to the isotropic compression. (a) basic
response envelope σ̇ = E : ε̇ , (b) deviatoric strain rate rotated CW by 30 i.e. σ̇ = E : (A +R :
D) : ε̇ , (c) total strain rate rotated CW by 30 i.e. σ̇ = E :R : ε̇ , (d) total stress rate rate rotated CW
by 30 i.e. σ̇ =R : E : ε̇ (e) deviatoric stress rate rotated CW by 30 i.e. σ̇ = (A +R :D) : E : ε̇ .
The latter modification has been confirmed by the tests.
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Fig. 3. Left: p− q stress path consisting of several isotropic compression cycles 2-3-2-4-2-5-
2 preceded by a long monotonic undrained shearing 1–2. Inclination of the strain response in
the middle is similar to Strain paths in the εvol − εq obtained from isotropic compression after
conditioning (shake-down). The tests (left) were done by T. Wichtmann and L. Knittel [10].

to the rolling of grains during shearing at large stress obliquity, Fig. 4. After a 180◦
reversal of shearing the direction of rolling changes. Such backwards rolling is associ-
ated with strong contractancy. On the microscopic level one can think of grains which
roll into the holes from which they have been rolled out. During undrained shearing, this
contractancy manifests itself as a strong relaxation of P after stress reversals. Under
undrained symmetric stress cycles, such relaxation accumulates. Finally, the stress is
passing through the origin of the stress space and a characteristic shape of the stress
path can be observed. This shape is sometimes called a “butterfly” and the phenomenon
is known as the “cyclic mobility”.

In order to describe this additional contractancy, we need information, how much
dilatancy has been accumulated due to rolling. Moreover, we must know, what direction
of shearing caused this accumulation. A further continuation of such shearing leads to
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Fig. 4. Micromechanical interpretation of drained triaxial shear deformation for different states
on the conventional stress-strain-dilatancy diagram.

further accumulation. A shearing in the opposite direction correspond to rolling back
and causes contractancy. For mathematical description of these phenomena we intro-
duce, similarly as in [15], a structural variable (a deviator) z. Its norm ‖z‖ should grow
during dilatant rolling and decline with contractant rolling back. Its direction should be
used as indicator:

• rolling out with dilatancy for z : ε̇ > 0
• rolling back with contractancy for z : ε̇ < 0

The proposed evolution equations for z and for the rate of contractancy due to rolling
ε̇rP are

ż =
(

1+
‖z‖
zmax

)(

ε̇∗ − z
zmax

‖ε̇∗‖
)

with zii = 0 (27)

σ̇ = Ē :
(

ε̇ −m Y‖ε̇‖−ωmz 〈−z : ε̇〉−mdYd‖ε̇‖
)

with mz = −1 (28)

The factor ω grows at small pressures p in accordance to the observation that the cyclic
accumulation at a constant strain amplitude accelerates with decreasing p, viz.

ω(p) =
pref fe(e)

zmax(pmin+ p)
, where fe = 1−1/ [1+ exp(kd(e− ed))] (29)

The function fe suppresses the rolling-type contractancy at e ≈ ed . The material con-
stants are zmax = 0.05, Pmin = 3, Pref = 100

√
3, kd = 200.
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6 Viscosity

The neohypoplastic model has been supplemented by two rheological effects:

• Slow decay of the back strain e,

ė= −1
τ
e (30)

used in the paraelastic part of the model. With the relaxation time3 τ(σ). After the
deformation is stopped, ε̇ = 0, the decay e → 0 leads to εc → ε . Hence, (30) may
lead to an overshooting. However, transient overshooting is acceptable for sands,
cf. the TESRA model [2]. This relaxation can be used to simulate aging, however
paraelasticity is beyond the scope of this text.

• Fast Bagnold viscosity for high rates of shear deformations, which can be of impor-
tance during liquefaction (at σ ≈ 0).

Both effects can be deactivated.

6.1 Bagnold Viscosity

Another viscous effect is proposed for very fast deformation. It may be of importance
for vanishing hypoplastic stress σHP = 0 because the barotropic stiffness may vanish
due to E ∼ Pn. The Bagnold viscosity is similar to the well known Newtonian viscosity
σ∗ = με̇∗ but beside shear stress σ∗ it implements the normal stress components which
is called dispersive pressure. Several models for debris flow or magma flow have been
proposed basing on this kind of viscosity, [9]. The total viscous stress is proposed to be
calculated from

σvis = ηBag
[
ε̇∗ − kBag1‖ε̇∗‖]

, (31)

wherein minus is due to the mechanical sign convention. Only linear dependence4 is
used in (31) with5 dynamic friction kBag ≈ 0.7 and dynamic viscosity ηBag ≈ 0.02 kPa
s. Formally, the stress rate σ̊vis obtained from time differentiation of (31) can be added
(parallel coupling) to the hypoplastic rate σ̊HP

σ̊ = σ̊HP+ σ̊vis with σ̊vis = ηBag
[
ε̈∗ − kBag1(ε̇∗)→ : ε̈∗] (32)

In numerical implementation we use (31) rather than the incremental form of (32). For
this purpose the viscous stress σvis n from the previous increment need to be memorized.
Given the updated stress σ +ΔσHP we first subtract σvisn stored as a state variable and
then we add the current viscous stress σvis from (31). The main argument for using

3 The half-life of e is τ ln(2).
4 Hunt et al. [8] showed that two velocity ranges, originally proposed by Bagnold, are not nec-
essary.

5 These parameters are obtained from rough extrapolation of experiments on suspensions with
very low density.
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(31) is the accuracy upon sudden strain path reversals. Although such reversals are rare
in reality, they may often appear in numerical simulations. Equation (32) may evoke
artificial stress jump upon reversals due to (ε̇∗)→ : ε̈∗ �= 0, especially for small time
increments. As an illustrative example let us consider a 180 reversal changing the sign
of ε̇∗ but keeping ‖ε̇∗‖ = const. According to (32) the dispersive pressure will jump by
−ηBagkBag1(ε̇∗)→ : ε̈∗Δ t although it is clear from (31) that it should remain unchanged.
The viscous part of stress contributes to the Jacobian matrix as follows

Dvis =
∂σvis

∂Δε
=

ηBag

Δ t

[
JD − kBag1(Δε∗)→

]
(33)

with the tensor JDi jkl = δikδ jl − 1
3δi jδkl of deviatoric projection, �∗ = JD : �.

It turns out that Bagnold viscosity can strongly influence the FEM simulations of
the installation process of a vibro-injection pile. In an example calculation we tested an
axisymmetric FE-model with a dynamic 34Hz loading under undrained conditions. We
used Bagnold to simulate the liquified soil material as an extremely dense suspension.
The neohypoplasticity results in a much narrower liquefied zone and Bagnold viscosity
provides a natural regularization, Fig. 5.

(Avg: 75%)
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Fig. 5. Liquified zone around a vibrating pile (axial symmetry). The von Wolffersdorff hypoplas-
tic [18] version (a) predicts excessive spreading [13,14] of the this zone, compared to neohy-
poplasticity (b, c). A strong mesh distortion is observed in the liquefied zone if calculated with
neohypoplasticity without viscosity (b). It is evident that the Bagnold viscosity can regularize the
calculation with neohypoplasticity (c).
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Abstract. For partially saturated soils, several stress variables have been used
such as the net stress, Bishop stress, generalized Bishop stress and skeleton
stress have been used. For elastic behavior of water saturated geomaterials, Biot
developed a theory of porous media which is equivalent to the elastic water
saturated model with the effective stress with the so-called Biot constant. On the
other hand, for inelastic response, the applicability of the effective stress with
Biot constant has not yet well been studied. In this study, the authors present the
formulation of two phase and three-phase geomaterials based on the continuum
thermodynamics with internal variables. It has been found that the effective
stress with Biot coefficient is obtained for elastic two-phase materials, and the
skeleton stress with Biot constant can be derived for three-phase materials such
as partially saturated soil.

Keywords: Multi-phase geomaterials � Skeleton stress � Unsaturated soil

1 Introduction

It is well known Terzaghi’s effective stress and the effective stress with Biot coefficient
have been used for geomaterials. For partially saturated soils, several stress variables
have been used such as the net stress, Bishop stress, generalized Bishop stress and
skeleton stress. Biot [1] developed a theory of porous media which is equivalent to the
elastic water saturated model with the effective stress having the so-called Biot con-
stant. Kimoto et al. [2] showed that Biot type two-phase theory is applicable to the
elastic behavior of dry soil, i.e., air filled sand, and the classical effective stress cannot
be applied to the air-filled sand. However, for inelastic response, the applicability of the
effective stress with Biot constant has not yet been well studied. This paper presents the
constitutive equations for three-phase geomaterials based on the continuum thermo-
dynamics with internal variables. The constitutive equation with full interaction
between fluids and solid skeleton includes the matric suction and the saturation relation
as well as the usual stress-strain relations. It has been found that the skeleton stress with
Biot constant can be derived for three-phase materials such as partially saturated soil.
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2 Thermodynamic Derivation of Constitutive Equation
for Multi-phase Porous Material

Based on the first and second laws of thermodynamics, the constitutive equations for
three-phase porous materials are obtained using the complementary energy per unit
volume as

g ¼ @W
@h

; eaij ¼
@W
@raij

ð1Þ

where g is the entropy density per unit volume, h is the temperature, rðaÞij is the stress

tensor and eðaÞij is the strain rate tensor for a phase (a = s, f, g; s, f and g denote solid,
water and air phase respectively), W is the complementary energy function per unit
volume.

Let us discuss the air-water-soil three-phase porous material. When the comple-
mentary energy is given by

W ¼Amnklr
s
mnr

s
kl þBmnklr

s
mnr

f
kl þCmnklr

f
mnr

f
kl þDmnklr

s
mnr

g
kl

þEmnklr
g
mnr

g
kl þFmnklr

f
mnr

g
kl þHmnklr

s
mnn

s
kl;

ð2Þ

we have the stress-strain relations as:

esij ¼
@W
@rsij

¼ Amnkldmidnjr
s
kl þAmnkldkidljr

s
mn þBmnkldmidnjr

f
kl þDmnkldmidnjr

g
kl þHmnkldmidnjn

s
kl ð3Þ

e fij ¼
@W

@r f
ij

¼ Bmnkldkidljr
s
mn þCmnkldmidnjr

f
kl þCmnkldkidljr

f
mn þFmnkldkidljr

g
mn ð4Þ

egij ¼
@W
@rgij

¼ Dmnkldkidljr
s
mn þEmnkldmidnjr

g
kl þEmnkldkidljr

g
mn þFmnkldkidljr

f
mn ð5Þ

It is assumed that Amnkl, Bmnkl, Cmnkl, Dmnkl, Emnkl, Fmnkl, and Hmnkl are the fourth
order isotropic tensors.

In Eq. (3), we need an evolutional equation for the internal variables nsij that may be
given by the plastic flow rule or viscoplastic flow rule etc.

3 Constitutive Equations for Three-Phase Porous Materials

For the simplicity, we will discuss the air-water-solid elastic porous media. In the
followings we assume that compression is positive. Extending the previous equations
for water-saturated two-phase model given by Kimoto et al. [2], the volumetric elastic
stress-strain increments can be written as:
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drðsÞ ¼ abde
ðsÞ þ acde

ðf Þ þ adde
ðgÞ;

drðf Þ ¼ acdeðsÞ þ kcdeðf Þ þ hcdeðgÞ;

drðgÞ ¼ adde
ðsÞ þ hcde

ðf Þ þ kdde
ðgÞ

ð6Þ

where hc is a volumetric interaction parameter between water and air of porous media
such as the surface tension.

From Eq. (6), we obtain

drðsÞ ¼ A1de
ðsÞ þB1dr

ðf Þ þC1dr
ðgÞ

A1 ¼ ab � acðackd � adhcÞþ adðadkc � achcÞ
kckd � h2c

; B1 ¼ ackd � adhc
kckd � h2c

; C1 ¼ adkc � achc
kckd � h2c

ð7Þ

Considering the drained conditions, drðf Þ ¼ drðgÞ ¼ 0 and the unjacketed test
conditions in water, i.e., in which the material is immersed in water; drðf Þ ¼
nduw; drðsÞ ¼ ð1� nÞduw and under the unjacketed test in the air, i.e., in which only
the air pressure is applied to the dry material; drðgÞ ¼ ndua; rðsÞ ¼ ð1� nÞdua. duw is
the pore water pressure increment and dua is the pore air pressure increment.

Since soils particles deform in the similar manner and the compressibility of soil
particles is constant under both the unjacketed test conditions in water and air, it
follows that ac=ad ¼ ðkc þ hcÞ=ðkd þ hcÞ.

Finally we obtain the relationships between parameters as:

Cs ¼ Cb ð1� nÞ � B1nð Þ ð8Þ

Cw ¼ �B1

A1
ð1� nÞþ kd

kckd � h2c
þ B2

1

A1

� �
n

� �
ð9Þ

Ca ¼ �C1

A1
ð1� nÞþ kd

kckd � h2c
þ C2

1

A1

� �
n

� �
ð10Þ

where Cb, Cs,Cw, and Ca are the compressibility of the solid skeleton, solid particles
and water and air respectively.

For unsaturated geomaterials, partial stresses for water and air are given by

drðf Þ ¼ Srnduw and drðgÞ ¼ ð1� SrÞndua; ð11Þ

where Sr is the saturation, and n is the porosity.
Then, the total stress increment becomes

dr ¼ drðsÞ þ drðf Þ þ drðgÞ ¼ 1
Cb

deðsÞ þB1Srnduw þC1ð1� SrÞnduaþ Srnduw þð1� SrÞndua

¼ 1
Cb

deðsÞ þ 1� Cs

Cb

� �
ðSrduw þð1� SrÞduaÞ ¼ 1

Cb
deðsÞ þ 1� Cs

Cb

� �
dPf

ð12Þ
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where dPf is the average pore pressure increment.
From the above equation, we can define the skeleton stress increment as:

dr0 ¼ dr� 1� Cs

Cb

� �
dP f ¼ 1

Cb
deðsÞ ð13Þ

where dr0 is the skeleton stress.

4 Conclusions

The elastic-inelastic constitutive relations were derived for multi-phase porous mate-
rials based on the continuum thermodynamics with internal variables. Then, it has been
found that the effective stress with Biot coefficient is obtained for elastic two-phase
materials, and the skeleton stress with Biot constant can be derived for three-phase
materials such as partially saturated soil.

References

1. Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl.
Mech. 24, 594–601 (1957)

2. Kimoto, S., Oka, F., Morimoto, Y.: The effective stress concept and the evaluation of changes
in pore air pressure under jacketed isotropic compression tests for dry sand based on 2-phase
porous theory. Int. J. Num. Anal. Methods Geomech. 41, 1894–1907 (2017). https://doi.org/
10.1002/nag.2705

146 F. Oka and S. Kimoto

http://dx.doi.org/10.1002/nag.2705
http://dx.doi.org/10.1002/nag.2705


Discrete Element Modeling
of Free-Standing Wire Reinforced

Jammed Granular Columns

Pavel S. Iliev, Falk K. Wittel, and Hans J. Herrmann(B)

Institute for Building Materials, ETH Zurich, Zurich, Switzerland
{ilievp,fwittel}@ethz.ch, hans@ifb.baug.ethz.ch

Abstract. The use of fiber reinforcement in granular media is known to
increase the cohesion and therefore the strength of the material. However,
a new approach, based on layer-wise deployment of predetermined pat-
terns of the fiber reinforcement has led self-confining and free-standing
jammed structures to become viable. We have developed a model to
simulate fiber reinforced granular materials, which takes into account
irregular particles and wire elasticity and apply it to study the stability
of unconfined jammed granular columns.

1 Introduction

Fiber reinforcement is widely used for different types of applications in various
materials, such as reinforced polymer, concrete, and soil. A particularly interest-
ing case is the use of fibers in combination with cohesionless granular materials,
since the reinforcement acts as an additional “cohesion” to the material. Typi-
cal for reinforced granulates are the randomly distributed fibers inside the soil.
Alternatively, the wire can be deployed along a predetermined path, creating
strong anisotropies. Recently it was shown [1] that with the latter technique
self-containing packings can be constructed allowing for load-bearing granular
columns. This approach, named “3D rock printing” opens new opportunities
for engineering and architectural applications since the structures behave like
a solid and yet they are completely reversible - when the wire is removed the
grains crumble into a pile [1,2].

Over the past few decades, reinforced soils have been studied extensively by
numerical [3–5] and experimental [6,7] means. Several underlying mechanisms
are known to be involved: tensioning of segments of wire, blocking between par-
ticles, friction induced sticking of wire wrapped around particles, and geomet-
rical interlocking between individual grains. However, the mechanical behavior
of such free-standing structures is not fully understood, since the reinforcement
in this case does not only enhance the strength and the cohesion, but has also a
confining function.

We present here a discrete numerical model for simulating wire reinforced
granular materials that captures all the aforementioned mechanisms described
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in detail in Ref. [8]. We apply it to study the stability of jammed, free standing
granular columns under vertical load, see Fig. 1. Our discrete model incorporates
two fundamentally different methods and couples them together, which allows
us to capture the irregularities in grain shapes, the frictional interactions, and
the elasticity of the wire. It should be noted that the proposed method has a
very general scope of applicability, ranging from fiber [3] or geogrid [9] reinforced
soils to rockfall protection [10] and beyond.

Fig. 1. Free standing fiber reinforced granular columns constructed by first depositing
grains and wire inside a rectangular container and then removing the side walls of the
container. Experiment (top row) and simulation (bottom row) showing the structure
before (left) and after (right) the removal of the confining walls, source [8].

2 Numerical Modeling

In order to capture the effect of geometrical interlocking between the grains,
the particles are represented by angular polyhedrons, or to be more precise
spheropolyhedrons, which are a Minkowski sum of a polyhedron and a sphere
[11]. The spherical dilation is needed to calculate the overlaps between the parti-
cles and the wire. Note that this modification does not change the contact calcu-
lation between the particles. The interactions between the particles are carried
out by means of the Non-Smooth Contact Dynamics (NSCD) method, originally
proposed by Moreau [12]. The main scope of applicability of this method is the
modeling of dense packings of rigid frictional particles with lasting contacts. The
NSCD method is based on the volume exclusion constraint and the Coulomb fric-
tion law without regularization. The equations of motion for the particles are
integrated with an implicit Newton method. The forces and moments for each
contact are resolved by an iterative Gauss-Seidel scheme for each time step, until
a global convergence is achieved.
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The wire is modeled as a chain of point-like masses connected by tensile spring
elements and rotational springs attached to each node, which corresponds to a
linear-elastic beam model in the continuum limit. Self-interaction of the wire is
realized with the Soft Particle (SP) Discrete Element [13] method introduced by
Cundall and Strack [14] with a linear spring-dashpot model. Each wire element
has a spherocylinder attached to it in order to carry out the overlap computation
[15]. The forces of a contact between two elements are distributed to the four
involved nodes with weights inversely proportional to their distance from the
closest point of contact. The equations of motion for the translational degrees
of freedom of the wire nodes are integrated with an implicit Gear predictor-
corrector method of 5-th order.

Since the NSCD method is implicit, it is unconditionally stable and therefore
the time step can be significantly bigger than the one used for the explicit SP
method. Hence, it is reasonable to have two different time steps for the two
solvers: ΔtNSCD and ΔtSP . This leads to a sub-cycling procedure in which the
positions of the wire nodes are updated n times for every update of the positions
and orientation of the particles, where n = ΔtNSCD/ΔtSP . After the wire nodes
are updated, the contact forces between the wire and the particles is averaged
over the n wire time steps and added to the particles.

3 Results and Conclusions

Our simulations show a good qualitative as well as quantitative agreement with
the laboratory experiments. For the experiment shown in Fig. 1 we have used
railway ballast particles, while the wire is a standard textile string and the
walls are made out of acrylic glass. The construction of the samples for both
experiment and simulation is equivalent: layers of particles and wire are deposited
sequentially inside a rectangular container. After the side walls are removed, the
structure loses a part of the initial height, since crucial sections of the wire must
be tensioned before it can start acting as a confinement and prevent the column
from expanding in the transverse direction. This effect was confirmed by our
numerical simulations from the time evolution of the elastic strain energy of the
wire after the wall removal.

In order to gain a deeper understanding of the mechanical behavior of fiber
reinforced jammed columns a large number of different simulations has been
performed in order to investigate the behavior of the columns for a broad range
of friction coefficients, wire stiffness, and particle size distributions. We observe
from our numerical results that higher particle-wire friction can help to obtain
higher columns as well as to increase the tension in the wire. In contrast, particle-
particle friction does not influence the height of the columns or the fraction
of retained particles inside the column, since the irregularities in the particles
account for geometric interlocking between the grains. Nevertheless, higher fric-
tion between the particles leads to the reduction of the elastic energy on the
wire as the forces are distributed on the particles instead of on the wire. Intu-
itively, wire stiffness also plays an essential role in the stability of the structures,
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although the strain energy density has been found to decrease when strain resis-
tance is increased. Furthermore, higher stiffness of the wire leads to a higher
retained height of the column. We have shown also that larger variations in the
particle sizes can be beneficial for the stability of free-standing wire reinforced
granular columns.
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Abstract. The fabric of granular materials, as the underlying inter-
nal contact network through which the interparticle forces transmit the
stress, plays a key role in describing their elasticity, critical state, and
dilatancy, to name a few. Just as response envelopes have been devel-
oped by Gudehus back in 1979 to get an overall picture of constitutive
models and the nature of constitutive equations, herein, the evolution
of contact fabric in granular materials when subjected to strain probes
is explored through series of Discrete Element Method (DEM) simula-
tions. As the first study of its kind, and also due to the richness of the
observed responses, the scope of the study has been limited to isotropic
configurations. The contribution of contact loss, gain, and reorientation
mechanisms to the changes in the associated second order fabric tensor
has been investigated as the proportion of vertical to horizontal strain
changed during a strain probing procedure. Intriguingly, the evolution of
fabric with strain probes shows a strong asymmetry in compression and
extension, signalling an incrementally nonlinear relation between fab-
ric and strain increments, despite the incrementally linear elastic stress-
strain response. Such results suggest that the origins of the incrementally
nonlinear stress-strain responses often observed in later stages of devi-
atoric loading of granular materials can be potentially traced back to
characteristics of fabric evolution.

1 Introduction

The micromechanical study of granular materials encompasses the underlying
connections between the microscopic-particle scales and the various characteris-
tics at the macroscopic-continuum level with interparticle contacts as the main
focus. Micromechanical descriptions of stress [1,9,19,30,36] and strain [2,14],
and dilatancy in particular [4,15,16,35], show the important role that the inter-
nal contacts arrangement play in relating variables across the different scales.
Therefore, having a detailed understanding of contact evolution during mechani-
cal loading is essential in formulating micromechanics-based constitutive models
for granular materials [10,17,18,32,37].
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The internal contact configuration is often characterized by a second order
fabric tensor [22,31] describing: the principal directions of contacts, the aver-
age number of contacts per particle, or coordination number, and the fabric
anisotropy which quantifies the deviation of the fabric tensor from isotropy.

In fact, it is desirable to connect stress to strain through both coordina-
tion number and fabric anisotropy as worked out in [24,26] to arrive at so-
called stress-strain-fabric relations for different stages of loading. The embed-
ment of microstructural information can done through a statistical analysis of
the micromechanical expression for the average stress tensor [9,19,36], relating
interparticle contact forces to branch vectors that connect centroids of particles
in contact as given by Rothenburg and coworkers [29,30], and the more recent
studies on particle kinematics [13,15,23,34].

The question of how contact fabric evolves has been addressed in previous
studies, see [13] for a thorough review. In general, two classes of studies can
be recognized based on whether fabric evolution is related to stress [21] or to
strain [6,13,27,28] increments. More recent studies suggest that a combination
of stress and strain controls the evolution of fabric, with contact loss and gain
being related to forces and deformations, respectively [25].

Nonetheless, the previous literature mostly studies the fabric evolution under
simple conventional loading paths, such as in biaxial, triaxial, or isochoric tests.
As such, the generality of such studies is considerably limited, recalling that
the elasto-plastic response of granular materials is incremental in nature and
generally depends upon the direction of loading [7,8,20,33]. Such a direction
dependence, or incremental nonlinearity, is often studied via directional prob-
ing; a pioneer method also known as Gudehus envelope [11], where vertical and
horizontal stress (or strain) increments in varying ratios are applied to the gran-
ular assembly, while the magnitude of the applied loading increment is kept
constant [3,5].

The current study investigates the evolution of contact fabric in response to
directional strain probes. As a first step toward this topic, the direction depen-
dence of the fabric response is investigated herein for isotropic, two-dimensional
granular assemblies with different initial coordination numbers. Discrete Ele-
ment Method (DEM for short) simulations have been performed to measure
various contributions to the evolution of the fabric tensor due to the contact
loss, gain, and reorientation mechanisms. The results exhibit a strong incre-
mentally nonlinear evolution of fabric tensor, that is in stark contrast with the
accompanying elastic, linear stress-strain response. Such directional dependen-
cies of fabric response, serves as a precursor for an elasto-plastic stress-strain
response, normally reflected as the dependency of the stress response on the
direction of loading.

2 Micromechanics

The internal structure of the interparticle contact network, is often characterized
by a second-order fabric tensor F encompassing the density and the directional
distribution of contact as [12,22,31]:
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Fij =
2

Np

∑

c∈C

nc
i nc

j (1)

with Np being the number of particles (excluding rattlers, i.e. particles with
fewer than two contacts), C the set of all contacts, and nc the contact normal
vector at contact c.

The characteristics of the fabric tensor are herein studied in terms of two
prominent variables: the coordination number, Z, defined as the average number
of contacts per particle, and an anisotropy measure, A, both defined in terms of
the principal values F1 and F2 of the fabric tensor F :

Z =
2Nc

Np
= tr(F ) = F1 + F2, A = F1 − F2 (2)

where Nc is the total number of contacts. The commonly used fabric anisotropy,
see e.g. [30], is related to these two variable by 2A = ac Z.

The change in fabric tensor can be decomposed into additive contributions
from three mechanisms: contact gain, contact loss, and contact reorientation
[13,25], i.e.
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with the sets of lost and gained contacts denoted by ΔC
l and ΔC

g respectively,
while C

r is the set of persisting contacts.
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Fig. 1. Schematics of strain probe, stress response and fabric response.

As mentioned earlier, previous studies such as [13,25] have indeed provided
insights as to how the fabric tensor changes due to these mechanisms along sin-
gle monotonic loading (stress or strain) paths. The scope of the investigation is
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broadened here by exploring the evolution of the fabric tensor in response to dif-
ferent proportional loading paths through strain probes, as illustrated schemat-
ically in Fig. 1. As a first step towards the study of more complex anisotropic
systems, the current work is restricted to isotropic initial samples.

3 DEM Simulations

DEM simulations have been performed on two-dimensional square assemblies of
50,000 circular particles with uniformly distributed radii and a ratio of maximum
to minimum particle radii of rmax/rmin = 2. Similar linear contact stiffnesses
have been set for normal and tangential directions, kn = kt, with the relative
stiffness of kn/p0 = 5 × 103, where p0 is the initial confining pressure. The
interparticle friction has been set at μ = 0.5.

In order to also investigate the effect of the initial coordination number, six
initial samples, with varying coordination numbers, Z0, and void ratios, e0, were
prepared, as listed in Table 1. The sample preparation method has been care-
fully chosen to yield initially isotropic samples with the initial fabric anisotropy
remaining |ac0| ≤ 10−4. After stabilizing the sample under the initial confining
stress, strain probes with a magnitude of ||Δε|| =

√
Δε2yy + Δε2xx = 2 × 10−4

were applied to the samples.

Table 1. Coordination number Z0 and void ratio e0, after compaction, of the initial
samples.

Z0 4.53 4.21 4.10 3.87 3.76 3.68

e0 0.157 0.173 0.179 0.196 0.204 0.211

Figure 2 presents the stress and fabric incremental responses to the imposed
strain probes for the dense sample with initial coordination number of Z0 = 4.53.
Normal contact stiffness kn has been used as a scaling factor to render stresses
dimensionless.

While the common symmetry around α = 45◦, expected for an isotropic
material, is observed, it is clear that the fabric response is incrementally nonlin-
ear with respect to the strain increment as the symmetry breaks down around
α = 135◦, i.e. contact loss in pure extension does not match the contact gain in
pure compression.

The stress responses of samples to the strain probes of the same size are
shown in Fig. 3. To avoid overcrowding, only the final states of strain and stress
increments are plotted. Furthermore, the total strain was decomposed into elas-
tic and plastic parts by repeating probes with an artificially large interparticle
friction to suppress any sliding mechanism [26]. This showed that plastic defor-
mations were insignificant (<1%), hence the total strains can be considered as
elastic.
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Fig. 2. (a) Imposed strain probes, (b) stress responses, and (c) fabric responses. Results
for the dense sample with initial coordination number Z0 = 4.53. Some characteristic
probe directions are shown in colour for easy interpretation and clarity.

Fig. 3. Dimensionless stress responses to the strain probes with magnitude of ||Δε|| =
2 × 10−4 for samples with different (selected) initial coordination numbers Z0. Only
the final points of the stress response have been plotted. The dashed lines represent
elliptical fits that correspond to an incrementally linear stress response.

The contact configuration at the beginning and at the end of the strain
probes can be compared to compute the fabric change due contact loss, gain,
and reorientation mechanisms, ΔF l,ΔF g, and ΔF r, as defined in Eq. 3. While
not presented here, the results indicate that the principal directions of these
tensors are aligned with the horizontal and vertical directions. Therefore, the
properties of these tensors are reduced to the sum of, and difference between their
vertical and horizontal components (which are principal values). For generality,
the results are normalized to the strain probe magnitude ||Δε|| which presents
the rate of change with respect to strain increment:
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ΔZ∗m =
ΔFm

yy + ΔFm
xx

||Δε|| = ΔF ∗m
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ΔFm
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xx

||Δε|| = ΔF ∗m
yy − ΔF ∗m

xx

m = l, g, r for contact loss, gain, and reorientation

(4)

with the parameter ΔZ∗m in Eq. 4 denoting the rate of change in coordination
number due to each mechanism, while ΔA∗m is related to the associated rate of
change of fabric anisotropy. It should be noticed that the variable ΔA∗m in Eq. 4
is defined such that, depending on the direction of the maximum fabric change,
it can assume both positive and negative values. Figure 4 shows the variation of
ΔZ∗m and ΔA∗m with probe direction α for the probes presented in Fig. 3.

Fig. 4. Rate of change in contact fabric tensor due to (a) contact loss, (b) contact gain,
and (c) contact reorientation, as defined in Eq. 3 for strain probes shown in Fig. 3. The
square symbols show the sum of the vertical and horizontal (principal) components of
the tensors, and the circles show the difference between these two values, as defined in
Eq. 4.

The results in Fig. 4 indicate that the rate of contact loss in isotropic exten-
sion does not match the rate of contact gain in isotropic compression, which
leads to the asymmetry of fabric change around α = 135◦, as already observed
in Fig. 2(c). By definition, no coordination number change is associated with
contact reorientation, i.e. ΔZ∗r = 0. Moreover, the contribution of contact reori-
entation to fabric change remains negligible compared to contact loss and gain.
While no clear dependency on initial coordination number is observed for the
contact reorientation in Fig. 4(c), both variables ΔZ∗m and ΔA∗m for contact
gain and loss mechanisms exhibit an increase as initial coordination number Z0

increases, as shown in Fig. 4(a) and (b).
Furthermore, the results in Figs. 4(a) and (b) indicate that the maximum

change in fabric anisotropy parameter, ΔA∗m, does not occur for the directions
of pure shear, α = 135◦ and 315◦. Instead, the directions of these extrema are
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shifted slightly towards the extension half region of the probes, i.e. −45◦ <
α < 135◦. As such, it is concluded that the largest change in fabric anisotropy
occurs for a strain probe direction that involves a combination of deviatoric and
extension strain.

3.1 Analysis of DEM Results with Representation Theorem

Following the representation theorem for the functional dependence of a second-
order tensor on another second-order tensor in two-dimensional isotropic sys-
tems, the change in fabric due to each mechanism can be readily expressed as:

ΔF ∗m
ij = ψm

1 δij + ψm
2 Δε∗

ij , m = l, g, r (5)

where ψm
1 and ψm

2 are functions of the invariants of Δε∗ as well as the initial
coordination number, Z0. Assuming Fourier series expansion up to the second
order of the probe direction, the expression in Eq. 5 can be reformulated in terms
of ΔZ∗, ΔA∗, and the trigonometric functions:

ΔZ∗m = am
1 + am

2 (cos α + sin α) + am
3 cos α sinα

ΔA∗m = am
4 (cos α − sin α) + am

5 (cos2 α − sin2 α)
m =l, g, r

(6)

with the total changes given as the sum over the contributing mechanisms:

ΔZ∗ = − ΔZ∗l + ΔZ∗g = a1 + a2(cos α + sinα) + a3 cos α sin α

ΔA∗ = − ΔA∗l + ΔA∗g + ΔA∗r = a4(cos α − sinα) + a5(cos2 α − sin2 α)

ai = − al
i + ag

i + ar
i

(7)

The results in Fig. 5 verify the accuracy of the expressions in Eq. 6 in fitting
the variation of ΔZ∗m and ΔA∗m with strain probe direction α for the sample
with initial coordination number of Z0 = 4.10. Only a single coefficient, Er, with
the relatively constant value of 2.7, is required to represent the variation of fabric
tensor due contact reorientation ΔF r

ij , since no coordination number change is
associated with contact reorientation, and the variation of ΔA∗r is accurately
fitted with the first-order harmonic term, as demonstrated in Fig. 5(c).

By definition, incremental linearity for fabric evolution is obtained where a
symmetry around α = 135◦ is observed, i.e. ΔF (α) = −ΔF (−α). Therefore,
based on the expressions in Eq. 6, an incrementally linear fabric response is
obtained whenever all the following conditions are met:

1. The rate of change in coordination number due to contact loss in isotropic
extension is equal to the rate of change in coordination number due to contact
gain in isotropic compression.

2. The rates of change in coordination number due to contact loss and contact
gain are equal in pure shear.

3. The maximum rate of change of anisotropy is obtained in pure shear.
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Fig. 5. Accuracy of the expressions in Eq. 6 in representing fabric change due to contact
loss (left), contact gain (middle), and contact reorientation (right), for the sample with
initial coordination number Z0 = 4.10.

It is clear from the results in Fig. 4 that none of the above three conditions
is satisfied, with the deviation from the first condition being the largest. The
observed incrementally nonlinear evolution of fabric is particularly intriguing
remembering that it occurs in a predominantly elastic deformation regime.

A more quantitative assessment of the incremental nonlinearity of fabric evo-
lution is presented in Fig. 6 where the variation of coefficients in Eq. 7 with initial
coordination number is given. Following the three above-mentioned requirements
for incremental nonlinearity, the non-zero variables a1, a3, and a5 point towards
an incrementally nonlinear evolution of fabric with strain increments. Moreover,
based on Eq. 7, the fact that a5 < a3 indicates that the deviation from incre-
mental linearity is more significant for the deviatoric part of fabric tensor, ΔA∗

compared to its spherical part, ΔZ∗. It is also important to notice that the
changes in fabric scale with initial coordination number as suggested by the
relatively linear trends in Fig. 6.

Fig. 6. Variation of coefficients describing the total fabric change in Eq. 7 with initial
coordination number Z0.



Fabric Evolution in Granular Materials Under Strain Probing 159

Such a dependency on the direction of loading further is consistent with the
directional dependency of plastic flow rule [33] and constitutive models embed-
ding such incremental nonlinearity [7,8,20].

4 Conclusions

Two-dimensional DEM simulations of initially isotropic systems have been per-
formed to study the stress and fabric responses of granular media to strain prob-
ing. While the stress response remains incrementally linear and elastic, intrigu-
ingly, the fabric changes exhibit strong dependence on the strain probe direction,
and hence incremental nonlinearity. Such an incrementally nonlinear evolution
of the fabric response can only develop further to serve as a precursor to the
elasto-plasticity of anisotropic granular assemblies.

To further explore the nature of fabric changes, the contributions of each of
contact gain, loss, and reorientation mechanisms have been separately studied.
As intuitively expected, the contribution of contact loss and gain are seen to be
dominant in extensional and compressive probes, respectively. The contribution
of contact reorientation is consistently negligible compared to the other two
components.

As the main conclusions, the following qualitative observations have been
made regarding the nature of fabric evolution:

1. In isotropic compression the rate of change in coordination number due to
contact loss is very small, while the isotropic extension contact gain is very
small.

2. The rate of change in anisotropy is not largest in pure shear, but in a probe
direction that involves shear and extension.

3. The rate of contact loss in isotropic extension is larger than the rate of contact
gain in isotropic compression. It is this difference that ultimately forms the
primary origin of the incremental nonlinearity of fabric response to strain
probing.

4. The parameters expressing the rate of change in the above-mentioned char-
acteristic directions scale almost linearly with initial coordination number of
the samples.

The results indicate that further studies, with wider ranges of conditions, are
required to clearly explain the evolution of contact fabric and its role in driving
the mechanical response of granular materials, especially in three-dimensional
conditions. It will especially be interesting to study the fabric evolution in ini-
tially anisotropic configurations, for which, interrelations are expected between
lost and gained contacts distributions, as our preliminary results show.

Finally, the observations in this study show that, as it stands, the issue of
‘microstructure-motivated’ elasticity is an open question, with more detailed
investigations required to delineate the relation between fabric evolution and
stress-strain response.
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Abstract. The observation of structural changes inside geo-materials during
testing is still uncommon in geotechnical engineering. New developments in
imaging techniques and improved analysis methods allow us for the first time to
observe structural changes inside geo-materials and to provide us with the
required information for developing new knowledge and constitutive relation-
ships. The presented paper introduces three approaches for observing structural
changes in porous media: (1) Particle Imaging Velocimetry (PIV) in combina-
tion with transparent hydro-gel beads, (2) Spatial Time Domain Reflectometry
(Spatial TDR) for observing porosity distributions during contact erosion test-
ing, and (3) Ultra High Speed Camera (UHSC) imaging in combination with a
brittle, low strength rock like material for investigating hydraulic fracturing.

Keywords: Imaging methods � Transparent soil � Electromagnetic methods

1 Introduction

It is the dreaming of every experimentalist working with geo-materials to have the
chance to observe and quantify changes in the internal conditions of the specimen during
testing. Whenever we analyze changes in macroscopic observations, such as deforma-
tion or discharge, we always look for explanations for these observations involving the
internal structure of the specimen on the micro-scale without being able to provide the
required evidence. Depending of the nature of the problem, these internal changes can
be associated to water content changes and/or changes in the structural composition of
the solid phase. New imaging techniques and analysis methods as well as other alter-
native observation methods allow us to capture additional information during testing
and provide unique insights into the internal conditions of specimens. As examples, CT
scanning techniques [1], X-Ray [2], acoustic emission [3], and the application of
transparent soil as soil or rock substitute materials are mentioned. Less frequently used,
but not less powerful, are electromagnetic measurement methods that are used e.g. in
medicine or physical chemistry. Magnetic Resonance Imaging is probably the most
powerful technique at hand. Simpler methods are dielectric spectroscopy and time
domain reflectometry. This contribution introduces three methods used at the University
of Queensland for capturing changes inside samples during testing.
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2 Particle Imaging Velocimetry (PIV) for Quantifying
Pore-Scale Flow

2.1 Motivation

The pore-scale flow conditions are causative for the onset of erosion. For example, in
the case of contact erosion with water flow perpendicular to the interface from fine- to
the coarse-grained soil fraction, the flow velocity changes dramatically and is con-
centrated in the constrictions formed by the coarse particles at the interface. This
change in flow velocity needs to be known and characterized to enable the development
of new erosion criteria and of computational models.

2.2 Approach

The development of an experimental set-up for investigating the flow conditions on the
pore-scale based on PIV was one objective within a discovery project [4]. The appli-
cation of PIV in porous media flow requires the usage of a solid and a liquid that are
refractive-index matched. Frequently, glass beads are used in combination with glyc-
erin mixtures or oil. The unique feature of the presented system is the use of 10 to
11 mm large hydrogel beads and water as the flowing liquid. The advantage of this
combination is the possibility to use standard measurement methods for quantifying the
flow conditions. A disadvantage is that the hydrogel beads are very soft, and their
density is just a bit larger than the density of water. Therefore, there is a limitation in
the flow forces that can be applied without deforming the beads, and no free surface of
particles can be simulated. The experimental set-up allows the measurement of two-
dimensional velocity fields within the illuminated plane by using seeding particles with
neutral buoyance in the size of 20 lm. Out of plane movements of the water due to the
three-dimensional nature of the water flow cannot be captured and can potentially
falsify the measurement.

2.3 Measurement Example and Findings

Figure 1 shows an exemplary measurement result using the PIV system. Hydrogel
beads of different sizes have been used to form two layers of finer and coarser grained
materials. The cut through the sample was selected in a way to show the flow con-
ditions in the constrictions formed by the particles. A coupled Lattice Boltzmann
Method (LBM)/Discrete Element Method (DEM) model was used to simulate the
measured flow conditions. The simulation results were analyzed in a way to allow a
one-to-one comparison with the measurement results taking into account the out of
plane movement of the water. An interesting and surprising finding of this investigation
is the fact that the highest velocity is not observed within the base material, but in the
constriction of the coarse particles just above the fine layer. This flow velocity was
identified to be approximately four times larger than the filter velocity of the overall
sample. This observation can be explained by taking into account the obstacle effect of
coarse particles sitting on a layer of fine particles. Water flowing towards this obstacles
get sidetracked and channelized into the constrictions producing a jet-like flow.
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3 Spatial Time Domain Reflectometry (Spatial TDR)
for Measuring Porosity Distributions During Erosion
Testing

3.1 Motivation

Once a critical hydraulic gradient is reached within a geometrically unstable sample,
erosion starts by mobilizing particles accompanied with porosity changes on the local
scale. The porosity is the crucial parameter influencing the onset, but also the transient
evolution of erosion. In various approaches for simulating erosion with continuum based
computational models, the porosity is the main parameter of interest, and erosion is
described as a process leading to changes in porosity. It is therefore obvious to observe
changes in porosity during erosion and to identify where these changes take place.

3.2 Approach

Spatial TDR allows the measurement of the apparent dielectric permittivity along elon-
gated sensors [5]. With suitable calibration functions, the porosity can be determined
under the assumption of fully water-saturated conditions. A new experimental set-up was
developed for determining porosity profiles using a large coaxial line cell that is used as
sensor and sample holder [6]. The annulus of the coaxial cell allows the implementation
of tests with particle sizes up to 11 mm. A Sequid SDTR-65 TDR device is used for
capturing TDRmeasurements that are analysed using an inversion algorithm based on the
approach of Schlaeger to compute the distribution of the apparent dielectric permittivity.
This permittivity distribution can then be transferred into a porosity distribution by
suitable mixing functions or material specific calibration formulas.

Fig. 1. Measurement example with the PIV system (left) in comparison with results from
DEM/LBM simulations (middle) showing the flow conditions at the transition from a finer
grained material into a layer of coarser grained material. The velocity profile normalized by the
filter velocity (right) shows a comparison between the averaged velocities in the transition zone.
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3.3 Measurement Example and Findings

Figure 2 shows an exemplary result of measured porosity distributions of a sample
composed of glass beads during a contact erosion test with flow in upwards direction.
The coaxial cell includes an observation window that allows the visual observation of
changes in the heights of each material layer. As a consequence of erosion, coarse and
fine particles mix together forming a new layer of material with a much reduced
porosity. The development of this new layer is very well observed using the TDR
measurement system. One important observation made with the new set-up concerns
the nature of the progress of erosion. While erosion is frequently considered as a
transport problem of fine particles, the observations in the new set-up revealed that once
the critical gradient is reached fine particles get fluidized but are not transported away.
It is rather the layer of coarse particles that starts to penetrate into the layer of fine
particles due to the reduced shear strength of the uppermost fine particles. While
penetrating into the matrix of fine particles, the coarse particles relocate and form a
structure with an increased porosity.

The new set-up involving Spatial TDR for porosity measurements allows for the
first time continuous observations of porosity changes during erosion tests. The
observations made with this system will help in future to better understand the transient

Fig. 2. Measured porosity distributions within a sample composed of glass beads at the
beginning (left) and during a contact erosion test (right). The coarse fraction of 8 mm glass beads
(nearly transparent) is placed on a layer of fine particles (appear in white) with a diameter of 0.3
to 0.4 mm. The grey columns represent the mean porosities measured from the mass and the
height of the layer as observed through the window (left of each graph).
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evolution of erosion and will lay the foundation for future developments of compu-
tational models that will allow in combination of field observation methods the
development of monitoring and prediction tools.

4 Ultra High Speed Camera (UHSC) Recording
for Characterizing Crack Evolution During Hydraulic
Fracturing

4.1 Motivation

The use of PMMA in hydraulic fracturing investigation as substitute material for rock
has already a long tradition. Within another discovery project, we have identified and
characterized a new material showing better comparable parameters to rock than
PMMA, but still being transparent [7]. The big advantages of this material, called
Smash-It, is its low tensile strength and its capability to be melted at temperatures of
around 120 °C. This allows casting samples of every kind, size and form. At the same
time, many computational models have been developed by researchers mostly on
particle based methods simulating hydraulic fracturing in 2D without being able to
validate their model with experiments conducted at exactly the same conditions.

4.2 Approach

An experimental set-up was developed for the implementation of hydraulic fracturing
tests with thin, thick-walled, circular samples with an injection hole in the middle. The
aim of the set-up was to be able to conduct quasi-2D experiments in plain strain
conditions to provide not only data for validating computational models, but also to
have the unique opportunity to observe the various stages of the development of cracks
as they evolve in one plane. For this purpose, a sandwich-like sample holder was
developed with an upper steel head allowing the injection of a liquid and the appli-
cation of a confining stress and a transparent bottom PMMA plate that allows the
observation of the processes within the assembly. The Smash-It sample is placed in
between these plates sealed with a thin silicon layer towards the both neighboring
plates. By having dots marked on the sample in a regular pattern, UHSC observations
can be used to observe deformations of the sample during the hydraulic fracturing test.
At the same time, the evolution of the crack can be observed allowing the quantification
of the crack velocity during the experiment.

4.3 Measurement Example and Findings

Figure 3 shows an example of UHSC observations during a hydraulic fracturing
experiment conducted with the new set-up. Tests have been conducted for different
confining stresses applied in vertical direction for samples with a notch-free injection
hole. The circumference of the sample was stress-free. The main observations from
these tests were that the crack velocity seems to be independent of the vertical confined
stress while the breakdown pressure is. The crack velocity is highest at crack initiation
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close to the theoretically possible terminal velocity. From this unstable crack propa-
gation the crack development turns into a stable process at much lower velocities
before it accelerates again towards the end of the sample. The new set-up provides the
opportunity to look closer into the transient development of cracks induced by
hydraulic fracturing.

5 Conclusion

The presented examples show the opportunities arising from the application of
unconventional observation methods for investigating hydro-mechanically coupled
process in and with geo-materials. The geotechnical community has identified the
development of new measurement and observation methods as the key challenge for
the future. It will be the task for research institutes to develop these techniques together
with analysis procedures to be able to transfer these technologies into practical
applications.
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Abstract. The paper describes a research methodology that can be adopted for
estimating the Biot coefficient for a low permeability rock that has a hetero-
geneous internal fabric. Experimental techniques that address the requirements
for a representative volume element can be combined with theoretical devel-
opments for multiphasic elastic materials to develop bounds for the Biot coef-
ficient. The theoretical developments are used to estimate the Biot coefficient for
a heterogeneous argillaceous limestone.

Keywords: Poroelasticity � Biot coefficient � Stress partitioning

1 Introduction

The theory of poroelasticity developed by Biot [1] is one of the key developments in
geomechanics that deals with the mechanical behaviour of a porous elastic solid sat-
urated by an ideal fluid [2–6]. Although the theory was developed for purposes of
applications to geomaterials, the use of the theoretical concepts has reached beyond the
initial objectives and the theory has been applied to the study of the mechanics of bone
[7] and soft biological materials such as brain tissue and arterial materials [8–12]. The
theory proposed by Biot [1], unlike that of the classical theory of Terzaghi [13],
introduces a rational way of addressing stress partitioning between the porous skeleton
and the pore fluid that takes into consideration the constitutive properties of the porous
skeleton. In principle, the Biot coefficient can be determined provided the compress-
ibility of the porous skeleton and the compressibility of the material composing the
porous fabric can be accurately determined. While the estimation of the compressibility
of the porous skeleton is straightforward, the estimation of the compressibility of the
solid material composing the porous skeleton can be complicated, particularly when the
porous rock fabric has a very low permeability [K ε (10−23, 10−20) m2] and can be
composed of a variety of rock minerals. This paper shows an approach that can be used
to estimate the Biot coefficient, where the compressibility of the solid phase is deter-
mined by appeal to results developed for estimating the effective properties of multi-
phasic elastic media. The results of the experimental developments and theoretical
research are used to develop bounds for the Biot coefficient for the argillaceous
Cobourg limestone found in southern Ontario, Canada.
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2 The Cobourg Limestone

The Cobourg limestone is an argillaceous rock formation that is found in southern
Ontario and a geologic formation that is being investigated for the creation of a Deep
Ground Repository (DGR) for the storage of low- and intermediate-level nuclear fuel
waste. This DGR will be located approximately 680 m below ground level within the
Cobourg limestone formation of the Paleozoic sedimentary sequence that rests on a
Pre-Cambrian granitic gneiss basement rock. Despite its low clay content, the Cobourg
limestone is referred to, nominally, as an argillaceous limestone. A characteristic
feature of the Cobourg limestone is its heterogeneous fabric (Fig. 1), consisting of
lighter nodular regions of calcite and dolomite separated by argillaceous partings of a
similar composition but with quartz and a low clay content.

Experimental results indicate that the basic physical and mechanical properties
show some dependency on the fabric heterogeneity of the Cobourg limestone. The
deformability characteristics in terms of the measured elastic modulus varied from
6.6 GPa (250 mm cube) to 17.7 GPa (200 mm cube) with an average of 13.5 GPa.
These values are considerably lower than the Young’s moduli estimated from triaxial
tests on 85 mm diameter, 170 mm long cylindrical samples. A separate test on a
250 mm cube with bonded strain gauges gave a Young’s modulus of 35 GPa, con-
sistent with the triaxial test data [14]. These preliminary results indicate that to elim-
inate the influence of heterogeneity on the basic geomechanical characterizations, the
sample dimensions should be larger than 100 mm, which is approximately four times
the size of the larger nodular regions. The XRT images of the 85 mm diameter and
170 mm long Cobourg limestone cylinders lacked the RVE dimensions necessary to
evaluate the relative volume fractions of the lighter gray nodular limestone and the
darker argillaceous partings. These volume fractions were estimated using photo-
graphic images of thin slices (80 mm � 120 mm � 8 mm) obtained from a cuboidal
prism. A composite image of the spatial distribution of the lighter grey limestone is
shown in Fig. 1. The volume fraction of the lighter grey limestone region was
approximately 0.475 and that of the darker argillaceous partings was 0.525. To further
investigate the volume fractions, a 150 mm diameter by 300 mm long cylinder was cut
into 13 discs of nearly equal thickness. An image analysis of the photographs of both
faces of each disc was then used to reconstruct the spatial distribution of the lighter and

Fig. 1. The Cobourg limestone and its fabric.
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darker regions. These studies indicated that the area fraction of the darker grey
argillaceous region exhibited wide variability, from 0.076 to 0.631 and the average area
fraction of the darker argillaceous phase was approximately 0.36. The data obtained
from the dissection of the cuboidal prism are considered more reliable due the smaller
thickness of the slabs used in the image analysis. In view of the variability in the
estimation of the volume fraction of the darker argillaceous partings ðVDRÞ, it is prudent
to assign plausible limiting values to the parameter: i.e. VDR 2 ð0:36; 0:53Þ. The
mineralogical composition of the two phases composing the Cobourg limestone can be
summarized as follows:

The Lighter Grey Nodular Phase: Calcite*86%; Dolomite*5%; Quartz*8%;
Clay*0.3%; Porosity*0.001
The Darker Argillaceous Partings: Calcite*51%; Dolomite*16%; Quartz*22%;
Clay*2.4%; Porosity*0.006.

The Bulk and Shear Moduli Values: The values for the bulk moduli ðKSÞi and shear
moduli ðGSÞi ði ¼ Calc; Dolm ; Qrtz ; ClayÞ of the basic minerals constituting the
Cobourg Limestone can be obtained from published literature.

Calcite:ðKSÞCalc ¼ 76 GPa; ðGSÞCalc ¼ 32 GPa
Dolomite: ðKSÞDolm ¼ 95 GPa; ðGSÞDolm ¼ 45 GPa
Quartz: ðKSÞQrtz ¼ 37 GPa; ðGSÞQrtz ¼ 45 GPa
Clay: ðKSÞClay ¼ 12 GPa.

3 The Biot Coefficient

In principle, estimating the Biot coefficient for a geo-material is quite straightforward
and requires only the estimation of the bulk modulus of the porous skeleton and the
effective bulk modulus of the solid phase constituting the porous skeleton. The effective
stress principle proposed by Biot [1] takes the form

rij ¼ r0ij þ apdij ð1Þ

where rij is the total stress tensor, r0ij is the effective stress tensor, p is the pore fluid
pressure and dij is Kronecker’s delta function. Also in (1) a is the “Biot Coefficient”,
defined by

a ¼ 1� KD=KSð Þ ð2Þ

where KD and KS are, respectively, the bulk moduli of the porous skeleton and the
material composing the fabric of the porous skeleton. The accepted procedure for
determining these bulk moduli values for an isotropic poroelastic medium is to conduct
triaxial tests on the dry fabric of the porous medium to determine KD and to conduct a
fluid pressure compression of the entire fabric of the porous medium to determine KS.
The former procedure is straightforward but the latter is not. The primary reason for
this is the extremely low permeability of the Cobourg Limestone, which inhibits both
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the saturation process and the transmission of the externally applied pressure field to
the interior of a sample; the larger the diameter of the sample (i.e. the smallest flow
path) the larger will be the time required for the pressure pulse to migrate to the interior
of the region and, based on the concept of the hydraulic pulse analysis [15–20], the
pressure diffusion coefficient will be proportional to the permeability of the rock.

4 A Multi-phase Composites Approach for Estimating KS

The alternative approach is to estimate the bulk modulus of the solid material consti-
tuting the porous skeleton by considering the bulk moduli of the constituents of the
solid phases and their volume fractions. Excluding the voids, which constitute only a
small fraction of the material space, there are four phases in the solid material. To the
author’s knowledge, there is no literature in the mathematical theory of multiphasic
elastic solids that will allow the estimation of the bulk elastic properties of a multi-
phasic elastic solid that is composed of four separate constituents. The approach pro-
posed in this research is to use the Voigt-Reuss-Hill (VRH) estimates (see. e.g. Hill
[21]), for the light grey ½ð ÞLR� and the darker argillaceous ½ð ÞDR� phases as a prelude to
the estimation of the bulk properties. The VRH estimate for the bulk modulus can be
written as

KSð ÞI¼
1
2

Xn
i

ViðKSÞi þ
Xn
i

Vi

ðKSÞi

 !�1
8<
:

9=
;; I ¼ LR;DR;

i ¼ Calc; Dolm; Qrtz;Clay; Voids

ð3Þ

Similarly, using the VRH estimate for the light grey ½ð ÞLR� and the darker
argillaceous ½ð ÞDR� phases; the VRH estimate for the shear modulus can be written as

GSð ÞI¼
1
2

Xn
i

ViðGSÞi þ
Xn
i

Vi

ðGSÞi

 !�1
8<
:

9=
;; I ¼ LR;DR;

i ¼ Calc; Dolm; Qrtz;Clay; Voids

ð4Þ

These estimates can now be used in conjunction with the bounds developed by
Hashin and Shtrikman [22] to develop the Upper and Lower bound estimates for the
bulk modulus of the multiphasic system: i.e.

ðKSÞL ¼ ðKSÞLR þ
VDR

1
ðKSÞDR�ðKSÞLR þ

3 ð1�VDRÞ
3ðKSÞLR þ 4ðGSÞLR

� � ð5Þ

and
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ðKSÞU ¼ ðKSÞDR þ
1� VDR

1
ðKSÞLR�ðKSÞDR þ 3VDR

3ðKSÞDR þ 4ðGSÞDR

� � ð6Þ

These procedures have been used to estimate the effective bulk modulus of the solid
material constituting the porous fabric of the Cobourg limestone and these values, in
conjunction with triaxial experiments conducted on dry samples of the rock, have been
used to develop estimates for the Biot efficient [23]; i.e. 0:655� a� 0:665.

5 Concluding Remarks

The Biot coefficient is an important aspect of the theory of classical poroelasticity since
it accounts for the rational estimation of effective stresses in a fluid-saturated porous
media. The effective stresses ultimately control the deformations and failure of the
skeletal fabric. In principle, the Biot coefficient can be estimated if the bulk moduli of
the skeletal fabric and the bulk moduli of the rock minerals composing the porous
fabric are known. With very low permeability materials, the ready determination of the
latter is not feasible. The alternative involves the use of the results for the theory of
multiphasic elastic composites to estimate the bulk modulus of the materials composing
the porous structure. As the number of mineral species increase, appeal must be made
to such developments to determine the effective bulk modulus of the material com-
posing the porous skeleton.
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Abstract. The concept of effective stress and the effective stress equation is
fundamental for establishing the theory of strength and the relationship of stress
and strain in soil mechanics. However, up till now, the physical meaning of
effective stress has not been explained clearly, and the theoretical basis of the
effective stress equation has not been proposed. Researchers have not yet
reached a common understanding of the feasibility of the concept of effective
stress and effective stress equation for unsaturated soils. Focusing on these
problems, new viewpoints for explicitly elucidating the effective stress and
deriving the effective stress equation are given in this paper, including that the
effective stress should be defined as the soil skeleton stress due to all the external
forces excluding pore fluid pressure, and that the soil skeleton should include a
fraction of pore water which can bears and passes the load together with soil
particles. The relationship between the effective stress and the shear strength and
the deformation of unsaturated soils is preliminarily verified by experiments and
quoting test data from literature.

Keywords: Effective stress � Effective stress equation � Unsaturated soils �
Soil skeleton stress � Pore fluid pressure

1 Introduction

The concept of effective stress and effective stress equation is very important to soil
mechanics. However, there has always been controversial about what the effective
stress is, whether the effective stress equation needs to be modified, and whether and
what the effective stress equation for unsaturated soils is. To answer these controversial
questions is the aim of this paper. It can be seen that the effective stress equation can be
obtained easily in case of taking into account the effect of pore fluid pressure and
external forces separately. And the effective stress has explicit physical meaning that is
the skeleton stress induced by external forces excluding pore fluid pressure.

2 Skeleton Water

The soil skeleton may be defined as the structure consisting of the solid phase that can
bear and transfer loadings [4]. Due to the strong absorption and the capillary effect to
the water on the surface of soil particles, a fraction of pore water is tightly combined
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W. Wu (Ed.): Desiderata Geotechnica, SSGG, pp. 175–192, 2019.
https://doi.org/10.1007/978-3-030-14987-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14987-1_22&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14987-1_22&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14987-1_22&amp;domain=pdf
https://doi.org/10.1007/978-3-030-14987-1_22


with the particle and to bear and pass load incorporated with the particle. According to
the definition of the skeleton, this fraction of pore water should be treated as a con-
stituent of the soil skeleton, which is called skeleton water. The skeleton water may
include strong bonding water and may also include a part of weak bonding water and
capillary water. Discussion on the soil skeleton water illustrates that the pore water in
soils is in general interconnected, even at low water content. In other words, as along as
pore water exists, albeit at low water content, soil particles contact with each other with
bonding water on their surfaces. So the bonding water on particles’ surfaces is inter-
connected. There is molecule exchange between the connected bonding water, which
does not need to transfer hydrostatic pressure. Only when the water content approaches
or exceeds the residual water content will free water appear in the pores of soil, and will
transfer hydrostatic pressure. Consequently, a soil with water content lower than
residual water content (as maximum content of skeleton water approximately) should
be “dry soil” in soil mechanics.

3 Derivation of the Effective Stress Equation

When separately considering the effect of pore fluid pressure and other external force,
Terzaghi’s effective stress equation for saturated soils and effective stress equation for
unsaturated soils can be derived by various kinds of method.

3.1 Intergranular Force Analysis

Many textbooks of soil mechanics use intergranular force analysis to illustrate that
Terzaghi’s effective stress equation is not accurate and needs to be modified. As shown
in Fig. 1(a), the equilibrium equation of the perpendicular inter-particle stress given in
many soil mechanics books is

P ¼ Ps þðA� AsÞuw ð1Þ

And rt ¼ P=A is employed to denote the total stress, r0 ¼ Ps=A to denote the
effective stress, and a ¼ As=A to represent the contact area ratio, Eq. (1) can be written as

rt ¼ r0 þ ð1� aÞuw ð2Þ

In consequence, it is considered that Terzaghi’s effective stress equation is not
accurate and needs to be modified in some circumstance.

In fact, Eq. (1) may be rewritten as

P ¼ ðPs � uwAsÞþ uwA ð3Þ

i.e.

P ¼ P0
s þ uwA ð4Þ
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Let r ¼ P0
s=A denote the inter-particle stress excluding pore water pressure, a stress

relationship equation can be obtained:

rt ¼ rþ uw ð5Þ

It should be noted that Eq. (5) is exactly the Terzaghi’s effective stress equation. It
can also be obtained by using equilibrium condition if the force on the contact induced
by pore water pressure is excluded from the inter-particle forces, as presented in Fig. 1
(b), i.e. the Eq. (4), then Eq. (5).

This illustrates that the effective stress demonstrates the inter-particle stress gen-
erated by the external forces excluding pore water pressure. Based on such definition of
effective stress, it could not draw the conclusion that Terzaghi’s effective stress
equation needs to be modified via inter-particle force analysis.

Fig. 1. Pore water pressure and the contact force between particles

Fig. 2. The stresses on the soil particle and the soil skeleton induced by pore water pressure
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Furthermore, Fig. 2 presents the internal force on the surface of a free body of soil
skeleton induced by pore water pressure. When the pore water pressure alone acts on
soil particles, the average intensity of the exposed stress on any section of the particle
and the stress on the interface between particles are both equal to pore water pressure.
Therefore, on the free body’s surface of the soil skeleton, the internal force of the soil
skeleton due to pore water pressure is equal to the product of pore water pressure and
the area of the soil skeleton, uw(1 − n)A, in which uw is the pore water pressure, n is the
porosity, A is the sectional area of soil, and (1 − n)A represents the area of the soil
skeleton. This analysis illustrates that pore water would result in exposed stress with an
identical value of pore water pressure on the free body’s surface of the soil skeleton
when the soil skeleton and pore water are separated for stress analysis individually.

3.2 Derivation of the Effective Stress Equation from Equilibrium
Differential Equation

The effective stress equation can be obtained from the equilibrium differential equation
by taking each phase of the soil as an independent analysis object. The forces on the
free body of the soil skeleton in a saturated soil can be sketched as in Fig. 3. For
simplicity, only the forces on the plane are shown. The internal forces of the free body
of soil skeleton include: (1) the soil skeleton stress due to pore water pressure, of which
the action area is that of soil skeleton; (2) the soil skeleton stress due to external forces
(including normal stress and shear stress), of which the action area is that of soil mass;
(3) the self-weight of soil skeleton, equals to the product of the dry unit weight of the
soil and the volume of soil mass; and (4) the interaction force between pore water and
soil skeleton due to the gradient of water potential.

Fig. 3. Stress analysis on the free body of soil skeleton in a saturated soil
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Figure 4 presents the force diagram of the free body of pore water in a saturated
soil. The internal forces of the free body include (1) the pore water pressure on the free
body’s section which is perpendicular to the surface and acts on the area occupied by
pore water; (2) the interaction force between pore water and soil skeleton of the free
body; (3) the self-weight of pore water, which is equal to the unit weight of water
multiplied by the volume of pore water.

Based on the equilibrium conditions for the free body, the equilibrium differential
equations of soil skeleton and pore water can be obtained as

rij;j þð1� neÞuw;i þð1� neÞqsgi � f swi ¼ 0 ð6Þ

neuw;i þ neqwgi þ f swi ¼ 0 ð7Þ

where ne is the effective porosity that takes skeleton water into account, uw is pore
water pressure, rij is the stress of soil skeleton due to external forces, f sw is the action
and reaction force between soil skeleton and pore water, qs is the density of the soil
particles, qw is the density of water, and g is the gravitational acceleration.

The equilibrium differential equations for saturated soils without any interaction
forces between phases can be obtained by adding Eqs. (6) and (7), i.e.

rij;j þ uw;i þ qsatgi ¼ 0 ð8Þ

where qsat is the saturated density of soil, and qsat ¼ 1� neð Þqs þ neqw.
For unsaturated soils, the forces diagrams of the free body of the skeleton is shown

in Fig. 5. Based on equilibrium condition of the free body, the equilibrium differential
equations of soil skeleton in unsaturated state can be obtained:

rij;j þ ð1� neÞ
ne

newuwð Þ;i þ
ð1� neÞ

ne
nauað Þ;i þð1� neÞqsgi � f swi � f sai ¼ 0 ð9Þ

Fig. 4. Stress analysis on the free body of pore water in a saturated soil
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where f sw is the action and reaction force between soil skeleton and pore water, f sa is
the action and reaction force between soil skeleton and pore air,ne is the effective
porosity of the soil, new and na are the porosity corresponding to pore water and pore
air, respectively. The sum of these two porosities is ne. rij is the stress of soil skeleton
due to external forces.

The forces of the free body of pore water and pore air of unsaturated soils are
shown in Fig. 6. The equilibrium equations of the pore water and pore air of unsatu-
rated soils are obtained, respectively.

Fig. 5. Stress and force on the free body of unsaturated soil skeleton

Fig. 6. Stress and force on the free body of (a) pore water (b) and pore air
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newuwð Þ;i þ f sw þ newqwgi ¼ 0 ð10Þ

nauað Þ;i þ f sa þ naqagi ¼ 0 ð11Þ

where nw and na are the porosity corresponding to pore water and pore air, respectively;
uw is the pore water pressure; ua is the pore air pressure; f sw is the action and reaction
force between soil skeleton and pore water, f sa is the action and reaction force between
soil skeleton and pore air, qw is the density of pore water, and qa is the density of pore
air.

Adding Eqs. (9), (10) and (11), the equilibrium differential equation of unsaturated
soils without interaction forces between phases can be obtained:

rij;j þ ua;i � Se ua � uwð Þð Þ;i þ qgi ¼ 0 ð12Þ

in which q is the density of soil, Se is the effective degree of saturation,

Se ¼ new
ne

¼ S� Sr
1� Sr

ð13Þ

where S is degree of saturation, Sr is residual degree of saturation.
Equation (12) is the equilibrium equations of unsaturated soils expressed by soil

skeleton stress, pore water pressure and pore air pressure. By comparing them to
equilibrium equation in total stress, i.e.

rtij;j þ qgi ¼ 0 ð14Þ

The relationship between the soil skeleton stress induced by external force, total
stress, pore water pressure and pore air pressure can be formulated as:

rij ¼ rtij � dijua þ dijSe ua � uwð Þ ð15Þ

It should be noted that Eq. (15) is exactly the same as Terzaghi’s effective stress
equation for saturated soils as Se ¼ 1, which can be obtained by comparing Eqs. (8) to
(14).

3.3 Based on Force Analysis of Free Body of a Soil

Considering the effect of pore fluid pressure and other external loads separately, as
shown in Fig. 7, taking a saturated soil as example, when analyzing the inner force of
an infinitesimal section plane in the soil skeleton, separately considering the effect of
pore water pressure and the other external forces, the stress on the skeleton plane due to
the pore water pressure uw should be uw, and its action area should be the section area
of the skeleton, i.e. (1 − n) A, in which A is cross section area of the plane, n is porosity
(taking skeleton water into account). With rt representing the total normal stress in
horizontal direction, then
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Nt ¼ rtA ð16Þ

where Nt is the total normal force in horizontal direction. With r denoting the normal
stress of the skeleton, which is produced by the external forces except for uw, according
to the equilibrium condition we have

Nt ¼ rAþ uwð1� neÞAþ neuwA ð17Þ

Substituting Eqs. (16) into (17), it can be obtained that

r ¼ rt � uw ð18Þ

This is the Terzaghi’s effective stress equation, but r is the skeleton stress produced
by all the external forces except for uw. It indicates that the effective stress is the
skeleton stress due to external forces except for pore water pressure, which may be
called as skeleton stress by external force or skeleton stress for short.

For unsaturated soils as shown in Fig. 8, according to the equilibrium condition we
have

Nt ¼ rAþ new
ne

ð1� neÞuwAþ newuwAþ na
ne

ð1� neÞuaAþ nauaA ð19Þ

Then

r ¼ rt � Seuw � 1� Seð Þua ð20Þ

Fig. 7. Force analysis of a saturated soil separately considering the effect of pore water pressure
and the other external forces
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3.4 Based on the Definition of Effective Stress

Considering the effect of pore fluid pressure and other external loads separately, the
effective stress can be defined as the soil skeleton stress due to all the external forces
excluding pore fluid pressure. The effective stress expression can be obtained directly
from the definition formula of effective stress.

r¼Nt
s � Nw � Na

A
ð21Þ

where Nt
s is the normal internal force of the soil skeleton, Nw represents the pore water

pressure acting on the soil skeleton, and Na represents the pore air pressure acting on
the soil skeleton.

Nw ¼ uw
new
ne

1� neð ÞA; Na ¼ ua
na
ne

1� neð ÞA ð22Þ

All normal internal forces of soil mass (including soil skeleton, pore water and pore
air) on the section includes the normal force acting on the soil skeleton and the normal
force acting on the pore water and pore air, notes for the Nt, Pw and Pa represent the
normal force on a section acting on the pore water area and on the pore air area,
respectively.

Pw ¼ uw
new
ne

neA; Pa ¼ ua
na
ne

neA ð23Þ

Fig. 8. Force analysis of an unsaturated soil separately considering the effect of pore fluid
pressure and the other external forces
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Furthermore,

Nt ¼ Nt
s þPw þPa ¼ rAþNw þNa þPw þPa ð24Þ

When divided by A,

Nt

A
¼ rþ uw

new
ne

ð1� neÞþ ua
na
ne

ð1� neÞþ uwnew þ uana ð25Þ

Then the effective stress for unsaturated soils can be obtained.

r ¼ rt � ua þ Seðua � uwÞ ð26Þ

3.5 Based on the Equilibrium Equation of Pore Medium Mechanics

At present, the skeleton stress defined in pore medium mechanics includes the effect of
pore fluid pressure. If the effective stress is defined as the soil skeleton stress due to the
external forces excluding the pore fluid pressure, the relationship between the effective
stress and the original skeleton stress can be obtained. By substituting it into the
equilibrium equation of porous medium mechanics, the effective stress expressions can
also be obtained.

The relationship between the skeleton stress and the effective stress:

ð1� nÞrsij ¼ rij þ ð1� nÞSdijuw þ 1� nð Þ 1� Sð Þdijua ð27Þ

where the rsij is the skeleton stress. The equilibrium equation of the soil skeleton is

ð1� nÞrsij;j þð1� nÞqsgi þ f swi þ f sai ¼ 0 ð28Þ

Substituting Eqs. (27) into (28), the following equations can be obtained:

rij;j þð1� nÞSuw;i þð1� nÞ 1� Sð Þua;i þð1� nÞqsgi þ f swi þ f sai ¼ 0 ð29Þ

Adding Eq. (29), and equilibrium equations for pore water and pore air, we have

rij;j þ Suw;i þ 1� Sð Þua;i þ qgi ¼ 0 ð30Þ

Comparison of Eqs. (30) to (14) may lead to the effective stress equation.

4 Preliminarily Verification of the Effective Stress Equation
for Unsaturated Soils

We all know that the deformation and the strength of a soil are those of its skeleton, so
it is logical that the deformation and the strength of a soil will be governed by its
skeleton stress, i.e. the effective stress when the effect of pore pressure to the
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deformation and strength can be neglected. This has been fully proven by test and
practice for saturated soils. However, this has not been proven for unsaturated soils.
But according to the definition and physical meaning of the effective stress we can
believe that the effective stress also governs the deformation and strength of unsatu-
rated soils.

4.1 Primary Verification of the Correlation Between Effective Stress
and Shear Strength of Unsaturated Soils

A kind of kaolin is chosen to be tested for verifying that the effective stress governs its
shear strength when it is in unsaturated state. The physic-mechanical index properties
of the kaolin are listed in Table 1.

The axis-translation method with 1.5 MPa air entry porous ceramic plate and filter
paper method is employed for the SWRC (Soil water retention curve) test of the kaolin.
The results and the fitted SWRC with V-G model are shown in Fig. 9, from which the
residual saturation was required as 14.3%.

Table 1. The physic-mechanical index properties of kaolin

Specific
gravity Gs

qd;max

g/cm3
Optimum moisture
content/%

Liquid limit
wL=%

Plastic limit
wp=%

Plasticity index
Ip=%

2.75 1.41 23.9 63.09 22.52 40.57

Fig. 9. SWRC for the kaolin fitting by four parameters VG model
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Conventional triaxial tests have been conducted for specimens of the kaolin in dry
density of 1.35 g/cm3, and with setting initial water content, including saturated state.
The water content in different layer of the specimen was monitored when test ended. It
can be found that the variation of the average (gravimetric) water content of the
specimen was less than 1.5%. Figure 10 shows the shear strength of the specimens in
different initial water content, including saturated state. It can be seen that the shear
strength of the kaolin in both saturated and unsaturated states expresses the same
relationship with the effective stress. That is to say the shear strength of unsaturated
kaolin is governed by the effective stress.

Some other test results of the shear strength of unsaturated soils which were found
in literatures are reanalyzed in the concept of effective stress [1–3, 6, 7, 9, 11, 12]. The
parameters of the test of unsaturated soils are all listed in Table 2. These tests were
classified into groups of direct shear test and triaxial test. And the third group is triaxial
tests considering the effect of net stress on SWRC, and on effective stress.

Fig. 10. The test results of the shear strength of the kaolin in saturated and unsaturated states

Table 2. Collection of the test of unsaturated soils founded in literatures

Reference Soil type and preparation Strength
parameters

AEV & RWC@

c0 kPað Þ u0 �ð Þ AEV kPað Þ Sres %ð Þ hrð%Þ
Case 1 (Direct shear test)
Zhan and Ng
[12]

Compacted Expansive Clay 0 24 25 - 18

Aqtash and
Bandini [1]

Adobe soil mixture (composed of
natural soil, poorly graded sand
and cut straw)

11.7 31.4 12.5 - 3.3

(continued)
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It can be found that the shear strength of the soils in both saturated and unsaturated
states fits the same formula with the same parameters, as shown in Fig. 11, in which the
solid lines show the shear strength of the soils in saturated state. These reanalysis
results verify that the effective stress also governs the shear strength of unsaturated soil.

4.2 Primary Verification of the Correlation Between Effective Stress
and Deformation of Unsaturated Soils

On the other hand, it is on the way for us to verify that the effective stress governs the
volume change (or the deformation) for unsaturated soils. Khalili et al. conducted a
series of suction controlled confining compression tests [5]. Under the confining
compression condition, the effective stress control the volumetric change of unsaturated
soil.

Dea ¼ 1
E
Dfð1� 2vÞ½r� ua þ Seðua � uwÞ�g ð31Þ

in which Dea is the axial strain, v is Poisson’s ratio, E is elastic modulus.

Table 2. (continued)

Reference Soil type and preparation Strength
parameters

AEV & RWC@

c0 kPað Þ u0 �ð Þ AEV kPað Þ Sres %ð Þ hrð%Þ
Escario et al.
[3]

Madrid clay sand 40 39.5 - 32.64 -

Case 2 (Triaxial test)
Khalili et al.
[5]

Undisturbed soil samples form
Hume Dam in Australia (SJ11)

5 30 200 - 4.5

Miao et al.
[8]

Guangxi expansive soil (slurry
sample)

50 19.8 100 13 -

Kayadelen
et al. [6]

Residual clayey soil from
Diyarbakirin Turkey
(undisturbed)

14.82 21.9 40 35 -

Miao et al.
[9]

Nanyang expansive soil (Middle
grade soil)

32 21.3 25 - 3.5

Ye et al. [11] Weekly expansive soil from
Hubei: China

14.8 28.2 106 8.2 -

Cunningham
et al. [2]

Silty clay reconstituted form a
slurry

0 32 250 5 -

Case 3 (Influence of stress state)
Lee et al. [7] Weathered residual granite in

Korea (silty sand)
12.45 30.48 2.5 12 -
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Fig. 11. Reanalysis of the test results of shear strength of unsaturated soils (test data from
literatures)
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For the tested kaolin, the elastic modulus is 3.75 MPa and Poisson ratio is 0.4. The
axial strain measured is compared with the formula, as shown in Fig. 12. For the tested
Glenmore Park Silt, the elastic modulus is 55.75 MPa and Poisson ratio is 0.25. The
axial strain measured is compared with the formula, as shown in Fig. 13. The exper-
iment results of the two soil specimens show that the formula of volumetric change for
unsaturated soil has an ideal prediction for the volumetric change of unsaturated soil
when the deformation of soil is linear elastic.

Fig. 11. (continued)
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Because the effective stress controls the deformation of the soil, for both the sat-
urated soil and unsaturated soil, the relationship between volumetric change and
effective stress should be consistent. During drying shrinkage test, the specimens in the
initial saturated state are subjected to isotropic contraction due to the equal suction in
each direction. In the process of shrinkage, the specimen transits from the saturated
state to unsaturated state. For the saturated specimen with the same initial dry density,
the triaxial isotropic consolidation test are conducted. In drying shrinkage test, the
effective stress of specimen is calculated in the process of contraction. By comparing
the effective stress variation curves of saturated soil and unsaturated soil, the appli-
cability of the unified effective stress equation is verified. The relationship between the
pore ratio and effective stress is as shown in Fig. 14.

Fig. 12. Volumetric change of Kaolin (v = 0.4, E = 3.75 Mpa)

Fig. 13. Volumetric change of Glenmore Park Silt (v = 0.25, E = 55.75Mpa)
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From Fig. 14, it can be seen that the relation curves between the pore ratio and
effective stress basically coincide for the saturated soil and unsaturated soil, which
proves the applicability of the unified effective stress equation. The same inflection
point appears on the two curves. Because of adopting the same specimen preparation
methods for compaction method and pump suction saturation method, the specimens
subject to the same pre-consolidation pressure.

For more contents please read the reference “Effective stress and equilibrium
equation for soil mechanics” by Shao & Guo, etc. CRC [10].
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Abstract. This paper provides an introduction to the geotechnical
design of Offshore Wind Turbine (OWT) foundations using the Finite
Element Method (FEM). Procedures for incorporating the FEM in the
design process are proposed under particular consideration of the practi-
cal application to commercial projects, where foundation design is done
in a serial production. The proposed procedures allow to streamline
the design process and enable to optimize the foundation geometries
of OWTs under given time and resource constraints of typical Offshore
Wind Farm (OWF) development projects. Advantages and disadvan-
tages are discussed using the example of the design of Monopiles and
Suction Caissons.

1 Introduction

It is well known and generally accepted that the Finite Element Method (FEM)
can provide accurate results when used correctly, that means with appropriate
constitutive soil models and within the given limitations. In fact, for some aspect
of the foundation design, such as the prediction of the load-deformation response
to general load conditions, the FEM is apparently the only procedure which can
provide reasonable results.

However, despite the obvious advantages of the FEM, the design of Offshore
Wind Turbine (OWT) foundations is typically done using simplified, analytical-
based, methods. This may be surprising, since the Offshore Wind Industry
(OWI) is, due to politically motivated reasons, forced to reduce costs more than
any other energy producer.1 At the same time, the OWI is aware of the poten-
tial cost savings when using more advanced methods, as measurements of actual
built OWTs, which were designed using these conventional simplified methods,
have shown, that the foundations perform considerable better than predicted;
OWT foundations are often much stiffer and the (accumulated) deformations are

1 Although political aspects shall not be the concern of this paper, the latest auctions
in UK and other European countries have clearly shown that the offshore wind indus-
try is already today considerably cheaper than most other energy sources including
nuclear energy.
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less than predicted in the design. However, the FEM has the reputation to be
a time consuming procedure which requires considerable resources and by that
potentially delays the typically very tight time schedules of commercial Offshore
Wind Farm (OWF) development projects. Thus, the FEM has not found its way
yet into the regular design routines, but is rather used as a complimentary tool
to backup presumingly conservative assumptions.

Motivated by the expected cost savings, the OWI has initiated and (partially)
financed several research projects with the objective to develop new and more
advanced methodologies for the OWT foundation design. Particularly mentioned
should be models and procedures developed within the PISA project [1,2] and
the RedWin project [7]. Although the proposed methods are fundamentally dif-
ferent, they envisage the use of the FEM; primarily for the calibration of the
input parameters. The advantage of these methods is, that the FEM can be
used, but not necessarily has to be used. This allows to adjust the detailedness
and comprehensiveness of the design process depending on the state of an OWF
development project, i.e. feasibility, FEED or Detailed Design. As a result of
this flexibility, the serial-production-design of an OWF can be streamlined, by
means of a combination of FEM, normalizations and simplified calibrations.

This paper focuses primarily on the models developed in the RedWin project.
The reason for that is due to the personal involvement of the authors in this
project. Furthermore, foundation models for several foundation types were devel-
oped in the RedWin project, covering Monopiles, Suction Caissons and Gravity
Base Structures (GBS), whereas only a model for the Monopile design was devel-
oped in the PISA project.

2 Foundation Concepts, Design Aspects and Design
Approach

Figure 1 shows an illustration of typically foundation concepts used for bottom-
fixed OWTs. Although the Monopile is used in most projects, also other concepts
are applied frequently, including the GBSs and Jackets with Piles or Suction
Caissons. Which concept is actually applied in an OWF project depends on
numerous aspects such as site and soil conditions, loading conditions, supply
chain, available resources, etc.

Outside Europe were developed other foundation concepts in order to cope
with particular regional site conditions. For example, offshore China and Korea
are found many sites comprising very soft clay overlying shallow bedrock. Other
sites are exposed to extreme loads from earthquakes, typhoons and hurricanes.
The foundation concepts developed for these areas are typically hybrid foun-
dations, which are a mixture between shallow and deep foundations shown in
Fig. 1.

Independent of the type of OWT foundation concept, the geotechnical design
of OWT foundations comprises of three main aspects:
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shallow foundation
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Fig. 1. Typical shallow and deep foundation concept used for bottom-fixed OWTs.
(from Sturm [8])

• ULS design, i.e. Ultimate Limit State, is the foundation capacity assess-
ment, which is typically done considering extreme load events combined with
preceding cyclic load histories such as storm loading, which has potentially
weaken the soil due to pore pressure accumulation.

• FLS design, i.e. Fatigue Limit State, is the assessment of the foundation
stiffness and damping, which is typically determined for representative oper-
ational and extreme load events, and is used by the structural designer. Fur-
thermore, the FLS design includes the assessment of the foundation stiffness
and damping used in structural eigenmode analysis.
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• SLS design, i.e. Serviceability Limit State, is the assessment of peak and
accumulated deformations and rotations of the OWT foundation due to
extreme load events and cyclic loads.

Occasionally, the stiffness analysis is considered as part of the SLS design,
since fatigue limit states are not defined for geotechnical problems, but are rele-
vant for structural design only. The cyclic loads considered in the structural FLS
design, will yield, when subjected to a soil body, to accumulated deformations
(SLS), or in the worst case a collapse (ULS).

A typical OWF may comprises of 50 to 100 OWT foundations. Each need to
be designed separately. In order to optimize the workflow and by that reducing
the number of analyses, an OWF is typically clustered by grouping locations
with similar soil and load conditions. Depending on which design method used,
the geotechnical input can be normalized, or upper and lower stiffness estimates
may be used.

The overall OWT design approach is govern by the structural designer
and load engineer. Traditionally the Transition Piece (TP), which is the inter-
face between the tower and the support structure, serves as interface between
the structural designer and the turbine manufacturer. Areodynamic loads are
assessed by the latter one and are given to the structural designer. In order
to avoid further interfaces, the foundation sizing is often included in the struc-
tural design of the support structure. That means the soil is in this traditional
approach considered in a very simplified manner.

In order to optimize the OWT design by incorporating more advanced soil
representations, another interface between structural and geotechnical designer
needs to be introduced. However, an additional interface will yield to more
load and stiffness iterations between both geotechnical, structural and turbine
designer, which potentially requires a longer design period. In order to avoid that,
the information exchanged in the interface needs to be more comprehensive but
at the same time general enough to cover a wide range of loads and/or stiff-
ness values. Therein, it is of fundamental importance to understand the nature
of the loads and the structural design methodology, which is based on a very
large number of integrated time domain analysis. Thus, the proposed methods
for using the FEM needs to consider these constraints, as the FEM cannot be
directly used in the time domain analysis without increasing the required calcu-
lation time unacceptably. In the following section are presented two approaches
on how to cope with these challenges and requirements when using the FEM in
the geotechnical design.

3 Using FEM in OWT Foundation Design

As detailed in Sect. 2, the FEM cannot be used directly in the design, but needs
to be represented by a tool in order to use it in the structural design. We do not
detail these tools in this paper, as these are already presented in other publica-
tions, but just introduce these in order to understand the proposed method for
using the FEM.
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3.1 Example: Monopile

The Monopile, which is literally a single pile with a diameter of typically 4 to
9 m and an aspect ratio of length to diameter of typically 3 to 6, has estab-
lished itself as a standard foundation type in the current marketplace. Although
the Monopile has the largest market share, the design is often done in a sim-
plified manner. These conventional design models have proved unreliable and
non-optimal. The industry has therefore commissioned intensive research efforts
to develop improved design methodologies. These research projects have yielded
significant advances, such as updated distributed soil-spring-models (e.g. PISA,
[1,2]) and optimized macro-elements (e.g. RedWin, [7]).
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Fig. 2. Representation of the soil response in structural Monopile design.

Figure 2 shows how the soil response is typically represented in the structural
design. The soil reactions are expressed by a lumped non-linear stiffness matrix
at mudline (case (a)) or non-linear Winkler springs distributed over the length
of the Monopile (case (b)).

Traditionally, API-type p-y curves were used for case (b). The input to these
curves is based on soil test results and empirical correlations. This has been
shown to be conservative by systematically under-predicting foundation stiffness
and capacity. Thus the PISA project has developed a new set of distributed
springs by introducing additional rotational springs. All springs are expressed
by the same generic conic function illustrated in Fig. 3.
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Fig. 3. Four parameter conic function employed to represent the soil reaction curves
in the PISA model (after [1]).

In order to use these curves, the so-called soil reaction components need to
be determined. In [2] is proposed to use either a rule-base method or a numerical
based method, whereas the latter one is the preferred method. That requires to
perform 3D FE analysis, as shown in Fig. 4, from which are extracted soil reac-
tion curves over the height of the Monopile, which need to be fitted using the
curve shown in Fig. 3. Since this is relatively time-consuming, the PISA design
framework envisages a normalization procedure, which allows to the determine
the Winkler springs based on representative Monopile geometries, load condi-
tions and soil layers, and by that enables the structural designer to perform the
actual Monopile sizing.

The advantage of the PISA model is, that it is very similar to the traditional
design approach using API curves. However, as per today, the PISA model is
calibrated for monotonic loading only and cannot be used under generalized
cyclic load conditions when the load amplitudes exceed a small-deformation-
range where the soil is often considered as elastic. Hysteresis needs to be captured
indirectly using e.g. damping values, where the PISA springs represent a cyclic
back-bone curve. Another disadvantage of the PISA model is, that the time
required to perform the 3D FE analysis and calibration yield an increase of the
time allocated for the design.

An alternative approach for the Monopile design is proposed by RedWin. The
foundation response is represented by a macro-element placed at mudline. The
macro-element combines the soil response with the response of the embedded
Monopile. This is illustrated in Fig. 2 by case (b). The proposed macro-element
is based on the theoretical formulation of multi-surface-plasticity. That allows
not only to capture the Monopile response to monotonic loading, but also the
response to general cyclic loading. By that, both the foundation stiffness and
soil-foundation damping is described by the RedWin model.

Figure 5 shows a comparison of the Monopile response at mudline calculated
using the macro-element with the response calculated using distributed mono-
tonic springs, using the example of API. It becomes apparent, that for the two
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Fig. 4. Example of a 3D FE analysis of a Monopile using the commercial FE program
ABAQUS.

cases, the macro-element predicts realistically the response to cyclic loading and
also generates hysteretic damping, whereas the distributed monotonic springs
describes only a non-linear elastic response whether loading or unloading.

Two types of input are required to the macro-element; (1) coefficients of elas-
tic stiffness matrix, and (2) the moment, horizontal displacement, and rotation
at mudline from non-linear analyses with H = 0. The latter one can be deter-
mined using FE analysis where a monotonic push-over response of the Monopile
is modeled. The coefficients of the elastic stiffness matrix can be determined by
either performing FEM with a linear elastic material for the soil, or by using
empirical correlations for pile foundations.

The RedWin macro-element has several advantages compared to distributed
springs as proposed for example by the PISA model. Although both utilize the
same type FE analysis for the calibration, the extraction of the results is consid-
erably easier and hence much faster for the macro-element. Only the output at
mudline is required for the RedWin model, whereas the PISA model requires the
extraction of several load-deflection and moment-rotation curves. As it is diffi-
cult to extract these curves along the complete Monopile length due to the low
mobilization of the soil around the rotation point, ideally different pile geome-
tries should be modeled. When considering the performance of the models in the
structural time domain analysis, the macro-element will provide a more accurate
response as it also captures the cyclic behavior.

Another advantage is the application of the RedWin model in layered soils.
Winkler springs do not account for the interaction of the adjacent soil springs.
The PISA project is currently extending the procedure to layered soils, as teh
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Fig. 5. Horizontal load-rotation response at mudline for two examples computed with
different foundation models: (a) case 1 computed with the macro-element model cali-
brated by FEA; (b) case 1 computed with API p-y curves; (c) case 2 computed with
the macro-element model calibrated by FEA; (d) case 2 computed with API p-y curves.
(after [6]).

original model was developed and calibrated for homogeneous soil profiles only.
Though results of the extended model are not yet published, it may be expected
that soil layers may need to be divided into sub-layers to account for the effect of
adjacent soil units, which in return will require – depending on the particular site
and soil conditions – several more FE analyses and potentially a more detailed
clustering of the OWF.

However, there are also disadvantages with the use of the RedWin model
compared to the PISA model. As per today, the input to the macro-element is
in absolute numbers and no normalization has been developed yet. That means
parameters for every pile geometry at every location needs to be assessed sepa-
rately, which thus requires considerable more FE analyses. NGI has developed
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a fast and simplified 2D FE procedure for embedded pile-type foundations [4].
Numerical analysis have shown, that for aspect ratios between 2 and 5, the 2D
FE model predicts very accurate results compared to full 3D FE analyses, given
that appropriate side-shear factors are applied. The advantage of the 2D FE
model is, that it is very fast (typically some few minutes) and the input of a
large amount of geometries and soil conditions can be assessed in very short
time. An automation of the 2D FE analyses allows to streamline the design
process at the expense of affecting only slightly the time schedule of the design
process.

3.2 Example: Suction Caissons for Jackets

The foundation design of suction caissons supporting a jacket is done consider-
ably different compared to the Monopile design. Sturm [9] provides a detailed
description of the design iterations and design requirements for both mono-
caissons and multi-legged support-structures founded on Suction Caissons. The
design is done in an iterative manner as illustrated in Fig. 6.

(Assume) foundation dimensions

Assess (cyclic) soil design profiles

Calculate foundation capacity

Design Basis: Soil layers and properties, Loads, etc.

Check installation

Calculate foundation stiffness and soil reactions

Assess serviceability
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Fig. 6. Schematic presentation of the iterative and interdependent workflow of suction
caissons design. (from Sturm [9])

As Suction Caissons for the foundation for OWTs have been applied first
recently, the geotechnical design is typically much more comprehensive compared
to the design of Monopiles. The first OWT designed followed a more traditional
approach as applied in the Oil & Gas Industry. The caissons are designed by
the geotechnical designer who provides to the structural designer stiffness in
an interface point. Depending on the type of stiffness and load values used in
the interface point, this procedure requires several iterations. It has been shown
beneficial to provide stiffness ranges, i.e. high and low estimates. With each
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Fig. 7. Example of a global model used for assessing local foundation stiffness (from
Sturm [9]).

iterations, the high and low estimate values approach each other, such that the
range becomes smaller.

Therein, the FEM has been demonstrated to be a very efficient tool to reduce
the number of iterations. An FE model including the soil, the caissons and the
support-structure, shown in Fig. 7, enables to assess accurately the design loads
for the sizing of the caissons and corresponding stiffness analysis. As the loads
increase, the local foundation stiffness decreases causing a gradual redistribution
of the loads, both locally at one leg, as well as globally between the different legs.
This is captured by the FE model and hence reduces considerably the number
of iterations between the structural and geotechnical designer.

For assessing the stiffness for operational load cases and eigenmode anal-
ysis, a macro-element has been developed in the RedWin project. Similar to
the model presented for Monopiles, it is based on the theoretical formulation
of multi-surface-plasticity. It also describes the foundation response to general
cyclic loading. Calibration is done in the same way as detailed for the macro-
element of the Monopile using the FEM.

Attempts have been made to introduce normalizations in order to reduce the
number of analysis. However, the 2D FE procedure proposed by Jostad et al. [4]
can be directly applied to Suction Caissons as well.2

2 In fact, it has been actually developed for Suction Caissons and was just recently
applied to other similar shaped foundations, such as Monopiles.
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4 Summary and Outlook

The use of the FEM in the design of the OWTs was demonstrated using the
example of a deep foundation – i.e. Monopile – and a shallow foundation –
i.e. Suction Caisson. The proposed approaches are different for both foundation
concepts, but both allow to benefit from the more advanced and potentially very
accurate FE method, without suffering on the often very tight time schedule of
OWF development project. The FEM cannot be directly used in the design, but
requires a model capable to reproduce the relevant results from the FE analyses.
Therein, it is essential that these models are as accurate as possible.

Although the proposed methods are promising and the respective authors
have presented the impressing performance, there exist several open questions.
Of particular relevance is the effect of cyclic loading. Neither the RedWin models
nor the PISA model account for cyclic effects on the soil strength and stiffness.
If cyclic effects are expected to be relevant, they have to be implicitly considered
in the FE analysis. NGI has developed procedures for assessing the effect of
cyclic loading, Jostad et al. [3,5]. However, these procedures are not yet fully
integrated in a streamlined OWT design process, but have to be performed
separately. Future development has to be done in order to incorporate these well
established and proven procedure in the design process of OWTs in order to
allow a further optimization.
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Abstract. The Critical State Theory of Roscoe et al. [1] and Schofield andWroth
[2], proposed two analytical conditions as necessary and sufficient for soil to reach
and maintain Critical State. In this work the sufficiency of these two conditions is
challenged by the results of a virtual experiment performed by means of the
Discrete Element Method, where stress principal axes rotation is imposed at
Critical State of a granular sample. The fabric emerges as the important entity that
can explain the lack of sufficiency of the two conditions and serve as a link
between Critical State Theory and Critical State as a physical event. The recently
developed Anisotropic Critical State Theory includes an additional condition on
fabric, that combined with the classical two provide a triplet of necessary and
sufficient conditions for reaching and maintaining Critical State.

Keywords: Critical state � Fabric � DEM � Anisotropic critical state theory

1 Critical State and Critical State Theory

Critical State (CS) is the state where a granular material keeps deforming in shear at
fixed stress and volume, analytically described by:

_p ¼ 0; _q ¼ 0; _ev ¼ 0; _eq 6¼ 0 ð1Þ

where p is the hydrostatic pressure, q is the deviatoric stress, ev is the volumetric strain
and eq is the deviatoric strain; a superposed dot indicates the material time derivative or
rate. The deviatoric strain rate is implied to have a fixed direction, although not
explicitly stated.

Roscoe et al. [1] and Schofield and Wroth [2] were the first to develop systemat-
ically a corresponding to CS theory, known as Critical State Theory (CST), that pro-
poses two conditions as necessary and sufficient for reaching and maintaining CS,
expressed by:
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g ¼ gc ¼ ðq=pÞc ¼ M; e ¼ ec ¼ ecðpÞ ð2Þ

where η is the stress ratio, e is the void ratio, and subscript c denotes their CS values;
the ec is a unique function of p. As a precursor to the goal of this presentation it is
crucial to underline the difference between the phenomenon of CS, expressed by
Eq. (1), and the corresponding CST by means of Eq. (2).

Of particular interest is the question whether the CST conditions proposed in
Eq. (2) are necessary and sufficient, as proclaimed. In order to answer it, the following
thought experiment is set forward (Dafalias [3]): a soil sample is loaded in triaxial
conditions until it reaches CS. Then, a rotation of stress principal axes (PA) takes place
while keeping the stress principal values (PV) constant. The question then arises: will
the sample remain at or abandon CS and why?

According to the definition of CST, fixed stress PV do not alter p and q, which enter
Eq. (2); in addition, the void ratio is already at its CS value that is a unique function of
the fixed p, thus, it should remain unchanged. As a result, the two CST conditions
remain valid during the stress PA rotation and since they are claimed to be necessary
and sufficient for reaching and maintaining CS, the sample should remain at CS. But
maintenance of CS is conceived in conjunction with a change of strain rate direction
due to stress PA rotation, in a transition from one CS to another with same fixed values
of the invariants q, p and e. Is this possible? To find the answer one must execute the
aforementioned thought experiment.

2 2D DEM Virtual Experiment

The requirements of the described experiment, reaching CS with a homogeneous
sample and then applying stress PA rotation, make the experiment practically impos-
sible to perform in a physical laboratory. The alternative, employed by the authors, is
the use of the 2D Discrete Element Method (DEM, [4]), which can describe the
material in its discrete nature; the DEM code PFC2D v4 has been used.

-0 0.05 0.1 0.15 0.2
εaxial

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η =
q/

p

(a)

-0 0.05 0.1 0.15 0.2
εaxial

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

e

(b)

Fig. 1. Phase 1 biaxial test: (a) stress ratio η and (b) void ratio e.
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The performed experiment has two phases. During phase one the sample is brought
to CS by biaxial loading, and then during phase two a stress PA rotation is imposed at
fixed stress PV. 20,000 particles were used with density 2600 kg/m3, circular in shape
and a uniform distribution from 0.5 to 1.5 mm. The mean pressure was kept constant at
200 kPa. The macroscopic results of the initial phase 1 loading are presented in Fig. 1a
and b in terms of stress and void ratios, respectively. The choices of normal and
tangential stiffness and micromechanical friction produce a macroscopic response for a
loose soil sample, for which continuous hardening and volume reduction is observed.
More details can be found in Theocharis et al. [5].

The sample deformation was stopped at 20% of vertical axial strain where it has
undoubtedly reached Critical State and the two CST conditions are also fulfilled. This
can easily be seen from Fig. 1a and b where both the stress ratio η and void ratio e have
been stabilized at their CS values (in regard to the CS numerical values of η and e recall
the experiment is two dimensional). At this point, the stress PA rotation was applied,
with the stress PV kept constant.

The results for the stress PA rotation (Phase 2 loading) are presented in Fig. 2.
Figure 2(a) confirms that the stress PA rotation was successfully applied. Figure 2(b) is
the key figure which shows that the sample contracts dramatically upon initiation of
stress PA rotation, thus, CS is abandoned despite that none of the two CST condition
was violated at rotation initiation. As a result, it becomes clear that the two conditions
of classical CST given by Eq. (2), are necessary to reach but not sufficient to maintain
CS, a feature attesting to some form of incompleteness.

3 Fabric Enhancement of CST

The conclusion drawn from the results of the experiment creates the need to re-examine
the completeness of the CST conditions in Eq. (2). One would instinctively argue that
stress PA rotation induced rotation of the (unit-norm) deviatoric plastic strain rate

Fig. 2. Phase 2 stress PA rotation initiating at CS: (a) stress components and (b) void ratio e and
volumetric strain evol.
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direction tensor n, in contrast to the (implied) CS observation of a fixed n. Hence,
imposing fixity of plastic strain rate direction as an additional condition for CS would
seem to complete CST by excluding the stress PA rotation test. But the classical
principle of invariance requirement for constitutive relations in Continuum Mechanics
under superposed rigid body rotation with adjustment of body forces, would have
allowed such change of n without abandonment of CS! Therefore, fixity of n must be
related someway to the sample’s orientation due to its existing, oriented microstructure,
commonly called fabric.

The fabric of granular materials describes the orientation of microstructure and is
related to various unit vectors along particles’ orientation, contact normal vectors and
void vectors. For the present analysis it suffices to consider the deviatoric contact
normal fabric tensor F defined as the deviatoric part of the mean value of summation in
a 2D scheme of the tensor products nkcc � nkcc [6], where nkcc is the unit contact normal
vector for the kcth contact.

Based on fabric observations Li and Dafalias [7] proposed the Anisotropic Critical
State Theory (ACST) that is founded on the definition of the Fabric Anisotropy
Variable (FAV) A according to:

A ¼ F : n ¼ FnF : n ¼ FN ð3Þ

where F is the fabric norm, nF the unit-norm direction tensor of the fabric tensor F and
N ¼ nF : n measures the relative orientation of F and n. The evolution of F can be
monitored in DEM based on its definition and can serve for the development of a
continuum rate equation of its evolution.

Previous DEM studies (e.g. [8, 9]) have indicated that, as the fabric tensor evolves
during plastic deformation, its direction nF tends to align with n and becomes identical
to it at CS while the norm F normalized with respect to its value at CS, tends towards 1
at CS. Hence, at CS one has N ¼ Nc ¼ nF : n ¼ n : n ¼ 1 (given the unit-norm feature
of both nF and n), F ¼ 1 and F ¼ Fc ¼ n. Thus, based on the definition of A (Eq. (3)),
the third CS condition A ¼ Ac ¼ 1 follows. Therefore, one can now re-write the three
necessary and sufficient conditions of ACST for reaching and maintaining CS as:

g ¼ gc ¼ ðq=pÞc ¼ M; e ¼ ec ¼ ecðpÞ; A ¼ Ac ¼ 1 ð4Þ

4 The DEM Experiment Viewed Within ACST

The results presented in Fig. 2, arising from the DEM virtual experiment, can now be
examined within ACST. Accordingly, Fig. 3 presents the results for the contact normal
fabric norm F, the relative orientation N of fabric and plastic strain rate and the FAV A
during the biaxial (Phase 1) loading and the stress PA rotation (Phase 2) loading. For
the uniform presentation of the two loading phases, the cumulative deviatoric (direc-
tionless) plastic strain eeq was used.
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Based on Fig. 3b, it is evident that the third ACST condition, which is the fabric
condition that has enriched classical CST conditions, was fulfilled during the biaxial
loading and was violated when stress PA rotation initiated. This violation of the extra
ACST condition declares that CS was abandoned and as a result the change of the void
ratio (shown in Fig. 2) is supported. Most importantly the reader is referred to Theo-
charis et al. [5] where it is shown that the densification present in Fig. 3b can actually
be derived from a new dilatancy state parameter f defined within ACST as function of
A, that substitutes for the classical state parameter w [10].

In closing note that the ACST has already been proven extremely useful in con-
stitutive modeling of anisotropic granular materials [7]. The present work proves the
validity of ACST as a complete theory that can remedy the incompleteness of and in
fact substitute for the classical CST by enhancing the 2 classical CS conditions of the
latter with a fabric-related 3rd condition.

5 Conclusions

In this paper the completeness of the classical CST has been investigated by means of a
special virtual experiment, i.e. stress PA rotation initiating at CS while keeping stress
PV constant, performed by 2D DEM. While CST would predict that the sample will
remain at CS since its two conditions for CS are not violated, the DEM results show
that the sample contracts and clearly abandons CS. Thus, the classical CST conditions
were proven to be not sufficient for CS to be maintained, a feature attesting to some
form of incompleteness.

The new ACST highlights fabric as a missing link between CST and CS and
proposes a third fabric-based condition to be added to the initial two of classical CST
that can explain the DEM results. The three conditions of ACST are proven to be
necessary and sufficient for CS to be reached and maintained.
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Abstract. The behaviour of soils and foundation structures under a cyclic load-
ing with either a high or a low number of cycles is discussed. Regarding the
high-cycle loading, the validation of a high-cycle accumulation (HCA) model is
demonstrated based on successful recalculations of element tests, model tests on
monopile foundations with different scales and a full-scale test on a gravity base
foundation for offshore wind turbines. The well-documented settlements of a ship
lock over about two decades could be reproduced with the HCA model as well.
Regarding the low-cycle loading, two databases with numerous undrained cyclic
triaxial tests performed on either a coarse-grained or a fine-grained soil are intro-
duced. The data for sand is used to inspect three constitutive models with a focus
to low-cycle loading.

1 Introduction

Cyclic loading is of practical relevance for many problems in geotechnical engineering.
A cyclic loading of non-endogenous nature may be caused by traffic (high-speed trains,
magnetic levitation trains), industrial sources (crane rails, machine foundations), wind
and waves (on-shore and off-shore wind turbines, coastal structures) or repeated filling
and emptying processes (locks, tanks and silos). Furthermore, construction processes
(e.g. vibration of sheet piles) and mechanical compaction (e.g. vibratory compaction)
introduce cyclic loads into the soil. A cyclic loading may be also caused by endogenous
sources, e.g. by the shear wave propagation during earthquakes.

If the repeated loading involves a large number of cycles (N > 103) with a relative
small strain amplitude (εampl < 10−3) one speaks of a high-cycle loading. Offshore
wind turbine foundations under wind and wave action and infrastructure under traffic
are typical examples for a high-cycle loading. In contrast, the cyclic shearing of the
soil during earthquakes usually involves a rather low number of cycles, probably with a
larger strain amplitude due to the relaxation of effective stress caused by the cycles.

In the following the results of various experimental and numerical studies with the
focus on either high- or low-cycle loading are briefly summarized. This research has
been done during the former work of the author at the Institute of Soil Mechanics and
Rock Mechanics (IBF) at Karlsruhe Institute of Technology (KIT).
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2 High-Cycle Loading

2.1 Element Tests vs. Prediction by HCA Model

In the laboratory the cumulative behaviour of sand can be studied in drained cyclic
triaxial tests with a high number of cycles. Examples for the measured development
of permanent strain εacc (with ε =

√
(ε1)2+2(ε3)2) with increasing number of cycles

are provided in Fig. 1. These data from a test series on a medium coarse to coarse
sand (d50 = 0.6mm, Cu = d60/d10 = 2.5) with 105 cycles demonstrate the increase of
the rate of permanent strain accumulation ε̇acc with increasing stress amplitude qampl,
decreasing initial relative density ID0 = (emax − e0)/(emax − emin) and growing aver-
age stress ratio ηav = qav/pav. The average mean pressure pav has a minor effect on
the curves εacc(N) as long as the same amplitude-pressure ratio qampl/pav is chosen in
all tests. Further influencing factors (e.g. grain size distribution curve, fines content,
shell fragment content, grain shape, sample preparation method, changes of average
stress, frequently changing amplitude, multiple polarization changes, complicated mul-
tidimensional strain loops, sample geometry, saturation state) are discussed in detail in
[12].
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Fig. 1. Strain accumulation curves εacc(N)measured in three series of drained cyclic triaxial tests
with different (a) stress amplitudes qampl, (b) initial relative densities ID0 and (c) average stress
ratios ηav. The blue curves stem from simulations with the HCA model using an optimum set of
parameters for the tested sand.

In order to study the long-term behaviour of foundations subjected to high-cyclic
loading so-called high-cycle accumulation (HCA) models (e.g. [6,9,10]) have been
developed. The present paper concentrates on the model proposed by Niemunis et al.
[9]. The determination of the parameters based on test series as those shown in Fig. 1
is explained in [17,18]. After such calibration the prediction of the HCA model can
be checked by means of element test simulations. Such recalculations of the laboratory
tests can be also used for an optimization of single parameters. The blue curves shown
in Fig. 1 stem from such simulations using an optimum set of parameters for the tested
sand. The numerical curves agree well with the measured ones. Based on these suc-
cessful recalculations the HCA model can be regarded as validated on the element test
level.
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2.2 Model Tests vs. Numerical Simulations with HCA Model

In recent years considerable effort has been undertaken to validate the HCA model
based on recalculations of model tests in different scales, full-scale tests on prototype
foundations and measurements at real structures. Some of these efforts are described in
this and the following section.

Model tests on shallow and monopile foundations for offshore wind turbines have
been performed at the IBF using Karlsruhe fine sand (KFS) [20]. As an example, tests
on a monopile with a diameter of 6.1 cm and a length of embedding of 60 cm subjected
to a horizontal cyclic loading are discussed herein. The model test equipment is shown
in Fig. 2a. The solid curves in Fig. 2c represent the measured development of the lateral
pile displacement near the ground surface with increasing number of cycles for four
different amplitudes of cyclic loading. The dashed curves in Fig. 2c stem from recal-
culations of the model tests with the FE model presented in Fig. 2b. A combination of
hypoplasticity with intergranular strain (for the first two cycles) and the HCA model
(for all further cycles) was used. The parameters of KFS for both constitutive models
were determined from laboratory tests. Despite some differences in case of single tests,
the overall congruence between the curves from the model tests and the simulations is
quite satisfying.
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Fig. 2. Recalculation of model tests on monopiles performed at IBF: (a) Test equipment, (b) FE
model and (c) development of lateral pile displacement near the ground surface with increasing
number of cycles in the model tests and the FE calculations (modified from [20])

In a second step, model tests with a larger scale performed at TU Berlin [11] have
been simulated [20]. The monopiles in these tests had diameters between 14 cm and
41 cm and lengths of embedding lying in the range from 1.6m to 2.9m. The parame-
ters of hypoplasticity with intergranular strain and the HCA model for the Berlin sand
used in the model tests were calibrated based on an extensive laboratory program per-
formed at the IBF, including monotonic and cyclic tests. Furthermore, FE models of the
tests performed at TU Berlin have been generated, including details of the experimental
setup (e.g. the wooden construction at the sides of the pit used for an installation of
displacement transducers, see Fig. 3a). Figure 3b presents a comparison of the lateral
pile head displacement measured in one of the model tests with six packages of cycles
with the curve obtained from the corresponding FE simulation. Also in this case the
differences between measurement and simulation are acceptable.



214 T. Wichtmann

0.85
5.0

0.
61

2.
41

1.58
[m]

3.
65

0.75
1.2H

a)

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

t

H [kN]

2Hampl
2.0 2.0

3.1 2.5

Hampl 
= 4.5

6.1

Number of cycles N [104]

P
ile

 h
ea

d 
di

sp
la

ce
m

en
t [

m
m

]

 

 

FE simulation

Model test

H

b)

Fig. 3.Recalculation of model tests on monopiles at TU Berlin: (a) FEmodel and (b) development
of lateral pile head displacement with increasing number of cycles in a test with six packages of
cycles (modified from [20])

2.3 Full-Scale Tests and Measurements at Real Structures vs. Numerical
Simulations with HCA Model

A full-scale test on the prototype of a gravity base foundation for offshore wind tur-
bines has been performed by the Ed. Züblin AG near the shore of the North Sea in a
flooded construction pit [5]. A cross-section of the test foundation is given in Fig. 4a.
The foundation consisted of cross-shaped concrete box girders and a cylindrical shaft
ballasted with sand and resting on four separate precast concrete plates. The foundation
and the offshore-typical subsoil were extensively instrumented in order to measure set-
tlements, soil pressures and pore water pressures. A cyclic loading simulating several
strong storm events was applied by tension forces at the shaft. In the simulation with
the HCA model [20] the subsoil of the test foundation was simplified to nine main lay-
ers based on core samples taken on site. For each of these sand layers the constitutive
parameters have been derived from numerous laboratory tests with monotonic or cyclic
loading. The initial relative density profile with depth ID0(z) has been derived from the
results of CPT soundings following the procedure proposed in [1]. The FE model is
shown in Fig. 4b. It also considers the construction stages. The cyclic loading up to the
end of the first storm event has been simulated. The storm consists of several packages
of cycles with amplitudes increasing to a peak value followed by a stepwise decrease
(see scheme on the right-hand side of Fig. 4c). The measured and calculated settlements
of the two plates A and C in the loading direction during this first storm event are com-
pared in Fig. 4c. The predicted final settlement of plate C is very similar to the value
measured in the field test. The settlement of plate A obtained from the simulation is,
however, slightly lower than the measured value. This results in an underestimation
of foundation tilting in the simulation. A possible influence of uncertainties in the ini-
tial density distribution is discussed in [20]. Generally, the HCA model prediction is
very sensitive to changes in the relative density of the soil. Beside the settlements, the
simulations with the HCAmodel could reproduce the development of excess pore water
pressures in the soil (no accumulation) and the dangerous redistribution of contact pres-
sures from foundation plates A and C lying in the main loading direction towards plates
B and D lying aside during the high-cyclic loading [20].
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Fig. 4. (a) Cross-section and (b) FE model of the prototype foundation of the Ed. Züblin AG; (c)
Comparison of the development of the settlements of plates A and B during the first simulated
storm in the field test and the finite element calculation (modified from [20])

A ship lock is subjected to a high-cyclic loading due to the repeated filling and
emptying of the lock chamber, possibly leading to the development of cumulative set-
tlements. In [7] the well-documented example of the ship lock Uelzen I (part of Elbe-
Seitenkanal) has been studied, for which settlement measurements over several decades
are available. The ship lock has been investigated in finite element simulations with
the HCA model. Due to the absence of samples from the subsoil of the ship lock, the
stratified ground was represented by alternative or replicated sands with similar grain
size distribution curve and grain shape. For each layer the parameters of the constitu-
tive models have been derived from laboratory tests with monotonic or cyclic loading
performed on these sands. For depths up to −50m the profile of the initial relative
density with depth ID0(z) has been derived from CPT soundings. Since no CPT data
was available for larger depths, two different assumptions regarding the continuation
of the ID0(z) profile at those depths have been compared. Both a two-dimensional and
a three-dimensional FE model were created and a sensitivity analysis was performed
[7]. Figure 5a shows parts of the 3D model. The range of settlements measured for
ten different blocks of the ship lock was somewhat overestimated by the results of the
FE simulations (Fig. 5b). However, considering the uncertainties regarding the density
profiles and the determination of the constitutive parameters based on laboratory tests
performed on representative alternative or replicated sands, the congruence between
field measurements and FE predictions can be judged as quite satisfying.

Despite some quantitative deviations between measured and predicted data in the
various examples (under- or overestimation), the HCA model may be regarded as
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Fig. 5. (a) 3D FEmodel and (b) comparison of measured and predicted development of settlement
of ship lock Uelzen I over two decades. The range of measured data comprises measurements at
ten different blocks of the lock. The range of the curves from the FE simulations stems from
the two different assumptions regarding the density profile ID0(z) at larger depths. (modified
from [7])

approximately validated on different scales (element test, model test, full-scale test and
field measurements). The advantages of the HCA model over simpler engineer-oriented
approaches are obvious: Simulations with the HCA model are not restricted to a certain
foundation type. Furthermore, beside a prediction of long-term deformations, the whole
soil-structure interaction under high-cyclic loading can be investigated.

3 Low-Cycle Loading

3.1 Coarse-Grained Soils

A comprehensive data base with undrained cyclic triaxial tests performed on Karlsruhe
fine sand has been published in [14,15]. The data of these tests are provided on the
homepage of the author [13]. Some examples of effective stress paths for different den-
sities and loading conditions are given in Fig. 6a–c. Tests with isotropic consolidation
and stress cycles usually lead to butterfly-shaped effective stress paths in the final stage
(cyclic mobility phase) for medium dense and dense samples (Fig. 6a). After initial liq-
uefaction (p = 0 is reached for the first time), the axial strain amplitude progressively
increases with each subsequent cycle until a chosen failure criterion (e.g. |ε1| = 10%)
is reached. Loose samples fail due to large (in most cases extensional) strains within a
single cycle after the effective stress path has come close to the failure line known from
tests with monotonic loading.

If the stress cycles are started at an anisotropic stress (q0 �= 0) the shape of the
final effective stress path and the stress-strain relationship depend on the position of
the cycles with respect to the isotropic axis. Similar to the tests with isotropic consol-
idation, tests with an initial deviatoric stress |q0| > 0 and a deviatoric stress amplitude
qampl > |q0| end up in a butterfly-shaped effective stress path, temporarily passing p= 0.
The accumulation of axial strain on the triaxial extension or compression side prevails,
depending on whether the main portion of the stress path lies below or above the p-axis.
If the stress cycles do not cross the p-axis, a zero effective stress (p= 0) is not reached.
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After a certain number of cycles the accumulation of pore water pressure vanishes and
the effective stress at the end of each subsequent cycle stays the same. In that phase
the effective stress path repeatedly passes through the same lens-shaped loop in the p-
q plane (Fig. 6b). The effective stress paths during cycles fully applied in the triaxial
extension regime (qmax < 0) show an opposite inclination to those observed for triaxial
compression (qmin > 0). The strain accumulation continues even when the accumulated
pore water pressure has become stable.
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Fig. 6. Effective stress paths from tests on KFS with (a) isotropic initial stresses and stress cycles,
(b) anisotropic initial stresses and stress cycles, (c) isotropic initial stresses and strain cycles
[14,15]; (d–l) simulations of these tests with hypoplasticity with intergranular strain, Sanisand
(2004) or ISA (2014) (blue curves = simulations, gray curves = experimental data, modified from
[12])

In tests with strain cycles a zero effective stress state (p= q= 0) is reached after a
sufficiently large number of cycles, irrespective of the applied amplitude (a large range
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4 ·10−4 ≤ εampl
1 ≤ 10−2 was tested) and the initial values of relative density ID0, mean

pressure p0 or stress ratio η0 = q0/p0. An example is given in Fig. 6c. It demonstrates
that even very dense sand can reach a state of full liquefaction if the applied number of
cycles is sufficiently large [15].

Three of the most sophisticated constitutive models for sand, namely hypoplasticity
with intergranular strain [8,19], the Sanisand 2004 model [2,3] and the ISA (inter-
granular strain anisotropy) 2014 model [4] have been inspected based on selected tests
from the experimental data base for KFS [13–15]. After a calibration of the material
constants of the three models, simulations of the element tests with either monotonic
or cyclic loading and various boundary conditions have been performed [12]. As an
example, the results of recalculations of the three tests in Fig. 6a–c with the three con-
stitutive models are given in Fig. 6d–l. In those diagrams the blue curves stem from the
simulations, while the gray ones represent the effective stress paths measured in the
tests. Each column of diagrams in Fig. 6 corresponds to a certain test. The comparison
of the results of the simulations with the experimental data has demonstrated that all
three inspected constitutive models have their strengths and weaknesses, delivering a
satisfying prediction for some types of tests while some other ones are reproduced less
well. Usually, a certain set of parameters works well for a certain type of test (e.g. tests
with monotonic loading), while another set would fit better for some other experiments
(e.g. tests with cyclic loading). For example, the simulations with hypoplasticity do not
reach a state with zero effective stress (liquefaction, p = q = 0) in case of tests with
isotropic initial stresses and stress cycles (Fig. 6d). The same applies to tests with large
strain amplitudes (εampl

1 = 10−2), in particular in case of dense samples (Fig. 6f). The
Sanisand model nicely reproduces the butterfly-shaped effective stress paths for tests
with isotropic initial stresses and stress cycles (Fig. 6g). For the test on dense sand with
large strain cycles, however the butterfly predicted by Sanisand (Fig. 6i) is contrasted
by the single point (p= q= 0) finally reached by the effective stress path in the exper-
iments (Fig. 6c).

Fig. 7. Effective stress paths from tests on kaolin with isotropic initial stresses and (a) stress
cycles, (b) strain cycles, (c) stress cycles applied on a sample cut out in the horizontal direction
[16]

3.2 Fine-Grained Soils

An experimental study with numerous undrained monotonic and cyclic triaxial tests
on kaolin (liquid limit wL = 47.2 %, plasticity index IP = 12.2 %) is documented in
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[16]. The samples were pre-consolidated out of a slurry. Afterwards the triaxial sam-
ples were cut out of the centre of the pre-consolidated cylinders. The measured effec-
tive stress paths and stress-strain relationships resemble those obtained for sand with
several exceptions. An accumulation of pore water pressure occurs also in case of the
fine-grained soils, but a state with zero effective stress p= q= 0 is never reached. The
effective stress path obtained from tests with isotropic initial stresses and stress cycles
shows a strong inclination during the initial phase and is eight-shaped during the final
phase of a test (Fig. 7a). An application of strain cycles results in fir-shaped effective
stress paths (Fig. 7b), stopping at p > 0 after a sufficiently large number of cycles.
The material response of the tested kaolin is slightly dependent on loading frequency.
This effect is much more pronounced in case of materials with higher plasticity. The
cumulative rates are strongly reduced by an overconsolidation. Furthermore, effects of
anisotropy can be significant. Samples cut out of the preconsolidated cylinders in the
horizontal direction showed an opposite inclination of the effective stress path (Fig. 7c)
and could withstand a much larger number of cycles to failure than those taken conven-
tionally in the vertical direction. The opposite inclination of the effective stress paths in
the initial phase of the tests in Figs. 7a and c is a result of the anisotropy of stiffness.
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Abstract. A new method of non-destructive evaluation for residual tension
load of ground anchors was developed. If the tendon tension part of a ground
anchor is approximated by a “string”, the frequency of its free vibration is
determined by line density and tension length of the PC steel and the operating
tension. Although the free vibration of tendon tension part cannot be directly
excited because it is in the ground, it is confirmed by a physical model exper-
iment that the free vibration can be excited by applying a power at the extra
length of anchor head. A series of field experiments was conducted by using a
small vibrator and an accelerometer. A swept-frequency vibration was applied to
the extra length of anchor head, and the vibration waveform was measured at the
same position. The observed waveform was analyzed by running-spectrum
analysis in order to find a resonance frequency which is used to calculate the
residual tension load.

Keywords: Ground anchor � Monitoring � Resonance phenomenon

1 Introduction

Ground anchoring is one of the popular methods for maintaining the stability of slope.
The ground anchoring method was introduced in Japan in 1957. Construction materials
for ground anchors are easy to procure and construction is also simple compared with
the preventive pile method. Many anchors are constructed every year as a way to
stabilize cut slopes and prevent landslides. Periodic inspection of ground anchor are
important to ensure the slope stability.

The anchors are constructed in natural ground. Therefore, the decrease in function
caused by a variety of factors, such as the corrosion of steel and the effects of earth
pressure is of primary concern. Initially, ground anchoring had been adopted as a
temporary prevention method. Therefore, the protection against corrosion had not been
sufficient, particularly on anchor heads boundary of tendon free part, and anchor fixed
length. The ingress of water and air also contribute to the corrosion of anchors made of

© Springer Nature Switzerland AG 2019
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steel. By the first-half of the 1980s, anchor failures caused by corrosion had been seen.
We often observed jumping and lifting of the anchor head caused by rupture of the
tendon free part. For these reasons, in 1988, the standard document was revised [1].
After that, the anchors protected against corrosion started to be adopted [2].

When anchors are installed, loadcells are set to some of the anchors. After that, the
anchor tension is measured frequently to manage the anchor performance. After con-
firming the convergence of anchor tension, the frequency of measuring is reduced.
Daily inspections and periodic inspections are conducted mainly visually. When an
abnormality is observed, there is a concern that the cut slope may be destabilized due to
the change in the anchor tension. The residual tensile load of anchor is usually con-
firmed by the lift-off tests, which typically require time and cost. In order to overcome
this shortcoming of the lift-off test, recently, more advanced hydraulic jacks exclusively
for the purpose of lift-off tests have been developed [3]. The functions of the test
equipment have been improved dramatically [4]. Even if the function of one anchor
deteriorates, it does not always lead to instability of the entire slope. Therefore, it is
important to evaluate the health of the overall slope by monitoring the residual tension
of a large number of anchors. Therefore, much more convenient as well as less
expensive monitoring technique has been long awaited.

In this research, a non-destructive evaluation for residual tension load of ground
anchors was developed. In the developing process, the tendon tension part of a ground
anchor is assumed to be a “string”. Therefore, the frequency of its free vibration can be
determined by line density and tension length of the PC steel and the operating tension.
A series of field experiments were conducted by using a proposed measuring equip-
ment. The observed tendon tension values were compared with those measured by lift-
off test.

2 Physical Phenomenon Focused

We assumed that the tendon tension part of a ground anchor is approximated by a
“string” fixed at both ends. As the tendon tension part is thin and long, the assumption
of “string” is considered to be appropriate. Based on this assumption, the frequency of
the free vibration of “string” in Fig. 1 can be determined by line density, l (density per
unit length), tension length of the PC steel, L and the operating tension, T by Eq. (1).

f ¼ 1
2L

ffiffiffiffi

T
l

s

ð1Þ

The residual tension can be determined by Eq. (2). However, the free vibration of
tendon tension part cannot be directly excited because it is in the ground.

T ¼ 4L2f 2l ð2Þ
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3 Field Test and Discussion

Anchors studied in this paper are the wedge-fixed type VSL ones which were most
frequently built on expressway in Japan [5]. Those anchors have four PC steel bars,
3.096 kg/m of line density and 4.0 m of tendon tension part. The designed tension load
was 341.9 kN for four anchors measured in this study. The residual tensile load for four
anchors are 255 kN, 309 kN, 392 kN and 517 kN, respectively. Based on these residual
load, the resonance frequencies of the tendon tension part were estimated between 36 to
51 Hz.

Firstly, we tried to generate the free vibration of the tendon tension part by hitting
the anchor head with a hammer. However, the free vibration was not excited. There-
fore, we added the vibration perpendicular to the extra length of the anchor head by
attaching the small vibrator as shown in Fig. 2. A swept-frequency sinusoidal vibration
from 10 to 200 Hz was applied to the extra length. Figure 3 shows the applied time
history of swept-frequency vibration for 50 s with 60 s of measuring time. The
vibration waveform was measured at the same position with a small accelerometer as
also shown in Fig. 2. The acceleration was measured at 1 ms intervals and recorded
through 16 bit A/D convertor.

accelerometer

vibrator

extra length

anchor head

steel

tendon tension part constrained part

tension length (m)
line density μ (kg/m)

tension (N)

Fig. 2. Vibrator and accelerometer at extra length of anchor head.

tension length (m)

line density μ
(kg/m)

tension (N)

Fig. 1. “string” model fixed at both ends.
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When the applied frequency coincides with the resonance frequency of the tendon
tension part, the response amplitude is expected to become large. We performed the
running spectral analysis of the measured acceleration time history. Figure 4 shows an
example of the analyzed result. The left figure in Fig. 4 shows the running spectrum.
The luminance in the figure indicates the intensity of spectrum amplitude for each
0.512 s. In the right figure in Fig. 4, the Fourier spectrum for each time step is
described. From this analysis, we can easily understand that there are two peaks of the
spectrum amplitude at 37 Hz and 80 Hz. The former corresponds to the resonance
frequency of the tendon tension part. On the other hand, the latter corresponds to the
resonance frequency of the extra length of the anchor head.

The resonance frequency of the tendon tension part is easily estimated based on the
residual tensile load. The relationship between observed resonance frequencies of four
extra lengths of four anchor heads and the residual tensile loads of four anchors
measured by lift-off tests are shown in Fig. 5. In this figure, the mean value of four
resonance frequencies of four extra lengths and the theoretical resonance frequency
calculated by the residual tensile load (see Eq. (1)) are also shown. The correlation
between the resonance frequency and the residual tensile load is very clear. However,
the divergence between the resonance frequency and the residual tensile load becomes
larger as the residual load increases.
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Fig. 4. Detection of resonance frequency by running spectral analysis.
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The comparison between the residual tensile load calculated by Eq. (2) and the
measured residual tensile load by the lift-off test is summarized in Fig. 6. As each
anchor has four extra length at the anchor head, the residual tensile load is calculated
for each extra length. Therefore, the horizontal axis of the lift-off result is described as
one fourth of the real residual load. As the lengths of tendon tension part of four
anchors are same as 4.0 m, the tendency shown in Fig. 6 is just same as that in Fig. 5.
There is a clear correlation between estimated residual loads in this study and observed
ones by lift-off tests. However, the divergence between the estimated residual load and
the observed load becomes larger as the observed residual load increases. This ten-
dency is also same as the finding in Fig. 5. The cause of this deviation is under
consideration. There is a possibility that the assumption of “string” for 4 m long tendon
tension part is not correct. There needs to be a lot of experiment and field measure-
ments further.
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Fig. 6. Comparison between estimated residual load by Eq. (2) and measured one by lift-off
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4 Concluding Remarks

We have proposed a new method of non-destructive evaluation for residual tension
load of the ground anchor based on the assumption of “string” of tendon tension part. It
is summarized as follows the features of the proposed technique.

(1) measuring point: extra length of anchor head
(2) measurement principle: change in vibration frequency of tendon tension part
(3) frequency band of interest: from some Hz to tens of Hz.

Based on the proposed technique, it is easily possible to indicate the magnitude of
the residual tensile load of the ground anchor. At least, the comparison of the residual
load of large and small is possible.

In this study, we only carried out the field test for the wedge-fixed type VSL
anchors. The wedge-nut-fixed type KTB anchors and the nut-fixed type SEEE anchors
have been also widely used in Japan. We have to carry out field tests for other type
anchors as well as old type anchors to investigate the applicability of our proposed
method to those anchors. We also plan model tests for three different type anchors to
confirm the assumption of “string” of tendon tension part. We look forward to intro-
ducing further results in the near future.
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Abstract. This paper presents a brief summary of multi-hazard risk assessment,
focusing on cascading landslide hazards. It starts by presenting the multi-hazard
processes an engineering system may face, and possible interactions among the
separate hazards and between the vulnerabilities of elements at risk to these
hazards. Then a framework for analyzing the flooding, landslide and debris flow
processes in a rainstorm is introduced. Multi-hazard risk assessment requires
more comprehensive physical analyses than what are needed in conventional
geotechnical design. Stability analysis, flow analysis and impact analysis are all
required. The outcomes of such physical analyses form the basis for evaluating
the risks associated with these multi-hazardous processes. The multi-risk anal-
ysis can be performed using a HKUST five-step procedure, which describes the
hazardous processes in an explicit probabilistic framework and identifies key
parameters that govern the success of a risk mitigation effort. Rational engi-
neering decisions and emergency management policies can be made based on
such physically-based risk analysis.

Keywords: Multi-hazard risk assessment � Landslide � Risk management

1 Multi-hazard Processes and Hazard Interactions

1.1 Multi-hazard Processes

A large engineering system may be exposed to several hazards. Two types of multi-
hazard processes prevail: those with separate causes such as earthquakes, floods, and
volcanic eruptions; and those from interrelated causes such as floods, landslides and
debris flows. The former hazards are often analyzed separately while the latter hazards
can be treated as a hazard chain that lasts a certain period.

Figure 1 shows an evolving multi-hazard chain in the epicentral area of the
Wenchuan earthquake (Zhang et al. 2014b, 2016; Zhang and Zhang 2017a). The strong
earthquake in May 2008 caused numerous landslides and the landslide debris was
retained on the steep terrain. Such deposits were at a quasi-stable state at normal
weather conditions but might reactivate during rainstorms, turning into catastrophic
landslides and debris flows. The landslide or debris flow materials sometimes blocked
the river, forming landslide dams and posing flood risks that affected greater areas both
upstream and downstream the dam. The sediment or soil that entered the river system
also caused a significant rise in the riverbed, aggravating the flood risk.
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1.2 Interaction Effects in Dealing with Landslide Hazards

Landslide hazards, which include various slides, falls and flows, can interact in many
ways:

1. Domino effects or cascading landslides, in which an initiating event causes a chain
of disaster events, the outcome of one event being the cause of other events.
Figure 1 shows a chain of landslide hazards.

2. Overlapping of several hazards of the same type or different types. The impact areas
and volumes of several slides or rock falls will be larger, affecting both the
destructive power of the hazards and the vulnerability to the hazards. During a
severe storm, a particular area may be concurrently impacted by flooding, rain-
induced landslides and debris flows.

3. Merging of numerous smaller debris flows of various origins into a larger debris
flow (Gao et al. 2018).

4. When an element at risk is subject to multiple hazards concurrently or consecu-
tively, the vulnerability to these hazards will be higher than that to an individual
hazard. After the occurrence of one hazard, the ability of the element at risk to resist
the subsequent hazards will decline gradually. Figure 2 shows two buildings that
were damaged during the Wenchuan earthquake. The buildings were later impacted
by repeated debris flows, with debris material inundating two floors of the rear
building and breaking the wall into the first floor of the building. The integrity and
functionality of the buildings deteriorated further after the earthquake.

2014: Repeated debris flows 
and floods

12 May 2008: Massive 
landslides triggered by 
Wenchuan earthquake

Aug. 2010: Widespread rain-
induced landslides and 

debris flows

July 2011: Widespread debris 
flows and dam breaching

July 2013: Debris flows and 
floods due to extreme rainfall

2015: Riverbed incision took 
place, ending the trend of 
significant riverbed rising

July 2016: Large-scale debris 
flows

Aug. 2017: Watery debris 
flows triggered by a similar 

storm as that in 2010

Fig. 1. An evolving multi-hazard chain in the epicentral area of the Wenchuan earthquake.
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2 Approaches to Multi-hazard Risk Assessment

2.1 Multi-risk Assessment

Engineers need to answer the following questions in managing multi-hazard risks:

(1) What might happen?
(2) How likely is it?
(3) What is the damage or injury if it happens?
(4) What can be done about it?

A simple expression for defining ‘landslide risk’ follows

R ¼ P Lð Þ � P T:Lð Þ � P S:Tð Þ � V D:Tð Þ � E ð1Þ

where E = number of persons at risk (PAR), or economic worth; P(L) = annual
probability of the landslide; P(T:L) = probability of the landslide reaching the high-
way; P(S:T) = probability of PAR present at locations impacted by the landslide; V(D:
T) = vulnerability of the PAR to the landslide event.

Equation (1) clearly indicates the need for more comprehensive physical analyses
than what is needed in conventional geotechnical design. In addition to stability
analysis for hazard identification, flow analysis is needed to simulate the movements of
the landslide debris, and impact analysis is required to evaluate the damage to the
facilities concerned due to landslide impact.

Recently Zhang (2014), Chen et al. (2016) and Zhang and Zhang (2017b) proposed a
framework of multi-hazard risk assessment for evaluating the risks posed by cascading
landslide hazards considering the interactions among the hazards and the possible cas-
cading effects on human vulnerability. Attention is paid to the quantification of the
amplification and overlapping effects due to the interactions among two or more hazards.
The framework consists of five phases, including definitions, multi-hazard assessment,
exposure assessment, multi-vulnerability assessment, and multi-risk assessment:

Fig. 2. Declining resistance of two buildings after subject to a strong earthquake and several
debris flows.
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(1) Definition of the time and space scales for hazard analysis, the risk sources, and
the initiating events.

(2) Multi-hazard assessment, which includes identifying the hazard scenarios and
links among these scenarios, and quantifying their occurrence probabilities.

(3) Assessment of interactions among the elements at risk considering the overlap-
ping or amplification effects.

(4) Multi-vulnerability assessment, which quantifies the vulnerability of the elements
at risk in each affected area to one or multiple hazards.

(5) Multi-risk assessment, in which the risk of the cascading hazards is expressed as
the sum of all risks posed by these hazards, as well as new hazards derived from
the hazard interactions, in a pre-defined area.

Cascading hazards may occur in sequence in time, and interact with each other in
space. Hence one should consider the lifecycle of these hazards in defining the time and
space scales for risk assessment. Starting from an initiating hazard, one should
investigate each individual hazard over its entire lifecycle from the formation of the
hazard to the cessation of further evolution, for instance from the formation of a
landslide dam to the breaching of the dam, from the formation of a loose soil deposit to
the cessation of reactivation and erosion in the deposit, and from sedimentation to the
incision of a stream. Some of the cascading hazards can be considered as one “event”
that stretches over a certain period (Zhang et al. 2014a).

2.2 Characterizing Multi-hazard Processes

Intense rainfall in mountainous regions can trigger debris flows from loose soil deposits
on hill slopes or in channels. A conceptual model for rain-induced landslides, debris
flows and likely initiation mechanisms are shown in Fig. 3. Debris flows can be ini-
tiated by three mechanisms: transformation from landslides, surface erosion and dam
breaching. Due to rainfall infiltration, the hill slope gradually becomes saturated, and
the soil loses its strength, causing shallow seated slope failures (Zhang et al. 2011).
During a rainstorm, slope failures can occur at different times in space within a
catchment. Some of the detached material may move into channels and form landslide
dams, and some may transform into debris flows directly. As the surface runoff
accumulates, the landslide dam formed earlier in the channel may break, initiating a
channelized debris flow (e.g. Chen and Zhang 2015; Shen et al. 2017). At the same
time, the surface runoff may cause bed erosion and initiate hillslope debris flows. Some
of the separate debris flows may merge in the main channel of the drainage basin,
forming a larger catastrophic debris flow event (Zhang et al. 2014a, b, c). The final
magnitude of a debris flow could be many times of its initial volume due to entrainment
of materials along the path from additional slope failures, bed erosion or bank collapses
(Chen and Zhang 2015; Shen et al. 2017). If reaching a flat residential area downstream
the basin, the developed debris flow can cause severe loss of lives and properties.

Based on the conceptual model in Fig. 3, an integrated model for simulating the
multi-hazard processes including two debris-flow initiation mechanisms (i.e. bed ero-
sion and transformation from landslides) is shown in Fig. 4. The integrated model
consists of a digital terrain module, a rainfall module, an infiltration module, an
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overland flow module, a slope stability module, a surface erosion module, a debris flow
dynamics module and a deposition module. Extensive field tests have been performed
to determine the erodibility of bare soil and vegetated soil (Chang et al. 2014; Zhu and
Zhang 2016). The model was applied to simulate the multi-hazard processes in
Xiaojiagou Gully during the 13 August storm. The storm triggered widespread slope
failures and debris flows in the study area. The simulated instability scars, erosion scars
and debris flow channels agree very well with those revealed on remote sensing images
(Fig. 5).

Bed rock

Erodible soil

Rainfall

Surface runoff

Infiltration
Landslide at t3

Deposition 
zone

Erosion gully

Road

Debris flow track 
(Entrainment may occur)

Landslide at t1
blocking channel

Rilling

Landslide at t2

Flooding

Landslide dam 
breaching after t1

Fig. 3. Conceptual model for the initiation of flooding, surface erosion, landslides and debris
flows in a rainstorm event.

Initiation of hillslope 
or channelized 

debris flow

Surface 
erosion 
module

Overland
flow 

module

Infiltration 
module

Slope stability 
module

Debris flow 
dynamics module

Deposition 
module

Volume increment 
from landslide

Volume increment 
from erosion

Rainfall 
module

Digital 
terrain 
module

Data 
acquisition

Debris flow 
initiation

Debris flow 
dynamics and 

deposition

Fig. 4. Framework of integrated simulation of debris flows.
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A simpler version of the integrated model can be applied to serve different purposes
(Chen and Zhang 2014; Chen et al. 2015). For instance, the infiltration module and the
slope stability module can be combined to form a distributed cell model for simulating
regional shallow landslides and their movements on a three-dimensional digital terrain.
The locations and volumes of landslides are analyzed first through rainfall infiltration
and slope stability analyses. The detached material is assumed to move along the
steepest path from one cell to a lower cell. Empirical equations that are developed
based on local landslide inventories are adopted as a landslide movement cessation
criterion. The movement analysis method is applied to a 165 km2 hilly terrain (Fig. 6)
in the Wenchuan earthquake zone to test its performance in presenting regional shallow
landslide movement. The method predicts the volume of landslides reasonably well.

Fig. 5. Simulation results of the Xiaojiagou debris flow: (a) final shape and depth of the erosion
zone; (b) maximum flow velocity.

Fig. 6. Movement traces of the detached materials at the end of the storm.
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2.3 Multi-vulnerability Assessment

Vulnerability to landslides covers a broad spectrum of issues including physical vul-
nerability (i.e. buildings and bridges), environment, human life, and socio-economic
aspects (Bell and Glade 2012). Vulnerability to a landslide is defined as the level of
potential damage, or degree of loss of a given element subjected to the landslide of a
given intensity. Various approaches to estimating the human vulnerability have been
discussed qualitatively and quantitatively (e.g., Bell and Glade 2012; Lacasse and
Nadim 2011; Lacasse et al. 2012).

Vulnerability can be formulated as a reliability problem. Figure 7 shows an
example dealing with the chance of people escaping from being impacted by a land-
slide or a flood wave. In the general framework, the available time, TL, and the demand
time, TF, are assumed to be two independent random variables, whose schematic
probability distributions can be determined. The flight is considered as successful if the
evacuees arrive at safe places before the landslide debris or flood front reaches them,
i.e. TL � TF, and unsuccessful when TL < TF.

Similarly, the physical vulnerability, namely degree of damage of the physical
facility (building and bridges etc.) can be evaluated by establishing the probability
distributions of the load Q and resistance R for the facility and evaluating the failure
probability of the facility when exposed to one or multiple hazards. The failure
probability values at different load levels then form a fragility curve.

3 Risk-Based Engineering Decision

The conventional factor of safety approach addresses the issue of component safety but
not system safety and risk. The use of unsystematic engineering measures may result in
a false sense of safety, and “unexpected” engineering failures when exposed to high
intensity hazardous events. Examples are the failure of the New Orleans hurricane
protection system during Hurricane Katrina in August 2005 and the severe damage of
several major highway reconstruction projects in the Wenchuan earthquake zone.

PDF 
fTL, fTF

TL, TFTL TF

Probability of successful flight, 
Pf = P(TF < TL)Available time, TL

Demand time, TF

Fig. 7. Probability of successful flight from a landslide (Zhang and Zhang 2014).
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Risk-based engineering decision, on the other hand, leads to greatly reduced
landslide risk in Hong Kong, less than 25% of that in 1977 (Ho et al. 2016). This was
achieved by identifying sources of risk, minimizing risks arising from new develop-
ments, reducing risks by improving the stability of existing slopes, and reducing risks
by minimizing the possible consequences of landslides.

The risk-based approach has also fundamentally changed the highway design and
construction practice in seismic hilly terrain in western China. Ten years after the
Wenchuan earthquake, landslide risk management has become top priority in selecting
highway alignments and elevations, aiming at bypassing major landslide-prone areas
using long tunnels, minimizing river crossing and adopting sufficiently high road
elevations to allow for long-term evolution of hazard chains (Zhang et al. 2012).

4 Risk-Based Decision and Emergency Management

Risk analysis is the science behind risk-based decisions for disaster preparedness and
emergency management. By formulating an evacuation model based on rigorous
reliability theory (Fig. 8), the role of local administration, political aspects and popu-
lation training can be reflected in determining the probability distributions of the times
required to respond to an idealized landslide, make evacuation decisions, and move to
safe places. For instance, the response time, delay time and movement time are
influenced by preparedness and evacuation training. Sensitivity of human vulnerability
to the key influence factors can be analyzed by varying one factor a time while keeping
other factors constant in the model in Fig. 7, or in a Bayesian network. The key
influence factors, particularly those related to local administration, political aspects and
population training can be ranked according to their sensitivities. Figure 8 ranks the
key factors that affect successful flight of people from a landslide. Network analysis for
factors that influence the emergency management of flood risks has been presented by
Peng et al. (2012a, b; 2013a, b).
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Fig. 8. Sensitivity analysis of human flight from a landslide.
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5 Summary

An engineering system may face a chain of hazards which occur concurrently or
consecutively. These hazards evolve over time and have a lifecycle. How to assess their
initiation, propagation and societal impacts is a very challenging issue that goes beyond
conventional engineering design. We developed a HKUST five-step procedure for
multi-hazard risk assessment, focusing on landslide risks. Attention has been made to
include the interactions between hazards and between vulnerabilities to the hazards.
The procedure has been successfully applied to assist engineering design decision
making and emergency management. Much more effort is needed to advance multi-
hazard analysis and instill risk governance in engineering planning, design, construc-
tion and operation.
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Abstract. Transverse isotropy is characterized by a plane of isotropy
and an axis of anisotropy. For rocks, the plane of isotropy is associated
with the bedding plane, whereas the axis of anisotropy is the normal
to the bedding plane. Transversely isotropic rocks are known to exhibit
strength that depend on the orientation of the bedding plane relative
to the direction of load. In this work, we present a constitutive frame-
work for predicting the deformation and strength of transversely isotropic
rocks. The model is based on anisotropic critical state plasticity with
thermal softening. We conduct numerical simulations of boundary value
problems to demonstrate the impact of bedding plane orientation on the
deformation and strength of a transversely isotropic rock.

1 Introduction

In a recent publication [13], a thermoplastic constitutive model for rocks with
distinct bedding planes based on anisotropic critical state plasticity has been
presented. The model consists of anisotropic elasticity characterized by five inde-
pendent constants, anisotropic plasticity characterized by a yield surface in the
form of a rotated ellipsoid of modified Cam-Clay theory [5], and a softening
response that depends on temperature [10]. Anisotropy results from the existence
of bedding planes defining a rock’s microstructure [4,6,12,16,17], such as those
encountered in shale [3,11] and synthetic transversely isotropic rocks [14,15]. The
model presented in [13] has been used to predict the onset of deformation band
through stress-point calculations [7–9]. The objective of the present paper is to
demonstrate the important features of this aforementioned constitutive model
beyond the stress-point calculations. To this end, we implement the constitutive
model into a nonlinear finite element code and solve boundary-value problems
to demonstrate the impact of bedding plane orientation on the deformation and
strength of transversely isotropic rocks.

2 Computational Framework

A nonlinear finite element framework with Newton iteration is developed in this
study. The constitutive model is presented by Semnani et al. [13] and provides
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a robust description of the impact of bedding plane orientation on the material
response. Plastic anisotropy is represented by a rotated ellipsoidal yield surface
of modified Cam-Clay theory [5]. The model is developed in such a way that the
rotation of the ellipsoid is consistent with the orientation of the bedding plane.
The model is further enhanced to include thermal softening using the Laloui and
Cekerevac softening law [10]. Stress-point integration is based on a fully implicit
return mapping scheme.

3 Numerical Simulations

We conduct plane strain nonlinear finite element simulations to investigate the
deformation and bearing capacity of a layer of transversely isotropic rock sub-
jected to strip loading σL. A schematic diagram of the problem is shown in Fig. 1.
The rock layer is 20 m wide and 10 m thick, with a surcharge pressure σE acting
on top of it. The strip load σL spans 2 m wide and is located in the middle of
the rock layer.

Assuming 1 as the axis of anisotropy and 23 as the plane of transverse
isotropy, the five elastic constants are: E1 = 12860 MPa, E2 = 21900 MPa,
ν12 = 0.15, ν23 = 0.17, and G12 = 6510 MPa, while the plasticity parameters
are: M = 1.07, λp = 0.0026, α = 0.94, β = 0.7, γ = 1.0, and pc0 = 40 MPa (the
reader is referred to [13] for a more detailed description of these parameters).
These values have been calibrated for Tournemire shale [11,13]. Assuming the
rock is normally consolidated, we set σE equal to pc0. Gravity has been taken
into account in the simulations, with the density of rock assumed to be 2600
kg/m3. The intensity of the strip load σL is set equal to 400 MPa. Results for
two different bedding plane orientations, θ = 0◦ (horizontal bedding plane) and
θ = 30◦ (inclined bedding plane) are illustrated in the following.

Fig. 1. Schematic diagram of the simulated problem. Anisotropic rock layer is 20 m
wide by 10m thick.
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Fig. 2. Contours of horizontal displacement for: (a) θ = 0◦; (b) θ = 30◦. Color bars in
meters.

Fig. 3. Contours of vertical displacement for: (a) θ = 0◦; (b) θ = 30◦. Color bars in
meters.

When the bedding plane is horizontal, the axis of anisotropy is parallel to the
central vertical axis, which guarantees that the displacement field is also sym-
metric with respect to the central vertical axis, as revealed in Figs. 2(a) and 3(a).
However, when the bedding plane is inclined, the displacement field is no longer
symmetric, as indicated in Figs. 2(b) and 3(b). The lack of symmetry in the dis-
placement field could cause serious problem to engineering practice: Foundations
built on a rock layer with inclined bedding plane could experience uneven settle-
ment and tilting of the building above it. Although horizontal bedding planes are
more commonly encountered due to the nature of sediment deposition, inclined
bedding planes are also common due to complex geology resulting from tectonic
deformation.

A similar comparison may be made of the resulting plastic strain field. When
the bedding plane is horizontal, the plastic deformation tends to localize equally
from the two edges of the strip loading and evolve downward in a symmetric
fashion, as indicated in Fig. 4(a). But when the bedding plane is inclined, the
plastic deformation prefers to localize along the path that crosses the bedding
plane, as shown in Fig. 4(b). Such preference agrees with the bifurcation analysis
conducted by Semnani et al. [13], and validated by the laboratory results of
Niandou et al. [11] and Tien et al. [15], which suggest that the cross bedding
plane direction is generally weaker for transversely isotropic rocks.
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Fig. 4. Contours of plastic strain ‖εp‖ for: (a) θ = 0◦; (b) θ = 30◦.

4 Closure

Deformation and strength of a transversely isotropic rock are functions not only
of the bed-normal and bed-parallel deformation and strength properties, but also
of the orientation of the bedding plane with respect to the direction of load. An
inclined bedding plane relative to the direction of load could result in strength
that is even lower than either the strength in the bed-normal or bed-parallel
directions [18]. In this work, we have shown how bedding plane orientation can
impact the solution of a boundary-value problem. Even if the loading is sym-
metric and the geometry of the problem is equally symmetric, the deformation
could be unsymmetric due to anisotropy in the mechanical properties. It is thus
natural to expect that fracture and damage propagation can also be influenced
by the anisotropy of a rock [1,2], although we have not covered these topics in
the present work due to space limitation.
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Abstract. In this paper, we investigate the mechanical behaviour of a
compressed air energy storage (CAES) pile through finite element anal-
yses. A simple hypoplastic constitutive model is used for the soil sur-
rounding the pile. The analyses are carried out on two numerical models,
namely a plane-strain model and an axisymmetric model. The numerical
results show that the internal pressure of the pile has only minor influ-
ence on the stress state in the surrounding soil. The radial deformation
around the pile is much smaller than the vertical deformation during the
pressurization. Moreover, an increase of the internal pressure induces pile
expansion around a neutral point in middle of the pile. This gives rise
to relative displacement at the pile-soil interface, leading to upward slip
at the pile head and downward slip at pile tip. The shear stress between
pile and soil is also considered.

1 Introduction

Utilization of renewable energy sources such as solar and wind power suffers from
an intermittency issue, which thus requires efficient energy storage options. This
issue however can be addressed by storing excess energy during off-peak hours
to accommodate high demands later [2]. Pile foundations have been employed as
ground heat exchangers (energy piles) using fluid circulation in the foundations
and built structures to save energy. This idea can be explored to develop the
CAES pile system by compressing air in underground piles to store excess energy.
The compressed air is then released to drive gas turbines to produce electricity
during peak demand hours [3,4].

Hollow steel piles are suitable for storing compressed air because they are
commonly-used in foundation engineering. Moreover, hollow steel piles have high
strength and large internal spaces; therefore, they are easy to install and do
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not require additional process to create internal space [8]. Compared with con-
ventional piles, the main difference of CAES piles in loading condition is that
they have high internal air pressure. Therefore, the influence of the internal
air pressure on the mechanical behaviour of the soil surrounding the pile needs
to be considered. Particularly, the critical internal pressure which may result in
unneglectable stress and displacement changes in the surrounding soil is of inter-
est in engineering practice. To continue pursuing the idea of using pile foundation
system as an energy storage vessel, we need to analyse the mechanical behaviour
of the CAES pile under internal pressurization. In this paper, we investigate the
stress state in the surrounding soil and the displacement patterns of a single
CAES pile through finite element analyses. The analyses are carried out on two
numerical models, namely a plane-strain model and an axisymmetric model, in
which the pile is considered as an elastic medium while the surrounding soil is
modelled using a simple hypoplastic constitutive model.

2 Constitutive Model and Implementation

The hypoplastic constitutive model used in this paper is an improved one of an
early version by Wu [6], while a new critical state function is incorporated to
account for the effects of density and stress level of granular materials.

σ̊ = C1(trσ)ε̇ + C2(trε̇)σ + C3
tr(σ · ε̇)

trσ
σ + fd · C4(σ + σ∗)‖ε̇‖, (1)

where Ci (i = 1, 2, 3, 4) are dimensionless parameters. σ is the Cauchy stress
tensor, and ‖ε̇‖ =

√
tr(ε̇2) stands for the Euclidean norm of the stretching

tensor. The deviatoric stress tensor σ∗ in Eq. (1) is defined by σ∗ = σ−1/3(trσ)I
with I being the second order unity tensor. The critical state function fd reads:

fd =
( e

ecrt

)α (2)

where e and ecrt refer to the current void ratio and the critical state void ratio,
respectively, and α controls the degree of non-linearity of the strain-stress rela-
tion. The critical state void ratio is expressed as:

ecrt = ecoexp
[−λ(

p

pa
)ξ

]
(3)

where eco, λ, and ξ are parametric constants, and p = −trσ/3 and pa denote
the hydrostatic pressure and atmospheric pressure, respectively. In addition, the
constitutive model can be used for cohesive soil by replacing the stress tensor σ
with a translated stress tensor σc = σ − ptδij with the translated scale being
pt = c/tanφc and the parameters c and φc being respectively the cohesion and
critical friction angle of the cohesive soil.

The constitutive Eq. (1) can be regarded as an ordinary differential equation,
for which the general time integration over an increment step t ∈ [tn, tn+1] can
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be written as:

σn+1 = σn +
∫ tn+1

tn

h(σn, en, εn)dt = σn + DΔεn, n = 1, 2, . . . (4)

where D denotes the tangent stiffness matrix. The void ratio is evaluated as:
en+1 = (1+en)exp(Δεv)−1. The stress and void ratio can be evaluated using an
adaptive explicit integration method with a stress correction treatment detailed
in [5].

3 Numerical Simulation

The analyses are carried out on two numerical models, namely a plane strain
model and an axisymmetrical model, using the commercial finite element soft-
ware Abaqus standard. In the simulations, we consider a single steel pile for sim-
plicity. The pile is close-end, circular in cross section, and vertically pre-installed
in the ground at a depth of 20 m below the ground surface. In the numerical
model the pile has a dimension of 20 m in length, 500 mm in outer diameter, and
15 mm in thickness with an inner volume of 3.47 m3. In the analyses, the pile is
considered as an elastic medium while the surrounding soil is modelled using the
aforementioned hypoplastic model. In addition, a frictional interface is adopted
between the pile and soil to simulate the pile-soil interaction. The parameters of
the steel pile and surrounding soil are listed in Table 1.

3.1 Plane-Strain Analysis

The finite element mesh shown in Fig. 1 is used in the plane-strain analysis. Dur-
ing the simulation, the CASE pile is linearly pressurized from the atmospheric
pressure of p0 = 0.1 MPa to the maximum pressure pmax = 10, 000p0, which

Table 1. Material parameters used in the finite element simulations

Mechanical parameters Steel pile Saturated cohesive soil

Mass density: ρ, kg/m3 7800 1600

Yound’s modulus: E, MPa 210000 100

Poission’s ratio: υ 0.3 0.33

Critical friction angle: φc, /◦ - 25

Cohesion: c /kPa - 30

Initial void ratio: e - 0.78

Note: The corresponding parameters Ci (i = 1, 2, 3, 4) for constitutive
Eq. (1) are C1 = −25.07, C2 = −260.25, C3 = −349.56, C4 = −93.60,
which can be identified by a procedure proposed by Wu and Bauer [7].
In addition, the parameters for the critical state function fd (eco =
0.957, λ = 0.022, ξ = 0.061, α = 1.0) are gained from literature [5].
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is much higher than the service pressure of CAES piles [3]. The computation is
performed to find the actual pressure, pint, applied to the surrounding soil. The
relation between the internal pressure and the actual interface stress is shown
in Fig. 2. The normal stress acting on the interface between the outer surface of
pile and the surrounding soil remains as p0 until the internal air pressure rises
to 100p0. The interface stress increases from p0 to 3.46p0 with the internal air
pressure increasing from 100p0 to 10,000p0. This implies that pressurization of
the CAES pile to 10 Mpa has only minor influence on the stress state of the
surrounding soil.

Z X

Model exdent 10 m Pile d = 0.5 m

P

Fig. 1. Plane strain model with FE meshes

100 101 102 103 104 105

p/p0

0
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p in
t/p

0

Fig. 2. The relation between the internal pressure of the CAES pile and the stress
acting on the surrounding soil

Total strains in the soil in response to the internal pressure increasing from
p0 to 10,000p0 are shown in Fig. 3(a). The radial strains in the soil occur as a
result of the pressurization on the pile face as well as the Poisson effects due
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to the constraint along the out-of-plane direction. The soil surrounding the pile
exhibits compressional radial strains within a distance approximately two times
of the pile diameter with the maximum compressional strain occurring at the
interface. Presumably, the maximum compressional strain increases 10 times
with 10 times increase of the the internal air pressure.

The calculated radial stresses in the soil are compressive and they increase
with the internal pressure of the pile (see Fig. 3(b)). Obviously, the maximum
stress occurs at the pile—soil interface. For the internal pressure less than 1000p0,
the compressional stresses reduce to negligible values at about 1.5 m away from
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Fig. 3. Radial strain (a) and radial stress (b) over radial distance in the surrounding
soil of the CAES pile.
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Fig. 5. (a) Radial displacement, and (b) vertical displacement in the soil surrounding
the CAES pile with 10Mpa internal pressure

the pile face. However, the maximum stress increases significantly when increas-
ing the internal pressure to 10,000p0, and it drops to 7 kPa at about 4.7 m away
from the pile face.

3.2 Axisymmetric Analysis

In this section, the discussion is extended to an axisymmetric analysis, which
enables us to assess both radial and vertical displacements of a CAES pile as well
as the slip at the pile-soil interface. The model has a domain of 20 m far from
the axis of symmetry and 40 m deep from the ground surface to avoid boundary
effects. The dimension and FE meshes of this model is shown in Fig. 4.

Prior to this simulation, a pile load test is numerically analysed and the
ultimate capacity is determined to be roughly 10 Mpa based on Davisson’s crite-
rion [1]. To mimic the structural loads, an axial load q0 = 1.3 Mpa is applied on
the top of the steel pile, as shown in Fig. 4. Meanwhile, the geostress is applied
by taking the gravity effect into account. Similar to the previous plane strain
model, the internal pressure is monotonically increased from pmin = 0.1 MPa to
pmid = 1 MPa, and pmax = 10 MPa in the axisymmetric model.

With the effect of the internal pressure of the CAES pile, both radial and
vertical displacements of the surrounding soil change with depth (see Fig. 5 in
3D view). However, The radial displacement is smaller than the vertical dis-
placement (see dash lines in Fig. 6(a)) that is in excellent agreement with the
result obtained from the plane-strain analysis. This agreement suggests that the
radial deformation has minor contribution to the structure stability. We also
investigate the slip occurred at the pile-soil interface, as shown in Fig. 6(b). The
increase of the internal pressure induces pile expansion around a neutral point
in the middle of the pile. This gives rise to relative displacement at the pile-soil
interface, leading to upward slip at the pile head and downward slip at pile tip.
The slip increases from the neutral point to a position near the pile base, and
then decreases significantly at the pile base. Consequently, the pile base attains
the largest shear stress change at the interface, see Fig. 6(c).
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Fig. 6. Axisymmmetric analysis of the pile-soil system (a) depth profile of radial and
vertical displacements (b) pile-soil interface slip and (c) shear stress.

4 Conclusions

The internal pressure in a CAES pile leads to changing stress and displacement
in the pile and the surrounding soil. It can, in turn, influence the serviceability
and limit state of CAES piles. This paper numerically examines the effect of pres-
surization induced lateral stress and strain, and the vertical load—displacement
behaviour of CAES pile. The major results are summarized as follows.

• The plane strain analysis reveals that the normal pressure acting on the
interface between outer surface of pile and the surrounding soil is a function
of internal air pressure. The pressurization can influence the stress state of
the surrounding soil only when the internal pressure is larger than a threshold
value.

• The axisymmetric analysis confirms that the internal pressure induces much
greater vertical deformation than the radial deformation around the CAES
pile. The pile expands around a neutral point in the middle of the pile. This
gives rise to relative displacement at the pile-soil interface, leading to upward
slip at the pile head and downward slip at pile tip. In addition, shear stress is
observed at the pile-soil interface during the pressurization of the CAES pile.

Some features are not considered in our analyses, such as the influence of
pressurization on the bearing capacity of a pile and the stability of the while sys-
tem, the long-term behaviour of CAES pile under the loading-unloading cycles,
and degradation of soil-pile interface property. Moreover, the thermal effect due
to elevated internal pressure is not considered. This will require a constitutive
model for the mechanical-thermal behaviour of soil.



Numerical Simulation of a CAES Pile with Hypoplasticity 249

References

1. Davisson, M.T.: High capacity piles. In: Lecture Series on Innovations in Foundation
Construction, pp. 81–112. American Society of Civil Engineers, Chicago (1972)

2. Kim, S., Ko, J., Seo, H., Tummalapudi, M.: Investigation of a small-scale compressed
air energy storage pile as a foundation system. In: Geotechnical Frontiers 2017, pp.
103–112 (2017)

3. Kim, S., Kim, S., Seo, H., Jung, J.: Mechanical behavior of a pile used for small-scale
compressed air energy storage. In: Geo-Chicago 2016, pp. 135–143 (2016)

4. Luo, X., Wang, J., Krupke, C., Wang, Y., Sheng, Y., Li, J., Xu, Y., Wang, D.,
Miao, S., Chen, H.: Modelling study, efficiency analysis and optimisation of large-
scale adiabatic compressed air energy storage systems with low-temperature thermal
storage. Appl. Energy 162, 589–600 (2016)

5. Wang, S., Wu, W., Peng, C., He, X.Z., Cui, D.S.: Numerical integration and FE
implementation of a hypoplastic constitutive model. Acta Geotechnica 13(6), 1265–
1281 (2018)

6. Wu, W., Lin, J., Wang, X.T.: A basic hypoplastic constitutive model for sand. Acta
Geotechnica 12(6), 1373–1382 (2017)

7. Wu, W., Bauer, E.: A simple hypoplastic constitutive model for sand. Int. J. Numer.
Anal. Meth. Geomech. 18(12), 833–862 (1994)

8. Zhang, L.Y., Ahmari, S., Sternberg, B., Budhu, M.: Feasibility study of compressed
air energy storage using steel pipe. In: GeoCongress 2012: State of the Art and
Practice in Geotechnical Engineering, pp. 4272–4279 (2012)



Epilogue

The repeated revision of hypotheses, notions, relations and methods is needed for
geomechanics as for any rational science. So I welcomed Wu Wei’s proposal of a
workshop on behalf of my 80th birthday, and to publish invited papers in a book
afterwards. Differently from a Festschrift this volume is entitled DESIDERATA
GEOTECHNICA, and I contribute a paper. The workshop inspired me to add some
remarks in this epilogue. They refer first to the stable range for which fractal relics
of critical phenomena do not refute concepts with geomaterials, then to losses of
stability for which geomatter cannot be captured without fractality.

In physical terms soil and rock are solids with a fractal pore system. They are
per-meable (poqo1 = passage), but not in Darcy’s sense as pore water is diffused in
an anomalous way. Fabrics of grains are often called skeleton, but have no hinges.
Terzaghi’s effective pressure is p′ = p – pw for full saturation as the solid state is not
changed by changes of pore water pressure pw if they equal changes of total
pressure p. As this holds true likewise for rock p′ could be called solid pressure ps.
In a stable range total and solid stresses may be considered as force densities with
gradients despite rather fractal force chains.

Although the fractality matters already for the propagation of waves in the elastic
range movements of geomatter may be captured with gradients of velocity for the
stable range, whereas deformations make sense only for solid structures interacting
with geomatter. Spatial fluctuations of void ratio and stress, ever-present as relics of
former critical phenomena, require a hidden variable which eludes precise deter-
mination. As a way out of this indeterminacy I proposed cyclic attractors for
judging constitutive relations, in particular butterfly- and lense-shaped solid stress
cycles for cyclic deformation and ratcheting, respectively. This is a precise sub-
stitute of ‘cyclic mobility’ and works also with cyclically moving structures at or in
the ground. Despite such asymptotes one should keep in mind the inevitable
incertainty due to relics of critical phenomena.

‘Failure’ is a legal and a technical notion, not a physical one. Structures at or in
the ground can fail due to excessive deformations although the adjacent geomatter
remains in a stable range after the installation. This can happen with thermally,
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seismically or hydraulically activated dislocations between molecules, clay parti-
cles, grains, rock fractions and embedded structures. We all know that this variety
implies indeterminacy and requires judgment. So-called plastic limit states are often
empirically justified for geotechnical design, but should not be mixed up with
failure. As outlined in my contribution to this volume, such states cannot really be
reached so that their boundary is fuzzy. Only if they are justified partial safety
factors can suffice to avoid a loss of stability. A better understanding of the range of
validity is needed, then macro-elements an be legitimate because of an almost
parallel ground reaction. The well-posedness of numerical equation systems
requires a stable range, therefore the stability of geotechnical systems cannot be
proven with such approaches.

My main desideratum is to clarify losses of stability beyond plastic limit states.
There are more critical phenomena than the ones outlined in my own contribution.
E.g., seismically induced cascades of blockades and collapses can occur with dams
or natural slopes. Gas enclosed in macropores after flooding enhances the collapse
into a mud. This kind of phase transition may be called liquefaction although
flowing geomatter is not a liquid. Geotechnical operations can fail due to a loss of
control with critical phenomena: quasi-static ones can prevent further driving along
an intended path, kinetic ones can run off so fast and wide that an evacuation is
impossible. This can occur with excavations and tunneling, and likewise with
slopes and offshore structures. Localized internal erosion can enhance successive
collapses, in particular with breakouts of water, gas, mud and/or petrol.

Geotechnical engineers have to imagine such and other worst cases in order to
keep damages acceptably low. Although scenarios with critical phenomena elude as
yet mathematical treatment they have to be estimated alongside with probabilities.
The wild randomness implies that extreme events can matter as much as smaller
ones altogether. Damage data are scarce and big experiments are hardly feasible. I
could clarify some catastrophic mechanisms, but was not always allowed to publish
them. Probabilities of such events cannot be estimated intuitively nor calculated
with combinatorics. Stable Lévy processes enable a way out of this dilemma, but
the physical interpretation of this mathematical concept has only just begun.
Seismo-hydraulic monitoring can help to reduce the risk (i.e. the expected value of
damage) with critical phenomena if these are properly understood, while usual
extrapolations in observational methods fail.

As always our research is motivated by Richard Feynman’s ‘pleasure of finding
things out’, Ernst Mach’s pursuit of mental economy or parsimony, and a sense of
responsibility. Thanking Wu Wei for his initiative, I hope that the present book will
enhance the progress of geomechanics.

August 2018 G. Gudehus

252 Epilogue
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