
Chapter 6
The SNiMoWrapper: An
FMI-Compatible Testbed for Numerical
Algorithms in Co-simulation

Stefan Hante, Martin Arnold and Markus Köbis

Abstract We introduce the SNiMoWrapper, an FMI-compatible software tool
which enables the integration of models with an integrated, adapted solver in the
form of a co-simulation FMU into simulation tools by conducting the co-simulation
and hiding its details from the simulator. We describe the used algorithm in detail,
give a short proof for the order of convergence of the SNiMoWrapper, show results
for its application to an academic test example and describe an industrial proof-of-
concept application.

6.1 Introduction

Co-simulation is a simulation technique for time-dependent coupled problems in
engineering that restricts the data exchange between subsystems to discrete commu-
nication points in time. In the present paper we follow the block oriented framework
in the industrial interface standard FMI forModel Exchange andCo-Simulation v2.0,
see [6], and present the SNiMoWrapper, a testbed for numerical algorithms in co-
simulation. It is designed to include FMI-compatible software components (Func-
tional Mock-up Units or FMUs) in a simulation tool like MATLAB, Simulink or
Simpack. We discuss a sophisticated implementation for hiding algorithmic details
of co-simulation from the master simulation tool which does not even need to be
aware that co-simulation is performed inside the SNiMoWrapper.

The paper is structured as follows: In Sect. 6.2, we will motivate the conception
of the SNiMoWrapper and how it is supposed to work in a software environment.
In Sect. 6.3 we will describe the co-simulation algorithm that is embedded into the
SNiMoWrapper. We will discuss how the SNiMoWrapper was implemented in soft-
ware in Sect. 6.4. In Sect. 6.5 we will analyze how the numerical errors behave, if
the communication step size H → 0 and present a proof of convergence of this algo-
rithm, which is based on the convergence analysis in [1]. Section 6.6 describes some
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test-cases to which the SNiMoWrapper has been applied as well as some numerical
tests that support the theoretical results from Sect. 6.5. Furthermore, we discuss an
industrial proof-of-concept application of the SNiMoWrapper.

6.2 Approach

The Functional Mock-up Interface (FMI, [6]) is a powerful industrial standard that
allows quick and easy import and export of software components in order to simu-
late complex physical structures that are composed of smaller sub-structures which
themselves are driven by different physical concepts. Amodel of such a sub-structure
is comprised inside a so-called Functional Mock-up Unit (FMU), often together with
a time integration method specialized to the governing differential equations.

Model exchange FMUs give the importing simulation tool access to the internal
states and right-hand side functions of the model, allowing the simulation tool to
simply include the right-hand side calls for the model in its time integration rou-
tine and perform a monolithic time integration. This, however, is often unfavorable,
because the dimension of the differential equation that has to be solved becomes
large. Additionally, in this case the same time-integration method has to be applied
to all the smaller submodels that may draw from different physical concepts. Often,
for each submodel, there is a specialized numerical integration scheme that is known
to work well with the type of model in question.

With co-simulation FMUs, this can be realized. The co-simulation FMU comes
with an embedded numerical integration scheme and the importing simulation tool
has no access to internal variables or right-hand side functions etc. This approach
on the other hand needs an additional co-simulation algorithm that manages the data
exchange between the different software modules. These topics are addressed by
two standard approaches: The simulation backplane method, where there is a co-
simulation code that manages all involved software modules and the master-driven
method, where the co-simulation is handled by one specific simulation tool—the
master simulation tool.

Our approach, however, is different: The whole co-simulation aspect is dealt with
inside the SNiMoWrapper that is situated between the master simulation tool and
the FMU that includes the so-called slave system. It effectively transforms the slave
FMU into a function that can be called by the master simulation tool—with some
restrictions—at any simulation time instance and therefore hides the details of the
co-simulation from the master simulation tool.

The SNiMoWrapper is based on existing proprietary application programming
interfaces (API) of industrial simulation software like m- or s-function in MAT-
LAB/Simulink or user-defined force elements in industrial multi-body system sim-
ulation software. For a single master simulation tool an API front-end has to be
developed whose only task is to communicate with the SNiMoWrapper. The SNi-
MoWrapper manages the co-simulation and communicates via FMI with the slave
systems contained inside the FMU. The FMU comes with FMI v2.0 routines defined
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Fig. 6.1 SNiMoWrapper’s
workflow
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in the standard [6], while the SNiMoWrapper uses a library to access these routines.
Figure 6.1 shows workflow and basic software component of the SNiMoWrapper.
The involved quantities yM(t) and uM(t) will be explained below.

In FMI for co-simulation, the data exchange between master and slave FMUs
is restricted to discrete communication points Ti . During the communication step
(Ti , Ti+1] the slave systems are solved independently by their embedded solver [6].
The data exchange is handled by the SNiMoWrapper.

6.3 Co-simulation Algorithm

SNiMoWrapper’s co-simulation algorithmworkswith an equidistant communication
point grid Ti = T0 + i H with constant communication step size H > 0.

Since, at this point, we want to couple a single co-simulation FMU with a master
simulation tool, we have to consider two systems: The master system that represents
the black-box system of the master simulation tool and the slave system that rep-
resents the co-simulation FMU. In the context of co-simulation, this block-oriented
descriptionwas introduced in [9]. The coupledmaster-slave system ismodeledmath-
ematically by the following coupled set of differential equations

ẋ M(t) = f M
(
t, xM(t), uM(t)

)

yM(t) = gM
(
t, xM(t), uM(t)

)

}

(6.1)

ẋ S(t) = f S
(
t, x S(t), uS(t)

)

yS(t) = gS
(
t, x S(t), uS(t)

)

}

(6.2)
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Fig. 6.2 Co-simulation
setup of the SNiMoWrapper
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where the coupling conditions are

uM(t) = yS(t)

uS(t) = yM(t)

}

. (6.3)

Here, xM and x S are internal states, uM and uS are inputs and yM and yS are outputs
of the master and slave system, respectively. In Fig. 6.2, the black-boxes and their
coupling is shown.

6.3.1 Prerequisites

In this paper, we are not dealing with coupled systems that have algebraic loops [1].
A system without direct feed-through is always free from algebraic loops, for
instance.

Themaster toolmaycall theSNiMoWrapper through theAPI at any time instance t
inside the current communication step (Ti , Ti+1] in order to obtain uM(t). Themaster
can call the SNiMoWrapper at any Ti < t ≤ Ti+1 in any order but restricted to these
bounds. This means, in particular, it may not go back to a previous communication
step. The FMI standard does, in principle, allow for saving and reinitializing an
FMU to a previous time instance. However, for many industrial models, it is a rather
strong condition that the necessary routines fmi2GetState, fmi2SetState
are implemented.

Before the master simulation tool can advance to the next communication step
(Ti+1, Ti+2], it has to call the SNiMoWrapper at Ti+1, so the SNiMoWrapper can
obtain the master system’s output yM(Ti+1).

These prerequisites can typically easily be fulfilled by industrial simulation soft-
ware.

6.3.2 Capabilities of the Slave System

The slave system is part of a co-simulation FMU, therefore there are only a few
things that we can do with it. For co-simulation, FMI offers functions for setting
slave inputs, performing time integration and retrieving slave outputs:
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Setting inputs If the slave system is currently at time t∗, then we may set the inputs
uS(t∗) at this time instance via the FMI function fmi2SetReal. If we were to per-
form a time integration of the slave system, then the inputswill be considered constant
for the whole slave communication step. In order to provide inputs that vary in time,
wewill need to use the FMI functionfmi2SetRealInputDerivatives. Using
this, we can give a polynomial Q(t) of maximum degree ρ to the slave system, that
is represented by its derivatives at t∗ (Nordsieck representation, see [6]) rather than
by its coefficients:

Q(t) =
ρ∑

R=0

1

k!Q
(R)(t∗)(t − t∗)R .

Via the FMI function fmi2SetRealInputDerivatives, we can give the poly-
nomial’s derivatives Q(R)(t∗) of order R > 0 to the slave system. Note that FMUs
only support input derivatives up to a certain order maxSlaveInputDerivatives,
which we denote by r . This effectively means that they can only handle inputs that
are polynomials of degree up to r = maxSlaveInputDerivatives.

Performing time integration The time integration is triggered using the FMI function
fmi2DoStep. It will run the time integration method of the FMU from t∗ →
t∗ + HS with a given slave communication step size HS > 0, using the previously
given inputs.
Getting outputs After the time integration was performed, we need to retrieve the
outputs yS(t∗ + HS), where t∗ + HS is the new current time of the slave system.
This is done using the FMI function fmi2GetReal.

6.3.3 The Algorithm

The co-simulation algorithm of the SNiMoWrapper is a serial Gauss–Seidel co-
simulation method involving higher order inter- and extrapolation of the inputs
and outputs. We will present two variants of the algorithm: The basic algorithm
and the extended algorithm. In the extended algorithm, we have put special atten-
tion on FMUs that do not support time-varying inputs, thus r = maxSlaveInput
Derivatives = 0 aswell as onFMUs that havehighly-oscillatingoutputs. Pseudo
code of the basic algorithmcan be found inAlgorithm1 and of the extended algorithm
in Algorithm 2. Furthermore, the extended algorithm is visualized in Fig. 6.3.

Note that due to the coupling conditions (6.3) we only use the terms yS and yM

for the data that is stored inside the SNiMoWrapper. Throughout this paper we will
use p > 0 as the order of interpolation of the master outputs yM , q > 0 as the order
of extrapolation of the slave outputs yS and r = maxSlaveInputDerivatives
the maximal degree of polynomial that the slave can handle as input data. Also, we
introduce the notation of the inter- and extrapolation polynomial π of maximum
degree m in the following form
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Fig. 6.3 Visualization of the SNiMoWrapper’s extended algorithmwith n = 4 and p = q = r = 2.
Ip stands for interpolation, Ep for extrapolation and Fi for filtering

π(τ j ;ϕ; τ0, . . . , τm) = ϕ(τ j ), ( j = 0, . . . ,m),

i.e., π(τ ;ϕ; τ0, . . . , τm) denotes the interpolation polynomial of a given function ϕ
using the supporting points τ0, . . . , τm . The maximum degree of the polynomial is
determined by the number of arguments τ0, . . . , τm .

The basic algorithm This variant of the algorithm is a well-known approach to co-
simulation and uses higher order interpolation of the slave outputs and higher order
extrapolation of the master outputs.

Calculating master inputs Assume that the master simulation tool requests input
uM(t)with t ∈ (Ti , Ti+1]. The SNiMoWrapper will then interpolate the p + 1master
inputs uM(Ti+1), . . . , uM(Ti+1−p), that are already known to the SNiMoWrapper
with an interpolation polynomial of maximum degree p:

uM(t) = π(t; uM ; Ti+1−p, . . . , Ti+1).

The result of this calculation is then passed to the master simulation tool.

Calculating slave outputsWhen themaster simulation tool requests input uM(t)with
t ∈ (Ti , Ti+1] for the first time, then uM(Ti+1) has not been calculated yet. In order
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to do so, we want to calculate the interpolation polynomial

uS(t) = π(t; yM ; Ti−q , . . . , Ti )

of the q + 1 master outputs yM(Ti ), . . . yM(Ti−q), that have been passed to the SNi-
MoWrapper at the end of all preceding communication steps. This interpolation
polynomial is then passed to the slave system in its Nordsieck form of degree r

(
(uS)(R)(Ti )

)r
R=0 = (

uS(Ti ), (uS)′(Ti ), . . . , (uS)(r)(Ti )
)
,

because the slave only accepts polynomial of order up to r . Now the integration
of the slave system from Ti → Ti + H = Ti+1 is triggered. After the integration is
finished, the master inputs at Ti+1 are the slave outputs uM(Ti+1) := yS(Ti+1), which
are retrieved and stored in the SNiMoWrapper.

As a variant, we can use linear interpolated extrapolation [5]

uS(t) = πie(t; yM ; Ti , Ti−1, Ti−2)

= 2yM(Ti−1) − yM(Ti−2) + t − Ti
H

(
2yM(Ti ) − 3yM(Ti−1) + yM(Ti−2)

)
,

that interpolates the results of two extrapolations at adjacent communication points.
This approach will result in a continuous input signal [4, 5], but will restrict the
order of the co-simulation algorithm to second order, since πie is a polynomial of
maximum degree one, see Sect. 6.5 below.

In Algorithm 1 we have used the symbol π̃ to denote either the classical interpo-
lation polynomial (π̃ = π) or the interpolated extrapolation polynomial (π̃ = πie).

Algorithm 1 Basic algorithm of the SNiMoWrapper

1: if t = Ti+1 then Save yM (Ti+1)

2: if t > Ti+1 then
3: i ← i + 1
4: Run slave from Ti to Ti + H with input data

(
(uS)(R)(Ti )

)r
R=0, where

uS(τ ) = π̃(τ ; yM ; Ti−q , . . . , Ti )

5: Retrieve slave output yS(Ti+1)

6: uM (Ti+1) := yS(Ti+1)

7: return uM (t) = π(t; uM ; Ti−(p−1), . . . , Ti , Ti+1)

The extended algorithm Our extended algorithm is focused on FMUs that do not
support higher order signal extrapolation, i.e. when r = 0 or very small, and on
FMUs with highly oscillating behaviour, where even high order polynomial signal
extrapolation can not be used to approximate the dynamics in a stable manner. The
main idea is to introduce substeps in each master communication step (Ti , Ti+1].
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Throughout this paper let n > 0 be the number of substeps permaster communication
step and HS = H/n the slave communication step size.

The calculation of master inputs is done in exactly the same way, as in the basic
algorithm. The main difference lies in the calculation of the slave outputs:

When the master simulation tool requests input uM(t) with t ∈ (Ti , Ti+1] for the
first time, as before, uM(Ti+1) has not been calculated yet. Again, we consider the
polynomial

uS(t) = π̃(t; yM ; Ti , . . . , Ti−q),

which is either the classical interpolation polynomial (π̃ = π) of maximum degree
q or the linear interpolated extrapolation polynomial (π̃ = πie). Now, for k =
0, . . . , n − 1, we will recursively let the slave system integrate from Ti + kHS →
Ti + (k + 1)HS and afterwards retrieve the output yS(Ti + (k + 1)HS). The input
data for each integration is the Nordsieck representation of order r of the polynomial
uS(t) at the point Ti + kHS:

(
(uS)(R)(Ti + kHS)

)r
R=0.

After the slave system has reached the time instance Ti + nHS = Ti + H = Ti+1,
we can either use

uM(Ti+1) := yS(Ti + nHS)

in order to continue the algorithm, or the retrieved slave outputs yS(Ti + kHS) can
be filtered. We have implemented the mean value filter

uM(Ti+1) := 1

n

n∑

k=1

yS(Ti + kHS)

in order to better support FMUs with highly oscillating outputs, where the high
frequency oscillations are not relevant to the master system. In Algorithm 2 and
Fig. 6.3 the filter function is denoted by the symbol Fi.

6.3.4 Initialization

The first call of the SNiMoWrapper should be at t = T0 and the master tool is
supposed to pass yM(T0) to the SNiMoWrapper, in order to use it in its co-simulation
algorithm. The SNiMoWrapper will then initialize the FMUand retrieve yS(T0) from
it. Since the algorithm needs yS and yM from previous communication points, we
introduce the ghost communication points and ghost quantities
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Algorithm 2 Extended algorithm of the SNiMoWrapper

1: if t = Ti+1 then Save yM (Ti+1)

2: if t > Ti+1 then
3: i ← i + 1
4: for k = 0, . . . , n − 1 do
5: Run slave from Ti + kHS to Ti + (k + 1)HS with input data

(
(uS)(R)(Ti + kHS)

)r
R=0,

where uS(τ ) = π̃(τ ; yM ; Ti−q , . . . , Ti )

6: Retrieve slave output yS(Ti + (k + 1)HS)

7: uM (Ti+1) := Fi
(
yS(Ti + HS), . . . , yS(Ti + nHS)

)

8: return uM (t) = π(t; uM ; Ti−(p−1), . . . , Ti , Ti+1)

T− j := T0 − j H, j = 1, . . . ,max{p − 1, q}
yS(T− j ) := yS(T0), j = 1, . . . , p − 1,

yM(T− j ) := yM(T0), j = 1, . . . , q.

Although these starting values are only approximations of first order, for problems
being dominated by time-dependent external excitations, the co-simulation algo-
rithm still reaches its higher order. This can be seen in the numerical experiments in
Sect. 6.6. For other problems the order of the algorithm will drop to first order if no
higher-order initialization is used.

6.4 Implementation

TheSNiMoWrapperwas implemented in plainCdue to the great portability ofC code
and the possibility to use the libraries listed below. The SNiMoWrapper library was
compiled using the GNU C compiler from the GNU compiler collection (https://
gcc.gnu.org/). We have tested the implementation on Windows as well as on Linux
systems.

The SNiMoWrapper can be compiled into either a shared library, which then can
be loaded by the master simulation tool, or can be compiled into a static library
that can be linked into the simulation tool. Of course, the simulation tool has to be
compatible with the compiler that was used to compile the SNiMoWrapper library.

For the incorporation of the FMI v2.0 routines, we used the open-source FMI
Library FMIL from Modelon AB (http://jmodelica.org/FMILibrary). The setting
of parameters for the SNiMoWrapper is handled by initialization files. In order to
load and interpret the ini files, we have used the open-source library inih by Brush
Technology (http://code.google.com/p/inih/).

The SNiMoWrapper is designed to support the handling of multiple FMUs, so
the master simulation tool only needs to load the SNiMoWrapper once. This is done

https://gcc.gnu.org/
https://gcc.gnu.org/
http://jmodelica.org/FMILibrary
http://code.google.com/p/inih/
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using an ID that refers to a specific FMU. The usage of multiple instances of the
same FMU is possible as well.

The APIs should be designed to give the SNiMoWrapper the time t at which the
master system needs input data as well as the output data yM(t) at this time. If the
master tool calls the SNiMoWrapper in a new communication step (Ti+1, Ti+2], the
SNiMoWrapper recognizes this and infers, that the last master output data must have
been yM(Ti+1).

We implemented a simple API forMATLAB, that usesMATLAB’s capabilities to
load external shared libraries. Based on this API, we implemented a custom Simulink
block that enables the usage of the SNiMoWrapper in Simulink and acts as an API.

Furthermore, we implemented an API for the industrial multi-body system tool
Simpack using the user-force-elements that are written in Fortran code. The SNi-
MoWrapper was compiled into a static library and linked to the compiled user-
force-element code.

6.5 Accuracy

The convergence of co-simulation algorithms for systems without algebraic loops
was studied in [1]. There it was assumed that the subsystems are solved with suf-
ficiently small tolerances, so the analytic solution in each time-integration step is
considered in order to concentrate on the co-simulation algorithm, following [2].

The result from [1] can be directly applied to the basic algorithm:The interpolation
of the slave outputs is done with a polynomial of maximum degree q. The extrapola-
tion of themaster outputs is donewith a polynomial ofmaximum degree p in the case
of classical polynomial extrapolation and in the case of interpolated extrapolation
the polynomial is at most linear. However, we can only give a polynomial of order r
to the slave system. From this it follows that the overall interpolation error must be
of order min{q, p, r} + 1 in the polynomial extrapolation case and min{q, 1, r} + 1
for interpolated extrapolation. From [1] it follows that the global error of the basic
algorithm is of size O(Hmin{q,p,r}+1) or O(Hmin{q,1,r}+1), respectively.

In the following, we will adapt the convergence analysis from [1] considering
filtered slave output data and the substeps of the extended algorithm. Throughout the
proof we will only use the inputs of the systems rather than the outputs, since they
can easily be obtained by the coupling conditions (6.3). Let xM , uM , x S and uS be
the analytic solutions of (6.1)–(6.3). The numerical solutions will be written with
capital letters XM ,UM , XS,US and are for t ∈ (Ti , Ti+1] the analytic solutions to

Ẋ M(t) = f M
(
t, XM(t), Ψ M(t)

)
, (6.4a)

Ψ M(t) = π(t;UM ; Ti+1−p, . . . , Ti+1), (6.4b)

US(Ti+1) = gM
(
XM(Ti+1),U

M(Ti+1)
)
, (6.4c)
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Ẋ S(t) = f S
(
t, XS(t), Ψ S(t)

)
, (6.4d)

Φ(t) = π(t;US; Ti−q , . . . , Ti ), (6.4e)

Ψ S(t) = Tr (t; Tk + kHS;Φ),

{
t ∈ (Ti + kHS, Ti + (k + 1)HS],

k = 0, . . . , n − 1,
(6.4f)

UM(Ti+1) = Fi
[(

gS
(
XS(Ti + kHS), Ψ

S(Ti + kHS)
)n
k=1

]
, (6.4g)

where Tr (τ ; τ ∗;ϕ) is the Taylor polynomial of order r around τ ∗ of function ϕ
evaluated at τ . This Taylor polynomial describes the truncation of the Nordsieck
representation to order r . Because the functions Ψ S and Ψ M are fundamentally
different, we will consider the components of the master and slave system separately.

First, we want to consider the error in the internal states for a step Ti → Ti + H ,
so let t ∈ (Ti , Ti+1]. A perturbation analysis of the ordinary differential equa-
tions (6.4a) and (6.4d) together with their dependence on the initial value [13] gives
for B ∈ {S, M}

‖XB(Ti+1) − x B(Ti+1)‖ ≤ eL1H‖XB(Ti ) − x B(Ti )‖
+ L2

eL1H − 1

L1
max

t∈[Ti ,Ti+1]
‖Ψ B(t) − uB(t)‖ (6.5)

with some constants L1, L2 > 0. For the master system the last difference can be
estimated by

Ψ M(t) − uM(t) = O(1)
p∑

j=0

(
UM(Ti+1− j ) − uM(Ti+1− j )

) + O(H p+1), (6.6)

because the interpolation polynomial is linear in its values of support. Furthermore,
we need a standard result on the error of polynomial interpolation. For the slave
system, we need to deal with the truncation to degree r :

Ψ S(t) − uS(t) = O(1)
q∑

j=0

(
UM(Ti− j ) − uM(Ti− j )

) + O(Hq+1 + Hr+1
S ). (6.7)

Here, we have the term Hr+1
S that results from the fact that the truncation to degree

r happens in an interval of length HS . Of course, asymptotically it is O(Hr+1
S ) =

O(Hr+1), but the more careful way of writing Hr+1
S explains the results for coarse

H and larger n and therefore smaller HS in Test 2 in Sect. 6.6.
We introduce the following notation for the errors in the states and inputs for

B ∈ {S, M}:
εBi := ‖XB(Ti ) − x B(Ti )‖,
ηB
i := ‖UB(Ti ) − uB(Ti )‖.
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From (6.4c) and (6.4g) it now follows

US(Ti+1) − uS(Ti+1) = O(1)εMi+1 + J M
i+1

(
UM

i+1 − uM(Ti+1)
)
, (6.8a)

UM(Ti+1) − uM(Ti+1) = O(1)εSi+1 + O(1)J S
i+1

q∑

j=0

(
US

i− j − uS(Ti− j )
)

+ O
(
Hq+1 + Hr+1

S + F(H)
)
, (6.8b)

where J M
i+1 and J S

i+1 are Jacobians of gM = gM(xM , uM) and gS = gS(x S, uS) with
respect to uM and uS , respectively. The term F(H) represents the error of the filtering,
that is applied in (6.4g). If there is no filtering, then we have F(H) = 0 and in the
case of the mean value filter, we get F(H) = H , because the averaging is a first
order approximation to each element.

Since the system is supposed to be free of algebraic loops, we can then plug the
Eqs. (6.8a) and (6.8b) into each other repeatedly and end up with

ηM
i+1 + ηS

i+1 = O(1)
m(q+1)−1∑

j=0

(εSi− j + εMi− j ) + O
(
Hq+1 + Hr+1

S + F(H)
)

(6.9)

for B ∈ {S, M} and an m > 0 by further estimation [1]. Now it follows

εMi+1 + εSi+1 = (
1 + O(H)

)
(εMi + εSi ) + O(H)

mmax{p,q+1}∑

j=1

(ηS
k+1− j + ηM

k+1− j )

+ O
(
H p+2 + Hq+2 + H · Hr+1

S + H · F(H)
)
. (6.10)

The termO(H)(εMk+1 + εSk+1) that would appear on the right-hand side can be brought
to the left side. Dividing by 1 − O(H) = O(1) leads to (6.10). This analysis roughly
followed the convergence analysis for linear multistep methods in the DAE case [8].

Now, just like in [1], it follows

εMi+1 + εSi+1, η
M
i+1 + ηS

i+1 ∈ O
(
H p+1 + Hq+1 + Hr+1

S + F(H)
)
.

This means that the extended algorithm is of order min{p, q, r} + 1. In the case of
interpolated extrapolation, the same argument holds and we get convergence of order
min{p, 1, r} + 1. If the filtering is applied, we get a convergence of first order.

The asymptotic analysis for H → 0 is not insightful in the case of a highly oscil-
lating slave system, where a filtering would be applied. Here, a convergence analysis
in the frequency range would be more appropriate.
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6.6 Applications

In the following, wewill present applications of the SNiMoWrapper. Firstly, we have
conducted numerical tests on an academic example in order to support the theoretical
results of Sect. 6.5. Then, as a proof of concept we discuss two real-world problems
in Sect. 6.6.2.

6.6.1 Academic Example

The test example is a quarter car model [12], see also [3] . The chassis and wheel
are represented by two point masses mM and mS and can only move in the vertical
direction. The chassis is connected to the wheel by a damper and a spring with
coefficients dM and kM , while the wheel is connected to the ground by a very stiff
spring with stiffness kS . The master subsystem only consists of the chassis, while the
slave subsystem consists of the wheel and the ground.We apply a force-displacement
coupling. This means that the master subsystem outputs the height of the chassis and
the slave subsystem outputs the force that is applied by the spring and damper that
connect wheel and chassis. The situation is depicted in Fig. 6.4. The input of the
master is, as above, the output of the slave and vice versa. In order to model a
moving quarter car, the height of the ground h(t) varies in time. For this, we have
used two options:

smooth profile: h(t) =
{
0.1m · exp

(
1

(t−2)2−1

)
, t ∈ (1 s, 3 s),

0m, else,

step profile: h(t) =
{
0.04m, t < 4 s,

0m, else,

see Fig. 6.5. The model parameters are given by [10]:

mM = 256 kg, kM = 2020N/m, dM = 1140Ns/m,

mS = 31 kg, kS = 128 kN/m.

Themaster subsystemwas implemented in Fortran. For the time integration of the
master subsystemweusedDASSL [11], a popular Fortran implementationof theBDF
multistep time integrationmethod. The slave subsystemwas implemented in an FMU
using plain C. Here, the time integration method is DOPRI5 [7], an implementation
of the Runge–Kutta time integration method of Dormand and Prince with fifth order.

In the following, we have conducted numerical experiments in order to verify
the theoretical analysis and to fvillustrate the effects of some of the co-simulation
options. All tests have been performed with tight absolute and relative tolerances of
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Fig. 6.4 Quarter car model
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Fig. 6.5 Plot of the smooth road profile (left) and of the step road profile (right)
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Fig. 6.6 Error plot for Test 1 (basic algorithm)

10−8 in the master system and 10−9 in the slave system. We have used a reference
solution thatwas obtainedby solving themonolithic systemwithMATLAB’sAdams-
Bashforth-Moulton PECE solver ode113 of order up to 13 with very tight absolute
and relative tolerances of 2.2 × 10−14.
Test 1 In this test, we compared the results of the basic algorithm with the smooth
road profile for equal inter- and extrapolation order p = q of differentmagnitude.We
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Fig. 6.7 Error plot for Test 2 (extended algorithm)

also assumed that the FMU is able to take inputs of sufficient order, thus p = q = r .
Furthermore, we have also compared this to the case of linear interpolated extrapo-
lation [5] and p = r = 2. The integration was done over t ∈ [0, 4]. The maximum
of the errors in the 2-norm are plotted over the communication step size in Fig. 6.6.
For polynomial extrapolation, we observe numerical convergence of order p + 1
for p = q = r . For interpolated extrapolation, we only get second order. This is
consistent with the theoretical investigations in Sect. 6.5.
Test 2 Here, we want to show the effect of the number of substeps on the accu-
racy in the extended algorithm. We used polynomial inter- and extrapolation of
second order p = q = 2 and assumed that the FMU only accepts piecewise con-
stant inputs r = 0. Using the smooth road profile and the same tolerances and inte-
gration time span as above, we compared the results for varying amounts of sub-
steps n = 1, 10, . . . , 10000. The resulting errors are, in the same fashion as before,
depicted in Fig. 6.7.

The theory only gives us convergence of order O(H 3) + O(HS) and we can
numerically observe the first order term in all cases for sufficiently small commu-
nication step sizes H . On the other hand we see, that an increase in the number of
substeps decreases the term O(HS) significantly. If the number of substeps is suffi-
ciently large in relation to the communication step size, the overall result behaves as
if the slave system would be able to take nonconstant inputs. What we see is that the
resulting error is, for coarser communication step sizes bounded from below by the
error we would get for r > 0, which is at most of third order, because p = q = 2.
Test 3 In this test, wewanted to check how the co-simulation algorithmbehaves, when
there are discontinuities in one of the models. Note that the theoretical investigations
act on the assumption that all occurring functions are sufficiently smooth. We have
used the same tolerances for solving the master and slave subsystems as above, but
now the discontinuous step road profile was chosen and the integration time span was
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Fig. 6.8 Error plot for test 3

t ∈ [0, 6]. As in Test 1, we compared the results for p = q = r for different values,
and included interpolated extrapolation as well. Furthermore, we used the extended
algorithm with n = 10 substeps for the test. The results are depicted in Fig. 6.8.
We can see that the best convergence behaviour that can be numerically observed
is quadratic. For p = q = r = 0, as before, only first order can be reached. Higher
order inter- and extrapolation allows only for a slightly smaller error constant. Here,
the interpolated extrapolation performs similarly as the polynomial extrapolation.
This is mainly due to the fact that both algorithms use polynomial interpolation of
second order to calculate the inputs for the master subsystem.
Verification with industrial toolWe have verified these results by implementing a 3D
version of the quarter car model with the industrial multi-body system tool Simpack.
In Simpack, we created a mass and used a “user-force-element” in order to apply
user-defined forces to the mass. The user force element is a Fortran code that can be
programmed by the Simpack user. We used it to implement a Simpack API for the
SNiMoWrapper and were able to simulate the system, where the SNiMoWrapper
conducted the co-simulation of the slave system inside the FMU.We obtained similar
results to the implementation above.

6.6.2 Industrial Application: Proof of Concept

The SNiMoWrapper was designed as testbed for numerical algorithms in academic
as well as industrial co-simulation scenarios. We have used it in a proof-of-concept
application as a way to include an FMU into a simulation tool.

During the SNiMoRed project we worked with a Simulink model of a front axle
from an industrial partner. The model did not include a proper tire model, however.
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Fig. 6.9 Screenshots of the visual representation of the front axle model in Simulink (left) and of
two of the commercial wheel models (right)

We wanted to combine a commercial tire model with the front axle model. In order
to accomplish this, we have programmed an FMU that includes the commercial tire
model by using its API. We have used the custom Simulink block which loads the
SNiMoWrapper as shared library, see Sect. 6.4.With this configuration, wewere able
to perform a steering capacity test, where real-life data for the steering maneuver was
used. The test consisted of fully steering to one side and then fully steering to the
other side. The tire model worked properly and we were able to obtain meaningful
data from this numerical experiment. Screenshots of the test are depicted in Fig. 6.9.
Note that here we used simultaneously two instances of the same tire model FMU.

6.7 Conclusions

Wehave implemented an FMI v2.0 compatible tool that allows for easy incorporation
of virtually any co-simulation FMU in standard simulation tools of nonlinear system
dynamics. The co-simulation algorithm is contained entirely inside the SNiMoWrap-
per and thus hides the details of the co-simulation from the master simulation tool,
essentially transforming the FMU into a function of time. For this to work, we only
require mild prerequisites, such as that the integrator of the master simulation tool
must step on each communication point before advancing to the next communication
step. The co-simulation algorithm is of higher order and has some parameters which
can easily be fine-tuned. The algorithm is of Gauss-Seidel type and incorporates the
idea of substepping in order to deal with FMUs, that do not allow higher order signal
extrapolation, and the idea of filtering the outputs of the slave system in order to deal
with slave systems that are highly oscillating. We have given a proof of convergence
that extends the proof given in [1].

Moreover, we have shown that the analytically predicted order of the algorithm
can be observed numerically as well. For this, we have used the academic example of
the quarter car model. Furthermore, we have shown an industrial proof-of-concept
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example that goes beyond the world of academic examples. This shows that the
SNiMoWrapper is applicable for real-life industrial problems as well.
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