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Chapter 9
Fungal Community for Novel Secondary 
Metabolites

Enespa and Prem Chandra

9.1  Introduction

Fungal communities have a vitally important role in our routine life, whether 
positive or negative (De Vries and Shade 2013). They are origins of lifesaving and 
life- enhancing drugs, food additives, and aromas, but they also have the potential to 
contaminate our crops and food or to cause serious infections (Gerke and Braus 
2014). Microbes such as fungi, bacteria, plants, and some insects produce second-
ary metabolites (Kusari et  al. 2013). These natural products are low molecular 
weight molecules that, differing from primary metabolites, are not indispensable for 
the survival of the organism but confer an advantage in specific habitats or during 
changes in environmental conditions (Lange 2015). Various secondary metabolites 
possess biological activities that range from beneficial to harmful (Brandt and 
Mølgaard 2001).

Advantageous secondary metabolites (SMs) include antifungal agents such as 
caspofungin (Macheleidt et al. 2016), antibacterial agents such as penicillin, anti-
cancer drugs such as taxol, immunosuppressive drugs such as cyclosporine, or 
cholesterol- lowering drugs such as lovastatin (Li and Vederas 2009). A growing 
problem is the amazing current and future increases in resistance against established 
antibiotics as was foretold by the WHO (Brown and Wright 2016). Antibiotic use in 
clinical medicine, stock breeding, and agriculture leads to the development of multi- 
resistances, especially in daily applications where various known antibiotics are 
ineffective (Chang et al. 2015). Thus, the innovation of novel drugs is essential (Li 
and Pan 2014). Various species of fungi such as Aspergillus niger are used for the 
large-scale fermentation of citric acid and gluconic acid and are industrially 
exploited as enzymes, food additives, and medicinal drugs (Dhillon et al. 2011).
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The fungus Aspergillus oryzae is used in Asian cuisine for the fermentation of 
soybeans, saccharification of rice, and production of alcoholic drinks and rice vin-
egars (Murooka and Yamshita 2008), and the fungus Monascus purpureus is used 
for a natural food coloring (Mapari et al. 2010). In food preparation that uses fungi, 
information about obtainable secondary metabolite gene clusters becomes even 
more significant as potentially harmful clusters of gene might lurk in the genome 
and represent a risk of alcoholism (Takeda et al. 2014). Some mycotoxins are pro-
duced by various Aspergillus sp., followed by citrinin and patulin, which are pro-
duced by Aspergillus and Penicillium sp., and Fusarium-specific toxins such as 
zearalenone, but the harmful secondary metabolites such as aflatoxins are promi-
nent (Gerke and Braus 2014).

The mycotoxin-producing fungi in crop contamination lead to more than 10% 
loss in the yield of agricultural crops globally, representing a massive economic 
problem (Savary et al. 2012), although the pathogenic fungal spores that are harm-
ful for both plants and animals can also cause various diseases. Allergic reactions 
are also induced by inhalation of fungal spores (Douwes et al. 2003). Aspergillus 
fumigatus, Aspergillus flavus, and Aspergillus terreus cause infection and can lead 
to invasive aspergillosis, which can be life threatening in immunocompromised 
patients (Stevens et al. 2000). Communities of fungi have the potential to produce 
various secondary bioactive metabolites used as therapeutic agents against several 
diseases directly or indirectly (Kusari et  al. 2012). The production of secondary 
metabolites from the plant host with therapeutic potential such as taxol, podophyl-
lotoxin, deoxypodophyllotoxin (Zhao et al. 2011), camptothecin and structural ana-
logues, azadirachtin, hypericin, and emodin by fungal communities has been 
discovered (Chagas et al. 2018). Fungal communities produce bioactive compounds 
that are not only important from the ecological aspect but also from a biochemical 
and molecular position, especially those exclusive to their host plants (Berg and 
Smalla 2009).

The production of excess known and novel bioactive secondary metabolites may 
occur when exploiting the fungal community, such as modifying the available cul-
ture and process. The compounds produced by fungal communities might be opti-
mized using controlled fermentation conditions, possibly leading to a cost-effective, 
environmentally friendly, continuous, and reproducible yield on commercial scale-
 up (Chan et al. 2003). The reduction of secondary metabolite production on repeated 
subculturing in axenic monoculture conditions needs to be described to establish, 
restore, and sustain the in vitro biosynthetic potential of endophytes, one of the key 
challenges. The fact that nearly all efforts to obtain secondary metabolites from 
fungal communities have so far been made by classical methodology, under axenic 
monoculture conditions, increased this problem (Kusari et al. 2012).The renewal of 
known secondary metabolites led occasionally to mostly overlooking the collection 
of cryptic products that are not formed naturally under standard in vitro conditions 
(Bills et al. 2013). To imagine the aforesaid challenges, in this perspective the basic 
principles of chemical networking approaches of fungal communities with their 
host plants highlight forthcoming directions and the virtually unlimited possibilities 
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for discovery and the maintainable production of objective and not expected sec-
ondary metabolites exploiting fungal communities (Demain et al. 2017).

9.2  Collection and Detection Methods for Fungal Bioactive 
Compounds

The study of fungal metabolites has proceeded behind the study of other fungal 
metabolites because of scientific and organizational constraints (Morath et al. 2012). 
Moreover, the production of secondary metabolite (SM) production is bioactive 
(Stergiopoulos et al. 2013). The SM profiles fluctuate and depend entirely on the 
substrate, incubation period, nutrient media, temperature, and various environmental 
factors of given strains or species (López-González et al. 2015: Jurado et al. 2014). 
During the past half-century, there has been substantial progress on various com-
pounds. The SMs of fungus determined by gas chromatography–mass spectrometry 
(GC-MS) and high performance liquid chromatography (HPLC) have been used 
recently because of their dominant separation and highly sensitive detection abilities 
(Turner et al. 2009). Tenax can be used for the concentration of headspace culture of 
solid adsorbent, followed by thermal desorption into the GC-MS (Bicchi et al. 2008). 
A library of mass spectra, database, or by comparative study of known standards of 
retention times and spectrum identified the SMs (Bino et al. 2004). In the headspace 
culture the volatile organic compounds adsorb or desorb by another method known 
as solid-phase micro-extraction (SPME) (David and Sandra 2007). This method 
decreases the time of preparation by combining extraction, introduction, and con-
centration into one step while increasing sensitivity over other extraction methods. 
Thus, this method has become popular recently (Hamelinck et al. 2005).

The living fungal cultures can be mechanized for headspace-SPME GC-MS by 
shortest profiling (Gao and Xu 2015). Novel volatile compounds cannot be deter-
mined by GC-MS, so this is one drawback. Simultaneous distillation extraction 
(SDE) of traditional methods such as vapor distillation and solvent extraction are 
used for the determination of secondary metabolites from Penicillium roqueforti 
and compared to the SPME method (Ridgway et al. 2010). Selected ion flow tube–
mass spectrometry (SIFT-MS) in complex gas mixtures provides rapid broad- 
spectrum detection of trace secondary metabolites (Scotter et  al. 2005). The 
production of secondary metabolites is detected from various species of fungi such 
as Aspergillus, Candida, Mucor, Fusarium, and Cryptococcus by the SIFT-MS 
technique (Morath et  al. 2012). Proton transfer reaction–mass spectrometry 
(PTR-MS) and GC-MS instruments determine the profile of SMs released by 
Xanthomonas sp. The fungal SMs are quantified by using PTR-MS because it has 
fine detection ability and a fine-scale time response (Giannoukos et  al. 2017). 
Moreover, examinations can be run without sample preparation, derivatization, or 
concentration in real time with the advantage of having sensitivities comparable to 
GC-MS (Hajslova et al. 2011).
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This technique is also used for quantification of the SMs of Muscodor albus 
(Leelasuphakul et al. 2008). For further analysis and separation of the potential of 
secondary metabolites to identify innovative compounds produced by fungi, the 
sample is placed in a stainless steel column, then recovered and determined by 
nuclear magnetic resonance (NMR) spectroscopy (Strobel 2014). The “electronic 
nose” (E-nose) is an advanced technique used for bioactive compounds. An infor-
mation processing unit with pattern recognition software and reference library is 
combined in the E-nose system by multisensory array (Carey et al. 2011). The SM 
production studies and results from examining numerous microbes and diversified 
communities of soil microbes of soil by several techniques are listed in Table 9.1.

9.3  Fungal Bioactive Compounds as Sources of Secondary 
Metabolites

For exploiting the bioactive metabolite compounds, fungi are the key resources 
(Harvey 2008). Between the fungi, biologically active metabolites are screened 
from the endophytes (Strobel and Daisy 2003). Without causing any disease symp-
toms, endophytic fungi inhabit within their host plants (Schulz et al. 2002). The low 
molecular weight compounds not required for growth in pure culture known as 
secondary metabolites are manufactured as a revision for specific functions in 
nature (Bérdy 2005). In the interactions of numerous metabolites between fungi and 
their plant hosts, such as signalling, defence, and instructions of the symbiosis, the 
SMs have a vital role in vivo (Tanaka et al. 2006).

Diverse classes of chemical substances such as steroids, xanthones, phenols, iso-
coumarines, perylene derivatives, quinones, furandiones, terpenoids, depsipeptides, 
and cytochalasines have been isolated from endophytic fungi (Nisa et  al. 2015; 
Rana et al. 2018a; Suman et al. 2016; Yadav et al. 2018). Using non-ribosomal pro-
tein synthesis, such substances are synthesized through the polyketide pathway. A 
complex of Burkholderia cepacia non-ribosomal peptide-synthesized toxin is 
hemolytic and required for full virulence (Thomson and Dennis 2012). The various 
novel chemical structures produced by endophytes (51%) are significantly higher 
than the soil fungus (38%), as revealed from a literature survey suggesting that these 
habitually discounted endophytes are the novel source of bioactive secondary 
metabolites (Gnansounou et al. 2017). Special substances such as secondary metab-
olites are produced and in return demand nutrition. They are known to prevent the 
host from successfully attacking fungi and pests (Kaul et al. 2012; Nisa et al. 2015).
With more resistance to nematodes, insects, and livestock, the fungal communities 
synthesize an array of metabolites for plants (Bassman 2004; Kaul et al. 2012).

Because of the production of phytohormones with specific endophytes inhabit-
ing them, plants can grow faster and become so economical that they predominate 
in a specific environment (Herms and Mattson 1992; Rana et al. 2016, 2018a, b). 
The chemical compounds or secondary metabolites that are synthesized inside 
plants by the endophytes are associated with medicinal plants and can be exploited 
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Table 9.1 Methods applied for the detection of bioactive compounds from different fungal species

Methods
Organisms 
investigated

Habitat/
cultivation 
media

Bioactive compounds 
found References

GC-MS Aspergillus spp., 
Cladosporium 
cladosporioides, 
Penicillium spp.

Dichloran 
glycerol agar

Diverse bioactive 
compounds

El Sheikha et al. 
(2018)

GC-MS Fungal 
community

Hyperthermic, 
hypersaline 
soils

Diverse bioactive 
compounds

Hock et al. 
(2018)

GC-MS Muscodor albus Modified 
minimal 
medium

Esters, alcohols, lipids, 
ketones

Enespa and 
Chandra (2017)

PTR-MS/ 
PTRTOF- 
MS

Fungal 
community

Temperate soil 
under different 
compost load

Diverse bioactive 
compounds

Enespa and 
Chandra (2017)

GC-MS Aspergillus 
fumigatus

Modified 
minimal 
medium

Dimethyl sulfide (DMS), 
dimethyl disulfide 
(DMDS), 
2,5-dimethylpyrazine 
(2,5-DMP), 1-undecene, 
2-nonanone, 
2-undecanone, and 2 
aminoacetophenone 
(2-AAP)

Briard et al. 
(2016)

PTR-ToF 
MS, 
GC-MS, 
Electronic 
nose 
(e-nose) 
analysis

Erwinia 
amylovora, 
Pseudomonas 
syringae pv. 
syringae

Rooted 
plantlets, 
Murashige and 
Skoog (MS) 
medium

2-Ethoxy-2-methyl 
propane, 2,4,4-trimethyl- 
1-pentene and 
2-methyl-furan

Cellini et al. 
(2016)

GC-MS Fungal 
community

Hyperthermic, 
hypersaline 
soils

Diverse bioactive 
compounds

Miller et al. 
(2015)

GC-MS Muscodor albus 
E-6 Endophytic 
fungus of 
Guazuma 
ulmifolia

Cultivated on 
potato dextrose 
agar (PDA)

Diverse bioactive 
compounds

Saxena et al. 
(2015)

GC-MSD 
(mass 
selective 
detector)

Fungal 
community

Orange waste Monoterpenes, isoprene, 
other bioactive compounds

Li et al. (2012)

GC-MS Aspergillus spp., 
Cladosporium 
cladosporioides, 
Penicillium spp.

Dichloran 
glycerol agar

Diverse bioactive 
compounds

Beck (2012)

(continued)
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Table 9.1 (continued)

Methods
Organisms 
investigated

Habitat/
cultivation 
media

Bioactive compounds 
found References

PTR-MS Shigella flexneri, 
Candida 
tropicalis

Complex media Diverse VOCs, several 
unidentified and some 
identified compounds of 
low molecular weight 
<150 μ

Effmert et al. 
(2012)

PTR-MS Fungal 
community

Organic waste Various bioactive 
compounds

Morath et al. 
(2012)

GC-MS Hypholoma 
fasciculare 
Resinicium 
bicolor, wood- 
decaying fungi

Cultivated on 
malt broth

Diverse bioactive 
compounds

Sasidharan et al. 
(2011)

GC-MS/ 
growth 
inhibition 
of bacterial 
cultures

Fusarium 
oxysporum strain 
MSA 35

Agar (as 
described in 
experimental 
procedures)

Diverse bioactive 
compounds

Kai et al. (2010)

GC-MS Fungal 
community

Different 
Mediterranean 
soils

Diverse bioactive 
compounds

Ens et al. (2009)

GC-MS Fungal 
community

Different 
Mediterranean 
soils

Diverse bioactive 
compounds

Leff and Fierer 
(2008)

GC-MS Fusarium spp. MEA and PDA Sesquiterpenes, mainly 
trichodiene

Perkowski et al. 
(2008)

GC-MS Muscodor albus 
E-6 Endophytic 
fungus of 
Guazuma 
ulmifolia

Cultivated on 
PDA

Diverse bioactive 
compounds

Strobel et al. 
(2007)

GC-MS Fusarium spp. MEA and PDA Sesquiterpenes, mainly 
trichodiene

Jeleń and 
Grabarkiewicz- 
Szczȩsna (2005)

GC-MS Muscodor albus Endophytic 
fungus of 
Cinnamonum, 
cultivated on 
PDA

Diverse bioactive 
compounds

Ezra et al. 
(2004)

GC-MS Muscodor albus Endophytic 
fungus of 
Cinnamonum, 
cultivated on 
PDA

Diverse bioactive 
compounds

Stinson et al. 
(2003)

GC-MS Sclerotinia minor, 
S. sclerotium, S. 
rolfsii

Lettuce and 
bean isolates, 
cultivated on 
PDA

Diverse bioactive 
compounds

Harvey and 
Sams (2000)
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for curing many diseases (Compant et al. 2005; Strobel and Daisy 2003). The bioac-
tive metabolites in a large number of endophytic fungi belong to diverse structural 
groups known as alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, 
quinols, phenols, xanthones, chinones, isocumarines, benzopyranones, tetralones, 
cytochalasines, perylene derivatives, furandiones, depsipeptides, and enniatines that 
have been extracted, characterized, and isolated (Tenguria et al. 2011). The novel 
structural groups represented by several of these are palmarumycins and a new ben-
zopyroanone (Schulz et al. 2002). The fungi-produced secondary metabolites may 
vary with the biotope in which it grows and adopted, which varied with both habitat 
and substrate such as the manufacture of cyclosporine A, enchinocandin B, papu-
lacandins, and verrucarins (de Carvalho et al. 2015). Screenings of natural products 
are the source of endophytic fungi, and in optimizing the search for secondary 
metabolites of new bioactive chemical compounds, it is relevant to consider that a 
fungus that synthesizes the SMs may resemble its particular ecological niche and 
metabolic interactions, which continue between the fungus and plant to enhance the 
production of secondary metabolites (Bérdy 2005; Cragg and Newman 2013).

In addition to being alternative sources for secondary metabolites known from 
plants, endophytes accumulate a wealth of other biologically active and structurally 
diverse natural products that are unprecedented in nature (Nisa et al. 2015; Proksch 
et al. 2010) It is now generally accepted that endophytes represent an important and 
largely untapped reservoir of unique chemical structures that have been modified 
through evolution and are believed to be involved in host plant protection and com-
munication (Farrar et al. 2014). The fungal endophytes are known to release metab-
olites that mimic the structure and function of host compounds and produce plant 
growth hormones such as gibberellins (Hyde and Soytong 2008). A wide range of 
biological activities such as those of the antimicrobial agent hypericin and acetyl-
cholinesterase inhibitor huperzine A are plant-associated secondary metabolites 
produced by prolific endophytes (Xiong et al. 2013), the antitumour agents taxol 
(Cai et al. 2015). Endophytes of bioprospecting offer promise to determine natural 
products with therapeutic value, which has increased attention from microbiolo-
gists, ecologists, agronomists, and chemists (Qin et al. 2011).

The endophytic fungi have great interest as potential producers of novel, biologi-
cally active products (Yadav 2018; Yadav et al. 2017; Strobel and Daisy 2003). The 
distribution of endophytic mycoflora differs with the host, known as an important 
component of biodiversity and also considered as endophytes (Khan et  al. 2010). 
Globally, the necessity of new pharmaceutical products such as antibiotics, agro-
chemicals, and chemotherapeutic agents to manage the rising medicinal and ecologi-
cal problems faced by mankind has increased interest in research on fungal community 
chemistry (Paladini et al. 2015). The mangrove plant Rhizophora annamalayana is 
the host of an endophytic fungus isolated and characterized for the production of 
taxol (Elavarasi et al. 2012). The extraction of secondary metabolite taxol is accom-
plished with ethyl acetate and characterized by chromatographic and spectrometric 
analysis (Fraser et al. 2000). The infrared (IR) spectrum values confirmed terpenoid 
functional groups and the violet-red represented by a thin-layer chromatographic 
plate (Milgram et al. 2007). In the leaf of Cynodon dactylon, an endophytic fungus, 
Aspergillus fumigatus CY018, was recognised for the first time (Liu et al. 2004).
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The endophytic fungus Taxomyces andreanae, in producing paclitaxel from the 
yew plant Taxus brevifolia, set the stage for a more inclusive investigation of other 
species and other plants for the presence of paclitaxel-manufacturing endophytes 
(Pu et al. 2013), so as to apply this to developing the production of this pharmaco-
logically important drug (Cohen 2002). The multi-billion dollar anticancer com-
pound paclitaxel, produced by the yew plant (Chabner and Roberts 2005), has 
action against a broad range of tumour types (Kulbe et al. 2004), including breast, 
ovarian, lung, and head and neck cancers, as well as progressive forms of Kaposi’s 
sarcoma (Vihinen and Kähäri 2002).

Production of loline alkaloids occurs by infection of grasses with endophytes 
which display restrictive and toxic effects towards herbivorous invertebrates and 
vertebrates and thus form a possible complex in protection of endophyte-infected 
grasses against herbivores (Saikkonen et al. 1998; Schardl et al. 2004). The three 
new antimicrobial metabolites and the indole-3-acetic acid (IAA) plant hormone 
were analysed from the culture of Colletotrichum sp., an endophyte isolated from 
inside the stem of Artemisia annua (Lu et al. 2000; Tan and Zou 2001). The isola-
tion and characterization of various other chemical compounds such as ergosterol 
(I), 3b,5a,6b-trihydroxyergosta-7,2,2-diene (II), 3b-hydroxy-ergosta-5-ene (III), 
3-oxo-ergosta-4,6,8 (14), 2,2-tetraene (IV), 3b-hydroxy-5a,8a-epidioxy- ergosta-
6,2,2-diene (V), 3b-hydroxy-5a,8a-epidioxy-ergosta-6,9 (11), 2,2-triene (VI), and 
3-oxoergosta-4-ene (VII) was also completed from the culture of a fungal commu-
nity (Nisa et al. 2015). The growth inhibition of tested bacteria such as Staphylococcus 
aureus, Bacillus subtilis, Pseudomonas sp., and Sarcina lutea takes place by 1e3 
and IIIeV chemical compounds (Son et al. 2016). Three species represent positive 
hits by screening of molecular markers and have the capability of producing taxol, 
which was authenticated by HPLC-MS. Among these three taxol-producing fungi, 
the yield of taxol was greater in Guignardia mangiferae HAA11 720 ng/l compared 
with Fusarium proliferatum HBA29 (240 ng/l) and Colletotrichum gloeosporioides 
TA67 (120 ng/ l), the fungal strain possessing antimicrobial activity (Liu et al. 2009; 
Chaturvedi 2015) (Table 9.2).

9.4  Antifungal Bioactive Compounds from a Fungal 
Community

Pathogenic fungi are controlled by secondary metabolites of some biocontrol fungi 
(Rohlfs and Churchill 2011). The mycoparasitism, nutrient competition, and secre-
tion of other inhibitory compounds and hydrolytic enzymes by the various species of 
Trichoderma control the soil-borne fungal pathogens by various mechanisms 
(Benítez et al. 2004). The inhibition of growth and production of proteins from a 
wood-rotting basidiomycete Serpula lacrymans takes place from secondary metabo-
lites secreted from Trichoderma viride and T. aureoviride (Schoeman et al. 1999). 
However, T. pseudokoningii showed no effect in any of the Serpula lacrymans iso-
late tests (Wheatley 2002; Bitas et al. 2013). The secondary metabolites secreted by 
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Table 9.2 Novel secondary metabolites from endophytic fungi

Fungal species Origin
Secondary 
metabolites Reported activities References

Alternaria 
alternata

Terrestrial, 
grapevine leaves

9-Methoxy CPT Antifungal, 
anticancer

Chakravarty 
and Gaur 
(2018)

Alternaria 
alternata 
RSF-6 L

Terrestrial, 
Brassica napus

Indole-3-acetic 
acid (IAA)

Antifungal, PGP Yan et al. 
(2018)

Actinoallomurus 
fulvus

Terrestrial, 
Capsicum 
frutescens

Actinoallolides Anti-trypanosomal Nandi et al. 
(2019)

Penicillium 
manginii

Terrestrial, Panax 
notoginseng

Duclauxamide Cytotoxicity Bedi et al. 
(2018)

Cytospora sp. Terrestrial, 
Conocarpus erecta

Cytoskyrins BIA activity Gao et al. 
(2018)

Periconia sp. Terrestrial, Annona 
muricata

Pericoannosin Anti-HIV Gao et al. 
(2018)

Peyronellaea 
coffeae-arabicae

Terrestrial, 
Pritchardia 
lowreyana

Peyronellins Cytotoxicity Gao et al. 
(2018)

Mucor irregularis Marine, 
Rhizophora stylosa

Rhizovarins Cytotoxicity Zhou and Xu 
(2018)

Rhizoctonia 
solani

Terrestrial, 
Cyperus rotundus

Solanioic acid Antimicrobial Dissanayake 
et al. (2016)

Fusarium sp. 
JZ-Z6

Terrestrial, 
Fritillaria 
unibracteata

Gallic acid Antioxidant, 
anticancer

Pan et al. 
(2017)

Penicillium sp. Terrestrial, 
Catharanthus 
roseus

Citreoviripyrone Cytotoxicity Jiménez- 
Romero et al. 
(2017)

Arthrinium sp. 
0042

Aquilaria 
subintegra

oxo-Agarospirol Antioxidant Monggoot 
et al. (2017)

Penicillium 
brocae

Marine Spirobrocazines Antibacterial, 
cytotoxicity

Muharini 
et al. (2017)

Campylocarpon 
sp.

Marine, Sonneratia 
caseolaris

Campyridones Cytotoxicity Zhu et al. 
(2016)

Pestalotiopsis sp. Marine, 
Rhizophora 
mucronata

Pestalotiopens Antimicrobial Xu (2015)

Paecilomyces 
variotii

Marine Varioxepine Antimicrobial Zhang et al. 
(2015)

Trichoderma 
gamsii

Terrestrial, Panax 
notoginseng

Trichodermone Cytotoxicity Ding et al. 
(2014)

Paecilomyces 
variotii

Marine Varioxepine Antimicrobial Meng et al. 
(2014)

Aspergillus sp. Marine Asperterpenols Acetylcholinesterase 
inhibition

Xiao et al. 
(2013)

(continued)
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Table 9.2 (continued)

Fungal species Origin
Secondary 
metabolites Reported activities References

Aspergillus 
versicolor

Marine, green alga 
Codium fragile

Aspeverin Marine plant growth 
inhibition

Ji et al. 
(2013)

Fusarium sp. Terrestrial, Melia 
azedarach

Fusarimine Antifungal Gao et al. 
(2013)

Pestalotiopsis fici Terrestrial Chloropupukean 
olides

Cytotoxicity Ebrahim 
et al. (2012)

Pestalotiopsis sp. Terrestrial, 
Clavaroids sp.

Torreyanic acid 
analogue

Antifungal Gutierrez 
et al. (2012)

Pestalotiopsis 
virgatula

Terrestrial, 
Terminalia chebula

Pestalospiranes Antimicribial Kesting et al. 
(2011)

Chalara 
alabamensis

Terrestrial, 
Asterogyne 
martiana

Asterogynins Antimicribial Rosa et al. 
(2013)

Pestalotiopsis sp. Terrestrial, 
clavaroid species

Torreyanic acid 
analogue

Antibacterial Zou et al. 
(2011)

Microsphaeropsis 
sp.

Terrestrial, Lycium 
intricatum

Microsphaerops 
ones

Antibacterial Yang and Li 
(2011)

Pestalotiopsis fici Terrestrial Chloropestolide Anti-HIV, 
cytotoxicity

Liu et al. 
(2010)

Nodulisporium 
sp.

Marine, alga Noduliprevenone Cytotoxicity Greve et al. 
(2010)

Phaeosphaeria 
avenaria

Terrestrial Phaeosphaeride Inhibiting STAT3 
activity

Weber 
(2009)

Phaeosphaeria 
avenaria

Terrestrial Phaeosphaeride Inhibiting STAT3 
activity

Schlingmann 
et al. (2007)

Cytospora sp. Terrestrial, 
Conocarpus erecta

Cytoskyrins BIA activity Gunatilaka 
(2006)

Cryptosporiopsis 
cf. quercina

Terrestrial, 
Triptergyium 
wilfordii

Cryptocin Antifungal, 
Antibacterial

Strobel et al. 
(2005)

Fusarium 
pallidoroseum

Terrestrial Apicidins Antiprotozoal, 
anticancer

Somei and 
Yamada 
(2004)

Cryptosporiopsis 
cf. quercina

Terrestrial, 
Triptergyium 
wilfordii

Cryptocin Antifungal Strobel and 
Daisy (2003)

Pestalotiopsis sp. Marine, 
Rhizophora 
mucronata

Pestalotiopens Antimicrobial Schulz et al. 
(1995)

various isolates of three Trichoderma spp. exhibited a degree of growth inhibition 
against a soil-borne fungal pathogen Fusarium oxysporum f. sp. ciceris that causes 
chickpea wilt disease (Gopalakrishnan et  al. 2011). F. oxysporum strain MSA35 
secreted secondary metabolites that enhanced the growth of lettuce plants and in the 
presence of ectosymbiotic bacteria also released the secondary metabolites that 
inhibit the growth of pathogenic strains of F. oxysporum (Enespa and Chandra 2017).
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Antifungal metabolites revealed over time by the fermentation of dung- inhabiting 
fungi, or other compounds, are contrary to plant pathogenic fungi (Fu et al. 2012). 
The antagonistic features displayed by Sordaria fimicola against soil-borne patho-
genic fungi such as Pythium aphanidermatum and Dematophora necatrix caused 
disease against the plant (Sarrocco 2016). The isolation of S. fimicola from wheat 
and ryegrass roots could reduce the size of these masses after inoculation with the 
take-all fungus (Gaeumannomyces graminis var. tritici) (Zhang et al. 2017). The 
submerged culture of Coprinus heptemerus, a basidiomycete, secreted seven diter-
penoids, named heptemerones A to G that previously were not known to produce 
secondary metabolites (Molitor et al. 2012; Pettit et al. 2009). The chemical com-
pounds were purified and tested for their antifungal activities, which inhibited the 
fungal germination, but this was highly dependent on the composition of the assay 
medium (Lavermicocca et al. 2000).

Four of the antifungal compounds exhibited plant protective activity in a leaf 
segment assay using Magnaporthe grisea as the pathogen (Kettering et al. 2005). 
Podospora decipiens, Podospora curvicola, and Podospordaria tulasnei have 
exposed antifungal activity by secondary metabolites against Fusarium verticillioi-
des, Aspergillus flavus, and F. verticillioides and Fusarium fujikuroi (Cardwell 
et al. 2000), respectively. In agriculture, the demand is increasing for new antifun-
gal compounds in the continuous search for new effective and natural fungicides for 
use against plant pathogens in integrated pest management (Dayan et  al. 2009; 
Oerke 2006).

The academic institutions and agrochemical industries have been manufacturing 
new crop protection agents of microbial origin, which are safer for both the environ-
ment and consumers and more effective than the existing agents (Chandler et al. 
2008). The naturally derived active pesticide ingredients are used in line with EC 
within the structure of achieving the sustainable use of pesticides by reducing the 
risk and impacts of their use on human health and the environment, and encouraging 
the use of integrated pest management and of unconventional techniques (Khater 
2012). In this perspective, the fungal communities represent an uncultivated pool of 
bioactive metabolites, with chemical innovations that can be tested and further 
developed as active constituents in plant protection products (Lorenz and Eck 2005). 
Secondary metabolites-secreted antifungals by fungi against phytopathogenic fungi 
are given in Table 9.3 and Fig. 9.1.

9.5  Antibacterial Bioactive Compounds from Fungal 
Community

The fungal communities produced secondary metabolites that are larger than those 
of any other microorganism (Dean et al. 2005). These microorganisms occur in high 
frequency and are isolated from plants (Schippers et al. 1987). Numerous fungal 
genera seem to have a higher frequency of isolation and therefore a comparatively 
greater chance of an antibacterial substance being discovered in the species for 
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Table 9.3 Fungal bioactive compounds secreted by fungi against phytopathogenic fungi

Fungal antagonists Bioactive compounds Effects
Pathogenic 
fungi References

Candida albicans Farnesol Inhibition of 
mycelial 
development, 
Apoptosis in 
altered 
morphology 
and reduced 
fitness

Aspergillus 
nidulans, 
Fusarium 
graminearum

Conrad et al. 
(2018)

Irpex lacteus, 
Hypoxylon 
anthochroum Blaci

Benzothiazole, 
cyclohexanol, n-decanal, 
dimethyl trisulfide, 
2-ethyl-1-hexanol

Growth 
inhibition

Alternaria 
solani, Botrytis 
cinerea

Gao et al. 
(2017)

H. anthochroum 
Blaci

2-Methyl-5-(1- 
methylethyl)-
bicyclohexan-2-ol, 2, 
6-dimethyl-2, 
4,6-octatriene

Inhibiting 
effect on 
growth of 
oomycetes

Pythium 
ultimum, 
Phytophthora 
capsici, 
Alternaria 
solani, 
Fusarium 
oxysporum

Ulloa-Benıtez 
et al. (2016)

Hypsizygus 
marmoreus

2-Methylpropanoic acid 
2,2-dimethyl-1-(2- 
hydroxy- 1- methylethyl) 
propyl ester

Inhibitory 
effect against 
conidial 
germination

A. brassicicola 
(O-264)

Oka et al. 
(2015)

Phomopsis sp. Sabinene; isoamyl 
alcohol; 2-methyl 
propanol; 2-propanone

Worked as 
antibiotic 
effects

Pythium, 
Phytophthora, 
Sclerotinia, 
Rhizoctonia, 
Fusarium, 
Botrytis, 
Verticillium, 
Colletotrichum

Lee (2015)

Cladosporium 
cladosporioides 
CL-1

α-Pinene, 
β-caryophyllene, 
tetrahydro-2,2,5,5 
tetramethylfuran, 
dehydroaromadendrene, 
sativene

Growth 
inhibition of 
mycelium

Pseudomonas 
syringae

Kamchiswamy 
et al. (2015)

Ampelomyces sp. m-Cresol Inhibition of 
mycelial 
growth

Pseudomonas 
syringae pv.

Naznin et al. 
(2014)

(continued)
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Fungal antagonists Bioactive compounds Effects
Pathogenic 
fungi References

Mycoleptodonoides 
aitchisonii

1-Phenyl-3-pentanone Strongly 
inhibited the 
mycelial 
growth, spore 
germination

Alternaria 
alternata,  
A. brassicicola, 
A. brassicae, 
Colletotrichum 
orbiculare, 
Corynespora 
cassiicola

Nishino et al. 
(2013)

Epichloe typhina Sesquiterpenes, chokols 
A–G

Fungitoxic Cladosporium 
phlei

Kumar and 
Kaushik 
(2012)

Phoma sp. Series of 
sesquiterpenoids, some 
alcohols, reduced 
naphthalene derivatives

Antifungal 
and fuel 
properties; 
some of the 
test 
organisms 
with the 
greatest 
sensitivity

Verticillium, 
Ceratocystis, 
Cercospora, 
Sclerotinia

Strobel et al. 
(2011)

Saccharomyces 
cerevisiae CR-1

3-Methylbutan-1-ol, 
2-methylbutan-1-ol, 
2-phenylethanol, ethyl 
acetate, ethyloctanoate

Inhibits 
vegetative 
development

Guignardia 
citricarpa

Fialho et al. 
(2010)

Saccharomyces 
cerevisiae

Ethyl acetate, 
2-methylbutan-1-ol, 
3-methylbutan-1-ol, 
2-phenylethanol, 
ethyloctanoate

Growth 
inhibition

G. citricarpa Verginer et al. 
(2010)

Trichoderma 
viride, 
Trichoderma 
harzianum

6-Pentyl-α-pyrone, 
β-1-3, glucanases

Phytotoxicity 
during 
seedling 
formation, 
seedling 
blight 
suppression

Fusarium 
oxysporum, 
Rhizoctonia 
solani (Israel), 
Pythium 
ultimum (USA)

El-Hasan and 
Buchenauer 
(2009)

Candida albicans Farnesol Inhibition of 
mycelial 
growth, 
apoptosis in 
altered 
morphology 
and reduced 
fitness

Aspergillus 
nidulans, 
Fusarium 
graminearum

Leveau and 
Preston (2008)

(continued)

Table 9.3 (continued)
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Table 9.3 (continued)

Fungal antagonists Bioactive compounds Effects
Pathogenic 
fungi References

Irpex lacteus 5-Pentyl-2-furaldehyde Suppressed 
the growth

F. oxysporum f. 
sp. lycopersici, 
Bulmeria 
graminis, 
Fusarium 
oxysporum, 
Colletotrichum 
Fragaria, 
Botrytis cinerea

Koitabashi 
(2005)

Muscodor albus Ethyl acetate, propanoic 
acid, 2-methyl-methyl 
ester, ethanol, acetic 
acid, 2-methylpropyl 
ester, propanoic acid, 
2-methyl-butyl ester, 
1-butanol, 2-methyl

Inhibited the 
growth of 
fungi

Pythium 
ultimum, 
Phytophthora 
cinnamomi, 
Rhizoctonia 
solani, Ustilago 
hordei, 
Stagnospora 
nodorum, 
Sclerotinia 
sclerotiorum, 
Aspergillus 
fumigatus, 
Verticillium 
dahliae, 
Cercospora 
beticola, 
Xilaria sp.

Ezra et al. 
(2004)

Fig. 9.1 Structural formulas of some of the antifungal bioactive compounds produced by fungal 
community

Enespa and P. Chandra



263

similar reasons (Radić and Štrukelj 2012). The various new secondary metabolites 
isolated and extracted from the endophytic fungus Alternaria sp. are 10-oxo-
10H-phenaleno [1,2,3-de] chromene-2-carboxylic acids, xanalteric acids I and II 
(Fig. 9.2), and 11 other chemical compounds (Firáková et al. 2007). This fungus 
was isolated from the mangrove plant Sonneratia alba and exhibited weak antibac-
terial activity against Staphylococcus aureus (Debbab et al. 2010). The broad anti-
microbial activity against several resistant pathogens with minimum inhibitory 
concentration (MIC) values in the range of 31.25–125  g/ml exhibited altenusin 
(Fig. 9.2) (Deshmukh et al. 2015).

Local people used Aspergillus sp. HAB10R12 for peptic ulcer and postpartum 
care was isolated from the root of Garcinia scortechinii (Ramasamy et al. 2010). 
The host plant G. scortechinii released xanthones that inhibit methicillin-resistant 
Staphylococcus aureus (MRSA) (Lin et al. 2017; Alurappa et al. 2018). Aspergillus 
sp. HAB10R12 showed antibacterial effect similar to that of the control antibiot-
ics against Micrococcus luteus and S. aureus and significantly superior to genta-
micin against Bacillus subtilis and Escherichia coli and cephalexin against B. 
subtilis (Ip et al. 2006). The naphthaquinone javanicin was highly functionalized 
(Fig. 9.2), with capable antibacterial activity, from an endophytic Chloridium sp. 
that was isolated from the surface-treated root tissues of Azadirachta indica 
(Kharwar et al. 2009).

Javanicin was active against E. coli and Bacillus sp. in the antibacterial test at a 
higher MIC value of 40 g/ml (Güllüce et al. 2003). This result could be an indicator 
of the selective antibacterial activity of javanicin, but it should be confirmed with 
additional testing (Rios and Recio 2005). The Colletotrichum gloeosporioides fun-
gus, isolated from the medicinal plant Vitex negundo L., and three different extracts 
of hexane, ethyl acetate, and methanol were screened for their antibacterial activity 

Fig. 9.2 Structural formulas of some of the antibacterial bioactive compounds produced by fungal 
community
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against methicillin-, penicillin-, and vancomycin-resistant clinical strains of S. 
aureus (Arivudainambi et al. 2011). The same endophytic fungus isolated from the 
stem of Artemisia mongolica showed on antimicrobial bioassay that colletotric acid 
(Fig. 9.2), isolated from the culture liquid, was inhibitory to the bacteria B. subtilis, 
S. aureus, and Sarcina lutea (Darabpour et al. 2012).

In the same way, the metabolites released from Colletotrichum sp., an endo-
phytic fungus isolated from Artemisia annua, had strong antimicrobial action 
against the bacteria B. subtilis, S. aureus, Sarcina lutea, and Pseudomonas sp. 
(Alurappa et al. 2018). Colletotrichum sp. was also isolated from another source 
such as healthy tissues of Lippia sidoides, a medicinal plant used as an antiseptic (de 
Siqueira et al. 2011). The endophytic fungus Colletotrichum gloeosporioides iso-
lated from Alternaria alternata, Guignardia biwelli, and Phomopsis archeri shows 
antimicrobial assay only on solid medium (Barbieri et al. 2014). The plant parts of 
Garcinia mangostana released metabolites similar to the activity of their particular 
hosts, and a screening of the antibacterial activity of endophytic fungi isolated from 
surface-pasteurized leaves and small branches of Garcinia mangostana was con-
ducted (Carvalho et al. 2016). The short branches of Taxus cuspidata inhabited an 
endophytic fungus Periconia sp., and secreted fusicoccane diterpenes, named peri-
conicins A and B (Fig. 9.2) (Zaiyou et al. 2017).

The ethyl acetate chemical was used for the purification of these compounds and 
was active in antibacterial assays (Septama and Panichayupakaranant 2015). 
Periconicin A compounds demonstrated significant antibacterial activity against B. 
subtilis, S. aureus, Klebsiella pneumoniae, and Salmonella typhimurium with MIC 
in the range of 3.12–12.5 g/ml, in contrast to gentamicin, with MIC in the range of 
1.56–12.5 g/ml. Periconicin B displayed different antibacterial activity against the 
same strains of bacteria with MIC in the range of 25–50 g/ml (Heitefuss 2011). 
Phomopsis sp., an endophytic fungus that secretes a metabolite known as phomop-
sichalasin represents the first cytochalasin-type compound with a three-ring system 
replacing the cytochalasin macrolide ring (Fig. 9.2).

Disk diffusion assays against B. subtilis (12-mm zone of inhibition) and S. aureus 
(8-mm zone of inhibition) showed antimicrobial activity by the secreted metabolites 
(Clay 1988). Phomol, known as a novel antibiotic, was isolated from the fermenta-
tion broth of Phomopsis sp. strain E02018, which secreted a novel antibiotic known 
as phomol secreted by fermentation broth in the course of a screening of endophytic 
fungi from the medicinal plant Erythrina (Cowan 1999) (Fig.  9.2). However, it 
showed moderate antibacterial activity against Arthrobacter citreus, 
Corynebacterium insidiosum, and Pseudomonas fluorescens in the serial dilution 
assay and was not active against E. coli or B. subtilis (Munaganti et  al. 2016). 
Helvolic acid is a significant component that exhibited the strongest antibacterial 
activity against E. coli, B. subtilis, S. aureus, and S. haemolyticus, with MIC values 
of 3.13, 3.13, 50, and 6.25 g/ml, respectively, which was isolated from the endo-
phytic fungus Pichia guilliermondii and evaluated by microdilution colorimetric 
activity (Gómez-Rivera et al. 2018).

Panax notoginseng, a herbal plant inhabiting the PRE-5 strain and which is iden-
tified as Trichoderma ovalisporum, secreted koninginin A, (E)-2,3-dihydroxypropyl 
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octadec-9-enoate, shikimic acid, cytosine ribonucleoside, and a compound consid-
ered to be adenine ribonucleoside from the culture broth (Fig. 9.2). Also, strain 
PRE-5 showed antibacterial activity against S. aureus, B. cereus, M. luteus, and E. 
coli (Dang et al. 2010).The culture extracts of the endophytic fungus Xylaria sp. 
YX-28, which is isolated from Ginkgo biloba L., was identified as 7-amino-4- 
methylcoumarin (Liu et al. 2008; Karaman et al. 2003). Determination of the anti-
microbial activity of this chemical compound was observed by MICs and the 
agar-well diffusion method. The fungal community displayed strong antibacterial 
activity against pathogenic bacteria by all the secondary metabolites (Table 9.4).

9.6  Novel Approach to Obtaining Novel Bioactive Secondary 
Metabolites

Mutation, genetic manipulation, and cultural condition optimisation can improve 
the production of metabolites quantitatively and qualitatively (Hu et al. 2008). For 
the discovery of new metabolites and their biosynthetic pathways, the mutational 
approach is useful (Li and Vederas 2009).The generation of distinct phenotypes 
after analysis of mutants results from random mutagenesis, which is a powerful 
methodology to identify the essential factors for biological processes (Fiehn et al. 
2000). For basic research and practical applications this self-assured genetic method 
is very important (Eisenstein 1990). A particularly increased sequence allowed by 
NGS techniques reduced the costs, thus qualifying the genomes of the mutant to be 
sequenced to identify affected genes (Meldrum et al. 2011).

Mutation identification strategies through whole-genome sequencing have been 
used for several model organisms, such as Neurospora crassa (Baird et al. 2008; 
Borkovich et al. 2004), with the premise that it is a efficient and rapid means to 
discover the mutations that are responsible for specific phenotypes (Letai et  al. 
1992). For survival, fungal communities must adapt to environmental stress, and a 
deeper understanding of the regulation and evolution of fungal stress response sys-
tems may lead to improved novel antifungal drugs and technologies (Frey-Klett 
et al. 2011).

Infrequently, the observation of a metabolic profile under standard fermentation 
does not reflect the number of anticipated biosynthesis genes of microorganisms, in 
that some loci remain silent (Knight et al. 2003). Because a reservoir of potentially 
bioactive compounds represents cryptic gene clusters, cryptic natural products strat-
egies have been designed by triggering the biosynthetic pathways (Scherlach and 
Hertweck 2009). The transcription factors that mediated the fungal response to 
environmental cues such as nutrient availability, pH, light, and both biotic and abi-
otic stress are regulated by their secondary metabolites (Reverberi et al. 2010). To 
collect novel metabolites, the metabolic pathways of fungi are changed by the fer-
mentation pathway (Papagianni 2004). By the addition of chromatin-modulating 
agents such as histone deacetylase or DNA methyl transferase inhibitors to fungal 
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cultures, epigenetic remodeling of fungal secondary metabolites can be achieved 
(Deepika et  al. 2016). In Cladosporium cladosporioides, the production of new 
biomolecules enhanced chemical diversity, with the advantage that this technique 
does not require strain-dependent genetic manipulation and can be applied to any 
fungal strain (De la Rosa-García et al. 2018; Spina et al. 2018). Because of the com-
plexity of microbial extracts, advanced analytical methods such as mass spectrom-
etry and metabolomics are fundamental to detect and identify coculture-induced 
metabolites (Dettmer et al. 2007).

The nanospray desorption electrospray ionisation (n-DESI) combination and 
imaging mass spectrometry (IMS) have led to the monitoring of metabolite produc-
tion from live microbial colonies within bacterial communities, thus identifying 
mass spectral molecular networking when different species coexist (Stasulli and 
Shank 2016). With a peptidogenomic approach the combination of IMS provides 
insight into the inter-kingdom interaction between Pseudomonas aeruginosa and 
Aspergillus fumigatus at a molecular level, thus allowing the visualisation and iden-
tification of metabolites secreted by these microorganisms as grown on agar (Moree 
et al. 2012).

9.7  Conclusion and Future Prospects

Fungal communities are very diverse and abundant in the environment, and thus 
they are a versatile reservoir of metabolites with new structures and new bioactivi-
ties that can be of potential use as leading compounds to manufacture new modern 
medicines. Sample collection and fungal cultivation methods in other environments 
such as terrestrial soil and freshwater and marine areas are very difficult: more fungi 
have been cultivated from these environments. A potential source for natural bioac-
tive compound or secondary metabolites is provided by these fungal communities 
rather than a new drug to be extracted. Secondary metabolites extracted from the 
fungal communities of plant inhabitants with broad bioactivities, such as antifungal, 
antibacterial, anticancer, antiviral, anti-larval settlement, and cytotoxic activity, 
have been featured in the literature. In the natural ecosystem these bioactive com-
pounds not only help any environmental fungus to defend against predators, but also 
have the potential of becoming treatments for human diseases and probes for new 
biological targets. This chapter indicates that study of the community of fungi char-
acterized by their bioactive metabolites is underway, which is of increased impor-
tance as there is an urgent need for new drugs to overcome emerging and 
drug-resistant diseases.
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