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Foreword

White biotechnology is industrial biotechnology dealing with various biotech prod-
ucts through applications of microbes. The main application of white biotechnology 
is commercial production of various useful organic substances, such as acetic acid, 
citric acid, acetone, glycerine, etc., and antibiotics, like penicillin, streptomycin, 
mitomycin, etc., and value-added product through the use of microorganisms espe-
cially fungi and bacteria. The value-added products included bioactive compounds, 
secondary metabolites, pigments, and industrially important enzymes for potential 
applications in agriculture, pharmaceuticals, medicine, and allied sectors for human 
welfare. In the twenty-first century, humans acquired skills to harness fungi to pro-
tect human health (through antibiotics, antimicrobial, immunosuppressive agents, 
value-added products etc.), which led to industrial-scale production of enzymes, 
alkaloids, detergents, acids, and biosurfactants. The first large-scale industrial appli-
cations of modern biotechnology have been made in the areas of food and animal 
feed production (agricultural/green biotechnology) and pharmaceuticals (medical/
red biotechnology). In contrast, the production of bioactive compounds through 
fermentation or enzymatic conversion is known as industrial or white biotechnol-
ogy. The beneficial fungal strains may play important role in agriculture, industry, 
and medical sectors. The beneficial fungi play a significant role in plant growth 
promotion and soil fertility using both direct (solubilization of phosphorus, potas-
sium, and zinc; production of indole acetic acid, gibberellic acid, cytokinin, and 
siderophores) and indirect (production of hydrolytic enzymes, siderophores, ammo-
nia, hydrogen cyanides, and antibiotics) mechanisms of plant growth promotion for 
sustainable agriculture. The fungal strains and their products (enzymes, bioactive 
compounds, and secondary metabolites) are very useful for industry. The discovery 
of antibiotics is a milestone in the development of white biotechnology. Since then, 
white biotechnology has steadily developed and now plays a key role in several 
industrial sectors, providing both high-valued nutraceuticals and pharmaceutical 
products. The fungal strains and bioactive compounds also play important role in 
the environmental cleaning.
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The present book volume on “Recent Advancement in White Biotechnology 
Through Fungi” Volume 2: Perspective for Value-Added Products and Environments 
is a very timely publication, which provides state-of-the-art information in the area 
of white biotechnology, broadly involving fungal-based value-added products and 
applications of fungal communities for sustainable environments. The book volume 
comprises 16 chapters. Chapter 1 by Kour et al. describes agriculturally and indus-
trially important fungi and their potential biotechnological applications. Chapter 2 
presented by Dailin et  al. highlights fungal phytases and their biotechnological 
applications in food and feed industries. Chapter 3 by Banik et al. describes about 
probiotic fungal strains, their mechanism of actions, health beneficial effects, and 
also their efficacy in the treatment of various diarrheal, skin, and vaginal complica-
tions. Chapter 4 by Challa et al. highlights the opportunities and challenges of fun-
gal white biotechnology to meet food security. Roy and Banerjee describe the 
production of hydrocarbon and hydrocarbon-like compounds along with other qual-
ity volatile organics with high potential to be used as both “green chemicals” and 
fuels from endophytic fungi in Chap. 5. Chapter 6, by Parasuraman and Siddhardha, 
gives details of functional genomics and proteomics for the isolation and production 
of novel natural value-added metabolites from fungal community. Chapter 7 
authored by Gholami-Shabani et al. highlights current knowledge about fungal nat-
ural products including primary and secondary metabolites, their biosynthetic path-
ways, and brief examples of each class of compounds including their bioactivities. 
In Chap. 8, Singh and colleagues describe in detail about the variety of secondary 
metabolite produced, its synthesis strategies via chemical and heterologous mode, 
as well as their biological applications. Enespa et al. highlight the fungal production 
of novel secondary metabolites with antimicrobial activity against plant and human 
pathogenic fungal and bacterial strains in Chap. 9. Kumar et al. explain about pig-
ments produced by soil fungi and their potential applications in medical, textile 
coloring, food coloring, and cosmetics in Chap. 10. The endophytes that may con-
tribute to their host plant and for the pharmaceutically important bioactive sub-
stances, as the search for better chemotherapeutic agents remains an important 
challenge, have been described by Carvalho et  al. in Chap. 11. Chapter 12 by 
Sharma and Salwan describes the extracellular enzymes from Trichoderma and 
their role in the production of biofuel from nonedible biomass. Raven et al. high-
light the third-generation biofuels generated with the assistance of fungi in Chap. 
13. Diwan and Gupta discuss the advent of single cell oil and realization of its mul-
tiple prospects and possibilities in Chap. 14. Recent advancement and the way for-
ward for Cordyceps have been discussed in Chap. 15 by Chaubey et  al. Finally, 
Rashmi et al. describe about the status of synthetic biology for production of value- 
added products and bioactive compounds from fungi for advancements of fungal 
white biotechnology in Chap. 16.

Overall, great efforts have been carried out by Dr. Ajar Nath Yadav, his editorial 
team, and scientists from different countries to compile this book as a highly unique, 
up-to-date source on fungal white biotechnology for the students, researchers, sci-
entists, and academicians. I hope that the readers will find this book highly useful 
and interesting during their pursuit on fungal biotechnology.

Foreword



vii

Vice Chancellor
Eternal University Dr. H.S.Dhaliwal
Baru Sahib, Himachal Pradesh, India

Dr. H. S. Dhaliwal is presently the Vice Chancellor of 
Eternal University, Baru Sahib, Himachal Pradesh, 
India. Dr. Dhaliwal holds Ph.D. in Genetics from the 
University of California, Riverside, USA (1975). He 
has 40 years of research, teaching, and administrative 
experience in various capacities. Dr. Dhaliwal is a 
Professor of Biotechnology at Eternal University, Baru 
Sahib, from 2011 until to date. He had worked as 
Professor of Biotechnology at Indian Institute of 
Technology (IIT), Roorkee (2003–2011); Founder 
Director of Biotechnology Centre, Punjab Agricultural 
University (PAU), Ludhiana (1992–2003); Senior 
Scientist and Wheat Breeder-cum-Director at PAU’s 
Regional Research Station, Gurdaspur (1979–1990); 
Research Fellow at the Friedrich Miescher Institute 
(FMI), Basel, Switzerland (1976–1979); and D.  F. 
Jones Postdoctoral Fellow at the University of 
California, Riverside, USA (1975–1976). Dr. Dhaliwal 
was elected as Fellow at National Academy of 
Agricultural Sciences, India (1992), and has worked as 
Visiting Professor in the Department of Plant Pathology, 
Kansas State University, Kansas, USA, (1989) and 
Senior Research Fellow at the International Maize and 
Wheat Improvement Center (CIMMYT), Mexico 
(1987). He has many national and international awards 
on his name such as Pesticide India Award from 
Mycology and Plant Pathology Society of India (1988) 
and cash award from the Federation of Indian Chambers 
of Commerce and Industry (FICCI) in 1985. He has to 
his credit more than 400 publications including 250 
research papers, 12 reviews, 15 chapters contributed to 
books, 105 papers presented in meetings and confer-
ences and abstracted, 18 popular articles, and 2 books/
bulletins/manuals. His important research contributions 
are identification of new species of wild diploid wheat 
Triticum urartu and gathered evidences to implicate T. 
urartu as one of the parents of polyploid wheat; Team 
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Preface

White biotechnology is drawing much attention as a solution to produce value- 
added product for human welfare. Fungi are used to synthesize functional bioactive 
compounds, hydrolytic enzymes, and compounds for plant growth promotion, bio-
control, and other processes for agriculture, medicine, industry, pharmaceuticals, 
and allied sectors. White fungal biotechnology is an emerging field in science arena 
that supports revealing of novel and vital biotechnological components. The fungi 
Aspergillus, Bipolaris, Cordyceps, Fusarium, Gaeumannomyces, Myceliophthora, 
Penicillium, Phoma, Piriformospora, Pleurotus, Trichoderma, and Xylaria are 
highly important fungal groups which can be utilized for production of different 
antibiotics, enzymes, pigments, and peptides useful in medical and industrial fields.

The present book on “Recent Advancement in White Biotechnology Through 
Fungi” Volume 2: Perspective for Value-Added Products and Environments covers 
agriculturally and industrially important fungi producing value-added products for 
agriculture, industry, and environments. The fungal community from different habi-
tats such as from extreme habitats as well as plant associated having capability to 
produced extracellular enzymes, secondary metabolites and bio-active compounds 
are useful for diverse processes targeted at therapeutics, diagnostics, bioremedia-
tion, agriculture, industries and environments. This book volume will be immensely 
useful to biological sciences, especially to microbiologists, microbial biotechnolo-
gists, biochemists, researchers, and scientists of fungal biotechnology. We are hon-
ored that the leading scientists who have extensive, in-depth experience and 
expertise in fungal system and microbial biotechnology took the time and effort to 
develop these outstanding chapters. Each chapter is written by internationally rec-
ognized researchers/scientists, so the reader is given an up-to-date and detailed 
account of our knowledge of the white biotechnology and innumerable agricultural 
industrial and environmental applications of fungi.

We are grateful to the many people who helped to bring this book to light. Editors 
wish to thank Dr. Eric Stannard, senior editor, Botany, Springer; Dr. Vijai Kumar 
Gupta and Maria G. Tuohy, series editors, Fungal Biology, Springer; and Mr. Rahul 
Sharma, project coordinator, Springer, for generous assistance, constant support, 
and patience in initializing the volume. Dr. Ajar Nath Yadav gives special thanks to 
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his exquisite wife Dr. Neelam Yadav for her constant support and motivations in 
putting everything together. Dr. Yadav also gives special thanks to his esteemed 
friends, well-wishers, colleagues, and senior faculty members of Eternal University, 
Baru Sahib, India.

Baru Sahib, Himachal Pradesh, India  Ajar Nath Yadav
Lucknow, Uttar Pradesh, India  Shashank Mishra
Faizabad, Uttar Pradesh, India  Sangram Singh
Gonda, Uttar Pradesh, India  Arti Gupta
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1.1  Introduction

Fungi are chemoheterotrophic organisms and are known to be present in subaerial 
and subsoil environments. They are known to play a major role as decomposers, 
simultaneously being important animal and plant mutualistic symbionts as well as 
pathogens, further being the spoilage organisms of natural as well as manufactured 
materials (Burford et al. 2003; Gadd 1999, 2006, 2007). They also play a chief role 
in maintaining soil structure, due to their filamentous branching growth and fre-
quent production of the exopolymer. Most of the fungi possess a filamentous growth 
habit and some are polymorphic, occurring as both filamentous mycelium and 
 unicellular yeasts or yeast-like cells (Gadd 2007; Gorbushina et al. 2002, 2003). 
The  filamentous mode of growth provides them the capability to adapt to both 
exploitative or explorative growth strategies, and the formation of linear organs of 
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aggregated hyphae for protected fungal translocation (Fomina et  al. 2005; Gadd 
2007). Interestingly, the earliest fossil of filamentous fungal remains appear to be 
from the mid- to late Precambrian (Gadd 2007) and have been revealed to be 
extremely diverse by Devonian, times, when forms belonging to major groups and 
even some genera present today are found (Gadd 2007; Heckman et al. 2001). Since 
that time fungi have been known to be the components of the microbial communi-
ties of any terrestrial environment (Hawksworth 2001) which may either be hostile 
habitats such as the Arctic and Antarctic and hot deserts or may be metal-rich and 
hypersaline soils (Burford et al. 2003). The majority of fungi have been demon-
strated to inhabit soil environments, which are known to be apparently much more 
hospitable as compared to the bare rock surfaces. Fungal communities in soil are 
diverse, where they may occur as plant and animal pathogens, free-living or in sym-
biotic associations, as well as unicellular yeasts (Gadd 2007). They may be present 
inside the plants which are known as the endophytic fungi where they may reside 
without causing any harmful effect to the host plant. Plants are in fact considered to 
be a major reservoir of abundance of endophytes (Rana et al. 2016a, b, 2017). It has 
been estimated that more than one million fungal species inhabit different genera of 
the plant which reflects on hyperdiversity of endophytic fungi (Bilal et al. 2018; 
Strobel and Daisy 2003). Endophytic fungi are known to be one of the best sources 
of natural bioactive compounds which have potential applications in diverse fields 
such as food industry, medicine, and agriculture (Bilal et  al. 2018; Strobel et  al. 
2004; Verma et al. 2009; Yadav et al. 2015b).

Numerous endophytes have been examined for their capability to produce 
metabolites which promote the growth of the plants (Verma et  al. 2013, 2014). 
Further, there is rhizospheric fungi which also play an important role in plant growth 
promotion by different mechanisms such as production of diverse plant growth reg-
ulators; making availability of various nutrients to the plants such as phosphorus, 
potassium, zinc  etc.; and production of the siderophores and diverse hydrolytic 
enzymes; furthermore, these also help the plants to overcome abiotic stress condi-
tions such as salinity, drought, and high or low temperature, and all these character-
istics make them good source to be used as biofertilizers (Saxena et  al. 2015a; 
Suman et al. 2016; Verma et al. 2016b; Yadav and Yadav 2018b). Furthermore, they 
have also proved to be good biocontrol agents. Thus, these could be potent and 
novel alternatives to synthetic pesticides and chemical fertilizers, and such benefi-
cial microbes are perfect candidates for sustainable agricultural production (Kumar 
et al. 2018; Palaniyandi et al. 2013).

Thus, from past few decades, there has been a strong upsurge of fungal commu-
nity whether it may be in the agricultural sector or in the spheres of food, feed, and 
therapeutics. Adding more, their biocatalytic potential has been utilized for centu-
ries for production of bread, wine, vinegar, and many more products (Fig.  1.1). 
Even the first report of commercial application of yeast for production of alcoholic 
beverages from barley was by the Babylonians and Sumerians as early as 6000 BC 
(Biswas et al. 2018; Singh et al. 2016a; Yadav et al. 2018c). Adding more, microbes 
are favored sources for industrial enzymes among which fungi are in fact attractive 
producers of diverse enzymes as they are easily available and due to their fast 
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growth rate. Furthermore, genetic changes in microbial cells for elevated production 
of enzymes using recombinant DNA technology are also easy (Illanes et al. 2012; 
Singh et al. 2016a). Therefore, keeping in view the importance of the fungal com-
munities in the agriculture, industry and allied sectors, the present chapter deals 
with the impact of fungi in agriculture and fungal enzymes utilized in diverse indus-
trial and allied sectors.

1.2  Beneficial Impact of Fungal Communities in Agriculture

Plant growth-promoting fungi are gaining significant interest to be used as bioin-
oculants as they possess manifold benefits on the quantity as well as quality of the 
plants and because of the positive relation they exhibit with the ecological environ-
ment. Though most of the work on plant growth-promoting microbes (Verma et al. 
2015a, b, c, 2016a) is focused on bacteria as well as mycorrhizal fungi (Johansson 
et al. 2004; Kumar et al. 2018), fungi still possess certain characteristic features 
which are far superior to bacteria, for example, fungi are able to tolerate acidic con-
ditions better and they are in fact far better in mobilizing bound phosphates over 
bacteria (Kumar et al. 2018; Wahid and Mehana 2000). Furthermore, fungi have 
been demonstrated to produce phytohormones including indole-3-acetic acid (IAA), 
gibberellins (Kumar et al. 2018), and siderophores (Kumar et al. 2018; Milagres 
et al. 1999) (Fig. 1.2). Thus, this section deals with the role of fungi in plant growth 
promotion.

Fig. 1.1 Biotechnological applications of fungi and their value-added products in agriculture, 
health, industry, and environments
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Fig. 1.2 Multifunctional plant growth attributes of fungal community

D. Kour et al.



5

1.2.1  Nutrients Acquisition and Plant Growth

The utilization of microbial-based approaches is surely going to be novel alternative 
for reducing the environmental pollution which is on rise due to excessive use of 
chemical fertilizers so as to meet the nutrient requirements of the plants (Yadav 
2017; Yadav et al. 2018a; Yadav and Yadav 2018b). Soil harbors a range of microor-
ganisms, among them fungi are one of the members of mixed community catego-
rized by complex interactions. The interactions between the plants and the microbes 
in the rhizospheric region are one of the key determinants of health of the plants as 
well as the fertility of soil (Anwar et al. 2014; Karmakar et al. 2018; Verma et al. 
2017b; Yadav et al. 2016c). Fungi play an important role in making available vari-
ous nutrients such as phosphorus, iron, zinc, manganese and potassium to the plants 
which are usually unavailable.

1.2.1.1  Phosphorus Acquisition and Plant Growth

Phosphorus is one of the vital macronutrients next to nitrogen important for growth 
and development of plants (Hameeda et al. 2008; Karmakar et al. 2018). But about 
95–99% of soil phosphorus is present in insoluble form complexes with cations 
such as aluminum, calcium, and iron and cannot be utilized by the plants (Karmakar 
et al. 2018; Son et al. 2006). Thus, to fulfill the phosphorus requirements of the 
plants, phosphatic fertilizers are used, but chemical fertilizers are not eco-friendly, 
and thus there becomes a need for some eco-friendly alternate strategies to reduce 
the use of chemical fertilizers. There are diverse microbes including bacteria, fungi, 
and actinomycetes in soil which possess capability to solubilize phosphorus by pro-
ducing organic acids such as alpha-ketobutyric acid, citric acid, fumaric acid, glu-
conic acid, glyoxylic acid, 2-ketogluconic acid, malic acid, oxalic acid, succinic 
acid, and tartaric acid (Yadav and Saxena 2018; Yadav et  al. 2015a, 2017b, f). 
Furthermore, phosphatases are also known to play a chief role in transforming 
organic forms of phosphorus into plant available inorganic forms (Pandey et  al. 
2008; Yadav et  al. 2016a). Phosphorus-solubilizing microbes have been reported 
from different environmental niches (Gaba et al. 2017; Saxena et al. 2016; Singh 
et al. 2016b). Fungi have been reported to exhibit greater capability to solubilize 
insoluble phosphate as compared to bacteria (Nahas 1996; Pandey et  al. 2008; 
Yadav 2018).

Furthermore, there are reports on application of phosphorus-solubilizing fungi to 
crops which has been revealed to enhance the yield. Mittal et al. (2008) evaluated 
the impact of six phosphate-solubilizing fungi including two strains of Aspergillus 
awamori and four of Penicillium citrinum on the growth and seed production of 
Cicer arietinum in pot experiment under greenhouse conditions. The inoculation 
resulted in increase in the shoot height, seed number, and seed weight in inoculated 
plants though the increment in the studied parameters was found to be higher in 
inoculation with Aspergillus awamori strains. Kapri and Tewari (2010) evaluated 
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the effect of inoculation with P-solubilizing Trichoderma sp. on Cicer arietinum 
and found out that the inoculation with the P-solubilizing strain increased all the 
growth parameters studied which included fresh and dry weight of shoot as well as 
roots, shoot and root length in P-deficient soil containing only bound phosphate 
(TCP). Promwee et al. (2014) observed that the inoculating Hevea brasiliensis with 
phosphorus-solubilizing Trichoderma harzianum along with rock phosphate 
increased leaf number, plant height, stem circumference, shoot fresh weight, root 
fresh weight, shoot dry weight, and root dry weight as well as total phosphorus in 
leaves, as compared with the control consisting of only rock phosphate.

The study on  the combined effect of phosphorus-solubilizing Bacillus sp. and 
Aspergillus niger on growth and yield of Cicer arietinum has been done under a pot 
experiment (Saxena et al. 2015b). The results indicated that the overall growth of 
the plants was better with dual inoculation as compared to uninoculated control and 
single inoculations. Priyadharsini and Muthukumar (2017) studied the effect of 
inoculating Cajanus cajan with Curvularia geniculata and observed that inoculated 
plants showed better growth in comparison to uninoculated control plants. The 
study revealed that fungus mediated the growth through solubilization of phospho-
rus as well the production of IAA and concluded that the mechanism used by fungus 
for plant growth promotion would enable the use of this fungus as bioinoculant in 
plant production systems. Zhou et al. (2018) observed in greenhouse experiment 
that Alternaria sp. (A13) at the same time enhanced the dry root biomass along with 
secondary metabolite accumulation of Salvia miltiorrhiza. Further, the seedlings of 
Salvia miltiorrhiza colonized by Alternaria sp. showed noteworthy increase in fresh 
weight and dry weight, as well as enhancement in the contents of total phenolic 
acid, lithospermic acids A and B (LAA and LAB, respectively), respectively. The 
study finally concluded that Alternaria sp. (A13) not only contributed to the stimu-
lation of Salvia miltiorrhiza root growth but also boosted up the secondary metabo-
lism, thus suggesting its application potential as a biofertilizer for Salvia miltiorrhiza 
cultivation, especially in areas outside of its native growth regions.

Thus, phosphorus-solubilizing fungi could be utilized to make use of the fixed P 
in soil for the crops without causing any harm to the environment. Though there is 
a large number of phosphorus-solubilizing microbes in soil, their application to the 
crops is still limited and there is a need to explore more of them so that they could 
be used as biofertilizers in sustainable crop production.

1.2.1.2  Potassium Acquisition and Plant Growth

Potassium is the third most important macronutrient plays a chief role in the process 
of photosynthesis and synthesis of proteins and enzymes, provides resistance to 
disease and insects, regulates permeability of cell membranes, and keeps the proto-
plasm in a proper degree of hydration; further it also plays an integral part in the 
development of chlorophyll (Meena 2016; Verma et al. 2016a, 2017a). The defi-
ciency of potassium leads to stunted growth with shortening of internodes; reduc-
tion of photosynthesis; blackening of tips or margin of lower leaves of legumes, 
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maize, cotton, and tobacco and tubers in the case of potato; and either scorching or 
burning of all small grains (Ashley et al. 2005; Meena 2016).

Potassium is present in abundance in soil or is also applied to fields either as 
natural or as synthetic fertilizers, but the availability of potassium to plants is just 
1–2% and the rest remains bound to other minerals. The most common soil compo-
nents of potassium, 90–98%, are feldspar and mica (McAfee 2008; Meena 2016). 
Due to unavailability of potassium to plants, there comes the need of applying the 
fertilizers. Inorganic fertilizers are not directly toxic to humans and other life forms, 
but their presence completely disturbs the existing ecological balance, and the con-
tamination of the environment arises just because all the fertilizers which are applied 
are not taken up by the crop and removed at the harvest (Meena 2016). But, the use 
of potassium fertilizers has not solved the problem especially in developing coun-
tries such as India as it lays a major economic constraint because a large amount of 
money is spent just on potassium fertilizers alone. In order to combat this problem, 
there are diverse groups of microbes in soil which have been reported to solubilize 
insoluble as well as the fixed forms of potassium which are then easily absorbed by 
the plants (Gundala et  al. 2013; Meena 2016). The mobilization of potassium is 
greatly affected by various abiotic as well as biotic factors including the properties 
of soil such as pH, aeration, physicochemical characteristics, and presence of AMF, 
fungi, and bacteria and composition of the root exudates (Meena 2016). AMF 
increases the solubility of mineral form of potassium by releasing protons, H+, or 
CO2 and organic acid anions, for instance, malate, oxalate, and citrate.

Wu et al. (2005) evaluated the effects of arbuscular mycorrhizal fungus including 
Glomus mosseae or Glomus intraradices with or without nitrogen fixer; Azotobacter 
chroococcum, phosphorus solubilizers; Bacillus megaterium and potassium solubi-
lizers; and Bacillus mucilaginous on soil properties and the growth of maize. The 
application of biofertilizer containing mycorrhizal fungus and three species of bac-
teria considerably increased the growth of maize. The application of Glomus mos-
seae and Azotobacter chroococcum, Bacillus megaterium, Bacillus mucilaginous 
resulted in the highest biomass and seedling height. The results revealed that the 
inoculum increased total N, P, and K, also further improving organic matter content 
and total N in soil. Gore and Navale (2017) isolated 19 isolates from the rhizo-
spheric soils of Maharashtra, among which 3 fungal isolates were found to be best 
solubilizers of mica. All the three isolates were identified as Aspergillus niger with 
isolate KSF 3 showing maximum solubilization, i.e., 334.66 mg l−1 at 10 days after 
incubation.

1.2.1.3  Zinc Acquisition and Plant Growth

Zinc is another vital micronutrient for growth of plant. It is an important constituent 
of a variety of metabolic enzymes. Due to its poor mobility in plants, there is a need 
for a constant supply of available zinc to fulfill demands of the plants (Saravanan 
et al. 2007; Yadav et al. 2018b). Therefore, zinc is made available to the plants in the 
form of the fertilizers, one of them being zinc sulfate which in turn gets transformed 
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into diverse insoluble forms. This transformation depends upon certain factors such 
as type of soil and chemical reaction taking place in soil and is totally unavailable 
within 7 days of application in the environment (Rattan and Shukla 1991; Saravanan 
et al. 2007). Fungi have a chief role in biogeochemical change of the mineral rocks 
as well as an important role in mobilizing the insoluble compounds (Sutjaritvorakul 
et al. 2017). Thus, fungi can enhance the bioavailability of zinc to the plants. Fungi 
actually produce organic acids which enhance the mobilization of zinc present in 
the insoluble form to readily available form in soil solution (Adeyemi and Gadd 
2005; Sutjaritvorakul et al. 2017; Yadav et al. 2018d). A few fungal genera have 
been known which show capacity to solubilize insoluble zinc compounds such as 
Abisidia cylindrospora, Abisidia glauca, Abisidia spinosa, Aspergillus niger, and 
Penicillium simplicissimum (Coles et  al. 1999; Saravanan et  al. 2011). Ericoid 
mycorrhizae including Beauveria caledonica, Hymenoscyphus ericae, Oidiodendron 
maius, Paxillus involutus, Suillus luteus, and Suillus bovinus have also been known 
to solubilize insoluble zinc compounds (Saravanan et  al. 2011). Martino et  al. 
(2003) demonstrated the solubilization of insoluble inorganic zinc compounds by 
Oidiodendron maius. Sutjaritvorakul et  al. (2013) identified Aspergillus niger, 
Aspergillus sp., and Phomopsis sp. from zinc-containing rocks and mining soil as 
solubilizers of insoluble zinc compounds. It was found that about 87% of the tested 
fungi solubilized zinc oxide, whereas 61% and 52% solubilized zinc carbonate and 
zinc phosphate, respectively. Sutjaritvorakul et al. (2017) showed Aspergillus niger 
and Aspergillus sp. as solubilizers of zinc oxide nanoparticles which were isolated 
from zinc sulfide mineral ores.

1.2.1.4  Manganese Acquisition and Plant Growth

Another vital nutrient for the plants is manganese. It plays an important role in pho-
tosynthesis, formation of chloroplast, nitrogen metabolism, and synthesis of some 
enzymes. Further, it is among the most plentiful metals on the earth’s crust (Sinha 
and Khare 2013). The deficiency of manganese is one of the major problems mostly 
known to occur in sandy soils, organic soils, and heavily weathered, tropical soils 
further deteriorated by cool and wet conditions (Alloway 2008). The deficiency of 
Mn leads to low production of dry matter, low yield, high susceptibility to patho-
gens, and reduction of tolerance to abiotic stress conditions such as drought, heat, 
etc. On the contrary, if Mn is present in plant tissues in excess, it alters diverse 
processes including absorption, translocation, and utilization of calcium, magne-
sium, iron, and phosphorus, enzyme activity, and so on (Lei et al. 2007; Millaleo 
et al. 2010). Mn mostly occurs in the form of minerals such as carbonates, oxides, 
phosphorus, pyrophosphates, sulfides, etc. (Sinha and Khare 2013). In fact, the bio-
chemistry of Mn is rather complex in soil due to its presence in diverse oxidation 
states including 0, II, III, IV, VI, and VII (Millaleo et al. 2010). Diverse factors such 
as pH and redox conditions greatly influence Mn bioavailability in soils (Millaleo 
et al. 2010; Porter et al. 2004). In acidic soils and increased redox potential of Mn, 
oxides are easily reduced in soil exchange sites (Kogelmann and Sharpe 2006), 
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which increases the concentration of soluble Mn2+ (Watmough et al. 2007), which is 
actually the principal form of Mn in the soil solution (Adriano 2001) and the most 
available form of manganese to the plants (Millaleo et al. 2010). On the other hand, 
at higher pH chemical Mn2+ auto-oxidation is favored over MnO2, Mn2O3, Mn3O4, 
and even Mn2O7, which are not usually available to plants (Ducic and Polle 2005; 
Millaleo et al. 2010). Additionally, high pH supports the adsorption of manganese 
into soil particles further reducing its availability (Millaleo et  al. 2010). In soil, 
nutrients undergo a complex dynamic equilibrium of solubilization and insolubili-
zation that is significantly influenced by the soil pH as well as microflora ultimately 
affecting accessibility to plant roots for absorption. A number of microorganisms, 
particularly those in association with roots, possess capability to enhance plant 
growth and productivity (Altomare et  al. 1999; Kloepper et  al. 1988; Srivastava 
et al. 2013). In some cases, this effect has been known to involve solubilization of 
unavailable mineral nutrients (Goldstein 1995).

Altomare et al. (1999) evaluated the capability of plant growth-promoting and 
biocontrol fungus Trichoderma harzianum to solubilize in vitro some insoluble or 
sparingly soluble minerals. The strain solubilized MnO2, metallic zinc, and rock 
phosphate. Wei et al. (2012) demonstrated the capability of Aspergillus niger and 
Serpula himantioides to solubilize all the insoluble oxides when incorporated into 
solid medium: MnO2 and Mn2O3, mycogenic manganese oxide, and birnessite. 
Mohanty et al. (2017) isolated Aspergillus terreus, Aspergillus oryzae, Penicillium 
dalea, and Penicillium sp. as solubilizers of manganese from low-grade manganese 
mine tailings.

1.2.2  Bioprotection Using Fungal Communities

Use of pesticides in agriculture has led to groundwater as well as environmental 
pollution concerns, and further due to lack of efficient chemical agents, biological 
control agents are one of the most potent alternative approaches for controlling 
plant pathogens so that the use of pesticides could be reduced (Akhtar and Siddiqui 
2008; Dolatabad et  al. 2017). Fungi are among one of the novel and potential 
sources of biological control agents.

The study of Brum et  al. (2012) showed potential antagonistic activity of C. 
gloeosporioides and Flavodon flavus against Fusarium oxysporum f. sp. herbe-
montis. Erler and Ates (2015) showed the effectiveness of Beauveria bassiana and 
Metarhizium anisopliae against the larvae of Polyphylla fullo. Yuan et al. (2017) 
evaluated the role of Acremonium sp. (CEF-193), Leptosphaeria sp. (CEF-714), 
Penicillium simplicissimum (CEF-818), and Talaromyces flavus (CEF-642) on 
Verticillium wilt of cotton caused by defoliating V. dahliae (Vd080) in a green-
house experiment. It was found that all the treatments reduced the incidence of 
disease especially strains CEF-818 and CEF-714 which provided protection well. 
The treatment with Penicillium simplicissimum appreciably increased the seed cot-
ton yield. Penicillium simplicissimum (CEF-818) and Leptosphaeria sp. (CEF-
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714) also increased transcript levels for PAL, PPO, and POD, which actually leads 
to the increase of cotton defense reactions. Finally, the study suggested that seed 
treatment of cotton plants with strains CEF-818 and CET-714 can help in the bio-
control of V. dahliae and improve seed cotton yield in cotton fields. In another 
study of Saravanakumar et  al. (2017), the effect of Trichoderma harzianum 
(CCTCC-RW0024) on changes of maize rhizosphere microbiome and biocontrol 
of Fusarium stalk rot caused by Fusarium graminearum was investigated. The 
study revealed that the strain displayed high antagonistic activity, disease reduc-
tion, and biocontrol-related enzyme and gene expression and concluded that 
Trichoderma harzianum (CCTCC-RW0024) is an effective biocontrol agent against 
Fusarium stalk rot. Contreras-Cornejo et  al. (2018) investigated the effects of 
Trichoderma atroviride in providing Zea mays resistance against the insect herbi-
vore, Spodoptera frugiperda. The study observed increase in plant growth, reduction 
in herbivory, as well as altered feeding patterns after inoculating maize with 
Trichoderma atroviride and correlated plant protection with increase in the emission 
of volatile terpenes and accumulation of jasmonic acid. This section deals with diverse 
mechanisms used by fungi to provide protection to plants against pathogens.

1.2.2.1  Production of Siderophores

Iron is known to be the fourth most abundant element on the earth’s crust and is vital 
for the growth and developmental processes of every living organism. It regulates 
the biosynthesis of antibiotics, aromatic compounds, cytochromes, nucleic acids, 
pigments, porphyrins, siderophores, toxins, and vitamins (Saha et al. 2016). Iron 
plays an important role in a number of metabolic processes such as electron trans-
port chain, oxidative phosphorylation, photosynthesis, and tricarboxylic acid cycle 
(Yadav et al. 2017c, d). Recently, it has also been known to play an important role 
in the formation of the microbial biofilm where it regulates the surface motility of 
microorganism (Cai et al. 2010; Glick et al. 2010; Saha et al. 2016; Yadav et al. 
2017e, f). Iron exists in two states in aqueous solution including Fe2+ and Fe3+, but 
Fe3+ forms cannot be utilized by the plants as well as the microorganisms as they 
form oxides and hydroxides which are insoluble, in turn limiting the bioavailability 
(Desai and Archana 2011; Zuo and Zhang 2011). Microbes have developed numer-
ous ways for iron scavenging, one of these being siderophore-mediated acquisition 
of iron through specific receptor and transport system. Siderophores are low- 
molecular- weight, high-affinity ferric ion chelators that are excreted under iron star-
vation by diverse microbes such as bacteria and fungi and have also been known to 
be excreted by some plants. Generally, iron is acquired when excreted siderophores 
bind with the available ferric ion which forms ferri-siderophore complex, and this 
complex ultimately binds to the specific receptor protein that is present on microbial 
cell surface. The complex is translocated by active transport and is released inside 
the cell (Khan et al. 2017). Roots can also take up iron from this ferri-siderophore 
complex by diverse ways such as chelate degradation, direct uptake of the complex, 
and ligand exchange reaction.
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Siderophores of fungal origin are high-affinity iron-chelating, linear to cyclic 
oligomeric secondary metabolites (Renshaw et al. 2002; Speckbacher and Zeilinger 
2018). Siderophores are important metabolites in the response against oxidative 
stress in several fungi like Trichoderma virens, Gibberella zeae, Cochliobolus het-
erostrophus, Aspergillus fumigatus, and Aspergillus nidulans, furthermore playing 
an important role in conidial germination and sexual development (Oide et al. 2007; 
Speckbacher and Zeilinger 2018). There are different types of siderophores, and 
each one differs from one another in their chemical structure and properties. On the 
basis of chemical structure, siderophores have been categorized as carboxylate, cat-
echolate, and hydroxamate types. Fungi are known to produce generally carboxyl-
ate and hydroxamate type of siderophores. The most extensively studied for the 
production of the siderophores include Aspergillus fumigatus and Aspergillus nidu-
lans having 55 similar types of siderophores (Khan et al. 2017).

The production of the organic acids by fungi is possibly the reason that fungi 
produce hydroxamate type of the siderophores, which are stable down to pH  2 
(Szebesczyk et al. 2016; Winkelmann 2002). In fungi these are hydroxylated and 
alkylated ornithine based (Baakza et al. 2004; Khan et al. 2017). It consists of N5- 
acyl- N5-hydroxyornithine or N6-acyl-N6-hydroxylysine (Winkelmann 2002). There 
are different types of hydroxamate type of the siderophores that are produced by 
fungi such as coprogens which are chiral linear hydroxamate siderophores. These 
were firstly isolated from a culture of the Pilobolus (Hesseltine et  al. 1952; 
Szebesczyk et al. 2016) and are mostly produced by Penicillium sp. and Neurospora 
crassa (Szebesczyk et al. 2016). These have been also known to be produced by a 
number of phytopathogens and even by some human pathogens (Howard 1999). 
Another hydroxamate type of siderophore includes fusarinine known to be common 
in species of Aspergillus, Fusarium, Gliocladium, and Paecilomyces (Szebesczyk 
et al. 2016). In fact, Aspergillus fumigatus has been known to utilize fusarinine C 
and triacetyl fusarinine C for capturing extracellular iron (Khan et al. 2017). Further, 
ferrichromes present one of the largest families of hydroxamate-based siderophores. 
These are known to be produced by Aspergillus sp. and Penicillium sp. In fact by 
pathogen Aspergillus fumigatus (Howard 1999), certain phytopathogens are known 
to produce ferrichromes (Szebesczyk et al. 2016).

Nakamura et  al. (2017) showed ASP2397, a novel antifungal agent from 
Acremonium persicinum MF-347833 similar to ferrichrome. Another siderophore 
of this category is rhodotorulic acid known to be produced by some yeasts, chiefly 
by the basidiomycetous yeasts (Atkin et  al. 1970), and also by the smut fungi 
Sphacelotheca and Ustilago (Deml 1985). In fact, it was firstly isolated from culture 
of the Rhodotorula pilimanae (Atkin and Neilands 1968; Müller et al. 1985). In two 
ectomycorrhizal basidiomycetes, Laccaria laccata, common woodland fungus, and 
Laccaria bicolor, a model organism used in research, the principal siderophores 
have been reported which is the ester-containing siderophore linear fusigen in addi-
tion to coprogen, ferricrocin, and triacetylfusarinine C in small quantities 
(Haselwandter et al. 2013). There are only two non-hydroxamate siderophores that 
have been isolated and fully characterized including rhizoferrin isolated from 
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Rhizopus microsporus and pistillarin, produced by marine fungus Penicillium bilaii 
(Capon et al. 2007).

Siderophores are known to act as a potential biocontrol agent against harmful 
phyto-pathogens thus holding the capability to substitute hazardous pesticides. 
Segarra et al. (2010) studied the importance of iron concentration in the growth 
media for the activity and competitiveness of Trichoderma asperellum (T34) and 
pathogen (Fusarium oxysporum f. sp. lycopersici) on tomato plants using different 
concentrations of iron, and the study hypothesized that iron competition is one of 
the chief factors in the biocontrol activity exerted by Trichoderma asperellum 
(T34) against the pathogen. The study concluded that Trichoderma asperellum 
protected tomato plants from both Fusarium wilt and abiotic stress, i.e., toxic 
effects of Fe (III). In the study of Sun et al. (2017), CmSIT1 gene which is involved 
in the siderophore- mediated iron transport has been cloned as well as functions 
have been studied in mycoparasite of S. sclerotiorum, i.e., Coniothyrium minitans. 
The study revealed that the expression of this gene led to reduction of growth 
simultaneously enhancing the antifungal capability. The antifungal substances 
appreciably inhibited the infection of S. sclerotiorum on the leaves of rapeseed. 
Mukherjee et  al. (2018) studied the role of intracellular siderophores in 
Trichoderma-plant interactions for which authors obtained mutants in a non-ribo-
somal peptide synthetase, TvTex10, which was predicted to be involved in intracel-
lular biosynthesis of siderophores. The study concluded that mutants were impaired 
in inducing induced systemic resistance in maize against the foliar pathogen 
Cochliobolus heterostrophus.

1.2.2.2  Production of Antibiotics

Soil is very complex, with several constituents each one performing different func-
tions chiefly due to the activity of soil organisms (Al-Enazi et al. 2018; Ullah et al. 
2017). The microorganisms play an important role in soil ecosystem. The quality of 
soil is determined by its microbial composition and functioning. Fungi are very 
important for the soil ecosystem and play a considerable role in the daily life of 
human beings additionally important for agriculture, bioremediation, natural 
cycling, food industry, as bio-fertilizers (Karthikeyan et al. 2014; Yadav and Yadav 
2018a). Further, fungi are also an important source of secondary metabolites. 
Ecologically, soils have been considered to be fertile sources of antibiotic- producing 
microbes due to strong competition for nutrients and territory in this microbially 
rich habitat. The screening of antibiotics started with organisms from soils over 
60 years ago, and a high percentage of known secondary metabolites from fungi 
have been obtained from soil isolates. The production of secondary metabolites for 
instance antimicrobial agents is one of the most important uses of fungi which can 
actually be beneficial for medical therapy (Al-Daamy et  al. 2018; Farjana et  al. 
2014). Secondary metabolites are referred to as small organic molecules produced 
by an organism which are not necessary for their growth, development, and 
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reproduction; rather they play an important role in antagonism, competition, and 
self- defense mechanisms against other living organisms so as to allow the organism 
to occupy the niche and utilize the food. Fungi produce many antibiotics, exhibiting 
antibacterial and antifungal activities, respectively, which are widely used as drugs 
over the world especially the cephalosporin and fusidic acid and penicillin (Al-Enazi 
et al. 2018). Furthermore, endophytes of vascular plants are the most extensively 
explored ecological group during the past years (Karwehl and Stadler 2016). Fungal 
endophytes have been reported to produce novel antibacterial, anticancer, antifun-
gal, anti-inflammatory, anti-malarial, and antiviral substances (Higginbotham et al. 
2013; Supaphon et al. 2018; Wiyakrutta et al. 2004).

Al-Daamy et al. (2018) screened the filtrates of Aspergillus flavus, Aspergillus 
niger, Aspergillus ochraceus, Bacillomyces sp., Cladosporium sp., Penicillium 
notatum, and Trichoderma sp. for their antimicrobial activity against Bacillus sp., 
Enterobacter sp., Klebsiella sp., Pseudomonas sp., Staphylococcus sp., and 
Streptococcus agalactiae by disc technique. The study revealed Bacillus sp. to be 
the most sensitive to all fungal filtrations. Awad et al. (2018) evaluated Trichoderma 
viridae as  antimicrobial, antioxidant, and anticancer agent isolated from rhizo-
spheric soil of cucumber. The study showed that Trichoderma viride caused the 
inhibition of the mycelial growth of Fusarium solani, Rhizoctonia solani, and 
Sclerotium rolfsii. Furthermore, alcoholic extract of the fungal mycelia exhibited a 
potent antibacterial activity against Bacillus subtilis, E. coli, and Pseudomonas fluo-
rescens additionally also exhibiting considerable antifungal activity against Candida 
albicans, Fusarium solani, Fusarium oxysporum, Rhizoctonia solani, and Pythium 
ultimum. Ribeiro et al. (2018) showed inhibitory activity of extracts of Curvularia 
sp. and Diaporthe sp. against pathogenic Gram-negative as well as Gram-positive 
bacteria including E. coli, Pseudomonas aeruginosa, Staphylococcus aureus, and 
Staphylococcus epidermidis.

1.2.3  Biostimulation

The biostimulation approach uses microbial inoculants, biofertilizers, biochemi-
cals, and organic amendments for a long time to get better soil health, fertility, plant 
productivity, and soil remediation. Biostimulation is a technique that relies on 
increasing the activity of the indigenous microbes by adjusting the factors that may 
limit their activity, mainly oxygen and nutrients. In another term, biostimulation 
involves the application of a proper agent to soil to enhance the activity of indige-
nous microorganisms (Kour et  al. 2017a, b; Malina and Zawierucha 2007). The 
word biostimulant was first defined by Kauffman et al. (2007) according to which 
“biostimulants are materials, other than fertilizers, that promote plant growth when 
applied in low quantities.” Kauffman et al. (2007) generally classified biostimulants 
into three major groups which include humic substances (HS), hormone-containing 
products (HCP), and amino acid-containing products (AACP). Industry is a key 
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player in the promotion of the concept of biostimulants, including microorganisms. 
The companies, corporate sector created associations and also supported the organi-
zation of first international symposiums in November 2012, the “First World 
Congress on the use of biostimulants in agriculture,” which took place in Strasbourg 
regarded as a milestone into the academic area.

The natural constituents of the soil organic matter, resulting from the decomposi-
tion of plant, animal, and microbial residues, by action of soil microbes are referred 
to as humic substances (HS) (Eyheraguibel et al. 2008). For the long time, humic 
substances are recognized to improve the physical, chemical, and biological proper-
ties of soil by improving its fertility. Humic substances also play activity in stress 
protection. High-molecular-mass HS phenolic compounds are involved in a wide 
range of stress responses (Olivares et al. 2015; Schiavon et al. 2010). By chemical 
and enzymatic method, amino acids are obtained from agro-industrial by-products, 
plant sources, and animal wastes (Calvo et al. 2014; Du Jardin 2012). These com-
pounds have been shown to play multiple roles as biostimulants of plant growth 
(Calvo et al. 2014). Hormonal activities are also reported in complex protein and 
tissue hydrolysates (Colla et al. 2014). Protein hydrolysates are known to increase 
microbial biomass and activity, soil respiration, and soil fertility.

The interaction of fungi with plant roots occurs in different ways, from mutual-
istic symbioses to parasitism (Behie and Bidochka 2014). Over 90% of all plant 
species mycorrhizal fungi establish symbioses arbuscule-forming mycorrhiza 
(AMF), where fungal hyphae penetrate root cortical cells and form branched struc-
tures called arbuscules (Behie and Bidochka 2014; Bonfante and Genre 2010). 
Application of fungal-based products when applied to plants if promote the nutri-
tion effectiveness, easiness to stress, crop productivity, etc. should fall under the 
concept of biostimulants (du Jardin 2015). Endophytic fungi like Trichoderma sp. 
and Piriformospora indica reported to colonize the roots of plants and transfer 
nutrients to their hosts (Behie and Bidochka 2014). In the biotechnological indus-
tries, Trichoderma spp. have been used for their biopesticidal and biocontrol capaci-
ties and are also source of enzymes. These fungal endophytes may be regarded as 
biostimulants (Mukherjee et al. 2013; Nicolas et al. 2014).

The phytohormones such as auxins, cytokinins, gibberellic acid, abscisic acid, 
and salicylic acid are signal molecules produced within plants in extremely low 
concentrations. Some phytohormones also occur in microorganisms, such as unicel-
lular fungi and bacteria. Organic compounds of phytohormones, except for nutri-
ents, are called biostimulants. Auxins are indole-derived hormones which 
are involved in plant developmental processes, such as cell division, differentiation 
and organ formation and senescence further also control biotic and abiotic stress 
responses in plants (Benjamins and Scheres 2008; Kim et  al. 2011; Okal et  al. 
1999). Auxins hormones could have an endogenous role in many fungal species 
(Gruen 1959; Ulrich 1960). Auxins are involved in symbiotic interactions between 
plants and bacteria or fungi. They are also vital for the beginning of nodule forma-
tion in the nitrogen-fixative bacterial symbiosis (Hirsch and Fang 1994) and for the 
invasion of mycorrhizal fungi (Etemadi et al. 2014).
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The cytokinins are well known for developmental processes in plant, for instance, 
development of root and shoot, cell differentiation, and delay of senescence 
(Barciszewski et al. 1999; Peleg et al. 2011). Fungal species whether saprophytic, 
pathogenic, or symbiotic are known for their ability to produce CKs (Cooper and 
Ashby 1998; Murphy et al. 1997). Chanclud et al. (2016) in his study reported that 
endogenous and exogenous CKs are required for oxidative stress tolerance in the 
rice blast fungus Magnaporthe oryzae. Gibberellic acid was for the first time pro-
duced by Gibberella fujikuroi, the fungus which causes “foolish seedlings” disease 
of rice. GAs play an important role in the control of germination, flowering, cell 
division, and internode elongation (Brian et al. 1954; Lange and Lange 2006; Swain 
and Singh 2005). ABA is the key hormone for plant abiotic stress responses (Peleg 
and Blumwald 2011). The abscisic acids provide drought tolerance in plants along 
with stomatal closure (Beardsell and Cohen 1975). In Cercospora risicola firstly 
production of abscisic acid was known (Norman et al. 1983). The abscisic acid in 
Magnaporthe oryzae reported to increase the germination rate and the development 
of appressoria (Spence et al. 2015).

Certain literature reported fungi can also produce phytohormones which can pro-
mote the growth and development of plant and also induces acceptance against vari-
ous environmental stress factors (Priyadharsini and Muthukumar 2017). 
Phytohormones play a significant role in symbiotic associations of plants with 
arbuscular mycorrhizae and rhizobial. The plant hormones secreted by plant as 
strigolactones initiate the growth of arbuscular mycorrhizae and attract them toward 
the roots (Gutjahr 2014). Waqas et  al. (2012) isolated and examined endophytic 
fungi Phoma glomerata LWL2 and Penicillium sp. LWL3 significantly promoted 
the growth of GAs-deficient dwarf mutant Waito-C and Dongjin-beyo rice by secre-
tion of phytohormones viz. gibberellins (GAs) and indoleacetic acid (IAA). Lei and 
Zhang (2015) reported in their study that Trichoderma asperellum Q1 exhibited the 
ability to increase the levels of three phytohormones in cucumber seedling indole-
acetic acid (IAA), gibberellic acid (GA), and abscisic acid (ABA).

Barea and Azcón-Aguilar (1982)  studied Glomus mosseae which forms 
vesicular- arbuscular mycorrhiza for phytohormone production. Paper partition 
chromatography and specific bioassays specified microorganism synthesized at 
least two gibberellin-like substances, one with Rf corresponding in position to 
authentic gibberellic acid, and four substances with the properties of cytokinins. 
Khan et al. (2011) identified a new strain of Aspergillus fumigatus as an endophytic 
fungus, which is little known for exogenous gibberellins (GAs) production. This 
novel endophytic fungus has reprogrammed soybean metabolism to improve plant 
growth and increase isoflavone contents under salt stress. The phytohormones, 
abscisic acid and cytokinin, previously were considered to be present exclusively 
in plants, but rising verification support that these phytohormones are found in a 
various organisms. Few findings have examined fungi for the existence of these 
“plant” hormones. Twenty temperate forest fungi of differing nutritional modes 
(ectomycorrhizal, wood-rotting, saprotrophic) were studied. The study indicated 
fungi have the capacity to synthesize abscisic acid and cytokinin, these two classes 
of phytohormones (Morrison et al. 2015).
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1.3  Fungi and Fungal Enzymes in Industrial Processes

Enzymes from microbes have gained great appreciation worldwide for their exten-
sive uses in a variety of sectors whether it is food industry, agriculture, chemical 
industry, or medicine. In the field of medicine, these are used to treat health disor-
ders associated with deficiency of human enzymes caused by genetic problems 
(Anbu et  al. 2015; Singh et  al. 2016a). The processes mediated by enzymes are 
speeding up in the food industry, pharmaceutical industry, textile industry, paper 
industry, and leather industry and are gaining interest because of certain advantages 
such as reduced process time, intake of low energy input, cost-effectiveness, greater 
efficiency, nontoxicity, higher-quality products, and eco-friendly characteristics 
(Gurung et al. 2013; Kamini et al. 1999; Singh et al. 2016a) (Table 1.1). The produc-
tion of microbial enzymes at industrial level is essential due to high and better per-
formances of enzymes from diverse microbes that work under a wide range of 
chemical as well as physical conditions. Furthermore, as per the requirement of 
industries, microbial enzymes can be cultured chiefly by gene manipulations. This 
section describes about diverse fungal enzymes which are used in different indus-
tries for different purposes (Fig. 1.3).

1.3.1  Baking Industry

Baking is a common name which is used for the production of baked goods, which 
have wheat flour as its chief ingredient and key source of enzyme substrates for the 
product (Van Oort 2009; Miguel et al. 2013). The baked products include bread, 
cake, cookies, crackers, pastries, pies, and tortillas. Baked goods such as gluten-free 
products or rye bread are also included in baked products (Miguel et al. 2013). The 
development of bread process was a significant event in mankind. After the nine-
teenth century, with the advancements in agricultural mechanization, the quality of 
the bread was greatly improved and then white bread became a product within 
almost everyone’s reach (Dupaigne and Westbrook 1999). But the major aspect 
which made a great contribution to evolution of the baking market was the introduc-
tion of industrial enzymes in the baking process (Miguel et al. 2013). The process 
of baking makes use of enzymes from three diverse sources including the endoge-
nous enzymes in flour, enzymes which are associated with the metabolic activity of 
the dominant microorganisms, and exogenous enzymes which are added in the 
dough (Di Cagno et al. 2003). Diverse microbial enzymes are used in the baking 
industry, but this section will focus on fungal enzymes used in the baking industry.

Hemicellulases are a class of enzymes that involves the hydrolysis of hemicel-
luloses, which are a group of polysaccharides consisting of arabinoxylan, arabino-
galactan, xylan, and xylobiose (Shallom and Shoham 2003). This group consists of 
an important enzyme, i.e., xylanase also known as endoxylanase and initially termed 
as pentosanase (Collins et  al. 2005). Xylanases are glycosidase catalyzing the 
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Table 1.1 Industrial applications of fungal enzymes

Enzymes Function Fungus References

Dairy industry
Acid proteinase Milk coagulation Aspergillus sp. Vishwanatha 

et al. (2010)
Lipase Faster cheese ripening, flavor 

customized cheese
Aspergillus niger, 
A. oryzae

Neelakantan 
et al. (1999)

Lactases Milk for people with milk 
tolerance problems especially 
infants

Aspergillus niger, 
A. oryzae

Smart et al. 
(1985)

Catalase Significant improvement in the 
quality of cheese

Aspergillus niger Saxena et al. 
(2001)

Baking industry
Xylanase Dough conditioning Aspergillus niger Saxena et al. 

(2001)
Lipase Dough stability and conditioning Aspergillus niger Saxena et al. 

(2001)
Glucose oxidase Dough strengthening Aspergillus niger, 

Penicillium 
chrysogenum

Saxena et al. 
(2001)

Proteases Improvements in the aroma of 
bread

Aspergillus 
oryzae

Taylor and 
Richardson 
(1979)

Beverage industry
Pectinase Depectinization Aspergillus 

oryzae, 
Penicillium 
funiculosum

Yamasaki et al. 
(1964)

Amylase Used in brewing and fermentation 
industries, the laundry industry

Aspergillus niger, 
Aspergillus 
oryzae

El-Zalaki and 
Hamza (1979) 
Jin et al. 
(1998)

Glucose oxidase Oxygen removal from beer Aspergillus niger Saxena et al. 
(2001)

Cellulase Fruit liquefaction Aspergillus niger, 
Trichoderma 
atroviride

Singh et al. 
(2016a)

Protease Restrict haze formation Aspergillus niger Singh et al. 
(2016a)

Naringinase Debittering Aspergillus niger, 
Aspergillus 
oryzae, A. usamii

Bram and 
Solomons 
(1965), Kishi 
(1955)

Naringinase Debittering Cochiobolus 
miyabeanus

Ito and 
Takiguchi 
(1970)

Naringinase Debittering Coniothyrium 
diplodiella

Nomura (1965)

(continued)
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Table 1.1 (continued)

Enzymes Function Fungus References

Naringinase Debittering Penicillium 
decumbens

Fukumoto and 
Okada (1974)

Naringinase Debittering Phanopsis citri Ito and 
Takiguchi 
(1970)

Naringinase Debittering Rhizotonia solani Ito and 
Takiguchi 
(1970)

Naringinase Debittering Rhizopus 
nigricans

Shanmugam 
and Yadav 
(1995)

Detergent industry
Amylase Carbohydrate stain removal Aspergillus sp. de Souza 

(2010)
Lipase Fat stain elimination Aspergillus 

oryzae, A. flavus
Greenough 
et al. (1996)

Protease Protein stain removal Aspergillus 
oryzae

Vishwanatha 
et al. (2009)

Cellulase Color clarification Aspergillus niger Kuhad et al. 
(2011)

Leather industry
Neutral protease Dehairing, soaking Aspergillus niger, 

A. flavus
de Souza et al. 
(2015)

Lipase Degreasing Aspergillus 
oryzae, A. flavus

Singh et al. 
(2016a)

Amylase Fiber splitting Aspergillus sp. Singh et al. 
(2016a)

Organic synthesis
Lipase Synthesis of pharmaceuticals, 

polymers, biodiesels, 
biosurfactants

Aspergillus 
oryzae, A. flavus

Singh et al. 
(2016a)

Laccase Synthesis of an indamine dye, 
conducting polyaniline

Coriolus hirsutus Baker et al. 
(1996) 
Karamyshev 
et al. (2003)

Laccase Synthesis of 
3-(3,4-dihydroxyphenyl)-
propionic acid derivatives

Pycnoporus 
cinnabarinus

Ponzoni et al. 
(2007)

Laccase Polymerization to functional 
polymers

Pycnoporus 
coccineus

Uyama and 
Kobayashi 
(2002)

Laccase Oxidative coupling of 3-methyl 
2-benzothiazolinone hydrazone 
and methoxyphenols

Pyricularia 
oryzae

Setti et al. 
(1999)

(continued)

D. Kour et al.



19

Table 1.1 (continued)

Enzymes Function Fungus References

Laccase Synthesis of aromatic aldehydes Trametes 
versicolor

Fritz-Langhals 
and Kunath 
(1998)

Laccase Polymerization of bisphenol A Trametes villosa Uchida et al. 
(2001)

Laccase Oligomerization of protein Trametes hirsuta Mattinen et al. 
(2006)

Laccase Oxidation of sugars derivatives Trametes 
pubescens

Marzorati et al. 
(2005)

Laccase Cross-linking of recombinant 
proteins

Pyricularia 
oryzae

Suderman 
et al. (2006)

Laccase Synthesis of 
3,4-dihydro-7,8-dihydroxy-2H- 
dibenzofuran-1-ones

Agaricus bisporus Hajdok et al. 
(2007)

Laccase Synthesis of poly(catechin) Myceliophthora Kurisawa et al. 
(2003)

Waste management
Extracellular enzymes Dye degradation Trametes 

versicolor
Libra et al. 
(2003)

Laccase Reduction of the phenolic 
components in olive-mill 
wastewater

Lentinula edodes Casa et al. 
(2003)

Ligninases, acid 
protease, end0-1,4- 
glucanas, exo- 
1,4-β-glucosidase, 
cellobiose oxidase

Degrade a wide variety of 
structurally diverse organic 
compounds, including a number 
of environmentally persistent 
organopollutants

Phanerochaete 
chrysosporium

Bumpus and 
Aust (1987)

Laccase Biodegradation of different 
Malachite Green, Azure B, Poly 
R-478, Anthraquinone Blue, 
Congo Red, Xylidine

Coriolus 
versicolor

Levin et al. 
(2005)

Laccase Biodegradation of Acid Blue 62, 
Acid Blue 40, Reactive Blue 81

Cerrena unicolor Michniewicz 
et al. (2008)

Laccase Biodegradation of Chicago Sky 
Blue, Poly B-411, Remazol 
Brilliant Blue R, Trypan Blue

Daedalea 
quercina

Baldrian 
(2004)

Laccase Biodegradation of Reactive Black 
5

Funalia trogii Mazmanci and 
Ünyayar 
(2005)

Laccase Biodegradation of Remazol 
Brilliant Blue Royal (RBBR), 
Drimaren Blue CL-BR

Funalia trogii Erkurt et al. 
(2007)

Laccase Biodegradation of Remazol 
Brilliant Blue R, Remazol 
Brilliant Blue RR, Remazol Red 
RR, Remazol Yellow RR

Trametes 
versicolor

Christian et al. 
(2005)
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 endohydrolysis of 1,4-β-D-xylosidic linkages in xylan and arabinoxylan. These 
have been reported from diverse groups archaea, bacteria, as well as fungi (Verma 
and Satyanarayana 2012).

1.3.1.1  Xylanases

Xylanases find wide application in the baking industry. They are used to improve 
the strength of the gluten network, ultimately improving the quality of bread (Butt 
et al. 2008; Gray and Bemiller 2003). They make the dough more tolerant to differ-
ent qualities of flour and also to variations that occur in processing parameters. 

Fig. 1.3 Fungal enzymes and their biotechnological applications in diverse sectors
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Xylanases are known to transform water-insoluble hemicelluloses into soluble 
form, which binds water in the dough, thus reducing the firmness of the dough and 
further improving firmness of dough as well as creation of finer and more uniform 
crumbs. Finally, the dough becomes more machine friendly and does not stick to 
different parts of the machinery (Rouau 1993). Adding more, xylanases also 
decrease the sheeting work requirements and considerably increase the volume of 
the baked bread (Dervilly et al. 2002; Harbak and Thygesen 2002). Furthermore, 
the addition of xylanases during the processing of dough is expected to enhance the 
concentration of arabinoxylo-oligosaccharides in bread, which is beneficial for 
human health (Bhat 2000). Thus, xylanases greatly improve the quality of biscuits, 
cakes, and other baked products (Poutanen 1997).

1.3.1.2  Phytases

Phytases are a class of phosphatases which exhibit capability to release at least one 
phosphate from phytate in vitro. Microbial phytases are among the most promising 
for biotechnological applications. Extracellular phytate-degrading enzymes have 
been reported in the molds and yeast. Phytases have been reported from Aspergillus, 
Candida, Humicola, Fusarium, Myceliophthora, Penicillium, Pichia, Rhizomucor, 
Rhizopus, Sporotrichum, Schizosaccharomyces, Thermoascus, Williopsis, Yarrowia, 
and Zygosaccharomyces (Gupta et al. 2014; Kaur et al. 2017; Kumar et al. 2016, 
2017; Mitchell et al. 1997; Nampoothiri et al. 2004; Pable et al. 2014; Ushasree 
et al. 2017; Yadav et al. 2017a) (Fig. 1.4). Phytase has been known to be an out-
standing bread-making improver (Afinah et al. 2010). It is known that adding com-
mercial fungal phytase from Aspergillus niger in the dough ingredients consisting 
of fiber formulation speeds up proofing, greatly improves bread shape, increases 
specific volume, and adds to softness to the crumb. All these improvements in bread 
quality have been demonstrated to be associated with an indirect impact of phytase 
on α-amylase activity (Afinah et al. 2010; Greiner and Carlsson 2006).

1.3.1.3  Lipases

Lipases or triacylglycerol acylhydrolases are ubiquitous enzymes found in animals, 
plants, fungi and bacteria. They are of physiological significance and also possess 
industrial potential. Lipases exhibit the sole feature of acting at the interface between 
an aqueous and a non-aqueous phase. They are able to synthesize esters from glyc-
erol and long chain fatty acids when the water activity is low (Aravindan et  al. 
2007). The use of lipases in the baking industry is in fact recent when compared to 
α-amylases and proteases. Extracellular secretion of lipases has been well known in 
fungi, mainly in hyphomycetes, zygomycetes (Akhtar et al. 1983; Gopinath et al. 
2013). Lipolytic activity has been reported in Aspergillus sp., Acremonium strictum, 
Candida antarctica, Candida rugosa, Cunninghamella verticillata, Humicola 
 lanuginose, Kluyveromyces sp., Lachancea sp., Lipomyces starkeyi, Mucor sp., 
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Fig. 1.4 Industrial enzymes producing of fungal community
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Penicillium sp., Pichia burtonii, Rhizopus sp., Rhodotorula glutinis, Saccharomyces 
lipolytica, Torulaspora sp., Trichoderma lentiforme, Yarrowia lipolytica, and 
Zygosaccharomyces sp. (Romo-Sánchez et al. 2010; Verma et al. 2017c; Wang et al. 
2018). Lipases are known to enhance the flavor content of bakery products (Ray 
2012). They have also been found to be effectual in reducing the initial firmness and 
enhancing the specific volume of breads (Keskin et al. 2004). Texture and softness 
could be improved by lipase catalyzation (Laboret and Perraud 1999; Ray 2012).

1.3.1.4  Laccases

Laccase is a kind of copper-containing polyphenol oxidase oxidizing diamines, 
polyphenols, methoxy-substituted phenols, and a significant range of other com-
pounds. These can be obtained from bacteria, fungi, and plants (Gianfreda et al. 
1999). Most biotechnologically useful laccase is of fungal origin. There are more 
than 60 fungal strains from Ascomycota, Basidiomycota, Zygomycota that are 
reported to have maximum laccase activity (Arpita and Kumar 2018; Kiiskinen 
et al. 2004b). Laccases are utilized in the baking industry especially in the process 
of bread making where its activity results in improved volume, texture, flavor, and 
freshness of bread. The use of laccases also improves the machinability of the dough 
(Minussi et al. 2002). Furthermore, it also improves the crumb structure and soft-
ness of the baked product as well as increases the strength and stability and also 
reduces the stickiness.

1.3.1.5  Amylases

Amylases are one of the most important and oldest used industrial enzymes. 
Amylases hydrolyze starch molecules into diverse products such as dextrins and 
progressively smaller polymers composed of glucose units (Gupta et  al. 2003a; 
Windish and Mhatre 1965). These enzymes are of great importance in present-day 
biotechnology possessing different applications such as in food, fermentation, tex-
tile, and paper industries (Gupta et al. 2003a; Yadav et al. 2016b). Amylases can be 
obtained from numerous sources, such as plants, animals, and microorganisms, but 
microbial sources are the preferred ones which are able to meet industrial demands. 
In fact, fungal α-amylases have been permitted as bread additives since 1955 in the 
USA and in 1963 in the UK after confirmation of their Generally Recognized As 
Safe (GRAS) status (Pritchard 1992). Fungal sources are limited to terrestrial iso-
lates, mostly to Aspergillus and Penicillium (Kathiresan and Manivannan 2006). 
Aspergillus oryzae and Aspergillus niger produce significant quantities of enzymes 
that are used expansively in the industry. The thermophilic fungus Thermomyces 
lanuginosus is an excellent producer of amylase (de Souza 2010).

The baking industry has been utilizing this enzyme for hundreds of years for 
manufacturing a wide array of high-quality products. The addition of α-amylases to 
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the dough enhances the fermentation rate and reduces of the viscosity of dough, 
resulting in improvements in the volume and texture of the product (de Souza 2010). 
Furthermore, it is also known to generate extra sugar in the dough, which greatly 
improves the crust color, taste, and toasting qualities of the bread. Adding more, 
amylases also possess an anti-staling effect in bread baking, and they improve the 
softness retention of baked goods, further causing an increase in the shelf life of 
these products (Gupta et al. 2003a; Van Der Maarel et al. 2002).

1.3.2  Pharmaceutically Important Fungal Enzymes

1.3.2.1  Tannases

Tannases comprise two classes of enzymes, including the tannin acyl hydrolases 
and ellagitannin acyl hydrolases. Microbes are the most preferred source of tan-
nases. Fungi including Aspergillus sp., Paecilomyces variotii, Penicillium sp., 
Verticillium sp., (Battestin and Macedo 2007; González et  al. 2017; Kasieczka- 
Burnecka et al. 2007) have been known to produce tannases. Tannases are known to 
produce gallic acid and propyl gallate (Belmares et al. 2004; Kar et al. 2002). The 
former finds it use in the pharmaceutical industry for the synthesis of antibacterial 
drugs (Belmares et al. 2004).

1.3.2.2  Lipases

Microbial lipases are used to enrich polyunsaturated fatty acids (PUFAs) from ani-
mal and plant lipids, such as borage oil, menhaden oil, and tuna oil (Dong et al. 
1999). A lot of polyunsaturated fatty acids are necessary for normal synthesis of 
lipid membranes and prostaglandins. Free polyunsaturated fatty acids and their 
mono- and diacylglycerides are used for the production of an array of pharmaceuti-
cals (Sharma et al. 2001; Yadav 2015). Additionally, the lipases possess the capabil-
ity to resolve racemic mixtures by the synthesis of a single enantiomer which is 
currently exploited for drug production by the pharmaceutical industry (Houde 
et al. 2004). Furthermore, the lipases are also utilized for the synthesis of a range of 
enantiopure molecules, for instance, esters, carboxylic acids, amides, and alcohols. 
These molecules are used in anti-inflammatory drugs such as ibuprofen and 
naproxen (Akimoto et  al. 1999); anticancer drugs (Taxol®, spergualin); antiviral 
drug, for instance, lobucavir; antihypertensive drug including captopril; anticholes-
terol drugs such as squalene synthase inhibitor; and anti-Alzheimer disease drug, 
i.e., [S]-2-pentanol and vitamin A (Kovac et al. 1996). Lipases also have the capac-
ity to catalyze synthetic reactions which has led to the production of lifesaving 
drugs. There are also reports on use of immobilized lipases for the synthesis of 
nutraceuticals (Aravindan et al. 2007).
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1.3.3  Fungal Enzymes in Dairy Industry

Dairy industry is another important industry in which enzymes form an important 
segment. There are different enzymes that are used in food industry for development 
and enhancement aroma, color as well as flavor and higher yield of milk products.

1.3.3.1  Proteases

Proteolytic enzymes are also referred to as peptidases, proteases, and proteinases. 
They possess the capability to hydrolyze peptide bonds in the molecules of the pro-
teins. Proteases have been categorized into endopeptidases and exopeptidases 
(Singh and Kumar 2019) and have been obtained from different groups of the organ-
isms including animals, plants, bacteria, and fungi. But at industrial level, either the 
bacterial or the fungal proteases are utilized. Microbes are known to secrete intra-
cellular as well as extracellular proteases under solid state as well as sub merged 
fermentation process. Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, 
and Aspergillus oryzae are known to be the best sources of protease enzyme (Singh 
and Kumar 2019). Proteases are used for the acceleration of cheese ripening and for 
the modification of milk proteins for reducing the allergenic properties of cow milk 
products for infants (Qureshi et al. 2015).

1.3.3.2  Lipases

The lipases are used for the hydrolysis of milk fats, pronounced cheese flavor, low 
bitterness, and prevention of rancidity. Lipases in combination with many other 
enzymes such as protease or peptidases are used to create good cheese flavor with 
low levels of bitterness (Wilkinson 1995). These are also used for the lipolysis of 
butter, fat, and cream (Aravindan et  al. 2007). Lipases are also added to Italian 
cheese, such as Romano, Parmesan, and provolone, to enhance their flavor (Custry 
et al. 1987).

1.3.3.3  Lactase

Lactase or β-galactosidase catalyzes the hydrolysis of lactose into glucose and 
galactose. Lactases can be obtained from animals, plants, bacteria, fungus, yeasts, 
and molds. Commercial production of lactase enzymes is developed from Aspergillus 
niger, Aspergillus oryzae, and Kluyveromyces lactis (Mehaia and Cheryan 1987). 
These are used as a digestive aid and to increase the solubility as well as sweetness 
in milk products (Qureshi et al. 2015; Soares et al. 2012). It is also utilized either to 
minimize or remove lactose content of milk for lactose-intolerant people so that 
diarrhea, severe tissue dehydration, and sometimes fatal consequences could be 
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prevented (Kardel et al. 1995; Mahoney 1997; Pivarnik et al. 1995). Lactases are 
also used to enhance the lactase-treated milk. Furthermore, these also assist in man-
ufacturing of ice cream as well as preparation of yogurt (Singh and Kumar 2019).

1.3.3.4  Catalase

Another important enzyme for dairy industry includes catalase. These break down 
hydrogen peroxide into water and oxygen molecules, thus protecting cells from 
oxidative damage by reactive oxygen species (Singh and Kumar 2019). Commercial 
catalases are produced from Aspergillus niger through a solid-state fermentation 
process (Fiedurek and Gromada 2000). Catalases have a special application in 
cheese production. For the production of some cheeses such as Swiss cheese, hydro-
gen peroxide which is a strong oxidizer and toxic to the cells is used in the state of 
pasteurization. It is used to retain natural enzymes of milk that are useful for the 
finished product and flavor development of the cheese (Abada 2019; Perin et  al. 
2017).

1.3.3.5  Rennet

Rennet is one of the famous exogenous enzymes which is used in dairy processing, 
and has been used since 6000 BCE (Abada 2019). It is a combination of chymosin 
and pepsin and is used for coagulation of milk into solid curds for the production of 
cheese and liquid whey (Singh et al. 2016a). Rennin acts on the milk protein in two 
stages, by enzymatic and nonenzymatic action, finally resulting in coagulation of 
milk. Many microorganisms are known to produce rennet-like proteinases which 
can substitute the calf rennet. But Aspergillus oryzae, Endothia parasitica, Irpex 
lactis, Rhizomucor pusillus, and Rhizomucor miehei are expansively used for rennet 
production in cheese manufacture (Qureshi et al. 2015).

1.3.4  Fungal Enzymes in Textile Industry

Textile industry is another important industry utilizing diverse enzymes. In fact, 
textile industry is one of the sectors of industry holding major share in the global 
pollution. Thus, enzymes play a chief role in processing of the textiles and have 
become central part of the textile industry. The use of the enzymes in manufacturing 
of textile has been a tradition. Amylases are used for desizing process that involves 
the removal of starch from the fabric. Thus, α-amylase cleaves starch particles ran-
domly into water-soluble components which are removed by washing (Mojsov et al. 
2018). The α-amylases selectively remove  the size and do not attack the fibers 
(Ahlawat et al. 2009; Gupta et al. 2003a; de Souza 2010).
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Cellulases act on cotton yarns facilitating the removal of the indigo dye from the 
surface of the yarn. Sizing agents such as starch are applied to yarn before fabric 
production to ensure a fast and secure weaving process (Doshi and Shelke 2001). 
The stones initially used in textile industry have been replaced by cellulases which 
prevent the damage to the garments as well as the washing machine. Furthermore, 
it also removes the need of rinsing garments again and again to eliminate dust and 
thus reduces effluent load (Paul and Naik 1997).

Lipases are used to aid in the removal of size lubricants so that the fabric could 
be provided with better absorbency for enhanced levelness in dyeing. It also reduces 
the frequency of cracks and streaks in the denim abrasion systems. Commercial 
preparations that are used for the desizing of denim and other cotton fabrics have 
lipase enzymes (Handelsman et al. 1998; Hasan et al. 2006).

Pectinases in combination with amylases, cellulases, lipases, and other hemicel-
lulolytic enzymes for the removal of sizing agents have reduced the use of harsh 
chemicals in the textile industry, ultimately resulting in a lower discharge of waste 
chemicals to the environment, thereby improving both the safety of working condi-
tions for textile workers and the quality of the fabric (Hoondal et al. 2002).

Proteases are used for removal of the dull and stiff gum layer of sericin from the 
raw silk so that softness as well as the lusture could be achieved. Adding more, the 
treatments with proteases also modify the surface of wool and silk fibers to provide 
unique finishes (Doshi and Shelke 2001).

1.3.5  Fungal Enzymes in Food and Feed Industry

During the past four decades, the rapid development of enzyme industry is due to 
the advancement in biotechnology. As during ancient time, enzymes were used for 
the production of food products such as cheese, beer, wine, and vinegar (Kirk et al. 
2002). The plants, fungi, bacteria, and yeasts are known for their ability to produce 
most enzymes. The syntheses of enzymes by microbes are more advantageous as 
compared to enzymes synthesized by animal or vegetable sources. The microbial 
enzymes are appropriate biocatalysts for various industrial applications as they 
comprise lesser production costs, large-scale production in industrial fermenters, 
opportunity of genetic manipulation, and fast growth of culture (Hasan et al. 2006). 
Scientists have high intentional interest in the discovery of new microbial sources 
having higher effectiveness to synthesize enzymes and that are nontoxic to humans. 
In numerous industries fungi acquired immense significance. Aspergillus isolated 
from soil, decomposing plants, and air reported to produce a great number of extra-
cellular enzymes many of which are applied in biotechnology. There is a remarkable 
interest in Aspergillus niger, as it is broadly useful in modern biotechnology (Frisvad 
et al. 2008) and is classified as GRAS (Generally Recognized as Safe) by the Food 
and Drug Administration (FDA) (Couto and Sanromán 2006). One of the enzyme, 
pectinases reported to be isolated from Aspergillus, Rhizopus, Trichoderma, 
Pseudomonas, Penicillium, and Fusarium (De Gregorio et al. 2002) is used in the 
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food industries for ripening of fruit, wine industries, tomato pulp removal out 
improvement of protein in baby food, extraction of oil and animal nutrition. 
Table 1.2 represents fungal enzymes associated with food and feed bioprocessing.

1.3.6  Fungal Enzymes in Leather Industry

Leather is utilized in the manufacture of a huge number of commercial commodi-
ties, and it has gained a status symbol as one of the highest foreign trade earners and 
belongs to the elite of society. One of the most important industrial enzymes is 
protease. Filamentous fungi are known for their ability to synthesize proteolytic 
enzymes (Attawut et al. 1981). Many researchers have reported Aspergillus species 
produces extracellular alkaline proteases (Anandan et al. 2007). Alkaline proteases 
are prominently playing their role in unhairing and bating processes in leather 
industry. In an experiment, Chellapandi (2010) reported Aspergillus flavus and 
Aspergillus terreus as the probable strains for the production of tannery protease in 
submerged fermentation and the protease was used for unhairing processes at lab 
scale in tannery. In wide alkaline conditions at 50 °C, the protease showed the good 
activity signifying the opportunity by which it can be used in leather and detergent 
industry. Fungal expression systems are capable of producing larger quantities of 
enzymes than bacterial expression systems. Filamentous fungi, for instance, 
Aspergillus, have been the organism of preference for large-scale production of bulk 
industrial enzymes, as the fungi can be grown on moderately inexpensive (agricul-
tural waste) media and the fungi can secrete bulk quantities of enzymes (Bergquist 
et al. 2002).

In a study by Anandan et al. (2007), Aspergillus tamari produces extracellular 
alkaline protease and the enzyme is useful in removing hair from cattle hide. The 
alkaline protease was homologous to the alkaline protease expressed by Aspergillus 
viridinutans. In leather-making process in a tannery, a raw hide is subjected to a 
sequence of chemical treatments before tanning and finally converted to finished 
leather. In these treatments, alkaline proteases may play a vital role by replacing 
these hazardous chemicals especially involved in soaking, dehairing, and bating. 
Enlarged practice of enzymes for dehairing and bating is effective in saving time 
with better quality leather and also prevent pollution (Zambare et al. 2011). Besides, 
studies have confirmed alkaline protease secreted by Conidiobolus coronatus has 
been evaluated broadly in tanneries and finds relevance in pre-tanning operations in 
leather manufacture (Laxman et al. 2005). The production of alkaline protease by an 
Aspergillus flavus strain was used as a depilation agent was confirmed by experi-
ments in a tannery. The enzyme exhibited maximum activity at both pH 7.5 and 
pH 9.5 (Malathi and Chakraborty 1991).
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Table 1.2 Fungal enzymes associated with food and feed bioprocessing

Industries Enzymes References

Fruit extraction Amylase, amyloglucosidase, cellulase, pectinase, 
pentosanase, limonoate, dehydrogenase, naringinase

Albersheim 
(1966)

Flavors Glucanase, peptidase, proteinase, esterase, lipases, 
amylase

Shahani et al. 
(1976)

Animal oil/fats Esterases, lipases, proteinase Beldman et al. 
(1984)

Fats Esterase, glucose oxidase, lipases Bobek et al. 
(1994)

Starch Amylase, amyloglucosidase, cellulase, glucanase, 
hemicellulase, isomerase, lipase, phospholipase, 
pectinases, proteases

Okolo et al. 
(1995)

Fruit extracts Anthocyanase Albersheim 
(1966)

Botanical 
extraction

Amylase, amyloglucosidase, cellulase, glucanase, 
hemicellulase, pectinases, proteases

Alkorta et al. 
(1998)

Confectionery Amylase, invertase, pectinase, proteinase Stroh (1998)
Dairy products Lactase, proteinase, sulfhydryl oxidase, lactoperoxidase, 

lysozyme, peroxidase, catalase
Alkorta et al. 
(1998)

Debittering Peptidase, naringinase Alkorta et al. 
(1998)

Dairy products Lactase, proteinase, sulfhydryl oxidase, lactoperoxidase, 
lysozyme, peroxidase, catalase

Beauchemin 
et al. (1999)

Cheese Rennet, lipase, proteinases Freitas and 
Malcata (2000)

Dairy products Lactase, proteinase, sulfhydryl oxidase, lactoperoxidase, 
lysozyme, peroxidase, catalase

Archer (2000)

Biscuits Amylases, cellulases, hemicellulases, proteinases, 
pentosanases

Taniwaki et al. 
(2001)

Breads Amylases, amyloglucosidases, cellulases, glucanases, 
glucose oxidase, hemicellulases, lipases, pentosanases, 
proteinases

Taniwaki et al. 
(2001)

Brewing Acetolactase, decarboxylase, amylases, amyloglucosidase, 
cellulase, glucanase, lipase, pentosanase, proteinase, 
xylanase

Okamura et al. 
(2001)

Fish Proteinase Prasad (2001)
Fruit extraction Amylase, amyloglucosidase, cellulase, pectinase, 

pentosanase, limonoate, dehydrogenase, naringinase
Kashyap et al. 
(2001)

Wine Amylase, amyloglucosidase, cellulase, glucanase, 
hemicellulase, pectinases, proteases, glucose, oxidase, 
catalase, pentosanase, anthocyanase

Okamura et al. 
(2001)

Alcohol Amylase, amyloglucosidase, b-glucanases, cellulases, 
cellobiase, pectinase, proteinases

Sharma et al. 
(2002)

Butter and butter 
oils

Catalase, glucose oxidase, lipase Gupta et al. 
(2003b)

(continued)
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Table 1.2 (continued)

Industries Enzymes References

Fructose Glucose isomerase, inulinase, amylase, amyloglucosidase, 
cellulase, glucanases, hemicellulases, isomerase, lipase, 
phospholipase, pectinases, proteases

Sørensen et al. 
(2004)

Fruit, cloudy 
juices

Amylases pectinases, cellulases, proteinase Mantovani 
et al. (2005)

Fruit pulps Pectinase, amylase, amyloglucosidase, cellulase, 
glucanase, hemicellulase, pectinase, protease

Mantovani 
et al. (2005)

Tea Cellulase, glucanase, pectinase, tannase Pasha and 
Reddy (2005)

Vegetable and 
fruit processing

Cellulases, macerating enzymes, pectinases Mantovani 
et al. (2005)

Animal feed Amylase, glucoamylases, glucanase, cellulases, 
pentosanases, xylanases, proteinases, phytases 
xyloglucanases, galactomannanases, arabinofuranosidases, 
ferulic acid esterases

Wang et al. 
(2006)

Fruit juice Amylase, amyloglucosidase, cellulase Semenova et al. 
(2006)

Protein Amylase, cellulase, glucanase, hemicellulase, pectinase, 
protease

Semenova et al. 
(2006)

Egg processing Proteinase, lipase phospholipase, catalase, glucose oxidase Singh et al. 
(2007)

Coffee Cellulase, hemicellulases, galactomannanase, pectinase Soccol et al. 
(2008)

Flavors Glucanase, peptidase, proteinase, esterase, lipases, 
amylase

de Souza 
(2010)

Starch Amylase, amyloglucosidase, cellulase, glucanase, 
hemicellulase, isomerase, lipase, phospholipase, 
pectinases, proteases

de Souza 
(2010)

Starch Amylase, amyloglucosidase, cellulase, glucanase, 
hemicellulase, isomerase, lipase, phospholipase, 
pectinases, proteases

Rana et al. 
(2013)

Fruit pulps Pectinase, amylase, amyloglucosidase, cellulase, 
glucanase, hemicellulase, pectinase, protease

Jalis et al. 
(2014)

Wine Amylase, amyloglucosidase, cellulase, glucanase, 
hemicellulase, pectinases, proteases, glucose, oxidase, 
catalase, pentosanase, anthocyanase

Garg et al. 
(2016)

Fruit extraction Amylase, amyloglucosidase, cellulase, pectinase, 
pentosanase, limonoate, dehydrogenase, naringinase

John (2017)

Animal feed Amylase, glucoamylases, glucanase, cellulases, 
pentosanases, xylanases, proteinases, phytases 
xyloglucanases, galactomannanases, arabinofuranosidases, 
ferulic acid esterases

Singh and 
Yadav (2018)

Fruit juice Amylase, amyloglucosidase, cellulase Zhang et al. 
(2018)
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1.3.7  Fungal Enzymes in Beverages Industry

The beverages industry is also known as the drink industry and is one of the largest 
food processing industries which manufactures carbonated beverages and alcoholic 
drinks. The beverage industry is categorized into two major groups and eight sub-
groups. Alcoholic beverage categories include distilled spirits, wine, and brewing 
whereas nonalcoholic group consist of soft drink syrup manufacture, fruit juices, 
the coffee industry and the tea industry (Encyclopaedia of Occupational Health and 
Safety). In the production of beer and other types of malted liquor, such as whiskey, 
enzymes play a crucial role. Enzymes are also useful in production of wine, serving 
in the safeguarding of wine quality, sometimes over many years in storage. Enzymes 
also endorse clarification, filtration, and stabilization and lessen time of fermenta-
tion (Kashyap et  al. 2001). Due to rising consciousness about health among the 
people, the requirement of fruit juices is rising gradually. The enzymes used are 
mainly pectinase, cellulase, hemicellulase, etc. for extraction of juices. Enzymes 
also stop darkening of juices.

The enzymes naringinases are used in orange and grapefruit processing to 
improve pulp washing, to increase the recovery yield of essential oils, and to debit-
ter and clarify the juice (Godfrey and West 1996), and the most bitter compounds 
present in citrus juices are naringin, limonin, and neohesperidin (Marwaha et al. 
1994). The existence of bitterness has been a chief drawback in the profitable 
approval of juice. Naringinase has important applications in debittering of fruit 
juice. Coniothyrium diplodiella one of the phytopathogenic organisms reported to 
produce a pectic enzyme that had naringinase activity and have a high potency 
(Takiguchi 1962). In another study, Fukumoto and Okada (1974) reported produc-
tion of naringinase enzyme using Penicillium sp. According to study, enzymes 
assimilate pectin, starch, proteins, and cellulose of fruits and vegetables and assist 
enhancement in yields and decrease in processing time (Mojsov 2012).

The enzyme acidic pectinases used in the fruit juice industries and wine making 
often come from fungal sources, especially from Aspergillus niger. Alkorta et al. 
(1998) reported pectinases and cellulases give a juice yield up to 100%. 
Rhamnogalacturonase, a type of pectinase, was found initially in Aspergillus acu-
leatus but later was also found in other species of Aspergillus (Schols et al. 1990). 
Pectic enzymes isolated from fungi, usually Aspergillus niger, Penicillium notatum, 
or Botrytis cinerea, are helpful in wine making (Fogarty and Kelly 2012; Robertson 
1977). Pectinolytic enzymes are involved in the retting and degumming of jute, flax, 
hemp, ramie, kenaff (Hibiscus sativa), and coir from coconut husks (Brühlmann 
et al. 1994; Chesson 1980). Retting is a fermentation process in which certain fungi 
(e.g., Aspergillus, Penicillium) decompose the pectin of the bark and release fiber 
(Sharma and Robinson 1983).
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1.3.8  Fungal Enzymes in Detergent Industry

Due to continuous biotechnological research, in certain niches the detergent market 
continues to make improvement. Not only it is significant that washing garments 
will be in pristine form, but ecological factors are also a major concern. Biotechnology 
can considerably add to production of detergents still safer for the environment. In 
the detergent industry, the usage of protease enzyme has long history. The first 
method of cleaning the fabrics contained the enzymes but was not that much effec-
tive. Today, the enzyme proteases are found in most of detergents. At high pH, the 
enzyme possesses the stability (Salleh et al. 2006). Detergents are used for dish-
washing, laundering, and domestic, industrial, and institutional cleaning (Schäfer 
et al. 2005). The enzyme removes the protein, starch, oil, and fats in the form of 
stain (Hasan et al. 2010). Sometimes a blend of enzymes, together with proteases, 
amylases, pectinases, cellulases, and lipases, are used to amplify effectiveness on 
cleanup of stain (Li et al. 2012). The second type of enzymes used in the detergent 
formulation is amylases; about 90% of all liquid detergents contain these enzymes 
(Payen and Persoz 1833). The enzyme lipases represent one of the most important 
groups of biocatalysts and have been isolated from many species of plants, animals, 
bacteria, fungi, and yeasts. Lipases are used in household dishwashers and indus-
trial laundry where they function in the removal of fatty residues (Kumar et  al. 
1998; Vulfson 1994). Jaeger et al. (1994) in their study reported marketable deter-
gent formulations synthesized from Humicola lanuginose; later the gene was cloned 
in Aspergillus oryzae for increasing the yield. The enzyme lipase was isolated from 
Aspergillus oryzae and Trichosporon asahii MSR 54 as the enzyme performs its 
action of removing oil stains at ambient temperature (Gerhartz 1990; Kumar et al. 
2009).

The enzymes have beneficial effect on the ecosystem as they provide environ-
ment profit by dropping energy utilization through shorter washing times, lower 
washing temperatures, and compact water consumption as well as they also contain 
less bleaching agents. The production processes of enzymes are by fermentation 
technologies that employ renewable resources (Olsen and Falholt 1998). Germano 
et al. (2003) in his study reported protease enzyme produced by a wild strain of 
Penicillium sp. The crude enzyme was well-suited with marketable detergents, 
retaining their 50–60% activities. The enzyme also offered fine constancy toward 
oxidizing agent. Devi et  al. (2008) reported Aspergillus niger produces alkaline 
protease. At 40 °C the enzyme retained more than 50% activity after 60 min incuba-
tion in the presence of detergents such as Tide, Surf, Wheel, and Henko signifying 
its appropriateness for use in detergent industry. Savitha et al. (2011) investigated 
the effectiveness of proteases enzyme isolated from Graphium putredinis and 
Trichoderma harzianum fungal strain. The result indicated proteases from these 
fungal strains can be used as potential additives in the commercial detergents and 
showed a good washing performance. The use of fungal protease minimizes the 
toxicity of harsh chemicals engaged in laundry detergents and could offer a safer 
environ in the pollution encumbered world.
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1.3.9  Fungal Enzymes in Organic Synthesis Industry

The organic synthesis industry belongs mainly to the chief branches of the modern 
chemical industry. During last century mostly organic compounds were obtained 
from raw plant and animal materials. In the recent time, foremost resources for the 
synthesis of diverse organic compounds are natural gases, oil-refinery gases, coke 
gases, crude oil, etc. The obtained ability of different organic compounds by means 
of synthetic method may completely replace the natural sources. Enzymes are gain-
ing popularity  even  for the production of fine chemicals due to additional cost- 
effective and purity of products in a tolerable manner which are also eco-friendly 
(Nagasawa and Yamada 1995). Over traditional methods enzymes are favored in 
organic synthesis industry for their several benefits such as high catalytic effective-
ness, high selectivity, eco-friendly, and easier separation (Johannes et  al. 2006; 
Schmid et al. 2001). One of the most important enzymes used in organic synthesis 
is the lipases which resulted in the formation of alcohols, acids, esters, (S, R)-2, 
3-pethoxyphenylglycyclic acid, etc. (Gentile et al. 1992; Hasan et al. 2006; Jaeger 
and Reetz 1998). The enzyme lyases are involved in organic synthesis of cyanohy-
drins from ketones, acrylamide from acrylonitrile, and malic acid from fumaric acid 
(Faber 1992; Zaks 2001).

The enzyme laccases are multi-copper-containing oxidases found in plants, 
insects, and bacteria (Claus 2003; Dittmer et al. 2004; Kramer et al. 2001). There 
are over 60 fungal strains belonging to Ascomycetes, Deuteromycetes, and particu-
larly Basidiomycetes which are reported to show laccase activities mostly of bio-
technological application (Baldrian 2006). The industrial applicability of laccase 
includes enzymatic modification of fibers and dye bleaching in the textile and dye 
industries; detoxification of lignocellulose hydrolysates for ethanol production; 
and construction of biosensors and biofuel cells (Abadulla et al. 2000; Kunamneni 
et al. 2008). In organic synthesis, laccases have been employed for the oxidation of 
functional groups, the coupling of phenols and steroids, and the construction of 
carbon nitrogen bonds and in the synthesis of complex natural products and more 
(Baiocco et al. 2003; Barilli et al. 2004; d’Acunzo et al. 2002; Nicotra et al. 2004). 
The heterologous expression of active laccases has been reported mainly in fila-
mentous fungi Aspergillus oryzae, Aspergillus niger, Aspergillus sojae, and 
Trichoderma reesei (Hatamoto et al. 1999; Kiiskinen et al. 2004a; Téllez-Jurado 
et al. 2006).

1.4  Fungi and Fungal Enzyme for Sustainable Environments

In the biodegradation of organic compounds in wastewater, microbes play the sig-
nificant role. In the food industries, filamentous fungi are often cultivated 
(Barbesgaard et al. 1992). One of the best alternatives for the treatment of high- 
strength wastewater is the usage of filamentous fungi. The treatment of wastewater 
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with fungi not only converts organics into high-value fungal protein but also syn-
thesizes dewaterable fungal biomass, which further can be used for animal feed 
and also in human diets (Guest and Smith 2002; Zheng et  al. 2005). Enzymes 
secreted by fungi are more efficient in metabolizing complex carbohydrates, for 
instance, starch (Jin et al. 1998; Van Leeuwen et al. 2003). The fungi also include 
a group of extracellular enzymes which assist in the biodegradation of recalcitrant 
compounds such as phenolic compounds, dyes, and polyaromatic hydrocarbons 
(PAH) (D’Annibale et  al. 2004; Jaouani et  al. 2005). The treatment of waste 
streams containing hazardous or xenobiotic organic pollutants can be achieved by 
enzyme- mediated activity synthesized by fungi. During all phases of the fungal life 
cycle, the enzymes are secreted (Ryan et al. 2005). Secretion of both specific and 
nonspecific extracellular enzymes by fungi laid the interest of researchers toward 
its study.

White-rot fungi were reported to secrete certain enzymes, for example, ligninase, 
phenol-oxidase, and manganese-peroxidase, that are proficient in degrading lignin, 
phenol, dyes, and various other xenobiotic pollutants (Esposito et al. 1991; Libra 
et al. 2003). A little information compiled by the National Collection of Industrial 
Microorganisms (NCIM), National Chemical Laboratory, New Delhi, from WFCC- 
MIRCEN World Data Centre for Microorganisms (WDCM) record for fungal spe-
cies degrading specific types of wastes such as  Humicola grisea that degrades 
raffinose, Alternaria tenuis, A. niger, and Trichoderma viride that degrade plastic; 
P. chrysosporium that degrades lignin, Myrothecium verrucaria and Trametes hir-
suta that degrade cellulose-rich waste. During the duration of treatment of wastewa-
ter, cell walls of fungi participate in biosorption of toxic compounds (Kapoor and 
Viraraghavan 1995). The numbers of enzymes isolated from fungus are concerned 
with the degradation of toxic pollutants. A number of enzymes such as amidases, 
amylases, amyloglucosidases, cellulases, glucoamylases, lipases, pectinases, and 
proteases are engaged for the treatment of waste (Margesin et  al. 1999; Riffaldi 
et al. 2006; Karigar and Rao 2011).

1.5  Fungal Communities in Food and Feed Processing

The fungi as food and feed are very nutritive as they are good source of essential and 
nonessential amino acids. Since ancient times, fungi have been used as source of 
food by humans (Dupont et  al. 2016; Silar 2013). The most common being the 
edible sexual structures of basidiomycetes and ascomycetes, so-called mushrooms, 
which are produced mostly in wood and represent a rich source of proteins, with 
low fat content. Fungi are ideal food because they have a quite high protein content 
typically 20–30% dry matter as crude protein. Fungal biomass is also a good source 
of dietary fiber and is almost free of cholesterol and easy to digest. The chitinous 
wall of fungi provides a source of dietary fiber, further also containing B vitamins, 
are typically low in fat. Thus, fungal protein foods effectively compete with animal 
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protein foods on health grounds (Moore and Chiu 2001). A small number of plant- 
pathogenic fungi are also eaten, for instance, Ustilago maydis, corn smut fungus 
which produces black tumors on maize. These tumors are considered a delicacy in 
Mexico, where it is called huitlacoche (Valverde et al. 2012).

1.5.1  Use of Fungi in Dietary Food

The consumption of fungal food is increasing day by day on a global basis with rise 
in public concern about dietary and health issues. Especially, for the vegetarians 
either freshly cooked mushrooms or processed foods, beverages and dietary supple-
ments of fungal origin are good alternative (Ghorai et al. 2009). Mushrooms have 
been used by people since Neolithic times for food as well as for medicinal pur-
poses (Dugan 2008), but the best-known use of mushrooms in the Western world is 
as a food material. At present, there are at least 1100 species of mushrooms eaten in 
more than 80 countries (Baars 2017). Most of the highly appreciated mushrooms 
are mycorrhizal species which live in a symbiotic relation with trees. Mushrooms 
contain significant amounts of copper, iron, potassium, and phosphorus. There are 
different species of mushrooms which are cultivated in different parts of the world 
such as Pleurotus species, i.e., oyster mushroom. Other includes Lentinula edodes 
(shiitake), Flammulina edodes (enokitake), Volvariella volvacea (straw mushroom), 
Auricularia sp. (wood ear mushroom), and Agaricus bisporus (button mushroom). 
Then, there are porcini mushrooms (Boletus edulis group) offered mostly in a dried 
form to consumers and truffles (Tuber species) that are collected in nature (Baars 
2017). Morel mushrooms (Morchella sp.) include a variety of species which are 
known to grow in temperate zones throughout the world. Black morels such as 
Morchella angusticeps, Morchella conica, Morchella costata, and yellow morels 
including Morchella deliciosa and Morchella esculenta are the most popular edible 
species.

1.5.1.1  Lentinula edodes (Shiitake)

It is known to be rich in proteins with all essential amino acids. Further, it is a rich 
source of vitamin B and also is known to contain moderate levels of minerals. 
Shiitakes produce vitamin D2 when their internal ergosterol is exposed to ultravio-
let B rays from sunlight or broadband UVB fluorescent tubes (Ko et al. 2008). It is 
known to contain adenine and choline which are effectual in preventing the occur-
rence of cirrhosis of the liver as well as vascular sclerosis; it further also possesses 
medicinal properties as it contains tyrosinase which lowers blood pressure. 
Furthermore, it also consists of an active polysaccharide, lentinan which is known 
to reduce cancer as well as cholesterol and causes enhancement of TH1 response 
(Ghorai et al. 2009; Murata et al. 2002; Rossi et al. 1993).
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1.5.1.2  Pleurotus ostreatus (Oyster Mushroom)

It is cultivated in China, and carbohydrate contents of oyster mushrooms are known 
to range from 5 to 6.7 g per 100 g fresh weight (Baars 2017). It is rich source of 
fiber, minerals, protein, and vitamins. It possesses unique flavor as well as aromatic 
properties and is used in different Chinese, Japanese, and Korean cookery as a 
source of delicacy. Adding more, it also possesses antibacterial, antibiotic, antitu-
mor, antiviral, hematological, hypocholesterolemic, and immunomodulation activi-
ties (Cohen et al. 2002; Ghorai et al. 2009).

1.5.1.3  Volvariella volvacea (Straw Mushroom)

Volvariella volvacea is cultivated throughout East and Southeast Asia. It is natural 
source of antioxidants. It consists of fungal immunomodulatory protein FIP-vvo 
which is known to induce TH1- and TH2-specific cytokines (Cheung et al. 2003; 
She et al. 1998).

1.5.1.4  Auricularia sp. (Wood Ear Mushroom)

It is found worldwide. It is a rich source of magnesium, phosphorus, potassium, and 
selenium and has high dietary fiber content. It helps in relieving constipation. The 
fruiting body produces an immunomodulatory protein (APP) which enhances the 
production of nitric oxide and tumor necrosis factor-alpha (TNF-α), suggesting that 
APP is an immune stimulant. Further, APP is known to activate murine splenocytes, 
distinctly enhancing their proliferation and interferon gamma (IFN-γ) secretion 
(Kim et al. 2004; Sheu et al. 2004).

1.5.1.5  Boletus edulis Group (Porcini Mushrooms)

It is widely distributed in the Northern Hemisphere across Asia, Europe, and North 
America. These are good source of vitamins, minerals, and dietary fiber, and fresh 
mushrooms are known to consist of 80% moisture (Ouzouni and Riganakos 2007). 
The total lipid, or crude fat, content makes up 2.6% of the dry matter of the mush-
room. The fruiting bodies consist of about 500 mg of ergosterol per 100 g of dried 
mushroom (Mattila et al. 2002) and about 30 mg of ergosterol peroxide per 100 g of 
dried mushroom. Ergosterol peroxide is known to exhibit antimicrobial and anti- 
inflammatory activities and cytotoxicity to tumor cell lines in laboratory cultures 
(Krzyczkowski et al. 2009). It contains lectin which stimulates cells to begin cell divi-
sion, and is also known to inhibit reverse transcriptase enzyme (Zheng et al. 2007). 
Furthermore, the fruiting bodies are also known to possess antioxidant activity due to 
presence of organic acids, tocopherols, phenolic compounds (Tsai et al. 2007), and 
alkaloids, the highest antioxidant activity being in the cap (Ribeiro et al. 2008).
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1.5.1.6  Agaricus bisporus

Agaricus bisporus is by far the most commonly cultivated mushroom around the 
world and its cultivation has been described for the first time in France by Tournefort 
in 1707 (Baars 2017). In the mid-1970s, the Agaricus crop accounted for over 70% 
of total global mushroom production (Moore and Chiu 2001). Agaricus bisporus is 
actually grown in two varieties, producing either white or brown mushrooms. It is 
rich in minerals including phosphorus, potassium, selenium, and sodium; further it 
is an excellent source of vitamin B especially riboflavin. Raw mushrooms are natu-
rally cholesterol and fat free (Beelman et al. 2003).

1.5.2  Fungi as and in Processed Food

Fungi contribute a fair share of food and food additives in the markets as animal 
feed or human food. Fungi are utilized in the production of fermented food and 
beverages in all traditional and indigenous cultures in the world. Examples include 
beer, bread, cheeses, cider, rice, soy sauce, and wine (Dupont et al. 2016).

1.5.2.1  Mycoprotein

It is a form of single cell protein created from Fusarium venenatum (Wiebe 2002). 
Mycoprotein has been on sale to the public as Quorn since 1985 and is a popular 
meat substitute, particularly for vegetarians. It is produced by fermentation; the 
growth of the mold requires glucose, minerals, biotin, and ammonia. It has high 
fiber content which helps to decrease blood cholesterol levels (Turnbull et al. 1992; 
Wiebe 2004). Mycoprotein is a high-protein, high-fiber, low-fat food ingredient that 
is appropriate to be included in a healthy diet; it also reduces blood sugar levels 
additionally being a good source of zinc and selenium (Denny et  al. 2008). 
Mycoprotein has been suggested to be used in the production of breakfast cereals 
and puffed snacks, or be added to yogurt and ice cream products as a fat replacer 
(Rodger 2001).

1.5.2.2  Cheese

Microorganisms play a major role in the cheese-making process, from the initial 
milk curdling by lactic acid bacteria to the maturation step by fungi such as yeasts 
and molds. In fact, microbiological and biochemical changes occurring during rip-
ening have a direct influence on development of the texture as well as flavor that 
makes each kind of cheese unique. Primary biochemical changes include lipolysis 
that converts lactose into lactate and proteolysis that directly influences flavor 
through the production of short peptides and amino acids, originating from six 
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primary sources, secondary starters which include molds such as Penicillium roque-
forti in blue cheeses and so on (McSweeney 2004). Secondary biochemical changes 
include metabolism of fatty acids and of amino acids by molds such as Penicillium 
roqueforti in blue cheeses and Penicillium camemberti or Geotrichum candidum in 
soft cheeses such as Camembert and Brie.

1.5.2.3  Blue Cheese

Penicillium roqueforti is used for the production of the blue cheese. Penicillium 
roqueforti has occurred in blue cheeses since at least antiquity (Labbe and Serres 
2004; Labbe and Serres 2009; Vabre 2015). The fungus was not actually inoculated 
during production of blue cheese; rather it appeared spontaneously. Blue cheese has 
a unique look of blue streaks found all throughout. The blue veins are due to addition 
of Penicillium roqueforti and Penicillium glaucum to the cheese making process. 
Further, blue cheese also has a distinctive flavor as well as aroma which arises from 
methyl ketones that are actually the metabolic product of Penicillium roqueforti.

1.5.2.4  Camembert Cheese

The production of camembert cheese requires Penicillium camemberti. The mold is 
responsible for soft and buttery texture of cheese (Michelson 2010). The aqueous 
suspension of the Penicillium camemberti is sprayed on the surface of the cheese 
and kept for ripening for weeks, and this process of ripening gives cheese a distinc-
tive bloomy, edible rind and creamy interior texture characteristic (Smith 2005). 
Penicillium camemberti is also used in flavoring of other foods including dry, fer-
mented sausages. Besides Penicillium roqueforti and Penicillium camemberti, there 
are other important fungi that are used in cheese makings such as Sporendonema 
casei which is used for the production of Cantal and Salers. Some Scopulariopsis 
species including Scopulariopsis candida, Scopulariopsis flava, and Scopulariopsis 
fusca are found in uncooked hard cheeses. Fusarium domesticum is inoculated for 
the production of Saint Nectaire and Reblochon (Dupont et  al. 2016). Further, 
Mucor circinelloides, Mucor lanceolatus, and Mucor racemosus are used for the 
production of uncooked hard cheeses including Saint Nectaire and Tomme de 
Savoie (Hermet et al. 2012).

1.5.2.5  Soy Sauce

Soy sauce has its origins in the Orient, but now it is popular around the world. It is 
produced by fermentation which involves use of Aspergillus oryzae, Aspergillus 
sojae, Saccharomyces rouxii and acetic acid bacteria to produce flavoring liquid 
with good nutritional qualities. In production of soy sauce, soybeans are soaked, 
cooked, mashed, and fermented with Aspergillus oryzae and Aspergillus sojae 
(Moore and Chiu 2001).
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1.5.2.6  Indonesian Tempeh and Ang-kak

It is a white cake which involves the use of Rhizopus oligosporus. It is produced by 
fermentation of partially cooked soybean cotyledons with Rhizopus oligosporus. 
The fungus binds the soybean mass into a protein-rich cake which can be used as a 
substitute of meat and is widely sold into the vegetarian market (Moore and Chiu 
2001). It is also known as red yeast rice and is popular in China and the Philippines. 
It is fermented using Monascus purpureus (Moore and Chiu 2001).

1.5.2.7  Alcoholic Beverages

Saccharomyces cerevisiae is extensively used for the production of alcoholic bever-
ages. There are different categories of alcoholic beverages such as those which are 
produced using fruit juices, those which are produced using starchy materials, and 
those produced using other plant materials (Carlile et al. 2001). Alcoholic beverages 
which are produced using fruit juices include cider, perry, and wine. Yeasts convert 
sugars into ethanol and carbon dioxide under both anaerobic fermentation and aero-
bic conditions known as the Crabtree effect (Piškur et al. 2006; Hagman et al. 2013); 
due to this capability yeasts were in fact primarily used as effectual ways to preserve 
the quality as well as safety of the foods and beverages as high concentrations of 
ethanol are toxic for most of the other microbes.

Wines are produced by fermenting red and white grapes. The fermentation for 
wine production is a complex process which involves numerous genera and species 
of yeast that are part of the grape berries microflora (Pretorius 2000). The very first 
stage of fermentation consists of mainly non-Saccharomyces yeasts. Nevertheless, 
due to outstanding fermentative capabilities in anaerobic conditions and high toler-
ance to ethanol, Saccharomyces cerevisiae speedily dominates alcoholic fermenta-
tion which degrades majority of sugars in alcohol. The fermentation of wine consists 
of a lag phase and a short growth phase followed by a stationary phase, during 
which 50 to 80% of sugars is fermented (Dupont et al. 2016). Nitrogen has been 
considered to be the main limiting nutrient which is responsible for cell prolifera-
tion arrest though the availability of other micronutrients, for instance, lipids and 
vitamins can also be a limiting factor (Sablayrolles 2008). Nutrient imbalance may 
affect yeast fermentation ability, which may further result in stuck or sluggish 
 fermentations, and can also influence the production of volatile compounds and the 
organoleptic balance of wine.

Cider is produced using apples and is popular in the UK. In fact, the UK has the 
world’s highest per capita consumption, as well as the largest cider-producing com-
panies. It is also popular in Australia, Canada, India, and New Zealand. The selec-
tion of yeast for production of cider is very crucial for the quality of the final product. 
Generally, there are categories of yeast which are utilized for cider production 
including commercially developed strains and wild, or autochthonous, strains. In 
either case, the species tend to be either Saccharomyces cerevisiae or Saccharomyces 
bayanus. In fact, the population of wild yeast could be amazingly diverse and com-
monly include the species of Candida, Hanseniaspora, Metschnikowia, Pichia, and 
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Saccharomyces (Valles et al. 2007). Characteristically, the native yeast takes up resi-
dence in the cidery and can be important to the unique flavor of the product 
(Bedriñana et al. 2010).

1.6  Value-Added Products from Fungi

The constant growth of agricultural production and development of novel mechani-
cal processing technologies have also led to production of a variety of wastes, which 
are not easy to treat and valorize (Cheirsilp et  al. 2011; Saenge et  al. 2011). 
Wastewater generation is a continuous process in agro-industrial plants which cre-
ates disposal problems as well as is also a threat for the environment (Avancini et al. 
2007). Furthermore, one-third of the food produced in the world for human con-
sumption about 1.3 billion tons end up as waste every year. Twenty percent of dairy 
products end up as waste in agriculture, postharvest, processing, distribution, and 
consumption (Mahboubi et al. 2017). Thus, economically as well as ecologically 
either the reutilization or the valorization of wastes into high value-added products 
is of great importance (Balasubramanian et  al. 2011). There are many instances 
where fungi have been used for the generation of diverse value-added products. 
Fungal bioconversion, through fermentative processes, has been revealed to be an 
eco-friendly biotechnological approach for the sustainable development of protein- 
rich animal feedstock (Dias et  al. 2018; Jin et  al. 2016; Salgado et  al. 2015). 
Table 1.3 represents value-added products from fungal communities.

Winery by-products are known as low-cost substrates for production of pig-
ments, such as carotenoids. Buzzini and Martini (2000) reported a maximum yield 
of carotenoids by cultures of Rhodotorula glutinis using grape must as the sole 
carbon source. Grape pomace, by-product from the wine industry, proved to be a 
good substrate that induced the production of commercially important hydrolytic 
enzymes including xylanases, pectinases, cellulases, using Aspergillus awamori 
(Botella et al. 2005).

Muniraj et al. (2015) showed the production of microbial lipids and γ-linolenic 
acid by Aspergillus flavus and Mucor rouxii, with potato processing wastewater as 
nutrient source. The mixed culture of Aspergillus niger, Penicillium chrysogenum, 
Penicillium citrinum, and Trichoderma harzianum in medium containing post- 
fermentation grape wastes as the only carbon source under submerged and solid- 
state fermentation conditions (Karpe et al. 2015b) produced commercially important 
metabolites. Further, Penicillium chrysogenum was capable of metabolizing pen-
toses into arabitol and xylitol, could degrade tannins and lignin, and could produce 
medicinally important metabolite, for instance, syringate (Karpe et  al. 2015a). 
Biological surfactants are another type of value-added products that can be obtained 
from solid-state fermentation of grape wastes, using fungal species such as Pleurotus 
djamor (Velioglu and Urek 2015). Jin et al. (2016) found that Aspergillus oryzae 
and Trichoderma reesei yielded the highest protein enrichment and digestibility of 
the grape marc and lees in solid state fermentation. In the study of Martínez et al. 
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Table 1.3 Value-added products from fungal communities

Fungi Substrate Value added product References

Aspergillus 
awamori

Grape pomace Xylanases, pectinases, 
cellulases

Botella et al. 
(2005)

Aspergillus flavus Wastewater γ-Linolenic acid Muniraj et al. 
(2015)

Aspergillus niger Molasses and chicken 
feather peptone

Citric acid Ozdal and 
Kurbanoglu 
(2018)

Aspergillus oryzae Dairy waste Biomass and ethanol Mahboubi et al. 
(2017)

Aspergillus oryzae Ethanol plant 
by-products

Ethanol and protein Bátori et al. 
(2015)

Aspergillus uvarum Lignocellulosic 
residues

Cellulases Salgado et al. 
(2015)

Aspergillus uvarum Lignocellulosic 
residues

Xylanases Salgado et al. 
(2015)

Coriolus 
antarcticus

Grape stalk Laccase, Mn-peroxidase 
activities

Levin et al. 
(2012)

Debaryomyces 
nepalensis

Grape stalk Bioethanol Egüés et al. 
(2013)

Irpex lacteus Pretreated wheat straw Ethanol López-Abelairas 
et al. (2013)

Kluyveromyces 
marxianus

Sugarcane bagasse and 
sugar beet molasses

Alcohols Martínez et al. 
(2017)

Kluyveromyces 
marxianus

Sugarcane bagasse and 
sugar beet molasses

Esters Martínez et al. 
(2017)

Monascus 
purpureus

Orange processing 
wastes

Pigment Kantifedaki et al. 
(2018)

Monascus ruber Sugarcane bagasse 
hydrolysate

Red pigment Hilares et al. 
(2018)

Mortierella 
isabellina

– Oils Carota et al. 
(2018)

Mucor rouxii Wastewater γ-Linolenic acid Muniraj et al. 
(2015)

Neurospora 
intermedia

Dairy waste Biomass and ethanol Mahboubi et al. 
(2017)

Neurospora 
intermedia

Ethanol plant 
by-products

Ethanol and protein Bátori et al. 
(2015)

Penicillium 
purpurogenum

Orange processing 
wastes

Pigment Kantifedaki et al. 
(2018)

Phanerochaete 
chrysosporium

Grape seeds and barley 
bran

Lignin peroxidase and 
manganese-dependent 
peroxidase activities

Moredo et al. 
(2003)

Pleurotus eryngii Pretreated wheat straw Ethanol (López- 
Abelairas et al. 
2013)

(continued)
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(2017), alcohols and esters were produced using strain of Kluyveromyces marxianus 
by valorization of sugarcane bagasse and sugar beet molasses. Carota et al. (2018) 
assessed the oil-producing performance of Aspergillus sp., Cunninghamella sp., 
Mortierella sp., and Mucor sp. Mortierella isabellina was found to be the most effi-
cient among all the strains used. Further, the fatty acid analysis of the oils produced 
confirmed that they were apt for biodiesel production and exhibited high similarity 
to palm and Jatropha oils. Thus, the use of fungi can be one of the solutions for the 
treating waste and converting them into value-added products either for human con-
sumption or to be used in animal feed as well as chemicals could also be produced 
as alcohols, esters.

1.7  Conclusion and Future Prospects

The indiscriminate and disproportionate use of chemical fertilizers is leading to 
health and environmental hazards as well as greatly affecting the agricultural pro-
ductivity. To avoid the use of chemical fertilizers, alternative strategies are essential 
to protect the environment as well as for sustainability. In this regard, fungi with 
multifarious plant growth-promoting traits are environmentally safe as well as natu-
ral alternatives to replace chemical fertilizers. Thus, these fungi can be used as 
biofertilizers and even could be utilized under stress conditions. No doubt, more 
detailed studies are still required on how much of inoculum will be required, what 
will be the effect of cultivar on inoculum, will inoculum be able to survive under 
adverse conditions, and what will be the role of environmental conditions in altering 
the activity of inoculums. Further field experiments will finally reveal their applica-
bility. Fungi not only act as potent bioinoculants but are also industrially important 
as they are the most preferred sources of enzymes for diverse industries including 
food, textile, pharmaceutical, baking, detergent, dairy, and so on. Fungi are a great 
resource pool for agriculture and industrial sector and for value-added products, and 

Table 1.3 (continued)

Fungi Substrate Value added product References

Rhodotorula 
glutinis

Grape must Carotenoids Buzzini and 
Martini (2000)

Stereum hirsutum Grape stalk Endoglucanase Levin et al. 
(2012)

Trametes hirsuta Grape seeds Laccase (Couto et al. 
2006)

Trametes trogii Grape stalk Endoxylanase Levin et al. 
(2012)

Trametes versicolor Lignocellulosic 
residues

Laccase Moredo et al. 
(2003)

Trichoderma 
pseudokoningii

Cassava residue Protein enrichment Bayitse et al. 
(2015)
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a number of species have already been exploited for new generation of bio-based 
products. Thus, fungi are gaining attractiveness in the context of a global need as 
novel sources of food, enzymes, secondary metabolites, and many more.
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Chapter 2
Fungal Phytases: Biotechnological 
Applications in Food and Feed Industries

Daniel Joe Dailin, Siti Zulaiha Hanapi, Elsayed Ahmed Elsayed, 
Dalia Sukmawati, Nur Izyan Wan Azelee, Jennifer Eyahmalay, 
Vickpasubathysiwa Siwapiragam, and Hesham El Enshasy

2.1  Introduction

Technological advancement with state-of-the-art facilities and economic demands 
are driving firm toward developing new food and feed products in the market. 
Enzymes are one of the key industrial products that received huge demand world-
wide. The global enzymes’ market size was estimated to be USD 8.18 billion in 
2015 and is expected to undergo significant growth over the next 8 years driven by 
their growing application in detergents, pharmaceuticals, food, and beverages 
(Market Research Report 2016; El Enshasy et al. 2018). Nowadays, enzymes, e.g., 
amylases, invertases, xylanases, proteases, phytases, and many other enzymes, 
became major components during production processes in food and feed industries 
(El Enshasy and Elsayed 2017; El Enshasy et al. 2013, 2016; Elsayed and Danial 
2018; Elsayed and El Enshasy 2018; Elsayed et al. 2016).
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Phytic acid, an important nutrient source of organic phosphorus, is synthesized 
in plants and stored in ripening seeds. However, due to its antinutritional character-
istics, i.e., the tendency to form phytate complex with other nutrients, such as pro-
teins, it is not easily to be digested by monogastric animals that lack enzymes 
responsible for phytate dephosphorylation (Othman et  al. 2014). Consequently, 
such complexes will be excreted in animal manure causing nutrient deficiency in 
animals, and subsequently environmental pollution. Accordingly, phytases play an 
important role in overcoming these challenges.

Phytase enzymes account for about 60% of the enzyme market used for animal 
nutrition, about USD 350 million annually (Corrêa et al. 2015). Nowadays, phytases 
are commonly added to poultry diets to improve phosphorus utilization, leading to 
the reduction of feed cost and phosphorus pollution (Dersjant-Li et  al. 2015). 
Phytases are phosphohydrolases that catalyze the hydrolysis of phytate to myoino-
sitol derivatives and inorganic phosphate (Shanmugam 2018). Phytases can be 
found mainly in microbial and plant organisms. However, due to their ease of culti-
vation and higher productivity of extracellular enzymes, filamentous fungi are con-
sidered one of the best industrial phytase sources (Ocampo et al. 2012).

Ongoing research continues focusing on discovering novel phytase producers, 
utilizing recombinant microorganisms as well as improving production processes 
and efficient product recovery. Generally, industrial processes involving feed-pellet 
formation favors the utilization of thermostable phytases to avoid their inactivation 
at normal animal body temperatures (Corrêa et al. 2015; Ma et al. 2011).
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2.2  Phytic Acid

Phytic acid, or myo-inositol hexaphosphoric acid (InsP6), is a natural compound 
abundant in many seeds and fruits, such as wheat, corn, rice, coconut, or pumpkin 
seeds (Diouf-Lewis et al. 2017). Phytic acid is also known as phytate salt and phy-
tin. The molecular formula of phytic acid is C6H18O24P6 with a molecular weight of 
660.03. Figure 2.1 illustrates the chemical structure of phytic acid.

Due to the characteristic chemical structure of phytic acid bearing high negative 
charges at physiological pH values, therefore, it easily precipitates as phytate salts 
through binding with different mineral cations, such as iron, zinc, potassium, cal-
cium, and magnesium (Iwai et al. 2012). The complexes formed hereby adversely 
affect their absorption in the gastrointestinal tract (Tiwari and Singh 2012). 
Monogastric animals including humans lack phytases in their digestive tract, and 
are therefore unable to process phytates present in seeds. Consequently, phytic acid 
is not efficiently digested and the nutritional values of seeds are limited through 
phosphorus and minerals (Cominelli et al. 2018). This in turn affects the common 
practice of feeding with high phosphate nutrients due to its fecal excretion and 
increases environmental pollution as well.

In plant seeds, phytic acid is the most abundant form of phosphorus, accounting 
for about 85% of total phosphorus, with amounts even 1000-fold higher than those 
detected in vegetative and other plant parts, such as pollen, roots, tubers, and turions 
(Sparvoli and Cominelli 2015). Phytate accumulates within protein bodies, gener-
ally of vacuolar origin, in seed storage cells and is usually concentrated in spherical 
inclusions called globoids (Iwai et al. 2012). It plays an essential role in relation to 
environmental stress and hormonal changes and as a backup source for phosphorus 
and energy (Cominelli et al. 2018).

Fig. 2.1 Phytic acid 
molecular structure
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2.3  Classification of Phytase

Phytases can be classified into different classes according to a number of criteria 
including stereospecificity of phytate hydrolysis (carbon number in the myoinositol 
ring of phytate at which dephosphorylation is initiated), optimal pH (alkaline or 
acidic phytases), and its catalytic mechanism. In terms of catalytic mechanism, phy-
tases can be classified into four groups which are histidine acid phytases (HAPs), 
ß-propeller phytases (BPPs), cysteine phytases (CPs), or purple acid phosphatase 
(PAPs). Depending on their optimum pH, phytases can be divided further into acidic 
and alkaline phytases, while based on their stereospecificity, another three groups 
can be identified as 3-phytases (E.C. 3.1.3.8), 6-phytases (E.C. 3.1.3.26), and 
5- phytases (E.C. 3.1.3.72; Greiner and Konietzny 2010). Table 2.1 summarizes dif-
ferent structural divisions of phytate-degrading enzymes based on mechanistic 
enzymology.

2.3.1  Histidine Acid Phytases

This phytase subfamily includes most of the currently identified phytases which can 
work independently without requiring the presence of cofactors for their optimal 
activity (Greiner and Konietzny 2010). Nowadays, 48 phytase structures from all 
subfamilies, except Purple Acid Phosphatase, have been deposited in the Protein 

Table 2.1 Structural classes of phytate degrading enzymes

Enzyme 
family Unique structural feature

Catalytic mechanism/adaptation to 
hydrolyzes phytate Examples

Histidine acid 
phosphatase

N-terminal RHGXRXP
C-terminal HD consensus 
motif

N-terminal H forms a 
phosphohistidine intermediate, 
C-terminal acts as proton donor/
Substrate specificity site residues 
positively charged

A. niger
Peniophora 
lycii
E. coli
Zea mays L.

β-propeller 
phytase

Six-bladed propeller 
shaped molecule

Mechanism consists of an affinity site 
and a cleavage site. Affinity sites bind 
phosphate group, while other sites 
attack adjacent phosphate group/dual 
site favors IP6, IP5, or IP4 as 
substrate

Bacillus sp.
X. oryzae

Cysteine 
phosphatase

Phosphorous loop 
structure contains 
HCXXGXXR(T/S) 
consensus motif

Protein tyrosine phosphatase 
mechanism cleaves phosphate 
groups/Deeper active site pocket 
accommodates phytate

S. 
ruminantium

Purple acid 
phosphatase

Consensus motif: DXG/
GDXXY/GNH (E, D)/
VXXH/GHXH

Metalloenzymes, phylogenetically 
linked to large plant PAP/unknown

Glycine max
Medicago 
truncatula

Adapted from Lei et al. (2007)
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Data Bank (PDB) including 25 HAPs (Chen et al. 2015). HAPs are acidic phytases 
that are able to function properly in the gastrointestinal tracts of swine and poultry. 
HAP structure consists of two folds, which are a larger α/β-domain and a smaller 
α-domain. The α/β-domain consists of a central six-stranded β-sheet, which is sur-
rounded by two α-helices on each side, while the α-domain consists of five major 
α-helices and several short helices (Table 2.2). The consensus active-site motifs of 
RHGXRXP and HD are located in a substrate-binding pocket, which lies in the 
domain interface. Under the optimal operating conditions, HAP members exhibit 
higher efficacy (specific activity, 100–>3000 U/mg at pH 2.5–7.5). On the other 
hand, they are unstable at temperatures >65 °C. Remarkably, Aspergillus fumigatus 
produces a phytase belonging to HAPs group, which has an outstanding heat- 
resilient property, >80% residual activity after being heated at 100 °C for 20 min 
(Chen et al. 2015).

2.3.2  β-propeller Phytases (BPPs)

β-propeller phytases, also known as alkaline phytases, play an important role in 
phytate-phosphorus cycling in soil and aquatic environment (Huang et al. 2009). 
These enzymes exploit Ca2+-dependent catalytic mechanisms with strict substrate 
specificity for hydrolytic reaction and protein thermostability (Korsmeyer et  al. 
2000). BPPs consist of a six-bladed propeller folding architecture with six calcium- 
binding sites in each protein molecule. The substrate binding site is present on the 
top of the β-propeller. Binding of three calcium ions to high-affinity calcium bind-
ing sites dramatically increases the thermal stability of the enzyme by joining loop 
segments found remote in the amino acid sequence. Furthermore, the catalytic 
activity is turned on by the binding of three additional calcium ions to low-affinity 
calcium binding sites at the top of the molecule by converting the highly negatively 
charged cleft into a favorable environment for phytate binding (Greiner and 
Konietzny 2010). The blades are aligned to surround the central tunnel, in which 
many bound water molecules were identified. Generous hydrophobic interactions 
found between the blades are believed to stabilize the overall protein folding (Chen 
et al. 2015).

2.3.3  Protein Tyrosine Phosphatase-Like Phytases (PTPLPs)

The PTPLPs, also regarded as cysteine phytases or cysteine phosphatases, emulate 
the protein fold and catalytic mechanism of tyrosine phosphatase. High hydrolytic 
activity is performed toward phytate at optimal pH ranging from 4.0 to 6.0 (Chen 
et al. 2015). The PTPLP proteins fold into a larger and a smaller domain. The larger 
one consists of a 4-β-sheet, which is sandwiched by several α-helices on both sides, 
while the smaller domain mainly consists of a 5-stranded β-sheet.
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2.3.4  Purple Acid Phosphatase (PAP)

PAPs produced by plants, mammals, fungi, and bacteria contain binuclear Fe (III)-
Me(II) centers, where Me is Fe, Mn, or Zn. To date, purple acid phosphatases with 
phytase activity appear to be only found in plants (Yao et al. 2012). Unlike HAPs, 
BPPs, and PTPLPs, X-ray crystallography studies have not yet been performed for 
PAP phytases, and there is no information available on the adaptation of PAPs active 
site to phytate as a substrate. Table  2.1 shows the structural division of phytate 
degrading enzymes based on their mechanistic enzymology.

2.4  Production of Phytases by Different Biofactories

Phytases are widely distributed in nature and can be found in microorganisms (bac-
teria and fungi) as well as plants. The earliest initiative for development of phytase 
production took place in 1962 by International Minerals and Chemicals Co., which 
was accounted as the only available market producer until 1990s, after which phy-
tase commercialization started on a large scale (Lei et al. 2013). The use of micro-
bial phytases is generally more favored due to their economic feasibility, higher 
yields, consistency, ease of product modification and optimization, regular supply 
due to absence of seasonal fluctuations, rapid growth of microbes on inexpensive 
media, stability, and greater catalytic activity (Gurung et  al. 2013). In addition, 
microbial phytases have broad pH spectrum of activity, where they are stable at pH 
as low as 3.0 and as high as 8.0, whereas stability of plant phytases decreases below 
4.0 and above 7.5 (Balwani et al. 2017). Although many phytase products, particu-
larly those from fungal sources, are now commercially available in the market, 
continuous search for novel phytases has been driven by the encountered limita-
tions of some phytases, namely, substrate specificity, lower thermostability, lower 
resistance to proteolysis and acidity, as well as catalytic inefficiency (Tan et  al. 
2015).

Various types of bacterial species have been reported as phytase producers 
(Kumar et al. 2016; Kumar et al. 2017). These bacteria include Enterobacter aero-
genes (Muslim et  al. 2018), Mitsuokella jalaludinii (Tan et  al. 2015), Klebsiella 
pneumoniae 9-3B (Escobin-Mopera et  al. 2012), Bifidobacterium spp. (Tamayo- 
Ramos et al. 2012), Bacillus spp. (Kumar et al. 2013a; Sreedevi and Reddy 2012), 
Geobacillus spp. (Dokuzparmak et al. 2017), and Selenomonas ruminantium (Yanke 
et al. 1999). Moreover, several bacterial species were used as a host for expressed 
phytase genes such as Lactobacillus casei (García-Mantrana et al. 2016), Escherichia 
coli (Lan et al. 2014), and Kluyveromyces lactis (Ushasree et al. 2014). Production 
of bacterial phytases has been stimulated using metal ions like Cu2+, Fe2+, Mg2+, 
Fe2+, and Al2+ (Dokuzparmak et al. 2017).

2 Fungal Phytases: Biotechnological Applications in Food and Feed Industries
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Over the years, numerous efforts have been carried out to isolate and screen 
potential phytases from yeasts. One study reports about the isolation and screening 
of 600 yeast strains for phytase production, resulting in the selection of five isolates 
(Zygosaccharomyces bisporus NCIM 3265 and 3296, Williopsis saturnus NCIM 
3298, Z. priorionus NCIM 3299 and Schizosaccharomyces octosporus NCIM 3297) 
as potential phytase producers (Pable et al. 2014). Other phytase-producing yeasts 
include Saccharomyces cerevisiae (Klosowski et al. 2018), Schwanniomyces occi-
dentalis, and Candida parapsilosis (Ranjan and Sahay 2013).

Several studies focused on fungi as higher phytase producers in comparison to 
bacteria and plants. Such fungal strains were found to produce the most active 
extracellular phytase having with the most suitable characteristics of both pH and 
 temperature stabilities. Phytases used in food and feed industrial applications 
should be resistant to the action of the proteases present in the intestinal tract. 
Fungi reported as phytase producers include Rhizomucor pusillus (Chadha et al. 
2004), Aspergillus ficuum (Coban and Demirci 2014), Penicillium oxalicum (Kaur 
et al. 2017), and Thermomyces lanuginosus (Berka et al. 1998). Furthermore, A. 
niger has been found not only attractive for its generally recognized as safe 
(GRAS) status for use in food processing by the US Food and Drug Administration 
(US-FDA), but also for its ability to produce highly active phytase extracellularly. 
Recent interests have increased on research with thermophilic fungi, because they 
were able to secrete unique phytases at higher temperature optima, with higher 
organic solvent tolerance and long shelf life (Riyadi et  al. 2017; Cassia Pereira 
et al. 2015).

Plants have been considered as one of the alternative expression systems for 
phytase production. Plants as biofactories become interesting among researchers 
and industries due to their ability to be transformed as cheap protein sources. 
Phytase genes from various microbial sources have been overexpressed in differ-
ent plants including rice (Wang et al. 2017), Arabidopsis roots (Belgaroui et al. 
2016), maize (Chen et al. 2013), rapeseed (Wang et al. 2013), and sesame (Jin 
et al. 2005). The phy genes from fungi have been extensively employed in trans-
formation studies since they exhibit better stability in a wide range of pH and 
temperatures (Gontia et al. 2012). In 1993, engineering of stable and active recom-
binant phytase from A. niger in tobacco seeds was first reported (Pen et al. 1993). 
The fungal phytase gene (phyA) was fused to a plant endoplasmic reticulum-tar-
geting sequence and was placed under the control of the constitutive 35S cauli-
flower mosaic virus (CaMV) promoter in a binary transformation vector. Another 
study shows the possibility to reduce costs by overexpression phytase in plant 
roots that will be able to consume soil phytate, thus reducing agricultural costs 
and minimizing phytate levels in agriculture intensive soil (Kumar et al. 2010). 
Recently, research developed low phytate rice seeds by silencing IPK1 gene (Ali 
et  al. 2013). In such manner, substantial reduction in seed phytate levels was 
observed without hampering the growth and development of transgenic rice 
plants. Table 2.3 shows the list of phytase-producing microbes (bacteria and fungi) 
and plant.

D. J. Dailin et al.
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Table 2.3 List of phytase-producing microbial and plant

Phytase source Species name Reference

Bacteria Acinetobacter baumannii Alias et al. (2017)
Acromobacter sp. Kumar et al. (2013a)
Advenella sp. Singh et al. (2014)
Bacillus cereus Dan et al. (2015)
Bacillus coagulans Irwan et al. (2017)
Bacillus subtilis Rocky-Salimi et al. (2016)
Bacillus amyloliquefaciens Olajuyigbe (2016)
Bacillus licheniformis Dan and Ray (2014)
Bacillus stearothermophillus Irwan et al. (2017)
Cellulosimicrobium sp. Singh et al. (2014)
Citrobacter freundii Zhao et al. (2010)
Echerichia coli McKinney et al. (2015)
Enterobacter aerogenes Muslim et al. (2018)
Geobacillus sp. Jorquera et al. (2018)
Klebsiella aerogenes Escobin-Mopera et al. (2012)
Klebsiella terrigena Greiner and Carlsson 2006
Klebsiella oxytoca Jareonkitmongkol et al. (1997)
Lactobacillus casei García-Mantrana et al. (2016)
Lactobacillus panis Nuobariene et al. (2015)
Lactobacillus plantarum Sumengen et al. (2013)
Mitsuokella jalaludinii Tang et al. (2017)
Pseudomonas sp. Muslim et al. (2018)
Staphylococcus caprae Dan et al. (2015)
Tetrathiobacter sp. Kumar et al. (2013b)
Weissella kimchii Andrabi et al. (2016)

Fungi Aspergillus niger Saithi and Tongta (2016)
Aspergillus carneus Ghareib (1990)
Aspergillus flavus Gaind and Singh (2015)
Aspergillus fumigatus Gangoliya et al. (2015)
Aspergillus ficuum Wang et al. (2011)
Aspergillus oryzae Sapna (2014)
Aspergillus tubingensis Qasim et al. (2017)
Mucor racemosus Bogar et al. (2003)
Myceliophthora thermophila Mitchell et al. (1997)
Penicillium purpurogenum Awad et al. (2014)
Rhizomucor pusillus Chadha et al. (2004)
Rhizopus oligosporus Suresh and Radha (2015)
Rhizopus oryzae Rani and Ghosh (2011)
Trichoderma viride Aseri et al. (2009)

Plant Rice Wang et al. (2017)
Maize Chen et al. (2013)
Rapeseed Wang et al. (2013)

(continued)
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2.5  Phytase Production

2.5.1  Production of Phytase by Recombinant Microorganisms

Fungal phytases have been isolated from over 200 fungal cultures of Aspergilli, 
Mucor, Penicillium, and Rhizopus species (Liu et al. 1998). However, due to the 
increasing biotechnological and industrial importance of phytases, recent years 
showed significant progress in the optimization of phytase production in terms of 
molecular biology and biochemical tools (Singh and Satyanarayana 2011). Cloning 
and recombinant DNA technology have been used to enhance commercial produc-
tion of fungal phytases.

Traditionally, Pasamontes et al. (1997) were first able to clone two phytases from 
Talaromyces thermophilus and Emericella nidulans, and found that the enzymes 
consisted of 463 and 466 amino acids, respectively, and showed higher similarity to 
normal wild phytases. Furthermore, the gene encoding for extracellular phytase was 
cloned from T. lanuginosus and was expressed in Fusarium venenatum (Berka et al. 
1998). They found that the activity of T. lanuginosus phytase was maintained at 
75 °C, with higher catalytic properties than any fungal phytase at 65 °C as optimum 
temperature. Trials have been further made to engineer phytase characteristics 
depending on the field of application. Due to the absence of thermostable natural 
phytases for feed additives, comparisons of amino acid sequences have been used as 
a technique for designing and preparing consensus phytases (Lehmann et al. 2000). 
Such comparisons using 13 fungal phytase sequences made it possible to produce 
an engineered phytase, not only with normal enzymatic characteristics but also with 
an improved thermostability, where the unfolding temperature increased by about 
15–20 °C. Accordingly, it was possible to compare crystal structure of such consen-
sus phytase with its A. niger counterpart. The fact that A. niger phytases have lower 
thermostability leads to the discovery that there is a direct relationship between 
protein sequence conservation and phytase stability (Singh et al. 2018a). Recently, 
Li et al. (2011) were able to clone a 2060-bp-long sequence from rice (Oryza sativa 
L.) which produced a phytase enzyme of 519 amino acids. Furthermore, the gene of 
A. niger phytase was expressed in S. cerevisiae to investigate the effects of glycosyl-
ation on phytase activity and thermostability (Han et al. 1999). Authors incorpo-
rated a 1.4 kb DNA segment encoding the phyA gene into the expression vector 
pYES2 and expressed it in S. cerevisiae for producing extracellular phytase. They 
found that medium composition and signal peptide significantly influenced the 
activity of the produced extracellular phytase. Phillipy and Mullaney (1997) found 
that the produced phytase lost about 9% and 40% of its activity and thermostability, 

Table 2.3 (continued)

Phytase source Species name Reference

Sesame Jin et al. (2005)
Arabidopsis roots Belgaroui et al. (2016)
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respectively, upon deglycosylation. Additionally, Pichia pastoris has been used as a 
host strain for expressing phytase genes (phyA) from A. niger and Bacillus subtilis 
(Han et al. 1999; Guerrero-Olazarán et al. 2010). Both works produced high amounts 
of active extracellular phytases. Furthermore, P. pastoris has been used for cloning 
and expressing phytase gene (phyA2) through excising and removing signal peptide 
encoding sequence and intron sequence (Yao et al. 1998). Huang et al. (2008) were 
able to produce a recombinant pH-resistant and thermostable phytase in P. pastoris 
by cloning and expressing phytase gene from Yersinia kristensenii having a protein 
of 441 amino acids with 24 amino acid signal peptide.

The discovery of modern genetic engineering techniques revolutionized research 
on phytase production. Such techniques included genome mining, functional 
metagenomics, cDNA cloning, and PCR variants (Vasudevan et al. 2017). Ma et al. 
(2011) used PCR techniques to isolate a novel gene for thermostable phytase (PhyA) 
from A. aculeatus RCEF 4894. They expressed the gene in P. pastoris with a spe-
cific phytase activity of 3000 U/mL at pH 5.5. Furthermore, the expressed phytase 
showed higher thermostability, where it was able to survive up to 90 °C for 10 min. 
The full-length gene comprised 1404 bp and encoded 467 amino acid residues with 
a 19-residue putative N-terminal signal peptide. Li et al. (2005) combined genetic 
modification strategies to enhance phytase production from Citrobacter amalonati-
cus in P. pastoris. They combined strategies as modification of PAOX1 promoter, 
choice of appropriate signal peptide, and augmentation of the gene dose. The modi-
fication of the first two parameters led to enhancing phytase yield by 35% and 12%, 
respectively. Furthermore, yield increased by about 141% upon increasing copy 
number of the Phy gene to six. Recently, Tang et al. (2018) applied directed evolu-
tion and site-directed mutagenesis to improve the thermostability and activity of 
recombinant phytase from A. niger N25. Their characterization and structural anal-
ysis results clearly demonstrated that the obtained mutations were able to produce 
cumulative or synergistic improvements in terms of enzyme thermostability or cata-
lytic efficiency. Singh et al. (2018b) used molecular modeling and docking to inves-
tigate the molecular and biochemical properties of expressed recombinant 
thermophilic phytase from Sporotrichum thermophile. They found that the recom-
binant enzyme showed broad substrate specificity, and enzyme docking with inhibi-
tors showed differential binding with GoldScore values ranging from 22.94 
(2,3-butanedione) to 85.72 (myoinositol hexasulfate). Also, phytase docking with 
metavanadate showed binding at the same atom in the active site where the substrate 
binds.

Generally, it has been revealed that the bottleneck point in directed evolution for 
improving thermal stability of designed and produced phytase depends largely on 
the selection of the “right” method for mutagenesis and screening. As mentioned 
above, several phytases have been designed and produced for their higher thermo-
stability. This depended mainly on the substitution of the majority of amino acid 
sequences that are chemically different in their respective sequences in the wild- 
type strains (Kim et al. 2008; Kim and Lei 2008). Such chemical diversity correlates 
well with mutagenesis methods applied to generate diverse mutational spectra 
enriched with functional traits. For example, investigating different epPCR libraries 
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failed to produce a promising thermostable variant from Y. mollaretii. On the other 
hand, applying high mutational load to generate a chemically diverse library resulted 
in the production of a thermostable phytase variant M1 with only moderate screen-
ing efforts (Shivange et al. 2011). Therefore, such results proved to provide a clear 
idea about employing different mutagenesis methods to generate chemically diverse 
substitutions, which in turn will enhance and enrich the obtained phytase variant 
libraries accompanied with reducing screening molecular efforts.

2.5.2  Production Methods Using Submerged Fermentation 
(SmF) and Solid-State Fermentation (SSF)

Phosphorus is one of nature’s paradoxes as it is life’s bottleneck for subsistence on 
earth but at the same time is detrimental in surplus quantities in an aquatic environ-
ment. Phytase is likely to play a critical role in the dephosphorylation of antinutri-
tional and indigestible phytate, a phosphorus locking molecule, to digestible 
phosphorus, calcium, and other mineral nutrients in the coming future. However, 
the production of phytase has several limitations, such as diluted enzyme concentra-
tion, extensive downstream procedures, and treatment of generated effluents. The 
process is also expensive, time consuming, and difficult to scale up. Hence, efforts 
are required to produce cost effective phytases with fast upstream and economic 
downstream processing (Bhavsar and Khire 2014).

The production levels of phytase in naturally occurring strains are very low to be 
economically viable. Improvement in phytase production is achieved mutually by 
developing production technologies and engineered phytases. Strain improvement 
by mutagenesis and selection is a highly developed technique. It plays a vital role in 
the commercial development of microbial fermentation processes. Mutagenic pro-
cedures can be carried out in terms of type and dose of mutagen to obtain mutants, 
which may be screened for improved phytase, as seen in A. niger, using physical 
and chemical mutagenesis (Bhavsar et al. 2012). Another advanced method is the 
application of protoplast fusion, which has a significant potential for strain improve-
ment and has been applied for various industrially important microorganisms. 
Protoplast fusion may be used to produce interspecific or even intergeneric hybrids, 
and is an important tool, since it can overcome the limitations of conventional mat-
ing systems in gene manipulation (Murlidhar and Panda 2000).

Although phytases are widely distributed in nature, the production in wild-type 
organisms is still far from being economically feasible. Accordingly, cloning and 
expression of phytase genes in suitable host organisms is necessary to obtain higher 
productivities. Since the cost effectiveness of phytase production is a major limiting 
factor for its application, therefore, different heterologous expression systems and 
hosts have been evaluated, such as plants, bacteria, and fungi (Bhavsar et al. 2012). 
Phytase production using fungal strains can be carried out using SmF or SSF. SmF 
is normally used in many processes for enzyme production. Phytases are mostly 
produced extracellularly and excreted into the fermentation medium. Production in 
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SmF provides better process control in terms of mass transfer, heat transfer, and 
oxygen supply. More than 75% of the industrial enzyme production is currently 
produced by SmF due to its ability to support the application of genetically modified 
microorganisms and the lack of paraphernalia compared to SSF (Subramaniyam 
and Vimala 2012). Additionally, SmF provides relatively low labor costs and low 
scale-up requirements when compared to SSF (Singhania et al. 2010). SmF tech-
nique, however, has several disadvantages, such as moderate product yields, higher 
costs, and the generation of significant amount of wastewater effluents (Abd- 
Elhalem et al. 2015). In SmF, substrate is a free flowing liquid or broth, which is 
used up rapidly and has to be constantly replenished (Irfan et  al. 2016). Several 
types of bioreactors were screened for phytase production including stirred tank and 
air-lift bioreactors (Maller et al. 2014).

About 5000 years ago, fungi were cultivated in SSF to produce food, the oldest 
known rice fermentation by A. oryzae, in Koji production process (Shivanna and 
Venkateswaran 2014). Nowadays, this cultivation strategy is widely applied in vari-
ous processes, such as bioremediation, biodetoxification of different hazardous 
compounds, production of various therapeutic enzymes and secondary metabolites, 
and as an effective alternative to SmF (Ashok et al. 2017). In SSF, a solid phase with 
minimal moisture content is used as a substrate for microbial growth. Recent studies 
reported that SSF is potentially a good alternative for SmF, as it provides higher 
quality and higher activity of extracts (Martins et al. 2011). Substrates are utilized 
slowly and efficiently over long fermentation periods (Chow and Ting 2015). The 
wastes generated after fermentation process can be recycled as a feed stock for other 
processes (Ballardo et al. 2016). Many examples of solid-state fermentation have 
been reported by researchers employing tray bioreactors, laterally aerated mixing 
beds, rotating drum bioreactors, packed bed bioreactors, and several other sophisti-
cated systems. However, the main challenge in SSF is that the bioreactor design 
could not be upscaled to the required industrial level.

2.5.3  Factors Affecting Phytase Production

Several factors contributing to the effectiveness of phytase production process by 
fungi include, but not limited to, carbon source, nitrogen source, incubation time, 
temperature, pH, and inoculum size. In addition, the interactions between these fac-
tors affect the production process directly through the changes in enzyme biosyn-
thesis, as well as indirectly by changing growth morphology, which is reflected on 
the physiological status and productivity of cells.

2.5.3.1  Carbon Source

Carbon source is an important nutrient for energy and cell growth. Studies con-
ducted by Qasim et  al. (2017) show that glucose addition to the fermentation 
medium significantly increased phytase production by A. tubingensis SKA 
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compared to other carbon sources tested, such as maltose, fructose, galactose, corn 
starch, and lactose at a concentration of 1.5%. Similar studies reported that 0.5% 
glucose was the most suitable for phytase production by A. flavus and A. fumigatus 
(Gaind and Singh 2015; Van Tinh et al. 2017). Furthermore, Penicillium purpuroge-
num GE1 was also reported to produce maximal phytase production using glucose 
as a carbon source under SSF (Awad et al. 2014).

2.5.3.2  Nitrogen Source

Nitrogen source plays a major role in cellular growth and phytase production by 
fungal strains. Among all nitrogen sources (organic and inorganic) tested at 1% 
(w/w) concentration (peptone, corn steep solids, urea, yeast extract, ammonium sul-
fate, ammonium nitrate, and sodium nitrate), ammonium nitrate was found to be the 
most suitable for maximal phytase production by Rhizopus oryzae culture (Suresh 
and Radha 2016; Ramachandran et al. 2005). Corn steep solids did not show any 
impact on phytase production, while inorganic nitrogen sources such as sodium 
nitrate and ammonium sulfate inhibited phytase biosynthesis (Ramachandran et al. 
2005). However, Qasim et al. (2017) reported that among all nitrogen sources tested 
including (NH4)2SO4, NaNO3, NH4Cl, peptone, yeast extract, and beef extract at 
concentrations of 0.5%, ammonium sulfate was used to maximize phytase produc-
tion by P. purpurogenum. On the contrary, P. purpurogenum was reported to pro-
duce maximal phytase production using peptone as a nitrogen source under SSF 
(Awad et al. 2014). Other studies reported that 0.5% malt extract was a better choice 
for phytase production by A. flavus and A. fumigatus (Gaind and Singh 2015; Van 
Tinh et al. 2017).

2.5.3.3  Temperature

Temperature is considered as a crucial factor affecting cellular growth as well as 
enzyme production and stability by fungal strains. Previous results revealed the 
presence of linearity between phytase production and fermentation temperature by 
A. niger CFR 335 and A. ficuum SGA 01 up to 30 °C in both SmF and SSF (Shivanna 
and Venkateswaran 2014). As the fermentation temperature was increased to 60 °C, 
phytase production decreased by about 90% and 70% in SmF and SSF, respectively. 
Similar results showed that A. tubingensis SKA required an optimal incubation tem-
perature of 30 °C in SSF (Qasim et al. 2017). On the other hand, A. flavus required 
an optimal temperature of 37  °C for phytase production under SSF (Gaind and 
Singh 2015). P. purpurogenum GE1 was reported to produce maximal phytase at 
27 °C under SSF (Awad et al. 2014).
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2.5.3.4  pH

Medium pH plays a vital role in the cellular growth and phytase production and 
stability. pH affects the ionization of the growth medium nutrients and, hence, 
directly influences enzyme production (Moreira et  al. 2014). Previous results 
showed a direct relationship between medium pH and phytase production by A. 
niger CFR 335 and A. ficuum SGA 01 up to pH 4.5 in both SmF and SSF (Shivanna 
and Venkateswaran 2014). Above pH 4.5, the enzyme production was reduced by 
about 90%. Significantly high values of phytase activity by A. tubingensis SKA 
were obtained in SSF within a pH range of 4.5–5.5 (Qasim et al. 2017). For A. fla-
vus, it was reported that the optimum production of phytase was pH 6.0 with drastic 
reduction in highly acidic pH environment (4.0) (Gaind and Singh 2015). Other 
types of fungi such as P. purpurogenum GE1 were reported to produced maximal 
phytase production at optimal pH 8.0 under SSF (Awad et al. 2014).

2.5.3.5  Cultivation Time

Cultivation period, time required for cells to grow and convert available nutrients 
into product, was found to significantly affect fungal growth and phytase produc-
tion. Qasim et al. (2017) reported that A. tubingensis SKA produced phytase ini-
tially after 24 h of inoculation, and continuously continued enzyme production for 
96 h, where it decreased after which. Similar observations were reported by previ-
ously for A. oryzae (Singh 2014). Rhizopus oryzae NRRL 1891 required an optimal 
incubation of 72  h to reach maximal phytase production (Ramachandran et  al. 
2005). The effect of incubation time on phytase production by A. niger CFR 335 
and A. ficuum SGA 01 in SmF and SSF was investigated, where the optimal produc-
tion was at 120 h, and decreased by about 70% when the fermentation continued to 
240 h (Shivanna and Venkateswaran 2014). On the other hand, maximal phytase 
production by A. niger FM-32 was obtained after 13 days of cultivation using SmF 
(Toroğlu et al. 2015).

2.5.3.6  Inoculum Size and Age

The concentration of inoculum plays an important role in fungal phytase produc-
tion. Several reports showed that different inoculum sizes gradually increased phy-
tase production up to a certain level in both SmF and SSF.  Shivanna and 
Venkateswaran (2014) reported that maximal phytase production was obtained with 
0.5 and 1.0  mL of A. niger CFR 335 and A. ficuum SGA 01 spore suspensions 
(2 × 106 spores/mL) in SmF, respectively. On the other hand, SSF required 1 and 
1.5 mL of A. niger CFR 335 and A. ficuum SGA 01 spore suspensions as optimal 
inoculum sizes, respectively. Moreover, 1 × 105 spores/mL was found to be optimal 
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inoculum size for optimal phytase production using A. niger USM AI1 and A. tub-
ingensis using SSF (Qasim et  al. 2017). Gaind and Singh (2015) found that an 
inoculum size of 6 × 105 cfu/mL, equivalent to 10.0% (w/v), was optimal for phy-
tase synthesis, above which level, cell biomass increased on the expense of phytase 
production. Concerning inoculum age, it has been found that inoculum age strongly 
influences cell growth and fungal phytase production. Inoculum of 72 h-old culture 
of A. flavus was used as an optimal inoculum producing maximal phytase, while 
older inoculums resulted in a decreased phytase production (Gaind and Singh 2015). 
On the other hand, enzyme production rate was found to increase gradually with the 
increase in inoculum age up to 6 days and declined upon using older inoculums by 
both A. niger CFR 335 and A. ficuum SGA 01 under SmF and SSF, respectively 
(Shivanna and Venkateswaran 2014). Phytase productivity produced by A. fumiga-
tus ET3 was found optimal when 24 h-old culture was used as an inoculum (Van 
Tinh et al. 2017).

2.6  Downstream Processing

Likewise, downstream processing is an integral part of any product development 
process, since the final costs of the product largely depend on the costs incurred in 
extraction and purification steps. Downstream processing plays an essential step in 
the separation of enzymes on the commercial scale. Downstream processing aims 
mainly to minimize the number of unit operations involved, thus reducing overall 
process and validation costs, and accordingly simplifying ease and economy of pro-
cess automation. The complexity of downstream processes is determined by the 
required product purity and applications. Downstream processing, involving recov-
ery and formulation, incurs 70% of the overall production costs of enzyme due to 
the complexity of the system and the need to maintain its biological activity.

Separation and purification technologies for phytase, employing a chromato-
graphic process, have evolved slowly as compared to production phase. Most of 
these approaches were employed for analytical purposes, especially for biochemi-
cal, molecular, and structural characterization. Phytase is susceptible toward inacti-
vation; therefore, in order to enhance their stability, phytases are often formulated 
as solid-state proteins produced by spray drying, lyophilization, or granulation. Dry 
formulation greatly reduces the likelihood of chemically and biologically mediated 
inactivation. Thus, there is a growing interest for fast and economic processes, 
which will stimulate research to unlock new insights in phytase down streaming 
technology. Various stages of after-fermentation processing include separation, 
purification, and packaging of the product. Conventional procedures, including pre-
treatment, precipitation or chromatographic methods, and salt precipitation, are cur-
rently employed for phytase purification (Bhavsar and Khire 2014; Bhavsar et al. 
2012). These traditional approaches are currently employed due to lack of alterna-
tive methods (Ashok et al. 2017). Due to the high commercial potential of phytase, 
several methods have currently been applied to obtain a highly active phytase suit-
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able for industrial applications. Several traditional purification processes have been 
employed to purify phytase from microbial sources. One of them is the traditional 
multi-step procedure involving salt precipitation and column chromatography.

2.6.1  Pretreatment and Concentration

In phytase production process, several concentration and purification steps are 
required to reach the final end step quality product. Certain pretreatments are 
required because phytases could be produced intracellularly or extracellularly. 
Depending on the location of the enzyme, various permeabilization treatments 
including organic solvents, enzymes, detergents, and physical methods are used 
(Bindu et al. 1998). Solid liquid separation techniques, such as centrifugation and 
decantation, are usually used for extracellular phytase separation. The culture fil-
trate is eventually concentrated by salt precipitation, acetone precipitation, and 
ultrafiltration (Bhavsar and Khire 2014).

2.6.2  Chromatographic Process

Further purification of phytases includes gel filtration, ion exchange chromatogra-
phy, affinity chromatography, and hydrophobic interaction. The recovery and puri-
fication of phytase have been achieved by several steps using different techniques, 
such as ultrafiltration, diafiltration, ion exchange, gel filtration, and hydrophobic 
interaction (Konietzny et al. 1995). An extracellular phytase from A. niger 11T53A9 
was purified about 51-folds by ammonium sulfate precipitation, ion chromatogra-
phy, and gel filtration (Greiner et al. 2009).

2.6.3  Liquid–Liquid Extraction

Single step aqueous two-phase extraction (ATPE) during downstream processing of 
phytase produced in SSF has resulted in higher phytase recovery (98.5%) within a 
short time (3 h) with improved thermostability properties. The ATPE method, there-
fore, seems to be an interesting alternative for simultaneous partitioning and purifi-
cation of phytase (Bhavsar et al. 2012). This phytase purification using liquid–liquid 
extraction is likely to be beneficial in the poultry feed industry. The partition and 
recovery behavior of phytase, produced by solid-state cultivation utilizing citrus 
pulp as substrate, was also determined in an ATPE-based process composed of 
PEG–citrate (Neves et al. 2012). The results suggested that PEG-citrate-ATPE pro-
cess is another interesting and efficient alternative to the traditional chromato-
graphic methods.

2 Fungal Phytases: Biotechnological Applications in Food and Feed Industries



82

2.6.4  Immobilization

Immobilization has been used as a technique in separation and purification of indus-
trial enzymes. A. niger phytases were immobilized on natural supports, such as 
allophone. The residual activity of immobilized phytase on allophanic and montmo-
rillonite nanoclay supports was higher under acidic conditions, and led to a higher 
thermal stability and resistance to proteolysis (Menezes-Blackburn et al. 2011).

Considering the increased use and demand of phytase, more efforts are needed to 
produce phytase in a cost effective process accompanied with fast and economic 
upstream and downstream processing. Phytase production has also been studied 
under SmF and SSF; and previous studies revealed that enzymatic production under 
SSF has several advantages in comparison to SmF (Bhavsar et  al. 2011; Neira- 
Vielma et al. 2018). Development of a viable process for phytase recovery and puri-
fication with techno-economic feasibility is necessary due to limitations encountered 
with many of the present methods.

2.7  Formulation

Phytases can be applied into animal feed as dry granules or in a liquid form. The 
types of formulation chosen depend on the operational conditions used at an animal 
feed mill. A dry granulated phytase formulation may be added to the mixer before 
pelleting process. Due to high temperature conditions during mixing and pelleting 
process, special coated granulated formulation is required to preserve phytase activ-
ity. There are many types of granulation technologies available including, but not 
limited to, pneumatic dry granulation, reverse wet granulation, steam granulation, 
moisture-activated dry granulation, thermal adhesion granulation, freeze granula-
tion, and foamed binder or foam granulation (Shanmugam 2015). For liquid phytase 
formulation, phytase is normally added after pelleting process to avoid heat inacti-
vation during pelleting process.

Previous studies reported that phytase from Shizophyllum sp. showed more sta-
bility in solid formulations containing high fiber levels than the concentrated liquid 
product at room temperature, both without any additive supplementation (Salmon 
et al. 2011). Liquid mannitol-containing formulation (1%, w/v) retained 89.83% of 
phytase activity after 60 days of storage, while polyethylene glycol addition (1%, 
w/v) to the liquid formulation also retained approximately 90% of phytase activity 
after 60 days. According to EFSA Panel on Additives and Products or Substances 
used in Animal Feed (FEEDAP 2017), powder formulation of Natuphos® E 5000 G 
and 10,000  G containing phytase concentrate, magnesium sulfate (~2%), wheat 
bran (97%), and vegetable oil (~1%, soybean), and granular formulations contain-
ing phytase concentrate (1.5–2.7%), starch (82%), polyvinylalcohol (1.4%), gum 
arabic (3%), wax-based coating agent (5.0%), and water (up to 100%) are safe for 
use as feed additives for avian and porcine species.
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2.8  Applications of Phytase Enzymes

Phytase enzymes play a crucial role in a wide range of applications, such as human 
food and nutrition, animal feed and nutrition, and environmental concerns regarding 
phosphorus pollution. The application of phytase is of vital importance in these 
areas because phytase works to liberate phytic acid-entrapped phosphorus, an 
essential element for all living organisms, in major food sources such as soy, corn, 
wheat, and rice. Accordingly, liberated phosphorus will be biologically available for 
the consuming organisms.

2.8.1  Food and Feed Industries

Among different nutritional sources for human and animals, cereals such as wheat, 
maize, rice, and soy still remain primary food sources in the world with 54% contri-
bution of total food consumption in the developing countries (Kearney 2010). 
Cereal products are important sources of energy, carbohydrates, proteins and fiber, 
with diverse micronutrients such as vitamin E, some of the B vitamins, magnesium, 
and zinc, and a range of bioactive ingredients. Therefore, there is a growing interest 
toward potential health benefits provided by such substances (McKevith 2004).

However, the complete nutrition offered by cereals is unable to be harvested by 
our monogastric digestion systems. This is due to the presence of phytic acid, an 
antinutritional factor which needs to be broken down by phytase enzyme to liberate 
the bound phosphorus. Phytic acid or phytate is the major storage form of phosphate 
and inositol in plants where 20% of phosphorus is stored as phytate in roots and 
around 80% is stored in seeds. It can form complexes with proteins, amino acids, 
and several divalent cations of high nutritional importance, such as Ca2+, Mg2+, Zn2+, 
Cu2+, Fe2+, and Mn2+ (Haefner et al. 2005).

Phytic acid inhibits iron absorption, giving rise to high prevalence of iron defi-
ciency in infants from developing countries, women of childbearing age and vege-
tarians. Iron deficiency is among the major risk factors for disability and death 
affecting an estimated 2 billion people around the globe (Zimmermann and Hurrell 
2007). Phytase used in food processing and manufacturing industries is very helpful 
in preventing such nutritional deficiencies. For instance, high phytic acid contents 
of corn necessitate the action of phytase during corn wet milling process to produce 
improved products. On the other hand, phytase is considered as a potential savior in 
bread making sector to produce better nutritional breads with improved texture and 
faster production times. Additionally, with phytase application can aid in the extrac-
tion of plant-based proteins, such as soy protein as an alternative source for the 
ever-increasing protein worldwide demand. Phytases are also used in animal feed 
industries, where they afford better digestibility and bioavailability of nutrients 
from plant-based feed raw materials and overcome problems of environmental pol-
lution with excreted phosphorus.
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2.8.2  Corn Wet Milling

Phytases are used in corn wet milling process to produce corn steep liquor. The 
presence of phytate in the corn kernels produces corn steep liquors with less desir-
able qualities. Addition of phytases to this process shortens the overall processing 
time and produces corn steep liquors that are completely void of phytate (Antrim 
et al. 1998). Żyta (1992) reported that phytase application improved the separation 
of germ and starch from fiber, reduced corn steeping time, and increased starch and 
gluten yields. Different fermentation industries for the production of antibiotics, 
enzymes, amino acids, and high energy animal feed ingredients in liquid forms 
generally favors the use of corn steep liquors without phytate contamination (Dahiya 
2016).

2.8.3  Bread Making

Mankind has been consuming bread for ages and it has become an inseparable part 
of human nutrition around the globe. The ability of bread to survive the test of time 
is owed to its adaptability to produce, ease of making, and certainly the wholesome 
nutrition attributed by cereal grain meals used. Among the main cereals used in 
bread making are wheat, rye, oats, and barley, and they cater a wide range of impor-
tant nutrients such as carbohydrates, fibers, proteins, lipids, as well as micronutri-
ents such as vitamins and minerals (Dewettinck et  al. 2008). Researches clearly 
suggested that fiber or other bran constituents are not responsible for the inhibition 
of iron absorption in wheat and rye bread. This inhibition is mainly attributed to the 
contents of phytate or its degradation products (inositol phosphate; Brune et  al. 
1992). Owning to high phytic acid contents, bioavailability of minerals from whole-
meal bread is low and corresponds directly to its phytate content (Brune et al. 1992). 
For consumers to reap the most nutritional benefits from bread, phytic acid con-
tained in the cereal grains needs to be hydrolyzed, and this is where the application 
of phytase is needed.

Greiner and Konietzny (2006) quoted that exogenous phytase application for 
food processing is similar to optimizing the dephosphorylation of phytate naturally 
present in raw materials. In fact, the effectiveness was proven to completely degrade 
phytate in cereal and legume derived foods as well. Furthermore, Türk and Sandberg 
(1992) demonstrated that addition of phytase from A. niger reduced phytate con-
tents to a level which does not interfere with iron absorption at low pH conditions 
(3.4–3.6). Additionally, they also found that using fermented milk, instead of fresh 
milk for bread making is better, because fermented milk improved the mineral bio-
availability, a trait not found upon using raw milk. Żyta (1992) recommended that a 
phytase additive in bread making needs to be safe, highly active, and independent of 
Ca2+ concentration, as it interferes with phytate degradation. The optimal pH and 
temperature conditions were pH 4.5–5.0 and 30 °C, respectively. Haros et al. (2001) 
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studied the effect of fungal phytase addition in bread making and produced con-
cluded findings:

 (i) Doughs added with fungal phytases required shorter fermentation periods 
rather than doughs without exogenous enzyme addition; therefore, fermenta-
tion step was reduced with phytases.

 (ii) Desired bread texture parameters, such as softer bread crumbs, reduced gum-
miness, and chewiness, were obtained with phytase supplementation.

 (iii) Phytases cause the activation of endogenous alpha amylase enzyme which 
breaks down starch into simple sugars and makes it easier for yeast 
fermentation.

2.8.4  Synthesis of Lower Inositol Phosphates

Phytases are also beneficial in improving several biochemical processes occurring 
within animal and plant cells. The phosphoric esters of myoinositol (mono-, bis-, 
tris-, and tetrakis-phosphates) play a crucial role in transmembrane signaling pro-
cesses as well as in calcium mobilization from intracellular store in animals and 
plant tissues (Haefner et al. 2005). Degradation of phytic acid occurs by sequential 
hydrolysis in reversed steps, which starts from inositol hexaphosphate (IP6) and 
finally hydrolyzed to myoinositol (IP1). This hydrolysis reaction yields products, 
such as less phosphorylated myoinositol derivatives, inorganic phosphates, and lib-
erated minerals, which were bound to it, such as calcium, magnesium, potassium, 
zinc, and copper ions (Liu et al. 1998). Table 2.4 summarizes the functionality for 
each degradation product.

Table 2.4 Summary of the functionality for each degradation product

Inositol phosphates Functionality

IP6 Iron transporter and important for neuronal activities in animal cell
Stores phosphate acts as an antinutritional factor and antioxidant in plant 
seeds

IP5 Involve in binding of oxygen to hemoglobin in red blood cells of humans 
and animals

IP4 Act synergically with IP3 by regulating intracellular communication and 
synergistic function as an intracellular calcium level controller

IP3 Rephosphorylated to IP4 or catobolized to IP2 activating release of 
calcium ions from intracellular form

IP2 Activating release of calcium ions from intracellular form.
IP inositol 
monophosphate

Hydrolyzed to form free myoinositol phosphate, the precursor for the 
inositol phospholipid, a second messenger in the inter cell signaling 
system

Myo-inositol Primary form of nutritional and metabolite function when bound 
covalently to phospholipids as phosphatidylinositol
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Żyta (1992) found that research interest in this field influenced the need for vari-
ous inositol phosphate preparations. Moreover, this was also influenced by the fact 
that chemical synthesis of these products was difficult, while enzymatic synthesis 
showed the advantage of high stereospecificity and the application of mild reaction 
conditions. The use of phytase derived from Saccharomyces cerevisiae has been 
shown to be very effective in producing different inositol phosphate species, such as 
d-myoinositol 1,2,6-trisphosphate, d-myoinositol 1,2,5-trisphosphate, l- 
myoinositol 1,3,4-trisphosphate, and myoinositol 1,2,3-trisphosphate. On the other 
hand, phytases isolated from A. niger efficiently hydrolyzed IP6 to all lower phos-
phorylated derivatives from IP5 to IP2 (Haefner et al. 2005).

2.8.5  Production of Plant Protein Isolates

The main protein source of human and animal diets is always derived from animals. 
Fish, meat, eggs, and dairy sources of protein must not be relied completely to feed 
the high protein demand. The need for an alternative plant-based protein source is 
necessary to cater the high nutritional needs of increased world population. Plant- 
based protein sources are less accessible by the digestive enzymes due to the bind-
ing of phytate to proteins at extreme pH ranges (Wang 2008). Hence, there is an 
increased demand to produce phytate-reduced protein isolates as an alternative pro-
tein source. Phytate-reduced protein isolates were suggested as suitable protein 
sources for infant formula and are also regarded as functional additives in food 
products due to their good foaming, emulsifying, and gelling properties (Dahiya 
2016).

Fredrikson et  al. (2001) used exogenous phytases to isolate pea protein and 
managed to completely degrade phytate into hexa, penta, tetra, and triphosphates 
within 1 h of incubation. Such protein isolates were suggested to be used in infant 
formula, since they were able to reduce flatulence and improved mineral bioavail-
ability. Żyta (1992) achieved almost complete dephosphorylation of protein iso-
lates from soybean within few hours of using intracellular acid phosphatase rich in 
phytase activities derived from A. niger. Wan et al. (2015) explored the use of plant 
proteins, especially soy, corn, and wheat proteins, as various delivery platforms, 
such as micro- and nanoparticles, fibers, films, and hydrogels for bioactive 
ingredients.

Apart from providing nutrition, plant-based proteins must also possess certain 
functional properties such as solubility, binding properties, surfactant properties, 
and viscogenic texturizing characteristics. For example, pea proteins which are now 
industrially produced in Europe are increasingly used in food for their good emulsi-
fying and foaming properties (Chéreau et al. 2016).
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2.8.6  Phytases in Animal Feed

The potential application of phytase enzymes in animal feed industry has garnered 
attention from the feed manufacturers as a cost-effective and efficient way to 
improve animal performance (Kumar et al. 2017; Yadav et al. 2017). In 1991, the 
first commercial phytase products were introduced into feed market as feed addi-
tives for swine, poultry, and aquaculture feeding sectors (Greiner and Konietzny 
2006). The wide application of phytase in various farming practices is mainly attrib-
uted to its high market value, which is estimated to surpass USD 300 million, with 
an annual increase of 10% (Chen et al. 2015). Phytase in animal feed is welcomed 
greatly because it not only helps to degrade phytate for better bioavailability, diges-
tion, and absorption of nutrients from the feed, but it also prevents excessive phos-
phorus animal excretion and its environmental hazards. Phytase can therefore play 
a multiple role in animal feed, whereby it could improve animal performance, 
reduce the need for additional phosphorus in animal feed, and formulate eco- 
friendly feeds, which reduce the excretion of excessive phosphorus to the 
environment.

Haefner et al. (2005) reported that phosphorus excretion could be almost reduced 
by about 50% with phytase application, which is considered as a significant contri-
bution toward environmental protection. Furthermore, addition of adequate amounts 
of phytase cuts the need to provide phosphorus supplements in diets of monogastric 
animals. Experimental trials in both laboratories and fields have continuously shown 
that 1 g of inorganic phosphorus supplementation can be replaced by 500–1000 units 
of phytase, with 30–50% reduction in total phosphorus excretion (Yao et al. 2012). 
Alongside with these benefits, phytase is also believed to contribute toward disease 
prevention in animals (Romano and Kumar 2018). Phytases can also be used as a 
good pretreatment for the feed raw materials. Optimized phytase activity could be 
achieved by limiting the amount of phosphorus, calcium, and certain organic acids 
in animal diets as these compounds may act synergistically to affect feed digest-
ibility (Romano and Kumar 2018).

2.8.7  Phytases in Broiler Diets

Maximal absorption of nutrients is highly important for broilers from feed sources, 
as they need to achieve optimal growth in a short period of time. Thus, presence of 
antinutritional factors in broiler diets originating from plant-based ingredients 
becomes a hindrance for the broiler growth. Phytases have been successfully applied 
in broiler feeds for their various effects on growth and performance. Many researches 
have been conducted to discover the multiple potentials of phytases in broiler diets. 
Scholey et al. (2018) studied the effects of phytase supplementation to broiler diets 
low in inorganic phosphorus. Their results supported the positive effect of phytases 
in growth performance and bone mineralization of broilers. However, 1000 phytase 
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units were the minimum recommended dose required to satisfy the complete need 
of phosphorus in broiler diets. Bradbury et al. (2017) highlighted the importance of 
replacing limestone as a calcium source for broiler diets with High Soluble Calcium 
source (HSC). High inclusion of limestone could cause hazardous effects to the 
broiler in terms of phosphorus and amino acid digestibility and also increases the 
pH of gastric juice. Replacing limestone with HSC together with phytase supple-
mentation has the potential to be an excellent tool to improve broiler body weight 
gain, feed intake, and bone mineralization.

2.8.8  Phytases in Swine Diets

Supplementation of 500 phytase units/kg and above, effectively hydrolyzed phytate 
in low-phosphorus corn-soybean diets for pigs, while a huge dose of 20,000 phytase 
units/kg hydrolyzed almost all the phytate and further improved mineral and protein 
utilization and performance in terms of weight gain, feed intake, feed efficiency, 
bone breaking strength, and bone weight (Zeng et al. 2014). Yitbarek et al. (2017) 
studied the effect of phytase supplementation on greenhouse gas emissions from 
soils after manure application. They found out that the effect of phytase in swine 
diet does not only influence or has little influence on the emission of greenhouse 
gasses, but the excretion of P and N in swine manure was also greatly reduced. 
Appropriate dietary calcium and phosphorous concentrations are essential for nurs-
ery pig performance; however, too much Ca in young swine diets decreases its per-
formance and bone ash contents. Addition of standardized digestible phytases 
(minimum 0.45%) to the swine diet could improve the average daily gain and feed 
intake (Wu et al. 2017).

2.8.9  Phytases in Aquaculture Feed

Application of fishmeal to feed aquaculture industry is not a sustainable approach 
because fishmeal production is limited, and it is estimated that the demand itself will 
soon exceed its yearly production. Hence, the solution would be to replace fishmeal 
with alternative ingredients derived from crops, such as soybeans, wheat, corn, or 
rice (Hardy 2010). Replacing fishmeal with plant protein comes with its own chal-
lenge as well. Plant proteins are rich in phytic acid. Like humans, aquatic animals 
are not able to hydrolyze this compound too. In pisciculture sites, those phytic acid 
compounds would stay in ponds or rivers into which waste water is discharged, con-
tributing to eutrophication. Compared to fish-based protein meal, plant protein usu-
ally contains more indigestible organic matter such as insoluble carbohydrates and 
fiber and some mineral compounds such as phosphorus which have limited uptake in 
fish leading to higher levels of fish excretion and waste (Naylor et al. 2009).

Since plant proteins are increasingly used to replace fish meal for aquaculture 
feed production, there is a niche area for phytase to greatly improve the nutrient 

D. J. Dailin et al.



89

bioavailability of those plant proteins. In aquaculture, the use of phytase to improve 
phosphorus utilization has been already in use (Castillo and Gatlin III 2015). Many 
research works have focused on the effect of phytase in aquaculture feed and have 
produced sufficient evidence which demonstrate the effectiveness of phytase when 
added to aquaculture feed.

It was observed that adding phytase into the Nile tilapia diet improved digest-
ibility of several nutrients including protein, carbohydrates, energy, ash, phospho-
rus, and calcium. Moreover, combination of xylanase and phytase resulted in 
synergistic effect on the Nile tilapia growth as well (Maas et al. 2018). In another 
study by Sugiura et al. (2001), phytase supplementation to rainbow trout diet also 
show to increase the absorption of phosphorus, protein, ash, calcium, magnesium, 
copper, iron, strontium, and zinc. Excretion of phosphorus was also reduced to an 
extent of 95–98% compared with phosphorus excretion by fish consuming feeds 
without phytase. Apart from fish diets, effects of phytase supplementation were 
evaluated on shrimp diets as well. Phytase supplementation was able to improve 
nutrient retention for compounds, such as Cu, P, proteins, and some amino acids in 
Pacific white shrimps (Litpenaeus vannamei), while other improvements such as 
weight gain and feed conversion ratio were not achieved (Qiu and Davis 2017). 
Another study with tra catfish (Pangasianodan hypopthalmus), phytase supplemen-
tation improved growth performances, feed, and phosphorus utilization. Moreover, 
the supplementation was able to eliminate the need of dicalcium phosphate or any 
other additional phosphorus sources in catfish feed and reduced the phosphorus 
excretion into environment (Hung et al. 2015).

2.8.10  Phytases in Ruminant Feeds

In spite of the wide application of phytases in animal feed, little information is avail-
able about the potential advantages of exogenous supplementation of this enzyme to 
ruminant feeds. Many reports showed the insignificant effect of phytase addition to 
dairy cows in terms of phosphorus digestibility and milk yield (Humer and Zebeli 
2015; Winter et al. 2015). However, other studies reported that even though phytate 
could be digested by ruminants, it is believed that more than 60% of the P consumed 
by dairy cattle can be excreted in feces with a potential to cause environmental pol-
lution. Therefore, use of phytase was suggested as feed supplement in cattle farming 
to overcome this problem (Kebreab et al. 2013).

2.9  Recent Novel Applications of Phytases

Recently, researchers are looking to explore more on the various capabilities of 
phytases, and producing new data which shows that phytase has more layers of 
functionality. Soni et al. (2015) utilized the advantage of the highly glycosylated 
characteristic of phytase and used it for drug delivery applications. It was found that 
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self-assembled phytase enzyme nanospheres possess antitumour properties and 
these can be further enhanced by loading the phytase nanosphere with curcumin, an 
anticancer drug. In agricultural sectors, the increasing demand for fruits, vegetables, 
and grains pressurizes farmers to increase crop productivities. Hence, they are urged 
to use pesticides extensively to produce more crops with less pest damage. 
Organophosphorus is one such pesticide used in agriculture, but unfortunately it 
can’t be easily eliminated by washing and rinsing the crop with water and leads to 
its bioaccumulation in the food chain (Vendan 2016). Residues of this pesticide left 
in the crop cause harmful effects on the nervous system of exposed animals and 
humans (Mileson et al. 1998). Needless to say, it is crucially important to detoxify 
the crops exposed to pesticides. Shah et al. (2017) discovered an interesting novel 
potential of phytase as an organophosphate detoxifying agent in agriculture crops. 
In their research, phytase produced from A. niger NCIM 563 can degrade 72% of 
organophosphate under normal conditions, pH 7.0, and 35 °C on green chillies.

2.10  Conclusions and Future Trends

At present, phytases are widely used in many feed industries and are mainly pro-
duced using microbial sources. The current annual market volume exceeds USD 
350 million. This number is expected to increase in parallel to the rapid growth of 
poultry, swine, and aquaculture farming. In addition, the increased awareness about 
the negative environmental impacts of phosphorus released is another driving force 
for the increased usage of phytases in animal feed. Based on their application in 
animal feed industries, commercial phytases are different in terms of pH, tempera-
ture profiles, and overall enzyme properties. Nowadays, more research is focusing 
on protein engineering to improve enzyme stability to withstand higher tempera-
tures applied during feed production processes. Furthermore, with the increased 
available data of phytase genes and the ease of construction of new recombinant 
microbes, many new overproducer strains are now available in different fermenta-
tion industries. Another trend is the application of heterologous expression systems 
to integrate the thermostable phytase gene in plants. This is going to reduce the cost 
of phytase production processes and the use of plants as integrated biofactory of 
both nutrients and feed enzymes.
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Chapter 3
Fungal Probiotics: Opportunity, Challenge, 
and Prospects
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and Keshab Chandra Mondal

3.1  Introduction

The word ‘probiotics’ is derived from its Greek meaning ‘for life,’ first coined by 
Lilley and Stillwell in 1965 (Fuller 1992). Probiotics are actually a therapeutic prep-
aration containing living forms of nonpathogenic microorganisms that will ulti-
mately benefit the host body by balancing nutritional content and the immunological 
network, and also by preventing colonization of pathogenic microorganisms (FAO 
2006; Martín et al. 2005). Heterogeneous groups of the beneficial fungal commu-
nity are now showing a new horizon in the probiotic market (Agheyisi 2014; Yadav 
et al. 2017b). The diverse biological importance of fungal probiotics has attracted 
the attention of researchers and industries concerning its commercial prospects. 
Fungi (fungus, singular; fungi, plural; Latin word ‘fungus’ means mushroom) are 
basically nonphotosynthetic, spore-bearing heterotrophic eukaryotic organisms that 
reproduce both sexually (by spore formation) and asexually (by budding). When 
living freely in water and soil, fungi also form a symbiotic relationship with animals 
and plants (Dube 2013). Among the diverse family of fungi, yeasts are unicellular 
microorganisms belonging to the phylum Ascomycota under the class 
Saccharomycota. Yeasts are widely distributed in several ecological niches such as 
the normal human gastrointestinal (GI) flora, on plants, in water, in airborne parti-
cles, and also in various traditional fermented and nonfermented food products 
(Rima et al. 2012). Molds (moulds) are another important group of fungal species 
that grow in multicellular filaments called hyphae. Both yeasts and molds are of 
great significance in food processing and fermentation technology (Holzapfel 

A. Banik · C. Ghosh 
Department of Human Physiology with Community Health, Vidyasagar University, 
Midnapore, West Bengal, India 

S. K. Halder · K. C. Mondal (*) 
Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14846-1_3&domain=pdf


102

2002). From ancient times, the diverse community of fungi has benefitted society in 
a number of ways.

3.2  Uniqueness of Fungal Probiotics

The unique cellular architecture of fungi makes it a better class of probiotics than 
commercially available bacterial probiotics because the cell envelope of yeast is 
composed of two layers: the outer layer consists of mannan (phosphopetidomannan 
or phospholipomannan) and the inner layer contains chitin and 1,3- and 1,6-β-glucan 
(Lipke and Ovalle 1998). This structure allows easy transition through the gastroin-
testinal environment. Several genera of fungi also grow optimally in varied tem-
peratures. Their antagonistic property toward numerous microorganisms inhibits 
the growth of pathogenic bacteria in the gut. Several other properties of the fungal 
community that are directed toward probiotic characteristics are listed here. All 
these basic characters of the fungal family have fulfilled the potentialities for a pro-
biotic candidate.

3.3  Fungal Genera and Species as Probiotics

A group of fungal genera have been reported as novel candidates in the probiotic 
family: Candida humilis, Debaryomyces hansenii, Debaryomyces occidentalis, 
Kluyveromyces lactis, Kluyveromyces lodderae, Kluyveromyces marxiamus, 
Saccharomyces cerevisiae var. boulardii, Pichia kluyveri, Issatchenkia orientalis, 
Pichia kudriavzevii, Candida tropicalis, Meyerozyma caribbica, Candida saitoana, 
Candida pintolopesii, Cryptococcus albidus, and Torulaspora delbrueckii (Kumura 
et al. 2004; Maccaferri et al. 2012; Martins et al. 2005; Ochangco et al. 2016; Smith 
et al. 2016; Smith et al. 2014; Srinivas et al. 2017; Puppala et al. 2018; Cho et al. 
2018; Amorim et al. 2018; Fadda et al. 2017; El-Baz et al. 2018). The best studied 
yeast is Saccharomyces boulardii.

3.4  Advantages of Fungal Probiotics

The most commercially available yeast strain is Saccharomyces boulardii. S. bou-
lardii is a unique, nonpathogenic, tropical yeast (fungus) that can support health in 
a number of ways (Sharma and Saharan 2018) (Fig. 3.1). Current reports suggest 
that use of the yeast strains, singly or in combination with other probiotics, supports 
GI function by increasing populations of good bacteria with concomitant decrease 
in pathogenic organisms by means of competition for space and food (Sartor 2004). 
In the 1920s the French scientist Henri Boulard isolated the yeast S. boulardii strain 
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for the first time from lychee and mangosteen, and noticed that chewing the skin of 
these fruits helps to control cholera of the natives of Southeast Asia (McFarland 
2010). In contrast to most other probiotics, which are bacteria based, S. boulardii is 
a yeast probiotic supplement reported as a beneficial microorganism, able to survive 
in the acid environment of the stomach and colonize the GI tract; this probiotic is 
reported to encourage the growth of friendly bacteria to maintain gut health, diges-
tive health, and immunity (Kumar et al. 2017; Yadav et al. 2017a).

3.5  Fungal Probiotics in Human Health

Numerous findings suggest that fungal-based probiotics affect the host in several 
aspects (Table 3.1).

3.5.1  Health Beneficial Effects in the Normal Physiological 
State

First, production of antitoxic factors against several enteric bacterial toxins such as 
Escherichia coli lipopolysaccharides (LPS), toxins A and B of Peptoclostridium 
difficile, and Vibrio cholerae toxins are reported for the yeast strains (Buts and De 
Keyser 2006). The antimicrobial activity of probiotic yeasts can also help to pre-
serve the occluding junctions of the cells, especially tight junctions, by E-cadherin 
recycling, thus alleviating colonization by pathogenic bacteria as well as maintain-
ing the integrity of the intestinal epithelium (Bisson et al. 2010; Ooi et al. 2009). By 
modulating metabolic activity and increasing the production of short-chain fatty 

Fig. 3.1 Several postulated health benefits of Saccharomyces boulardii
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Table 3.1 Summary of major health beneficial effects of fungal probiotics

Action of 
fungal 
probiotics Fungal candidates as probiotic

Beneficial effects on 
host body References

Probiotic 
effects

Saccharomyces cerevisiae, 
Kluyveromyces marxianus, 
Metschnikowia gruessii, 
Meyerozyma caribbica, Pichia 
membranifaciens, Candida 
oleophila

Colonization, 
resistance, and 
inhibition of enteric 
bacterial pathogens
Maintenance of 
epithelial barrier 
integrity
Antiinflammatory 
effects
Immunomodulation 
activity
Effect on mucosal layer 
of intestine-trophic 
effects
Clinical effects on 
different types of 
diarrhea, e.g., AAD, 
traveler’s diarrhea, 
HIV-associated diarrhea
Eradication of 
Helicobacter pylori 
infection
Reduce blood 
cholesterol level

Lessard et al. (2009), 
Amorim et al. 
(2018), Silva-
Aciares et al. (2011), 
Butler et al. (1991), 
Qamar et al. (2001), 
Czerucka et al. 
(2007), McFarland 
(2007), Ragon et al. 
(2008), Smith et al. 
(2014).

Dietetic 
effects

Saccharomyces cerevisiae, 
Saccharomyces kluyveri, 
Kluyveromyces lactis, Pichia 
anomala, Pichia rhodesiensis, 
Pichia spartinae, Torulaspora 
delbrueckii, Candida krusei, 
Pichia pastoris, 
Schwanniomyces castellii, 
Rhodotorula gracilis, Pichia 
membranifaciens

Biodegradation of 
phytate
Enhance bioavailability 
of significant ions, e.g., 
iron, zinc, calcium, 
magnesium
Release of 
oligosaccharides
Production of all 
B-complex vitamins

Silva-Aciares et al. 
(2011), Ragon et al. 
(2008), Lim et al. 
(2008), Fernández 
et al. (2015)

Bio- 
fortification 
of folate

Saccharomyces cerevisiae, 
Saccharomyces pastorianus, 
Saccharomyces bayanus, Pichia 
anomala, Kluyveromyces 
marxianus, Candida glabrata, 
Debaryomyces hansenii, 
Debaryomyces vanrijiae

Prevent neural tube 
defects in fetal stage of 
embryo
Prevention of 
megaloblastic anemia
Reduce the risks of 
occurrence of 
cardiovascular disease, 
cancers, osteoporosis, 
and Alzheimer’s disease

Hjortmo et al. 
(2008), Witthuhn 
et al. (2005), 
Hjortmo et al. 
(2008)

(continued)
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acids (SCFAs), especially butyrate, the probiotic yeast controls gut microfloral bal-
ance and prevents dysbiosis (Swidsinski et al. 2008; Czerucka et al. 2007).

Second, the probiotic yeast S. boulardii can affect the intestinal mucosa with the 
maturation of enterocytes by stimulating the secretion of trophic polyamines such 
as spermine and spermidine. The increased level of yeast-generated polyamines acts 
as a signaling molecule through the polyamine transport system (PTS)(Czerucka 
et  al. 2007). Diamine oxidase (DAO), a degradation enzyme, in turn negatively 
regulates the concentration of polyamines. Experimental evidence also suggests 
that S. boulardii significantly increases the level and activity of brush-border mem-
brane (BBM) enzymes such as sucrase-isomaltase (SI), lactase-phlorizin hydrolase 
(LPH), maltase-glucoamylase (MGA), α-glucosidase, intestinal alkaline phospha-
tase (IAP), and amino peptidase N (APN), although the activity of all these enzymes 
is variable in the apical and basal parts of the BBM. All the aforementioned diges-
tive enzymes have great importance in the breakdown of nutrients and intestinal 
absorption for the benefit of both yeast and host. If there are any abnormalities in the 
small intestine or nutrient malabsorption, probiotic strains can provide appropriate 
beneficial actions. When orally administered to experimental rats, S. boulardii 
causes increased absorption of d-glucose and thus modulates disaccharide activity 
by the coactivity of sodium glucose symporter. S. boulardii is also responsible for 
the elevated expression of sodium glucose cotransporter-1 (SLGT-1) in the BBM, 
the ultimate site of the digestion of carbohydrates and absorption of water and nutri-
ents (Buts et al. 1999).

Third, probiotic yeasts also regulate the immune secretory activity of the intesti-
nal epithelium. Yeast cells mainly interact with epithelial cells to trigger both innate 
and adaptive immune response by recruitment of specialized cells customized for 
both these responses (Rodrigues et al. 2000). S. boulardii especially modulates the 
secretion of immunoglobulin and secretory IgA in the intestinal lumen, polymeric 
immunoglobulin receptors, and human membrane proteins, and reduces release of 
phospholipase A2, an enzyme that acts as a stimulator of proinflammatory lipid 
mediator (platelet-activating factor and eicasonoids), interleukin (IL)-6, IL-8, tumor 
necrosis-alpha (TNF-α), and chemokines such as CCL2, CCL20, and CXCL-8 
(Buts et al. 1990; Qamar et al. 2001; Ozkan et al. 2007; Badia et al. 2012). Several 

Table 3.1 (continued)

Action of 
fungal 
probiotics Fungal candidates as probiotic

Beneficial effects on 
host body References

Absorption 
and 
destruction 
of 
mycotoxins

Saccharomyces cerevisiae, 
Saccharomyces boulardii, 
Phaffia rhodozyma, 
Xanthophyllomyces 
dendrorhous

Antitoxic effects
Regulates aflatoxin 
production

Péteri et al. (2007), 
Sabater-Vilar et al. 
(2007), Silva et al. 
(2015)
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food-isolated yeast genera such as Debaryomyces, Kluyveromyces, and 
Metschnikowia display highly diverse and strain-dependent dendritic cell (DC)-
inducing properties. Dendritic cells have fundamental roles in the regulation of 
adaptive immune response as well as secretion of inflammatory cytokines. For 
instance, TNF-α and IL-1b are key cytokines for the acute innate inflammatory 
responses that attract macrophages and neutrophils to the site of action (Smith et al. 
2014). In vitro findings proved that S. boulardii alters the signaling pathways 
involved in pro-inflammatory cytokine synthesis. In this way, by modulating the 
activity of immune cells, yeasts provide a beneficial impact on human health.

Fourth, yeasts have a positive influence on the growth of crypt cells and villus 
cells by enhancing the height, width, and number of goblet cells (Bontempo et al. 
2006). Nonpathogenic fungal strains also interfere with quorum-sensing cross-talk, 
a cell signaling pathway important for the pathogenic profile and morphogenesis of 
certain pathogens. Colonization by Saccharomyces boulardii modulates the behav-
ior of normal gut flora (Dahan et al. 2003).

Fifth, several probiotic yeast strains, for example, Debaryomyces castellii, 
Saccharomyces cerevisiae, Saccharomyces kluyveri, Pichia anomala, Pichia sparti-
nae, Torulaspora delbrueckii, and Kluyveromyces lactis, showed nutritional effects 
in the host body by phytase activity and by enhancing the bioavailability of zinc, 
iron, calcium, and magnesium. Phytic acid (myo-inositol hexakiphosphate), a con-
served form of phosphorus, is considered to be a nonnutritional and chelating agent 
that decreases the availability of proteins and several ions (Ragon et  al. 2008; 
Olstorpe et al. 2009). Phytases, particularly those produced by fungi, cause hydro-
lytic degradation of phytic acid to free inorganic phosphate and provide lower myo- 
inositol phosphate esters (Lim et al. 2008; Fernández et al. 2015).

Several studies also showed that probiotic fungal strains such as Saccharomyces 
cerevisiae, S. pastorianus, S. exiguous, Metschnikowi lochheadii, Debaryomyces 
hansenii, Pichia philogaea, P. anomala, Candida cleridarum, C. glabrata, and 
Kluyveromyces marxianus also exert nutritional effects by folate bio-fortification. 
Vitamin B9 is commonly known as folate, an important cofactor for a carbon trans-
fer reaction in the physiological system. Folate is also beneficial for the synthesis of 
purine and methionine and interconversion between serine and glycine. Thus, folate 
aids in cellular replication and growth (Hjortmo et al. 2008). Fungal probiotic mem-
bers are more active in folate biosynthesis and produce high levels per weight. 
Folate bio-fortification in turn prevents neural tube defects in the growing fetus, 
reduces the chance of megaloblastic anemia, and also moderates the risk of cardio-
vascular disease, cancer, Alzheimer’s disease, and osteoporosis. Budding yeasts 
such as S. cerevisiae also reduce the extent of the absorption of mercury (present in 
water and food matrices) by the intestine (Jadán-Piedra et al. 2017).

Another important positive health benefit of fungal probiotics is the biodegrada-
tion and absorption of mycotoxins. Mycotoxins are the secondary metabolites pro-
duced by fungi, and among these the fungal genera Aspergillus, Fusarium, and 
Penicillium are pioneers. Some well-known mycotoxins are aflatoxins, ochratoxins, 
fumonisins, deoxyniyalenol (DON), zearalenone (ZOA), and trichothecenes. 
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Contamination of agricultural products, food, and animal feeds by mycotoxins 
causes various diseases in humans as well as livestock. Degradation of mycotoxins 
by probiotic strains has been reported, suggesting that degradation of zearalenone 
leads to conversion into alpha- and beta-zearalenol. S. cerevisiae also causes 
 degradation of ochratoxin A, fumonisins B1 and B2, deoxynivalenol, and T2 toxin. 
By an enzyme-mediated reaction, especially by carboxypeptidases, two fungal 
strains, Phaffia rhodozyma and Xanthophyllomyces dendrorhous, can degrade och-
ratoxin A and convert it into nontoxic ochratoxin-α (Péteri et al. 2007; Sabater-Vilar 
et al. 2007; Silva et al. 2015).

3.5.2  Health Beneficial Effects During Adverse Physiological 
States

There is actually a mutualistic relationship between gastrointestinal microbiota and 
the host body. If this condition is interrupted, dysbiosis occurs, causing severe acute 
and chronic physiological conditions such as antibiotic-associated diarrhea (AAD), 
inflammatory bowel disease (IBD) (e.g., Crohn’s disease and ulcerative colitis), irri-
table bowel disease, food allergies, cardiovascular disease, and cancer (e.g., colorec-
tal cancer). Fungal probiotics support health beneficial effects in adverse 
physiological conditions and also prevent the occurrence of several diseases in 
humans and animals.

3.5.3  Antiproliferative Effects of Fungal Probiotics

Various in  vitro and in  vivo studies have shown that candidate fungal probiotic 
strains can prevent the manifestation of cancer by their antiproliferative effects 
(Silva et al. 2015; Chen et al. 2009). A considerable amount of research indicates 
that the probable mechanisms of antiproliferative effects include antitoxin effects 
against several toxins, antimicrobial and anti-yeast activity, production of bioactive 
compounds such as oligosaccharides, SCFA, and anti-tumorigenic and anti- 
carcinogenic compounds, tropic effects on enterocytes, inactivation of carcinogenic 
compounds, improvements in intestinal barrier function, immunomodulation to 
boost the host immune system, modulation of physiochemical conditions of the 
colon environment and antioxidant properties (Ghoneum et al. 2008; Mumy et al. 
2008; Weiler and Schmitt 2003; Butler et al. 1991; Foligné et al. 2010; Kogani et al. 
2008; Križková et al. 2001). It was reported by different researchers that the probi-
otic strain S. boulardii directly inhibits the activation of extracellular signal regu-
lated protein kinase (ERK1/2) through effects on epidermal growth factor receptor 
(EGFR) or other RTK signaling pathways (Chen et  al. 2006; Chen et  al. 2013). 
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Probiotic yeasts also elevate the expression of the pro-apoptotic protein Bax as well 
as inhibit the expression of the antiapoptotic protein Bcl2, and by counterbalancing 
these two proteins, it causes induction of apoptosis in cancerous cells (Ghoneum 
et  al. 2008; Kroemer and Reed 2000). Another probiotic candidate, the yeast 
Kluyveromyces marxianus (AS41) isolated from dairy products, has also shown 
anticancer activity by secretion of metabolites through downregulating the expres-
sion of Bcl2 and upregulating the expression of BAD, CASP9, CASP8, and CASP3, 
thus inducing the apoptosis of epithelial cancer cells (AGS) (Saber et  al. 2017). 
Administration of fungal probiotics to cancerous mice also increases the recruit-
ment of macrophages on tumor cells, and in turn these induce an apoptotic pathway 
over the neoplastic cells without affecting normal cells. Thus, fungal probiotics 
should be beneficial for future application in cancer therapy.

3.5.4  Antiinflammatory Effects of Fungal Probiotics

Fungal probiotics decrease the chances of inflammation by promoting beneficial 
effects on mucosal epithelial cells through modulation of the host immune system 
involved in the process of inflammation. Fungal probiotics can modulate the expres-
sion of several regulatory inflammatory genes such as cyclooxygenase-2 (COX-2) 
and NF-κB as well as counterbalance pro-/antiinflammatory cytokines [e.g., IL-6, 
IL-8, IL-10, IL-1α, IL-1β, interferon-gamma (IFN-γ), TNF-α] and chemokines lev-
els and also produce antiinflammatory factors against various harmful toxins (Dahan 
et al. 2003; Nurmi et al. 2005; Mumy et al. 2008). From in vitro studies, it has been 
proved that probiotic yeasts, especially S. cerevisiae var. boulardii, interfere with 
the host cell signaling cascade responsible for the elevation of pro-inflammatory 
responses during infection caused by pathogenic bacteria. The exact mechanism of 
the antiinflammatory effect shown by S. cerevisiae is based on blocking of pro- 
inflammatory mediators like NF-κB, MAPK (p38 and JNK), and AP-1 in the intes-
tine and also stimulates the expression of peroxisome proliferator-activated 
receptor-gamma (PPAR-γ) in human colonocytes. In such ways, probiotic yeast can 
downregulate the expression of IL-6, IL-8, IL-1α, IL-1β, IFN-γ, and TNF-α and 
upregulate the expression of IL-10 (Lee et al. 2005). Furthermore, probiotic admin-
istration in a dose-dependent manner causes restoration of intestinal permeability 
and protects against occurrence of chronic inflammation and ulcerative colitis 
(Tiago et al. 2015). In addition, S. cerevisiae var. boulardii showed an inhibitory 
effect on inducible nitric oxide synthase (iNOS) activity and the production of nitric 
oxide (NO). Inhibition of NO reduces the chances of inflammation and thus should 
be helpful in the treatment of IBD (Girard et al. 2005).
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3.5.5  Health Beneficial Effects of Fungal Probiotics 
in Clinical Conditions

3.5.5.1  Antibiotic-Associated Diarrhea (AAD)

Oral administration of antibiotics sometimes causes disturbances in the normal 
microflora of the host, and colonization by some opportunistic pathogens, mainly 
Clostridium difficile, leads to the adverse inflammatory condition in the intestinal 
mucosa termed antibiotic-associated diarrhea (AAD) (Katz 2006). Several other 
pathogenic microorganisms related to the occurrence of AAD are Staphylococcus 
aureus, Clostridium perfringens, Klebsiella oxytoca, Candida spp., Escherichia 
coli, and species of Salmonella. It has been reported from randomized clinical trials 
that fungal probiotics, especially Saccharomyces boulardii, reduce complications 
related to AAD in adults and children after administration in a dose-dependent man-
ner (Kotowska et al. 2005; Surawicz et al. 2000).

3.5.5.2  Traveller’s Diarrhea (TD)

In developing countries, traveller’s diarrhea is a commonly occurring public health 
problem during traveling that is associated with nausea, abdominal cramps, fever, 
and bloating. Pathogenic bacteria such as enterotoxigenic Escherichia coli (ETEC), 
Shigella, and Salmonella may contribute to 80% of TD cases. Norovirus and Giardia 
are also responsible for 10% of TD cases. The efficacy of S. boulardii was assessed 
for 1016 travelers visiting different countries (Kollaritsch et al. 1993).The occur-
rence of TD was 40%, 34%, and 29% in patients receiving placebo, S. boulardii 
250 mg per day (p = 0.019), and S. boulardii 1 g per day (p < 0.005), respectively. 
Meta-analysis of a fungal probiotic was also done in 12 different studies for the 
reduction of TD cases, and these studies proved that the combination of the two 
probiotics, that is, S. boulardii and Bifidobacterium bifidum with Lactobacillus aci-
dophilus, significantly prevents traveller’s diarrhea (Sanders and Tribble 2001).

3.5.5.3  Helicobacter pylori-Related Diarrhea

Chronic levels of gastritis and peptic ulcer in adults and children are commonly 
caused by the colonization of Helicobacter pylori on the gastric lining of the host 
mucosa. Infection from H. pylori is sometimes a risk factor for gastric malignancy 
in adults. Several studies reported that a fungal probiotic reduces common diarrhea- 
related symptoms, epigastric pain, taste disturbances, and the nausea and side 
effects caused by medication. Although S. boulardii had no significant effect on the 
full eradication of H. pylori, its oral supplementation alleviated the chances of H. 
pylori infection in adults (Cremonini et al. 2002; Hurduc et al. 2009; Gotteland et al. 
2005).
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3.5.5.4  Inflammatory Bowel Disease (IBD)

Inflammatory bowel disease is generally characterized by chronic inflammation of 
the mucosal epithelial cell surface of the intestine. Crohn’s disease and ulcerative 
colitis are the two types of IBD found in humans. Disintegration of the mucosa in 
the small intestine and colon affects the habitat of normal microflora, ultimately 
causing diarrhea, abdominal pain, and bleeding through the GI tract. A fungal pro-
biotic candidate reduces the occurrence of dysbiosis by maintaining mucosal integ-
rity and thus preventing the chances of IBD.  Several randomized, double-blind, 
controlled studies evaluated that administration of a yeast probiotic, especially S. 
boulardii in a dose- and time-dependent manner, combined with conventional ther-
apy, decreases the frequency of bowel movements and the probability of the trans-
location of bacteria in comparison with a placebo group, without showing any side 
effects on the host body during the trial period. In addition, a placebo-controlled 
study showed that treatment with yeast probiotic plus conventional therapy results 
in clinical remission for 68% of ulcerative colitis patients and that improvement will 
also occur in intestinal permeability with a reduced lactulose/mannitol ratio in 
patients with Cohn’s disease. Hence, a fungal probiotic could be treated as a safe 
therapy for the prevention of IBD (Maupas et  al. 1983; Plein and Hotz 1993; 
Guslandi et al. 2000, 2003; Vilela et al. 2008).

3.5.5.5  HIV-Associated Diarrhea

Diarrhea is the most common pathological consequence among patients infected 
with human immunodeficiency virus (HIV). About 60% of patients undergoing 
antiretroviral therapy (ART) reported diarrheal symptoms, and it was suggested that 
19% of these conditions result from the side effects of ART itself. Randomized, 
controlled, double-blind studies were conducted for the evaluation of the efficacy of 
the fungal probiotic S. boulardii var. cerevisiae on acquired immunodeficiency syn-
drome (AIDS) patients suffering chronic diarrhea. S. boulardii var. cerevisiae 
showed positive results, clearing all the diarrheal symptoms in 61% of cases after 
treatment for 1 week at a specific dose. All the clinical trials regarding the efficacy 
of this fungal candidate in the treatment of diarrhea indicate it could be a good 
therapy for the future prevention of HIV-associated diarrhea.

3.5.5.6  Acute Gastroenteritis

Acute gastroenteritis (AGE) contributes from 5% to 10% of the total deaths and is 
the second cause of death in the most susceptible of the world’s population in the 
under-five age group, caused mainly by bacteria, virus, or parasite. Dehydration, 
abdominal pain, cramps, and nausea and vomiting accompanied by fever and 
anorexia, are the main symptoms of gastroenteritis in acute conditions. Rotavirus is 
the major contributor for AGE in the death profile for children worldwide. A recent 
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meta-analysis revealed that the fungal-based probiotic candidate S. boulardii (at 
250 mg twice per day, up to 5 days), significantly decreased the duration of AGE 
(p < 0.0001) in comparison with a control group, without any ill effects in pediatric 
patients. Thus, the fungal probiotic could be the sole effective therapy for the future 
management of AGE with proper treatment guidelines (Padayachee et al. 2018).

3.5.5.7  Giardiasis

Giardiasis is the most common parasitic disease. Caused by cysts of Giardia lam-
blia, giardiasis is characterized by chronic diarrhea, pain in the abdomen, and severe 
weight loss and actually results from consuming contaminated water or food. In 
some cases, vomiting, bloody stool, and fever may also occur. The effectiveness of 
the commercial fungal probiotic, S. boulardii, in the treatment of giardiasis was 
assessed by several placebo-controlled double-blind studies. These studies con-
firmed that S. boulardii in combination with metronidazole (750 mg) clears all the 
symptoms related to giardiasis, and also no giardiasis-causing cysts were found in 
the treated group. These results indicate that S. boulardii has the ability to treat 
giardiasis with metronidazole and should be used as a future medication (Kelesidis 
and Pothoulakis 2012; Besirbellioglu et al. 2006; Mansour-Ghanaei et al. 2003).

3.5.5.8  Vulvovaginal Candidiasis

Vulvovaginal candidiasis (VVC), commonly called ‘vaginal yeast infection,’ is 
caused mainly by Candida albicans affecting women. Vulval itching, vulval sore-
ness, irritation accompanied by dyspareunia, dysuria, and abnormal vaginal secre-
tion are the main VVC-related complications. In vitro studies clearly showed that 
regular intravaginal administration of the yeast probiotic S. cerevisiae significantly 
inhibits expression of several fungal components (e.g., secretory aspartyl protein-
ases) responsible for the occurrence of VVC at the vaginal level by modulating the 
inflammatory profile of the host body. Further clinical trials in humans are needed 
to prove S. cerevisiae is a good therapeutic agent for vaginal candidiasis (Falagas 
et al. 2006).

3.5.5.9  Acne Vulgaris

Acne vulgaris, or acne, is a chronic inflammatory skin complication that impacts 
public health and requires a long time for recovery. The effectiveness and tolerance 
of Saccharomyces cerevisiae for 139 patients with various form of acne was evalu-
ated in a randomized double-blind controlled study. This study proved that S. cere-
visiae significantly reduces acne in 80% of individuals receiving a live yeast 
suspension, in comparison with a placebo group (Weber et al. 1989). S. cerevisiae 
can be exploited as a future nonconventional therapeutic agent.
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3.6  Challenges Regarding the Use of Fungal Probiotics

The past decades have witnessed the significance of fungal probiotics in the treat-
ment of an array of disease conditions. However, the main problem regarding the 
use of fungal-based probiotics is the dosage and viability of the supplied organisms. 
The lack of proper standardized protocols and bio-safety issues are two major hin-
drances in the application of fungal probiotics as therapeutics. Because appropriate 
data are scarce, application of fungal probiotics in industry does not fulfill some of 
the claims. Therefore, further extensive research work must evaluate the beneficial 
effects of fungal probiotic candidates as well as identify and characterize new 
potential fungal strains as probiotics from different functional food sources and with 
strain-specific mechanisms of action. Standardization of the optimal dose against 
different adverse health conditions, bioavailability, percentage of viability, and 
finally safety assessment of probiotics must be accomplished in a standard trial 
experiment before commercial exploitation.

In addition, appropriate scientific protocols should be followed for better produc-
tion, handling, and packaging before reaching the marketplace. Most potential fun-
gal probiotics will be incorporated in food items such as energy drinks, juices, 
cereals, and certain medicinal foods as dietary adjuncts and made available I expen-
sively in the public domain. Exploration of fungal-based probiotics such as 
Saccharomyces boulardii showed positive results in all the randomized clinical tri-
als. However, the mixture of probiotic strains proved superior over use of a single 
strain. Many researchers have tried to increase the bioavailability and intestinal 
delivery of S. boulardii by microencapsulation or by immobilization in a matrix to 
maintain a healthy gastrointestinal balance to improve human health. Several easily 
biodegradable and biocompatible matrices are used for probiotic encapsulation, 
such as gelatin, carrageenan, chitosan, starch, pectin, or cellulose derivatives and 
other synthetic monomers. Encapsulation increases the bioavailability of probiotics 
and thus their effectiveness in the treatment and prevention of several gastrointesti-
nal disorders. Future studies will disclose the ultimate potential of fungal probiotics 
in different applications.

3.7  Conclusion and Future Prospects

A fungal probiotic has been used effectively in the management of different types of 
gastrointestinal disorders and also in several adverse health conditions. Advanced 
molecular phylogenetic study clearly confirmed that Saccharomyces boulardii is a 
unique fungal strain of Saccharomyces cerevisiae with potential probiotic charac-
ters. Several other strains of yeast also fulfilled the required probiotic properties. 
The exact mechanism of action of those identified fungal probiotics has not been 
completely elucidated, and therefore further research is needed for this concern. In 
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vitro and in vivo studies will ultimately confirm the beneficial effects of fungal pro-
biotics and also its therapeutic approach for the prevention and treatment of several 
diseases.
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Chapter 4
Fungal White Biotechnology Applications 
for Food Security: Opportunities 
and Challenges

Surekha Challa, Titash Dutta, and Nageswara Rao Reddy Neelapu

4.1  Introduction

Food security and food insecurity is under the purview of Food and Agriculture 
Organization (FAO) of the United Nations, and the concept or definition has been 
changing right from the World Food Conference conducted in 1974 till date. Food 
security means when “all people, at all times, have physical, social and economic 
access to sufficient, safe and nutritious food which meets their dietary needs and 
food preferences for an active and healthy life. Food insecurity exists when people 
do not have adequate physical, social or economic access to food as defined above” 
(Fig.  4.1) (FAO 2003). Literature reports that availability, access, utilization and 
stability are the four facets of food security. Availability means physical availability 
of food in the form of stock to trade. Access to food means adequate food supplies 
which are based on policies, even when market prices are not affordable by the 
people. Food utilization means household distribution to individuals for effective 
biological utilization. Stability means perpetuity of the other three facets of food 
security (like availability, access and utilization) even when climate, political or 
economic factors (like employment and market) are not in support (De Schutter 
2014). The approaches implemented to ensure food security are “World Food 
Programme” by FAO of the United Nations, global partnerships, increase in agricul-
tural productivity, large-scale storage of food, agricultural insurances and others 
(Joachim et al. 2003; De Schutter 2014; WFP 2009; Fan et al. 2015; Fan and Polman 
2014; Molden 2013; McCullum et al. 2005; Delang 2006). The challenges associated 
with food security are water crisis globally, degradation of land, change in climate, 
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agricultural diseases, fuel, politics and food sovereignty (Fraser 2003; Brown 2004, 
2006; Fraser 2007; MacKenzie 2007; McKie and Rice 2007; Sample 2007; Harvey 
2011; Maher and Baum 2013; Vincent et al. 2013; De Leeuw et al. 2014; Semenza 
2014). The risks or factors affecting food security are population growth, depen-
dence on fossil fuels, homogeneity in the supply of food globally, pricing of food, 
change in the use of land, global catastrophes and subsidies to agricultural in vari-
ous countries (Pimentel and Giampietro 1994; Alley et  al. 2003; Bostrom and 
Cirkovic 2008; Walt 2008; Pfeiffer 2009; Sankin 2013; Khoury et al. 2014; Kong 
2014; Larson 2014; Oaklander 2016).

Based on the duration, food insecurity is classified into three types – chronic, 
transitory and seasonal. Chronic food insecurity is “long-term or persistent”, 
whereas transitory food insecurity is “short-term and temporary”. Seasonal food 
insecurity falls between chronic and transitory food insecurity, often associated 
with climate, cropping patterns, work opportunities and disease” (FAO 2008). The 
United States developed the following measures to describe food security or food 
insecurity: (1) Household Food Insecurity Access Scale (HFIAS); (2) Household 
Dietary Diversity Scale (HDDS); (3) Household Hunger Scale (HHS); and (4) cop-
ing Strategies Index (CSI) (Maxwell 1996; Oldewage-Theron et al. 2006; Swindale 
and Bilinsky 2006a; Swindale and Bilinsky 2006b; Coates et  al. 2007; Maxwell 
et al. 2008; Ballard et al. 2011). Literature reports the role of fungi as a dietary food 
as well as in food and feed processing industries. So, fungi can be a boon for food 
directly or indirectly playing an important role in food security. This book chapter 
discusses the opportunities and challenges of fungal white biotechnology applica-
tions for food security.

4.2  Fungal White Biotechnology

Employing fungal enzymes or live fungi for industrial or other applications is 
known as fungal white biotechnology. The applications in fungal white biotechnol-
ogy include biocontrol, biomass degradation, bioremediation, bioenergy (biofuel), 
chemicals (organic acids), detergents, enzymes, food and feed, proteins, paper and 
pulp, pharmaceuticals (antibiotics, secondary metabolites, statins) and textiles 
(Fig. 4.2). Recently, fungal white biotechnology has gained importance due to its 
eco-friendly nature or ability to bring down greenhouse gas emissions. Fungal white 
biotechnology applications can be categorized into the following.

Fig. 4.1 (a) The four 
facets of food security and 
(b) the three types of food 
insecurity
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4.2.1  Fungi’s Role in Food Industry

Fungi have great and potential applications in the food industry as food (edible 
fungi), processed food (bread, cheese and other bakery products), fermented foods 
(alcohols, beverages), fodder, etc. (Ghorai et al. 2009).

4.2.2  Fungi for Biocontrol

The other potential application of fungi is biocontrol. Fungi belonging to the order 
Hypocreales are used to control pests (insects or phytopathogens) (Neelapu et al. 
2009). Beauveria bassiana, Nomuraea rileyi, Metarhizium anisopliae and 
Paecilomyces fumosoroseus (mitosporic or asexual or conidiogenous entomo-
pathogenic fungi) are the potential biopesticides available in the market to control 
insects (Padmavathi et al. 2003; Devi et al. 2006; Devi et al. 2007; Neelapu et al. 
2009; Verma et al. 2017), whereas biocontrol agent Trichoderma viride is used to 
control phytopathogens (Surekha et al. 2013; Surekha et al. 2014; Rao et al. 2015).

4.2.3  Fungi and Bioremediation

The other promising application of fungi is bioremediation. Solid evidence was 
reported on different fungi possessing the ability to degrade or remediate industrial 
or paper mill or textile dye effluents (Lalitha et al. 2011).

Fig. 4.2 White fungal 
biotechnology applications
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4.2.4  Fungi for Biomass Degradation

Filamentous fungi produce enzymes which can degrade plant materials like hemi-
cellulose, lignocellulose, lipids, pectin, protein and starch. Biomass degradation 
or conversion is another capability of fungi to convert agri-wastes or wastes 
into useful products for aesthetic beauty of the environment (Lalitha et al. 2013; 
Shukla et al. 2016).

4.2.5  Fungi and Biofuels

A fuel (bioenergy) alternate to fossil fuel is derived from plants or microalgae or 
from “wastes of agricultural, commercial, domestic, and/or industrial wastes”. The 
above biomass or wastes are converted into biodiesel or bioethanol in the presence 
of yeast. This biodiesel or bioethanol (fuel) are additives to diesel or gasoline which 
can reduce emissions (Sergeeva et al. 2008).

4.2.6  Organic Acids from Fungi

Organic acids such as citric acid, fumaric acid, itaconic acid, malic acid and suc-
cinic acid have a wide range of applications in beverage, chemical, food, pharma-
ceutical and polymer industries. Citric acid is the most widely used organic acid in 
industries for the production of beverages, food and pharmaceuticals. Itaconic acid 
is used in the chemical industry for the production of fibres, oil additives, plastics, 
rubbers, surfactants and synthetic resins. Fumaric acid, malic acid and succinic acid 
are used in manufacturing biodegradable polymers (Meyer et al. 2016).

4.2.7  Fungal Enzymes

Fungi are the potential source of enzymes with a broad array of applications in 
industries. The diverse groups of enzymes from different groups of fungi have been 
reported with potential applications in agriculture, food and medicine industry 
(Kaur et al. 2017; Kumar et al. 2017; Suman et al. 2016; Yadav et al. 2017, 2018). 
Enzymes calf renin (chymosin) have a role in cheese production, whereas enzymes 
like lipases are used in the field of biomedical sciences, chemical industries, deter-
gent industry, food technology and beverages (clarification of fruit juices). Lipases 
in combination with other enzymes like oxidases, peroxidases and proteases are 
used as household detergents and industrial cleaners and also in leather processing 
(Adrio and Demain 2003).
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4.2.8  Expression of Pharmaceutical Proteins 
and Pharmaceuticals

Apart from bacteria, fungi are always considered as safe and best for the production 
of pharmaceutical proteins and pharmaceuticals. Few pharmaceutical proteins 
which are produced in fungi are fusion proteins like human interleukin-6; human 
lactoferrin; human lysozyme; hirudin (a thrombin inhibitor); human epidermal 
growth factor; human haemoglobin; human interferon; and surface antigens of the 
hepatitis B virus. Fungi are a good source for many known pharmaceuticals such as 
antibiotics, secondary metabolites, statins, immunosuppressive agents, hypocholes-
terolaemic agents, antitumour agents, mycotoxins, pigments and polyunsaturated 
fatty acids (Adrio and Demain 2003).

4.2.9  Fungi’s Role in Paper and Pulp Industry

Wood is initially chipped, debarked, steamed and reduced into pulp. The pulp or 
raw material in the presence of fungi is converted into paper with the help of 
cellulose- degrading enzymes (Jerusik 2010).

4.2.10  Textiles or Fabric from Fungi

The futuristic fabric which is anti-microbial, biodegradable, comfortable to wear, 
durable, eco-friendly, fire-resistant, flexible, non-toxic, skin-friendly, strong, suit-
able for sensitive skin, waterproof and can be mended easily is now available from 
fungi (Ross 2016). Fabric from fungi is an innovation in textile industry and a pos-
sible substitute for animal leather and suede that can be used for accessories, bags 
and shoes. This fabric or leather is made by a process known as bio-fabrication 
(Ross 2016). MycoTEX and Muskin are made from roots and vegetable parts of 
mushrooms, respectively. Roots or vegetable discs of mushrooms are supplied with 
nutrients or tree mulch or agricultural waste or raw material in a Petri dish, allow-
ing the root to grow in a process which is similar to fermenting. Then the dress can 
be mended without sewing, just by overlapping the root discs to form a thin fabric 
that is shaped into a dress on a mannequin. Tears and holes are simply patched by 
placing patches of mycelium discs over the hole (Ross 2016). The challenge with 
fabric made from fungus is that the manufacturing process is time-consuming and 
laborious, making commercial-scale production difficult. At the same time, the raw 
material used to grow fungi is waste, which may bring aversion to the consumer 
(Ross 2016).
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4.3  Fungal White Biotechnology Applications for Food 
Security

The opportunities and challenges of white fungal biotechnology are elaborated and 
discussed in detail. This section discusses (1) fungi and food, (2) processed food, (3) 
fermented alcohols and non-alcoholic beverages, (4) fungi and pigments, (5) yeast 
and fodder and (6) the role of fungal enzymes in the food industry.

4.3.1  Fungi and Food

Fungi can directly be used as food (mushrooms as the edible fungi) or can be used 
to produce protein biomass such as SCP.  This section deals with the above two 
aspects.

4.3.1.1  Mushrooms as Edible Fungi

Mushrooms are the integral ingredients in major cuisines worldwide due to their 
characteristic flavour, nutraceutical properties, and ecological and economic signifi-
cance. Mushrooms also function in the prevention and treatment of many diseases. 
In nature 2000 species of mushrooms exist; and among these 33 are commercially 
cultivated for human consumption (Table  4.1) (Miles and Chang 2004; Sánchez 
2004). Mushrooms are highly nutritious with considerable organoleptic and medici-
nal properties. Generally, they are composed of water (90%) and dry matter (10%). 
Mushrooms are good sources of protein (27–48%), carbohydrates (60%) and lipids 
(2–8%) (Valverde et al. 2015). Additionally, they are also rich in amino acids such 
as leucine, valine, glutamine, glutamic and aspartic acids and vitamins such as B1, 
B2, B12, C, D and E (Mattila et al. 2001; Surekha et al. 2011; Kalač 2013). The total 
energy generated per kg of fresh mushrooms is between 1.05 and 1.50 J. Agaricus 
bisporus (button mushrooms) is the most cultivated mushroom at industrial scale 
followed by Lentinus edodes (shiitake), Pleurotus spp. (oyster mushrooms), 
Auricula auricula (wood ear mushrooms), Flammulina velutipes (winter mush-
rooms) and Volvariella volvacea (straw mushrooms) (Aida et  al. 2009; Cheung 
2013). Apart from their nutritional values, many species of mushrooms are tradi-
tionally used as medicine due to their immunomodulatory and antineoplastic prop-
erties. They are widely accepted for their antiallergic, antibacterial, anticancer, 
anticholesterolaemic, antidiabetic, antifungal, anti-inflammatory, antiparasitic, anti-
oxidant, antitumour and antiviral properties. They are also known for their cardio-
vascular, detoxification and hepatoprotective effects (Wasser 2014).

Tian et  al. (2018) identified white button mushroom (A. bisporus)-mediated 
effect on glucose homoeostasis via intestinal gluconeogenesis. Thus, white button 
mushroom has a prebiotic role on glucose homeostasis, probably controlling diabetes. 
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C57BL/6 mice when fed with white button mushrooms showed significant changes 
in the composition of microbiota (especially significant increase in Prevotella popu-
lation). Prevotella produce propionate and succinate which induce intestinal gluco-
neogenesis probably  influencing the gut-brain neural circuit, thereby decreasing 
hepatic glucose in C57BL/6 mice. The edible mushroom Lentinus edodes (Shiitake) 
produces lentinan, a fungal polysaccharide with immense medical properties. The 
primary chain of lentinan is composed of β-(1,3)-D-glucose units linked to β-(1,6)-D 
glucose side groups with an average molecular weight of 500,000 Da (Morais et al. 

Table 4.1 List of edible mushrooms available for human consumption

S No. Scientific name Common name

1 Naematoloma sublateritium Brick cap
2 Hericium erinaceus Lion’s mane or bear’s tooth
3 Entoloma abortivum Aborted entoloma
4 Morganella pyriformis Pear-shaped puffball
5 Lepista nuda Blewits
6 Flammulina velutipes Velvet foot
7 Coprinus comatus Shaggy manes
8 Agaricus campestris Meadows or pink bottoms
9 Armillaria gallica Brown honey or stumpers
10 Armillaria mellea Yellow honey or stumpers
11 Grifola frondosa Hen of the woods
12 Pleurotus ostreatus Oyster mushrooms
13 Laetiporus cincinnatus Chicken of the woods
14 Lepiota americana Reddening Lepiota

15 Pluteus cervinus Deer or fawn mushrooms
16 Suillus americanus Chicken fat
17 Auricularia auricula-judae Woodears
18 Phylloporus rhodoxanthus Gilled bolete
19 Boletus edulis King bolete
20 Russula virescens Green quilted Russula

21 Lentimula edodes Shiitake
22 Panellus serotinus Late fall oysters
23 Hypomyces lactifluorum Lobster mushrooms
24 Pleurotus porrigens Angel wings
25 Laccaria ochropurpurea Purple-gilled Laccaria

26 Macrolepiota rhacodes Shaggy parasol
27 Volvariella volvacea Straw mushrooms
28 Tremella fuciformis Silver ear
29 Agaricus bisporus Button mushrooms, champignon
30 Morchella elata The black morel
31 Morchella esculenta The common morel
32 Tuber melanosporum Truffle
33 Ganoderma lucidum Reishi

Source: Miles and Chang (2004)
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2000). Similarly, the polysaccharide schizophyllan (sizofiran) obtained from the 
edible mushroom Schizophyllum has a molecular weight between 100,000 and 
200,000 Da and exists in a triple helical conformation. These polysaccharides are 
extensively used as immunomodulators and therapeutics for cancer. Another edible 
mushroom Agaricus blazei (grown in Brazil) is reported with significant antitumour 
properties. Cordyceps militaris is another mushroom grown at a large scale due to 
its multiple medicinal benefits. This mushroom is known for antibacterial, antimeta-
static, antiproliferative, antitumour and anti-inflammatory properties, along with 
potent immunomodulatory and insecticidal effects. C. militaris when consumed 
supresses chronic bronchitis, influenza A and viral infections (Won and Park 2005).

The cultivation of mushroom begins with the procurement of pure mycelium 
from the spores of the desired or specific mushroom strain or from a piece of spe-
cific mushroom. The next stage is obtaining inoculum from the pure mycelium by 
growing it on spawn (cereal grain, e.g., wheat, rye or millet) (Chang and Miles 
1989; Oei 2003). The production of mushroom depends on the quality of spawn, 
and therefore spawn is prepared in sterile conditions to prevent contamination. 
Several groups have developed new techniques to enhance or produce high-quality 
spawns (Flegg and Maw 1976; Amuneke and Dike 2017). The species of mush-
rooms to be cultivated determines the degree of substrate preparation, inoculation, 
incubation and production conditions. For example, L. edodes (shiitake mushrooms) 
which is traditionally grown on wooden logs is now grown on artificial log cultiva-
tion or bag-log cultivation (utilizing heat-treated substrates enclosed in plastic bags) 
(Chang and Miles 1989). This new technique is more advantageous than the tradi-
tional method of cultivation, as the time interval for a complete crop cycle is signifi-
cantly reduced, along with scaling up mushroom production. Pleurotus spp. (oyster 
mushrooms) are not grown on wooden logs; instead, they are grown on a wide range 
of lignocellulosic materials. The materials used for growth are pasteurized before 
inoculation to reduce contamination and enhance the quality of the mushroom (oys-
ter mushroom).

Most of the mushroom species are good sources of bioactive compounds apart 
from their nutritional value. The growing awareness related to the nutritional and 
nutraceutical properties of mushrooms has drastically increased the consumption of 
whole mushrooms as dietary supplements. This potential demands an increased and 
sustained production of edible mushrooms to meet the growing demand worldwide. 
Modern technologies such as computerized control systems to monitor environmen-
tal parameters, automated harvesting and mushroom production using non- 
composted substrate, novel substrate sterilization, spawn preparation techniques, 
etc. are used for industrial-scale production. Mushroom production using non- 
composted substrate is highly recommended as the cropping cycle of the mushroom 
can be reduced along with production cost. Moreover, the odour generated during 
the composting process, which is a potential environmental hazard, is also reduced. 
Similarly, developing novel strains will enhance the yield, disease resistance and 
increase productivity.
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4.3.1.2  Single-Cell Protein

The world population grows continuously posing a significant challenge towards 
providing an adequate food supply for all of the growing population. Scientists are 
in the search of novel and alternative protein resources to meet the demands of the 
growing population. Bacteria, algae, fungi and yeast are used to produce protein 
biomasses. Carol L. Wilson in 1966 named these protein biomasses as single-cell 
protein (SCP) (Suman et al. 2015). SCP can be defined as the mass of dried micro-
organism cells with enriched protein content (about 30–50%), fats, carbohydrates, 
nucleic acids, vitamins (B-complex vitamins: thiamine, riboflavin, biotin, niacin, 
pyridoxine, etc.), minerals (Ravindra 2000; Adedayo et  al. 2011; Nasseri et  al. 
2011) and fibres used for both human consumption and as animal feed. SCPs also 
contain certain essential amino acids like lysine and methionine at higher levels, 
which are limited in most plant and animal foods. The supplementation of protein 
in a diet is important as essential amino acids are irreplaceable. Various groups have 
explored for protein supplements with essential amino acids (like methionine and 
tryptophan) as plants lack these essential amino acids and the conversion of plant 
biomass into proteins by animals is low. Microorganisms like bacteria, yeast, fungi 
and algae act on inexpensive feedstock and waste products for the production of 
SCP. These microorganisms possess high growth rate and can be genetically engi-
neered to develop novel strains capable of enhancing protein quality as well its 
protein content.

The substrate used for conventional production of SCPs includes starch, molas-
ses, fruit and vegetable wastes. Recently, SCPs are also produced from non- 
conventional substrates such as petroleum by-products, natural gas, ethanol, 
methanol and lignocellulosic biomass (Lenihan et al. 2010). The major filamentous 
fungal species used for commercial production of SCPs include Chaetomium 
 celluloliticum, Fusarium graminearum (Zubi 2005), Aspergillus fumigates, A. niger, 
A. oryzae, Cephalosporium cichorniae, Penicillium cyclopium, Rhizopus chinensis, 
Scytalidium acidophilum, Trichoderma viride and T. alba (Bajpai 2017).

SCPs are commercially available as products for human consumption. SCP pro-
duced from the fungi F. venenatum reduces LDL cholesterol and blood glucose and 
regulates insulin (Ugalde and Castrillo 2002; Gabriel et al. 2014). Development of 
the product Quorn mycoprotein from F. graminearum is a breakthrough, targeting 
human nutrition, and was exclusively marketed and sold across the United Kingdom 
for human consumption. Quorn is popular due to its meat-like texture and appear-
ance (Garodia et al. 2017). Similarly, brewer’s yeast extract from Saccharomyces 
cerevisiae is a good protein source and is used to develop a variety of products such 
as Marmite, Vegemite, Cenovis and Vitam-R. Another product Torula, from Candida 
utilis (a popular yeast extract), has high glutamic acid content and is used commer-
cially as a flavouring agent in place of monosodium glutamate (MSG) (Olvera- 
Novoa et al. 2002).

SCPs for animal livestock are produced by the action of the filamentous fungi 
Paecilomyces varioti and Yarrowia lipolytica strains. In Finland, P. varioti strains 
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were grown on sugar-rich medium derived from wood hydrolysates or sulphite con-
taining effluents from paper mills, and this process is known as “Pekilo” (Bajpai and 
Bajpai 1987). The other commercially viable substrate where Y. lipolytica strains 
were grown to produce SCPs is n-paraffin wax (Papanikolaou et al. 2007). Though 
a majority of the fungal species are not detrimental for humans, there are some spe-
cies such as A. niger, A. fumigates and F. graminearum which are toxic. Therefore, 
such fungi should be avoided or subjected to toxicological evaluations before rec-
ommending them as SCPs (Ukaegbu-Obi 2016).

Moreover, significant research is carried out to produce SCPs with enhanced 
content and quality of protein using different modes of fermentation (such as solid- 
state fermentation, submerged fermentation, etc.). To avoid spoilage, SCPs are dried 
by eliminating excess moisture and are then concentrated by using filtration, coagu-
lation and precipitation techniques. These steps led to stability and enhanced shelf 
life of the SCPs produced, thereby increasing their storage capacity.

4.3.2  Processed Foods

The role of fungi in food processing industry is well known. In this section the 
details of fungi used in the processing of cheese and bread are discussed.

4.3.2.1  Cheese and Role of Fungi in Cheese Processing

History dates the practice of producing cheese to ancient times; and the cheese 
industry has bloomed into a multimillion dollar venture across the United States and 
other countries are catching up this trend. The discovery of cheese was accidental, 
where milk carried in a pouch made of sheep’s stomach curdled over a period. 
Cheese is an excellent source of vitamins and calcium in our diet. Additionally, 
cheese adds a wide variety of flavours and texture to a palate. The general procedure 
for the production of cheese involves fermenting milk of animals in the presence of 
various fungal and bacterial species. The milk for fermentation is collected from 
various animals like cow, goat, ewe, sheep, etc. Fermented milk is coagulated using 
the enzyme renin, followed by the removal of the liquid whey. Subsequently, the 
solid curd is processed and preserved under controlled conditions (environment and 
temperature). Commercially, different varieties of cheeses are available for human 
consumption. These cheeses are soft cheeses, blue-veined cheeses, hard cheeses, 
uncooked firm cheeses and cooked firm cheeses.

The variation of cheese depends on texture and flavour, which is contributed 
while processing cheeses. The differences in texture and flavour of cheeses depend 
on various mechanical techniques like carving, brewing, pressing, grinding and 
heating which are utilized to drain the curd (McSweeney and Sousa 2000). The 
development of flavour, texture and nutritional aspects of cheese are linked to the 
degradation of proteins and lipids of milk (Sousa et al. 2001). The development of 
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unripened cheese requires adding minute amounts of salt to coagulated milk; and 
later the settled curd is cut, drained and washed. Salting improves and is responsible 
for the development of different cheese varieties with improved quality, texture and 
flavour. Unripened cheese (e.g., cottage cheese) has a shorter shelf life due to high 
moisture content (60–80%) and is preserved under chilled temperatures to maintain 
the required moisture content. To increase the storage capacity, scientific groups 
have focussed on developing dry cheeses (parmesan) and hard cheeses (cheddar) by 
lowering the moisture content significantly to 32% and 35%, respectively.

Filamentous fungi play a central role in cheese making and contribute towards 
the organoleptic properties of cheese. The species used for cheese ripening and 
developing different varieties are P. camemberti, P. roqueforti, Mucor fuscus, M. 
lanceolatus, G. candidum, F. domesticum, Sporendone macasei, Scopulariopsis 
flava and S. fusca (Hermet et al. 2012; Ropars et al. 2012). These fungal strains are 
either present in raw material (milk) or inoculated during the cheese-making pro-
cess. These strains enhance appearance, texture and flavour of cheeses. The two 
most commercially popular varieties of cheeses are Camembert and Roquefort 
(blue cheese). The other commercially available are blue cheeses (Danish blue), 
Stilton cheese, Gorgonzola cheese and Limburger cheese. All cheeses require fun-
gal fermentation, whereas limburger cheese is fermented in the presence of both 
fungi and bacteria and exhibits a strong flavour and aroma. Camembert cheese is 
marketed as Brie with moderate moisture content (40–50%) and is produced by 
eliminating whey and placing curd solids in disc-shaped containers. Moulds like P. 
camemberti and P. casicolum enhance the appearance, flavour and texture of 
Camembert cheese through lipolytic and proteolytic activity (Yadav and Mishra 
1995). The production of Camembert cheese also requires rigidly controlled condi-
tions to prevent the growth of other fungi (particularly S. brevicaulis) and subse-
quent spoilage of cheese. Roquefort cheese is produced using the fungal strain P. 
roqueforti to enhance the appearance, texture and flavour of blue cheese (Beresford 
et al. 2001; Metin 2018).

4.3.2.2  Bread and Role of Yeast in Bread Making and Processing

Bread is a baked product prepared from dough and yeast along with a specific fla-
vour and texture (Querol and Fleet 2006). Bread is an integral component of food in 
almost all successive human civilizations. Archaeological data (dating 10,000 years 
ago), collected from the sediments of a Swiss lake dweller, shows the association of 
humans with bread making. The fungal culture (yeast) or other gas-forming organ-
isms are added to the bread dough and mixed thoroughly to initiate rapid sugar 
fermentation. The chemical reaction due to sugar fermentation in the dough pro-
duces acid and alcohol, facilitating the production of carbon dioxide. This gas (CO2) 
raises the bread slowly, giving the characteristic raised appearance (leavened) to 
bread and also with airy texture of bread. At the same time, some metabolites escape 
from the bread, while some metabolites are retained in the bread developing flavour. 
The microorganism used in bread is popularly known as baker’s yeast (a strain of S. 
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cerevisiae). This yeast is designed specifically to enhance gas formation, viability 
during storage, and the ability to generate a desirable flavour in baked products. In 
late nineteenth century, baker’s yeast was exclusively developed for baking indus-
try. Baker’s yeast was grown on mashed grains (sources of sugar), whereas molas-
ses are used as an inexpensive source for assimilable sugars. The gradual evolution 
of techniques used in baking industry put forward a number of challenges to yeast 
strains. The challenges faced by yeast strains while baking are (1) tolerance to high 
sugar concentration (in sweet dough); (2) tolerance to drying and freezing (in rela-
tion to the increase of the production of dry and frozen dough); and (3) improving 
sugar fermentation efficiency.

4.3.3  Fermented Alcohols and Beverages

The present food world is preoccupied with fermented alcohols and beverages 
(wine, beer, sake, chichi, shoyu, tempeh, injera, etc.) and non-alcoholic beverages 
like apple cider. In this section the role of fungi in the preparation and processing of 
fermented alcoholic and non-alcoholic beverages is discussed.

4.3.3.1  Beer and Clarification of Beer

4.3.3.1.1 Production of Beer

Beer is one of the most popular alcoholic beverages worldwide; and its total con-
sumption is 276.4 billion litres in 2017 (Bamforth 2017). Beer is produced using a 
mixture of water, hops, malt and yeast, whereas stout beers are produced from 
roasted barley or malt (Saerens et al. 2017). Hops is responsible for the characteris-
tic bitterness and aroma of beers. Malt obtained from barley grains provides 
enzymes, and these enzymes are required for the degradation of starch and proteins 
into simpler forms that can easily be used by the yeast. The fermentation process is 
stopped by eliminating the water in malts either by applying fresh air or heat or 
changing them into dried malts. When fresh air is used, the colour of the dried malts 
is green, whereas in the presence of heat, the colour intensifies to produce dark 
green malts leading to the dark colour of beer. In general, the yeasts belonging to the 
genus Saccharomyces are employed in beer production. However, other strains such 
as S. pastorianus and S. eubayanus are also currently employed for the production 
of beer. According to the physical characteristics, there are two main varieties of 
beers available – ale or lager-style beers. Ales are prepared by fermenting malt with 
strains of S. cerevisiae at a high temperature range (15–26 °C) near the surface of 
the fermenting wort. In the case of lager beers, the fermentation of malt with yeast 
strains is carried out at a relatively low temperature range (5–14 °C) near the bottom 
of the fermenter. During the stages of mashing and brewing, enzymes are added to 
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catalyse the brewing process. Enzymes such as amylase, improve the digestion of 
starch resulting in low carbohydrate or “light” beers. Other enzymes like protease 
and glucoamylases are added to make beers hazy and sweet, respectively (Souza 
2010; Brányik et al. 2012).

4.3.3.1.2 Clarification of Beer

Laccases are used for stabilizing beer, a popular alcoholic beverage. Haze formation 
in beer is due to protein precipitation initiated by proanthocyanidins and polyphe-
nols present in beer (Mathiasen 1995). This phenomenon is referred to as chill haze, 
which takes place when the beer is cooled. The haze formation usually re-dissolves 
as the beer reaches room temperature or above. But over a long time, the protein 
sulphhydryl groups substitute the phenolic rings leading to permanent haze forma-
tion (Minussi et al. 2002). Traditionally, polyphenols are eliminated by polyvinyl-
polypyrrolidone (PVPP) treatment, but PVPP is toxic and interferes with wastewater 
treatment due to its low biodegradability. To overcome this problem, treatment with 
laccase is recommended as it is nontoxic, easier to handle and efficiently removes 
polyphenols in worts (Minussi et al. 2002). The addition of laccase during process-
ing successfully eliminates polyphenols, and at the same time low oxygen content 
enhances the shelf life of beer (Mathiasen 1995).

4.3.3.2  Wine and Clarification of Wine

4.3.3.2.1 Production of Wine

Wine, a popular alcoholic beverage, is basically a fermented juice of grapes. The 
Biblical account of Noah (5000 BC) provides details on the making of wine, dating 
wine to the earliest history of man. Wines are named after the varieties of grapes 
used for production or after their location or the area where it was first produced. 
For example, Burgundy, Bordeaux, Champagne and Alsace are important wines of 
France. There are three basic types of wines: (1) table wine, (2) fortified wine and 
(3) sparkling wine (Amerine 1980). Table wine (12–15% alcohol content) is pro-
duced by pressing grapes and then allowing the mixture to ferment in vats along 
with sugar, yeasts and sulphur dioxide. S. ellipsoideus is the common yeast strain 
used in the fermentation process. Port wine (19–20% alcohol content) is a common 
fortified wine, where its name is derived from the sailors who frequented the ports 
to purchase wines. These wines were spiked with other alcohols like brandy to 
increase the alcohol levels. Sparkling wine (champagne) is prepared by double 
fermentation, where the alcohol content is increased to 20%. Some sparkling 
wines have a natural effervescence due to fermentation, while others are made effer-
vescent by adding carbon dioxide (Torresi et al. 2011). All natural wines have alco-
hol content less than 20%, to ensure proper functioning of yeast during fermentation. 
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Wines are also classified into red, white and pink wines based on their appearance 
or colour. Red wine is produced from black grapes along with their skins, whereas 
white wine is made from green grapes or black grapes devoid of skin (after press-
ing). Pink wines are produced when black grapes with skin are incubated in the 
fermenter for a short period (Jackson 2008).

The fermentation of wine is a complex process involving many yeast genera and 
species (Guillamón et  al. 1998). In the first stage of fermenting wine, non- 
Saccharomyces yeasts are added, and later, S. cerevisiae is used for degrading sug-
ars due to its high fermentation efficiency and tolerance to ethanol. As the 
fermentation process progresses, yeast strains come in contact with major stress 
conditions. The stress conditions are high osmolarity, high sugar concentrations 
(180–260 g/l), low pH (3–3.5), low sulphites (40–80 mg/l), low oxygen and nutrient 
content (nitrogen, lipids and vitamins) and toxicity to the end product (ethanol). 
During fermentation, a majority of sugars present in the form of hexoses are con-
verted into ethanol and CO2, while the remaining sugars in small amounts carry the 
synthesis of anabolic precursors necessary for producing biomass. The major phases 
in wine fermentation are lag phase, short growth phase followed by a stationary 
phase. During the stationary phase, a majority of the sugar molecules are fermented. 
The limiting nutrient nitrogen is responsible for the arrest of cell proliferation, while 
other limiting micronutrients include lipids and vitamins.

Presently, there are more than 200 strains of S. cerevisiae used in wine industries 
to produce wine. These strains are selected based on spontaneity in fermentation or 
performance associated with specific vineyard environments (Guillamón et  al. 
1998). In addition to S. cerevisiae, other Saccharomyces species and a number of 
interspecies hybrids involved in wine fermentation are recently identified and char-
acterized. Interspecific hybrids include S. cerevisiae/S. kudriavzevii (González et al. 
2006, 2008), S. cerevisiae/S. uvarum (Naumov et al. 2000; Sipiczki 2008) and S. 
cerevisiae/S. kudriavzevii/S. uvarum (Lopandic et al. 2007; Masneuf et al., 1998). 
These hybrids are more efficient than their wild types and are associated with 
increased tolerance to various stresses (Le Jeune et al. 2007).

Although wine industry is immensely benefited with strains of superior and 
desirable traits, major research is still in progress to improve wine yeasts for vari-
ous traits. These traits include stress tolerance, fermentative performance, aroma 
and ethanol tolerance. Developments in the field of molecular biology, assisted 
with the latest analytical techniques such as quantitative trait locus (QTL), aided in 
the identification of desirable traits from the genome of yeast. QTLs associated 
with the formation of acetic acid, aroma enhancement, SO2 production, nitrogen 
utilization and ethanol tolerance are identified (Roncoroni 2014). These QTLs can 
be used to engineer the desired alleles and transform them into novel strains using 
techniques like marker-assisted allele transfer. These strategies have the potential 
to develop superior yeast strains with enhanced ethanol resistance, which are capa-
ble of overproducing esters that contribute the fruity aroma to wines (Van Rensburg 
et al. 2005).
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4.3.3.2.2 Clarification of Wine

During the crushing and pressing stages of wine production, a high concentration of 
phenolics and polyphenols was observed. The stems, seeds and skins have a high 
concentration of tannins and polyphenols that contribute to its colour and astringent 
taste, depending on the variety of grape and the vinification conditions (Minussi 
et al. 2007). Natural oxidation of these polyphenols and tannins alters the flavour 
and colour in red wines. Minussi et al. (2007) observed that treatment with laccase 
significantly removed polyphenols and enhanced the organoleptic characteristics of 
wines while protecting its distinct taste and colour. Moreover, laccases also improved 
the shelf life of wines when stored for longer time periods.

4.3.3.3  Other Alcoholic Beverages

Sake (rice wine) is a traditional alcoholic beverage prepared from rice and is par-
ticularly consumed in Japan and China (Blandino et al. 2003). The rice is polished, 
steamed and is fermented in the presence of A. oryzae. A. oryzae produces different 
types of enzymes required for sake brewing. The fungus converts the starch into 
simpler sugars, where these simpler sugars can be used by the yeast to produce sake. 
The seed mash is traditionally obtained by natural lactic acid fermentation involving 
various aerobic bacteria, wild yeasts, lactic acid bacteria and sake yeasts (Caplice 
and Fitzgerald 1999; Kuribayashi et al. 2017; Terasaki et al. 2018).

Chicha is a another  fermented alcoholic beverage produced from corn and is 
widely consumed in South America (Steinkraus 1983; Hayashida 2008). A unique 
fermentation process is used for the preparation of chicha, where saliva serves as the 
source of amylase for the conversion of starch to fermentable sugars (Puerari et al. 
2015). Yeasts, particularly S. cerevisiae, and bacteria of the genus Lactobacillus sp., 
Leuconostoc sp., Acetobacter sp. along with various moulds such as Aspergillus sp. 
are the primary fermenting microorganisms used in the preparation of chicha 
(Tamang et al. 2016).

4.3.4  Other Fermented Food Products

The consumption of fermented food and beverages has been in practice since ages. 
Though certain fermented products like beer, wine, etc. have gained popularity, 
other traditionally fermented food items are not in limelight. Some examples of 
these food products are miso, shoyu, tofu, injera and tempeh (Soni and Dey 2014). 
Significant research is also carried out worldwide to identify the microorganisms 
involved in the fermentation of these products and their mode of action.

Shoyu or soy sauce is a dark brown liquid made from a blend of soybeans and 
wheat, which is used as seasoning or flavouring agent in Japan, China and the Far 
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East countries (Fukushima 2004). Shoyu has a salty taste but is lower in sodium 
content than the traditional table salt. Soybeans are initially cooked and cooled to 
room temperature. Then, coarse wheat flour is added to the cooked soybeans and 
mixed thoroughly. The moisture content of the soybean–wheat mixture is main-
tained at 55% (w/w). The mixture is then inoculated with mould A. oryzae and fer-
mented at 25–35  °C. After 3 days of incubation, the soybeans and flour mixture 
(referred to as koji at this stage) is placed in a brine solution (22–25%) and mixed 
thoroughly. This brine solution containing koji is known as moromi. The moromi is 
then inoculated with Pediococcus soyae (bacterium) and S. rouxii and Torulopsis sp. 
(yeasts) to ferment the mixture for a period of 1–12 months. The quality of soy 
sauce is dependent on the time taken to ferment moromi (Luh 1995). After fermen-
tation, the liquid part (soya sauce) is separated, filtered, pasteurized and bottled. The 
characteristic aroma and flavour of soy sauce is imparted due to the enzymatic 
changes of yeasts.

Tempeh, a native dish of Indonesia (Babu et al. 2009), is produced by fermenting 
boiled legume seeds of soybean, peanut and mung bean with Rhizopus oligosporus 
strains and is now being explored in the United States (Buckle 1988). The seed coat 
of the legume is removed before the fungal culture is added; this allows the fungus 
to have better access to nutrient-rich cotyledons. The inoculation of the fungus aids 
in the breakdown of complex carbohydrates and other organic compounds that are 
involved in gas formation.

Miso, a fermented soybean paste, originated in Japan ~2000 years ago. It is used 
as a base for soup, as well as seasoning agent (Robinson 2000). The fermentation 
procedure consists of washing polished rice and steaming. Then rice is inoculated 
with A. oryzae, resulting in formation of “rice koji”. This fungus converts the carbo-
hydrates and proteins in rice into amino acids and sugars. The rice koji is then 
inoculated with yeasts and bacteria and then subjected to fermentation at 28 °C for 
1 week, followed by fermentation at 35 °C for 7–12 months. All the above processes 
are carried out in the presence of fungal enzymes like cellulase, catalase, lipase, 
glucose oxidase, etc. which are then released into the respective substrates catalys-
ing the fermentation process.

Injera, the national food of Ethiopians, is produced from different cereal sources 
such as sorghum, tef, corn, finger millet and barley. The grains are dehusked, con-
verted into flour and mixed with water to form dough. This dough is allowed to 
ferment for a period of 2 or 3 days in the presence of a starter (ersho). The starter is 
a fluid-like substance preserved from the previous fermented dough. After fermen-
tation, a thick batter of dough is prepared and poured in an oil grease pan fitted with 
a tight lid. This pan is allowed to steam for 2–3 min and stored in a basket. The 
storage period of injera is not more than 3 days at room temperature. The major 
microorganisms associated with injera fermentation are yeasts and fungi (Pullaria 
sp., Aspergillus sp., Penicillium sp., Rhodotorula sp., Hormodendrum sp. and 
Candida sp.) (Girma et al. 1989; Stallknecht et al. 1993; Ma 2012). A typical injera 
is round in shape, has a soft and spongy texture and distinct light sour flavour and 
measures about 6  mm in thickness and 60  cm in diameter (Gebrekidan and 
Gebrehiwot 1982). Injera has a very high nutritional value, particularly enriched 
with calcium and iron (Mohammed et al. 2011).
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4.3.5  Non-alcoholic Beverages

In the above section the role and details of fungi involved in producing fermented 
alcoholic beverages were discussed. In this section the role and details of fungi 
involved in the production of non-alcoholic beverages like apple cider are 
discussed.

4.3.5.1  Apple Cider

Apple cider is native to the United States and Canada and is seasonally produced in 
autumn. This is a non-alcoholic beverage which is traditionally served on Christmas, 
Halloween, New Year’s Eve, Thanksgiving and various other  holidays. Apple or 
apple core or apple trimmings or apple culls are used as source to press at farm-
steads or local mills for extracting liquid; and this extract is boiled and concentrated. 
Pomace, the leftover after pressing, is used as a feed for cattle. Apple cider is pas-
teurized to extend shelf life of cider by killing the bacteria. Cider may also be fer-
mented to produce hard cider and later may be treated with Acetobacter to produce 
vinegar; or apple brandy is produced by distilling.

4.3.5.2  Clarification of Cider

Apple juices are clarified and processed to remove pectin and starch before con-
sumption. Pectinases (pectic enzymes) are added during the preparation of apple 
juice. They help in removing pectins and tannins from apple juice and impart the 
characteristic aroma to the cider. Pectinases in combination with cellulases and 
amylases are used to filter apple juice; enhance and eliminate the haze formation; 
and produce clear and amber-coloured apple juice. Haze formation results due to 
the polymerization of polyphenols and oxidation of proanthocyanidins. Cider pec-
tinases isolated from fungal species A. aculeatus A. niger, T. viride, P. notatum and 
Botrytis cinerea are used for clarification of the final product.

Phenols and polyphenols are naturally present in a majority of fruit juices, and 
they contribute towards the taste and colour of these juices. However, these phenols 
and polyphenols undergo polymerization and oxidation in nature which signifi-
cantly deteriorate the colour and aroma of fruit juices. Laccase is another fungal 
enzyme used for the clarification of apple juices. Laccases stabilize the juice, pre-
vent the loss of nutrients and increase the shelf life of apple juice. Giovanelli and 
Ravasini (1993) added laccase to apple juice during the filtration process to improve 
its stability and appearance. The laccase treatment method was efficient in extrud-
ing the phenols present in apple juice when compared to other methods (treatment 
with activated coals, ascorbic acid and sulphite). Phenolic content of juices was 
greatly reduced with laccase treatment which restored the natural taste and colour 
of apple juices (Ribeiro et al. 2010).
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4.3.6  Fungi as Source of Food-Grade Pigments

Food-grade dyes and pigments can be obtained from selective fungal species and 
have been in practice since ancient times. Filamentous fungi are considered as 
excellent sources of food-grade pigments. The commercially available pigments 
include Monascus pigments, Arpink red, riboflavin, lycopene and β-carotene. Red 
rice traditionally known as koji or ang-kak is produced when rice is fermented with 
Monascus purpureus strains (Carvalho et al. 2003). The orange pigments monasco-
rubrin and rubropunctatin react with amino acids present in the fermentation media, 
producing water-soluble red pigments monascorubramine and rubropunctamine, 
which are responsible for the colouring of rice. The major commercially available 
pigments include Monascus pigments and Arpink red obtained from P. oxalicum. 
These red pigments are used for preparing wine, soya bean cheese, meat, etc., along 
with red rice, and is authorized for food used in China and Japan.

Phaffia rhodozyma is the yeast that produces maximum astaxanthins, a carot-
enoid in the microbial world (Frengova and Beshkova 2009). The pink colour of 
salmonid flesh and the reddish tinge on crustaceous shells are developed using 
astaxanthin pigment. Supplementation of salmonids with a diet containing this 
yeast induces pigmentation in the white muscle (Johnson et al. 1977). For years, 
Blakeslea trispora is used for the production of lycopene and β-carotene in Russia. 
In this fermentation, a fungal culture is used with a preferred ratio of minus and plus 
strains of B. trispora (of mating) to yield 17  g/L of β-carotene (Jerusik 2010; 
Dufosse et al. 2014). The accumulation of β-carotene is strongly linked to sexual 
interaction between the two mating types (strains). Trisporic acid, a hormone-like 
substance, is produced during mating, the major component stimulating the produc-
tion of the pigment. β-carotene can also be produced from the fungi Mucor circinel-
loides and Phycomyces blakesleeanus.

Riboflavin (vitamin B2) is another popular food-colouring agent which gives a 
characteristic yellow colour. It is used in dressings, sherbet, beverages, instant des-
serts and ice creams. Eremothecium ashbyii and Ashbya gossypii are known to pro-
duce riboflavin (1 g/L) by fermentation. Aspergillus spp., namely, A. glaucus, A. 
cristatus and A. repens, have been used to produce hydroxyl anthraquinoid com-
pounds like emodin (yellow), physcion (yellow), questin (yellow to orange brown) 
and erythroglaucin, catenarin and rubrocristin (red) (Caro et al. 2015).

4.3.7  Yeast as Fodder

The term “food yeast” or “fodder yeast” was coined by Professor Jacquot and Dr. 
Biloraud in 1957 and is used as a food supplement for domestic livestock. They are 
high in protein content (41%) followed by carbohydrates (32–36%), ash (4–8%), 
fibre (1–8%) and fat (1%). Many enzymes are used to enhance the nutritional con-
tent of animal and poultry fodder. Recent studies show that exogenous enzymes 
such asphytase, amylase, β-glucanase and xylanase are added to cereal-based 
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fodder to enhance the utilization rate of phosphorous, starch, β-glucans and arabi-
noxylans, respectively, from the diet (Shishkova et al. 1979; Bedford et al. 1997; 
Ugwuanyi 2016). Research has also highlighted the addition of certain fibre- 
degrading enzymes (xylanases and cellulases) to ensure the proper utilization of 
dietary supplements and enhance the performance levels of animals. Therefore, 
treating feed with enzymes improves digestibility or palatability either by promot-
ing direct hydrolysis or by modifying the digestion sites.

4.3.8  Role of Fungal Enzymes in Food Processing Industry

Till now this chapter has discussed the role of different fungi in the food processing 
industry. Now, the role of fungal enzymes in all the above processes is discussed.

4.3.8.1  Role of Fungal Enzyme Laccase in Food Processing Industry

Laccase (benzenediol: oxygen oxidoreductase) represents polyphenol oxidase with 
a catalytic centre composed of copper atoms, giving them their characteristic blue 
colour. Laccase has a plethora of applications such as bioremediation; stabilization 
of beverages (fruit juice, wine and beer); enhancement of general food quality; and 
uses in baking industry. Several fungal species such as Gaeumannomyces graminis 
(Edens et  al. 1999), Magnaporthe grisea (Iyer and Chattoo 2003), Ophiostoma 
novo-ulmi (Binz and Canevascini 1997), Mauginella (Palonen et  al. 2003), 
Melanocarpus albomyces (Kiiskinen et al. 2002), Monocillium indicum (Thakker 
et al. 1992), Neurospora crassa (Froehner and Eriksson 1974) and Podospora anse-
rina (Esser and Minuth 1970) of ascomycetes produce laccase and exhibit signifi-
cant laccase activity.

Texture, volume, flavour and freshness of dough are the important characteristics 
for bread. One of the most important enzymes used for the improvement of the 
above mentioned characteristics is laccase. The addition of laccase to dough initi-
ates oxidation, resulting in a stable and strong gluten structure in dough. Laccase in 
dough also increases bread volume, crumb structure and softness of the final prod-
ucts. The resulting dough exhibits increased strength, stability and less stickiness 
(Minussi et al. 2002). Awareness on celiac disease (CD) compelled researchers to 
develop gluten-free bakery products. CD is medically an immune-mediated enter-
opathy due to gluten ingestion. This gluten is present in major cereal flours such as 
wheat, rye and barley. The focus has now shifted to oat flour and starches such as 
rice, potato and corn for developing gluten-free baked products (Gallagher 2009). 
The above starches and flours are devoid of the gluten protein matrix which is the 
prerequisite for dough formation and lacks the physical characteristics of wheat- 
based baked products. Recent products based on gluten-free oat flour along with 
laccase produced baked products acceptable for CD patients. When laccase and 
proteolytic enzymes were added to oat flour, the texture and quality of oat bread 
improved significantly. Chemical analysis showed that the improvement of quality 
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is due to β-glucan depolymerization and protein polymerization. Thus, depolymer-
ization and polymerization result in greater specific volume of the loaf; reduced 
crumb hardness; and chewiness of the oat bread.

Thus, laccases have a wide range of applications in food processing ranging from 
developing gluten-free bakery products to restoring taste and stability in alcoholic 
and non-alcoholic beverages. Moreover, they significantly reduce the expense 
incurred during the processing of the products and also generate environment- 
friendly products. Although the use of laccase has increased in bakery and wine 
industries, a thorough knowledge of laccase production and their mode of action, as 
well as the efficient production of laccase units, is required to harness the potential 
of laccase in the food industry.

4.3.8.2  Role of Fungal Enzyme Lipase in Food Processing Industry

Lipases chemically represent triacylglycerol acylhydrolases, and their molecular 
weight ranges between 19 and 60 kDa. They are widespread in nature and are abun-
dant in animals, plants, fungi and bacteria. Lipases catalyse hydrolysis of triacylg-
lycerols to generate free fatty acids, diacylglycerols, monoacylglycerols and 
glycerol. Lipases have immense physiological and industrial significance. They are 
actively used in oleochemical, detergent, organic, leather, cosmetics and perfume 
industries. Moreover, they are also used in environmental management as biosen-
sors apart from their multiple roles in the food processing industry (Pandey et al. 
1999; Aravindan et al. 2007; Sharma et al. 2011). A majority of the lipases are iso-
lated from fungi and bacteria. Fungi are more suitable sources for lipases due to 
their extracellular location which facilitates their extraction. The major sources of 
viable lipases are A. niger, A. terreus, A. carneus, C. cylindracea, H. lanuginose (T. 
lanuginosus), M. miehei, R. arrhizus, R. delemar, R. japonicus, R. niveus and R. 
oryzae (Sharma et  al. 2001). Lipase production in all these fungal species was 
enhanced when they were grown on media supplemented with glucose. In 1994, 
Nova Nordisk developed the first commercial lipase, lipolase, which was isolated 
from the fungus Thermomyces lanuginosus, and expressed it in A. oryzae 
(Prathumpai et al. 2004).

Lipases are associated with the development of flavour in dairy products and 
processing of foods, such as meat, vegetables, fruits, baked food items and beer. 
Phospholipases are used to treat egg yolk for mayonnaise and spread production; 
lecithin modification; and refining of vegetable oils. Phospholipase causes hydroly-
sis of egg lecithin, which enhances the emulsifying capacity and heat stability of 
egg yolk. The resulting egg yolk is deemed useful for processing custard, mayon-
naise, baby foods and dough preparation. Lipases have been successfully used as 
catalysts for ester synthesis. The esters fabricated from short-chain fatty acids cata-
lysed by lipase immobilized on silica beads serve as flavouring agents in the food 
industry. The development of adequate flavour and aroma depend on the stringent 
regulation of important factors such as lipase concentration, pH and temperature of 
synthesis media and emulsion content (Fallahi et al. 2018).

S. Challa et al.



139

In the dairy industry, hydrolysis of milk fat is achieved with the help of lipases. 
Lipases modify the chain length of fatty acids which in turn contributes to the 
enhancement of flavour and texture of many commercially available cheeses. 
Lipases are also used to reduce the period of cheese ripening, and they accelerate 
the lipolysis reaction during the processing of dairy products (butter, milk fat and 
cream). Animal tissues such as pancreatic glands (bovine and porcine) and pre- 
gastric tissues of young ruminants (kid, lamb and calf) are favourable sources for 
lipase production. The lipases thus produced are used for flavour enhancement in 
cheese. A new technique of improving flavour involves incubation of cheese with 
lipases at specific high temperatures to generate enzyme-modified cheese (EMC). 
These EMCs are intensified with flavour, and they serve as a constituent of other 
food items (dips, sauces, soups and snacks) (Moskowitz and Noelck 1987). Gastric 
lipases hasten the ripening process and intensify the flavour of popular cheese 
 varieties like cheddar, provolone and ras (Wilkinson 1993). Introduction of lipase 
accelerates fatty acid liberation resulting in flavour development. Studies also 
revealed that when a combination of fungal proteases and lipases was added, ched-
dar cheese was found to contain highly soluble proteins and free fatty acids. These 
enzymes improved flavour and shortened the ripening period to 3 months. The con-
centration of lipase used to accelerate the ripening process needs to be strictly regu-
lated as high enzyme concentration leads to excessive enzymatic reactions resulting 
in undesired characteristics and yield reduction.

Another major application of lipases is associated with the fat and oil industry. 
Lipases modify lipid and fat by altering the fatty acid chains of glycerides. This 
process allows the transformation of a less desirable lipid into a higher value lipid. 
Thus, lipases catalyse hydrolysis and esterification of oils and fats (Ray 2012; 
Houde et al. 2004).

Immobilized lipases are used as biosensors for the determination of triacylglyc-
erols. They are used in food industries involved in the production of fats and oils, 
beverages, soft drinks, pharmaceutical companies and in clinical diagnosis. Samples 
containing triacylglycerol generate free glycerol in the presence of lipases. The 
released glycerol units are quantified either by a chemical or an enzymatic method 
to determine the quality of products (Rejeb et al. 2007). In baking industry, focus is 
more on lipases as they enhance the flavour content of bakery products by liberating 
short-chain fatty acids through esterification. Along with flavour enhancement, they 
also prolong the shelf life of most of the bakery products. Lipase catalysis improves 
the texture of breads by reducing firmness and increasing the loaf-specific volume, 
thereby making them softer (Van Oort 2010).

Lipases are a vital constituent of fruit and vegetable juices (Panda et al. 2016). 
They facilitate the removal of fat from meat and fish products (Gunasekaran and 
Das 2005). Moreover, addition of lipase to noodles has shown to soften the noodles’ 
texture despite having low levels of the substrate acylglycerols present in the formu-
lations (Suzuki et al. 2010). The immense potential of lipases associated with food 
and its processing industry should be harnessed to full capacity and can be achieved 
by developing new cost-effective techniques for increasing its production and 
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purification. The properties of lipases along with their mode of action need to be 
well studied and explored to improve their function in extreme conditions as well as 
to increase their production via genetic engineering. Moreover, novel techniques 
should also be developed for immobilizing lipases as they are used as biosensors 
and biocatalysts in food processing technology.

4.3.9  People Networks for Fungal Biotechnology

“The European Fungal (EUROFUNG) network” is a platform to prioritize and 
advance fungal technologies to aid in fungal biotechnology (Meyer et  al. 2016). 
This network includes academic members, institutions, industries, biotechnological 
and pharmaceutical companies across Europe. The EUROFUNG network’s mission 
is sustainable bio-economy with human welfare by collaborating across the network 
and disciplines to accelerate research activity. More policies and networks of such 
kinds are required to meet food security.

4.3.10  Conclusion and Future Prospects

In conclusion, white fungal biotechnology has potential applications in food and 
feed industry and is eco-friendly in nature, bringing down greenhouse emissions. 
The applications include using fungi as food (edible fungi) or fodder and in pro-
ducing SCPs, processing food (bread, cheese and others) and fermenting food 
(alcohols and beverages). Fungi are used to enhance flavour in cheeses, bread and 
beverages; improve protein quality and yield in SCPs; and increase the stability and 
shelf life of products with much efficacy. Thus, employing fungal white biotech-
nology meets important challenges like food security (providing food for all). The 
future of fungal white biotechnology lies in developing fungal strains with improved 
characteristics, which exhibit tolerance to extreme conditions during processing 
and the enrichment of products. Omics technologies like genomics, epigenomics, 
transcriptomics, proteomics, metabolomics, interactomics and phenomics can be 
implemented and integrated to analyse and understand the traits required by fungal 
strains to cope up with these extreme conditions. Though there are several initia-
tives like the EUROFUNG network for a sustainable bio-economy, which encour-
ages white fungal biotechnology, more policies are also required by other countries 
in the world to meet food security.
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Chapter 5
Volatile Organic Compounds 
from Endophytic Fungi

Sudipta Roy and Debdulal Banerjee

5.1  Introduction

Volatile organics are ubiquitous in nature. Their distinction lies in their unique 
physical property of readily diffusing in the atmosphere. Volatile compounds have 
a low molecular weight and a lower boiling point that facilitate their rapid evapora-
tion or sublimation and create a higher vapor density. Most of these compounds do 
not readily dissolve in aqueous systems. Volatile compounds include any carbon 
compound (excepting carbon monoxide, carbon dioxide, carbonic acid, metallic 
carbides, carbonates, and ammonium carbonate) that may be conjugated with other 
elements such as hydrogen, oxygen, fluorine, chlorine, or nitrogen. VOCs are 
released from a range of anthropogenic activities such as burning of fuel (gasoline), 
wood, coal, or natural gas and may also be emitted from oil and gas fields and as 
diesel exhaust. Volatiles are released as fumes from solvents, paints, glues, and 
other products in our daily use.

Interestingly, there are significant biogenic sources for volatile organic com-
pounds (VOCs) also. Most of these biogenic volatiles include isoprene, monoter-
penes, sesquiterpenes, and oxygenated compounds such as methanol, hexane 
derivatives, 2-methyl-3-buten-2-ol, and 6-methyl-5-hepten-2-one. Volatiles of ani-
mal or plant origin have been extensively studied in the past whereas microbial 
volatiles (i.e., bacteria and fungi) have not gained serious attention for years. 
Moreover, although there is a growing literature on VOCs of bacterial origin with 
their functional aspects (Schulz and Dickschat 2007; Junker and Tholl 2013; 
Piechulla and Degenhardt 2014), much less attention has paid to the fungal VOCs 
(FVOCS) (Bennett et  al. 2013; Bitas et  al. 2013; Schulz and Dickschat 2007; 
Piechulla and Degenhardt 2014; Kanchiswamy et al. 2015).
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Approximately 1000 volatile organic compounds (mVOCs) are cited in different 
reports as produced by 400 different bacteria and fungi so far, among which only 
300 VOCs have been characterized from fungi (Chiron and Michelot 2005; Korpi 
et al. 2009; Lemfack et al. 2014). Interestingly, in the laboratory it has been found 
that individual fungal species produce a typical pattern of VOCs that may vary 
depending on growth conditions. The specific profile of volatiles produced by each 
fungal species is strongly dependent on such environmental factors as temperature, 
pH, moisture level, nutrients, and age of the culture (Wilkins and Larsen 1995; 
Bennett et  al. 2013; Morath et  al. 2012). However, during the past two decades, 
research on microbial volatile metabolites has significantly intensified. The recent 
findings about the importance of such volatile metabolites in microbial interactions 
within fungi or fungi and bacteria and even in the communication between fungi 
and plants or animals are no doubt very interesting in basic and applied research. 
Presently, the potential biotechnological applications of such mVOCs are also well 
illustrated. Aspergillus, Penicillium, Alternaria, Cladosporium, Mucor, and 
Ulocladium are among the most common VOC-producing fungal genera found in 
our environment (Bennett and Inamadar 2015). Fungi are capable of producing a 
plethora of volatile organic compounds (VOCs) belonging to diverse chemical 
classes, such as terpenoids, straight-chain and branched hydrocarbons, benzene 
derivatives, naphthalene derivatives, cycloalkanes, alcohols, organic acids, ketones, 
and aldehydes (Mends et al. 2012; Riyaz-Ul-Hassan et al. 2012; Strobel et al. 2008; 
Tomsheck et al. 2010), with some special structures.

Molecular approaches such as metagenomics indicate that less than 5% of all 
fungal species expected to exist on our planet have been characterized thus far 
(Riyaz-Ul-Hassan et al. 2013). Furthermore, strain variations among the same fun-
gal species suppose them to be highly diverse and suitable for the discovery of new 
chemical entities, enzymes, and useful volatile organic compounds. The search is 
now on for novel strains of microorganisms from variegated environments includ-
ing extreme ecological niches such as geothermal vents, hot springs, the ocean bed, 
and cold deserts (Foissner 1999). Human beings have been dependent on plants 
from the very initiation of our civilization, but later gradually we became habituated 
to synthetic compounds. Surprisingly, after receiving unsatisfying results from syn-
thetic chemical compounds, now we are again in search of natural compounds and 
here also plants are our savior.

Every plant in this earth harbors a suite of microorganisms which are not harmful 
to them but on the contrary help their host in many ways. Such classes of microbes 
are called endophytes. Endophytic microbes are highly diverse and metabolically 
very sound! Because very little research has been done on endophytic fungi and 
their volatile organic metabolites, there is a high prospect of finding untold numbers 
of novel fungal genera existing as plant-associated microbes as well as many novel 
volatile compounds with significant bioactivity (Strobel and Daisy 2003; Rana et al. 
2018a; Rana et al. 2018b; Rana et al. 2016; Suman et al. 2016). Endophytic fungal 
VOCs are found to induce positive changes in plant growth and vigor, which might 
be a blessing for agriculture as the demand on agricultural production for fiber, 
food, and fuel increases exponentially for our ever-growing human population. 
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Also, at present fungal VOCs (FVOCs) are increasingly being applied in controlling 
plant pathogens (mycofumigation), in mycodiesel or fuel production and in biosen-
sor production.

Fungal VOCs influence plant growth and defense, interspecies interactions 
among plants, bacteria, fungi, and nematodes, as attractants of natural enemies, as 
bio-control agents, and are finding suitable application as pest/insect/herbivore 
management (Kanchiswamy et  al. 2015; Davis et  al. 2013; Weise et  al. 2014; 
D’Alessandro et  al. 2014). One unique endophytic fungus, Muscodor vitigenus, 
produces sufficient concentration of naphthalene to alter insect behavior (Daisy 
et  al. 2002). This progressive study on endophytic fungal volatile organic com-
pounds (eFVOCs) demonstrates their critical roles in multitrophic interactions and 
their importance in both the ecosystem and sustainable agriculture systems.

5.2  VOC-Mediated Interaction in Fungal Endophytes

Plant roots are thought to be an important entry point for endophytic fungi: it is 
assumed that soil fungi enter the plant root tissues through any mechanical incision 
or abrasion. Roots release a diverse mixture of low and high molecular weight 
organic compounds that make the root tissues and surrounding environment nutrient 
rich for a diverse community of microbes (Badri and Vivanco 2009). Soil-borne 
fungi first colonize at the rhizosphere, then invade the intercellular space, and act as 
commensals or mutualistic endophytes (Yadav 2018; Yadav et al. 2017; Hardoim 
et al. 2008; Reinhold-Hurek and Hurek 2011), or dwell within the root tissues as 
intracellular endosymbionts (Bonfante and Genre 2010; Desbrosses and Stougaard 
2011).Volatile organic compounds (VOCs) typically occur as a complex mixture of 
low molecular weight lipophilic compounds generated at different steps of various 
metabolic pathways.

The term “volatilome” recently has been proposed to illustrate their structural 
and functional importance (Maffei et al. 2011). VOCs are responsible for interspe-
cies and intraspecies communication, with involvement in innumerable interactions 
among plants, antagonists, or mutualistic symbionts in the environment both below 
and above the ground (Maffei et al. 2010; Wang and Maffei 2011; Garbeva et al. 
2014; Lemfack et al. 2014; Kanchiswamy et al. 2015). With their comprehensive 
inter- and intraspecific interactions, VOCs cause genetic and phenotypic variation in 
the interacting organisms (Effmert et  al. 2012; Piechulla and Degenhardt 2014; 
Penuelas et al. 2014).

Fungal endophytics are able to detect host plants through a composite array of 
molecular signaling and initiate their colonization in the very rhizoplane by produc-
ing specific plant growth regulating volatile organics (Ortiz-Castro et  al. 2009). 
Additional signals from microbes have a role in plant root morphogenesis. Very 
recently the role of N-acyl homoserine lactone (AHL) has been recognized as a sig-
nal molecule in plants altering gene expression in roots; shoots thus modulate 
defense and cell growth responses (Ortiz-Castro et al. 2009; von Rad et al. 2008). 
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The endophytic fungus Gilmaniella sp. AL12 induced ethylene production in 
Atractylodes lancea, as found in a recent study by Yuan et al. (2016). Pre-treatment 
of this plantlet with amino oxyacetic acid, that is, an ethylene inhibiter, also sup-
pressed endophytic fungi-induced accumulation of ethylene and sesquiterpenoids. 
Table  5.1 lists the VOCs produced by various endophytic fungi. The hypotheses 
generated from this study imply VOCs released by endophytic fungi can provide an 
important signal mediating the biosynthesis of sesquiterpenoids in Atractylodes 
lancea.

5.3  Bioactivity of Endophytic Fungal Volatiles (eFVOCs)

Fungi are an extraordinarily diverse group of microorganisms that are found in 
many habitats, even competing with other microorganisms. Endophytes spend a 
long time in mutual relationships with their host plants. Endophytic association 
often seems confused with plant pathogens or surface dwellers. So, to verify that a 
microorganism has an endophytic lifestyle in the true sense, it must should be suc-
cessfully reintroduced into disinfected seedlings and judged by microscopy, thereby 
also fulfilling Koch’s postulates (Hyde and Soytong 2008). Currently, endophytic 
fungi have received much recognition for interesting metabolic potential and useful 
secondary metabolites. From the biotechnological point of view, volatile-producing 
endophytic fungi exert a broad spectrum of odorous compounds with different 
physicochemical and biological properties that make them useful in both industry 
and agriculture (Yuan et al. 2012) (Fig. 5.1).

5.3.1  Fungal Volatiles as Antimicrobial to Plant Pathogens

Fungal endophytes somehow manage habitat adaptation within the plant inner tis-
sues, resulting in improved performance concerning plant protection from various 
biotic and abiotic stresses. Fungi are considered as a large cell factory for volatiles 
that can harness organic natural products with possibilities for the development of 
biocontrol agents. Certain endophytes produce antimicrobial VOCs that directly 
contribute to plant defense against pathogenic microorganisms. The endophytic 
fungus Muscodor albus can be considered as the most active candidate strain in this 
context. This strain was first reported as an endophyte from Cinnamomum zeylani-
cum (Worapong et al. 2001). It efficiently inhibits and executes selected other plant 
pathogenic fungi and bacteria by producing a suite of different volatiles (Strobel 
et  al. 2001) that accounts for at least 28 different volatile organic compounds. 
Surprisingly, although few individual compounds were antagonistic to certain 
pathogens, a strong synergistic effect was detected, even to lethality, for a broad 
range of plant and human pathogenic fungi and bacteria. Derivatives of alcohols, 
esters, ketones, acids, and fatty acids were found as principal components in the 
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Table 5.1 List of different volatile organics isolated from endophytic fungi

Endophytes Host plant eFVOCs Structure References

Aspergillus niger Rosa 
damascena

2-Phenylethanol Wani et al. 
(2010)

Botrytis sp. BFT21 Musa sp. 2-Methylbutane Ting et al. 
(2010)

β-Butyrolactone

2-Butene dinitrile
Phomopsis sp. Odontoglossum 

sp.
Sabinene Singh et al. 

(2011)

3-Methylbutan-1-ol

2-Methylpropan-
1-ol
Acetone

Benzene ethanol

Nodulisporium sp. Cinnamomum 
loureirii

α-Selinene Park et al. 
(2010)

β-Selinene

2,5-Dihydrotoluene

β-Elemene

Phialocephala fortinii Tree root 
endophyte

β-Caryophyllene Kramer and 
Abraham 
(2012)

Clonostachys rosea 
(Gliocaldium roseum) 
strain C-13 = NRRL 
50072

Eucryphia 
cordifolia

2-Pentene Griffin et al. 
(2010)

3-Methylbutan-1-ol

2-Methylhexanoate

Heptane

Octane

2-Butyl propionate

(continued)
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Table 5.1 (continued)

Endophytes Host plant eFVOCs Structure References

Epichloe typhina Phleum 
pratense

Sesquiterpenes Steinebrunner 
et al. (2008)

Chokol K

Muscodor albus Cinnamomum 
zeylanicum

1-Butanol 3-methyl 
acetate

Strobel et al. 
(2001)

Muscodor albus I, 
41.3 s

Unidentified 
tree species

2-Methyl furan Atmosukarto 
et al. (2005)

Aciphyllene

Muscodor albus E-6 Guazuma 
ulmifolia

2-Methyl-butanoic 
acid

Strobel et al. 
(2007)

3-Methyl butyl 
ester

3-Ethyl 1-octene

Guaiol

N-(1-
Methylpropyl) 
formamide

Muscodor sutura Prestonia 
trifidi

Thujopsene Kudalkar 
et al. (2012)

Chamigrene

Isocaryophyllene

Muscodor albus GBA Ginkgo biloba 3-Methyl acetate Banerjee 
et al. (2010)

1-Butanol

(continued)
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Table 5.1 (continued)

Endophytes Host plant eFVOCs Structure References

Muscodor albus 
MOW12

Piper nigrum Acetic acid ethyl 
ester

Banerjee 
et al. (2014)

Propanoic acid 
2-methyl-methyl 
ester

Acetic acid
2-Methylpropyl 
ester

Daldinia bambusicola Camellia 
caduca

Linalool Pandey and 
Banerjee 
(2014)

Pivelic acid 
anhydride

2-Ethylhexanol

Hypoxylon sp. Persea indica 3-Octanone Tomsheck 
et al. (2010)

7-Octene-4-ol

Pichia guilliermondii Paris 
polyphylla var. 
yunnanensis

Helvolic acid Zhao et al. 
(2010)

Geotrichum candidum Solanum 
melongena

3-Methyl-1-butanol Mookherjee 
et al. (2018)

Ethyl 3-methyl 
butanoate

Isopentyl acetate

Isobutyl acetate

Nodulisporium sp. 
(Hypoxylon sp.)

Thelypteris 
angustifolia

4-Methyl-3- 
hexanone

Riyaz-Ul- 
Hassan et al. 
(2013)

2,4-Dimethyl-3- 
hexanone

4-Methyl 5-hepten 
2-one

(continued)
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Table 5.1 (continued)

Endophytes Host plant eFVOCs Structure References

Diaporthe spp. Catharanthus 
roseus

Muurolene Yan et al. 
(2018)

Phellandrene

Terpinene

Thujene

Patchoulene

Cedrene

2-Carene

Nodulisporium sp. 
GS4d2II1a

Gliricidia 
sepium

Eucaliptol Sánchez- 
Fernández 
et al. (2016)

Limonene

Diaporthephaseolorum Picrorhiza 
kurroa

Isomenthol Qadri et al. 
(2015)

β-Bisabolene

3-Pentanone

(continued)
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Table 5.1 (continued)

Endophytes Host plant eFVOCs Structure References

Gliocladium roseum 
(NRRL 50072)

Dicksonia 
antarctica

4-Decene Strobel et al. 
(2017)

α-Farnesene

Pentyl ester

Gliocladium roseum 
(NRRL 50072)

Eucryphia 
cordifolia

Pentyl alcohol Strobel et al. 
(2008) 

2-Octyl acohol

Undecane 
2,6-di-methyl
Decane 
3,3,5-trimethyl

Cyclohexene, 
4-methyl

Muscodor 
yucatanensis

Bursera 
simaruba

2-Pentyl furan Macias- 
Rubalcava 
et al. (2010)

Aromadendrene

Fig. 5.1 Bioactive potential of volatile organic compounds from endophytic fungi
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metabolite mixture of this endophytic strain, among which isoamyl acetate was the 
most promising biologically active compound (Strobel et al. 2001).

Another endophyte to Mucor albus was isolated emitting a number of volatiles, 
such as tetrohydofuran, aciphyllene, and azulene derivatives (Atmosukarto et  al. 
2005). The mixture of volatiles effectively inhibited a broad range of plant and 
human pathogenic bacteria. Muscodor albus E-6, an endophyte of Guazuma 
 ulmifolia, was isolated by Strobel et  al. (2007). This organism produces several 
unique VOCs that were not previously reported for any other species of Muscodor. 
The volatile metabolites produced by this strain include 2-methyl butanoic acid, 
3-methyl butanoic acid, 2-methyl-2-butenal, butanoic acid, 3-methyl butyl ester, 
3-methyl- 3-buten-1-ol, guaiol, 3-ethyl-1-octene, N-(1-methyl propyl) formamide, 
and certainly azulene with naphthalene derivatives. The mixture is highly effective 
against an array of plant pathogenic fungi and bacteria.

The endophytic fungus Muscodor sutura was observed to produce a mixture of 
volatile organics including thujopsene, chamigrene, isocaryophyllene, and 2-methyl 
butanoic acid, which has not been previously reported by any other fungi of the 
same genus (Kudalkar et  al. 2012). This volatile mixture emitted by M. sutura 
inhibited (100% mycelial inhibition) a set of 13 fungal pathogens after only 2 days 
of exposure. Muscodor albus strain GBA was isolated as an endophytic fungus of 
Ginkgo biloba. The strain showed strong inhibitory and killing effects toward test 
fungal pathogens by its released VOCs. The chemical analysis of VOC revealed 
derivatives of esters, lipids, alcohols, acids, and ketones with a high concentration 
of 1-butanol and 3-methyl acetate (Banerjee et al. 2010).

Subsequently, seven new M. albus strains were isolated producing various novel 
mixtures of volatile secondary metabolites. Muscodor albus MOW12 (Fig.  5.2), 
was isolated as an endophytic fungus with antifungal activity from Piper nigrum in 
Mawlong, India. This Xylariaceae-derived endophyte produced low molecular 
weights of ester, alcohol, and acid derivatives. The major ester components found 
within a volatile mixture of this isolate are acetic acid ethyl ester, propanoic acid 
2-methyl-methyl ester and acetic acid 2-methylpropyl ester (Banerjee et al. 2014). 
The volatile chemical profile of each Muscodor strain significantly varies from one 
another; even their antagonistic pattern is also remarkable. Some species release 
large amounts of chemicals as volatile secondary metabolites; all together about 50 
different volatiles are documented to be produced by a fungal isolate with endo-
phytic association exerting an impressive antimicrobial spectrum (Ezra et al. 2004). 
Mycofumigation with M. albus against pathogens was already reported in smut- 
infected barley seeds, and 100% disease control was reported by Strobel et  al. 
(2001). VOC-producing endophytic fungi were also experimentally tested for the 
treatment of fruits in storage and in transit (Mercer and Jimenez 2004). Soil treat-
ments have also been effectively used in both field and greenhouse situations 
(Mercier and Manker 2005).

Mitchell and Strobel (2010) isolated Muscodor crispans, endophytic to Ananas 
ananassoides. This strain produces a mixture of antifungal and antibacterial volatile 
organic compounds that strongly inhibits Pythium ultimum, a potential plant patho-
genic fungus. This strain was also found active against Alternaria helianthi, Botrytis 
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cinerea, Fusarium culmorum, F. oxysporum, Phytophthora cinnamomi, P. palmiv-
ora, Rhizoctonia solani, Sclerotinia sclerotiorum, and Verticillium dahlia and even 
to the plant pathogenic bacterium Xanthomonas axonopodis pv. citri. The volatile 
mixture was checked for environmental safety issues and approved as safe by GARS 
(Generally Regarded as Safe), and no azulene or naphthalene derivatives were 
detected in the volatile mixture of Muscodor crispans, making it a potential 
 candidate strain for commercial application. Thus, this mixture was suggested to 
have potential utility in applications ranging from food preservation derivatives to 
agricultural, household, and industrial uses by the US Food and Drug Administration. 
Stinson et  al. (2003) isolated another fungus, Gliocladium sp., an endophyte of 
Eucryphia cordifolia, that was discovered to be a volatile antibiotic producer. Many 
volatile organic compounds were analyzed from the endophytic fungus Daldinia 
concentrica, isolated from olive trees in Israel. This fVOCs mixture was found very 
promising for post-harvest control. It was effective when used experimentally to 
protect dried apricots, plums, and raisins from rotting. Moreover, the fVOCs signifi-
cantly protected peanuts against Aspergillus niger, oranges and tomato paste from 
Penicillium, and grapes against Botrytis. Another reported endophytic fungus is 
Myrothecium inunduatum from a euphorbeacean herb, Acalypha indica, in India 
(Banerjee et al. 2010).

Fig. 5.2 The endophytic strain of Muscodor albus MOW12 isolated from Piper nigrum: (a) the 
plant, Piper nigrum; (b) larger view of leaves and fruits of this plant; (c) colony on potato dextrose 
agar media; (d) scanning electron microscopy (SEM) observation of 10-day-old culture of 
Muscodor albus MOW12
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The authors reported that M. inundatum that was cultivated in shake culture 
flasks produced an abundance of VOCs that showed effective inhibitory effects on 
the growth of Phythium ultimum and Sclerotinia sclerotiorum. The volatile mixture 
contained various hydrocarbons and hydrocarbon derivatives with several terpenes, 
organic acids, ketones, and alcohols. In another experiment, the volatile 
 antimicrobial metabolites were used to increase the shelf life of fruits and vegeta-
bles, as was experimentally shown by Pandey and Banerjee (2014). Endophytic 
Daldinia bambusicola was isolated from Camellia caduca. The strain produced 
linalool, benzene ethanol, and other volatile organics that were able to kill 
Phytopthora palmivora as well as significantly inhibit the growth of Geotrichium 
sp., Alternaria sp., Colletotrichum lagenarium, Botrytis cinerea, and a few others 
with mild inhibition. The most prevalent compounds were 3-octanone, 3-octanol, 
and 7-octen-4-ol analyzed, from an endophytic Hypoxylon sp. isolated from Persea 
indica, a widespread Laurasian tree of the Mediterranean flora, which produces a 
plethora of FVOCs with a high effectiveness to treat Phytophthora cinnamomi, P. 
palmivora, Cercospora beticola, Aspergillus fumigatus, and Sclerotinia sclerotio-
rum (Tomsheck et al. 2010). Pichia guilliermondii (endophyte to Paris polyphylla 
var. yunnanensis) is reported to emit several volatile compounds including helvolic 
acid. This volatile compound exerts high antifungal activity by inhibiting spore 
germination of Magnoporthe oryzae, one of the most devastating pathogens of rice 
(Zhao et al. 2010).

Chokol K, another volatile organic compound produced by the grass endophyte 
Epichloe sp. (Clavicipitaceae), effectively inhibited the growth and spore germi-
nation of two mycoparasites associated with stomata and two plant pathogenic 
fungi (Steinebrunner et al. 2008). Endophytic fungi from Orchidaceae were inves-
tigated by Singh et al. (2011) for VOCs. Phomopsis sp., isolated from Odontoglosum 
sp., produces 3-methyl-1-butanol, 2-methyl-1-propanol, benzene ethanol, and 
2- propanone as principal components in the volatile metabolite mixture. 
Experimental observation indicated that an artificial mixture of these compounds 
also displayed strong growth inhibition of several fungal pathogens, including 
Pythium ultimum, Phytophthora palmivora, Sclerotinia sclerotiorum, Rhizoctonia 
solani, Fusarium solani, Botrytis cinerea, Colletotrichum lagenarium, and 
Verticillium dahlia. Endophytic Botrytis sp. BTF21, which was isolated from 
Musa sp., was found to produce 2-methyl-butane, β-butyrolactone, and 2-butene-
dinitrile as volatile secondary metabolites (Ting et al. 2010). The VOC produced 
by this strain was found to have biocontrol potential to Fusarium oxysporum, 
which is considered to be a serious plant pathogen. Nodulisporium sp. and a few 
more endophytic fungi were isolated from Cinnamomum loureirii. As volatile 
organics, β-elemene, α-selinene, β-selinene, and 2,5-dihydrotoluene were obtained 
after chemical analysis of the volatile mixture of this Nodulisporium. The volatile 
mixture was successfully applied as a post-harvest disease control of apples (Park 
et al. 2010).

The volatile sesquiterpene β-caryophyllene was identified to be produce by the 
endophyte Phialocephala fortinii with potential anti-fungal activity (Kramer and 
Abraham 2012). The VOCs of Oxyporus latemarginatus EF069, which was isolated 
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as an endophyte from red peppers, also had a negative effect on the mycelial growth 
of several plant pathogens. Mycofumigation with this endophytic fungus was suc-
cessfully achieved for control of post-harvest apple decay and root rot by Rhizoctonia 
on moth orchid (Lee et al. 2009). Aspergillus niger JUBT 3M, isolated from Rosa 
damascena, is also able to produce VOCs. Chemical analysis reveals the production 
of 2-phenylethanol as a volatile organic by this isolate. The commercial applications 
of phenyl ethanol include its use in antiseptics, disinfectants, antimicrobials, and 
preservatives in pharmaceuticals (Wani et al. 2010).

A Phoma sp. was isolated and identified as endophytic of Larrea tridentata. This 
fungus produces a unique mixture of VOCs including a series of sesquiterpenoids, 
some unusual alcohols, and several reduced naphthalene derivatives. Trans- 
caryophyllene, considered as a product in the fungal VOCs, was also noted in the 
VOCs of this plant. The volatile mixture produced by Phoma sp. exerts strong anti-
fungal effects on Verticillium, Ceratocystis, Cercospora, and Sclerotinia. Here it 
must be noted that this antifungal profile of endophytic isolates is markedly similar 
to that of the methanolic extract of the host plant (Strobel et al. 2011). Six volatile 
organic compounds were obtained from two endophytic fungi (Nodulisporium sp. 
strain GS4d2II1 and Hypoxylon anthochroum strain Blaci) that were also deter-
mined for their bioactivity by Medina-Romero et al. (2017). Results showed that the 
VOCs have a significant concentration-dependent antifungal effect individually and 
also act strongly in a synergic manner in both in vivo and in vitro conditions. They 
also concluded that the mixture of the six compounds may be used for post-harvest 
control of F. oxysporum against tomato wilt. Geotrichum candidum was isolated as 
an endophytic from the fruit Solanumm elongena. The volatile mixture produced by 
this fungus contains 3-methyl-1-butanol, ethyl-3-methylbutanoate, 2- phenylethanol, 
isopentyl acetate, naphthalene, and isobutyl acetate in significant proportions. The 
strain showed significant growth inhibition of Rhizoctonia solani, a potent plant 
pathogen. Mild antifungal activity against a few other fungal pathogens was also 
recorded by this strain. However, the effectiveness of the antimicrobial property of 
this volatile mixture was enhanced with the exogenous addition of naphthalene 
(1.0 mg/plate) by Mookherjee et al. (2018).

The volatile composition produced by endophytic fungi Alternaria alternata and 
Penicillium canescens (from the leaves of Olea europaea L.) displayed a large anti- 
fungal spectrum: the six most abundant volatiles were 3-methyl-1-butanol and 
phenylethyl alcohol (Malhadas et  al. 2017). Another Nodulisporium species 
(Hypoxylon sp.) has been isolated as an endophyte to Thelypteris angustifolia. The 
endophyte produces VOCs that produce fuel (mycodiesel) and are also used for 
biological control of plant disease. The organism was responsible for the unique 
production of a series of ketones, including acetone, 2-pentanone, 4-methyl-3- 
hexanone, 2,4-dimethyl-3-hexanone, 2-hexanone, and 4-methyl-5-hepten-2-one, 
with significant concentration in addition to 1-butanol and phenyl ethanol alcohol. 
The VOCs produced by this strain were found to be lethal to Phytophthora palmiv-
ora, Rhizoctonia solani, Sclerotinia sclerotiorum, and Phytophthora cinnamomi 
(Riyaz-Ul-Hassan et al. 2013). Diaporthe sp. was isolated as an endophytic fungus 
from Catharanthus roseus (Yan et al. 2018). Identification of its volatile metabolites 
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showed terpenes including muurolene, phellandrene, terpinene, and thujene, as well 
as other minor terpenoids such as caryophyllene, patchoulene, cedrene, 2-carene, 
and thujone. The isolated VOC mixture exhibited significant antifungal properties 
against a wide range of plant pathogenic test fungi and oomycetes, including 
Alternaria alternata, Botrytis cinerea, Colletotrichum gloeosporioides, Fusarium 
graminearum, and Phytophthora cinnamomi. A total of 70 VOCs were detected, 
among which mono- and sesquiterpenes, especially eucalyptol and limonene, were 
a significant fraction from the endophytic Nodulisporium sp. GS4d2II1a (Sanchez- 
Fernandez et al. 2016).

The antagonism assay indicated strong inhibition to oomycetes plant pathogens, 
including Pythium aphanidermatum of economically important crops. Endophytic 
Diaporthe phaseolorum associated with the rhizome of Picrorhiza kurroa was eval-
uated for antimicrobial properties of its volatile metabolites. The strain was found 
to produce a unique array of VOCs, particularly menthol, phenylethyl alcohol, 
(+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone, and 
1- pentanol. VOCs produced by this strain are selectively active against the growth 
of plant pathogenic fungi. The role of this endophyte in endophytic association may 
be to inhibit the growth of pathogens responsible for root rot of the host (Qadri et al. 
2014).

In search of VOC-producing endophytic fungi, Strobel et al. (2017) discovered 
Urnula sp., an endophytic fungus of Dicksonia antarctica. About 150 different 
compounds have been detected and identified from the volatile mixture released by 
this strain by employing carbotrap methodology. The most notable compounds 
found in the volatile metabolites produced included 4-decene, tridecene, 2-decene, 
α-farnesene, butanoic acid, and pentyl ester. In vitro assay showed moderate to 
strong growth inhibition against some common fungal plant pathogens. Although 
the antimicrobial potential of eFVOCS is well established, only a very few attempts 
have made to establish its mechanism and for its commercial application.

A very recent article published by Alpha et al. (2015) nicely described the prob-
able mode of action of VOCs produced by Muscodor albus CZ-620 through a series 
of genetic screening and biochemical assays. This experiment suggests that the 
VOCs produced by this organism may induce alkylation of DNA and ultimately 
lead to strand breakage in E. coli. Additional cytotoxicity profiling indicated that 
during VOC exposure, E. coli became filamentous, with increased cellular mem-
brane permeability. The volatile nature of the toxic compounds produced by M. 
albus and their broad range of inhibition suggest this fungus as an attractive biologi-
cal agent.

5.3.2  Fungal Volatiles as Diesel Components

The liquid hydrocarbon fuels have high demand worldwide because of the high vol-
umetric density and relative ease of production, transport, and storage (Santos et al. 
2014). Many factors are now forcing us to search for alternative sources of liquid 
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fuels, including issues of the diminishing supplies of these fossil hydrocarbons and 
serious concerns about climatic changes caused by rising levels of greenhouse gases 
throughout the world’s atmosphere. Plant-derived lipids and bioethanol from the 
fermentation of sugars and starch are considered an important alternative energy 
source, but the enormous demand for fossil-based hydrocarbon fuels such as coal, 
natural gas, and oil cannot be met with the present supply of such alternate energy. 
Attempts are underway to find still other alternative eco-friendly approaches to 
increase the production of liquid fuels. Volatile organic compounds (VOCs) are con-
sidered to be carbon-based compounds that can readily enter into the gas phase by 
vaporizing at 0.01 KPa at approximately 20 °C (Pagans et al. 2006).

Most such compounds are lipid soluble and thus have low water solubility. 
Approximately 250 VOCs have been identified from fungi of diverse ecological 
niches where they exist as mixtures of simple hydrocarbons, heterocycles, alde-
hydes, ketones, alcohols, phenols, thioalcohols, thioesters and their derivatives, 
benzene derivatives, and cyclohexanes (Chiron and Michelot 2005; Korpi et  al. 
2009; Ortiz-Castro et al. 2009). Recently, endophytic fungi have been extensively 
studied for production of hydrocarbons and hydrocarbon-like compounds. These 
compounds have high potential to be used as both “green chemicals” and fuels. 
Gliocladium roseum NRRL 50072, an endophyte isolated from Eucryphia cordifo-
lia, produces volatile organics as secondary metabolites (Strobel et al. 2008).

Chemical analysis of the VOC mixture of this fungus revealed an assemblage of 
alcohols, ketones, and hydrocarbons including pentyl, hexyl, heptyl, octyl, and sec-
ondary octyl, decylalcohols, undecane, 2,6,-dimethyl decane, 3,3,5-trimethyl cyclo-
hexene, 4-methyl decane, and 3,3,6-trimethyl undecane. Quantification of the VOCs 
was determined by proton transfer mass spectrometry (PTR-MS), resulting in 
organic substances of 80 ppmv (parts per million by volume) in the headspace atmo-
sphere above the media.

The hydrocarbon composition produced by this endophytic fungus contains a 
number of compounds that are commonly associated with diesel fuel. The mother 
composition of all types of diesel fuels are the straight-chain hydrocarbons such as 
hexane, heptane, octane, nonane, and decane along with the branched alkanes, 
cyclic alkanes, a plethora of benzene derivatives, and some polyaromatic hydrocar-
bons (Hsu et al. 2000). Currently, all the endophytic fungi producing volatile com-
pounds are being studied for hydrocarbon production or fuel production. An 
interesting finding by Shaw et al. (2015) states that a nine-carbon polyketide alkene 
produced by the endophytic fungus Nigrograna mackinnonii is likely to be useful 
for gasoline applications. A great diversity among endophytic fungi is being iso-
lated to date, which implies the occurrence of enormous chemical diversity as 
invariably moderation of secondary metabolites acts as a weapon in such highly 
competitive ecosystems (Strobel and Daisy 2003). Hypoxylon sp., isolated from 
Persea indica, was found to be an important discovery in this regard: it produces 
such a volatile organic mixture with fuel properties, that is, mycodiesel.

The VOCs produced by this organism were measured by PTR-MS covering a 
continuous range of VOC production rate of 7.65 ppmv/h: the VOX mixture consists 
of 1,8-cineole (a monoterpene), benzene, naphthalene, and 1-methyl-1,4- cyclohexane. 
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Cineole, known as eucapyptol, can be used in an 8:1 blend with gasoline, whereas 
this VOC mixture can be used as a diesel fuel additive. The researchers of this group 
claimed that the ability to produce such rare compounds from a fungal source greatly 
expands their potential applications in medicine, industry, and energy production. 
The endophytic Nodulisporium sp. also produced some VOC mixtures having both 
antimicrobial and fuel properties. The presence of cyclohexane, propyl, etc. is consid-
ered to be a potential source for a fuel alternative for major diesel components.

The endophytic fungus Phomopsis sp. was found to produce 1-butanol, 3-methyl 
benzene ethanol, 1-propanol, and 2-methyl 2-propanone, which may be used as 
additives to gasoline. However, extensive basic and applied research is needed to 
establish hydrocarbon production by these endophytic fungi at the industrial level 
for additives as liquid biofuel. Such candidate endophytic fungi with fuel potential 
should be selected for metabolic engineering and scale-up processes for the produc-
tion of cost-effective alternate fuels that will also be eco-friendly.

5.3.3  Fungal Volatiles as Alleochemicals and Communicating 
Signals

Allelopathy is a biological phenomenon by which metabolites produced by one 
organism can influence the germination, growth, survival, and reproduction of other 
organisms. The biochemicals or metabolites having such properties are called 
allelochemicals. The term allelopathy was first coined by Hans Molisch in 1937. 
Alleochemicals are in general a subclass of secondary metabolites produced by 
plants or microorganisms. The negative role of alleochemicals imparts advantages 
to plant defenses against herbivores. These biochemicals contribute significantly to 
species distribution and abundance in plant communities and thus give a constant 
structure of an ecological niche. Applying such allelochemicals in weed manage-
ment has become an interesting strategy as an environmentally friendly approach. 
In the agro-ecosystem, weeds compete with valuable crops for nutrient resources 
and crop handling that results in reduced crop yield with reduced crop quality and 
ultimately a huge financial loss every year. Although there are several mechanical 
and chemical strategies for weed control, resistance to chemical herbicides, change 
in weed composition, and certainly the potential health hazards of such chemicals 
forces us to find some alternate strategy to control weeds. In this regard, natural 
products released from plants or microorganisms are considered as promising alter-
native options. Allelopathic plant growth inhibition has been demonstrated repeat-
edly in laboratory-scale experiments, but more realistic field studies involving 
semi-natural or natural soils are often inconclusive (Inderjit et al. 2005; Macias and 
Galindo 2007; Kaur et al. 2009).

However, an experiment was well conducted by Macias-Rubalcava et al. (2010) 
in this regard with Muscodor yucatanensis, an endophytic fungus, isolated from the 
leaves of Bursera simaruba. The volatile mixture produced by this endophytic 
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 fungus was analyzed for allelopathic effect on root elongation in amaranth, tomato, 
and barnyard grass. Significant phytoinhibition was observed by split plate assay 
(Fig. 5.3) containing potato dextrose agar (PDA) inoculated with M. yucatanensis in 
one compartment. Maximum root growth inhibition was exhibited by a 10-day-old 
culture of this strain. .Microbes can colonize the surfaces of plant roots, leaves, and 
flowers in varied proportions, which is dependent on some chemical signaling. In 
this context volatile fungal metabolites can be considered important signals in the 
communication of plant-associated fungi in the rhizosphere and endosphere.

5.4  Techniques for VOC Analysis from Endopytic Fungi

Fungi release surplus volatile organic compounds (VOCs) as mixtures of low 
molecular mass alcohols, aldehydes, esters, terpenoids, thiols, and other small mol-
ecules that easily volatilize. Most techniques of VOCs determination including 
separation and identification now rely on gas chromatography–mass spectrometry 
(GC-MS). In addition, developments in sensor technology promise to revolutionize 
this field. Fungal-emitted VOC compositions are complex and highly dynamic. The 
compounds produced and their abundance also significantly varies with the produc-
ing strains, the age of the colony, water availability, substrate utilization type and 
pattern, incubation temperature, and other environmental parameters.

Endophytic fungi can be isolated from any healthy surface-sterilized plant parts 
(Strobel and Daisy 2003). There are different authenticated techniques for proper 
surface sterilization though one can optimize accordingly but authentication of pro-
tocol must be done by spreading the last wash water on PDA media to avoid any 
contamination by surface-dwelling microbes. Different established media are avail-

Fig. 5.3 Split plate assay 
for determination of 
antifungal activity of VOCs 
released by endophytic 
Muscodor albus MOW 12 
against test pathogens
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able for isolation of endophytic fungi. Endophytes should be immediately trans-
ferred to sterile media to bring in a pure culture. Before VOC analysis of isolates, the 
age of strains should be synchronized to obtain uniform and optimum results. For 
this, the strains may be grown first on PDA or other suitable media in individual 
Petri dishes, and a culture at least 7 days old can be considered as starter material for 
the next step of VOC production and analysis. An agar block carefully cut with a 
sterile scalpel from a full-grown fungal plate can be inoculated and immediately 
sealed with septa of silicone/plastic tape and threaded cap. After proper incubation 
the culture vials can be placed in an ethylene glycol bath at about 55–65 °C and the 
VOCs can be extracted by headspace-solid phase microextraction (HS-SPME) using 
a polydimethylsiloxane/divinylbenzene (PDMS/ DVB) fiber placed at least 1  cm 
above the surface of the fungal culture. Then, the fiber can be inserted in the GC-MS 
system for VOC desorption and chemical analysis of the components (Fig.  5.4). 
Another automated method of adsorbing and desorbing VOCs accumulated in cul-
ture headspace is via SPME, where desorption occurs in the GC injector itself. 
SPME has gained immense popularity recent years as it allows reduced preparation 
time while increasing sensitivity over other extraction methods (Zhang and Li 2010). 
Additionally, headspace-SPME coupled with GC-MS can be employed in direct 

Fig. 5.4 Gas chromatography-mass spectrometry (GC-MS) system, an important device for VOC 
analysis. (a) The instrument. (b) Automated solid-phase microextraction (SPME) and headspace 
system. (c) Headspace sample collection device with syringe. (d) Headspace-solid-phase microex-
traction (HS-SPME) syringe
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profiling of living fungal cultures (Stoppacher et al. 2010). In another method, the 
culture headspace can be concentrated using solid adsorbents such as Tenax, fol-
lowed by thermal desorption into the GC-MS.

Matysik et  al. (2009) demonstrated some technical advantages in adsorbing 
hydrocarbons, esters, ethers, alcohols, ketones, glycol ethers and halogenated 
hydrocarbons using activated charcoal filters. The VOCs were then desorbed from 
the activated charcoal pads with 1.5 ml carbon disulfide and introduced into the GC 
vials for GC-MS analysis. However, less volatile compounds and reactive com-
pounds such as amines, phenols, aldehydes, and unsaturated hydrocarbons were not 
recovered efficiently from the charcoal bed because they adsorbed strongly to the 
adsorbing material. This sampling technique combined with GC-MS was applied 
for the detection of MVOCs emitted by numbers of fungal species in the genera 
Penicillium, Aspergillus, and Cladosporium. However, the traditional method of 
simultaneous distillation extraction (SDE) along with vapor distillation and solvent 
extraction also can be effective for VOC extraction. SDE has been used to examine 
the VOCs of Penicillium roqueforti and compared with SPME (Jelen 2003). 
However, in an earlier study involving comparative methods analysis for the VOCs 
of Penicillium vulpinum SDE was inadequate to determine a full volatile profile 
when compared to headspace sampling methods (Larsen and Frisvad 1995).

Selected ion flow tube–mass spectrometry (SIFT-MS) provides rapid and broad- 
spectrum detection of even trace VOCs in moderately complex gas mixtures. 
SIFT-MS quantifies VOCs to low part-per-billion levels even in an unmodified 
atmosphere (i.e., without pre-concentration) in a real-time manner (Senthilmohan 
et al. 2001). This technique has been used to study VOCs produced by Aspergillus, 
Candida, Mucor, Fusarium, and Cryptococcus sp. (Scotter et al. 2005).

Booth et al. (2011) described a technique that rapidly entrap and collects fungal 
VOCs having fuel potential. The trapping materials, Carbotrap A and B and 
bentonite- shale, were placed inside a stainless steel column. The trapped fungal 
VOCs were then recovered via controlled heating of the column followed by pass-
ing the eluted gases through a liquid nitrogen trapper. This method allows signifi-
cantly higher recovery of compounds normally present in the gas phase for 
bioassays, further separation, and analyses, and potentially for elucidation of struc-
tural basis with nuclear magnetic resonance (NMR) spectroscopy to identify novel 
compounds produced by fungi.

In a separate method, an analytical system was developed by Schoen et al. (2016) 
for rapid and accurate estimation of total volatile organic compound production 
from fungal culture. A platinum catalyst and a sensitive CO2 detector were employed 
in this system, which determines total VOC production by oxidizing headspace 
VOCs to CO2 for detection by the integrated CO2 detector. Continuous recording of 
CO2 data provided a record of respiration and total VOC production throughout the 
experiments. Respiratory CO2 was satisfactorily bypassed by the catalyst, and the 
resultant total VOC content could be easily determined from the difference in the 
two signals. Finally, proton transfer reaction–mass spectrometry (PTR-MS) was 
used to identify and measure VOCs. After comparing the sum of the individual 
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compounds determined by PTR-MS to the total VOCs established with platinum 
catalyst, potential differences in detection, identification, and calibration can be 
identified also.

However, in an earlier study, Strobel et al. (2001) employed simpler techniques 
for analyzing VOCs produced by endophytic Muscodor albus from the cinnamon 
tree. The method analyzed headspace gases of fungi growing on solid media in a 
Petri dish. A solid-phase micro-extraction syringe was introduced to conveniently 
trap fungal volatiles. The syringe was placed through a small hole drilled in the side 
of the Petri plate, exposed to the vapor phase for 45 min, then removed and inserted 
into a GC-MS system.

5.5  Genetic Engineering with VOC Genes

It is now very clear that microorganisms from diverse ecosystems produce a wide 
range of volatile organic compounds as secondary metabolites. Compared with 
other classes of secondary metabolites, volatiles are typically small compounds (up 
to C-20) with low molecular mass (100–500 daltons), high vapor pressure, low boil-
ing point, and a lipophilic moiety. These properties facilitate their evaporation and 
diffusion through both water- and gas-filled pores in the rhizosphere and even in the 

Fig. 5.5 Biosynthetic pathways for FVOCs.  Represents volatile organic metabolites of differ-
ent chemical nature;  line represent the synthetic path for VOCs
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physiological systems of the plant. It is notable that fungal volatiles are dominated 
by alcohols, benzenoids, aldehydes, alkenes, acids, esters, and ketones (Piechulla 
and Degenhardt 2014), formed mainly by oxidation of glucose from various inter-
mediates (Korpi et al. 2009). The probable biosynthetic pathways for volatile sec-
ondary metabolite production are shown in Fig. 5.5. The fundamental biosynthetic 
pathways are aerobic and heterotrophic carbon metabolism, fermentation, amino 
acid catabolism, terpenoid biosynthesis, fatty acid catabolism, and sulfur reduction 
(Penuelas et al. 2014). Various critical factors in the VOC profile and concentration 
produced by microorganisms include cultural conditions and the physiological sta-
tus of the producing microorganism (Insam and Seewald 2010; Romoli et al. 2014). 
A few genes that are involved in VOC synthesis in endophytic fungi have been 
characterized, opening a new dimension in volatile research and metabolite engi-
neering. It now seems possible to manipulate the quantity and quality of specific 
VOC production by editing some metabolic pathways. Terpenes are a chemically 
diverse class of compounds produced as secondary metabolites by many endophytic 
fungi. These terpenes not only are biologically active secondary metabolites with 
great pharmaceutical potential but also have potential as an attractive renewable 
alternative to fossil fuel. As their energy densities are high, different terpenes such 
as pinene and bisabolene from endophytic fungi are being actively investigated as 
potential additive biofuels for replacing diesel and aviation fuel. Wu et al. (2016) 
have isolated and characterized 26 terpene-producing genes (terpene- synthatase, 
tprs) from four mycodiesel-producing endophytic fungi. These tprs genes were 
expressed in an E. coli with some modified metabolic pathways to yield an enhanced 
level of terpene as secondary metabolites. A total of 12 TPR genes among the 26 
tested were functional, with most of them exhibiting both monoterpene and sesqui-
terpene synthase activity.

5.6  Conclusion and Future Prospects

Volatile organic compounds of endophytic fungi have drawn much interest to the 
present day for their novel structure and potential bioactivity. Most studies have 
focused on the functional role of volatile organics in plant growth and vigor (Bitas 
et al. 2013; Penuelas et al. 2014). However, the role of volatiles in fungal and host 
communication and competition in plant physiological systems is still unclear. Even 
the specific role of each volatile compound in such endophytic associations is still 
unknown. It has been proposed that volatiles represent waste material or a detox 
system for the producing microorganisms (Claeson et al. 2007). A few experiments 
have established the role of VOCs as info-chemicals to communicate among and 
between species, in gene expression, and as competitive tools directly exerting anti-
microbial activity, thus providing an advantage to the host by suppressing or elimi-
nating potential enemies. Moreover, the interesting point lies in the difference 
between VOC composition produced by the endophytic fungi on laboratory culture 
media and that in their original in planta environment. Compared with diffusible 
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compounds, volatile compounds can travel faster and over longer distances through 
both liquid and gaseous phase systemically in plant tissues, facilitating VOC-based 
regulation more promptly and stringently. There are studies proving VOCs as sig-
naling molecules, but the intracellular interactions by VOCs at the cellular macro-
molecular level are still unclear. Future challenges are therefore to find novel 
chemicals of fungal volatiles, to discover their biosynthetic and regulatory pathways 
and the genes involved in the biosynthesis of volatiles in endophytic fungi, to deter-
mine biologically relevant concentrations, and to resolve the importance of volatiles 
in ecosystem interactions.
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Chapter 6
Natural Value-Added Compounds 
from Fungal Communities

Paramanantham Parasuraman and Busi Siddhardha

6.1  Introduction

The rapid development of science and technology, as well as industrial processes, 
have revolutionized the production and utilization of chemically synthesized value- 
added compounds. Until now chemically synthesized value-added compounds 
dominated the global markets. However, there is a shift in the research and develop-
ment of value-added products, and investigations are now focused on alternative 
strategies to replace chemically synthesized value-added products. Recent reports 
are suggesting the use of particular metabolic and bio-catalytic properties of micro-
organisms to potentially transform conventional as well as nonconventional sub-
strates into value-added products. Metabolic products from microorganisms could 
be an effective alternative for the chemically synthesized value-added products for 
reasons of their chemical diversity and extended biological activities. Environmental 
pollutant production during industrial production processes, decreases in substrate 
selectivity, and the high cost of downstream processes demand microbial produc-
tion of value-added products (Mishra et al. 2013).

Microorganisms such as bacteria, fungi, and algae are widely studied to isolate 
value-added metabolic products. Fungal-derived metabolic products are of high 
importance for their extensive application in the agricultural, food, pharmaceutical, 
and chemical sectors (Fig. 6.1). These value-added products include drug molecules 
with antibacterial, antioxidant, and anticancer properties, amino acids, vitamins, 
organic acid, and industrial chemicals, and biofuels are produced from fungi 
(Table  6.1). Various technologies are being employed to produce value-added 
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Fig. 6.1 Schematic representation of value-added compounds from the fungal communities

Table 6.1 Some of the important value-added products from fungi and their applications

Value-added 
products Fungi Applications References

Alkaloids Penicillium paxilli, Aspergillus flavus, 
Emericella desertorum, Neotyphodium lolii, 
Aspergillus oryzae

Food, 
Pharmaceuticals, 
cosmetics and paper 
industries

Xu et al. 
(2014)

Phenols Fusarium, Sordariomycetes, Ampelomyces, 
Alternaria, Aspergillus, Phomopsis, 
Pestalotiopsis, Phoma, Glomerella, 
Diaporthe, Verticillium, Nigrospora, 
Paraconiothyrium, Penicillium, Aspergillus

Pharmaceuticals, 
paper and food 
industries

Pan et al. 
(2017)

Terpenoids Xylaria, Phomopsis, Eutypella, 
Phyllosticta, Trachelospereum, Artemisia, 
Tubercularia, Cladosporim, Furarium, 
Aspergillus, Cladosporium, Arthrinium, 
Penicillium, Alternaria

Pharmaceuticals 
applications

Yan et al. 
(2018)

Flavonoids Alternaria, Fusarium, Schizophyllum, 
Trametes

Pharmaceuticals, 
food, industrial 
applications

Li et al. 
(2015)

Polyketides Penicillium, Fusarium, Monascus, 
Alternaria

Pharmaceuticals, 
food, industrial 
applications

Daley et al. 
(2017)
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 compounds by chemically synthesis routes (Knez et al. 2017; Paulino et al. 2017). 
Chemically mediated synthesis of value-added compounds possess major 
 disadvantages such as environmental pollution and health hazards. Moreover, the 
chemically mediated synthesis of value-added compounds leads to the generation of 
unwanted by-products that can increase the cost of downstream processes. Fungi 
utilize various metabolic pathways to produce fungal metabolites  for the synthesis 
of different complex compounds. However, recent advances in science and technol-
ogy facilitate genetic manipulation technology where potential fungal species can 
be genetically engineered to improve the yield and productivity of bioactive com-
pounds. This method can even extend to produce novel derivatives from bioactive 
metabolites (da Silva and Rodrigues 2014; Du et al. 2011; Guedes et al. 2011).

Fungally mediated synthesis of value-added compounds has certain limitations. 
More than 90% of the potential fungal species cannot be cultivated in laboratory condi-
tions or show comparatively less growth and less metabolite production. These conse-
quences follow the lack of information about the physiological and metabolic 
behaviours of such fungal species. Only about 5% of the available fungal species are 
reported for meeting culture conditions in the laboratory. These culturable fungal spe-
cies also show decline in value-added products in laboratory condition as complete 
information on their culture conditions is lacking. Hence, steps must be taken to opti-
mize the cultural conditions of the fungal species and enhance the production of metab-
olites. Advances in genetic engineering provide the space to overcome the mentioned 
limitations, but sophisticated methods are still required to enhance product yield.

The metagenomics approach is a promising alternative technique to express and 
isolate metabolic products from uncultivatable fungal species. Genetic engineering 
procedures can also be employed where a specific gene of interest is isolated from 
the native producers and incorporated into the genome of other microorganisms to 
synthesize the compound of interest. To date, Escherichia coli and Saccharomyces 
cerevisiae are the organisms most often employed as gene carrier hosts because 
their physiological and genetic behaviours are fully established, as well as their fast 
cell growth rate. Advances in biotechnology by protein engineering, metabolic 
engineering, and synthetic biology led to the discovery of novel biosynthetic path-
ways and the heterologous expression of metabolic products (Deepika et al. 2016; 
Du et al. 2011; Gao et al. 2008). This book chapter highlights certain examples of 
value-added products from fungal species and their potential application in human 
health. Recent developments in science and technology to improve the yield of 
metabolic products by strain improvement are also discussed.

6.2  Value-Added Compounds from Fungi

6.2.1  Alkaloids

Alkaloids are the one of the largest classes of nitrogen-containing, low molecular 
weight secondary metabolites that are found in many organisms including plants, 
bacteria, fungi, and animals. Alkaloids in the β-carboline group contain compounds 
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with different pharmacological applications such as antimicrobial, anti-human 
immunodeficiency virus (HIV), and antiparasitic activities (Patel et  al. 2012). 
Fungi produce chemically diversified alkaloids with significant biological activities. 
It is well known that most alkaloids are formed by an amino acid decarboxylation 
reaction. The amino acids tryptophan, tyrosine, ornithine, histidine, and lysine read-
ily participate in the decarboxylation reaction, resulting in the production of alka-
loids (Xu et  al. 2014). Fungi produce a great diversity of alkaloids with unique 
molecular complexity in the structure. The available alkaloids are classified into a 
number of groups based on their native amino acid: morphinane, protoberberine, 
ergot, pyrrolizidine, and furanoquinoline. Advances in biotechnology led to the 
identification of the genes that participate in biological synthesis of secondary 
metabolites (Du et al. 2011).

Alkaloids are isolated from the fungi Aspergillus, Penicillium, Pestalotiopsis, 
and Chromocleista. The maximum number of alkaloids is isolated from species of 
the genera Aspergillus and Penicillium in the Fungi kingdom. Alkaloids isolated 
from a fungal source exhibited significant biological activities including anticancer, 
antibacterial, antioxidant, antiviral, immunomodulatory, and insecticidal. These 
wide ranges of biological activities of alkaloids from fungi has focused research to 
isolate and develop novel broad-spectrum bioactive metabolites with biological 
applications. Production of alkaloids was identified in the 1940s from Chaetomium 
cochliodes, which led the scientific community to explore diversified fungal species 
for production of bioactive alkaloids (Ma et al. 2016; Xu et al. 2014).

Although several methods to synthesize the alkaloids by a chemical route are 
available, certain limitations are caused by the complexity of the molecule. Alkaloids 
isolated from fungal species are widely accepted and used worldwide because of 
their broad applicability and therapeutic efficiency with the least adverse effects. 
Researchers have focused work to isolate alkaloids from fungal communities that 
have a broad range of biological activity to combat microbial infections. Production 
of alkaloids from fungi on the industrial scale has certain limitations. Technological 
advances can overcome these limitations, including reconstitution of the involved 
biosynthetic pathways and genetic engineering to enhance alkaloids production  in 
significant quantities (Amirkia and Heinrich 2014; Hussain et al. 2018; Patel et al. 
2012; Perviz et al. 2016).

6.2.2  Phenols

Phenolic compounds can be defined as chemical substances that most often exhibit 
an aromatic ring bearing one or more hydroxyl group (OH), including such func-
tional derivatives as ester, methyl ester, and glycosides. Phenolic compounds that 
are commonly produced as secondary metabolites from fungal species are classi-
fied into three groups: simple phenols, phenolic acids, and flavonoids. Most phe-
nolic compounds are derivatives of any one of the following pathways in plants: 
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pentose phosphate, shikimate, and phenylpropanoid pathways. Interestingly, the 
plant- associated fungi have symbiotically adopted these pathways into their meta-
bolic cycle and mimic the plants by producing these metabolites. These secondary 
metabolites are important in plants and fungi by promoting growth and reproduc-
tion, providing protection against pathogen and predators. Nevertheless, these 
phenolic compounds from fungal species exhibit a broad range of physiological 
properties that include anti-allergenic, anti-artherogenic, antiinflammatory, antimi-
crobial, antioxidant, antithrombotic, cardioprotective, and vasodilatory activities 
(Balasundram et al. 2006; Pan et al. 2017).

The endophytic fungi are in symbiotic relationship with plants and produce 
value-added products as those of plants. Among the several secondary metabolites 
of fungi, phenolic compounds have gained significant attention for pharmaceutical 
applications that include antioxidant, cytotoxic, and antimicrobial. The fungal gen-
era Fusarium, Sordariomycetes, Ampelomyces, Alternaria, Aspergillus, Phomopsis, 
Pestalotiopsis, Phoma, Glomerella, Diaporthe, Verticillium, Nigrospora, 
Paraconiothyrium, Penicillium, and Aspergillus are the major contributors to phe-
nolic compounds (Wu et al. 2016a; Lunardelli Negreiros de Carvalho et al. 2016; 
Quang et al. 2018; Rana et al. 2018a, b; Suman et al. 2016).

Microbial phenolic compounds have a significant role in cancer therapy. Unlike 
other secondary fungal metabolites, phenolic compounds have chemoprotective 
properties including antioxidant, anti-carcinogenic or anti-mutagenic and antiin-
flammatory characteristics. These compounds activate the apoptosis process by 
regulating the cell cycle, regulating carcinogenic metabolisms, arresting DNA bind-
ing and cell adhesion, regulating the proliferation and differentiation mechanism of 
cells, and interfering with the signalling pathways (Huang et al. 2009). In addition 
to pharmaceutical application of the phenolic compounds from fungal origin, they 
also actively participate in several other industries such as dairy, food, and cosmet-
ics. For example, phenolic compounds are used in the food industries for the sen-
sory attributes of the food product, and also participate in the development of colour 
in wine and the addition of flavour and astringency in food products (O’Connell and 
Fox 2001; Oliveira et al. 2014).

6.2.3  Terpenoids

Terpenoids are naturally occurring hydrocarbons found as secondary metabolites of 
plants, animals, and microorganisms. Different kinds of terpenoids isolated to date 
include hemiterpenes, monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, tri-
terpenes, and polyterpenes. Terpenoids are produced by two distinct pathways: the 
mevalonic pathway and the 2-C-methyl-d-erythritol-4-phosphate pathway. In some 
cases terpenoids are also called iosprenoids, the subclass of the prenyllipids includ-
ing terpenes, prenylquinones, and sterols. In simple chemical terms terpenoids can 
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be defined as altered terpenes, wherein a methyl group is substituted or removed, 
oxygen atoms are removed or added in reactions such as hydrogenation or dehydro-
genation, or the carbon backbone is altered either by oxidation reaction or by rear-
rangements. Terpenoids show various biological activities. For example, the drugs 
paclitaxel and docetaxel are widely used in cancer chemotherapeutic practice. 
Terpenoids are also used for microbial infections, hyperglycemia, inflammation, 
oxidation reaction in the cell, parasitic infections, immunomodulation, and skin per-
meation enhancement (Ramawat and Mérillon 2013).

An endophytic fungus is a microorganism residing in a plant without causing 
damage or disease symptoms to the host. In recent years endophytic fungi have 
gained significant attention as an important source of structurally diverse biologi-
cally active compounds with anticancer, antimicrobial, and other biological activi-
ties. Some fungal genera such as Xylaria, Phomopsis, Eutypella, Phyllosticta, 
Trachelospereum, Artemisia, Tubercularia, Cladosporim, Furarium, Aspergillus, 
Cladosporium, Arthrinium, Penicillium, and Alternaria are known to produce ter-
penoids. Sequiterpenes, diterpenoids, and triterpenoids are the common terpe-
noids produced from endophytic fungi. Terpenoids participate in plant growth and 
development, and they are also involved in the defence mechanism against insects. 
The application of terpenoids in plant growth and development was investigated 
under greenhouse conditions using the terpenoid-producing endophytic fungus 
Rhizophagus intraradices. Test results showed that a plant treated with the endo-
phytic fungus exhibited an enhanced level of production of monoterpenes and 
sesquiterpenes, which were absent in the control plants. In the same experiment, 
beet armyworm larvae were allowed to consume the plants treated or not treated 
with terpenoid-producing endophytic fungi, and the fungal treated plants showed 
significantly less weight loss compared to uninoculated plants. Terpenoids pro-
duced by the fungal species were concluded to have a strong defense response 
against the beet armyworm (Mousa and Raizada 2013; Pandey et  al. 2016; 
Shrivastava et al. 2015; de Souza et al. 2011; Wu et al. 2016b; Yan et al. 2018; Yu 
et al. 2010).

Terpenoids, the largest class of secondary metabolites from fungal communities, 
are employed in the industrial sectors as flavouring agents and fragrances. As men-
tioned, most terpenoids are biologically active, with therapeutic potential against 
various human aliments (Singh and Sharma 2015). In recent years, metabolic path-
ways in the fungi have been altered by genetic engineering to produce significant 
amounts of terpenoids, enabling the industrial sectors to label the products derived 
or supplemented with fungal terpenoids as products from natural sources. The syn-
thesis of fungal terpenoid relies on the combination of gene discovery and meta-
bolic engineering that can facilitate higher production. Moreover, as mentioned 
terpenoids have the greater potential towards plant growth and enhance the defence 
mechanism against several phytopathogens. Investigations should focus on 
terpenoid- producing fungal species as biofertilizer to enhance crop productivity 
(Caputi and Aprea 2011).
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6.2.4  Flavonoids

Flavonoids are a large group of polyphenolic compounds with benzo-γ-pyrone 
structure and are widely produced by plants. Plants produce flavonoids through the 
phenyl propanoid pathway. Fungal communities present in the host plant promote 
the defence mechanism in the plants. The adoptive mechanism of the fungal species 
mimics the metabolic pathways of the plants and produces bioactive metabolites. 
Endophytes are a group of the fungal community that exhibit mutual relationship 
with the plants and harbour the similar metabolic pathways of the plants. According 
to the available reports, several species of endophytic fungi are known for the pro-
duction of flavonoids. Flavonoids produced from the microbial source possess sev-
eral pharmacological activities. Researchers reported various beneficial aspects of 
the flavonoids against different biologicals such as their application in infectious 
diseases, degenerative diseases, cardiovascular diseases, and cancer and 
(Jayaprakasha et al. 2005).

Alternaria alternata is an endophytic fungus that potentially synthesizes the fla-
vonoids with significant roles in the plant defence mechanism against phytopatho-
gens. Flavonoids are reported to participate in several plant metabolic pathways 
including cell signalling, plant growth, and reproduction. Certain flavone deriva-
tives possessing ortho-hydroxyl groups on the β-ring gained significant interest for 
their capacity to detoxify reactive oxygen species (ROS) and promote siderophore 
production; these specular behaviours aid in the plant defence mechanism (Garrido- 
Arandia et al. 2016). Interestingly, flavonoids are involved in the signalling mecha-
nism for plant–microbe interactions where they are important in regulating 
symbiosis in the pre-symbiotic phase. The role and effect of flavonoids vary in dif-
ferent stages of fungal development including pre-symbiotic, spore germination, 
hyphal length, and differentiation stages. To prove these mentioned properties of 
flavonoids, the effects of flavonoids with each developmental stage of the four tested 
fungal species Gigaspora rosea, Gigaspora margarita, Glomus mosseae, and 
Glomus intraradices (Rhizophagus irregularis) were investigated. Results showed 
that the effects of flavonoids differed among fungal species in the pre-symbiotic 
stage (Scervino et al. 2005).

Qiu and coworkers successfully isolated and identified two flavonoid-producing 
endophytic fungi from Ginkgo biloba L.  Herein, two fungal isolates, namely, 
Aspergillus nidulans and Aspergillus oryzae, were isolated from Ginkgo biloba 
L. Reporting of the production of flavonoids suggested that these two fungal isolates 
can be employed for the development of natural medicines and prodrugs (Qiu et al. 
2010). Some fungal genera including Alternaria, Fusarium, Schizophyllum, and 
Trametes are also known to produce flavonoids, which are involved in the protection 
of plants from UV radiation, pigment production, induce the synthesis of defence 
compounds against plant pathogens, and facilitate the signalling mechanisms 
involved in the symbiotic relationship between plant and fungal species (Hassan 
and Mathesius 2012; Li et al. 2015).
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6.2.5  Polyketides

A wide variety of biologically active natural compounds are produced from fungal 
species. Among the natural bioactive compounds, polyketides are secondary metab-
olites produced from fungi with structurally diverse groups. The biosynthetic pro-
cesses involved in the production of polyketides are highly programmed. The fungal 
polyketides are synthesized by type I polyketide synthases through a condensation 
reaction between acetyl-coenzyme A and malonyl-CoA.  Type I polyketide syn-
thases have a major role in the formation of the carbon skeleton of the polyketides, 
which are formed with single modular ornamentation with ketosynthase, acyl trans-
ferase, and acyl carrier protein domains (Fujii 2010). Polyketides are a widely used 
class of secondary metabolite of fungi as fungal polyketides have a broad spectrum 
of biological activity. For example, griseofulvin, penicillic acid, mycophenolic acid, 
strobilurins, lavastatin, and squalestatins are antifungal, a powerful antibiotic with 
toxic effect in clinical studies, immunosuppressive agents, and antifungal agents 
involved in the control of cholesterol level and heart-associated diseases and an 
effective inhibitor of squalene synthase, respectively (Kakule et  al. 2014). The 
polyketides are synthesized by the fungal genera Penicillium, Fusarium, and 
Alternaria. The polyketide lavastain is mostly produced by the fungal genera 
Monascus and Aspergillus (Daley et al. 2017).

Neofusicoccum parvum was investigated for the production of polyketides. Four 
naphthalenone polyketides were isolated from the fungal culture with significant 
biological activity (Burruano et  al. 2016). Wang and coworkers investigated the 
diversity of the culturable endophytic fungi from Dongxiang wild rice and detected 
β-ketasynthase in the gene clusters of polyketide synthase. Among the fungal iso-
lates, 13 fungal strains showed antagonistic activity against phytopathogens, and 9 
fungal strains had the polyketide synthase gene cluster in their genome, indicating 
their ability to synthesize polyketides (Wang et al. 2015). The structural complexity 
of polyketides, which possess multiple stereocenters and numerous oxygen- 
containing substituents, complicates their synthesis by a chemical route. This limita-
tion can be overcome by screening the microorganisms that produce novel polyketides 
by molecular tools. The metabolic pathways of these organisms can be genetically 
engineered to yield the polyketides in significant quantities (Bond et al. 2016).

6.2.6  Enzymes

Enzymes are the most explored and utilized metabolites from microbial sources as 
they are important in industries for processing the substrate and raw materials. 
Fungal enzymes function as bio-catalysts to enhancebio-processing reactions in an 
environmentally friendly and cost-effective manner, unlike chemical catalysts. The 
microbial enzymes showed several special characteristic features attractive to indus-
try for commercial application, including thermotolerance, thermophilic nature, 
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tolerance to wide range of pH, and stability of the enzyme activity over a broad 
range of temperature and other adverse conditions. These enzymes are potentially 
employed in different industrial sectors (Fig. 6.2) including food, leather, textiles, 
and animal feed, and in bioconversion and bioremediation (Nigam 2013). Most of 
the commercially employed enzymes are recovered from a fungal origin; among 
these, hydrolytic depolymerases are important. Such enzymes as protease, amy-
lases, cellulose, xylanase, lipase, and phytase are most commonly used for indus-
trial applications (Yadav et  al. 2016, 2017a, b). Aspergillus, Rhizopus, and 
Penicillium are utilised widely to isolate commercially important enzymes 
(McKelvey and Murphy 2011) (Table 6.2).

6.2.6.1  Proteases

Certain groups of fungi secrete the protease enzymes extracellularly to degrade 
available protein in the environment for their growth, especially saprophytic and 
pathogenic species (Yike 2011). The protease enzyme hydrolyses the peptide bonds 
of the proteins and converts them into small peptides and amino acids. Fungal pro-
teases have significant advantages in fermentation technology, unlike chemical 

Fig. 6.2 Schematic representation of application of fungal enzymes in agriculture, environment, 
and industry
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catalysts, which are expensive and have complex downstream processes 
(Chandrasekaran and Sathiyabama 2014; Souza et al. 2015). Two fungal species, 
Graphium putredinis and Trichoderma harzianum, showed higher production of 
protease enzyme in soya bean meal, and their application was investigated to pro-
mote the wash performance of detergents. The isolated protease was stable at a wide 
range of physiological conditions, exhibiting high stability and reactivity even after 
the addition of EDTA and sodium perborate. The products of protease are required 
in detergent-related industries to enhance the efficacy of detergent performance for 

Table 6.2 Some important industrial enzymes produced by fungi and their applications

Enzyme Fungi Applications References

Proteases Graphium putredinis, 
Trichoderma harzianum, 
Aspergillus flavus, Aspergillus 
niger, Aspergillus fumigatus, 
Penicillum sp.

Food, detergents, 
pharmaceuticals, leathers, 
textiles, cosmetics and 
paper industries

Savitha et al. 
(2011), 
Chandrasekaran 
et al. (2015)

Amylases Cylindrocephalum sp., Aspergillus 
sp., Emericella sp., Mucor sp., 
Mycosphaerella sp., Penicillium 
sp., Rhizopus sp.

Starch, paper, food, 
pharmaceutical industries

Sunitha et al. 
(2012), Saleem and 
Ebrahim (2014)

Cellulases Trichoderma sp., Penicillium sp., 
Botrytis sp., Aspergillus sp., 
Rhizopus sp., Fusarium sp.

Production of alcohol 
from celluloses

Imran et al. (2016)

Xylanases Trichoderma sp., Aspergillus sp., 
Fusarium sp., Pichia sp.

Biomass processing, 
paper and textile 
industries

Sakthiselvan et al. 
(2014)

Lipases Aspergillus sp., Mucor sp., 
Penicillium sp., Trichoderma sp., 
Colletotrichum sp.

Food, detergents, 
pharmaceuticals, leathers, 
textiles, cosmetics and 
paper industries

Geoffry and Achur 
(2018)

Laccase Aspergillus flavus, Coriolus 
versicolor, Streptomyces cyaneus, 
Phanerochaete chrysosporium, 
Schizophyllum commune, 
Pycnoporus cinnabarinus

Food processing industry, 
decolourization, 
detoxification, azo dyes, 
medical and health care

Pooja et al. (2016)

Nitrilases A. furmigatus, F. oxysporum, A. 
niger, F. solani

Carboxylic acids 
production, waste 
treatment and surface 
modification

Gong et al. (2012)

Hydrolase Geomyces sp., Glomerella sp., 
Pseudeurotium sp., Gnaphosa 
fallax

Food, detergents, 
pharmaceuticals, leathers, 
textiles, cosmetics and 
paper industries

Krishnan et al. 
(2016)

Pectinase Aspergillus sp., Rhizopus sp., 
Penicillium sp.

Food, pharmaceuticals, 
and cosmetics industries

Barman et al. 
(2014)

Phytases Aspergillus ficuum, A. oryzae, A. 
amstelodami, A. candidus, A. 
flavus, A. repens

Animal food industries Gupta et al. (2014)
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the effective removal of various stains (Savitha et  al. 2011). Similarly, work has 
been conducted on paddy soil for the isolation of filamentous fungi and investigat-
ing the production of protease enzyme. Culture conditions were optimized for the 
maximum production of the protease enzyme. The isolated fungi Aspergillus flavus, 
Aspergillus niger, Aspergillus fumigatus, and Penicillium sp. produced the protease 
enzyme (Chandrasekaran et al. 2015).

6.2.6.2  Amylases

Aamylases are utilized in the degradation of starch and have significant importance 
in industrial sectors with economic benefits. Different classes of amylases are 
α-amylase, β-amylase, and glucoamylases, where α-amylases are involved in 
breaking the 1,4-α-d-glycosidic linkage between adjacent glucose units in the lin-
ear amylase chain; β-amylase breaks down the nonreducing ends of amylose, amy-
lopectin, and glycogen molecules; and glucoamylase cleaves the single glucose 
units from the nonreducing ends of amylose and amylopectin (Singh et al. 2014). 
The fungal amylases have potential wide application in the food and pharmaceuti-
cal industries. Herein, a study has been conducted to isolate the amylase-producing 
fungus Cylindrocephalum sp. from the plant Alpinia calcarata. The fungal isolate 
showed maximum amylolytic activity under a wide range of physical and chemical 
conditions including pH, temperature, carbon, and nitrogen source (Sunitha et al. 
2012). Fungal genera such as Aspergillus, Emericella, Mucor, Mycosphaerella, 
Penicillium, and Rhizopus are utilized for the production of amylases (Saleem and 
Ebrahim 2014).

6.2.6.3  Cellulases

Cellulase are useful in such applications as the energy production, pulp, paper, tex-
tile, and animal feed industries. Cellulase is also used extensively in food industries 
such as bakeries and in the production of wine and fruit and vegetable juice (Yopi 
et al. 2017). Cellulose is the most abundant biopolymer available on Earth and its 
hydrolysis results in the production of sugars, sugar acids, and phenolic substances. 
Cellulosic substrates contribute to global energy, chemical, and material demands in 
a renewable and sustainable manner. Recent research reported that more than one 
fourth of the current use of petroleum products will be replaced by the fuels gener-
ated by biomass conversion with the help of the enzyme cellulase (Payne et  al. 
2015). Some fungal communities such as Trichoderma, Penicillium, Botrytis, 
Aspergillus, Rhizopus, and Fusarium are potential producers of cellulase enzyme 
(Imran et  al. 2016). A study to isolate the cellulase-producing filamentous fungi 
from soil samples and evaluate hydrolytic activities found that two filamentous 
fungi, namely, Trichoderma and Aspergillus, were isolated with significantly higher 
production of cellulase enzyme (Ja’afaru 2013).
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6.2.6.4  Xylanases

Xylanases have several industrial applications for the preparation of food, feed, 
pharmaceuticals, and also ingredients for the paper and pulp industries. Filamentous 
fungi have gained significant attention for the production of xylanases on an indus-
trial scale. Moreover, the enzyme xylanase produced by filamentous fugal commu-
nities was in significantly higher concentrations than other producers such as 
bacteria and yeast. Fungal genera such as Trichoderma, Aspergillus, and Fusarium 
are potential producers of xylanases (Sakthiselvan et  al. 2014),which recently 
attracted attention for biotechnological application in the production of xylitol and 
ethanol. Xylanases are used extensively to convert agricultural waste that contains 
cellulose and hemicellulose into sugars. Xylanases are also used in the textile indus-
try to process plant fibres (Liao et al. 2015).

6.2.6.5  Lipases

Lipases catalyse the hydrolysis of long-chain triglycerides to glycerol and free fatty 
acid. The special feature of lipase for chemical transformations has increased its 
demand in the food, detergent, chemical, and pharmaceutical industries. Soils con-
taminated with oils, vegetable oils, petroleum refinery waste, and dairy industry 
waste harbour lipase-producing microorganisms (Singh and Mukhopadhyay 2012). 
Aspergillus, Mucor, Penicillium, Trichoderma, and Colletotrichum are known for 
significant lipase production (Geoffry and Achur 2018). Griebeler and coworkers 
isolated the fungal genera Aspergillus and Penicillium from the soil to evaluate their 
production of lipase enzyme. Both these fungal genera are potential producers of 
lipase enzyme with different genetic identity (Griebeler et al. 2011). Fungal lipases 
have significant potential for use in industrial processes because of their stability in 
different adverse conditions of pH, temperature, and organic solvents (Pereira et al. 
2014).

6.3  Application of Fungi in Biofuel Production

Biofuels have gained considerable attention worldwide as renewable energy to 
replace petroleum products in the near future. Biofuel advantages include, as com-
pared to petrodiesel, reduced exhaust emission, greater cetane number, biodegrad-
ability, lack of sulfur, inherent lubricity, positive energy balance, and higher flash 
points, compatibility with existing fuel engines, renewability, and domestic origin 
(Tabatabaei et al. 2015). With currently available technology, the production of bio-
fuel encounters certain limitations in that most of the biofuel is produced using a 
feedstock as substrate. The common feedstocks used for biofuel production are 
edible oil crops such as rapeseed, palm, soybean, and sunflower. Hence, current 
research on biofuels is focused on technology to produce biofuel using cheaper and 
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nonedible substrates. Fungal cellulases are extensively studied for the hydrolysis of 
cellulose polymers to monomeric fermentable sugars to produce biofuels. Cellulases 
are in significant demand in commercial biofuel production industries (Srivastava 
et al. 2018). The filamentous fungus Mucor circinelloides was studied for the effi-
cient production of biofuel as it produces a higher amount of saponifiable matter 
and has a suitable fatty acid profile for the effective production of biofuel synthe-
sized by acid-catalysed transesterification of extracted microbial lipids and direct 
transformation of dry microbial biomass. This method showed higher biofuel pro-
duction with increased FAME yield, suggesting biodiesel production by direct 
transformation of fungal biomass without an intermediate lipid extraction step 
(Vicente et al. 2009). A similar study was conducted with the isolated filamentous 
fungus Aspergillus sp. employed as whole-cell biocatalyst for biofuel production 
using Sabourauds dextrose broth medium and corncob waste liquor. The growth 
medium enhanced biomass and lipid production with time. Furthermore, fungi cul-
tured in the medium with added substrate showed significant increase in biomass, 
lipid production, and substrate degradation. Biofuel produced by the fungal isolate 
was in compliance with biofuel standards. The biofuel obtained in this study is cost 
effective and can be an alternative to petroleum products in the future (Venkata 
Subhash and Venkata Mohan 2011).

6.4  Conclusion and Future Perspectives

The bioactive metabolites isolated from fungi have significant impact in the phar-
maceutical and biomedical sectors. However, more promising technologies are 
needed to exploit the fungal communities to produce novel bioactive compounds. 
Although several biologically active fungal metabolites have been identified and 
characterized, most of them have only been studied for a few biological activities. 
Furthermore, some of the fungi reported for the production of bioactive compounds 
failed to sporulate using non-culture techniques for these unculturable fungi. Recent 
advances in biotechnology made it possible by genetically engineering the bioactive 
metabolite-producing  fungi. So far the scientific community has focused on the 
discovery of novel biologically active compounds from culturable fungal communi-
ties. However, it is important to explore the non-culturable fungal communities 
using metagenomic approaches. Certain unknown mechanisms are acquired by 
fungi from their host to produce metabolites. Interestingly, some of the fungal spe-
cies are able to produce bioactive metabolites which are not produced by the native 
host. These exceptional behaviours of the fungi require investigation to understand 
the molecular mechanisms, involved in the production of bioactive compounds and 
to provide knowledge about host–microbe interaction.

The fungal communities are the potential source of several value-added com-
pounds. Currently, demand for natural products is rising dramatically as an alterna-
tive to developing chemically synthesized products. Hence, there is urgent need to 
investigate potential sources for the production of value-added compounds. Fungi 
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are one of the major sources or producers of value-added products in significant 
quantities. Several bioactive compounds from fungi are reported with desired phar-
maceutical applications including antimicrobial, antioxidant, antiinflammatory, and 
anticancer. Fungi also produce various insecticidal and nematicidal compounds for 
agricultural application. The bioactive compounds from fungal communities are not 
only used for human application but also aid plants and animals by promoting 
growth and development and providing protection from pathogens and invaders. 
Advances in science and technology have accelerated research on fungal communi-
ties as treasures of biologically active and novel value-added compounds.
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Chapter 7
Natural Product Synthesis by Fungi: 
Recent Trends and Future Prospects

Mohammadhassan Gholami-Shabani, Masoomeh Shams-Ghahfarokhi, 
and Mehdi Razzaghi-Abyaneh

7.1  Introduction

Natural products are normally resulting secondary metabolites or are produced from 
microorganisms, plants, or animals (Demain and Adrio 2008; Luckner 2013; 
Razzaghi-Abyaneh and Rai 2013; Seyedjavadi et  al. 2019), continuing to be an 
incredible resource for the discovery of new drugs (Li and Vederas 2009; Challinor 
and Bode 2015). Soil microbes remain the most popular sources of natural products 
for pharmaceutical investigation and development. However, it is becoming very 
hard to detect new microbial metabolites after more than 60 years of investigations 
focused on soil microbes, particularly members of the genus Streptomyces, from 
which many antibiotics and other bioactive secondary metabolites with unique 
pharmacophores have been discovered (Knight et al. 2003; Monciardini et al. 2014). 
To avoid rediscovery of known compounds from microbes, many approaches are 
employed to obtain high-quality isolates and novel microbes, with various studies 
focused on poorly investigated extreme biological habitats (Lam 2007). In the past 
20  years, investigations on secondary bioactive metabolites from fungi have 
advanced and various compounds with antimicrobial, insecticidal, cytotoxic, and 
anticancer and other activities were discovered from fungi. These compounds were 
structurally classified as alkaloids, lactones, phenols, quinines, terpenoids, steroids, 

M. Gholami-Shabani 
Department of Mycology, Pasteur Institute of Iran, Tehran, Iran 

Ministry of Industry, Mine and Trade of Iran, Tehran, Iran 

M. Shams-Ghahfarokhi 
Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University,  
Tehran, Iran 

M. Razzaghi-Abyaneh (*) 
Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
e-mail: mrab442@pasteur.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14846-1_7&domain=pdf
mailto:mrab442@pasteur.ac.ir


196

and lignans (Bano et al. 2016; Lobo et al. 2018). Therefore, natural products from 
fungi represent a diverse potential source of new products for medicine, agriculture, 
biotechnology, and nanotechnology (Aly et al. 2010; Abdelmohsen et al. 2017).

Fungi belong to a group of microbes known as microorganisms. A characteristic 
feature of many fungi is their ability to produce secondary metabolites or small 
molecule natural products. Microbial secondary metabolites include nearly 50,000 
known compounds with an extremely diverse array of chemical structures. Fungi, a 
large group of organisms with a wide variety of sizes and shapes (Gunatilaka and 
Wijeratne 2000), are everywhere in every environment of the world, growing in soil, 
acidic hot springs, radioactive wastes, water, and deep in the Earth’s crust, as well 
as in organic matter and the living tissues of most organisms including plants and 
animals (Rana et al. 2016, 2018; Saxena et al. 2016; Suman et al. 2016; Gunatilaka 
and Wijeratne 2000). Fungi are used in the manufacture of chemicals and also in the 
drug development industry. Fungi are eukaryotic organisms known to inhabit almost 
all the environmental niches of the world and have the capability to develop differ-
ent solid substrates as a consequence of their varied biological and biochemical 
evolution. The fungal kingdom contains some of the most important organisms, in 
both ecological and economic terms, including the well-known fungi such as mush-
rooms, rusts, smuts, puffballs, truffles, morels, molds, and yeasts. Fungi contribute 
to the nutrient cycle of ecosystems by breaking down dead organic matter 
(Gunatilaka and Wijeratne 2000; Schueffler and Anke 2014). Fungi are known to 
cause a number of plant and animal diseases. In humans, ringworm, athlete’s foot, 
and several other diseases are initiated by fungi. Various fungi are prolific sources 
of secondary metabolites. Soon after World War I, the British researcher, Harold 
Rainstrick, began the first systematic study of fungal metabolites. He and his team 
made seminal contributions to the recognition o f fungi as a major source of natural 
products.

More than 1,000,000 species of fungi are believed to exist all over the Earth, of 
which only approximately 70,000 species (less than 5%) have been discovered and 
reported so far (Schueffler and Anke 2014). The morphological forms range from 
microscopic unicellular yeasts to multicellular macroscopic fungi. The vegetative 
structure of most fungi contains thin-walled, branched, transparent, or unbranched 
hyphae. In many simple fungi (especially yeasts and chytrids), the vegetative struc-
ture consists of a single microscopic cell, ellipsoidal, spherical, irregular, or tubular 
in shape. However, the uniqueness of the fungi lies in (a) their capability to create a 
surprisingly large diversity of enzymes (conferring on them the ability to colonize 
and reduce a great variety of substrates), and (b) their potential to synthesize an 
amazing variety of metabolites with their biological activity. Moreover, the hyphae 
present a large surface area through which the fungi can interchange substances 
with the environment, absorbing vital materials required for growth and develop-
ment and excreting the waste products. Technology based on the degradative or 
synthetic activities of the fungi has become an integral part of human society and, 
hence, of our commercial setup as well. Current commercial products of the fungi 
include amino acids, antibiotics, alcoholic beverages (including distilled alcohol), 
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fuel (ethanol, biogas), biopesticides, mycoherbicides, bread, cheeses, fermented 
foods, foods (mushrooms, etc.), single-celled protein, flavours, food colourants, 
preservatives, soy sauce, vitamins, organic acids, and mycelial paper. Bioremediation, 
ensilage, biotransformation and many such processes involve the utilization of the 
fungi. In the emerging ‘age of biotechnology,’ the fungi are expected to provide a 
wider range of useful products and processes for human welfare under the banner of 
what is called fungal biotechnology. Applications of fungal activities already domi-
nate present-day biotechnology (Nisa et al. 2015; McKelvey and Murphy 2017).

In recent years, studies of fungal metabolites have experienced a tremendous 
increase in response to the need for compounds having biological activity with pos-
sible pharmaceutical and agricultural applications (Gunatilaka and Wijeratne 2000; 
Sexton and Howlett 2006). Antibiotic, antifungal, immunosuppressive, and 
cholesterol- lowering agents derived from fungi have been used in clinics during the 
past five decades, contributing significantly to the welfare of mankind and to the 
spectacular increase in life expectancy observed in the second half of the twentieth 
century. Soil-borne, parasitic, and saprophytic fungal sources are relatively well 
investigated for their secondary metabolites. However, interest in secondary metab-
olites of symbiotic fungi that live in association with terrestrial plants, lichens, 
marine organisms, and insects has recently intensified because natural substances 
produced by these fungi for their ecological interactions, especially with their hosts, 
are expected to exhibit biological activities (Gunatilaka and Wijeratne 2000; 
Coleman et al. 2011). Studies in mold biochemistry led to the recognition of other 
fungal products (galic acid, gluconic acid, itaconic acid, glycerol, enzymes, antibi-
otics) and industries based on these products followed. Figure 7.1 illustrates some 
important fungal metabolites and their biological effects. Fungi are also sources of 
commercial chemicals, such as citric and gluconic acids (Aspergillus niger), vita-
mins (riboflavin from Eremothecium ashbyii), polysaccharides (from Aureobasidium 
pullulans), and enzymes (rennin from Rhizomucor pusillus; lipase from Penicillium 
roquefortii; protease from Aspergillus oryzae; cellulase from Trichoderma viride). 
A wide variety of biochemical conversions and modifications of molecules such as 
sterols can also be processed by fungi (Roukas 2000; Pujari and Chandra 2000; 
Viniegra-González et al. 2003).

The discovery and development of penicillin in particular provided a great thrust 
to research activities concerning fungi, especially from an industrial point of view. 
Extensive details of these investigations are given by Campbell (1983), Ligon 
(2004), and Muñiz et al. (2007). Most of the world’s penicillin today is derived from 
Penicillium chrysogenum. Although hundreds of fungi have been found to show 
antibiotic activity, very few have found wider application, although cephalosporins 
(Cephalosporium acremonium) and griseofulvin (Penicillium patulum) are manu-
factured in large quantities. Medicinal fungi have been identified as remarkable 
therapeutic agents in traditional folk medicine and to be important as popular culi-
nary products the world over (Gargano et al. 2017). Species of medicinal mush-
rooms have a long history of use for disease treatment in folk medicine, especially 
in countries such as China, India, Japan, Mexico, and Korea (Yang and Jong 1989; 
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Park and Lee 1999; Guzmán 2008). Fungi have shown therapeutic action against the 
development of many diseases, primarily because they contain a number of 
 biologically active compounds (Valverde et al. 2015). Fungi are also used in cos-
metics because of their medicinal properties (Chaturvedi et  al. 2018). Moreover, 
they are used in agriculture, including mainly high molecular weight compounds 
such as polysaccharides, proteins, and lipids as well as a number of low molecular 
weight metabolites such as lectins, lactones, terpenoids, alkaloids, sterols, and phe-
nolic substances (Brakhage and Schroeckh 2011). Fungi provide a diversity of new 
secondary bioactive metabolites with unique structure, produced via different bio-
synthetic pathways (Fig. 7.2).

Fig. 7.1 Classification and biological activity of fungal natural products
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7.2  Benefits of Fungi

Fungi cycle nutrients in the environment, and some fungi (e.g., mushrooms) are 
edible. They also have pharmaceutical and industrial uses (Miles and Chang 2004; 
Kavanagh 2017).

Fungi feed on dead organic matter including leaf waste, wood, soil, dung, and 
dead animals. Fungi recover 85% of the carbon from dead organic substance and 

Fig. 7.2 Chemical structures of fungal natural products
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free the locked-up nutrients so they can be consumed by other organisms. This func-
tion makes fungi important for the continuing health of all environments, defined as 
a biological ecosystem made up of all the living organisms in a specific area with 
the nonliving parts with which they interact (Miles and Chang 2004; Kavanagh 
2017). A number of mushrooms such as Agaricus subrufescens, Ganoderma 
lucidum, and Cordyceps sinensis are employed in treatment as therapeutics in tradi-
tional Chinese prescriptions. A study published in the Journal of Natural Products 
found that fungi have unique compounds and nutrients that are impressive against 
viruses. For example, the shiitake fungus is a source of a medical drug named len-
tinan, which is approved for cancer treatments in Japan. The recognized antibiotic 
drug penicillin is taken from the fungus Penicillium. Pieces of fungus were found 
near the body of a Neolithic tourist in the Alps; it is theorized that he used a number 
of fungi as tinder, and other types possibly therapeutically (Kavanagh 2017).

A number of fungi are edible, such as oyster mushrooms, straw mushrooms, 
shiitakes, truffles, milk mushrooms, and black trumpets. Button and Portobello 
mushrooms are usually used in soups and salads. Mushrooms enhance the taste of 
any dish that they accompany. Mushrooms contain a wealth of vitamin D2, when 
shown in ultraviolet light. Investigations have indicated that an hour of ultraviolet 
light radiation just before the mushrooms are harvested increases their vitamin D2 
content (Bilbao-Sainz et al. 2017; Nölle et al. 2017). Fungi are also used to create 
industrial chemicals such as malic, citric, and lactic acids. They are also used in the 
manufacture of industrial enzymes such as amylase, cellulase, and lipase; lipase is 
exploited in laundry detergents. Fungi are also utilized as insect biocontrol agents. 
Insecticidal toxins manufactured by fungi can kill insects at a very low concentra-
tion (Sauer et al. 2008).

7.3  Fungal Enzyme Technology

Another aspect was added to fungal knowledge by the advent of enzyme technol-
ogy. Buchner and Rapp (1897), a German chemist, indicated that fermentation can 
happen not only in the existence of yeast cells but also in yeast extracts. This con-
cept was a turning idea in fungal technology because it substantiated the realization 
that involvement of the entire organism or cell is not absolutely required for a given 
bioprocess. As more and more living processes (alcoholic fermentation, lactic acid 
fermentation, respiration, etc.) were shown to be the effects of the progressive action 
of enzymes, attempts at production, isolation, purification, and commercial utiliza-
tion of enzymes began to gather momentum. The basics for intentional usage of 
fungal enzymes had already been laid down by Takamine (1914) with the manufac-
ture of an amylase preparation. A number of fungal enzymes are now manufactured 
on an industrial scale, including glucose aero-hydrogenase, proteases, pectinases, 
amylases, lipolases, and cellulases (Kües 2015; Laluce et al. 2018).

Fungal enzymes have established a niche of their own in several industrial pro-
cesses such as bread making, malting, whey processing, sucrose conversion, starch 
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conversion, fruit processing, and cheese making. These enzymes are also used as 
supplements for pancreatic lipase, and for producing soap, lactose-free foods, soft- 
centred confectionery, and so on. The development of enzyme immobilization tech-
niques helped overcome limitations in the use of enzymes (limited availability, 
instability, high costs). The first commercial application of immobilized enzyme 
technology was developed by Tanabe Seiyaku Co. of Japan in 1969 using immobi-
lized l-amino acylase from Aspergillus oryzae (Tanaka et al. 1992; Wingard et al. 
2014). Gholami-Shabani et  al. (2014, 2015, 2016) showed fungal enzymes were 
capable of producing gold and silver nanoparticles.

7.4  History of Fungi Applications in Medicine

A comprehensive account of the study of fungi in folklore and rituals, from prehis-
toric times to the present day, was given by Wasson (1968). The study of fungi in 
folklore, fiction, and rituals from prehistoric times to the modern era is called the 
science of ethnomycology (Singh and Aneja 2012). Throughout the history of man-
kind, fungi have been regarded with fear and fascination; sometimes revered, some-
times hated, but always considered mysterious. They have been a source of food 
since times of antiquity, and there are many recipes for cooking fungi in a book 
written by one Caelius Apicus in the third century A.D. (probably the oldest cookery 
book written in Europe). However, the artificial cultivation of mushrooms for food 
does not appear to have been practiced until the seventeenth century. The physician 
and poet Nicander, born about 150  A.D., wrote (Singh 1999; Macheleidt et  al. 
2016): The physician Galen expressed his view about fungi as follows: “Fungi after 
being eaten in large quantities yield cold, clammy, noxious juices as their nourish-
ing qualities; the Boleti are the most harmless and after them the Amanitae, as for 
the rest it is far safer to have nothing to do with them” (Singh 1999). Moreover, 
Dioscorides, the celebrated Greek writer on medicine, stated that even the good 
kinds “if partaken of too freely are injurious being indigestible causing stricture and 
cholera,” and he advised an emetic being taken after meals where they had been 
eaten (Singh 1999).

The word “fungus” may be derived from “fungus,” a corpse, and “ago,” I make. 
The best authenticated and ingenious case of fungal poisoning is that of the emperor 
Claudius who succeeded Caligula in A.D. 41. Emperor Claudius’ fourth wife 
Agrippina was determined that her son from a former marriage should succeed as 
emperor instead of the Emperor’s son Britannicus. She prepared a dish composed of 
Amanita of the Caesars steeped in juice extracted from the deadly Amanita phal-
loides. Claudius died of fungal poisoning and Nero succeeded him to the throne 
(Singh 1999).

The fungus Fomes officinalis was thought by Dioscorides (first century A.D.) to 
be a powerful drug that could relieve almost all complaints. He wrote, “Its proper-
ties are styptic and heat-producing, efficacious against colic and sores, fractured 
limbs and bruises from falls. It is given in liver complaints, asthma, jaundice, 
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 dysentery, kidney diseases and cases of hysteria. In cases of phthisis it is adminis-
tered in raisin wine, in affections of the spleen with honey and vinegar. By persons 
troubled with pains in the stomach and by those who suffer from acrid eructations 
the root is chewed and swallowed without any liquid.”

For many centuries fungi were regarded as the result of decomposition, not the 
cause. However, with the work of C.H. Pearsoon (1775–1835) and E. Fries (1794–
1878), a new era in our knowledge of fungi began (Singh 1999). The sudden appear-
ance of so-called fairy rings or the luminosity of certain wood-rotting fungi provided 
the early herbalists, naturalists, and poets with fascinating material with which to 
write interesting poems and fiction. The fungus Fomes fomentarius has been used as 
tinder, and its medicinal use in India was introduced by the Portuguese in Goa 
(Vaidya and Rabba 1993; Singh and Aneja 2012).

The Mexican Indians seem to regard hallucinogenic plants (and mushrooms) as 
mediators with God, not as a god themselves. However, the Nahuma Aztecs called 
the mushrooms teonanacatl, meaning ‘God’s flesh.’

In Vedic times, Soma was drunk by priests only (Wasson 1968; Singh 1999). 
Some of their hymns are of so exalted, even delirious, a tenor that the modern leader 
was led to exclaim: “This surely was composed under the influence of a divine ine-
briant.” It takes little perception to sense the difference in tone between awe-inspired 
hymns to Soma and the rowdy drinking songs of the West prompted by alcohol. “In 
a word, my belief is that Soma is the divine mushroom of immortality, and that in 
the early days of our culture, before we made use of reading and writing, when the 
Rig Veda was being composed, the prestige of this miraculous mushroom ran by 
word of mouth, far and wide throughout Eurasia, well behind the regions where it 
grew and was worshipped.”

The identity of Soma is Amanita muscaria (Fr. ex L.) Quel., in English, fly aga-
ric. The fly agaric has been the sacred element in the Shamanic rites of many tribes 
of Northern Siberia. Alcohol was introduced by Russians in the sixteenth and sev-
enteenth centuries, but fly agaric had been their precious possession long before 
then. Mushroom intoxication had a quite different effect from alcoholic drunken-
ness, as the former put the Kamchatka natives into a peaceful and gentle mood 
(Singh 1999).

According to Von Maydell (1861–1871) “the fungi produces only a feeling of 
great comfort, together with outward signs of happiness, satisfaction and well- 
being. Thus far the use of Fly Agaric has not been found to lead to any harmful 
results, such as impaired health or reduced mental powers” (Singh 1999).

7.4.1  Primary Fungal Metabolites

Fungi are quite versatile and can use a range of different sources of nutrients, which 
are assimilated into the primary metabolic pathways at different points. There are a 
number of commercially important primary metabolites, for example, citric acid, 
ethanol, enzymes, amino acids, and vitamins. Primary metabolites are formed 
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during the active growth of the fungus. The fungus will take from the natural envi-
ronment those nutrients which it can utilize as an energy source to produce materi-
als such as proteins, lipids, and nucleic acids for its continued growth and biomass 
production (Turner 1971; Walker and White 2017).

7.4.2  Secondary Fungal Metabolites

Some commercially important secondary products, including antibiotics (e.g., peni-
cillin from Penicillium chrysogenum, cephalosporin from Cephalosporium acremo-
nium, griseofulvin from Penicillium griseofulvum) and alkaloids (Claviceps spp.), 
are derived from fungi and used medicinally. Secondary metabolites are not essen-
tial for fungal growth but are produced naturally by many fungi. Many of the com-
pounds produced have antifungal and antibacterial activity (e.g., antibiotics, 
mycotoxins) and may therefore impart a competitive advantage, acting as weapons 
for survival. The compounds have antimicrobial activity to which producer organ-
isms may well be sensitive. Most fungi have mechanisms to prevent their own 
demise from the effects of the compounds they produce. In most cases the products 
are formed after active growth, and by that time the mycelium is able to detoxify the 
compound or prevent entry of the antibiotic through the cell wall by a change in the 
permeability of the plasma membrane (Macheleidt et al. 2016).

7.5  Fungal Discovery for Pharmaceutical Purposes

Mushrooms are an important group of nutraceuticals used for a great variety of 
purposes (Rathore et al. 2017). Besides their edibility, fungi have long been consid-
ered to have medicinal properties. Having a unique composition, fungi have had an 
important part in folk medicines as therapy for a variety of ailments. As part of the 
diet, they are excellent for sufferers of diabetes, obesity, hyperacidity, hyperten-
sion, atherosclerosis, high blood pressure, anaemia, and constipation. A large num-
ber of mushroom species including Ganoderma lucidum, Coriolus versicolor, 
Fomes fometarius, Tremella fociformis, and Lentinus edodes are traditionally used 
in Chinese folk medicine. Other mushrooms, including Agrocybe cylindracea, 
Tricholoma mongolicum, Inonotus obliquus, Pleurotus ostreatus, Collybia dryoph-
ila, Collybia radicata, Collybia peronata, Suillus bovinus, Coprinus plicatilis, 
Hypholoma fasciculare, Leucopaxillus giganteus, and Pholiotina appendiculata, 
are being explored extensively for their pharmaceutical utility. Scientists are now 
paying considerable attention to investigation of the medicinal utility of plants in 
general but to mushrooms in particular. A large number of bioactive substances 
from fungi which are effective against microbes (fungi, bacteria, viruses) have 
already been identified.
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7.6  Bioactive Natural Products of Fungal Origin

There is considerable interest in obtaining new products from natural ecosystems. 
In fungi, besides enzymes of biotechnological utility and other products including 
biocontrol agents, the metabolites of pharmaceutical utility are of great interest for 
counteracting common ailments. Table  7.1 summarizes Fungi and their natural 
products possessing biological activity. Besides antibiotics, a large number of sub-
stances known as host defense potentiators (HDPs), protein-bound polysaccharide, 
or polysaccharide–protein complexes (PSPCs) have been isolated from mushrooms 
(Subramanian 1995). Such bioactive mushroom metabolites are believed to be able 
to aid in the revitalization of our immune system against a large number of patho-
genic and nonpathogenic diseases. These metabolites are reported to act as biologi-
cal response modifiers with the capability to activate macrophages and T cells, and 
to produce cytokines, interleukins, and tumour necrosis factors. Some such reported 
bioactive substances from mushrooms are pleurotin, lepiochlorin, clavicin, sparas-
sol, triterpenes, ganoderols, armillarin, dictyophorin, cylindan, adenosine, etc. 
Applications of various bioactive metabolites derived from fungi are discussed next.

7.7  Application of Fungal Metabolites as Antimicrobials

Recently, among the microorganisms, fungi have been accepted as one of the best 
resources for new active bioactive compounds that are important defenses against a 
number of pathogenic bacteria and fungi (Deshmukh et al. 2017). Penicillin was the 
first and most important discovery, which proved to have an effective action against 
gram-positive bacteria (Hautbergue et al. 2018). The crude extract of Aspergillus 
ochraceus and Penicillium citrinum displayed extensive spectral antibacterial prop-
erties, inhibiting developing germs, specifically Pseudomonas aeruginosa. 
Hypericin (C30H16O8), a naphthodianthrone-derived compound, and emodin 
(C15H10O5), thought to be the main pioneer for the synthesis of hypericin, in a fun-
gus isolated from a pharmaceutical plant had antimicrobial activity against a num-
ber of bacteria and fungi, including Staphylococcus sp., Klebsiella pneumoniae, 
Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli, and the fungal 
organisms Aspergillus niger and Candida albicans (Ratnaweera et  al. 2015; 
Malhadas et al. 2017).

Nascimento et al. (2015) reported 156 fungal isolates distributed across 19 taxa 
obtained from 468 fragments of Calotropis procera leaves at different stages of 
maturation. The rate of fungus colonization increased with leaf age and develop-
ment. The dominant fungal species of C. procera reported in Northeast Brazil were 
different from those found in studies on similar species and other species of the 
similar genus in native areas. The main fungus was Phaeoramularia calotropidis 
(63%), followed by Guignardia bidwellii (21%). Seven isolates of fungi displayed 

M. Gholami-Shabani et al.



205

Table 7.1 General features of bioactive fungi and fungal natural products

Fungi and applications Products References

Antimicrobial activity

Fusarium sp. CR377, a pentaketide Brady and Clardy (2000)
Colletotrichum 
gloeosporioides

Colletotric acid Chapla et al. (2014)

Colletotrichum 
gloeosporioides

Secondary metabolites Zou et al. (2000)

Cytonaema sp. Cytonic acids A and B human 
cytomegalovirus protease inhibitors

Guo et al. (2000)

Gliocladium sp. Annulene Stinson et al. (2003)
Streptomyces munumbi Munumbicins A, B, C, D Castillo et al. (2002)
Cryptosporiopsis cf. 
quercina

Cryptocandin Strobel et al. (1999)

Xylaria sp. F0010 Griseofulvin Park et al. (2005)
Streptomyces sp. NRRL 
30566

Kakadumycins Castillo et al. (2003)

Cladosporium sp. Brefeldin A Wang et al. (2007)
Streptomyces sp. Coronamycin Ezra et al. (2004)
Pestalotiopsis microspora Torreyanic acid Strobel et al. (2002)
Phomopsis sp. Phomol Huang et al. (2008)
Periconia ericonia Pcriconicins A and B Kim et al. (2004)
Anticancer activity

Chaetomium globosum L18 Chaetoglobosin X Wang et al. (2012)
Dothiorella sp. Dothiorelone Du and Su (2014)
Epicoccum nigrum Epicocconigrone A El Amrani et al. (2013)
Periconia sp. F-31 Periconiasin A, B Zhang et al. (2013)
Diaporthe sp. Diaporine A Song et al. (2014)
Penicillium manginii YIM 
PH30375

Duclauxamide A1 Cao et al. (2015)

Penicillium chrysogenum 
QEN-24S

Penicitide A Gao et al. (2010)

Acremonium camptosporum Acremoxanthone E Meléndez-González 
et al. (2015)

Chaetomium globosum TY1 Chaetomugilide A, B, C Li et al. (2013)
Mycoleptodiscus sp. Mycoleptodiscin B Ortega et al. (2013)
Eurotium rubrum 12-Demethyl-12-oxo-eurotechinulin B Yan et al. (2012)
Aspergillus versicolor Aspergilline A, B, C Zhou et al. (2014)
Phomopsis glabrae PM181110 Verekar et al. (2014)
Pestalotiopsis foedan (4S, 8S, 4R, 8R)-Foedanolide Yang and Li (2013)
Myrothecium roridum Myrotheciumone A Lin et al. (2014)

(continued)
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antimicrobial activity against human and plant pathogens. The antibacterial action 
was indicated to be stronger than the antifungal activity.

Meng et  al. (2017) isolated fungi from fresh leaves of Dioscorea nipponica 
Makino to determine their antimicrobial activity. Antimicrobial activity from the 

Table 7.1 (continued)

Fungi and applications Products References

Phomopsis sp. (ZH76) 3-O-(6-O-α-l-Arabinopyranosyl)-β-d- 
glucopyranosyl-1,4 
dimethoxyxanthone

Huang et al. (2013)

Talaromyces flavus Talaperoxide B, D Li et al. (2011)
Alternaria sp. Alterporriol K, L Huang et al. (2011)
Phomopsis archeri Phomoarcherin B, C Hemtasin et al. (2011)
Penicillium brocae MA-231 Penicibrocazine A, B, E, F Meng et al. (2014)
Fusarium sp. 5-Hydroxyl dihydrofusarubin A, B Kornsakulkarn et al. 

(2011)
Anti-diabetic activity

Agaricus bisporus Dehydrated fruiting body extracts Jeong et al. (2010)
Agaricus campestris Aqueous fruiting body extract Gray and Flatt (1998)
Agaricus subrufescens (A. 
blazeimurril, A. brasiliensis)

β-Glucans and enzymatically produced 
oligosaccharides

Niwa et al. (2011)

Agaricus sylvaticus Aqueous fruiting body extract Costa-Fortes and 
Carvalho-Garbi-Novaes 
(2011)

Cerrena unicolor Extracellular polysaccharide Yamac et al. (2009)
Coprinus comatus 4,5-Dihydroxy-2- 

methoxybenzaldehyde (comatin)
Ding et al. (2010)

Cordyceps militaris Polysaccharide-enriched fraction of 
fruiting body

Zhang et al. (2006)

Cordyceps takaomantana 
(Paecilomyces tenuipes)

Fruiting body extract containing 
4-β-acetoxyscirpendiol (ASD)

Yoo and Lee (2006)

Ganoderm alucidum sensu 
lato

(3β, 24E)-Lanosta-7,9(11),24-trien- 
3,26-diol (ganoderol B)

Fatmawati et al. (2011)

Water extracts of polysaccharides from 
fruiting bodies

Jia et al. (2009)

Water extract of whole fruit body Seto et al. (2009)
Grifola frondosa Mushroom extracts rich in vanadium Cui et al. (2009)

Glycoprotein extract (SX-fraction) Preuss et al. (2007)
Hericium erinaceus Methanol extract of the mushroom Wang et al. (2005)
Inonotus obliquus Culture broth Sun et al. (2008)

Ethyl acetate fraction Xu et al. (2011)
Terpenoid and sterol compounds Lu et al. (2010)

Laetiporus sulphureus var. 
miniatus

Crude extracellular polysaccharides 
(EPS)

Hwang and Yun (2010)

Phellinus merrillii Ethanol extracts Huang et al. (2011)
Sparassis crispa Freeze-dried fruiting body samples Yamamoto and Kimura 

(2010)
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isolated fungus was detected using the filter paper method against Staphylococcus 
aureus, Staphylococcus albus, Staphylococcus citreus, Micrococcus tetragenus, 
Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, Bacterium termo, 
Bacillus endocarditis capsulatus, Shigella flexneri, and Bacterium paratyphosum 
B. The antibacterial activity of these fungi isolated from leaves of Dioscorea nip-
ponica Makino could be exploited for the development of new antibacterial biologi-
cal agents.

The fungi provide a wide diversity of antifungal metabolic compounds that have 
important actions against a number of pathogenic fungi. Altomare et al. (2000) iso-
lated two alpha pyrones, antifungal compounds named fusapyrone and deoxyfusa-
pyrone, from Fusarium semitectum with strong antifungal activity against a number 
of pathogenic or mycotoxogenic filamentous fungi such as Alternaria alternata, 
Aspergillus flavus, Botrytis cinerea, Cladosporium cucumerinum, Phoma tra-
cheiphila, and Penicillium verrucosum. Streptomyces sp. produces the bioactive 
compound polyenes which have broad-spectrum activity against Aspergillus sp., 
Candida sp., etc. (Hay 2003; Vicente et al. 2003). Amphotericin B, nystatin, and 
natamycin are the main polyenes used extensively for the cure of diseases such as 
coccidioidal meningitis, cutaneous dermatophytes, and histoplasmosis and in the 
treatment of mycotic disease (Gupte et al. 2002; Iznaga et al. 2004; Gohel et al. 
2006). Recently, Wu et  al. (2015) isolated the two new antifungal and cytotoxic 
components (4S,6S)-6-[(1S,2R)-1,2-dihydroxybutyl]-4-hydroxy-4- 
methoxytetrahydro-2H-pyran-2-one, (6S,2E)-6-hydroxy-3-methoxy-5-oxodec-2- 
enoic acid, and three other compounds, LL-P880, LL-P880, and 
ergosta-5,7,22-trien-3b-ol, from the secondary metabolites of Dendrobium offici-
nale. The results of the investigation indicated compounds one through four display 
prominent antifungal properties against the tested microbes Cryptococcus neofor-
mans, Candida albicans, Aspergillus fumigatus, and Trichophyton rubrum. Huang 
et al. (2001) screened fungi having antifungal activity that were isolated from the 
inner bark of three pharmaceutical plants, Taxus mairei, Cephalotaxus fortunei, and 
Torreya grandis, collected from Fujian Province, China. Antifungal activity was 
determined by observing fungal growth inhibition: 52.3% of fungi fermentation 
broths displayed growth inhibition on at least one pathogenic fungus, such as 
Neurospora sp., Trichoderma sp., or Fusarium sp. Among all fungi isolated, the 
genus Paecilomyces has the highest positive rate of antifungal activity.

Liu et al. (2010) isolated 262 strains of fungi from 23 evergreen plant species 
collected from Zijin Mountain in Nanjing, China. Of the fungi isolates, 203 were 
classified into 23 taxa in 19 genera on the basis of colony morphology and micro-
scopic observation of mycelia and asexual/sexual spores. The greatest richness was 
obtained from Cedrus deodara, whereas the highest diversity of identified species 
was isolated from Sabina procumbens. Some fungi appeared to be host specific, 
such as Botrytis ricini lt300, Geotrichum candidum lt274, and Lacellina graminic-
ola lt256, although other strains (e.g., Alternaria alternata lt222, Anthina sp. Lt147, 
Colletotrichum gloeosporioides lt305, Fusarium solani lt293) were commonly iso-
lated from a range of plants. The richness of the fungi recovered from plant branches 
was significantly higher than those from leaves. Moreover, about 70% of the 
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obtained fungi could produce antifungal metabolites against at least one plant 
pathogenic fungus. The EtOAc extracts of the seven species Anthina sp. lt147, 
Colletotrichum gloeosporioides lt305, Ectostroma sp. Lt144, Fusarium decemcel-
lulare lt183, Fusarium oxysporum lt173, Paraconiothyrium brasiliense lt161, and 
Colletotrichum montemartini lt198 showed broad inhibition against the growth of 
all six phytopathogens, with inhibition rates from 20% to 80%.

Bai et al. (2017) isolated 16 fungal strains from Erigeron canadensis, one of the 
traditional Chinese medicines used to treat pathogenic infection and dysentery, 
which were evaluated for their antifungal activities against one human pathogen, 
Candida albicans, and two phytopathogens, Colletotrichum fructicola and 
Rhizoctonia cerealis. The bioassay effects showed that the ethyl acetate extract of 
the fermentation broth of these fungi had stronger antimicrobial activity. Among 
these fungi strains, the ethyl acetate extracts of two strains, NPR003 and NPR005, 
displayed the strongest inhibitory special effects and has potential application in the 
detection of novel antifungal agents. Yu et al. (2018) isolated 81 fungi strains from 
different parts (leaves, bark, fruits) of Camellia oleifera from Hunan Province 
(China) to define their species conformation and potential as organic and biological 
control agents of C. oleifera anthracnose.

The fungi were recognized by morphological and phylogenetic examination. 
Fungal colonization rates of the leaves, barks, and fruit were 58%, 27%, and 14%, 
respectively. The isolates were recognized as 14 genera, belonging to two parts, 
Deuteromycotina and Ascomycotina; 88% of all isolates belonged to 
Deuteromycotina. The dominant fungal species, occurring with a high relative fre-
quency, were Pestalotiopsis sp. (14.81%), Penicillium sp. (14.81%), and Fusarium 
sp. (12.35%). The Simpson’s and Shannon’s variety indices exposed the highest 
species variety in the leaves, followed by the barks and fruits. The resemblance 
index for the leaves against barks comparison was the highest, signifying that the 
number of fungal species collected from leaves and bark was higher than that from 
fruits. Based on the effects of dual culture investigations, only five strains displayed 
antifungal activity against C. oleifera anthracnose disease, with isolate ty-64 
(Oidium sp.) producing the biggest inhibition zones. These results indicate that 
fungi could be a promising source for antifungal bioactive agents. Figure 7.3 shows 
the mechanisms of antimicrobial action by fungal natural compounds.

7.8  Application of Fungi as Antiviral Agents

In contrast to bacterial infectious diseases, viral diseases cannot be treated by com-
mon antibiotics and specific drugs are urgently needed. Antiviral effects are 
described not only for whole extracts of mushrooms but also for isolated com-
pounds. These effects could be caused directly by inhibition of viral enzymes, syn-
thesis of viral nucleic acids, or adsorption and uptake of viruses into mammalian 
cells. These direct antiviral effects are exhibited especially by smaller molecules. 
Indirect antiviral effects are the result of the immunostimulating activity of 
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polysaccharides or other complex molecules (Brandt and Piraino 2000; Piraino 
2006). In vitro antiviral activity against influenza viruses types A and B was demon-
strated for mycelial extracts of Kuehneromyces mutabilis (Mentel et  al. 1994), 
extracts and two isolated phenolic compounds from Inonotus hispidus (Awadh Ali 
et  al. 2003), and ergosterol peroxide, present in several mushrooms (Lindequist 
et al. 2005). The antiviral activity of Collybia maculata (vesicular stomatitis viruses 
in BHK cells) is caused by purine derivatives (Leonhardt et al. 1987).

Of the large variety of mushrooms tested against the poliomyelitis virus in mice, 
some of them, namely, Boletus frostii, Calvatia gigantea, Chlorophyllum molyb-
dites, Lepiota morgani, Russula emetica, Panaeolus subbalteatus, Armillaria mel-
lea, Coprinus micaceus, Agaricus campestris, and Agaricus placomyces have been 
reported to possess significant potential. In Calvatia gigantea, some high molecular 
weight derivatives are reported to be effective against poliomyelitis and influenza 
viruses (Miles and Chang 2004). Hobbs (2000) reported the interferon-inducing 
capability in a Lentinus edodes extract. In this fungus, eritadenine has been reported 
to be active against the influenza virus in mice. Kahlos (1996) reported that the 
black thin external surface of Inonotus obliquus strains (AlHINI, AlH3N2′ AlEquine 
2, BNamagata/16/18) grown in birch showed 100% inhibition against human 

Fig. 7.3 Mechanisms of antimicrobial action of fungal natural products
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 influenza viruses A and B and horse influenza virus A. The antiviral activity of this 
fungus is thought to be caused by betulin, lupeol, and mycosterols.

7.9  Application of Fungi as Anti-HIV Properties

Most antiretroviral drugs currently in use to treat an HIV infection are chemically 
synthesized and lead to the development of viral resistance, as well as cause severe 
toxicities. However, a largely unexplored source for HIV drug discovery is fungi 
that live in a symbiotic relationship with plants. These fungi produce biologically 
active secondary metabolites, which are natural products that are beneficial to the 
host (Wellensiek et al. 2013). The extract of Grifola frondosa has been shown to kill 
the AIDS virus and is reported to be capable of enhancing the activity of helper-T 
cells. The extract of this fungus is reported to be as effective against HIV as the 
widely used toxic drug azidothymidine (AZT) (Nanba et al. 2000). Lentinan from 
Lentinus edodes also possesses the ability to enhance host resistance to a variety of 
infections including HIV-l (Subramanian 1995). Walder et al. (1995) reported the 
strong anti-HIV-1 activity of aqueous extracts from Fomitella supina, Phellinus 
rhabarbarinus, Trichaptum perrottetii, and Trametes cubensis. The active principle 
is reported to have acted by the mechanism of direct virion inactivation and by inhi-
bition of syncytium formation. The unknown active components of these extracts 
individually or in combination may have therapeutic relevance. Collins and Ng 
(1997) isolated a polysaccharopeptide (PSP) from Coriolus versicolor that has 
potential for use against HIV-1 infection. It acts by inhibition of the interaction 
between HIV-l group 120 and the immobilised CD4 receptor (IC50 = 150 μg/ml), 
recombinant HIV-I reverse transcriptase (IC50  =  125 μg/ml), and glycohydrolase 
enzyme associated with viral glycosylation. Such properties, coupled with its high 
solubility in water, heat stability, and low cytotoxicity, make it a useful compound 
for controlling HIV infections.

Wellensiek et al. (2013) reported several hundred extracts from fungi of desert 
plants and evaluated the inhibitory effects on HIV-1 replication of those extracts that 
showed less than 30% cytotoxicity in T lymphocytes. Those extracts that inhibited 
viral replication were fractionated to isolate the compounds responsible for activity. 
Multiple rounds of fractionation and antiviral evaluation lead to the identification of 
four compounds, which almost completely impede HIV-1 replication. These studies 
demonstrate that metabolites from fungi of desert plants can serve as a viable source 
for identifying potent inhibitors of HIV-1 replication.

Zhao et al. (2014) reported a novel laccase was isolated and purified from fer-
mentation mycelia of mushroom Coprinus comatus with an isolation procedure 
including three ion-exchange chromatography steps on DEAE-cellulose, 
CM-cellulose, and Q-Sepharose, and one gel filtration step by fast protein liquid 
chromatography on Superdex 75. The purified enzyme was a monomeric protein 
with a molecular weight of 64 kDa that possessed a unique N-terminal amino acid 
sequence of AIGPVADLKV, which has considerable high sequence similarity with 
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that of other fungal laccases but is different from that of the C. comatus laccases 
reported. The enzyme manifested an optimal pH value of 2.0 and an optimal tem-
perature of 60  °C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) 
diammonium salt (ABTS) as the substrate. The laccase displayed, at pH 2.0 and 
37 °C, Km values of 1.59 mM towards ABTS. It potently suppressed proliferation of 
tumor cell lines HepG2 and MCF7 and inhibited human immunodeficiency virus 
type 1 (HIV-1) reverse transcriptase (RT) with an IC50 value of 3.46 μM, 4.95 μM, 
and 5.85 μM, respectively, signifying that it is an antipathogenic protein.

Pang et al. (2017) reported that 33 metabolites including 5 phenalenone deriva-
tives (1–5), 7 cytochalasins (6–12), 13 butenolides (13–25), and 8 phenyl deriva-
tives (26–33) were isolated from Aspergillus sp. CPCC 400735 cultured on rice. 
The plant diseases caused by fungi include rusts, leaf rot, and stem rots, which may 
cause severe damage to important crops of all compounds, as elucidated by nuclear 
magnetic resonance (NMR), mass spectroscopy (MS), and circular dichroism (CD) 
experiments, of which 1–5 (asperphenalenones A–E), 6 (aspochalasin R), and 13 
(aspulvinone R) were identified as new compounds. Specifically, asperphenale-
nones A–E (1–5) represent an unusual structure composed of a linear diterpene 
derivative linked to a phenalenone derivative via a C–C bond. Compounds 1, 4, 10, 
and 26 exhibited anti-HIV activity with IC50 values of 4.5, 2.4, 9.2, and 6.6 μM, 
respectively (lamivudine 0.1 μM; efavirenz, 0.4 × 10−3 μM).

7.10  Application of Fungi as Hypocholestrolemic 
and Hypolipidemic Agents

Some of the edible mushrooms, for example, Lentinus edodes, Agaricus bisporus, 
Pleurotus florida, P. ostreatus, and Auricularia auricula, are reported to possess the 
ability to lower blood cholesterol. Suzuki and Oshima (1976) reported the hypocho-
lestrolemic effects of shiitake in humans. Bhandari et  al. (1991) recommended 
Pleurotus florida as the potential source of active ingredients required for sufferers 
of high blood cholesterol. The hypolipidemic properties of shiitake are reported to 
result from eritadenine (= lentysine, lentinacin), 2(R),3(R)-dihydroxy-4-(9-adenyl)-
butyric acid (Okumura et al. 1974). In Auricularia polytricha, an anti-platelet sub-
stance (adenosine) has been reported to inhibit platelet aggregation (Markheja and 
Bailey 1981). Inclusion of dried Agaricus bisporus sporophores at a level of 5% or 
10% in the diet of rats has been reported to have resulted in the accumulation of 
lipids in the liver with simultaneous decrease in the circulatory lipids, except phos-
pholipids, in plasma. Bobek et al. (1995) reported the antioxidative effect of the 
oyster mushroom in hypercholesterolemic rats. Alam et al. (2011) reported that the 
Pleurotus salmoneostramineus diet supplement provided health benefits by acting 
on the atherogenic lipid profile in hypercholesterolemic rats. Yoon et  al. (2012), 
reported that feeding a diet containing a 5% powder of the fruiting bodies of P. sal-
moneostramineus in hypercholesterolemic rats reduced plasma total cholesterol, 
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triglyceride, low-density lipoprotein, total lipid, phospholipids, and LDL/HDL ratio 
by 22.55%, 51.38%, 69.23%, 29.67%, 16.61%, and 65.31%, respectively. The 
mushroom also significantly reduced body weight in hypercholesterolemic rats. 
Moreover, it had no adverse effects on plasma albumin, total bilirubin, direct biliru-
bin, creatinine, blood urea nitrogen, uric acid, glucose, total protein, calcium, 
sodium, potassium, chloride, inorganic phosphate, magnesium, and enzyme pro-
files. Feeding the mushroom increased total lipid and cholesterol excretion in feces. 
The plasma lipoprotein fraction, separated by agarose gel electrophoresis, indicated 
that P. salmoneostramineus significantly reduced plasma β and pre-β-lipoprotein, 
whereas it increased α-lipoprotein. A histological study of liver tissues by conven-
tional hematoxylin and eosin and oil red O staining showed normal tissue in 
mushroom- fed hypercholesterolemic rats. This study suggests that the P. salmoneo-
stramineus diet supplement provided health benefits by acting on the atherogenic 
lipid profile in the rats.

7.11  Application of Fungi as Anti-Diabetic Agents

Diabetes is a chronic disease causing severe health problems to millions worldwide 
and has become a significant ailment in many countries (Wild et al. 2004; WHO 
2011; Hagopian et al. 2011; Smith et al. 2012). According to the WHO (2011), dia-
betes mellitus accounts for 2.2% of deaths in the world and is one of the main causes 
of death among humans. The most recent data released by the Center for Disease 
Control and Prevention (CDC) reports that diabetes is the seventh leading cause of 
death in the United States; diabetes affects 25.8 million (8.3%) of the US population 
(CDC 2011). Medicinal fungi have been valued as a traditional source of natural 
bioactive metabolites over many centuries and have been targeted as potential anti- 
diabetic and hypoglycemic anti-diabetic agents. Bioactive metabolites including 
polysaccharides, proteins, dietary fibers, and many other biomolecules isolated 
from medicinal mushrooms and their cultured mycelia have been shown to be suc-
cessful in diabetes treatment as biological anti-hyperglycemic agents. The polysac-
charide (β-glucans) contained in fungi, in particular, can restore the functions of 
pancreatic tissues, causing an rise in insulin output via the functional β cells, thus 
lowering the blood glucose levels, and it has also been shown to improve the sensi-
tivity of peripheral cells to circulating insulin (Misra et al. 2009; Qiang et al. 2009; 
Xiao et al. 2011). Health-conscious diets can incorporate mushrooms as ideal low- 
energy foods for diabetes patients as they contain very low amounts of, or are lack-
ing, fats and cholesterol, are low in carbohydrates, and high in proteins, vitamins, 
and minerals (Mattila et al. 2002; Guillamón et al. 2010; Phillips et al. 2011a, b; 
Ulziijargal and Mau 2011; Smiderle et  al. 2012). Mushrooms are also known to 
contain certain compounds that aid in the proper functioning of the liver (Wani et al. 
2010), pancreas, and other endocrinal glands, thereby promoting the regulation of 
insulin and associated hormones to ensure healthy metabolic functioning (Wasser 
and Weiss 1999; Smiderle et  al. 2012). Most medicinal fungi such as Agaricus 
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subrufescens, A. bisporus, Cordyceps sinensis, Coprinus comatus, Ganoderma 
lucidum, Inonotus obliquus, Coprinus comatus, Phellinus linteus, Poria cocos, 
Pleurotus spp., and Sparassis crispa have been reported to have hypoglycemic 
effects on reducing blood glucose levels and anti-diabetic effects (Cha et al. 2006; 
Yang et al. 2008; Seto et al. 2009; Jeong et al. 2010; Kim et al. 2001a, b; Lu et al. 
2010; Yamamoto and Kimura 2010; Lee et al. 2010; Li et al. 2011a, b).

Edible mushrooms are known for their low calorific value (25–30 calories/1.00 g 
fresh weight) and low carbohydrate content in comparison to other food items (Saini 
and Atri 1999). For this reason they are considered excellent for diabetic patients. A 
freeze-dried powder containing mycelia of Ganoderma lucidum has been shown to 
lower blood sugar levels in experimental diabetic rats. Three hypoglycemic princi-
ples, namely, ganoderans A, B, and C, are reported to have been isolated from the 
fruit bodies of G. lucidum, and these have been characterized as peptidoglycans. Of 
these ganoderan-B is considered to be the most important insofar as anti-diabetic 
properties are concerned (Subramanian 1995).

7.12  Role of Fungi in Blood Building and Immunity

For centuries, fungi have been used as food and medicine in different cultures. More 
recently, various bioactive compounds have been isolated from diverse types of 
fungi. Among these, immunomodulators have attracted much attention based on the 
growing development of the immunotherapy sector. Fungi immunomodulators are 
categorized under four groups based on their chemical nature: lectins, terpenoids, 
polysaccharides, and proteins. These compounds are produced naturally via fungi 
cultivated in greenhouses. For effective industrial production, cultivation is carried 
out in submerged culture to increase bioactive compound yield, decrease production 
time, and reduce the cost of downstream processing (Lee et al. 2012; El Enshasy 
and Hatti-Kaul 2013).

Mushrooms contain vitamins of the B-complex (Crisan and Sands 1978). Folic 
acid, which is a blood-building vitamin, is good for persons suffering from anaemia. 
Ascorbic acid (vitamin C), present in edible mushrooms, increases resistance in the 
human body (Crisan and Sands 1978). Along with these, other vitamins (for exam-
ple, pantothenic acid and niacin) and minerals (calcium, phosphorus, potassium, 
copper, iron, etc.) add to the vitality and immunity of the body (Chang and Miles 
1989). Rowan et  al. (2003) reported a protein-bound polysaccharide (PSP) from 
Coriolus versicolor with immunopotentiating effects when administered at 2 g/kg/
day to rats. The active principle is reported to have restored the cyclophosphamide- 
induced immunosuppression such as depressed lymphocyte proliferation.

Agaricus blazei Murill (AbM) is an edible, medicinal mushroom of Brazilian 
origin. It is used traditionally against a range of diseases, including cancer and 
chronic hepatitis, and has been cultivated commercially for the health food market. 
AbM has recently been shown to have strong immunomodulating properties, which 
has led to increasing scientific interest (Hetland et al. 2008).
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7.13  Application of Fungi as Hepatoprotective Agents

Extracts of Ganoderma lucidum have been shown to be hepatoprotective. Apart 
from liver regeneration, beneficial effects in counteracting hepatic necrosis and 
hepatitis have been reported. Ganodosterone from G. lucidum is reported to be a 
liver protectant with the ability to stimulate liver function. Similarly, ganoderic 
acids T, S, and R from G. lucidum and triterpenoids from G. tsugae (lucidone-A, 
lucidenol, ganoderic-B, ganoderic acid C2) are reported to be hepatoprotective 
(Soares et al. 2013; Sharma and Annepu 2018). Wasser (2002) reported that poly-
saccharides from the mycelium of G. lucidum are promising agents for the inhibi-
tion of hepatic cirrhosis. They further suggested that these polysaccharides could be 
promising anti-fibrotic agents because of their capability to lower the collagen con-
tent, serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline 
phosphatase (ALP), and total bilirubin in the liver.

7.14  Application of Fungi as Anticoagulant 
and Antithrombic Agents

An antiplatelet substance (adenosine) from Auricularia polytricha is known to 
inhibit platelet aggregation (atherosclerosis) and prolong bleeding time. The inges-
tion of this fungus as food is reported to reduce the chances of heart attack (Jacob 
et al. 1980). Auricularia is said to have been used in folk medicine in Hong Kong to 
thin the blood and reduce clotting problems in postpartum women (James et  al. 
1987). The oral administration of a fructo-oligosaccharide mixture from Lentinus 
edodes (SK-204) to rats for 10 weeks is reported to have antithrombic action (Otsuka 
et al. 1996) by the promotion of fibrinolysis and thrombolysis. Román et al. (2017) 
reported a fucogalactan from Agaricus bisporus that was sulfated by two method-
ologies based on an optimized sulfation method. The direct action of chlorosulfonic 
acid and SO3-pyridine complex during the sulfation reaction and its effects on anti-
coagulant activity were evaluated. Chemical sulfations produced two sulfated fuco-
galactans, E100 and ESL, respectively. Clotting assays (APTT, PT, TT) showed that 
both sulfated polysaccharides have anticoagulant activity, and that ESL was more 
potent compared to E100. The FXa (factor Xa), T, and FXIIa (factor XIIa) activities 
in the presence of the sulfated polysaccharides were determined. The better antico-
agulant activity of ESL could be related to anti-FXIIa activity and also probably to 
its higher bioavailability. The HPSEC analysis showed similar MW of 
1.08 × 104 g mol−1 and 1.00 × 104 g mol−1 for E100 and ESL, respectively. NMR 
and methylation analyses indicated a heterogeneous sulfation pattern for E100, 
whereas ESL showed conserved unsulfated (1 → 6)-linked α-d-Galp residues in the 
main chain and a more homogeneous sulfation pattern. The DS values of ESL and 
E100 were 1.0 and 2.8, respectively, indicating that the sulfation pattern is more 
important for the anticoagulant activity than the amount of sulfate.
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7.15  Application of Fungi as Insecticidal Agents

Fungal entomopathogens are important biological control agents worldwide (Vega 
et al. 2012). Natural infections by fungi have a major role in the control of many 
economic insect pests. Occasionally, the resultant disease reaches epizootic levels, 
causing a complete collapse of the pest population. Figure 7.4 illustrates schematic 
mechanisms of action of fungal metabolites against insects. Biological pesticides 
are often touted as being safer and more sustainable than their chemical counter-
parts. Specific species of fungi can function as parasites of insects. Fungal patho-
gens naturally attack many insect species, and in some respects they are well suited 
to development as biopesticides. When a fungus is used as an insecticide, it is named 
a “mycoinsecticide” (Ortiz-Urquiza et  al. 2015). Fungi can be mass produced 
in vitro, then stored for long periods, and their spores applied with conventional 
spray equipment. In contrast to viruses and bacteria, which must be ingested to 
infect insects, they infect simply through external contact. Also, compared with 

Fig. 7.4 Mode of insecticidal action of fungal natural products
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most chemical insecticides, fungi are less toxic to mammals and have negligible 
environmental impacts (Thomas and Read 2007).

Fungal-based biopesticides act on a higher level. Numerous biopesticides con-
tain parasitic fungi, the kind that grow inside an insect body and feed on its internal 
tissue until it dies (sometimes beyond that), which is particularly helpful when com-
pared with artificial pesticides, which often contain toxic chemicals such as chlo-
rine, arsenic, formaldehyde, and ammonia. Fungi, on the other hand, are alive, and 
they could evolve along with the insects that they are being used to control, which 
means pesticide resistance may become less of an issue. Some synthetic pesticides 
have been shown to have harmful effects on the environment and human health. One 
family of pesticides, the neonicotinoids, is being blamed for the decline in bee pop-
ulations during the past decade. In recent years, crop protection has been trending 
towards integrated pest management (IPM) by microorganisms, fungi, and bacteria 
as insecticides. Approximately 1000 species of fungi are pathogenic to insects 
(Purwar and Sachan 2006) but only a limited number have been utilized for use as 
insecticides. Some species of fungi used as insecticides are Beauveria spp., 
Metarhizium spp., Trichoderma, Isaria spp., Lecanicillium spp., and Purpureocillium 
spp. Beauveria bassiana effectively targets the pecan weevil, Colorado potato bee-
tle, and kudzu bug, among other pests. The fungus Metarhizium (the green muscar-
dine fungus) is often used in the field, protecting crops from beetle grubs, wireworm, 
corn root worms, and countless other insects. One variant is currently being used to 
progress biopesticides including a line using a mycopesticide that can cause a mush-
room to develop from the dead body of a pestto distribute spores that warn other 
insects. The fungi then burrow into the bugs using their hyphae. The hyphae spread 
the insectotoxins throughout the insect to activate them, eventually leading to the 
insect’s death (Vega 2018).

7.16  Other Applications of Fungal Natural Products

In addition to the foregoing applications, fungi are finding an increasing role in vari-
ous other areas in therapeutics and investigation. Coatney et al. (1953) described 
terpenoids of Clitocybe illudens to be effective against Plasmodium gallinaceum. 
Researchers reported insecticidal properties of an amino acid derivative, tricholo-
mic acid, from Tricholoma muscarium. Aqueous extracts of Pleurotus sajor-caju 
have been reported to reduce the rates of nephron deterioration in persons suffering 
from renal failure (Saini and Atri 2012). Grifola frondosa has been reported to be 
beneficial for lowering blood pressure, diabetes, and constipation. Another fungus, 
Fomes officinalis, has been listed as a universal remedy for a variety of ailments. 
The spores and capillitia of Lycoperdon are known for use in stopping bleeding 
from wounds (Saini and Atri 2012). Singh et al. (2014) isolated a hypotensive and 
vasorelaxing lectin from Tricholoma mongolicum.

This lectin, on administration to rats at a dose of 10 mg/kg body weight, reduced 
arterial blood pressure. The hypotensive activity of lectins is reported to be  mediated 

M. Gholami-Shabani et al.



217

through vasorelaxation via adenosine A2 receptors or nitric oxide production. 
Inonotus hispidus, which produces styrylpyrones (hispidin) and derivatives of caf-
feic acid (hispolon) as pigments, has been suggested as a valuable source of new 
drugs (Lee and Yun 2011). Two novel eudesmane-type sesquiterpenes, dictyopho-
rines A and B and a known compound teucrenone isolated from Dictyophora indu-
siata, have been reported to promote nerve growth fraction (Saini and Atri 1999). 
Eleven species of bracket mushrooms belonging to the genus Phellinus (P. badius, 
P. chinchonensis, P. durrissimus, P. gilvus, P. linteus, P. merrilli, P. pachyphloes, P. 
pectinatus, P. robiniae, P. senex, P. sublinteus) and two species of Ganoderma (G. 
applanatum and G. lucidum) are reported to be in extensive use as Phanasomba or 
Phanas alombe by the Ayurvedic Vedas. A paste prepared from these is applied to 
the gums to stop excessive salivation and has been reported to act as a good styptic 
(Vaidya and Lamrood 2000).

7.17  Conclusion and Future Prospects

Economically natural products and their associated compounds account for an 
important portion of worldwide business. Recent progress in genetics and molecular 
biology and applications to bio-combinatorial artificial/natural products will pro-
duce unprecedented novel natural products. Different isolation and detection tech-
nologies will accelerate the discovery of drugs from fungal metabolites. With the 
help of these novel methods, natural products will be even more important as a 
source variety for the pharmaceutical and agricultural industries. Fungi are worthy 
and reliable sources of new natural compounds with a high level of biodiversity and 
can also produce numerous compounds with pharmaceutical impact, which is cur-
rently attracting scientific research worldwide. Secondary metabolites produced by 
fungi can be applied as substitutes and sustainable sources of these compounds. 
However, the commercial implication of manufacture of desirable metabolite com-
pounds by fungi remains a future goal. A deeper understanding of fungi at the 
molecular and genetic levels, of biogenetic gene cluster regulation, and of the effects 
of environmental changes and culture conditions on gene expression, will be useful 
for optimizing secondary metabolite manufacturing by fungi under laboratory con-
ditions. Further research at an advanced molecular level may suggestion better 
insights into fungal biodiversity and the regulation of fungal secondary 
metabolism.
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Chapter 8
Fungal-Derived Natural Product: 
Synthesis, Function, and Applications

Amit Kumar Singh, Harvesh Kumar Rana, and Abhay K. Pandey

8.1  Introduction

Fungi are a group of eukaryotic organisms that neither belong to plant nor animal 
kingdom and obtain their nutrition by absorbing and decaying organic matter. 
Kingdom Fungi includes highly diverse organism, of which very less has been 
described at scientific level (Bass and Richards 2011). They are present in almost 
every ecological niche, making them the second largest kingdom after bacteria. It 
has been reported that earth is approximately estimated to have 1.5 million species 
of fungi and only 10% of it is known to scientific community (Hibbett et al. 2007; 
Stajich et al. 2010). Structural diversity of fungus ranges from unicellular yeast to 
multicellular higher fungi like molds and mushroom. A characteristic feature of all 
the fungi is the presence of chitin in their cell wall; like animals they are also het-
erotrophs, cannot synthesize their own food, and acquire their food by absorption 
through hyphae by secreting digestive enzymes (Blackwell 2011). Since the discov-
ery and evaluation of penicillin, an antibiotic of fungal origin, researchers around 
the globe have been searching for fungal-derived natural bioactive products having 
nutritional and pharmaceutical properties. Fungi are vast and yet untapped sources 
for pharmaceutically important product having activities such as anticancerous, 
antioxidant, hepatoprotective, antibacterial, antidiabetic, etc. In addition to their 
pharmaceutical properties, higher fungi such as mushroom are being analyzed for 
their nutritional attributes like low fat and high protein, fiber, and vitamin content 
(Cheung 2010). Fungal classification provides important information related to 
their evolution and systematics. Fungal kingdom is classified into Chytridiomycota, 
Zygomycota, Ascomycota, and Basidiomycota. Figure 8.1 shows phylogenetic rela-
tionships of major groups in the kingdom Fungi.
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Ascomycota, also known as sac fungi, a phylum of kingdom Fungi contains a 
saclike structure, the ascus, which contains four to eight ascospores in the sexual 
stage. Ascomycetes reproduce through formation of conidia, a non-motile structure. 
Ascomycota is the largest phylum of kingdom Fungi and reported to have more than 
60% of the total described species: some of them are pathogenic to the plant, ani-
mal, and humans, for example, Candida albicans, Nematospora, and Cryptococcus 
neoformans (Ma et al. 2013; Gauthier and Keller 2013); some industrially important 
fungi, for example, Aspergillus, Fusarium, and Trichoderma (Punt et  al. 2002; 
Dufossé et al. 2014; Van Den Berg et al. 2010 and Archer 2000); and several others 
industrially important secondary metabolites producing strains (Rana et al. 2018a, 
b; Yadav et  al. 2017; Evidente et  al. 2014; Bräse et  al. 2009; Bladt et  al. 2013). 
Basidiomycota commonly known as club fungi are the most advanced and charac-
terized phylum including mushroom-forming fungi. They include around 30% of 
the reported fungal species. Sexual reproduction unlike ascomycetes does not 
involve sexual organ; instead plasmogamy occurs. Basidiomycetes are the best 
wood decomposers, and they also show symbiotic relationship with plants (e.g., 
mycorrhizal fungi) (Morel et al. 2013). Chytridiomycota, earlier known as chytrids, 
are the division of zoosporic organism in kingdom Fungi. Their reproduction takes 
place by means of zoospores. Chytrids are saprobic and sometime act as parasites. 
Zygomycetes are mostly terrestrial in habitat and absorb nutrients from soil, decay-
ing plant, or animal material. About 1050 zygomycetes are reported, and they repro-
duce by means of zygospore formation (Plett and Martin 2011).

8.2  Fungi as Sources of Natural Products

Fungi produce a variety of natural products, including all important categories of 
natural products, i.e., terpenes, alkaloids, sesquiterpenoids, and sugars (Table 8.1), 
and among them antimicrobial natural products are of particular interest due to 
reduced effectiveness of available antibiotics toward bacterial infection, a serious 
threat to worldwide health security (Aiken et al. 2014). Several fungal secondary 
metabolites are of human welfare; the β-lactam antibiotics are one of the most 
widely used antibiotics in the world (Suman et  al. 2016; Yadav et  al. 2018; 
Hoffmeister and Keller 2007; Hamad 2010). Despite the fact that very few fungal 
species have been examined for their secondary metabolite production, many 
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Fig. 8.1 Phylogenetic relationships of major groups in the kingdom Fungi
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remarkable lead structures have been identified for the production of pharmaceuti-
cally and agriculturally important agent of fungal origin. Studies reported that 
approximately 40 drugs available in Australian domestic market are of fungal ori-
gin. However, among these 40 drugs, many are penicillin derivatives, which revolu-
tionized the treatment of microbial diseases (Beekman and Barrow 2014). In 
addition to pharmaceutical utility, fungi are very useful in producing crop protecting 
agents such as strobilurin origin fungicides, which constitute a large part of crop 
protecting agents sold worldwide (Henningsen 2003). Taking into consideration 
that very few fungal species have been explored for potential secondary metabolite 
production, numerous fungal species are untapped sources of natural products with 
potential bioactivity for the development of pharmaceutical and crop protecting 
agents.

Some fungal secondary metabolites are having cholesterol lowering property 
like statin. They act either through selective inhibition of enzyme squalene synthase 
or by hampering the activity of HMG-CoA reductase, an enzyme that catalyzes the 
rate-limiting step of cholesterol biosynthesis (Istvan and Deisenhofer 2001), for 
example, meavstatin produced from Penicillium citrinum and lovastatin of 
Aspergillus terreus origin (Manzoni and Rollini 2002). Cyclosporin, a  non- ribosomal 

Table 8.1 Some important examples of secondary metabolites produced by fungi (Jiang and 
Zhiqiang 2000)

Source organism
Secondary 
metabolite Other industrial products

Penicillium sp. Penicillin Penicillin, the most widely used antimicrobials agent
Cephalosporium 
acremonium

Cephalosporin C Cephalosporin, antibacterial agents

Aspergillus sp. Mevinolin Lovastatin, simivastatin, Lipitor, and other HMG-CoA 
enzyme inhibitors

Tolypocladium 
niveum

Cyclosporine Cyclosporine A, immunosuppressant

Penicillium sp. Mycophenolic 
acid

Immunosuppressant

Penicilllium 
griseofulvum

Griseofulvin Antifungal agent

Strobilurus 
tenacellus

Strobilurins Agricultural fungicides

Fusidium coccineum Fusidic acid Antibacterial agent
Claviceps purpurea Ergot alkaloids Ergotamine used for migraine and Ergonovine for 

obstetric treatment
Fusarium 
graminearum

Zearalenone Growth promoter in cattle

Canddida galbrata Echinocandin Antifungal drug, inhibits the synthesis of glucan in the 
cell wall via noncompetitive inhibition of the enzyme 
1,3-β glucan synthase

Fusarium 
moniliform

Gibberellins Gibberellins, plant growth hormone
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peptide, isolated from Tolypocladium niveum has immunomodulatory property and 
is widely being used in transplant surgery to avoid organ failure (Weber et al. 1994). 
Fingolimod, a derivative of myriocin, shows activity against multiple sclerosis 
(Cohen et al. 2010). In some cases, fungal secondary metabolites are not used in 
their natural form but are subjected to derivatization to produce synthetic derivatives 
having enormous diversity. Alternatively, these metabolites may also serve as a 
model for the development of completely synthetic derivatives, for example, strobi-
lurin A, polyketide isolated from the Strobilurus tenacellus (Anke et  al. 1977), 
which inspired the discovery and exploitation of β-methoxy-acrylic acid, forming 
the basis of the strobilurin fungicides (Fig. 8.2). This class of antifungals includes 
one of the world’s most sold fungicides, azoxystrobin (Bartlett et al. 2002).

8.3  Synthesis of Fungal Natural Products

The kingdom Fungi produces a vast variety of secondary metabolites including all 
important classes: terpenes, alkaloids, polyketides, and sugars. Some of the reported 
synthesis strategies are discussed in the following.

Fig. 8.2 Structure of some fungal-derived secondary metabolite
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8.3.1  Terpenes

The fungal communities are still a largely unexplored territory for discovering 
newer secondary metabolites and their biosynthetic pathways, together with 
isoprenoid- derived secondary metabolites. Particularly this is true for basidiomyce-
tes; they are very difficult to grow under laboratory conditions, and excluding some 
species they are not amenable to genetic manipulation. Yet with these drawbacks, 
mushrooms are being used in traditional medicine since ages and reported to have a 
variety of bioactive metabolites having antimicrobial, cytotoxic, and anticancer 
compound (Singh et al. 2018; Zjawiony 2004). The chemical class of terpenes is 
prevalent in fungi. Numerous compounds of class terpenes have been isolated and 
identified and are of great scientific interests because of their biochemical 
properties.

All terpenes and terpenoids of fungal origin are derived from five-carbon inter-
mediate isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), 
synthesized from acetyl coenzyme A (CoA) through mevalonate pathway. Further it 
is followed by a head to tail condensation of IPP units to DMAPP to give isoprenyl 
diphosphates (10C-geranyl pyrophosphate, 15C-farnesyl pyrophosphate, or 
20C-geranylgeranyl pyrophosphate); this reaction is catalyzed by isoprenyldiphos-
phate synthases. However, longer chains (C30, C40) are synthesized by head to tail 
condensation of two farnesyl pyrophosphate or two geranyl-geranyl pyrophosphate, 
and the reaction is catalyzed by squalene synthase and phytoene synthase, respec-
tively (Lindequist et al. 2005; Xu et al. 2010). These linear compounds are sub-
strates of many different enzymes that either transfer the prenyl residue to another 
molecule, mostly aromatic compounds, or initiate the cyclization of prenyl chain 
giving rise to tens of thousands of different isoprenoid derived secondary metabo-
lites. There are several classes of prenyl transferases and cyclases in fungi related to 
production of different natural products. Paxiline indolediterpene biosynthetic path-
way requires two types of prenyl transferases for prenylation reaction (Zhong and 
Xiao 2009; Alves et al. 2012). Terpenoids of different classes can be distinguished 
on the basis of scaffolds, either derived solely from IPP units or from mixed origin. 
Farmer group is divided into mono-, di-, sesqui-, or triterpenoids containing 2–6 IPP 
units; this group is also characterized by the presence of carotenoids and some rare 
sesquiterpenoids, and the latter group includes prenylated aromatic secondary 
metabolites (Abraham 2001; Elisashvili 2012; Wasser 2011).

8.3.2  Sesquiterpenoids

Sesquiterpenoids are 15-carbon-length structurally diverse natural compounds iso-
lated from plant, fungi, and bacteria. They are synthesized from farnesyl pyrophos-
phate catalyzed by enzyme sesquiterpene synthase (Christianson 2008). The enzyme 
sesquiterpene synthases has a conserved active site structure, aspartate rich motifs 
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coordinated by Mg2+ cluster and the enzyme bind to the pyrophosphate group of 
farnesyl via Mg2+ cluster and after binding to the pyrophosphate group the orienta-
tion of prenyl chain changes towards hydrophobic cavity of the enzyme. This orien-
tation results in conformational changes and causes active site closure followed by 
concomitant cleavage of pyrophosphate to give rise to transoid allylic carbocation 
(Davis and Croteau 2000; Cane and Kang 2000; Christianson 2006 and Vedula et al. 
2008). This carbocation gets transferred to isoprenyl chain and is ultimately 
quenched by proton abstraction or by water molecule. Folding of isoprenyl chain is 
determined by binding pocket of enzyme, thereby defining the product profile of a 
particular sesquiterpene synthase. Enzymes catalyze different initial cyclization 
reactions to produce cyclic carbocation intermediates, for example, trans-humulyl-
carbocation, which is a 1, 11-cyclization product. Secondary carbocation produced 
can undergo additional cyclization and rearrangement until quenching in the active 
site occurs (Lesburg et al. 1998).

Filamentous fungi, for example, Aspergillus, Penicillium, and Fusarium sp., pro-
duce mycotoxins which impose severe health risks on humans and animals. Several 
well-characterized mycotoxins are sesquiterpenoids like chemical structures and 
play an important role in determining fungal virulence. PR toxin, phomenone, and 
PR toxins are produced by Aspergillus and Penicillium strains. Several studies have 
been done to elucidate the biosynthetic mechanism of mycotoxins (Cane and Kang 
2000). However, the detailed knowledge about the biosynthetic pathway of myco-
toxins were elucidated in blue cheese mold P. roqueforti by screening a genomic 
phage library and found that a gene cluster is involved in encoding PR toxin (Hidalgo 
et al. 2014). Table 8.2 lists the common sesquiterpenoids of fungal origin and their 
synthesis strategies.

8.3.3  Diterpenoids

Diterpenoids are of 20C chain length and generated from cyclization of geranyl-
geranyl diphosphate by either one- or two-step separate cyclase activities. 
Diterpenoids which are cyclized by one-step cyclase require class I diterpene syn-
thase which catalyzes ionization-dependent diphosphate cleavage followed by car-
bocation displacement and quenching like sesquiterpene synthases. Conserved 
aspartate-rich motifs in these enzymes likewise facilitate Mg-ion mediated binding 
of the diphosphate group. However, in two-step diterpenoids synthesis two separate 
enzymes are involved. First, a class II-type protonation driven reaction mechanism 
to give rise carbocation at the terminal C14-C15 double bond of the prenyl diphos-
phate chain that is cyclized into a bicyclic diphosphate characteristic of labdane- 
related Diterpenoids (Peters 2010). Second, a class I ionization-driven cleavage of 
the diphosphate group is followed by carbocation-triggered cyclization to yield the 
final cyclic scaffold. Fungi have a large bifunctional enzyme having both class I and 
class II activities. Class I (α-domain) terpenoid synthases present at the N-terminal 
region, while C-terminal region has α-barrel (or γβ) domains of class II terpenoid 

A. K. Singh et al.



235

Table 8.2 Common fungal-derived sesquiterpenoids, their source organisms, and synthesis 
strategies

Chemical 
compounds Source Synthesis strategies References

Alliacol A Marasmius 
alliaceus

In 2004, Mihelcic and Moeller 
accomplished the first enantioselective 
total synthesis by utilizing an anodic 
coupling reaction, proving its usefulness 
in synthesis, in establishing the required 
stereochemistry, as well as an 
electrochemical cyclization, followed 
by Friedel–Crafts alkylation, to generate 
the tricyclic framework

Mihelcic and 
Moeller 
(2004)

Pasteurestins A 
and B

Agrocybe 
cylindracea

A chiral building block precursor or a 
Reformatsky-type reaction was used to 
generate the required enantiomerically 
pure building blocks, with a subsequent 
[2 + 2 + 2] cycloaddition forming the 
tricyclic skeleton

Kogl et al. 
(2008)

Cheimonophyllon 
E

Cheimonophyllum 
candidissimum

They applied aldol chemistry and 
dihydroxylation as key steps to generate 
cheimonophyllon E in 13 steps with 
3.5% overall yield

Kogl et al. 
(2008)

Tremulenolide A Phellinus tremulae Ashfeld and Martin applied a rhodium- 
catalyzed cyclopropanation, allylation, 
and [5 + 2]-cycloaddition cascade to 
produce Tremulenediol A in 16 steps 
with 6% overall yield

Ashfeld and 
Martin 
(2005)

Lagopodin A Coprinus lagopus In order to find a way to generate the 
unusual core structure, Johnson–Claisen 
rearrangement reaction has been 
performed to obtain lagopodin A in 12 
steps with 26% overall yield

Srikrishna 
et al. (2006)

Isovelleral Lactarius vellereus Gained scientific interest because of its 
biochemical properties and its unusual 
bicyclic framework. Magnesium 
iodide-induced rearrangement—
cyclopropanation cascade—was utilised 
to produce the framework; isovelleral 
was obtained in 12 steps with 10% 
yield, starting from a known precursor

Magnusson 
et al. (1972); 
Bell et al. 
(2001)

Hypnophilin Pleurotellus 
hypnophilus

It possesses interesting antitumor 
activity, hypnophilin was chosen by 
Paquette and Geng as a target to apply 
their newly developed squarate ester 
cascade reaction in 2002

Paquette and 
Geng 2002

Cryptoporic acid 
A

Cryptoporus 
volvatus

In order to study its antitumor activity, 
first total synthesis of cryptoporic acid 
A methyl ester was done by Hashimoto 
and colleague

Hashimoto 
et al. 1987 
and Tori 
et al. 2000
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synthases. Actually, characteristic fungal diterpene synthases are not fused, and 
cyclization process involves class II (γβ) and class I (α) terpenoid synthases for this 
two-step cyclization mechanism (Smanski et  al. 2012). Table  8.3 denotes some 
common fungal-derived diterpenoids and their synthesis mechanism.

8.3.4  Triterpenoids

Triterpenoids include a large group of chemical compounds and are predominantly 
present in animal and plant kingdom. Essential role of triterpenoids is to function as 
membrane sterols in eukaryotes to provide membrane fluidity. Animal, plant, and 
fungal kingdom are reported to have three kinds of sterols: phytosterols (sitosterol, 
stigmasterol, campestrol) in plants, cholesterol in animals, and ergosterol in fungi 
(Dupont et al. 2012; Yadav 2018). Majority of fungal-derived triterpenoids’ natural 
products have been isolated from basidiomycetes; however, certain ascomycetes are 

Table 8.3 Common fungal-derived diterpenoids, their source organisms, and applications

Chemical 
compounds

Source 
organism Application References

Fusicoccin A Phomopsis 
amygdali

Binds and permanently activates plasma 
membrane H + -ATPase, which causes severe 
physiological effects in plants. Binds to a 
highly conserved family of 14-3-3 proteins in 
eukaryotes, which regulate a wide range of 
cellular functions

de Boer and de 
Vries-van 
Leeuwen 
(2012)

Cotylenin A Cladosporium 
spp

Binds and permanently activates plasma 
membrane H + -ATPase, which causes severe 
physiological effects in plants. Interaction 
with 14-3-3 proteins has been shown to induce 
differentiation of leukemia cells and apoptosis 
of cancer cells

de Boer and de 
Vries-van 
Leeuwen 
(2012)

Sarcodonin G Sarcodon 
scabrosus

Exhibits the greatest inhibition of HeLa cell 
viability and cell proliferation, with anti- 
inflammatory activity along with anti- 
proliferative effects on human cancer cells

Mei et al. 
(2009)

Erinacine 
B-E

Hericium 
erinaceus

Antibacterial activity, cytotoxic effect on 
cancer cells and compounds that stimulate the 
synthesis of the nerve growth factor (NGF), 
anti-carcinogenic, and as well reducing the 
metabolism of fats

Kawagishi 
et al. (1994)

Chaxine A Agrocybe 
chaxingu

Playing a central role in the formation of the 
skeleton and regulation of its mass. Bone 
forming cells, or osteoblasts, have an equally 
important role in the regulation of bone mass

Kawagishi 
et al. (2006)

Clavilactone 
B

Clitocybe 
clavipes

Acts as a kinase inhibitor against Ret/ptc1 and 
epidermal growth factor receptor (EGF-R) 
tyrosine kinases

Arnone et al. 
(1994)
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reported having triterpenoids, for example, fusidane, an antibiotic isolated from 
Microsporum canis (Zhao et al. 2013; Rios et al. 2012). Species such as Ganoderma, 
Innonotus, Daedalea, Wolfiporia extensa, Laetiporus sulphureus, and Antrodia are 
famous sources of diverse lanosterane like triterpenoids, having pharmacological 
properties including antitumor, apoptotic, and antimalarials (Rios et  al. 2012). 
Ganoderma lucidum, the medicinal mushroom, is the source of one of the well- 
known triterpenoid, i.e., ganoderic acid (Boh et al. 2007), and substantial effort has 
been done to produce gandoric acid via fermentative production processes (Xu et al. 
2010). Aspergillus fumigatus member of ascomycota produces fusidane-type triter-
penoids having antibacterial property, as well as helvolic acid having antibacterial 
and anticancer activities derived from the protostadienol macrocyclic scaffold 
(Fig. 8.3). Both the research groups Mitsuguchi et al. and Lodeiro et al. in the year 
2009 identified the corresponding triterpene synthase as well as fusidane biosyn-
thetic gene cluster. Cyclization product of triterpene synthase can be willingly 
changed by single amino acid mutation, and it can be changed either toward lanos-
terol or protostadienol (Kimura et  al. 2010). Hypholoma sublaterium commonly 
called as brick cap are inedible and poisonous and reported to produce clavaric acid. 
Both the enzymes squalene epoxidase and oxidosqualene synthase are involved in 
clavaric acid synthesis (Godio and Martin 2009; Godio et al. 2007).

Fig. 8.3 Structure of triterpenoids
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8.3.5  Alkaloids

Alkaloids are nitrogenous cyclic organic and are physiologically active as poisons 
and drugs. Plants are the chief source of alkaloids; however, some are originated 
from bacteria, fungi, and animals. Alkaloids are secondary metabolites, and they are 
not involved in growth and reproduction of organism; however, their important 
function is acting as protective agents against insects and herbivores because of 
their bitterness and toxicity, so they can be utilized as bio-insecticides and bio- 
pesticides. In case of nitrogen deficiency, it can be used as a source of nitrogen. 
Amino acids such as tryptophan, tyrosine, phenylalanine, lysine, ornithine, and 
anthranilic acid are the precursors of most alkaloids. There are several ways of alka-
loid biosynthesis, and it’s difficult to classify them. However, there are a few arche-
typal reactions involved in the biosynthesis of various classes of alkaloids, including 
synthesis of Schiff bases and Mannich reaction.

Claviceps purpurea is an ergot fungus and grows in the ears of rye. Consumption 
of contaminated grains or seeds with ergot sclerotium leads to a disease condition 
called ergotism in humans and other mammals. It mostly infects outcrossing species 
such as rye as well as triticale, wheat, and barley. However, oats are rarely affected. 
Ergotamine, ergometrine, ergonaline, and other clavine alkaloids are produced by 
this group of fungi. Ergotamine, has vasoconstrictors like activity (Fig.  8.4). 
Ergotamine was first isolated by Arthur Stoll in 1918, and the biosynthesis of ergot-
amine in fungi requires amino acid L-tryptophan and dimethylallyl diphosphate. 
The initial step of ergot alkaloid biosynthesis is prenylation of L-tryptophan, cata-
lyzed by enzyme tryptophan dimethylallyl transferase. Now the enzymes methyl-
transferase and oxygenase catalyze the formation of ergoline and lysergic acid. 
Lysergyl peptide synthetase covalently links the lysergic acid to amino acids phe-
nylalanine, proline, and alanine. After this spontaneous or enzyme-catalyzed cycli-
zation, oxidation, and isomerization at particular residue lead to formation of 
ergotamine (Tfelt-Hansen et al. 2000).

Ergotamine causes peripheral vasoconstriction and damages the peripheral epi-
thelium. At higher concentration, ergotamine is advantageous for treating vascular 
stasis, thrombosis, and gangrene. Ergotamine causes uterine constriction and some-
times is used therapeutically immediately post-partum to decrease uterine bleeding. 
It is also prescribed for treating migraines. Cafergot, a combination of caffeine and 
ergotamine, is the common prescription. However, ergot alkaloids at higher doses or 
consumption of infected grains lead to ergotism, and symptoms include spasms, 
diarrhea, vomiting, headaches, etc.

Psilocybin is a naturally occurring psychedelic prodrug produced by many spe-
cies of mushrooms, collectively known as psilocybin mushrooms (Fig. 8.4). The 
most potent are members of the genus Psilocybe, such as P. azurescens, P. semila-
nceata, and P. cyanescens, but psilocybin has also been reported to be present in 
several other groups of fungi. Psilocybin at high dose is toxic and the general symp-
toms include euphoria, hallucinations, changes in perception, a distorted sense of 
time, spiritual experiences, nausea, and panic attacks. The intensity and duration of 
psilocybin toxicity are variable and depend upon mushroom cultivar or species, 
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dosage, and individual immunity (Santos dos et al. 2016). When consumed, psilo-
cybin is quickly metabolized to psilocin, which then binds to the brain serotonin 
receptors. The hallucinating effect of psilocybin usually lasts from 2 to 6 hours, 
although it may seem to influenced individuals that the effect last as it since the 
drug can alters the perception of time. Psilocybin has low toxicity and low harm 
potential. Possession of psilocybin-containing mushrooms has been outlawed in 
most countries, and it has been classified as a scheduled drug by many national 
drug laws.

Meleagrin and glandicolins are known structural analogs. They show the pres-
ence of a methoxy group, unusual coupling between tryptophan and dehydrohisti-
dine, as well as a carbon atom bounded by three different nitrogen atoms and a 
reversed isoprenyl moiety. They are produced by Penicillium species (Nozawa and 
Nakajima 1979; Kawai et al. 1984; Kozlovsky et al. 1994). Penicillium oxalicum 
and Aspergillus japonicus are the producers of alkaloid oxaline and neoxaline, 
respectively (Steyn 1970; Hirano et al. 1979). Structural features of these alkaloids 

Fig. 8.4 Structure of fungal-derived alkaloids

8 Fungal-Derived Natural Product: Synthesis, Function, and Applications



240

include presence of a methoxy group, coupling between tryptophan and dehydro-
histidine, as well as a carbon atom bounded by three different nitrogen atoms and a 
reversed isoprenyl moiety like meleagrin and glandicolins (Nagel et al. 1974, 1976; 
Konda et  al. 1980). These alkaloids show structural dissimilarity to well-known 
G2/M arrest inducers such as colchicine, vinblastine, and taxol (Correia 1991 and 
Iwasaki 1993). Therefore, its structural uniqueness encouraged scientists around the 
world to study its biological activity and mechanism of action involved. Oxaline 
treatment results in cell cycle arrest at M phase of cell cycle, as it inhibits the micro-
tubule/tubulin polymerization. Oxaline is a fungal-derived anticancer compound. It 
is a derivative of meleagrin, both being benzylisoquinoline alkaloids. It is isolated 
from deep sea Penicillium species. Diketopiperazine made up of tryptophan, dehy-
drohistidine, and roquefortine is the precursor of biosynthesis of oxaline (Scott 
et al. 1976; Mantle et al. 1983; Steyn and Vleggaar 2004). Diketopiperazines such 
as tryprostatin A and (−)-phenylahistine inhibit microtubule polymerization and 
ultimately cell cycle arrest. Tryprostatine is composed of tryptophan and proline, 
while (−)-phenylahistine is made up of phenylalanine and dehydrohistidine. Both 
these compounds have similar structural features; however, their mechanism of 
action varies. Tryprostatin A inhibits the interaction between tubulin and 
microtubule- associated protein family tau (MAP 2/tau), and (−)-phenylahistine 
mechanism of action is similar to colchicine (Usui et al. 1998; Kondoh et al. 1998).

8.3.6  Sugar Derivatives

Sugar derivatives are widely reported in plant species, but some studies also show 
their presence in kingdom Fungi. Cyclophellitol, a polyhydroxy epoxide, was first 
reported in culture filtrates of Phellinus species in 1990 (Atsumi et  al. 1990). 
Recently it attracted serious attention because of its potent β-glucosidase enzyme 
inhibitory activity. Precursor of cyclophellitol is D-xylose, and Hansen and col-
league in 2005 synthesized cyclophellitol from D-xylose in nine steps as shown in 
Fig. 8.5. Cyclophellitol is a carbocyclic analogue of D-glucopyranose with an epox-
ide ring on the β-face of the molecule. The inhibition of β-glucosidase is irrevers-
ible, which is presumably due to protonation and ring opening of the epoxide by a 
carboxylate in the active site of the enzyme (Hansen et al. 2005).

Fig. 8.5 Synthesis of cyclophellitol from D-xylose
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8.4  Heterologous Expression in Fungi

Heterologous expression is defined as expression of a gene in the host organism 
which naturally does not have that desired gene. Recombinant DNA technologies 
have been used in inserting foreign DNA in the host organism. To study the fungal 
synthetic biology, heterologous expression system has been used, as it not only 
allows one to study biosynthetic pathway or enzyme involved but also gives an idea 
about potential of fungi to be heterologous hosts (Kour et al. 2019). The first sec-
ondary metabolite attempted to express was Penicillin in 1990 by Smith and cowork-
ers (Smith et al. 1990), and since then several studies reported that fungal biosynthetic 
enzyme is a valuable tool for secondary metabolite production. There are several 
studies regarding the expression of fungal enzyme in various hosts, from prokary-
otes E. coli to single-celled eukaryotes and yeast (Kealey et al. 1998) to multicel-
lular eukaryotes Nicotiana tabacum (Yalpani et al. 2001).One of the most promising 
heterologous expression system was reported in yeast Pichia pastoris, also known 
for its higher heterologous protein production. In addition to E. coli and yeast, fila-
mentous fungi are often being used for heterologous expression of fungal secondary 
metabolites. Filamentous fungi are easy to grow and can be utilized for large-scale 
production. Aspergillus species are one of the most celebrated secondary hosts. 
Among filamentous fungi, Aspergillus nidulans is a model species and has been 
used to study gene cluster from other species (Cereghino and Cregg 2000). A. ory-
zae species is taxonomically close to model species A. nidulans. This species is of 
particular interest as a host for heterologous expression system because it has a long 
and safe history in food technology industry since it is being used by several coun-
tries for fermentation of cereals and also given the status of GRAS (generally rec-
ognised as safe) organism. Therefore, it can be utilized for producing secondary 
metabolites for human use (Barbesgaard et al. 1992).

Genetic manipulations such as selectable markers and promoters in A. Oryzae 
have been done using recombinant DNA technologies to ensure high level of expres-
sion of secondary metabolite in the organism (Yamada et  al. 1997; Jin et  al. 
2004;Pahirulzaman et al. 2012), which in turn can increase the yield percentage of 
bioactive secondary metabolite. Pleuromutaline an antibiotic synthesized in A. ory-
zae by Bailey et al. (2016) is a diterpene compound naturally produced in Clitopilus 
passeckerianus and related species (Hartley et  al. 2009). Table 8.4 describes the 
common secondary metabolite produced through heterologous mode of expression 
in the secondary host A. oryzae and its native host.

8.5  Conclusion and Future Prospects

Varieties of secondary metabolites are produced by fungal species; however, their 
production depends upon the growth condition. Compounds produced are of impor-
tant chemical classes like alkaloids, terpenes, terpenoids, and sugar derivatives, for 
example, alliacol A, pasteurestins A and B, clavaric acid, helvolic acid, ergotamine, 
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psilocybin, meleagrin, cyclophellitol, etc. They are reported to have a variety of 
biological properties—antibacterial, anticarcinogenic, enzyme inhibitory, hepato-
protective, and others. However, at the laboratory level, the production of fungal 
secondary metabolite is very low; this leads to search alternative strategies to 
synthesize chemical compound in laboratory condition and at a higher rate of pro-
duction. These objectives were somewhat achieved by chemical synthesis of com-
pound. Moreover, total in vitro chemical synthesis does not always provide a way to 
produce chemical compounds at higher yield, however to overcome this problem, 
heterologous mode of producing secondary metabolite can be done. Heterologous 
expression of secondary metabolite is an effective strategies for describing cryptic 
gene, to achieve bioactive natural product clean background which aids to purification 
and downstreaming of natural product.
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Table 8.4 Structure, native host of secondary metabolite produced via heterologous mode of 
expression within the secondary host Aspergillus oryzae

Natural 
product Native host Structure Function References

Citrinin Monascus 
purpureus

Antibacterial Sakai et al. 
(2008)

Tenellin Beauveria 
bassiana

Inhibitor of 
ATPase activity of 
erythrocyte 
membrane; iron 
chelator

Heneghan 
et al. (2010)

Aphidicolin Phoma betae Inhibitor of DNA 
polymerase α

Fujii et al. 
(2011)

Paxilline Penicillium 
paxilli

Inhibitor of the 
high-conductance 
calcium-activated 
potassium channel; 
antibacterial

Tagami 
et al. (2013)

Pleuromutilin Clitopilus 
passeckerianus

Antibacterial Bailey et al. 
(2016)
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Chapter 9
Fungal Community for Novel Secondary 
Metabolites

Enespa and Prem Chandra

9.1  Introduction

Fungal communities have a vitally important role in our routine life, whether 
positive or negative (De Vries and Shade 2013). They are origins of lifesaving and 
life- enhancing drugs, food additives, and aromas, but they also have the potential to 
contaminate our crops and food or to cause serious infections (Gerke and Braus 
2014). Microbes such as fungi, bacteria, plants, and some insects produce second-
ary metabolites (Kusari et  al. 2013). These natural products are low molecular 
weight molecules that, differing from primary metabolites, are not indispensable for 
the survival of the organism but confer an advantage in specific habitats or during 
changes in environmental conditions (Lange 2015). Various secondary metabolites 
possess biological activities that range from beneficial to harmful (Brandt and 
Mølgaard 2001).

Advantageous secondary metabolites (SMs) include antifungal agents such as 
caspofungin (Macheleidt et al. 2016), antibacterial agents such as penicillin, anti-
cancer drugs such as taxol, immunosuppressive drugs such as cyclosporine, or 
cholesterol- lowering drugs such as lovastatin (Li and Vederas 2009). A growing 
problem is the amazing current and future increases in resistance against established 
antibiotics as was foretold by the WHO (Brown and Wright 2016). Antibiotic use in 
clinical medicine, stock breeding, and agriculture leads to the development of multi- 
resistances, especially in daily applications where various known antibiotics are 
ineffective (Chang et al. 2015). Thus, the innovation of novel drugs is essential (Li 
and Pan 2014). Various species of fungi such as Aspergillus niger are used for the 
large-scale fermentation of citric acid and gluconic acid and are industrially 
exploited as enzymes, food additives, and medicinal drugs (Dhillon et al. 2011).

Enespa (*) · P. Chandra 
Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb 
Bhimrao Ambedkar (A Central) University, Lucknow, Uttar Pradesh, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14846-1_9&domain=pdf


250

The fungus Aspergillus oryzae is used in Asian cuisine for the fermentation of 
soybeans, saccharification of rice, and production of alcoholic drinks and rice vin-
egars (Murooka and Yamshita 2008), and the fungus Monascus purpureus is used 
for a natural food coloring (Mapari et al. 2010). In food preparation that uses fungi, 
information about obtainable secondary metabolite gene clusters becomes even 
more significant as potentially harmful clusters of gene might lurk in the genome 
and represent a risk of alcoholism (Takeda et al. 2014). Some mycotoxins are pro-
duced by various Aspergillus sp., followed by citrinin and patulin, which are pro-
duced by Aspergillus and Penicillium sp., and Fusarium-specific toxins such as 
zearalenone, but the harmful secondary metabolites such as aflatoxins are promi-
nent (Gerke and Braus 2014).

The mycotoxin-producing fungi in crop contamination lead to more than 10% 
loss in the yield of agricultural crops globally, representing a massive economic 
problem (Savary et al. 2012), although the pathogenic fungal spores that are harm-
ful for both plants and animals can also cause various diseases. Allergic reactions 
are also induced by inhalation of fungal spores (Douwes et al. 2003). Aspergillus 
fumigatus, Aspergillus flavus, and Aspergillus terreus cause infection and can lead 
to invasive aspergillosis, which can be life threatening in immunocompromised 
patients (Stevens et al. 2000). Communities of fungi have the potential to produce 
various secondary bioactive metabolites used as therapeutic agents against several 
diseases directly or indirectly (Kusari et  al. 2012). The production of secondary 
metabolites from the plant host with therapeutic potential such as taxol, podophyl-
lotoxin, deoxypodophyllotoxin (Zhao et al. 2011), camptothecin and structural ana-
logues, azadirachtin, hypericin, and emodin by fungal communities has been 
discovered (Chagas et al. 2018). Fungal communities produce bioactive compounds 
that are not only important from the ecological aspect but also from a biochemical 
and molecular position, especially those exclusive to their host plants (Berg and 
Smalla 2009).

The production of excess known and novel bioactive secondary metabolites may 
occur when exploiting the fungal community, such as modifying the available cul-
ture and process. The compounds produced by fungal communities might be opti-
mized using controlled fermentation conditions, possibly leading to a cost-effective, 
environmentally friendly, continuous, and reproducible yield on commercial scale-
 up (Chan et al. 2003). The reduction of secondary metabolite production on repeated 
subculturing in axenic monoculture conditions needs to be described to establish, 
restore, and sustain the in vitro biosynthetic potential of endophytes, one of the key 
challenges. The fact that nearly all efforts to obtain secondary metabolites from 
fungal communities have so far been made by classical methodology, under axenic 
monoculture conditions, increased this problem (Kusari et al. 2012).The renewal of 
known secondary metabolites led occasionally to mostly overlooking the collection 
of cryptic products that are not formed naturally under standard in vitro conditions 
(Bills et al. 2013). To imagine the aforesaid challenges, in this perspective the basic 
principles of chemical networking approaches of fungal communities with their 
host plants highlight forthcoming directions and the virtually unlimited possibilities 
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for discovery and the maintainable production of objective and not expected sec-
ondary metabolites exploiting fungal communities (Demain et al. 2017).

9.2  Collection and Detection Methods for Fungal Bioactive 
Compounds

The study of fungal metabolites has proceeded behind the study of other fungal 
metabolites because of scientific and organizational constraints (Morath et al. 2012). 
Moreover, the production of secondary metabolite (SM) production is bioactive 
(Stergiopoulos et al. 2013). The SM profiles fluctuate and depend entirely on the 
substrate, incubation period, nutrient media, temperature, and various environmental 
factors of given strains or species (López-González et al. 2015: Jurado et al. 2014). 
During the past half-century, there has been substantial progress on various com-
pounds. The SMs of fungus determined by gas chromatography–mass spectrometry 
(GC-MS) and high performance liquid chromatography (HPLC) have been used 
recently because of their dominant separation and highly sensitive detection abilities 
(Turner et al. 2009). Tenax can be used for the concentration of headspace culture of 
solid adsorbent, followed by thermal desorption into the GC-MS (Bicchi et al. 2008). 
A library of mass spectra, database, or by comparative study of known standards of 
retention times and spectrum identified the SMs (Bino et al. 2004). In the headspace 
culture the volatile organic compounds adsorb or desorb by another method known 
as solid-phase micro-extraction (SPME) (David and Sandra 2007). This method 
decreases the time of preparation by combining extraction, introduction, and con-
centration into one step while increasing sensitivity over other extraction methods. 
Thus, this method has become popular recently (Hamelinck et al. 2005).

The living fungal cultures can be mechanized for headspace-SPME GC-MS by 
shortest profiling (Gao and Xu 2015). Novel volatile compounds cannot be deter-
mined by GC-MS, so this is one drawback. Simultaneous distillation extraction 
(SDE) of traditional methods such as vapor distillation and solvent extraction are 
used for the determination of secondary metabolites from Penicillium roqueforti 
and compared to the SPME method (Ridgway et al. 2010). Selected ion flow tube–
mass spectrometry (SIFT-MS) in complex gas mixtures provides rapid broad- 
spectrum detection of trace secondary metabolites (Scotter et  al. 2005). The 
production of secondary metabolites is detected from various species of fungi such 
as Aspergillus, Candida, Mucor, Fusarium, and Cryptococcus by the SIFT-MS 
technique (Morath et  al. 2012). Proton transfer reaction–mass spectrometry 
(PTR-MS) and GC-MS instruments determine the profile of SMs released by 
Xanthomonas sp. The fungal SMs are quantified by using PTR-MS because it has 
fine detection ability and a fine-scale time response (Giannoukos et  al. 2017). 
Moreover, examinations can be run without sample preparation, derivatization, or 
concentration in real time with the advantage of having sensitivities comparable to 
GC-MS (Hajslova et al. 2011).
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This technique is also used for quantification of the SMs of Muscodor albus 
(Leelasuphakul et al. 2008). For further analysis and separation of the potential of 
secondary metabolites to identify innovative compounds produced by fungi, the 
sample is placed in a stainless steel column, then recovered and determined by 
nuclear magnetic resonance (NMR) spectroscopy (Strobel 2014). The “electronic 
nose” (E-nose) is an advanced technique used for bioactive compounds. An infor-
mation processing unit with pattern recognition software and reference library is 
combined in the E-nose system by multisensory array (Carey et al. 2011). The SM 
production studies and results from examining numerous microbes and diversified 
communities of soil microbes of soil by several techniques are listed in Table 9.1.

9.3  Fungal Bioactive Compounds as Sources of Secondary 
Metabolites

For exploiting the bioactive metabolite compounds, fungi are the key resources 
(Harvey 2008). Between the fungi, biologically active metabolites are screened 
from the endophytes (Strobel and Daisy 2003). Without causing any disease symp-
toms, endophytic fungi inhabit within their host plants (Schulz et al. 2002). The low 
molecular weight compounds not required for growth in pure culture known as 
secondary metabolites are manufactured as a revision for specific functions in 
nature (Bérdy 2005). In the interactions of numerous metabolites between fungi and 
their plant hosts, such as signalling, defence, and instructions of the symbiosis, the 
SMs have a vital role in vivo (Tanaka et al. 2006).

Diverse classes of chemical substances such as steroids, xanthones, phenols, iso-
coumarines, perylene derivatives, quinones, furandiones, terpenoids, depsipeptides, 
and cytochalasines have been isolated from endophytic fungi (Nisa et  al. 2015; 
Rana et al. 2018a; Suman et al. 2016; Yadav et al. 2018). Using non-ribosomal pro-
tein synthesis, such substances are synthesized through the polyketide pathway. A 
complex of Burkholderia cepacia non-ribosomal peptide-synthesized toxin is 
hemolytic and required for full virulence (Thomson and Dennis 2012). The various 
novel chemical structures produced by endophytes (51%) are significantly higher 
than the soil fungus (38%), as revealed from a literature survey suggesting that these 
habitually discounted endophytes are the novel source of bioactive secondary 
metabolites (Gnansounou et al. 2017). Special substances such as secondary metab-
olites are produced and in return demand nutrition. They are known to prevent the 
host from successfully attacking fungi and pests (Kaul et al. 2012; Nisa et al. 2015).
With more resistance to nematodes, insects, and livestock, the fungal communities 
synthesize an array of metabolites for plants (Bassman 2004; Kaul et al. 2012).

Because of the production of phytohormones with specific endophytes inhabit-
ing them, plants can grow faster and become so economical that they predominate 
in a specific environment (Herms and Mattson 1992; Rana et al. 2016, 2018a, b). 
The chemical compounds or secondary metabolites that are synthesized inside 
plants by the endophytes are associated with medicinal plants and can be exploited 
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Table 9.1 Methods applied for the detection of bioactive compounds from different fungal species

Methods
Organisms 
investigated

Habitat/
cultivation 
media

Bioactive compounds 
found References

GC-MS Aspergillus spp., 
Cladosporium 
cladosporioides, 
Penicillium spp.

Dichloran 
glycerol agar

Diverse bioactive 
compounds

El Sheikha et al. 
(2018)

GC-MS Fungal 
community

Hyperthermic, 
hypersaline 
soils

Diverse bioactive 
compounds

Hock et al. 
(2018)

GC-MS Muscodor albus Modified 
minimal 
medium

Esters, alcohols, lipids, 
ketones

Enespa and 
Chandra (2017)

PTR-MS/ 
PTRTOF- 
MS

Fungal 
community

Temperate soil 
under different 
compost load

Diverse bioactive 
compounds

Enespa and 
Chandra (2017)

GC-MS Aspergillus 
fumigatus

Modified 
minimal 
medium

Dimethyl sulfide (DMS), 
dimethyl disulfide 
(DMDS), 
2,5-dimethylpyrazine 
(2,5-DMP), 1-undecene, 
2-nonanone, 
2-undecanone, and 2 
aminoacetophenone 
(2-AAP)

Briard et al. 
(2016)

PTR-ToF 
MS, 
GC-MS, 
Electronic 
nose 
(e-nose) 
analysis

Erwinia 
amylovora, 
Pseudomonas 
syringae pv. 
syringae

Rooted 
plantlets, 
Murashige and 
Skoog (MS) 
medium

2-Ethoxy-2-methyl 
propane, 2,4,4-trimethyl- 
1-pentene and 
2-methyl-furan

Cellini et al. 
(2016)

GC-MS Fungal 
community

Hyperthermic, 
hypersaline 
soils

Diverse bioactive 
compounds

Miller et al. 
(2015)

GC-MS Muscodor albus 
E-6 Endophytic 
fungus of 
Guazuma 
ulmifolia

Cultivated on 
potato dextrose 
agar (PDA)

Diverse bioactive 
compounds

Saxena et al. 
(2015)

GC-MSD 
(mass 
selective 
detector)

Fungal 
community

Orange waste Monoterpenes, isoprene, 
other bioactive compounds

Li et al. (2012)

GC-MS Aspergillus spp., 
Cladosporium 
cladosporioides, 
Penicillium spp.

Dichloran 
glycerol agar

Diverse bioactive 
compounds

Beck (2012)

(continued)
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Table 9.1 (continued)

Methods
Organisms 
investigated

Habitat/
cultivation 
media

Bioactive compounds 
found References

PTR-MS Shigella flexneri, 
Candida 
tropicalis

Complex media Diverse VOCs, several 
unidentified and some 
identified compounds of 
low molecular weight 
<150 μ

Effmert et al. 
(2012)

PTR-MS Fungal 
community

Organic waste Various bioactive 
compounds

Morath et al. 
(2012)

GC-MS Hypholoma 
fasciculare 
Resinicium 
bicolor, wood- 
decaying fungi

Cultivated on 
malt broth

Diverse bioactive 
compounds

Sasidharan et al. 
(2011)

GC-MS/ 
growth 
inhibition 
of bacterial 
cultures

Fusarium 
oxysporum strain 
MSA 35

Agar (as 
described in 
experimental 
procedures)

Diverse bioactive 
compounds

Kai et al. (2010)

GC-MS Fungal 
community

Different 
Mediterranean 
soils

Diverse bioactive 
compounds

Ens et al. (2009)

GC-MS Fungal 
community

Different 
Mediterranean 
soils

Diverse bioactive 
compounds

Leff and Fierer 
(2008)

GC-MS Fusarium spp. MEA and PDA Sesquiterpenes, mainly 
trichodiene

Perkowski et al. 
(2008)

GC-MS Muscodor albus 
E-6 Endophytic 
fungus of 
Guazuma 
ulmifolia

Cultivated on 
PDA

Diverse bioactive 
compounds

Strobel et al. 
(2007)

GC-MS Fusarium spp. MEA and PDA Sesquiterpenes, mainly 
trichodiene

Jeleń and 
Grabarkiewicz- 
Szczȩsna (2005)

GC-MS Muscodor albus Endophytic 
fungus of 
Cinnamonum, 
cultivated on 
PDA

Diverse bioactive 
compounds

Ezra et al. 
(2004)

GC-MS Muscodor albus Endophytic 
fungus of 
Cinnamonum, 
cultivated on 
PDA

Diverse bioactive 
compounds

Stinson et al. 
(2003)

GC-MS Sclerotinia minor, 
S. sclerotium, S. 
rolfsii

Lettuce and 
bean isolates, 
cultivated on 
PDA

Diverse bioactive 
compounds

Harvey and 
Sams (2000)
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for curing many diseases (Compant et al. 2005; Strobel and Daisy 2003). The bioac-
tive metabolites in a large number of endophytic fungi belong to diverse structural 
groups known as alkaloids, steroids, terpenoids, peptides, polyketones, flavonoids, 
quinols, phenols, xanthones, chinones, isocumarines, benzopyranones, tetralones, 
cytochalasines, perylene derivatives, furandiones, depsipeptides, and enniatines that 
have been extracted, characterized, and isolated (Tenguria et al. 2011). The novel 
structural groups represented by several of these are palmarumycins and a new ben-
zopyroanone (Schulz et al. 2002). The fungi-produced secondary metabolites may 
vary with the biotope in which it grows and adopted, which varied with both habitat 
and substrate such as the manufacture of cyclosporine A, enchinocandin B, papu-
lacandins, and verrucarins (de Carvalho et al. 2015). Screenings of natural products 
are the source of endophytic fungi, and in optimizing the search for secondary 
metabolites of new bioactive chemical compounds, it is relevant to consider that a 
fungus that synthesizes the SMs may resemble its particular ecological niche and 
metabolic interactions, which continue between the fungus and plant to enhance the 
production of secondary metabolites (Bérdy 2005; Cragg and Newman 2013).

In addition to being alternative sources for secondary metabolites known from 
plants, endophytes accumulate a wealth of other biologically active and structurally 
diverse natural products that are unprecedented in nature (Nisa et al. 2015; Proksch 
et al. 2010) It is now generally accepted that endophytes represent an important and 
largely untapped reservoir of unique chemical structures that have been modified 
through evolution and are believed to be involved in host plant protection and com-
munication (Farrar et al. 2014). The fungal endophytes are known to release metab-
olites that mimic the structure and function of host compounds and produce plant 
growth hormones such as gibberellins (Hyde and Soytong 2008). A wide range of 
biological activities such as those of the antimicrobial agent hypericin and acetyl-
cholinesterase inhibitor huperzine A are plant-associated secondary metabolites 
produced by prolific endophytes (Xiong et al. 2013), the antitumour agents taxol 
(Cai et al. 2015). Endophytes of bioprospecting offer promise to determine natural 
products with therapeutic value, which has increased attention from microbiolo-
gists, ecologists, agronomists, and chemists (Qin et al. 2011).

The endophytic fungi have great interest as potential producers of novel, biologi-
cally active products (Yadav 2018; Yadav et al. 2017; Strobel and Daisy 2003). The 
distribution of endophytic mycoflora differs with the host, known as an important 
component of biodiversity and also considered as endophytes (Khan et  al. 2010). 
Globally, the necessity of new pharmaceutical products such as antibiotics, agro-
chemicals, and chemotherapeutic agents to manage the rising medicinal and ecologi-
cal problems faced by mankind has increased interest in research on fungal community 
chemistry (Paladini et al. 2015). The mangrove plant Rhizophora annamalayana is 
the host of an endophytic fungus isolated and characterized for the production of 
taxol (Elavarasi et al. 2012). The extraction of secondary metabolite taxol is accom-
plished with ethyl acetate and characterized by chromatographic and spectrometric 
analysis (Fraser et al. 2000). The infrared (IR) spectrum values confirmed terpenoid 
functional groups and the violet-red represented by a thin-layer chromatographic 
plate (Milgram et al. 2007). In the leaf of Cynodon dactylon, an endophytic fungus, 
Aspergillus fumigatus CY018, was recognised for the first time (Liu et al. 2004).
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The endophytic fungus Taxomyces andreanae, in producing paclitaxel from the 
yew plant Taxus brevifolia, set the stage for a more inclusive investigation of other 
species and other plants for the presence of paclitaxel-manufacturing endophytes 
(Pu et al. 2013), so as to apply this to developing the production of this pharmaco-
logically important drug (Cohen 2002). The multi-billion dollar anticancer com-
pound paclitaxel, produced by the yew plant (Chabner and Roberts 2005), has 
action against a broad range of tumour types (Kulbe et al. 2004), including breast, 
ovarian, lung, and head and neck cancers, as well as progressive forms of Kaposi’s 
sarcoma (Vihinen and Kähäri 2002).

Production of loline alkaloids occurs by infection of grasses with endophytes 
which display restrictive and toxic effects towards herbivorous invertebrates and 
vertebrates and thus form a possible complex in protection of endophyte-infected 
grasses against herbivores (Saikkonen et al. 1998; Schardl et al. 2004). The three 
new antimicrobial metabolites and the indole-3-acetic acid (IAA) plant hormone 
were analysed from the culture of Colletotrichum sp., an endophyte isolated from 
inside the stem of Artemisia annua (Lu et al. 2000; Tan and Zou 2001). The isola-
tion and characterization of various other chemical compounds such as ergosterol 
(I), 3b,5a,6b-trihydroxyergosta-7,2,2-diene (II), 3b-hydroxy-ergosta-5-ene (III), 
3-oxo-ergosta-4,6,8 (14), 2,2-tetraene (IV), 3b-hydroxy-5a,8a-epidioxy- ergosta-
6,2,2-diene (V), 3b-hydroxy-5a,8a-epidioxy-ergosta-6,9 (11), 2,2-triene (VI), and 
3-oxoergosta-4-ene (VII) was also completed from the culture of a fungal commu-
nity (Nisa et al. 2015). The growth inhibition of tested bacteria such as Staphylococcus 
aureus, Bacillus subtilis, Pseudomonas sp., and Sarcina lutea takes place by 1e3 
and IIIeV chemical compounds (Son et al. 2016). Three species represent positive 
hits by screening of molecular markers and have the capability of producing taxol, 
which was authenticated by HPLC-MS. Among these three taxol-producing fungi, 
the yield of taxol was greater in Guignardia mangiferae HAA11 720 ng/l compared 
with Fusarium proliferatum HBA29 (240 ng/l) and Colletotrichum gloeosporioides 
TA67 (120 ng/ l), the fungal strain possessing antimicrobial activity (Liu et al. 2009; 
Chaturvedi 2015) (Table 9.2).

9.4  Antifungal Bioactive Compounds from a Fungal 
Community

Pathogenic fungi are controlled by secondary metabolites of some biocontrol fungi 
(Rohlfs and Churchill 2011). The mycoparasitism, nutrient competition, and secre-
tion of other inhibitory compounds and hydrolytic enzymes by the various species of 
Trichoderma control the soil-borne fungal pathogens by various mechanisms 
(Benítez et al. 2004). The inhibition of growth and production of proteins from a 
wood-rotting basidiomycete Serpula lacrymans takes place from secondary metabo-
lites secreted from Trichoderma viride and T. aureoviride (Schoeman et al. 1999). 
However, T. pseudokoningii showed no effect in any of the Serpula lacrymans iso-
late tests (Wheatley 2002; Bitas et al. 2013). The secondary metabolites secreted by 
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Table 9.2 Novel secondary metabolites from endophytic fungi

Fungal species Origin
Secondary 
metabolites Reported activities References

Alternaria 
alternata

Terrestrial, 
grapevine leaves

9-Methoxy CPT Antifungal, 
anticancer

Chakravarty 
and Gaur 
(2018)

Alternaria 
alternata 
RSF-6 L

Terrestrial, 
Brassica napus

Indole-3-acetic 
acid (IAA)

Antifungal, PGP Yan et al. 
(2018)

Actinoallomurus 
fulvus

Terrestrial, 
Capsicum 
frutescens

Actinoallolides Anti-trypanosomal Nandi et al. 
(2019)

Penicillium 
manginii

Terrestrial, Panax 
notoginseng

Duclauxamide Cytotoxicity Bedi et al. 
(2018)

Cytospora sp. Terrestrial, 
Conocarpus erecta

Cytoskyrins BIA activity Gao et al. 
(2018)

Periconia sp. Terrestrial, Annona 
muricata

Pericoannosin Anti-HIV Gao et al. 
(2018)

Peyronellaea 
coffeae-arabicae

Terrestrial, 
Pritchardia 
lowreyana

Peyronellins Cytotoxicity Gao et al. 
(2018)

Mucor irregularis Marine, 
Rhizophora stylosa

Rhizovarins Cytotoxicity Zhou and Xu 
(2018)

Rhizoctonia 
solani

Terrestrial, 
Cyperus rotundus

Solanioic acid Antimicrobial Dissanayake 
et al. (2016)

Fusarium sp. 
JZ-Z6

Terrestrial, 
Fritillaria 
unibracteata

Gallic acid Antioxidant, 
anticancer

Pan et al. 
(2017)

Penicillium sp. Terrestrial, 
Catharanthus 
roseus

Citreoviripyrone Cytotoxicity Jiménez- 
Romero et al. 
(2017)

Arthrinium sp. 
0042

Aquilaria 
subintegra

oxo-Agarospirol Antioxidant Monggoot 
et al. (2017)

Penicillium 
brocae

Marine Spirobrocazines Antibacterial, 
cytotoxicity

Muharini 
et al. (2017)

Campylocarpon 
sp.

Marine, Sonneratia 
caseolaris

Campyridones Cytotoxicity Zhu et al. 
(2016)

Pestalotiopsis sp. Marine, 
Rhizophora 
mucronata

Pestalotiopens Antimicrobial Xu (2015)

Paecilomyces 
variotii

Marine Varioxepine Antimicrobial Zhang et al. 
(2015)

Trichoderma 
gamsii

Terrestrial, Panax 
notoginseng

Trichodermone Cytotoxicity Ding et al. 
(2014)

Paecilomyces 
variotii

Marine Varioxepine Antimicrobial Meng et al. 
(2014)

Aspergillus sp. Marine Asperterpenols Acetylcholinesterase 
inhibition

Xiao et al. 
(2013)

(continued)
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Table 9.2 (continued)

Fungal species Origin
Secondary 
metabolites Reported activities References

Aspergillus 
versicolor

Marine, green alga 
Codium fragile

Aspeverin Marine plant growth 
inhibition

Ji et al. 
(2013)

Fusarium sp. Terrestrial, Melia 
azedarach

Fusarimine Antifungal Gao et al. 
(2013)

Pestalotiopsis fici Terrestrial Chloropupukean 
olides

Cytotoxicity Ebrahim 
et al. (2012)

Pestalotiopsis sp. Terrestrial, 
Clavaroids sp.

Torreyanic acid 
analogue

Antifungal Gutierrez 
et al. (2012)

Pestalotiopsis 
virgatula

Terrestrial, 
Terminalia chebula

Pestalospiranes Antimicribial Kesting et al. 
(2011)

Chalara 
alabamensis

Terrestrial, 
Asterogyne 
martiana

Asterogynins Antimicribial Rosa et al. 
(2013)

Pestalotiopsis sp. Terrestrial, 
clavaroid species

Torreyanic acid 
analogue

Antibacterial Zou et al. 
(2011)

Microsphaeropsis 
sp.

Terrestrial, Lycium 
intricatum

Microsphaerops 
ones

Antibacterial Yang and Li 
(2011)

Pestalotiopsis fici Terrestrial Chloropestolide Anti-HIV, 
cytotoxicity

Liu et al. 
(2010)

Nodulisporium 
sp.

Marine, alga Noduliprevenone Cytotoxicity Greve et al. 
(2010)

Phaeosphaeria 
avenaria

Terrestrial Phaeosphaeride Inhibiting STAT3 
activity

Weber 
(2009)

Phaeosphaeria 
avenaria

Terrestrial Phaeosphaeride Inhibiting STAT3 
activity

Schlingmann 
et al. (2007)

Cytospora sp. Terrestrial, 
Conocarpus erecta

Cytoskyrins BIA activity Gunatilaka 
(2006)

Cryptosporiopsis 
cf. quercina

Terrestrial, 
Triptergyium 
wilfordii

Cryptocin Antifungal, 
Antibacterial

Strobel et al. 
(2005)

Fusarium 
pallidoroseum

Terrestrial Apicidins Antiprotozoal, 
anticancer

Somei and 
Yamada 
(2004)

Cryptosporiopsis 
cf. quercina

Terrestrial, 
Triptergyium 
wilfordii

Cryptocin Antifungal Strobel and 
Daisy (2003)

Pestalotiopsis sp. Marine, 
Rhizophora 
mucronata

Pestalotiopens Antimicrobial Schulz et al. 
(1995)

various isolates of three Trichoderma spp. exhibited a degree of growth inhibition 
against a soil-borne fungal pathogen Fusarium oxysporum f. sp. ciceris that causes 
chickpea wilt disease (Gopalakrishnan et  al. 2011). F. oxysporum strain MSA35 
secreted secondary metabolites that enhanced the growth of lettuce plants and in the 
presence of ectosymbiotic bacteria also released the secondary metabolites that 
inhibit the growth of pathogenic strains of F. oxysporum (Enespa and Chandra 2017).
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Antifungal metabolites revealed over time by the fermentation of dung- inhabiting 
fungi, or other compounds, are contrary to plant pathogenic fungi (Fu et al. 2012). 
The antagonistic features displayed by Sordaria fimicola against soil-borne patho-
genic fungi such as Pythium aphanidermatum and Dematophora necatrix caused 
disease against the plant (Sarrocco 2016). The isolation of S. fimicola from wheat 
and ryegrass roots could reduce the size of these masses after inoculation with the 
take-all fungus (Gaeumannomyces graminis var. tritici) (Zhang et al. 2017). The 
submerged culture of Coprinus heptemerus, a basidiomycete, secreted seven diter-
penoids, named heptemerones A to G that previously were not known to produce 
secondary metabolites (Molitor et al. 2012; Pettit et al. 2009). The chemical com-
pounds were purified and tested for their antifungal activities, which inhibited the 
fungal germination, but this was highly dependent on the composition of the assay 
medium (Lavermicocca et al. 2000).

Four of the antifungal compounds exhibited plant protective activity in a leaf 
segment assay using Magnaporthe grisea as the pathogen (Kettering et al. 2005). 
Podospora decipiens, Podospora curvicola, and Podospordaria tulasnei have 
exposed antifungal activity by secondary metabolites against Fusarium verticillioi-
des, Aspergillus flavus, and F. verticillioides and Fusarium fujikuroi (Cardwell 
et al. 2000), respectively. In agriculture, the demand is increasing for new antifun-
gal compounds in the continuous search for new effective and natural fungicides for 
use against plant pathogens in integrated pest management (Dayan et  al. 2009; 
Oerke 2006).

The academic institutions and agrochemical industries have been manufacturing 
new crop protection agents of microbial origin, which are safer for both the environ-
ment and consumers and more effective than the existing agents (Chandler et al. 
2008). The naturally derived active pesticide ingredients are used in line with EC 
within the structure of achieving the sustainable use of pesticides by reducing the 
risk and impacts of their use on human health and the environment, and encouraging 
the use of integrated pest management and of unconventional techniques (Khater 
2012). In this perspective, the fungal communities represent an uncultivated pool of 
bioactive metabolites, with chemical innovations that can be tested and further 
developed as active constituents in plant protection products (Lorenz and Eck 2005). 
Secondary metabolites-secreted antifungals by fungi against phytopathogenic fungi 
are given in Table 9.3 and Fig. 9.1.

9.5  Antibacterial Bioactive Compounds from Fungal 
Community

The fungal communities produced secondary metabolites that are larger than those 
of any other microorganism (Dean et al. 2005). These microorganisms occur in high 
frequency and are isolated from plants (Schippers et al. 1987). Numerous fungal 
genera seem to have a higher frequency of isolation and therefore a comparatively 
greater chance of an antibacterial substance being discovered in the species for 
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Table 9.3 Fungal bioactive compounds secreted by fungi against phytopathogenic fungi

Fungal antagonists Bioactive compounds Effects
Pathogenic 
fungi References

Candida albicans Farnesol Inhibition of 
mycelial 
development, 
Apoptosis in 
altered 
morphology 
and reduced 
fitness

Aspergillus 
nidulans, 
Fusarium 
graminearum

Conrad et al. 
(2018)

Irpex lacteus, 
Hypoxylon 
anthochroum Blaci

Benzothiazole, 
cyclohexanol, n-decanal, 
dimethyl trisulfide, 
2-ethyl-1-hexanol

Growth 
inhibition

Alternaria 
solani, Botrytis 
cinerea

Gao et al. 
(2017)

H. anthochroum 
Blaci

2-Methyl-5-(1- 
methylethyl)-
bicyclohexan-2-ol, 2, 
6-dimethyl-2, 
4,6-octatriene

Inhibiting 
effect on 
growth of 
oomycetes

Pythium 
ultimum, 
Phytophthora 
capsici, 
Alternaria 
solani, 
Fusarium 
oxysporum

Ulloa-Benıtez 
et al. (2016)

Hypsizygus 
marmoreus

2-Methylpropanoic acid 
2,2-dimethyl-1-(2- 
hydroxy- 1- methylethyl) 
propyl ester

Inhibitory 
effect against 
conidial 
germination

A. brassicicola 
(O-264)

Oka et al. 
(2015)

Phomopsis sp. Sabinene; isoamyl 
alcohol; 2-methyl 
propanol; 2-propanone

Worked as 
antibiotic 
effects

Pythium, 
Phytophthora, 
Sclerotinia, 
Rhizoctonia, 
Fusarium, 
Botrytis, 
Verticillium, 
Colletotrichum

Lee (2015)

Cladosporium 
cladosporioides 
CL-1

α-Pinene, 
β-caryophyllene, 
tetrahydro-2,2,5,5 
tetramethylfuran, 
dehydroaromadendrene, 
sativene

Growth 
inhibition of 
mycelium

Pseudomonas 
syringae

Kamchiswamy 
et al. (2015)

Ampelomyces sp. m-Cresol Inhibition of 
mycelial 
growth

Pseudomonas 
syringae pv.

Naznin et al. 
(2014)

(continued)

Enespa and P. Chandra



261

Fungal antagonists Bioactive compounds Effects
Pathogenic 
fungi References

Mycoleptodonoides 
aitchisonii

1-Phenyl-3-pentanone Strongly 
inhibited the 
mycelial 
growth, spore 
germination

Alternaria 
alternata,  
A. brassicicola, 
A. brassicae, 
Colletotrichum 
orbiculare, 
Corynespora 
cassiicola

Nishino et al. 
(2013)

Epichloe typhina Sesquiterpenes, chokols 
A–G

Fungitoxic Cladosporium 
phlei

Kumar and 
Kaushik 
(2012)

Phoma sp. Series of 
sesquiterpenoids, some 
alcohols, reduced 
naphthalene derivatives

Antifungal 
and fuel 
properties; 
some of the 
test 
organisms 
with the 
greatest 
sensitivity

Verticillium, 
Ceratocystis, 
Cercospora, 
Sclerotinia

Strobel et al. 
(2011)

Saccharomyces 
cerevisiae CR-1

3-Methylbutan-1-ol, 
2-methylbutan-1-ol, 
2-phenylethanol, ethyl 
acetate, ethyloctanoate

Inhibits 
vegetative 
development

Guignardia 
citricarpa

Fialho et al. 
(2010)

Saccharomyces 
cerevisiae

Ethyl acetate, 
2-methylbutan-1-ol, 
3-methylbutan-1-ol, 
2-phenylethanol, 
ethyloctanoate

Growth 
inhibition

G. citricarpa Verginer et al. 
(2010)

Trichoderma 
viride, 
Trichoderma 
harzianum

6-Pentyl-α-pyrone, 
β-1-3, glucanases

Phytotoxicity 
during 
seedling 
formation, 
seedling 
blight 
suppression

Fusarium 
oxysporum, 
Rhizoctonia 
solani (Israel), 
Pythium 
ultimum (USA)

El-Hasan and 
Buchenauer 
(2009)

Candida albicans Farnesol Inhibition of 
mycelial 
growth, 
apoptosis in 
altered 
morphology 
and reduced 
fitness

Aspergillus 
nidulans, 
Fusarium 
graminearum

Leveau and 
Preston (2008)

(continued)

Table 9.3 (continued)

9 Fungal Community for Novel Secondary Metabolites



262

Table 9.3 (continued)

Fungal antagonists Bioactive compounds Effects
Pathogenic 
fungi References

Irpex lacteus 5-Pentyl-2-furaldehyde Suppressed 
the growth

F. oxysporum f. 
sp. lycopersici, 
Bulmeria 
graminis, 
Fusarium 
oxysporum, 
Colletotrichum 
Fragaria, 
Botrytis cinerea

Koitabashi 
(2005)

Muscodor albus Ethyl acetate, propanoic 
acid, 2-methyl-methyl 
ester, ethanol, acetic 
acid, 2-methylpropyl 
ester, propanoic acid, 
2-methyl-butyl ester, 
1-butanol, 2-methyl

Inhibited the 
growth of 
fungi

Pythium 
ultimum, 
Phytophthora 
cinnamomi, 
Rhizoctonia 
solani, Ustilago 
hordei, 
Stagnospora 
nodorum, 
Sclerotinia 
sclerotiorum, 
Aspergillus 
fumigatus, 
Verticillium 
dahliae, 
Cercospora 
beticola, 
Xilaria sp.

Ezra et al. 
(2004)

Fig. 9.1 Structural formulas of some of the antifungal bioactive compounds produced by fungal 
community
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similar reasons (Radić and Štrukelj 2012). The various new secondary metabolites 
isolated and extracted from the endophytic fungus Alternaria sp. are 10-oxo-
10H-phenaleno [1,2,3-de] chromene-2-carboxylic acids, xanalteric acids I and II 
(Fig. 9.2), and 11 other chemical compounds (Firáková et al. 2007). This fungus 
was isolated from the mangrove plant Sonneratia alba and exhibited weak antibac-
terial activity against Staphylococcus aureus (Debbab et al. 2010). The broad anti-
microbial activity against several resistant pathogens with minimum inhibitory 
concentration (MIC) values in the range of 31.25–125  g/ml exhibited altenusin 
(Fig. 9.2) (Deshmukh et al. 2015).

Local people used Aspergillus sp. HAB10R12 for peptic ulcer and postpartum 
care was isolated from the root of Garcinia scortechinii (Ramasamy et al. 2010). 
The host plant G. scortechinii released xanthones that inhibit methicillin-resistant 
Staphylococcus aureus (MRSA) (Lin et al. 2017; Alurappa et al. 2018). Aspergillus 
sp. HAB10R12 showed antibacterial effect similar to that of the control antibiot-
ics against Micrococcus luteus and S. aureus and significantly superior to genta-
micin against Bacillus subtilis and Escherichia coli and cephalexin against B. 
subtilis (Ip et al. 2006). The naphthaquinone javanicin was highly functionalized 
(Fig. 9.2), with capable antibacterial activity, from an endophytic Chloridium sp. 
that was isolated from the surface-treated root tissues of Azadirachta indica 
(Kharwar et al. 2009).

Javanicin was active against E. coli and Bacillus sp. in the antibacterial test at a 
higher MIC value of 40 g/ml (Güllüce et al. 2003). This result could be an indicator 
of the selective antibacterial activity of javanicin, but it should be confirmed with 
additional testing (Rios and Recio 2005). The Colletotrichum gloeosporioides fun-
gus, isolated from the medicinal plant Vitex negundo L., and three different extracts 
of hexane, ethyl acetate, and methanol were screened for their antibacterial activity 

Fig. 9.2 Structural formulas of some of the antibacterial bioactive compounds produced by fungal 
community
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against methicillin-, penicillin-, and vancomycin-resistant clinical strains of S. 
aureus (Arivudainambi et al. 2011). The same endophytic fungus isolated from the 
stem of Artemisia mongolica showed on antimicrobial bioassay that colletotric acid 
(Fig. 9.2), isolated from the culture liquid, was inhibitory to the bacteria B. subtilis, 
S. aureus, and Sarcina lutea (Darabpour et al. 2012).

In the same way, the metabolites released from Colletotrichum sp., an endo-
phytic fungus isolated from Artemisia annua, had strong antimicrobial action 
against the bacteria B. subtilis, S. aureus, Sarcina lutea, and Pseudomonas sp. 
(Alurappa et al. 2018). Colletotrichum sp. was also isolated from another source 
such as healthy tissues of Lippia sidoides, a medicinal plant used as an antiseptic (de 
Siqueira et al. 2011). The endophytic fungus Colletotrichum gloeosporioides iso-
lated from Alternaria alternata, Guignardia biwelli, and Phomopsis archeri shows 
antimicrobial assay only on solid medium (Barbieri et al. 2014). The plant parts of 
Garcinia mangostana released metabolites similar to the activity of their particular 
hosts, and a screening of the antibacterial activity of endophytic fungi isolated from 
surface-pasteurized leaves and small branches of Garcinia mangostana was con-
ducted (Carvalho et al. 2016). The short branches of Taxus cuspidata inhabited an 
endophytic fungus Periconia sp., and secreted fusicoccane diterpenes, named peri-
conicins A and B (Fig. 9.2) (Zaiyou et al. 2017).

The ethyl acetate chemical was used for the purification of these compounds and 
was active in antibacterial assays (Septama and Panichayupakaranant 2015). 
Periconicin A compounds demonstrated significant antibacterial activity against B. 
subtilis, S. aureus, Klebsiella pneumoniae, and Salmonella typhimurium with MIC 
in the range of 3.12–12.5 g/ml, in contrast to gentamicin, with MIC in the range of 
1.56–12.5 g/ml. Periconicin B displayed different antibacterial activity against the 
same strains of bacteria with MIC in the range of 25–50 g/ml (Heitefuss 2011). 
Phomopsis sp., an endophytic fungus that secretes a metabolite known as phomop-
sichalasin represents the first cytochalasin-type compound with a three-ring system 
replacing the cytochalasin macrolide ring (Fig. 9.2).

Disk diffusion assays against B. subtilis (12-mm zone of inhibition) and S. aureus 
(8-mm zone of inhibition) showed antimicrobial activity by the secreted metabolites 
(Clay 1988). Phomol, known as a novel antibiotic, was isolated from the fermenta-
tion broth of Phomopsis sp. strain E02018, which secreted a novel antibiotic known 
as phomol secreted by fermentation broth in the course of a screening of endophytic 
fungi from the medicinal plant Erythrina (Cowan 1999) (Fig.  9.2). However, it 
showed moderate antibacterial activity against Arthrobacter citreus, 
Corynebacterium insidiosum, and Pseudomonas fluorescens in the serial dilution 
assay and was not active against E. coli or B. subtilis (Munaganti et  al. 2016). 
Helvolic acid is a significant component that exhibited the strongest antibacterial 
activity against E. coli, B. subtilis, S. aureus, and S. haemolyticus, with MIC values 
of 3.13, 3.13, 50, and 6.25 g/ml, respectively, which was isolated from the endo-
phytic fungus Pichia guilliermondii and evaluated by microdilution colorimetric 
activity (Gómez-Rivera et al. 2018).

Panax notoginseng, a herbal plant inhabiting the PRE-5 strain and which is iden-
tified as Trichoderma ovalisporum, secreted koninginin A, (E)-2,3-dihydroxypropyl 
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octadec-9-enoate, shikimic acid, cytosine ribonucleoside, and a compound consid-
ered to be adenine ribonucleoside from the culture broth (Fig. 9.2). Also, strain 
PRE-5 showed antibacterial activity against S. aureus, B. cereus, M. luteus, and E. 
coli (Dang et al. 2010).The culture extracts of the endophytic fungus Xylaria sp. 
YX-28, which is isolated from Ginkgo biloba L., was identified as 7-amino-4- 
methylcoumarin (Liu et al. 2008; Karaman et al. 2003). Determination of the anti-
microbial activity of this chemical compound was observed by MICs and the 
agar-well diffusion method. The fungal community displayed strong antibacterial 
activity against pathogenic bacteria by all the secondary metabolites (Table 9.4).

9.6  Novel Approach to Obtaining Novel Bioactive Secondary 
Metabolites

Mutation, genetic manipulation, and cultural condition optimisation can improve 
the production of metabolites quantitatively and qualitatively (Hu et al. 2008). For 
the discovery of new metabolites and their biosynthetic pathways, the mutational 
approach is useful (Li and Vederas 2009).The generation of distinct phenotypes 
after analysis of mutants results from random mutagenesis, which is a powerful 
methodology to identify the essential factors for biological processes (Fiehn et al. 
2000). For basic research and practical applications this self-assured genetic method 
is very important (Eisenstein 1990). A particularly increased sequence allowed by 
NGS techniques reduced the costs, thus qualifying the genomes of the mutant to be 
sequenced to identify affected genes (Meldrum et al. 2011).

Mutation identification strategies through whole-genome sequencing have been 
used for several model organisms, such as Neurospora crassa (Baird et al. 2008; 
Borkovich et al. 2004), with the premise that it is a efficient and rapid means to 
discover the mutations that are responsible for specific phenotypes (Letai et  al. 
1992). For survival, fungal communities must adapt to environmental stress, and a 
deeper understanding of the regulation and evolution of fungal stress response sys-
tems may lead to improved novel antifungal drugs and technologies (Frey-Klett 
et al. 2011).

Infrequently, the observation of a metabolic profile under standard fermentation 
does not reflect the number of anticipated biosynthesis genes of microorganisms, in 
that some loci remain silent (Knight et al. 2003). Because a reservoir of potentially 
bioactive compounds represents cryptic gene clusters, cryptic natural products strat-
egies have been designed by triggering the biosynthetic pathways (Scherlach and 
Hertweck 2009). The transcription factors that mediated the fungal response to 
environmental cues such as nutrient availability, pH, light, and both biotic and abi-
otic stress are regulated by their secondary metabolites (Reverberi et al. 2010). To 
collect novel metabolites, the metabolic pathways of fungi are changed by the fer-
mentation pathway (Papagianni 2004). By the addition of chromatin-modulating 
agents such as histone deacetylase or DNA methyl transferase inhibitors to fungal 
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cultures, epigenetic remodeling of fungal secondary metabolites can be achieved 
(Deepika et  al. 2016). In Cladosporium cladosporioides, the production of new 
biomolecules enhanced chemical diversity, with the advantage that this technique 
does not require strain-dependent genetic manipulation and can be applied to any 
fungal strain (De la Rosa-García et al. 2018; Spina et al. 2018). Because of the com-
plexity of microbial extracts, advanced analytical methods such as mass spectrom-
etry and metabolomics are fundamental to detect and identify coculture-induced 
metabolites (Dettmer et al. 2007).

The nanospray desorption electrospray ionisation (n-DESI) combination and 
imaging mass spectrometry (IMS) have led to the monitoring of metabolite produc-
tion from live microbial colonies within bacterial communities, thus identifying 
mass spectral molecular networking when different species coexist (Stasulli and 
Shank 2016). With a peptidogenomic approach the combination of IMS provides 
insight into the inter-kingdom interaction between Pseudomonas aeruginosa and 
Aspergillus fumigatus at a molecular level, thus allowing the visualisation and iden-
tification of metabolites secreted by these microorganisms as grown on agar (Moree 
et al. 2012).

9.7  Conclusion and Future Prospects

Fungal communities are very diverse and abundant in the environment, and thus 
they are a versatile reservoir of metabolites with new structures and new bioactivi-
ties that can be of potential use as leading compounds to manufacture new modern 
medicines. Sample collection and fungal cultivation methods in other environments 
such as terrestrial soil and freshwater and marine areas are very difficult: more fungi 
have been cultivated from these environments. A potential source for natural bioac-
tive compound or secondary metabolites is provided by these fungal communities 
rather than a new drug to be extracted. Secondary metabolites extracted from the 
fungal communities of plant inhabitants with broad bioactivities, such as antifungal, 
antibacterial, anticancer, antiviral, anti-larval settlement, and cytotoxic activity, 
have been featured in the literature. In the natural ecosystem these bioactive com-
pounds not only help any environmental fungus to defend against predators, but also 
have the potential of becoming treatments for human diseases and probes for new 
biological targets. This chapter indicates that study of the community of fungi char-
acterized by their bioactive metabolites is underway, which is of increased impor-
tance as there is an urgent need for new drugs to overcome emerging and 
drug-resistant diseases.
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Chapter 10
Industrially Important Pigments 
from Different Groups of Fungi

Ashok Kumar, Srishti Prajapati, Nikhil, Smriti Nandan, 
and Trisha Guha Neogi

10.1  Introduction

The production of pigments from natural origins has become substantial across the 
world because of the adverse outcomes of using synthetic colorants. Various plant 
part materials such as roots, bark, leaves, berries, seeds, twigs, branches, tubers, and 
nut hulls are capable of producing a wide range of colors with various moderations 
that can be used for dyeing yarns and in textile industries. Also, when wreathed 
properly, these natural dyes are fast, efficient, and resist fading from exposure to 
light. Many companies have decided to utilize these natural pigments from plant 
and animal sources. The use of these pigment products in the food industry, textile 
industry, pharmaceuticals, and cosmetics has increased exponentially.

The application of natural dyes is widely used as a colorant agent. Over the 
decades, several active metabolites have been discovered from distinct natural 
sources such as microorganisms, insects, animals, and higher plants. Because of 
their chemo-organotrophic property, the microorganism is the most likely group 
that generates metabolites possessing the readiest industrial application, and micro-
organisms also have a high growth rate, producing a large amount of biomass in a 
short period of time (Dufosse 2006). Many synthetic dyes have been found lethal 
and dangerous to human health. For reasons of safety, only limited dyestuffs have 
been acceptable for use in the food industry in many nations. However, as compared 
to microbial pigments, these additives have several drawbacks such as low water 
solubility, instability, and unavailability part of the year for industrial applications 
(Gunasekaran and Poorniammal 2008; Mendez et al. 2011; Yadav et al. 2017).

Pigments also are known as colorants that have water- and oil-insoluble natural 
as well as synthetic compounds that divulge color to substances such as textiles, 
paper, or plastics. Pigments change the color of reflected or transmitted light as the 
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result of wavelength selective absorption. Because pigments are insoluble in nature, 
they are applied as finely ground solid particles mixed with a liquid and not as solu-
tions. They are not affected physically or chemically by the substrate in which they 
are incorporated. A variety of fungi species including Aspergillus sydowii, 
Aspergillus aureolas, Aspergillus keveii, Penicillium flavigenum, Lecanicillium 
aphanocladii, Penicillium chermesinum, Epicoccum nigrum, and Fusarium spp. 
produce various characteristic pigments (da Costa Souza et al. 2016).

Generally, dark brown or black pigments occur widely in fungi. Drechslera spp. 
produces hydroxyanthraquinones [e.g., helminthosporin (maroon, brown), cate-
narin (red), cynodontin (bronze), and tritisporin (red-brown)] pigment molecules. In 
some fungi, both hyphae and conidia are densely pigmented, as in the Dematiaceae 
family (Alternaria, Curvularia, Drechslera) (Margalith 1992). Health conscious-
ness has prompted the choice of these natural colorants over synthetic colorants in 
the foods, cosmetics, textiles, and pharma industries. The natural pigments may be 
present in large quantity but only a few are available in sufficient quantities for 
industrial production. Production of these natural pigments from microorganisms is 
advantageous over other methods because microorganisms have a short life cycle 
and multiply, which results in high productivity (Lauro 1991; Kim et al. 1999).

Natural colorant production from microorganisms has advantages compared 
with their counterparts extracted from plants or animals because they do not exhibit 
the problem of seasonal availability and are often more stable and soluble 
(Gunasekaran and Poorniammal 2008). The synthesis of colorants by plant species 
is slower than that by microorganisms and algae because the fermentation processes 
are inherently faster and more productive than other chemical processes (Velmurugan 
et al. 2010). Food industries from Europe and the US have already obtained natural 
colorants from microorganisms because of their advantages such as stability, large- 
scale production, high growth rate, high throughput, and wide range of colors and 
also their biological activities, such as antimicrobial, antioxidant, and anticancer 
properties (Pangestuti and Kim 2011; Teixeira et al. 2012; Tuli et al. 2014). The 
microorganisms produce a diversity of bio-compounds, such as carotenoids, mela-
nins, flavins, quinones, monascines, violaceins, phycocyanins, and indigo (Mapari 
et al. 2009; Dufossé et al. 2005).

Among the microorganisms, fungi are essential as colorant producers. 
Filamentous fungi have proved to be useful because of their ability to produce pri-
mary and secondary metabolites such as peptides, enzymes, organic acids, heterolo-
gous proteins, antibiotics, and pigments (Rana et  al. 2018b; Suman et  al. 2016; 
Yadav 2018; Radzio and Kück 1997; Hajjaj et al. 1998). The successful industrial 
production of β-carotene by Blakeslea trispora is the best example, whereas other 
sources are also present, such as Mucor circinelloides (a zygomycete fungus) and 
Phycomyces blakesleeanus (Mapari et al. 2006). Pigments such as cynodontin, hel-
minthosporin, catenarin, chrysophanol, tritisporin, and erythroglaucin are isolated 
from the fungal species Eurotium spp., Fusarium spp., Curvularia lunata, and 
Drechslera (Rana et al. 2018a; Yadav et al. 2018).

Various strains of Penicillium oxalicum produce an extracellular metabolite 
anthraquinone, which is red. Some non-carotenoid pigments possess a broader 
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range of color than the limited color range of carotenoid. These pigments are solu-
ble in water and do not require any chemical modification, use of carriers, and sta-
bilizer during dispersion in foods. Extracellular red pigments are isolated in large 
amounts from Penicillium marneffei, and one of these pigments was identified as 
monascorubramine, the red pigment produced from Monascus (Mapari et al. 2005). 
Microorganisms are noted as being a significant source of naturally occurring pig-
ments. Among all the microorganisms, fungi showed a wide range of fascinating 
colors. However, until recently, several fungi have remained unexplored for color 
production, possibly because of their association with aflatoxins, mycotoxins, and 
other toxic compounds that are harmful for humans.

The increasing urge in society for natural ingredients has compelled biotech-
nologists to explore novel means and sources for the biotechnological synthesis of 
food colorants. In this regard, exploring fungal chemical diversity is worthwhile for 
the identification of novel pigments. The screening approach for water-soluble pig-
ments, which is partially based upon chemotaxonomy, would provide a base for the 
construction of cell factories to produce natural pigments in the near future. If sub-
stantial toxicological testing is carried out, fungal pigments could be accepted for 
current consumption as a food and textile colorant.

Extracts of Monascus purpureus have produced the pigments monascorubrin, 
rubropunctatin, and citrinin as mycotoxins. The crude filtrates can be used in the 
textile industry; however, additional pigment purification is required for food and 
pharmaceutical applications (Lopes et al. 2013). Until now, only a few species were 
described for pigment production because such pigments were used as a chemo-
taxonomic tool. The yellow pigments sorbicillin and xanthocillins isolated from the 
species Penicillium chrysogenum were reported (Mapari et  al. 2009), and chrys-
ogenin was also reported as a yellow pigment produced by this fungus (Asilonu 
et al. 2000). Fusarium graminearum produces rubrofusarin and aurofusarin, a red-
dish pigment. This chapter covers different genera of fungi that produce color pig-
ments with various industrial applications using eco-friendly and cost-effective 
technology.

10.2  Fungal Pigments

Pigments produced by fungi are the secondary metabolite molecules. These mole-
cules are used commercially on a large scale made possible in the same way as 
antibiotics are mass produced from fungi by deep-tank fermentation. The produc-
tion of colors from fungal sources is done under controlled experimentation on a 
mass-scale basis using a wide variety of substrates (Sudha et al. 2014). Using fila-
mentous fungi cultured on different agro-industrial by-products has proved to be an 
alternative way to obtain pigments (Lopes et al. 2013). Fungi are an essential source 
of pigment production because some fungi species are abundant in producing stable 
colorants (Nagia and El-Mohamedy 2007). Some important genera including 
Aspergillus, Penicillium, Epicoccum, Lecanicillium, and Fusarium spp. are useful 
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for producing various colors. Monascus purpureus, commonly known as red mold, 
has been used for food and medicines (Wang and Lin 2007). The pigments of 
Penicillium spp. have been studied extensively, and many yellow- red compounds 
based on the phenalenone structure have been reported (Bachmann et  al. 1986) 
(Fig. 10.1).

Some fungi produce pigments that belong to the aromatic polyketide groups, 
such as melanins, quinines (Dufossé et al. 2005; Caro et al. 2012), anthraquinone, 
flavins, ankaflavin, and naphthoquinone (Dufosse 2006). Fungi have a broad range 
of biological activities of pharmaceutical properties and are considered to provide a 
high benefit to humans (Zhang et al. 2004). The use of microbial pigments has ben-
efits including easy and fast growth in inexpensive culture media, different color 
shades independent of weather conditions, and various industrial applications (Venil 
and Lakshmanaperumalsamy 2009).

Because of the increasing costs of pollution by raw materials, and the complexity 
of synthetic material and its products, natural compounds are becoming important. 
Colorants occurring naturally have antimicrobial properties, are less allergenic, and 
are very stable, so these are being used instead of synthetic agents (Mehrabian et al. 
2000). Moreover, synthetic dyes have environmentally hazardous effects and thus 
must be replaced by eco-friendly natural dyes (Sewekow 1988; Velmurugan et al. 
2010). The ascomycetes fungi species possess an extraordinary color range of pig-
ments in the red and yellow spectra, and these fungal pigments are comparable to 
existing natural food colorants as a new source for food coloring (Mapari et  al. 
2006). Many researchers have isolated different genera of fungi to study the produc-
tion of various pigments (Table 10.1).

During the growth period, fungi such as Trichoderma, Fusarium, Penicillium, 
and Aspergillus produce pigments in the form of intermediate metabolites (Atalla 
et al. 2011). Secondary metabolites produced by fungal pigments can be classified 

Fig. 10.1 Color of Monascus purpureus and Penicillium purpurogenum on agar plates
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Table 10.1 Fungi producing various types of pigments

Fungi Pigments References

Epicoccum nigrum Carotenoids Gribanovski-Sassu and 
Foppen (1967)

Epicoccum nigrum Flavonoids Soptica and Bahrim (2005)
Epicoccum nigrum Polyketides Shu et al. (1997)
Penicillium chermesinum Azaphilones Huang et al. (2011)
Penicillium flavigenum Anthraquinones and yellow 

polyketides
Frisvad and Samson 
(2004)

Fusarium moniliforme Anthraquinones Premalatha et al. (2012)
Fusarium verticillioides Anthraquinones Boonyapranai et al. (2008)
Lecanicillium aphanocladii 
(CML2970)

Mycotoxin Souza et al. (2016)

Epicoccum nigrum 
(CML2971)

Orevactaene Souza et al. (2016)

Penicillium flavigenum 
(CML2965)

Dihydrotichodimerol Souza et al. (2016)

Talaromyces amestolkiae Azaphilone Yilmaz et al. (2012)
Fusarium graminearum Diacetoxyscirpenol, Fusarenone X 

and neosolaniol
Nielsen and Smedsgaard 
(2003)

Monascus purpureus Monascorubrin and Rubropunctatin Rasmussen et al. (2011)
Neurospora crassa Neurosporaxanthin Aasen and Jensen (1965)
Neurospora sitophila Neurosporaxanthin Luque et al. (2012)
Neurospora intermedia 
(PTCC 5291)

Mixture of carotenoids Khiabani et al. (2011)

Cordyceps unilateralis Naphtoquinone Unagul et al. (2005)
Ashbya gossypi Riboflavin Santos et al. (2005)
Monascus spp. Rubropunctatin Blanc et al. (1994)
Rhodotorula spp. Torularhodin Sakaki et al. (2000)
Blakeslea trispora β-Carotene Lampila et al. (1985)
Fusarium sporotrichioides β-Carotene Jones et al. (2004)
Auricularia auricula Melanin Sun et al. (2016)
Talaromyces verruculosus Red pigment Chadni et al. (2017)
Stemphylium lycopersici Anthraquinone Li et al. (2017)
Fusarium sp. JN158 Benzoquinone Zheng et al. (2017)
Monascus anka GIM 3.592 Azaphilone Chen et al. (2015)
Fusarium fujikuroi Bikaverin Lale and Gadre (2016)
Chlorociboria aeruginosa Quinones Hinsch et al. (2015)
Grifola frondosa β-Carotene Smith et al. (2015)
Fusarium moniliforme Naphtoquinone Pradeep and Pradeep 

(2013)
Monascus purpureus Azaphilone Seyedin et al. (2015)
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chemically as carotenoids and polyketides, in which polyketides are composed of 
tetraketides and octoketides with eight C2 units that contribute to the polyketide 
chain. Anthraquinone, hydroxyanthraquinones, naphthoquinone, and azaphilone 
represent classes possessing an array in color, and this rational approach is signifi-
cantly safe for fungal cell factories of polyketide pigments for other industrially 
important uses(Mapari et al. 2009, 2010).

The class of quinones belonging to the anthraquinone family consists of several 
hundred compounds that vary in the nature and position of substituent groups (Liu 
et al. 2008). Anthraquinone has had a significant role in dyestuff industries for a 
long time. Several fungi including Trichoderma, Aspergillus, and Fusarium are 
used to isolate anthraquinone compounds through biotechnological techniques, 
most of which produce a mixture of anthraquinone pigments (Hobson and Wales 
1998; Durán et  al. 2002). Hydroxyanthraquinone is derived from anthraquinone 
when one hydrogen atom replaced by a hydroxyl group. Some filamentous fungi 
species can produce hydroxyanthraquinone compounds by the polyketide pathway 
for use as food colorants and dyestuffs (Caro et al. 2012).

Napthoquinones are significant in the preparation of dyes, with a full color range 
between orange, yellow, and brown. The fungal pigment naphthoquinones have a 
wide range of biological activities and occur extensively in species of Fusarium 
(Mendentsev and Akimenko 1998; Babula et al. 2009). Azaphilones, another group 
of fungal metabolites that is produced by the genus Monascus, have similar molecu-
lar structures as well as similar chemical properties (Dufosse 2009). Monascus 
fungi are well known to produce six primary pigments of polyketide origin, classi-
fied into three groups based on color: yellow, monascin and ankaflavin; orange, 
monascorubrin and rubropunctatin; and red, monascorubramine and rubropun-
tamine (Sweeny et al. 1981) (Fig. 10.2). Monascus pigments are sensitive to heat, 
fade with exposure to light, are not stable at pH ranging from 2 to 10, and have low 
water solubility. Their stability is affected by various factors including acidity, tem-
perature, light, oxygen, water activity, and time. When these pigments react with 
amino group-containing compounds in the medium such as protein, amino acids, 
and nucleic acids, they convert into water-soluble pigments (Dufosse 2009). The 
fungal species Epicoccum nigrum has been identified showing the production of 
various secondary metabolites including pigments such as carotenoids (Gribanovski- 
Sassu and Foppen 1967), flavonoids (Soptica and Bahrim 2005), and polyketides 
(Shu et al. 1997), of red, orange, and yellow hues.

Consequently, Epicoccum nigrum should be considered as a potential source of 
pigments (Mapari et al. 2008). Penicillium chermesinum (ZH4-E2), isolated from 
mangroves, is reported as a producer of new azaphilones (chermesinones). 
Penicillium flavigenum belongs to the section chrysogena, known to have strains 
capable of producing anthraquinones and other yellow polyketides (Frisvad and 
Samson 2004). Moreover, the two species P. chrysogenum and P. flavigenum are 
reported to produce the antibiotic xanthocillin (Frisvad and Samson 2004). Some 
species of Aspergillus, such as A. glaucus, A. cristatus, and A. repens, have been 
reported as possible sources of pigments.
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Yellow and red hydroxyanthraquinoid pigments such as emodin and physicion 
(yellow), questin and erythroglaucin (yellow to orange-brown), and catenarin and 
rubrocistin (red) are reported (Caro et al. 2012). Extract of Lecanicillium aphano-
cladii (CML2970) produced the pigment oosporein (2,5-dihydroxybenzoquinone), 
which has mycotoxin properties when extracted initially from the basidiomycete 
Oospora colorans (Kogl and Van Wessem 1944). Oosporein has also been found in 
other fungi such as Chaetomium cupreum, Verticillium palliate, Beauveria spp., and 
Chaetomium trilaterale (Luo et al. 2015; Mao et al. 2010; Nagaoka et al. 2004). 
Apart from that, this compound has significant biological activities including inhi-
bition of growth in plants and phytotoxic effects (Cole et al. 1974). Also, oosporein 
has shown antifungal activity against Phytophthora infestans (Nagaoka et al. 2004). 
Pythium ultimum, Botrytis cinerea, and Rhizoctonia solani have the potential to 
inhibit the proliferation of tumor cell lines (Mao et al. 2010).

10.3  Industrial Application of Fungal Pigment

The increasing urge in society for natural ingredients has compelled biotechnolo-
gists to explore novel means and sources for the synthesis of food colorants. For 
antioxidant and antimicrobial products, the food industry is facing a severe 

Fig. 10.2 Monascus spp. produces six major pigments with different colors
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challenge, and these products are considered as beneficiary to human health, which 
reduces the consumption of synthetic chemical preservatives (Vendruscolo et  al. 
2013). A variety of fungi species obtained from soil niches produces natural colo-
rants with various applications in industry. These colorants are used as additives, 
color intensifiers, and antioxidants in the food industry and as textile dyes in the 
textile industry. Moreover, anthraquinones are also used in manufacturing cloth that 
contains antimicrobial properties.

Pigments have a wide range of colors and some are water soluble. These proper-
ties are responsible for the production, isolation, and characterization of many com-
pounds (Durán et  al. 2002). At present, the role and use of these pigments are 
increasing dramatically. It would be hard to find any industry wherein the use of 
these pigments does not play any significant role. To discover those pigments that 
have the caliber for long-lasting utilization as well as being environmentally safe is 
a big challenge for the food industry. Artists’ colors are pigments that are spread on 
a surface suspended in a suitable medium, such as oil. When the pigments exist in 
the form of dispersions, this could result in the formation of mass coloration for 
textile fibers, polymers, and rubber.

Monascus was first discovered and used as a natural food colorant in Chinese 
medicine in the Asian region, although the first classification of Monascus strains 
was performed in other countries (Hamano and Kilikian 2006; Srianta et al. 2014). 
Monascus purpureus produces a red pigment that shows antimicrobial activity 
whereas the extract of M. purpureus was found to be 81% as effective compared 
with the antibiotic ciprofloxacin (Kumar et  al. 2012). AUMC 5705, a strain of 
Monascus, manifested a high production of butyric acid, pyran, and fatty acids hav-
ing anticancer activity, whereas AUMC 4066 has a significant role in the food, phar-
maceutical, and other industries (Moharram et al. 2012). The presence of mycotoxins, 
for example, citrinin, in some species, has certainly limited the utilization of 
Monascus in food by safety concerns. Meanwhile, during the past 20 years, research-
ers have demonstrated several molecular pathways and have been trying to inhibit 
the effect and production of citrinin, thus developing strains incapable of co- 
producing the citrinin (Wang et al. 2004; Pisareva et al. 2005; Xu et al. 2009).

The biosynthesis of polyketides in several fungi has not been studied in detail at 
a genetic level. There is still controversy, and the reasons behind those genes respon-
sible for pigment production in Monascus are still unclear. However, only a few 
genes have been reported, such as the MpigE gene, in Monascus when it was ana-
lyzed for pigment biosynthesis. The complementation, disruption, and overexpres-
sion of the MpigE gene had specific effects on pigment biosynthesis, whereas in a 
fermentation medium the citrinin effects fall exponentially with overexpression of 
MpigE (Liu et al. 2014).

Monascus spp. have been used as food and medicine for more than 1000 years 
(Wang and Lin 2007). In China, these fungi have been used for centuries to enhance 
the color and flavor of foods and have also been used medicinally for several dis-
eases related to vascular and digestive health. Red yeast rice, which has cholesterol- 
lowering properties, is broadly used as a food supplement in Western countries. Red 
yeast rice attains the property of lowering cholesterol from the inhibitor monacolin 
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K. In the fungus Monascus, ankaflavine and monascine are yellow pigments, rubro-
punctatine and monascorubrine are orange, monascorubramin is red, and rubro-
punctamine and monascorubramine are purple pigments (Blanc et al. 1994).

Sclerotiorin, an aldose reductase inhibitor having a secondary metabolite iso-
lated from Penicillium sclerotiorum, is used in several pharmaceutical applications. 
Large-scale production in liquid culture of Penicillium sclerotiorum isolated from 
Serrado Cipo National Park soil led to the isolation of pencolide, sclerotiorin, and 
isochromophilone. Some of these compounds, such as pencolide and sclerotiorin, 
demonstrated antimicrobial activity against gram-positive bacteria (Salmonella 
typhimurium, Streptococcus pyogenes, Staphylococcus aureus), gram-negative bac-
teria (Escherichia coli), and yeast (Candida albicans). Antibacterial activity against 
S. aureus is shown by isochromophilone (Lucas et al. 2007). Table 10.2 lists fungi 
that produce various colors, with their pigments, molecular formula, and 
applications.

Pigments have all-around features to give credence to their usefulness in a vari-
ety of mediums. Some pigments, such as carotenoids and betanins, contain liable 
hydrogen that shows decolorization as the result of oxidation, which results in their 
insensitivity to light, heat, and oxygen. During storage and processing, such proper-
ties can reduce the robustness of color additives (Mapari et al. 2005). These pig-
ments are produced mainly in the cell-bounded state, although some methods have 
been patented to make water-soluble pigments. In monascorubrine or rubropuncta-
tine, the replaceable oxygen is substituted by the nitrogen of the amino group of 
various compounds such as amino acids, peptides, and proteins, with the color 
change from orange to purple as the basic principle.

Pigment stability is affected by acidity, temperature, light, oxygen, water activ-
ity, and time. With the addition of these pigments, sausages or canned pate remained 
stable for 3 months of storage at 4 °C, and their stability ranged from 92% C to 98% 
C. (Fabre et al. 1993). Compounds such as anthraquinone, isolated from Fusarium 
oxysporum, are used as natural dyes in dying wool (Nagia and El-Mohamedy 2007). 
Moreover, the refined and purified form of pigment isolated from Penicillium pur-
purogenum can be used as a natural dye for cotton fabrics and also has antimicrobial 
activity with good scope for future industries (Velmurugan et al. 2009). These pig-
ments are also used for medicinal purposes in textiles because of the antibacterial 
properties (Poorniammal et al. 2013). Fungi are the most ideal and versatile model 
organisms for research on industrial fermentation as well as natural phenomena 
(Schuster and Schmoll 2012).

10.4  Conclusion and Future Prospects

The indiscriminate use of synthetic dyes for coloration has created harmful effects 
on living organisms, including human beings, and also caused environmental pollu-
tion. Thus, there is a crucial need to identify natural pigment-producing sources for 
safe colorants. Fungi may have potential in the production of pigments to be used 
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for industrial and biotechnological applications. Production of fungal pigments pro-
vides natural coloration without creating harmful effects on entering the environ-
ment, a safer alternative use to synthetic colorants. Different genera of fungi produce 
a variety of pigments including carotenoids, flavonoids, polyketides, azaphilones, 
anthraquinones, mycotoxin, and orevactaene for important uses in antimicrobials, 
food colorants, textile dyeing, anticancer activities, food additives, antioxidants, 
and pharmaceuticals. The natural dyes are easily degradable and also cause no det-
rimental environmental effects. With the help of biotechnological tools, current 
advances in the genomic knowledge of fungal species can lead to developing new 
antifungal drug targets and desired pigments of pharmaceutical importance. The 
design and development of new antifungal compounds include such benefits for 
human health as polyketides and statins with fewer side effects. Generally, the criti-
cal use of soil filamentous fungi provides an industrially important source of bio-
mass and various valuable products such as pigments, enzymes, and organic acids. 
Several studies have focused on factors that stimulate pigment production in fila-
mentous and soil fungi. However, these studies have considered optimization of 
pigment production at a larger scale and potential regulation of different colors of 
dyes. Thus, substrate, bioreactor design, and cultivation conditions need to be devel-
oped and also optimized to control the process for pigments and other desired 
products.
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11.1  Introduction

Endophytic fungi are a diverse group of microorganisms that live asymptomatically 
in different tissues of living plants (Jia et al. 2016). Despite being important compo-
nents of plant microhabitat (Jia et al. 2016), endophytic fungi are increasingly pres-
ent in drug discovery programs mainly due to their capability to produce a diversity 
of secondary metabolites with pharmacological properties. These fungi may help 
the host plant in defense against attacking microorganisms, predators, and pests and 
in return receive their nutrition (Strobel and Daisy 2003; Kaul et al. 2012). From the 
pharmacological applications perspective, endophytic fungi were reported to pro-
duce novel antibacterial, antifungal, antiviral, anti-inflammatory, antitumor, antima-
larial, and other bioactive compounds (Nisa et al. 2015; Suman et al. 2016).

According to Strobel and Daisy (2003), Strobel et al. (2004), and Yu et al. (2010), 
several reasonable plant selection strategies should be followed:

 1. Plants growing in areas of great biodiversity also have the prospect of housing 
larger diversity of endophytes.

C. R. de Carvalho · C. L. Zani 
Química de Produtos Naturais Bioativos, Rene Rachou Institute, Fiocruz,  
Belo Horizonte, MG, Brazil 

M. C. Ferreira · S. S. Amorim · J. C. S. de Assis · L. H. Rosa (*) 
Department of Microbiology, Federal University of Minas Gerais,  
Belo Horizonte, MG, Brazil
e-mail: lhrosa@icb.ufmg.br 

R. H. da Silva Florindo 
Department of Microbiology, Federal University of Minas Gerais,  
Belo Horizonte, MG, Brazil 

Núcleo de Pesquisas em Ciências Biológicas, Federal University of Ouro Preto,  
Ouro Preto, MG, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14846-1_11&domain=pdf
mailto:lhrosa@icb.ufmg.br


304

 2. Plants growing in special habitats, especially those in deteriorated ecological 
environment, and possessing special capabilities for survival should also be 
selected for study. People may learn that the power of plants living in such envi-
ronment may result from the presence of endophytes.

 3. Plants surrounded by pathogen-infected plants but showing no symptoms are 
more likely to lodge endophytes possessing antimicrobial natural products than 
other plants.

 4. Plants that have been exploited for human use as traditional medicines in some 
place should be considered for study.

 5. Plants which occupied a certain ancient land mass are also more likely to lodge 
endophytes with active natural products than other plants.

The World Health Organization (WHO) defines medicinal plants as “any plant 
which in one or more of its organs contains substances that can be used for thera-
peutic purposes or which are precursors for chemo pharmaceutical semi synthesis.” 
They are frequently selected for screening bioactive compounds (Kaul et al. 2012). 
The research on endophytic fungi increased considerably after the discovery of 
taxol, one of the most anticancer agents used in the clinic. This diterpenoid can be 
produced by the endophytic fungi Taxomyces andreanae (Strobel 2003), and, from 
their host, the medicinal plant Taxus brevifolia (Stierle et al. 1995). Therefore, from 
this discovery, it was evidenced that the endophytic fungi might produce the same 
metabolites of their host plant. However, it is important to highlight that endophytic 
fungi are also producers of bioactive secondary metabolites that are different from 
those produced by their hosts and can be of interest for medicinal applications.

11.2  Antibacterial Compounds

Radic and Strukelj (2012) comment on WHO’s constant battle against the ever-
increasing multidrug resistance of human pathogenic bacteria, highlighting the 
urgent need for new alternatives to the currently available broad-spectrum antibiot-
ics. According to Boucher et al. (2009), antibiotic resistance has increased in Gram-
positive and Gram-negative pathogens, which represent a serious threat to treatment 
of infectious diseases. Boucher et al. (2009) also highlight the decrease in the devel-
opment of new antibacterial drugs and reported a decrease of 75% in new antibacte-
rial drugs over the past 25 years that has been approved by the US Food and Drug 
Administration (FDA).

The secondary metabolites produced by endophytes associated with medicinal 
plants may have great potential to treat various infectious diseases. These antimicro-
bial metabolites are low-molecular-weight organic natural substances active at low 
concentrations against microorganisms (Guo et al. 2000). The first step toward the 
discovery of new antibacterial compounds produced by endophytic fungi involves 
the detection of antibiotic activity in fungal culture extracts. However, in some 
cases, single compounds present in the crude extract do not show significant 
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 antibacterial activity by themselves but can act synergistically in the extract. The 
identification and structure elucidation of the active metabolite is essential for the 
development of new antibiotics (Radic and Strukelj 2012). The secondary metabo-
lites with antibacterial activity, isolated from endophytes of medicinal plants 
between 2008 and 2018, are listed in the Table 11.1.

Liu et al. (2008) suggest that Xylaria sp. YX-28, an endophytic fungus isolated 
from the medicinal plant Ginkgo biloba L., discloses a potent antimicrobial activity 
and could be a valuable source of new antimicrobial drugs. From Xylaria sp. YX-28 
fermentation broth 7-amino-4-methylcoumarin (4) showed strong antibacterial 
activities in  vitro against Staphylococcus aureus, Escherichia coli, Salmonella 
typhi, Salmonella typhimurium, Salmonella enteritidis, Aeromonas hydrophila, 
Yersinia sp., Vibrio anguillarum, Shigella sp., and Vibrio parahaemolyticus with 
values of minimal inhibitory concentrations (MIC) ranging from 36 to 142.6 μM. Wu 
et al. (2018) also studied the endophytic fungi associated with Ginkgo biloba L. and 
obtained Penicillium cataractum SYPF 7131, which generated an extract with 
strong antibacterial activity. From the crude extract of P. cataractum SYPF 7131 
was isolated the compounds penicimenolidyu A (67), penicimenolidyu B (68), and 
rasfonin (69) that showed antibacterial activity, mainly, toward S. aureus.

A broad diversity of endophytic fungi occurs in the rhizome of Paris polyphylla 
var. yunnanensis, a medicinal plant used in traditional Chinese medicine. Some 
studies have explored the biotechnological potential of these fungi in search of new 
antimicrobials. Among them, Zhao et al. (2010a) report for the first time the antimi-
crobial metabolites from the endophytic fungus Pichia guilliermondii Ppf9, recov-
ered from rhizome of this plant. From the crude extract of P. guilliermondii Ppf9 
were obtained three steroids and one nordammarane triterpenoid, ergosta-5,7,22-
trienol (14), 5α,8α-epidioxyergosta-6,22-dien-3β-ol (15), and ergosta-7,22-dien-
3β,5α,6β-triol (16) and helvolic acid (17), which showed activity against 
Agrobacterium tumefaciens, Escherichia coli, Pseudomonas lachrymans, Ralstonia 
solanacearum, Xanthomonas vesicatoria, Bacillus subtilis, Staphylococcus aureus, 
and Staphylococcus haemolyticus. The helvolic acid (17) should be the main anti-
microbial component in endophytic fungus P. guilliermondii Ppf9 and exhibited the 
strongest antibacterial activity against A. tumefaciens, E. coli, P. lachrymans, R. 
solanacearum, X. vesicatoria, B. subtilis, S. aureus, and S. haemolyticus with MIC 
values of 2.7, 5.5, 5.5, 2.7, 2.7, 5.5, 87.9, and 10.9 μM, respectively. In addition, 
from the rhizome of the same plant was obtained the endophytic fungus Gliomastix 
murorum Ppf8, which produced ergosta-5,7,22-trien-3-ol (33) and 2,3-dihydro-5-
hydroxy-α,α-dimethyl-2-benzofuranmethanol (34), compounds that were isolated 
and shown to be active against A. tumefaciens, E. coli, Pseudomonas lachrymans, 
R. solanacearum, X. vesicatoria, B. subtilis, and S. haemolyticus with the MIC val-
ues ranging from 252 to 504  μM.  The IC50 values of 34 ranged from 140.3 to 
366.4 μM (Zhao et al. 2012a). Two sterols and one fatty acid were obtained from the 
light petroleum extract of the fungus Fusarium sp. Ppf4, obtained from the rhi-
zomes of P. polyphylla var. yunnanensis: 5α, 8α-epidioxyergosta-6, 22-dien-3β-ol 
(5) and ergosta-8(9), 22-diene-3β, 5α, 6β, 7α-tetraol (6) and butanedioic acid (7). 
They were assayed against B. subtilis, S. haemolyticus, A. tumefaciens, E. coli, 
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P. lachrymans, and X. vesicatoria, disclosing MIC values in the range 349.6 μM to 
4.47 mM and IC50 values from 202 μM to 1.5 mM (Huang et al. 2009).

Li et  al. (2015a) analyzed secondary metabolites from the endophytic fungus 
Diaporthe sp. LG23 recovered from leaves of Mahonia fortunei (Berberidaceae), a 
medicinal plant used in China as a potent antimicrobial medicine for treating pneu-
moconiosis, psoriasis, and cough. From Diaporthe sp. LG23, a new lanosterol 
derivative, 19-norlanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol (43) and six 
biosynthetically related known ergosterol derivatives were identified. Compound 
19-norlanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol (43), an unusual fungus-
derived 19-nor-lanostane tetracyclic triterpenoid, exhibited pronounced antibacte-
rial efficacy against both Gram-positive and Gram-negative bacteria, especially 
against clinical isolates of Streptococcus pyogenes, Pseudomonas aeruginosa, and 
S. aureus, exhibiting MIC values between 0.2 and 10.9 μM.

Wang et al. (2016a) evaluated the antibacterial potential of Colletotrichum sp. 
BS4 using the OSMAC (One Strain Many Compounds) approach. This fungus was 
recovered from leaves of the medicinal plant Buxus sinica, and after fractionation of 
its extracts, three new compounds were isolated and identified: colletotrichones A 
− C (45–47). Compound colletotrichone A (45) showed pronounced activity against 
E. coli and B. subtilis, with MIC values of 0.3 and 2.9 μM, respectively, values 
comparable to that of standard antibiotics. Additionally, colletotrichone C (47) was 
quite active against the environmental strain of E. coli, with MIC value of 
15.7 μM. Furthermore, colletotrichone B (46) was as active as streptomycin against 
the clinically relevant RG2 bacterium S. aureus, with MIC value of 
15.8 μM. Moreover, the authors suggest that Colletotrichum sp. BS4 provides some 
form of azaphilone-mediated chemical defense to the host plant against invading 
specialist and generalist bacteria.

Perveen et al. (2017) characterized the secondary metabolites of the endophytic 
fungus Epicoccum nigrum, recovered from leaves of medicinal plant Ferula sum-
bul. Compound di-(2-ethylhexyl) phthalate (69) was purified, and its antibacterial 
potential was evaluated against B. subtilis, S. aureus, and E. coli, showing promis-
ing activity with MIC values 8, 3.8, and 14.9 μM, respectively.

11.3  Antifungal Compounds

According to Vallabhaneni et al. (2015), fungal diseases are a considerable cause of 
morbidity and mortality globally. The treatment of mycoses has several limitations, 
such as undesirable side effects, narrow activity spectrum, and a small number of 
targets and fungal resistance, all of which corroborates the urgent need to develop 
new therapeutic strategies (Fuentefria et al. 2018). As for medicine, the agriculture 
needs novel antifungal compounds against phytopathogenic fungi, which are 
responsible for great losses in the world agricultural production. The secondary 
metabolites produced by endophytes associated with medicinal plants may be used 
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for the fungal treatment. The most important antifungal secondary metabolites from 
endophytic fungi recovered from medicinal plants, characterized between 2012 and 
2018, are listed in Table 11.2 (compounds 1–116).

Carvalho et al. (2018) reported the antifungal activity of the compounds cytocha-
lasin H (117) and J (118) isolated from crude extracts of the endophytic fungi 
Diaporthe miriciae, UFMGCB 7719 and UFMGCB 6350, recovered from Copaifera 
pubiflora and Melocactus ernestii, respectively, in Brazil. The compounds were 
tested against the fungal plant pathogens Colletotrichum fragariae, C. gloeospori-
oides, C. acutatum, Botrytis cinerea, Fusarium oxysporum, Phomopsis obscurans, 
and P. viticola using microdilution broth assays. Cytochalasins H and J showed 
minor mycelial growth stimulation (hormesis) of B. cinerea, C. acutatum, C. fragar-
iae, C. gloeosporioides, and F. oxysporum. The cytochalasins at a concentration of 
at 300 μmol L−1 caused, after 144 h, 73% and 36% growth inhibition of P. obscurans, 
respectively, and inhibited the growth of P. viticola by 61% and 58%, respectively. 
Chapla et al. (2014b) also isolated cytochalasin H (119) from the endophytic fungi 
Phomopsis sp. obtained from leaves of Senna spectabilis. The compound demon-
strated antifungal activity against Cladosporium cladosporioides and C. sphaero-
spermum inhibiting the fungal growth at 10 and 25 μg/spot, respectively.

Zhang et al. (2014b) reported another cytochalasin from the ethyl acetate extract 
of the endophyte Xylaria sp. XC-16, recovered from leaves of Toona sinensis. The 
bioassay-guided fractionation resulted in the isolation of new cytochalasins Z27 (55) 
and Z28 (56), along with three known compounds seco-cytochalasin E (57), cytocha-
lasin Z18 (58), and cytochalasin E (59). The anti-phytopathogenic activity of the 
cytochalsins was evaluated on Fusarium solani, Gibberella saubinetti, B. cinerea, 
and Alternaria solani. Compound 56 showed fungicidal effect against G. saubinetti 
with MIC of 12.5 μM, a value comparable with that of the positive control hymexa-
zol (MIC of 25 μM). In contrast, other compounds displayed MIC values greater 
than 50 μM against the tested pathogens (Zhang et al. 2014b).

Phomopsis sp. YM 355364, a fungi obtained from Aconitum carmichaeli grow-
ing in China (Wu et  al. 2013a), produces the new steroids (14β,22E)-9,14-
dihydroxyergosta-4,7,22-triene-3,6-dione (106) and (5α,6β,15β,22E)-6-ethoxy 
−5,15-dihydroxyergosta-7,22-dien-3-one (107), along with those of calvasterols A 
and B (108–109) and ganodermaside D (110). Compound 106 exhibited antifungal 
activities against Candida albicans, Hormodendrum compactum, and Aspergillus 
niger, with MIC values of 145.3, 145.3, and 290.5 μM. Compound 107 showed 
weak inhibitory activity against C. albicans and Fusarium avenaceum with MIC of 
270.8 μM. Compounds 108 and 110 showed moderate inhibitory activities against 
F. avenaceum at 151.4 and 156.6 μM, respectively. Compound 108 exhibited weak 
antifungal activities against Pyricularia oryzae and Trichophyton gypseum with 
MIC values of 302.9 and 605.8 μM, respectively (Wu et al. 2013a).

Xiao et al. (2013) isolated 80 endophytic fungi from healthy leaves and small 
branches of Ginkgo biloba (China). All the fungi were tested in an antifungal bioas-
say against Fusarium graminearum, Sclerotinia sclerotiorum, and Phytophthora 
capsici by the agar diffusion method. Fifteen endophytes were active against at least 
one of the tested fungi, and Chaetomium globosum CDW7 yielded the most 
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 bioactive culture which, after threefold dilution, completely inhibited in vitro the 
mycelial growth and conidia germination of F. graminearum. The in vivo protective 
efficacy of the diluted broth was 54.9% and its curative efficacy 48.8%. Bioassay-
guided fractionation resulted in the isolation of 1,2-benzenedicarboxaldehyde-3,4,5-
trihydroxy-6-methyl (flavipin) (102) that inhibited the growth of the plant-pathogenic 
fungi F. graminearum (EC50 value of 3.7  μM), S. sclerotiorum (EC50 value of 
18.8 μM), Rhizoctonia solani (EC50 value of 13.4 μM), P. capsici (EC50 value of 
14.1 μM), and Alternaria solani (EC50 value of 63 μM) (Xiao et al. 2013). In a more 
recent work, Zhao et al. (2017) reinvestigated Chaetomium globosum CDW7 and 
reported the isolation of six known compounds, namely, chaetoglobosins A–E and 
Vb. Chaetoglobosins A (7) and D (8) exhibited inhibitory activity against S. sclero-
tiorum with IC50 values of 0.6 and 1.2 μM, respectively (Zhao et al. 2017).

Zhang et al. (2013) studied the endophytic fungi Chaetomium globosum, associ-
ated with G. biloba growing in China, and isolated the alkaloids chaetoglobosins A, 
C, D, E, G, and R (120–125) along with ergosterol (126), allantoin (127), and uracil 
(128). Chaetoglobosins A, C, D, E, G, and R (120–125) showed significant growth 
inhibitory activity against the phytopathogenic fungi Rhizopus stolonifer and 
Coniothyrium diplodiella at a concentration of 20 μg/disc. Cao et al. (2016) reported 
that Nodulisporium sp. A2, associated with leaves of G. biloba, as producer of the 
sporothriolide (129), a metabolite produced by the fungus, showed potent antifun-
gal activity against Rhizoctonia solani and Sclerotinia sclerotiorum and inhibits 
conidium germination of Magnaporthe oryzae in vitro and in vivo.

Xu et al. (2016) described a new monoterpene lactone (3R,4R,6R,7S)-7-hydroxyl-
3,7-dimethyl-oxabicyclo[3.3.1]nonan-2-one (25) and the known compound (3R, 
4R)-3-(7-methylcyclohexenyl)-propanoic acid (26) from Pestalotiopsis foedan, an 
endophyte fungus obtained from the branch of Bruguiera sexangula occurring in 
China. Both compounds exhibited strong antifungal activities against B. cinerea and 
Phytophthora nicotianae with MIC values of 3.1 and 6.3 μg  mL−1, respectively, 
values close to the MIC of the antifungal drug control ketoconazole (3.1 μg mL−1). 
Compound 26 also displayed modest antifungal activity against C. albicans, with a 
MIC value of 50 μg mL−1 (Xu et al. 2016).

Bioassay-guided fractionation of the endophytic fungus Phoma sp., isolated from 
roots of Eleusine coracana, resulted in the identification of four antifungal com-
pounds, 3-hydroxy-4-(3-hydroxyphenyl)-2-quinolonemonohydrate (viridicatol alka-
loid) (130), 3-acetyl-5-sec-butyltetramicacid (tenuazonic acid) (131), alternariol 
(132), and alternariol-5-O-methyl ether or djalonensone(3,7-dihydroxy-9-methoxy-1-
methyl-6H-dibenzo[b,d]pyran-6-one) (133). The antifungal activity of the compounds 
130–133 was evaluated using the agar disc diffusion method (20 μl of 5 mg mL−1) and 
produced growth inhibition zones of 1.8, 2, 1.5, and 1.5 mm, respectively (Mousa 
et al. 2015). The extract of the endophytic Seimatosporium sp., isolated from Salsola 
oppositifolia (Spain), was further purified to give pure new compound, 5,6,7,8-tetra-
hydro-1,5-dihydroxy-3-methoxy-8-oxonaphthalene-2-carbaldehyde (seimatorone) 
(134), and the known compounds, 1-(2,6-dihydroxyphenyl)-3-hydroxybutan-1-one 
(135),  1-(2,6-dihydroxyphenyl)butan-1-one (136), 1-(2-hydroxy-6-methoxyphenyl)
butan-1-one (137), 5-hydroxy-2-methyl-4H-chromen-4-one (138), 2,3-dihydro-5-hy-
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droxy-2-methyl-4H-chromen-4-one (139), 8-methoxynaphthalen-1-ol (140), nodu-
lisporin A (141), nodulisporin B (142), and daldinol (143). Seimatorone demonstrated 
antifungal activity against Microbotryum violaceum in the agar diffusion assay with 
partial inhibition, once there was some growth within the zone of inhibition (Hussain 
et al. 2015).

Chapla et al. (2014a) characterized the new compound, 2-phenylethyl 1H-indol-
3-yl-acetate (144), and seven known compounds, uracil (145), cyclo-(S*-Pro-S*-
Tyr) (146), cyclo-(S*-Pro-S*-Val) (147), 2(2-aminophenyl)-acetic acid (148), 
2(4-hydroxyphenyl)acetic acid (149), 4-hydroxybenzamide (150), and 
2-(2-hydroxyphenyl)-acetic acid (151), from the endophytic fungus Colletotrichum 
gloeosporioides associated with leaves of Michelia champaca (Magnoliaceae) 
growing in São Paulo, Brazil. All compounds were evaluated for their antifungal 
activities against two phytopathogenic fungi, C. cladosporioides and C. sphaero-
spermum, using the Thin-layer chromatography (TLC) diffusion method at 100 μg/
spot and nystatin at 1 μg/spot as positive control. Compounds 144, 150, and 151 
exhibited activity against both fungal species, while compound 149 was highly 
active against C. cladosporioides but showed only moderate activity on C. sphaero-
spermum. When compounds 144, 149, 150, and 151 were evaluated at doses rang-
ing from 1 to 100 μg/spot, 144 exhibited potent antifungal activity at 5 μg, which 
was similar to that observed for the positive control (nystatin), demonstrating the 
potential of 144 as an antifungal agent. Compounds 149, 150, and 151 exhibited 
moderate antifungal activity at 25 μg (Chapla et al. 2014a).

The ethyl acetate extract of endophytic fungus Coniothyrium sp., isolated from 
Salsola oppositifolia (Canary Islands), afforded the known hydroxyanthraquinones, 
pachybasin (152), 1,7-dihydroxy-3-methyl-9,10-anthraquinone (153), phomarin 
(154), and 1-hydroxy-3-hydroxymethyl-9,10-anthraquinone (155), together with 
four new derivatives having a tetralone moiety, namely, coniothyrinones A–D (156–
159). When tested in the agar diffusion assay (0.05 mg) on Microbotryum viola-
ceum, B. cinerea, and Septoria tritici, compounds 154, 155, and 156 showed strong 
antifungal activity against M. violaceum (10, 8, and 7.5 mm of the zone of inhibi-
tion, respectively) and B. cinerea (9, 9, and 12.5  mm of the zone of inhibition, 
respectively) (Sun et al. 2013).

Huang et al. (2015) obtained five new guaiane sesquiterpenes 49–53 from the 
culture broth of the endophytic fungus Xylaria sp. YM 311647, which were isolated 
from Azadirachta indica. The compounds were evaluated against the pathogenic 
fungi C. albicans, A. niger, P. oryzae, F. avenaceum, and Hormodendrum compac-
tum by means of the broth microdilution method. All compounds exhibited moder-
ate or weak antifungal activities against P. oryzae and H. compactum with MIC 
values varying from 111 to 939.9 μM, with compound 52 being the most active 
against P. oryzae. Compounds 51 and 52 exhibited moderate antifungal activities 
against H. compactum with MIC value 221.9 μM. In addition, compounds 52 and 
53 showed the most potent antifungal activities against C. albicans with MIC values 
of 110.96 and 111.7 μM, respectively. Compound 51 showed moderate inhibitory 
activities against C. albicans, A. niger, and H. compactum with MIC value of 
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221.9 μM. None of the compounds showed activity against F. avenaceum (Huang 
et al. 2015).

Two new tetranorlabdane diterpenoids, named botryosphaerin G (160) and H 
(161), along with seven known tetranorlabdane diterpenes, 13,14,15,16-tetranorlabd-
7-en-19,6β:12,17-diolide (162), botryosphaerin A (163), 3a,10b-dimethyl-
1,2,3,3a,5a,7,10b,10c-octahydro-5,8-dioxa-acephenanthrylene-4,9-dione (164), 
acrostalidic acid (165), botryosphaerin B (166), LL-Z1271β (167), and acrostalic 
acid (168), were isolated from the endophytic fungus Botryosphaeria sp. P483 asso-
ciated with the Chinese medicinal plant Huperzia serrata. Compounds 161 and 162 
showed antifungal activity against phytopathogenic fungi Gaeumannomyces grami-
nis, Fusarium moniliforme, F. solani, F. oxysporum, and Pyricularia oryzae using 
the disk diffusion method at 100 μg/disk (Chen et al. 2015).

Pereira et al. (2015) demonstrated that the crude extract of the endophytic fungus 
Mycosphaerella sp. UFMGCB 2032, recovered from Eugenia bimarginata (Brazil), 
exhibited outstanding antifungal activity against Cryptococcus neoformans and C. 
gattii, with MIC values of 31.2 μg mL−1 and 7.8 μg mL−1, respectively. The fraction-
ation of this extract afforded two eicosanoic acids, (2S,3R,4R)-(E)-2-amino-3,4-
dihydroxy-2-(hydroxymethyl)-14-oxoeicos-6,12-dienoic acid (47) with MIC values 
of 3.3 and 6.3 μM against C. neoformans and C. gattii, respectively, and myriocin 
(48), with MIC values of 1.24 μM to both targets. Nalli et al. (2015) reported the 
identification of four new bioactive metabolites, phialomustin A–D (169–172), iso-
lated from the endophytic fungus Phialophora mustea associated with the corms of 
Crocus sativus. Compounds 171 and 172 showed antifungal activities against C. 
albicans with IC50 values of 14.3 and 73.6 μM, respectively. Compound 171 was 
active against A. fumigatus, A. parasiticus, and A. flavus with IC50 values of 60.6, 
35.2, and 84.4 μM, respectively (Nalli et al. 2015).

The chemical evaluation of the crude extract of the endophytic Guignardia sp., 
from Euphorbia sieboldiana leaves, led to the isolation of nine new meroterpenes, 
guignardones J-L (173–175), 13-hydroxylated guignardone A (176), 12-hydroxyl-
ated guignardone A (177), 17-hydroxylated guignardone A (178), guignardones 
M-O (179–181), and a new dioxolanone derivative, 10-hydroxylated guignardia-
none C (182), together with seven known compounds, guignardones A-C (183–
185), guignardones G and H (186–187), guignardic acid (188), and palmarumycin 
C11 (189). The compounds were evaluated for their inhibitory effects alone and 
with fluconazole on the growth and biofilms of C. albicans. At 6.3 μg mL−1 concen-
tration, combined with 0.031 μg  mL−1 of fluconazole, compounds 180 and 188 
showed inhibition on the growth of C. albicans with fractional inhibitory concentra-
tion index values of 0.2 and 0.2, respectively (Li et al. 2015b).

Altenusin (190), isoochracinic acid (191), altenuic acid (192), and 2,5-dimethyl-
7-hydroxychromone (193) were isolated from Alternaria alternata associated with 
Terminalia chebula (Thailand). All compounds were investigated for their activity 
on Candida albicans using disc diffusion assay. Altenusin (190) exhibited weak 
activity against C. albicans with an unclear inhibition zone diameter of 8.3 mm (at 
the concentration of 256 μg/disc). In the presence of a subinhibitory concentration 
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of ketoconazole at 0.1 μg mL−1, altenusin produced a clear inhibition zone diameter 
of 19.2 mm (Phaopongthai et al. 2013).

Li et al. (2014) obtained six new isocoumarin derivatives, exserolides A–F (194–
199), together with four known metabolites, monocerin (200), 11-hydroxy-
monocerin (201), (12R)–(202), and (12S)-12-hydroxymonocerin (203). They were 
isolated from the ethyl acetate (EtOAc) extract of endophytic fungus Exserohilum 
sp., recovered from the leaves of Acer truncatum (China). All the compounds were 
tested for their antifungal activity against the plant pathogenic fungus F. oxysporum. 
Compounds 196 and 202 displayed MIC value of 20 μg mL−1, while the positive 
control amphotericin B showed a MIC value of 0.6 μg mL−1 (Li et al. 2014). Two 
compounds named cis-4-acetoxyoxymellein (204) and 8-deoxy-6-hydroxy-cis-
4-acetoxyoxymellein (205) were identified by Hussain et al. (2014) from an uniden-
tified endophytic fungus isolated from Meliotus dentatus. Both compounds showed 
significant antifungal effect toward M. violaceum, B. cinerea, and Septoria tritici 
when tested in the agar diffusion assay.

Carvalho et al. (2016) reported the identification of the compounds (−)-5-meth-
ylmellein (206) and (−)-(3R)-8-hydroxy-6-methoxy-3,5-dimethyl-3,4-
dihydroisocoumarin (207) from the endophytic Biscogniauxia mediterranea 
EPU38CA associated with Echinacea purpurea (USA). The compounds were eval-
uated against plant pathogenic fungi at a dose of 300 μM, with the compound 206 
showing weak activity against P. obscurans, P. viticola, and F. oxysporum with 43.5, 
36, and 5% of inhibition, respectively. Using the same methodology, compound 207 
showed antifungal activity against B. cinerea (58%), P. viticola (50%), and P. 
obscurans (70%). B. mediterranea was also isolated from the plant Opuntia humi-
fusa (USA) by Silva-Hughes et al. (2015) and yielded (−)-5-methylmellein (208), a 
compound that displayed moderate antifungal activity against the phytopathogenic 
fungi P. obscurans (63.5% growth inhibition) and F. oxysporum (20.1%).

Kajula et al. (2016) identified three new epithiodiketopiperazine natural prod-
ucts, outovirin A–C (209–211), produced by the endophytic fungus Penicillium 
raciborskii isolated from Rhododendron tomentosum. The authors evaluated the 
antifungal activity of the compounds against F. oxysporum, B. cinerea, and 
Verticillium dahliae by microspectrophotometry using a dose-response growth inhi-
bition assay. Outovirin C inhibited growth of all fungal isolates at a low concentra-
tion of 0.4 mM, but a more significant growth inhibition was observed at the higher 
concentration of 0.8 mM. This compound was most active against B. cinerea (57% 
inhibition) and slightly less effective against V. dahliae (45% inhibition) (Kajula 
et al. 2016).

Four new compounds, murranofuran A (212), murranolide A (213), murrano-
pyrone (214), and murranoic acid A (215), along with six known metabolites, 
N-(2-hydroxy-6-methoxyphenyl)acetamide (216), curvularin (217), (S)-
dehydrocurvularin (218), pyrenolide A (219), modiolide A (220), and 8-hydroxy-
6-methoxy-3-methylisocoumarin (221), were identified from the Curvularia sp., 
an endophytic fungus isolated from Murraya koenigii (Bangladesh). The com-
pounds were subjected to motility, inhibitory, and zoosporicidal activity tests 
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against Phytophthora capsici at different concentration and time-course activities. 
The most noticeable zoospore motility-inhibitory activity was exhibited by pyre-
nolide A (219), where the highest activity (100%) was achieved at a very low 
concentration (0.5 μg mL−1) within a short time (30 min). Compounds 213, 214, 
217, 218, 220, and 221 exhibited zoospore motility impairment activity, but with 
IC50 values in the range 50–100 μg mL−1 (Mondol et al. 2017).

Silva et al. (2017a) described the isolation, structure, and antifungal activity of 
three new isoaigialones, A–C (222–224), along with aigialone (225) from the endo-
phytic fungus Phaeoacremonium sp. isolated from leaves of Senna spectabilis 
(Brazil). Using direct bioautography all the compounds were evaluated against C. 
cladosporioides and C. sphaerospermum. The compounds 223 and 225 exhibited 
antifungal activity, with a detection limit of 5  μg/spot, for both species of 
Cladosporium, while compound 224 displayed weak activity (detection limit >5 μg/
spot), with a detection limit of 25 μg/spot.

The compounds epicolactone (226) and epicoccolides A and B (227–228), 
together with seven known metabolites, were obtained from the endophytic fungus 
Epicoccum sp. CAFTBO isolated from Theobroma cacao. The compounds 226–
228 exhibited antifungal activity in the agar diffusion test against Pythium ultimum 
and Rhizoctonia solani with MIC values of 20–80 μg/disk (Talontsi et al. 2013).

11.4  Antiviral Compounds

Viral diseases are among the greatest concerns among the infectious diseases. WHO 
has released a list of priority diseases and pathogens for the year 2018 and among 
these diseases are Crimean-Congo hemorrhagic fever, Ebola, Zika, and Chikungunya 
virus (OPAS - OMS 2018). Thus, recent research attempts to identify antiviral com-
pounds to produce vaccines, aiming at an immunization of the population.

As already mentioned, endophytic fungi are a promising source of biologically 
active secondary metabolites with numerous applications, including the production 
of antiviral compounds (Pamphile et al. 2017). However, there had been few reports 
on antiviral metabolites from endophytic fungi, even though those found show 
promising results (Kaul et al. 2012). Zhang et al. (2011a, b) isolated from the inner 
shell of Aegiceras corniculatum the endophytic fungus Emericella sp. that can pro-
duce two isoindolone derivatives. These two substances showed moderate antiviral 
activity with IC50 of 42.1 and 62.1 μg mL−1, against influenza A (H1N1). Aegiceras 
corniculatum is a plant that grows in mangroves of tropical and subtropical regions. 
Species of Aegiceras are known to be used in the treatment of ulcers, liver damage, 
asthma, diabetes, and rheumatism and as an anti-inflammatory agent (Roome et al. 
2008).

Guo et al. (2000) isolated the endophytic Cytonaema sp. from tissues of Quercus 
sp., which was able to produce the cytonic acids A and B and described as having 
antiviral activity since they are inhibitors of human cytomegalovirus protease, with 
IC50 of 43 μM and 11 μM, respectively. Plants of this genus are used by indigenous 
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peoples in Canada for the treatment of diabetes and its complications (McCune and 
Johns 2002).

Hinnuloquinone is another antiviral compound that inhibits human immunodefi-
ciency virus type 1 protease (HIV-1) (Singh et al. 2004; Kumar et al. 2014). This 
compound had already been isolated from an endophytic fungus associated with the 
leaves of Quercus coccifera (Baker and Satish 2015). Quercus coccifera is used for 
wound healing in the villages of Yunt Mountain in Turkey (Ugurlu and Secmen 
2008).

Pullarin A is a compound produced by the endophytic Pullaria sp., which was 
reported to be associated with the leaves of Caulophyllum sp. grown in Thailand. 
This compound showed antiviral activity with IC50 of 3.3 μg mL−1 against herpes 
virus type 1 - HSV-1 (Isaka et al. 2007; Borges et al. 2009).

11.5  Antitumor Compounds

According to the WHO, the number of deaths caused by the diverse types of cancer 
in the world can reach 8.8 million people annually. Estimates indicate that 14 mil-
lion people develop cancer every year and by 2030 that number should reach 21 
million people (OPAS/OMS 2017). As a result, the search for new treatments has 
grown significantly throughout the world. The search of anticancer secondary 
metabolites produced by endophytic fungi associated with medicinal plants has 
been studied since the discovery of taxol, first isolated from the bark of Taxus brevi-
folia in 1971. Taxol has proven efficacy against prostate, ovarian, breast, and lung 
cancers (Zhao et al. 2010b; Manju et al. 2012). Interestingly, taxol was also found 
in Taxomyces andreanae, an endophytic fungus isolated from the bark of T. brevifo-
lia. Other studies demonstrated that taxol can be produced by endophytic fungi 
isolated from other plants (Pandi et al. 2011). Qiao et al. (2017), for example, iso-
lated the taxol from the endophytic fungus Aspergillus aculeatinus, isolated from 
the inner and outer bark of the plant Taxus chinensis var. mairei. The endophytic 
fungus Cladosporium sp., isolated from the leaves and stem of the Taxus baccata 
plant in the northern forest of Iran, was also able to produce taxol (Kasaei et al. 
2017). Taxol prevents tubulin molecules from depolymerizing during cell division 
processes. This happens because this compound inhibits cell replication and migra-
tion, stopping the cycle of division of mitosis in late phase G2 (Strobel and Daisy 
2003; Yang and Horwitz 2017).

Camptotheca acuminata is a plant native to central China and widely used in the 
popular medicine. This species is rich in camptothecin (Lin et al. 2007), an antican-
cer compound that acts on the enzyme topoisomerase I which is responsible for the 
relaxation or not of the DNA molecule during the processes of replication and tran-
scription (Kusari et al. 2009). It was later found that the endophytic fungus Fusarium 
solani, originating from the inner bark of this C. acuminata was also able to produce 
camptothecin (Kusari et al. 2012). Moreover, there are also reports of its production 
by other endophytic fungi associated with other plant species, for example, the 
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endophytic fungus Entrophospora infrequens isolated from the inner bark of 
Nothapodytes foetida syn. N. nimmoniana (Gowda et al. 2002; Puri et al. 2005). 
This plant, growing on the west coast of India, is used as anticancer, antimalarial, 
bactericidal, antioxidant, anti-inflammatory, and fungicidal, to treat anemia and 
HIV infections (Khan et al. 2013). Su et al. (2014) isolated camptothecin from the 
endophytic fungi Alternaria alternata, C. gloeosporioides, Fusarium nematophi-
lum, and Phomopsis vaccinia, all isolated from the leaves, twigs, and roots of C. 
cuminata. From this plant yet another endophytic fungus, Fusarium solani, also 
produces camptothecin (Ran et al. 2017).

Podophyllum hexandrum is a plant that lives in high altitudes and is native to 
alpine and subalpine areas of the Himalayas. It has been used since antiquity in 
traditional Indian and Chinese medicine to treat metabolic imbalance. More recently, 
its activity against monocytic leukemia, Hodgkin’s and non-Hodgkin’s lymphomas, 
bacterial and viral infections, venereal warts, rheumatoid arthralgia associated with 
limb numbness, and different types of cancer, such as brain, lung, and bladder, has 
been described (Chawla et al. 2005). Podophyllum hexandrum produces a substance 
called podophyllotoxin that is a precursor to the synthesis of three anticancer com-
pounds: etoposide, teniposide, and etoposide phosphate (You 2005). These com-
pounds inhibit DNA topoisomerase II and are used to treat cancer of the lung, 
testicles, and some leukemias, among others (Xu et al. 2009; Chandra 2012). Puri 
et al. (2006) isolated the endophytic fungus Trametes hirsuta from the rhizomes of 
P. hexandrum, which was able to produce podophyllotoxin under laboratory condi-
tions. It has also been isolated from the endophytic Fusarium oxysporum associated 
with the plant Juniperus recurva (Kour et al. 2008). Phialocephala fortini, an endo-
phytic fungus associated with Podophyllum peltatum, also produces this substance. 
In India, this plant is used in the treatment of snakebite, cancer, vermifuge, and 
ulcers (Eyberger et al. 2006; Silva et al. 2017b). Podophyllotoxin was also isolated 
from the endophytic Fusarium solani isolated from the root of the plant P. hexan-
drum (Nadeem 2012).

Ergoflavine is an anticancer compound isolated from the Indian medicinal plant 
Mimusops elengi (Kaul et al. 2012). All parts of this plant are known to have medici-
nal properties. The fruits are used for chronic dysentery and constipation; the flow-
ers relieve headaches and are used against ulcer; and the bark is used to increase 
fertility in women and also has activity against ulcer (Verekar et al. 2017). Deshmukh 
et al. (2009) isolated from the leaves of M. elengi an endophytic fungus that was 
shown to produce ergoflavine, significantly active against the proliferation of pan-
creatic, renal, and lung cancer cells.

Cytochalasins are a large group of secondary metabolites produced by various 
species of fungi, comprising about 60 different compounds. The first cytochalasins 
to be studied were A and B. They inhibit actin, sugar uptake, and blocks ion chan-
nels (Goietsenoven et al. 2011). Pongcharoen et al. (2006) isolated cytokinins pro-
duced by the endophytic fungus Eutypella scoparia associated with the plant 
Garcinia dulcis. In Thailand, G. dulcis leaves are used for the treatment of inflam-
mation in the lymphatic, mumps, and goiter ducts (Abu et al. 2015). Wagenaar et al. 
(2000) also report the production of cytochalasins by another endophytic fungi, 
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Rhinocladiella sp., isolated from Tripterygium wilfordii. This plant is endemic in 
southern China and used to treat immune and inflammatory diseases (OuYang et al. 
2007). Caetoglobesins are cytochlasin arrays, and many of them are toxic to human 
cancer cell lines. More than 40 have been identified and many of them are produced 
by fungi (Zhang et al. 2010). Caetoglobosin U, a secondary metabolite of the endo-
phytic fungus Chaetomium globosum, isolated from the medicinal plant Imperata 
cylindrica, used in the treatment of dysentery and urinary tract infections, was 
shown to display anticancer activity (Ding et  al. 2006; Krishnaiah et  al. 2009). 
Caetoglobesins C, E, and F, among others, were also isolated from this fungal spe-
cies, but this time isolated from the G. biloba plant (Li et al. 2014). The seeds of this 
plant are used for the treatment of asthma and cough and the leaves are used for 
heart problems and skin infections (Mahadevan and Park 2008).

Vincristine is another anticancer compound and acts by disrupting mitosis by 
binding to tubulin dimers, inhibiting the assembly of microtubules (Aly et al. 2010). 
Kumar et  al. (2013) isolated vinscritin from the culture of endophytic fungus 
Fusarium oxysporum, which was associated with the medicinal plant Catharanthus 
roseus. The roots of this plant are used to control blood pressure, and this character-
istic is related to the alkaloids present in it. Table 11.3 shows other anticancer com-
pounds isolated from endophytic fungi of medicinal plants in the last 8 years.

11.6  Acetylcholinesterase Inhibitors

Alzheimer’s disease (AD) is an age-related neurodegenerative disease with cogni-
tive and neuropsychiatric manifestations that result in progressive disability (Zhao 
and Tang 2002). According to Alzheimer’s Disease International (ADI), 47 million 
people lived with dementia in the world in 2016 and this number can increase to 
more than 131 million by 2050 as populations age. That can be related to the AD 
that lead to a progressive decline in cognitive function that is substantially increased 
among people aged 65 years or more (Prince et al. 2016).

Cholinesterase inhibitors are important substances recommended for the treat-
ment of cognitive deficits and associated behavioral abnormalities in patients with 
mild-to-moderate AD (Weinstock 1999; Ballard 2002). The cholinesterase inhibi-
tors can inactivate the enzyme acetylcholinesterase (AChE), preventing the inacti-
vation of acetylcholine (Ach) after its release from the neuron, increasing its ability 
to stimulate nicotinic and muscarinic receptors (Weinstock 1999; Zhao and Tang 
2002). There are no available treatments that stop or reverse the progression of the 
disease, fact that reinforces the importance of developing medicines that would at 
least slow the progression of the symptoms (Duthey 2013).

Oliveira et al. (2011) reported the AChE inhibition of (3R,4R)-3,4-dihydro-4,6-
dihydroxy-3-methyl-1-oxo-1H-isochromene-5-carboxylic acid produced by the fun-
gus Xylaria sp., isolated from the plant Piper aduncun with minimum amount 
required for inhibition of 3 μg compared with the galantamine used as positive con-
trol with minimum amount required for inhibition of 1  μg. Singh et  al. (2012) 
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screened endophytic fungi associated with Ricinus communis for its inhibitory activ-
ity on AChE. They found six active strains, and the best results were from the extract 
of the fungus Alternaria sp. with 78% of inhibition and an IC50 of 40 μg mL−1. Na 
et al. (2016) isolated the fungus Geomyces sp. from the plant Nerium indicum that 
showed high inhibitory activity with an IC50 value of 5.2 μg mL−1 that might be 
related to substances derived from vincamine produced by this fungus. Chapla et al. 
(2014a) identified six fungal isolates with inhibitory AChE activity recovered from 
the medicinal plant Michelia champaca, with the species C. gloeosporioides, 
Phomopsis stipata, and Xylaria sp. showing the highest activity.

Wang et al. (2016b) investigated the medicinal plant Huperzia serrata from the 
Jinggang Mountain region (China) for the presence of endophytic fungi with acetyl-
cholinesterase inhibitory activity. From the 247 strains isolated, 221 generated 
extracts with in vitro AChE inhibitory activity, with 4 of them, namely, Coletotrichum 
spp., Ascomycota spp., Sarcosomataceae spp., and Dothideomycetes spp. causing 
more than 80% inhibition. Dong et al. (2014) analyzed H. serrata from the Tianmu 
Mountains of Hangzhou (China) for endophytic fungi producing huperzine A 
(HupA), a substance produced by the plant itself and known for its high AChE 
inhibitory activity. They found that the fungus Trichoderma sp. seems to produce 
this substance, yielding an extract capable of inhibiting AChE by 81.9%. The fungi 
recorded for producing HupA and other potential substances are listed in the 
Table 11.4.

Table 11.4 Compounds with activity of AchE inhibition reported from endophytic fungi from 
medicinal plants.

Fungal endophyte 
taxa Host plant/Tissue Compouds isolated IC50 Reference

Chaetomium sp. Huperzia serrata 1. 3β-hydroxy-5,9-epoxy-
(22E,24R) -ergosta-7,22-dien-
6-one (C28H42O3)

– Yu et al. 
(2016)

Shiraia sp. Huperzia serrata/
leaves

2. Huperzine A (C15H18N2O) – Zhu et al. 
(2010)

Chaetomium 
globosum

Panax 
notoginseng/seed

3. Epicoccolide B (C18H14O8)
4. 3-Methoxyepicoccone

5.5 μM
–

Li et al. 
(2016a)

Alternaria 
alternata

Vinca 
rosea/branches

5. Altenuene (C5H16O6) – Bhagat 
et al. 
(2016)

Aspergillus 
versicolor

Huperzia 
serrata/leaves

6. Avertoxin B (C28H37O9) 14.9 μM Wang et al. 
(2016b)

Cladosporium 
cladosporioides

Huperzia 
serrata/leaves

7. Huperzine A (C15H18N2O) – Zhang 
et al. 
(2011)

Aspergillus 
terreus

Artemisia 
annua/stems

8. 16α-hydroxy-5-N-
acetylardeemin 
(C28H28N4O4Na)

58.3 μM Ge et al. 
(2010)

Bipolaris 
sorokiniana

Rhayza 
stricta/leaves

9. Bipolarisenol (C16H13O6) 223.1 mM Khan et al. 
(2015)
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11.7  Antioxidant Activity

Antioxidant substances protect cells from injury caused by free radicals produced 
by the natural metabolism during aerobic respiration (Yehye et  al. 2015). These 
radicals have an important physiological role but may cause toxic effects leading to 
degenerative diseases like cancer and Alzheimer’s disease (Kaul et al. 2012; Yehye 
et al. 2015). The antioxidant activity of endophytic fungi extracts might be related 
to the production of flavonoid and phenolic compounds, making them act as reduc-
ing agents and hydrogen donors due to their redox properties (Qiu et al. 2010; Khan 
et  al. 2017). Besides the uses in the pharmaceutical industry, the potent activity 
found in the endophytic extracts can be used as a natural antioxidant in the food 
industry (Nath et al. 2012; Rana et al. 2018a, b; Yadav et al. 2017). The importance 
of exploring new sources of effective antioxidants is related to the low number of 
antioxidants approved for clinical applications (Kaul et al. 2012).

The compound 1.1-diphenyl-2-picrylhydrazyl (DPPH) is a stable free radical 
widely accepted as a tool to analyze the antioxidant ability of extracts. When a sub-
stance with antioxidant activity interacts with DPPH, it transfers electrons or hydro-
gen atoms neutralizing its free radical character and causing changes in its color 
(Naik et  al. 2003). Using this method, Singh et  al. (2016) found phenolic com-
pounds with IC50 value of 22.5 μg mL−1 in the extract of the endophytic fungus 
Cladosporium velox, isolated from the medicinal plant Tinospora cordifolia.

Tejesvi et al. (2008) searched for antioxidant activity in endophytic Pestalotiopsis 
species associated with medicinal plants growing in southern India. They found 
three fungi with significant scavenging activity (over 80%): Pestalotiopsis theae 
(TA-37), isolated from the bark of the medicinal plant Terminalia arjuna, present-
ing an IC50 value of 14 μg mL−1; Pestalotiopsis sp. 3 (TA-60), isolated from the root 
of Terminalia arjuna with an IC50 value of 25 μg mL−1; and Pestalotiopsis virgatula, 
isolated from the bark of Terminalia chebula with an IC50 of 27 μg mL−1.

Nath et al. (2012) found four endophytic fungi with antioxidant activity occur-
ring in the medicinal plant Emblica officinalis. The fungus Phomopsis sp. isolated 
from the stem showed the most significant IC50 value of 17.4 μg mL−1, a value com-
parable with that of ascorbic acid (15 μg mL−1) used as positive control. In addition, 
the fungi identified as Diaporthe sp. and Xylaria sp., isolated from the root and stem 
of Epacris sp., were also considered active, with IC50 values in the range of 
18.9 μg mL−1–29.4 μg mL−1. The same group studied the fungi Cholletotrichum 
gloeosporoides, Penicillium sp., and Aspergillus awamori, all isolated from the 
plant Rauwolfia serpentina, for their ability to produce antioxidant compounds 
showing that A. awamori was most effective with extract disclosing the highest 
scavenging activity in the DPPH test (Nath et al. 2013).

Khiralla et al. (2015) investigated five Sudanese medicinal plants for endophytic 
fungi with potential antioxidant activity. Among 21 endophytes isolated, the fungus 
Aspergillus sp. from the seed of Trigonella foenum-graecium showed the most sig-
nificant results, with an IC50 value of 18.0 μg mL−1 in the DPPH assay. Jayanthi 
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et al. (2011) reported that a Phomopsis sp. isolated from the medicinal plant Mesua 
ferrea disclosed an IC50 value of 31.3 μg mL−1, while the positive control, ascorbic 
acid, showed an IC50 value of 11.1 μg mL−1.

Shukla et  al. (2012) showed that Paecilomyces variotti, one of the endophytic 
fungi isolated from the root of Ocimum sanctum, yielded an extract with IC50 value 
of 71.8 μg  mL−1 in the DPPH test and 110.9 μg  mL−1 for the scavenging of the 
hydroxyl radical. Yadav et al. (2014) disclosed the antioxidant activity and total phe-
nolic content (TPC) of endophytic fungi isolated from Eugenia jambolana. They 
found two potential fungi with scavenging activity higher than 80%, Chaetomium sp. 
that present the highest concentration of phenolic compounds among all isolates and 
Aspergillus sp. Other two techniques were used to measure the antioxidant activity of 
these fungi: hydrogen peroxide scavenging assay and reducing power assay, confirm-
ing the antioxidant potential of compounds produced by these fungi.

Bhagobaty and Joshi (2012) isolated endophytic fungi from plants growing in 
the “sacred forests” of India. They measured their antioxidant potential using DPPH 
and FRAP assays. The latter measures the UV absorbance of ferrous ions. The tests 
showed that the fungus Mortierella hyalina, isolated from the plant Osbeckia stel-
lata, has a good potential, with a FRAP value of 1.316 μM and a percentage of free 
radical scavenging activity of 79.7%. In these assays, the control substance ascorbic 
acid has a FRAP value of 2.000 μM and free radical scavenging activity of 64%.

Huang et  al. (2007) isolated bioactive fungi from the medicinal plant Nerium 
oleander and used the ABTS method to test the total antioxidant capacity of the 
fungi extracts. Most of the fungal strains (75%) showed moderate antioxidant 
capacities with values ranging from 20 to 50 μmol trolox/100 mL culture. The fun-
gus Chaetomium sp. presented the highest antioxidant capacity, that is, 151 μmol 
trolox/100 mL culture.

Srinivasan et al. (2010) evaluated the antioxidant property of the endophytic fun-
gus Phyllosticta sp. isolated from the leaves of Guazuma tomentosa using the DPPH 
and ABTS methods. The results showed the potential antioxidant of the fungus 
extract, that contains phenolic and flavonoid substances, with EC50 values of 
580 μg mL−1 for the DPPH radical test and 2030 μg mL−1 for the ABTS radical test.

Qiu et al. (2010) identified two flavonoid-producing endophytic fungi with anti-
oxidant activity in the twigs of G. biloba. Aspergillus nidulans and Aspergillus ory-
zae showed antioxidant activity on the hydroxyl radical scavenging activity test of 
34% and 58%, respectively. Substances from endophytic fungi isolated from medic-
inal plants that present antioxidant activity are listed in the Table 11.5.

11.8  Neglected Tropical Diseases

Neglected tropical diseases (NTDs) are a diverse group of infectious diseases caused 
by bacteria, parasites, protozoans, or viruses, which prevail especially in tropical 
and subtropical regions (Lenzi et al. 2018). According to reports published by World 
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Health Organization (WHO), the diseases of major concern are Chagas disease and 
visceral leishmaniasis (WHO 2017).

The frequency of drug-resistant parasites has greatly increased, and most treat-
ments involve highly toxic drugs. In addition, the chemotherapeutic agents used in 
patients with these diseases have lacked effectiveness. Thus, there is an urgent need 
to search for novel drugs from previously unexplored sources, including natural 
products, to combat the global health problems posed by parasitic infections 
(Martínez-Luis et al. 2011).

Historically, natural products are a good strategy when searching for new bioac-
tive compounds, they provide a basis for both design and synthesis of derivative 
compounds aiming at optimizing biological activity and minimizing side effects 
(Scotti et al. 2010; Schulze et al. 2015). The ongoing development of new antipara-
sitic agents is important to overcome the limitations related to the high toxicity of 
the drugs currently available for the treatment of diseases caused by tropical para-
sites (Croft et  al. 2006). Despite advances in the discovery and development of 
plant-derived drugs, NTDs continue to cause morbidity and mortality in hundreds 
of millions of people, especially in poor areas (Goupil and McKerrow 2014).

While endophytic fungi are an abundant and reliable source of metabolites with 
medicinal and agrochemical applications, they have been only scarcely explored as 
sources of antiparasitic agents (Martínez-Luis et  al. 2011). Because these fungal 
endophytes are promising sources of bioactive metabolites, they could be used to 
produce important antiparasitic compounds to treat NTDs such as trypanosomiasis, 
leishmaniasis, and malaria.

Table 11.5 Compounds with antioxidant activity reported from endophytic fungi from medicinal 
plants

Fungal endophyte Host plant/tissue Compounds isolated
IC50 
(DPPH) Reference

Pseudocercospora 
sp.

Elaeocarpus 
sylvestris/stems

1. Terreic acid (C7H6O4) 58.6 mM Pirihantini 
and Tachibana 
(2017)

Fusarium solani
Fusarium 
oxysporum
Fusarium 
proliferatum

Cajanus cajan/roots 2. Cajaninstilbene acid 
(C21H22O4)

- Zhao et al. 
(2012b)

Cephalosporium 
sp.

Trachelospermum 
jasminoides /leaves

3. Graphislactone A 
(C16H14O6)

9.6 mM Selim et al. 
(2014)

Chaetomium 
globosum

Panax notoginseng 
/seeds

4. Flavipin (C9H8O5)
5. Epicoccone (C9H8O5)
6. 3-Methoxyepicoccone 
(C10H9O6)
7. Epicoccolide A 
(C18H14O9)
8. Epicoccolide B 
(C18H14O8)

18.9 mM
58.6 mM
49.7 mM
13.9 mM
32.4 mM

Li et al. 
(2016a)
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11.8.1  Trypanosomiasis

Chagas disease (or American trypanosomiasis) is a parasitic illness that results 
from infection by the hemoflagellate protozoan Trypanosoma cruzi (T. cruzi). The 
transmission of Chagas disease occurs primarily through the bite of an infected 
triatomine bug on an individual. Triatomines are insects that usually belong to the 
genera Triatoma, Rhodnius, or Panstrongylus, which are commonly known as 
“barbeiros” in Brazil and “kissing bugs” in the United States, due to their prefer-
ence for biting the faces of sleeping people. These insect genera include more than 
140 species, of which 61 are endemic to Brazil (Costa and Peterson 2012). 
According to WHO, and in common with other neglected tropical diseases, 
“Chagas disease is a proxy for poverty and disadvantage: it affects populations 
with low visibility and little political voice, causes stigma and discrimination, is 
relatively neglected by researchers, and has a considerable impact on morbidity 
and mortality” (Coura and Dias 2009).

Approximately 7–eight million individuals have Chagas disease, and 50,000 new 
cases are diagnosed every year in Latin America, North America, and Europe. It is 
estimated that more than 90 million individuals are currently at risk of infection 
with the Chagas disease’s etiologic agent (Coura and Dias 2009; WHO 2014; 
Vazquez et al. 2015). The conventional treatment is based on benzimidazole (Bayer 
Health Care—Lampit®) and nifurtimox (Roche— Rochagan® or Radanil®), which 
were developed over 100 years ago. Both drugs have strong side effects, such as 
appetite loss, vomiting, polyneuropathy, and dermopathy. The long-term treatment 
required combined with the strong side effects contributes to frequent desistence 
(Guedes et al. 2011). Additionally, benzimidazole and nifurtimox are mostly effec-
tive for the blood forms in the acute phase and not so effective against the intracel-
lular forms in the chronic phase (Muelas-Serrano et al. 2002).

Human African trypanosomiasis (or sleeping sickness) is a fatal vector-borne 
parasitic disease caused by Trypanosoma brucei brucei transmitted by the tsetse fly 
(Glossina spp.). This neglected tropical disease occurs only in rural areas of sub-
Saharan Africa (Simarro et al. 2011). To date, only a few drugs have been approved 
for the treatment of human African trypanosomiasis. These include suramin, pent-
amidine, melarsoprol, eflornithine, and the combination of nifurtomox/eflorni-
thine. Most of the drugs are old, having been discovered in the 1940s and 1950s, 
and have adverse effects such as nausea, vomiting, fatigue, seizures, fever, diar-
rhea, hypoglycemia, abdominal cramping, peripheral neuropathy, hypertension, 
heart damage, and neutropenia on the patients (Jacobs et al. 2011). For the reasons 
describe above, mining and developing new trypanosomiasis drugs from natural 
products is crucial and essential because endophytic fungi offer a high number of 
natural products with diverse chemical structures and novel pharmacological 
mechanism of action.
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11.8.2  Leishmaniasis

Leishmaniasis is a group of human diseases caused by protozoan species of the 
genus Leishmania, which are prevalent in tropical and subtropical areas of the world. 
Brazil is among the ten countries affected by 90% of the cases worldwide of both 
cutaneous and visceral leishmaniasis (WHO 2010). More than one million people 
are being victimized by leishmaniasis worldwide, and reported fatalities are of 
around 30,000 annually (Kamhawi 2017). There are around 20 species of Leishmania 
(Trypanosomatidae), which can cause three variations of the leishmaniasis disease: 
cutaneous, mucocutaneous, or visceral leishmaniasis (Dawit et al. 2013).

Leishmania (Viannia) braziliensis is the main etiological agent of American teg-
umentary leishmaniasis and has the highest incidence in Brazil. This group of infec-
tious diseases has different clinical forms that are associated with the molecular 
diversity of the parasite and host immune response (Pereira et al. 2017). The vis-
ceral manifestation of the disease is usually caused by Leishmania donovani and 
Leishmania infantum, and it can affect internal body organs. It is also popularly 
known as kala-azar and can be fatal (Clem 2010).

There is no vaccine to control these diseases (Dawit et al. 2013). The current 
therapy consists of sodium stibugluconate (Pentosam®), meglumine antimonate 
(Glucantime®), miltefosine, amphotericin B, and paromomycin. The first drugs 
used for treatment were the antimonials. However, in the 1970s, the parasites started 
to show resistance to pentavalent sodium antimony gluconate, even at high doses, 
and as a result, these drugs were mostly abandoned. Miltefosine has replaced anti-
monials as a treatment in cases of resistance. However, it has also been associated 
with increasing resistance. Treatment with amphotericin B is effective, but it has 
highly nephrotoxic effects. The treatment can also be inhibited by cost, access, and 
difficulties in obtaining oral formulations of the drug (Hefnawy et al. 2017). Thus, 
there is a need for the discovery of new leads or scaffolds that can be used to develop 
less toxic drugs and alternative oral treatments (Prates et al. 2017).

11.8.3  Trypanocidal and Leishmanicidal Compounds 
from Endophytic Fungi

The major bioactive metabolites obtained from endophytic fungi associated with 
medicinal plants presenting trypanocidal and leishmanicidal activities are listed in 
Table 11.6. The fungi obtained from the medicinal plant Caesalpinia echinata, pop-
ularly known as Brazilwood, were tested against L. amazonensis and T. cruzi. The 
isolates from Fusarium sp., Nectria mauritiicola, and Xylaria sp. were able to 
inhibit L. amazonensis growth, and the isolate from Fusarium sp. was able to inhibit 
T. cruzi growth. The ethyl acetate (EtOAc) of Fusarium sp. showed the most prom-
ising result by inhibiting 92% of T. cruzi growth at a dose of 20 μg mL−1. The extract 
of Fusarium sp. was subjected to fractionation, which revealed beauvericin as the 
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active compound. While the crude extract of Fusarium sp. showed an IC50 of 
30 μg mL−1 (2) in the assay with T. cruzi forms expressing the β-galactosidase gene, 
beauvericin showed an IC50 value times smaller (1.9 μg mL−1, 2.4 μM) (1). The 
EtOAc extract from the culture of Nectria pseudotrichia was active against amasti-
gote-like forms of Leishmania (Leishmania) amazonensis showing an IC50 value of 
4.6  μg  mL−1 (2) (Campos et  al. 2015). Fractionation of Nectria pseudotrichia 
extracts yielded seven compounds, 10-acetyl trichoderonic acid A (3), 6′-acetoxy-
piliformic acid (4), 5′,6′-dehydropiliformic acid (5), piliformic acid (6), hydro-
heptelidic acid (7), xylaric acid D (8), and cytochalasin D (9). Compounds 3, 4, and 
7 were the most active against Leishmania (Viannia) braziliensis, with IC50 values 
of 21.4, 28.3, and 24.8 μM, respectively, and showed low toxicity to Vero and THP-1 
cells (Cota et al. 2018).

When screening for natural products with antiparasitic activity, the endophytic 
fungus, Microthyriaceae sp., was isolated from aboveground tissue of the tropical 
medicinal grass Paspalum conjugatum (Poaceae) in Panama. Cultivation followed 
by bioassay-guided chromatographic fractionation of the extract led to the isolation 
of the new polyketide integrasone B (9) and two known mycotoxins, sterigmatocys-
tin (10) and secosterigmatocystin (11). Sterigmatocystin was found to be the main 
antiparasitic compound in the extract of fermentation broth of this fungus, possess-
ing potent and selective antiparasitic activity against T. cruzi, with an IC50 value of 
0.13 μmol L−1. Compounds 10 and 11 showed high cytotoxicity against Vero cells 
(IC50 of 0.1 and 1 μmol L−1 respectively) (Almeida et al. 2014).

The endophyte Lasiodiplodia theobromae obtained from the leaves of Vitex pin-
nata, a medicinal plant of Malaysia, displayed activity against Trypanosoma brucei 
brucei. Three known compounds were isolated, namely, cladospirone B (12), des-
methyl-lasiodiplodin (13), and R-(−)-mellein (14). Cladospirone B and desmethyl-
lasiodiplodin compounds exhibited good activity against T. b. brucei with minimum 
inhibitory concentrations of 17.8 μM and 22.5 μM, respectively (Kamal et al. 2016).

Brissow et  al. (2018) demonstrated that crude EtOAc extracts of Diaporthe 
phaseolorum, an endophytic fungus isolated from the roots of Combretum lanceo-
latum Pohl ex Eichler, a Brazilian medicinal plant, showed trypanocidal activity at 
20 μg mL−1, reducing 82% of the number of amastigotes and trypomastigotes of T. 
cruzi. The compound 18-des-hydroxy Cytochalasin H (15) was isolated and evalu-
ated for leishmanicidal and tripanocidal activities. The compound reduced the via-
bility of L. amazonenses promastigotes with an IC50 value of 9.2 μg mL−1.

From the endophytic fungus Aspergillus terreus isolated from roots of Carthamus 
lanatus L. (Asteraceae), one new butenolide derivative, Terrenolide S (16), together 
with six known compounds, (22E,24R)-stigmasta-5,7,22-trien-3-β-ol (17), stig-
mast-4-ene-3-one (18), stigmasta-4,6,8(14),22-tetraen-3-one (19), terretonin A 
(20), terretonin (21), and butyrolactone VI (22), has been isolated. Compounds 16, 
17, and 18 exhibited antileishmanial activity toward L. donovani with IC50 values of 
27.3, 15.3, and 11.2 μM, respectively, and IC90 values of 167, 40.6, and 14.7 μM, 
respectively (Elkhayata et  al. 2015). The same kind of endophyte, the fungus 
Aspergillus terreus obtained from Hyptis suaveolens (L.) Poit, growing in the 
Brazilian wetland known as the Pantanal, showed trypanocidal and leishmanicidal 
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activities. Three compounds were isolated from the acetate extract of the fungal 
culture: terrein (23), butyrolactone I (24), and butyrolactone V (25). Compounds 23, 
24, and 25 exerted moderate leishmanicidal activity against L. amazonensis, 
IC50 = 23.7, 26.0, and 78.6 μM, respectively. Furthermore, compounds 24 and 25 
were examined for the trypanocidal effect on L929 cells from mouse connective 
tissue infected with T. cruzi amastigotes and promastigotes. Both compounds were 
inactive or toxic. Compounds 24 and 25 killed 100% of the cells at 94.2 and 
181.6 μM, respectively. It was the first report on the leishmanicidal activity of com-
pounds 23, 24, and 25 against L. amazonensis (Silva et al. 2017c).

Carvalho et al. (2015) obtained the endophytic fungus Aspergillus calidoustus 
isolated from leaves of Acanthospermum australe (Asteraceae), a medicinal plant 
native to the Brazilian savannah. From this endophyte, they recovered two com-
pounds, ophiobolin K (26) and 6-epi-ophiobolin K (27), which showed trypanocidal 
activities with IC50 values of 13.0 and 9.6 μM against T. cruzi. However, these com-
pounds were also cytotoxic to the fibroblast host cells of T. cruzi.

Nascimento et al. (2015) reported that endophytes associated with the medicinal 
plant Vernonia polyanthes are a potential source of leishmanicidal compounds. 
They recovered 16 endophythes from leaves of this plant growing in Brazil, and the 
fungal culture crude ethanol extracts were tested for their antileishmanial activity. 
The most active extract was obtained from Cochliobolus sativus (IC50 = 3.0 μg mL−1). 
From this extract, a mixture of cochlioquinone A and isocochlioquinone A (28), and 
anhydrocochlioquinone A (29), was obtained. The mixture 28 exhibited a good anti-
leishmanial activity, with an IC50 value of 10.2 μg mL−1. Anhydrocochlioquinone A 
also presented an antileishmanial activity, but its IC50 value was five times higher 
(50.5 μg mL−1).

11.9  Conclusion

Considering the high number of vegetal species living in the world, it is important 
to understand the methods and criteria to select the host plant for the study of endo-
phyte communities in order to provide the best opportunities to isolate novel and 
potential endophytic fungi. Among the criteria used and described at the literature 
stands out the choice of medicinal plants (plants that have an ethnobotanical his-
tory), because that plants might be considered important reservoir of a promising 
source of novel endophytes and their compounds can be useful for human health 
and veterinary. The infectious/parasitic diseases and cancer, for example, discussed 
in this chapter still demand a special attention and need of investment in research 
considering the high mortality rate generated by some of them, together with the 
inexistence of an effective treatment without side effects and resistance. In this con-
text, endophytic fungi are an alternative that might offer a high number of natural 
products with diverse chemical structures and novel pharmacological action’s 
mechanism. Endophytic taxa mainly of the genus Aspergillus, Chaetomium, 
Diaporthe/Phomopsis complex, Fusarium, and Penicillium are potential producers 
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of bioactive compounds for the treatment of those diseases. Additionally, endo-
phytes may contribute to their host plant and for the industry by producing a pleth-
ora of substances; however, the search for better treatments remains an important 
challenge and a constant niche to be explored.
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Chapter 12
Extracellular Carbohydrate-Active 
Enzymes of Trichoderma and Their Role 
in the Bioconversion of Non-edible Biomass 
to Biofuel

Vivek Sharma and Richa Salwan

12.1  Introduction

Constant depletion of fossil fuels, increasing world population and concerns for 
environments, in particular the impact of climate change on our ecosystem, demand 
futuristic sustainable technologies. India is presently ranked third in oil consump-
tion. Moreover, growing population size, growth in automobile and other industrial 
sectors in India, led to increase in energy consumption. The need for environmental 
friendly and renewable energy resources such as biofuels produced from agricultural- 
based biomass can decrease our dependence on fossil fuels (Borin et  al. 2017). 
Therefore, efforts for developing alternate energy resources are on high priority. As 
per the records of US Department of Energy, United States and Brazil contributed 
to approximately 80% (24,570 million gallons) of the global ethanol production 
(http://www.afdc.energy.gov) (Borin et  al. 2017). The bioprospection of agricul-
tural biomass in particular from non-edible sources can be a better alternative and 
sustainable approach with minimal environmental concerns in the future (Gaurav 
et al. 2017). Agricultural biomass which is often a major source for environmental 
pollution can be of vital importance for biofuel production as an alternate energy 
resource (Ning et al. 2016; Wan et al. 2001; Chirino-Valle et al. 2016). Limitations 
of biomass from grain-producing crops demand alternative second-generation bio-
fuels from non-edible agricultural crops (Ayrinhac et al. 2011) and other biomass 
sources. These carbohydrates from different non-edible biomass can be explored for 
biofuel using a combination of enzymes (Gaurav et al. 2017). Biofuels are catego-
rized into three generations on the basis of raw material. Initially for first generation 
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biofuel, crops plants were explored followed by second generation agricultural 
 by-products and marine resources such as seaweeds and cyanobacteria (Demirbas 
2008; Kang et al. 2014; Gaurav et al. 2017).

Biofuels from second-generation agricultural wastes offer several benefits. 
Biofuels from renewable resources can be exploited as promising and almost 
carbon- neutral fuel enhancers of octane in unleaded gasoline for cleaner combus-
tion which can reduce environmental pollution. Plant biomass containing lignocel-
lulose in terrestrial ecosystems is one of the most potential raw materials due to its 
availability, price and high sugar content (Barros-Rios et al. 2016; Zhao et al. 2016). 
The basic constituents of lignocellulose include cellulose, hemicellulose and lignin 
(Sindhu et al. 2016) which are interconnected through covalent and non-covalent 
bonds (Gaurav et al. 2017; Zhang et al. 2017). Cellulose which is a major part of 
plant biomass has been widely recognized and explored for developing sustainable 
processes and can help in mitigating the impact of climate change, occurs through 
consumption of fossil fuels (Gupta and Verma 2015; Zhang et al. 2017). Conversion 
of lignocellulose-based plant biomass is a major bottleneck in developing sustain-
able processes for alternate energy resources and other value-addition products 
(Kuhad et al. 2011; Villares et al. 2017). The breakdown of recalcitrance lignocel-
lulose and chitin containing biomass using chemical pretreatment often results in 
toxic side effects to the ecosystem (Margeot et al. 2009; Wang et al. 2017) (Fig. 12.1).

Fig. 12.1 A schematic overview of the conversion of non-edible agricultural biomass to value- 
added products using carbohydrate-active enzymes
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The conversion of plant biomass into value added products can be achieved 
through the breakdown of recalcitrant plant biomass via pretreatment and enzy-
matic hydrolysis (Zhang et al. 2017). Efficient utilization of the lignin, hemicellu-
lose and cellulose can decrease the cost of biofuel production up to 25% (Zhao and 
Xia 2009, 2010; Zhao et al. 2018a).

Enzymes in the CAZy database are categorized into four classes: glycoside 
hydrolases (GHs), polysaccharide lyases, glycosyl transferases and carbohydrate 
esterases. The glycosyl hydrolases (GHs) have potential to break the non-edible 
biomass into oligo- or monomers (Ferreira Filho et al. 2017). Additionally, a family 
of auxiliary enzymes known as lytic polysaccharide mono-oxygenases (LPMOs) 
which is a major component of saprophytic fungi like Trichoderma and Aspergillus 
catalyses copper-dependent oxidation of C-H bonds in complex polysaccharides 
(Obeng et  al. 2017; Borin et  al. 2017; Monclaro and Filho 2017; Cologna et  al. 
2018) (Fig. 12.2).

In general, the stains of Trichoderma are used as biocontrol agents due to their 
diverse attributes (Sharma and Shanmugam 2012; Sharma et  al. 2013, 2016a, b, 
2017a, b, 2018a, b). Besides this, enzymes from filamentous fungi such as T. reesei 
are paradigms for industrial application in paper, textile, pulp, food and biofuel 
processing industries (Kumar et al. 2008; Singhania et al. 2010; Seiboth et al. 2011; 
Marx et al. 2013; Tiwari et al. 2013) (Table 12.1).

Laccases or phenol oxidases and lytic mono-oxygenases can enhance the activity 
of lignocellulases and thus lower the enzyme required to break down  alkali- pretreated 

Fig. 12.2 Overview of carbohydrate-active enyzmes as per cazy database http://www.cazy.org/
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Table 12.1 Recent examples of CAZymes for different applications

Enzymes/CAZy family Fungal species Role References

Cellulase complex T. reesei SCB18 High cellulase capacity for 
biomass saccharification 
and high β-glucosidase 
(BGL) activity

Gao et al. (2017)

Glycosyl hydrolases such 
as GH1, GH3, GH18, 
GH35 and GH55 families 
of chitinases, glucosidases, 
galactosidases, and 
glucanases

T. hamatum strains 
YYH13 and 
YYH16

Offers scope for developing 
β-glucosidase with high 
cellobiose-hydrolysing 
efficiency

Cheng et al. 
(2017)

GH95, GH67, GH62, 
GH54, GH43, GH26, 
GH11 and GH10

T. reesei RUT-C30 Hemicellulose degradation Ferreira Filho 
et al. (2017)

GH7, CBM1; GH5, GH7, 
GH12, GH45, GH1, GH3 
and GH6 families; 23 
CBM1 domains; two 
auxiliary families

T. harzianum, T. 
reesei RUT-C30

Cellulose degradation Borin et al. 
(2017); Ferreira 
Filho et al. 
(2017)

Chitinase T. saturnisporum 
and other 
Trichoderma 
species

Protoplast isolation, fungal 
pathogen management, 
treatment of chitinous 
waste

Dahiya et al. 
(2006); Sharma 
and Shanmugam 
(2012); Sharma 
et al. (2017a, b, 
c)

Glucanases T. harzianum Fungal pathogen 
suppression through 
mycoparasitism

Sharma et al. 
(2017a, b, c)

Cellobiohydrolase I T. longibrachiatum The action of LPMOS 
promoted the efficacy of 
cellobiohydrolase I, 
endoglucanase and 
β-glucosidase in pretreated 
bacterial microcrystalline 
cellulose

Song et al. 
(2018)Lytic polysaccharide 

mono-oxygenase
T. reesei

Lytic polysaccharide 
monooxygenase, AA9 and 
CBM1

T. reesei RUT-C30 Acts on cellulose and 
β-glucan

Borin et al. 
(2017)

Xylan esterase, CE3, CE5 
and CBM1

T. reesei RUT-C30 Acts on xylan Borin et al. 
(2017)

Xylanase, GH10 and 
GH11

T. reesei RUT-C30 Acts on xylan Borin et al. 
(2017)

Xylanase T. reesei QM6a High biotechnological 
relevance

Ramoni et al. 
(2017)
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agricultural biomass containing lignocellulose (Ladeira Azar et al. 2018). For exam-
ples, xylanase of A. niger and T. reesei are found to be inhibited by the presence of 
phenol at 1.5 mg and 0.3 mg per mg of protein, respectively. On the other hand, 
laccases of C. cubensis and Penicillium pinophilum are reported active at a concen-
tration of 35 mg of phenol per mg of protein (Ladeira Azar et al. 2018). The glcyosyl 
hydrolase family plays a vital role in the breakdown of complex plant biomass, 
whereas the role of the auxiliary activity (AA) family has been discussed in recent 
studies (Levasseur et al. 2013). Among different CAZymes, β-1,4/(1,3)/(1,6)-type 
glycosyl hydrolase family breaks down complex plant polysaccharides to oligomers 
or monomers (Vu and Marletta 2016). Lytic mono-oxygenases belonging to AA9 
(formerly GH-61), AA10 (formerly CBM-33) and AA11 enzymes are capable of 
targeting recalcitrant non-edible carbohydrates such as chitin, cellulose, starch and 
other polysaccharides containing β-linkages between glucose and substituted glu-
cose units (Ravalason et al. 2012; Vu et al. 2014; Gong et al. 2015; Ning et al. 2016). 
The genomes of A. niger and T. reesei share about the same (2.5%) proportion of 
CAZymes in comparison to total predicted genes; still, the transcriptomic response 
of A. niger is found to be diverse and revealed upregulation of 190 CAZymes which 
belong to 62 different families, whereas for T. reesei, 105 CAZymes belonging to 
51 families were upregulated (Borin et al. 2017).

The recent developments in genomic, transcriptomic, metabolomic or proteomic 
technologies have led to the identification of several CAZymes and other genes of 
Trichoderma which are active during agricultural biomass degradation. Keeping in 
view the importance of CAZymes in plant biomass degradation for various applica-
tions, attempt has been in present chapter to provide an overview of different lytic 
enzymes of Trichoderma strains in white biotechnology for biofuel production.

12.2  Biocatalysis of Plant Biomass Using Lignocellulases

Lignocellulose from plant biomass is the major raw material for biofuels, foods and 
other livestock feeds (Kumar et  al. 2008). Studies on fungal lignocelluloses- 
mediated lysis have revealed several pathways for lignin metabolism (Mansur et al. 
2003). The lignocellulose is a promising biomass pretreatment alternative, and fun-
gal lignocellulases are one of the potential enzymes in debasing lignin of plants (dos 
Santos et  al. 2007; Dias et  al. 2007; Plácido and Capareda 2015;Martinez et  al. 
2009). Moreover, the lignocellulases are also explored for the removal of toxic com-
pounds as well as supplementing the pre-existing technologies of sugar hydroly-
sates after conventional pretreatment (Plácido and Capareda 2015; Bilal et al. 2018). 
Higher white fungi are known to produce a plethora of lytic enzymes. The lignin- 
degrading enzyme complex in white fungi is mainly consists of lignin peroxidase, 
manganese peroxidase and laccase along with other enzymes which include peroxi-
dase, aryl alcohol oxidase, glyoxal oxidase and oxalate. The broad specificity of 
substrates also makes them vital enzymes which are capable of breaking a wide 
range of xenobiotics and pollutants having structural similarities to lignin (Hofrichter 
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2002; Bilal et al. 2018). A combination of co-culture techniques is found to enhance 
production of these enzymes. For example, 2.6-fold enhancement in laccase activity 
compared to C. comatus monoculture with higher delignification of up to 66.5% 
and conversion of 82% of polysaccharides into fermentable sugars was recorded 
(Ma and Ruan 2015).

12.2.1  Cellulases

Cellulase, a complex of three enzymes, leads to the complete breakdown of cellu-
lose to glucose units which can be used as fermentable sugar for biofuel production. 
The cellulose is degraded initially through endoglucanase (EG) (1,4-β- D-glucan-4- 
glucano-hydrolases) (EC 3.2.1.74) by random action into oligomers which are then 
targeted by exoglucanase (EC 3.2.1.74 and EC3.2.1.91) into cellobiose and glucose 
units. The β-glucosidases belonging to EC 3.2.1.21 hydrolyse the cellodextrins, cel-
lobiose into glucose units (Keshwani and Cheng 2009; Jeya et al. 2009). The cel-
lobiohydrolases (CBHs, named as CBH1 and CBH2), β-glucosidases (BGLs) and 
endoglucanases (EGs) act in a coordinated and complementary fashion to hydrolyse 
cellulose (Cavaco-Paulo et al. 1997; Gusakov et al. 2007; Jørgensen et al. 2007; Ma 
et  al. 2011). The cocktail of different cellulolytic enzymes play vital role in the 
hydrolysis of complex plant polysaccharides. For example, a mixture of CBH1, 
CBH2 and EG1 is found to responsible for up to 80% of cellulose breakdown 
(Rosgaard et al. 2007). T. reesei, an industrial strain, is known to secrete CBH1, 
CBH2, EG1, EG2, EG3 and EG5 which act in a synergistic manner to completely 
hydrolyse the lignocellulose (Fang and Xia 2013). CBH1 and CBH2 are reported as 
major components of cellulase complex and accounts for 50–60% and 10–15% of 
the secreted protein, respectively (Rosgaard et al. 2007). Compared to CBH1, the 
specificity of CBH2 is approximately twice for crystalline cellulose (Zhou et  al. 
2008), and optimum synergism is reported at a 2:1 molar ratio (Zhou et al. 2009).

The other components of cellulase complex in T. reesei such as endo-β-1,4-D- 
glucanases are reported from glycosyl hydrolase families GH5, GH7, GH12 and 
GH45, whereas cellobiohydrolases are reported from families GH6 and GH7. The 
GH7 family contains endo-β-1,4-D-glucanases of CEL7B, previously known as 
EGL1 and CBHs (CEL7A, named as CBH1). The family GH5 cellulases is mostly 
explored from fungi strains (Li and Walton 2017), and three candidates of this fam-
ily have been reported from T. reesei. The enzymes of GH7 family are distributed 
commonly. The orthologues of CEL7A cellulases are prevalent in the secretome of 
fungi-degrading biomass. The members of GH6 family comprise cellulase which 
acts exclusively from the non-reducing end of cellulose chain. The synergistic 
action of CEL7A and CEL6A is considered to play a key role in biomass degrada-
tion. The members of GH12 are typically low molecular weight (25 kDa) and do not 
contain cellulose-binding domain (CBM1) and glycosylation site. Due to their small 
size, GH12 can diffuse deeper into cellulosic material, and hence preferred for their 
role in laundry industry. On the other hand, members of GH45 cellulases are in 
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general small and have a wide substrate range compared to families GH5 and GH7. 
The members of GH45 enzymes share interesting structural similarities to plant 
expansins. Further intensive research efforts with genetic engineering strategies for 
single-enzyme cellulase components have increased the scope of T. reesei strain’s 
improvement (Pryor and Nahar 2015; Qian et al. 2016, 2017; Wang and Xia 2011; 
Zhang et al. 2010).

12.2.2  β-Glucosidase

A heterogeneous family containing exo-glycosyl hydrolases catalyses the cleavage 
of β-glycosidic bonds in disaccharide or glucose-substituted molecules (Bhatia 
et al. 2002; Chandra et al. 2013; Cheng et al. 2017; Leah et al. 1995; Zagrobelny 
et  al. 2008). According to the classification of CAZy (http://www.cazy.org) 
(Henrissat 1991; Cantarel et al. 2009), β-glucosidases are classified into two fami-
lies: 1 and 3 of glycosyl hydrolases (Jeng et al. 2011). These enzymes enhance the 
action of cellulose-degrading enzymes by releasing phenolic compounds and hence 
are an attractive choice for renewable bioenergy. β-glucosidases hydrolyse the oli-
gosaccharides and cellobiose oligomeric units obtained after the endoglucanases 
and cellobiohydrolases activities into monomeric glucose (Chandra et al. 2013).

The β-glucosidases of T. reesei are categorized into GH1 and GH3. The members 
belonging to family GH1 are exclusively intracellular in nature, whereas GH3 
β-glucosidases are predominantly extracellular (Guo et  al. 2016). CEL3A previ-
ously categorized as BGL1 is responsible for majority of the β-glucosidase activity. 
The ‘exo/endo’ concept revealed that CEL7A is also able to act in endo-manner; 
therefore, it is not a true exocellulase (Stahlberg et al. 1993; Kurasin and Valjamae 
2011). However, neither the EGs nor the CBHs from fungi can cause massive cel-
lulose decomposition (Payne et al. 2015). The lytic polysaccharide mono- oxygenases 
which were identified previously as endoglucanases belonging to GH61 (Sharma 
et al. 2018b) are now known as auxiliary family and cleave β-glucan in an oxidative 
fashion. The members of the family GH61 are also reported for their weak endoglu-
canase activity. The genome of T. reesei (http://www.genome.jgipsf.org/Trire2/
Trire2.home.html) is reported to contain at least 10, β-glucosidases-encoded genes 
which include cel1A, cel1B, cel3A, cel3B, cel3C, cel3D, cel3E, cel3F, cel3G and 
cel3H.  The gene encoding cel3A (bgl1) was found to be major extracellular 
β-glucosidase, whereas cel1A (bgl2) (Saloheimo et al. 2002a, b) and cel1B (Zhou 
et  al. 2012) were reported to be intracellular. Additionally, cel3B, cel3E, cel3F, 
cel3G and cel3H are assumed to be extracellular, and cel3C, cel3D and cel3H are 
depicted as intracellular (Guo et al. 2016). Different knockouts, amino acid substi-
tution and mutation of the BglR transcription factor in the PC-3-7 strain have been 
used to reveal the function of β-glucosidases (Fowler and Brown 1992; Zhou et al. 
2012; Nitta et al. 2012; Xu et al. 2014; de Porciuncula et al. 2013; Shida et al. 2015; 
Li et al. 2016).
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12.2.3  Xylanases

With a backbone of β-(1-4)-linked xylose units, polysaccharide xylan are structur-
ally diverse and complex polysaccharides and predominantly composed of hemicel-
luloses which are linked to cellulose microfibrils (Scheller and Ulvskov 2010). The 
side chains are connected through C2 and C3 positions of D-xylosyl units (Puls and 
Schuseil 1993), and these chains can be substituted with acetyl, 4-methyl-D- 
glucuronosyl or L-arabinosyl units (Wong et al. 1988; Dodd and Cann 2009). Endo- 
β- 1,4-xylanases or β-1,4-D-xylan xylanohydrolases (EC 3.2.1.8) are one of the 
important lytic components which can target the glycoside bonds in xylan backbone 
internally (Biely 1985; Polizeli et al. 2005; Mangan et al. 2017). Members of xyla-
nase family belong to glycoside hydrolase (GH) families 5–12, 16, 26, 30, 43, 44, 
51 and 62. Enzymes classified in 16, 51 and 62 families contain two catalytic 
domains compared to 5–11 and 43 families which have a true catalytic domain with 
endo-1,4-β-xylanase activity. The 9, 12, 26, 30 and 44 families may possess residual 
or secondary xylanase activity.

In recent classifications based on hydrophobic cluster analysis of catalytic 
domains and amino acid sequence similarities, xylanases are classified as GH10 and 
11 and have a retaining type of mechanism. The information on catalytic properties 
of families 5, 7, 8 and 43 are very limited. The members of GH families 5, 7, 8, 10, 
11 and 43 are different in their structure, mode of action, physicochemical proper-
ties and substrate specificities (Collins et al. 2005). The members of GH 10 family 
include high-molecular-mass proteins with cellulose-binding and catalytic domains 
and are connected through linker peptides. The estimated pI is 8–9.5 with (α/β)8 fold 
TIM barrel structure. On the other side, the GH11 family with low molecular mass 
and pI are further divided into two, alkaline and acidic (Buchert et al. 1995; Juturu 
and Wu 2012). The GH11 members exclusively catalyse endo-β-1,4–mediated 
cleavage (EC 3.2.1.8) in xylan and hence are also known as true xylanases. The high 
catalytic efficiencies of these enzymes due to small size, vast temperature and pH 
optima provide them an edge for their exploitation in various biotechnological 
applications (Paes et al. 2012).

Xylanases of Trichoderma are one of the widely explored enzymes, and Rut 
C-30 strain of T. reesei is well explored for commercial applications of xylanase and 
cellulase production (Gerber et al. 1997). The xylanases produced by T. harzianum, 
T. lignorum, T. koningii, T. longibrachiatum, T. pseudokoningii and T. viride also 
have been investigated (Silveira et al. 1999; Chen et al. 2009). Xylanases from a 
psychrotrophic Trichoderma strain have been characterized (Zhou et al. 2011) and 
genes encoding them have been cloned from Trichoderma species and expressed in 
heterologous hosts such as E. coli (Min et al. 2002), S. cerevisiae (Ahmed et al. 
2005) and P. pastoris (He et  al. 2009). In the T. reesei genome, three xylanases 
belonging to the GH11 family have been identified, and two of these were reported 
in the early 1990s, whereas the third GH11 xylanase XYN5 was identified in a 
recent study (Martinez et al. 2008; Dos Santos Castro et al. 2014; Peciulyte et al. 
2014; Saloheimo and Pakula 2012).
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12.2.4  Lytic Polysaccharide Mono-oxygenases (LPMOs)

The recently discovered enzyme class, the LPMOs, stimulates the hydrolysis of 
plant biomass and enhances the efficacy of glycosyl hydrolases (Hu et al. 2014). 
Unlike cellulases which target glycosidic bonds by hydrolysis, LPMOs are copper 
dependent and catalyse the breakdown of polysaccharides through oxidation at C1 
or C4 glucose units in the presence of external electron donors.

12.2.5  Laccases

Laccases are also known as phenol oxidases or benzenediol: oxygen oxidoreductase 
(EC 1.10.3.2) belongs to the multicopper oxidase (MCO) family and represents a 
group of metalloenzymes. These enzymes are used in various biotechnological 
applications. The search for strains producing such laccases has gained increased 
attention in recent times. In general, laccases are monomeric glycoproteins of 
60–70  kDa in size, and carbohydrates approximately contribute to 30% of their 
molecular weight (Cázares-García et al. 2013). Laccases oxidize compounds con-
taining a variety of phenolic, diamines and aromatic amines (Abd El Monssef et al. 
2016). In lignocelluloses containing biomass, laccases play an important role in 
developing a clean biocatalytic process and improve cellulose recovery from feed-
stocks containing lignocellulose (Avanthi and Banerjee 2016). Additionally, the 
affinity of laccases for different aromatic compounds make them a promising and 
attractive tool for de-colouration and detoxification of different synthetic dyes and 
phenolic pollutants. These chemicals are often a source of water contamination and 
thus can cause problems to public health and our environment (Anbia and Ghaffari 
2011). A combination of laccases and cellulases enhances delignification and thus 
increases the efficiency of developing enzymatic processes for biofuels and other 
value-added product generations such as coal solubilization (Chakroun et al. 2010). 
The extracellular laccase of T. virens is reported for their role in mycoparasitism 
against the sclerotia of plant pathogens such as Botrytis cinerea and Sclerotinia 
sclerotiorum (Catalano et al. 2011; Cázares-García et al. 2013).

Fungi of basidiomycetes and ascomycetes division are known to degrade lignin, 
xenobiotics, chemicals used for guaiacol synthesis and vanillin metabolites at 
industrial scales (Dekker et  al. 2002; Halaburgi et  al. 2011; Younes and Sayadi 
2011). The wood-rotting fungi such as Trametes spp., Cerrena maxima, Lentinus 
tigrinus, Coriolopsis polyzona and Pleurotus eryngii are prominent laccase produc-
ers (Saloheimo and Niku-Paavola 1991; Morozova et al. 2007; Madhavi and Lele 
2009). In general, fungal laccases are known to possess high redox -potential and 
broad substrate specificity compared to laccases of bacterial origin. The pH optima 
of fungal laccases is reported at acidic pH, whereas for bacterial laccases, like oxi-
dases, it operates close to neutral-alkaline pH (Kolomytseva et al. 2017). Laccases 
can target phenolic constituents of lignin and have compatibility to work at  industrial 
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pH, in solvents and at especially high temperatures and therefore are potential 
source for wood delignification for bioethanol production (Shanmugam et al. 2018). 
The laccase-encoding genes from other fungi such as Pycnoporus sanguineus and 
Phlebia radiata have been cloned and expressed using the Pcbh1 promoter and the 
Tcbh1 terminator of T. reesei (Zhao et al. 2018b).

Among ascomycetes, Trichoderma species have been extensively explored for 
cellulase production (Tsao and Chiang 1983). Trichoderma strains with laccase 
activity are more efficient in breaking natural substrates than strains without these 
enzymes (Assavanig et al. 1992). The laccases from ascomycetes have characteris-
tic features which are not present in basidiomycetes laccases. The presence of addi-
tional L1–L4 signature domains (Kumar et al. 2003) helps their differentiation from 
other multicopper oxidases. The laccase activity has been reported in strains of T. 
atroviride, T. reesei, T. viride, T. longibrachiatum and T. virens (Assavanig et al. 
1992; Krastanov et  al. 2007; Gochev and Krastanov 2007; Catalano et  al. 2011; 
Cázares-García et al. 2013). In addition, the conidia of T. atroviride, T. viride and T. 
harzianum are also reported for laccase activity (Holker et al. 2002; Pokorny et al. 
2005). Studies on purification and characterization of laccases of extracellular 
nature have been conducted in T. harzianum (Sadhasivam et al. 2009), T. atroviride 
(Chakroun et al. 2010) and T. reesei (Levasseur et al. 2010) strains. The infection in 
Pleurotus ostreatus cultures with T. viride spores is also reported to induce higher 
laccase activity (Divya et al. 2013).

12.3  Distribution and Identification of CAZy Genes 
in Trichoderma Genome

The comprehensive information on carbohydrate-active enzymes glycoside hydro-
lases, carbohydrate esterases, polysaccharide lyases and glycosyltransferases which 
contribute to the breakdown and modification of glycosidic bonds can be gained 
from CAZy database. A number of enzymes and active transcripts involved in plant 
biomass degradation have been identified using genomics, transcriptomics or pro-
teomics approaches. The majority of these transcripts have been identified as glyco-
syl hydrolases and carbohydrate esterases (Fig. 12.3).

In industrial strain T. reesei, a limited number of carbohydrate active enzymes 
(CAZymes) have been characterized, whereas genome sequencing revealed pres-
ence of several candidates genes which may have been transferred horizontally 
from bacteria (Häkkinen et  al. 2012). Phylogenetic analysis of different CAZy 
genes has identified around 201 glycoside hydrolase-encoding genes, 22 
carbohydrate- encoding esterase genes and 5 polysaccharide lyase genes. Among 
glycosyl hydrolases, β-glucosidases of GH3, α-galactosidases of GH27 and chitin-
ases of GH18 have been reported in abundance (Häkkinen et  al. 2012). In the 
genome of T. reesei, 61 CAZy families were predicted which exclude family CE10. 
The complete list of CAZy families in T. reesei can be obtained from a study 
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 conducted by Häkkinen et al. (2012). A comparison overview of T. reesei CAZY 
enzymes with other fungi revealed that cluster containing AGLIII and other four 
candidate α-galactosidases are restricted to T. reesei. The cluster for β-glucuronidase 
genes of families GH79, GH18 and GH92 also revealed expansion in T. reesei, 
whereas families GH43 and Gh61 showed reduction (Häkkinen et al. 2012). The 
CBHI/CEL7A and CBHII/CEL6A acts in exo-fashion on cellobiohydrolases 
whereas five endo-acting cellulases such as EGII/CEL5A, EGI/ CEL7B, EGIII/
CEL12A, EGV/CEL45A and EGIV/CEL61A are also reported form T. reesei strain 
(Penttilä et al. 1986; Saloheimo et al. 1994; Saloheimo et al. 1997; Okada et al. 
1998). Additionally three putative endoglucanases (CEL74A, CEL61B and CEL5B) 
were reported (Foreman et al. 2003). In the genome of T. reesei, two β-glucosidases 
(BGLI/CEL3A and BGLII/ CEL1A) (Barnett et al. 1991; Fowler and Brown 1992; 
Takashima et al. 1999; Saloheimo et al. 2002a, b) and five β-glucosidases (CEL3B, 
CEL3D, CEL1B, CEL3C, CEL3E) also have been reported (Foreman et al. 2003). 
A protein named as swollenin (SWOI) involved in the biomass degradation by dis-
rupting cellulose crystalline structure without the release of sugars has been also 
reported (Häkkinen et al. 2012). On the other hand, a number of other enzymes such 
as xylanases (XYNI, XYNII, XYNIII and XYNIV), mannanase (MANI) (Stalbrand 
et  al. 1995), acetyl xylan esterase (Foreman et  al. 2003; Margolles-Clark et  al. 
1996a), α-glucuronidase (GLRI) (Margolles-Clark et al. 1996a), arabinofuranosi-
dases (ABFII and ABFIII) (Margolles-Clark et  al. 1996b; Foreman et  al. 2003; 
Herpoël-Gimbert et  al. 2008), α-galactosidases (AGLI, AGLII and AGLIII) 
(Margolles-Clark et  al. 1996b; Zeilinger et  al. 1993) and β-xylosidase (BXLI) 
(Margolles-Clark et al. 1996c, d) has also been reported from T. reesei and other 

Fig. 12.3 An overview of mining carbohydrate-active candidate transcripts/proteins for biomass 
conversion

12 Extracellular Carbohydrate-Active Enzymes of Trichoderma and Their Role…



374

filamentoru fungi (Tenkanen et al. 1992; Torronen et al. 1992; Xu et al. 1998; Knob 
et al. 2010). These proteins are known to play a vital role in breaking xylan-derived 
oligosaccharides. Also, several novel candidate lignocellulose-degrading genes 
have been identified from T. reesei genome (Martinez et al. 2008).

Screening of T. harzianum isolate for CAZymes via RNA-Seq and bioinformat-
ics approach revealed around 259 transcripts related to glycoside hydrolases, 101 
transcripts for glycosyl transferases, 6 for polysaccharide lyases, 22 for carbohy-
drate esterases, 42 for auxiliary activities (AAs) and 46 for carbohydrate-binding 
proteins when cellulose was used as substrate. The highest number of genes has 
been reported from GH18, GH3, GH16, GH2 and GH5 families. For hemicellu-
lases, 24 glycosyl hydrolases belonging to families GH10, GH11, GH26, GH43, 
GH54, GH62, GH67 and GH95 were identified. The maximum enzymes were 
reported from GH43 and GH95 families, whereas the lowest number was identified 
from GH67, GH62, GH54, GH26 and GH10 families (Ferreira Filho et al. 2017).

12.4  Strain Improvements

Strains of T. reesei have been the topic of investigation for its cellulases. Higher 
enzyme production cost is one of the key hurdles involved in commercial applica-
tions of these enzymes for biofuel production. Screening for high level of cellulase- 
producing strains is an efficient strategy to address this issue. Due to high porduction 
cost of enzymes, efforts are required to enhance the production, intrinsic activity 
and reinforcing the existing biomass degrading enzymes with auxiliary proteins 
(Wilson 2009; Horn et  al. 2012; Peterson and Nevalainen 2012; Hu et  al. 2015; 
Müller et al. 2015; Payne et al. 2015). A number of tools such as genetic engineer-
ing advance genetic transformation based on use of marker or marker-free selec-
tions, or RNA interference has been discussed by Bischof and Seiboth (2014). T. 
reesei Rut-C30 and T. reesei D-7 mutants developed by the use of basic chemicals 
such as ethyl methyl sulfonate (EMS), and other methods such as plasma irradiation 
are already used for high cellulase production. The filter paper activity and corn 
starch hydrolysate higher cellulase production in T. reesei strain D-7. Mutant-based 
study has been successful in obtaining potential cellulase-producing mutants (Zhang 
et  al. 2017). In the last decades, efforts on strain improvement using traditional 
mutagenesis and screening methods have resulted in T. reesei strains RUT-C30 
capable of producing up to 30  g/l of extracellular cellulases (Eveleigh and 
Montenecourt 1979; Eveleigh 1982) and even producing as high as 100 g/l of extra-
cellular protein (Cherry and Fidantsef 2003). The commercial formulation for 
enhanced cellulase production such as Novozymes and Dupont are also obtained 
through mutations in T. reesei. In recent studies, the advancements of molecular 
tools in gene/genome engineering using specific insertion or deletion or mutation of 
nucleotides have been explored to meet the growing demands of different 
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biomolecules including enzymes. The discovery of Clustered Regularly Interspaced 
Short Palindromic Repeats (CRISPR) and CRISPR-associated (cas) 9 genes 
 (CRISPR/cas9) system has democratized the genome engineering in a flexible man-
ner either at a single- or multi-loci-based genome-wide modification. The CRISPR/
cas9  system nowadays has emerged as a powerful tool for strain improvement in 
filamentous fungi such as T. reesei (Liu et al. 2015; Donohoue et al. 2018).

12.5  Conclusion and Future Prospects

The exploration of microbe’s innate capacity to convert complex polysaccharides 
into biofuels with octane value is one of the predominant research areas presently. 
The filamentous fungi such as T. reesei have been widely extensively for cellulase 
and hemicellulase production. The genetic manipulation of T. reesei using mutagen-
esis has led to improved strains with higher cellulase production. Advancements in 
biotechnological tools have significantly contributed in developing alternate and 
efficient technologies. Enzymatic treatment offers advantage over chemical and 
physical methods being environmentally friendly. In several studies, either single or 
a combination of physical and chemical methods of mutations such as UV irradia-
tion, ethyl methanesulfonate and N-Methyl-N′-nitro-N-nitrosoguanidine had been 
deployed in Trichoderma, Aspergillus and other fungi. The commercial formulation 
developed by the enzyme industry in companies such as Novozymes and Dupont 
was obtained through mutations for enhanced cellulase production in T. reesei.

Enzyme-mediated delignification has been used for enhancing enzyme produc-
tion using rational, semi-rational and directed evolution-based molecular and pro-
tein engineering strategies. In rational approach, modification through the use of 
site direct mutagenesis for lignolytic enzymes such as laccases has been used suc-
cessfully. Alternatively, a mixture of two filamentous fungi such as T.reesei and A. 
niger has been found better for cellulase production. Despite the challenge associ-
ated with the expression of active recombinant proteins in heterologous system, 
paucity of signal peptides and expression system, genetic engineering through the 
use of codon optimization and substitution with unnatural amino acids in recombi-
nant proteins is emerging field and can provide us enzyme systems with better cata-
lytic property and enhanced self-life. However, the concern for low or lack of 
production of potent hemicellulases and β-glucosidases in T. reesei secretome needs 
alternative potential strategies which could either replace or supplement T. reesei 
enzyme system. Therefore, efforts are required for exploring microbial enzymes for 
biofuel production from agricultural biomass.
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Chapter 13
Fungal Biofuels: Innovative Approaches

Spriha Raven, Aditya Francis, Chitra Srivastava, Sezotalu Kezo, 
and Archana Tiwari

13.1  Introduction

Biofuel is a sustainable source of energy as it has been an option for fossil fuels that 
cause environmental destruction (Nithya Devi and Velayutham 2011). Such concern 
has been focused in order to preserve our valuable resources from depletion and 
illustrate the need for sustainable development. Biofuels can be obtained from vari-
ous sources such as vegetable oil, seeds, lignocellulose, animal fat feedstocks, 
microbes, etc. Biofuels can be diverse in nature such as biodiesel, bioethanol, bio-
hydrogen, cellulosic ethanol, etc. There are numerous advantages associated with 
biofuels like less global warming as it develops less carbon dioxide in comparison 
with fossil fuels. Generation of biofuel from microorganism is helpful in minimiz-
ing the waste and putting it into best use. Fungus supports in the degradation of 
biomass and additionally allows the conversion of agricultural waste to biofuel. 
Biomass processing techniques are divided into two categories: biochemical con-
version and thermo-chemical conversion. Biochemical conversion leads to produc-
tion of bioethanol and biodiesel. Various endophytic fungi grown and cultured on 
potato dextrose agar (Strobel 2014) have been explored that produce compounds 
such as alkanes, cyclohexanes, cyclopentanes, and alkyl alcohols/ketones, ben-
zenes, and polyaromatic hydrocarbons that are found in biodiesel. As liquid fuel 
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obtained from fossil fuels is depleting due to enormous consumption, alternative 
source is being explored. The growth of biofuel such as hydrocarbon has been a new 
method for examining these compounds for other applications.

Among different oleaginous microorganisms, numerous benefits have been 
observed to filamentous fungi such as the following: (1) it exhibits good lipid 
profile for generating high-quality biodiesel; (2) it generates oil with the help of 
solid state fermentation owing to less energy consumption; and (3) various car-
bon sources are used for the generation of lipid. White rot fungi have the potential 
to degrade cellulosic material and produce ethanol. Oleaginous fungi are isolated 
by the serial dilution method for the lipid generation, and lipid is extracted by 
Bligh and Tyer method. Lipids generated are utilized for physio-chemical proper-
ties for the production of biodiesel (Nithya Devi and Velayutham 2011). It has 
been revealed that biofuel generation is economical and eco-friendly because 
CO2 emission is less. The methods involved in the production of ethanol involve 
separate hydrolysis and fermentation (SHF) and simultaneous saccharification 
and fermentation (SSF) (Fazeli et al. 2016). The enzyme is a protein that has a 
catalytic property that alters the rate of reaction. Cellulases and hemicellulases 
are the enzymes responsible for degrading cellulosic material, and Trichoderma 
reesei is involved in an enormous production of various cellulose and 
hemicellulose.

Nanotechnology has been a new approach, and it has enhanced the generation of 
biofuel. White rot fungi are highly effective, and it degrades lignin and is addi-
tionally preferred for fungal pretreatment (Cook et al. 2015). Various processing 
conditions play an important role in lignin degradation such as moisture, tempera-
ture and aeration is crucial for lignin degradation. Another strategy to solid state 
fermentation and direct enzyme approach is in planta generation of fungal enzymes 
in plants bound for biofuel yield. In this chapter, we have focused on the generation 
of fungal biofuel by various methodologies in order to conserve natural resources 
for sustainable development.

13.2  Classification of Biofuels

Biofuel has been generated in different parts of the countries, and it has been classi-
fied into different levels. The first biofuel produced was bioethanol, obtained by 
fermenting sugars. After its discovery, fuels were extracted from various sources 
such as vegetables or animal fats that are basically known as second-generation 
biofuels. Now latest innovations are made, and focus has been switched to generate 
biofuels from different microorganisms; this generation is regarded as third- 
generation biofuels.

S. Raven et al.
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13.2.1  First-Generation Biofuel

First-generation biofuels are biodiesel produced using oilseed crops, bioethanol 
established by fermenting sugars, extracted from different starch-loaded crops. 
Simple processing methods but with involvement of various fermentation organ-
isms led to the generation of varieties of biofuels such as butanol and ethanol. 
Alternative source is searched to save our environment from CO2 emission by the 
help of biofuel generation such bioethanol, butanol and the profile of bioethanol is 
analysed by aerated and non-aerated condition. The final efficiency is calculated 
using three factors: yield, productivity and final product concentration. Brazil is the 
largest producer of ethanol. Almost 40% of the fuel’s uptake was developed in 
Brazil in 2005. There are many reasons associated with this: the unique feature of 
sugarcane as a product (sucrose); it is not a polysaccharide rather it is a disaccharide 
thus it does not necessitate processing (Elshahed 2010). Molasses is an agricultural 
waste, having high sugar content for bioethanol production-ranging sucrose (32%), 
fructose (16%) and glucose (14%). Batch fermentation technique was performed 
at an anaerobic and aerobic condition. The analytical methods, such as yeast cell 
count and total soluble solids of the fermentation broth, were analysed by direct 
counting procedure using total plate count and handheld refectrometer, respectively 
(Jayus et al. 2016).

13.2.2  Second-Generation Biofuel

Second generation biofuels are produced from biomass in another sustainable fash-
ion, which is indeed carbon neutral or unchanging  carbon damaging in the speech 
of its opinion on CO2 concentrations, the duration ‘plant biomass’ refers for the 
most part to lignocellulosic cloth as this builds up the larger percentage of the sec-
ond-rate and the plentiful nonfood equipment presented from plants (Gomez et al. 
2008). However, biofuel extraction from agricultural by-products can lead to the 
rising need for liquid fuels. This has generated impressive advantage in manufac-
ture of specific biomass crops as feedstock for biofuel assembly. Lignocellulosic 
equipment are an assortment of feedstocks for higher biofuels and can be obtained 
through hydrolysis and fermentation or through gasification. Lignocellulosic bio-
mass is gasified to produce syngas, which in turn is transformed into DME (Balat 
2006). The 2nd creation biofuels are comparatively immature consequences they be 
thought to declare usefulness capability for cost reductions and larger than before 
construction efficiency levels as supplementary event is carried place. It is then 
expected to befit a duty of the result to the challenge of shifting the joy sector 
towards other sustainable energy sources at a little scaffold in the medium-term. 
The possibility and sustainability of first-generation biofuels fabrication is 
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questionable looked-for to Second age bracket biofuels increases land-use transfor-
mation and land-use efficiency, and requires complicated handing out fabrication 
equipment (Stevens et  al. 2004) on the core of existing scientific erudition and 
technology projections, third-generation biofuels specifically derivative from bac-
teria and microalgae are careful to be a viable other energy source devoid of the 
chief drawbacks such as food–fuel competition, land-use change, etc. (Nigam and 
Singh 2011).

13.2.3  Third-Generation Biofuel

Various efforts are being made to shift the use of fossil fuels to biofuels in order to 
save the environment from ecological imbalance. Hence, microbial species are 
being stressed in order to generate biofuels out of biodiesel, biohydrogen, bioetha-
nol, etc. (Elshahed 2010). Cellulose is comprised of fine fibrils, lignin and hemicel-
lulose, and it exhibits indissoluble properties despite heavy treatments. Lignin has 
always remained a barrier for cellulose extraction. Therefore, effective methods 
have been drawn in order to depolymerise lignin to benefit the biofuel industry. 
Lignin is depolymerised by releasing the enzyme lignin peroxidase with the assis-
tance of white rot fungi. Lignocellulosic biomass is pretreated with white rot fungi 
prior to saccharification (Cook et al. 2015). Cellulose hydrolysis by various fungal 
enzymatic treatments improves sugar release and leads to the generation of biofuel 
products. Endophytic fungi produce volatile products, and the technique that moni-
tors volatile organic compounds is called proton transfer reaction mass spectros-
copy through fungal culture. Nuclear magnetic resonance method admonishes 
hydrocarbon generation by fungal culture (Strobel 2014). The output of hydrocar-
bon is duplicated as fungi are co-cultured in association with E.coli. Table  13.1 
describes the advantages and disadvantages of third-generation biofuels. Further, 
third- generation biofuels that are being grown with the assistance of fungi will be 
discussed.

Table 13.1 Pros and cons of third-generation biofuels

Pros Cons

They are renewable More research work is needed
It can absorb carbon dioxide Its production still needs a lot of work
Its basic sources grows fast like they need water, 
mushroom etc.

It needs higher amount of CO2 to perform 
efficiently

It promises high content of energy Contamination can be an issue
They do not need arable land Challenges include feedstock production
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13.3  Innovative Approaches for Fungal Biofuel Generation

There is tremendous improvisation in the approaches toward fungal biofuels, and 
the recent developments are testimonials. Diverse fungi strains have been envisaged 
for evaluating their biofuel efficiency. Biofuels derived from fungi include bioetha-
nol, biodiesel, biohydrogen, and cellulosic ethanol. Different methodologies have 
been explored that led to the production of third-generation biofuels with the help 
of various fungi. Fig. 13.1 highlights biofuel from lignocellulosic biomass.

13.3.1  Bioethanol

Bioethanol is a renewable source of energy, and it is most often considered among 
all the fuels being generated from liquid fuels. Bioethanol has come as a substitute 
for the fuels that are confined, and its depletion is happening at a quicker rate. 
Recently, an organism has been distinguished that generates ethanol, and such strain 
is Mucor indicus. Mucor indicus is the fungus, can grow at aerobic and anaerobic 
conditions. There has been a great potential usage of fungal biomass for the 
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Fig. 13.1 Fungal biofuels from lignocellulosic biomass
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worthful products, due to the structural importance of cell walls (Asachi et al. 2011). 
High cost has always remained an issue in many applications. The cost of yeast 
extract is high resulting in its restricted application in industrial operations. 
Therefore, it is necessary to produce a medium that satisfies the conditions required 
for microbial fermentation. Different enzymes are generated with the assistance of 
fungi such as Trichoderma, Aspergillus, Monilia, Fusarium, and Rhizopus. Diverse 
procedures are utilized in order to convert cellulose to ethanol, for instance, separate 
hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation 
(SSF), direct microbial conversion (DMC), and consolidated bioprocessing (CBP) 
(Fazeli et al. 2016). Certain fungi such as Monilia, Fusarium, Rhizopus, Aspergillus, 
and Neocallimastix have the power to convert cellulose to ethanol. Table 13.2 illus-
trates the various microorganisms, substrates, and approaches involved for the gen-
eration of bioethanol.

It has been discovered that ethanol generation from rice straw has been focused 
by few technologies such as simultaneous saccharification and fermentation in asso-
ciation with Mucor indicus, Rhizopus oryzae, and saccharomyces cerevisiae and it 
was likened with cellulose and established that all the fungi were capable of gener-
ating ethanol from rice straw, with 40–74% production of the maximum theoretical 
SSF yield. Rhizopus is beneficial in performing fermentation in ethanol production. 

Table 13.2 Substrates, microorganisms, and methods for bioethanol production

Substrate Microorganisms Methods Biofuels References

Rice Husk Aspergillus niger
Aspergillus 
fumigatus

Fermentation
Enzyme
Hydrolysis

Bioethanol Ezeonu et al. 
(2014)

Horticultural Waste Trichoderma 
reesei
Saccharomyces 
cerevisiae

Solid-state fermentation Bioethanol Xin et al. 
(2013)

Tamarind Fruit Saccharomyces 
cerevisiae
(local strain)
Saccharomyces 
cerevisiae
MTCC 170

Stationary fermentation
Shaking
fermentation

Bioethanol Ali and Kha 
(2014)

Banana Pseudo 
Stem

Aspergillus 
ellipticus
Aspergillus 
fumigatus
Saccharomyces 
cerevisiae
NCIM 3570

Fermentation
Enzymatic hydrolysis

Bioethanol Ingale et al. 
(2016)

Alkaline pretreated 
sugarcane bagasse

Phlebia sp. 
MG-60

Consolidated 
bioprocessing (CBP)

Bioethanol Maryana et al.
(2014)

Waste Paper 
Sludge

A. cellulolyticus Simultaneous 
saccharification and 
fermentation (SSF)

Bioethanol Prasetyo and 
Park (2013)
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Ethanol production occurs from the fungus identified from soil. Aspergillus ochra-
ceus and Saccharomyces cerevisiae were utilized for saccharification and fermenta-
tion. Saccharification and fermentation occurs at stationary and shaking condition 
for a fermentive ethanol generation (Ali and Kha 2014). In order to optimize ethanol 
production, substrates were held at different concentrations such as 5 g substrate 
and 100 ml of distilled water; 5 g of substrate, 100 ml distilled water, and 0.5% 
glucose; and 5 g substrate and chemically defined medium. High output prevailed 
from sawdust supplied with a chemically defined medium in shaking fermentation. 
It has been observed that sawdust hydrolyzed by cellulases of A. ochraceus was 
most productive in terms of ethanol output and can therefore be harnessed in biofuel 
generation. Fig. 13.2 shows the different stages in the production of bioethanol.

Horticultural wastes can generate bioethanol through various technologies. 
Horticulture wastes have been estimated for cellulose generation practicing SSF by 
T. reesei (Xin et al. 2013). An integrated procedure is developed with the involve-
ment of two technologies for the generation of ethanol fuel. The crude fungal 
enzyme complex produced from horticulture waste by the method, solid state fer-
mentation and organosolv-pretreatment of horticultural waste for enzymatic cellu-
lose saccharification, for diminishing sugars that can be matured to ethanol fuel 
(Xin et al. 2013). Mucor elegans fungi are vantages for second generation fuel pro-
ducing ethanol in equivalence to the conventional ethanolic yeast. They have a ten-
dency to ferment a variety of sugars to a range of useful products. Fungi generate 
enormous useful by-products such as microbial oil, protein, etc. There has been a 
novel approach for biofuel production and the transition from lignocellulosic bio-
mass to sugars using anaerobic fungi such as Pecoramyces ruminantium strain C1A.

Biofuel generation from lignocellulosic biomass goes through inefficient sac-
charification. Thus, in order to have better efficiency, we need to infer the role of 
transcriptional ordinance and reactions of filamentous fungi to lignocellulose. 
Banana (Musa acuminata) helps in the accretion of cellulosic biomass wastes that 
serves as a novel material for ethanol generation. SSF has remained a remarkable 
technology for biofuel generation. Two fungal strains were used such as A. fumiga-
tus and A. ellipticus on banana pseudo-stem by co-culture fermentation in order to 
expel reducing sugar, which was later utilized as a substrate for ethanol generation 
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by yeast strain such as S. cerevisiae NCIM 3570 (Ingale et al. 2016). Ethanol is also 
generated by the involvement of chitosan, contagious parasites of spineless crea-
tures, for example, nematophagous growth, Pochonia chlamydosporia and the ento-
mopathogenic fungi, Metarhizium anisopliaeand Beauveria bassiana. Pochonia 
chlamydosporia is the biggest manufacturer of ethanol from chitosan (Aranda- 
Martinez et al. 2017).

The yield of the bioethanol age could be upgraded by P. chlamydosporia strain 
choice or hereditary building assurance for chemical advancement or brought artic-
ulation up keeping in mind the end goal to utilize this growth for ethanol creation at 
a major scale. The rise in biofuel revelation is for long haul managed exertion.

13.3.2  Biodiesel

In the modern society, petroleum-based fuels have been an important energy source. 
But because of an enhancement in demands for energy, the world is facing the dan-
ger of energy shortage due to decrease in the reserves of fossil fuels. Many govern-
mental and industrial efforts are focusing on exploring for an alternative of 
petroleum-based fuels, and biodiesel which is obtained from microbes and specially 
fungi and can accumulate lipid is the best alternative. External carbon can metaboli-
cally transform into carbohydrates or hydrocarbon, and then they are changed into 
lipids, which are an essential storage compound. Microorganisms are regarded as 
oleaginous when the lipid amount in the cell exceeds 20% or further if their cell 
mass is made up of lipid biomass. Biodiesel is a renewable fuel which is compatible 
with the present-day commercial diesel, and it also helps in enhancing degradation 
(Vicente et al. 2004). Every fuel has some benefits and some drawbacks; in the case 
of biodiesel, one of the major drawbacks is high manufacturing cost. Hence, discov-
ery of new products which can limit the cost of biodiesel is now on the rise. 
Microorganisms have the capability of producing biodiesel; they have some benefits 
over vegetable oil from oleaginous plants. Table 13.3 lists the lipid contents of some 
microorganisms for the generation of biodiesel.

Microorganisms do not need arable land and also gather high levels of lipids. 
Oleaginous species are referred to those microorganisms which gather more than 
20–25% lipids (Ratledge 1991). These microbial lipids are used as raw materials for 

Table 13.3 Lipid content of some microorganisms

Strains Lipid content Reference

Aspergillus oryzae 57 Meng et al. (2009)
Cunninghamella echinulata 40–47 Santos-Fo et al. (2011)
Mortierella isabellina 68–86 Meng et al. (2009)
Mucor circinelloides 20 Santos-Fo et al. (2011)
Mortierella vinacea 66 Meng et al. (2009)
Humicola lanuginose 75 Meng et al. (2009)

S. Raven et al.
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biodiesel production. Mucor circinelloides from fungi is used for the production of 
biodiesel. It has many features which favor its use for producing biodiesel, which 
include high amount of lipids, that is, around 25% dry mass (Ratledge 2002). During 
the submerged batch cultivation, they produce good biomass in bioreactors by uti-
lizing a good range of carbon sources. The US Department of Energy (DOE) has 
chosen this fungus for its genome sequencing at the Joint Genome Institute after 
seeing its potential in producing biodiesel. The point of this article is to focus on 
utilization of biodiesel as a potential alternative to fossil fuel, which are used as a 
replacement of petroleum-based products. The fossil fuels will be over by the end 
of the century and the oleaginous fungi can optimize the condition for higher lipid 
production, which will help in the biodiesel production (Shatha 2017).

13.3.2.1  Methods for the Production of Biodiesel

There are two methods used in the production of biodiesel from M. circinelloides. 
The first one is the extraction of lipids from the biomass of M. circinelloides which 
are then transformed into FAMEs (fatty acid methyl esters), and the second method 
is the direct conversion of biomass from M. circinelloides without the need for pre-
vious extraction of lipids. Good-quality biodiesel is obtained with the help of the 
direct method. This then proposes that M. circinelloides biomass have the ability to 
be used as a feedstock for the production of biodiesel.

Lipids are extracted from a lyophilized and ground microbial biomass. Dry bio-
mass of direct transformation was carried out through the technique introduced by 
Lewis et al. (2002). For the production of biodiesel, biomass of M. circinelloides 
was collected from the phototropic strain of MU241. Three mixtures of solvents are 
used for the lipid extraction and these are in the ratio of chloroform and methanol, 
chloroform, methanol, water and n-hexane. The n-hexane is used to prevent the 
usage of chlorinated solvents, because of their harmful effects on the environment. 
To replace chloroform, lots of solvents have been studied, and n-hexane came out as 
a better alternative for lipid extraction (Miao and Wu 2006). The production of bio-
diesel from M. circinelloides by direct alteration of fungal biomass without using 
any intermediate is a feasible method.

Biodiesel can also be produced from fungi before and after the exposure of UV 
light. Aspergillus terreus, the oleaginous fungal isolate used in this test, was exposed 
to UV light for 5 minutes and 10 minutes. To avoid photoreaction, the UV exposed 
spore suspension was kept in the dark. UV treated spore suspension and untreated 
spore suspension were injected into liquid medium, and after incubation, it was fol-
lowed by extraction of biomass of selected oleaginous fungal isolates to estimate 
the dry weight and production of lipids. Thus, it is found that A. terreus fungal iso-
late can produce high biomass of dry weight to increase exposure to UV light 
(Shatha 2017).

This is probably because of the enhancement in the lipolytic enzyme activity 
which causes an increase in the accumulation of lipid intracellular cells. This makes 
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A. terreus a better alternative to producing biodiesel. UV radiation helps in the 
improvement of strains of fungi. Several attempts have been made for high produc-
tion of biodiesel with the help of fungi. Table 13.4 enumerates the microorganisms 
and methods involved in production of biodiesel.

13.3.3  Biohydrogen

Most growths are oxygen consuming, yet anaerobic organisms has brought changes 
in freshwater lakes, landfill destinations, remote ocean dregs, and rumens of herbi-
vores. Additionally they produce microbial products by the help of biogas reactors. 
These growths, keep up bounteously operational polysaccharide-corrupting com-
pounds, fabricate them rousing for biomass debasement and assorted biotechnologi-
cal applications. As a choice of mitochondria, anaerobic parasitic species participate 
in hydrogenosomes, organelles that control hydrogenase and convey sub-atomic 
hydrogen, carbon dioxide, acetic acid derivation, and distinctive blends as meta-
bolic junk collect. The natural development of subatomic hydrogen in the rumen 
vivifies methanogenesis, and anaerobic organisms and methanogenic archaea are in 
a fundamental relationship that develops the metabolic emerged from the single-
parasite structure (Magnus et al. 2016).

Anaerobic parasites are overpowering recognized from rumens of herbivores, 
some places they are inferring players in the corruption of lignocellulosic works 
twine. Anaerobic parasitic species get no mitochondria and are not capable to make 
imperativeness by any incredible or anaerobic breath. Rather, they contact their fun-
damental needs by the development of starches (general equation CxH2yOy), a han-
dle in which the imperativeness spring goes about as commonly the electron 
acceptor and the electron benefactor. As a substitute of mitochondria, anaerobic 
parasites get a handle on hydrogenosomes, organelles accomplished by coupling the 

Table 13.4 Microorganisms and methods for biodiesel production

Microorganism Method References

Mucor 
circinelloides

Extraction of lipids from the biomass transformed into 
FAMEs and direct conversion

Gemma et al. 
(2009)

Aspergillus terrus With the help of UV light Shatha (2017)
Aspergillus sp. With the help of direct (DTE) and indirect (IDTE) 

transesterification methods
Venkata Subhash 
and Venkata 
Mohan (2011)

Mucorfragilis Disruption, oil extraction, and fermentation. 
Conditions were enhanced by response surface 
methodology

Huang et al. 
(2016)

Aspergillus oryzae
Cunninghamella 
echinulata
Mortierella 
isabellina

Acid catalyzed transesterification reactions with 
methanol producing methyl esters and then examined 
through chromatographic (GC-FID) and spectrometric 
techniques (MS, NMR 1H)

Meng et al. (2009)

S. Raven et al.
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processing of glucose to cell essentialness age. Hydrogenosomes cover hydroge-
nase, and in the course of action with of spoiled lignocellulosic set fiber, they con-
vey atomic hydrogen, carbon dioxide, acetic acid derivation, formate, lactate, and 
ethanol as metabolic revealed items (Magnus et al. 2016).

13.3.3.1  Biohydrogen by Endophytes

Most endophytes can be readily created to measure research facility media with 
potato dextrose stock being one of the best decisions. These creatures will by and 
large rise on area media completed with minimum salts, a nitrogen text style, and 
a couple of proper sugar polymers, for example, fiber or hemicellulose (Strobel 
2014).

Various volatile compounds (VOCs) are delivered with the help of growths that 
prompt generation of biofuels. SPME (solid phase micro-extraction) is one of the 
most common method for the qualitative analysis of VOCs that is generated by 
fungi. A fairly new framework using proton turn over outcome pile spectroscopy 
PTR-MS has been effectively associated with execute, complete bona fide time 
observing of VOC making by contagious societies. Additionally, NMR (nuclear 
magnetic resonance) strategies have been adjusted to monitor hydrocarbon genera-
tion by fungi (Strobel 2014).

13.3.3.2  Anaerobic Fungi in the Biohydrogen Production Process

An ordinarily experienced issue amidst anaerobic absorption is constrained degrad-
ability of plant biomass: 40–60% of characteristic carbon stays unused (Procházka 
et al. 2012). This issue is an aftereffect of the physical structure and the unyielding 
manufacturing process of these polymers. In detail, lignin stays indigestive under 
anaerobic conditions and also shields cellulose, also hemicellulose from enzymatic 
degradation. Along these lines, progressions that can redesign anaerobic defilement 
of lignocellulosic biomass are required.

Presentation of an incomprehensible pre-treatment meander for plant improve-
ment through for example white and brown rot fungi ruin creatures or the strong 
cellulose tainting Trichoderma viride has displayed promising results on redesig-
ing the going with anaerobic retain limit in biogas reactors (Procházka et al. 2012; 
Wagner et al. 2013). On the other hand, anaerobic developments into these biore-
actors would take out the need of an oxygen exhausting pre-absorption. Concerning 
the presented objectives, mesophilic conditions are qualified.

The probability of Anaeromyces and Piromyces strains to sort out into biogas- 
passing on anaerobic flood bacterial framework, to redesign corruption of substrate 
polysaccharides and along these lines to influence methane creation has as of late 
been endeavored in explore center conditions. Promising outcomes were gotten 
amidst the bioaugmentation of swine compost empowered biogas reactors with spe-
cific strains of anaerobic parasites. Modification to parasitic biomass incited 4–22% 
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higher gas yields and up to 2.5% higher methane fixation (Procházka et al. 2012; 
Fliegerová et al. 2012). An advancing considers demonstrating that bioaugmenta-
tion with anaerobic living creatures did not broaden the general, methane yield, 
regardless, it animates beginning gas age and in this way may decrease bolster time 
(Nkemka et al. 2015). By and large, in any case, it was unrealistic to save parasitic 
movement, and the contagious valuable impact on hydrolysis appears to decay after 
around ten long periods of brooding.

13.3.4  Cellulosic Ethanol

Cellulosic ethanol is ethanol generated biologically from a cellulosic total mass of 
living organism from a given area of land which is derived from grasses, algae, 
cultivable land and forestry residue and in some fast growing wood, which is a 
unique sustainable conveyance fuel that strengthen the economy, environment, and 
strategic attributes (Brethauer and Wyman 2010). The economic competition for 
producing cellulosic ethanol is determined by the feedstock cost, constituting about 
35–50% of total ethanol production cost (Hess et  al. 2007) cellulosic ethanol in 
further aspects, development of biofuel industry could lower the demand of gas 
drilling, oil and nuclear power. Cellulose and hemicellulose, when undergo chemi-
cal reaction can be adapted for new purposes into ethanol with a process of well- 
developed technologies (Zheng et al. 2009). Genetically modified plants fabricate 
cellulases and hemicellulases which lower the requirement for pretreatment pro-
cess. Enzymatic breakdown of the high solids process is observed as the primary 
disadvantage affecting the ethanol yield. In wearing down of cellulosic ethanol, 
AFEX (ammonia fiber expansion) is pretreated, which is found in increasing meta-
bolic yield and ethanol production (Lau and Dale 2009). Pretreatment of cellulosic 
substances is needed to achieve high yields despite the various methods of biotech-
nology which is cost-effective; pretreatment has major impacts in advancing the 
significant to reduce cost and hasten commercial implementation.

For the large scale production of ethanol fuel the cellulosic application (Farrell 
et al. 2006) will definitely be required and ethanol is adapted to do the need, research, 
and technology (Yang and Wyman 2007). Ethanol from corn grains and soybeans 
for biodiesel can be passed on for natural advantages potential vitality harvests and 
microorganism’s ready to separate biomass is lethal for building up the possibilities 
of eloquent cellulosic biofuel production, with large quantities and lower food sup-
ply. Transportation biofuels, for example, synfuel hydrocarbons or cellulosic etha-
nol, when produced using low-input living creatures, convey much basic supplies 
and yield to the environment (Hill et al. 2006). Studies suggested that at present the 
corn ethanol application is less petroleum-exhaustive, considering the cleanest liq-
uid fuel apart from fossil fuels. Cellulosic ethanol is regarded as likely to substitute 
the first procreation biofuel made from agriculture crops, such as soybeans and 
corn. The effect of plant sizes surveyed that the approximate ethanol production 
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increase according to plant size for different biomass species. Lignocellulosic resi-
dues from agricultural wastes, forestry residue, and municipal wastes are explicitly 
plentiful in and around us and are capable of bioconversion (Sanchez 2009).

Yet, use of cellulosic alcohol is not practical on a commercial scale, but this 
practice could avoid usage of conventional biofuels, which are produced for food 
purposes. After much research, it was found that corn ethanol application was less 
petroleum-intensive and the huge land use for ethanol production for fuel purpose 
will subsequently require cellulosic application. Ethanol obtained from the cellu-
losic mass of living, is checked for a large-scale transportation fuel, but the environ-
mental jolt cogitations are hindering the extensive utilization of fuel ethanol 
delivered from cellulosic biomass due to the change financial matters (Lynd et al. 
1991). The promising alternative is the conversion of cellulosic mass. The technol-
ogy to generate cellulosic mass from ethanol resources such as forestry and agricul-
ture residue has not yet been viewed commercially. To generate cellulosic mass for 
bioethanol, treatment before use is to be followed, the cellulose part is hydrolyzed 
by enzymes or acids. Single origin of cellulosic biomass with the help of advance 
technology was protracted and enzymatic hydrolysis operation using identical ana-
lytic was done and it gave a comparative performance data developing sugar recap-
ture from hemicelluloses and cellulose (Wyman et al. 2005).

Pretreatment is needed to develop the effective and mechanism models for cogent 
design and remove structural and compositional hindrance to hydrolysis in structure 
to make better frequency for enzyme hydrolysis and increase yield of fermentable 
sugar from cellulose or hemicelluloses (Mosier et al. 2005). Ionic liquids (ILs) did 
show an effective solvent for pretreatment of lignocelluloses, advancing the rapid 
hydrolysis of soluble polysaccharides to form simple sugar of cellulose and hemi-
cellulose. The conversion of sustainable cellulosic biomass to low cost fermentable 
sugars in a biological, economic variety of valuable product should be made utiliz-
ing metabolic designing advancements and process development with industrial 
efforts and academic with fundamental knowledge and cost effective. Conversion 
economy is a crucial requirement to overcome research-driven improvements and 
cost competitive process for future prospects.

Observation founded that ethanol production occurs by the use of white rot fun-
gus of cellulosic biomass as Lenzites betulinus, Ceriporiopsis subvermispora, 
Dichomitus squalens, Plurotus ostreatus and Coriolus versicolor naturally causes 
the need of titers of cellulases necessary for the simultaneously saccharification of 
pretreated lignocellulose or ethanolysis to show up the system of cellulosic part and 
reduce by breakdown of hemicelluloses to sugar. Lenzites betulinus fungi taken 
from the fruiting body of dead trees produce ethanol and exhibit various sugars 
content. L. betulinus is equipped in creating ethanol straight from rice straw and 
corn stalks. Trametes versicolor is found promising to directly produce lignocellu-
losic biomass and is environmental friendly to produce ethanol and demonstrated 
favorable potential to convert xylan into ethanol and non-pretreated starch and rice 
straw to recombinant strains. Yet cellulosic ethanol is one of the most desirable 
application options obtainable to lower the transmission sector of greenhouse gas 
emission. Manila, Neurospora, and Fusarium genera having filamentous fungi were 
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observed to show capacity of organisms to convert cellulose directly to ethanol. 
Monilinia a filamentous saprophytic fungus can be used by many polysaccharides 
and is capable of producing cellulose, fermented xylose, glucose, and direct ethanol 
from cellulosic material (Gong et al. 1981). In filamentous fungi, Lignocellulosic 
materials in huge amount where the cultivating residues are available which brings 
up problem of losing of capable and great deal of a specific kind of matter with the 
similar properties as biomass fuel production, paper manufacture, human and ani-
mal consumption among others and composting also in ejection of the environment. 
The capability of fungi to reduce the lignocellulosic substances is because of their 
enzymatic mechanism. Fungi such as Trichoderma sp. and Aspergillus niger release 
huge amounts of extracellular cellulolytic enzymes. Trichoderma reesei is found as 
an important source of commercial sources of cellulases and hemicellulase utilized 
as a part of depolymerize biomass to biofuels as ethanol. T. rice delivers and secretes 
plenteous amounts of enzymes that degrade the cellulose and related biomass parts. 
Trichoderma harzianum a filamentous fungus also makes cellulose degrading 
enzymes for achieving enormous profits of biomass usage and is used in industries 
feedstocks, with agriculture and forestry residue, woody biomass, dead trees, corn 
stalk of low value fibre is used in production of bioethanol (Agbor et  al. 2011). 
Choices made for materials should meet the standard of sustainability with biofuels 
of current emerging engine designs. Table 13.5 illustrates the various microorgan-
isms and substrates involved in the cellulosic ethanol generation.

13.4  Various Policies and Challenges

Various reasons are found for the use biofuels to be taken into account as closely 
related to technologies by more advanced and industrialized countries. The produc-
tivity of substitute biofuel policies in accomplishing vitality, ecological and agrarian 
strategy question are assessed utilizing financial money saving advantage examina-
tion (Gorter and Just 2010). Present energy policies addresses matter, including 
environmental friendly options to enlarge energy and contribute to give support for 
cleaner and more producing energy use (Demirbas 2009). With the current increase 
in oil prices and with increased concern about global warming caused by carbon 
dioxide emissions, biofuels had gained popularity (Ljungdahl (2008). Biofuels are 

Table 13.5 Microorganisms and substrates involved in the cellulosic ethanol

Fungal strains Substrates References

T. reesei Wheat straw Chahal et al. (1985)
Piromyces sp. Maize stem Ljungdahl (2008)
Anaeromyces mucronatus 543 Orchard grass hay Lee et al. (2001)
Neocallimastix frontalis Cotton fiber

Wheat straw
Doi (2008)

Orpinomyces sp. Wheat straw Chen et al. (1998)
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environment friendly and the usage of biofuels would address global concerns of 
carbon emissions. The policy of biofuel is likely to increase its usage as transporta-
tion fuel produced from biomass and from other renewable resources (Demirbas 
2009). Biofuel energy gives a security in environmental concerns, socioeconomic 
development as it is based on agricultural production and also saving of foreign 
exchange. However, cultivation of crops for production of fertilizers and pesticides 
and for manufacturing biofuel exerts a lot of energy. The economists have a strong 
effect on biofuels in the short-term is determined on variance components as har-
vest, oil price, increase in the economy, and level of complete list of items. 
Sustainable development is determined according to factors such as sound environ-
mental practices, efforts in technological change, economic growth, efforts against 
climate change, and long-term policies toward energy, agriculture, and the environ-
ment (Rajagopal and Zilberman 2008). The study reported that the future energy 
can significantly increase with the use of second generation biofuels, however the 
economy is the major constraints to the commercial production (Carriquiry et al. 
2011; Lamers et  al. 2012) an important exporting countries have low feedstock 
costs and existing wood processing ventures and is greatly influence by policy 
structure (Lamers et al. 2012) to regenerate the economy by increasing demand and 
prices for agricultural products. Corn based ethanol does not meet the need of 
United States, though for commercial production for biofuel is advanced (Drabik 
and de Gorter 2011). Research is needed to provide further solution for the unoffi-
cial markets and for rapid commercialisation. Direct land use has a great impact on 
greenhouse gas emission and of eutrophication for all biofuels have been founded 
from the studies, the major importance in some cases is of the technical design of 
production. In the current situation the indirect land use change of biofuel were the 
situation of scientific uncertainty for the policy making, but the indistinguishable 
problem has been tackled in past (Di et al. 2012) the change of indirect land use 
effects the biofuels and reduces the benefits of that of fossil fuels.

The transformation of uncultivated land to biofuel farming brought about critical 
soil organic carbon loses (SOC) (Teixeira et al. 2009). Biofuel dispensation opened 
new career opportunities for people in rural areas. Biofuels are anticipated to lessen 
the reliance on imported petroleum. With land utilization and climatic change, cel-
lulosic vitality could bring about new frontier into wide based field. The present and 
future can be alleviated through innovative technologies and suitable approaches 
that can fortify sustainable use of land by the indigenous locality for utilization of 
natural resources (Sawyer 2008).

13.5  Impact on Environment and Health

Energy we use today has been collected and stored by the process of photosynthesis 
(Bassam 2012) it has been encouraged for the research of renewable transportation 
biofuel related to petroleum contribution so that the negative environmental out-
come of fossil fuels is reduced (Hill et al. 2006). Transmission of biofuels if created 
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from low-input biomass on agricultural area or from squander biomass, could give 
much extensively benefit to the environment food security and biofuel feedstock 
crops turns up for the rising competition with biofuel feedstock crops and food 
crops conversion process utilizes little fossil fuels which becomes more sustainable 
and not harming the environment (Granda et  al. 2007). Land utilize changes in 
regards to deforestation forms, fertile land transformation and related methodologi-
cal difficulties and new idea of land utilize markers has reverberated in biofuel cre-
ation is a modern phenomenon and it had not yet been incorporated as a figure 
driving forward change in land use. Changing in the harvest generation, particularly 
with the expansion request of feedstock crops for biofuels, has an alternate ramifica-
tion of the expected patterns of land use under the mandates and trade liberalization 
scenarios substantial costs on society has environmental impacts of energy use (Hill 
et al. 2009). With the increasing of cost of food and human feed resources the pro-
duction of ethanol fuel is the preference of other food crops as corn should be for 
food and feed. Creation of biomass for biofuel on the cost of circuitous land utilize 
might be the outcome as unmeasured natural effects of biofuels (Hill et al. 2009). 
The present cycle evaluations normally communicates that bioethanol gives out in 
decreasing of advantages being utilized and a worldwide temperature alteration, 
however the impact in fermentation, human and biological dangerous, creating fun-
damentally in developing and delivering biomass were for the most part of negative 
(Blottnitz and Curran 2007).

13.6  Current Status

Biofuels have been used for a significant timeframe as a way to deal with fabricate 
essentialness autonomy, diminish import costs, and its strengthen in changing 
(Araújo et  al. 2017; Kovarik 2013). Since 2000, the general biofuels supply has 
extended up to 8% to meet the need of 4% of the world’s vehicle demands in 2015. 
These gigantic rising is credited to plans, for example, blending directions, which 
develop more conspicuous utilize and may to some degree secure biofuels in the 
midst of time.

In enterprises, for example, flight, marine transport, and overwhelming cargo, 
biofuels are regarded to be the main functional, low-carbon contrasting option to 
petroleum product. Particularly aeronautics, greenhouse gas (GHG) outflows were 
anticipated to increment by 400–600% between 2010 and 2050, in view of antici-
pated development. In conjunction, the avionics business set its focus on  diminishing 
CO2 and flew their first business dry run with biofuels in 2008. As of mid-2015, 
roughly 22 aircrafts had finished in excess of 2000 traveler flights with biofuel 
speaking to up to a large portion of the stream fuel blend. Taking a gander at expan-
sive numbers and sorts, the worldwide biofuel supplies rose to around 35 billion 
gallons in 2015 comprising generally of a 3:1 breakdown of ethanol to bio-diesel.
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13.6.1  Interest in Biofuels

Looking past the specialized viewpoints, supportability/execution, and arrange-
ment parts of biofuels, another basic measurement of the biofuel standpoint can 
be found in venture patterns. Worldwide interest in biofuels was assessed to 
measure up to $3.1 billion by 2015, mirroring a decrease of 35% with respect to 
2014 and over 80% in ostensible terms since 2008. Towards the start of the 
twenty-first century, billions of dollars were invested by global oil companies to 
discover a cutting-edge biofuel, with considerable risks being undertaken in the 
process (Hochman 2014). Commercialization of cutting-edge biofuels is more 
expensive and elaborate than initially foreseen. The steep fall in oil price per 
barrel from $115  in June 2014 to $27  in 2015 recuperated to approximately 
$50 in the greater part of 2016, yet the unavailability of a lucid biofuel strategy 
in the United States until 2015, or more essential time and financially, have con-
solidated to dissuade everything except a little arrangement of speculators 
(Hochman 2014).

13.7  Conclusion and Future Prospects

Biofuels are the need of the hour in terms of environmental safety, depletion of fos-
sil fuels, and increase in fuel prices. Microbe-mediated biofuel production is prom-
ising owing to its great metabolic efficiency and the plethora of biofuels they are 
capable of producing ranging from biodiesel, bioethanol, biogas, to syngas, to name 
a few. Fungi can be a good source of biofuels and are explored globally for genera-
tion of biofuels. Innovative strategies, employment of biotechnological tools, syn-
thetic biology, metabolic engineering, and so on can lead to rapid commercialization 
of fungi-based biofuels for a sustainable future. Endophytic parasites verbalize with 
a promising wellspring of incipient age biofuels. Their lipid profiles and capacity to 
engender volatiles need to be explored extensively. The genome of the filamentous 
parasitic endophyte Ascocoryne sarcoides that engenders potential-biofuel metabo-
lites when developed on cellulose medium has now been efficaciously described 
utilizing transcriptomic and metabolomics information (Gianoulis et al. 2012). Till 
date more sizably voluminous part of the endophytic fungi with biofuel engender-
ing faculty have been found from one of a kind natural circumventions over the 
world, be that as it may, the Indian part of a great land mass is yet to be deliberately 
investigated for novel biofuel makers. The shifted geology and climatic conditions 
cumulated with gargantuan biodiversity accessible in India, makes it a potential 
fortune trove of novel biofuel distributing endophytic growths. Coordinated endeav-
ors from the business side, colleges, and research institutions the nation over can 
enable India in playing a key role in the exploration of endophytes for cutting-edge 
biofuels.
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Chapter 14
Lignocellulosic Biomass to Fungal Oils: 
A Radical Bioconversion Toward 
Establishing a Prospective Resource

Batul Diwan and Pratima Gupta

14.1  Introduction

Lipids, fats, and oils have always been an inevitable social, commercial, and liveli-
hood requirement. Lipids in general are also essential for growth and endurance of 
living organisms. Among their wide array of applications, food and fuel are undis-
putedly the fundamental ones and hence of highest priority. Upsurge in demand for 
renewable fuel (biodiesel, bio-oil, bio-crude) is subsequently increasing the need 
for lipid resources. However, demand for these lipid resources in the form of con-
ventional oils such as vegetable oils and fish oils in food and nutrition industries is 
gradually outpacing the supply. Moreover, with the increasing awareness of health 
and nutrition, importance of functional and essential fatty acids is also on the rise. 
Fatty acids of different chain lengths decide the functionality of oils for serving 
various genres of applications such as feedstock to fuels or as a source of nutrition 
and nutraceutical. From a nutritional perspective, the dominantly recognized func-
tional fatty acids are long-chain mono or poly-unsaturated fatty acids (PUFA such 
as ω-3, ω-6, ω-9 fatty acids) as well as medium-chain fatty acids (MCFA). However, 
regularly consumed vegetable oils typically lack in higher functional fatty acids. 
Therefore, finding an alternate source, which is rich in structural and functional 
fatty acids, is essential for serving both food and fuel purposes. In past two decades, 
research on microbial oils (MO) also referred to as single cell oil (SCO) as an alter-
nate lipid source has accelerated, given its potential to serve both fuel (because of 
similarity to vegetable oils) model and nutritional (rare natural source of functional 
fatty acids such as PUFAs and MCFA) model applications. This chapter gives an 
introductory overview of SCO and its candidate microorganisms particularly fungal 
sources and their emergence as an important alternate oil source. It covers in detail 
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the feasibility of lignocellulosic biomass (LCB) as potential substrates for SCO 
fermentation, real-world applications of SCO, factors influencing the LCB to SCO 
conversion and moves toward realization of the biorefinery concept.

14.2  Single Cell Oils

14.2.1  What Are Single Cell Oils?

The SCO refers to the microorganisms which have the potential to excessively accu-
mulate intracellular lipids under certain sets of physiochemical and cultivational 
stress (Ratledge 1974). Earlier these nonconventional sources were considered 
solely for consumption purposes and hence included only oils having compositional 
similarity to vegetable oil, fit to be edible (Ratledge 2005). However, its boundaries 
have expanded in the past few years integrating different categories of lipids like 
algal, fungal, and even bacterial (Ratledge 2013) and are now among the well- 
known biotechnological products. SCOs are being recognized for their important 
contributions as a nonconventional source of rare long-chain PUFA. But now they 
are also drawing attention as a source of unusual functional fatty acids like MCFAs 
(Diwan and Gupta 2018a), which can play a key role in health and nutrition of infant 
as well as adults (Bach and Babayan 1982). Despite these exceptional properties, 
they have not acquired enough acceptance as a potential oil and fat source because 
of concerns of high cost involved for processing. In spite of growing global con-
sumption trends of microbial products (yeasts and bacteria) in the form of flavored 
curds, beers, yoghurts, cheese, single cell protein (SCP), fermented delicacies, etc., 
the public acceptance of SCO as an edible product is still debated. Still, it is being 
believed that SCO would outdo its doubtable acceptability (at least as a candidate 
for health and nutrition) because of the potentials and possibilities it has to offer.

14.2.2  Oleaginous Microorganisms: The Candidates of SCO

14.2.2.1  Definition

The concept of oleaginicity originally came into light three to four decades ago. 
Scientists like Ratledge, Boulton, and the pioneers in the field validated the micro-
organisms, irrespective of their kingdom and genera, of having susceptibility to 
oversynthesize minimum 20–25% of their cell mass as intracellular storage lipids, 
as oleaginous (Boulton 1988; Ratledge 2013). Various genera and species of micro-
algae, bacteria, and fungi (yeasts and molds), which can accumulate lipids over 20% 
of their cell dry weight (CDW), fall under this category (Ratledge 1974). According 
to Subramaniam, four bacterial genera having lipid content from 24% to 78% CDW, 
four yeast and mold genera each with a reported lipid content ranging between 
58–72% and 57–86% of CDW, and 14 genera of microalgae with lipid content 
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ranging between 20 and 77% were included under the category of oleaginous. The 
highest reported in each category were Arthrobacter sp. among bacterial genera, 
Rhodotorula and Mortierella among fungi (yeasts and molds), and Schizochytrium 
among microalgae (Jin et al. 2015).

In heterotrophic growth conditions, fungi, marine consortia, and microalgae gen-
erally produce more lipids to have commercial applicability. Normally the algal 
lipid content varies from 20% to 50%; however under certain set of conditions, it 
can reach up to 70–90% (Metting 1996). To name a few, Chlorophyta and 
Bacillariophyceae specifically Chlorella, which have shown high oil accumulation, 
have provoked huge interest in international bioenergy research and development. 
However, this chapter focuses on MOs from yeasts and molds; henceforth oleagi-
nous fungi will be the topic of discussion. Aspergillus and Mucor, Lipomyces star-
keyi, and Rhodotorula glutinis are some of the earliest discovered oil-accumulating 
fungi. Later yeasts like Cryptococcus albidus, Lipomyces lipofer, Lipomyces star-
keyi, Rhodosporidium toruloides, Rhodotorula glutinis, Trichosporon pullulans, 
and Trichosporon fermentans and molds like Aspergillus terreus, Claviceps pur-
purea, Tolyposporium, Cunninghamella elegans, Mortierella alpina, Mortierella 
isabellina, Mortierella vinacea, Rhizopus oryzae, and Thermomyces lanuginosus 
were successively found to have oleaginicity (Liang and Jiang 2013).

For SCO, fungal source also has the advantage of higher growth rate and less 
freshwater expense over algal oil production. Molds have been mostly explored for 
special PUFA rich lipids like DHA (docosahexaenoic acid), GLA (gamma-linolenic 
acid), EPA (eicosapentaenoic acid), and ARA (arachidonic acid). Yeast has been 
more recognized for its higher production of bulk lipids. It is more popular for SCO 
production because of its unicellular characteristic, having high duplication rate, 
ease of lab, as well as commercial scale fermentation, and least susceptibility to 
produce endotoxins (Ageitos et  al. 2011). Hence, they are considered as model 
organism for basic and applied researches in this field. The oils they produce are 
generally composed of triacylglycerols (TAGs) made of a variety of fatty acids (FA) 
similar to plant oils which opens the opportunity to use them as biofuel raw 
material.

14.2.2.2  Mechanism of Production

Apart from the physical aspect (20–25% oil accumulation), the biochemical aspect 
also originated with the belief that enzyme ATP: citrate lyase (ACL) is a marker of 
oleaginicity (Boulton and Ratledge 1981), and most, if not all, oleaginous fungi 
were found to possess this enzyme. The other important enzymes found to play a 
key role in oleaginicity are malic enzymes (ME) and acetyl-CoA carboxylase 
(ACC). In the event of any essential nutrient like nitrogen or phosphorus deficit, all 
these enzymes collectively come into play and trigger in shifting from usual meta-
bolic pathways solely toward lipid synthesis ensuing into lipid accumulation. Fungal 
machinery in such occasions ceases to perform the regular intracellular functions 
like nucleic acid and protein synthesis, leading to arrest in cellular growth 
(Papanikolaou and Aggelis 2011). Availability of immediate pool of excessive 
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carbon is another mandate in order to maintain consistent lipid synthesis. With the 
beginning of nitrogen starvation, the microbial machinery starts activating the alter-
nate supply of nitrogen by converting the available AMP (adenosine monophos-
phate) into IMP (inosine monophosphate) via enzyme AMP deaminase. The NH4

+ 
liberated from this reaction compensates the growing intracellular nitrogen deficit. 
In due course, the intracellular AMP pool depletes which in turn inactivates another 
important AMP-dependent enzyme of TCA cycle enzyme, NAD+ isocitrate dehy-
drogenase (NID). Since NID is involved in conversion of isocitric to α-ketoglutaric 
acid, its inactivation results in accumulation of unconverted isocitric acid. Isocitric 
acid exists in equilibrium with citric acid hence an intra-mitochondrial citric acid 
reserve starts building. When the concentration reaches a saturation point, this citric 
acid is transported out from mitochondria to cytoplasm in exchange of malate via 
citrate-malate shunt. Enzyme ACL now marks the beginning of first committed step 
in lipid synthesis by cleaving this citrate into acetyl-CoA and oxaloacetate.

On the whole, the excess carbon substrate is initially being converted to pyruvate 
(through glycolysis and pentose phosphate pathway) which is converted into acetyl- 
CoA and citrate to participate in TCA. After a series of reactions, a pool of uncon-
verted citrate grows in cytoplasm which is converted into acetyl-CoA.  Hence 
broadly speaking, under essential nutrient limitation, the microbial machinery is 
channelizing available surplus carbon and transforming it into acetyl-CoA pool, the 
precursor of de novo lipid synthesis. The acetyl-CoA through fatty acid synthesis 
(FAS) pathways gets converted into fatty acids. This FA elongates to produce a 
variety of fatty acids of different chain lengths which eventually assemble to gener-
ate TAGs by commencing the process of lipid accumulation. In non-oleaginous 
fungi, this surplus carbon is definitely transformed into citrate through usual cas-
cade of events; however, the stocked citrate in absence of ACL is either secreted out 
or makes its way to polysaccharide synthesis pathway. The stepwise progression 
from nitrogen starvation to lipid accumulation is shown in Fig. 14.1.

14.3  Advantages and Limitations of Conventional Oils

SCO has a long history of evolution from a being a subject of mere academic inter-
est to becoming a theme of rigorous research as an essential source of unusual fatty 
acids (PUFAs, MCFAs) for health and nutraceuticals. Paucity of a safe natural 
resource, because of its absence in plant oils, led to this realization, and these mys-
terious microorganisms in due course gained attention. Meanwhile, expedition on 
converting SCOs to biofuels (biodiesel) also paced up. The collective reason for 
these transitions is because of the advantages associated with the microorganisms, 
such as fast growth rate, non-requirement of large tillable lands compared to oil 
crops and less seasonal and climatic dependence (Zhang and Hu 2014). The compo-
sitional similarity it shares with conventional vegetable oils (Wei et al. 2015) made 
it a suitable feedstock for fuels. Further, these microorganisms have the ability to 
consume a variety of substrates including synthetic, complex and organic like 

B. Diwan and P. Gupta



411

agro-industrial wastes to produce an array of metabolic products. Hence, these low-
priced substrates can be employed to cut down the overall production costs.

The products can be tailored, modified, and improved qualitatively as well as 
quantitatively by necessary genetic modification of microorganisms. Moreover, in 
microbial fermentations, the process can be efficiently controlled for getting a 
desired output. The richness of SCO in functional fatty acids like PUFAs and 
MCFAs with relatively high oxidative stability than fish oils (the contemporary and 
richest source of ω fatty acids) can thereby make them a realistic nutraceutical sub-

Fig. 14.1 Major cellular pathways, enzymes, control points, and organelles involved in the con-
version of carbohydrates to lipids. Key acetyl- and malonyl-coenzyme A (CoA) substrates and 
NADPH cofactors supporting the conversion of carbohydrates to lipid are highlighted in red rect-
angles. Enzyme steps that have been consistently demonstrated to have a major impact on increas-
ing triacylglyceride (TAG) biosynthesis are highlighted in red circles. Thick red arrows indicate 
upregulation of enzyme activity, while a red cross indicates downregulation observed to cause 
enhanced TAG formation. ACC acetyl-CoA carboxylase, ACL ATP:citrate lyase, AMPD AMP 
deaminase, CMT citrate-malate translocase, DAG diacylglyceride, DGAT diacylglycerol acyltrans-
ferase, DHAP dihydroxyacetone phosphate, DS desaturase, E elongase, FA fatty acid, FAS fatty 
acid synthetase, GA-3-P glyceraldehyde 3-phosphate, G-3-P glycerol 3-phosphate, GPAT glycerol 
3-phosphate acyltransferase, ICDH isocitrate dehydrogenase, IMP inosine monophosphate, 
LCPUFA long-chain polyunsaturated fatty acid, LPA lysophosphatidate, LPAT lysophosphatidate 
transferase, MDH malate dehydrogenase, ME malic enzyme, PA phosphatidate, PAP phosphati-
date phosphatase, PC pyruvate carboxylase, TCA tricarboxylic acid. (Taken with permission from 
Jin et al. (2015))
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stitute. Efforts are hence increasing not only on designing and strategizing the pro-
cess but also on parameters affecting the process and the product yield. However, 
the high process economy associated with the large-scale production and high prod-
uct yield required to suffice the need to convert into fuels are the major reasons for 
its slow acceptance apart from the issue of public acceptance. Such microorganisms 
will be grown heterotrophically using synthetic or organic carbon source which will 
be eventually consumed and converted to oils. But unlike plants, the SCO produc-
tion dynamics depends on highly imbalanced culture conditions, where an essential 
nutrient like nitrogen or phosphorus exhaustion is mandatory. The starved nutrient 
should be concomitantly balanced with excess fermentable carbon in order to main-
tain both growth and lipid synthesis. Now maintaining such complex culture condi-
tions in prolonged fermentative bioprocess like SCO itself gives rise to initial 
complexity. Further, the conversion efficiency of microorganisms is far imbalanced, 
almost 5:1 carbon to oils, which spontaneously increases the production cost 
(Ratledge 2005). Therefore, it is preferable to focus either on finding or producing 
either value added oils marginally exceeding the price of available edible oils or 
using low-cost carbon substrates for probable processing to reduce cost during 
large-scale production.

14.4  Wastes to SCO

Technological progress, global population explosion, urbanization, and industrial-
ization have collectively intensified the scale of global waste generation both of 
degradable and nondegradable nature. According to prediction of World Bank, the 
waste generation is going to amplify further, and the figures would almost cross 
two-and-a-half billion tons by 2025. Management and safe disposal of wastes at one 
point was obligatory, but now it has become an economic accountability, more for 
developing than developed nations. World Bank report suggests that on an average 
US$20–250 per ton itself is expended in waste collection and US$20–350 per ton 
on disposal and dumping. Such waste generation, whether solid or liquid, is consis-
tent throughout the year. Agricultural waste generation although might differ sea-
sonally, but the overall contribution from the agricultural sector remains uniform 
year-round. Some of the regularly performed waste disposal practices like landfills 
and incineration generate byproducts and secondary waste like CO2, methane, acid 
gases, dioxins, furans, as well as particulates, most of which can instigate the chain 
of other health and environmental hazards (Scarlat et al. 2015).

However, some of them like methane can be again valorized, and at many waste 
dumping sites, such realistic measures have been already taken which encourages 
capitalizing other wastes also. Hence, there is awareness nationally and internation-
ally to shift toward biodegradable materials. Increasing anthem of reduce, reuse, 
and recycle has subconsciously provoked maximal utilization of available resources 
and value addition to generated wastes. Among a wide array of such wastes, agricul-
tural wastes can be of special significance because of their organic makeup which 
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can serve as potential carbon source and their consistent availability throughout the 
year in one or the other forms. Different prospects are being explored to harness 
them as they can offset the production cost, effectuate safe waste management and 
alongside add value to it. Therefore, utilization of agricultural wastes for generating 
wide range of biotechnological products, be it in form of energy, fuel, or other valu-
able metabolites through microbial bioprocess, is on rise. Bio-hydrogen, ethanol, 
propanol, citric acid, phytase, surfactants, etc. (Cheng et  al. 2008; Gupta and 
Parkhey 2015; Papanikolaou et al. 2008) are some well-known products which use 
agricultural wastes as substrates at lab as well as industrial scale. In the past few 
years, the exploitation of agricultural wastes for cost-effective SCO production is 
also being explored, but whether it can actually reduce the cost to a level where 
SCO can become an alternate to conventional oils is still questionable. Since other 
industrial and miscellaneous wastes don’t seem to have much potential as substrate 
in terms of realistic conversion and product yield (Economou et al. 2015; Hwan Seo 
et al. 2013; Ren et al. 2015), the need is to exhaustively research every dimension in 
conversion of agricultural wastes to SCO. The challenges being confronted must be 
investigated and overcome so as to shape the SCO as a future alternate resource. The 
forthcoming section in this chapter is going to deal with such practical examples 
where agricultural wastes have been converted to SCO and the  associated chal-
lenges and limitations to overcome.

14.5  Lignocellulosic Feedstocks to Bulk Lipids

Up until now the agricultural wastes were used for evaluating as substrates, among 
which the major ones being utilized in recent times are lignocellulosic wastes. The 
reason is its enormous worldwide production of around 150–170 × 109 tons (Pauly 
and Keegstra 2008) making it a ubiquitous resource and its carbohydrate backbone 
structure acting as a huge sustainable carbon reservoir. As the name suggests, it is 
composed of lignin, celluloses, and hemicelluloses. Celluloses and hemicelluloses 
are surrounded by the recalcitrant lignin which maintains its physical and composi-
tional integrity and simultaneously results in a structural complexity. The cellulosic, 
hemicellulosic, and lignin contents of some of the common and abundant LCB are 
shown in Table 14.1.

Unless they are purposefully decomposed or degraded, they can be dried and 
stored for all-time availability. The lignin mesh prevents the chemical or enzymatic 
accessibility of core polymers for hydrolysis and therefore impedes their direct 
commercial viability. Hence, pretreatment of LCB is necessary to remove the lignin 
layers before the celluloses and hemicelluloses can be saccharified. Pretreatment 
also improves the porosity and decrease the native crystallanity of LCB. It can be 
carried out by any of the existing biological, chemical, electrical, physical, physico-
chemical, or combinatorial approaches (Kumar et  al. 2009) depending upon the 
 process cost and application. However with chemical pretreatment and sometimes 
saccharification, certain byproducts like furfural, hydroxymethylfurfural (HMF), 
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acetic acid, neutral and acidic phenolics, and various other chemicals are generated 
(Slininger et al. 2016). If not removed, they can inhibit microbial growth and pro-
duction. These inhibitors can be neutralized and removed form saccharified LCB by 
implementing detoxification methods primarily through overliming (Huang et al. 
2009; Yu et al. 2011). After carrying out all these range of treatments, any abundant 
LCB in immediate vicinity can be utilized suitably for other applications. Many 
LCB have made their way up to industrial scale as substrates for energy generation 
and fermentative metabolite production (Table 14.2). Now the feasibility of utiliz-
ing these feedstocks as potential substrate for lab scale as well as commercial SCO 
production has to be assessed.

Table 14.1 Composition of some common lignocellulosic feedstocks

LCB Hemicellulose Cellulose Lignin Other Reference

Bamboo 24.6 46.7 28.1 0.6 Mui et al. (2008)
Corn Stover 26.3 43.3 13.6 16.7 Sun et al. (2011)
Rice straw 25 38 25 12 Diwan et al. (2018a); Taniguchi 

et al. (2005)
Soya stalks 17.3 37.6 25.4 19.7 Torgashov et al. (2010)
Sugarcane 
bagasse

27 45.5 21.1 6.8 de Moraes Rocha et al. (2011)

Sugarcane 
leaves

25 45 18 12 Singh and Chen (2008)

Switchgrass 26.1 33.48 17.35 – Keshwani and Cheng (2009)
Wheat straw 28.24 43.68 8.25 19.83 Cone et al. (2012)

Table 14.2 Lignocellulosic biomass in industrial production commodity products

LCB
Biotechnological 
Firm Country Product

Molasses Citrique Belge Belgium Citric acid, sodium citrate
Agricultural wastes Ecomann 

biotechnology
China Biodegradable thermoplastic, 

polyhydroxyalkanoate (PHA)
Straw, corn stover, wood, 
garden waste, and sugar 
cane bagasse

BioGasol Denmark High sugar hydrolysate for 2G 
bioethanol plants

lignocellulosic hydrolysates Lesaffre advanced 
fermentations

France Ethanol and other bio-based 
products

Corn cobs, corn stover, and 
bagasse

Praj India Ethanol

Agricultural wastes Bio-on Italian Biodegradable thermoplastic, 
polyhydroxyalkanoate (PHA)

Corn or sugarcane residues BioTork US Fuel ethanol, phytase, alcohol
Agricultural byproduct 
feedstock

Verdezyne US Dodecanedioic acid, sebacic 
acid, and adipic acid
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14.5.1  Lignocellulosic Corn Byproducts as Substrates

Huge world annual production of around 1 billion tons of corn consequently gen-
erates millions of tons of byproducts like corn cob, stover, leaves, etc. These non- 
edible lignocellulosic residues can be realistic feedstocks that can be harnessed 
for cost-effective SCO fermentation (Table 14.3). Researches are being conducted 
on using corn byproducts as substrates for many well-known oleaginous fungal 
species. Upon using corncob hydrolysate as substrate yeasts like Cryptococcus 
sp. SM5S05 as well as Trichosporon coremiiforme responded well in lab scale 
investigations and produced around 7.6–7.7 g/l oils within 7–8 days of batch fer-
mentation. The lipids were rich in both saturated and unsaturated fatty acids nor-
mally found in vegetable oils (Huang et  al. 2013). Although substrate was the 
same, the corncob hydrolysate used in both studies has different concentrations 
of fermentable sugars; even then almost the same amount of lipids was produced. 
It is evident from this observation that the lipid accumulation is not just substrate 
dependent, but it also majorly depends on producer organisms and cultivation 
conditions.

Hemicelluloses, the fundamental constituent of every lignocellulosic bio-
mass, are the next largest natural carbon reserve second to cellulose (Diwan 
et al. 2018b). Exploiting it can maximize the feedstock usage and its resourceful 
conversion, in a way that it will benefit the overall economy of SCO bioprocess. 
Hence, many studies investigated the simultaneous utilization of hexoses along-
side pentoses (usually generated from hemicellulosic fraction) by oleaginous 
species. In one such case, both acid- and alkali-pretreated hydrolysates of corn 
stover containing both glucose and xylose in different ratios were used as sub-
strate, and mold M. isabellina co- utilized both sugars resulting in 4.8 and 2.5 g/l 
lipids, respectively (Ruan et  al. 2012). Similarly, yeast C. curvatus also dis-
played the ability of simultaneous consumption and conversion of hexose and 
pentose sugars from corn stover hydrolysate to produce 112  mg oil /g stover 
(Gong et al. 2013). In a very important study, ammonia fiber expansion (AFEX)-
pretreated corn stover and acid-pretreated switch grass were used to screen lipid-
producing strains. It was found that screened species produced substantially 
high lipid titer of around 25–30 g/l consuming all the available fermentable sug-
ars (Slininger et  al. 2016). Yeast Trichosporon cutaneum also reportedly pro-
duced significant lipid titers ranging from around 12.3  g/l up to the highest 
reported 22.1 g/l in corncob hydrolysate as C source (Huang et al. 2013). These 
strategies adapted by Huang or Slininger can be of commercial importance as 
the lipid titers greater than 20 g/l have been seen which are significant to com-
pete with contemporary plant commodity oil yield. Because of enormous world-
wide production, the availability of corn LCB is also not a concern; therefore, 
these studies encourage to evaluate the reproducibility of the applied strategies 
in a large scale setup.
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Table 14.3 Assessment on global availability and suitability of major agro-industrial feedstocks 
as raw material for SCO production

Agro- 
industrial 
waste

World annual 
production

Largest 
producing zone

Maximum 
reported 
SCO 
production

Comments on 
suitability Remarks

Rice straw 741 mT annual 
global 
production 
generates
2000 mT straw

~500 mT 
from-Asian 
countries of 
which
~150–250 
mT – from east 
Asian countries
(Nguyen et al. 
2016)
(Shafie et al. 
2014)

T. 
fermentans
11.5 g lipid 
per L 
(Huang 
et al. 2009)

Suitable as 
potential 
substrate for 
bulk oil 
production

Southeast Asian 
countries could 
be most 
promising 
region for 
conversion of 
rice residues to 
microbial oils

Rice husk 164 mT 
(projected 
value)

~140 mT from 
Asian countries 
of which south 
and east Asia is 
the largest 
contributor 
(Shafie et al. 
2014)

– Suitable 
potential 
substrate for 
bulk oil 
production

Wheat 
straw

729 mT annual 
global 
production 
generates 
around 
1100–1300
mT straw
(Koopmans and 
Koppejan 1997)

EU-highest 
producer
China and 
India 2nd and 
3rd highest in 
the league

C. curvatus
5.8 g lipid 
per L
(Yu et al. 
2011)

Suitable 
potential 
substrate for 
bulk oil 
production

Europe and 
Southeast Asian 
region could be 
most promising 
for conversion 
to microbial oils

(continued)
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Table 14.3 (continued)

Agro- 
industrial 
waste

World annual 
production

Largest 
producing zone

Maximum 
reported 
SCO 
production

Comments on 
suitability Remarks

Corn/
maize Cob

~1.04 bT annual 
global 
production 
generates
Around 273 mT 
cob (projected 
as per residue to 
product ratio)
(Koopmans and 
Koppejan 1997)

US-highest 
producer
China and 
Brazil 2nd and 
3rd highest in 
the league

T. cutaneum
12.3 g lipid 
per L
(Gao et al. 
2014)

Suitable 
potential 
substrate for 
bulk oil 
production

US and South 
American 
region most 
promising for 
conversion of 
corn/maize 
residues

Corn/
maize 
stalk

~2bT (projected 
as per residue to 
product ratio) 
(Koopmans and 
Koppejan 1997)

25–30 g 
lipid per L 
(Slininger 
et al. 2016)

Suitable 
potential 
substrate for 
bulk oil 
production

Corn/
maize 
husk

200 mT 
(projected as per 
residue to 
product ratio) 
(Koopmans and 
Koppejan 1997)

– Suitable 
potential 
substrate for 
bulk oil 
production

Soybean 
hull

307 mT world 
annual 
production 
generates ~15 
mT hull 
(projected) 
(Blasi et al. 
2000)

With 108.0 mT 
US is the 
leader followed 
by Brazil of 
which ~5.5 mT 
hull ~270 mT 
straw
(projected)
(Koopmans 
and Koppejan 
1997)
(Blasi et al. 
2000)

– Suitable 
potential 
substrate for 
bulk oil 
production

US region most 
promising for 
conversion of 
hull and straw.
SCR’s 
suitability is 
limited to local 
regions near the 
production areaSoybean 

straw
~770 mT 
(projected as per 
residue to 
product ratio)
(Koopmans and 
Koppejan 1997)

Suitable 
potential 
substrate for 
bulk oil 
production

(continued)
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14.5.2  Lignocellulosic Rice and Wheat and Other Residues 
as Substrates

The global annual production of rice and wheat is more than 700 million tons 
(Table 14.3). When the grains are processed and marketed, it leaves behind millions 
of tons of non-edible husks and straw residues of lignocellulosic nature. Despite 
having unlimited exploitable worth, most of their portions are burnt in the fields 

Table 14.3 (continued)

Agro- 
industrial 
waste

World annual 
production

Largest 
producing zone

Maximum 
reported 
SCO 
production

Comments on 
suitability Remarks

Sugarcane 
bagasse

1.88 bT world 
annual 
production 
generates ~313 
mT bagasse 
(projected)
(Koopmans and 
Koppejan 1997)

With 736 mT 
Brazil leads in 
sugarcane 
production 
generating
~213 mT 
bagasse and 
~33 mT 
molasses 
(projected 
values)
Followed by 
India, China, 
and Thailand
(Koopmans 
and Koppejan 
1997)
(Qazi 2014)

T. 
fermentans
15.8 g lipid 
per L
(Huang 
et al. 2012)

Highly 
favorable 
substrate for 
bulk oil 
production

Most suitable 
raw material for 
SCO production 
in south 
American and 
Southeast Asian 
region of the 
world, while 
molasses can 
strictly serve as 
a substrate in 
region local to 
sugar distilleries

Sugarcane 
molasses

48.6 
mT(projected)
(Qazi 2014)

– Favorable 
substrate for 
bulk oil 
production but 
suffers 
transportation 
and storage 
limitation

Sugar beet 
pulp

270 mT world 
annual 
production 
generates
~148 mT
Sugar beet pulp 
(projected)
(Berłowska 
et al. 2016)

EU (France 
and Germany) 
is highest 
producer of 
beet pulp with 
13 mT beet 
pulp generation 
and ~32 mT 
molasses 
(projected 
value)
(Berłowska 
et al. 2016)

– Favorable 
substrate for 
bulk oil 
production but 
suffers 
transportation 
and storage 
limitation

Suitability is 
limited to local 
producer 
regions

Sugar beet 
molasses

~11.3 mT 
(projected 
value)
(Berłowska 
et al. 2016)

Favorable 
substrate for 
bulk oil 
production but 
suffers 
transportation 
and storage 
limitation

Adapted with permission from Diwan et al. (2018b)
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procedurally. However, minor portions are taken to the industries and are burnt to 
generate energy. The concerns of rising environmental pollution, especially air pol-
lution, have alarmed most of the developing and developed nations to restrict the 
practice of burning unregulated agricultural biomass. India is one of the highest 
rice- and wheat-producing nations across the world; consequently the spare husks 
and straw being produced are also in abundance. Burning of these residues is creat-
ing serious environmental concerns especially in northern parts of the country. 
Hence, an National Green Tribunal Act was passed and a statutory body called 
National Green Tribunal was established 2010 years back to control such unre-
stricted burning. Since rice and wheat are staple crop in most of the regions of the 
world  also, their residues are ubiquitously available everywhere. An excellent 
opportunity emerges here to transform them into value added products like micro-
bial oils, which is also an environmentally safe method. Some practically useful 
evidences of wheat and rice LCB utilization as substrates can be found in literature 
which supports the possibility of its industrial scalability. Wheat straw and bran has 
been not only used in a liquid saccharified form but also in solid form for solid state 
fermentation (SSF). But it was found that even though highly active cellulases were 
employed for synergistic action, the approach did not result in significant yield and 
only about 10–18% of CDW was accumulated as lipids (Hui et al. 2010; Peng and 
Chen 2008). On contrary, when saccharified wheat straw was used after detoxifica-
tion for submerged fermentation, several oleaginous fungi like M. isabellina, M. 
vinacea, Cunninghamella elegans, R. oryzae, A. terreus, T. lanuginosus produced 
significantly improved amounts of lipids (Zheng et al. 2012). Similarly in a study 
on five yeasts simultaneously, except yeast R. toruloides which was not able to tol-
erate non-detoxified wheat straw hydrolysate, the rest of the oleaginous species L. 
starkeyi, Yarrowia lipolytica, Cryptococcus curvatus, and Rhodotorula glutinis 
accumulated lipids using both detoxified and non-detoxified hydrolysate almost 
equivalently. Highest production achieved by C. curvatus was 4.2 g/l in detoxified 
and 5.8  g/l in non-detoxified hydrolysates (Yu et  al. 2011). The reports make it 
apparent that using saccharified wheat straw or bran for submerged fermentation, 
i.e., liquid form of LCB, was much more effective than directly using the biomass 
for solid state fermentation. Yet the figures achieved were not significant enough 
compared to the highest oil production seen with corn LCB hydrolysates. In case of 
rice residues, yeast Trichosporon fermentans reportedly converted sugars from 
acid- saccharified followed by detoxified rice straw hydrolysate to produce 11.5–
12.1 g/l in two different studies (Huang et al. 2014; Huang et al. 2009). A recent 
report also suggests the requirement of detoxification for oleaginous yeast 
Trichosporon cutaneum, which assimilated 38.2% cellular lipids corresponding to 
6.7 g/l total lipids in detoxified acid barley hull hydrolysate and enzymatic hydroly-
sate (Guerfali et al. 2018).

On the contrary, another recent study showed high lipid content of around 40% 
CDW in non-detoxified compared to 26% CDW in detoxified rice straw hydrolysate 
by M. alpina (Diwan et al. 2018a). Similarly, 3.6 g/l lipids were produced by M. 
isabellina again in non-detoxified rice hull acid hydrolysate (Economou et al. 2011). 
It can be seen that acid-saccharified LCB usually requires detoxification before 
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being applicable as a carbon source for some oleaginous species. However, the 
hydrolysates are endured and utilized for lipid accumulation without any detoxifica-
tion by some other yeasts and molds. Contrasting evidences suggest the different 
inherent tolerance capacities of different fungi for such complex substrates. Of the 
main inhibitory metabolites generated as byproduct of chemical pretreatments and 
saccharification like furfurals, HMF, acetic acid, phenolics, anomalously some like 
acetic acid, vanillin and HMF have been reported to act as oleaginous stimulators 
(Huang et al. 2011). This can also explain the abnormal behavior why non- detoxified 
hydrolysates were not only being endured but rather higher lipid accumulation was 
seen in some of the oleaginous species (Diwan et al. 2018a). The investigations and 
outcomes in a way supports that an entire step of detoxification can be eliminated 
sometimes, which can thereby reduce the overall cost of fermentable substrate prep-
aration from LCB biomass. However, different LCB biomass can result in different 
degrees of fermentative inhibitors intrinsically depending on their respective struc-
tural composition.

Moreover, the tolerance and proliferative abilities in such medium also vary from 
organism to organism; therefore, strategies have to be carefully designed depending 
upon the process, organism, and LCB biomass chosen. Another noteworthy obser-
vation made from the reports is that the lipid titer is visibly more pronounced in rice 
residual LCB than in wheat residues. But huge availability of both of these residues 
presents a bright opportunity to utilize them on a commercial scale for producing 
microbial oils, be it neutral bulk lipids intended for production of biofuels or pro-
duction of high value oils rich in unusual functional fatty acids. Being a byproduct 
of edible crops provides them additional advantage of being a safe substrate for 
production of such edible oils. The only aspect that needs to be addressed is average 
lipid titer, which is way less and insufficient when the question is about commercial 
viability of oil production.

14.5.3  Lignocellulosic Sugarcane Residues as Substrates

Sugarcane is among the leading agricultural commodities being produced world-
wide. With 1.88 billion tons of yield, it is in the forefront of global annual produc-
tion simultaneously producing generous amounts of bagasse to be valorized at 
liberty. Usually 40–50% of the generated biomass is being consumed for energy 
generation in distillery plants (Rabelo et  al. 2011). The remaining unutilized 
bagasses would still be sufficient to exploit and converted into valuable chemical 
products through fermentative bioprocesses. They are abundant and economical and 
have ease of storability and transportability which adds to their promise as sub-
strates for SCO production. Not only their bagasses but their industrial byproduct 
from sugar mills, molasses, can prove an exceptionally potential substrate. However, 
the chapter strictly focuses on lignocellulosic biomass as substrates; hence, possi-
bilities and practicalities of molasses are not discussed here. In a related study with 
saccharified and detoxified sugarcane bagasse used as a C source, oleaginous yeast 
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Y. lipolytica produced around 11.4 g/l lipids within 96 h of fermentation. The hydro-
lysate was composed of both hexosic and pentosic sugars such as glucose, arabi-
nose, and xylose, and the yeast co-utilized sugars for intracellular lipid accumulation 
resulting in a decent overall oil recovery (Tsigie et al. 2011).

In another report utilizing sugarcane bagasse hydrolysate as a substrate in a large 
scale setup for lipid production, oleaginous yeast R. toruloides produced lipids 
which were efficiently converted to biodiesel which obtainment up to 67% yield 
(Zhao et al. 2012). In another study purely on lipid production by utilizing sugar-
cane bagasse hydrolysate, T. fermentans produced remarkable 15.8 g/l lipid (Huang 
et al. 2012). Even though titers are less than the highest obtained with corn residues 
as substrate, they exceed any of the reports on rice residues, projecting sugarcane 
LCB residues as a promising feedstock for SCO bioprocess.

14.5.4  Miscellaneous Agricultural Residues as Substrates

In an agriculture-driven world, where major food and social requirements are ful-
filled by agricultural commodities, generation of related municipal solid byproduct 
such as fruit peels, seeds, vegetable peels, leaves, and stalks occurs side by side. 
Therefore, instead of leaving them to rot in mere waste, these ubiquitous agro- 
residues can be strategically valorized to value-added products like SCO. In such 
practical efforts, sweet gum and detoxified pine autohydrolysate were used as car-
bon source for two Rhodococcus opacus, strains PD630 and DSM 1069, respec-
tively, to result in lipid recovery of 0.25 and 0.31 g/l (Wei et al. 2015). Yeasts, C. 
curvatus and T. cutaneum, displayed lipid accumulation of 46% and 48% of CDW 
when they were grown on pectin, and beet pulp hydrolysates constituted of sugars 
like galacturonate and arabinose, respectively (Wang et al. 2015). Although experi-
ments on such agro-residues resulted in poor lipid recovery, the possibility of using 
such substrates encourages further investigation and schematic process designed, 
for improving yield and economics.

From the discussion so far, it is apparent that LC residues such as rice straw, hull, 
wheat straw, husks, corn cob, stover, and sugar cane bagasse are far more abundant 
and substantially available compared to other miscellaneous agro-residues to take 
practical advantage. Further, the practical examples of flask scale as well as scaled-
 up LCB to lipid conversion have shown promising yields particularly with corncob 
hydrolysates. They have inherent benefits of stability and hence storability. Their 
recalcitrant physical structure, unlike highly degradation-prone agro-residues, facil-
itates their long-term accessibility and use. Since these are among the major staple 
crops, they are available in almost every major regions of the world like China, 
Brazil, Europe, India, Indonesia, Malaysia, Mexico, the USA, etc. facilitating their 
easy transport to any surrounding industrial region (Table 14.3). Moreover, all of 
them are byproducts of edible crops, offering the opportunity of using them for 
conversion to safe edible oils. All these facts collectively suggest them suitable to 
serve as suitable substrates for biomass to bulk as well as valuable lipids. The 
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 challenges still underlying are low lipid content, yield and titer and endurance to 
non- detoxified hydrolysates. Although the yield obtained from corn residual LCB is 
commercially competitive, the yield using rice, wheat, and to some extent sugarcane 
residues requires significant improvement.

14.6  Lignocellulosic Feedstocks to Valuable Lipids

Valuable oils refer to the oils composed of not just usual C12 or C14-C18 or up to 
C20 fatty acids but other unusual functionally and nutritionally essential FA espe-
cially long-chain PUFAs which are extremely important for proper functioning of 
human body as well as for lifestyle disease prevention. Omega-3, omega-6, omega-
 9, etc. are some of the well-known groups of PUFAs, classified on the basis of the 
double bond position from methyl terminus. Some of them, especially the precursor 
fatty acids for conversion into other long-chain PUFAs cannot be synthesized in 
human body which makes them far more essential. Alpha-linolenic acid (ALA) an 
ω-3 FA, arachidonic acid (AA) an ω-6 FA, dihomo-gamma-linolenic acid (DGLA) 
an ω-6 FA, DHA an ω-3 FA, EPA an ω-3 FA, GLA an ω-6 FA, and linoleic acid (LA) 
an ω-6 FA are few examples of ω-3 and ω-6 fatty acids. While most of the mam-
malian biofunctions are regulated by AA, ALA, and LA (Vadivelan and 
Venkateswaran 2014), ω-3 FAs like ALA, EPA, and DHA have shown positive 
effects in several physiological, immunological, and genetic disorders like asthma, 
breast and lung cancer, Crohn’s disease, hypertension, and rheumatoid arthritis 
(Merendino et al. 2013; Vadivelan and Venkateswaran 2014). Studies have shown 
that average regular ω-6 FA consumption is much higher than ω-3 groups of FA to 
a level where ω-3 is almost absent from the diets (Sijtsma and De Swaaf 2004), and 
the trends are pretty much similar all over the world. This results in misbalanced 
ω-3: ω-6 intake ratio which in turn leads to enhanced inflammatory responses inside 
the body. The traditional sources of FA being most widely consumed are plant oils, 
among which canola, flax, hemp, soybean, and walnut are mostly supplying ALA. 
ALA an ω-6 FA is the precursor fatty acid to higher long-chain PUFAs and is con-
verted in human body to EPA and DHA slowly (Gerster 1998). Also the conversion 
rate is sometimes not efficient to meet the daily requirement. Hence, to redress the 
generally believed optimal balance of both FA groups, the overall ω-6 intake must 
be reduced and replaced with equivalent introduction of ω-3 through an external 
alternative source. The most popular current alternate of ω-3 group PUFA recog-
nized all over the world are fish oils. Being a highly acclaimed source, it is not only 
on the edge of demand to supply disparity but also is accompanied by rising price. 
Fish and fish oils are also sometimes contaminated with other antagonistic fatty 
acids and toxins like mercury. Moreover, fish production is reliant on seasonal and 
geographic conditions (Certik and Shimizu 1999). However, the sudden increase in 
awareness toward health and nutrition has also inflated the global fish consumption 
which is posing a greater ecological threat for the future. Therefore, it is important 
to explore and study other alternate, unconventional source of such FA which is not 
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associated with risk of originating any ecological imbalance. Algal and microbial 
oils including oils from marine phytoplanktons, lower fungi and few bacteria are the 
upcoming alternate for PUFA-rich oil sources (Ratledge 2001).

Literature also supports that a significant PUFA titer can be obtained from some 
well-recognized marine protists and algae. However, their cultivation at large scale 
is inconvenient and demands heavy water requirement, while marine microbial 
adaptation poses another difficulty in practically capitalizing them. These draw-
backs encourage exploring other PUFA source like fungal oils. Molds belonging to 
various genera like Cunninghamella, Mortierella, Mucor, Schizochytrium, and 
Thamnidium (Bowles et al. 1999; Fan et al. 2001; Peng et al. 2011) and yeasts like 
Yarrowia and Rhodosporidium (Bellou et al. 2016) are some of the reported fungal 
species recognized for producing high PUFA titer. However, these studies were 
based on oil production utilizing expensive synthetic carbon sources which is the 
main reasons behind the probable high cost. Although these valuable oils would 
anyway be expensive than normal oils, replacing the synthetic substrates with inex-
pensive lignocellulosic biomass can offset the prize to some extent. The purpose of 
these oils is to serve in nutraceutical domain basically for improving the global 
health scenario, so the correct substrates selection becomes primary here and the 
cost secondary. Therefore, lignocellulosic biomasses safe for consumption become 
the next best alternative not only by being edible but by being inexpensive. In a 
study, Cunninghamella echinulata was shown to utilize different agro-wastes like 
corn gluten, corn steep, and tomato waste hydrolysate and produced a significant 
800 mg/l GLA on tomato waste hydrolysate (Fakas et al. 2008). A promising fungus 
Thamnidium elegans was grown in a mixture of glucose and xylose mimicking a 
lignocellulosic hydrolysate-based fermentation medium. Co-utilization was 
observed, and the fungus produced lipids having high GLA content of around 
1014 mg/l. The study supports the potential LCB valorization for production of oils 
with high nutritional and pharmaceutical interest (Zikou et al. 2013).

Use of lignocellulosic hemp hydrolysate was studied by a group of researchers 
on oleaginous marine protist Schizochytrium, and it was found that 59% of the total 
fatty acids produced was PUFAs mainly DHA (Gupta et  al. 2015). Saccharified 
biomass of a cheap, non-food crop Jerusalem artichoke was utilized as a substrate 
for heterotrophic thraustochytrid Aurantiochytrium sp. which reportedly produced a 
significant 47% of its total lipids as DHA (Yu et al. 2016). Other than lignocellu-
losic biomass, some other miscellaneous agro-wastes are also generated in huge 
amounts as discussed in section “Miscellaneous agricultural residues as substrates” 
which can be harnessed efficiently in PUFA-rich oil production. Reports have 
shown utilization of these byproducts and wastes like barley, peanut bean residue, 
millet, wheat and rice bran, sweet potato, soybean hull, sunflower, and soybean 
pressed cake (Fakas et al. 2009; Ghobadi et al. 2011; Jacobs et al. 2009; Zhang and 
Hu 2012) by species of genera Mortierella, already recognized for production of 
various groups of PUFAs like AA, ALA, DGLA, EPA, and GLA. In another study, 
orange peel was used as a C substrate for C. echinulata which produced around 9% 
of its total lipid as GLA (Gema et al. 2002).
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The apparent problem associated with these byproducts is their inconsistent 
availability labile to seasonal variations. Also they are prone to decomposition 
hence storability is an issue. Further, the PUFA titers reported in most of the study 
on these substrates are practically incompetent from the industrial point of view. 
However, an essential advantage they still have is that they can be safe from con-
sumption aspect. Hence, the available amounts can be sufficient to capitalize for low 
volume production of these high value oils, which are any way required in miniscule 
dosage for consumption. The other way they can be taken advantage is by using 
them directly for solid state fermentation (SSF) completely bypassing the excessive 
freshwater investment. Also some of such edible substrates can be directly enriched 
in PUFA-rich lipids through this strategy (Čertík et al. 2013; Economou et al. 2010; 
Fakas et al. 2009; Gema et al. 2002) which later after necessary processing can be 
utilized either for consumption or as feed supplements. PUFA-rich oils can also be 
blended with other oils or added as emulsions to consumable items. Other feasible 
option is to use these SCO directly as food supplements similar to the SCP concept. 
Another group of functionally important fatty acids are medium-chain fatty acids 
ranging from C6 to C12 carbon chain. They are known to play vital role in dietetics, 
nutrition and medical sector. The main reason behind their functionality is their 
small size, greater solubility and rapid metabolism than long-chain fatty acids 
(LCFA), which endows them the property of easy digestibility in contrast to 
LCFA. Also in course of metabolism, LCFA are deposited as fats, while MCFA are 
readily oxidized to provide quick energy and are therefore great energy source with-
out the risk of inducing obesity (Lee et al. 2012). Because of these important char-
acteristics, they play an important role in obesity control and for other medical 
applications like carnitine system deficiency, epilepsy, hyperalimentation, serum 
cholesterol reduction, infant formula, and low-fat food alternative (Babayan 1981; 
Bach and Babayan 1982; Carnielli et al. 1994).

Structuring of tailor-made lipids with MCFA like caprylic acid and other func-
tional long-chain FAs to design nutritionally important medium- and long-chain 
fatty acid (MCLT) with antiobesity properties has become the subject of interest. 
Most of the natural oil sources including conventional vegetable oils, cooking oils, 
and animal fats are only rich in long-chain fatty acids (C14-C20) and lack such kind 
of MCFA except for coconut, corn, and palm kernel oil. But a very recent research 
published in 2018 has shown that 80–90% of total lipids produced by two yeasts 
Candida tropicalis and Pichia kudriavzevii were MCFA-caprylic acid (Diwan and 
Gupta 2018a). The study suggests the possibility of SCO as a source of MCFA also. 
Researches are also ongoing to produce such MCFA-rich microbial lipids utilizing 
agro-wastes as inexpensive substrates, and some researchers have already shown 
progress in converting LCB to MCFA-rich lipids through the aforementioned yeasts 
(Diwan and Gupta 2018b). To aim for potential scale-up, lipid yield and titers of 
valuable FA like PUFA and MCFA need a great deal of improvement. Moreover, the 
abundance of suitable substrate in question should also be assessed before these oils 
can realistically become an alternate to algal or fish oils. Figure 14.2 pictorially 
demonstrates the concept of conversion of LCB and other industrial wastes to 
broadly applicable forms of SCO (nutraceuticals and biodiesel).
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14.7  Real-World Applications of SCO

Like plant oils, microbial oils are also mainly composed of TAGs and some free 
fatty acids. The majority of current research in microbial oils is focusing on utilizing 
them as raw material to renewable fuels because of two reasons: their compositional 
similarity to vegetable oils and their high ratio of carbon to heteroatom (Jin et al. 
2015). Earlier it was thought that these lipids could only be converted into renew-
able fuel, i.e., biodiesel. But nowadays, other kinds of bio-based fuel and fuel alter-
natives have evolved such as renewable diesel and bio-crude. Biodiesel is a 
transesterified product of oils and fats, while renewable diesel is a hydrodeoxygen-
ated version of oils and fats carried out at high temperature and pressure with the 
help of a catalyst (Knothe 2010). Bio-crude, sometimes also referred as bio-oils, on 
the other hand, is a kind of liquid fuel developed by thermochemical liquefaction 
such as hydrothermal liquefaction (HTL) of biomass in the presence of solvents 
under high temperature and pressure, with or without catalyst (Cheng et al. 2017). 
While composition of renewable diesel is supposed to simulate the petroleum- 
derived diesel fuel, bio-crude is under investigation as a substitute to petroleum fuel. 
Microbial oils can be fitting feedstock to these biofuels, while the oleaginous bio-
mass can play an apt substrate for bio-crude generation. These high temperature and 

Fig. 14.2 A schematic representation of various steps involved in bioconversion of agro-industrial 
wastes to SCO. (Source: Diwan et al. (2018b))
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pressure-mediated hydrolysis processes can transform the TAGs into microbial lip-
ids to glycerol and FA with numerous further applications as shown in Fig. 14.3.

Produced glycerol byproducts are utilized for production of commercially 
important C3 chemical shown in Fig. 2b having widespread applications. Moreover, 
several functional fatty acids like EPA, DHA, GLA, and MCTs in microbial lipids 
discussed in previous section open other dimension of their applicability. Some of 
the oleaginous fungi have already been recognized and employed for commercial 

Fig. 14.3 Possible applications and transformations of glycerol and fatty acids derived from 
microbial lipids; (a) Reaction showing hydrolysis of TAG into Fatty acid and glycerol; (b) Multiple 
derivatives and applications of fatty acids released from TAGs present in oil; (c) Multiple deriva-
tives and applications of glycerol released from TAGs present in oil [Taken with permission from 
Jin et al. (2015)]
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scale production of PUFA-rich oils. Mold M. alpina is already in ARA production 
by Cabio Bioengineering Co.; J. and E. Sturge is producing GLA oils at its fermen-
tation facilities by Mucor circinelloides, while E.I. Du Pont is manufacturing EPA- 
rich SCO by Y. lipolytica. Since SCO production is an expensive venture, practice 
of using cheap feedstocks for leveraging the process cost has been adapted even at 
commercial establishments. ChainCraft, a Netherland-based firm, is producing 
valuable medium-chain fatty acids using agro-wastes, with numerous biotechno-
logical applications. AlgaVia is although working on commercial algal lipids, the 
approach of production is similar to heterotrophic fermentation like the case of fun-
gal SCO. An upcoming biotechnological organization from India is commercially 
producing bio-crudes from algal biomass by hydrothermal liquefaction, and research 
is already under progress for bio−/petro-crude production by oleaginous fungal bio-
mass. Since the overall low productivity of total lipids render their conversion into 
biodiesel practically an infeasible option, these microbial bio-crudes can offer a 
forthcoming renewable fuel substitute which can also be blended with algal petro- 
crude for realistic usability.

14.8  Factors Influencing Conversion of LCB to SCO

Although there is practical feasibility of establishing SCO as an essential oil and fat 
substitute, there exist numerous underlying challenging factors like high production 
cost primarily because of imbalanced culture conditions which demands the pres-
ence of excessively high fermentable carbons. To overcome this hurdle, utilization 
of LCB as inexpensive carbon source has lately gained huge research attention. But 
the conversion of LCB biomass to SCO is associated with several technical bottle-
necks like poor intracellular lipid content and yield in conjunction with substandard 
productivity and titer. Each step of this conversion is associated with technical 
obstacles originating right from balancing high carbon to nitrogen during fermenta-
tion, selection of feedstock for balancing production and economy, maintaining cul-
tivation conditions given the presence of mixed sugars and inhibitors in LCB 
hydrolysates, and substrate utilization and coproduction. Each of these factors has 
been discussed in detail to provide an integrative outline of the challenges and their 
possible realistic remediation measures.

14.8.1  General Logistics of LCB Feedstock Selection

There are several parameters governing the choice of substrate, namely, local avail-
ability, cost, long-term storability, and transportability. Regarding the storability, 
some of the carbon-rich feedstocks with high moisture or water content like beet 
molasses and corn molasses, cane, spoiled date syrups, sugar sorghum juice, and 
whey are much prone to degradation or autolysis. Although their storage can be 
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achieved using the recent advanced facilities, it will end up again in inflating the 
cost. Additionally, the transportation facilities for high moisture-containing sub-
strates are also going to elevate the overall process cost and have other economic 
and environmental implications. Hence, if these are the substrates of choice in any 
SCO fermentation scheme, it would be preferable to utilize them in their immediate 
locality. On the contrary, these are the major advantages in employing solid ligno-
cellulosic agro-wastes, as they are dry and structurally recalcitrant and have inher-
ent advantage of storability, transportability, and hence all-time availability. 
However, the logistics operation in this low-density biomass originating from mul-
tiple harvesting, preprocessing, storage and transport, environmental effects of bio-
mass, and generated product cost requires serious assessment in feasibility study of 
biomass to SCO conversion (Shafie et al. 2014). Local feedstock, which is year- 
round available, is an appropriate choice to maximally control the economy of the 
fermentation-based bioprocesses. The conversion of fermentable carbon to oils is 
not highly efficient in microbial system and statistics suggest this ratio to be around 
5:1. Going through these stats, for meeting the daily minimum commodity oil 
requirement, i.e., 30 tons, 10,000 ton oil/year must be produced in turn requiring 
50,000 tons of fermentable carbon. Hence the abundant and ubiquitous LCB dis-
cussed in this chapter like corn byproducts, sugarcane bagasses and leaves, paddy, 
and wheat husks and straws (Table  14.3), which have already gained industrial 
acceptance for production of other valuable commodity chemicals (Table 14.2), can 
be promising for SCO fermentation.

14.8.2  Fermentability of Complex LCB

Sometimes despite being inexpensive and locally abundant, a feedstock cannot be 
exercised as a substrate because the microorganism cannot suitably utilize them. 
The perfect example of this is cheap carbon-rich alkanes which became an ideal 
commodity chemical for industries in the past few decades. However, when 
employed as a cheap substrate for A. niger, the mold failed to utilize them for citric 
acid production. Hence, regardless of the low cost, it didn’t prove to be an utilizable 
substrate. Similarly, the structural recalcitrance of lignocellulosic biomass makes 
pretreatment obligatory in order to make it a fermentable substrate for microorgan-
isms. However, many a times these chemical pretreatment and saccharification 
strategies lead to generation of toxic microbial inhibitors which can also aggravate 
the microbial fermentability. Detoxification strategies have been invented to elimi-
nate these inhibitors from saccharified biomass, but they alleviate the process com-
plexity as well as economy. Use of robust oleaginous strain which can endure 
non-detoxified hydrolysates can relieve this situation by reducing the necessity of 
steps like detoxification for preparing a fermentable substrate. Some examples of 
such strains have been discussed in the previous section. The lignocellulosic bio-
masses are composed of two macro-polysaccharide chains – cellulose and hemicel-
luloses – saccharification of which generates abundant hexose and pentose sugars. 
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It has been seen that often the saccharification of LCB release relatively equal if not 
high titer of pentoses compared to hexoses (Yu et al. 2011). As per the general fig-
ures for metabolic conversion, each gram of xylose can lead to production of 0.34 g 
acetyl-CoA, while glucose produces 0.32 g acetyl-CoA (Papanikolaou and Aggelis 
2011).

Reasonably, xylose (if metabolism follows phosphoketolase pathway) can lead 
to higher lipid synthesis than glucose if all the generated acetyl-CoA enters the lipid 
synthesis pathway. Therefore, co-utilization of pentose and hexose sugars during 
fermentation is essential, which can increase the efficiency of lipid conversion. This 
factor must also be considered while optimizing the bioprocess and microbial spe-
cies having potential to utilize a variety of sugars, must be preferred. Pichia stipitis 
and P. kudriavzevii are some of the naturally occurring xylose fermenting yeasts 
(Agbogbo and Coward-Kelly 2008), while strain modification have also been car-
ried out on species like S. cerevisiae for inducing pentose utilization (Bettiga et al. 
2009; Li et al. 2016). Apart from glucose and xylose, other monosaccharides and 
disaccharides which can support growth and lipid synthesis are arabinose, galac-
tose, fructose, mannose, sucrose, etc. of which most are available in one or the other 
LCB hydrolysates. However, the mixture of sugars can sometimes lead to the issue 
of diauxic growth effects. During saccharification, a few oligosaccharides are also 
generated along with monosaccharides. Some oleaginous species have the natural 
ability to utilize oligosaccharides (Gong et al. 2014) which can improve the fer-
mentability of substrate further. Therefore, utilization of LCB hydrolysates contain-
ing mixture of sugars as well as various forms of saccharides must be carefully 
addressed in fermentation for achieving co-utilization as well as avoiding diauxic 
growth effects. Screening of suitable substrates and microbial species for substrate 
microbial compatibility must become an essential pre-fermentation step to imple-
ment an optimal substrate-microorganism combination during fermentation.

14.8.3  Fermentation Conditions

Overaccumulation of lipids never occurs under normal physiological conditions in 
microorganisms. In oleaginous microorganisms, substantially high carbon to nitro-
gen ratio can maintain the progression of lipid accumulation triggered mainly by 
nitrogen limitation. For attaining highest lipid content (amount of lipid per gram dry 
cell weight) and titer (concentration of lipid produced per liter volume), molar C/N 
typically higher than 65 and up to 100 (Jin et al. 2015) and w/w C/N higher than 50 
up to 150 (Diwan and Gupta 2018a) are optimum. Optimal temperature for growth 
ranges from 25 to 30 °C and 20 to 28 °C, while optimal pH are usually 4–7 for ole-
aginous yeasts and molds, respectively (Jin et al. 2015). Lipid accumulation typi-
cally occurs within a 3  °C window of growth temperature while variation in pH 
from growth range does not significantly affect lipid production. Since nitrogen is 
an essential macromolecule for microbial growth, such depletion not only increases 
the lipid synthesis but at the same time imposes negative effect on biomass 
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accumulation which in turn diminishes the overall lipid production. Therefore, 
alternate of nitrogen, i.e., phosphorus, and sulfur limitation for triggering lipid syn-
thesis are now being explored (Wu et al. 2010, 2011). Since oleaginicity is purely a 
stress mediated metabolic process, it can vary with the oleaginous species, substrate 
in question as well as cultivation conditions applied, which must be customarily 
optimized. Maintaining an optimal condition for achieving a balanced biomass and 
lipid concentration is the key to successful SCO fermentation strategy. Some emerg-
ing simple cultivation methods like open ponds (Santamauro et al. 2014) can also be 
explored as substitute to traditional fermentation.

14.8.4  Recovery of Oils

Recovery is a very essential step in SCO fermentation which decides the overall 
lipid yield after the bioprocess. The typical scheme of oil recovery includes cell 
harvesting followed by lipid extraction either from dried cell mass or wet biomass. 
Coagulation or flocculation, centrifugation and filtration are the usual cell harvest-
ing techniques (Ahmad et al. 2014) which can elevate the cost of downstream pro-
cessing in case of low cell density fermentations. The next step after harvesting is 
cell drying, which is more desirable than direct lysis of wet biomass, because dried 
biomass has been associated with better lipid yield during extraction (Kim et al. 
2013). Since drying can be energy demanding and an economic liability, several 
other methods have been explored to improve the efficiency of wet biomass disrup-
tion like acid or enzymatic hydrolysis, bead beating, high-pressure homogenization, 
microwave treatment, and ultrasonication (de Boer et al. 2012; Jin et al. 2012; Kim 
et  al. 2013). The most successful and universally implemented lipid extraction 
methods are the Bligh and Dyer and the Soxhlet method. Majority of the conven-
tional lipid extraction strategies are either the basic Bligh and Dyer protocol or its 
modified variant. The principle of these methods is based on aqueous two phase 
extractions using organic solvents like chloroform, methanol, or hexane and water 
acting as aqueous phase. In these methods, although the extraction is efficient, sol-
vent recovery is relatively inefficient and energy demanding.

To overcome this, use of other alternatives like supercritical liquids have been 
assessed in lipid extraction (de Boer et al. 2012; Kim et al. 2013). Application of 
SCO also governs the fate of lipid recovery, like if they are intended for biodiesel 
conversion, the lipids are many a times extracted and transesterified simultaneously 
(de Boer et al. 2012; Zhang et al. 2014). Another efficient and promising energy 
extraction technique is HTL (discussed earlier) which is currently applied to bio-oil 
extraction from algal biomass. Some other such extraction processes include direct 
combustion, gasification and pyrolysis (Milledge and Heaven 2014). These pro-
cesses can have positive implication in lignocellulosic lipid biorefineries as they 
lead to simultaneous generation of valuable coproducts and hence leverage the pro-
cess economy.
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14.9  The Biorefinery Concept for Positive Economics

Even though inexpensive LCB can assist in minimizing the process cost, the ineffi-
cient microbial carbon to lipid conversion economics will still make the practicabil-
ity of this product contentious. The discussion thus far has already thrown light on 
how many a times the process of biomass to lipid and lipid to fuel or other product 
conversion coproduces other valuable commodity chemicals. Also the byproducts 
and leftover residues can be recycled or reused for value addition. These strategies 
can support in maintaining positive SCO economics.

14.9.1  SCO and Multiple Coproducts

Strategies like simultaneous saccharification and fermentation, seen in case of fer-
mentative products such as ethanol and hydrogen, can merge the two separate steps 
of substrate preparation and fermentation potentially leading to reduction in process 
cost and complexity. However, the cellulolytic enzymes needed to saccharify ligno-
celluloses are usually secreted in the temperature range that is higher than that is 
required for lipid accumulation. Additionally, it is rare to find yeasts or fungi dis-
playing both cellulolytic and oleaginous properties simultaneously. In 2012, Chinese 
physicist Zheng in his work reported a thermophilic fungus T. lanuginosus which 
displayed oleaginous property at 50 °C and converted wheat straw hydrolysate into 
lipids (Zheng et al. 2012). Finding and engineering such thermotolerant oleaginous 
species for producing cellulolytic enzymes can realize the simultaneous saccharifi-
cation and fermentation strategy. Alternatively, oleaginous strains could be modi-
fied for production of hydrolytic enzymes, which will saccharify LCB, and released 
fermentable sugars will be capitalized in lipid synthesis. Ren et al., in 2015, showed 
synchronous production of two valuable products of lipid and hydrogen which can 
be an attractive coproduction scheme (Ren et al. 2015). In the similar way, oleagi-
nous strains can be improved for coproducing other contemporary valuable metabo-
lites also. Another interesting product is the defatted biomass left after lipid removal, 
which becomes a protein-rich substitute termed as single cell protein (SCP) with 
high value in nutrition and cattle feeding industry. As per Boulton 1988.

 

It is already known so far that 150 tons of fermentable carbon will produce 30 
tons of oil/day, the minimum feasible per day requirement of oil. Biomass produced 
in this process will be around 80 tons and defatted biomass will amount to around 
20 ton protein. A significant quantity of SCP is being produced in process, which 
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will add value and leverage the production cost. Some other valuable metabolites 
like amylase, carotenoids, and polygalacturonase (Papanikolaou et al. 2007, 2003; 
Saenge et al. 2011) have also reportedly been coproduced with SCO using agro- 
wastes. Several factors, especially the strains and the fermentation conditions, need 
critical assessment in the realistic scale-up study of these integrative and coproduc-
tion strategies.

14.9.2  Recycle and Reuse of Byproducts

Fermentative bioprocess from upstream to downstream processing involves numer-
ous steps. When the bioprocess is associated with LC feedstocks, the number of 
steps shoots even higher. All these steps side by side release large amounts of 
byproducts which are usually refused without any processing and lead to environ-
mental and ecological distress. These residues have high potential to be capitalized 
into other valuable products which can not only reduce environmental hazards but 
also curb the overall expenses. The defatted biomass apart from serving as SCP can 
also serve as organic fertilizer substitute and animal feed (Ryu et al. 2013) or dumps 
for composting. Upon processing, they can be converted into valuable amino acids, 
peptides, bioplastics, biomaterials, and biofoam (Jin et al. 2015) with wide com-
mercial applicability. Bioprocess like SCO production releases large amount of 
spent broths and residual biomass. In a lignocellulosic fermentation, the bioprocess 
starts with biomass pretreatment which generates lignin, which is usually discarded. 
This byproduct has gained immense importance in the past few years not only for 
production of valuable commodity chemicals but also as a substrate for SCO itself. 
Studies have shown that lignin-rich organosolv pretreatment effluents of pine when 
used as substrate, actinomycetes Rhodococcus opacus, displayed 27% lipid content. 
Ethanol organosolvent digested lignin, ultasonicated lignin, as well as lignin gener-
ated model compounds have also been reported to serve as substrate for lipid pro-
duction by Rhodococcus strains (Kosa and Ragauskas 2013). Currently, researches 
are also ongoing on use of lignin in microbial fuel cells, which can produce electric-
ity and simultaneously generate various lignin-derived valuable chemicals such as 
vanillin, xylene, toluene, benzoic acid, and various phenols. Next major refuse gen-
erated in fermentation industries are effluent broths. The bioprocesses are water 
intensive and discharge huge amounts of high biochemical oxygen demand (BOD) 
effluents which are contaminating the existing water bodies. These effluents are 
loaded in various lignocellulosic degradation products and fermentation byproducts 
like acetic acid, anthocyanins, caramel, furfurals, HMF, melanoidins, tannins, and 
other secondary metabolites and toxins. High BOD and chemical oxygen demand 
(COD) effluents cause eutrophication and oxygen reduction consequently leading 
to depletion of aquatic organisms. Since freshwater is an essential resource, careful 
water utilization during fermentation and management of generated broths are cru-
cial. If the bioprocess is releasing a low BOD and COD broths with minimal 
amounts of byproducts, the broths can be used for recycling. This can lead to 
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reduction in volumetric discharge and increase in substrate to product conversion 
during consecutive broth recycles, especially in case of high nutrient (Carbon) 
demanding fermentation like SCO.  Highly contaminated broths can be mildly 
treated and replenished with macro and micro nutrients before recycling. American 
scientist Hsiao applied this concept practically for SCO production and carried out 
75% of synthetic fermentation broth recycling seven times. When whey was used as 
substrate drop in lipid production was observed after three 50% recycle ratios 
(Hsiao et al. 1994). In a recent research, attempts were driven to recycle 100% fer-
mentation broth consisting of LCB-rice straw hydrolysate as C source for MCFA- 
rich SCO production via yeasts C. tropicalis and P. kudriavzevii. The efforts led to 
increase in ratio of product to effluent generation (Diwan and Gupta 2018b).

However, if high BOD/COD effluents are being refused, different treatment pro-
tocols must be followed before discharging which can lower their pollution quotient 
and at the same time extract value from it. Many fermentation industries including 
distilleries are nowadays adapting such system. Effluents need to be digested 
through anaerobic digester units. The produced bio-methane has its own value or 
can be oxidized to methanol or converted to other energy forms. Released effluent 
gases can be capitalized for several other industrial processes. Leftover refuse can 
be used for bio-composting. Sometimes even after the range of aforementioned 
treatments, the BOD level did not drop significantly due to presence of salts or left-
over organic matters. These residual effluents can be concentrated via evaporation 
followed by incineration which can be utilized for power production. Few organiza-
tions are already working on biorefinery concept and hence are reutilizing wastes 
for value addition like the USA based Industrial Microbes, which is producing com-
modity chemicals utilizing the methane and released effluent gases. Recycle and 
reuse of generated byproducts can create a lot of difference from economical, eco-
logical, and environmental point of view. Such clean practices must be engrained 
and embraced to practically realize the biorefinery concept. Figure 14.4 shows an 
overview of the entire concept of lignocellulosic biomass to SCO from the circular 
biorefinery viewpoint.

14.10  Conclusion and Future Prospects

Conversion of LCB to SCO is not a simple single step process; it includes chain of 
processes each engendering different sets of challenges. After years of research and 
development, it is still believed that SCO is potentially going to become an impor-
tant biorefinery product. According to the estimated statistics reviewed by Diwan 
et al. 2018, use of lignocellulosic feedstocks can reduce the cost expectancy of the 
SCO significantly compared to synthetic sugar based fermentations. With endless 
debate and ambiguity, it is difficult to predict the fate of SCO. In any of the case 
SCO currently seems more economically viable in production of low volume- high 
value oils either using synthetic substrates or by replacing them with edible agricul-
tural biomasses. Even though cost becomes a secondary criterion when product has 
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nutraceutical importance and intended for consumption, use of edible agro- 
byproducts can curb the expenses to a bit. Oils pursuing conversion to biofuels 
needs bulk production while low lipid yield and titer is severely impeding this pos-
sibility and their economic feasibility. Strain improvement for achieving high lipid 
yield, high tolerance to degradation products and coproduction of other valuable 
metabolites, refinement in LCB pretreatment and saccharification technology, 
improvement in process design and fermentation conditions need to be addressed. 
The realistic strategy which can have practical feasibility is balanced coproduction 
of neutral bulk lipids (which can be pursued for biofuels) with functional fatty acids 
(which can increase the economic value of these oils and to some extent balance the 
overall expense). Co-generation of valuable products and value addition to byprod-
ucts can prove to be the backbone for the techno-economics of SCO production and 
hence must also be well engrained in the bioprocess.
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Fig. 14.4 Lignocellulosic biomass to SCO: a circular biorefinery
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Chapter 15
Recent Advancement and the Way 
Forward for Cordyceps

Rahul Chaubey, Jitendra Singh, Mohammed Muzeruddin Baig, 
and Amit Kumar

15.1  Introduction

Cordyceps species are entomopathogenic fungi belonging to the division 
Ascomycota, class Sordariomycetes, orders Entomophthorales and Hypocreales. So 
far, reported species were grouped under 91 genera. Recently, this fungal study has 
become a very important topic because of their strong medicinal properties and 
huge global markets. They are excellent biocontrol agent attacking larvae and pupae 
(Kobayasi 1941, 1982). Fungi/mushrooms have been used by humans since thou-
sands of years as food, food supplements, and/or traditional medicine. More than 
14,000 species of mushrooms are recognized, and among them, approximately 
2000 are identified as edible (Vikineswary et al. 2013). Fungi form the second larg-
est group after insects, and it is believed that 1.5 million fungi exist in nature 
(Mueller et al. 2011; Chiu et al. 2016). They have attracted researchers from differ-
ent disciplines owing to their fascinating nature and capability to survive in antago-
nistic environments and the midst of decay at the toughest layer of the ecosystem 
(Lu et al. 2013; Chiu et al. 2016). Entomopathogenic fungi produce a number of 
secondary metabolites during their infection and proliferation in insects. To human 
beings, these secondary metabolites served as biofunctional agents which were 
evolved over centuries with amazing potential in improving health and preventing 
diseases (Lu et al. 2013; Chiu et al. 2016).
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Many natural Cordyceps sp. are used in traditional Chinese medicines in China, 
Japan, Korea, Taiwan, and other eastern Asian countries. Yarsa gumba is known to 
science as Ophiocordyceps sinensis. In Chinese, it is called Dong cong xia cao. 
However, the origins are Tibetan: Yart Swa Gun Bu, which means “herb in the sum-
mer and insect in the winter.” This fungus is also named as “Keera Jhar” (insect 
herb)/Keeda ghass/Jeevan buti/Chyou kira/Sanjeevani buti or Himalayan Viagra by 
local peoples in Indian mountains (Panda and Swain 2011). In addition, Cordyceps 
militaris, a type species of cordyceps, has been regarded as substitute for “Dong 
cong xia cao” and is named as “North dong-chong xia cao” (Lo et al. 2013).

Entomopathogenic fungi may be poly- and pleomorphic. Their life cycle may 
contain a meiotic (teleomorphic, prefect) stage and many mitotic (anamorphic, 
imprefect) stages. Both the teleomorph and anamorph may have different morphol-
ogy (Kobayasi 1941; Hodge et al. 1998). These fungi produce a stroma (fruiting 
body) on infected arthropod. The color of the stroma depends on the species, and 
produces a stipe, which is buried in the soil or dead trees. The fertile region of the 
stroma is terminally positioned and has a head-like appearance. Spores produced 
through sexual reproduction inside sacs, are housed in perithecia. Ascospores and 
asci are microscopic structures; a single perithecium, which gives the stroma a small 
blade-like shape (Hodge et al. 1996; Kobayasi and Shimizu 1960; Liang et al. 1991; 
Liu et  al. 2001; Evans et  al. 2011). Infection on the surface of insect  body dur-
ing  winter leads to the formation of a fruiting body in summer followed by the 
spores becoming airborne. The elongated stroma look like cylindrical or branched 
and is often found bursting from the head of the host (Fig. 15.1). The fruiting body, 
bears many infectious perithecia containing ascospores. Many Cordyceps species 
can grow on artificial media, and some can be isolated from soil (Zhu et al. 1998; 
Winkler 2008, 2010).

Fig. 15.1 Cordyceps sinensis in its natural habitat (4550 meters in Tibet, China). (Sources: 
Holliday and Cleaver 2008)
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These fungi attack hosts from many orders of Lepidoptera (Humber 2000; 
Karpinska 2012; Hardeep et al. 2014), usually that of the Himalayan ghost moth 
larvae Thitarodes armoricanus (=Hepialus armoricanus). The insect may infected 
at various life stages i.e. larvae, pupae and adult. Infection starts with the dispersion 
of fungal conidia on insect cuticle. The spores then adhere to the outer surface 
of  insect body, and germinate within a few hours (Hardeep et al. 2014). Conidia 
secreats protective enzymes (superoxide dismutase and peroxidases) and hydrolytic 
enzymes (proteases, chitinases, and lipases ) to protects the fungi during germina-
tion (Isaka et al. 2001; Wang et al. 2005; Holder and Keyhani 2005; Hardeep et al. 
2014; Kaszak 2014). The conidia produces a germ tube with an appressorium (a 
flattened disk-like structure on the end). The appressorium penetrates the exoskel-
eton and enter the hemocoel by a combinational effect of mechanical pressure and 
enzymes. During development and growth fungus produces insecticidal secondary 
metabolite in side the host body resulting death of the host. The fungal hyphae then 
feed on the insect, growing throughout all visceral organs. Finally, the tissue of the 
host is replaced with a fungal mycelium, and only the host exocuticula is avilable 
for supports of the fungal stroma (Hodge et al. 1996; Isaka et al. 2001; Wang et al. 
2005; Holder and Keyhani 2005; Hardeep et al. 2014; Kaszak 2014).

15.2  History

Gordon Wasson (father of modern ethnomycology) believed that the Soma plant 
used in religious ceremonies, over 4000 years ago, by the “Aryans” was a mush-
room. The Vedic juice called “soma rasa” is said to provides divine qualities to the 
consumer soul, even immortality. As per Ayurveda mushrooms classified as tama-
sika ahara i.e. a medicine for enhancing vigor and vitality (Panda and Swain 2011). 
This fungus has been known and used as a medication in China for over 400 years 
(Wasson 1968; Adhikari 1981; Hodge et  al. 1998; Holliday and Cleaver 2008; 
Panda and Swain 2011; Lu et al. 2013). The earliest record outlining the tonic prop-
erties especially as an aphrodisiac is a fifteenth-century Tibetan medical. It was 
initially recorded in Ben-Cao-Bei-Yao by Wang Ang in 1694. This fungus was first 
introduced to Western society during the seventeenth century, and its uses were 
documented in the Qing dynasty Bencao Congxin (New Compilation of Materia 
Medica) in 1757. In 1878 Saccardo, an Italian scholar, named Cordyceps derived 
from Latin words cord and ceps, respectively, meaning “club” and “head.” The 
Latin word conjunction accurately describes the appearance of these club fungi, 
whose stroma and fruit body extend from mummified carcasses of insect larvae, and 
this nomenclature has been adopted up to the present day (Holliday and Cleaver 
2008).

The fungus was made famous in 1993 by the performance of three female 
Chinese athletes who broke five world records for long-distance running. They con-
sumed Ophiocordyceps sinensis and turtle blood (Winkler 2008; Wang et al. 2008; 
Hardeep et al. 2014; Kaszak 2014). In 2006, the demand of wild Cordyceps sinensis 
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was  increased  and the price of the this  “soft gold” reached  up to $32,000/kg in 
China (Au et al. 2012; Chiu et al. 2016). The collection of this fungi was difficult 
and not able to fulfill the incresed demands. Thus  researchers  concentarted for 
developing fermentation technologies to harvest large amounts of biomass for func-
tional foods (Shih et al. 2007; Chiu et al. 2016). Functional foods can serve health 
benefits and nutritional security to an effected population. These kinds of foods, 
which can protect or delay the onset of chronic diseases (cancer, diabetes mellitus, 
and cardiovascular and obesity diseases etc.), become a necessity rather than luxury 
(Granato et al. 2010; Chiu et al. 2016).

15.3  Distribution

The distribution of these forest fungi is cosmopolitan (Li et al. 2011; Shrestha et al. 
2012, 2016). Entomophthoralean fungi generally show narrow host range and are 
distributed in temperate forests and hardly  reports from tropical regions. While 
hypocrealean (cordyceps), have narrow to very broad host range and are dominantly 
distributed in humid tropical forests (Burges 1981; Evans 1982; Kobayasi 1982; Li 
et  al. 2011; Vega et  al. 2012; Kaszak 2014). The Cordyceps species are highly 
diverse in subtropical and tropical regions with a hot and humid climate i.e. Asia. A 
total of 203 localities have been found, of which 106 are considered as confirmed 
distribution sites, 65 as possible distribution sites, and 29 as excluded distribution 
sites (Li et al. 2011) (Fig. 15.2). Li et al. (2011) reported that Cordyceps is confined 
to the Tibetan Plateau regions, including Gansu, Qinghai, Sichuan, Tibet and Yunnan 
provinces in China and in certain areas of the southern flank of the Himalayas, in the 
countries of Bhutan, India, and Nepal, with 3000 m (Kobayasi 1980; Shen et al. 
1980; Xiao et al. 1983; Yin et al. 1990; Negi et al. 2009).

Fig. 15.2 Worldwide distribution of Cordyceps sinensis. (Sources: Li et al. 2011)
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The fungus is distributed from the southernmost site in Yulong Naxi in north-
western Yunnan Province to the northernmost site in the Qilian Mountains in 
Qinghai Province, and from the east edge of the Tibetan Plateau in Gansu Province, 
to the western most site in Uttarakhand, India (Li et al. 2011). This fungus is found 
in extensive quantity in Api in Dharchula, Baling,  Bon,  Budhi, Chipla, 
Chal,  Dugtu,  Galja, Karschila,  Malpa top, Nampa, Njyang top, Panchachuli and 
Pithoragarh (Garbyal et al. 2004).

15.3.1  Type

The entomopathogenic fungi mainly belong to two diverse groups of  kingdom 
Fungi, Entomophthorales (phylum Entomophthoromyota ) and Hypocreales (cordy-
ceps) (phylum Ascomycota). These fungi are distributed in various terrestrial eco-
systems including Arctic Circle and Antarctica (Karam and Karam 2012; Shrestha 
et  al. 2016). Before,  Sung et  al. (2007), Cordyceps was  placed in family 
Clavicipitaceae of order Hypocreales. The  phylogenetic studies showed that 
both Cordyceps and Clavicipitaceae were not monophyletic (Artjariyasripong et al. 
2001; Stensrud et al. 2005; Spatafora et al. 2007; Sung et al. 2007). The Cordyceps 
was segregated into diffrent phylogenetic genera within three families of Hypocreales 
(Sung et al. 2007). According to the phylogenetic classification, Cordyceps is now 
restricted to the clade containing the type species C. militaris, circumscribed to 
Cordycipitaceae (Sung et al. 2007). Newly segregated genera Ophiocordyceps and 
Elaphocordyceps were placed under family Ophiocordycipitaceae; the other two 
genera Metacordyceps and Tyrannicordyceps remained in Clavicipitaceae (Sung 
et al. 2007; Kepler et al. 2012). Following the recent revision in the International 
Code of Nomenclature for algae, fungi, and plants (ICN), Elaphocordyceps is now 
synonymized with Tolypocladium (Quandt et  al. 2014) and Metacordyceps with 
Metarhizium (Kepler et al. 2014).

15.3.2  Host Range and Species Affinity

The host range of Cordyceps is very wide and includes several orders, viz., Araneae, 
Blattodea, Coleoptera, Dermaptera, Diptera, Hemiptera, Hymenoptera,Lepidopter
a, Mantodea, Odonata, Orthoptera, Phasmatodea, etc. (Evans 1982; Wang and Yao 
2011; Shrestha et al. 2012, 2016). Nearly 60% of the Cordyceps species are classi-
fied under two orders Coleoptera and Lepidoptera (Shrestha et al. 2012, 2016). The 
majority of hosts (>95%) in Lepidoptera (moths and butterflies) and Coleoptera 
(beetle) are larvae with very few adults or pupae, making the host identification 
more difficult. In contrast, majority of hosts in other orders are adults such as spider 
(Araneae); cockroach and termite (Blattodea);  fly (Diptera);  earwig 
(Dermaptera); cicada, bug, scale insect, and coccid (Hemiptera); ant, bee, and wasp 
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(Hymenoptera); grasshopper, mantis (Mantodea); dragonfly (Odonata); locust, and 
cricket (Orthoptera); and stick insect (Phasmatodea) (Evans 1982). However, Why 
lepidopterans and coleopterans orders  are mostly susceptible at larval stage and 
other orders are more susceptible at adult stage is not well understood (Shrestha 
et al. 2016).

Lepidoptera is one of the largest orders of insects (Gaston 1991) with 160,000 spp. 
classified into 4 suborders, 45 superfamilies, and 139 families (Nieukerken et al. 
2011). Out of four suborders (Aglossata, Glossata, Heterobathmiina, and 
Zeugloptera), Cordyceps and allied genera are known only from Glossata. It is the 
largest suborder consisting of almost 99.9% of all described lepidopterans 
(Nieukerken et al. 2011; Wagner 2001). It is further classified into six infraorders 
(Dacnonypha, Acanthoctesia, Lophocoronina, Neopseustina, Exoporia, and 
Heteroneura) (Nieukerken et  al. 2011; Wagner 2001). Among them, Cordyceps 
hosts are parasitizing only two infraorders Exoporia and Heteroneura. Exoporia is a 
small infraorder consisting of 2 superfamilies (Hepialoidea and Mnesarchaeoidea) 
with 636 named species worldwide (Shrestha et  al. 2016). The superfamily 
Hepialoidea comprises five families (Anomosetidae, Neotheoridae, Prototheoridae, 
Palaeosetidae, and Hepialidae) distributed in diverse vegetation of which Cordyceps 
species are recorded from the family Hepialidae only (Table 15.1). The infraorder 
Heteroneura consists of more than 98% of lepidopteran species with more than 30 
superfamilies (Nieukerken et  al. 2011; Wagner 2001), of which 9 superfamilies 
(Noctuoidea, Zygaenoidea, Cossoidea, Drepanoidea, Tineoidea, Papilionoidea, 
Geometroidea, Bombycoidea, and Lasiocampoidea) are recorded as hosts of 
Cordyceps spp. worldwide. Among the host families, Tineidae is the only micro-
lepidopteran family, and the rests are macrolepidopterans. Papilionidae and Pieridae 
are the two families of butterfly and all others being moths (Table 15.1).

Coleoptera is currently the most species-rich group on this planet (Slipinski et al. 
2011). The order is classified into four suborders (Adephaga, Archostemata, Myxo
phaga, and Polyphaga) (Bocak et al. 2014). Polyphaga is the largest suborder (>170 
families) covering 90% of total beetle species. Adephaga is the second largest sub-
order, followed by Myxophaga and Archostemata (Bocak et al. 2014). All the known 
coleopteran hosts belong to suborders Polyphaga and Adephaga under 8 superfami-
lies (Scarabaeoidea, Elatroidea, Chrysomeloidea, Cucujoidea, Curculionoidea, 
Tenebrionoidea, Staphylinoidea, and Caraboidea) and 11 families (Scarabaeidae, 
Geotrupidae, Lucanidae, Elateridae, Cerambycidae, Chrysomelidae, Erotylidae, 
Curculionidae, Tenebrionidae, Staphylinidae, and Crambidae) (Nieukerken et  al. 
2011; Wagner 2001; Shrestha et al. 2016) that are listed in Table 15.1.

15.4  Medicinal Properties and Their Uses

Species of Cordyceps have long been known and used to promote longevity, relieve 
fatigue, and treat numerous diseases in traditional Chinese medicine (Hobbs 1995; 
Russell and Paterson 2008). Perusal of literature showed that cordyceps has a wide 
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Table 15.1 List of Cordyceps species recorded on various hosts

Host family Host genus/species
Host 
stages Cordyceps sp. References

Hepialidae Oxycanus dirempta, 
Abantiades sp.

Larva C. cranstounii Willis (1959)

— Larva C. cuncunae Palfner et al. (2012)
Oxycanus sp., Trictena 
sp., Abantiades sp.

Larva C. hawkesii Olliff (1895), Willis 
(1959)

Endoclita excrescens Larva C. hepialidicola Lim et al. (2001)
Thitarodes armoricanus Larva C. kurijimeansis Negi et al. (2012)
Hepialus sp. Larva, 

pupa
C. militaris Petch (1948)

Abantiades labyrinthicus, 
Aoraia enysii, Oxycanus 
sp., Trictena atripalpis

Larva, 
pupa

D. gunnii Olliff (1895), Glare 
et al. (1993), Willis 
(1959)

Thitarodes baimaensis Larva O. crassispora Zang et al. (1990)
— Larva O. emeiensis Liu and Liu (1997)
Ahamus altaicola, 
Hepialus humuli, 
Korscheltellus lupulina, 
Parahepialus nebulosus

Larva O. gracilis Zang and Kinjo 
(1998), Lauritzen 
(1971)

Aenetus virescens, 
Aoraia dinodes, A. 
ensyii, Wiseana spp., 
Ahamus anomopterus, A. 
gangcaensis, A. 
jianchuanensis, A. 
lijiangensis, A. luquensis, 
A. maquensis, A. 
sichuanus, A. 
yulongensis, A. 
yunlongensis, A. 
yunnanensis, A. 
yushuensis, A. 
zadoiensis, A. 
zhayuensis, Bipectilus 
yunnanensis, Endoclita 
davidi, Gazoryctra 
ganna, Hepialus 
xiaojinensis, Magnificus 
jiuzhiensis, M. 
zhiduoensis, 
Parahepialus nebulosus, 
Pharmacis carna

Larva O. robertsii Glare et al. (1993), 
Berkeley (1855), 
Miller (1952)

(continued)
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Table 15.1 (continued)

Host family Host genus/species
Host 
stages Cordyceps sp. References

P. fusconebulosa, P. 
pyrenaicus, Thitarodes 
albipictus, T. 
armoricanus, T. 
baimaensis, T. 
baqingensis, T. bibelteus, 
T. biruensis, T. 
callinivalis, T. 
cingulatus, T. 
damxungensis, T. 
deqinensis, T. 
dongyuensis, T. 
ferrugineus, T. 
gonggaensis, T. 
jialangensis, T. 
jinshaensis, T. 
kangdingensis, T. 
kangdingroides, T. 
latitegumenus, T. 
litangensis, T. 
markamensis, T. 
meiliensis, T. namensis, 
T. namlinensis, T. 
oblifurcus, T. pratensis, 
T. pui, T. renzhiensis, T. 
varians, T. xunhuaensis, 
T. yeriensis, T. zaliensis, 
T. zhongzhiensis

Larva O. sinensis Zou et al. (2010), 
Wang and Yao (2011)

Trictena sp. Pupa O. taylorii Willis (1959)
Ahamus jianchuanensis, 
A. yunnanensis

Larva O. lanpingensis Chen et al. (2013)

Ahamus yunnanensis Larva O. laojunshanensis Chen et al. (2011a, b)
Endoclita nodus Larva O. ramosissimum, 

O. xuefengensis
Wen et al. (2014), 
Wen et al. (2013)

Noctuidae Panolis flammea, Euxoa 
ochrogaster, Colocasia 
coryli, Arcte coerula, 
Dasypodia selenophora

Larva C. alpicola
C. militaris

Kobayasi and 
Shimizu (1976a, b), 
Kobayasi (1941)

Acronicta americana Larva, 
pupa

O. elongate Petch (1937)

— Pupa C. bifusispora Eriksson (1982)
— Larva C. bulolensis Kobayasi and 

Shimizu (1976a, b)
— Adult C. cristata Moller (1901)

Sphingidae — Pupa C. flavobrunnescens Kobayasi (1941)

(continued)
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Table 15.1 (continued)

Host family Host genus/species
Host 
stages Cordyceps sp. References

Clanis bilineata Larva C. kyusyuensis
C. taishanensis

Kawamura (1955), 
Liu et al. (1984)

Sphinx pinastri, Hyles 
euphorbiae, Mimas 
tiliae, Marumba 
sperchius, Laothoe 
populi, Callambulyx 
tatarinovii

Larva, 
Pupa

C. militaris Kryukov et al. 
(2011), Bary (1867), 
Kobayasi (1941), Gu 
and Liang (1987), 
Panigrahi (1995), 
Chen (1997), Sopp 
(1911), Gray (1858), 
Sato et al. (1994), 
Hitchcock (1961)

— Larva, 
pupa

C. polyarthra Moller (1901)

Amphipyra effusa, 
Amphonyx duponchel, A. 
jatrophae, Anceryx ello, 
Cocytius sp., 
Macroglossum insipida, 
Sphinx pinastri

Adult C. tuberculata Kobayasi (1941), 
Petch (1934), Maire 
(1917)

Saturniidae Actias artemis
Anisota senatoria

Larva, 
Pupa

C. longdongensis
C. militaris

Liu (1997), Kobayasi 
(1941)

Bombycidae Bombyx sp., Bombyx 
mori

Larva, 
Pupa

C. michaelisii
C. militaris

Hennings (1902), 
Kobayasi (1941)

Endromidae Andraca bipunctata Larva C. militaris Kryukov et al. 
(2011), Bary (1867), 
Kobayasi (1941), Gu 
and Liang (1987), 
Panigrahi (1995), 
Chen (1997), Sopp 
(1911), Gray (1858), 
Sato et al. (1994), 
Hitchcock (1961), 
Pacioni and Rossi 
(1980)

Erebidae Calliteara pudibunda, 
Leucoma salicis

Larva C. militaris

— Larva C. nikkoensis

Drepanidae Achlya flavicornis, 
Ochropacha duplaris, 
Tethea ocularis, 
Tetheella fluctuosa

Larva C. militaris

Geometridae Biston panterinaria, 
Lycia hirtaria

Larva C. militaris

Geometridae Triphosa sp. Adult C. riverae

Lasiocampidae Dendrolimus pini, D. 
superans, Macrothylacia 
rubi

Larva C. militaris

Notodontidae Fentonia ocypete, 
Lampronadata cristata, 
Phalera assimilis, P. 
bucephala, Syntypistis 
punctatella

Larva C. militaris

Tineidae — Larva C. cardinalis Sung and Spatafora 
(2004)

(continued)
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Table 15.1 (continued)

Host family Host genus/species
Host 
stages Cordyceps sp. References

Papilionidae — Adult C. tuberculata Kobayasi (1941), 
Petch (1934), Maire 
(1917)

Pieridae Pieris rapae Larva M. taii Zang and Kinjo 
(1998)

Limacodidae — Larva, 
pupa

O. cochlidiicola Kobayasi and 
Shimizu (1980)

Cossidae Yakudza vicarius Larva M. indigoticum Kobayasi and 
Shimizu (1978)

Cossus sp. Larva O. arborescens
O. macroacicularis
C. bassiana

Ban et al. (2015),

Scarabaeidae Heteronyx sp. Larva C. brittlebankii McLennan and 
Cookson (1926)

Anomala cuprea Larva C. brongniartii Shimazu et al. (1988)
Lepidiota sp. Larva C. coxii Olliff (1895)
Aphodius howitti, A. 
tasmaniae

Larva O. aphodii Mathieson (1949), 
Glare et al. (1993)

— Larva O. arbuscula Teng (1936)
— Larva O. barnesii Massee (1895)
— Larva C. obliquiordinata Kobayasi and 

Shimizu (1982)
Melolontha sp. Larva C. pseudoinsignis Moureau (1949)
— Adult C. scarabaeicola Kobayasi and 

Shimizu (1976a, b)
— Larva M. 

brittlebankisoides
Liu et al. (2001)

— Larva O. geniculata Yahagi (2008)
— Larva O. gracillima Sanjuan et al. (2015)
— Larva O. highlandensis Yang et al. (2015)
— Larva O. macularis Kobayasi (1977)
Ancyloncha puncticollis, 
Lachnosterna fusca, 
Melolontha sp.

Larva O. melolonthae Massee (1895), Ellis 
and Everhart (1892)

— Larva O. neovolkiana Kobayasi (1941)
— Larva O. nigrella Kobayasi and 

Shimizu (1983)
Lachnosterna fusca, 
Phyllophaga sp., 
Rhizotrogus sp.

Larva O. ravenelii Ellis and Everhart 
(1892), Berkeley 
(1857), Mains (1958)

— Larva S. palustris Moller (1901)
Scarabaeus sp. Larva O. michiganensis Kobayasi (1941), 

Roth and Clerc 
(1997)

(continued)
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Table 15.1 (continued)

Host family Host genus/species
Host 
stages Cordyceps sp. References

Costelytra zealandica Larva O. stylophora Kautman and 
Kautmanova (2009), 
Glare (1992), Moniz 
et al. (1999), 
MacMillan (1898)

Erotylidae Erotylus sp. Adult C. erotyli Petch (1937)
Geotrupidae Geotrupes sp. Adult C. geotrupis Teng (1934)
Elateridae — Larva C. huntii Massee (1899)

— Larva C. aurantiaca Keissler and Lohwag 
(1937)

Melanotus communis Larva C. nirtolii Negi et al. (2012)
— Larva C. rubra Moller (1901)
Melanotus caudex, 
Pleonomus canaliculatus

Larva C. shanxiensis Liu et al. (1985)

Melolontha sp. Larva C. velutipes Moureau (1949), 
Massee (1895)

Campsosternus auratus Larva M. campsosterni Zhang et al. (2004)
Hemirhipus sp. Larva M. martiale Spegazzini (1919)
— Larva O. brunneipunctata Hywel-Jones (1995)
— Larva O. elateridicola Kobayasi and 

Shimizu (1983)
— Larva O. gracilioides Yahagi (2008)
Campsosternus auratus, 
C. fruhstorferi

Larva O. jiangxiensis Liang et al. (2001)

— Larva O. purpureostromata Kobayasi and 
Shimizu (1980)

— Adult O. salebrosa Mains (1958)
Denticollis linearis Larva O. stylophora Kautman and 

Kautmanova (2009), 
Glare (1992), Moniz 
et al. (1999), 
MacMillan (1898)

Staphylinidae Staphylinus sp. Adult C. memorabilis Cooke (1892)
— Larva C. staphylinidicola Kobayasi and 

Shimizu (1982)
Tenebrionidae Nictobates sp. Larva O. acicularis Massee (1895)

— Larva O. formosana Li (2002)
Cylindronotus sp., 
Helops caraboides, H. 
lanipes

Larva O. larvicola Moureau (1949), 
Kobayasi (1941) 
Koval (1974)

Curculionidae Cryptorhynchus 
corticicolus

Larva P. peltata Mains (1958)

(continued)
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range of pharmacological properties, such as immunomodulating, anti-oxidant, 
anti-tumor, anti-cancer, anti-metastatic, anti-inflammatory, anti-oxidative, antibi-
otic, hepatoprotective, nephroprotective, hypoglycemic, and hypocholesterolemic 
effects (Park et al. 2005; Yoo et al. 2004; Lee et al. 2010; Ohta et al. 2007; Ahn et al. 
2000; Wang et al. 2011a, b; Yue et al. 2013; Zhou et al. 2009; De Silva et al. 2012). 
These properties are due to the presence of a variety of bioactive compounds, which 
include polysaccharides, cordycepin, adenosine, sterol, ergosterol, protein and 

Table 15.1 (continued)

Host family Host genus/species
Host 
stages Cordyceps sp. References

Tenebrionidae   Tenebrio molitor Larva C. militaris Kryukov et al. 
(2011), de Bary 
(1867)

Heilipus celsus Adult O. curculionum Massee (1895)
Cerambycidae Oemona hirta Larva O. dovei Kobayasi (1941)

Callidium sp. Larva O. konnoana Yahagi (2008)
Phoracantha 
semipunctata

Larva O. stylophora Kautman and 
Kautmanova (2009), 
Glare (1992), Moniz 
et al. (1999), 
MacMillan (1898)

Lucanidae Rhyssonotus nebulosus Larva O. scottiana Olliff (1895)
Carabidae — Larva C. nikkoensis Kobayasi and 

Shimizu (1983)
— Larva O. carabidicola Kobayasi and 

Shimizu (1980)
Eripus heterogaster Larva O. volkiana Moller (1901)
Calathus sp., Calosoma 
sp., Carabus auronitens, 
C. coriaceus, C. 
glabratus, C. hortensis, 
C. intricatus, C. 
nemoralis, C. 
nemorensis, C. violaceus, 
Coptolabrus sp., 
Hadrocarabus 
problematicus, 
Pterostichus sp.,

Larva, 
adult

O. 
elongatiperitheciata

Kobayasi and 
Shimizu (1980), 
Massee (1895), 
Kobayasi (1951), 
Kautman and 
Kautmanova (2009), 
Kautmanova (2002), 
Klingen and Salinas 
(2002), Kobayasi 
(1937), Moingeon 
(2003), Zang and 
Kinjo (1998)Cerambycidae

Chrysomelidae
Curculionidae
Staphylinidae
Tenebrionidae

Leptura sp., Diabrotica 
sp., Apion flavipes, 
Ocypus sp., Meneristes 
laticollis

Larva, 
adult

O. entomorrhiza

Tipulidae Tipula paludosa Larva C. militaris Muller-Kogler (1965)
Cimbicidae Cimbex similis — C. militaris Kobayasi (1941)

Adopted and modified by Wang and Yao (2011) and Shrestha et al. (2012, 2016).
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amino acids, vitamins E and K, and the water-soluble vitamins B1, B2, and B12 
(Zhou et al. 2009; De Silva et al. 2012). In addition, it also contains various sugars, 
including mono-, di-, and oligosaccharides, nucleosides, and macro- and microele-
ments (K, Na, Ca, Mg, Fe, Cu, Mn, Zn, Pi, Se, Al, Si, Ni, Sr, Ti, Cr, Ga, V, and Zr) 
(Hobbs 1995; Holliday et al. 2004, 2005; Holliday and Cleaver 2008). More than 20 
pharmacologically bioactive compounds and various extract using solvent (water, 
ethanol, methanol, and ethyl acetate) have been reported from mycelia, culture 
supernatants, and fruiting bodies of cordyceps that are listed in Table  15.2 
(Yamaguchi et al. 2000; Koh et al. 2003; Ji et al. 2009; Lo et al. 2013; Chen et al. 
2013; Chiu et al. 2016).

15.4.1  Polysaccharides

Polysaccharides that mainly play roles as energetic and structural components. 
Various forms of them have been identified such as extracellular polysaccharide, 
intracellular polysaccharide, exopolysaccharides, heteropolysaccharides, manno-
glucan, D-glucan, etc. They are one of the major components of Cordyceps respon-
sible for a large number of pharmacological properties, viz., immunomodulatory, 
anti-tumor, anti-metastatic, anti-inflammatory, anti-oxidative, hypoglycemic, hypo-
lipidemic, and steroidogenic (Li et al. 2006a; Russell and Paterson 2008; Shashidhar 
et al. 2013).

15.4.2  Cordycepin

Cordycepin and cordycepic acid are the two important pharmacologically active 
compounds isolated from culture supernatant and fruiting bodies of Cordyceps 
(Huang et al. 2003). Cordycepin, which was originally extracted from C. militaris, 
is the main bioactive component of cordyceps (Kaczka et al. 1964; Cunningham 
et al. 1950), while cordycepic acid, an isomer of quinic acid, is subsequently identi-
fied as d-mannitol (Sprecher and Sprinson 1963; Jiang 1987). Cordycepin is 
now a days used in injections as a raw material and as a supplement in other medi-
cines. Cordycepin helps in reducing the overall level of cholesterol, low-density 
lipoprotein, and triglycerides in the blood. Furthermore, its effect on glucose metab-
olism potentially regulates glucose level in the blood (Guo et al. 2010). Cordycepin 
also has anti-inflammatory and antitumor properties because it has the ability to 
impede RNA synthesis (Russell and Paterson 2008; Tuli et al. 2013).

15 Recent Advancement and the Way Forward for Cordyceps



454

Table 15.2 Pharmacologically bioactive compound/extract and its bioactivities and material 
source of Cordyceps

Bioactive compound/extract Bioactivities
Material 
source References

Compound

Polysaccharides; extracellular Immunomodulatory 
and anti-tumor

Culture 
supernatant

Song et al. (2012), Yoon 
et al. (2008), Zhang et al. 
(2005)

Anti-oxidant Culture 
supernatant

Cheung et al. (2009), 
Kuo et al. (2007a), 
Sheng et al. (2011), 
Wang et al. (2011a, b), 
Zhang et al. (2008)

Polysaccharides; intracellular Immunostimulatory 
and anti-tumor

Mycelium Leung et al. (2009), Yan 
et al. (2009)

Immunomodulatory 
and anti-oxidant

Mycelium Yan et al. (2011)

Immunomodulatory Mycelium Chen et al. (2008)
Hypoglycemic Mycelium Chen et al. (2010a), 

Chen et al. (2010b), Wu 
et al. (2006)

Hypoglycemic and 
anti-oxidant

Mycelium Huang et al. (2002), 
Kiho et al. (1993)

Anti-oxidant and 
anti-tumor

Mycelium Li et al. (2006a)

Anti-oxidant Mycelium Chen et al. (2006)
Anti-oxidant Fruiting 

body
Wang et al. (2011a, b)

Protection of chronic 
renal failure

Mycelium Wang et al. (2009)

Cholesterol esterase 
inhibitory activity

Mycelium Wang et al. (2010)

Lower plasma 
triglyceride and 
cholesterol

Mycelium Kim (2010)

Cordycepin Steroidogenesis Culture 
supernatant

Kiho et al. (1996)

Anti-metastatic activity Culture 
supernatant

Leu et al. (2011), Pao 
et al. (2012)

Anti-tumor Culture 
supernatant

Kubo et al. (2012)

Immunomodulatory Culture 
supernatant

Chen et al. (2010b) 
Yoshikawa et al. (2007)

Adenosine Immunomodulatory Mycelium Zhou et al. (2008)
Guanosine Immunomodulatory Mycelium Yu et al. (2007)
Lovastatin Hypolipidemic Mycelium Yu et al. (2007)
γ-Aminobutyric acid (GABA) Neurotransmitter Mycelium Tsai et al. (2010)

(continued)
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Table 15.2 (continued)

Bioactive compound/extract Bioactivities
Material 
source References

Sitosterol Cytotoxic Mycelium Tsai et al. (2010)
Ergosterol Cytotoxic Mycelium Matsuda et al. (2009)
5α,8α-Epidioxy-22E- 
ergosta-6,
22-dien-3β-ol

Cytotoxic Mycelium Matsuda et al. (2009)

5α,8α-Epidioxy-22E- 
ergosta-6, 
9(11),22-trien-3β-ol

Cytotoxic Mycelium Matsuda et al. (2009)

5α,6α-Epoxy-5α-ergosta-7, 
22-dien-3β-ol

Cytotoxic Mycelium Matsuda et al. (2009)

5α,8α-Epidioxy-24(R)-
methylcholesta-6,22-dien-3β- 
D-glucopyranoside

Anti-tumor Mycelium Matsuda et al. (2009)

5,6-Epoxy-24(R)-
methylcholesta-7,22-dien- 
3β-ol

Anti-tumor Mycelium Bok et al. (1999)

Serine protease Fibrinolytic Culture 
supernatant

Bok et al. (1999)

Melanin Anti-oxidant Mycelium Li et al. (2007)
Cordysinin A Anti-inflammatory Mycelium Lu et al. (2013)
Cordysinin B Anti-inflammatory Mycelium Yang et al. (2011)
Cordysinin C Anti-inflammatory Mycelium Yang et al. (2011)
Cordysinin D Anti-inflammatory Mycelium Yang et al. (2011)
Cordysinin E Anti-inflammatory Mycelium Yang et al. (2011)
Cordyceamide A Cytotoxic Culture 

supernatant
Yang et al. (2011)

Cordyceamide B Cytotoxic Culture 
supernatant

Jia et al. (2009)

Extract

Bailing capsule Renal protective Mycelium Wang et al. (2013)
Water extract Hepatoprotective Mycelium Wang et al. (2012)

Induced 
steroidogenesis

Mycelium Wang et al. (1998)

Anti-bacterial Mycelium Kuo et al. (2005, 2007b)
Immunosuppressant Mycelium Chiang et al. (2005)
Anti-aging Mycelium Ji et al. (2009)
Improve fertilization Mycelium Chen et al. (1997)
Anti-inflammatory Mycelium Li et al. (2009, 2012)

Ethanol extract Anti-diabetic Mycelium Kan et al. (2012)
Superoxide anion 
inhibition

Mycelium Yang et al. (2011)

Anti-inflammatory Mycelium Li et al. (2009)

(continued)
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15.4.3  Sterols

Number of sterols have been isolated from cordyceps extracts (ergosterol, ergos-
terol peroxide, delta-3 ergosterol, 3-sitosterol, daucosterol, and campesterol); nota-
bly ergosterol, naturally occurring in large quantity, is a component isolated from 
cell membrane of this fungus that acts as a precursor to vitamin D2 and carries 
anti-tumor activities (Holliday and Cleaver 2008; Shashidhar et al. 2013).

15.4.4  Nucleosides

Nucleoside is considered as the primary bioactive compound of Cordyceps sp. 
which is the union of nitrogen bases and peptones. The identified nucleosides are 
adenine, adenosine, cordycepin, cytosine, cytidine, guanosine, guanine, hypoxan-
thine, inosine, thymine, thymidine, uridine, and 2′-deoxydurine. These molecules 
play very important role in the regulation of various physiological processes/activ-
ities in the central nervous system (Zhu et al. 1998; Li et al. 2004, 2006a, b, c, d; 
Russell and Paterson 2008; Winkler 2009; Shashidhar et  al. 2013; Chen et  al. 
2013).

Table 15.2 (continued)

Bioactive compound/extract Bioactivities
Material 
source References

Methanol extract Radiation protective Mycelium Lin et al. (2007)
Immunomodulatory Fruiting 

body
Kuo et al. (2001)

Anti-inflammatory Fruiting 
body

Rao et al. (2007)

Anti-proliferative Fruiting 
body

Rao et al. (2007)

Anti-tumor Fruiting 
body

Wu et al. (2007)

Ethyl acetate extract Anti-cancer Mycelium Wu et al. (2007)
Anti-tumor Mycelium Wu et al. (2007)

Supercritical CO2 extract Free radical 
scavenging

Mycelium Wang et al. (2005)

Apoptotic Mycelium Wang et al. (2005)
Freeze-dried powder Anti-diabetic Fruiting 

body
Lo et al. (2006)

Adopted and modified by Lo et al. (2013), Chen et al. (2013), and Chiu et al. (2016)
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15.5  Artificial Culture

Cordyceps militaris, which parasitizes the pupa of Lepidoptera spp., is phylogeneti-
cally related to Cordyceps sinensis. The biochemical components of these two are 
similar; however, C. militaris is less expensive and more easily obtainable than C. 
sinensis. Therefore, C. militaris has become a model species in Cordyceps research 
(Yu et al. 2006; Cheng et al. 2012; Chen et al. 2013). The artificial culturing and 
stroma production of C. militaris have been studied in laboratory conditions on vari-
ous insect pupae and larvae, most often on the mulberry silkworm (Bombyx mori), 
Eri silkworm (Samia ricini), and oak tasar silkworm (Antheraea pernyi) (Gu and 
Liang 1987; Liang and Gu 1987; Gu et al. 1988; Yuan 1988, 1989; Feng et al. 1990; 
Gong et al. 1993; Zhou et al. 2000; Li 2002; Wang et al. 2002; Pan et al. 2002; Chen 
and Ichida 2002; Sato and Shimazu 2002; Zhang et al. 2003; Wen et al. 2004; Liu 
2004; Li et al. 2006c; Zheng et al. 2008a; Mu et al. 2010; Hong et al. 2010; Chai 
et  al. 2010; Luerdara et  al. 2015). Other insects used for artificial culturing and 
stroma production are Spodoptera litura (Sato and Shimazu 2002), Heliothis vires-
cens, H. zea and Spodoptera frugiperda (Sánchez-Peña 1990), Ostrinia nubilalis 
(Liang and Gu 1987), Mamestra brassicae (Harada et al. 1995; Sato and Shimazu 
2002), Tenebrio molitor (Sato and Shimazu 2002; Lin et al. 2005), Andraca bipunc-
tata (Panigrahi 1995), Philosamia cynthia (Jiang and Xun 1996), and Clanis bilin-
eata (Song 2009). Chen and Ichida (2002) observed higher  infection  rate and 
growth rate in silkworm pupae as compared larvae. Among three varieties of silk-
worm (Baegokjam, Daeseungjam, and Keumokjam), the Daeseungjam variety was 
most suitable for stroma formation of C. militaris (Hong et al. 2010).

Insects are very expensive and not always available in abundant quantity and also 
difficult to handle because they are prone to microbial contamination, so that alter-
native organic substrates have been tested for artificial culturing. Fortunately, cere-
als with the addition of some organic substances have proven to be good substitutes 
of insects for culturing and stroma production. Kobayasi (1941) documented stroma 
production of C. militaris on rice substrate. Many resercher used rice substrate for 
growing of C. militaris in laboratory conditions (Basith and Madelin 1968; Chen 
and Wu 1990; Liang 1990; Ma and Chen 1991; Sung et al. 1993, 1999; Pen 1995; 
Sung 1996; Wu et al. 1996; Zhang and Liu 1997; Choi et al. 1999; Zhang 2003; Li 
et al. 2006a, b, c, d; Lin et al. 2006; Wen et al. 2008; Chen et al. 2011a, b). Apart 
from this, the porosity of the fruiting medium affects mycelial growth and fruiting 
body yield. Porosity increases with grain size and decreases with a higher ratio of 
water to grain during rice medium preparation.

A ratio of rice to water (1:1 to 1:1.35) has been reported to be optimal for growth 
and production of stroma (Sung et  al. 1999, 2002; Lin et  al. 2006; Zheng et  al. 
2008b; Yue 2010), which also depends upon the rice cultivar and its glutinous qual-
ity. Husked rice is generally used for cultivation of C. militaris. Maximum fruiting 
body yield has been obtained with whole rice grain (Wen et al. 2008). Other organic 
materials used for the production of C. militaris stromata include bean powder, corn 
grain, corncobs, cotton seed coats, fragments of sunflower floral disks jowar, millet, 
and wheat grain (Chen and Wu 1990; Zhang and Liu 1997; Li 2002; Li et al. 2004; 
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Zhao et al. 2006; Gao and Wang 2008; Wei and Huang 2009). Xie et al. (2009) have 
observed that brown rice, malt, and soybean are also much better sources of nutri-
tion for C. militaris than chemical media. Rice mixed with silkworm pupae is supe-
rior than other substrates and is now routinely used (Ren 1998; Chen et al. 2002; 
Shrestha et al. 2004, 2005a, b; Sung et al. 2002, 2006; Zhao et al. 2006; Jin et al. 
2009).

Number of indigenous culturing methodologies for stroma production of C. mili-
taris, varying from place, environment, and aim that were documented such as saw-
dust culture, spawn production, husked rice culture, and shaking or submerged 
culture (surface liquid culture, continuous culture, and repeated batch culture) 
(Chen et al. 2002; Ren et al. 2009; Das et al. 2010; Yue et al. 2013; Zhou et al. 2013). 
Sawdust culturing solid medium is inoculated with one scoop of the seed culture 
and maintained at 25 °C for 20 days, the fungus proliferates all over the medium (Das 
et al. 2010). Then, it is cultured in the dark at 20–25 °C for about 6 months; thus, 
knot-like fruiting bodies are formed (Das et al. 2010). Spawn culturing glass beads 
are added to the potato glucose medium and sterilized at 121 °C for 20 min. After 
cooling inoculated with several pieces of stock culture at 25 °C for a week at sta-
tionary state, the hyphae are dispersed by shaking the medium once a day. After 
proliferation, the fungus is inoculated into bead-free potato glucose medium and 
cultured for 5 days to produce a seed culture. Husked rice cultureing, the husked 
rice medium or wheat medium was inoculated with liquid spawn at 25  °C for 
20 days, and the fungus proliferates all over the medium and was aged for about a 
month and harvested (Das et al. 2010). For shaking culture, the mycelia are trans-
ferred to seed culture medium by punching out about 5 mm2 of the plate that was 
transferred into 250 or 500 ml shaking flask containing 50–100 ml liquid medium 
and incubated at 25 °C on rotary shaker (50–150 rpm) for 5–7 days, while in sub-
merged culturing, mycelium is grown in liquid medium, which is vigorously aerated 
and agitated in large tank, i.e., fermenter (Das et al. 2010).

The artificial culture method comprises the following steps: preparation of the 
culture medium, sterilization, cooling, inoculation, culture/mycelia development, 
and harvesting of fruiting bodies. Numbers of solid and liquid media were utilized 
for culturing of C. militaris. Solid media such as beech wood meal, rice bran, wheat 
bran, husked rice, and wheat grains and liquid media, viz., potato dextrose agar 
(PDA), corn meal agar (CDA), malt extract agar (MEA), Ooat meal agar (OAT), and 
water agar (WA), and also medium containing culture bag or bottles are nowadays 
available in market (Sung and Shrestha 2002; Zhao et al. 2006; Masuda et al. 2007; 
Wei and Huang 2009; Yue 2010; Baral and Maharjan 2012). The basic culture 
medium comprises the following components presented in Table  15.3 (Masuda 
et al. 2007). Another composition of basal medium with an additive were published 
such as 1.25% glucose, 1.25% sucrose, 0.02% peptone, 0.0625% yeast powder, 
0.025% KH2PO4, 0.0125% MgSO4, 0.002% vitamin B1, and 7 H2O and natural pH 
at 24 °C for 192 hour (Zhao and Guo 2008), while Sheng et al. (2011) reported two 
times higher production of mycelia biomass by culturing on medium composed of 
20% potato, 0.08% beef extract, 0.2% peptone, 0.15% KH2PO4, 0.15% MgSO4, 
2.5% glucose, 1.5% sucrose, and H2O with natural pH at 23  °C, 130  r/min, for 
4 days.

R. Chaubey et al.



459

15.6  Industrial and Commercial Cultivation

Of the described species, only 36 have been artificially cultivated for the fruiting 
bodies  production (Sung 1996; Li et  al. 2006b; Shrestha et  al. 2012). Among 
the  artificially cultivated  species, only C. militaris has been commercially culti-
vated; commercial development has focused on C. militaris because of its excellent 
pharmaceutical properties and short production period (Li et  al. 2006c; Shrestha 
et al. 2012). Cordyceps militaris has been cultivated in liquid media for harvesting 
mycelia and on solid media for induction of fruiting bodies (Shrestha et al. 2012). 
Large-scale production of C. militaris fruiting bodies currently uses only solid 
media consisting of artificial substrates or insects (Shrestha et al. 2012). The most 
preferred method for cultivation in China is liquid fermentation, while Japan and the 
USA use solid substrate (cereals or grains) (Wang et al. 2009). Chinese producer 
uses liquid medium for fermentation which is silkworm-based liquid media that has 
minerals and carbohydrates added to help the mycelium grow very fast. This seems 
a logical choice, because this mushroom is found in nature growing on insects. 
Dried silkworm bodies are the by-product of an existing silkworm industry in China 
and have little other use. Using this liquid-based substrate,  researchers/manufac-
turer derives a high-quality product (cordyceps). The cost of the silkworm and its 
constant supply make this a very cheap and efficient way to grow Cordyceps in 
China. While using silkworm as a substrate  is  not practicable in other countries 
because they do not have a silkworm industry which Chinese manufacturers have at 
their disposal. However, it has long been determined that using rice as a substrate to 

Table 15.3 Composition of basal medium (Masuda et al. 2007)

Composition of basal medium Component concentration (g/l)

Nitrogen sources
Peptone 2.5
Yeast extract 7.5
Carbon source
Glucose 20
Others (diluted to 1/10 concentration of Vogel’s medium)
Sodium citrate 3 hydrate 0.28
KH2PO4 0.50
NH4NO3 0.20
MgSO4·7H2O 0.02
CaCl2·2H2O 0.01
Citric acid 0.46 × 10–3

ZnSO4·7H2O 0.50 × 10–3

Fe(NH4)2(SO4)2·6H2O 0.10 × 10–3

CuSO4·5H2O 0.025 × 10–3

H3BO3 5.0 × 10–6

MnSO4·(4–5)H2O 5.0 × 10–6

Na2MoO4·2H2O 5.0 × 10–6
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grow Cordyceps would produce an inferior quality of product as rice does not help 
the Cordyceps in producing its full potential of secondary metabolites and does not 
produce much active ingredients in the final harvested product. And the mycelium/
fruiting bodies cultivated on insects are twice as expensive to produce as biomass 
cultivated in artificial media (Li et al. 2007; Wang et al. 2009; Shrestha et al. 2012).

Traditional Chinese medicals are able to develop many Cordyceps products 
through modern technology. The products have been mainly focused on the follow-
ing aspects: enhancing physique, anti-aging, protecting the heart, improving sleep, 
increasing appetite, increasing immunity, etc. For example, C. militaris mycelial 
powder and the capsule of C. militaris mycelial powder had been authorized as a 
Chinese National Drug in April 2003. Jilin Northeast Tiger Pharmaceutical Co. Ltd. 
reported to the State Ministry of Health to declare classes of new drugs, which have 
been approved and called Xinkeqi capsules (Zhou et al. 2009; Luerdara et al. 2015).

15.7  Bioprospecting Added Value to Sericulture in India

Geographically, Asia is the main producer of silk in the world and produces over 
95% of the total global output. Though there are over 40 countries on the world map 
of silk, bulk of it is produced in China and India, followed by Japan, Brazil, and 
Korea. India produces four varieties of slik, the total raw silk production in 2016–
2017 is 30,348 MT, of which Mulberry accounts for 21,273 MT, Tasar 3268 MT, Eri 
5637 MT, and Muga 170 MT (http://csb.gov.in/publications/annual-report/). Global 
silkworm industry, which had been focusing on silk production, previously switched 
its market for supplying food supplements and raw materials for medicine (Tulasi 
and Viswanath 2013). Silkworm is an insect of which every part can be used for 
different purposes; therefore the traditional sericulture to produce only silk fabric 
now has been changed to functional sericulture of new paradigm to relieve the 
patients as well as increase the farmer income. There are a number of by-products 
from the sericulture industry which can be harvested and utilized in various food 
and medicine industries (Zhang 2002; Sarovat et  al. 2003; Tulasi and Viswanath 
2013). Some of the by-products from sericulture industry are:

15.7.1  Sericin

It is a water-soluble protein that is present in the silk fiber along with fibroin. Tasar 
sericin is unique and has many cosmeceutical, medical, and industrial applications. 
While processing/cooking of cocoons, this sericin gets solubilized and reaches the 
gutter and thus goes as waste. Ways to tap this potential resource can be focused. 1 
gm crude tasar sericin can be acquired from 150–200 cocoons. The cost of 1gm pure 
mulberry sericin is around 10,000 rupees. Thus, the potentiality of this by-product 
is enormous.

R. Chaubey et al.
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15.7.2  Cocoonase

This is a proteolytic enzyme produced by the moth while emerging from the cocoon 
to soften it. This enzyme after molecular characterization can be mass produced 
using the bacterial model system. This enzyme can be helpful in softening of cocoon 
without interfering its natural luster. Thus, it can replace the existing chemical- 
based cooking procedure.

15.7.3  Chitin

This biomolecule has an enormous and diverse industrial application. It can be 
extracted from the dead larvae, pupae, and moths which are thrown as a waste. 
Suitable procedures need to be worked out for the extraction and their prosperous 
utilization.

15.7.4  Pupal Protein

Enormous pupal biomass goes waste every year after stifling of the cocoons for silk 
reeling. India imports the insect protein from China. Insect protein can be extracted 
and purified from pupal biomass of sericulture industry for the preparation of pro-
tein drinks, biscuits, protein powders, etc. And production of protein powder from 
pupal biomass or pupae itself (mixed with rice or cereals) can act as medium for 
Cordyceps mass production on large scale in India as its being used in China (Ren 
1998; Chen et al. 2002; Shrestha et al. 2004, 2005b; Sung et al. 2002, 2006; Zhao 
et al. 2006; Jin et al. 2009). However, standardization of procedures is lacking for 
Indian sericulture industry. Male adults are thrown after mating and females after 
egg laying. These too constitute important source of medium for the Cordyceps 
mass production. For example, we are having more than 250 MT of tasar biomass 
(both pupae and adults) which can be utilized for the by-product development and 
thus can work toward the doubling of the farmer income and social upliftment of the 
tribal community in future.

15.8  Future Prospects and Constraints

• A systematic survey for identification of the traditional knowledge in the primary 
distribution region of Cordyceps among the local inhabitants.
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• The indigenous traditional knowledge gathered by different workers related to 
the Cordyceps should be placed at a central level, from where any interested 
person can get all the available information.

• Cordyceps should be included in the list of future medicinal fungal species and 
considered as a crop for future research.

• Low cost and high productivity are the need of the hour. Thus the genetic manip-
ulation from the other wild species should also be focused by the scientific 
community.

• The updated protocol for the highest yield in terms of profitability still needed 
focused work.

• The more rigorous screening for the new compounds in the identified or recently 
identified species should also be promoted in the research groups.

• More research and clinical evidence are highly required to support the ethnologi-
cal claim information.

• The information of this important species and its benefits are highly scarce to the 
active silk farming.

• The government of India should include it into the business model and support 
financially for developing the small-scale entrepreneurship.
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Chapter 16
Synthetic Biology: A Novel Approach 
for Pharmaceutically Important 
Compounds

Rashmi, Upendra Kumar, Poonam Maan, and Priyanka

16.1  Introduction

Synthetic biology is the new emerging discipline of science which combines prin-
ciples of engineering with biology to redesign a living system to produce something 
it would not naturally produce. The living cells will alter through recombinant DNA 
technology to meet specific purposes. Fungi are ubiquitous eukaryotic living organ-
isms with diverse importance. They were interlinked with other life forms in our 
biosphere and have affected us in both positive and negative ways. They were 
diversely utilized for commercially valuable compounds since ancient times. Being 
the class of simple organisms yet performed biological activities to closely relate 
higher eukaryotic organisms made them far more valuable for commercial exploita-
tion in the long run. A wide array of chemicals discovered and innumerable are yet 
to be identified (Adrio and Demain 2003).

The new emerging field of synthetic biology is arguably redirecting the drug 
discovery in the same way as the field of organic chemistry was once a century ago 
at the center of innovation in the pharmaceutical industries (Trosset and Carbonell 
2015). Because of the difficulty in large-scale production of natural products 
through microorganisms (or other living systems), pharmaceutical industries were 

Rashmi 
Department of Genetics & Plant Breeding, College of Agriculture,  
G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India 

U. Kumar (*) 
Department of Molecular Biology, Biotechnology & Bioinformatics, College of Basic 
Sciences & Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India 

P. Maan 
Department of Agriculture Biotechnology, College of Agriculture,  
SVBP University of Agriculture & Technology, Meerut, U.P, India 

Priyanka 
Department of Botany, Government Girls Degree College, Meerut, U.P, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-14846-1_16&domain=pdf


476

forced to redirect their interest toward simpler chemistry at the risk of increased 
cross-reactivity with secondary therapeutic targets and even unwanted off-targets as 
confirmed by recent studies in system chemical biology.

A breakthrough discovery in the 1990s made the rational-based genetic design a 
potential strategy for drug discovery. Microorganisms (as well as plants and others) 
produce secondary metabolites using gigantic biosynthetic units. These enzymatic 
modules can be manipulated in combinatorial fashion in synthetic cells to produce 
new natural product derivatives (Medema et al. 2015). The first application of syn-
thetic biology in pharma-industry was to boost innovation in creating new chemical 
scaffolds that have properties similar to well-known natural products-derived human 
medicines, increasing the chance of being bioactive with the right pharmacological 
properties (Sun et al. 2015).

With the recent advanced genome editing, molecular biology, and protein engi-
neering tools, synthetic biology has focused its aim at creating biological devices 
that can produce controlled products. The design of genetic circuits in synthetic 
biology is used in pharmaceutical research not only for bioproduction (Breitling and 
Takano 2015) of drugs by microorganisms but also to support the different steps of 
drug development. Since, fungi are themselves established cell factories in the phar-
maceutical industry. The versatile chemical entities secreted by these organisms 
have tremendous benefits. The need of the hour is to club synthetic biology and 
mycology to enhance gains.

16.2  The Evolution in Synthetic Biology

Synthetic biology is a new emerging scientific discipline where engineering prin-
ciples are applied to biology. Synthetic biology has gone through rapid development 
in the last century. The initial focus of synthetic biology was on proof-of-concept 
studies and now has been shifted toward the creation of complex networks in unicel-
lular and multicellular systems and the industrial applications. Specially, the engi-
neering of microorganisms for production of value-added small molecules such as 
different flavors, fragrances, and clinically relevant drugs holds great potential 
(Hayden 2014). In the recent years, however, the technological advancements 
within several fields of biology, including sequencing and other omics technologies, 
and gene engineering, have dramatically increased our understanding of biological 
systems that can be exploited within the field of metabolic engineering, where ratio-
nal genetic changes are implemented in cells to improve production capabilities 
rather than relying on the stochastic nature of traditional mutagenesis methods. This 
approach holds a promising potential to change our society to a bio-based economy 
where any chemical in the future could be produced in a feasible way from renew-
able resources using microbial cell factories. A fast growth in the area of synthetic 
biology is well predicted in the near future with the improvement in the techniques 
of system design, synthesis, and optimization.
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16.2.1  Synthetic Biology for Pharmaceuticals

Nowadays, drug discovery through synthetic biology is the main focus area of phar-
maceutical industries. Nature is full of natural products which have been utilized as 
human medicines for thousands of years, but the large-scale production of natural 
products is difficult. Synthetic biology for drug development involves the engineer-
ing approach into biology, which alters a living cell into a biofactory for production 
of high-value pharmaceutically important products (Hayden 2014). The synthetic 
biology of medicines is further promoted by recently discovered microbial genome 
and metagenome sequences which have a lot of unexplored biosynthetic capacities 
(Wilson and Piel 2013a, b; Helfrich et al. 2014).

Among all known microbial antibiotics and similar bioactive compounds (alto-
gether 22,500), 45% are from actinomycetes, 38% from fungi and 17% are from 
unicellular bacteria (Berdy 2005). Among this wealth of compounds, only about a 
hundred are in practical use for human therapy, with the majority being derived 
from actinomycetes (Berdy 2005). However, it is worth mentioning that fungi are 
also contributing to this group with Penicillin first to be utilized by pharmaceutical 
market now, including cholesterol-lowering statins (Barrios-Gonz and Miranda 
2010), the antifungal griseofulvin (Finkelstein et  al. 1996), immunosuppressant 
mycophenolic compounds (Stassen et al. 2007), and anticancer drugs such as taxol 
(Yang et al. 2014) (Fig. 16.1).

Systems biology is often divided into two different approaches: the bottom-up 
and the top-down approach. The bottom-up approach derives detailed models, e.g., 
about a biochemical pathway, and requires manual curation and a thorough prior 
description of the individual components of the system. The top-down approach has 
been integrated systems level characterization or quantifications of collections of 
biological entities, from high-throughput technologies, which is often referred to as 
omics data. Omics data can represent a multitude of different biological sources and 

Fig. 16.1 Secondary fungal metabolites used in the pharmaceutical industry
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techniques, and one of the most established omics technologies is transcriptomics, 
which quantifies all mRNA transcripts in a single cell or a population of cells, the 
transcriptome. Similarly, other types of omics technologies include genomics, pro-
teomics and metabolomics. The inclusive and integrative nature of top-down system 
biology and the identification of emerging properties make it a data-driven disci-
pline that is hypothesis generating. A common example would be the comparison of 
cellular responses to different conditions and applying statistical and clustering 
methods to extrapolate patterns in the data that define a given perturbed state of the 
cell described by Kitano (2002) as the systems biology research cycle.

The traditional approach to establish production processes using cell factories 
has been to select naturally high yielding isolates producing the compound of inter-
est. This has historically been a successful approach in many industrial production 
processes of chemicals such as glutamate production by Corynebacterium glutami-
cum (Kinoshita et al. 1957) and citric acid production by A. niger (Currie 1917). For 
large-scale production of penicillin, various Penicillium species and isolates were 
screened for production. This led to the discovery of a high yielding strain, P. rubens 
NRRL 1951, which can be traced back to a moldy cantaloupe melon from the food 
market in Peoria, Illinois, USA. The isolate is the ancestor of all current industrial 
penicillin production and proved to possess a major potential for further optimiza-
tion. Following decades of classical strain improvement programs through random 
mutagenesis, penicillin production was increased more than 10,000-fold (Thykaer 
and Nielsen 2003). Nowadays, an increasingly popular strategy is to transfer the 
pathway of interest to a platform cell factory which has been optimized for indus-
trial production. Such organisms are advantageous since they are well character-
ized, and a number of gene editing and gene expression tools are established 
(Nielsen and Keasling 2016). In addition, existing systems biology tools such as 
genome-scale metabolic models (GEMs), can be exploited to easily understand the 
context of expression of a heterologous pathway. The yeast, S. cerevisiae serves as 
an attractive platform for secondary metabolite production and has been success-
fully used to express heterologous pathways of fungal PKs (Naesby et  al. 2009; 
Rugbjerg et al. 2013) and NRPs (Awan et al. 2017).

The production of anti-malarial, semi-synthetic drug artemisinin is the first 
application of synthetic biology in the pharmaceutical industry and mostly used as 
a model drug for practice of synthetic design and assemble biological modules, 
devices, and systems. Originally, this drug was obtained from a plant, Artemisia 
annua, but for large-scale production can be produced in different heterologous 
hosts by conjoining metabolic engineering and synthetic biology (Paddon et  al. 
2013). The microorganisms were metabolically engineered to produce artemisinic 
acid (chemical precursor of artemisinin), followed by synthetic organic chemistry to 
produce semi-synthetic artemisinin. The semi-synthetic artemisinin is indistin-
guishable to natural artemisinin and known as semi-synthetic because its precursors 
are produced biologically and only a few final steps are achieved by organic 
chemistry.

To understand the semi-synthetic production of artemisinin, a thorough study of 
its production in A. annua is required (Bertea 2005; Brown 2010) (Fig.  16.2). 
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Fig. 16.2 Artemisinin biosynthesis pathway in the plant Artemisia annua. (Source: Paddon and 
Keasling 2014)
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Artemisinin is an isoprenoid molecule containing 15 carbon atoms and a lactone 
endoperoxide (White 2008). A. annua produces acetyl-CoA (2C) from sugars; then 
it enters in the mevalonate pathway and gives rise to the farnesyldiphosphate (FPP) 
(15C). Farnesyldiphosphate is converted to amorphadiene (15C isoprenoid hydro-
carbon) by the enzyme amorphadiene synthase (ADS) (Bouwmeester et al. 1999; 
Covello et al. 2007). Amorphadiene is oxidized into artemisinic acid and dihydroar-
temisinic acid (Paddon et al. 2013). Artemisinin is derived from dihydroartemisinic 
acid spontaneously in the sunlight (Bertea et al. 2006; Brown 2010).

16.2.2  Synthetic Biology in Drug Development

16.2.2.1  Artemisinin Production

The main objective of semi-synthetic artemisinin production process was to engi-
neer E. coli or other microorganisms to produce high titer and yield of artemisinin 
precursors such as artemisinic acid, followed by chemical conversion to artemis-
inin. Artemisinic acid was produced by E. coli through fermentation and then syn-
thetic organic chemistry was used to produce artemisinin from artemisinic acid. 
However, in engineered E. coli, it was difficult to oxidize amorphadiene to arte-
misinic acid; this encouraged the use of S. cerevisiae in place of E. coli for produc-
tion of artemisinic acid. The engineered S. cerevisiae strain was very efficient in 
production of amorphadiene as it can produce 40 g per L amorphadiene in compari-
son to E. coli which can produce 25 g per L. The process of artemisinin production 
involves following developmental stages:

16.2.2.1.1 Stage 1: Amorphadiene Synthesis in E. coli

Synthesis of isoprenoids follows two different pathways, the mevalonate and 
1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The mevalonate pathway takes 
place in eukaryotes as well as in some prokaryotes while DXP pathway takes place 
in bacteria and plant chloroplasts (Zhao et al. 2013). The genes that encode isopren-
oid synthases and key enzymes of the DXP pathway were overexpressed for enhanc-
ing the flux through the pathway, this was resulted into enhancement in the 
production of heterologous isoprenoids (C10 and C20). However, the low titer of 
terpenes is produced through this strategy which may be because of synthesis inhi-
bition in native host (Reiling et al. 2004). However, production was increased by 
expressing the yeast mevalonate pathway into E. coli. A synthetic version of the 
natural amorphadiene synthase (ADS) (Martin et  al. 2003) was also expressed. 
Amorphadiene synthase is required for conversion of endogenously produced FPP 
to amorphadiene.

The mevalonate pathway in E. coli was expressed by two plasmids encoding 
mevT operon and mevB operon. These two operons (mevT operon and mevB 
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operon) belong to two different processes; top pathway and bottom pathway, 
 respectively. mevT operon consists of three genes, i.e., atoB, ERG13, and tHMG1, 
required for the conversion of acetyl-CoA to mevalonate. mevB comprises five 
genes, i.e., idi, ispA, MVD1, ERG8, and ERG12, that are responsible for conversion 
of mevalonate to FPP. mevT operon is overexpressed, and its overexpression is 
associated with the low growth of microorganism (Pitera et al. 2007); this was due 
to the imbalanced expression of enzymes atoB, ERG13, and tHMG1 that were 
encoded by the mevT operon. This leads to the accumulation of an unknown inter-
mediate that inhibited the growth. Then, S. cerevisiae was used as bio-factory to test 
its efficiency for production of artemisinin precursors.

16.2.2.1.2 Stage 2: Saccharomyces cerevisiae as Production System

Amorphadiene is oxidized by a cytochrome P450 enzyme located in the trichomes 
of A. annua (Bertea 2005). S. cerevisiae was used as a host to express this enzyme 
(P450 (CYP71AV1) along with its cognate reductase (CPR1) for assessing the func-
tionality of this enzyme. This transformed stain of S. cerevisiae was capable of 
producing 150 mg per L amorphadiene which was much lower than that in E. coli 
(25 g per L). It is not an easy task to express eukaryotic P450 in E. coli, and produc-
tion of high titers of artemisinic acid was also in doubt. After considering a number 
of possibilities, the researchers concluded that S. cerevisiae was the superior 
organism.

Although some oxidized intermediates of amorphadiene (such as artemisinic 
alcohol) could be produced by E. coli, Escherichia coli could produce only more 
than 1 g per L artemisinic acid by expression of CYP71AV1, at 20 C which is an 
unsuitable temperature for industrial fermentation. While in S. cerevisiae 2.5 g per 
L artemisinic acid was produced by optimizing the production pathway and further 
improvement in titer was possible using an alternative yeast strain.

Use of an Alternative Yeast Strain The S. cerevisiae strain S288C was used initially 
for the production of artemisinic acid. The major drawback with this strain was that 
it sporulates poorly (Ben-Ari et  al. 2006) and strain construction is not easy. 
Industrial fermentation with this strain is also difficult because of little information 
available about it. By contrast, another strain S. cerevisiae CEN.PK2 was proved to 
be desirable because it sporulates profoundly and has characteristics required for 
industrial fermentation (vanDijken et  al. 2000). Amorphadiene was produced in 
fivefold higher concentrations by using the engineered strain S. cerevisiae CEN.
PK2 as compared to the original S288C-derived strain. StrainCEN.PK2 was capa-
ble of producing 40 g per L amorphadiene by further optimization of fermentation 
process (Westfall et al. 2012). Although the amorphadiene production was increased, 
it did not result in the enhancement in artemisinic acid which was tenfold lower in 
production level.
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Improvement in Artemisinic Acid Production Level It was observed that the engi-
neered CEN.PK2 strain expressing CYP71AV1 for artemisinic acid production 
goes through a severe decrease in viability. This decrease in viability did not occur 
with the strains that lacked CYP71AV1 and produce amorphadiene (Paddon et al. 
2013). Artemisinic acid production in S288C-derived strain is associated with the 
induction of transporter gene expression in high level (Ro et al. 2008). Transcript 
analysis indicated that cells expressing CYP71AV1 undergo severe oxidative stress. 
CYP71AV1 and its reductase (CPR1) were expressed in high concentrations in the 
yeast strain. The expression of CPR1 was reduced later on, which led to improved 
viability but associated with reduced production of artemisinic acid.

The cytochrome P450 enzymes interact with cytochrome b5. Cytochrome b5 
from A. annua was transferred and expressed in the CEN.PK2 production strain due 
to this, the production level of artemisinic acid was enhanced but it was still lower 
than the target concentration of 25 g per L (Paddon et al. 2013). This strain produced 
a highly reactive oxidation intermediate, artemisinic aldehyde which is considered 
as toxic and creating difficulties in producing the amount of artemisinic acid in 
yeast. The production of artemisinic acid was increased considerably by the expres-
sion of A. annua artemisinic aldehyde dehydrogenase (ALDH1) (Teoh et al. 2009). 
Another gene that encodes for an NAD-dependent artemisinic alcohol dehydroge-
nase (ADH1) was also isolated from A. annua and expressed together; this resulted 
into the highest concentration of artemisinic acid that had been achieved so far.

16.2.2.1.3 Stage 3: Chemical Conversion of Artemisinic Acid to Artemisinin

A four-step chemical process was developed for conversion of purified artemisinic 
acid to artemisinin (Paddon et  al. 2013). In the first step, artemisinic acid was 
reduced to dihydroartemisinic acid. Then, esterification of the -COOH moiety on 
dihydroartemisinic acid was done followed by the generation of singlet oxygen. 
Singlet oxygen was responsible for the production of 3-hydro-peroxide and acid- 
catalyzed Hock fragmentation and rearrangement. Ultimately, artemisinin is pro-
duced in the presence of molecular oxygen. This process can be scaled up by using 
batch reactors at manufacturing sites that are not much expensive to operate.

16.2.2.2  Taxol Production Using Endophytic Fungi

Taxol® (generic name Paclitaxel), a plant-derived anticancer drug, widely used 
against breast, ovarian, and lung cancer, was originally isolated from the Pacific 
yew, Taxus brevifolia. The limited supply of the drug prompted research to find 
alternative sources such as chemical synthesis tissue and cell culture of the Taxus 
species both of which are expensive and yield low levels. Thus, a sustainable, eco-
nomical and unconventional alternative source of Taxol® such as endophytic fungi 
has been actively researched. This discovery was projected as the dawn of a new era 
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of endophyte biotechnology with billions of dollars’ worth of global market for 
Taxol® already in place, and agreements were immediately underway among lead-
ing pharmaceutical companies to explore the possibility of fungal Taxol® produc-
tion through industrial fermentation (Flores-Bustamante et al. 2010). The inability 
of the fungus to show reproducible high titer yields of Taxol® in axenic cultures, 
thus not amenable to industrial scale-up, led to the disappointing failure in deliver-
ing the promises of this highly heralded discovery. However, Taxol®-producing 
endophytic fungi harbored in other Taxus species and even in non-Taxus plants 
including many angiosperms, have been regularly reported (Flores-Bustamante 
et al. 2010; Hao 2013). At the present time, around 200 endophytic fungi belonging 
to more than 40 fungal genera from several different orders representing mostly 
Ascomycota and Deuteromycota, with only a few from Basidiomycota and 
Zygomycota, have been reported to produce Taxol® (Flores-Bustamante et al. 2010; 
Hao 2013). Many endophytic fungi are added to the list every year underlining the 
fact that only a tiny fraction of an estimated one million (or more) endophytic fungal 
species has been cultured and screened (Suryanarayanan et al. 2009). Undeniably, 
none of these discoveries have been successfully translated into industrial biopro-
cesses so far.

The molecular pathway of Taxol® biosynthesis in different Taxus plants has 
been well characterized at both native and recombinant levels with the discovery of 
close to 20 different enzymatic steps (Fig.  16.3) spatially organized in plastids, 
endoplasmic reticulum, and cytosol (Jennewein and Croteau 2001; Walker and 
Croteau 2001; and Croteau et al. 2006). However, the molecular signature of Taxol® 
biosynthesis in Taxol® producing endophytic fungi remains largely ill-defined. 
Several groups have independently attempted to screen many of these fungi through 
PCR-based approaches to seek these biosynthetic blueprints using primers designed 
from the Taxol® biosynthesis gene sequences of different Taxus plants available in 
the databases (homology-based approach) (Flores-Bustamante et  al. 2010; Hao 
2013; Staniek et al. 2009; Garyali et al. 2013; Xiong et al. 2013). Indeed, reports on 
the PCR amplification and cloning of many genes of this pathway from several 
Taxol® producing endophytic fungi (Table 16.1) facilitate a decisive re-evaluation 
of their ‘true’ biosynthetic potential, and in turn their potential as alternative and 
sustainable sources of Taxol®.

Genetic engineering of endophytic fungi known to produce Taxol®, both by 
gene overexpression and random mutagenesis coupled with genome shuffling, have 
been attempted in only a very limited number of fungal isolates. In Ozonium sp. 
EFY-21 isolated from T. chinensis var. mairei, overexpression of Taxus TS gene 
under a fungal-specific promoter resulted in about fivefold increase in Taxol® pro-
duction as compared to control (Wei et  al. 2012). Multiple mutagenesis of 
Nodulisporum sylviforme provided the strain NCEU-1 from which three hereditar-
ily stable strains were obtained by mutagenesis. Protoplasts (round fungal cells gen-
erated from spores and lacking the cell wall) generated from these and fused 
randomly finally led to three strains that showed an increase in Taxol® yield by 31, 
64, and 45% over the control, respectively (Kai et al. 2008). The reported Taxol® 
pathway metabolic engineering approaches in Escherichia coli (Ajikuar et al. 2010; 
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Huang et al. 2001; Meng et al. 2011) and Saccharomyces cerevisiae (Engels et al. 
2008; DeJong et al. 2005) have mostly focused on taxadiene engineering. Reported 
attempts to engineer the Taxol® biosynthetic pathway beyond taxadiene encoun-
tered metabolic bottlenecks as observed by the total absence or insignificant yields 
of any intermediate beyond taxadiene. This was shown for seven consecutive gene 
transfers in S. cerevisiae, which is the highest number of steps (for the Taxol® path-
way), engineered in a heterologous host so far (Dejong et al. 2005).

Notwithstanding these unsuccessful endeavors, however, the several hundred 
milligrams per liter (reaching 1 g/l) yields of taxadiene obtained in few such attempts 
together with reports of biotransformation of intermediate taxanes by several micro-
bial enzymes provide some strategies worth exploring to realize sustained Taxol® 

Fig. 16.3 Prevalent consensus biosynthetic route for Taxol® in Taxus species. Abbreviations: 
MVA mevalonic acid, MEP, 2-C-methyl-D-erythritol-4-phosphate, GGPPS geranylgeranyldiphos-
phate synthase, TS taxa-4(5),11(12)-diene synthase that catalyzes the committed step of this path-
way, T5aH taxa-4(5),11(12)-diene-5a-hydroxylase, TAT 
taxa-4(5),11(12)-diene-5a-ol-O-acetyltranseferase, T10bH taxane-10b-hydroxylase, z ‘oxytane 
ring’ formation and branch migration enzymes including taxane 2a-Obenzoyltransferase (T2BT or 
DBBT = debenzoyltaxane-20-a-O-benzoyltransferase) as well as C-13 hydroxylation and steps 
taking pathway flux towards non-Taxol1-type molecules, DBAT 10-deacetylbaccatin III-O- 
acetyltransferase, BAPT baccatin III 13-O-(3-amino-3-phenylpropanoyl) transferase, DBTNBT 
30-N-debenzoyl-20-deoxytaxol-Nbenzoyltransferase which follows hydroxylation in the side 
chain by an unknown enzyme, PAM phenylalanineaminomutase, *, b-phenylalanine coenzyme A 
ligase. Multiple arrows imply more than one biosynthetic step. The Taxol® biosynthetic pathway 
is proposed to have about 20 different enzymatic steps in Taxus plants
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Table 16.1 Taxol® biosynthetic pathway genes reported from endophytic fungi under the SMF

Gene 
name

Molecule 
type Fungus Host plant

GenBank 
acc. no.

Fermentation 
method References

TS cDNA Fusarium solani Taxus 
celebica

HM113487 SMF –

TS gDNA Taxomyces 
andreanae

Taxus 
brevifolia

– SMF Staniek et al. 
(2009)

TS gDNA Fusarium 
redolens

Taxus 
baccata 
subsp. 
wallichiana

– SMF Garyali et al. 
(2013)

TS gDNA Gibberella 
intermedia

Taxus x 
media

KC337345 SMF Xiong et al. 
(2013)

TS gDNA Mucorrouxiaus Taxus 
chinensis

– SMF Miao et al. 
(2009)

TAT cDNA Ozonium sp. 
BT2

Taxus 
chinensis 
var. mairei

AY960682 SMF –

10βH gDNA Ozonium sp. 
BT2

Taxus 
chinensis 
var. mairei

AY836677 SMF Guo et al. 
(2006)

cDNA AY907826
13αH cDNA Fusarium solani Taxus 

celebica
EF626531 SMF Chakravarthi 

et al. (2008)
DBAT gDNA Fusarium solani Taxus 

celebica
GU392264 SMF –

DBAT gDNA Cladosporium 
cladosporioides 
MD2

Taxus x 
media

EU375527 SMF Zhang et al. 
(2009)

DBAT gDNA Aspergillus 
candidus MD3

Taxus x 
media

EU883596 SMF Zhang et al. 
(2009)

DBAT gDNA Fusarium 
redolens

Taxus 
baccata 
subsp. 
wallichiana

– SMF Garyali et al. 
(2013)

BPAT gDNA Taxomyces 
andreanae

Taxus 
brevifolia

– SMF Staniek et al. 
(2009)

BPAT gDNA Colletotrichum 
gloeosporioides

Taxus x 
media

KC337344 SMF Xiong et al. 
(2013)

BPAT gDNA Guignardia 
mangiferae

Taxus x 
media

KC337343 SMF Xiong et al. 
(2013)

BPAT gDNA Fusarium 
redolens

Taxus 
baccata 
subsp. 
wallichiana

KC924919 SMF Garyali et al. 
(2013)

Abbreviations: TS taxa-415,11(12)-diene synthase, TAT taxa-4(5),11(12)-diene-5α-ol-O-acetyl 
transferase, T10βH taxane-10β-hydroxylase, T13αH, taxa-4(5), 11(12)-diene-13α-hydroxylase, 
DBAT 10-deacetylbaccatin III-O-acetyl transferase, BAPT baccatin III 13-O- (3-amino-3- 
phenylpropanoyl) transferase, SMF submerged fermentation, cDNA complementary DNA, gDNA 
genomic DNA
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supply using endophyte (and related microbial) biotechnology. This would be espe-
cially interesting when supplemented with contributions from heterologous hosts 
and other optimization methodologies and tools such as intracellular compartment 
optimization, storage and efflux modulation, and control of pathway regulatory ele-
ments. However, delineation of the molecular mechanisms of Taxol® biosynthesis 
and regulation thereof remains a prerequisite for all such endeavors. Most notably, 
as seen from the Taxol® biosynthetic pathway of Taxus sp., there seems to be an 
obvious hurdle in engineering such a lengthy and complex pathway in its entirety in 
heterologous hosts. Transformation of genes of the entire pathway is a challenge 
and more importantly, regulation of Taxol® production encompassing epigenetic 
modulation and signaling crosstalk itself remains a poorly understood topic. 
Taxol®-producing endophytic fungi, therefore, still present a viable and long-term 
target, despite many unanswered questions.

16.2.2.3  Production of Other Pharmaceuticals

Artemisinin is the first pharmaceutical agent produced at industrial scale by using 
both metabolic engineering and synthetic biology. Semisynthetic artemisinin 
has been approved by the WHO as it is functionally similar to the natural drug 
obtained from A. annua 55. It is predicted that similar techniques can be used 
to produce many other pharmaceutical products. Production of anticancer drug 
Taxol (Jiang et al. 2012), farnesene (Zhu et al. 2014) and HIV drug prostratin has 
already been attempted through synthetic biology. Moreover, several precursors 
of useful alkaloids which are used as antioxidants, analgesics, and muscle relax-
ants have been produced in biofactory of E. coli and S. cerevisiae (Hawkins and 
Smolke 2008; Minami et al. 2008). Polyketides are a large class of important natu-
ral products, e.g., erythromycin, epothilone, and FK-506 are also produced using 
this technology.

A significant achievement in the recombinant production of polyketides in E. coli 
(that naturally does not produce any) was the engineering of the pathway that 
encodes the production of 6-deoxyerythronolide B (6dEB) (Pfeifer et  al. 2001). 
This strain was created by optimizing precursor production, enzyme engineering 
and destroying catabolic pathways. Subsequent optimization of the strain has 
improved the level of 6dEB production to levels obtained from optimized S. coeli-
color strains (Pfeifer et al. 2002). Building on this work, heterologous production of 
several other important polyketides or their precursors has been achieved recently, 
namely, the anti-cancer drugs epothilone C and D (Mutka et al. 2006) and ansamy-
cin precursors (Rude and Khosla 2006; Watanabe et al. 2003), aklanoic acid (pre-
cursor to several antitumor polyketides, e.g., doxorubicin and aclacinomycin A) 
(Lee et al. 2005), and aromatic bacterial polyketides (Zhang et al. 2008).
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16.3  Drivers and Constraints for Adoption/Future 
Challenges

Pharmaceuticals have inspired some of the earliest success stories of synthetic biol-
ogy for two main reasons: Firstly, small molecule drugs in current use (from aspirin 
to artemisinin) are very often derived from natural products, so that a return to 
microbial production systems is seen as relatively straightforward, and secondly, 
many natural biosynthetic pathways show a surprising level of built-in modularity 
at many levels, which can be exploited by the engineering approaches of synthetic 
biology(Frasch et al. 2013; Medema et al. 2011). The synthetic biology of pharma-
ceuticals is further inspired by the recent avalanche of microbial genome and 
metagenome sequences which revealed an unexpected richness of unexplored bio-
synthetic capacities in almost every genome analyzed (Wilson et al. 2014; Helfrich 
et al. 2014). The main driver for the adoption of this technique is in its great techni-
cal potential. Besides the broad applicability, they show specific technical advan-
tages when compared to ‘older’ techniques.

The second main driver is the economic benefit. The use of a new technique 
makes the process faster which lowers production costs. In principle the commer-
cial development of synthetic biology could be driven by advantages at the techno-
logical level or the economic level. At another level, synthetic biology also 
contributes to the fundamental understanding process (Andrianantoandro et  al. 
2006) that can be further tapped by scientific endeavors. However, it is also possible 
to anticipate technical constraints (current efficiency) as majority of work per-
formed in synthetic biology is in basic science rather than applied science with 
exceptions mentioned. Majority of projects were centered on developing new exper-
imental and computational tools, using synthetic biology to understand how organ-
ism work or to generate minimal cells that can be counted as time constraint as it is 
also evident in case of semi-artiseminin where it took 10 long years.

Other constraints include the range of hosts to be used for generating pharmaceu-
ticals which can be easily overcome by rapid development in the field, e.g., in 
Streptomyces orinici, silent biosynthetic pathway was awakened by refracting strat-
egy of synthetic biology by Shao et al. (2013) by removing all negative control of 
the spectabilin cluster and replacing it with system of constitutive and inducible 
heterologous promoters in a plug-and-play scaffold. This can help in straightfor-
ward production of end products at detectable levels amenable for analysis and 
further optimization. Industrial Streptomyces avermitilis (Komatsu et al. 2013) and 
Pseudomonas strains (Nikel 2014) are the new hosts for biotechnological applica-
tions based on the increasing ability of synthetic biology to engineer such as non- 
classical mode organisms. The most attractive production host, i.e., E. coli, has also 
demonstrated the ability of heterologous expression of huge molecular assembly 
lines required for pharmaceutically interesting products by Jaitzig et  al. (2014). 
Further, CRISPR-Cas system and related technologies allowed achieving genome 
engineering in multicellular organisms, even in plants (and plant cell cultures) for 
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production of pharmaceutical compounds (Staniek et al. 2013; Wilson et al. 2014). 
Other constraints like posttranslational modification on the expression of proteins 
are largely unexplored.

16.4  Conclusion and Future Prospects

Pharmaceuticals industry basking new glory under synthetic biology as discussed 
above. New molecular compounds as well as hosts were formed and manipulated 
for human benefit. Engineered systems are rapidly becoming a reality which is 
based on advances in our ability to edit genome and identify and optimize biosyn-
thetic building blocks. This can help in creating a library of new pathways and novel 
compounds. But at the same time, ethical issues centered about the complete engi-
neering of a new living organism or redesigning of existing species caught negative 
attention. It may or may not create problem but the danger of evolving new virulent 
strains always crossed in mind. Anyways, bolder initiatives are needed in funding 
for using this technology as it will be benefitted by the advancement of computa-
tional and engineering technology which in the future will move many more 
examples.
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